
Ghosh
Cam

eron
Silverlight Recipes

Companion
eBook Available

this print for content only—size & color not accurate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

US $49.99

Shelve in
.NET

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-3033-5

9 781430 230335

54999

Silverlight Recipes:
A Problem-Solution Approach
Dear Reader,

As a Web application developer, you are constantly looking for better ways to
enrich browser-based user experiences, pushing the limits of Dynamic HTML
and JavaScript. Adding immersive and fast browser-hosted user interfaces with
eye-popping graphics, rich media, and powerful web services to traditional web
applications has traditionally required a lot of effort and knowledge in numerous
technologies and tools. This all becomes seamlessly available to you as a devel-
oper in Silverlight, while end-users still benefit from a fast start-up and powerful
runtime performance.

 In Silverlight 4, with Visual Studio 2010 and Microsoft Expression Blend 4, you
can design cutting-edge interfaces with graphics, animation, rich controls and
data binding in the powerful XAML declarative language. For application logic,
you can continue to enjoy the benefits of Visual Studio 2010 integration, such as
seamless debugging, .NET Framework features like generics and LINQ, as well as
access to your favorite development language like C# or VB, as well as access to
Dynamic Languages such as IronPython, IronRuby, and Managed JScript.

 As members of the Microsoft technical community focused on digital media
solutions, we have had the good fortune of working with Silverlight from the very
early days of the technology. In this book we explore Silverlight 4 the way we
learned it, using a problem-solution approach. With this book, we provide you
with the essence of what you need to be proficient with Silverlight, and we are
confident you will find this book useful. We sincerely hope you enjoy reading it as
much as we enjoyed writing it!

Jit & Rob

Accelerated
Silverlight 4

Beginning
Silverlight 4

THE APRESS ROADMAP

Next Generation BI
Software with Silverlight 4

Pro Business Applications
with Silverlight 4

Silverlight
Recipes

Pro
Silverlight 4 in C#

Jit Ghosh, Author of
Silverlight 2 Recipes: A
Problem-Solution Approach

Silverlight Recipes: A
Problem-Solution Approach

Rob Cameron, Coauthor for
Building ASP.NET Server
Controls

Pro ASP.NET 3.5 Server
Controls and AJAX
Components

Contributed chapter to
Pro BizTalk 2006

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

Updated for
 Silverlight 4

trim = 7.5" x 9.25" spine = 1.96875" 1056 page count

Silverlight
Recipes
A Problem-Solution Approach

Jit Ghosh and Rob Cameron

Core concepts and real-world techniques
for Silverlight developers

THE EXPERT’S VOICE® IN SILVERLIGHT

SECOND EDITIONSECOND
EDITION

■ CONTENTS

i

Silverlight Recipes:

A Problem-Solution Approach

■ ■ ■

Jit Ghosh and Rob Cameron

SSecond Edition

■ CONTENTS

ii

Silverlight Recipes: A Problem-Solution Approach, Second Edition

Copyright © 2010 by Jit Ghosh and Rob Cameron

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3033-5

ISBN-13 (electronic): 978-1-4302-3034-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Damien Foggon, Ashish Ghoda
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Laurin Becker
Copy Editor: Mary Behr
Compositor: Bronkella Publishing LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

■ CONTENTS

iii

For Sumona, my wife, the love of my life and the source of all my inspiration; and Pixie,
the greatest kid on this planet, and the best daughter one could ever have. You are the lights

of my life.

—Jit

To my beautiful and loving wife, Ally, and daughters Amanda and Anna, who bring so much
joy to my life.

—Rob

■ CONTENTS

iv

Contents at a Glance

Contents at a Glance .. iv

Contents .. v

About the Author .. xxv i

About the Technical Reviewer .. xxv ii

Acknowledgments .. xxv ii i

Introduct ion.. xxix

■Chapter 1: A Quick Tour of Si lverl ight 4 Development .. .1

■Chapter 2: Application Design and Programming Model .. 35

■Chapter 3: Developing User Experiences .. 111

■Chapter 4: Data Binding .. 247

■Chapter 5: Controls .. 333

■Chapter 6: Browser Integration .. 495

■Chapter 7: Networking and Web Service In tegration .. 577

■Chapter 8: Building Out Of Browser Silver l ight Applications 699

■Chapter 9: Building LOB Applications .. 745

■Chapter 10: Integrating R ich Media .. 787

■Chapter 11: Integrating Microsoft I IS Smooth Streaming 949

■ Index: . 987

■ CONTENTS

v

Contents

Contents at a Glance .. iv

Contents .. v

About the Author .. xxv i

About the Technical Reviewer .. xxv ii

Acknowledgments .. xxv ii i

Introduct ion.. xxix

■Chapter 1: A Quick Tour of Si lverl ight 4 Development .. .1

Getting Up to Speed with Silverlight ..1
Silverlight 3 Highlights ... 3

Silverlight 4... 6

Silverlight and Visual Studio 2010.. 8

1-1. Setting Up the Silverlight 4 Environment ...9
Problem .. 9

Solution... 10

How It Works .. 10

1-2. Installing Additional Silverlight-Related Services and Controls10
Problem .. 10

Solution... 11

How It Works .. 11

1-3. Understanding the Structure of a Silverlight Solution..11
Problem .. 11

Solution... 11

How It Works .. 12

The Code... 13

■ CONTENTS

vi

1-4. Understanding the Developer/Designer Workflow ...21
Problem .. 21

Solution... 21

How It Works .. 22

1-5. Understanding the Basics of Expression Blend 4...25
Problem .. 25

Solution... 25

How It Works .. 25

The Code... 27

1-6. Accessing Source Control ..32
Problem .. 32

Solution... 32

How It Works .. 32

1-7. Running Silverlight 4 on a Mac ..33
Problem .. 33

Solution... 33

How It Works .. 33

1-8. Running Silverlight on Linux...33
Problem .. 33

Solution... 34

How It Works .. 34

■Chapter 2: Application Design and Programming Model .. 35

The Mechanics of Silverlight Applications...35

2-1. Leverage and Locate Controls and Classes..37
Problem .. 37

Solution... 37

How It Works .. 37

2-2. Dynamically Loading XAML ..48
Problem .. 48

Solution... 48

■ CONTENTS

vii

How It Works .. 48

The Code... 48

2-3. Persisting Data on the Client..54
Problem .. 54

Solution... 54

How It Works .. 54

The Code... 56

2-4. Opening a Local File from a Silverlight Application..61
Problem .. 61

Solution... 61

How It Works .. 61

The Code... 62

2-5. Accessing XML Data...65
Problem .. 65

Solution... 65

How It Works .. 66

The Code... 66

2-6. Managing Unhandled Exceptions ...70
Problem .. 70

Solution... 71

How It Works .. 71

2-7. Executing Work on a Background Thread with Updates ..71
Problem .. 71

Solution... 72

How It Works .. 72

The Code... 73

2-8. Updating the UI from a Background Thread...81
Problem .. 81

Solution... 81

■ CONTENTS

viii

How It Works .. 82

The Code... 83

2-9. Managing XAML Resources..86
Problem .. 86

Solution... 86

How It Works .. 86

The Code... 87

2-10. Managing Embedded Resources..91
Problem .. 91

Solution... 91

How It Works .. 91

The Code... 91

2-11. Creating Silverlight Using Ruby, Python, or JScript ..95
Problem .. 95

Solution... 96

How It Works .. 96

The Code... 97

2-12. Creating Application Services ..99
Problem .. 99

Solution... 100

How It Works .. 100

The Code... 101

2-13. Managing Resources in Large Projects..105
Problem .. 105

Solution... 105

How It Works .. 106

The Code... 106

2-14. Save a File Anywhere on the User’s System..108
Problem .. 108

Solution... 109

■ CONTENTS

ix

How It Works .. 109

The Code... 109

■Chapter 3: Developing User Experiences .. 111

3-1. Importing Art from Expression Design ...112
Problem .. 112

Solution... 112

How It Works .. 112

3-2. Working with Color and Gradients in Blend..115
Problem .. 115

Solution... 115

How It Works .. 115

The Code... 118

3-3. Positioning UI Elements..122
Problem .. 122

Solution... 122

How It Works .. 122

The Code... 125

3-4. Drawing with Shapes, Paths, and Geometries ...131
Problem .. 131

Solution... 132

How It Works .. 132

The Code... 139

3-5. Providing Scrollable Content ..149
Problem .. 149

Solution... 149

How It Works .. 150

The Code... 150

3-6. Applying a Border to Elements...152
Problem .. 152

Solution... 152

■ CONTENTS

x

How It Works .. 152

The Code... 155

3-7. Using Simple Animations with Objects ..157
Problem .. 157

Solution... 157

How It Works .. 157

The Code... 158

3-8. Animating UI Elements with Keyframes ...164
Problem .. 164

Solution... 164

How It Works .. 164

The Code... 167

3-9. Transforming an Object..169
Problem .. 169

Solution... 170

How It Works .. 170

The Code... 171

3-10. Creating a Simple Cartoon Scene...175
Problem .. 175

Solution... 175

How It Works .. 175

The Code... 175

3-11. Handling Keyboard Input ..180
Problem .. 180

Solution... 180

How It Works .. 180

The Code... 181

3-12. Working with Ink ..184
Problem .. 184

Solution... 184

■ CONTENTS

xi

How It Works .. 185

The Code... 185

3-13. Adding 3-D Effects to UI Elements ...191
Problem .. 191

Solution... 191

How It Works .. 191

The Code... 192

3-14. Dynamically Creating Bitmaps ...198
Problem .. 198

Solution... 198

How It Works .. 198

The Code... 199

3-15. Improving Graphic Animation and Video Performance...205
Problem .. 205

Solution... 205

How It Works .. 205

The Code... 206

3-16. Improve Animation with Custom Easing Functions..209
Problem .. 209

Solution... 209

How It Works .. 209

The Code... 210

3-17. Adding Pixel Shader Visual Effects...216
Problem .. 216

Solution... 216

How It Works .. 216

The Code... 217

3-18. Create and Work with Design-Time Data in Expression Blend.............................221
Problem .. 221

Solution... 221

■ CONTENTS

xii

How It Works .. 221

The Code... 224

3-19. Reuse Application Interactivity with Behaviors..231
Problem .. 231

Solution... 231

How It Works .. 231

The Code... 232

3-20. Customizing the Right-Click Context Menu..233
Problem .. 233

How it Works .. 234

The Code... 234

3-21. Accessing the Clipboard...238
Problem .. 238

How it Works .. 238

The Code... 239

3-22. Using Right-to-Left Text ...241
Problem .. 241

How it Works .. 242

The Code... 242

3-23. Prototype Application Design ...243
Problem .. 243

Solution... 244

How It Works .. 244

The Code... 244

■Chapter 4: Data Binding .. 247

4-1. Binding Application Data to the UI..247
Problem .. 247

Solution... 247

How It Works .. 247

The Code... 249

■ CONTENTS

xiii

4-2. Binding Using a DataTemplate ...255
Problem .. 255

Solution... 255

How It Works .. 255

The Code... 257

4-3. Receiving Change Notifications for Bound Data...263
Problem .. 263

Solution... 263

How It Works .. 263

The Code... 265

4-4. Converting Values During Data Binding ...280
Problem .. 280

Solution... 280

How It Works .. 280

The Code... 282

4-5. Binding Across Elements..293
Problem .. 293

Solution... 293

How It Works .. 293

The Code... 295

4-6. Validating Input for Bound Data ...301
Problem .. 301

Solution... 301

How It Works .. 301

The Code... 302

4-7. Controlling Updates..316
Problem .. 316

Solution... 316

How It Works .. 316

The Code... 317

■ CONTENTS

xiv

4-8. Providing reasonable defaults for bound data ...326
Problem .. 326

Solution... 326

How It Works .. 326

The Code... 328

■Chapter 5: Controls .. 333

A Word About the Samples ..334

5-1. Customizing a Control’s Basic Appearance..334
Problem .. 334

Solution... 334

How It Works .. 334

The Code... 336

5-2. Replacing the Default UI of a Control ...338
Problem .. 338

Solution... 338

How It Works .. 338

The Code... 348

5-3. Customizing the Default ListBoxItem UI ...354
Problem .. 354

Solution... 354

How It Works .. 354

The Code... 355

5-4. Displaying Information in a Pop-up ..363
Problem .. 363

Solution... 363

How It Works .. 363

The Code... 365

5-5. Displaying Row Details in a DataGrid ...375
Problem .. 375

Solution... 375

■ CONTENTS

xv

How It Works .. 375

The Code... 375

5-6. Applying Custom Templates to a DataGrid Cell..385
Problem .. 385

Solution... 385

How It Works .. 385

The Code... 385

5-7. Creating Custom Column Types for a DataGrid ..391
Problem .. 391

Solution... 391

How It Works .. 391

The Code... 393

5-8. Creating a Composite User Control ..398
Problem .. 398

Solution... 398

How It Works .. 398

The Code... 403

5-9. Creating a Custom Layout Container..412
Problem .. 412

Solution... 413

How It Works .. 413

The Code... 414

5-10. Creating a Custom Control ...425
Problem .. 425

Solution... 426

How It Works .. 426

The Code... 429

5-11. Defining a Custom Visual State ..442
Problem .. 442

Solution... 442

■ CONTENTS

xvi

How It Works .. 442

The Code... 443

5-12. Controlling ScrollViewer Scroll Behavior..454
Problem .. 454

Solution... 454

How It Works .. 454

The Code... 455

5-13. Customizing the Binding Validation User Interface ..463
Problem .. 463

Solution... 464

How It Works .. 464

The Code... 469

5-14. Control Behavior in Expression Blend ..479
Problem .. 479

Solution... 479

How It Works .. 479

The Code... 483

5.15 Enhancing the Design Experience with Behaviors and Triggers486
Problem .. 486

Solution... 486

How It Works .. 486

The Code... 488

■Chapter 6: Browser Integration .. 495

6-1. Host Silverlight on Any Technology..495
Problem .. 495

Solution... 496

How It Works .. 496

The Code... 498

■ CONTENTS

xvii

6-2. Setting Focus for Keyboard Input...500
Problem .. 500

Solution... 500

How It Works .. 501

The Code... 501

6-3. Implementing a Full-Screen UI...506
Problem .. 506

Solution... 506

How It Works .. 506

The Code... 508

6-4. Calling a JavaScript Method from Managed Code ...515
Problem .. 515

Solution... 515

How It Works .. 515

The Code... 517

6-5. Calling a Managed Code Method from JavaScript ...523
Problem .. 523

Solution... 523

How It Works .. 524

The Code... 525

6-6. Exchanging Data Among Multiple Plug-ins ..532
Problem .. 532

Solution... 532

How It Works .. 532

The Code... 533

6-7. Layering HTML over the Silverlight Plug-in ..538
Problem .. 538

Solution... 538

How It Works .. 539

The Code... 539

■ CONTENTS

xviii

6-8. Hosting HTML in a Silverlight Application ..541
Problem .. 541

Solution... 541

How It Works .. 542

The Code... 542

6-9. Painting a Silverlight Element with HTML ..544
Problem .. 544

Solution... 544

How It Works .. 544

The Code... 544

6-10. Taking Advantage of the Navigation Framework ...546
Problem .. 546

Solution... 546

How It Works .. 546

The Code... 549

6-11. Embedding Silverlight within a Windows Gadget...555
Problem .. 555

Solution... 555

How It Works .. 555

The Code... 560

6-12. Embedding Silverlight in an Internet Explorer 8 Web Slice..................................571
Problem .. 571

Solution... 571

How It Works .. 571

The Code... 571

■Chapter 7: Networking and Web Service In tegration .. 577

A Quick Word about the Samples ..578

7-1. Consuming a WCF Service ...579
Problem .. 579

Solution... 579

■ CONTENTS

xix

How It Works .. 579

The Code... 583

7-2. Exchanging XML Messages over HTTP ..600
Problem .. 600

Solution... 600

How It Works .. 600

The Code... 602

7-3. Using JSON Serialization over HTTP...613
Problem .. 613

Solution... 613

How It Works .. 613

The Code... 615

7-4. Accessing Resources over HTTP ..618
Problem .. 618

Solution... 618

How It Works .. 618

The Code... 619

7-5. Using Sockets to Communicate over TCP ..643
Problem .. 643

Solution... 643

How It Works .. 643

The Code... 646

7-6. Enabling Cross-Domain Access..676
Problem .. 676

Solution... 676

How It Works .. 676

The Code... 678

7-7. Exchanging Data between Silverlight Applications..680
Problem .. 680

Solution... 680

■ CONTENTS

xx

How It Works .. 680

The Code... 683

■Chapter 8: Building Out Of Browser Silver l ight Applications 699

8-1. Building a Silverlight application to run outside the browser699
Problem .. 699

Solution... 700

How It Works .. 700

The Code... 706

8-2. Controlling the Application Window ...722
Problem .. 722

Solution... 722

How It Works .. 722

The Code... 724

8-3. Using COM Interoperability and File System Access..730
Problem .. 730

Solution... 731

How It Works .. 731

The Code... 733

■Chapter 9: Building LOB Applications .. 745

Silverlight LOB Enhancements...745

Data Access Enhancements ..745
WCF Data Services ... 746

WCF RIA Services ... 746

9-1. Accessing RESTful Data using OData...746
Problem .. 746

Solution... 746

How It Works .. 747

The Code... 747

■ CONTENTS

xxi

9-2. Using Visual Studio 2010 WCF Data Services Tooling..750
Problem .. 750

Solution... 750

How It Works .. 750

The Code... 750

9-3. Implementing CRUD Operations in WCF Data Services..756
Problem .. 756

Solution... 756

How It Works .. 757

The Code... 757

9-4. Using Visual Studio 2010 WCF RIA Data Services Tooling760
Problem .. 760

Solution... 760

How It Works .. 760

The Code... 761

9-5. Taking Advantage of the Business Application Template768
Problem .. 768

Solution... 768

How It Works .. 768

The Code... 768

9-6. Databinding in XAML..770
Problem .. 770

Solution... 770

How It Works .. 771

The Code... 771

9-7. Navigating RIA LOB Data ..773
Problem .. 773

Solution... 773

How It Works .. 773

The Code... 773

■ CONTENTS

xxii

9-8. Implementing CRUD Operations in RIA Services ..775
Problem .. 775

Solution... 775

How It Works .. 776

The Code... 776

9-9. Data Validation through Data Annotation ...779
Problem .. 779

Solution... 779

How It Works .. 779

The Code... 780

9-10. Printing in a Silverlight LOB Application...783
Problem .. 783

Solution... 783

How It Works .. 783

The Code... 783

■Chapter 10: Integrating R ich Media .. 787

10-1. Adding Video to a Page ..787
Problem .. 787

Solution... 788

How It Works .. 788

The Code... 791

10-2. Creating a Complete Video Player ..792
Problem .. 792

Solution... 792

How It Works .. 792

The Code... 795

10-3. Adding Streaming Media Support ..823
Problem .. 823

Solution... 824

■ CONTENTS

xxiii

How It Works .. 824

The Code... 829

10-4. Using Playlists to Package Media ..864
Problem .. 864

Solution... 864

How It Works .. 864

The Code... 867

10-5. Using Markers to Display Timed Content ...870
Problem .. 870

Solution... 870

How It Works .. 870

The Code... 872

10-6. Displaying and Seeking Using SMPTE Timecodes ...886
Problem .. 886

Solution... 887

How It Works .. 887

The Code... 888

10-7. Building a Managed Decoder for Silverlight...900
Problem .. 900

Solution... 900

How It Works .. 900

The Code... 906

10-8. Using a WebCam ..924
Problem .. 924

Solution... 925

How It Works .. 925

The Code... 927

10-9. Processing Raw WebCam Output...932
Problem .. 932

Solution... 932

■ CONTENTS

xxiv

How It Works .. 932

The Code... 933

■Chapter 11: Integrating Microsoft I IS Smooth Streaming 949

11-1. Setting up Smooth Streaming ..950
Problem .. 950

Solution... 950

How It Works .. 950

The Code... 957

11-2. Using the SmoothStreamingMediaElement..957
Problem .. 957

Solution... 958

How It Works .. 958

The Code... 958

11-3. Adding Metadata Streams..963
Problem .. 963

Solution... 963

How It Works .. 963

The Code... 966

11-4. Merging Data from External Manifests...974
Problem .. 974

Solution... 974

How It Works .. 974

The Code... 975

11-5. Scheduling Additional Clips..977
Problem .. 977

Solution... 977

How It Works .. 977

The Code... 978

■ CONTENTS

xxv

11-6. Varying Playback Speeds ...981
Problem .. 981

Solution... 982

How It Works .. 982

The Code... 982

11-7. Combining Streams Using Composite Manifests ...982
Problem .. 982

Solution... 983

How It Works .. 983

The Code... 985

■ Index .. 987

■ CONTENTS

xxvi

About the Authors

■ Jit Ghosh is an Industry Architect with the Developer Platform Evangelism team
at Microsoft, working on digital media solutions. Jit has over 17 years of solutions
architecture and software engineering experience. In the last few years he has
focused on broadcast, digital content publishing, and advertising space. You can
read more about Jit’s current work at http://blogs.msdn.com/jitghosh.

■ Employed by Microsoft since 2001, Rob Cameron is an Industry Architect
Evangelist with Microsoft Corporation based out of Atlanta, Georgia. As part of
Microsoft’s Communication Sector Developer & Platform Evangelism team, Rob
focuses on development tools and technologies for on mobile devices, gaming,
and embedded devices for telecommunications, cable, and media &
entertainment companies.

Rob co-authored several titles including Building ASP.NET Server Controls, Pro
ASP.NET 3.5 Server Controls and AJAX Components, Silverlight 2 Recipes, and
most recently Silverlight 3 Recipes. He has a master’s degree in information
technology management and a bachelor’s degree in computer science. You can
visit Rob’s blog at http://blogs.msdn.com/RobCamer.

http://blogs.msdn.com/jitghosh
http://blogs.msdn.com/RobCamer

■ CONTENTS

xxvii

About the Technical Reviewers

■ Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies and has
contributed to more than 50 books on .NET, C#, Visual Basic and ASP.NET. He is the co-founder of the
Newcastle based user-group NEBytes (online at http://www.nebytes.net), is a multiple MCPD in .NET
2.0 and .NET 3.5 and can be found online at http://blog.littlepond.co.uk.

■ Awarded with British Computer Society (BCS) Fellowship, Ashish Ghoda is a customer-focused and
business values–driven senior IT executive with over 13 years of IT leadership, enterprise architecture,
application development, and technical and financial management experience. He is founder and
president of Technology Opinion LLC, a unique collaborative venture striving for strategic excellence by
providing partnerships with different organizations and the IT community. He is also the associate
director at a Big Four accounting firm.

Ashish is the author of Introducing Silverlight 4, Accelerated Silverlight 3 (co-author Jeff Scanlon)
and Pro Silveright for the Enterprise from Apress and several articles on Microsoft technologies
and IT management areas for MSDN Magazine, TechnologyOpinion.com, and advice.cio.com.
Visit his company site, http://www.technologyopinion.com, and blog site,
http://www.silverlightstuff.net, to get the latest information on the technology and different
services.

http://www.nebytes.net
http://blog.littlepond.co.uk
http://www.technologyopinion.com
http://www.silverlightstuff.net

■ CONTENTS

xxviii

Acknowledgments

Writing a book is a long and incredible journey that requires the support and care of a lot of individuals.
The authors would like to acknowledge the help and support from some amazing people without whose
direct or indirect involvement this book would never have come into being:

Scott Guthrie, Kevin Gallo, Joe Stegman, and members of the Silverlight product team for
envisioning and creating an amazing technology that we have become thoroughly addicted to

Our manager, Harry Mower, and Carlos McKinley, Director Communications Sector DPE for
supporting us during this effort and for always encouraging our passion for technology

Joe Stegman, Mike Harsh, Ashish Shetty, Dave Relyea, David Anson, Scott Boehmer, Ben Waggoner,
Christian Schormann, Charles Finkelstein, and many other product team members who have been
exceptionally patient and forthcoming in answering all of our technical questions

Christopher Carper and Eric Schmidt, for involving us in projects that have helped grow our
expertise in Silverlight over the past couple of years

Apress is a great company to work for as an author, as evidenced by their care and feeding in getting
this book into production. Thanks to Ewan Buckingham for having faith in this book. A heartfelt thanks
to Jonathan Hassell and Laurin Becker for stewarding this book to completion and for being patient in
light of the slipped schedules and author changes. Thanks to the editing and production folks from
Apress—copy editor Liz Welch and production editor Janet Vail, and the others who we don’t know by
name but whose efforts helped make this book possible. We would also like to thank Todd Herman, who
reviewed the book and provided great feedback.

From Jit: I would also like to thank my family, especially my wonderful wife Sumona for being the
force behind everything I have ever achieved and for making me believe in myself; and my beautiful
daughter Pixie for being patient when Daddy could not make time and for never forgetting the daily dose
of hugs and kisses. And lastly, a huge thanks to Rob Cameron for agreeing to work with me on this book,
for sharing his insight on authoring, and for his technical acumen—without Rob, this book would have
remained a dream.

From Rob: I would like to thank my family—especially my lovely wife Ally for her dedication to our
family and for encouraging me to reach for new heights. I would also like to thank my mom and
grandparents. Without their love and assistance, I may never have found my passion for computers and
programming. I would also like to thank Jit Ghosh for inviting me to join him on this journey, and for
being a fantastic coauthor on this gigantic effort.

■ INTRODUCTION

xxix

Introduction

Silverlight Tools for Visual Studio 2010, Visual Studio 2010, and Microsoft Expression Blend 4 give you
the power to design innovative and powerful Silverlight 4 user interfaces. They give you access to
cutting-edge graphics, animation, rich controls, and data binding in the powerful XML Application
Markup Language (XAML) declarative language. For application logic, you can continue to use all the
usual Visual Studio 2010 features such as debugging and access to your favorite development language,
like C# or VB, and dynamic languages such as IronPython, IronRuby, and Managed JScript. What is truly
amazing is that the breadth of the .NET Framework for Silverlight including functionality such as
multithreading, generics, LINQ, and extension methods, is included in such a diminutively sized
browser plug-in.

While rich Internet application (RIA) development tools have been around for a while, Silverlight 4
makes RIA development real for traditional developers letting them use their favorite tools and
programming languages to create fabulous user experiences.

Who This Book Is For
If you are an existing Silverlight developer, this book will provide details on what’s new in Silverlight 4. If
you are a web application developer looking for ways to create rich, interactive, and immersive browser-
hosted applications using Microsoft Silverlight and .NET, then this book will give you the information
you need on the core concepts and techniques fundamental to Silverlight-based development. Even if
you did not have Silverlight in mind, the book will help you see the possibilities and understand what
you can (and in some cases can’t) achieve with the technology.

Having an understanding of the .NET Framework will help, but if you are an experienced developer
new to the .NET Framework, you will still be able to learn Silverlight 4 using this book because much of
the development is in the XAML markup language as well as in code.

■ NNote You still may want to grab a programming in C# text such as Christian Gross’s Beginning C# 2008: From
Novice to Professional, Second Edition (Apress, 2008) if you are not confident with C#.

 If you are a Windows Presentation Foundation (WPF) developer, this book will help you understand
how to work with Silverlight, which uses the same markup language but is a subset of WPF functionality
packaged in a cross-browser and cross-platform plug-in.

The example code in this book is written in C#. However, much of the development is in the XAML,
not in C#, so if you are a VB.NET developer, the markup is almost exactly the same. For the examples
that do include C# code in the code-behind, the code translates pretty easily, as the .NET Framework for
Silverlight is language agnostic.

■ INTRODUCTION

xxx

If you are a developer in need of learning a particular technique, this book is for you as it is task
driven in Apress’s recipe format. Each major facet of Silverlight 2 development is presented with a
description of the topic in the form of a problem statement, a “How It Works” section, and a section that
walks through the recipe sample code.

How This Book Is Structured
This book consists of chapters that focus on individual topic areas of Silverlight. Each chapter attempts
to address core concepts and techniques as individual recipes in that topic area. Chapters 1, 2, and 3 are
primarily intended to help you grasp the fundamental concepts of Silverlight, including a quick tour of
the developer tools, the Silverlight programming model, and XAML-based UI development. Many of
these concepts are critical to understanding the later chapters, so we advise you to start the book by
reading these chapters first. Chapters 4 through 8 address the topics of data binding, control
customization, and development; browser integration; networking and web services; and out-of browser
Silverlight applications. Chapter 9 provides a detailed overview of WCF Ria Services. Chapter 10 covers
how to integrate rich media and Chapter 11 covers how to integrate smooth streaming for rich adaptive
streaming support.

Prerequisites
You will need a version of Visual Studio 2008, with Service Pack 1 of Visual Studio 2008 applied. You will
also need to install Silverlight 2 Tools for Visual Studio 2008 Service Pack 1. You can use any version of
Visual Studio 2008, and you can download the free version of Visual Studio 2008 Express edition here:

http://www.microsoft.com/express/vcsharp/Default.aspx

You can get the Silverlight tools from http://silverlight.net/GetStarted/, and you can
download a trial version of Expression Blend 2 from http://www.microsoft.com/Expression. If you
are an MSDN Subscriber, you can also download it from subscriber downloads. You will also need to
apply Service Pack 1 to Expression Blend 2.

Some of the recipes in this book use a SQL Server Express 2008 database. You can download SQL
Server Express 2008 for free from http://www.microsoft.com/express/sql/. For some of the recipes
in Chapter 8, you may need a video encoder. You can download a trial version of Microsoft Expression
Encoder from http://www.microsoft.com/Expression.

Downloading the Code
The code is available in zip file format in the Source Code/Download section of the Apress web site.
Please review the readme.txt for setup instructions.

Contacting the Authors
To reach the authors, please go to their blogs and click the Email link to send them an email.

Jit Ghosh: http://blogs.msdn.com/jitghosh
Rob Cameron: http://blogs.msdn.com/RobCamer

http://www.microsoft.com/express/vcsharp/Default.aspx
http://silverlight.net/GetStarted
http://www.microsoft.com/Expression
http://www.microsoft.com/express/sql
http://www.microsoft.com/Expression
http://blogs.msdn.com/jitghosh
http://blogs.msdn.com/RobCamer

C H A P T E R 1

■ ■ ■

1

A Quick Tour of Silverlight 4
Development

This is a recipes book, which means it is prescriptive, targeting specific scenarios that developers are
likely to encounter. You don’t have to read the chapters in order, though we did put some thought into
chapter organization for readers who want to proceed that way. The Silverlight product team has been
on a tear, shipping the fourth version in about two years, adding amazing new features sure to please
developers and designers alike with each new version. Still, some developers and designers may be
relatively new to Silverlight, and if you’re among those folks, this chapter may be essential to help you
get started. Otherwise, it’s likely to be a helpful review. The recipe format follows this outline:

• Title: Description of the recipe

• Problem: The challenge that the recipe solves

• Solution: A short description of the approach

• How It Works: Detailed explanation of the approach

• The Code: An implementation of the described approach to solve the problem

The first sections of this chapter will provide a quick overview of Silverlight. Given the fast pace of
the shipped product updates, we chose not to remove the background on Silverlight 2 when the .NET
Framework for Silverlight was introduced or the Silverlight 3 highlights in order to provide context.

Getting Up to Speed with Silverlight
Silverlight is Microsoft’s cross-browser, cross-platform, and cross-device plug-in for delivering the
next generation of .NET Framework–based rich interactive applications for the Web. Silverlight runs
on Windows in Internet Explorer 6 or higher, Mozilla Firefox, and Chrome build 1251 and higher.
Silverlight also runs on the Apple Mac in both Safari and Firefox, as well as on Linux in Firefox as part
of the Moonlight project (www.mono-project.com/Moonlight), a collaboration project between Novell
and Microsoft to bring Silverlight to Linux.

Figure 1-1 shows a Silverlight application running in Firefox.

http://www.mono-project.com/Moonlight

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

2

Figure 1-1. Firefox running a Silverlight application

Because Silverlight is a browser plug-in, the user is prompted to install the plug-in if it is not
already present, which is the same behavior as similar technologies like Adobe Flash. Once the plug-in
is installed (a 5MB file that takes about ten seconds on most Internet connections), Silverlight content
can be downloaded and run.

Because Silverlight is client-side technology, Silverlight applications can be hosted on any
backend system, just as any other web-based content such as HTML pages and JavaScript can be hosted
from a Windows server, a Linux server, or any other web-serving technology.

Starting with Silverlight 2, you may be asking, “Did Microsoft port the .NET Framework to
additional platforms?” The answer is both “yes” and “no.” The full desktop and server versions of the
.NET Framework runtime have not been ported to other platforms. However, the product team did
encapsulate a tiny common language runtime (CLR) into the plug-in that is cross-browser as well as
cross-platform (and even cross-device, with the announcement of Silverlight for Windows Phone and
Silverlight for Nokia s60 devices).

What makes Silverlight so compelling is that much of the power and programmability of the .NET
Framework is available within this relatively small 4.7-MB plug-in on Windows. Here is a summary of
some your favorite .NET Framework namespaces available in Silverlight 2 and later:

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

3

• System

• System.Collections

• System.Collections.Generic

• System.Diagnostics

• System.Globalization

• System.IO

• System.Linq

• System.NET

• System.Reflection

• System.Runtime

• System.Security

• System.ServiceModel

• System.Text

• System.Windows

• System.XML

As you can see, Silverlight 2 packed a powerful .NET Framework base class library that continues
to be available through Silverlight 4. Next, we highlight the enhancements added in Silverlight 3
followed by the enhancements added in Silverlight 4, which is the latest version covered in this
edition.

Silverlight 3 Highlights
Silverlight 3, which was released in July of 2009, built on top of Silverlight 2 by introducing more than
50 new features, including support for running Silverlight applications out of the browser, dramatic
video performance and quality improvements, and features that improve developer productivity.
Some of the highlights include:

• Major media enhancements like H.264 video support

• Out-of-browser support, which allows web applications to run offline

• Significant graphics improvements including perspective 3-D graphics support and
graphics processing unit (GPU) acceleration

• Improved developer and designer tools including a full editable and interactive designer
for Silverlight that will be available in Visual Studio 2010 when it ships. You can still
develop Silverlight 3 in Visual Studio 2008.

The next couple of sections provide more details on the areas of enhancement.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

4

Major Media Enhancements
Media support was dramatically enhanced in Silverlight 3, including improved streaming capabilities
in the Internet Information Services (IIS) Media Services extension called Smooth Streaming with
support for live and on-demand true HD (720p or better) playback. Smooth Streaming dynamically
detects and seamlessly switches the video quality media based on local bandwidth and CPU conditions.
Silverlight 3 also includes true HD playback when viewing content in full-screen mode utilizing GPU
acceleration at 720p+.

Silverlight 1 and 2 provided support for VC-1 and the WMA formats. Silverlight 3 added native
support for MPEG-4 based H.264/Advanced Audio Coding (AAC) audio, enabling content distributors to
deliver HD content to all supported platforms. In addition, Silverlight 3 added a new raw AV pipeline
that can be extended to provide support for a wide variety of third-party codecs. This allows audio and
video content to be decoded outside of the runtime environment.

Silverlight 3 includes built-in support for Digital Rights Management (DRM) powered by
PlayReady Content Protection enabling in-browser DRM using Advanced Encryption Standard (AES)
or Windows Media DRM.

Enhanced User Experience Rendering Capabilities
The product team enhanced programmability for rich user experiences in Silverlight 3 and later by
including new perspective 3-D graphics, animation features, hardware-accelerated effects, and text
improvements.

With bitmap caching, Silverlight 3 greatly improved rendering performance by allowing users to
cache vector content, text, and controls into bitmaps. This allows background content that needs to
scale but does not change internally to be cached for better performance. Silverlight 3 also added a
Bitmap API that allows developers to write pixels to a bitmap object in order to perform tasks such as
editing scanned documents or photos and creating special effects for cached bitmaps from elements
displayed on the screen.

With support for perspective 3-D graphics, developers are no longer limited to simulated 3-D in a
2-D plane. You can now rotate or scale live content in space without having to author additional code.

Shaders are computer programs that execute on the GPU. Shaders have been an important part of
game development for years. Windows Presentation Foundation (WPF) added support for Pixel Shader
effects in .NET Framework 3.5 SP1. Shader support was added in Silverlight 3 and allows developers to
incorporate amazing effects with relatively little effort.

Improved animation effects in Silverlight 3 helped to make animation more natural in
appearance. Examples are spring and bounce, but you can also provide you own mathematical function
to describe animation. Silverlight 3 also added much more efficient support for font rendering and text
animation, as well as support for taking advantage of local fonts.

Support for application themes and control skinning were also incorporated in Silverlight 3.
Styles can be applied applicationwide and can build on each other or be combined; you also have the
ability to dynamically change styles at runtime. Controls can be more easily skinned and maintained
outside of an application for easy sharing of style templates across applications.

Rich Internet Applications and Line-of-Business Enhancements
Silverlight 3 added an amazing range of new controls packaged with full source code, which in itself is
a huge learning resource. Silverlight 3 included over 60 fully skinnable, customizable, and ready-to-
use controls in the following categories:

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

5

• Charting and media

• Layout containers such as DockPanel and Viewbox

• A dialog to easily write files for offline support

• Support for multipage applications with built-in navigation

• New controls like AutoCompleteBox, TreeView, DataForm, and DataPager

The controls come with seven professionally designed themes available at the Expression Gallery
at gallery.expression.microsoft.com/en-us/. The controls also ship with full source code for review
and modification.

One of the most important additions to Silverlight for line-of-business (LOB) applications is the
WCF RIA Services platform that provides a solid base for building n-tier data applications.

■ Note WCF RIA Services, formerly known as WCF RIA Services, has undergone tremendous changes since the initial
CTP that shipped with Silverlight 3. This edition of the book is updated to work with the latest version of WCF RIA

Services that targets Silverlight 4. While WCF RIA Services shipped as a beta for Silverlight 3 at PDC 2009, this version

will not be carried forward to product release.

WCF RIA Services Data Support Improvements
Beyond additional controls, Silverlight 3 improved data support with the ability to bind data between
elements without having to write additional code. As an example of element databinding, the zoom
level for the new Bing Maps Silverlight Control can databind directly to the value property of a Slider
control without writing any C# code.

The DataForm control can databind to a record or object and automatically create nested controls
databound to individual fields of a database record or object properties. For two-way datasources, the
DataForm can provide automatically generated edit support.

Silverlight 3 also added support for data validation that will automatically catch incorrect values
and warn the application user with the built-in validation controls.

Browser Support
Silverlight 3 improved browser support with the navigation application model that allows
bookmarking of XAML pages within a Silverlight 3 or later application. Pages are created individually
by inheriting from System.Windows.Controls.Page, instead of UserControl, but are hosted within a
UserControl element.

Silverlight 3 also made great strides in search engine optimization (SEO) challenges by utilizing
business objects on the server combined with ASP.NET and site maps to automatically mirror
database-driven RIA content into HTML that is easily indexed by Internet search engines.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

6

Out-of-Browser Capabilities
The out-of-browser experience introduced in Silverlight 3 lets end users add Silverlight 3 applications
to their local desktop without having to download an additional runtime or browser plug-in; the
application can even be accessed when the user is not connected to the Internet. Internet connectivity
is automatically detected, and applications can react intelligently to cache a user’s data until the
Internet connection is restored.

Out-of-browser support includes the ability to add a link to the application on the desktop or Start
menu, enabling one-click access. Because offline Silverlight 3 applications are stored in the browser’s
local isolated cache and run within a sandbox, additional user privileges are not required to run the
application.

Application maintenance is easy with the automatic update functionality built into the out-of-
browser Silverlight support. When a user launches an out-of-browser Silverlight application,
Silverlight automatically checks for new versions on the server and will update automatically if an
update is found.

We’ve just touched on many of the improvements offered by Silverlight 3. For a full feature list
comparison through Silverlight 4, please go to silverlight.net/GetStarted/overview.aspx.

Silverlight 4
Introduced as a beta at the Microsoft Professional Developers Conference in November 2009, just a
few short months after the release of Silverlight 3, Silverlight 4 adds many new features in the
following areas:

• Enhancements focused on business applications

• Improved developer tools support

• Enhancements focused on interactive user experiences

• Enhancements focused on the out-of-browser programming model

The next couple of sections provide details on the above four major areas of enhancement.

Business Application Development
Business application development is highly driven by control user elements. Silverlight 4 adds
RichTextbox with support for hyperlinks, imaging, and editing as well as a new Masked textbox for
complex field validation. The DataGrid includes sortable/resizable columns as well as the ability to
copy/paste rows.

Business applications also tend to be highly data driven. WCF RIA Services provides a platform to
build n-tier applications that include transactions, data paging, etc., as well as enterprise class
networking and data access to server-side resources. In addition, databinding support gets better
through support for data grouping/editing as well as inline string formatting within bindings.

Another major enhancement for building business applications is the Managed Extensability
Framework (MEF) that provides a platform based on well known best practices for building large
composible applications.

Other improvements that can enhance business applications are:

• Support for printing with the ability to specify exactly what part of the UI should be printed
to hardcopy reports.

• A full set of forms controls with over 60 customizable and styleable controls.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

7

• Support for 30 new languages including bi-directional text, right-to-left support, and
support for complex scripts such as Arabic, Hebrew, and Thai.

Developer Tools
New in Visual Studio 2010 is a fully editable design surface that supports drag & drop data-binding and
automatically bound controls with datasource selection. The editor includes full IntelliSense for XAML
as well as the C# and VB languages. Also, project support for Silverlight 3 is no longer an add-on but
instead is built in to Visual Studio 2010. You will need to install the Silverlight 4 Tools for Visual Studio
2010 for Silverlight 4 support.

Visual Studio 2010 also includes an improved property grid with custom editors for values like
Grid Column and Row definitions, color Brushes, etc. The property grid also includes the ability to
select a style from a drop-down menu that is populated with styles that were previously created in
Expression Blend.

There are other editor enhancements such as the right-click Reset Layout command that allows
the developer to reset All, Size, Alignment, or Margin properties to their default values.

Expression Blend 4 continues to evolve as a great tool for creating user experiences in
conjunction with Visual Studio 2010.

Interactive User Experiences
Just take a look at the Silverlight.net showcase for examples of great user experiences available in
Silverlight The examples run the gamut from media scenarios with HD video and Smooth Streaming
to powerfully interactive LOB applications.

One of the most important enhancements in Silverlight 4 is that applications load faster and can
run up to 200% quicker than the equivalent Silverlight 3 applications. You can realize these
impressive improvements gains by simply upgrading to Silverlight 4. Here is a quick hit list of other
user experience enhancements:

• New FluidUI Behaviors to quickly make applications more interactive

• Webcam and microphone support

• Local recording of audio and video

• Support for text copy/paste and drag-and-drop

• Support for mouse wheel scrolling

• Right-click menu support

• Multi-touch support enabling gesture and touch interactions

• Support for Multicast networking for more efficient / better performing Enterprise
streaming

A feature not related to user experience but certainly of interest to content providers is support for
content protection with H.264 media via PlayReady DRM. This includes Output protection so that
protected content can only be viewed via a secure video connection.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

8

Out-of-Browser Programming Model
Silverlight 3 introduced the ability to run Silverlight applications out-of-the-browser (OOB) on the
desktop. Silverlight 4 builds on this base by adding additional support for sandboxed and trusted
applications. Sandboxed applications are similar to OOB in Silverlight 3 with the standard cosent UI
and access restrictions. Trusted applications introduced Silverlight 4 have a modified consent UI and
can access native code on the machine directly.

The following features are available to Silverlight sandboxed applications:

• Host HTML content directly within an OOB application.

• Support “toast” notifications to communicate status to the user

• Support for offline DRM with PlayReady technology

• Control over OOB UI including window settings such as start position, size, and chrome

The following additional features are available in Silverlight trusted OOB applications:

• Read and write files to user specific folders such as MyDocuments, MyMusic, and MyVideos
folder.

• Launch other desktop applications, such as loading a document in Word

• Enable COM automation so that a Silverlight OOB application can access system
capabilities

• Allow cross-domain access without a security policy file

• Enhanced keyboard support in fullscreen mode

Silverlight and Visual Studio 2010
Outside of Expression Blend, tooling support has not been very rich in prior versions of Silverlight and
Visual Studio. Starting with Visual Studio 2010, Silverlight becomes a first class citizen with support for
both Silverlight 3 and Silverlight 4, including a full drag-and-drop visual designer, a fully functional
Properties toolwindow, and a new Document Outline toolwindow as shown in Figure 1-2.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

9

Figure 1-2. Visual Studio 2010 Silverlight Tools Support

The Document Outline view of the XAML shows a hierarchical Tree to help developers quickly find
the desired control. Within the Visual Studio 2010 visual designer, you can right-click on the design
surface to bring up a context menu that allows you to view the XAML as a tree in the Document Outline
toolwindow. The context menu also has handy commands like Reset Layout that allow you to remove
configured sizes, alignments, and margins if a set of controls are not laying out the way you want.

Visual Studio 2010Expression Blend 4Visual Studio 2010Expression Blend 4.

1-1. Setting Up the Silverlight 4 Environment
Problem
You need to set up a Silverlight 4 development and designer environment.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

10

Solution
Uninstall any previous versions of Silverlight pre-release tools, runtimes, or tools that are installed.
Install a version of Visual Studio 2010, Silverlight 4 Tools and SDK (which includes WCF RIA Services),
the Silverlight toolkit, and Expression Blend 4 following the latest installation guidance at
Silverlight.net.

How It Works
The steps listed at Silverlight.net/GetStarted cover the details, but the first step is to install a version
of Visual Studio 2010.

■ Note Silverlight 4 is supported on Visual Studio 2010 Express.

At Silverlight.net/GetStarted, you can obtain Silverlight Tools for Visual Studio 2010, which
includes the runtime (if not already installed), the project templates, debugging support, the SDK, and
documentation files.

Install the Silverlight Tools to enable development of Silverlight 4 in Visual Studio 2010. The
installation will want you to close any conflicting applications such as Internet Explorer; otherwise, a
reboot may be required.

At the same URL, another tool is available called Deep Zoom Composer. This tool allows developers to
prepare images for use with the Deep Zoom feature in Silverlight. Deep Zoom allows users to explore
collections of super-high-resolution imagery, from a 2- or 3-megapixel shot from a digital camera to
gigapixel scans of museum pieces, all without waiting for huge file downloads. The simple zooming
interface allows users to explore entire collections down to specific details in extreme close-up, all with
fantastic performance and smooth transitions. A great implementation of the Deep Zoom is the Hard Rock
Café web site, where users can get up close to their huge collection of memorabilia
(memorabilia.hardrock.com).

The next step is to install Expression Blend 4. This is an important tool in the application creation
arsenal that is part of the Expression Studio product line. It provides a powerful graphic editing
environment for designing user experiences. It also is the best tool to use for creating animations in
Silverlight.

If you are a Microsoft Developer Network (MSDN) Premium subscriber, you can obtain Expression
Blend from MSDN downloads. If you are not an MSDN Premier subscriber, you can download a trial
version at www.microsoft.com/
expression/try-it/Default.aspx. Even as a developer, you will want to have Expression Blend 4
installed along with Visual Studio 2010. If developers keep their source code in Microsoft Team
Foundation Server, the designer will be able to check out and check in code directly with Expression
Blend 4, which includes support for accessing source code control directly.

1-2. Installing Additional Silverlight-Related Services and
Controls
Problem
You want to be able to take advantage of the additional services and controls available to Silverlight 4
developers such as WCF RIA Services, the Silverlight Toolkit, and the Bing Maps Silverlight Control.

http://www.microsoft.com

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

11

Solution
Download and install the Silverlight 4 Toolkit, WCF RIA Services, and the Bing Maps Silverlight
control.

How It Works
The Silverlight Toolkit is a collection of Silverlight controls, components, and utilities available
separately from the normal Silverlight release cycle. The toolkit adds new functionality for designers
and developers. It includes full source code, unit tests, samples and documentation for many new
controls covering charting, styling, layout, and user input. It also provides an opportunity for the
community to provide feedback. The Silverlight 4 Toolkit can be obtained at
www.codeplex.com/Silverlight.

WCF RIA Services is a framework that provides a pattern for creating middle-tier and client-side
classes to provide access to data. It takes a model-driven approach that starts with an updated
ADO.NET Entity Framework model available in .NET Framework 4. A domain service is created based
on the Entity Framework model that allows the developer to add custom operations and logic to
interact with the model. WCF RIA Services then generates client-side access code that combines with
custom controls to allow you to easily create data-driven applications in Silverlight 4. Download the
Microsoft WCF RIA Services at .robcamer-PUT LINK HERE WHEN AVAILABLEs

■ Note Please check Microsoft’s site often for important product updates.

The Bing Maps Silverlight control is a native Silverlight control that provides very smooth
panning and zooming functionality. It supports all the things you would expect from a Bing Maps
control, such as street view, aerial view, layers, icons, and overlays, providing a powerful way to
display geospatially referenced data within the Silverlight rich presentation framework. The Bing
Maps Silverlight control can be downloaded (after registering)at www.microsoft.com/downloads/
details.aspx?

displaylang=en&FamilyID=beb29d27-6f0c-494f-b028-1e0e3187e830

1-3. Understanding the Structure of a Silverlight Solution
Problem
You need to understand the structure of a Silverlight 4 solution and projects.

Solution
Create a new Silverlight 4 application in Visual Studio, and then review the solution and project files.

http://www.codeplex.com/Silverlight
http://www.microsoft.com/downloads

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

12

How It Works
Once the Silverlight 4 Tools are installed and help is configured, open Visual Studio 2010, choose File ❜
New Project, and click the Silverlight folder to see the available project templates. Six templates are
available: Silverlight Class Library, Silverlight Application, Silverlight Business Application,
Silverlight Navigation Application, WCF RIA Services Class Library, and Silverlight Unit Test
Application (as shown in Figure 1-3).

Figure 1-3. Available Silverlight 4 Projects in Visual Studio 2010

The Silverlight Class Library project template generates a class library project that you can use to

separate Silverlight 4 application assets into additional assemblies that can be shared by multiple
applications.

The Silverlight Application project template is what developers start with to create a basic
Silverlight application, which begins with up to two projects: one containing the Silverlight application
project and another optional project containing web pages to host the Silverlight application for
testing.

You can also create a Silverlight application that has just the Silverlight application without a
separate web project. In this case, Visual Studio will dynamically create a test page for the control. We
recommend starting out with an actual web project, so you can see how to host Silverlight applications
in web pages, but we cover both options in this recipe.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

13

You can also add Silverlight applications to an existing Visual Studio solution. The project wizard
will ask you whether you want to add test pages to the existing web project (if there is one), which
makes it easy to add new applications to an existing Visual Studio web solution. If there isn’t an
existing web project in the Visual Studio solution, the project wizard will prompt you to create one.

The third project template available in Silverlight 4 is called Silverlight Business Application.
When you select this template, it will automatically create a new web application as well as a new
Silverlight application. This is one of the more complex starter projects targeting LOB application
developers. It covers WCF RIA Services support, including authentication and user registration. WCF
RIA Services developers build n-tier Silverlight applications. This is a great project template to start
with when building LOB applications as covered in Chapter 9.

The fourth project template available in Silverlight 4 is called Silverlight Navigation Application. When
you create a new application with this template, it starts out with the same options as when creating a
regular Silverlight Application and includes up to two projects as well. The difference is that the new
Silverlight Navigation Application supports views to allow easy navigation between application forms. This
template also provides support for the browser Back and Forward buttons, as well as support for
bookmarking individual application views in browser favorites. We’ll cover this new application model in
more detail in Chapter 6.

The fifth project template available in Silverlight 4 is WCF RIA Services Class Library. This allows you
to separate WCF RIA Services into separate class libraries that can be shared. We cover WCF RIA Services in
Chapter 9.

The sixth project template available in Silverlight 4 is the Silverlight Unit Test Application project
template. Unit testing is an important tool in writing high quality code and this template provides a starter
project to help you add unit testing to your Silverlight 4 application. We cover unit testing in Chapter 2.

The Code
When you create a new Silverlight application project, type a name, select the project location, and
then click OK. The New Silverlight Application dialog appears (see in Figure 1-4).

Figure 1-4. The New Silverlight Application dialog

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

14

Notice in Visual Studio you have the option to choose which version of Silverlight (either
Silverlight 3 or Silverlight 4) you want to use for a project. You can also choose the web project type,
which can be an ASP.NET Web Application Project, ASP.NET Web Site, or ASP.NET MVC Web Project.
The first two options are pretty familiar to developers already. The new ASP.NET MVC Web Project
introduced in .NET Framework 4 adds a new programming model for ASP.NET web applications based
on the popular Model View Controller pattern. For more information please refer to “Introducing
.NET 4.0: with Visual Studio 2010” published by Apress.

The default option is to add a new web application to the solution for hosting the control. This
option creates a web project for you with two pages, an ASPX page and an HTML page, that are both
automatically configured to host the Silverlight application.

When you opt for adding the web site, Silverlight defaults to a web project type of ASP.NET Web
Application Project. If you instead select ASP.NET Web Site, you get a simple file-based web project. We
prefer to stick with either the ASP.NET Web Application Project or the ASP.NET MVC Project because
they allow more project configuration options such as specifying a static port for the web site. This is
handy when you’re creating web services and want to keep the port number consistent. You can
choose the name for the test web site as well. Also, the web site properties include a Silverlight
Applications tab that links the Silverlight project to the web site, copying the output to the default
ClientBin folder, but you can customize the location in the web site.

After the project is created, if you go into the web site’s properties dialog and click the Silverlight
Applications tab, you will see the Change button, which allows you to specify that you would like to use
configuration specific folders. This option lets you specify if you want to copy the .xap file to a
configuration-specific (debug, release, or custom configuration) subfolder of the build’s target folder
(ClientBin) or simply copy the chosen build configuration (debug or release) into ClientBin directly.

The output of a Silverlight application is a XAP file. It contains the assemblies, manifest, and other
output files that are loaded by the Silverlight 4 plug-in to execute the application. The XAP file is
actually just a ZIP file renamed with the .xap extension, so you can crack one open to see what is inside
by simply changing the extension to .zip.

If you uncheck the “Host the Silverlight application in a new Web site” option in the New
Silverlight Application dialog, a web project is not created. This option results in a solution with a
single project containing the Silverlight control. When you run the application, an HTML page is
automatically generated that hosts the application. Our preference is to create a separate web
application project and not use the dynamically generated HTML test page option, but it is good to
have options.

Once you’ve chosen the Silverlight Application option to have a separate project-based web site in
the file system and you’ve updated the name for the web site project, click OK to create the initial
solution. Figure 1-5 shows the initial project layout in Solution Explorer.

Figure 1-5. The Silverlight 4 initial project layout

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

15

The Silverlight application project consists of two files: App.xaml and MainPage.xaml. There are also
corresponding code-behind files: App.xaml.cs and MainPage.xaml.cs. The class in the App.xaml file serves as
the start-up object for the Silverlight application. We created a Silverlight application project named “1.3
Understanding the Structure of a Silverlight Solution” that is based on the same application template.
Listings 1-1 and 1-2 show the initial App.xaml file and its code-behind, App.xaml.cs, respectively.

Listing 1-1. Recipe 1-3’s App.xaml File

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="Ch01_IntroToSilverlight.Recipe1_3.App"
 >
 <Application.Resources>

 </Application.Resources>
</Application>

Listing 1-2. Recipe 1-3’s Initial App.xaml.cs Class File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
namespace Ch01_IntroToSilverlight.Recipe1_3
{
 public partial class App : Application
 {

 public App()
 {
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
 }

 private void Application_Startup(object sender, StartupEventArgs e)
 {

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

16

 this.RootVisual = new MainPage();
 }

 private void Application_Exit(object sender, EventArgs e)
 {

 }
private void Application_UnhandledException(object sender,
ApplicationUnhandledExceptionEventArgs e)
 {
 // If the app is running outside of the debugger then report the exception using
 // the browser's exception mechanism. On IE this will display it a yellow alert
 // icon in the status bar and Firefox will display a script error.
 if (!System.Diagnostics.Debugger.IsAttached)
 {

 // NOTE: This will allow the application to continue running after an exception has
been thrown
 // but not handled.
 // For production applications this error handling should be replaced with something
that will
 // report the error to the website and stop the application.
 e.Handled = true;
 Deployment.Current.Dispatcher.BeginInvoke(delegate { ReportErrorToDOM(e); });
 }
 }

 private void ReportErrorToDOM(ApplicationUnhandledExceptionEventArgs e)
 {
 try
 {
 string errorMsg = e.ExceptionObject.Message + e.ExceptionObject.StackTrace;
 errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");

 System.Windows.Browser.HtmlPage.Window.Eval("throw new Error(\"Unhandled Error in
Silverlight Application " + errorMsg + "\");");
 }
 catch (Exception)
 {
 }
 }
 }
}

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

17

Both files contain partial classes for the Ch01_IntroToSilverlight.Recipe1_3.App class that inherits
from the System.Windows.Application class. Notice at the top of App.xaml in the <Application> element
two namespaces are declared that are required for Silverlight 4 development. Also, in the
<Application> element tag is an x:Class attribute linking the App.xaml markup file to the App.xaml.cs
code-behind file with the related partial class. The App.xaml file is a good place to store
applicationwide resources such as styles and templates, which we cover in Chapters 4 and 5.

The App.xaml.cs class file implements methods of the Application class, such as the constructor
where events are wired up and InitializeComponent() is called to process the XAML markup. The
App_Startup event sets the visual root to the Page class defined in MainPage.xaml and MainPage.xaml.cs.
Application_Exit is implemented as a placeholder for the developer to add logic needed to handle the
exit process. Finally, Application_UnhandledException is implemented to provide a basic top-level
exception handler event. In Silverlight 4, it is somewhat enhanced with this line of code in
Application_UnhandledException method:

Deployment.Current.Dispatcher.
BeginInvoke(delegate { ReportErrorToDOM(e); });

It calls the method ReportErrorToDOM to display an error message in the browser but allows the
application to continue running, which is helpful during development.

All of the UI and execution logic for the Silverlight 4 application exists in the MainPage class XAML and
code-behind class file. Listings 1-3 and 1-4 show the MainMainPage.xaml file and its code-behind,
MainMainPage.xaml.cs.

There is a lot of code in these listings that we do cover in detail here, since this is an introductory
chapter, but we wanted to demonstrate more than a simple “Hello World” application when you run
the application. Most of the code was generated by Expression Blend 4 to produce the animation, which
we cover in detail in Chapter 3. We also provide an overview of Expression Blend 4 in the next recipe.

Listing 1-3. Recipe 1-3’s MainMainPage.xaml File

<UserControl x:Class="Ch01_IntroToSilverlight.Recipe1_3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="Hello from Silverlight 4!!!" />
 </Grid>
</UserControl>

Listing 1-4. Recipe 1-3’s Main MainPage.xaml.cs Class File

using System.Windows.Controls;

namespace Ch01_IntroToSilverlight.Recipe1_3
{
 public partial class MainPage : UserControl
 {
 public MainPage()

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

18

 {
 InitializeComponent();
 }
 }
}

Both files contain partial classes for the Ch01_IntroToSilverlight.Recipe1_3.MainPage class that
inherits from the System.Windows.Controls.UserControl class. At the top of MainMainPage.xaml in the
<UserControl> element, notice that two namespaces are declared; these are required for Silverlight 4
development. Also in the <UserControl> element tag is an x:Class attribute linking the
MainMainPage.xaml markup file to the MainMainPage.xaml.cs code-behind file with the related partial
class. The MainMainPage.xaml file is a good place to store resources that apply to an entire page, such as
styles and templates, which we cover in Chapter 2.

The project settings for the Silverlight 4 application have a Silverlight tab, as shown in Figure 1-6.

Figure 1-6. The Silverlight 4 application settings tab in the Silverlight project settings

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

19

In addition to the properties typically available for a .NET application are the XAP file name and
an option that lets you specify whether you want to generate a Silverlight manifest file. Silverlight 3
introduced two additional settings:

• Reduce XAP size by using application library caching: Caches framework assemblies on the
client in order to improve performance

• Enable running application out of browser: Enables out-of-browser capabilities, which is
covered in detail in Chapter 7

In Visual Studio 2010 you can also choose the target Silverlight version via the property shown in
Figure 1-6.

The other project in the solution is the TestWeb web project. The web project consists of two pages
per Silverlight application. One file is an ASPX page, and the other is an HTML page. So the
corresponding files for the Silverlight application we just covered are Recipe1.3TestPage.aspx and
Recipe1.3TestPage.html. Both pages instantiate the Silverlight application using an <object> tag. Here
is an example of the HTML markup from the HTML page:

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source"
 value="ClientBin/ Ch01_IntroToSilverlight.Recipe1_3.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50303.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v
 =4.0.50113.0" style="text-decoration: none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight"
 style="border-style: none" />

</object>
<iframe id="_sl_historyFrame" style="visibility: hidden;

 height: 0px; width: 0px; border: 0px"></iframe>

The <object> tag references the XAP file as well as some client-side JavaScript events, such as
onSilverlightError as parameters on the OJBJECT tag. Also notice the iframe named _sl_historyFrame. This
iframe is required to provide support for integration with browser navigation bookmarking and deep
linking, which we cover in Chapter 6.

Figure 1-7 shows the project settings for the TestWeb web project. The tab shown in Figure 1-7 lists
the Silverlight projects available in the solution, where the XAP file should be copied to (the ClientBin
folder), as well as whether there should be configuration-specific folders under the ClientBin folder for
debug or release versions of the Silverlight application.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50113.0
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50113.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

20

Figure 1-7. The Silverlight Applications tab in the web project settings

Notice also in Figure 1-7 the Add, Remove, and Change buttons. The Add button allows you to
easily add a Silverlight application to a web project. Let’s say you have an existing ASP.NET
application, and you now want to add to a Silverlight application. Open the project settings for the web
project, and click the Add button to display the Add Silverlight Application dialog shown in Figure 1-8.

Figure 1-8. The Add Silverlight 4 Application dialog

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

21

You have the option to create a new Silverlight 4 project or add an existing project from the
prepopulated Project combo box, as well as options to configure related settings, such as specifying the
destination folder, including configuration-specific folders, adding test pages, and enabling
Silverlight debugging.

When you click the Change button on the Silverlight Applications tab, a dialog displays with the
message shown in Figure 1-9.

Figure 1-9. Clicking the Change button allows you to switch to using configuration-specific folders for
debug/release versions.

This dialog allows you to switch to using configuration files for debug, release, or custom
configuration versions. When you click the Remove button on the Silverlight Applications tab, you’ll
see the dialog shown in Figure 1-10.

Figure 1-10. Clicking the Remove button opens this dialog, which lets you remove a Silverlight
application from a web project.

1-4. Understanding the Developer/Designer Workflow
Problem
You need to understand the developer and designer workflow for creating Silverlight applications.

Solution
Learn the capabilities of the Visual Studio 2010 and Expression Blend 4 environments. Depending on
the type of application, determine whether a dedicated UI designer is required for the project or
whether the developer will handle the UI development and the coding. If the application requires a
dedicated designer due to UI requirements, introduce the designer to Expression Blend 4.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

22

How It Works
With any application development effort, many roles—such as project manager, architect, developer,
tester, and designer—are involved. Depending on the target application, the role of the designer can
greatly vary in the amount of effort required. For an intranet LOB application, the designer may not
have much more of a role other than letting developers know where the required corporate application
standard resources, such as Cascading Style Sheets (CSS) and images, are located. In a public-facing
rich media application, a designer may be heavily involved from conception of the application all the
way through development and user experience testing.

For Silverlight, the same generalizations apply. You can build powerful desktop-like applications
within Silverlight that may not require a dedicated designer. Or, you can build a Rich Internet
Application that requires dedicated designer skills from start to finish.

The Tools
Silverlight developers do not have to become full-fledged designers. Developers and designers can
work independently in an integrated environment with full source code control access from both
Visual Studio 2010 and Expression Blend 4. However, from a practical standpoint, developers may
want to become familiar with Expression Blend 4.

As we mentioned above, Visual Studio 2010 includes a full-featured designer surface Visual Studio
2010 with first-class IntelliSense support for editing XAML. Expression Blend 4 is a great tool for
designing Silverlight 4 UIs, especially when the application includes animations

■ Note You can open a solution in Expression Blend 4 from within Visual Studio by right-clicking any .xaml file

and selecting Open in Expression Blend from the context menu.

Expression Blend 4 provides rich designer support that includes drag-and-drop control editing,
visual creation of animation timelines, and a rich properties window. Expression Blend 4 includes full
IntelliSense when editing markup.

Figure 1-11 shows the beginnings of a Silverlight application in Expression Blend 4.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

23

Figure 1-11. A Silverlight 4 application in Expression Blend 4

Expression Blend 4 includes a rich design surface. Also, the Properties window on the right side of
the screenshot provides full access to an element’s properties. As in Visual Studio 2010, there is a
XAML tab that is available on the top right side of the Artboard by clicking the button with the caption
“< >” that lets you view the underlying markup in Expression Blend 4 with full IntelliSense support.

The Process
After the above review in this recipe, the developer/designer workflow should start to take shape in
your mind. UI development is primarily done in Expression Blend 4 and coding in Visual Studio. Both
Expression Blend 4 and Visual Studio 2010 can create the initial Silverlight 4 project, but the UI design
will most likely start out in wireframe diagrams realized in Adobe Creative Suite or Expression Design
and then be exported to XAML. There are a few third-party converters available that will export from
Adobe tools to XAML:

• www.mikeswanson.com/XAMLExport/

• www.infragistics.com/design/Fireworks_XAML_Exporter.aspx

Expression Blend 4 also has two new menu items under File that will import from Adobe Photoshop or
Illustrator.

Figure 1-12 provides a visual representation of this iterative development and design process.

http://www.mikeswanson.com/XAMLExport
http://www.infragistics.com/design/Fireworks_XAML_Exporter.aspx

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

24

Figure 1-12. The developer/designer workflow

For a highly interactive, rich UI, the designer may want to perform the initial layout of the
application, as shown in Figure 1-12, by developing the initial UI concepts. Unlike when building
mock-ups in an image-editing tool, what is great about Silverlight 4 and Expression Blend 4 is that the
mock-up of a visually compelling UI can become the foundation of the actual UI. As Figure 1-12 shows,
designers can focus on UI design and usability in the outer loop, while the developers in the inner loop
focus on writing the code behind the UI and the rest of the application. Periodic synchronization points
allow the application to be fully integrated between the developer and designer workflows with
minimal overhead because of the common underlying markup.

■ Note Expression Blend 4 also includes SketchFlow, which allows designers and developers to build rich and

dynamic prototypes very quickly.

As an alternative to starting the development process, a developer can start to build the basic UI
with Visual Studio 2010 and then hand off the UI to a designer, who then refines the application’s
layout, adding animation and control templates. This workflow would make sense if you are migrating
an existing .NET application to Silverlight: the developer must first get the code working within the
Silverlight programming model, make adjustments, and lay out a basic UI.

Developers can also open a Silverlight application in Expression Blend 4 from Visual Studio 2010
by right-clicking the any .xaml file and selecting Open in the context menu. Doing so opens the entire
solution in Expression Blend 4.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

25

The synchronization illustrated in Figure 1-12 occurs either manually by sharing folders or via
source-code integration available in both Visual Studio and in Expression Blend 4. With Expression
Blend 2, designers had to use the stand-alone Team Foundation Server client to check files in and out
of source code control. Now with Expression Blend 3 or later, designers are even more integrated into
the design/development process.

A point to emphasize is that, unlike with other technologies, the output from the rich design tool,
XAML, is what actually is compiled into the application. For comparison purposes, in Windows Forms
development, a designer cannot create a rich, highly visual control in the technology used by the
developer directly. Instead, the designer might use a drawing tool such as Adobe Photoshop or
Microsoft PowerPoint to create a mock-up. The developer starts from scratch using separate tools and
technology and attempts to create a custom control that renders like the mock-up. This creates a
developer/designer disconnect, or lag, between design changes and coding implementation because
the designer and developer work in separate toolsets.

XAML technology enables you to use a wide range of tools since it is well-formed XML. The fact
that XAML can be compiled directly permits the developer to take the output from the design team and
directly utilize it in the application, completely removing the lag between the designer and the
developer.

1-5. Understanding the Basics of Expression Blend 4
Problem
You need to understand how to create a UI in Expression Blend 4.

Solution
Learn the basics of the Expression Blend 4 environment.

How It Works
As mentioned previously, Expression Blend 4 is a visual design tool that generates XAML. It is a
powerful tool that is worthy of a book dedicated to completely understanding its environment. While
this book is not exclusively about Expression Blend 4, we will cover the basics of the environment to
help communicate steps when performing tasks visually.

We create a simple application that animates changing a square to circle below in the code
section. We use it here to help us explain Expression Blend 4 functionality.

Visual Studio developers may find Expression Blend 4 to be a dramatic departure from what they
are familiar with in Visual Studio. However, developers will want to know how to work in Expression
Blend 4 for maximum productivity.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

26

.

Figure 1-13. Navigating Expression Blend 4

Figure 1-13 shows Expression Blend 4 with a simple project opened in order to provide an
overview of the tool’s major features. The project is a simple animation: when the button is clicked, an
animation is kicked off that turns the square into a circle and then back into a square again. Table 1-1
provides a quick description of the annotated points.

Table 1-1. Expression Blend 4 Features

Annotation Description

A This is the designer surface, also known as the Artboard, which supports drag-and-
drop editing.

B Use this to zoom in or out of the designer surface as needed. Zoom out to see the
entire application, or zoom in close to perform precise visual editing.

C Tabs allow you to switch between the design surface, the XAML markup, or split view
to see both the design surface and XAML.

D These represent grid lines for laying out controls in the UI. When you move the mouse
over the edge of the Grid control, the UI provides a visual cue that you can add a grid line.

E This is the Properties window; here, several sections are collapsed so that they fit in
the view.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

27

Table 1-1. Continued

Annotation Description

F The Resources window lists available resources such as styles and templates. We
cover these resources throughout this book, particularly in Chapters 2, 4, and 5.

G Clicking this chevron brings up the Asset Library, where you can search for a control
if you are not sure what the icon is or whether it is visible. The Asset Library is
similar to the Visual Studio toolbar area where controls are listed.

H The little arrow in the lower-right corner under some of the controls shown in the
Asset Library is a visual cue that related controls are available for quick access.
Clicking and holding the arrow brings up a small window listing the related controls.
Click a control and it becomes the visual control for that section of the Asset Library.

I Clicking this button creates a new Storyboard object. You use storyboards to design
animations. We talk more about storyboards later in this chapter.

J This is the extremely useful Search text box. Type a property name, and Expression
Blend 4 will search the list of properties available for the control and bring the
property into view for easy access. Be sure to clear the Search text box when you’ve
finished. Otherwise, it can be confusing when you switch objects and the filter
entered in the Search text box does not apply, resulting in a blank properties window.

K The XAML visual tree is listed in this area of Expression Blend 4. The yellow frame
around the LayoutRoot control indicates that the LayoutRoot control is the active
element. This means that double-clicking a control in the Asset Library will insert
that control as a child to the LayoutRoot control. Double-clicking another control,
such as the StackPanel, would make that one the active element and the insertion
point for child controls dragged on the visual design surface.

L New in Expression Blend 4, this extremely useful Search text box allows you to find
project files quickly.

M The Visual State Manager has an improved user interface in Expression Blend 4.
More states for controls are displayed with a warning indicator when a property has
been changed in more than one state group.

N New in Expression Blend 4, the Assets tab provides fast access to project, controls,
styles, behaviors, and effects assets in a nicely organized list.

O New in Expression Blend 4, the Data tab provides designers with the ability to create
either a sample or live data source that makes it easier to design a data binding UI.

The Code
At first glance, Expression Blend 4 looks a lot like Visual Studio with a Projects tab (circled in Figure 1-
13) that lists the solution, project, and files as in Visual Studio (see Figure 1-14).

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

28

Figure 1-14. Expression Blend 4’s Projects tab

In Figure 1-13, the letter I points to a button that lets you create a new Storyboard object. When you
click that button, you are prompted to provide a name or key for the storyboard in the Create
Storyboard Resource dialog. Click OK to put Expression Blend 4 into time line recording mode, which is
shown in Figure 1-15.

Figure 1-15. Expression Blend 4 with time line recording on

When Expression Blend 4 is in time line recording mode, you can visually create animations. We
are now going to create an animation that has four keyframes. We animate a Rectangle object in the
shape of a square that will transition from a square appearance to a circle appearance between the
first and second keyframes. The animation will keep the circle appearance between the second and
third keyframes and finally transition from the circle appearance to a square appearance between the
third and fourth keyframes.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

29

To create this animation, click the Record Keyframe button labeled letter A in Figure 1-15. This
creates a keyframe wherever the yellow vertical line in the time line is located. The letter B in Figure
1-15 points to the keyframe we create at the start time of 0 seconds on the time line. We then drag the
yellow vertical time line pointed to by the letter C to 1 second. Clicking the Record Keyframe button
creates a keyframe at that point in the time line where the yellow vertical line sits, as shown in Figure
1-16.

Figure 1-16. Adding a keyframe to create an animation

We then adjust the square to make it look like a circle by dragging the handles pointed to in Figure
1-15 with the letter D to create the circle shown in Figure 1-16 at time of 1 second. This results in an
animation transitioning from a square to a circle over a period of 1 second. We want the circle
appearance to last for 2 seconds more, so we copy the keyframe at 1 second and paste it at a time of 3
seconds on the time line. This results in the appearance not changing from 1 second to 3 seconds; the
shape remains a circle.

We now want the animation to transition back to a square. At a time of 4 seconds on the time line,
we add a copy of the original keyframe at 0 seconds, which is a square. This results in an animation
that transitions back to the square appearance between a time of 3 and 4 seconds on the time line.

A great technique to adopt when you need an animation to go back to its original look is the use of
copy and paste. Notice in Figure 1-16 that there are three keyframes shown for the Rectangle object in
the visual tree. The first keyframe is set at 0 seconds to represent the initial state. At 1 second, a
keyframe is created, as shown in Figure 1-16, with the shape now looking like a circle. When this
animation runs, the square will smoothly transition into a circle.

The third keyframe shown in Figure 1-16 is a copy of the second Keyframe, so that from 1 second
to 3 seconds on the time line, the circle shape is maintained. To copy a Keyframe, simply right-click it,
and select Copy from the context menu. When you paste the object, the paste location for the keyframe
is wherever the yellow vertical line is located along the time line. So, to paste a copy at 3 seconds,
move the yellow vertical time line to 3 seconds and press Ctrl+V to paste (a right-click context menu is
not available).

For the fourth Keyframe (not shown in the figure), copy the first Keyframe as before, move the
yellow timeline to 4 seconds, and then press Ctrl+V to paste. Click the DVD player-like play button at
the top of the timeline window to test the animation and fine-tune as desired. We cover animations in
more detail in Chapter 3, but we wanted to provide an introduction here as part of learning Expression
Blend 4.

The last step is to add code that kicks off the storyboard to MainMainPage.xaml.cs. To do this, switch
to the same solution opened in Visual Studio 2010. We add a Button to the UX to kick off the animation.
Locate the Button XAML, and type a space inside the first part of the <Button> element tag to invoke
IntelliSense, as shown in Figure 1-17.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

30

Figure 1-17. Adding an event in Visual Studio 2010

It takes one line of code to launch the animation when the button is clicked:

SquaretoCircleStoryboard.Begin();

Listings 1-5 and 1-6 show the MainMainPage.xaml and MainMainPage.xaml.cs files, respectively. The
storyboard XAML markup is automatically added after doing the work in Expression Blend 4.

Listing 1-5. Recipe 1-5’s MainPage.xaml File

<UserControl x:Class="Ch01_IntroToSilverlight.Recipe1_5.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 d:DesignWidth="400" d:DesignHeight="300" xmlns:d=
"http://schemas.microsoft.com/expression/blend/2008" xmlns:mc=
"http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
 <UserControl.Resources>
 <Storyboard x:Name="SquaretoCircleStoryboard">
 <DoubleAnimationUsingKeyframes BeginTime="00:00:00"
 Storyboard.TargetName="rectangle"
 Storyboard.TargetProperty="(Rectangle.RadiusX)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="12"/>
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="75"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="75"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="12"/>
 </DoubleAnimationUsingKeyframes>
 <DoubleAnimationUsingKeyframes BeginTime="00:00:00"
 Storyboard.TargetName="rectangle"
 Storyboard.TargetProperty="(Rectangle.RadiusY)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="12"/>
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="75"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="75"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="12"/>
 </DoubleAnimationUsingKeyframes>
 </Storyboard>
 </UserControl.Resources>
<Grid x:Name="LayoutRoot">
 <Grid.Background>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

31

 <LinearGradientBrush EndPoint="0.810999989509583,0.18299999833107"
 StartPoint="0.630999982357025,1.15100002288818">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Grid.Background>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.3*"/>
 <RowDefinition Height="0.54*"/>
 <RowDefinition Height="0.16*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.39*"/>
 <ColumnDefinition Width="0.461*"/>
 <ColumnDefinition Width="0.149*"/>
 </Grid.ColumnDefinitions>
 <Rectangle Margin="17.2000007629395,4,17.2000007629395,8" Height="150"
 Width="150" Grid.Column="1" Grid.Row="1" RadiusX="12" RadiusY="12"
 x:Name="rectangle">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1.32400000095367,0.783999979496002"
 StartPoint="-0.310999989509583,0.172000005841255">
 <GradientStop Color="#FF99E674" Offset="0.004"/>
 <GradientStop Color="#FFFFFFFF" Offset="0.504"/>
 <GradientStop Color="#FF99E674" Offset="0.97299998998641968"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <StackPanel Margin="8,8,8,8" Grid.Column="0" Grid.Row="0">
 <TextBlock Height="Auto" FontFamily="Comic Sans MS" Text="Square to Circle"
 TextWrapping="Wrap" Width="150" Margin="15,2,2,2"/>
 <Button Content="Animate!" Height="35" Width="104" Margin="0,2,2,2"
 Click="Button_Click">
 <Button.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF050505"/>
 <GradientStop Color="#FF60DD23" Offset="1"/>
 </LinearGradientBrush>
 </Button.Background>
 </Button>
 </StackPanel>

 </Grid>

</UserControl>

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

32

Listing 1-6. Recipe 1-5’s MainPage.xaml.cs File

using System.Windows;
using System.Windows.Controls;

namespace Ch01_IntroToSilverlight.Recipe1_5
{
 public partial class MainPage : UserControl
 {
 public Page()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 SquaretoCircleStoryboard.Begin();
 }
 }

}

This recipe covers the basics to help you get started. We will cover Expression Blend 4 extensively
in Chapter 3. For the most up-to-date information, visit this site for self-study tutorials, starter kits,
training videos, virtual labs, and webcasts: expression.microsoft.com/en-us/cc136522.aspx.

1-6. Accessing Source Control
Problem
You need to understand how a non–Visual Studio user such as a designer can access a Silverlight 4
project from Team Foundation Server (TFS), Microsoft’s Application Lifecycle Management (ALM) and
source code control solution.

Solution
Use the new source code support built into Expression Blend 4. Otherwise, use the stand-alone Team
Foundation Client Windows application or the TFS Web Access client to connect to TFS and check in
and out source code.

How It Works
Given the highly iterative nature that Silverlight development can entail, designers will most likely
access the application source code more frequently than before when designers generally simply
provided an image and didn’t interact with source directly throughout the development timeline.
Therefore, it is important that source code integrity be maintained no matter who is working on the
application.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

33

Designers will generally spend their time in Expression Blend 4 designing and building
Silverlight 4 applications. For most real Silverlight applications, developers will want to store source
code within Team Foundation Server (TFS) or another source code application.

Most, if not all, source code control applications have stand-alone clients that do not require
Visual Studio to access source code. Designers can use the stand-alone client access tools appropriate
for their environments, and they should work with their development team counterparts to obtain the
appropriate client for their systems.

If the source code is stored in TFS, designers should use the integrated source code control support
available in Expression Blend 4. To enable source code control in Expression Blend 4, download the
Microsoft Visual Studio Team System 210 Team Explorer by searching the Microsoft downloads web site.
The download is an ISO so you will have to first burn it to a CD or mount the ISO virtually using a
third-party utility. Next, install Visual Studio 2010.

After installing the updates, contact your administrator for the project’s TFS to obtain the correct
permissions. Once you have permissions, such as the Contributor role, you will be able to add or
modify files. Use Team Explorer to create a workspace on your computer. The workspace is a local
folder that is mapped to the source code repository. For information on how to download a solution or
project to your computer, see msdn.microsoft.com/en-us/library/ms181385.aspx.

When you open the solution in Expression Blend 4, additional source code control menu items will
be enabled when you right-click on the Solution, Project, and individual files that will allow you to
check items in and out of source code control. If you are not familiar with how source code control
works, please go to Help ❜ User Guide in Expression Blend and type ssource cont rol in the index for
more information.

1-7. Running Silverlight 4 on a Mac
Problem
You need to run Silverlight 4 on a Mac.

Solution
On your Mac, navigate to a web site running Silverlight 4 to automatically download the plug-in, or
download it at go.microsoft.com/fwlink/?LinkID=149156&v=4.0.40624.0.

How It Works
Silverlight is a cross-platform, cross-browser plug-in designed to automatically install when the web
browser accesses a site running Silverlight. Note that Silverlight 4 works on Intel-based Mac systems,
not the PowerPC.

1-8. Running Silverlight on Linux
Problem
You need to run Silverlight applications on a Linux system.

CHAPTER 1 ■ A QUICK TOUR OF SILVERLIGHT 4 DEVELOPMENT

34

Solution
Download the Moonlight plug-in from www.mono-project.com/Moonlight. To access the Moonlight
Getting Started page at the Mono project, go to www.monoproject.com/Moonlight#Getting_Started.

How It Works
In partnership with Microsoft, Novell is providing an implementation of Silverlight for Linux called
Moonlight. The Moonlight 2 beta is available for the major Linux distributions, with support for Firefox,
Konqueror, and Opera browsers.

The goal of the implementation is to allow Moonlight to run any Silverlight application without
having to recompile that application. To view screenshots of Moonlight running existing Silverlight
demonstrations, go to www.mono-project.com/Screenshots.

http://www.mono-project.com/Moonlight
http://www.monoproject.com/Moonlight#Getting_Started
http://www.mono-project.com/Screenshots

C H A P T E R 2

■ ■ ■

35

Application Design and
Programming Model

The Mechanics of Silverlight Applications
Silverlight is a UI or presentation layer programming model for rich interactive client-side user
interaction. Silverlight also includes strong distributed application hooks coupled with rich data
binding to facilitate a solid application architecture that will be familiar to traditional .NET or Java
developers. This means that the same overall design principles that architects and developers live by
today for web or n-tier applications can apply to Silverlight-based applications as well. Silverlight
provides excellent support for calling services, whether those services are based on Simple Object
Access Protocol (SOAP), Representational State Transfer (REST), plain old XML (POX), or JavaScript
Object Notation (JSON).

■ Note Please refer to Chapter 1 for information on how to set up the environment and create a Silverlight 4

project. Chapter 7 covers networking and web services in detail. In Chapter 9, we cover WCF services in detail.

The Silverlight platform consists of three major components: the presentation framework, the
.NET Framework for Silverlight, and the installer/updater. The presentation framework contains a
rich set of XAML UI controls, media playback support, and digital rights management, as well as
support for user input, data binding, and presentation features like vector graphics, animation, and
layout.

The .NET Framework for Silverlight is a subset of the full .NET Framework that contains a
powerful set of components and libraries. Silverlight continues to inch closer to WPF in terms of
feature alignment with Silverlight 4. The .NET Framework for Silverlight includes extensible UI
controls and powerful networking capabilities, as well as base class libraries and the common
language runtime (CLR). Some parts of the .NET Framework for Silverlight are deployed as part of the
runtime encapsulated within the cross-platform browser plug-in. Other parts, such as some UI
controls, LINQ to XML, and so forth, are packaged with your application and downloaded to the
browser as a separate assembly as part of the .xap container.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

36

■ Note Take a moment to browse the topic “Silverlight Reference by Namespace” in the Silverlight SDK help file.
You will see that the .NET Framework for Silverlight contains a rich subset of the full version of the .NET
Framework, including support for generics, collections, diagnostics, reflection, cryptography, and LINQ, just to

name a few components.

We provided detailed highlights in Chapter 1, but to quickly review, Silverlight 3 introduced more
than 50 new features, including support for running Silverlight applications out of the browser,
dramatic video performance and quality improvements, and features that improve developer
productivity in the following areas:

• Media

• User experience rendering capabilities

• Rich Internet Applications (RIAs)

• Data support

• Browser support

• Out-of-browser capabilities

While Silverlight 3 introduced many new controls and capabilities, Silverlight 4 introduces major
feature enhancements in the following areas:

• Business Application Development – printing, Rich Text Control, RIA Services, improved
commanding, support and new error handling interfaces to name a few enhancements

• Rich User Experiences – Fluid UI states, implicit styles, webcam and microphone support,
offline PlayReady DRM support, and right mouse click support

• Sandboxed Application Enhancements – Out-of-Browser (OOB) Windowing updates,
WebBrowser control, HTMLBrush, and notifications support

• Trusted Applications – New OOB model with elevated trust allowing native integration,
file system access, cross-domain network access, and full keyboard access in full screen
mode

• Tooling Support – Visual Studio 2010 adds full designer and property tool window support
to Silverlight 3 and 4 applications.

The other major component of the Silverlight platform is the runtime installation and update
control that simplifies the process of installing the plug-in for first-time users of your application. The
Silverlight runtime plug-in control provides low-impact, automatic updates to the plug-in as they
become available.

While not based on Silverlight 4, Microsoft introduced Windows Phone 7 and its Silverlight and
XNA programming model at MIX 10. The Silverlight programming is based on Silverlight 3 but
several Silverlight 4 features such as the WebBrowser control and offline PlayReady DRM support were
brought forward to the platform.

In this chapter, we will focus on the Silverlight application programming model in the .NET
Framework. We’ll cover topics like custom components, concurrency, resource management, and
persistence, all of which facilitate integration into the overall application architecture.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

37

2-1. Leverage and Locate Controls and Classes
Problem
You want to add a custom class and a custom control to your application and access both the class and
the control in the XAML, which is the markup similar to the ASPX page in ASP.NET. You also want to
know how to dynamically find a control so that you can modify its properties.

Solution
To add a class, add a clr-namespace to the <UserControl> element in your Silverlight application via
the xmlns attribute to make the custom class available to the Silverlight application. To add a control,
first add a project reference to the assembly containing the custom control and then add a clr-
namespace in a similar manner. To dynamically locate a control at runtime, use the
FrameworkElement.FindName method.

How It Works
Most of the time, applications consist of more than one class and custom control. You can add a class to
project by right-clicking a Silverlight project and selecting Add a Class. Classes can also be brought in
through a separate project or assembly just as you would in any other .NET application by adding a
reference to the assembly. To make the class or control available in XAML, you add an xmlns attribute
to the root UserControl. Note that you add a using statement if the class is in a different namespace
and you want to access the class in code.

Generally, in Silverlight applications much of the code is written in XAML, which is an XML
markup language, so it takes an additional step to make the class or control available within the XAML
markup. This step involves adding an xmlns namespace import statement to the <UserControl>
element.

Add a Custom Control
To make a custom control available, the steps are similar to making a class available. You’ll use a

custom control from a separate solution titled SimpleControl that creates a simple control consisting of
a TextBlock that displays the text Full Name: in front of the value set for the FullName property on the
control. We don’t go into detail on how to create the SimpleControl here because we describe how to
create custom controls in Chapter 5.

Find a Control
Finding a control at runtime is often a necessary task. The abstract base class for controls in
Silverlight is the DependencyObject class that represents objects participating in the Silverlight
dependency property system. UIElement inherits from DependencyObject and represents objects that
have visual appearance and that can perform basic input. FrameworkElement inherits from UIElement
and provides common APIs for elements to participate in Silverlight layout, as well as APIs related to
data binding, the object tree, and object lifetime.

One of the available members on FrameworkElement is FindName, which takes a string that contains
the name of a control and returns either an object reference or null. The FindName method provides a
convenient way of locating a control within the XAML visual tree without having to walk through the
object tree.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

38

In order for a control to be found, it must have its Name property set in code or via the x:Name
property in XAML. XAML is hierarchical by nature, since it is an XML tree where there is a root
element that contains child elements. After the XAML processor creates the object tree from markup,
the x:Name attribute provides a reference to markup elements that is accessible in the codebehind file,
such as in event handler code.

Names must be unique within an XAML namescope. The XAML <UserControl>, by default defined
in MainPage.xaml as the MainPage class, is the most common namescope and is referred to as the root
XAML namescope. Calling APIs that dynamically load XAML can define additional namescopes as
well. Refer to Recipes 2-4 and 2-5 to learn more about how to dynamically load XAML.

When XAML is added dynamically to the visual tree, the tree remains unified, but a new namescope
will be created at the point where the dynamic XAML is attached. Templates and resources define their own
namescopes independently of the containing page where the style or template is applied.

The reason for the detailed discussion regarding namescope is because FindName works within the
constraint of namescopes. If you call FindName from the MainPage level to get a named object in the root
XAML namescope, the call will succeed as usual. However, if you call FindName from the MainPage level, the
method will not find the objects in the new discrete XAML namescope created by Load or within templates
or resources. To find an element with FindName within newly created namescope, retain a reference to an
object or UIElement within the namescope, and call FindName from the element that is within the new
namescope in the XAML visual tree.

Since FindName is part of the visual control base class FrameworkElement, it is accessible in all visual controls
and can be called just about anywhere. What is convenient about FindName is that if the XAML element has child
elements, they are all searched recursively for the requested named element. FindName will search the current
XAML namescope in both the up (parent) and down (children) direction within the visual object tree defined in
XAML.

In this recipe, you will work with a class named Organization that you will add to the Silverlight
application. The Organization class is just a fictitious class example with a few example data items. The
Organization class is in the same Ch02_ProgrammingModel.Recipe2_1 namespace as the
MainPage.xaml.cs file so you can access the Organization class directly without having to add a using
statement. If the Organization class was in a separate assembly with a different namespace, you would
need to add a reference to the other assembly and a using statement as you normally would to access a
class within an application.

At the top of MainPage.xaml, you will notice namespace declarations within the <UserControl>
element:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

The first statement imports the presentation framework namespace as the default namespace.
The second declaration maps an additional XAML namespace, mapping it to the x: prefix. To access the
Organization class within MainPage.xaml, you need to add an additional namespace declaration with a
unique prefix by typing xmlns:data= in the <UserControl> tag. You use the prefix data because you want
to data bind to the People collection in the Organization class. You can pick any prefix you want, but it
helps to use something that makes sense for the application. Figure 2-1 shows the support in Visual
Studio 2010 that lets you easily import the Ch02_ProgrammingModel.Recipe2_1 namespace.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

39

Figure 2-1. The Visual Studio 2010 namespace import IntelliSense window

Selecting the first line in the pop-up IntelliSense window imports the correct namespace that
allows you to access the Organization class within the Silverlight XAML markup, resulting in this
namespace statement:

xmlns:data="clr-namespace:Ch02_ProgrammingModel.Recipe2_1"

You add a ListBox control to the XAML to help test your ability to access the Organization class.
Let’s use Microsoft Expression Blend 4 to set the ItemSource property on the ListBox control. First, save
the solution, and then open the solution in Blend so that it is open in both Expression Blend 4 and
Visual Studio, as described in Recipe 1-5. Inside Expression Blend, open MainPage.xaml. Select the
ListBox so that it is highlighted, and then enter Item in the Properties search box to bring the
ItemSource to the top of the Properties window, as shown in Figure 2-2.

Figure 2-2. The ListBox ItemSource property

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

40

Notice in Figure 2-2 that there is a small button highlighted by the mouse pointer hovering over it.
Clicking this button provides access to the Advanced property options menu, shown in Figure 2-3.

Figure 2-3. The Advanced property options menu

Click the Data Binding option to open the Create Data Binding dialog shown in Figure 2-4.The
astute reader will notice in Figure 2-4 that, in addition to Data Field and Explicit Data Context,
Element Property is no longer grayed out as it was in Silverlight 2 and Expression Blend 2 SP1. In
Silverlight 3 and now in Silverlight 4, it is possible for controls to data bind to values of other elements
or controls. We cover data binding to elements in Chapter 4 in detail.

Figure 2-4. The Create Data Binding dialog

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

41

For now, click the +CLR Object button to open the Define New Object Data Source dialog, shown in
Figure 2-5.

Figure 2-5. The Define New Object Data Source dialog

Select Organization, and then click OK to create the OrganizationDS object. Select the
OrganizationDS object in the Create Data Binding dialog and then expand the Organization object in
the Fields pane on the right to display the People collection. Select the People collection, and click OK to
set the ItemSource for the ListBox to the People collection. Save the solution in Expression Blend 4, and
switch back to Visual Studio to view the generated XAML.

When you run the sample, the ListBox displays three items that contain the text
Ch02_ProgrammingModel.Recipe2_1.Person, which is the type that is stored in the People collection. In
Chapter 4, we cover how to use data templates to render the values for the type’s properties, such as
FirstName and LastName, instead of the name of the type.

Listing 2-1 shows the Organization class file.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

42

Listing 2-1. Recipe 2-1’s Organization Class File

using System.Collections.Generic;

namespace Ch02_ProgrammingModel.Recipe2_1
{
 public class Organization
 {
 private List<Person> _people;
 public List<Person> People
 {
 get
 {
 if (null == _people)
 return Populate();
 else
 return _people;
 }
 }

 private List<Person> Populate()
 {
 _people = new List<Person>
 { //C# 3.0 Object Initializers
 new Person {FirstName="John",LastName="Smith", Age=20},
 new Person{FirstName="Sean",LastName="Jones", Age=25},
 new Person{FirstName="Kevin",LastName="Smith", Age=30}
 };
 return _people;
 }
 }

 public class Person
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }
 }
}

Listing 2-2 shows the resulting code to add a custom class as well as the additional code discussed
below regarding adding a custom control and how to find a control in XAML. (Please note the use of
some layout controls, Grid and StackPanel, to help segment the three bits of functionality into areas
separated by blue rectangles.)

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

43

Listing 2-2. The MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_1.MainPage”
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data="clr-namespace:Ch02_ProgrammingModel.Recipe2_1"
 xmlns:SC="clr-namespace:SimpleControl;assembly=SimpleControl"
 mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="400"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc=
"http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" >

 <UserControl.Resources>
 <data:Organization x:Key="OrganizationDS" d:IsDataSource="True"/>
 </UserControl.Resources><Grid x:Name="LayoutRoot" Background="White" DataContext="{Binding
Source={StaticResource OrganizationDataSource}}">
 <StackPanel>
 <ListBox x:Name="PeopleListBox" ItemsSource="{Binding People}" />
 <Rectangle Fill="Navy" Height="10" Margin="2"></Rectangle>
 <SC:SimpleControl FullName="Rob Cameron and Jit Ghosh" FontSize="18" />
 <Rectangle Fill="Navy" Height="10" Margin="2"></Rectangle>
 <Grid Background="#FFD0D0D0" >
 <StackPanel Grid.RowSpan="2">
 <TextBlock x:Name="TextBlock1" Margin="4">TextBlock1</TextBlock>
 <TextBlock x:Name="TextBlock2" Margin="4">TextBlock2</TextBlock>
 <TextBlock x:Name="TextBlock3" Margin="4">TextBlock3</TextBlock>
 <TextBlock x:Name="TextBlock4" Margin="4">TextBlock4</TextBlock>
 <StackPanel >
 <TextBlock Margin="2" TextWrapping="Wrap" Text="Type the Name of a TextBlock
from the above list."></TextBlock>
 <TextBox x:Name="ControlName" KeyDown="ControlName_KeyDown"
 Margin="2" Grid.Row="1" TextWrapping="Wrap"/>
 <Button Content="Click To Find the Name Entered." Margin="2"
 Click="Button_Click"/>
 </StackPanel>
 </StackPanel>
 </Grid>
 </StackPanel>
 </Grid>
</UserControl>

Expression Blend 4 added a couple of xmlns statements to the <UserControl> element shown here:

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/
markup-compatibility/2006" mc:Ignorable="d"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

44

These namespaces are used by Expression Blend for code generation and can be removed if
desired. However, you will need to edit the XAML in the code file as well if they use the mc: or d:
namespace reference. Now, let’s discuss the new resource added to the UserControl as part of
configuring the data binding:

<UserControl.Resources>
 <data:Organization x:Key="OrganizationDS" d:IsDataSource="True"/>
</UserControl.Resources>

The resource uses the data: prefix you defined in Visual Studio to gain access to the Organization
class and sets the x:Key property so that you can access the resource by name as OrganizationDS.

The other interesting markup change is the value configured on the ListBox’s DataContext property:

DataContext="{Binding Mode=OneWay, Path=People,
Source={StaticResource OrganizationDS}}"

You can see that the DataContext is set to the People collection via the Path property on the Binding
object, which is available by setting the Source property to the static resource OrganizationDS. As a
result, the Listbox will display the list of people in the UI. We cover data binding in detail in Chapter 4;
here, we only cover what is required to make a custom class available in XAML.

Now, let’s learn how to make a custom control available in XAML, which is very similar to making
a class available.

In the \Code\Ch02_ProgrammingModel\Recipe2.1\SimpleControl folder that is part of the source code
download for this book, you’ll find the simple example control example solution. To run the code for
this recipe, you must first open the SimpleControl solution and build it to create the SimpleControl.dll
assembly. Next, open the Chapter 2 solution that contains the sample code for this chapter, and make
sure the reference is available in the Recipe 2-1 project. To make the custom control available, add a
reference to the assembly in your project to the SimpleControl assembly, and then add an xmlns import
to the <UserControl> element just like you did with the custom class:

xmlns:SC="clr-namespace:SimpleControl;assembly=SimpleControl"

Once the control’s namespace is imported, the control can be added to the XAML in Visual Studio
using the SC: namespace (isolated from Listing 2-2 here):

<SC:SimpleControl FullName="Rob Cameron and Jit Ghosh" FontSize="18" />

Figure 2-6 shows the UI with the Listbox displaying the Organization custom class and the
SimpleControl custom control.

Figure 2-6. The Recipe 2-1 UI

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

45

We do not list the source code for SimpleControl because we cover how to build custom controls for
Silverlight 4 in Chapter 5.

The last bit of functionality related to adding a control is dynamically finding a control. In Listing
2-2, below the second rectangle in the XAML, there is a Grid control hosting a StackPanel with a few
controls to implement the find logic. The user can enter a name of one of the TextBlock controls and
click the Button to find the control name entered and scale its size a little bit if found. Listing 2-3
contains the codebehind file for this recipe where the programming logic exists to actually find the
control.

Listing 2-3. The MainPage.xaml.cs File

using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;

namespace Ch02_ProgrammingModel.Recipe2_1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 TextBlock tb =
 (TextBlock)LayoutRoot.FindName(ControlName.Text);
 if (tb != null)
 tb.FontSize = 20.0;
 else
 {
 ControlName.Foreground = new SolidColorBrush(
 Color.FromArgb(255, 200, 124, 124));
 ControlName.Text = "Control not found! Please try again.";
 }
 }

 private void ControlName_KeyDown(object sender, KeyEventArgs e)
 {
 ControlName.Foreground =
 new SolidColorBrush(Color.FromArgb(255, 0, 0, 0));
 }
 }
}

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

46

There are two events in the codebehind file: one for clicking the button and another for the
KeyDown for the TextBox. The Button_Click event tries to find a control with the name entered in the
TextBox. If the entered value is valid and the control can be found, the FontSize is changed to 20 for the
found TextBlock.

If the entered value is not valid, a message is put into the TextBox stating that the control was not
found based on the entered value, and the font color is changed to a reddish color. The KeyDown event
simply resets the font color for the TextBox back to black. We purposely did not use any of the great new
animation features available in Silverlight and instead chose to have Windows Forms–like simple
animation in the UI. In Chapter 3, we’ll go into detail on how to take advantage of the great animation
features in Silverlight.

Figure 2-7 shows the initial layout of the UI but with the additional UX for finding the control
functionality.

Figure 2-7. Recipe 2-1 UI final layout

Figure 2-8 shows the application when the correct value for the name of a TextBlock control is
entered and the Button is clicked. TextBlock2 is entered for the value, and the font size is changed to 20,
enlarging the text in TextBlock2.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

47

Figure 2-8. Recipe 2-1’s UI after entering a valid control name

Figure 2-9 shows the UI when an incorrect value is entered. The font color is changed, and an
error message is put into the TextBox control.

Figure 2-9. Recipe 2-1’s UI after entering an invalid control namee

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

48

2-2. Dynamically Loading XAML
Problem
You need to load XAML dynamically at runtime from JavaScript or from Managed Code.

Solution
Use the CreateFromXaml method in JavaScript to dynamically load XAML markup at runtime into a
Silverlight 4 application from JavaScript. Use FindName to locate the parent control where the XAML
will be attached in the visual object tree. (We covered FindName in Recipe 2-1.) Use the XamlReader
object to dynamically load XAML markup at runtime from managed code.

How It Works
Silverlight 4 runs as an Internet browser plug-in that is created from within an HTML <object> tag in
the browser. Even though Silverlight 4 has a managed code execution model, the Silverlight 4 plug-in is
still accessible from and can interoperate with HTML using JavaScript, as in Silverlight 1.0. Chapter 6
covers browser integration in detail, so this recipe focuses only on how to dynamically load XAML
from JavaScript using CreateFromXaml.
To load XAML using managed code, use the XamlReader object. The XamlReader object sits in the
System.Windows.Markup namespace. The static Load method takes a string of XAML and converts the
string to an object or object tree, depending on what is contained within the XAML string. The static
Load method then returns a reference to root element created of type UIElement, which can be added to
the UI visual tree. Since all XAML elements inherit from UIElement, it makes sense that the return type
from Load would also be UIElement. The string must consist of valid markup with the addition of two
namespaces on the top-level element in the XAML contained in the string:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x="xmlns:x='http://schemas.microsoft.com/winfx/2006/xaml"

Once you have a valid string of XAML, pass it to the XamlReader.Load method, and a UIElement
object reference is returned. The final step is to convert the object to a UIElement or descendant class
and add it as a child to the desired parent element in the visual tree.

The Code
There are two ways to approach this recipe: using an HTML page or using an ASP.NET page. The plain-
old HTML page can be used as a guide for configuring Silverlight for non-Microsoft platforms.

For the ASPX page, you’ll use the default test page created by Visual Studio 2010. You’ll also add a
button to the ASPX test page and a script reference to a JavaScript file that will load the XAML (in this
case, one named Recipe2.4.js in the /js folder under the TestWeb project).

http://schemas.microsoft.com/winfx/2006/xaml/presentationxmlns:x=
http://schemas.microsoft.com/winfx/2006/xaml/presentationxmlns:x=
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

49

■ Note Silverlight 2 developer tools included an ASP.NET Silverlight control to configure a Silverlight application.
In Silverlight 3 or later, the control has been removed. The techniques for hosting the Silverlight control covered

here will work with any web technology because it is simply HTML with the <object> tag.

For the ASPX page, the Silverlight 4 plug-in is configured directly in an <object> tag located inside
a <div> tag. The default ASPX test page created by Visual Studio 2010 does not include an id value in
the <object> declaration, so set the value for id to SilverlightPlugInID so that it can be accessed in
JavaScript using the document.getElementById method:

 var slControl = document.getElementById("SilverlightPlugInID");

After obtaining a reference to the Silverlight plug-in, you can create a new Silverlight control,
using the CreateFromXaml method on the Content property of the plug-in, and hold a JavaScript
reference to it:

slControl.Content.CreateFromXaml(
 '<Ellipse Height="200" Width="200" Fill="Navy" />');

Next, call the FindName method on the Silverlight plug-in to access the XAML control tree in
MainPage.xaml to obtain a reference to the default root <Grid> control with an x:Name of "LayoutRoot":

var layoutRoot = slControl.content.FindName("LayoutRoot");

Once you have a reference to the <Grid> control, you can add the control you created with the
CreateFromXaml method to the Grid’s Children collection using the Add method:

layoutRoot.Children.Add(e);

When you attach XAML to a visual tree, the added tree creates a new namescope for that XAML
within the existing scope of the Page UserControl class. Calling FindName to locate a control within the
newly added XAML from the Page level will not succeed, because the method will search inside the
newly created namescope. The best way to manage this is to retain a reference to the newly added
XAML and call FindName from the reference.

 The only additional code you need to add to the ASPX test page is logic to enable the button after the
Silverlight control is fully loaded. If you do not take this into account and call FindName before the Silverlight
application is fully loaded, FindName will return null. The way to manage this is to put logic inside the OnLoad
method for the Silverlight plug-in object that does not access or allow access to the control tree until the
event fires:

function onSilverlightLoad(sender, args)
{
 var btn = document.getElementById("testButton");
 btn.disabled = false;
}

In the ASPX test page, the code in onSilverlightLoad simply enables the button. Otherwise, if the
button was not disabled and the button is clicked before the control is fully loaded, a null reference
exception occurs. To assign the OnLoad event to the Silverlight plug-in, set a <param> tag on the <object>
tag:

<param name="onload" value="onSilverlightLoad" />

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

50

The MainPage.xaml is not modified for this recipe, so it is not listed here. All of the action occurs in
the custom script file in Listing 2-4 and the HTML and ASP.NET test pages shown in Listings 2-5 and 2-
6.

In Listing 2-4, you use the HTML getElementById to obtain a reference to the Silverlight control.
Next, you create an ellipse, and add it to the existing XAML content. The JavaScript file in Listing 2-4 is
referenced by the HTML and ASP.NET page.

Listing 2-4. The Recipe2.2.js JavaScript File

function createEllipse()
{
 var slControl = document.getElementById("SilverlightPlugInID");
 var e =
 slControl.Content.CreateFromXaml(
 '<Ellipse Height="200" Width="200" Fill="Navy" />');
 var layoutRoot = slControl.content.FindName("LayoutRoot");
 layoutRoot.Children.Add(e);
}

function onSilverlightLoad(sender, args)
{
 var btn = document.getElementById("testButton");
 btn.disabled = false;
}

Listing 2-5 includes the script file in Listing 2-4. Also in Listing 2-5, the onSilverlightLoad event
from Listing 2-4 is assigned to the Silverlight control’s onload event, dynamically adding the XAML to
the LayoutRoot element in the XAML shown in Figure 2-10.

Listing 2-5. Recipe 2-2’s TestPage.aspx File

<%@ Page Language="C#" AutoEventWireup="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Test Page for Recipe 2.2</title>
 <script runat="server">

 protected void Page_Load(object sender, EventArgs e)
 {
 testButton.Attributes.Add("onclick", "createEllipse();");
 }
 </script>
 <style type="text/css">
 html, body

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\
http://www.w3.org/1999/xhtml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

51

 {
 height: 100%;
 overflow: auto;
 }
 body
 {
 padding: 0;
 margin: 0;
 }
 #silverlightControlHost
 {
 height: 100%;
 text-align: center;
 }
 </style>
 <script src="js/Recipe2_2.js" type="text/javascript"></script>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript">
 function onSilverlightError(sender, args) {
 var appSource = "";
 if (sender != null && sender != 0) {
 appSource = sender.getHost().Source;
 }

 var errorType = args.ErrorType;
 var iErrorCode = args.ErrorCode;

 if (errorType == "ImageError" || errorType == "MediaError")
 {
 return;
 }

 var errMsg = "Unhandled Error in Silverlight Application "
 + appSource + "\n";

 errMsg += "Code: " + iErrorCode + " \n";
 errMsg += "Category: " + errorType + " \n";
 errMsg += "Message: " + args.ErrorMessage + " \n";

 if (errorType == "ParserError") {
 errMsg += "File: " + args.xamlFile + " \n";
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 else if (errorType == "RuntimeError") {

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

52

 if (args.lineNumber != 0) {
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 errMsg += "MethodName: " + args.methodName + " \n";
 }

 throw new Error(errMsg);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server" style="height: 100%">
 <asp:Button ID="testButton" runat="server" Enabled="false"
 Text="Click Me!" UseSubmitBehavior="false" />

 <div id="silverlightControlHost">
 <object id="SilverlightPlugInID"
 data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Ch02_ProgrammingModel.Recipe2_2.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="onload" value="onSilverlightLoad" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0" style="text-
decoration: none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft
Silverlight"
 style="border-style: none" />

 </object>
 <iframe id="_sl_historyFrame" style="visibility: hidden; height: 0px; width: 0px;
 border: 0px"></iframe>
 </div>
 </form>
</body>
</html>

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

53

Listing 2-6. Recipe 2-2’s MainPage.xaml File

<UserControl x:Class=" Ch02_ProgrammingModel.Recipe2_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="138*" />
 <RowDefinition Height="162*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="1" >
 <Button Click="Button_Click" Margin="4" Content="Click To Load XAML from Managed Code"
/>
 <Grid x:Name="GridforManagedCode" Margin="4"></Grid>
 </StackPanel>
 </Grid>
</UserControl>

Now that you know how to load XAML using JavaScript, let’s move on to showing you how to load
XAML using managed code. In Listing 2-6, you can see a nested Grid control named
GridforManagedCode. To load XAML using managed code, you can use the XamlReader.Load(xamlString)
method. It takes a valid XAML fragment as a string. The string must contain the Silverlight
namespace in the root of the XAML fragment. Here is the code from MainPage.xaml.cs with the
namespace as part of the root Ellipse element:

string xamlString = "<Ellipse
xmlns=\http://schemas.microsoft.com/winfx/2006/xaml/presentation\
Height=\"200\" Width=\"200\" Fill=\"Navy\" Grid.Column=\"1\"
Grid.Row=\"1\" />";
 UIElement element = (UIElement)XamlReader.Load(xamlString);
 GridforManagedCode.Children.Add(element);

Figure 2-10 shows the output from Recipe 2-2.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation\

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

54

Figure 2-10. Recipe 2-2 Final Output

2-3. Persisting Data on the Client
Problem
You need to persist data on the end user’s machine.

Solution
Use isolated storage to store data on the client.

How It Works
In some situations, you may want to store data to the client’s computer, such as user-specific settings or
application state information. However, it is not possible to use the regular file system of the operating

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

55

system from a web browser application, because native file system operations require full trust, but
Web-based applications run in a partial-trust isolated sandbox.

■ NNote Elevated OOB applications have much more access to the file system. We cover OOB applications and

elevated trust OOB in Chapter 8.

Isolated storage provides a safe client-side storage area for partial-trust applications to persist
information on a per-user basis. In Silverlight, all I/O operations are restricted to the isolated storage.
Silverlight 4 includes the ability to run Silverlight applications OOB when online or offline. Offline
Silverlight applications can still access the same isolated storage area as they can when running in the
browser, so users have seamless access to their data. We cover offline Silverlight 4 applications in
Chapter 8.

Besides storing settings, isolated storage can be used to improve user experience as well as reduce
bandwidth by storing partially filled-out forms, so that the form data can be reloaded when the user
returns, even if, for example, the user stored the data using Internet Explorer but accesses the
application later using Firefox.

The System.IO.IsolatedStorage namespace contains types for creating and using a virtual file
system. Table 2-1 lists the classes available in this namespace.

Table 2-1. Classes Related to IsolatedStorage

Class Description

IsolatedStorageException Exception that is thrown when an isolated storage operation fails

IsolatedStorageFile Represents an isolated storage area containing files and directories

IsolatedStorageFileStream Represents a file within isolated storage

IsolatedStorageSettings Provides a Dictionary object that stores key-value pairs within isolated
storage

Isolated storage is not unlimited. Administrators can set user quota restrictions that limit the
amount of data that can be stored in isolated storage, so it is not suited for large amounts of data. The
default size of isolated storage for in-browser Silverlight applications is 1MB. The default size of
isolated storage for out-of-browser Silverlight applications at install time (called detach) is 25MB.

■ Note Isolated storage is not encrypted, though developers can encrypt and decrypt files stored in local storage

if desired. Developers can also sign and validate signatures using the SHA1 hash function .

The quota can be increased further by the user through the UI thread, usually as a result of a UI
event handler. Otherwise, the quota cannot be increased on a background thread or without user

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

56

action. Isolated storage remains intact even if the browser cache is cleared, but isolated storage can be
manually deleted by the user or application by using the File I/O classes.

Applications can request more space by invoking the IsolatedStorageFile.IncreaseQuotaTo
method in response to a user-initiated event, such as a mouse click or key press, as noted previously.

To work with isolated storage, first obtain an isolated store for the application using the
IsolatedStorageFile.GetUserStoreForApplication method. This returns an IsolatedStorageFile object,
which you can use to create directories using the CreateDirectory method and files using the CreateFile
method. The CreateFile method returns an IsolatedStorageFileStream object. The
IsolatedStorageFileStream class inherits from FileStream, so you can use the class with StreamReader and
StreamWriter objects.

Another option is to use the IsolatedStorageSettings class, which is a Dictionary object that can be
used to quickly store key/value pairs in isolated storage.

The Code
To test isolated storage, your sample does two things. It allows a user to store and update a setting
using the IsolatedStorageSettings class and to save and reload form state between browser sessions.
Figure 2-11 shows the UI with a mock form.

Figure 2-11. Recipe 2-3’s test application UI

The Silverlight application shown in Figure 2-11 has a TextBox on the left with “Hi There Book
Reader!” as a value. Any value entered in this TextBox is stored in the IsolatedStorageSettings
dictionary object, which is a convenient place to store name/value pair settings or data. The
UserControl.Loaded event handler pulls this setting out of the collection, and the ButtonUpdateSetting
event handler stores the setting when the Button titled Update Setting is clicked.

The Save Form Data button and the Load Form Data button both work with the sample form fields
located in the rounded green/silver area on the right side of the application. The Save Form Data
button concatenates the text from the form data into a string, with each value separated by the pipe (|)

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

57

symbol. The Load Form Data button reads in the data as a String and calls String.Split to separate the
fields into an array of string values.

The SaveFormData_Click event stores the form data into isolated storage. In general, any data that
is persisted into IsolatedStorage is persisted between browser sessions. The ReadFormData_Click event
retrieves the data from the file created in isolated storage. Listings 2-7 and 2-8 show the code for the
Silverlight application’s MainPage class.

Listing 2-7. Recipe 2-3’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_3.MainPage”

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="#FFFFFFFF">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.06*"/>
 <ColumnDefinition Width="0.455*"/>
 <ColumnDefinition Width="0.485*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.08*"/>
 <RowDefinition Height="0.217*"/>
 <RowDefinition Height="0.61*"/>
 <RowDefinition Height="0.093*"/>
 </Grid.RowDefinitions>
 <Button HorizontalAlignment="Stretch" Margin="8 " VerticalAlignment="Stretch"
 Grid.Column="1" Grid.Row="1" Content="Save Form Data"
 Click="SaveFormData_Click"/>
 <StackPanel HorizontalAlignment="Stretch" Margin="8,8,10,8" Grid.Column="1"
 Grid.Row="2">
 <TextBlock Height="Auto" Width="Auto" Text="Enter Setting Value"
 TextWrapping="Wrap" Margin="4,4,4,4"/>
 <TextBox Height="126" Width="Auto" Text="" TextWrapping="Wrap"
 Margin="4,4,4,4" x:Name="settingTextData"/>
 </StackPanel>
 <Button HorizontalAlignment="Stretch" Margin="8" VerticalAlignment="Stretch"
 Grid.Column="2" Grid.Row="1" Content="Load Form Data"
 Click="ReadFormData_Click"/>
 <Button HorizontalAlignment="Stretch" Margin="4,4,14,4"
 VerticalAlignment="Stretch"
 Grid.Column="1" Grid.Row="3" Content="Update Setting"
 Click="ButtonUpdateSetting"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

58

 <Border Grid.Column="2" Grid.Row="2" Grid.RowSpan="2"
 CornerRadius="10,10,10,10">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.560000002384186,0.00300000002607703"
 StartPoint="0.439999997615814,0.996999979019165">
 <GradientStop Color="#FF586C57"/>
 <GradientStop Color="#FFA3BDA3" Offset="0.536"/>
 <GradientStop Color="#FF586C57" Offset="0.968999981880188"/>
 </LinearGradientBrush>
 </Border.Background>
 <StackPanel Margin="4,4,4,4" x:Name="FormData">
 <TextBlock Height="Auto" Width="Auto" Text="First Name:"
 TextWrapping="Wrap" Margin="2,2,2,0"/>
 <TextBox Height="Auto" Width="Auto" Text="" TextWrapping="Wrap" x:
 Name="Field1" Margin="2,0,2,4"/>
 <TextBlock Height="Auto" Width="Auto" Text="Last Name:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="Auto" x:Name="Field2" Width="Auto" Text=""
 TextWrapping="Wrap" Margin="2,0,2,4"/>
 <TextBlock Height="Auto" Width="Auto" Text="Company:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="Auto" x:Name="Field3" Width="Auto" Text=""
 TextWrapping="Wrap" Margin="2,0,2,2"/>
 <TextBlock Height="22.537" Width="182" Text="Title:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="20.772" x:Name="Field4" Width="182" Text=""
 TextWrapping="Wrap" Margin="2,0,2,2"/>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

Listing 2-8 has the codebehind page for MainPage.xaml where the events are located. The code
declares several class level variables such as settings that are used by the event handlers to load and
save setting values to IsolatedStorage.

Listing 2-8. Recipe 2-3’s MainPage.xaml.cs Class File

using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.IO;
using System.IO.IsolatedStorage;
using System.Text;

namespace Ch02_ProgrammingModel.Recipe2_3

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

59

{
 public partial class MainPage : UserControl
 {
 private IsolatedStorageSettings settings =
 IsolatedStorageSettings.ApplicationSettings;
 private string setting = "MySettings";
 private string FormDataFileName = "FormFields.data";
 private string FormDataDirectory = "FormData";
 public MainPage()
 {
 InitializeComponent();
 }

 private void UserControl_Loaded(object sender, RoutedEventArgs e)
 {
 try
 {
 if (settings.Keys.Count != 0)
 {
 settingTextData.Text = settings[setting].ToString();
 }
 }
 catch (IsolatedStorageException ex)
 {
 settingTextData.Text = "Error saving setting: " + ex.Message;
 }
 }

 private void SaveFormData_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 //Use to control loop for finding correct number of textboxes
 int TotalFields = 4;
 StringBuilder formData = new StringBuilder(50);
 for (int i = 1; i <= TotalFields; i++)
 {
 TextBox tb = FindName("Field" + i.ToString()) as TextBox;
 if (tb != null)
 formData.Append(tb.Text);
 //If on last TextBox value, don't add "|" character to end of data
 if (i != TotalFields)
 formData.Append("|");

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

60

 }
 store.CreateDirectory(FormDataDirectory);
 IsolatedStorageFileStream fileHandle =
 store.CreateFile(System.IO.Path.Combine(
 FormDataDirectory, FormDataFileName));
 using (StreamWriter sw = new StreamWriter(fileHandle))
 {
 sw.WriteLine(formData);
 sw.Flush();
 sw.Close();
 }
 }
 }
 catch (IsolatedStorageException ex)
 {
 settingTextData.Text = "Error saving data: " + ex.Message;
 }
 }

 private void ReadFormData_Click(object sender, RoutedEventArgs e)
 {
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 //Load form data using private string values for directory and filename
 string filePath =
 System.IO.Path.Combine(FormDataDirectory, FormDataFileName);
 //Check to see if file exists before proceeding
 if (store.FileExists(filePath))
 {
 using (StreamReader sr = new StreamReader(
 store.OpenFile(filePath, FileMode.Open, FileAccess.Read)))
 {
 string formData = sr.ReadLine();
 //Split string based on separator used in SaveFormData method
 string[] fieldValues = formData.Split('|');
 for (int i = 1; i <= fieldValues.Count(); i++)
 {
 //Use the FindName method to loop through TextBoxes
 TextBox tb = FindName("Field" + i.ToString()) as TextBox;
 if (tb != null)
 tb.Text = fieldValues[i - 1];
 }
 sr.Close();
 }
 }

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

61

 }
 }
 private void ButtonUpdateSetting(object sender, RoutedEventArgs e)
 {
 try
 {
 settings[setting] = settingTextData.Text;
 }
 catch (IsolatedStorageException ex)
 {
 settingTextData.Text = "Error reading setting: " + ex.Message;
 }
 }
 }
}

2-4. Opening a Local File from a Silverlight Application
Problem
You need to select a local file on the client machine and upload it to the server.

Solution
Create an instance of the OpenFileDialog class, and display it to the user with the ShowDialog method.
You can send the files to the server for processing, but we recommend that you let the user know
anytime a file is sent to the server.

How It Works
The OpenFileDialog class displays a standard Windows, Mac, or Linux open file dialog depending on
the platform that allows users to browse to files anywhere on their system. This dialog box is not
available if running in Full Screen Mode.

The OpenFileDialog class has Filter and FilterIndex properties, which allow you to set the file
filter in much the same way a .NET developer would do in a WPF or Windows Forms application. You
can specify the types of files you wish to open by specifying Filter like this:

fileDlg.Filter = "Tiff Files (*.tif)|*.tif|All Files (*.*)|*.*";

This value suggests that a TIFF file is expected, but the Filter value can be overridden by the user.
The format is a description of the filter, such as Tiff Files (*.tif), followed by the filter pattern, such
as *.tiff. Each filter option is separated by the pipe symbol. You can also have a more generic Filter,
say for all image files, by separating the filter patterns with semicolons, like this:

Image Files(*.BMP;*.JPG;*.GIF)|*.BMP;*.JPG;*.GIF|All files (*.*)|*.*

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

62

You can set the FileIndex property to a zero-based index to configure which filter is the default; you
can also allow the user to make multiple selections by setting the Multiselect property to true.

The OpenFileDialog class also has a Multiselect property, which defaults to false. When set to true,
it allows the user to select multiple files. The ShowDialog method displays the dialog shown in Figure 2-
12.

Figure 2-12. The Open File dialog in Windows

The Code
The sample code for this recipe has a button that allows the user to select files in the local file system,
including instances where Multiselect is set to true. The files that are selected are listed in a ListBox
control.

When the user clicks the Select Files button in the test application, an Open File dialog appears
with a filter configured for TIFF files, as shown in Figure 2-12. Figure 2-13 shows the test application
UI after the user selects several files and clicks the Open button in the dialog.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

63

Figure 2-13. Recipe 2-4’s test application UI after selecting files using the Open File dialog

Clicking Open in the operating system’s Open File dialog causes the ShowDialog method to return
true. Clicking Cancel causes the method to return false. When it returns true, you can use the Count()
method on the OpenFileDialog.Files collection to determine the number of files returned.

To iterate over the selected files, you can use a foreach loop that steps through the Files collection.
In the sample code, you simply add the filename to a ListBox object. However, the Files collection
stores FileDialogFileInfo objects that contain two methods, OpenRead and OpenText. The OpenRead
method returns a Stream object that allows a developer to read the file using a StreamReader class. The
OpenText method returns a StreamReader with UTF-8 encoding that reads an existing text file. In
Chapter 7, we’ll cover Silverlight networking and web services that developers can use to upload a file
to the server. Listings 2-9 and 2-10 show the code for the Recipe 2-4 test application.

Listing 2-9. Recipe 2-4’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_4.MainPage”
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot">
 <Grid.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

64

 </Grid.Background>

 <Grid.RowDefinitions>
 <RowDefinition Height="0.117*"/>
 <RowDefinition Height="0.79*"/>
 <RowDefinition Height="0.093*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.058*"/>
 <ColumnDefinition Width="0.252*"/>
 <ColumnDefinition Width="0.64*"/>
 <ColumnDefinition Width="0.05*"/>
 </Grid.ColumnDefinitions>
 <Button Height="28.9" HorizontalAlignment="Stretch" Margin="8,8,11,0"
 VerticalAlignment="Top" Width="81.8" Grid.Column="1" Grid.Row="1"
 Content="Select Files" d:LayoutOverrides="Height" x:Name="ButtonSelectFiles"
 Click="ButtonSelectFiles_Click"/>
 <TextBlock Margin="4,2,2,2" Grid.Column="1" Grid.Row="2" Text="Status"
 TextWrapping="Wrap" Grid.ColumnSpan="2" x:Name="StatusLabel"/>
 <Border Grid.Column="2" Grid.Row="1" Margin="0,0,0,0" CornerRadius="12">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.916999995708466,0.0890000015497208"
 StartPoint="-0.0489999987185001,2.12400007247925">
 <GradientStop Color="#FF1D351E"/>
 <GradientStop Color="#FF1D351E" Offset="1"/>
 <GradientStop Color="#FFB7D8BA" Offset="0.50900000333786011"/>
 </LinearGradientBrush>
 </Border.Background>
 <ListBox x:Name="FileList" Foreground="#FF000000" Height="217"
 Width="236" Opacity="1"/>
 </Border>
 </Grid>
</UserControl>

Listing 2-10. Recipe 2-4’s MainPage.xaml.cs Class File

using System.Linq;
using System.Windows;
using System.Windows.Controls;

namespace Ch02_ProgrammingModel.Recipe2_4
{
 public partial class MainPage : UserControl
 {
 public MainPage()

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

65

 {
 InitializeComponent();
 }

 private void ButtonSelectFiles_Click(object sender, RoutedEventArgs e)
 {
 //Create dialog
 OpenFileDialog fileDlg = new OpenFileDialog();
 //Set file filter as desired
 fileDlg.Filter = "Tiff Files (*.tif)|*.tif|All Files (*.*)|*.*";
 fileDlg.FilterIndex = 1;
 //Allow multiple files to be selected (false by default)
 fileDlg.Multiselect = true;
 //Show Open File Dialog
 if (true == fileDlg.ShowDialog())
 {
 StatusLabel.Text =
 fileDlg.Files.Count() + " file(s) selected";
 foreach (var file in fileDlg.Files)
 {
 FileList.Items.Add(file.Name);
 }
 }
 }
 }
}

2-5. Accessing XML Data
Problem
You need to work with XML data in Silverlight using the XmlReader object as well as work with XML data
in Silverlight using LINQ, because you would like to work with the XML data as a collection of objects.

Solution
Use the XmlReader object along with the necessary objects in the related System.Xml namespace to
retrieve XML data. Use the language features first introduced in C# 3.0 and the System.Xml and
System.Linq namespaces to query XML data.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

66

How It Works
There are two ways to parse XML data in Silverlight: the XmlReader class and LINQ to XML, which is one
of the new technologies that became available in .NET Framework 3.5 and later that we cover below.

The XmlReader class is a fast-forward–only, noncaching XML parser. For processing large XML
files, XmlReader is better suited than LINQ to XML for performance reasons.

The Silverlight XmlReader works in a similar manner as the XmlReader in the full version of the
.NET Framework. Visit this site for details on the differences between the .NET Framework and the
.NET Framework for Silverlight versions of XmlReader: msdn.microsoft.com/en-
us/library/cc189053(VS.95).aspx

What is great about Silverlight is that it is a rich subset of the full .NET Framework 3.5 and that it
includes LINQ. There are many web sites, blogs, and books that cover LINQ, so we won’t dive into all
the details here.

■ Note A great resource on LINQ is Joseph C. Rattz Jr.’s Pro LINQ: Language Integrated Query in C# 2008

(Apress, 2007).

The goal of the second part of this recipe is to show how to retrieve XML data using an
XmlResolver, in this case the XmlXapResolver, which extracts XML from the xap, and then load the XML
data into an XDocument object.

You call XDocument.Load(XmlReader) to load the contents into an XDocument so that it can be queried
using LINQ. The XDocument class, located in the System.Xml.Linq namespace, is the key object in LINQ to
XML functionality.

The Code
The XmlReader class can be used to read XML data from the IsolatedStorage file system as well as from
streams retrieved via the network just like in the full .NET Framework. A unique Silverlight ability that
you take advantage of in this recipe is to use an XmlXapResolver to retrieve XML data embedded into
the application’s .xap file, which is the container for Silverlight applications (see Recipe 1-3). An XML
resolver in .NET resolves, or evaluates, external XML resources. An XmlUrlResolver is used to resolve
the Url location passed into XmlReader.Create. The XmalXapResolver looks for the name passed into
XmlReader.Create within the .xap file for the application:

XmlReaderSettings XmlRdrSettings = new XmlReaderSettings();
XmlRdrSettings.XmlResolver = new XmlXapResolver();
XmlReader reader = XmlReader.Create("ApressBooks.xml",
XmlRdrSettings);

The resolver is configured for the XmlReaderSettings object that is passed into the Create method.
For more information on the XmlReaderSettings class, refer to the MSDN documentation at
msdn.microsoft.com/en-us/library/system.xml.xmlreadersettings(VS.95).aspx

The first step to create the test application for this recipe is to add the XML file to the Silverlight
project and set its build action to Content. This puts the XML file into the assembly that is deployed to the
web site so that the XmlReader can find it using the XmlXapResolver. Figure 2-14 shows the test
application for this recipe.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

67

Figure 2-14. Recipe 2-5’s test application UI

When you click the Button titled Retrieve XML, the event handler ButtonReadXML_Click uses the
XmlReader and the XmlXapResolver to load the XML into a ListBox control using one line of code:

XmlData.Items.Add(reader.ReadInnerXml());

XmlData is the name of the ListBox control in the XAML for the recipe test application. The XML data
is added to the Items collection for the ListBox. Listings 2-11 and 2-12 have the full code listings for this
test application.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

68

Listing 2-11. Recipe 2-5’s MainPage.xaml Class File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_5.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:data="clr-namespace:Ch02_ProgrammingModel.Recipe2_5"
 mc:Ignorable="d"
 d:DesignHeight="337" d:DesignWidth="531">
 <UserControl.Resources>
 <data:ApressBooks x:Key="ApressBooksDS" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="9*"/>
 <RowDefinition Height="44*"/>
 <RowDefinition Height="273*"/>
 <RowDefinition Height="11*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="13*"/>
 <ColumnDefinition Width="246*"/>
 <ColumnDefinition Width="257*" />
 <ColumnDefinition Width="15*"/>
 </Grid.ColumnDefinitions>
 <Button Height="27.1" HorizontalAlignment="Left" Margin="8,9,0,8"
VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1" Content="Retrieve XML"
d:LayoutOverrides="Height" x:Name="ButtonReadXML" Click="ButtonReadXML_Click" Width="106"/>
 <ListBox Margin="4" Grid.Column="1" Grid.Row="2" x:Name="XmlData"/>
 <Grid Grid.Column="2" Grid.Row="2" Background="White">
 <ListBox Margin="4,4,4,4" ItemsSource="{Binding Mode=OneWay, Path=ApressBookList,
Source={StaticResource ApressBooksDS}}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="2,2,2,2">
 <TextBlock Text="{Binding Path=ISBN}" Margin="0,0,0,2"/>
 <TextBlock Text="{Binding Path=Title}" Margin="0,0,0,2"/>
 <TextBlock Width="550" Text="{Binding Path=Description}"
 TextWrapping="Wrap" Margin="0,0,0,10"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

69

 </Grid>
 </Grid>
</UserControl>

Listing 2-12. Recipe 2-5’s MainPage.xaml.cs Class File

using System.Windows;

using System.Windows.Controls;
using System.Xml;

namespace Ch02_ProgrammingModel.Recipe2_5
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void ButtonReadXML_Click(object sender, RoutedEventArgs e)
 {

 XmlReaderSettings XmlRdrSettings = new XmlReaderSettings();
 XmlRdrSettings.XmlResolver = new XmlXapResolver();
 XmlReader reader = XmlReader.Create("ApressBooks.xml", XmlRdrSettings);

 // Moves the reader to the root element.
 reader.MoveToContent();

 while (!reader.EOF)
 {
 reader.ReadToFollowing("ApressBook");
 // Note that ReadInnerXml only returns the markup of the node's children
 // so the book's attributes are not returned.
 XmlData.Items.Add(reader.ReadInnerXml());
 }
 reader.Close();
 }
 }
}

For the second part of this recipe, you access XML data with LINQ to XML to avoid working with
XmlDocument objects and walking the XML tree. Instead, you create a list of objects containing
information on a few Apress books and display the data in a ListBox using a simple data template. We
cover data templates in detail in chapter 4.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

70

The relevant LINQ to XML functionality is located in the ApressBooks.cs class file. It contains an
ApressBooks class that populates a List collection with another custom class called ApressBook, using the
ApressBooks.RetrieveData method.

The code in Listing 2-12 above is a bit more involved so let’s go through it line by line. The private
member variable backing the public ApressBookList property is declared like this:

private List<ApressBook> _apressBookList;

This section of code is the actual LINQ query:

from b in xDoc.Descendants("ApressBook")
select….

The b variable is simply an anonymous type for retrieving a collection of objects from the XML file
that are returned by the call to xDoc.Descendants("ApressBook"). The select keyword in the sample
code creates an instance of the ApressBook class, but if you wanted to simply return a collection of
strings containing the ISBN, you could use this code:

from b in xDoc.Descendants("ApressBook")
select b.Element("ISBN").Value

Instead, you take advantage of LINQ functionality to streamline creating a collection of
ApressBook objects by using this code:

select new ApressBook()
{
 Author = b.Element("Author").Value,
 Title = b.Element("Title").Value,
 ISBN = b.Element("ISBN").Value,
 Description = b.Element("Description").Value,
 PublishedDate = Convert.ToDateTime(b.Element("DatePublished").Value),
 NumberOfPages = b.Element("NumPages").Value,
 Price = b.Element("Price").Value,
 ID = b.Element("ID").Value
}

The select new code is simply creating an instance of a collection containing ApressBook objects
using C# 3.0 object initializer functionality. The value used to set each property for the ApressBook
objects is data retrieved from the XML document, such as b.Element("Author").Value. Figure 2-14
shows the test application for this recipe.

Unlike in Recipe 2-1, where you demonstrated how to add a class reference to an application but
did not specify a data template, you do implement a simple data template for the ListBox control here
to show that the XML data is read in properly.

2-6. Managing Unhandled Exceptions
Problem
You need to manage unhandled exceptions in Silverlight.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

71

Solution
Use the Application.UnhandledException event and the private ReportErrorToDom member function
Error! Bookmark not defined for your application.

How It Works
When you create a new Silverlight 4 application, the Visual Studio 2010 project template automatically
implements a shell for the Application.UnandledException event with basic error handling and
comments to help you get started in the App.xaml.cs file. This event handler can handle managed
exceptions that originate from within your custom application code.

It is up to you, the developer, to decide whether or not an exception is fatal for the application. As
an example, if you have a Button click event that retrieves data over the network but fails, the
exception will be caught by the Application.UnhandledException event if there isn’t a local exception
handler in the Button click event. You can decide whether to prompt the user to retry or tell the user
that the request cannot be performed and visually indicate that there is an unrecoverable error. The
Application.UnhandledException event makes it convenient to implement centralized error handling
and error reporting for a Silverlight application.

The Application.UnhandledException event cannot handle exceptions that originate from the
Silverlight platform code (i.e., the plug-in itself). Platform code exceptions as well as exceptions that
are not handled with the UnhandledException event are passed to the native/unmanaged error handler
in the Silverlight plug-in. To handle exceptions at this level, implement a JavaScript OnError event
handler in the Silverlight plug-in. To implement the OnError event handler, create a JavaScript event
handler that follows this signature:

function onSLError(sender, args)
{
//error handling logic goes here
}

For an example of how to implement an OnError JavaScript handler, look no further than any one
of the HTML or .aspx test pages that are automatically generated by the Visual Studio 2010 project
template. Inside the HTML <script> tag is a function called onSilverlightError that implements basic
error handling for the test page. Further down in the HTML or .aspx page, in the <object> tag for
instantiating the Silverlight plug-in, the onerror parameter is passed a value of onSilverlightError:

<param name="onerror" value="onSilverlightError" />

There isn’t any code for this recipe, since Visual Studio 2010 generates most of the sample code for
you as part of the project template. Refer to the generated .aspx and HTML files for code examples on
where to manage exceptions.

2-7. Executing Work on a Background Thread with Updates
Problem
You need to execute work in the background that provides updates on progress so that the UI can be
responsive.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

72

Solution
Use a background worker thread to execute work in the background.

How It Works
Silverlight 4 includes the System.Threading.Thread and System.Threading.ThreadPool classes as part of
the .NET Framework for Silverlight. However, we recommend that you instead use the
System.ComponentModel.BackgroundWorker class to execute work in the background of the UI, such as
loading or saving data to isolated storage, accessing a remote service, etc. The BackgroundWorker class
provides a nice abstraction layer over the gory details of safely synchronizing with the UI thread when
using one of the lower-level classes like Thread and ThreadPool.

The BackgroundWorker class lets you indicate operation progress, completion, and cancellation in
the Silverlight UI. For example, you can check whether the background operation is completed or
canceled and display a message to the user.

To use a background worker thread, declare an instance of the BackgroundWorker class at the class
level, not within an event handler:

BackgroundWorker bw = new BackgroundWorker();

You can specify whether you want to allow cancellation and progress reporting by setting one or
both of the WorkerSupportsCancellation and WorkerReportsProgress properties on the BackgroundWorker
object to true. The next step is to create an event handler for the BackgroundWorker.DoWork event. This
is where you put the code for the time-consuming operation. Within the DoWork event, call the
ReportProgress method to pass a percentage complete value that is between 0 and 100, which raises the
ProgressChanged event on the BackgroundWorker object. The UI thread code can subscribe to the event
and update the UI based on the progress. If you call the ReportProgress method when
WorkerReportsProgress is set to false, an exception will occur.

Check the CancellationPending property of the BackgroundWorker object to determine if there is a
pending request to cancel the background operation within the worker_DoWork member function. If
CancellationPending is true, set BackgroundWorker.Cancel to true, and stop the operation. To pass data
back to the calling process upon completion, set the Result property of the DoWorkerEventArgs object
that is passed into the event handler to the object or collection containing the data. The
DoWorkerEventArgs.Result is of type object and can therefore be assigned any object or collection of
objects. The value of the Result property can be read when the RunWorkerCompleted event is raised
upon completion of the operation.

The BackgroundWorker class tries to prevent deadlocks or cross-thread invocations that could be
unsafe. There are some calls that are always assumed to be called on the UI thread, such as calling into
the HTML Document Object Model (DOM) or a JavaScript function, so you are not allowed to call them
from a BackgroundWorker class.

A deadlock occurs when two threads each hold on to a resource while requesting the resource that
the other thread is holding. A deadlock will cause the browser to hang. It is easy to create a deadlock
with two threads accessing the same resources in an application. Silverlight includes locking
primitives, such as Montior or lock, as well as the ManualResetEvent class.

Exceptions must be caught within the background thread, because they will not be caught by the
unhandled exception handler at the application level. If an exception occurs on the background thread,
one option is to catch the exception and set Result to null as a signal that there was an error. Another
option is to set a particular value to Result as a signal that a failure occurred.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

73

The Code
In the sample code, you start with the code from Recipe 2-3, which includes a form that saves and loads
data from isolated storage. You will save and load data from isolated storage while the background
worker thread is executing to prove that the UI is not locked up by the long-running operation. You’ll
modify the UI to include a button to start the long-running operation as well as a bit of UI work to show
what is going on. Figure 2-15 shows the UI.

Figure 2-15. Recipe 2-7s test UI

To help keep things clean, the code that was copied from Recipe 2-3 is located in #region blocks so
that it is not a distraction. There is a bit more code in this recipe, so let’s walk through the major code
sections. First, you declare a BackGroundWorker object named worker and initialize it in the constructor
Page() for the Page class:

worker.WorkerReportsProgress = true;
worker.WorkerSupportsCancellation = true;
worker.DoWork += new DoWorkEventHandler(worker_DoWork);
worker.ProgressChanged +=
 new ProgressChangedEventHandler(worker_ProgressChanged);
worker.RunWorkerCompleted += new
RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);

You configure the BackgroundWorker to support cancellation and progress reporting so that you can
provide a simple UI to give status. Next, you wire up the DoWork, ProgressChanged, and
RunWorkerCompleted events to handlers.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

74

The DoWork event contains the code that the BackgroundWorker thread executes. This is where the
long-running operation goes. ProgressChanged and RunWorkerCompleted are events where the UI thread
can update status in the UI while the background work is safely executing.

In your DoWork event, you first check to see if there is a cancel request pending and break out of the
loop if there is. Otherwise, you call Thread.Sleep to delay execution and ReportProgress to provide an
updated percentage complete. The results of the background worker thread’s effort are passed back to
the main thread as the value of e.Result:

e.Result = Environment.NewLine + "Completed: " + DateTime.Now.ToString();

In your case, you simply pass back a string, but in a scenario with real background work, this could
be a collection of data or objects received over the network. It is not safe to update the UI from DoWork,
so that is why you must pass back results via the events.

To get the work started from the UI, you have a Kick Off Work button that has an event handler
with the name DoWorkButton_Click. The code checks to see if the worker is already busy. If not, you set
the status by adding text to the WorkResultsTextData TextBox to indicate that work has started, and you
call worker.RunWorkerAsync to kick off the work.

To display a dynamic status in the UI, you have a simple ellipse with a Storyboard named
AnimateStatusEllipse. (We will cover storyboards and animation in Chapter 3.) In the button event
handler, you call Begin on this object and set it to run continuously. The animation changes the color
from green to yellow and then back to green, over and over, to indicate that work is in progress.

In the worker_ProgressChanged event handler, the UI thread receives the latest status from the
background worker, available in the e.ProgressPercentage value. It is safe to update the UI in this
method, so you set the tooltip on the status ellipse with the latest value.

The worker_RunWorkerCompleted event fires when the work successfully completes as well as when
the background worker is cancelled by the UI thread, so you first check to see if e.Cancelled is not true.
If the work successfully completes, you set the ellipse to green, update the tooltip to indicate that it is
complete, and take the value passed in as e.Result and add it to the TextBox.Text value.

When the user clicks the ellipse, a dialog is displayed with two buttons so that the user can click Yes
to cancel or decide not to cancel, as shown in Figure 2-16.

Figure 2-16. The cancel operation dialog, where the user makes the choice.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

75

The StatusEllipse_MouseLeftButtonDown event checks to see if the background worker thread is
actually running and then sets PromptCancelCanvas.Visibility to Visibility.Visible. That displays the
dialog that simply consists of a large rectangle with a transparent look and a rounded white rectangle
with the two buttons. Clicking Yes fires the ButtonConfirmCancelYes_Click event handler that calls the
worker.CancelAsync method.

That completes the walkthrough of the code. Most of the other UI code is generated using
Expression Blend, which is covered in Chapter 3. We recommend playing with the UI a bit to
understand what it does and then reviewing the corresponding code. Listings 2-13 and 2-14 list the
code for this recipe’s test application. We don’t show the keyframe animation in the
AnimateStatusEllipse to make Listing 2-14 easier to navigate.

Listing 2-13. Recipe 2-7’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_7.MainPage”

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <UserControl.Resources>
 <Storyboard x:Name="AnimateStatusEllipse">
 ….
 </Storyboard>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="#FFFFFFFF">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.068*"/>
 <ColumnDefinition Width="0.438*"/>
 <ColumnDefinition Width="0.495*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.08*"/>
 <RowDefinition Height="0.217*"/>
 <RowDefinition Height="0.61*"/>
 <RowDefinition Height="0.093*"/>
 </Grid.RowDefinitions>
 <Button HorizontalAlignment="Stretch" Margin="5,8,5,8"
 VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1"
 Content="Save Form Data" Click="SaveFormData_Click"/>
 <StackPanel HorizontalAlignment="Stretch"
 Margin="5,8,6,8" Grid.Column="1" Grid.Row="2">
 <TextBlock Height="Auto" Width="Auto" Text="Work Results Appear Below"
 TextWrapping="Wrap" Margin="4,4,4,4"/>
 <TextBox Height="103" Width="Auto" Text="" TextWrapping="Wrap"
 Margin="4,4,4,4" x:Name="WorkResultsTextData"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

76

 </StackPanel>
 <Button HorizontalAlignment="Stretch" Margin="12,8,8,8"
 VerticalAlignment="Stretch"
 Grid.Column="2" Grid.Row="1" Content="Load Form Data"
 Click="ReadFormData_Click"/>
 <Button HorizontalAlignment="Stretch" Margin="10,2,8,6"
 VerticalAlignment="Stretch"
 Grid.Column="1" Grid.Row="3" Content="Kick Off Work" x:Name="DoWorkButton"
 Click="DoWorkButton_Click"/>
 <Border Grid.Column="2" Grid.Row="2" Grid.RowSpan="2" CornerRadius="10,10,10,10"
 Margin="1.80200004577637,2,2,2">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.560000002384186,0.00300000002607703"
 StartPoint="0.439999997615814,0.996999979019165">
 <GradientStop Color="#FF586C57"/>
 <GradientStop Color="#FFA3BDA3" Offset="0.536"/>
 <GradientStop Color="#FF586C57" Offset="0.968999981880188"/>
 </LinearGradientBrush>
 </Border.Background>
 <StackPanel Margin="4,4,4,4" x:Name="FormData">
 <TextBlock Height="Auto" Width="Auto" Text="First Name:" TextWrapping="Wrap"
 Margin="2,2,2,0"/>
 <TextBox Height="Auto" Width="Auto" Text="" TextWrapping="Wrap" x:
 Name="Field1" Margin="2,0,2,4"/>
 <TextBlock Height="Auto" Width="Auto" Text="Last Name:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="Auto" x:Name="Field2" Width="Auto" Text=""
 TextWrapping="Wrap" Margin="2,0,2,4"/>
 <TextBlock Height="Auto" Width="Auto" Text="Company:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="Auto" x:Name="Field3" Width="Auto" Text=""
 TextWrapping="Wrap" Margin="2,0,2,2"/>
 <TextBlock Height="22.537" Width="182" Text="Title:"
 TextWrapping="Wrap" Margin="2,4,2,0"/>
 <TextBox Height="20.772" x:Name="Field4" Width="182" Text=""
 TextWrapping="Wrap" Margin="2,0,2,2"/>
 </StackPanel>
 </Border>
 <Ellipse x:Name="StatusEllipse" Margin="4,2,2,2" Grid.Row="3" Stroke="#FF000000"
 Fill="#FF2D4DE0" MouseLeftButtonDown="StatusEllipse_MouseLeftButtonDown"
 RenderTransformOrigin="0.5,0.5" >
 <Ellipse.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

77

 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Ellipse.RenderTransform>
 <ToolTipService.ToolTip>
 <ToolTip Content="Click button to start work." />
 </ToolTipService.ToolTip>
 </Ellipse>
 <Canvas HorizontalAlignment="Stretch" Margin="0,0,2,8" Grid.RowSpan="4"
 Grid.ColumnSpan="3" x:Name="PromptCancelCanvas" Visibility="Collapsed">
 <Rectangle Height="300" Width="400" Fill="#FF808080" Stroke="#FF000000"
 Stretch="Fill" Opacity="0.6"/>
 <Canvas Height="106" Width="289" Canvas.Left="46" Canvas.Top="85">
 <Rectangle Height="106" Width="289" Fill="#FFFFFFFF" Stroke="#FF000000"
 RadiusX="23" RadiusY="23" Opacity="0.85"/>
 <Button Height="34" x:Name="ButtonConfirmCancelYes" Width="100"
 Canvas.Left="15" Canvas.Top="49" Content="Yes"
 Click="ButtonConfirmCancelYes_Click"/>
 <Button Height="34" x:Name="ButtonConfirmCancelNo" Width="100"
 Canvas.Left="164" Canvas.Top="49" Content="No" Click=
 "ButtonConfirmCancelNo_Click"/>
 <TextBlock Width="134.835" Canvas.Left="75" Canvas.Top="12.463"
 Text="Cancel Operation?" TextWrapping="Wrap"/>
 </Canvas>
 </Canvas>
 <TextBlock Margin="67.8270034790039,0,-88.802001953125,0" Grid.Column="1"
 Grid.ColumnSpan="1" Text="BackgroundWorker Thread" TextWrapping="Wrap"/>
 </Grid>
</UserControl>

Listing 2-14. Recipe 2-7’s MainPage.xam.cs File

using System;
using System.ComponentModel;
using System.IO;
using System.IO.IsolatedStorage;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;

namespace Ch02_ProgrammingModel.Recipe2_7

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

78

{
 public partial class MainPage : UserControl
 {
 private int WorkLoops=30;
 private BackgroundWorker worker = new BackgroundWorker();
 #region Recipe 2-3 Declarations
 private IsolatedStorageSettings settings =
 IsolatedStorageSettings.ApplicationSettings;
 private string FormDataFileName = "FormFields.data";
 private string FormDataDirectory = "FormData";
 #endregion
 public MainPage()
 {
 InitializeComponent();

 //Configure BackgroundWorker thread
 worker.WorkerReportsProgress = true;
 worker.WorkerSupportsCancellation = true;
 worker.DoWork += new DoWorkEventHandler(worker_DoWork);
 worker.ProgressChanged +=
 new ProgressChangedEventHandler(worker_ProgressChanged);
 worker.RunWorkerCompleted += new
 RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
 }

 void worker_DoWork(object sender, DoWorkEventArgs e)
 {
 for (int i = 1; i <= WorkLoops; i++)
 {
 //Check to see if the work has been canceled
 if ((worker.CancellationPending == true))
 {
 e.Cancel = true;
 break;
 }
 else
 {
 // Perform a time consuming operation and report progress.
 System.Threading.Thread.Sleep(1000);
 worker.ReportProgress((int)
 System.Math.Floor((double)i / (double)WorkLoops * 100.0));
 }
 }
 e.Result = Environment.NewLine + "Completed: " + DateTime.Now.ToString();
 }

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

79

 void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
 {
 AnimateStatusEllipse.Stop();
 if (!e.Cancelled)
 {
 StatusEllipse.Fill = new SolidColorBrush(Color.FromArgb(255, 0, 255, 0));
 WorkResultsTextData.Text = WorkResultsTextData.Text + e.Result.ToString();
 ToolTipService.SetToolTip(StatusEllipse, "Work Complete.");
 }
 else
 {
 StatusEllipse.Fill = new SolidColorBrush(Color.FromArgb(255, 255, 255, 0));
 WorkResultsTextData.Text = WorkResultsTextData.Text +
 Environment.NewLine + "Canceled @: " + DateTime.Now.ToString();
 ToolTipService.SetToolTip(StatusEllipse, "Operation canceled by user.");
 }

 }

 void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
 {
 if (PromptCancelCanvas.Visibility == Visibility.Collapsed)
 ToolTipService.SetToolTip(StatusEllipse, e.ProgressPercentage.ToString() +
 "% Complete. Click to cancel...");
 }

 private void DoWorkButton_Click(object sender, RoutedEventArgs e)
 {
 if (worker.IsBusy != true)
 {
 WorkResultsTextData.Text = "Started: "+DateTime.Now.ToString();
 worker.RunWorkerAsync(WorkResultsTextData.Text);
 AnimateStatusEllipse.RepeatBehavior = RepeatBehavior.Forever;
 AnimateStatusEllipse.Begin();
 }
 }

 private void StatusEllipse_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
 {
 if (worker.IsBusy)
 PromptCancelCanvas.Visibility = Visibility.Visible;
 }

 private void ButtonConfirmCancelYes_Click(object sender, RoutedEventArgs e)

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

80

 {
 worker.CancelAsync();
 PromptCancelCanvas.Visibility = Visibility.Collapsed;
 }

 private void ButtonConfirmCancelNo_Click(object sender, RoutedEventArgs e)
 {
 PromptCancelCanvas.Visibility = Visibility.Collapsed;
 }
 #region Recipe 2-3 Event Handlers
 private void SaveFormData_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 //Use to control loop for finding correct number of textboxes
 int TotalFields = 4;
 StringBuilder formData = new StringBuilder(50);
 for (int i = 1; i <= TotalFields; i++)
 {
 TextBox tb = FindName("Field" + i.ToString()) as TextBox;
 if (tb != null)
 formData.Append(tb.Text);
 //If on last TextBox value, don't add "|" character to end of data
 if (i != TotalFields)
 formData.Append("|");
 }
 store.CreateDirectory(FormDataDirectory);
 IsolatedStorageFileStream fileHandle = store.CreateFile(System.IO.Path.
 Combine(FormDataDirectory, FormDataFileName));

 using (StreamWriter sw = new StreamWriter(fileHandle))
 {
 sw.WriteLine(formData);
 sw.Flush();
 sw.Close();
 }
 }
 }
 catch (IsolatedStorageException ex)
 {
 WorkResultsTextData.Text = "Error saving data: " + ex.Message;
 }
 }

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

81

 private void ReadFormData_Click(object sender, RoutedEventArgs e)
 {
 using (var store = IsolatedStorageFile.GetUserStoreForApplication())
 {
 //Load form data using private string values for directory and filename
 string filePath =
 System.IO.Path.Combine(FormDataDirectory, FormDataFileName);
 //Check to see if file exists before proceeding
 if (store.FileExists(filePath))
 {
 using (StreamReader sr = new StreamReader(
 store.OpenFile(filePath, FileMode.Open, FileAccess.Read)))
 {
 string formData = sr.ReadLine();
 //Split string based on separator used in SaveFormData method
 string[] fieldValues = formData.Split('|');
 for (int i = 1; i <= fieldValues.Count(); i++)
 {
 //Use the FindName method to loop through TextBoxes
 TextBox tb = FindName("Field" + i.ToString()) as TextBox;
 if (tb != null)
 tb.Text = fieldValues[i - 1];
 }
 sr.Close();
 }
 }
 }
 }
 #endregion
 }
}

2-8. Updating the UI from a Background Thread
Problem
You need to update the UI from a background thread so that the UI can be responsive.

Solution
The Dispatcher class offers a safe way to call a method that updates the UI asynchronously from a
background thread by providing services for managing the queue of work items for a thread. Both the
Dispatcher and the BackgroundWorker classes can perform work on a separate thread. The

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

82

BackgroundWorker class supports progress reporting and cancellation. The Dispatcher class is useful
when you need a simple way to queue up background work without progress reporting or cancellation.

How It Works
The .NET Framework for Silverlight includes the System.Threading namespace, which contains classes
needed to manage a thread pool, launch threads, and synchronize threads, just like the full version of
the .NET Framework.

As with most UI programming models such as Visual Basic 6, .NET Windows Forms, or WPF, it is not
safe to access UI objects from a background thread. UI objects, such as Button, TextBox, and TextBlock
objects, can only be safely accessed on the UI thread.

The role of the Dispatcher is to provide a way for a background thread to invoke a method that
runs on the main thread so that it can safely update the UI. This approach is useful when you’re
retrieving data from the server using the asynchronous WebRequest class, as demonstrated in this
recipe. Figure 2-17 shows the UI for the application after the data is downloaded.

Figure 2-17. Recipe 2-7 test UI

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

83

The Code
The sample application for this recipe contains a button titled Retrieve XML and Load that when
clicked fires the event RetrieveXMLandLoad_Click. This event creates an HttpWebRequest object that
points to the location where Recipe 2-5’s ApressBooks.xml file was copied:

Uri location =
 new Uri("http://localhost:9090/xml/ApressBooks.xml",UriKind.Absolute);
WebRequest request = HttpWebRequest.Create(location);
request.BeginGetResponse(
 new AsyncCallback(this.RetrieveXmlCompleted), request);

When the asynchronous web request completes, the code in the callback method
RetrieveXmlCompleted executes. The following code retrieves the XML document from the response
stream and stores it in an XDocument object:

HttpWebRequest request = ar.AsyncState as HttpWebRequest;
WebResponse response = request.EndGetResponse(ar);
Stream responseStream = response.GetResponseStream();
using (StreamReader streamreader = new StreamReader(responseStream))
{
 XDocument xDoc = XDocument.Load(streamreader);
…

The rest of the code in the callback method RetrieveXmlCompleted executes the same LINQ to XML
as in Recipe 2-5 to obtain a List of ApressBook objects. The last line of code calls the Dispatcher object
to queue UI work by calling BeginInvoke to execute the delegate and passing in the method
DataBindListBox on the UI thread passing in the List of ApressBook objects:

Dispatcher.BeginInvoke(() => DataBindListBox(_apressBookList));

The syntax looks a bit strange if you are not familiar with C# lambda expressions. The syntax is
shorthand for creating a delegate object and mashing the parameters into the call. The method
DataBindListBox has a single line of code to assign the ItemsSource property on the BooksListBox
object:

BooksListBox.ItemsSource = list;

If you skip using the Dispatcher in the callback method RetrieveXmlCompleted for the
HttpWebRequest and instead put the line of code to assign the ItemsSource property in the callback
method directly, the UI will not be updated because the callback method returns on the background
thread of the HttpWebRequest, not the UI thread. By calling Dispatcher.BeginInvoke to update the UI
from the HttpWebRequest callback background thread, you queue the work to assign the List object to
the ItemsSource so that it safely executes when the main UI thread literally has cycles available.
Listings 2-15 and 2-16 show the source code for this recipe’s test application.

Listing 2-15. Recipe 2-8’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_8.MainPage”
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

http://localhost:9090/xml/ApressBooks.xml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

84

 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400"> <Grid x:Name="LayoutRoot" Background="White"
Margin="6,6,6,6">
 <StackPanel>
 <Button Content="Retrieve XML and Load"
 Click="RetrieveXMLandLoad_Click"></Button>
 <ListBox x:Name="BooksListBox" Margin="4,4,4,4" Height="452" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="2,2,2,2">
 <TextBlock Text="{Binding Path=ISBN}" Margin="0,0,0,2"/>
 <TextBlock Text="{Binding Path=Title}" Margin="0,0,0,2"/>
 <TextBlock Width="550" Text="{Binding Path=Description}"
 TextWrapping="Wrap" Margin="0,0,0,10"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </StackPanel>
 </Grid>
</UserControl>

Listing 2-16. Recipe 2-8’s MainPage.xaml.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Xml.Linq;

namespace Ch02_ProgrammingModel.Recipe2_8
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

private void RetrieveXMLandLoad_Click(object sender, RoutedEventArgs e)
 {
 Uri location =

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

85

 new Uri("http://localhost:9090/xml/ApressBooks.xml", UriKind.Absolute);
 WebRequest request = HttpWebRequest.Create(location);
 request.BeginGetResponse(
 new AsyncCallback(this.RetrieveXmlCompleted), request);
 }

 void RetrieveXmlCompleted(IAsyncResult ar)
 {
 List<ApressBook> _apressBookList;
 HttpWebRequest request = ar.AsyncState as HttpWebRequest;
 WebResponse response = request.EndGetResponse(ar);
 Stream responseStream = response.GetResponseStream();
 using (StreamReader streamreader = new StreamReader(responseStream))
 {
 XDocument xDoc = XDocument.Load(streamreader);
 _apressBookList =
 (from b in xDoc.Descendants("ApressBook")
 select new ApressBook()
 {
 Author = b.Element("Author").Value,
 Title = b.Element("Title").Value,
 ISBN = b.Element("ISBN").Value,
 Description = b.Element("Description").Value,
 PublishedDate = Convert.ToDateTime(b.Element("DatePublished").Value),
 NumberOfPages = b.Element("NumPages").Value,
 Price = b.Element("Price").Value,
 ID = b.Element("ID").Value
 }).ToList();
 }
 //Could use Anonymous delegate (does same as below line of code)
 //Dispatcher.BeginInvoke(
 // delegate()
 // {
 // DataBindListBox(_apressBookList);
 // }
 //);
 //Use C# 3.0 Lambda
 Dispatcher.BeginInvoke(() => DataBindListBox(_apressBookList));
 }

 void DataBindListBox(List<ApressBook> list)
 {
 BooksListBox.ItemsSource = list;
 }
 }

http://localhost:9090/xml/ApressBooks.xml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

86

 public class ApressBook
 {
 public string Author { get; set; }
 public string Title { get; set; }
 public string ISBN { get; set; }
 public string Description { get; set; }
 public DateTime PublishedDate { get; set; }
 public string NumberOfPages { get; set; }
 public string Price { get; set; }
 public string ID { get; set; }
 }
}

2-9. Managing XAML Resources
Problem
You want to create a consistent UI without having to replicate styles, colors, templates, and so forth on
individual elements, much in the same way that CSS resources are shared in a web application.

Solution
Take advantage of ResourceDictionary objects to store resources that can be accessed using the
StaticResource markup extension. The Resources member introduced in the FrameworkElement class is
of type ResourceDictionary, which is a Dictionary collection accessible via name/value pairs. The
Resources member can be used to organize common styles, brushes, and colors for use across an
application.

How It Works
A markup extension provides additional evaluation for a value set on an attribute in XAML. For
example, a value can be configured for Background equal to the string "Green", which is evaluated by a
TypeConverter that takes the string value and converts it to the Colors.Green enumerations value. You
can also set Background equal to the hexadecimal value, such as #FF008000, which also equals the color
Green.

Type converters are great for single string values converted to a particular type, which we cover

in Chapter 5. A markup extension, such as StaticResource, allows more complex string values that
consist of multiple types to be evaluated or substituted for the placeholder value of an attribute. A
StaticResource value can be configured for any XAML property attribute except for event attributes.
All markup extensions have the following syntax:

<element attribute="{MarkupExtensionName Value}" />

When you first see this syntax, it looks a bit confusing, but once you understand it, you see the
power that markup extensions provide. For the StaticResource markup extension, Value represents an

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

87

x:key name for a resource located in a Resources collection in the application. Usually resources are
located at the Application or UserControl (page) level, but they can be located on any element that
inherits from FrameworkElement, such as Grid or StackPanel objects.

Silverlight 4 added the ability to have a merged resource dictionary, which means that you can
place the contents of a resource dictionary in a separate file but have the resources treated as a logical
part of the main XAML file. Resources stored in a merged resource dictionary are accesses only after
all resources in the main XAML code file are checked for a match. The MergedDictionaries is a
collection the UIElement.ResourceDictionary object. Here is an example:

<ResourceDictionary>
 <SolidColorBrush Color="#FFFFFFFF" x:Key="darkBrush"/>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="/GradientsResourceDictionary.xaml">
 <ResourceDictionary Source="/StylesResourceDictionary.xaml">
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>

The separate resource dictionary files contain a <ResourceDictionary> declaration as the root
element with the resources identified as if part of the MainPage.ResourceDictonary directly.

The Code
The sample application for this recipe includes a number of resources defined in the MainPage class.
Here is an example resource defined at the <UserControl> level:

<UserControl.Resources>
 <Color x:Key="Pumpkin">#FFD5901F</Color>
 <Color x:Key="Lime">#FF75E564</Color>
 <LinearGradientBrush x:Key="PumpkinLimeBrush"
 EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="{StaticResource Lime}"/>
 <GradientStop Color="{StaticResource Pumpkin}" Offset="1"/>
 </LinearGradientBrush>
</UserControl.Resources>

Three resources are defined with two color resources and a brush resource. The brush is a
LinearGradientBrush that references the color resources for the GradientStop Color value
using the syntax discussed earlier:

{StaticResource Lime}

■ Note For performance reasons, if a resource consists of other resources, define the resources in order of

dependency as shown in the preceding example so that forward references can be avoided.

Notice that every resource has a name defined by the x:Key attribute, which is different than the
x:Name attribute used to name XAML elements. This is the value used to reference a resource with the

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

88

XAML on the page. For example, you add a StackPanel to Grid.Row="0" and Grid.Column="0" and
configure the Background attribute to this value:

 Background="{StaticResource PumpkinLimeBrush}"

Figure 2-18 shows the result.

Figure 2-18. Applying the PumpkinLimeBrush resource to a StackPanel

Expression Blend 4 provides great support to create and manage resources. There is a Resources
tab next to the Project and Properties tabs in the UI. You can expand the tree in the Resources tab to
view resources created as part of the available objects, such as the Application, MainPage, and
StackPanel levels, as shown in Figure 2-19.

Figure 2-19. The Resources tab in Expression Blend 4

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

89

Expression Blend 4 provides a drop-down editor for modifying resources right on the Resources
tab, as shown in Figure 2-20.

Figure 2-20. In-place editing in the Resources tab

Resources can be defined deeper in the XAML tree, such as on a Grid or StackPanel control, or even
on a Rectangle directly. Any object that inherits from FrameworkElement has the Resources collection. Click
the Advanced Properties Option button next to Background, and select Convert to New Resource in the
pop-up menu in Expression Blend 4, as shown in Figure 2-21. The Create Brush Resource dialog displays
the two available options to store a resource; either at the application or page level, as shown in the
Define In section of Figure 2-21.

Figure 2-21. Converting a brush to a resource

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

90

If you want to define a resource at a different level, you can use Expression Blend 4 to create a
resource at the document or UserControl level and then copy it to the location where you want it. As an
example, define a new brush called FallBrush at the UserControl level and then move it to a new
location, in this case a StackPanel, using the following code:

<StackPanel Grid.Column="0" Grid.Row="1" Margin="2,2,2,2">
 <StackPanel.Resources>
 <LinearGradientBrush x:Key="FallBrush" EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FFFFA500" Offset="1"/>
 </LinearGradientBrush>
 </StackPanel.Resources><Rectangle Margin="2,2,2,2" Stroke="#FF000000"
 Fill="{StaticResource FallBrush}" Height="193"/>
</StackPanel>

You’ve moved the FallBrush resource from the UserControl.Resources to StackPanel.Resources and
applied it to a Rectangle, resulting in the UI as shown in Figure 2-18 above. This limits use of the resource
within the StackPanel only. For resources that need to be shared across the application, locate the resource
at the page or application level.

For this recipe, all of the modifications are in the XAML, shown in Listing 2-17.

Listing 2-17. Recipe 2-9’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_9.MainPage”
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignHeight="300"
d:DesignWidth="400"> <UserControl.Resources>
 <Color x:Key="Pumpkin">#FFD5901F</Color>
 <Color x:Key="Lime">#FF75E564</Color>
 <LinearGradientBrush x:Key="PumpkinLimeBrush"
 EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="{StaticResource Lime}"/>
 <GradientStop Color="{StaticResource Pumpkin}" Offset="1"/>
 </LinearGradientBrush>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*"/>
 <RowDefinition Height="0.5*"/>
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0" Background=
 "{StaticResource PumpkinLimeBrush}" Margin="2,2,2,2">
 </StackPanel>
 <StackPanel Grid.Row="1" Margin="2,2,2,2">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

91

 <StackPanel.Resources>
 <LinearGradientBrush x:Key="FallBrush" EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FFFFA500" Offset="1"/>
 </LinearGradientBrush>
 </StackPanel.Resources>
 <Rectangle Margin="2,2,2,2" Stroke="#FF000000" Fill=
 "{StaticResource FallBrush}" Height="193"/>
 </StackPanel>
 </Grid>
</UserControl>

2-10. Managing Embedded Resources
Problem
You want to store resources inside of the Silverlight application container (the .xap file) and retrieve
them at runtime, as opposed to simply putting the resources, such as images, in the file system and
referencing as a URL.

Solution
Use the Assembly.GetManifestResourceNames and Assembly.GetManifestResourceStream methods to
enumerate and retrieve resources embedded in a Silverlight application.

How It Works
To read embedded resources, you have to first embed them into the application. To embed resources
such as images, video, and XML data, add the resources to the Silverlight application project, and set
the build action for each resource to Embedded Resource. The next time you build the project, the
resources will be embedded into the application.

To obtain a list of resources available in the application, you can call
Assembly.GetManifestResourceNames to obtain the names as a string array:

Assembly app = Assembly.GetExecutingAssembly();
string[] resources = app.GetManifestResourceNames();

Once you have the name of the desired resource, you can call Assembly.GetManifestResourceStream to
obtain the resource as a byte array and then convert it to the appropriate type.

The Code
The sample application for this recipe includes three images that have been configured to be an
embedded resource in the assembly. The UI for the recipe has a simple gradient for the root Grid
Background, a Button named RetrieveResourceNames to retrieve the resource names of embedded
resources that are available, and a ListBox control named ResourceNames to display the names.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

92

The application also has a Border control to provide a color outline for a nested Image control,
which is where the embedded resources are displayed. You apply a simple 5% skew transformation to
the Border. (We cover transformations in Chapter 3.)

When the application runs, the user can click the button to obtain a list of available resources,
which includes the three images. Selecting an image name in the ListBox displays the image within the
Border control. Figure 2-22 shows the application UI with an image selected.

1

Figure 2-22. Recipe 2-10 UI with an image selected

The images are named Acadia1, Acadia2, and Acadia3 in the project file system. However, when
they are embedded into the application binary, the namespace is added to the filename. Keep this in
mind when loading resources if you’re not first getting their names using the
GetManifestResourceNames.

Notice the first resource listed in Figure 2-22. This resource is automatically generated as part of
compiling and generating the application. When the first resource is clicked, simply ignore it since it
isn’t an image.

This application has a simple UI to demonstrate the functionality but here is the minor configuration:
the ListBox is transparent, and the foreground color for the items is orange; the ListBox’s Foreground
property is configured with a SolidColorBrush to provide the orange text; the ListBox’s Background
property is set to Transparent, which results in the transparency; and the ListBox’s ItemContainerStyle
defaults to a white background, which is modified with this XAML for the style:

<ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">

1

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

93

 <Setter Property="Background" Value="Transparent"/>
 </Style>
</ListBox.ItemContainerStyle>

We cover styling controls in Chapter 5; this XAML is just a simple example of applying a style.
Styles can also be resources that are loaded using the StaticResource markup extension.

The code file has two events: one to retrieve the list of resource names for the button click event
and another that loads the resource into the Image object. As mentioned earlier, the
GetManifestResourceNames returns a string array of resource names, so that is easy enough to do. The
somewhat more complex code is actually retrieving the resource as a byte array and converting it to
an image.

You use a stream object to obtain the array of bytes that represents the binary resource data. You
create a new System.Windows.Media.Imaging.BitMapImage object and call the SetSource method, passing
in the stream of bytes:

BitmapImage bImage = new BitmapImage();
bImage.SetSource(stream);

This code loads the bytes into a BitmapImage object, which is then set as the Source for the Image
control named ImageDisplay that renders the image to the screen. Listings 2-18 and 2-19 have the full
code listing.

Listing 2-18. Recipe 2-10’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_10.MainPage”
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="400"> <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.41*"/>
 <ColumnDefinition Width="0.59*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.172*"/>
 <RowDefinition Height="0.828*"/>
 </Grid.RowDefinitions>
 <Grid.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FF696767" Offset="1"/>
 </LinearGradientBrush>
 </Grid.Background>
 <ListBox x:Name="ResourceNames" Background="Transparent"
 HorizontalAlignment="Stretch" Margin="4,4,15,4" Grid.Row="1"
 SelectionChanged="ResourceNames_SelectionChanged">
 <ListBox.Foreground>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

94

 <SolidColorBrush Color="#FFD18726"/>
 </ListBox.Foreground>
 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter Property="Background" Value="Transparent"/>
 </Style>
 </ListBox.ItemContainerStyle>
 </ListBox>
 <Button Height="26.4" HorizontalAlignment="Stretch"
 Margin="64,4,74,0" x:Name="RetrieveResourceNames"
 VerticalAlignment="Top" Content="Retrieve Resource Names"
 d:LayoutOverrides="VerticalAlignment, Height"
 Click="RetrieveResourceNames_Click"/>
 <TextBlock HorizontalAlignment="Stretch" Margin="53,0,74,4"
 VerticalAlignment="Bottom" Text="Select a Resource to Display"
 TextWrapping="Wrap" Foreground="#FFFFFFFF" Height="22"/>
 <Border Margin="29.2129993438721,
 -15.206000328064,32.7869987487793,35.6059989929199"
 HorizontalAlignment="Stretch" BorderBrush="#FF000000"
 x:Name="ImageBorder" RenderTransformOrigin="0.5,0.5"
 Visibility="Collapsed" Height="310.8" VerticalAlignment="Stretch"
 Grid.Column="1" Grid.ColumnSpan="1" Grid.Row="1" Grid.RowSpan="1"
 d:LayoutOverrides="Height">
 <Border.Background>
 <SolidColorBrush Color="#FFD28826"/>
 </Border.Background>
 <Border.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform AngleX="5" AngleY="5"/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Border.RenderTransform>
 <Image x:Name="ImageDisplay" Margin="5,5,5,5" Width="400"
 Height="300" OpacityMask="#FF000000" />
 </Border>
 </Grid>
</UserControl>

Listing 2-19. Recipe 2-10’s MainPage.xaml.cs File

using System.IO;
using System.Reflection;
using System.Windows;

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

95

using System.Windows.Controls;
using System.Windows.Media.Imaging;

namespace Ch02_ProgrammingModel.Recipe2_14
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void RetrieveResourceNames_Click(object sender, RoutedEventArgs e)
 {
 Assembly app = Assembly.GetExecutingAssembly();
 string[] resources = app.GetManifestResourceNames();
 ResourceNames.Items.Clear();
 foreach (string s in resources)
 {
 ResourceNames.Items.Add(s);
 }
 }

 private void ResourceNames_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 if ((ResourceNames.SelectedIndex != -1) && (ResourceNames.SelectedIndex != 3))
 {
 Assembly app = Assembly.GetExecutingAssembly();
 using (Stream stream = app.GetManifestResourceStream
 (ResourceNames.SelectedItem.ToString()))
{
 BitmapImage bImage = new BitmapImage();
 bImage.SetSource(stream);
 ImageDisplay.Source = bImage;
 ImageBorder.Visibility = Visibility.Visible;
 }
 }
 }
 }
}

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

96

2-11. Creating Silverlight Using Ruby, Python,
or JScript
Problem
You want to program Silverlight using either the IronRuby, IronPython, or Managed JScript dynamic
languages.

Solution
Download and install the Dynamic Language Runtime SDK for Silverlight on Windows or on a Mac OS
X system.

How It Works
The first step is to download the latest Silverlight Dynamic Languages SDK from CodePlex at
sdlsdk.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25120. This URL takes you to the most
recent version available (version 0.5.0 at the time of this writing), so be sure to check the Releases
section to see if a more up-to-date version is available.

■ Note While this book targets Silverlight 4 RTW, we performed these steps with the Silverlight 3 version of the

Dynamic Languages SDK because it was the most recent version available at the time.

Download the agdlr-version# (Everything) package and unzipped the contents to the
Code\Ch02_ProgrammingModel\DLR_Download\ folder. Then, copy the contents over to a directory named
c:\SagDLR. The package includes the IronRuby and IronPython languages as part of the “everything”
download.

■ Note To program in IronRuby, download Ruby from rubyforge.org/frs/?group_id=167 and install using the

OneClick Installer for Windows. It will install Ruby at c:\Ruby on your hard drive.

After installing the Silverlight Dynamic Languages SDK and Ruby, you can build applications
using the IronRuby, IronPython, or Managed JScript dynamic languages. At the time of this writing,
there are no Visual Studio 2010 templates for dynamic languages. The Silverlight Dynamic Languages
SDK includes a tool named Chiron (Chiron.exe) that allows you to work with Silverlight and the
dynamic languages; however, there is an additional alternative available for dynamic language
development with Silverlight highlighted at these links:

Creating Interactive Bing Maps with Silverlight and IronRuby
msdn.microsoft.com/en-us/magazine/ee291739.aspx

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

97

Back to “Just Text”
ironpython.net/browser/sl-back-to-just-text.pdf

Whatever tool you choose to use to build dynamic Silverlight applications, the code itself remains
the same.

The Code
The simplest Silverlight application that uses a dynamic language consists of an HTML or ASPX file to
host the application just as in a compiled Silverlight application and an app.xaml file that defines the
Silverlight UI, much as MainPage.xaml does for a compiled Silverlight application. The codebehind for
app.xaml in a dynamic language application can be one of the following, depending on the language:

• app.py: The IronPython code-behind file

• app.rb: The IronRuby code-behind file

• app.jsx: The Managed JScript code-behind file

The ReadMe file that ships with the Silverlight Dynamic Languages SDK provides some
instructions on how to create a new Silverlight application like the one we describe here.

To create a new application, open a command prompt, and navigate to the script directory, which
in your configuration is c:\SLDLR\script. To create a dynamic language Silverlight application, run
the following command, but replace language with ruby, python, or jscript:

sl.bat language <application_name>

Create an application named SilverlightDynamicApp with the IronPython language using this
command:

Sl.bat python SilverlightPythonApp

This code creates an application directory in the c:\SLDLR\script\ directory named
SilverlightPythonApp. In the SilverlightPythonApp directory, it creates three folders named
javascripts, python, and stylesheets, as well as an HTML file named index.html.

The javascripts folder contains an error.js file with the typical onSilverlightError handler in it.
The stylesheets directory contains two CSS files named error.css and screen.css: screen.css
provides basic styling for the HTML page, and error.css provides highlighting for any errors that
occur.

■ Note The SilverlightPythonApp directory can be found in the Code\Ch02_ProgrammingModel\DLR_Download\

script\ directory of the accompanying source code for this book.

Since you created a Python-based application, the python directory contains app.xaml and app.py.
As mentioned earlier, in a dynamic language application, app.xaml contains the UI code and app.py is
the codebehind written in IronPython. Listings 2-20 and 2-21 show the contents of these files.

Listing 2-20. Recipe 2-11’s app.xaml File

<UserControl x:Class="System.Windows.Controls.UserControl"
 xmlns="http://schemas.microsoft.com/client/2007"

http://schemas.microsoft.com/client/2007

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

98

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid x:Name="layout_root" Background="White">
 <TextBlock x:Name="Message" FontSize="30" />
 </Grid>
</UserControl>

Listing 2-21. Recipe 2-11 app.py Code File

from System.Windows import Application
from System.Windows.Controls import UserControl

class App:
 def __init__(self):
 root = Application.Current.LoadRootVisual(UserControl(), "app.xaml")
 root.Message.Text = "Welcome to Python and Silverlight!"

App()

Listing 2-20 contains the UI XAML file, which looks similar to the typical MainPage.xaml file created
as part of a compiled Silverlight application. If you are not familiar with the Python language, Listing
2-21 may look a bit strange, but you can generally understand that it imports a couple of namespaces
with this code:

from System.Windows import Application
from System.Windows.Controls import UserControl

The class declaration is:

class App:
 def __init__(self):
 root =
 Application.Current.LoadRootVisual(UserControl(), "app.xaml")
 root.Message.Text = "Welcome to Python and Silverlight!"

This last bit of code creates an instance of the App class:

App()

To compile and run this application, execute this command in the C:\SLDLR\script\
SilverlightPythonApp directory:

C:\SLDLR\script\server.bat /b

The server.bat batch command launches Chiron.exe, which is a command-line utility that creates
Silverlight XAP files as well as enables packageless development of dynamic Silverlight applications.
Chiron creates the output from your simple dynamic language Silverlight application. Please follow
the guidance at these links to not have to use Chiron:

Creating Interactive Bing Maps with Silverlight and IronRuby
msdn.microsoft.com/en-us/magazine/ee291739.aspx

http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

99

Back to “Just Text”
ironpython.net/browser/sl-back-to-just-text.pdf

The server.bat batch command also opens the default web browser to http://localhost:2060 and

maps the root directory to the directory where the batch command executes, which in this example is
C:\SLDLR\script\SilverlightPythonApp, as shown in Figure 2-23.

Figure 2-23. Recipe 2-11’s application running the SilverlightPythonApp

Figure 2-24 displays the UI when you click index.html.

Figure 2-24. Recipe 2-11’s SilverlightPythonApp UI

http://localhost:2060

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

100

2-12. Creating Application Services
Problem
You want to package application functionality into reusable services and make those services
available within a Silverlight project so that they are available for the lifetime of the application.

Solution
Create a class that implements the IApplicationService interface and possibly the
IApplicationLifetimeAware interface. Add the class to the Application.ApplicationLifetimeObjects
collection for the Silverlight application.

How It Works
Silverlight 3 and later includes support for services that are created by the Application object and
added to the ApplicationLifetimeObjects collection on the Application object. The services are created
before the MainPage UserControl and can hook into various events associated with application lifetime.

A class that implements IApplicationService interface implements the following methods:

 IApplicationService.StartService(ApplicationServiceContext context)

 IApplicationService.StopService()

The StartService method fires before UserControl_Loaded to allow the application service to
initialize itself. Likewise, StopService fires after the MainPage UserControl is unloaded. This allows for
service setup and teardown as necessary, though you need to take extra steps to ensure setup
completes (detailed below in the code section).

Notice on the StartService method, there is a parameter passed in named context. The context
parameter provides access to the initialization parameters via its ApplicationInitParams property that
can be configured on an HTML <param> tag within the <object> tag that creates the Silverlight plug-in.
Developers can provide information to the application service via the configured parameters on the
plug-in. (We cover initialization parameters in detail in Chapter 6.)

Implementing the IApplicationService interface is the minimum requirement to create an
application service. For more fine-grained control or interaction between the service and the
application, developers can also implement the IApplicationLifetimeAware interface, which adds these
additional methods to the application service:

• IApplicationLifetimeAware.Exited()

• IApplicationLifetimeAware.Exiting()

• IApplicationLifetimeAware.Started()

• IApplicationLifetimeAware.Starting()

The above events fire on the application service with respect to state of the application. For
example, the Starting event fires before the Application_Startup event, while the Started event fires
after the Application_Startup event. Likewise, the Exiting event fires before the Application_Exit
event, while the Exited event fires after the Application_Exit event.

All of the IApplicationLifetimeAware interface events are bracketed by the two
IApplicationService events, meaning that IApplicationService.StartService fires before

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

101

IApplicationLifetimeAware.Starting and IApplicationService.StopService fires after
IApplicationLifetimeAware.Exited event.

The Code
The example for this recipe performs application functions related to configuration. The first function
stores a copy of plug-in initialization parameters as a public property on the application service instance.
The second function is a service that retrieves an XML file from the server to obtain configuration
settings.

The application service is implemented in a code file named ConfigurationSettingsService.cs,
which implements both the IApplicationService and IApplicationLifetimeAware interfaces. You
modify the default Application_Startup event in the App.xaml.cs class file so that it handles
initialization correctly.

You also modify the MainPage_Loaded event in MainPage.xaml.cs file so that it data binds to the
ConfigSettings Dictionary object on the service. Finally, you add a TextBlock and ListBox to MainPage.xaml
to display the configuration settings. Listings 2-22 through 2-25 show the contents of these files. Listing 2-26
shows App.xaml for the recipe, which is where the application service is declared.

Listing 2-22. Recipe 2-12’s ConfigurationSettingsService.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Windows;
using System.Xml.Linq;

namespace Ch02_ProgrammingModel.Recipe2_12.Services
{
 public class ConfigurationSettingsService : IApplicationService,
 IApplicationLifetimeAware
 {
 //Event to allow the Application object know it is safe
 //to create the MainPage UI
 //i.e. the ConfigurationSettingsService is fully populated
 public event EventHandler ConfigurationSettingsLoaded;

 #region IApplicationService Members
 void IApplicationService.StartService(ApplicationServiceContext context)
 {
 InitParams = context.ApplicationInitParams;
 LoadConfigSettings();
 }

 private void LoadConfigSettings()
 {
 if (InitParams["configUrl"] != "")

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

102

 {
 WebClient wc = new WebClient();
 wc.OpenReadCompleted += wc_OpenReadCompleted;
 wc.OpenReadAsync(new Uri(InitParams["configUrl"]));
 }
 }

 void IApplicationService.StopService()
 {
 }
 #endregion

 #region IApplicationLifetimeAware Members
 public void Exited()
 {
 }

 public void Exiting()
 {
 }

 public void Started()
 {
 }

 public void Starting()
 {
 }
 #endregion

 private void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 return;
 }
 using (Stream s = e.Result)
 {
 XDocument xDoc = XDocument.Load(s);
 ConfigSettings =
 (from setting in xDoc.Descendants("setting")
 select setting).ToDictionary(n => n.Element("key").Value, n =>
 n.Element("value").Value);

 //Check to see if the event has any handler's attached

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

103

 //Fire event if that is the case
 if (ConfigurationSettingsLoaded != null)
 ConfigurationSettingsLoaded(this, EventArgs.Empty);
 }
 }

 //Store initialization parameters from <object> tag
 public Dictionary<string, string> InitParams { get; set; }
 //Stores configuraiton settings retrieved from web server
 public Dictionary<string, string> ConfigSettings { get; set; }
 }
}

Listing 2-23. Recipe 2-12’s App.xaml.cs (partial) File

private void Application_Startup(object sender, StartupEventArgs e)
{
 ConfigurationSettingsService service =
App.Current.ApplicationLifetimeObjects[0]
 as ConfigurationSettingsService;

 //Wire up an anonymouse event handler that is fired when the
 //ConfigurationService is fully populated
 //This ensures that we can access the ConfigSettings properties
 //in MainPage_Loaded
 service.ConfigurationSettingsLoaded +=
 new EventHandler((s, args) =>
 {
 this.RootVisual = new MainPage();
 });
}

Listing 2-24. Recipe 2-12’s MainPage.xaml.cs (partial) File

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 ConfigurationSettingsService service =
App.Current.ApplicationLifetimeObjects[0]
 as ConfigurationSettingsService;

 //Simple data bind to the ConfigSettings Dictionary
 SettingsList.ItemsSource = service.ConfigSettings;
}

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

104

Listing 2-25. Recipe 2-12’s MainPage.xaml (partial) File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_16.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <StackPanel>
 <TextBlock HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Configuration Settings" TextWrapping="Wrap" Margin="6"/>
 <ListBox x:Name="SettingsList" Height="100" Margin="6,6,0,6"/>
 </StackPanel>
 </Grid>
</UserControl>

Listing 2-26. Recipe 2-12’s App.xaml File

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="Ch02_ProgrammingModel.Recipe2_12.App"
 xmlns:MyServices="clr-namespace:
 Ch02_ProgrammingModel.Recipe2_12.Services">
 <Application.Resources>

 </Application.Resources>
 <Application.ApplicationLifetimeObjects>
 <MyServices:ConfigurationSettingsService x:Name="ConfigService"/>
 </Application.ApplicationLifetimeObjects>
</Application>

The URL used to retrieve the configuration file is configured on the plug-in control via

initialization parameters so that it is not hard-coded into the Silverlight application itself.
The “How it works” section for this recipe describes in detail the order in which the various events

fire. As mentioned, the MainPage_Loaded event on the UserControl fires after the
IApplicationService.StartService event. However, in testing the application, the ConfigSettings
collection was not populated in MainPage_Loaded as expected. If you think about it, this makes sense,
because you need to make an asynchronous web request to retrieve settings from a URL. In this
example, the webClient.OpenReadCompleted event was firing after MainPage_Loaded executed, making it
impossible to access configuration settings at load time within the application itself.

The application pattern you utilize to maintain the proper event ordering is to add an event to the
application service class, which in this example is declared in ConfigurationSettingsService.cs like
so:

public event EventHandler ConfigurationSettingsLoaded;

In the WebClient.OpenReadCompleted event handler that fires after the web request call succeeds,
you fire the event as long as there is an event subscriber:

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

105

if (ConfigurationSettingsLoaded != null)
 ConfigurationSettingsLoaded(this, EventArgs.Empty);

In this application pattern, there an event subscriber created as shown in Listing 2-23. It is an
anonymous event handler show here:

service.ConfigurationSettingsLoaded += new EventHandler((s, args) =>
{
 this.RootVisual = new MainPage();
});

Using this pattern ensures that the application service is fully configured before the MainPage is
instantiated, permitting the application to function as expected. Figure 2-25 shows the settings
displayed in the basic UI.

Figure 2-25. Recipe 2-12 The Configuration Settings UI

2-13. Managing Resources in Large Projects
Problem
You have a large project with many custom controls, templates, styles, etc. that exists in
ResourceDictionary objects. You would like to be able to store these ResourceDictionary objects in
separate XAML files or assemblies to keep source code more manageable, while also allowing
updating assemblies to be updated separately from the main application code.

Solution
Use a merged resource dictionary to reference external XAML files and assemblies to better organize
code.

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

106

How It Works
WPF has supported merged resource dictionaries as a way to improve organization for large
applications. Merged resource dictionaries make it possible to share resources across applications and
are also more conveniently isolated for localization than with Silverlight 2 where merged resource
dictionaries where not available.

Resources in a merged dictionary occupy a location in the resource lookup scope just after the
scope of the main resource dictionary they are merged into. Although a resource key must be unique
within any individual dictionary, a key can exist multiple times in a set of merged dictionaries,
because they are separate namescopes. (We covered namescopes in Recipe 2-2.)

Silverlight 3 added support for merged resource dictionaries, making it more like WPF. Silverlight
3 or later leverages the packed URI format for referencing resources available in WPF except that you
do not have to specify the pack:// protocol reference. The details of how to reference merged resource
dictionaries are covered next in “The Code” section.

The Code
Expression Blend makes it easy to create a resource dictionary for your application that is merged with
resources within the application itself. In Expression Blend, clicking the Create New Resource
Dictionary button indicated by the arrow in Figure 2-26 opens the New Item dialog also shown in the
figure.

Figure 2-26. Clicking the Create New Resource Dictionary

When you click OK, Expression Blend creates a new file in your project with the name specified. It
also modifies the app.xaml file by adding the following ResourceDictionary.MergedDictionaries
XAMLelement to the Application.ResourceDictionary element:

<Application.Resources>
 <ResourceDictionary>

pack://protocol

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

107

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="ResourceDictionary1.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

To place a style resource into a merged resource dictionary, select the element in Expression
Blend and then click the Object ❜ Edit Style ❜ Create Empty menu item. To place a control template
resource into a merged resource dictionary, follow the same steps but instead of clicking Edit Style,
select Edit Template. Figure 2-27 shows what it looks like when you select the Rectangle and want to
edit its Style. Notice that the Resource Dictionary has been selected as the location where you want to
define your new style.

Figure 2-27. The Create Style Resource dialog

Clicking OK brings up the style editor in Expression Blend . Next, edit the style, and save it. We
cover creating styles in Chapters 3 and 5, but for now, we are focusing on the merged resource
dictionary functionality.

When you view the Rectangle in the designer, it now has the style applied to it that you just created.
(We covered how to apply styles in Recipe 2-9.) Listing 2-27 has the source code for the Rectangle
where the style is applied.

Listing 2-27. Recipe 2-13’s MainPage.xaml File

<UserControl x:Class="Ch02_ProgrammingModel.Recipe2_13.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.047*"/>
 <ColumnDefinition Width="0.953*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

108

 <RowDefinition Height="0.052*"/>
 <RowDefinition Height="0.948*"/>
 </Grid.RowDefinitions>
 <StackPanel Margin="8" Grid.Column="1" Grid.Row="1">
 <Rectangle Stroke="Black" Height="100"
 Style="{StaticResource RectangleStyle1}">
 </Rectangle>
 <TextBlock Text="I'm a TextBlock" TextWrapping="Wrap" Margin="4"/>
 <TextBlock Text="I'm another TextBlock" TextWrapping="Wrap" Margin="4"/>
 <Button Content="Button" Margin="4"/>
 </StackPanel>
 </Grid>
</UserControl>

You can see that the style RectangleStyle1 is applied to the Rectangle. This recipe shows how the
merged resource dictionary is referenced in the App.xaml file. Listing 2-28 has the source code for the
merged resource dictionary.

Listing 2-28. Recipe 2-13’s ResourceDictionary1.xaml File

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <Style x:Key="RectangleStyle1"
TargetType="Rectangle">
 <Setter Property="Margin" Value="4"/>
 <Setter Property="Fill">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF243300"/>
 <GradientStop Color="#FFDEF3AB" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 <!-- Resource dictionary entries should be defined here. -->
</ResourceDictionary>

In Listing 2-28, you can see the style named RectangleStyle1 is defined. You can also define
merged resource dictionaries in other assemblies as well. Please refer to the Silverlight 4
documentation for more information.

2-14. Save a File Anywhere on the User’s System
Problem
You want to allow the user to save a file anywhere on their system without the constraints of isolated
storage.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

109

Solution
Use the SaveFileDialog object to persist a file to the user’s file system from within a user-initiated
event handler, such as a button click or key press.

How It Works
Silverlight 3 introduced the new SaveFileDialog object, which allows the user to select a file location
that the Silverlight application can save a file outside of isolated storage. In Recipe 2-4, we covered the
OpenFileDialog object. Like the OpenFileDialog, the SaveFileDialog must be raised in an event handler
resulting from user interaction such as a key press or button click. Once that’s accomplished, using the
SaveFileDialog is very straightforward, as you’ll see in this recipe’s “The Code” section.

Out-of-browser (OOB) elevated trust applications have more access to the file system and are not
limited to isolated storage. (We cover OOB applications in Chapter 8.)

The Code
The code presents a simple UI with a button that the user can click to bring up the SaveFileDialog
object (see Figure 2-28).

Figure 2-28. Recipe 2-14’s SaveFileDialog In Action

CHAPTER 2 ■ APPLICATION DESIGN AND PROGRAMMING MODEL

110

Just as with most any file-related dialog box, developers can configure the filter (e.g., .txt or .tiff)
as well as the default file type. You are going to write out a simple text file, so you’ll use Text Files
(*.txt) as the default filter as shown in Figure 2-31. Listing 2-36 has the source code that displays the
SaveFileDialog object and writes out the file to the returned stream by calling the OpenFile() method.

Listing 2-29. Recipe 2-14’s MainPage.xaml.cs File

using System.IO;
using System.Text;
using System.Windows;
using System.Windows.Controls;

namespace Ch02_ProgrammingModel.Recipe2_14
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnSaveFile_Click(object sender, RoutedEventArgs e)
 {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*";
 sfd.FilterIndex = 1;
 if (true == sfd.ShowDialog())
 {
 using (Stream fs = sfd.OpenFile())
 {
 byte[] textFileBytes = (new UTF8Encoding(true)).GetBytes(
 "Welcome to Silverlight 4!!!! \r\n\r\nYour Authors,\r\n\r\nRob and Jit");
 fs.Write(textFileBytes, 0, textFileBytes.Length);
 fs.Close();
 }
 }
 }
 }
}

C H A P T E R 3

■ ■ ■

111

Developing User Experiences

This chapter outlines recipes involving the graphics subsystem. We will cover graphics fundamentals,
animations, layout, image handling, keyboard handling, document features, and ink, just to name a
few.

In the previous two chapters, we provided an introduction to the Silverlight project model, the
developer and designer tools, as well as an overview of the programming model, without getting too
deep into the object model. In this chapter, we focus on the graphic primitive classes, animations,
layout, image handling, handling keyboard input, document features, and ink, just to name a few.

While we cover controls in Chapter 5, it would be difficult not to spend some time on layout and
the corresponding layout controls since we are focused on user experience. So we start off this chapter
by offering an overview of the base classes that provide layout support as well as other functionality
for both the graphic primitive and control classes.

As with all of .NET, the root base class is Object. Next in line from Object is DependencyObject,
which you will find in Windows Presentation Foundation (WPF) and Silverlight. DependencyObject
provides dependency property system services to derived classes. The property system’s primary
function is to compute the values of properties and to provide system notification about values that
have changed. We cover dependency properties in much more detail in Chapter 5.

The UIElement class inherits from the DependencyObject class and serves as the base class for most
objects that have visual appearance and that can process basic input. Example properties and events
are Visibility, Opacity, Clip, GotFocus, KeyDown, and MouseLeftButtonDown.

The FrameworkElement class is the common base class for System.Windows.Shapes namespace
classes like Shape, Ellipse, and Rectangle and System.Windows.Controls namespace classes like
Control, Button, and TextBox. FrameworkElement s implements layout, data binding, and the visual object
tree functionality. Properties and events implemented in FrameworkElement include Margin, Padding,
Height, Width, SizeChanged, and LayoutUpdated. This chapter primarily focuses on classes in the Shapes
namespace, but we include a few classes in the Controls namespace to help demonstrate layout and UI
concepts. As we mentioned above, Chapter 5 covers controls in detail.

This chapter won’t make you a designer, but it should help you understand how you can use
Expression Blend 4 with the graphic primitives as well as how to use the layout features of Silverlight 4.
If you are a designer, this chapter provides a high-level overview of the Expression Design and
Expression Blend tools as well as the user interface (UI) elements available for designing Silverlight
applications.

In this chapter, we describe the graphic primitive basics in the first couple of recipes but do not go
through every single object available, detailing properties and methodsWe recommend that you read a
Silverlight 4 book such as Mathew MacDonald Pro Silverlight 4 in C# (Apress, 2010) as well as check out
the documentation on MSDN located here:

http://msdn.microsoft.com/en-us/library/cc838158(VS.96).aspx

http://msdn.microsoft.com/en-us/library/cc838158

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

112

After we cover the basics, we move on to more advanced animation control using keyframes,
transformations, and keyboard input, and we discuss how to work with ink. In the previous edition, we
added eight new recipes covering additional topics available in Silverlight 3:

• 3-13 Adding 3-D Effects to UI Elements

• 3-14 Dynamically Creating Bitmaps

• 3-15 Improving Graphic Animation and Video Performance

• 3-16 Improve Animation with Custom Easing Functions

• 3-17 Adding Pixel Shader Visual Effects

• 3-18 Create and Work with Design-Time Data in Expression Blend

3-19 Reuse Application Interactivity with Expression Blend BehaviorsAs the fundamentals of
Silverlight become more commonly known, we combined a few recipes in this edition to make room
for the new recipes added covering Silverlght 4:

• 3-20 Customizing the Right-Click Context Menu

• 3-21 Accessing the Clipboard

• 3-22 Supporting Right-to-Left Text

3-1. Importing Art from Expression Design
Problem
You need to use assets in a Silverlight application created by a designer in a design tool such as
Expression Design. Or, you are a designer and need to share assets with Silverlight developers.

Solution
Take advantage of the built-in export capabilities in the design tool or add-ins available for the
designer’s favorite tool.

How It Works
As we mentioned in Chapter 1, Silverlight UI elements are created using a declarative markup
language known as Extensible Application Markup Language (XAML). XAML is a vector-based markup
language that uses XML syntax, making it easy to input and export XAML in tools such as Expression
Design and Expression Blend.

Expression Blend is a design tool geared toward technical designers and developers. Expression
Design is a design tool geared toward pure designers. You can download a 60-day trial of Expression
Studio 4 here:

http://www.microsoft.com/expression/

http://www.microsoft.com/expression

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

113

The underlying markup is not viewable in Expression Design. It is a pure GUI design tool, to make
it friendlier for designers to use. It can generate content usable in Expression Blend as well as web-
design tools such as Expression Web. Figure 3-1 shows the Expression Design UI with our attempt at
creating an ice cream cone using the built-in textures available in the Expression Design color palette
drop-down.

Figure 3-1. Expression Design UI

We don’t cover all of the features available in Expression Design. To learn more, visit this site for
self-study tutorials, starter kits, training videos, virtual labs, and webcasts:

hhttp://expression.microsoft.com/en-us/cc136532.aspx

The one feature we do want to cover is how to make assets created in Expression Design available
in Expression Blend and to developers. After the design is completed, choose File ❜❜ Export to open the
Export dialog box, shown in Figure 3-2.

hhttp://expression.microsoft.com/en-us/cc136532.aspx

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

114

Figure 3-2. Expression Design Export dialog box

In the dialog box, select XAML Silverlight 4 Canvas as the format, and browse to the desired
location to save the .xaml file. Then, click Export All to generate the IceCreamCone.xaml file (we put the
file into the Recipe3.1 directory). Next, add the exported file to the Recipe 3-1 Visual Studio project to
make it available in Visual Studio, and copy the desired XAML from the IceCreamCone.xaml file into
MainPage.xaml. In this case, the XAML is essentially just the ice cream cone, which is contained in the
third nested <canvas> object with the x:Name of Group. Now that the object is part of the project, open the
solution in Expression Blend to fine-tune the object and placement as needed. You can also add the
exported IceCreamCone.xaml file to the Recipe 3-1 project directly within Expression Blend without
going through the steps in Visual Studio, which may be best for non-developers working in the
Expression tools.

■ Note XAML can be created with any text editor, among other tools such as Aurora, Electric Rain Xam3D,
Windows Flip 3D, and Telestream, to name a few. In addition, Expression Design 4 and Expression Blend 4 can

import files from a variety of tools, including Adobe Illustrator and Adobe Photoshop.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

115

Figure 3-3 shows the ice cream cone in the web browser.

Figure 3-3. The ice cream cone in the browser

3-2. Working with Color and Gradients in Blend
Problem
You need to create and manipulate colors and gradients in Silverlight 4.

Solution
Use Expression Blend to create and manipulate classes that inherit from System.Windows.Media.Brush,
such as SolidColorBrush and GradientBrush, to create colors and gradients.

How It Works
When you are working with brushes such as SolidColorBrush or GradientBrush objects, Expression
Blend is useful. It has a dedicated section titled Brushes in the properties window, as shown in
Figure 3-4, with a descendent of the Shape class selected in the Visual Tree.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

116

Figure 3-4. The powerful brush editor

Take a close look at Figure 3-4, and you will see that Expression Blend provides extensive visual
editing tools for colors and gradients, as well as powerful support to create color resources and brush
resources. Color resources help ensure consistency and reduce typing errors when you are entering
the same color values over and over. Brush resources also help ensure consistency and promote reuse
throughout an application.

In Silverlight 3 or later, Expression Blend has additional options. Click the More Options button
shown in Figure 3-4 to bring up the brush-editing options shown in Figure 3-5.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

117

Figure 3-5. Additional brush-editing options for radial gradients

Figure 3-5 shows the additional options available when you are editing a gradient brush. When
you edit a solid color brush, the only option available is opacity.

Notice in Figure 3-4 that after you select a Shape object such as an Ellipse, the top portion of the
brush editor allows you to choose the Fill, Stroke, or OpacityMask. When you pick one of those three,
you then decide whether to apply No Brush, a SolidColorBrush, a GradientBrush, or an existing brush
resource by clicking one of the four tabs just below Fill, Stroke, and OpacityMask.

■ Note We won’t dive any further into OpacityMask, which applies varying levels of opacity to different parts of
the object. You can find a thorough article about OpacityMask at http://msdn.microsoft.com/en-

us/library/system.windows.uielement.opacitymask(VS.96).aspx (VS.96)..

Notice that the options shown in the Brushes section of the properties window depend on the type
of object selected. For example, selecting a TextBox gives the options shown in Figure 3-6.

In Figure 3-6, you see a different set of brushes available for the TextBox control. In this case, the
SelectionBackground option is configured with a gradient that renders when text is selected at runtime,
as shown in the right portion of Figure 3-6. Silverlight with Expression Blend adds the option to
visually edit the CaretBrush as well.

http://msdn.microsoft.com/en-us/library/system.windows.uielement.opacitymask
http://msdn.microsoft.com/en-us/library/system.windows.uielement.opacitymask
http://msdn.microsoft.com/en-us/library/system.windows.uielement.opacitymask

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

118

Figure 3-6. The Brushes section when a TextBox control is selected

The Code
For the code example in this recipe, we use the tools in Expression Blend to create various colors and
gradients and apply them to objects. Listing 3-1 (which you’ll see in a moment) has the full XAML, but
let’s walk through the code first.

Gradient brushes can produce interesting effects, create impressions of light and shadow, and
give your UI elements a three-dimensional feel. Figure 3-7 compares a linear and a radial version of
a gradient brush.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

119

Figure 3-7. Same gradient in radial (left) and linear (right) applied to an ellipse

Both brushes in Figure 3-7 use the same gradient stops but with a different spread. Below the two
ellipses in Figure 3-7 is a screen capture of the gradient stops with a faint off-white color on the left
and black on the right. These correspond to the colors shown in the ellipses. For the radial spread on
the left, the black gradient stop corresponds to the outer edge in a circular fashion. For the linear
spread, the black gradient stop corresponds to the bottom of the right ellipse. The colors applied in the
respective spread correspond to the gradient stops.

Earlier, Figure 3-4 showed the complete Expression Blend brush editor. As the instructions in the
figure say, to create a gradient stop, you click the Gradient bar after selecting a gradient brush at the
top of the editor. To remove a gradient stop, you drag it off of the Gradient bar.

Let’s now introduce an additional tool to help customize a gradient’s appearance: the Brush
Transform tool, located in the Asset Manager on the left side of Expression Blend. The Brush
Transform tool allows you to change the orientation of, stretch, and move a gradient applied to an
element visually on the Artboard or design surface in Expression Blend, resulting in a new gradient
value in the XAML. From an XAML perspective, when you use the Brush Transform tool, you are
visually modifying the StartPoint and EndPoint of the gradient object.

Figure 3-8 shows four circles on the Artboard: at left, one with the default linear gradient; two with
the same gradient as the first but with a different orientation and position applied using the Brush
Transform tool; and a circle with a Green SolidColorBrush applied. The gradient for the first circle has
the following StartPoint and EndPoint:

EndPoint=”0.5,1” StartPoint=”0.5,0”

Figure 3-8. Modifying a gradient with a brush transform

We show a copy of the modified circle with the brush transform (the arrow from lower left to upper
right) in the third circle from the left. The gradient for the third circle has the following StartPoint and
EndPoint after we used the Brush Transform tool:

EndPoint=”1.1,0.0” StartPoint=”0.05,1.12”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

120

The first circle shows the default position of the brush transform so that you can see how the
orientation, position, and size of the brush transform (arrow) were modified to create the second and
third circles. To use the Brush Transform tool, grab the arrow to move, rotate, or stretch the gradient
and thus visually modify the StartPoint and EndPoint for the gradient. Even with the simplest
modifications, gradients can provide a far more interesting interface than a SolidColorBrush in many
scenarios.

The previous example demonstrated a linear gradient. We now turn to a radial gradient. In this
case, use Expression Blend to create a donut, which we demonstrate in Recipe 3-7, using two Ellipses.
Then, choose Combine ❜ Subtract to create a Path that is transparent in the middle, thus letting the
background color show through. Apply a solid color brush to the left donut, as shown in Figure 3-9.
Apply a linear gradient as before to the middle donut, which does not do much for its appearance.
However, by switching the gradient from a linear to a radial gradient in the donut on the right, you
make the appearance more appealing, as shown in Figure 3-9.

Figure 3-9. From SolidColorBrush to radial gradient

We next demonstrate how to apply an image brush to an object. Drag a Rectangle onto the design
surface or Artboard in Expression Blend, name it RectImageBrush, apply rounded corners by modifying
the RadiusX and RadiusY properties, and then set the Fill property to No Brush in the Brush Editor.
Next, add an ImageBrush to the Rectangle in XAML:

<Rectangle HorizontalAlignment=”Stretch” Margin=”86,4,118,4”
VerticalAlignment=”Stretch” Grid.Row=”2” Stroke=”#FF000000” RadiusY=”38”
RadiusX=”38” x:Name=”RectImageBrush”>
<Rectangle.Fill>
<ImageBrush ImageSource=”/img/Landscape2.jpg” Stretch=”Fill” />
</Rectangle.Fill>
</Rectangle>

The ImageBrush paints the UIElement with the image contents. The image is located in the
TestWeb/ClientBin/img directory. We apply a SkewTransform like this:

<Rectangle.RenderTransform>
<SkewTransform AngleX=”20” AngleY=”10”/>
</Rectangle.RenderTransform>

Figure 3-10 shows the results.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

121

Figure 3-10. Rectangle with ImageBrush applied

The results in Figure 3-10 are similar to applying a Border object to an Image object, as shown in
Recipe 3-10 later in this chapter, but with the addition of a SkewTransform, which we cover in Recipe 3-
13.

Although an ImageBrush can create a static but compelling UI, a VideoBrush takes it one step
further. You can apply a VideoBrush to the Foreground color of a TextBlock to create an interesting
effect. Here is a snippet from MainPage.xaml for Recipe 3-2:

<TextBlock Margin=”214,38.2000007629395,24,61”
Grid.Row=”3” TextWrapping=”Wrap” Text=”TextBlock” FontSize=”72”
FontFamily=”Comic Sans MS” FontWeight=”Bold”>
<TextBlock.Foreground>
<VideoBrush SourceName=”mElement” Stretch=”UniformToFill” />
</TextBlock.Foreground>
</TextBlock>

We had to hand-edit the XAML in order to apply the VideoBrush. The VideoBrush allows you to
paint a UIElement with a video. Notice the SourceName attribute on the VideoBrush object. This value
must refer to the name of a MediaElement object, also in the XAML markup:

<MediaElement x:Name=”mElement” AutoPlay=”True” HorizontalAlignment=”Stretch”
Margin=”4,4,421,0” Grid.Row=”3” Width=”175” Height=”90”
d:LayoutOverrides=”Height” VerticalAlignment=”Top”
Source=”/video/video.wmv”/>

You can set the opacity to 0 on the MediaElement object if you don’t want it visible—it won’t affect
the video output for the VideoBrush object. In this example, we left the opacity of the MediaElement at
100% so that you can see how the TextBlock’s Foreground color corresponds with the output in the
MediaElement. The video is not included in the source code download at the Apress website, but you can
copy a video from the sample videos on your computer to the TestWeb/ClientBin/Video/ folder and
name the file video.wmv. Figure 3-11 shows the video playing as the Foreground color of the Text.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

122

Figure 3-11. Foreground property as a VideoBrush

We don’t show the code because all of the action is within the Expression Blend The XAML is
simply the output of this work, however, the code is available in the accompanying source code
download.

3-3. Positioning UI Elements
Problem
You need to understand how to position UI elements using using the layout controls such as the
Canvas, StackPanel, and Grid.

Solution
For absolute positioning, learn how to work with the Canvas layout control that allows child controls to
be placed using coordinates for the left and top values. To stack controls either horizontally or
vertically, learn to use the StackPanel along with Margin and Padding to layout controls. Finally, to
have complete control over layout, learn to use the Grid control along with Margin and Padding.

How It Works
In this section we cover how to work with the Canvas, StackPanel, and Grid. Before we dive in

with the Canvas object, we first provide a frame of reference for object positioning in a Windows Forms
application. In a Windows Forms application, the fundamental UI container is the Form class. Another
container would be a Panel class located within a Form object. For both the Form and Panel containers in
Windows Forms applications, you position objects by specifying a Left and Top property for controls
like the TextBox object. Hard-coding the Left and Top properties for controls does not provide dynamic
UI layout in terms of resizing for different dots per inch (dpi) settings or screen resolutions, let alone
provide a flexible UI when displaying data in a DataGrid with many columns of data.

Docking was introduced into Windows Forms to help provide a more dynamic UI by putting
controls into panels and having them stick to one side or the other, leaving a dynamically resizing
client area for a panel containing a DataGrid or similar control. Other tricks let you build a
homegrown layout system in Windows that dynamically scales by recalculating object positions for dpi
settings, screen resolutions, or the size of data displayed. All in all, these efforts have resulted in
limited UI flexibility.

One of the most important features in Windows Presentation Foundation (WPF) that made it into
Silverlight 4 is the layout system. The Silverlight 4 layout system enables dynamic positioning of
vector-based UI elements using device-independent units or pixels that defaults to 96 units per inch,
regardless of display resolution.

For example, if you set a rectangle to be 96 units high and 96 units wide in Expression Blend, the
rectangle will be one inch square by default in Windows because the Windows default is 96 dpi. If you
switch Windows to, say, 120 dpi, the rectangle in Expression Blend will still report as 96 units wide and
tall, but the actual number in Windows will be 120 pixels wide and tall.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

123

The Silverlight 4 layout system, which we cover in Recipe 3-4 in the “How It Works” section,
includes containers that manage the size and position of controls placed within the container. UI
elements are placed into one of three primary containers that inherit from the Panel base class:

• Canvas: Defines an area within which you can explicitly position child elements by
coordinates relative to the Canvas area, which we cover in this recipe.

• StackPanel: Arranges child elements into a single line that can be oriented horizontally or
vertically. We cover the StackPanel in Recipe 3-4.

• Grid: Defines an area containing rows and columns where elements can be placed. We
cover the Grid in Recipe 3-5.

■ Note Silverlight 3 and later has the TabPanel, DockPanel, and WrapPanel as well. Please refer to Chapter 5

for more information.

Canvas
The Canvas object may feel most comfortable to developers who are not familiar with WPF or
Silverlight and have built UIs in technologies similar to .NET Windows Forms. The Canvas container
allows absolute positioning of UI elements, very similar to Windows Forms.

StackPanel

In the previous subsection, we covered how to absolutely position elements using a Canvas panel
within an application using coordinates for the Canvas.Top and Canvas.Left attached properties.
However, the Canvas container does not fully integrate with the layout system in Silverlight because
the positions of child elements are fixed regardless of whether the user is resizing the browser, etc.

The StackPanel is a great way to lay out controls either vertically or horizontally via the
Orientation property within a general UI design that fully integrates with the sizing and positioning
functionality of the layout system. The layout system is a recursive operation that first sizes, then
positions, and finally draws elements onscreen. It is a two-pass system that is applied starting at the
top of the visual XAML tree and that works its way through the Children collection of each control.
During the Measure pass, the desired size of each child element is determined. In the Arrange pass,
each child element’s size and position are finalized.

Two additional topics related to layout are Margin and Padding. Whereas all FrameworkElements
have the Margin property, only objects that inherit from Control and the Border FrameworkElement have
a Padding property. The difference is that Margin defines the extra space placed around the outside
edges of the element, and Padding defines the extra spaced placed around the inside edges of the
control.

You can use Margin and Padding to force mandatory separation between controls in a StackPanel,
Grid, WrapPanel, etc.; it is applied by the layout system as the UI is resized, either programmatically or
as the user resizes the browser. Values for Margin and Padding can be specified using three notations: a
unique value for each edge, such as “1,2,3,4”; two numbers, such as “3,5”, which applies 3 for the left and
right and 5 for the top and bottom; or a single value such as “4”. If you set the property to a single value,
that Margin or Padding will be applied to the left, top, right, and bottom edges of the control. If you set
each edge explicitly to “1,2,3,4”, the order applied is left, top, right, bottom.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

124

Grid
The Grid control is the most powerful and flexible layout control available in the Silverlight layout
system. In most scenarios, an application is a combination of Grid and StackPanel controls to lay out
resizable UIs, using Canvas panels to create absolutely positioned content where needed.

When we discussed the StackPanel in the previous subsection, we also provided an overview of
the layout system and examined Margin and Padding. Margin and Padding also apply to the Grid object,
and we demonstrate how to combine Margin and Padding in the code section.

The Grid control is similar to an HTML table in laying out controls. It supports multiple rows and
columns in the RowDefinitions and ColumnDefinitions collections. By default, if a control is nested
inside a Grid without any rows or columns defined, the control renders in the upper-left corner, which
represents row zero and column zero.

When you define columns and rows on a Grid, you can specify the Width in the ColumnDefinition
object for a column and the Height in the RowDefinitions object for a row in pixels. You can also leave
Width and Height set at their default value of Auto or specify Auto explicitly if you want to reset to the
default.

Leaving Width and Height set to Auto causes the Grid to size rows and columns equally as much as
possible; however, the ultimate size is determined by the layout system, which takes into account the
size of the content. For example, if a Grid has two rows defined with the default of Auto, but the content
in the first row has a minimum size that is twice that of the content in the second row, the layout system
causes the first row to be twice the width of the second.

The Grid supports a much more powerful method of sizing columns and rows: star sizing. When you
specify a star (*) as the Width or Height of a column or row, the column or row receives a proportional
amount of space. This XAML has the same effect as setting Width and Height to the default of Auto:

<Grid.ColumnDefinitions>
<ColumnDefinition Width=”*”/>
<ColumnDefinition Width=”*”/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height=”*”/>
<RowDefinition Height=”*”/>
</Grid.RowDefinitions>

It gets interesting when you prepend an integer to * for Width or Height. For example, to give up to
twice the amount of available space to the second column and second row, specify 2* for both the Width
and Height, like this:

<Grid.ColumnDefinitions>
<ColumnDefinition Width=”*”/>
<ColumnDefinition Width=”2*”/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height=”*”/>
<RowDefinition Height=”2*”/>
</Grid.RowDefinitions>

Note that we said “up to twice the amount”; that is because the layout system takes into account the
minimum size required for content. If the second column wants twice as much space as the first

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

125

column, the content in the first column may prevent the second column from getting all the requested
space, depending on the minimum width values configured on the content in the first column.

■ Note The GridSplitter control allows the user to resize the Grid at runtime. Refer to this site for more
information: http://msdn.microsoft.com/en-

us/library/system.windows.controls.gridsplitter(VS.96).aspx.

Like the Canvas object, the Grid also has attached properties for specifying where nested controls
should be located. As we explained in Recipe above, you use Canvas.Left and Canvas.Top to absolutely
position nested content. For a Grid object, you specify the row and column for nested content; the
Silverlight layout system positions the nested content, taking into account Margin, Padding, Alignment,
and so forth.

To position a StackPanel in the second column and second row, you use a zero-based value like
this:

<StackPanel Grid.Column=”1” Grid.Row=”1” >

To have a StackPanel positioned in row three, column two but span two columns and two rows, the
XAML looks like this:

<StackPanel Grid.Column=”1” Grid.ColumnSpan=”2”
Grid.Row=”2” Grid.RowSpan=”2”>

The Code
We start out with a new Visual Studio Silverlight 4 project and divide the default Grid into four
sections. We cover the code for the Canvas, StackPanel, and Grid in the sample project for this recipe
in the next three subsections.

Code for Canvas
To try out the Canvas object, we add a canvas to the default Grid in the upper right quadrant:

<Canvas x:Name=”CanvasTest”
Grid.Column=”1” Grid.Row=”0” Margin=”20” > <TextBlock>Hi There</TextBlock>
</Canvas>

This results in the text “Hi There” appearing in the upper-right corner of the Canvas object. To
position the TextBlock 20 pixels in and 20 pixels down, you might be tempted to try to use a Left or Top
attribute for the TextBlock as you would if you were using absolute positioning in ASP.NET or Windows
Forms; but you won’t find such an attribute. To position the TextBlock, use the following markup to set
Left and Top for the control using attached-property syntax:

<TextBlock Canvas.Left=”20” Canvas.Top=”20”>Hi There
</TextBlock>

http://msdn.microsoft.com/en-us/library/system.windows.controls.gridsplitter
http://msdn.microsoft.com/en-us/library/system.windows.controls.gridsplitter
http://msdn.microsoft.com/en-us/library/system.windows.controls.gridsplitter

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

126

Attached properties are a special form of dependency properties that can be added to a child UI
element. Dependency properties are a new type of property used extensively in WPF and Silverlight
to enable styling, animation, automatic data binding through change notification, and other
capabilities. For more information about dependency properties, refer to Chapters 4 and 5 as well as
the MSDN documentation for Silverlight:

http://msdn.microsoft.com/en-us/library/cc221408(VS.96).aspx

When you invoke IntelliSense for the TextBlock, you see a list similar to the one shown in
Figure 3-12.

Figure 3-12. Attached properties in IntelliSense

The Canvas namespace appears in the IntelliSense list along with the other properties for the child
control, in this case a TextBlock. When you select Canvas in the list, Canvas is added as an attribute to the
TextBlock and the list of available attached properties displays as shown in Figure 3-12, resulting in
this syntax for the TextBlock:

<TextBlock Canvas.Left=”20” Canvas.Top=”20”>Hi There</TextBlock>

You can make copies of the TextBlock and adjust the text and position to have them display across
the Canvas object.

The UI for the work with the Canvas looks like Figure 3-13.

Figure 3-13. A Canvas with TextBlock objects positioned using attached-property syntax

http://msdn.microsoft.com/en-us/library/cc221408

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

127

The Canvas is an improvement over traditional layout available in Windows Forms or similar
technology, because it allows positioning in device-independent pixels. But the Canvas generally is not
used for general application UI layout because it does not account for browser or window resizing like
the StackPanel and Grid, which we cover in Recipes 3-4 and 3-5. A Canvas can be useful when you are
building parts of a general application layout that require precise positioning that must not change,
such as when you are building online games in Silverlight.

Code for StackPanel
For the StackPanel, we drag and drop a Stackpanel across the lower two quadrants of the root Grid in
Expression Blend resulting in the UI shown in Figure 3-14.

Figure 3-14. A StackPanel with four Rectangle objects arranged horizontally

Unlike the Canvas, the StackPanel does not have any attached properties. You cannot specify a Top
or Left property to position the elements. When you add elements by double-clicking the element in
the Expression Blend Asset Library toolbar, the element is added to the current container (the element
with the yellow box around it in the Objects and Timeline Visual Tree tool window) on the Artboard.
The order of the elements displayed in the StackPanel is the order in which they are listed in the XAML
Visual Tree.

By default, Rectangle elements are added with a Height of 100. The Width is not set, which means it
has a default value of Auto. For the StackPanel, the Auto value causes the Rectangle to stretch to fill the
width. Here is an example of the markup for the first Rectangle:

<Rectangle Height=”100” MinWidth=”90” Fill=”#FF000080” Stroke=”#FF000000”/>

We configure MinWidth, Fill, Stroke, and Height on the Rectangles so that the Rectangles can be
distinguished. The Rectangles are pushed up against the edge of the browser plug-in’s edges as well as
next to each other. Let’s set a value for Margin on each Rectangle to see the effect. Apply these values for
Margin to the Rectangles from top to bottom:

Margin=”8”
Margin=”0,0,4,0”
Margin=”4”
Margin=”4”

This results in the UI shown in Figure 3-15.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

128

Figure 3-15. A StackPanel with four Rectangles and Margin set

Setting Margin=”4” applies a 4-pixel margin to all four sides. Setting individual values such as
Margin=”1,2,3,4” applies a 1-pixel margin to the left side, 2 pixels to the top, 3 pixels to the right side,
and 4 pixels to the bottom. Setting Margin=”4,5” applies a 4-pixel margin to the left and right sides and
a 5-pixel margin to the top and bottom.

In addition to the normal customization options such as Background HorizontalAlignment, the
StackPanel has an Orientation property, with a default of Vertical. We set it to Horizontal in our
example. We also configured a MinWidth for each Rectangle, otherwise they would not render when
configured to stack horizontally.

Code for the Grid
By default, when you create a new project in Silverlight, it sets the root element to a Grid. For the
sample application, we add a grid to the upper left corner of the root layout Grid. We also arrange four
Rectangle objects diagonally as shown in Figure 3-15. We arrange the Rectangle objects by adding
row and grid definiitions, shown visually at design-time in Visual Studio 2010 in Figure 3-16.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

129

Figure 3-16. A Grid with “tic-tac-toe” grid lines

Here are the column and row definitions for the Grid.

<Grid.RowDefinitions>
<RowDefinition Height=”40*” />
<RowDefinition Height=”56*” />
<RowDefinition Height=”53*” />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”63*” />
<ColumnDefinition Width=”56*” />
<ColumnDefinition Width=”67*” />
</Grid.ColumnDefinitions>

The Grid object has many additional configuration options, such as setting the minimum and
maximum size on rows and columns as well as various ways to specify the size of rows and columns.
For more information, refer to the MSDN documentation here:

http://msdn.microsoft.com/en-us/library/system.windows.controls.grid(VS.96).aspx

■ Note When you are building a UI, set the height and width of the user control to the desired size before laying

out controls. Silverlight UIs are vector based and infinitely scalable, but it helps to have the right relationship
between controls if they are laid out at the desired resolution. Otherwise, adjusting the desired size of the user
control after building the UI will scale up or down the entire layout, which may not achieve the desired perspective

without additional modification.

http://msdn.microsoft.com/en-us/library/system.windows.controls.grid

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

130

In general, you may be tempted to set Width and Height properties on controls without thinking;
but doing so can alter how layout occurs for controls, usually to the detriment of the developer. And
sometimes, when you lay out controls in Expression Blend, the program automatically sets Height and
Width values for you even though the default is Auto. Our recommendation is to leave sizing values to
the default value of Auto and then decide whether to specify a size or minimum size for a control. If you
don’t set a value for Height or Width, the default value is Auto.

When you are building a UI with nested containers like Grid and StackPanel in Expression Blend,
you may find that you cannot directly select a nested UI element like a TextBox with the default
Selection tool. The black arrow at the top of the Asset Library toolbar is the Selection tool, which selects
immediate children only of the control that has the blue box around it in the Objects and Timeline
window. You can move the blue box to any nested container control by clicking a container control in
the Objects and Timeline windows; another option is to use the Direct Selection tool (hotkey A), which
is the white arrow just below the Selection tool in the Asset Library toolbar. The Direct Selection tool
allows deep selection of an object on the design surface or Artboard.

To demonstrate the automatic layout and resizing capabilities of the Grid and StackPanel, run the
sample and grab the lower right corner of the browser window and resize teh application. This allows
the Silverlight layout system to determine the size of objects based on the size of the overall browser
window as well as any minimum size values for controls. Listing 3-1 has the complete source code for
this recipe.

Listing 3-1. Recipe 3.3 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_3.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”300” d:DesignWidth=”400”>
<Grid x:Name=”LayoutRoot” >
<Grid.Background>
<LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
<GradientStop Color=”#FF26302B”/>
<GradientStop Color=”#FF26302B” Offset=”1”/>
<GradientStop Color=”#FF26302B” Offset=”0.50400000810623169”/>
<GradientStop Color=”#FF748A7F” Offset=”0.25”/>
<GradientStop Color=”#FF748A7F” Offset=”0.7369999885559082”/>
</LinearGradientBrush>
</Grid.Background>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”186*” />
<ColumnDefinition Width=”214*” />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height=”149*” />
<RowDefinition Height=”151*” />
</Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

131

<Grid x:Name=”GridTest” Margin=”10”>
<Grid.RowDefinitions>
<RowDefinition Height=”40*” />
<RowDefinition Height=”56*” />
<RowDefinition Height=”53*” />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”63*” />
<ColumnDefinition Width=”56*” />
<ColumnDefinition Width=”67*” />
</Grid.ColumnDefinitions>
<Rectangle Fill=”#FF000080” Stroke=”#FF000000” />
<Rectangle Fill=”#FFFFFF00” Stroke=”#FF000000”
Grid.Row=”1” Grid.Column=”1” />
<Rectangle Fill=”#FF008000” Stroke=”#FF000000”
Grid.Column=”2” Grid.Row=”2” />
</Grid>
<Canvas x:Name=”CanvasTest” Grid.Column=”1” Grid.Row=”0” Margin=”20” >
<TextBlock Foreground=”White”>Hi There Reader</TextBlock>
<TextBlock Canvas.Left=”20” Canvas.Top=”20” Foreground=”White”>Hi There</TextBlock>
<TextBlock Canvas.Left=”40” Canvas.Top=”40” Foreground=”White”>Silverlight</TextBlock>
<TextBlock Canvas.Left=”60” Canvas.Top=”60” Foreground=”White”> Silverlight</TextBlock>
<TextBlock Canvas.Left=”80” Canvas.Top=”80” Foreground=”White”> Silverlight</TextBlock>
<TextBlock Canvas.Left=”100” Canvas.Top=”100” Foreground=”White”> Silverlight</TextBlock>
</Canvas>
<StackPanel Orientation=”Horizontal” Grid.Row=”1” Grid.ColumnSpan=”2”>
<Rectangle Height=”100” Fill=”#FF000080” Stroke=”#FF000000” Margin=”8”
MinWidth=”90”/>
<Rectangle Height=”100” Fill=”#FFFFFF00” Stroke=”#FF000000”
Margin=”0,0,4,0” MinWidth=”90”/>
<Rectangle Height=”100” Fill=”#FF008000” Stroke=”#FF000000” Margin=”4”
MinWidth=”90”/>
<Rectangle Height=”100” Fill=”#FF00FFFF” Stroke=”#FF000000” Margin=”4”
MinWidth=”90”/>
</StackPanel>
</Grid>
</UserControl>

3-4. Drawing with Shapes, Paths, and Geometries
Problem
You need to draw objects when building a Silverlight UI in Expression Blend.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

132

Solution
Learn how to draw with shapes, paths, and geometries in Expression Blend.

How It Works
Silverlight provides tools to draw with primitive shapes, paths, and geometries. We cover each

option in the next subsections.

Drawing with Shapes
Silverlight includes vector graphic primitives that are infinitely scalable and easy to manipulate. The
basic shapes include Ellipse and Rectangle, which can be combined into Path objects, which we cover
in this section.

The Ellipse and Rectangle objects are predefined shapes that can be combined to create pretty
much any other shape. They are less flexible than Path objects, but they can be easier to work with
because they provide structure that is malleable.

For example, it is easy to visually create a perfect circle with an Ellipse by drawing an Ellipse on
the surface and then adjusting the drawing by grabbing a corner and sliding the selection frame left,
right, up, or down so that the bounding rectangle around the Ellipse has the same width and height.
You can also set the Width and Height properties directly in the Expression Blend properties window.
Figure 3-17 shows the mouse adjusting an Ellipse so that it is 102 by 102 pixels, forming a perfect
circle.

Figure 3-17. Adjusting an Ellipse to create a perfect circle in Expression Blend

You can also create a circle with a Rectangle shape. The first step is to drag a Rectangle onto the
design surface or Artboard in Expression Blend and size it as when working with the Ellipse, to 100 5
100 pixels. Next, with the mouse, grab the handle in the upper-left corner of the Rectangle, and drag it
as far as it will go down and to the right. Doing so yields a circle, as shown in Figure 3-18.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

133

Figure 3-18. Adjusting a Rectangle to create a perfect circle in Expression Blend

What is accomplished visually can also be accomplished programmatically by setting the RadiusX
and RadiusY value to half the length or width, assuming the length and width are the same on the
Rectangle. If the length and width are not equal in value, you will create a circular shape, but it won’t
be a perfectly round circle.

As mentioned earlier, you can create drawings with shapes by combining them in Expression
Blend. As an example, let’s say you want to create a puffy cloud shape. Draw a circle using an Ellipse
shape object that is 100 x 100 pixels. Make two copies, fill them with gray for a storm-cloud
appearance, and arrange them as shown in Figure 3-19.

Figure 3-19. Drawing a cloud with three Ellipses

To create more of a cloud-like experience, you can use Expression Blend to combine the three
shapes into a Path. First, select all three Ellipse objects by either Shift-clicking in the Objects and
Timeline window or pressing Ctrl and left-clicking each Ellipse until all three are selected. Then,
right-click either the objects listed in the Objects and Timeline window or the Artboard to bring up the
Combine menu, as shown in Figure 3-20.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

134

Figure 3-20. Combine three Ellipses using Unite

Select the Unite option, and Expression Blend combines the three shapes into a Path object, as
shown in Figure 3-21.

Figure 3-21. Results of combining with Unite

The three Ellipse shapes are now a single object that you can manipulate by resizing it or by
applying a transform to rotate or skew it. To see what happened, here is the XAML before combining
the Ellipses:

<Grid>
<Ellipse Height=”100” HorizontalAlignment=”Left” Margin=”60,32,0,0”
VerticalAlignment=”Top” Width=”100” Fill=”#FF808080” Stroke=”#FF000000”/>
<Ellipse HorizontalAlignment=”Stretch” Margin=”108,65,192,135”
VerticalAlignment=”Stretch” Fill=”#FF808080” Stroke=”#FF000000”/>
<Ellipse HorizontalAlignment=”Left” Margin=”33,79,0,121”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

135

VerticalAlignment=”Stretch” Fill=”#FF808080” Stroke=”#FF000000” Width=”100”/>
</Grid>

Here is the XAML after combining the Ellipses with Unite into a Path object:

<Grid>
<Path HorizontalAlignment=”Stretch” Margin=”33,32,192,121”
VerticalAlignment=”Stretch” Fill=”#FF808080” Stretch=”Fill” Stroke=”#FF000000”
Data=”M77,0.5 C78.708633,0.49999899 80.397…………..77,0.5 z”/>
</Grid>

We didn’t copy the exact resulting XAML (see the book’s code for the full XAML) because it is
almost a page of nothing but floating-point values for the Data property on the Path object; but you can
see that the three Ellipses are now a single Path object. Let’s explore the remaining options on the
Combine menu:

• Subtract is interesting because parts of shapes under the first shape selected are removed
or subtracted. Suppose you have three shapes, as shown at left in Figure 3-22, and you select
the topmost Ellipse and then select Subtract. The results of the operation are shown in
Figure 3-23 with the title “Subtract.”

• Intersect does what you would expect: it removes all parts of the shapes except the
interception of the shapes.

• Exclude Overlap excludes areas that are overlapped by some but not all shapes.

• Divide preserves all strokes but uses the fill of the topmost shape as the fill of all selected
shapes, as shown at right in Figure 3-22.

Figure 3-22. The Divide option, before (left) and after

Figure 3-23 shows the results of all of the Combine options.
By performing these types of combination options, you can create just about any shape required.

As an example, let’s say you need to create a ring. You could stick with an Ellipse and apply a
relatively large number for the stroke, but that approach is limited because you cannot see clear inner
and outer borders for the ring. Instead, let’s use Combine ❜ Subtract.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

136

Figure 3-23. The results of all the Combine options

First, create an Ellipse that is 100 5 100 pixels in its rectangle bounding box when selected. Fill it
with gray. Next, drag another Ellipse that is 70 5 70 pixels in size. Select both Ellipses. Then, in the
Object menu, select Align ❜ Horizontal Centers and Vertical Centers so that the smaller Ellipse is
perfectly aligned with the larger Ellipse. The order of selection matters, so first select the smaller
Ellipse that you want to subtract from the larger Ellipse. While both Ellipses are selected, right-click,
and select Combine ❜ Subtract. The result is a Path object that is a ring or donut with a transparent
center, as shown in
Figure 3-24.

Figure 3-24. Path shaped as a ring via Combine ❜ Subtract

Exclude Overlap could also generate Figure 3-24. Combine operations are not limited to shapes.
You can include Path objects as well, as we cover in the next recipe. However, we first discuss the other
available menu options that help designers quickly create complex drawings and reusable drawings.

Other menu options available in Expression Blend when you right-click an object (shape and/or
Path) or selected objects are Group Into, Make Control, and the Path menu. Group Into allows you to
quickly put an object or selected objects into a Grid, StackPanel, Canvas, ScrollViewer, or Border control;
all of these inherit from Panel and are container controls. We covered Grid and StackPanel in Recipe
3-3. We cover ScrollViewer in Recipe 3-5 and Border in Recipe 3-6.

Make Control lets you quickly create a simple control out of the selected objects. For example, say
you first select the StackPanel that contains the TextBox with the title “Exclude Overlap” and the Path
where the Exclude Overlap operation was performed, as shown in Figure 3-23 earlier. Right-click and
select Make Into UserControl to display the Make Into UserControl dialog, shown in Figure 3-25.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

137

Figure 3-25. The Make Into UserControl dialog

As shown in Figure 3-25, name the control ExcludeOverlapControl, and leave the check box
unchecked. If you check the check box, Expression Blend leaves the original content in place but puts a
copy into a separate .xaml file. This is useful if you want to use the content as a separate control later.
However, if you leave the check box unchecked, the content is removed from the MainPage.xaml file, put
into a separate .xaml file as a custom control, and then added back to the MainPage.xaml file as a control
reference. This custom control is available for use in other pages as well.

An .xaml file named ExcludeOverlapControl.xaml that contains the control is added to the project.
To make the control more useful, remove the White Background color from the LayoutRoot object in the
new control’s Visual Tree in the Objects and Timeline window. This makes the object’s background
transparent, which may be desirable when you use the newly created control.

In the original MainPage.xaml file, a new namespace is added to the UserControl root object:

xmlns:Shapes=”clr-namespace:Shapes”

The original XAML markup for the StackPanel containing the TextBox and Path object is converted
to this XAML, which references the new control:

<Shapes:ExcludeOverlapControl Margin=”8,8,8,8” Grid.Column=”3”/>

Although we don’t cover the details of building controls in this chapter, we discuss them in Chapter
5. We show this functionality here for a scenario such as creating a drawing with controls, shapes, and
path objects that represent something like a game piece in a computer game, when you want to be able
to treat the result as a stand-alone control. At this point, a developer can add properties, methods, and
events to the composite control by editing the code-behind file that is automatically created.

Drawing with Path Objects
The drawing tools included in Silverlight are the Pen, Line, and Pencil, which are located on the Asset
Library toolbar in Expression Blend. Ellipse and Rectangle are predefined shapes that you can
combine to create pretty much any other shape, as we covered in the previous subsection.
The other tools create Path objects or lines that can be straight, curved, or free-form. Closing a Path
causes the drawing to look like a shape. You can use the Pen tool to create paths containing straight
lines and curves. The Line tool creates straight lines. You use the Pencil tool to create free-form Paths.

In Expression Blend, a Path menu option is available on the context menu when you right-click an
object or selected objects. The Path menu has the submenu items listed in Table 3-1.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

138

Table 3-1. Path Context Menu Suboptions

Submenu Option Description

Convert to Path Converts the selected object or objects on the Artboard into a Path object or
multiple Path objects. It does not combine the objects into a single Path object if
multiple objects are selected.

Make Clipping Path Requires two objects, one located in front of the other. The shape or Path in
front clips the shape or Path behind it, meaning that portions of the shape or
Path behind the clipping\shape or Path are no longer visible. When you apply a
clipping Path to an object, a Clip attribute is added to the object.

Release Clipping Path Removes the Clip attribute from the object, making it a separate Path object on
the Artboard, undoing the Make Clipping Path option.

Make Compound Path Converts the selected objects on the Artboard into a single Path object. This is
similar to the Combine ❜ Exclude Overlap option discussed earlier in that
individual strokes are preserved and areas where not all of the objects overlap
are clipped.

Release Compound
Path

Reverses the Make Compound Path option, except that it converts the individual
objects to Path objects. For example, if you select three Ellipse objects and then
select Make Compound Path, the three Ellipse objects are converted into a
single Path object. If you then select Release Compound Path, the single Path
object is converted to three individual Path objects. Each Path object looks like
the original Ellipse, but they are still Path objects under the covers.

As we mentioned earlier, the Path object represents a line that can be drawn directly with three
different tools in Expression Blend: Line, Pen, and Pencil. As we noted when discussing the features of
Expression Blend in Recipe this recipe, the output of various menu options is usually a Path object with
a fairly large string of values for the Data attribute on the Path object. The Data attribute defines the
shape of the line, which is essentially a series of points.

Drawing with Geometries
In this subsection we cover how to work with geometries like EllipseGeometry, PathGeometry, and
LineGeometry, and segments like ArcSegment and GeometryGroup. Geometry objects such as
EllipseGeometry, PathGeometry, and GeometryGroup are not visual objects like Ellipse, Path, and
Rectangle. Shapes like Rectangle and Ellipse are UIElement objects and can render themselves.
Geometries inherit directly from DependencyObject.

As we described in the previous subsections, Shape and Path objects are readily usable for drawing.
Geometries, on the other hand, do not inherit from UIElement and cannot render themselves.
Geometries describe how to draw two-dimensional shapes. Both the Path object and objects that
inherit from UIElement can take a geometry as a property and then draw it. For Path, it is the Data
property; for UIElement, it is the Clip property.

You saw in the previous subection that when you draw a Path using the Pen tool, the Data property
is set to a value that follows the syntax of the Path Mini-Language. For example, you can draw a Path
that describes a straight line to generate this XAML:

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

139

<Path Stroke=”Black” StrokeThickness=”1” Margin=”2,2,2,2”
Data=”M0,0 100,114 100,114”/>

In the test code for geometries, here is the XAML for the same line drawn with the Data property,
using a geometry to define how to draw the Path object:

<Path Stroke=”Black” StrokeThickness=”1” Margin=”2,2,2,2” >
<Path.Data>
<LineGeometry StartPoint=”0,0” EndPoint=”100,114” />
</Path.Data>
</Path>

The Code
We cover how to work with shapes in the above “How it Works” section because it is primarily an
exercise in Expression Blend. However, we cover the details on Paths and Geometries in the next two
subsections.

Drawing with Paths
This recipe starts with the code work we did with the shapes where you drop three Ellipse objects on
the Expression Blend Artboard and use the various Combine menu options to create complex Path
objects.

If you use the Direct Selection tool to click the shape that results from choosing Combine ❜ Unite
for the three Ellipses above, you see all the points that resulted from the Unite operation (see Figure
3-26).

Figure 3-26. The points of a Path resulting from combining three Ellipses with Unite

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

140

The Path Mini-Language is the syntax used to define geometric paths. The value set for the Data
attribute of a Path object as well as the Clip attribute for a shape is defined in the Path Mini-Language.
As an example, draw a Rectangle that is 50 pixels square, and then convert it to a Path object by right-
clicking and selecting Path | Convert to Path option. Here’s the value for the Path’s Data attribute after
the Rectangle is converted to a Path:

Data=” M0.5,0.5 L49.5,0.5 L49.5,49.5 L0.5,49.5 z”

M specifies the start point. The three L commands specify drawing a line. The z command closes the
current figure. This is a simple example, and the Path Mini-Language is capable of describing how to
draw very complex objects. For more information, see the Silverlight 4 documentation on MSDN for a
full description of the Path Mini-Language syntax:

http://msdn.microsoft.com/en-us/library/cc189041(VS.96).aspx

Although you can learn the full syntax of the Path Mini-Language, another option is to start
drawing Path objects with the Line, Pen, or Pencil tool in conjunction with shapes such as Rectangle
and Ellipse objects to create complex drawings. We covered shapes in the previous recipe, so we begin
here with the Line tool.

The Line tool is located with Ellipse and Rectangle on the Asset Library toolbar. It draws straight
Path objects by default. You can create a smooth curve with a Path drawn using the Line tool by
selecting the Path with the Direct Selection or Pen tool, holding down the Alt key (which changes the
mouse pointer to an angle shape), and then dragging the line to the desired curve, as shown in Figure
3-27.

Figure 3-27. Using the Direct Selection tool with the Alt key to curve a Path

At first, this type of operation may not seem interesting. But if you draw a few Path objects with the
Line tool and then apply a curve following the steps just explained, you can create a simple three-
dimensional wireframe (see Figure 3-28).

http://msdn.microsoft.com/en-us/library/cc189041

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

141

Figure 3-28. Creating curves with the Line tool

You don’t want eight Path objects sitting in the Visual Tree. Multiselect all the Path objects, right-
click one, and select the Group Into ❜ Canvas command, as shown in Figure 3-29, to combine
everything into a single object in the Visual Tree.

Drawing with the Pen tool is similar to using the Line tool, but the Pen tool makes it easier to draw
additional connected segments. With the Pen tool, you click where you want to start and then click
where you want to add a connected point. Expression Blend draws the line for you between clicks or
points.

Figure 3-29. Group Into menu in Expression Blend

To close a drawing with the Pen tool, click back on a previous node on the line. To avoid adding
another segment and also close a drawing, click back on the just previously added node, which adds the
Path Mini-Language z to the value in the Data attribute. For example, if you want to create a two-node
line, first click the Artboard to start the line, again click the Artboard where you want the second point
to be located, and finally click back on the first node to close out the line. Clicking back on the first
node does not add another segment; it results in the Path Mini-Language z being appended to the
value in the Data attribute on the Path object.

You don’t have to close a drawing with the Pen tool. You can draw a crooked line by clicking
numerous points at odd angles, as in Figure 3-30.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

142

Figure 3-30. Drawing with the Pen (left) and modifying with Alt (third from left)

In Figure 3-30, we used the Pen tool to draw a line by clicking in a zigzag pattern down the
Artboard. Notice that the second-from-the-bottom point is shaded a darker color in the drawing on the
left, which indicates that the point is selected with either the Pen or Direct Selection tool. Clicking the
Delete key results in the drawing that’s second from the left. Finally, holding down Alt with the mouse
over the bottom segment and applying a curve yields the drawing that’s third from the left. It is also
possible to draw shapes and close them out so that the start point and end point are the same, as in the
drawing at far right.

Another way to draw with the Pen tool is to use the control handles. Select the Pen tool, and then
left-click once where you want one end of the curve to be. Next, left-click the Artboard, but do not
release the mouse button. Instead, drag, and you see a control handle appear that is tangent to the
curve. Drag the control handle until you create the desired curve. If you click and drag again, another
point is added, and a control handle appears for the new segment. When you are done drawing, you
can click a point on a Path with the Direct Selection or Pen tool, and the control handles appear.

Control handles are a great way to smooth out the curve between connection points by lining up
the tangents for each control handle on either side of a point. You can manipulate control handles with
the mouse even after drawing the Path by clicking a point and then selecting the circle at the end of the
control handle, as shown in Figure 3-31.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

143

Figure 3-31. Using a control handle to change the curve (dark color) to a new curve (lighter color)

To add a node to an existing Path, select the Path with the Direct Selection tool, and then switch to
the Pen tool. Move the mouse cursor over the desired location of the existing Path; the Pen tool displays
a small plus sign at lower right. Click when the plus sign appears to add a node to the Path.

To add a node at the end of a Path, click the end point of a Path with the Pen tool, and then click on
the Artboard where you want the new end point to be located. Expression Blend adds another node to
the existing Path. If you miss clicking the end point and create a new Path object by mistake, click Undo
(or press Ctrl+Z), and then try zooming in before clicking the end point.

To close a Path so that it is a fully enclosed shape, click one end of the Path, and then move the
cursor over the other end of the Path. Click when the symbol at the Pen’s lower right changes to a circle.

So far, we have covered the Line and Pen tools. Next, we cover the Pencil tool, which provides
freehand drawing capabilities. Select the Pencil tool, and then begin drawing by left-clicking and
holding down the mouse button. As you draw with the mouse, Expression Blend decides where to add
points along the way. Figure 3-32 shows an attempt at drawing a box.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

144

Figure 3-32. Freehand drawing with the Pencil tool

In Figure 3-32, the image on the right shows the points that were automatically added by
Expression Blend when we draw with the Pencil tool. At this point, you can switch to the Pen tool and
manipulate the points on the Path just like before, to smooth out areas, remove extra points, and so
forth. The Pencil tool is very useful for a graphic designer with the right type of hardware tools, such as
a stylus, to freehand-sketch a layout that can then be manipulated into the desired drawing.

We don’t list the code for this recipe because it consists of the XAML markup of all the drawing
activities in Expression Blend that we describe earlier, which is mostly Path objects with very long
values for the Data attribute. Refer to the sample code for this recipe to see the drawings and try some
of your own.

Drawing with Geometries
In order to cover a few geometries, we have one application with several geometries drawn in it. We
walk through each geometry to explain what we are trying to demonstrate.

As long as you define the Fill or Stroke property, you can render a geometry with a Path object.
Here are a few examples that draw a Rectangle and an Ellipse, from the sample code for this recipe:

<Path Grid.Column=”1” Fill=”AliceBlue” Grid.Row=”0” Stroke=”Black”
StrokeThickness=”1” Margin=”2,2,2,2” >
<Path.Data>
<RectangleGeometry Rect=”20,20,70,40” />
</Path.Data>
</Path>
<Path Grid.Column=”2” Fill=”AliceBlue” Grid.Row=”0” Stroke=”Black”
StrokeThickness=”1” Margin=”2,2,2,2” >
<Path.Data>
<EllipseGeometry Center=”50,50” RadiusX=”30” RadiusY=”30” />
</Path.Data>
</Path>
<Path Grid.Column=”2” Fill=”AliceBlue” Grid.Row=”1” Stroke=”Black”
StrokeThickness=”1” Margin=”2,2,2,2” >
<Path.Data>

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

145

<GeometryGroup>
<LineGeometry StartPoint=”0,50” EndPoint=”140,50” />
<RectangleGeometry Rect=”10,30,70,40” />
<EllipseGeometry Center=”100,50” RadiusX=”30” RadiusY=”30” />
</GeometryGroup>
</Path.Data>
</Path>

The last Path object in the sample code uses a GeometryGroup to combine multiple geometries (see
Figure 3-33).

Figure 3-33. Path object with a GeometryGroup containing multiple geometries

We mentioned earlier in this recipe that you can set the Clip property of objects that inherit from
UIElement to a geometry value. The Image control inherits from UIElement, so you can set its Clip
property to a geometry to yield a nice effect. First, set the background to a light blue color so that the
clipping effect is more obvious than it would be with a white background.

Add two Image objects that point to the same image, which is 100 5 75 pixels in size. For the second
Image object, apply a simple RectangleGeometry that has rounded corners to clip the image:

<Image.Clip>
<RectangleGeometry Rect=”0,0,100,75” RadiusX=”25” RadiusY=”25”/>
</Image.Clip>

The results of setting the Clip property are shown in Figure 3-34, which compares the two images.

■ Note The image used in this recipe’s sample code is located at the TestWeb web site in a folder named img

under ClientBin.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

146

Figure 3-34. The results of setting the Clip property

You can see that the bottom image has rounded corners for a smoother look. In the same manner,
you can apply a geometry to a MediaElement so that the video appears to be playing on an old glass
television set with rounded corners.

The last geometry we cover from the recipe’s sample code is the PathGeometry object. The
PathGeometry object can contain multiple segment objects such as LineSegment, ArcSegment,
BezierSegment, QuadraticBezierSegment, and PolyQuadraticBezierSegment. These can be applied in
unison as part of a PathFigure element collection in PathGeometry. Here is an example from Listing 3-5
that uses an ArcSegment and a BezierSegment:

<Path Stroke=”Black” Grid.Row=”2” Grid.Column=”2” Margin=”4,4,4,4”>
<Path.Data>
<PathGeometry>
<PathFigure StartPoint=”20,20”>
<BezierSegment Point1=”10,40” Point2=”200,70” />
<ArcSegment Point=”100,10” Size=”200,150” RotationAngle=”25”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

147

IsLargeArc=”False” SweepDirection=”Counterclockwise”/>
</PathFigure>
</PathGeometry>
</Path.Data>
</Path>

Figure 3-35 shows the output for the BezierSegment and ArcSegment.

Figure 3-35. The Bezier curve

We don’t get into the details of all the different segment objects available for drawing. Refer to the
Silverlight 4 MSDN documentation for more information:

http://msdn.microsoft.com/en-us/library/cc189068(VS.96).aspx

■ Note If you are building drawings in code, you must use geometry objects. The Path Mini-Language is

available only in markup.

One last item to note is that when you work with Path objects in Expression Blend, it defaults to
using the Path Mini-Language syntax for the Data value (or for the Clip property on UIElement objects).
Keep this in mind if you wish to use geometries, because if you attempt to modify the appearance of a
Path that uses geometries in Expression Blend, Blend converts the Path’s Data value from a geometry
declaration to a string containing Path Mini-Language. This may not be a concern, and we highly
recommend using Expression Blend for the productivity that it provides; but we thought we should
mention it just in case.

To provide simple navigation for the recipe, we have a main page for this recipe that allows the
user to select what drawings they would like to see, whether, Shapes, Paths, or Geometries. Clicking a
radio button loads one of the following user controls:

• DrawingWithShapes

• DrawingWithPaths

• DrawingWithGeometries

Listing 3-2 and 3-3 shows the XAML and code-behind for the MainPage.

http://msdn.microsoft.com/en-us/library/cc189068

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

148

Listing 3-2. Recipe 3.4 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_4.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”700” d:DesignWidth=”900”>
<Grid x:Name=”LayoutRoot” Background=”White”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.956*”/>
<RowDefinition Height=”0.044*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.967*”/>
<ColumnDefinition Width=”0.033*”/>
</Grid.ColumnDefinitions>
<Grid x:Name=”ControlPlaceholder” Height=”600” Width=”800”></Grid>
<Border x:Name=”ControlUserView” Height=”60” HorizontalAlignment=”Right”
VerticalAlignment=”Bottom” Width=”110” CornerRadius=”12” Padding=”6”>
<Border.Background>
<RadialGradientBrush RadiusY=”0.996” RadiusX=”0.996”>
<GradientStop Color=”#FF292929” Offset=”1”/>
<GradientStop Color=”DarkGray”/>
</RadialGradientBrush>
</Border.Background>
<StackPanel HorizontalAlignment=”Center” VerticalAlignment=”Center”>
<RadioButton x:Name=”rbShapes” Content=”Shapes” Height=”16”
HorizontalAlignment=”Left” VerticalAlignment=”Top”
Foreground=”#FFFFFBFB” GroupName=”UCChoice”
Checked=”rbShapes_Checked” />
<RadioButton x:Name=”rbPaths” Content=”Paths” Height=”16”
HorizontalAlignment=”Left” VerticalAlignment=”Top”
Foreground=”#FFFFFBFB” GroupName=”UCChoice”
Checked=”rbPaths_Checked”/>
<RadioButton x:Name=”rbGeometries” Content=”Geometries” Height=”16”
HorizontalAlignment=”Left” VerticalAlignment=”Top”
Foreground=”#FFFFFBFB” GroupName=”UCChoice”
Checked=”rbGeometries_Checked” />
</StackPanel>
</Border>
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

149

Listing 3-3. Recipe 3.4 MainPage.xaml.cs File

using System.Windows;
using System.Windows.Controls;

namespace Ch03_DevelopingUX.Recipe3_4
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void rbShapes_Checked(object sender, RoutedEventArgs e)
 {
ControlPlaceholder.Children.Add(new DrawingWithShapes());
 }

private void rbPaths_Checked(object sender, RoutedEventArgs e)
 {
ControlPlaceholder.Children.Add(new DrawingWithPaths());
 }

private void rbGeometries_Checked(object sender, RoutedEventArgs e)
 {
ControlPlaceholder.Children.Add(new DrawingWithGeometries());

}
}

3-5. Providing Scrollable Content
Problem
You need to provide scrollable content for layout purposes, or you need to apply a border to a control.

Solution
To provide scrollable content, use ScrollViewer as a container for the content. ScrollViewer can have
exactly one child control, which is usually a layout panel such as a Grid, StackPanel, or Canvas object
that contains additional content as desired.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

150

How It Works
ScrollViewer is a control that has scrollbars so that you can scroll its contents vertically as well as
horizontally. ScrollViewer can contain exactly one control. A StackPanel or a Grid is the best candidate;
you can place multiple controls in the scrolling view by containing the controls within the StackPanel
or Grid.

The ScrollViewer control has properties to control whether the scrollbars are visible, disabled, or
automatically visible as needed: HorizontalScrollBarVisibility and VerticalScrollBarVisibility. If
you set both to Auto, the horizontal and vertical scrollbars appear only when needed, based on the size
and amount of content in the control. Other options are Disabled, Hidden, and Visible.

The Code
The sample code includes a TextBox, a Button, and a ScrollViewer control that initially contains a
StackPanel. Type text into the TextBox, and click the Click to Add Text button. When the Button event
fires, it dynamically adds a TextBlock to the StackPanel in the ScrollViewer. Perform this step a few
times; when the StackPanel fills with TextBlock controls, the vertical scrollbar appears. If the entered
text is long enough, the horizontal scrollbar appears. Figure 3-36 shows the results.

Figure 3-36. The ScrollViewer in action

Built-in controls like ListBox encapsulate a ScrollViewer as part of their default internal Visual
Tree. It is handy that this functionality is readily available to developers when they need to display a
large amount of data as part of the layout. Listings 3-4 and 3-5 show the code for this recipe.

Listing 3-4. Recipe 3.5 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_5.MainPage”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

151

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
d:DesignHeight=”300” d:DesignWidth=”400” <Grid x:Name=”LayoutRoot” Background=”White”>
<Grid.RowDefinitions>
<RowDefinition Height=”*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.495*”/>
<ColumnDefinition Width=”0.505*”/>
</Grid.ColumnDefinitions>
<ScrollViewer Margin=”4,4.135,4,4” HorizontalScrollBarVisibility=”Auto”
VerticalScrollBarVisibility=”Auto”>
<StackPanel x:Name=”spText” Margin=”4,4,4,4”></StackPanel>
</ScrollViewer>
<StackPanel Margin=”4,4.135,4,114.865” Grid.Column=”1”>
<TextBox x:Name=”typedText” Height=”96” Text=”TextBox”
TextWrapping=”Wrap” FontSize=”14” Margin=”4,4,4,4” BorderThickness=”0”/>
<Button x:Name=”AddText” Content=”Click to Add Text” Margin=”4,4,4,4”
Click=”AddText_Click”/>
</StackPanel>
</Grid>
</UserControl>

Listing 3-5. Recipe 3.5 MainPage.xaml.cs Class File

using System.Windows;
using System.Windows.Controls;

namespace Ch03_DesigningUX.Recipe3_5
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void AddText_Click(object sender, RoutedEventArgs e)
 {
TextBlock text = new TextBlock();
text.Text = typedText.Text;
text.Margin = new Thickness(2, 2, 2, 2);
spText.Children.Add(text);
}
 }
}

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

152

3-6. Applying a Border to Elements
Problem
You want to apply rounded corners to controls like the Image control that normally don’t support them
as well as provide a border and background to elements, to enhance visual appeal.

Solution
Put content in the Border control, and configure properties such as Background and CornerRadius to
enhance visual appeal.

How It Works
The Border control inherits from FrameworkElement and is a container control. It can contain exactly
one child element. However, the child element can be a Panel such as a Grid, StackPanel, or Canvas,
which can contain additional controls.

When you add a Border to an application, the Background property is Transparent by default. You can
apply a solid color or gradient brush to provide a background for the Border. You can also set the
CornerRadius property to provide rounded corners, as shown in Figure 3-37, which has a CornerRadius of
20 for all four corners.

Figure 3-37. Laying out a Border control

Many controls, such as Image, TextBox, TextBlock, and so on, do not contain a CornerRadius property
and have square corners. The Border property can apply rounded corners to contained objects. In
Figure 3-37, the Border contains a Grid and applies rounded corners to its layout.

If you drop a TextBox onto the Border containing the Grid shown in Figure 3-37, the background of
the TextBox is White by default. If you set it to Transparent, the Border’s Background shows through.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

153

You next want to apply a Border to a Textbox. Figure 3-38 shows how a plain TextBox appears on the
gradient.

Figure 3-38. Plain TextBoxes in the UI

The TextBox controls are each placed in the Border. To make the Border control wrap the TextBox,
clear the Height and Width properties of the Border and the TextBox controls so that they default to Auto;
this shrinks the Border around the TextBox.

The size for the TextBox/Border combination is determined by the size of the font for the text in the
TextBox as well as the Alignment and Margin settings of the Border and TextBox controls. Figure 3-39
shows the finished product for this recipe.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

154

Figure 3-39. Rounded corners for a TextBox control

Here is the XAML markup for one of the Border/TextBox combinations:

<Border VerticalAlignment=”Top” Margin=”21,119,19,0”
CornerRadius=”12,12,12,12”>
<Border.Background>
<RadialGradientBrush>
<GradientStop Color=”#FF003A74”/>
<GradientStop Color=”#FF636E95” Offset=”1”/>
</RadialGradientBrush>
</Border.Background>
<TextBox Background=”{x:Null}” Text=”TextBox” TextWrapping=”Wrap”
BorderBrush=”{x:Null}” FontSize=”16” Margin=”5,5,5,5”/>
</Border>

You want the TextBox to “disappear” into the Border while retaining all of its functionality. Notice
in Figure 3-39 that you cannot see the outline of the TextBox. This is because you set the Background and
BorderBrush to Transparent or Null. Also, setting Border Background to a RadialGradient highlights the
rounding effect of the CornerRadius of 12 all around.

To place the TextBox inside the Border so that it appears to be fully encapsulated, set a Margin of 5
all around the TextBox. This ensures nice spacing between the content and the Border edge.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

155

The Code
The code in this recipe takes everything covered earlier and applies it to TextBox controls to provide a
rounded appearance. You also use a Border to highlight an editing region with plain TextBox controls.
Figure 3-40 shows the output.

Figure 3-40. Recipe 3-6 Sample code output

Figure 3-40 shows two TextBox controls and two TextBlock controls, one inside a Border control
and a plain version of each control. The bottom portion of the UI uses a Border control to highlight an
area of the application. Listing 3-6 has the full XAML for the source code.

Listing 3-6. Recipe 3.6 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_6.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=http://schemas.microsoft.com/expression/blend/2008
xmlns:mc=http://schemas.openxmlformats.org/markup-compatibility/2006
mc:Ignorable=”d”
d:DesignHeight=”341” d:DesignWidth=”400”
<Border CornerRadius=”30” Margin=”20” Background=”#FFA9A9A9” >
<Grid x:Name=”LayoutRoot” MinWidth=”350” Background=”#FFA9A9A9”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

156

Height=”322” Margin=”8,8,8,8”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.46*”/>
<RowDefinition Height=”0.54*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”*”/>
</Grid.ColumnDefinitions>
<StackPanel Margin=”8,8,8,4”>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”
Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox” TextWrapping=”Wrap”
Foreground=”#FF000000” Background=”#00FFFFFF” BorderBrush=”{x:Null}”
BorderThickness=”2,2,2,2”/>
</Border>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox” TextWrapping=”Wrap”
Margin=”2,2,2,2” Opacity=”1”/>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”
Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBlock Height=”Auto” Width=”Auto” Text=”TextBlock”
TextWrapping=”Wrap” Foreground=”#FF000000” Margin=”2,2,2,2”/>
</Border>
<TextBlock Height=”Auto” Width=”Auto” Text=”TextBlock”
TextWrapping=”Wrap” Margin=”2,2,2,2”/>
</StackPanel>
<Border Grid.Column=”0” CornerRadius=”10,10,10,10”
Margin=”8,8,8,8” Grid.Row=”1”>
<Border.Background>
<LinearGradientBrush EndPoint=”0.560000002384186,0.00300000002607703”
StartPoint=”0.439999997615814,0.996999979019165”>
<GradientStop Color=”#FF586C57”/>
<GradientStop Color=”#FFA3BDA3” Offset=”0.536”/>
<GradientStop Color=”#FF586C57” Offset=”0.968999981880188”/>
</LinearGradientBrush>
</Border.Background>
<StackPanel Margin=”4,4,4,4” x:Name=”FormData”>
<TextBlock Height=”Auto” Width=”Auto” Text=”First Name:”
TextWrapping=”Wrap” Margin=”2,2,2,0”/>
<TextBox Height=”Auto” Width=”Auto” Text=”” TextWrapping=”Wrap”
x:Name=”Field1” Margin=”2,0,2,4”/>
<TextBlock Height=”Auto” Width=”Auto” Text=”Last Name:”
TextWrapping=”Wrap” Margin=”2,4,2,0”/>
<TextBox Height=”Auto” x:Name=”Field2” Width=”Auto”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

157

TextWrapping=”Wrap” Margin=”2,0,2,4”/>
<TextBlock Height=”Auto” Width=”Auto” Text=”Company:”
TextWrapping=”Wrap” Margin=”2,4,2,0”/>
<TextBox Height=”Auto” x:Name=”Field3” Width=”Auto”
TextWrapping=”Wrap” Margin=”2,0,2,2”/>
</StackPanel>
</Border>
</Grid>
</Border>
</UserControl>

3-7. Using Simple Animations with Objects
Problem
You need to create dynamic UIs in Silverlight with animation.

Solution
Take advantage of the built-in animation features available in Silverlight 4.

How It Works
Silverlight has powerful animation capabilities that allow the designer or developer to animate any
property value of type Double, Color, or Point. Animation lets you vary a property between two values
over a specified period of time, thus providing the illusion of motion or transformation.

In Silverlight , the animation engine is left to interpret how to change the value over the specified
period of time between the configured values for the property that is being animated.

To apply an animation to a UI element, create a Storyboard in XAML, and set TargetName and
TargetProperty to specify the element and the property of the element to animate. Nest the animation
within the Storyboard element in XAML like this:

<Storyboard x:Name=”Rect1MouseMove”>
<DoubleAnimation BeginTime=”00:00:00.5” From=”1” To=”7”
AutoReverse=”True” Duration=”00:00:00.5”
Storyboard.TargetName=”Rect1”
Storyboard.TargetProperty=”(Shape.StrokeThickness)”/>
</Storyboard>

The TargetName and TargetProperty attributes are attached properties for the Storyboard class.
Storyboard objects are usually created as resources within either the Application.Resources or
UserControl.Resources element, making it easy to interact with the Storyboard by referencing it by the
x:Name value. The above XAML contains a DoubleAnimation object, which can animate a value of type
Double between the values configured in the From and To properties. An additional property configured
above is AutoReverse, which indicates whether the animation should automatically reverse itself and
animate in the opposite direction starting at the To value and ending at the From value. BeginTime

3

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

158

indicates how long after starting the storyboard should the animation actually begin. Duration
specifies how long the animation should take to animate between the From and To values for the
property of type Double. Also, a Storyboard can contain more than one animation, allowing one
Storyboard to animate multiple objects and properties.

The Storyboard class provides Begin, Pause, Stop, and Resume methods you can use to control the
Storyboard programmatically. For a Button Click event, the following code starts the animation:

private void Rect1_MouseEnter(object sender, MouseEventArgs e)
{
Rect1MouseMove.Begin();
}

Triggers provide an elegant way of firing an animation. Silverlight 4 supports Triggers like WPF,
where an animation is kicked off via XAML code only; but currently, the only supported event that can
be associated with a trigger is Loaded. Here is an example:

<Rectangle.Triggers>
<EventTrigger RoutedEvent=”Rectangle.Loaded”>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetName=”Rect1”
BeginTime=”00:00:00.1”
Storyboard.TargetProperty=”(UIElement.Opacity)”
From=”0.0” To=”1.0” Duration=”0:0:1” />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Rectangle.Triggers>

■ Note Keyframe animations provide greater control over animations, as we cover in Recipe 3-8.

The Code
The sample code uses a Rectangle, an Ellipse, and a copy of the StackPanel from Recipe 3-6 with a few
TextBoxes with a Border. The goal is to liven up the interface. The first property you animate is the
Opacity for all three objects in the Load event, which will make them fade in when the application
starts. You first declare a DoubleAnimation (that is, animate a value of type Double) for the Rectangle
named Rect1:

<DoubleAnimation Storyboard.TargetName=”Rect1”
BeginTime=”00:00:00.1”
Storyboard.TargetProperty=”(UIElement.Opacity)”
From=”0.0” To=”1.0” Duration=”0:0:1” />

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

159

To make the objects appear at different times after the application loads for a more dramatic
effect, configure BeginTime to 0.1 seconds for the Rectangle, 0.4 seconds for the Ellipse, and 0.8 seconds
for the StackPanel. Set the TargetProperty to the common base class UIElement.Opacity to simplify the
copying and pasting when you duplicate the animation for all three objects. Animate the Opacity
property from 0 to 1 for all three objects so that they magically appear in sequence upon load.

The Loaded event is the only RoutedEvent supported in a Trigger for Silverlight . You can read more
about RoutedEvents in the Silverlight documentation:

http://msdn.microsoft.com/en-us/library/system.windows.routedevent(VS.96).aspx

Silverlight lets you configure a Trigger in XAML for the Loaded event so that when the event fires,
you play a Storyboard that animates the Opacity for each object without having to write any code:

<Rectangle.Triggers>
<EventTrigger RoutedEvent=”Rectangle.Loaded”>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetName=”Rect1”
BeginTime=”00:00:00.1”
Storyboard.TargetProperty=”(UIElement.Opacity)”
From=”0.0” To=”1.0” Duration=”0:0:1” />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Rectangle.Triggers>

You may wonder why the Storyboard is embedded in the Rectangle declaration and not configured
as a Resource on the UserControl. The reason is that Silverlight does not support loading a value for
Storyboard using the StaticResource markup extension, which we covered in Recipe 2-9. Similar XAML
configures a trigger for the Ellipse and StackPanel as well. A screenshot doesn’t make a lot of sense
for an animation, so just run the code to see how the three objects appear sequentially in the browser.

Next, add MouseEnter and MouseLeave animations for the Rectangle and Ellipse. You create one
animation for the Rectangle and use it for both MouseEnter and MouseLeave, but you create two separate
animations for MouseEnter and MouseLeave for the Ellipse.

Because MouseEnter and MouseLeave are not RoutedEvents, create the three Storyboard objects as
resources on the UserControl; doing so keeps things tidy and provides a unique name for the x:Key
attribute so that you can reference the Storyboard objects by name. The Rectangle Storyboard changes
StrokeThickness from 1 to 7 over 0.5 seconds. Set AutoReverse to True so that it automatically reverts
back to 1, which lets you avoid creating a separate animation for MouseEnter and MouseLeave. If you
wanted the StrokeThickness to stay at 7 until the MouseLeave event fires, you would have two separate
animations and leave AutoReverse at the default value of False.

To cause the animation to take place for the desired event, add MouseEnter and MouseLeave event
handlers that call this single line of code:

Rect1MouseMove.Begin();

For the Ellipse, you animate using a ColorAnimation, but it is just as easy to create as the
DoubleAnimation:

<ColorAnimation BeginTime=”00:00:00” Duration=”00:00:00.3”
From=”#FFC18125” To=”#FF2DBD43”
Storyboard.TargetName=”Ellipse1”

http://msdn.microsoft.com/en-us/library/system.windows.routedevent

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

160

Storyboard.TargetProperty=
“(Shape.Fill).(SolidColorBrush.Color)”/>

Instead of the From and To values being a Double value, they are a SolidColorBrush.Color value
configured on the Shape.Fill property. We cover Brush objects in Recipe 3-2.

The last item to discuss is the PointAnimation used to animate a PathGeometry consisting of an
ArcSegment object. PointAnimation is no more difficult than the previous two types of animation. Here is
the code:

<Storyboard x:Name=”PathClick”>
<PointAnimation AutoReverse=”True”
Storyboard.TargetProperty=”Point”
Storyboard.TargetName=”animatedArcSegment”
Duration=”0:0:2” To=”200,200”/>
</Storyboard>

This code animates the Point property on the ArcSegment to provide an interesting effect.
To see the animations, run the Recipe 3-7 test page, and the load animations fire. Move the mouse

over the Rectangle and then move the mouse outside it, to see the DoubleAnimation alter the
StrokeThickness. Move the mouse into the Ellipse and then move the mouse outside it, to see how the
shorter duration changes the effect for the Ellipse’s Fill animation. Finally, click the blue ArcSegment
to see the PointAnimation take effect and then autoreverse. The code appears in Listings 3-7 and 3-8.

Listing 3-7. Recipe 3.7 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_7.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”300” d:DesignWidth=”400”>
<UserControl.Resources>
<Storyboard x:Name=”Rect1MouseMove”>
<DoubleAnimation BeginTime=”00:00:00.5” From=”1” To=”7”
AutoReverse=”True” Storyboard.TargetName=”Rect1”
Storyboard.TargetProperty=”(Shape.StrokeThickness)”
Duration=”00:00:00.5”/>
</Storyboard>
<Storyboard x:Name=”EllipseMouseEnter”>
<ColorAnimation BeginTime=”00:00:00” Duration=”00:00:00.3”
From=”#FFC18125” To=”#FF2DBD43”
Storyboard.TargetName=”Ellipse1”
Storyboard.TargetProperty=
“(Shape.Fill).(SolidColorBrush.Color)”/>
</Storyboard>
<Storyboard x:Name=”EllipseMouseLeave”>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

161

<ColorAnimation BeginTime=”00:00:00” Duration=”00:00:00.3” To=”#FFC18125”
Storyboard.TargetName=”Ellipse1”
Storyboard.TargetProperty=”(Shape.Fill).(SolidColorBrush.Color)”/>
</Storyboard>
<Storyboard x:Name=”PathClick”>
<PointAnimation AutoReverse=”True”
Storyboard.TargetProperty=”Point”
Storyboard.TargetName=”animatedArcSegment”
Duration=”0:0:2” To=”200,200”/>
</Storyboard>
</UserControl.Resources>
<Grid x:Name=”LayoutRoot” Background=”White”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.432*”/>
<RowDefinition Height=”0.568*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.467*”/>
<ColumnDefinition Width=”0.533*”/>
</Grid.ColumnDefinitions>
<Rectangle x:Name=”Rect1” RadiusX=”12” RadiusY=”8” Opacity=”0”
HorizontalAlignment=”Stretch” Margin=”66,30,85,49”
VerticalAlignment=”Stretch” Width=”129.2” Fill=”#FF4863AF”
Stroke=”#FF000000” d:LayoutOverrides=”Width”
MouseEnter=”Rect1_MouseEnter” MouseLeave=”Rect1_MouseLeave”>
<Rectangle.Triggers>
<EventTrigger RoutedEvent=”Rectangle.Loaded”>
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetName=”Rect1”
BeginTime=”00:00:00.1”
Storyboard.TargetProperty=”(UIElement.Opacity)”
From=”0.0” To=”1.0” Duration=”0:0:1” />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Rectangle.Triggers>
</Rectangle>
<Ellipse x:Name=”Ellipse1” HorizontalAlignment=”Stretch”
Margin=”81,30,125,40” Opacity=”0” VerticalAlignment=”Stretch”
Grid.Column=”1” Fill=”#FFC18125” Stroke=”#FF000000”
MouseEnter=”Ellipse1_MouseEnter” MouseLeave=”Ellipse1_MouseLeave”>
<Ellipse.Triggers>
<EventTrigger RoutedEvent=”Ellipse.Loaded”>
<BeginStoryboard>

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

162

<Storyboard>
<DoubleAnimation Storyboard.TargetName=”Ellipse1”
BeginTime=”00:00:00.4”
Storyboard.TargetProperty=”(UIElement.Opacity)”
From=”0.0” To=”1.0” Duration=”0:0:1” />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Ellipse.Triggers>
</Ellipse>
<StackPanel Margin=”4,4,4,4” Grid.Row=”1” Grid.Column=”0”
x:Name=”stackPanel” Opacity=”0”>
<StackPanel.Triggers>
<EventTrigger RoutedEvent=”StackPanel.Loaded” >
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Storyboard.TargetName=”stackPanel”
BeginTime=”00:00:00.8” From=”0.0” To=”1.0” Duration=”0:0:1”
Storyboard.TargetProperty=”(UIElement.Opacity)”/>
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</StackPanel.Triggers>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”
Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox”
TextWrapping=”Wrap” Foreground=”#FF000000”
Background=”#00FFFFFF” BorderBrush=”{x:Null}”/>
</Border>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”
Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox”
TextWrapping=”Wrap” Foreground=”#FF000000”
Background=”#00FFFFFF” BorderBrush=”{x:Null}”/>
</Border>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”
Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox”
TextWrapping=”Wrap” Foreground=”#FF000000”
Background=”#00FFFFFF” BorderBrush=”{x:Null}”/>
</Border>
<Border Padding=”4,4,4,4” BorderThickness=”2” Margin=”2,2,2,2”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

163

Height=”Auto” Width=”Auto” CornerRadius=”7,7,7,7”
BorderBrush=”#FF000080” Background=”#726CB167”>
<TextBox Height=”Auto” Width=”Auto” Text=”TextBox”
TextWrapping=”Wrap” Foreground=”#FF000000”
Background=”#00FFFFFF” BorderBrush=”{x:Null}”/>
</Border>
</StackPanel>
<Path Fill=”Blue” Grid.Column=”2” Grid.Row=”2” Margin=”10,10,10,10”
MouseLeftButtonDown=”Path_MouseLeftButtonDown”>
<Path.Data>
<PathGeometry>
<PathFigure>
<ArcSegment x:Name=”animatedArcSegment” Point=”50,50” Size=”50,150”
RotationAngle=”-20” IsLargeArc=”False”
SweepDirection=”Clockwise”/>
</PathFigure>
</PathGeometry>
</Path.Data>
</Path>
</Grid>
</UserControl>

Listing 3-8. Recipe 3.7 MainPage.xXaml.cs Class File

using System.Windows.Controls;
using System.Windows.Input;
namespace Ch03_DevelopingUX.Recipe3_7
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void Rect1_MouseEnter(object sender, MouseEventArgs e)
 {
Rect1MouseMove.Begin();
 }

private void Rect1_MouseLeave(object sender, MouseEventArgs e)
 {
Rect1MouseMove.Begin();
 }

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

164

private void Ellipse1_MouseEnter(object sender, MouseEventArgs e)
 {
EllipseMouseEnter.Begin();
 }

private void Ellipse1_MouseLeave(object sender, MouseEventArgs e)
 {
EllipseMouseLeave.Begin();
 }

private void Path_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
 {
PathClick.Begin();
}
 }
}

3-8. Animating UI Elements with Keyframes
Problem
You need to animate UI objects using techniques to control how an animation interpolates over time,
so that you can achieve more realistic effects like acceleration and deceleration.

Solution
Use the animation objects that support keyframes—such as the ColorAnimationUsingKeyFrames,
DoubleAnimationUsingKeyFrames, PointAnimationUsingKeyFrames, and ObjectAnimationUsingKeyFrames
classes—to create more realistic effects.

How It Works
We covered the basics of animation in Recipe 3-7. In Chapter 1, Recipe 1-5, we explained how to create
keyframe animations as part of the Expression Blend walkthrough. In this recipe, we dive deeper into
keyframe animations and explore animating multiple controls and properties in the same Storyboard,
configuring the interpolation type for the animation, and easing in, easing out, or accelerating
portions of the overall animation for fine-tuned control.

Just as in Recipe 3-7, keyframe animations work on certain types, including Color, Double, Point,
and Object with the corresponding keyframe class of ColorAnimationUsingKeyFrames,
DoubleAnimationUsingKeyFrames, PointAnimationUsingKeyFrames, and ObjectAnimationUsingKeyFrames.

Each of these classes includes a KeyFrames collection containing keyframe objects that correspond
to the type being animated, with an additional wrinkle of the algorithm used to interpolate between
keyframes.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

165

The available interpolation options are linear, discrete, and splined. Linear interpolation
animates at a constant rate for the duration of the segment. Discrete interpolation animates at
discrete intervals without interpolation over time.

Splined interpolation is more similar to linear than discrete but provides the ability to accelerate
or decelerate the animation within the duration of a segment. The spline-interpolation method has an
additional property called KeySpline that defines a Bezier curve to create more realistic effects. The
KeySpline property defines a Bezier curve with two control points that go from (0,0) to (1,1). The first
control point defines the curve factor of the first half of the curve, and the second control point defines
the curve factor for the second half of the curve; the curve factor defines the rate of change or
acceleration for the spline keyframe.

When you create an animation as demonstrated in Recipe 1-5, each keyframe in the time line has
a Common Properties section, which lists the values that are animated, as well as an Easing section,
which shows the Bezier curve for the KeySpline. Figure 3-41 shows Expression Blend animating a ball
falling to the ground and then bouncing.

When you play the animation, the ball falls with a linear speed and then bounces up and down a
few times. The bouncing action is simulated by a bunch of keyframes toward the end of the animation
time line; the keyframes move the ball up and down in smaller segments until it comes to rest. The
linear speed is a result of the default KeySpline Bezier curve (shown in the Easing Configuration
section of the properties window) that is applied to the second keyframe highlighted in the Objects and
Timeline window shown in Figure 3-41.

Figure 3-41. Animating a ball falling to the ground and bouncing

In general, the segment of the animation where the easing applies corresponds to the time line
before the currently selected keyframe point in the Objects and Timeline window. In this case, any
easing that is applied to the properties of the highlighted keyframe (the second keyframe in Figure 3-
41) is for the segment between the first and second keyframe, or between 0 and 1 seconds in the

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

166

animation time line shown in the Objects and Timeline window. Figure 3-42 shows a zoomed-in view
of the easing configuration section for this animation.

Figure 3-42. Default KeySpline Bezier curve

Notice the values set to 0 for x1, x2 and y1, y2, which corresponds to the value for the Bezier curve
control points. Valid values are Double values between 0 and 1. The x1 and y1 values represent the
beginning of the segment, or earlier in the time line. The x2 and y2 values represent the end of the
segment, or later in the time line, bounded by the selected keyframe on the right and the previous
keyframe (if there is one) on the left in the Objects and Timeline window. We cover custom easing
functions available in Silverlight 4in Recipe 3-20.

We mentioned earlier that the ball falls at a linear speed from top to bottom over a period of 1
second between the first and second keyframe. Thinking of the chart as time along the X axis and
speed along the Y axis with an origin at the lower-left corner can help you understand how to change
the values. To simulate acceleration as the ball moves from top to bottom, increase the value of x2 to
the maximum value of 1, yielding the curve shown in Figure 3-43.

Figure 3-43. Modified KeySpline Bezier curve with acceleration toward the end

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

167

Keeping in mind that time is along the X axis and speed is along the Y axis, changing x2 to 1 pulls
the curve down or slows the speed, gently increasing the speed until about two thirds of the way
through, at which point the speed increases toward infinity at the end. Increasing speed over time is
the definition of acceleration, and with this curve the falling ball looks more real. After the initial fall,
you leave the default curve for the bounce up but use the curve shown in Figure 3-43 for the remaining
shorter falls until the ball comes to rest. As you can see, splined interpolation is the most flexible
algorithm and can provide the closest approximation of complex movement in the real world.

The Code
To test the falling ball, run the Recipe 3-8 application shown in Figure 3-44 and click the button above
the blue Ellipse to drop it.

Figure 3-44. Falling ball UI

In addition to fine-tuning the animation, keyframes allow you to animate multiple values for
multiple objects for the same Storyboard. To demonstrate, add a Rectangle and two Ellipses to the
Artboard, as shown in Figure 3-45.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

168

Figure 3-45. Multianimation UI

Next, create a Storyboard named MultipleAnimations following the steps in Recipe 1-5. Include an
initial keyframe for each object. You want the two objects on the end to switch spots while the yellow
Ellipse in the middle drops to the bottom and then returns to the top. The Rectangle and Ellipse on the
ends move diagonally, switching locations back at the top, as shown by the arrows in Figure 3-45.

When the Storyboard is in recording mode, it is a matter of creating keyframes for each object either
by selecting the object in the Visual Tree and clicking the New Keyframe button or by changing a setting
on an object either via the properties window or by repositioning the object. The new keyframe is
created wherever the vertical yellow cursor is located in the Objects and Timeline window. Figure 3-46
shows the Storyboard in edit mode with the yellow time line cursor at 0 seconds, when all three objects
are animated.

Figure 3-46. Creating the multi-animation Storyboard

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

169

You can grab individual keyframes and drag left or right in the time line for an object to fine-tune
positioning in the time line. You can see the time line by changing or dragging the zoom percentage at
lower left in the time line editor. You can also multiselect keyframes and drag them left or right in
unison. Finally, if you are in Timeline recording mode and make a mistake, Edit ❜ Undo and Ctrl+Z are
your best friends and have a deep undo queue.

Run the code, and click the Start Multi-Animation button. Play with the time line keyframes,
dragging them left or right to test things out. Just remember to enter Timeline recording by clicking
Timeline Recording Is Off on the Artboard to turn on recording. If you are finished editing a
Storyboard and do not want to make any changes, you can close the Storyboard by clicking the Close
Timeline button, as shown in Figure 3-47.

Figure 3-47. Closing and zooming a Storyboard

Although you generally work with animations in XAML, the animation classes are fully
programmable in .NET managed code. For a walkthrough on how to work with animation classes in
code, check out this link in the Silverlight 4 MSDN documentation:

http://msdn.microsoft.com/en-us/library/cc189069(VS.96).aspx

The entire XAML markup was generated using Expression Blend so we do not show the full listing
of the XAML file because it all generated code. The only code in the code-behind kicks off the
animation by calling Storyboard.Begin().

3-9. Transforming an Object
Problem
You need to rotate, move, scale, or skew UI elements to produce a visual effect.

http://msdn.microsoft.com/en-us/library/cc189069

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

170

Solution
Apply a RotateTransform, ScaleTransform, SkewTransform, or TranslateTransform to alter a UI element’s
appearance.

How It Works
Silverlight supports two-dimensional Transform classes to rotate, scale, skew, and move objects. All
transformations are performed by multiplying the coordinate space of an object by a transformation
matrix. The matrix is made up of nine values in a three-by-three grid; the third column is constant, making
it an affine transformation, which in the simplest terms means that anything that was a straight line
continues to be straight after the transformation. For more information about the format of the
transformation matrix in Silverlight, see

http://msdn.microsoft.com/en-us/library/cc189037(VS.96).aspx

Silverlight provides several high-level classes to make it easy to apply the most common types of
transforms to an object. These classes are listed in Table 3-2.

Table 3-2. Available Transforms in Silverlight

Class Name Description

MatrixTransform Allows the designer or developer to create custom transformations that are
not available through the other classes in this table. The transformation
matrix is modified directly.

RotateTransform Rotates an object by the configured Angle.

ScaleTransform Scales an object by the configured amounts in the X and Y direction.

SkewTransform Skews an object by the configured angles in the X and Y direction.

TranslateTransform Moves an object by the configured amount in the X and Y direction.

TransformGroup Lets the designer or developer apply multiple Transform operations to a
single object. Note that the order of transforms listed in the group matters.
Changing the order can alter the effect.

For RotateTransform, ScaleTransform, and SkewTransform, the effect is applied in reference to the
upper-left corner or coordinate (0,0) for the object by default. You can alter the reference point by
providing values for CenterX and CenterY.

We cover MatrixTransform because it provides the greatest flexibility to aid in understanding how
transforms work. MatrixTransform explicitly sets the matrix described earlier to transform the object.
Here is a MatrixTransform with the default values for the matrix:

<TextBox Height=”Auto” Text=”TextBox” TextWrapping=”Wrap”>
<TextBox.RenderTransform>
<MatrixTransform>
<MatrixTransform.Matrix>

http://msdn.microsoft.com/en-us/library/cc189037

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

171

<Matrix M11= »1 » M12= »0 » M21= »0 » M22= »1 » OffsetX= »0 » OffsetY= »0 » />
</MatrixTransform.Matrix>
</MatrixTransform>
</TextBox.RenderTransform>
</TextBox>

The M11, M12, M21, and M22 values represent the locations in the matrix described at the URL listed
earlier. OffsetX and OffsetY change the position of the object by the specified number of pixels in
either the X (right) and/or Y (down) direction.

■ Note Positive and negative floating-point values are valid for M11, M12, M21, M22, OffsetX, and OffsetY. Start

by setting individual values with small numbers when you test it, to get a feel for how the matrix affects the object.

A shorthand notation for the preceding format is available on the MatrixTransform markup in the
form M11,M12,M21,M22,OffsetX,OffsetY, which means the previous value can also be written

<MatrixTransform Matrix=”1,0,0,1,0,0”/>

The sample code creates a MatrixTransform test bench that demonstrates how altering the values
for M11, M12, M21, M22, OffsetX, and OffsetY alter the appearance of the object. When you run the sample,
enter small values (between 0 and 2 for the M values) as well as positive and negative values to see the
generated effect. If you enter a value that seems to make the TextBox disappear, click the Reset button.

As you alter values for M11, M12, M21, M22, OffsetX, and OffsetY, you can see how the changes affect
the rendering for the TextBox, which indicates how the RotateTransform, ScaleTransform, SkewTransform,
and TranslateTransform classes perform their work under the covers. These four classes provide a
valuable service: they make the matrix math easier to work with by configuring the various properties
available on those classes to perform the desired transformation.

Just as you can apply multiple effects with MatrixTransform by changing multiple values in the
Matrix value, you can apply multiple effects with the RotateTransform, ScaleTransform, SkewTransform,
and TranslateTransform classes by grouping them within a TransformGroup object.

In addition, these four classes are much easier to animate than MatrixTransform. With
MatrixTransform, you have to do the math yourself to perform the animation, which may be nontrivial if
you’re applying multiple effects. On the other hand, the four transform classes have specific double
properties like Angle, ScaleX, and ScaleY, depending on the transform applied, that can be animated
with a DoubleAnimation or DoubleKeyframeAnimation. Recipe 3-14 covers how to animate these
transform classes.

The Code
In general, MatrixTransform should be your choice of last resort for the reasons we’ve listed.
Essentially, if you are unable to achieve the desired effect with a combination of the four higher-level
transforms, then that is the time to use MatrixTransform.

However, this sample code creates a UI that lets you exercise MatrixTransform to understand how
modifying the transform affects the UI element. Figure 3-48 shows the UI.

Enter numbers that are small, such as 0.2, to see the effect; otherwise, the transform may move the
TextBox off the visible screen. As you change different values, you skew, rotate, and otherwise move the
object, providing insight into how the RotateTransform, ScaleTransform, SkewTransform, and

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

172

TranslateTransform classes work. Listing 3-9 contains the XAML for the UI, and Listing 3-10 shows the
MainPage.xaml.cs class file.

Figure 3-48. Fun with a matrix

Listing 3-9. Recipe 3.9 MainPage.xaml

<UserControl x:Class=”Ch03_DesigningUX.Recipe3_9.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”400” d:DesignWidth=”400”>
<Grid x:Name=”LayoutRoot” Background=”White”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.49*”/>
<RowDefinition Height=”0.51*”/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

173

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”*”/>
</Grid.ColumnDefinitions>
<TextBox x:Name=”txtMatrixTransform” Height=”Auto” Margin=”115,70,187,0”
VerticalAlignment=”Top” Text=”MatrixTransform” TextWrapping=”Wrap”
HorizontalAlignment=”Stretch” d:LayoutOverrides=”Height”>
<TextBox.RenderTransform>
<MatrixTransform>
<MatrixTransform.Matrix>
<Matrix M11= »1 » M12= »0 » M21= »0 » M22= »1 » OffsetX= »0 » OffsetY= »0 »/>
</MatrixTransform.Matrix>
</MatrixTransform>
</TextBox.RenderTransform>
</TextBox>
<StackPanel Margin= »4,4,0,4 » HorizontalAlignment= »Left »
VerticalAlignment= »Stretch » Width= »99.4 » Grid.Row= »1 »>
<TextBlock Text=”M11:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<TextBlock Text=”M12:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<TextBlock Text=”M21:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<TextBlock Text=”M22:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<TextBlock Text=”OffsetX:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<TextBlock Text=”OffsetY:” TextWrapping=”Wrap” Margin=”2,2,2,2”/>
<Button Height=”Auto” Width=”Auto” Content=”Reset” Margin=”0,6,0,0”
Click=”ResetMatrix”/>
</StackPanel>
<StackPanel Grid.Row=”1” Margin=”0,4,8,4” HorizontalAlignment=”Right”
VerticalAlignment=”Stretch” Width=”286.6” d:LayoutOverrides=”Width”>
<TextBox x:Name=”txtM11” Text=”1” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<TextBox x:Name=”txtM12” Text=”0” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<TextBox x:Name=”txtM21” Text=”0” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<TextBox x:Name=”txtM22” Text=”1” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<TextBox x:Name=”txtOffsetX” Text=”0” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<TextBox x:Name=”txtOffsetY” Text=”0” TextWrapping=”Wrap” Margin=”2,2,2,2”
FontSize=”10” FontFamily=”Portable User Interface”/>
<Button Height=”Auto” Width=”Auto” Content=”Set MatrixTransform”
Margin=”2,2,2,2” Click=”ApplyMatrix”/>
</StackPanel>
</Grid>
</UserControl>

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

174

Listing 3-10. Recipe 3.9 MainPage.xaml.cs Class File

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;

namespace Ch03_DesigningUX.Recipe3_9
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void ApplyMatrix(object sender, RoutedEventArgs e)
 {
MatrixTransform mt = (MatrixTransform)txtMatrixTransform.RenderTransform;
try
 {
Matrix m = new Matrix(Convert.ToDouble(txtM11.Text),
Convert.ToDouble(txtM12.Text), Convert.ToDouble(txtM21.Text),
Convert.ToDouble(txtM22.Text), Convert.ToDouble(txtOffsetX.Text),
Convert.ToDouble(txtOffsetY.Text));
mt.Matrix = m;
 }
catch
 {
txtMatrixTransform.Text = “Invalid-retry:-)”;
ResetMatrix(sender, e);
 }
 }

private void ResetMatrix(object sender, RoutedEventArgs e)
 {
txtM11.Text = “1”;
txtM12.Text = “0”;
txtM21.Text = “0”;
txtM22.Text = “1”;
txtOffsetX.Text = “0”;
txtOffsetY.Text = “0”;
MatrixTransform mt = (MatrixTransform)txtMatrixTransform.RenderTransform;
Matrix m = new Matrix(1, 0, 0, 1, 0, 0);
mt.Matrix = m;
}
 }
}

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

175

3-10. Creating a Simple Cartoon Scene
Problem
You need to create an animated scene for a cartoon or game in Silverlight.

Solution
First, create a static display of the cartoon scene. Next, create an animation Storyboard that alters the
appropriate values for the RotateTransform, ScaleTransform, and SkewTransform classes over a period of
time using the Objects and Timeline editing tool in Expression Blend.

How It Works
When you apply a transform in Expression Blend or create a transform via code, it is static in nature
after it is applied. For example, here is a transform applied to a Rectangle:

<Rectangle Width=”50” Height=”50” Fill=”Navy”>
<Rectangle.RenderTransform>
<RotateTransform x:Name=”RotateTransform” Angle=”30”
CenterX=”25” CenterY=”25” />
</Rectangle.RenderTransform>
</Rectangle>

Figure 3-49 shows the Rectangle tilted 30 degrees.

Figure 3-49. Rectangle with transform at design time

The transform is static in that when the code runs, the Rectangle appears exactly the same.

The Code
Recall from Recipes 3-7 and 3-8 that the animation classes can animate the types Double, Color, and
Point. Animating a transform is a matter of creating a Storyboard object, picking animation class like
DoubleAnimation to animate a type of Double, and setting the key properties:

• TargetName

• TargetProperty

• From

• To

• Duration

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

176

As an example, create a Storyboard that continuously rotates a Rectangle as shown in Figure 3-49,
animating a RotateTransform to perform a full 360-degree rotation every 5 seconds with this Storyboard:

<Storyboard x:Name=”RotateStoryboard”>
<DoubleAnimation
Storyboard.TargetName=”RotateTransform”
Storyboard.TargetProperty=”Angle”
From=”0” To=”360” Duration=”0:0:5”
RepeatBehavior=”Forever” />
</Storyboard>

As you can see, it is straightforward to combine transforms with animation by editing XAML code.
However, with the Objects and Timeline editor in Expression Blend, you can record a dynamic
Storyboard to create a simple cartoon. For example, you can animate the Angle property for the
RotateTransform to simulate a rolling boulder.

The application for this recipe is a cartoon-like boulder that rolls off an edge and tumbles down a
hill with a couple of rocky bumps. First, draw the static scene in Figure 3-50 resulting in the key frames
shown in Figure 3-51.

Figure 3-50. The static cartoon scene

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

177

Figure 3-51. The boulder rolling over the edge

You next add two keyframes to simulate the boulder sliding down the side of the cliff. At the point
at which the boulder hits the first bump, apply a scale transform of 1.1 to simulate the boulder hitting
the edge. About 0.1 seconds later, scale it back to 1.0 so that the boulder appears to have a violent
collision. Figure 3-52 shows the sequence; you can see that the boulder is slightly larger in the middle
scene.

Figure 3-52. The boulder striking the bump

Continue to add keyframes by visualizing the spinning and falling action with a few smudges on
the LCD screen; this helps line up the next point to animate, which includes another bump into a rock
on the slope.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

178

An important aid in visualizing the action of the animation is the trail left by the keyframes: bright
bluish spots with smaller bluish spots in between, marking the animation flow. Change the Canvas
Background color from sky blue to black to help highlight the animation path, as shown in Figure 3-53.

Figure 3-53. The animation trail

Change the canvas back to a sky blue color, and continue with the animation. After bouncing off
the second bump, the boulder goes through a long spinning fall and finally comes to rest after colliding
with the bump at the bottom of the slope. The final cartoon scene is shown in Figure 3-54.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

179

Figure 3-54. The final cartoon scene

The FallingBoulderStoryboard object includes a total of 41 keyframes. It would be extremely
tedious and take up many pages to go through each change in every keyframe. Instead, we encourage
you to open the project from the book’s download, open the FallingBoulderStoryboard animation in
the Objects and Timeline tool window, and step through the animation visually.

Keep an eye on the rotation transform throughout the animation to see what changes are made in
addition to the location transform. The other transform that comes into play is the scale transform,
which expands and then contracts the boulder when it gets close to the bumps on the slope.

Try sliding keyframes later or earlier in the time line, either individually or as a group, to see the
effect on the cartoon scene. Also, be sure to zoom in and out for both the time line and the Artboard to
get a good view of what is happening as you slide the yellow cursor back and forth in the time line.

The cartoon probably runs a bit slowly, but this helps you see what is going on with the animation.
One area to improve would be to smooth out the rotation for the boulder. You could, for example,
calculate a rotation velocity in degrees per second and try to maintain that speed between keyframes.

All the code is automatically generated by Expression Blend (except the button-click event
attached to the button added at the end to let you kick off the animation) so we do not list out all of the
XAML. Please review the source code download to get an understanding of the amount of generated
code. The only hand-written code is a call to FallingBoulderStoryboard.Begin() in a button click
event to kick off the animation.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

180

3-11. Handling Keyboard Input
Problem
You need to capture keyboard input as part of an application UI, such as detecting when an arrow key
is pressed in an online game.

Solution
Hook into the KeyDown and KeyUp event handlers so that code can detect when a key is pressed as well
as released.

How It Works
Keyboard event-handler functions can be attached to any Silverlight 4 object that inherits either
directly or indirectly from the UIElement class. The events that are available are KeyDown and KeyUp.
KeyDown fires when a key is pressed and the Silverlight plug-in has focus in the web browser. KeyUp fires
when a pressed key is released and the Silverlight plug-in has focus in the web browser. Note that
keyboard events do not fire in Full Screen mode.

■ Note Refer to Chapter 6 to learn how to set focus on the Silverlight control from JavaScript in the browser.

Event handlers for KeyUp and KeyDown include the ubiquitous sender parameter as well as an
instance of KeyEventArgs, like this:

void OnKeyUp(object sender, KeyEventArgs e)

The object KeyEventArgs contains the following:

• Key: Returns an instance of an enumerations type of Key so that you can check for Key.Up,
Key.Down, and so on. Key represents portable key codes common across platforms.

• PlatformKeyCode: For Key values that equal Key.Unknown, represents an integer that
corresponds to the platform-specific key code.

• Handled: Set to true to stop the event from bubbling up to parent objects up the Visual Tree.

• Source: Indicates which object in the UI originally had focus when a key was pressed.

For Windows-specific platform key codes, see

http://msdn.microsoft.com/en-us/library/ms645540(VS.85).aspx

For Macintosh-specific key codes, refer to

http://go.microsoft.com/fwlink/?LinkId=97928

http://msdn.microsoft.com/en-us/library/ms645540
http://go.microsoft.com/fwlink/?LinkId=97928

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

181

You can press modifier keys, such as Ctrl and Alt, together with other keys and generate their own
keyboard events.

■ Note Shift and Ctrl are common to Windows and Macintosh, but others are unique.

You check modifier keys by accessing the Keyboard.Modifiers property using bitwise operations,
because multiple modifiers can be pressed simultaneously. This code checks to see if the modifier key
Ctrl was pushed:

if ((Keyboard.Modifiers & ModifierKeys.Control) == ModifierKeys.Control)

The keyboard events KeyDown and KeyUp are routed events that bubble up from child to parent via
the ownership chain in the Visual Tree. This means you can have a single handler for each event at the
top of the ownership chain if you intend to handle keyboard events globally.

If a specific object in the UI needs to respond to a keyboard event, the object should implement its
own KeyDown and KeyUp events. Within the events, the object should set the value of e.Handled to True for
the instance of KeyEventArgs that is passed into the handler. This stops the bubbling of the event
because it is not necessary to do so in this case.

■ Note Keyboard events are prevented from being passed to keyboard event handlers in the application as a
security feature. This prevents a Silverlight application from impersonating another application (or the entire

desktop) and collecting keyboard-entered personal or private data.

The Code
The code starts by changing the root element from a Grid to a Canvas object because you do not need
layout and you want to use coordinate positioning. Lay out a simple game UI using gradients and Path
objects to create an ice cave.

The idea of the game is to have a radioactive ball bouncing around in the cave; you try to control
the ball using the arrow keys. If the ball sits on a wall for too long, it melts the ice, and the cave
collapses. This recipe doesn’t implement the entire game, but you lay out the basic UI and set up the
beginnings of the game to receive keyboard input.

You have two options to use with the KeyDown and KeyUp events. Which one to use depends on the
type of game you are creating. The focus is using the arrow keys to provide input. If you are building a
game where the player is in complete control of the movement—say, a flying game—you may want to
use KeyDown to kick off a Storyboard or thread to keep the object moving while the key is held down. You
can use the KeyUp event to signal that the movement should end by stopping the Storyboard or
background thread.

For games where an object moves independently via some sort of artificial intelligence, if you
want to provide input to counteract the movement (in this case, to keep the radioactive ball from
touching a wall), it may be better game play to use the KeyUp event to apply discrete amounts of
movement so that the user has to click faster or slower to maintain control. This game uses this
approach first to see how it plays.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

182

As mentioned earlier, you build a game board using gradients and Path objects to create an ice
cave environment, as shown in Figure 3-55.

Figure 3-55. Ice cave static UI

Figure 3-55 is at design time in Expression Blend. Also create a simple Storyboard that animates a
rotate transform to make the RadioactiveBall object more dynamic. In addition, set the
RadioactiveBall.Visibility to Visibility.Collapsed so that it doesn’t show up when the game is
initially run.

Put a couple of messages in TextBlocks, including Click to Play; this receives a Click event to
ensure the Silverlight control has focus before kicking off the game. The Click event sets Visibility to
Visibility.Collapsed for the two TextBlocks and sets Visibility to Visibility.Visible for the
RadioactiveBall object. You also kick off the rotation Storyboard named SpinGameBallStoryboard. Here
is the Click event, and Figure 3-56 shows the application at runtime:

private void TextBlock_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
ClickToPlay.Visibility = Visibility.Collapsed ;
WelcomeMessage.Visibility = Visibility.Collapsed ;
RadioactiveBall.Visibility = Visibility.Visible;
SpinGameBallStoryboard.Begin();
}

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

183

Figure 3-56. Ice cave running in the browser

When you run the game, it seems tedious and time consuming to move the radioactive ball around
the scene, but that’s because the radioactive ball does not have any artificial intelligence and doesn’t
move on its own. Imagine the ball flying around at different speeds while you push the arrow keys
faster or slower to redirect the ball, keeping it off the walls for an ever-increasing period of time as
you advance through levels. Each level could have a smaller cave through the use of a scale transform
to make the four sides smaller.

Control over the RadioactiveBall object is broken into two separate handlers. One is the
GameCanvas_KeyUp event handler that receives the KeyUp event, evaluates the Key, and performs some
basic collision detection with the edges:

private void GameCanvas_KeyUp(object sender, KeyEventArgs e)
{
switch (e.Key)
 {
case Key.Right: if ((leftPosition) <= (this.ActualWidth –

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

184

(RadioactiveBall.Width*1.25)))
leftPosition += moveSpeed;
break;
case Key.Left: if (leftPosition >= (RadioactiveBall.Width * .25))
leftPosition -= moveSpeed;
break;
case Key.Up: if (topPosition >= (RadioactiveBall.Height * .25))
topPosition -= moveSpeed;
break;
case Key.Down: if (topPosition <= (this.ActualHeight - (RadioactiveBall.Height*1.25)))
topPosition += moveSpeed;
break;
 }
Draw();
}

The other method, Draw, repositions the RadioactiveBall object to the new positions, which may be
the current position due to collision detection. The only other interesting code is in the MainPage
constructor; it wires up the KeyUp event handler and gets the initial position of the RadioactiveBall
object:

this.KeyUp += new KeyEventHandler(GameCanvas_KeyUp);
//Get initial position
leftPosition = (double)RadioactiveBall.GetValue(Canvas.LeftProperty);
topPosition = (double)RadioactiveBall.GetValue(Canvas.TopProperty);

That’s it for the code in the code-behind file. The rest of the application is the resulting markup,
which we do not show because it is all generated from the work in Expression Blend.

3-12. Working with Ink
Problem
You want to letusers draw directly on your Silverlight application in the web browser to allow image or
video markup and handwriting recognition.

Solution
Use the InkPresenter control and associated events in your Silverlight application to collect and process
strokes. For handwriting recognition, use a Windows Communication Foundation (WCF) service to
perform the handwriting recognition on the server side of the application and return the results to a
Silverlight application.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

185

How It Works
The term stroke when talking about ink refers to the process of putting a pen or stylus to a touch
screen, moving it across the screen by either writing or making annotations, and then lifting it off the
screen. Each stylus-down, move-across-the-screen, stylus-up cycle is an ink stroke. For computers that
do not have a touch screen, clicking the mouse button, holding the mouse button down, moving across
the screen, and then releasing the mouse button creates an ink stroke.

■ Note Note that using a stylus on a tablet computer or digitizer results in much higher resolution than what a
user achieves using a mouse, allowing for additional detail. Be sure to test your applications on a tablet PC as well

as with a mouse on a desktop computer.

The InkPresenter object makes inking possible in an application. Ink strokes are stored as a
collection that is part of the InkPresenter. If you drop an InkPresenter onto an application, run it, and
try inking, nothing happens, because strokes are collected via the InkPresenter’s events and methods.

Since .NET Framework 3.0, WPF provides great support for ink in desktop applications. Silverlight
is a cross-browser, cross-platform programmatic subset of WPF, but one thing that WPF has that
Silverlight does not is handwriting recognition. This is not a major limitation, because Silverlight is a
web technology. Strokes can be sent back to the server for processing within a WCF service that makes
the appropriate calls into the .NET Framework WPF assemblies to perform recognition and return the
text to the Silverlight application. This MSDN article provides an example of sending strokes to a
server for handwriting-recognition processing:

http://msdn.microsoft.com/en-us/magazine/cc721604.aspx

InkPresenter is based on a Canvas object, but it is transparent by default and does not have a
configurable Fill property. Therefore, InkPresenter is used in conjunction with other objects like
Image, MediaElement, Canvas, and Border to provide a visible UI.

The Code
This recipe’s sample code starts by expanding the size of the default Silverlight application to 800 by
600 pixels and dividing the Grid into two rows and two columns. In Grid.Column 0 and Grid.Row 0, you
place a Border with a simple gradient; place an InkPresenter inside the Border to provide an
appearance of a drawing or writing surface.

As we mentioned earlier, you must use the events and methods of InkPresenter to process and
collect strokes. The important events are MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp. Here
are the steps:

1. In MouseLeftButtonDown, create a new stroke, and add it to the InkPresenter’s
StrokeCollection.

2. In MouseMove, add StylusPoints to the newly added stroke as the mouse moves around.

3. In MouseLeftButtonUp, complete the newly added stroke.

Name the InkPresenter object InkEssentials and wire up handlers for the three events to the
XAML in Visual Studio 2010:

<InkPresenter x:Name=”InkEssentials” Background=”Transparent”

http://msdn.microsoft.com/en-us/magazine/cc721604.aspx

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

186

MouseLeftButtonDown=”InkEssentials_MouseLeftButtonDown”
MouseMove=”InkEssentials_MouseMove” Height=”Auto” Width=”Auto”
MouseLeftButtonUp=”InkEssentials_MouseLeftButtonUp” />

■ Note You must set the Background property on the InkPresenter to a value, any value, for the

InkPresenter to receive mouse events and the ink functionality to work.

In the MainPage.xaml.cs file, you implement the code to perform the three steps. In the
MouseLeftButtonDown event, the sender is passed in as well as an event argument object of type
MouseButtonEventArgs. The MouseButtonEventArgs object provides access to a copy of the stylus or mouse
points generated as the mouse or stylus is moved across the screen via the
e.StylusDevice.GetStylusPoints method.

The first step is to have the InkPresenter attempt to capture the mouse by calling CaptureMouse.
That lets you respond to the MouseMove event and capture the generated stylus or mouse points as the
mouse or stylus is moved across the screen:

private void InkEssentials_MouseLeftButtonDown(object sender,

MouseButtonEventArgs e)
{
InkEssentials.CaptureMouse();
_currentStroke = new System.Windows.Ink.Stroke();
//Change color of the stroke and stroke outline
_currentStroke.DrawingAttributes.Color = Colors.Orange;
_currentStroke.DrawingAttributes.OutlineColor = Colors.Black;
_currentStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkEssentials));
InkEssentials.Strokes.Add(_currentStroke);
}

In the MouseLeftButtonDown event, you copy the collected mouse or stylus points and add them to
the current Stroke so that the Stroke can be drawn at the same points where the mouse or stylus moves,
creating the effect of inking. As the mouse moves, you collect additional points in the MouseMove event:

private void InkEssentials_MouseMove(object sender, MouseEventArgs e)
{
if (null != _currentStroke)
 {
_currentStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkEssentials));
 }
}

private void InkEssentials_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

187

{
_currentStroke = null;
InkEssentials.ReleaseMouseCapture();
}

When the user has finished inking or writing on the screen, they release the left mouse button,
causing the MouseLeftButtonUp event to fire. When this event fires, you set the currentStroke variable
to null because you have finished with that stroke. Because you are finished, you call
ReleaseMouseCapture to stop collecting mouse or stylus point locations.

When you run the application, you can ink on the browser surface, as shown in Figure 3-57.

Figure 3-57. Basic ink functionality in Silverlight 4

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

188

Notice the orange ink with the black outline. The default is black ink, but when you create the
stroke, you modify the DrawingAttributes in this code:

_currentStroke.DrawingAttributes.Color = Colors.Orange;
_currentStroke.DrawingAttributes.OutlineColor = Colors.Black;

Next, add another InkPresenter with an Image object behind it to provide a background. Write
similar code to handle the MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp events. Listings 3-
11 and 3-12 show the code, and Figure 3-58 shows the output.

Figure 3-58. InkPresenter with Image background

Listing 3-11. Recipe 3.12 MainPage.xaml File

<UserControl x:Class=”Ch03_DesigningUX.Recipe3_12.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
d:DesignHeight=”800” d:DesignWidth=”600”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

189

mc:Ignorable=”d”>
<Grid x:Name=”LayoutRoot” Background=”White”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.502*”/>
<RowDefinition Height=”0.498*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.5*”/>
<ColumnDefinition Width=”0.5*”/>
</Grid.ColumnDefinitions>
<Border Margin=”4,4,4,4” CornerRadius=”10,10,10,10” Padding=”0,0,0,0” >
<Border.Background>
<LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
<GradientStop Color=”#FF767373” Offset=”0.004”/>
<GradientStop Color=”#FF1A1818” Offset=”1”/>
<GradientStop Color=”#FF888686” Offset=”0.473”/>
</LinearGradientBrush>
</Border.Background>
<InkPresenter x:Name=”InkEssentials” Background=”Transparent”
MouseLeftButtonDown=”InkEssentials_MouseLeftButtonDown”
MouseMove=”InkEssentials_MouseMove” Height=”Auto” Width=”Auto”
MouseLeftButtonUp=”InkEssentials_MouseLeftButtonUp” />
</Border>
<Image Margin=”4,4,4,4” Grid.Column=”1” x:Name=”Picture”
Source=”/img/VerticalLandscape.jpg”/>
<InkPresenter Margin=”4,4,4,4” Grid.Column=”1” x:Name=”InkPicture”
MouseLeftButtonDown=”InkPicture_MouseLeftButtonDown”
MouseMove=”InkPicture_MouseMove” Background=”Transparent”
MouseLeftButtonUp=”InkPicture_MouseLeftButtonUp”/>
</Grid>
</UserControl>

Listing 3-12. Recipe 3.12 MainPage.xaml.cs Class File

using System.IO.IsolatedStorage;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;
namespace Ch03_DesigningUX.Recipe3_12
{
public partial class MainPage : UserControl
 {
private System.Windows.Ink.Stroke _currentStroke;
private System.Windows.Ink.Stroke _currentImageStroke;
private IsolatedStorageSettings settings =

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

190

IsolatedStorageSettings.ApplicationSettings;
private string setting = “Ink”;
private string FormDataFileName = “ImageInk.data”;
private string FormDataDirectory = “InkData”;

public MainPage()
 {
InitializeComponent();
 }
private void InkEssentials_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
 {
InkEssentials.CaptureMouse();
_currentStroke = new System.Windows.Ink.Stroke();
//Change color of the stroke and stroke outline
_currentStroke.DrawingAttributes.Color = Colors.Orange;
_currentStroke.DrawingAttributes.OutlineColor = Colors.Black;
_currentStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkEssentials));
InkEssentials.Strokes.Add(_currentStroke);
 }

private void InkEssentials_MouseMove(object sender, MouseEventArgs e)
 {
if (null != _currentStroke)
 {
_currentStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkEssentials));
 }
 }

private void InkEssentials_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
 {
_currentStroke = null;
InkEssentials.ReleaseMouseCapture();
 }

private void InkPicture_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
 {
InkPicture.CaptureMouse();
_currentImageStroke = new System.Windows.Ink.Stroke();
_currentImageStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkPicture));
InkPicture.Strokes.Add(_currentImageStroke);
 }

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

191

private void InkPicture_MouseMove(object sender, MouseEventArgs e)
 {
if (null != _currentImageStroke)
 {
_currentImageStroke.StylusPoints.Add(
e.StylusDevice.GetStylusPoints(InkPicture));
 }
 }

private void InkPicture_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
_currentImageStroke = null;
InkPicture.ReleaseMouseCapture();
 }
 }
}

3-13. Adding 3-D Effects to UI Elements

Problem
You want to add three-dimensional effects to UI elements in your Silverlight application.

Solution
Use the new perspective transforms feature in Silverlight to simulate displaying and moving UI
elements in 3-D space.

How It Works
WPF has full support for 3-D graphics as well as perspective transforms to simulate 3-D effects.
Silverlight 3 added support for perspective transforms, which more easily let Silverlight developers
simulate moving objects in 3-D effects.

■ Note Silverlight does not support true 3-D graphics like WPF or DirectX. However, with perspective

transforms, you can achieve some very interesting effects.

The UIElement base class adds a property named Projection that is of type
System.Windows.MediaProjection, which is an abstract base class. This property sets the perspective
projection to apply when rendering the UIElement or descendent object. The Projection base class has
two descendents that can be assigned to the UIElement.Projection property: Matrix3DProjection and
PlaneProjection.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

192

Matrix3DProjection is a wrapper class around a Matrix3D class. The Matrix3D class represents a 4 x
4 matrix. It can be used to create a standard Translate, Scale, Rotate, or Perspective matrix for
transformations in 3-D space and should be familiar to game developers or anyone who programs
software in 3-D space.

For more information about creating and working with 3-D matrixes, please refer to the DirectX
documentation or a book that covers 3-D development:

http://msdn.microsoft.com/en-us/directx/default.aspx

The Matrix3DProjection class provides a way to apply an arbitrary 3-D matrix to a UIElement,
allowing you to create highly customized transformations. The Matrix3DProjection has a minimal API,
so you must write the code that correctly creates the necessary 3D transforms to achieve the desired
affect.

If you do not need to support customized 3-D matrices, you can still easily apply 3-D effects via the
PlaneProjection class. With the PlaneProjection class, you can create the illusion that an object is
rotating toward or away from the user. The PlaneProjection object can be used to apply a static
transformation to skew an object in 3-D. You can use this method to create a UI where objects appear
to be stacked in 3-D space by applying unique PlaneProjection values. Combining the PlaneProjection
class with Storyboard object lets you animate properties of the PlaneProjection class to create the
illusion that a UIElement is moving through 3-D space.

The Code
In this recipe, you take advantage of the new Silverlight Navigation Application template to create a couple
of examples to help you better understand how to work with projections and perspective transforms.

The first example, shown in Figure 3-59, allows the user to apply rotation to the picture with a
slider for the X, Y, and Z planes.

Notice that the values displayed for the amount of rotation in the X, Y, and Z planes are three-digit
integers. Originally, the values were a one, two, or three-digit number on the left side of the decimal
and a large number of digits to the right of the decimal point. Because the decimal values are not
important, we wrote a simple value converter for Silverlight 3 to truncate the decimal values and force
it to display a three-digit integer. In Silverlight 4, we take advantage of the StringFormat property for
the Binding markup extension. This allows us to change this line of code:

{Binding Value, ElementName=YaxisSlider,
Converter={StaticResource DecimalFormatConverter}}”>

to this line of code:

{Binding Value, ElementName=YaxisSlider,
StringFormat=000}”>

http://msdn.microsoft.com/en-us/directx/default.aspx

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

193

Figure 3-59. Static 3-D transform test page

You apply the slider values programmatically in the code-behind file because it is not possible to
databind elements directly with the PlaneProjection’s RotationX, RotationY, and RotationZ properties.
The reason is that these are not DependencyProperties but are instead simple .NET properties. Listing
3-13 shows the Static3DTransform XAML file.

Listing 3-13. Recipe 3.13 Static3DTransform.xaml File

<navigation:Page
x:Class=”Ch03_DevelopingUX.Recipe3_13.Static3DTransform”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
xmlns:navigation=
“clr-namespace:System.Windows.Controls;assembly=
System.Windows.Controls.Navigation”
mc:Ignorable=”d” d:DesignWidth=”640” d:DesignHeight=”480”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

194

Title=”Static 3D Transform”
Style=”{StaticResource PageStyle}”>
<navigation:Page.Resources>
<Color x:Key=”CustomGreen”>#FFADFA97</Color>

</navigation:Page.Resources>
<Grid x:Name=”LayoutRoot”>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.831*”/>
<ColumnDefinition Width=”0.169*”/>
</Grid.ColumnDefinitions>
<Image HorizontalAlignment=”Left”
VerticalAlignment=”Top” Margin=”60”
Source=”/Ch03_DevelopingUX.Recipe3_13Component/Assets/image.jpg”
MaxWidth=”452” MaxHeight=”339” Width=”400”>
<Image.Projection>
<PlaneProjection x:Name=”ImageRotation”/>
</Image.Projection>
</Image>
<StackPanel Grid.Column=”1” Orientation=”Vertical”>
<Border Background=”#FF1A1A1A” CornerRadius=”12” Width=”106”>
<StackPanel Margin=”4” >
<StackPanel Orientation=”Horizontal”>
<TextBlock Text=”X” Margin=”13”>
<TextBlock.Foreground>
<SolidColorBrush Color=
“{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
<TextBlock Text=”Y” Margin=”13”>
<TextBlock.Foreground>
<SolidColorBrush Color=”
{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
<TextBlock Text=”Z” Margin=”13”>
<TextBlock.Foreground>
<SolidColorBrush Color=
“{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
</StackPanel>
<Rectangle Height=”4” Fill=”#FFD21416” Margin=”2,0”></Rectangle>
<StackPanel Orientation=”Horizontal”>
<TextBlock Margin=”5,0,5,0” Text=

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

195

“{Binding Value, ElementName=XaxisSlider,
Converter={StaticResource DecimalFormatConverter}}”>
<TextBlock.Foreground>
<SolidColorBrush Color=
“{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
<TextBlock Margin=”7,0,5,0” Text=
“{Binding Value, ElementName=YaxisSlider,
Converter={StaticResource DecimalFormatConverter}}”>
<TextBlock.Foreground>
<SolidColorBrush Color=
“{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
<TextBlock Margin=”7,0,5,0” Text=
“{Binding Value, ElementName=ZaxisSlider, Converter=
{StaticResource DecimalFormatConverter}}”>
<TextBlock.Foreground>
<SolidColorBrush Color=
“{StaticResource CustomGreen}”/>
</TextBlock.Foreground>
</TextBlock>
</StackPanel>
</StackPanel>
</Border>
<Border CornerRadius=”20” Margin=”2” MinHeight=”320” Width=”104”>
<Border.Background>
<LinearGradientBrush EndPoint=”-1.038,0.5”
StartPoint=”2.038,0.5”>
<GradientStop Color=”#FF7AC367” Offset=”0.403”/>
<GradientStop Color=”#FF7AC367” Offset=”0.562”/>
<GradientStop Color=”#FF44B324” Offset=”0.313”/>
<GradientStop Offset=”0.665” Color=”#FF44B324”>
</GradientStop>
<GradientStop Color=”#FF73B962” Offset=”0.472”/>
</LinearGradientBrush>
</Border.Background>
<StackPanel Orientation=”Horizontal” >
<Slider x:Name=”XaxisSlider” HorizontalAlignment=”Left”
Margin=”8”
Orientation=”Vertical” Maximum=”360” LargeChange=”18”
ValueChanged=”XaxisSlider_ValueChanged” SmallChange=”1” />
<Slider x:Name=”YaxisSlider” HorizontalAlignment=”Left”
Margin=”8”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

196

Orientation=”Vertical” Maximum=”360” LargeChange=”18”
ValueChanged=”YaxisSlider_ValueChanged” SmallChange=”1”/>
<Slider x:Name=”ZaxisSlider” HorizontalAlignment=”Left”
Margin=”8”
Orientation=”Vertical” Maximum=”360” LargeChange=”18”
ValueChanged=”ZaxisSlider_ValueChanged” SmallChange=”1”/>
</StackPanel>
</Border>
</StackPanel>
</Grid>
</navigation:Page>

Listing 3-14 contains the Static3DTransform XAML code file.

Listing 3-14. Recipe 3.13 Static3DTransform.xaml.cs Code File

using System.Windows;
using System.Windows.Controls;
using System.Windows.Navigation;

namespace Ch03_DevelopingUX.Recipe3.Views_13
{
public partial class Static3DTransform : Page
 {
public Static3DTransform()
 {
InitializeComponent();
 }
// Executes when the user navigates to this page.
protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
private void XaxisSlider_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
 {
ImageRotation.RotationX = e.NewValue;
 }
private void YaxisSlider_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
 {
ImageRotation.RotationY = e.NewValue;
 }
private void ZaxisSlider_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
 {
ImageRotation.RotationZ = e.NewValue;

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

197

 }
 }
}

The other example in this recipe demonstrates dynamic 3-D transformations using a Storyboard
that projects two images rotating in 3-D space. Figure 3-60 shows the UI that lets you start an
animation that rotates two images in 3-D space.

Figure 3-60. Dynamic 3D transform test page

The only code is for the buttons to control the storyboard. All the movement is contained in a
Storyboard that animates over the RotationY, RotationZ, and Global Offset X and Y values.

The first example demonstrated how RotationY and RotationZ parameters. The Global Offset X
and Y values control how the object appears as it is offset along the X, Y, and Z axes in 3-D space.

■ Note X values increase from left to right. Y values increase from top to bottom. Z axis values increase toward

the user and decrease as an object moves further away.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

198

To create the Storyboard in Expression Blend, orient the pictures opposite each other with a slight
decline, using the RotationY and RotationZ properties to make the objects appear to face each other.
The objects are not visible initially because they have a (+/-) 90-degree RotationY value, depending on
the object.

Create the Storyboard time line with four keyframes 1 second apart, for a total of 4 seconds of
rotation. The first and last keyframes have the same values to force the picture back to its original
position. The other three keyframes change RotationY in 90-degree increments to give the appearance
of revolving around a center point but always facing the center. RotationZ changes from 10 to 0 to
emphasize the object either being closer or further away on the Z axis.

The other properties animated are the Global Offset X and Z values, because you want the pictures
to move along a constant Y value (rotate left and right) while appearing closer when at the front and
further away when at the back. You wrap the whole animation in a 3-D–looking room and use
gradients to simulate depth. We do not show the XAML file because it is auto-generated. We also do not
show the code file because it is simple Storyboard start and stop code. Please review the code in the
source code archive that accompanies this book to see the details.

We do not cover MainPage.xaml or MainPage.xaml.cs because they wire up the navigation
application template, which we cover in Chapter 6.

3-14. Dynamically Creating Bitmaps
Problem
You need to create bitmap images directly at runtime in your Silverlight application.

Solution
Use the new WriteableBitmap object in Silverlight to create bitmap images at runtime.

How It Works
Silverlight 2 does not have the ability to create bitmaps at runtime. With Silverlight 4, you can use the
WriteableBitmap class to create a new bitmap image in custom code or from other elements in the UI.
To use the WriteableBitmap class, include the System.Windows.Media.Imaging namespace.

To create a custom bitmap from an element in the UI, you can use this constructor:

WriteableBitmap bmp = new WriteableBitmap(LayoutRoot, null);

LayoutRoot is the default name of the root Grid control in a new Silverlight application, so any UI
elements contained in LayoutRoot are included in the created bitmap image. You specify null for the
Transform to be applied to the image; however, you can specify a Transform that is applied as the last
part of the operation, meaning the bitmap is created and then the Transform is applied. As an example,
you can apply a transform that creates a reflection of the UI element from which the bitmap is created.

The other constructors available for WriteableBitmap take either a BitmapSource object or height
and width values as a place holder for content that is created. The BitmapSource class is an abstract
class, so the object to work with is the BitmapImage class. You can load a JPEG or PNG image into a
BitmapImage by URI or using a stream.

The other WriteableBitmap constructor takes a height and width, which are used to generate the
appropriate-sized Pixels property that points to an array of integers representing the image. With this
constructor, you have a blank slate of pixels on which you can set values to create an image for more
direct image control.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

199

The Code
The example for this recipe imports a PNG or JPEG image into the application. It gives the user an
option to add a watermark to the image and then save the image in a custom format. The user can clear
the image and then reload the saved image with the watermark. Figure 3-61 shows the UI after
importing an image.

Figure 3-61. The sample UI after importing an image

Figure 3-62 shows the UI after adding a watermark to the image; it says, “Silverlight 4 Rocks!!!”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

200

Figure 3-62. The sample UI after importing an image

Listing 3-15 shows the XAML file.

Listing 3-15. Recipe 3.14 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_14.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
<Grid x:Name=”LayoutRoot”>
<Grid.Background>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

201

<LinearGradientBrush EndPoint=”-0.131,-0.123” StartPoint=”1.215,1.232”>
<GradientStop Color=”#FF000000”/>
<GradientStop Color=”#FFFFFFFF” Offset=”1”/>
</LinearGradientBrush>
</Grid.Background>
<Grid.RowDefinitions>
<RowDefinition Height=”0.075*”/>
<RowDefinition Height=”0.832*”/>
<RowDefinition Height=”0.093*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width=”0.059*”/>
<ColumnDefinition Width=”0.890*”/>
<ColumnDefinition Width=”0.051*”/>
</Grid.ColumnDefinitions>
<TextBlock Margin=”8,4” Grid.Column=”1” Grid.Row=”2” Text=”Status”
TextWrapping=”Wrap” x:Name=”StatusLabel” VerticalAlignment=”Center”/>
<Border Grid.Column=”1” Grid.Row=”1” Margin=”8” CornerRadius=”12”
x:Name=”ImageContainer” Width=”600” Height=”600”>
<Border.Background>
<LinearGradientBrush EndPoint=”0.035,-0.031” StartPoint=”1.649,2.131”>
<GradientStop Color=”#FF1D351E”/>
<GradientStop Color=”#FF1D351E” Offset=”1”/>
<GradientStop Color=”#FFB7D8BA” Offset=”0.50900000333786011”/>
</LinearGradientBrush>
</Border.Background>
<Grid>
<Image x:Name=”ImageContent” Stretch=”UniformToFill” Margin=”12”/>
<TextBlock TextWrapping=”Wrap” Margin=”8” RenderTransformOrigin=”0.5,0.5”
FontSize=”16” FontWeight=”Bold” Foreground=”#FF000BFF”
x:Name=”txtBlockWatermark” Text=”Silverlight 4 Rocks!!!!”
TextAlignment=”Center” d:LayoutOverrides=”GridBox”
VerticalAlignment=”Bottom” Visibility=”Collapsed”/>
</Grid>
</Border>
<StackPanel Margin=”8,4” Grid.Column=”1” Orientation=”Horizontal”>
<Button Margin=”2,2,6,2” Content=”Import File” x:Name=”ButtonImportFiles”
Click=”ButtonImportFile_Click”/>
<Button x:Name=”btnSaveCustomFile” Click=”btnSaveCustomFile_Click”
Content=”Save File” Margin=”8,2,2,2”/>
<Button x:Name=”btnOpenCustomFile” Click=”btnOpenCustomFile_Click”
Content=”Open File” Margin=”2”/>
<Button x:Name=”btnClearImage”
Content=”Clear Image” Margin=”16,2,2,2” Click=”btnClearImage_Click”/>
<Button x:Name=”btnAddWatermark”

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

202

Content=”Add Watermark” Margin=”2” Click=”btnAddWatermark_Click”/>
<TextBox x:Name=”textWatermark” Margin=”2” Width=”202”
HorizontalContentAlignment=”Left” Height=”24”/>
</StackPanel>
</Grid>
</UserControl>

Listing 3-16 shows the code-behind, which we cover next.

Listing 3-16. Recipe 3.14 MainPage.xaml.cs File

using System;
using System.IO;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Media.Imaging;

namespace Ch03_DevelopingUX.Recipe3_14
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void ButtonImportFile_Click(object sender, RoutedEventArgs e)
 {
txtBlockWatermark.Visibility = Visibility.Collapsed;
//Create dialog
OpenFileDialog fileDlg = new OpenFileDialog();
//Set file filter as desired
fileDlg.Filter = “Png Files (*.png)|*.png|Jpeg Files (*.jpg)|*.jpg”;
fileDlg.FilterIndex = 1;
//Allow multiple files to be selected (false by default)
fileDlg.Multiselect = false;

//Show Open File Dialog
BitmapImage img = new BitmapImage();
if (true == fileDlg.ShowDialog())
 {
StatusLabel.Text =
fileDlg.File.Name + “ selected”;

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

203

using (FileStream reader = fileDlg.File.OpenRead())
 {
img.SetSource(reader);
 }
ImageContent.Source = img;
 }
 }

private void btnSaveCustomFile_Click(object sender, RoutedEventArgs e)
 {
SaveFileDialog sfd = new SaveFileDialog();
sfd.Filter = “sl3 Files (*.sl3)|*.sl3”;
sfd.FilterIndex = 1;

WriteableBitmap bmp = new WriteableBitmap(ImageContainer, null);
if (true == sfd.ShowDialog())
 {
byte[] flattend = null;
flattend = bmp.Pixels.SelectMany((p)=>BitConverter.GetBytes(p)).ToArray();
using (Stream fs = sfd.OpenFile())
 {
fs.Write(flattend, 0, flattend.Length);
fs.Flush();
fs.Close();
 }
 }
 }

private void btnOpenCustomFile_Click(object sender, RoutedEventArgs e)
 {
txtBlockWatermark.Visibility = Visibility.Collapsed;
OpenFileDialog fileDlg = new OpenFileDialog();
fileDlg.Filter = “sl4 Files (*.sl4)|*.sl4”;
fileDlg.FilterIndex = 1;
fileDlg.Multiselect = false;

if (true == fileDlg.ShowDialog())
 {
StatusLabel.Text =
fileDlg.File.Name + “ selected”;
using (FileStream reader = fileDlg.File.OpenRead())
 {
WriteableBitmap wrtBmp = null;
wrtBmp = new WriteableBitmap(ImageContainer, null);
byte[] fourBytes = new byte[4];

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

204

int byteCounter = 0;
int intCounter = 0;

while (byteCounter < reader.Length - 1)
 {
reader.Read(fourBytes,0, 4);
wrtBmp.Pixels[intCounter] = BitConverter.ToInt32(fourBytes, 0);
intCounter++;
byteCounter += 4;
 }
ImageContent.Source = wrtBmp;
 }
 }
 }
private void btnClearImage_Click(object sender, RoutedEventArgs e)
 {
txtBlockWatermark.Visibility = Visibility.Collapsed;
txtBlockWatermark.Text = “”;
ImageContent.Source = null;
 }

private void btnAddWatermark_Click(object sender, RoutedEventArgs e)
 {
txtBlockWatermark.Visibility = Visibility.Visible;
txtBlockWatermark.Text = textWatermark.Text;
 }
 }
}

The ButtonImportFile_Click event handler that imports an image uses the OpenFileDialog to let a
user browse to a file. After a file is chosen, it is loaded into an image using a FileStream object with this
code:

img.SetSource(reader);

The btnSaveCustomFile_Click event handler uses the new SaveFileDialog to allow the user to save
the file outside of isolated storage in their file system. We cover the SaveFileDialog in Recipe 2-18.
When you have a location to save the file, you can use a stream to save the bitmap bits stored in the
WritableBitmap.Pixels property. The Pixels property is an array of integers, so you convert the int
array to a byte array using the BitConverter with LINQ:

flattend = bmp.Pixels.SelectMany(
(p)=>BitConverter.GetBytes(p)).ToArray();

The btnOpenCustomFile_Click event handler does the opposite by reading bytes four at a time and
using the BitConverter to convert the four bytes to an int. Each int is then set in order in the Pixels int
array:

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

205

using (FileStream reader = fileDlg.File.OpenRead())
{
WriteableBitmap wrtBmp = null;
wrtBmp = new WriteableBitmap(ImageContainer, new TranslateTransform());
byte[] fourBytes = new byte[4];
int byteCounter = 0;
int intCounter = 0;

while (byteCounter < reader.Length - 1)
 {
reader.Read(fourBytes,0, 4);
wrtBmp.Pixels[intCounter] = BitConverter.ToInt32(fourBytes, 0);
intCounter++;
byteCounter += 4;
 }

When all of the bytes have been processed, the WriteableBitmap is set as the Source on the Image
element. Note that the file format is not compatible with any of the standardized file formats. This can
be remedied by implementing an encoder/decoder for a standard file format and obtaining raw
bitmap data from the WriteableBitmap.Pixels property.

For simplicity, the code assumes a fixed size for the image based on the ImageContainer UI element.
For a resizable UI, you also have to save the height and width of the image when saving and then use
those values to instantiate a WritableBitmap object with the correct dimensions in its constructor. You
can add the dimensions to the stream as the first two bytes; with a little additional coding, you can have
a more flexible custom format for internal use in an application.

3-15. Improving Graphic Animation and Video Performance
Problem
You want to maximize performance for graphic animations and video streaming.

Solution
Take advantage of the support for hardware acceleration and bitmap caching available in Silverlight 4

How It Works
Silverlight 2 did not take advantage of hardware acceleration available in today’s video display
adapters. Silverlight 3 and later lets you take advantage of the available display hardware, processor,
and video memory, to improve performance of Silverlight applications.

To enable GPU acceleration, configure the Silverlight 4 plug-in by adding this parameter to the
standard <OBJECT> declaration:

<param name=”enableGPUAcceleration” value=”true” />

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

206

To take advantage of GPU acceleration, configure the UIElement.CacheMode property by
configuring it to BitmapCache, which is the only valid option:

CacheMode=”BitmapCache”

This setting caches visual elements as bitmaps after the first time they render. After an object is
cached as a bitmap, it no longer goes through the rendering phase; the cached version on the GPU is
displayed instead, potentially yielding significant performance improvements.

A related option that you can configure on the Silverlight plug-in is the enableCacheVisualation
parameter. When set to True, it tints non-accelerated parts of the UI red.

The Code
To demonstrate how to configure an application as well as the potential performance improvements,
you create a simple application that animates some sample XAML from Expression Design. Figure 3-63
shows the UI.

When you run the application without enabling GPU acceleration, a check in Windows Task
Manager shows CPU utilization between 20% and 40%, mostly hovering around 25% to 30%.

Figure 3-63. The sample UI

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

207

Configure enableGPUAcceleration to True, and test again. The results are the same, as expected.
Next, set CacheMode=”BitmapCache” on LayoutRoot (the root Grid control) to try enabling bitmap caching
for the entire application, which consists of a gradient configured on LayoutRoot and a Canvas that
contains the pineapple. Also enable the visualization parameter to observe what parts of the UI are
accelerated:

<param name=”enableCacheVisualization” value=”true” />

When you run the UI, it looks exactly like Figure 3-63 without any red tint, because the entire UI is
accelerated; however, you do not see any noticeable performance improvement. Next, move the
CacheMode=”BitmapCache” attribute to the Canvas object that contains the XAML for the pineapple. Figure
3-64 shows the UI with the background tinted red because it is not accelerated—only the pineapple is
accelerated.

Figure 3-64. The GPU accelerated pineapple

In this test run, you see a very noticeable performance improvement: CPU utilization drops to just
a few percentage points, trending between 0% and 2%, which is much improved over the non-
accelerated test. This goes to show that you should not apply the BitmapCache without validating the
resulting performance improvements using the visualization parameter. Be sure to set the
visualization parameter to false to remove the red tint for non-accelerated UI elements.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

208

Note that if you run the same test by applying the BitmapCache attribute to a MediaElement when
playing video, you will also see a fairly large reduction in CPU utilization.

The XAML code is straight forward, with much of the XAML in the Storyboard for the animation and
the pineapple. Listing 3-27 shows the abbreviated XAML.

Listing 3-27. Recipe 3.15 Abbrevidated MainPage.Xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_15.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d” d:DesignWidth=”800” d:DesignHeight=”600”>
<UserControl.Resources>
<Storyboard x:Name=”AnimatePineappleStoryboard”
AutoReverse=”true” RepeatBehavior=”Forever” >
<DoubleAnimationUsingKeyFrames
BeginTime=”00:00:00” Storyboard.TargetName=”Pineapple”
Storyboard.TargetProperty=
“(UIElement.RenderTransform).(TransformGroup.Children)[3].
(TranslateTransform.X)”>
<!--- Removed storyboard code--->
</Storyboard>
</UserControl.Resources>
<Grid x:Name=”LayoutRoot”>
<Grid.Background>
<LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
<GradientStop Color=”Black” Offset=”0”/>
<GradientStop Color=”White” Offset=”1”/>
</LinearGradientBrush>
</Grid.Background>
<Canvas x:Name=”Pineapple” Opacity=”0.5” Margin=”-81,-162,0,0” CacheMode=”BitmapCache”
HorizontalAlignment=”Left” Width=”201” RenderTransformOrigin=”0.5,0.5” Height=”378”
VerticalAlignment=”Top”>
<Canvas.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX= »0.1 » ScaleY= »0.1 »/>
<SkewTransform/>
<RotateTransform/>
<TranslateTransform/>
</TransformGroup>
</Canvas.RenderTransform>
<!--- removed markup for pineapple ---> </Canvas>
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

209

The code-behind has a single line of code in Initialize():

AnimatePineappleStoryboard.Begin();

3-16. Improve Animation with Custom Easing Functions
Problem
You want to customize how animations appear so that they look more realistic.

Solution
Take advantage of one or more of the 11 new built-in easing functions, or create a custom easing
function that implements the IEasingFunction interface or inherits from EasingFunctionBase.

How It Works
In Silverlight 2, you could visually create an animation that appeared more realistic by increasing
distance over time in a time line—you could add an acceleration and adjust the KeySpline values as
covered in Recipe 3-8. Although this approach worked for many scenarios, developers sometimes
hand-coded animations to achieve a desired affect.

Silverlight 3 and later tries to make this much easier by adding support for custom easing
functions as well as providing 11 built-in easing functions that can go a long way toward helping
animations appear more realistic. Table 3-3 lists these functions.

Table 3-3. Built-in Easing Functions

Function Name Description

BackEase Adds inertia before an animation begins by retracting slightly in the opposite
direction of the intended motion

BounceEase Adds a bouncing effect to an animation

CircleEase Adds acceleration or deceleration based on a circular function

CubicEase Adds acceleration or deceleration using the formula f(t)=t3

ElasticEase Creates an animation that simulates an oscillating spring that eventually comes
to rest

ExponentialEase Adds acceleration or deceleration using an exponential formula

PowerEase Adds acceleration or deceleration using the formula f(t)=tP where p is equal to the
Power property

QuadraticEase Adds acceleration or deceleration using the formula f(t)=t2

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

210

QuarticEase Adds acceleration or deceleration using the formula f(t)=t4

QuinticEase Adds acceleration or deceleration using the formula f(t)=t5

SineEase Adds acceleration or deceleration using a sine formula

You can apply a custom easing function or one of the built-in easing functions to an individual

keyframe visually in Expression Blend by selecting the EasingFunction tab in the Easing section, as
shown in Figure 3-65.

Figure 3-65. Select an easing function to apply to a keyframe

Notice at the bottom in Figure 3-65 that you can select a custom easing function that resides in the
chapter’s namespace or one of the built-in easing functions. You can also choose whether the easing
function applies on the way in to the keyframe, on the way out, or to both.

Of course, it is possible to create an instance of an easing function class and apply it
programmatically as well. But Expression Blend 4 provides a very visual way of applying easing
functions and lets you see the results immediately by playing the animation at design-time.

The Code
For this recipe, you build a teeter-totter that rolls a ball back and forth at an even pace by default.
Figure 3-66 shows an image from Expression Blend.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

211

Figure 3-66. The teeter-totter

In Expression Blend, you select keyframes in the time line and apply one of the built-in easing
functions to experiment with different appearances. Use a SineEase for both in and out when the ball is
at the far right or far left. Also add a PowerEase with a Power of 2 for both in and out.

Now that you have visually designed which built-in ease functions you want to apply when the
second button is clicked in the UI, assign names to the keyframes in Visual Studio so that you can
programmatically apply the ease. Also remove the easing functions from the XAML so that when the
Default Animation button in the UI is clicked, no easing is applied.

Listing 3-18 and 3-19 show the .xaml and .xaml.cs files, respectively.

Listing 3-18. Recipe 3.16 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_16.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
Width=”590” Height=”362” mc:Ignorable=”d”>
<UserControl.Resources>
<Storyboard x:Name=”RollingBallStoryboard” RepeatBehavior=”Forever”>
<DoubleAnimationUsingKeyFrames BeginTime=”00:00:00”
Storyboard.TargetName=”rectangle” Storyboard.TargetProperty=
“(UIElement.RenderTransform).(TransformGroup.Children)[2].(RotateTransform.Angle)”>
<EasingDoubleKeyFrame KeyTime=”00:00:00” Value=”0”/>
<EasingDoubleKeyFrame KeyTime=”00:00:01” Value=”-12.655”/>
<SplineDoubleKeyFrame KeyTime=”00:00:02” Value=”0”/>
<EasingDoubleKeyFrame KeyTime=”00:00:03” Value=”13.557”/>
<EasingDoubleKeyFrame KeyTime=”00:00:04” Value=”0”/>
</DoubleAnimationUsingKeyFrames>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

212

<DoubleAnimationUsingKeyFrames BeginTime=”00:00:00”
Storyboard.TargetName=”ball” Storyboard.TargetProperty=
“(UIElement.RenderTransform).(TransformGroup.Children)[3].(TranslateTransform.X)”>
<EasingDoubleKeyFrame x:Name=”PowerEase1” KeyTime=”00:00:00” Value=”0”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame x:Name=”SineEase1” KeyTime=”00:00:01” Value=”-223”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:01.5000000” Value=”-112.5”/>
<EasingDoubleKeyFrame x:Name=”PowerEase2” KeyTime=”00:00:02” Value=”0”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame x:Name=”SineEase2” KeyTime=”00:00:03” Value=”244”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:03.5000000” Value=”123”/>
<EasingDoubleKeyFrame x:Name=”PowerEase3” KeyTime=”00:00:04” Value=”0”>
</EasingDoubleKeyFrame>
</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames BeginTime=”00:00:00”
Storyboard.TargetName=”ball” Storyboard.TargetProperty=
“(UIElement.RenderTransform).(TransformGroup.Children)[3].(TranslateTransform.Y)”>
<EasingDoubleKeyFrame x:Name=”PowerEase4” KeyTime=”00:00:00” Value=”0”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:00.5000000” Value=”14.5”/>
<EasingDoubleKeyFrame x:Name=”SineEase3” KeyTime=”00:00:01” Value=”51”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:01.5000000” Value=”14.5”/>
<EasingDoubleKeyFrame x:Name=”PowerEase5” KeyTime=”00:00:02” Value=”0”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:02.5000000” Value=”14.5”/>
<EasingDoubleKeyFrame x:Name=”SineEase4” KeyTime=”00:00:03” Value=”55”>
</EasingDoubleKeyFrame>
<EasingDoubleKeyFrame KeyTime=”00:00:03.5000000” Value=”13.5”/>
<EasingDoubleKeyFrame x:Name=”PowerEase6” KeyTime=”00:00:04” Value=”0”>
</EasingDoubleKeyFrame>
</DoubleAnimationUsingKeyFrames>
</Storyboard>
</UserControl.Resources>
<Grid x:Name=”LayoutRoot”>
<Grid.RowDefinitions>
<RowDefinition Height=”0.135*”/>
<RowDefinition Height=”0.865*”/>
</Grid.RowDefinitions>
<StackPanel Orientation=”Horizontal” Margin=”2”>
<Button x:Name=”btnDefaultAnimation” HorizontalAlignment=”Center”
Margin=”80,8,8,8” Content=”Default Animation”
Click=”btnDefaultAnimation_Click” VerticalAlignment=”Center”/>

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

213

<Button x:Name=”btnBuiltInAnimation” HorizontalAlignment=”Center” Margin=”8”
Content=”Built-in Animation Ease” Click=”btnBuiltInAnimation_Click”
VerticalAlignment=”Center”/>
<Button x:Name=”btnCustomAnimation” HorizontalAlignment=”Center” Margin=”8”
Content=”Custom Animation Ease” Click=”btnCustomAnimation_Click”
VerticalAlignment=”Center”/>
</StackPanel>
<Path x:Name=”rectangle” Fill=”#FF002E7E” Stretch=”Fill” Stroke=”Black”
Height=”25” Margin=”33,0,38.909,63” VerticalAlignment=”Bottom”
RenderTransformOrigin=”0.499912530183792,0.719995724607971” Grid.Row=”1”
UseLayoutRounding=”False” Data=”M0.5,0.5 L9.5000019,0.5 L9.5000019,11.499801
L508.53659,11.499801 L508.59113,0.76702565 L517.591,0.81274098 L517.50037,18.655201
L517.50037,24.500023 L0.5,24.500023 L0.5,22.499994 L0.5,11.499801 z” >
<Path.RenderTransform>
<TransformGroup>
<ScaleTransform/>
<SkewTransform/>
<RotateTransform/>
<TranslateTransform/>
</TransformGroup>
</Path.RenderTransform>
</Path>
<Path x:Name=”path” Fill=”#FF267E00” Stretch=”Fill” Stroke=”Black” Height=”63.5”
Margin=”246.5,0,271.5,1” VerticalAlignment=”Bottom” UseLayoutRounding=”False”
Data=”M390,537 L355,594 L425,593 z” Grid.Row=”1”/>
<Ellipse x:Name=”ball” Stroke=”Black” Height=”37” Margin=”263,0,290,77”
VerticalAlignment=”Bottom” RenderTransformOrigin=”0.5,0.5” Grid.Row=”1”>
<Ellipse.RenderTransform>
<TransformGroup>
<ScaleTransform/>
<SkewTransform/>
<RotateTransform/>
<TranslateTransform/>
</TransformGroup>
</Ellipse.RenderTransform>
<Ellipse.Fill>
<RadialGradientBrush RadiusX=”0.539” RadiusY=”0.539”
GradientOrigin=”0.28,0.287”>
<GradientStop Color=”#FFA5A3A3” Offset=”0.991”/>
<GradientStop Color=”#FFC9C5C5”/>
<GradientStop Color=”#FF969292” Offset=”0.905”/>
</RadialGradientBrush>
</Ellipse.Fill>
</Ellipse>
</Grid>
</UserControl>

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

214

Listing 3-19. Recipe 3.16 MainPage.xaml.cs File

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Animation;

namespace Ch03_DevelopingUX.Recipe3_16
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void btnDefaultAnimation_Click(object sender, RoutedEventArgs e)
 {
EasingDoubleKeyFrame EasingKF = null;
for (int i = 1; i < 7; i++)
 {
EasingKF = LayoutRoot.FindName(“PowerEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = null;
 }

for (int i = 1; i < 5; i++)
 {
EasingKF = LayoutRoot.FindName(“SineEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = null;
 }
RollingBallStoryboard.Begin();
 }

private void btnBuiltInAnimation_Click(object sender, RoutedEventArgs e)
 {
PowerEase pe = new PowerEase();
pe.Power = 2;
pe.EasingMode = EasingMode.EaseInOut;
SineEase se = new SineEase();
se.EasingMode = EasingMode.EaseInOut;
EasingDoubleKeyFrame EasingKF = null ;

for (int i = 1; i < 7; i++)
 {

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

215

EasingKF = LayoutRoot.FindName(“PowerEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = pe;
 }

for (int i = 1; i < 5; i++)
 {
EasingKF = LayoutRoot.FindName(“SineEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = se;
 }
RollingBallStoryboard.Begin();
 }

private void btnCustomAnimation_Click(object sender, RoutedEventArgs e)
 {
PowerEase pe = new PowerEase();
pe.Power = 2;
pe.EasingMode = EasingMode.EaseInOut;
SineEase se = new SineEase();
se.EasingMode = EasingMode.EaseInOut;
EasingDoubleKeyFrame EasingKF = null;

MyCustomEasingFunction mce = new MyCustomEasingFunction();
for (int i = 1; i < 7; i++)
 {
EasingKF = LayoutRoot.FindName(“PowerEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = null ;
 }

for (int i = 1; i < 5; i++)
 {
EasingKF = LayoutRoot.FindName(“SineEase” + i.ToString())
as EasingDoubleKeyFrame;
EasingKF.EasingFunction = mce;
 }
RollingBallStoryboard.Begin();
 }
 }
}

The last button in the UI enables a custom easing function for the animation that uses the
Math.Sqrt function to apply easing. When this button is clicked, you apply the custom ease when the
ball rolls to either the left or right side. It gives the effect of accelerating into the stop and decelerating

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

216

out of the stop. You can try whatever math function makes sense for your scenario with little effort.
Listing 3-20 shows the code for the custom easing function.

Listing 3-20. Recipe 3.16 MyCustomEasingFunction.cs File

using System;
using System.Windows.Media.Animation;

namespace Ch03_DevelopingUX.Recipe3_16
{
public class MyCustomEasingFunction : EasingFunctionBase
 {
public MyCustomEasingFunction()
: base()
 {

 }
protected override double EaseInCore(double normalizedTime)
 {
return Math.Sqrt(normalizedTime);
 }
 }
}

We do not show additional screenshots because static images do not represent the animations
well. Check out the sample to see the differences and try some other variations.

3-17. Adding Pixel Shader Visual Effects
Problem
You want to add visual special effects to your Silverlight application, such as making a photo black and
white or applying a distortion to an image.

Solution
Take advantage of the support for both built-in and custom pixel shaders in Silverlight.

How It Works
Pixel shaders have long been used in game development to provide the spectacular visual effects
available in major console and computer game video game releases. Silverlight 3 introduced support
for pixel shaders, including two built-in effects: drop shadows and motion blur. It also includes support
for incorporating custom pixel shaders for even more compelling content.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

217

Pixel-shader effects in Silverlight are rendered in software—they are not GPU accelerated.
Applying effects to large portions of a UI or animating properties of effects can affect performance.
Therefore, you need to thoroughly test applied effects to ensure good performance.

To apply an effect, you configure the Effect property on descendents of the UIElement base class.
To manipulate effects programmatically, add this namespace to your code-behind:

System.Windows.Media.Effects

Only one effect can be applied at a time directly on a UIElement. One way to apply multiple effects
is to apply one effect directly on the UIElement and other effect on a parent object. Effects applied to
parent UIElements are also applied to child UIElements. Note that applying multiple pixel-shader effects
can affect performance.

Pixel-shader effects are written in High Level Shading Language (HLSL) for DirectX. This link has
more information about HLSL:

http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx

Many books cover HLSL development, as does the documentation for the DirectX SDK. In addition,
the DirectX Sample Browser that is installed when you install the DirectX SDK has links to training on
pixel-shader authoring.

HLSL pixel shaders are compiled using the DirectX SDK into a format that can be used
programmatically in WPF and Silverlight. Tools in the WPF Futures CodePlex project can help you
integrate pixel-shader compilation in a WPF solution. The tools have been modified to work with
Silverlight projects as well, now that Silverlight 3 and later supports pixel shaders. You can download
the tool and instructions here:

http://www.codeplex.com/wpf/Release/ProjectReleases.aspx?ReleaseId=14962

■ Note You need to install the DirectX SDK to access compile-time support, in order to build the .ps files. It is

available at downloads.microsoft.com. The SDK is updated frequently so please use the search functionality to

obtain the latest version.

For a collection of sample pixel-shader effects, download the WPF library, which also works with
Silverlight:

http://wpffx.codeplex.com/

You use these samples as part of the custom pixel effect example. You apply custom pixel-shader
effects the same way you apply the built-in pixel shader effects.

The Code
This recipe uses the Silverlight Navigation Application with two view pages: one view to demonstrate
the built-in pixel-shader effects, and the other view to demonstrate applying custom pixel-shader
effects. We do not cover MainPage.xaml and MainPage.xaml.cs because they wire up the application. The
first application page is shown in Figure 3-67.

http://msdn.microsoft.com/en-us/library/bb509561
http://www.codeplex.com/wpf/Release/ProjectReleases.aspx?ReleaseId=14962
http://wpffx.codeplex.com

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

218

Figure 3-67. The built-in pixel-shader demo page

Two built-in pixel shaders are available in Silverlight 3 and later BlurEffect and
DropShadowEffect. You can build a quick sample application that applies both affects to an Image object.
You apply the DropShadowEffect directly to the Image, because only one pixel-shader effect can be
applied to a UIElement. To apply the BlurEffect, you wrap the Image in a Grid object and apply the effect
there. You can manipulate the sliders to see the effect of the various parameters available on the two
effects. Here is the XAML for applying an effect to the Grid and Image objects:

<Grid x:Name=”DogImageGrid” Margin=”0,0,8,0”>
<Grid.Effect>
<BlurEffect Radius=”1” />
</Grid.Effect>
<Image x:Name=”DogImage” Margin=”8”
Source=”/Ch03_DevelopingUX.Recipe3_17Component/Assets/image.jpg”
HorizontalAlignment=”Center” VerticalAlignment=”Top”>
<Image.Effect>
<DropShadowEffect/>
</Image.Effect>
</Image>
</Grid>

You configure the Radius property to 1 for the BlurEffect applied to the Grid so that it doesn’t alter
the settings on the DropShadowEffect effect applied to the Image. Leave the default settings applied to
the DropShadowEffect; the effect controls are also configured with the defaults.

The other application page in the UI demonstrates custom pixel-shader effects. Be sure to follow
the steps in the “How Do I” section of this recipe to configure your development environment as well

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

219

as download and install the necessary tools. You should also download the sample Pixel Shader Effects
library available here, because it provides many useful sample effects:

http://wpffx.codeplex.com/

Demonstration videos are also available at this link. Extract the WPFSLFx folder to a directory of
your choice. You can find the HLSL source code (.fx) files for the compiled pixel shaders in the WPF
version of the ShaderEffectLibrary project. When you open the WPF project and select a .fx file, you se
that its Build Action is set to Effect, taking advantage of the Visual Studio tools to integrate compiling
the effect. To use it in Silverlight, copy the .ps output and add it to a Silverlight project.

Under the WPFSLFx folder in the SL folder are three projects. The SLShaderEffectLibrary and
SLTransitionEffects projects contain the sample pixel-shader effects. Open the SLShaderEffectLibrary
to find 23 compiled pixel-shader effects (.ps) in the ShaderSource folder; they were compiled using the
DirectX SDK from .fx files. The .ps files are configured as a resource in the Silverlight project in the
ShaderSource folder.

Each .ps file has a corresponding .cs class file in the EffectFiles folder. Look at the
BandedSwirlEffect.cs file to see how to integrate the .ps compiled pixel shader. The class
BandedSwirlEffect inherits from the ShaderEffect base class. In the constructor’s code region, a static
constructor creates an instance of the PixelShader class, setting the UriSource to the .ps file stored as a
resource in the assembly.

The WPF project includes a nonstatic constructor to instantiate the effect as well as dependency
properties that represent the properties declared in the BandedSwirl.fx HLSL source code file:

float2 center : register(C0);
float spiralStrength : register(C1);
float distanceThreshold : register(C2);

In the Silverlight project, the BandedSwirlEffect.cs code file contains three dependency
properties that are linked to the corresponding pixel-shader registry like this:

public static readonly DependencyProperty CenterProperty =
DependencyProperty.Register(“Center”, typeof(Point),
typeof(BandedSwirlEffect),
new UIPropertyMetadata(new Point(0.5, 0.5),
PixelShaderConstantCallback(0)));

The method PixelShaderConstantCallback is a helper function available in Silverlight. It associates
a dependency property value with a pixel shader’s float constant register. Now that we have provided
an overview of the process to integrate pixel shaders in Silverlight, you can copy the compiled output
from the SLShaderEffectLibrary included with the WPF pixel-shader library provided by Microsoft on
CodePlex to the sample code and apply custom effects to the same photograph used in the first example.

Drop a copy of SLShaderEffectLibrary.dll into the Recipe3.21 folder, and add a reference to it in
the Recipe 3-21 project. Next, copy the UI from the first example; but remove the blur and drop shadow
effects in Expression Blend by clicking the Advanced Options button for the Effect property and
clicking Reset as well as the related controls for manipulating the pixel-shader settings.

Build the project, and switch to Expression Blend to apply a custom pixel-shader effect. Select the
DogImage Image control, and click New next to the Effect property. Figure 3-68 shows that the
SLShaderEffectLibrary is now available in the visual tools; you can see all the newly available pixel
shaders you can test, including the BandedSwirlEffect we covered earlier.

Select BandedSwirlEffect as the test custom effect, and click OK. Figure 3-69 shows the immediate
effect of the pixel shader on the image in the Expression Blend design surface.

http://wpffx.codeplex.com

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

220

Figure 3-68. The newly available pixel-shader effects in Expression Blend

Figure 3-69. The BandedSwirlEffect applied in Expression Blend

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

221

The effect has a fish-eye appearance that would be interesting to animate as a way to bring a
picture into view. To demonstrate animating the effect, first set the image to an Opacity of 0 as the
starting point.

Next, create a new Storyboard in Expression Blend, and call it DogImageStoryboard. Create a
keyframe at the starting point, and move the yellow time line to 1.5 seconds; set Opacity back to 100%,
because you want the image to take 1.5 seconds to come into view. Expand DogImage in the Objects and
Timeline window, and select the BandedSwirl property.

Here you can create keyframes between 0 and 1.5 seconds in the time line to animate the banded
swirl. Add a couple of keyframes and adjust the SwirlStrength property on the BandedSwirlEffect,
eventually setting it to 0 at 1.5 seconds so the image looks normal. Create a few more keyframes,
experimenting with various settings and playing the animation in Expression Blend to see the results.

Finally, add a button to the UI to kick off the Storyboard. Run the sample code to see the results. We
do not show the sample code for this recipe because most of the code is generated in Expression Blend
from the earlier steps, and the code-behind contains minimal code. We recommend opening the
Custom.xaml page in Expression Blend and playing around with the time line to see how you can
improve the animation, or select a different pixel shader in the SLShaderEffectLibrary for a different
approach.

3-18. Create and Work with Design-Time Data in Expression
Blend

Problem
You want to create a data-driven UI without having to run the application in order to see the results.

Solution
Take advantage of the support in Expression Blend 3 and later for design-time datasources.

How It Works
With Expression Blend 3 and later you have access to the Data panel shown in Figure 3-70. Its features
are listed in Table 3-4.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

222

Figure 3-70. The Data panel in Expression Blend 4

Table 3-4. Expression Blend 4 Data Panel Features

Annotation Description

A Selected by default, list mode for the Data panel lets you drag the Customers collection
shown in Figure 3-71 onto the Artboard and generates a ListBox data-bound to the
Customers design-time datasource.

B Details mode lets you drag a collection item like FirstName to the Artboard to create a
control data-bound to the collection item. This action also configures the DataContext
property of the parent container to the collection, in this case Customers.

C This is a document-level datasource collection named Customers. In addition, a
datasource named ProjectSampleDataSource is defined at the Project level.

D Click this button to edit and further customize the collection. You can specify the type of
value (String, Number, Boolean, or Image) as well as the format (for String, how many
words; for Number, how many digits; and for Image, a folder location).

E The “Create data source” button allows you to add a live or real datasource to the
application to display at runtime.

F The “Create sample data” button allows you to create a design-time datasource to help
working with UI elements that display data.

G You can define datasources at the document and project levels of an application.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

223

Annotation Description

H Click the plus sign to add a simple property to a datasource collection, or click the down-
arrow next to the plus sign to choose whether to add a simple property, a complex
property, or a collection property to the design-time datasource.

I Click the down-arrow for an individual property to edit the attributes for the property,
such as its type and format, depending on the type of the property.

When you click the “Add sample data source” button shown as item F in Figure 3-70, it displays the
dialog shown in Figure 3-71. You have the option of enabling the sample datasource at runtime as well,
which is great for demonstrating the data-driven UI.

Figure 3-71. The Define New Sample Data Dialog

This allows you to work with the design-time data in Expression Blend while also displaying the
design-time data at runtime for testing and demonstration purposes. You can also add a live
datasource to the UI that pulls data from a live datasource for display at runtime, by clicking item E in
Figure 3-70. As long as your schema is compatible between the design-time datasource and the live
datasource, you can use both in an application. Let’s say you start working with a design-time
datasource to build your application. You add a live datasource to the Data panel in Expression Blend to
make it available. Drag items from the live datasource, and drop them onto the control displaying the
corresponding sample data.

■ Note Clear the Enable When Running Application check box in the datasource properties to allow the live

datasource to display data at runtime.

As long as the data schemas match, the sample data displays on the Artboard in Expression Blend
and the live data displays when the application executes. This is because the sample datasource
bindings are still available in the design-time properties.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

224

The Code
This recipe borrows the ApressBooks class from Recipe 2-9 to serve as the live datasource. This class
reads an XML file called ApressBooks.xml that is included as content within the project and that has the
following structure:

<ApressBooks>
<ApressBook>
<ID/>
<ISBN/>
<Author/>
<Title/>
<Description/>
<DatePublished/>
<NumPages/>
<Price/>
</ApressBook>
 …
</ApressBooks>

Listing 3-21 shows the ApressBooks.cs class file that reads the XML file to produce a C# List object
of type ApressBooks.

Listing 3-21. Recipe 3.18 ApressBooks Class File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml;
using System.Xml.Linq;

namespace Ch03_DevelopingUX.Recipe3_18
{
public class ApressBooks
 {
private List<ApressBook> _apressBookList;
public List<ApressBook> ApressBookList
 {
get
 {
if (null == _apressBookList)
RetrieveData();
return _apressBookList;
 }
 }

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

225

private void RetrieveData()
 {
XmlReaderSettings XmlRdrSettings = new XmlReaderSettings();
XmlRdrSettings.XmlResolver = new XmlXapResolver();
XmlReader reader = XmlReader.Create(“ApressBooks.xml”, XmlRdrSettings);
XDocument xDoc = XDocument.Load(reader);
_apressBookList =
(from b in xDoc.Descendants(“ApressBook”)
select new ApressBook()
 {
Author = b.Element(“Author”).Value,
Title = b.Element(“Title”).Value,
ISBN = b.Element(“ISBN”).Value,
Description = b.Element(“Description”).Value,
PublishedDate = Convert.ToDateTime(b.Element(“DatePublished”).Value),
NumberOfPages = b.Element(“NumPages”).Value,
Price = b.Element(“Price”).Value,
ID = b.Element(“ID”).Value
}).ToList();
 }
 }

public class ApressBook
 {
public string Author { get; set; }
public string Title { get; set; }
public string ISBN { get; set; }
public string Description { get; set; }
public DateTime PublishedDate { get; set; }
public string NumberOfPages { get; set; }
public string Price { get; set; }
public string ID { get; set; }
 }
}

After adding a reference to System.Xml.Linq, everything compiles, and you are ready to
experiment with the new data panel features.

Start by clicking the “Create sample data” button on the Expression Blend 4 Data panel and select
“New Sample Data…”to bring up the dialog shown in Figure 3-71. Name the datasource
ApressBooksSampleData, and click OK. Also enable sample data when the application is running. Doing
so sets the DataContext for the parent Grid named LayoutRoot to the sample datasource. If you unselect
the option to display sample data at runtime, the sample datasource is configured on d:DataContext,
not to the DataContext attribute. The d: namespace specifies that the property is valid only at design-
time in Expression Blend 3 or later and is ignored at runtime.

This generates a new project-level sample datasource with two properties named Property1 and
Property2. Double-click the property names to edit then: change Property1 to ISBN and Property2 to

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

226

Title, and change the default generated type for Property2 to String instead of Boolean. Add a new
property of type String, and name it Description. Also change the maximum word count to 20 from the
default of 4 for the Description property, because it may contain many words. Finally, change the
default name of Collection to ApressBookCollection.

Drag the ApressBookCollection item located under the ApressBooksSampleData item in the Data
panel to the Artboard, to generate a ListBox control data bound to the sample data. Resize the ListBox
to fill the available area. Figure 3-72 shows the sample data displayed in Expression Blend 4 at design-
time.

Figure 3-72. Sample data displayed at design-time

You can now edit the template by selecting the ListBox’s ItemTemplate property and selecting Edit
Resource from the advanced property menu. Rearrange the generated ItemTemplate so that ISBN is at
the top followed by Title and then Description.

The text generated by the sample data is the generic Latin you may have seen in PowerPoint or
elsewhere. You can edit the sample data manually by clicking the Edit Sample Values button for the
collection, which results in the dialog shown in Figure 3-73.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

227

Figure 3-73. Edit Sample Values dialog

Manually editing a small amount of data for a simple UI may be acceptable, but it can get old for a
large, complex datasource. This is when the Import Sample Data from XML menu option comes in
handy. Select this option by clicking the Create Sample Data button and point it to the ApressBooks.xml
file, name it ApressBookSampleDataXml to generate the datasource shown in Figure 3-74.

All the fields are added by default when you import sample data from an XML file. Next, modify the
fields to just the three you are currently working with as part of the manually created sample data:
ISBN, Title, and Description. As before, you can drag the new XML datasource onto the ListBox to
update the design-time datasource so that real data is displayed; see Figure 3-75.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

228

Figure 3-74. XML-based sample datasource in the Data panel

Figure 3-75. Real data imported via XML

To display live data at runtime, click the “Create data source” button and select Create Object Data
Source… in the Data panel to display the dialog box shown in Figure 3-76. Choose the ApressBooks
object.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

229

Figure 3-76. Displaying real data imported via XML

Switch the design-time datasource back to the manually created datasource by dragging it onto the
ListBox in Expression Blend 4. Doing so demonstrates that the different datasources are automatically
displayed depending on whether you are at design-time or runtime: the live datasource is displayed at
runtime.

When you run the application with the manually created datasource, the first record is the edited
record with the manually typed-in data, but the rest of the items are generated Latin data. At design-
time, uncheck the Enable When Running the Application option for the manually created datasource.
When you run the recipe sample in this state, no data is displayed at runtime.

To enable the live datasource on the ListBox, drag the ApressBookList: (ApressBook) item (under the
ApressBooksLiveDataSource | ApressBooks item in the hierarchy) to the UI, dropping it onto LayoutRoot so
that the mouse cursor says Bind LayoutRoot.DataContext to ApressBooksLiveDataSource. This action
assigns the live datasource you just created to the DataContext property. Listing 3-22 shows the
MainPage.xaml file.

Listing 3-22. Recipe 3.18 MainPage.xaml File

<UserControl
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

230

x:Class=”Ch03_DevelopingUX.Recipe3_18.MainPage”
mc:Ignorable=”d”
d:DesignHeight=”300” d:DesignWidth=”400”>
<UserControl.Resources>

<DataTemplate x:Key=”ApressBookCollectionItemTemplate”>
<StackPanel>
<TextBlock Text=”{Binding Description}”/>
<TextBlock Text=”{Binding ISBN}”/>
<TextBlock Text=”{Binding Title}”/>
</StackPanel>
</DataTemplate>
</UserControl.Resources>
<Grid x:Name=”LayoutRoot” Background=”White”
d:DataContext=”{Binding Source={StaticResource ApressBooksSampleData}}”
DataContext=”{Binding Source={StaticResource ApressBooksLiveDataSource}}”>
<ListBox Margin=”8”
ItemTemplate=”{StaticResource ApressBookCollectionItemTemplate}”
ItemsSource=”{Binding ApressBookList}” />
</Grid>
</UserControl>

You can see in Listing 3-22 the DataContext and d:DataContext properties configured on the
LayoutRoot Grid control to the design-time and runtime datasources. Initially, when you run the code,
no data is displayed, because the design-time datasource collection name is ApressBookCollection.
However, on the live datasource, the name is ApressBookList. In order to have the design-time and
runtime datasources work properly, the collection names must be the same. When this is corrected, the
datasources work as expected.

We do not show any of the code-behind files because there is no custom code to discuss. The only
other code we show here in Listing 3-23 is App.xaml, where the three project-level datasources are
created.

Listing 3-23. Recipe 3.18 App.xaml File

<Application xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
xmlns:SampleData1=”clr-namespace:Expression.Blend.SampleData.ApressBooksSampleData”
mc:Ignorable=”d” xmlns:local=”clr-namespace:Ch03_DevelopingUX.Recipe3_18”
xmlns:SampleData=”clr-namespace:Expression.Blend.SampleData.ApressBooksSampleDataXml”
x:Class=”Ch03_DevelopingUX.Recipe3_18.App”>
<Application.Resources>
<local:ApressBooks x:Key=”ApressBooksLiveDataSource” d:IsDataSource=”True”/>
<SampleData:ApressBooks x:Key=”ApressBooksSampleDataXml”
d:IsDataSource=”True”/>
<SampleData1:ApressBooksSampleData x:Key=”ApressBooksSampleData”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

231

d:IsDataSource=”True”/>
</Application.Resources>
</Application>

Design-time datasources exist in generated classes created in a project folder named SampleData,
which is added by Expression Blend when the datasources are created. In this folder is a subfolder that
corresponds to each design-time datasource. Figure 3-77 shows the generated folders and code files.

Figure 3-77. The sample data’s generated classes and schema

3-19. Reuse Application Interactivity with Behaviors
Problem
You want to reuse designed interactivity across UI elements and applications.

Solution
Take advantage of the support for Expression Blend behaviors and triggers that is available via the
Expression Blend SDK, in the samples that ship with Expression Blend, and in examples available
online.

How It Works
An Expression Blend 3 or later behavior is a reusable piece of interactivity that can be applied directly to UI
elements in Expression Blend. Using the Expression Blend 4 SDK, you can create reusable libraries of
behaviors that can be shared within a team, allowing interactivity to be applied in a consistent manner
across a project.

Behaviors can be as simple as playing and stopping an animation; or they can be more complex,
such as applying a realistic physics effect to an object. Figure 3-78 shows the Assets library filtered on
Behaviors in Expression Blend 4.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

232

Figure 3-78. Behaviors that ship with Expression Blend 4

To apply a behavior, drag it onto an element and configure its properties. We go through this
process in the next section.

The Code
To try using a behavior, add a Rectangle element to the Artboard. You want to play one sound when the
user moves the mouse over the Rectangle and then play another sound when the user moves the mouse
outside of the Rectangle element.

In Silverlight 2, you would have had to write code to play the sound in the MouseEnter and
MouseLeave event handlers, which seems like overkill when you consider that for a complex UI, many
event handlers perform relatively simple tasks. That is the beauty of behaviors and triggers: they
encapsulate simple to complex actions into markup, allowing for reuse.

For this example, drag a PlaySoundAction behavior from the Assets panel, drop it onto the Rectangle,
and name it EnterSound. Do this step a second time, but name the second PlaySoundAction behavior
LeaveSound. The PlaySoundAction behavior is added as a child object in the object tree, as shown in
Figure 3-79.

Figure 3-79. Newly added behaviors nested under a target element

The next step is to configure the properties for the behaviors to play a sound on the appropriate
event. We recorded two sounds called Enter Rectangle and Leave Rectangle so you have some

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

233

copyright-free (albeit cheesy) sounds to work with. Add both .wma files to the project with Build Action
set to Content in Visual Studio 2010.

Moving back to Expression Blend 4, select the EnterSound behavior, and configure its properties by
dragging the target symbol next to the SourceName property and dropping it on the Rectangle UI
element. This step adds a default name of rectangle to the element and configures it as the SourceName
element. Change EventName to MouseEnter as the trigger, and configure the Source property by browsing
to the sound file in the project folder. Expression Blend is smart enough to change the file path to a
relative path because the sound files are part of the project. Figure 3-80 shows the configuration for the
EnterSound PlaySoundAction behavior.

Figure 3-80. EnterSound PlaySoundAction configuration

When you run the sample, there is a slight delay between the action and the sound, which is a
result of us pausing about a second when we edited the sound—the sound plays immediately, but the
recording includes about a second of dead space.

With respect to creating your own behaviors, many example behaviors are available for review
online. The Expression Blend 4 Community Site has several behaviors available for download:

http://gallery.expression.microsoft.com/en-
us/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D.
Value=behaviors

Several additional example Expression Blend behaviors and triggers are available for download
at http://expressionblend.codeplex.com/. The examples from CodePlex install into this directory:
C:\Program Files (x86)\Microsoft Expression\Blend 4 Samples.

3-20. Customizing the Right-Click Context Menu

Problem
You want to improve user experience by taking advantage of the context menu to provide a more
familiar experience.

http://gallery.expression.microsoft.com/en-us/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D
http://gallery.expression.microsoft.com/en-us/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D
http://gallery.expression.microsoft.com/en-us/site/search?f%5B0%5D.Type=RootCategory&f%5B0%5D
http://expressionblend.codeplex.com

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

234

How it Works
In Silverlight, when you right click on the Silverlight control you get the default menu as shown in
Figure 3-81 that displays “Silverilght.”

Figure 3-81. Right-click on a Silverlight application

This seems like a lost opportunity to add more interactivity to an application. In Silverlight 4
Microsoft adds the ability to customize the context menu to display any XAML you would like via the
Popup control. This is enabled by the new MouseRightUp and MouseRightDown events.

You can place XAML within a Popup control that you can show and hide by setting Popup.IsOpen to
either true or false.

To position the Popup near where the mouse right-click occurs you can get the click position and set
the Popup.HorizontalOffset and Popup. VerticalOffset to near the click position.

The Code
For this recipe, we create a simple example that loads an image and allows a user to right-click on

the image to adjust a blur and drowshadow effect applied to the image. Figure 3-82 shows the initial UI.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

235

Figure 3-82. Recipe 3-20 Initial UI

Now that we have the initial UI, we add a Popup item to the designer in Expression Blend and
proceed to add a few TextBlock and slider objects to create a UI that manipulates the applied shader
effects as shown in Figure 3-83.

Figure 3-83. The Popup at design-time in Expression Blend

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

236

To add the UI items, we select the PopUp object and double click on the items we want to add in the
Asset Bar. Expression Blend won’t let you select children in the Popup object on the ArtBoard so we
then proceed to edit properties for each object to position them as desired in the Properties tool
window.

We now switch to Visual Studio to add the code in the slider ValueChanged event handlers to adjust
the shader effects. We don’t go into detail on adjusting the shader effects because we cover that in
Recipe 3-17 but we do want to cover how to react to right-clicks to open, position, and close the Popup
right-context menu.

In the MouseRightButtonDown event, we set e.Handled = true to prevent the Silverlight menu from
appearing. If the user clicks outside of the Popup menu it should automatically close so we set
Popup.IsOpen equal to false in the MouseLeftButtonDown event.

In order to position the Popup object near the menu click, we put the following code in the
MouseRightButtonUp event:

pop.HorizontalOffset = e.GetPosition(null).X + 2;
pop.VerticalOffset = e.GetPosition(null).Y + 2;
pop.IsOpen = true;

Listing 3-24 has the full code-behind listing.

Listing 3-24. Recipe 3.19 MainPage.xaml.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media.Effects;
namespace Ch03_DevelopingUX.Recipe3_20
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void ImageEdit_MouseRightButtonDown(object sender, MouseButtonEventArgs e)
 {
e.Handled = true;
 }

private void ImageEdit_MouseRightButtonUp(object sender, MouseButtonEventArgs e)
 {
pop.HorizontalOffset = e.GetPosition(null).X + 2;
pop.VerticalOffset = e.GetPosition(null).Y + 2;

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

237

pop.IsOpen = true;
 }

private void SliderDropShadowBlur_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
 {
if (null != ImageEdit)
((DropShadowEffect)ImageEdit.Effect).BlurRadius = e.NewValue;
 }

private void SliderBlur_ValueChanged(object sender, RoutedPropertyChangedEventArgs<double>
e)
 {
if (null != ContainerGrid)
((BlurEffect)ContainerGrid.Effect).Radius = e.NewValue;
 }

private void ImageEdit_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
 {
pop.IsOpen = false;
 }

private void SliderDropShadowDepth_ValueChanged(object sender,
RoutedPropertyChangedEventArgs<double> e)
 {
if (null != ImageEdit)
((DropShadowEffect)ImageEdit.Effect).ShadowDepth = e.NewValue;
 }
 }
}

Figure 3-84 shows the application in action.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

238

Figure 3-84. Final output with shader effects adjusted

3-21. Accessing the Clipboard

Problem
You need to allow users to cut, copy, and paste text via the Clipboard.

How it Works
Silverlight 4 added a new Clipboard class to the System.Windows namepace. It has three static methods
available to work with clipboard data:

• SetText – Places text on the clipboard

• ContainsText – Checks whether the clipboard contains text

• GetText – Retrieves text from the clipboard

When a Clipboard method is called in an event handler, the user is prompted on whether to allow
access to the clipboard as shown in Figure 3-85

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

239

Figure 3-85. Security prompt for clipboard access

if the application is a trusted out-of-browser application you are not prompted and the clipboard
access works just like in any other .NET program. In general, whether in browser or out-o-browser,
the clipboard access works only for text. There isn’t support for items like images, etc.

The Code
The code for this recipe is fairly simple. We have three buttons labled Cut, Copy, and Paste with two
TextBox controls with the TextBox on the left containing Lorem ipsum text as shown in Figure 3-86.

Figure 3-86. Initial Test UI

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

240

Select text in the left TextBox and then click cut or copy to place the text on the clipboard. Click
paste and the text is added to the TextBox on the right. Listing 3-25 has the XAML and Listing 3-26 has
the .cs file for MainPage.

Listing 3-25. Recipe 3.21 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_21.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
xmlns:local=”clr-namespace:Ch03_DevelopingUX.Recipe3_21”
mc:Ignorable=”d”
d:DesignHeight=”300” d:DesignWidth=”400”>

<Grid x:Name=”LayoutRoot” >
<Grid.Background>
<LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
<GradientStop Color=”#FF2D2D2D” Offset=”0”/>
<GradientStop Color=”#FF858484” Offset=”1”/>
</LinearGradientBrush>
</Grid.Background>
<TextBlock Height=”19” Margin=”130,8,130,0” TextWrapping=”Wrap”
Text=”Clipboard Demonstration” VerticalAlignment=”Top”
Foreground=”White”/>
<TextBox Margin=”8,45,0,92” TextWrapping=”Wrap” Foreground=”White”
Text=”Lorem ipsum dolor sit amet, consectetur
Background=”{x:Null}” HorizontalAlignment=”Left” Width=”173”
x:Name=”SourceText” />
<TextBox Margin=”0,45,8,92” TextWrapping=”Wrap” Background=”{x:Null}”
Foreground=”White” HorizontalAlignment=”Right” Width=”173”
x:Name=”DestinationText” />
<Button x:Name=”btnCopy” Content=”Copy” HorizontalAlignment=”Left”
VerticalAlignment=”Bottom” Width=”75” Margin=”106,0,0,45”
Click=”btnCopy_Click” />
<Button x:Name=”btnCut” Content=”Cut” HorizontalAlignment=”Left”
VerticalAlignment=”Bottom” Width=”75” Margin=”8,0,0,45”
Click=”btnCut_Click” />
<Button x:Name=”btnPaste” Content=”Paste” HorizontalAlignment=”Right”
VerticalAlignment=”Bottom” Width=”75” Margin=”0,0,57,45”
Click=”btnPaste_Click” />
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

241

Listing 3-26. Recipe 3.21 MainPage.xaml.cs File

using System.Linq;
using System.Windows;
using System.Windows.Controls;

namespace Ch03_DevelopingUX.Recipe3_21
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
 }

private void btnCut_Click(object sender, RoutedEventArgs e)
 {
Clipboard.SetText(SourceText.SelectedText);
SourceText.Text = SourceText.Text.Remove(
SourceText.Text.IndexOf(SourceText.SelectedText),
SourceText.SelectedText.Count());
 }

private void btnCopy_Click(object sender, RoutedEventArgs e)
 {
Clipboard.SetText(SourceText.SelectedText);
 }

private void btnPaste_Click(object sender, RoutedEventArgs e)
 {
DestinationText.Text += Clipboard.GetText();
}
 }
}

3-22. Using Right-to-Left Text

Problem
You need to display text right-to-left for languages that naturally flow right-to-left such as Arabic.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

242

How it Works
Silverlight 4 adds a FlowDirection property to the FrameworkElement base class that lets developers
configure whether text flows left-to-right (default) or right-to-left.

The Code
The code for this recipe is very simple with two TextBox controls that are configured to display their
text in a different flow direction. Figure 3-87 shows the UI.

Figure 3-87. Security prompt for clipboard access

The flow for right to left makes much more sense if you have a language that is designed for it but
it is good to see the improved localization support available in Silverlight 4. Listing 3-27 and 3-28 has
the code.

Listing 3-27. Recipe 3.22 MainPage.xaml File

<UserControl x:Class=”Ch03_DevelopingUX.Recipe3_22.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”300” d:DesignWidth=”400” >

<Grid x:Name=”LayoutRoot” Background=”White”>
<TextBox Height=”115” HorizontalAlignment=”Left” Margin=”12,30,0,0”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

243

Name=”textLeftToRight” VerticalAlignment=”Top” Width=”376” Text=””
TextWrapping=”Wrap” />
<TextBox Height=”115” HorizontalAlignment=”Left” Margin=”12,173,0,0”
Name=”textRightToLeft” VerticalAlignment=”Top” Width=”376” Text=””
TextWrapping=”Wrap” FlowDirection=”RightToLeft” />
<TextBlock Height=”17” HorizontalAlignment=”Left” Margin=”12,7,0,0”
Name=”textBlock1” Text=”Left to Right” VerticalAlignment=”Top”
Width=”376” />
<TextBlock Height=”17” HorizontalAlignment=”Left” Margin=”12,151,0,0”
Name=”textBlock2” Text=”Right to Left” VerticalAlignment=”Top”
Width=”376” FlowDirection=”RightToLeft” />
</Grid>
</UserControl>

Listing 3-28. Recipe 3.22 MainPage.xaml.cs File

using System.Windows.Controls;

namespace Ch03_DevelopingUX.Recipe3_22
{
public partial class MainPage : UserControl
 {
public MainPage()
 {
InitializeComponent();
textLeftToRight.Text =
“Lorem ipsum dolor sit amet, consectetur adipisicing \n”+
“elit, sed do eiusmod tempor incididunt ut labore et \n”+
“dolore magna aliqua. Ut enim ad minim veniam, quis \n”+
“nostrud exercitation ullamco”;
textRightToLeft.Text =
“Lorem ipsum dolor sit amet, consectetur adipisicing \n” +
“elit, sed do eiusmod tempor incididunt ut labore et \n” +
“dolore magna aliqua. Ut enim ad minim veniam, quis \n” +
“nostrud exercitation ullamco”;
}
 }
}

3-23. Prototype Application Design
Problem
You want to prototype an application design in a flexible, dynamic way using tools that support the
designer/developer process.

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

244

Solution
Take advantage of Expression Blend 4 and SketchFlow to create rich, dynamic design prototypes that
let designers manage the design process while providing solid integration with developers.

How It Works
In the early stages of the creative process, designers often start with pen and paper along with a stack
of sticky pads and use arrows to simulate interactivity. SketchFlow provides a designer-focused toolset
that supports the creative process while attempting to stay out of the way of free-flowing creativity.

SketchFlow lets designers sketch out ideas and then turn those ideas into working prototypes that
are as rough or as real as the designer wants. When a designer is satisfied, the prototype can be
demonstrated for review and comment using the SketchFlow player. An entire book could be dedicated
to just Expression Blend 4 and SketchFlow; we provide just a quick overview to cover the highlights so
that you are sufficiently aware of the capabilities to get started.

The Code
In Expression Blend 4+SketchFlow, choose File ❜ New to open the New Project dialog shown in Figure 3-88.

Figure 3-88. Expression Blend 4+SketchFlow New Project dialog

Clicking OK in Figure 3-88 generates two projects: one for the application and the other for the
prototype screens that are stored in a resource dictionary. In this case, we made the project names and
namespaces match the naming standards for the book’s source code, resulting in two projects:

• 3-23 Prototype Application Design (the prototype application)

• 3-23 Prototype Application Design – Screens (the resource dictionary project)

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

245

Sketch a quick UI for a scuba shop named Scuba Adventures, creating a Welcome pane and a
Confirm and Pay pane as shown in Figure 3-89.

Expression Blend 4+SketchFlow includes custom SketchFlow styles that are more visually
conducive to the design process, providing a sketchy appearance. The controls are available in the
Assets panel under Styles, as shown in Figure 3-82. Under the hood, the controls are the same ones you
normally use, but with a custom look.

A more streamlined but similar animation tool is located above the Artboard in Figure 3-89 It is
easy to create additional screens in the SketchFlow Map shown below the Artboard in Figure 3-89.

Under the File menu is the Package SketchFlow Project menu item, which you can use to package
up the SketchFlow application for deployment on a web server for demonstration purposes. You can
also build and run the project in Expression Blend to display the prototype in the SketchFlow player.

This recipe provides a quick overview of the capabilities in SketchFlow. For more information,
check out the SketchFlow site:

http://expression.microsoft.com/en-us/ee215229.aspx

Figure 3-89. Expression Blend 4+SketchFlow in action

http://expression.microsoft.com/en-us/ee215229.aspx

CHAPTER 3 ■ DEVELOPING USER EXPERIENCES

246

C H A P T E R 4

■ ■ ■

247

Data Binding

All applications deal with information in some form or another. A slick user interface (UI) powered by a
rich drawing and control framework can be pretty useless if there is no meaningful data to be displayed
through it.

Application developers using UI frameworks like Silverlight need a powerful yet easy way of
tying the application data to the UI they design. Data binding is a feature that enables just that.

Through data binding, developers can associate properties of application-level data classes to
properties of UI elements. This association is evaluated at runtime, and data is automatically
transferred back and forth between the UI and the business logic layer of the application (subject to
additional parameters stipulated by the specific association). Such an association, called a binding, is
implemented through the System.Windows.Data.Binding type.

Let’s look at the recipes to see Binding and its associated properties in action.

4-1. Binding Application Data to the UI
Problem
You need to bind various properties on UI objects in Silverlight to application data available in
managed code.

Solution
Use the Binding markup extension to specify the appropriate data bindings in XAML or use the
FrameworkElement.SetBinding() method to do the same in the codebehind.

How It Works
The Binding markup extension or the FrameworkElement.SetBinding() method can be used to bind
properties on instances of application data types to dependency properties defined on any type
inheriting from FrameworkElement. The application data type properties are called the source
properties for the binding, and the dependency properties are called the target properties.

Binding Expression
XAML exposes several markup extensions, one of which is Binding. A markup extension provides an
extension to the default XAML namespaces and is used as a keyword within a set of curly braces in

CHAPTER 4 ■ DATA BINDING

248

your XAML document. The syntax for using the Binding extension to bind some data to a property is as
follows:

<object targetPropertyname =
 "{Binding sourcePropertyPath, oneOrMoreBindingProperties}" .../>

The entire Binding statement within the curly braces, including all the property settings, is
collectively called a binding expression.

The targetPropertyName points to a dependency property on the XAML element. The
sourcePropertyPath is the complete, qualified path to a property in the data source object hierarchy.
The dot notation can be used to indicate properties belonging to type instances that are nested within
other instances. The Binding extension also exposes several properties that can be set to impact
various behaviors of the binding, such as the direction of the data flow, input validation behavior, or
conversion of values. We will discuss most of the properties in subsequent recipes.

Dependency Properties
Dependency properties are unique to the Silverlight runtime and have some differences compared
with standard .NET properties. One of the major differences is that a target property needs to be a
dependency property to allow data binding. We introduced dependency properties in Chapter 2 and
provide additional background on the Silverlight dependency property system in Chapter 5. You can
also read about dependency properties in the Silverlight SDK documentation.

Associating the Data Source
The data source is a CLR object, and the source properties are public properties with at least public get
accessors defined. The data source can be set as the DataContext on the element at the level where the
binding is being set or on a containing element, thus making it automatically available as the
DataContext to all children elements. The following is an example of using the DataContext, where a
CLR type declared as a resource named CLRDS_Company is being used as the data source on the Grid and
the Text property on a contained TextBlock is being bound to the Street property on the data source
object:

<Grid x:Name="LayoutRoot" Background="White"
 DataContext="{StaticResource CLRDS_Company}">
 <TextBlock Text="{Binding Street}"/>
</Grid>

The data source can also be set as the Source property on the binding itself. This may be necessary
if the data for the elements in your UI came from different data sources and just providing a higher-
level DataContext was not enough. A sample of the syntax for that would look like the following, where
the Source can be set to a different data source than the one defined in the data context:

<TextBlock Text="{Binding Name,Source={StaticResource SomeOtherDS}}"/>

In either case, you can define the data source by referencing a CLR type as a resource in your
XAML, as shown here:

<UserControl.Resources>
 <local:Company x:Key="CLRDS_Company" />
</UserControl.Resources>

CHAPTER 4 ■ DATA BINDING

249

The local: prefix is a custom namespace defined to bring in the Company type. Both custom
namespace mapping and the StaticResource extension used to reference such resources in XAML were
covered in detail in Chapter 2.

The Code
The CLR object model shown in Listing 4-1 is being used as the application data source for this sample.

Listing 4-1. Application Data Classes

using System.Collections.Generic;

namespace Recipe4_1
{
 public class Employee
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public long PhoneNum { get; set; }
 }
 public class Company
 {
 public string Name { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public int ZipCode { get; set; }
 public List<Employee> Employees { get; set; }

 public Company()
 {
 this.Name = "Woodgrove Bank";
 this.Street = "555 Wall Street";
 this.City = "New York";
 this.State = "NY";
 this.ZipCode = 10005;
 this.Employees = new List<Employee>();

 this.Employees.Add(
 new Employee
 {
 FirstName = "Joe",
 LastName = "Duffin",
 PhoneNum = 2125551212
 });
 this.Employees.Add(
 new Employee

CHAPTER 4 ■ DATA BINDING

250

 {
 FirstName = "Alex",
 LastName = "Bleeker",
 PhoneNum = 7185551212
 });

 //rest of the initialization code omitted for brevity
 this.Employees.Add(new Employee
 {
 FirstName = "Nelly",
 LastName = "Myers",
 PhoneNum = 7325551212
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Marcus",
 LastName = "Bernard",
 PhoneNum = 7325551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Juliette",
 LastName = "Bernard",
 PhoneNum = 7325551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Cory",
 LastName = "Winston",
 PhoneNum = 9085551414
 });
this.Employees.Add(new Employee
 {
 FirstName = "Randall",
 LastName = "Valetta",
 PhoneNum = 2015551414
 });

 this.Employees.Add(new Employee
 {
 FirstName = "Maurice",
 LastName = "Dutronc",
 PhoneNum = 3635551414
 });
 this.Employees.Add(new Employee
 {

CHAPTER 4 ■ DATA BINDING

251

 FirstName = "Nathan",
 LastName = "Adams",
 PhoneNum = 3635551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Harold",
 LastName = "Anthony",
 PhoneNum = 3745551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Paul",
 LastName = "Gomez",
 PhoneNum = 3415551414
 });

 this.Employees.Add(new Employee
 {
 FirstName = "Martha",
 LastName = "Willard",
 PhoneNum = 4795551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Barry",
 LastName = "Driver",
 PhoneNum = 4165551414
 });
this.Employees.Add(new Employee
 {
 FirstName = "Peter",
 LastName = "Martinson",
 PhoneNum = 4165551414
 });
 this.Employees.Add(new Employee
 {
 FirstName = "Mike",
 LastName = "Dempsey",
 PhoneNum = 4165551656
 });
 }
 }
}

CHAPTER 4 ■ DATA BINDING

252

The XAML page shown in Listing 4-2 declares an instance of the Company class to use as a data
source.

Listing 4-2. XAML for the Page

<UserControl x:Class="Recipe4_1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 xmlns:local="clr-namespace:Recipe4_1"
 Width="400" Height="300" >

 <UserControl.Resources>
 <local:Company x:Key="CLRDS_Company" />
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White"
 DataContext="{StaticResource CLRDS_Company}" Margin="8,8,8,8">

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.38*"/>
 <ColumnDefinition Width="0.032*"/>
 <ColumnDefinition Width="0.238*"/>
 <ColumnDefinition Width="0.028*"/>
 <ColumnDefinition Width="0.322*"/>
 </Grid.ColumnDefinitions>
<Grid.RowDefinitions>
 <RowDefinition Height="0.103*"/>
 <RowDefinition Height="0.114*"/>
 <RowDefinition Height="0.783*"/>
 </Grid.RowDefinitions>
 <TextBlock Grid.ColumnSpan="5" x:Name="tbxCompanyName"/>
 <TextBlock Text="{Binding Street}" Grid.ColumnSpan="1" Grid.Row="1" />
 <TextBlock Text="," Grid.Column="1" Grid.Row="1" />
 <TextBlock Text="{Binding City}" Grid.Column="2"
 Grid.ColumnSpan="1" Grid.Row="1" />
 <TextBlock Text="," Grid.Column="3" Grid.ColumnSpan="1"
 Grid.Row="1" Grid.RowSpan="1"/>
 <StackPanel Margin="0,0,0,8" Orientation="Horizontal"
 Grid.Column="4" Grid.ColumnSpan="1"
 Grid.Row="1" Grid.RowSpan="1">
 <TextBlock Margin="0,0,5,0" Text="{Binding State}" />
 <TextBlock Text="{Binding Zip}"/>
 </StackPanel>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 4 ■ DATA BINDING

253

 <ListBox x:Name="lbxEmployees" Grid.RowSpan="1" Grid.Row="2"
 Grid.ColumnSpan="5" ItemsSource="{Binding Employees}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0" Text="{Binding FirstName}"
 Margin="0,0,5,0" />
 <TextBlock Grid.Column="1" Text="{Binding LastName}"
 Margin="0,0,5,0"/>
 <TextBlock Grid.Column="2" Text="{Binding PhoneNum}"/>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>

</UserControl>

To bind the data to the UI, you set the DataContext property on the top-level grid named
LayoutRoot. As discussed earlier, the DataContext is made available to all contained controls inside the
grid so that any binding expression automatically uses it as the binding source, thus negating the need
to specify the source explicitly in the binding statement. So for each of the binding expressions in the
UI for the controls contained immediately within the grid, you simply specify the name of the property
in the Company type to which you want to bind the control’s property.

You use a ListBox to display the Employees collection in the Company instance. You set the
ItemTemplate for the ListBox to a DataTemplate that defines how each item in the ListBox is displayed.
The DataTemplate is discussed in greater detail later in this chapter, but for now, think of it as a way to
package the UI representation of a specific data type. By binding the ItemsSource property of the
ListBox to the Employees property on the Company instance, you effectively provide an instance of the
Employee class as the data source for each item in the ListBox. In the DataTemplate, you can then bind
properties of individual elements to properties on the Employee class to display employee data. The
page output for the application is shown in Figure 4-1.

CHAPTER 4 ■ DATA BINDING

254

Figure 4-1. The data-bound page

Note that the Company type being referenced as the CLRDS_Company resource will also need to have a
default constructor defined to be referenced in XAML this way. If you do not have a default constructor,
you can instantiate the type and set the DataContext in code like so:

LayoutRoot.DataContext = new Company(SomeParameter);

You can also create and set bindings in code if you need to. To do so, create and initialize an
instance of the Binding type, and then use the SetBinding() method on the FrameworkElement type to
associate it with a specific DependencyProperty, as shown in Listing 4-3.

Listing 4-3. Creating a Binding in Code

using System.Windows.Controls;
using System.Windows.Data;

namespace Recipe4_1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 //In case you want to set the datacontext in code...
 //LayoutRoot.DataContext = new Company();
 //create a new Binding
 Binding CompanyNameBinding = new Binding("Name");
 //set properties on the Binding as needed
 CompanyNameBinding.Mode = BindingMode.OneWay;
 //apply the Binding to the DependencyProperty of
 //choice on the appropriate object
 tbxCompanyName.SetBinding(TextBlock.TextProperty,
 CompanyNameBinding);

CHAPTER 4 ■ DATA BINDING

255

 }
 }
}

Before you apply the Binding, you can also set various properties on the Binding to control its
behavior. The BindingMode setting in Listing 4-3 is one such property. BindingMode controls the
direction of data flow in the Binding, and the OneWay setting stipulates that data only flow from the
source to the target in this case. The BindingMode is discussed in greater detail in Recipe 4-3 later in the
chapter.

To utilize the code in Listing 4-3, you will need to name the element that is targeted by the
binding in XAML appropriately so that it becomes accessible to you in code. In the following snippet,
you see how to name the TextBlock tbxCompanyName in Listing 4-2 so that you can refer to it in code.

<Grid x:Name="LayoutRoot" Background="White"
DataContext="{StaticResource CLRDS_Company}">
 <!-- markup omitted for brevity -->
 <TextBlock Grid.ColumnSpan="5" x:Name="tbxCompanyName"/>
</Grid>

4-2. Binding Using a DataTemplate
Problem
You need to apply a custom UI to data and specify how various parts of a complex data structure are
bound to various parts of your complex UI. You also need this representation encapsulated so that it
can be reused across your application wherever the related data structure is employed.

Solution
Define a DataTemplate and specify appropriate bindings to bind parts of the backing data structure to
elements of the data template. Apply the DataTemplate where possible to apply a consistent UI to the
bound data.

How It Works
A DataTemplate offers a way to provide a repeatable and consistent visual representation for a portion
or all of a specific application data source within your UI. It encapsulates a portion of your UI and can
be defined in terms of any of the standard drawing primitives and controls available, as well any
custom controls you might write. Appropriate bindings applied to various properties of the constituent
elements ties the DataTemplate to the backend application data source that it aims to provide the UI for.

Declaring a DataTemplate
Listing 4-4 shows a simple DataTemplate that binds the Text properties of several TextBlock controls to
properties in a CLR type.

CHAPTER 4 ■ DATA BINDING

256

Listing 4-4. A Simple DataTemplate

<DataTemplate x:Key="dtAddress">
 <Grid >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="tblkStreet" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Text="{Binding Street}"
 TextWrapping="Wrap" Foreground="White" FontSize="12"
 FontWeight="Bold"/>
 <StackPanel Grid.RowSpan="1" Orientation="Horizontal" Grid.Row="1"
 VerticalAlignment="Stretch">
 <TextBlock x:Name="tblkCity" Text="{Binding City}"
 TextWrapping="Wrap" FontSize="12"
 FontWeight="Bold" Foreground="White"/>
 <TextBlock x:Name="tblkComma" Text="," TextWrapping="Wrap"
 Margin="2,0,2,0" FontSize="12" FontWeight="Bold"
 Foreground="White"/>
 <TextBlock x:Name="tblkState" Text="{Binding State}"
 TextWrapping="Wrap" FontSize="12"
 FontWeight="Bold" Foreground="White"/>
 <TextBlock x:Name="tblkZip" Text="{Binding ZipCode}"
 TextWrapping="Wrap" Margin="3,0,0,0" FontSize="12"
 FontWeight="Bold" Foreground="White"/>
 </StackPanel>
 </Grid>
</DataTemplate>

Note that a DataTemplate can be declared either as a resource that can be referenced using its
x:Key value, as shown in Listing 4-4, or in place, as Listing 4-5 shows.

Listing 4-5. A DataTemplate Declared and Used in Place

<ContentControl x:Name="cntctrlEmployee" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Grid.Column="0" Background="Yellow" Margin="5,5,5,5"
 Height="200">
 <ContentControl.ContentTemplate>
 <DataTemplate>
 <TextBlock x:Name="tblkFirstName" Text="{Binding FirstName}"

CHAPTER 4 ■ DATA BINDING

257

 TextWrapping="Wrap" FontSize="14" FontWeight="Bold"
 Foreground="White" Margin="3,0,0,0"/>
 </DataTemplate>
 </ContentControl.ContentTemplate>
</ContentControl>

In Listing 4-5, you define and associate a DataTemplate to the ContentControl.ContentTemplate
property in place. For in-place use, the DataTemplate is scoped to the containing element (in this case,
the ContentControl.ContentTemplate) and is not available for use outside that scope.

You can also define a DataTemplate as a resource either in the resource section of the page or that
of the application. In the former case, the DataTemplate is control scoped—that is, it is available for use
anywhere on the MainPage (which is a UserControl). In the latter case, it is available for use anywhere
in the entire application. In keeping with the rules, anything stored as a resource in
ResourceDictionaries, such a DataTemplate, needs an x:Key defined so that it can be referenced for use
via the StaticResource extension. Resource usage and ResourceDictionaries were covered in detail in
Chapter 2.

Using a DataTemplate
So how do you use a DataTemplate? You can apply one to either a ContentControl (or a derived control,
like Button) or an ItemsControl (or a derived control, like ListBox). To apply the DataTemplate, you set
the ContentControl.ContentTemplate property or the ItemsControl.ItemTemplate property to the
DataTemplate, as shown here:

<ContentControl ContentTemplate="{StaticResource dtAddress}" />
<ListBox ItemTemplate="{StaticResource dtAddress}" />

At runtime, the data bound to the ContentControl.Content property, or each data item in the data
collection bound to the ItemsControl.ItemsSource property, is used to provide data for the bound
properties in the DataTemplate.

■ Note The recipes in Chapter 5 will show you how to write custom controls so that DataTemplates can be used

to customize the look and feel of data bound to your control.

The Code
Listing 4-6 shows code for the classes that provide the data for this sample.

Listing 4-6. Data Classes

namespace Recipe4_2
{
 public class Employee
 {
 public string FirstName { get; set; }

CHAPTER 4 ■ DATA BINDING

258

 public string LastName { get; set; }
 public long PhoneNum { get; set; }
 public string ImageUri
 {
 get
 {
 return "/" + FirstName + ".png";
 }
 }
 public Address Address { get; set; }
 }

 public class Address
 {
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public int ZipCode { get; set; }
 }
}

Listing 4-7 shows the code to initialize the data, defined in the constructor of the MainPage class, in
the codebehind file for the MainPage.

Listing 4-7. Data Initialization

using System.Collections.Generic;
using System.Windows.Controls;

namespace Recipe4_2
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 List<Employee> EmployeeList = new List<Employee>();

 EmployeeList.Add(new Employee
 {
 FirstName = "Joe",
 LastName = "Duffin",
 PhoneNum = 2125551212,
 Address = new Address { Street = "2000 Mott Street",

CHAPTER 4 ■ DATA BINDING

259

 City = "New York", State = "NY", ZipCode = 10006 }
 });

 EmployeeList.Add(new Employee
 {
 FirstName = "Alex",
 LastName = "Bleeker",
 PhoneNum = 7185551212,
 Address = new Address { Street = "11000 Clover Street",
 City = "New York", State = "NY", ZipCode = 10007 }
 });

 EmployeeList.Add(new Employee
 {
 FirstName = "Nelly",
 LastName = "Myers",
 PhoneNum = 7325551212,
 Address = new Address { Street = "12000 Fay Road",
 City = "New York", State = "NY", ZipCode = 10016 }
 });

 cntctrlEmployee.Content = EmployeeList[0];
 itmctrlEmployees.ItemsSource = EmployeeList;
 }
 }
}

You define two data templates, one each for the Address type and the Employee type in the
MainPage.xaml file,

as shown in Listing 4-8.

Listing 4-8. DataTemplates for the Address and Employee Data Types

<UserControl.Resources>
 <DataTemplate x:Key="dtAddress">
 <Grid >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="tblkStreet" HorizontalAlignment="Stretch"

CHAPTER 4 ■ DATA BINDING

260

 VerticalAlignment="Stretch" Text="{Binding Street}"
 TextWrapping="Wrap" Foreground="White" FontSize="12"
 FontWeight="Bold"/>
 <StackPanel Grid.RowSpan="1" Orientation="Horizontal" Grid.Row="1"
 VerticalAlignment="Stretch">
 <TextBlock x:Name="tblkCity" Text="{Binding City}"
 TextWrapping="Wrap" FontSize="12"
 FontWeight="Bold" Foreground="White"/>
 <TextBlock x:Name="tblkComma" Text="," TextWrapping="Wrap"
 Margin="2,0,2,0" FontSize="12" FontWeight="Bold"
 Foreground="White"/>
 <TextBlock x:Name="tblkState" Text="{Binding State}"
 TextWrapping="Wrap" FontSize="12"
 FontWeight="Bold" Foreground="White"/>

 <TextBlock x:Name="tblkZip" Text="{Binding ZipCode}"
 TextWrapping="Wrap" Margin="3,0,0,0" FontSize="12"
 FontWeight="Bold" Foreground="White"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 <DataTemplate x:Key="dtEmployee">
 <Grid Height="Auto" Width="300" Margin="5,5,5,5">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.508*"/>
 <ColumnDefinition Width="0.492*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.801*" />
 <RowDefinition Height="0.199*"/>
 </Grid.RowDefinitions>
 <Rectangle HorizontalAlignment="Stretch" Margin="0,-74.9660034179688,0,0"
 Stroke="#FF000000" Grid.Row="1" Grid.RowSpan="1" RadiusX="3"
 RadiusY="3" StrokeThickness="0" Fill="#FF9FA8E4"/>
 <Rectangle HorizontalAlignment="Stretch" Margin="0,0,0,0"
 Grid.ColumnSpan="2" Grid.RowSpan="1" RadiusX="3"
 RadiusY="3" Stroke="#FF686868" StrokeThickness="0"
 Width="Auto">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FF9FA8E4" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

CHAPTER 4 ■ DATA BINDING

261

 <Rectangle HorizontalAlignment="Stretch" Margin="3,3,3,3"
 Stroke="#FF0A28EE" Grid.RowSpan="1"
 StrokeThickness="5" VerticalAlignment="Stretch"/>
 <Image Margin="8,8,8,8" x:Name="imgEmployee"
 Source="{Binding ImageUri}"
 Stretch="Fill"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.RowSpan="1"/>
 <StackPanel Margin="0,-0.114000000059605,0,0" Orientation="Horizontal"
 Grid.Row="1" Grid.ColumnSpan="1" VerticalAlignment="Stretch"
 Grid.RowSpan="1">
 <TextBlock x:Name="tblkFirstName" Text="{Binding FirstName}"
 TextWrapping="Wrap" FontSize="14" FontWeight="Bold"
 Foreground="White" Margin="3,0,0,0"/>
 <TextBlock x:Name="tblkLastName" Text="{Binding LastName}"
 TextWrapping="Wrap" FontSize="14" FontWeight="Bold"
 Margin="3,0,0,0" Foreground="White"/>
 </StackPanel>
 <StackPanel Margin="0,0,0,0" Grid.Column="1">
 <ContentControl ContentTemplate="{StaticResource dtAddress}"
 Content="{Binding Address}" Foreground="#FF0A28EE" />
 <TextBlock x:Name="tblkPhoneNum" Text="{Binding PhoneNum}"
 TextWrapping="Wrap" FontSize="12" FontWeight="Bold"
 Margin="0,5,0,0" Foreground="White"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
</UserControl.Resources>

You can see that a DataTemplate can, in turn, use another DataTemplate in a nested fashion. In
dtEmployee earlier, you use a ContentControl to display an employee’s address, and you reuse
dtAddress as the ContentTemplate. This kind of reuse helps facilitate the consistency in UI
representation of data, keeping in line with the promise of DataTemplates.

Applying the DataTemplate is simple. Let’s apply it to a ContentControl like so

<ContentControl x:Name="cntctrlEmployee" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Grid.Column="0" Background="Yellow" Margin="5,5,5,5"
 ContentTemplate="{StaticResource dtEmployee}" Height="200"/>

and bind it to the first Employee in the EmployeeList collection, as shown in the MainPage’s constructor
code in Listing 4-7, like so

cntctrlEmployee.Content = EmployeeList[0];

Figure 4-2 shows the DataTemplate in action.

CHAPTER 4 ■ DATA BINDING

262

Figure 4-2. DataTemplate in action in a ContentControl

Let’s also apply the same DataTemplate to a ListBox, like so:

<ListBox x:Name="itmctrlEmployees"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Column="1"
 Width="325"
 ItemTemplate="{StaticResource dtEmployee}"
 Height="400"/>

Them, you bind it to the entire EmployeeList collection, as shown in the MainPage’s constructor code in
Listing 4-7, like so:

itmctrlEmployees.ItemsSource = EmployeeList;

This time, you see the DataTemplate being applied to each item in the ListBox but producing a
consistent UI, as shown in Figure 4-3.

Figure 4-3. DataTemplate applied to ItemTemplate of a ListBox

CHAPTER 4 ■ DATA BINDING

263

4-3. Receiving Change Notifications for Bound Data
Problem
You have data-bound elements in your UI, and you want to enable change notifications and automatic
refresh of the UI when the bound application data changes.

Solution
You implement the System.ComponentModel.INotifyPropertyChanged interface in your data types and
the System.Collections.Specialized.INotifyCollectionChanged interface in your collection types. You
then raise the events defined in these interfaces from the implementing types to provide change
notifications. You also ensure that the Mode property for each data binding is set to either
BindingMode.OneWay or BindingMode.TwoWay to enable automatic UI refresh.

How It Works
The Silverlight binding infrastructure is aware of these two special interfaces and automatically
subscribes to change notification events defined in the interfaces when implemented by the data
source types.

Change Notification for Noncollection Types
The INotifyPropertyChanged interface has a single event named PropertyChanged. The event
parameter is of type PropertyChangedEventArgs, which accepts the name of the changing property as a
string parameter to the constructor and exposes it through the PropertyName property. The
PropertyChangedEvntArgs class is shown here:

public class PropertyChangedEventArgs : EventArgs
{
 // Fields
 private readonly string propertyName;

 // Methods
 public PropertyChangedEventArgs(string propertyName);

 // Properties
 public string PropertyName { get; }
}

Once you implement the INotifyPropertyChanged interface in your data source type, you raise
PropertyChanged whenever you need to raise change notifications for any of the bound source
properties. You pass in the name of the property being changed through an instance of
PropertyChangedEventArgs. Listing 4-9 shows a small but standard sample implementation.

CHAPTER 4 ■ DATA BINDING

264

Listing 4-9. Sample Implementation of INotifyPropertyChanged

public class Notifier : INotifyPropertyChanged
{
 //implementing INotifyPropertyChanged
 public event PropertyChangedEventHandler PropertyChanged;
 //utility method to raise PropertyChanged
 private void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 private string _SomeBoundProperty;
 public string SomeBoundProperty
 {
 get { return _SomeBoundProperty; }
 set
 {
 //save old value
 string OldVal = _SomeBoundProperty;
 //compare with new value
 if (OldVal != value)
 {
 //if different, set property
 _SomeBoundProperty = value;
 //and raise PropertyChanged
 RaisePropertyChanged(new
 PropertyChangedEventArgs("SomeBoundProperty"));
 }

 }
 }
}

Change Notification for Collection Types
The INotifyCollectionChanged interface also has a single event, named CollectionChanged, which can
be raised by implementing collection types to provide change notifications. The change information
that can be gained for collections is richer in comparison to INotifyPropertyChanged, as you can see in
the NotifyCollectionChangedEventArgs type listed here:

public sealed class NotifyCollectionChangedEventArgs : EventArgs
{
 // Other members omitted for brevity

CHAPTER 4 ■ DATA BINDING

265

 public NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction action,
 object newItem, object oldItem, int index);

 public NotifyCollectionChangedAction Action { get; }

 public IList NewItems { get; }

 public int NewStartingIndex { get; }

 public IList OldItems { get; }

 public int OldStartingIndex { get; }
}

The code sample in the next section shows a custom collection that implements
INotifyCollectionChanged.

The Code
The sample code for this recipe builds a simple data entry form over the data struc tures in Listing 4-
10.

Listing 4-10. Application Data Classes

using System.Collections.Generic;
using System.Collections.Specialized;
using System.ComponentModel;

namespace Recipe4_3
{
 public class Employee : INotifyPropertyChanged
 {

 public event PropertyChangedEventHandler PropertyChanged;
 private void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 public Employee()
 {
 }

CHAPTER 4 ■ DATA BINDING

266

 private string _FirstName;
 public string FirstName
 {
 get { return _FirstName; }
 set
 {
 string OldVal = _FirstName;
 if (OldVal != value)
 {
 _FirstName = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("FirstName"));
 }
 }
 }
 private string _LastName;
 public string LastName
 {
 get { return _LastName; }
 set
 {
 string OldVal = _LastName;
 if (OldVal != value)
 {
 _LastName = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("LastName"));
 }
 }
 }

 private long _PhoneNum;
 public long PhoneNum
 {
 get { return _PhoneNum; }
 set
 {
 long OldVal = _PhoneNum;
 if (OldVal != value)
 {
 _PhoneNum = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("PhoneNum"));
 }
 }
 }

 private Address _Address;

CHAPTER 4 ■ DATA BINDING

267

 public Address Address
 {
 get { return _Address; }
 set
 {
 Address OldVal = _Address;
 if (OldVal != value)
 {
 _Address = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("Address"));
 }
 }
 }
 }
 public class Address : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 private void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 private string _Street;
 public string Street
 {
 get { return _Street; }
 set
 {
 string OldVal = _Street;
 if (OldVal != value)
 {
 _Street = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("Street"));
 }
 }
 }

 private string _City;
 public string City
 {
 get { return _City; }
 set
 {
 string OldVal = _City;

CHAPTER 4 ■ DATA BINDING

268

 if (OldVal != value)
 {
 _City = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("City"));
 }
 }
 }

 private string _State;
 public string State
 {
 get { return _State; }
 set
 {
 string OldVal = _State;
 if (OldVal != value)
 {
 _State = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("State"));
 }
 }
 }

 private int _ZipCode;
 public int ZipCode
 {
 get { return _ZipCode; }
 set
 {
 int OldVal = _ZipCode;
 if (OldVal != value)
 {
 _ZipCode = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("ZipCode"));
 }
 }
 }
 }

 public class EmployeeCollection : ICollection<Employee>,
 IList<Employee>,
 INotifyCollectionChanged
 {
 private List<Employee> _internalList;

CHAPTER 4 ■ DATA BINDING

269

 public EmployeeCollection()
 {
 _internalList = new List<Employee>();
 }

 public event NotifyCollectionChangedEventHandler CollectionChanged;

 private void RaiseCollectionChanged(NotifyCollectionChangedEventArgs e)
 {
 if (CollectionChanged != null)
 {
 CollectionChanged(this, e);
 }
 }
 //Methods/Properties that would possibly change the collection and its content
 //need to raise the CollectionChanged event
 public void Add(Employee item)
 {
 _internalList.Add(item);
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add,
 item, _internalList.Count - 1));
 }
 public void Clear()
 {
 _internalList.Clear();
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
 }
 public bool Remove(Employee item)
 {
 int idx = _internalList.IndexOf(item);
 bool RetVal = _internalList.Remove(item);
 if (RetVal)
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Remove, item, idx));
 return RetVal;
 }
 public void RemoveAt(int index)
 {
 Employee item = null;
 if (index < _internalList.Count)
 item = _internalList[index];
 _internalList.RemoveAt(index);

CHAPTER 4 ■ DATA BINDING

270

 if (index < _internalList.Count)
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Remove, item, index));

 }
 public void Insert(int index, Employee item)
 {
 _internalList.Insert(index, item);
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Add, item, index));
 }
 public Employee this[int index]
 {
 get { return _internalList[index]; }
 set
 {
 _internalList[index] = value;
 RaiseCollectionChanged(
 new NotifyCollectionChangedEventArgs(
 NotifyCollectionChangedAction.Replace, value, index));

 }
 }

 public bool Contains(Employee item)
 {
 return _internalList.Contains(item);
 }
 public void CopyTo(Employee[] array, int arrayIndex)
 {
 _internalList.CopyTo(array, arrayIndex);
 }
 public int Count
 {
 get { return _internalList.Count; }
 }
 public bool IsReadOnly
 {
 get { return ((IList<Employee>)_internalList).IsReadOnly; }
 }
 public IEnumerator<Employee> GetEnumerator()
 {
 return _internalList.GetEnumerator();

CHAPTER 4 ■ DATA BINDING

271

 }
 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 return (System.Collections.IEnumerator)_internalList.GetEnumerator();
 }
 public int IndexOf(Employee item)
 {
 return _internalList.IndexOf(item);
 }
 }

}

As shown in Listing 4-10, both the Employee and the Address types implement
INotifyPropertyChanged to provide change notification. You also define a custom collection named
EmployeeCollection for Employee instances and implement INotifyCollectionChanged on the collection
type.

You can see the additional change information that can be accessed through the
NotifyCollectionChangedEventArgs. Using the NotifyCollectionChangedAction enumeration, you can
specify the type of change (Add, Remove, Replace, or Reset). You can also specify the item that changed and
its index in the collection. This detail allows the binding infrastructure to optimize the binding so that the
entire UI bound to the collection need not be refreshed for each change in the collection.

Also note that the System.Collections.ObjectModel contains a generic type named
ObservableCollection<T> that already implements INotifyCollectionChanged. For all data binding
scenarios, unless you have a specific reason to implement your own collection type,
ObservableCollection<T> should meet your needs, as it does ours in the rest of this book.

However, ObservableCollection<T> simply extends Collection<T>, which is a base collection class in the
framework. If you choose to have change notification enabled for some of the other, more advanced,
collections in the framework, such as List<T> or LinkedList<T>, or if you have implemented your own
custom collection types with custom business logic, implementing INotifyCollectionChanged is the way to
go.

Another scenario where you might choose to implement a custom collection is if you want to
declare the collection as a resource in your XAML. This would necessitate creating a nongeneric
collection class with a default constructor, and you would possibly want to initialize such a collection in
the constructor. You can, however, extend ObservableCollection directly in such cases and do away
with the need to implement any of the collection manipulation methods shown in the previous sample.

Listing 4-11 shows the simple data entry UI that you build on top of this collection.

Listing 4-11. Data Entry UI XAML

<UserControl x:Class="Recipe4_3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Recipe4_3"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 Width="400"
 Height="441">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 4 ■ DATA BINDING

272

 <UserControl.Resources>
 <!-- Employee collection Data source -->
 <local:EmployeeCollection x:Key="REF_EmployeeCollection" />
 <!-- Data template to be used for the Employee type -->
 <DataTemplate x:Key="dtEmployee">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}"
 Margin="5,0,0,0" />
 </StackPanel>
 </DataTemplate>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot"
 Background="White"
 Margin="10,10,10,10">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <ListBox Grid.Row="0"
 x:Name="lbx_Employees"
 ItemsSource="{StaticResource REF_EmployeeCollection}"
 ItemTemplate="{StaticResource dtEmployee}"
 SelectionChanged="lbx_Employees_SelectionChanged" />
 <Grid x:Name="grid_NewButton"
 Margin="0,2,0,0"
 Grid.Row="1"
 HorizontalAlignment="Right">
 <Button x:Name="btn_New"
 Click="btn_New_Click"
 Content="New Employee" />
 </Grid>
 <Border Grid.Row="2"
 Visibility="Collapsed"
 x:Name="border_EmployeeForm"
 Margin="0,2,0,0"
 BorderBrush="Black"
 BorderThickness="1"
 Padding="1,1,1,1">
 <Grid x:Name="grid_EmployeeForm">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.142*" />

CHAPTER 4 ■ DATA BINDING

273

 <ColumnDefinition Width="0.379*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.097*" />
 <ColumnDefinition Width="0.082*" />
 <ColumnDefinition Width="0.2*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.10*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.45*" />
 </Grid.RowDefinitions>

 <TextBox HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 x:Name="tbxFName"
 VerticalAlignment="Stretch"
 Text="{Binding FirstName, Mode=TwoWay}"
 Grid.Row="1"
 Width="Auto"
 Grid.RowSpan="1"
 Grid.ColumnSpan="2"
 Grid.Column="1" />
 <TextBox HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 x:Name="tbxLName"
 VerticalAlignment="Stretch"
 Text="{Binding LastName, Mode=TwoWay}"
 Grid.Row="1"
 Grid.Column="3"
 Width="Auto"
 Grid.RowSpan="1"
 Grid.ColumnSpan="3" />
 <TextBlock HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Last"
 TextWrapping="Wrap"
 Grid.RowSpan="1"
 Grid.Column="4"
 Grid.ColumnSpan="2"
 Height="Auto"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"

CHAPTER 4 ■ DATA BINDING

274

 Margin="1,1,1,1"
 VerticalAlignment="Center"
 Text="First"
 TextWrapping="Wrap"
 Grid.RowSpan="1"
 Grid.Column="1"
 Width="Auto"
 Height="Auto" />
 <TextBlock HorizontalAlignment="Center"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Name"
 TextWrapping="Wrap"
 Grid.RowSpan="1"
 Grid.Row="1"
 Height="Auto"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Street"
 TextWrapping="Wrap"
 Grid.Row="2"
 Width="Auto" />
 <TextBox HorizontalAlignment="Stretch"
 x:Name="tbxStreet"
 VerticalAlignment="Stretch"
 Text="{Binding Address.Street, Mode=TwoWay}"
 Grid.Row="2"
 Margin="1,1,1,1"
 Grid.Column="1"
 Grid.ColumnSpan="5"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Stretch"
 Text="City"
 TextWrapping="Wrap"
 Margin="1,1,1,1"
 Grid.Row="3" />
 <TextBlock Text="State"
 Margin="1,1,1,1"
 TextWrapping="Wrap"
 Grid.Column="2"
 Grid.Row="3"
 HorizontalAlignment="Center" />

CHAPTER 4 ■ DATA BINDING

275

 <TextBlock Text="Zip"
 Margin="1,1,1,1"
 TextWrapping="Wrap"
 Grid.Column="4"
 Grid.Row="3"
 HorizontalAlignment="Center" />
 <TextBox HorizontalAlignment="Stretch"
 x:Name="tbxCity"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="{Binding Address.City, Mode=TwoWay}"
 Grid.Row="3"
 Grid.Column="1" />
 <TextBox Background="Transparent"
 Grid.Column="3"
 Margin="1,1,1,1"
 Grid.Row="3"
 Text="{Binding Address.State, Mode=TwoWay }"
 x:Name="tbxState">
 </TextBox>
 <TextBox Background="Transparent"
 Grid.Column="5"
 Grid.Row="3"
 Margin="1,1,1,1"
 Text="{Binding Address.ZipCode, Mode=TwoWay }"
 x:Name="tbxZipCode" />
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Stretch"
 Text="Phone"
 Margin="1,1,1,1"
 TextWrapping="Wrap"
 Grid.Row="4" />
 <TextBox Grid.Column="1"
 Grid.Row="4"
 Margin="1,1,1,1"
 Text="{Binding PhoneNum, Mode=TwoWay }"
 x:Name="tbxPhoneNum" />
 <Button Grid.Column="5"
 Margin="1,1,1,1"
 Grid.Row="4"
 Height="30.911"
 VerticalAlignment="Top"
 Content="Close"
 x:Name="btnClose"
 Click="btnClose_Click" />

CHAPTER 4 ■ DATA BINDING

276

 </Grid>
 </Border>
 </Grid>
</UserControl>

You can see that, for the editable controls, you set the Mode property of the binding to
BindingMode.TwoWay. The Mode property can be set to one of three values:

• BindingMode.OneTime binds the value coming from the data source only once, when the
element is initially displayed, and never again during the lifetime of the application. This
is useful for static data that does not change for the lifetime of the application.

• BindingMode.OneWay refreshes the bound value with any changes that happens to the data
source but does not propagate changes made in the UI to the bound data source. This is
useful for data that is read only to the user but that can change through other means in the
application. This is the default setting for Binding.Mode if you do not specify any setting in
your XAML or code.

• BindingMode.TwoWay enables bidirectional propagation of changes and is the suitable mode
for data-editing scenarios.

Running the sample produces the output shown in Figure 4-4.

Figure 4-4. Initial output from the application

Listing 4-12 shows the codebehind for the MainPage. As shown in the constructor, you initialize the
bound EmployeeCollection instance with some initial Employee data. If you selected one of the records,
you would see the output in Figure 4-5.

CHAPTER 4 ■ DATA BINDING

277

Listing 4-12. Codebehind for the Page

using System.Windows;
using System.Windows.Controls;
using System.Collections.ObjectModel;

namespace Recipe4_3
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 //initialize the employee collection with some sample data
 EmployeeCollection empColl = (EmployeeCollection)lbx_Employees.ItemsSource;

 empColl.Add(new Employee
 {
 FirstName = "Joe",
 LastName = "Duffin",
 PhoneNum = 2125551212,
 Address = new Address
 {
 Street = "2000 Mott Street",
 City = "New York",
 State = "NY",
 ZipCode = 10006
 }
 });

 empColl.Add(new Employee
 {
 FirstName = "Alex",
 LastName = "Bleeker",
 PhoneNum = 7185551212,
 Address = new Address
 {
 Street = "11000 Clover Street",
 City = "New York",
 State = "NY",
 ZipCode = 10007
 }
 });

CHAPTER 4 ■ DATA BINDING

278

 empColl.Add(new Employee
 {
 FirstName = "Nelly",
 LastName = "Myers",
 PhoneNum = 7325551212,
 Address = new Address
 {
 Street = "12000 Fay Road",
 City = "New York",
 State = "NY",
 ZipCode = 10016
 }
 });
 }

 private void btn_New_Click(object sender, RoutedEventArgs e)
 {
 //get the bound collection
 EmployeeCollection empColl = (EmployeeCollection)lbx_Employees.ItemsSource;
 //create and initialize a new Employee
 Employee newEmp = new Employee();
 newEmp.Address = new Address();
 //add it to the collection
 empColl.Add(newEmp);
 //set the current selection to the newly added employee.
 //This will cause selection change to fire, and set
 //the datacontext for the form appropriately
 lbx_Employees.SelectedItem = newEmp;

 }

 private void lbx_Employees_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 //set the datacontext of the form to the selected Employee
 grid_EmployeeForm.DataContext = (Employee)lbx_Employees.SelectedItem;
 //show the form
 border_EmployeeForm.Visibility = Visibility.Visible;
 grid_NewButton.Visibility = Visibility.Collapsed;
 }

 private void btnClose_Click(object sender, RoutedEventArgs e)
 {
 //hide the form
 border_EmployeeForm.Visibility = Visibility.Collapsed;

CHAPTER 4 ■ DATA BINDING

279

 grid_NewButton.Visibility = Visibility.Visible;
 }
 }
}

Figure 4-5. Edit form for an existing employee

In the SelectionChanged handler for lbxEmployees, named lbx_Employees_SelectionChanged() in
Listing 4-12, you set the DataContext of the containing Grid named grid_EmployeeForm to the selected
Employee data item. This populates the contained fields with various properties of the Employee instance
based on the bindings defined in Listing 4-11. You then make the Grid visible.

If you try editing the First Name field, you should see it changing in the selected item in the
ListBox once you tab out of the field after the edit. As the data entry form propagates the change back to
the appropriate Employee item in the collection as a result of the TwoWay binding, this action, in turn,
causes the ListBox’s binding to the collection to refresh the selected item.

If you click the New Employee button, you should get a blank data entry form, as shown in Figure
4-6, and see a blank item added to the ListBox. To achieve this, you handle the Click event of the
button in btn_New_Click() shown in Listing 4-12. You create a new instance of the Employee type,
initialize it, and add it to the collection. This takes care of displaying the blank item in the ListBox
through the change notification mechanism of INotifyCollectionChanged. You also programmatically
make that item the selected item in the ListBox, which in turns fires the SelectionChanged handler of
the ListBox, and the data entry form is displayed again, as described in the previous paragraph.

Filling the fields in the data entry form should again cause change notifications to be propagated
to the ListBox, as you tab out of fields.

CHAPTER 4 ■ DATA BINDING

280

Figure 4-6. Entering a new employee

4-4. Converting Values During Data Binding
Problem
You are trying to bind to a data source and need to convert the source value to either a different type or
a different value suitable for display in the UI.

Solution
Implement System.Windows.Data.IValueConverter to create a value converter type, and associate it to
the binding to appropriately convert the value.

How It Works
Often, you will come across scenarios where the source value that you are trying to bind to is either a
data type that needs to be converted before it can be bound or has the same data type as the target but
needs some logical or contextual transformation before it can be meaningful to the UI.

As an example, imagine the Visibility property of a control. It is natural to think of Visibility as
a Boolean, and thus express it in code as a bool. However, trying to bind a bool to the Visibility
property of a Silverlight control will pose a challenge: in Silverlight, Visibility is expressed in terms
of the Visibility enumeration, which has two values, Visible and Collapsed. In this case, you will need
to convert from a source type (bool) to a target type (Visibility).

Imagine another scenario where you have the monthly spending of a family broken into
categories as a data source, and you need to visually represent each expenditure as a percentage of the
total. In this case, the data types of both the source and the target can be the same (say a double), but
there is a logical transformation required between them—from an absolute value to a percentage.

CHAPTER 4 ■ DATA BINDING

281

Implementing Value Conversion
To use value conversion, you implement the System.Windows.Data.IValueConverter interface. The
IValueConverter interface accommodates both source-to-target conversion through the Convert()
method and target-to-source conversion through the ConvertBack() method.

Listing 4-13 shows a sample converter implementation that converts bool to Visibility and back.

Listing 4-13. Value Converter from bool to Visibility

public class BoolToVisibilityConverter : IValueConverter
{
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //check to see that the parameter types are conformant
 if (value.GetType() != typeof(bool) || targetType != typeof(Visibility))
 return null;
 bool src = (bool)value;
 //translate
 return (src == true) ? Visibility.Visible : Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //check to see that the parameter types are conformant
 if (value.GetType() != typeof(Visibility) || targetType != typeof(bool))
 return null;
 Visibility src = (Visibility)value;
 //translate
 return (src == Visibility.Visible) ? true : false;
 }
}

In both methods, the first parameter named value is the source value and the second parameter
named targetType is the data type of the target to which the value needs to be converted. The
ConvertBack() method will need to be fully implemented if you have a two-way binding, where an edit
on the UI would require the change to be sent back to the source. If you do not update the data through
your UI, you can simply either return null or throw a suitable exception from the ConvertBack()
method.

Also note that each method accepts a parameter, aptly named parameter, where you can pass
additional information as may be required by the conversion logic, as well as the target culture as the
last parameter, in case you need to take into account a difference in the culture between source and
target.

To use the value converter, you first declare it as a resource in your XAML, with an appropriate
custom namespace mapping to bring in the assembly, in this case local:

<local:BoolToVisibilityConverter x:Name="REF_BoolToVisibilityConverter" />

CHAPTER 4 ■ DATA BINDING

282

After the converter resource has been declared as shown here, you can associate it to a Binding by
using its Converter property. Once the converter is associated, every piece of data flowing through the
Binding either way is passed through the converter methods—Convert() if the data is flowing from the
source to the target property, and ConvertBack() if it is the other way. A sample usage is shown here

<ContentControl Visibility="{Binding IsControlVisible,
 Converter={StaticResource REF_BoolToVisibilityConverter}}"/>

where IsControlVisible is a Boolean property on a data source CLR type bound to the control.

The Code
The code sample builds a simple spending analysis application for a family, where the expenditure for
different categories are maintained in a DataGrid and also graphed in a bar graph as a percentage of
the total. The application allows you to change the spending in each category to different values and
watch the graph change accordingly. It also allows you to drag any bar in the graph using your mouse
and watch the corresponding value change in the DataGrid, maintaining the same total. Figure 4-7
shows the application output.

Figure 4-7. Family spending chart

Listing 4-14 shows the data classes used for this sample. The Spending class represents a specific
expenditure, while the SpendingCollection extends ObservableCollection<Spending> to add some
initialization code in a default constructor.

CHAPTER 4 ■ DATA BINDING

283

Listing 4-14. Application Data Classes

using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;

namespace Recipe4_4
{
 public class SpendingCollection : ObservableCollection<Spending>,
 INotifyPropertyChanged
 {
 public SpendingCollection()
 {
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Utilities",
 Amount = 300
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Food",
 Amount = 350
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Clothing",
 Amount = 200
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Transportation",
 Amount = 75
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Mortgage",
 Amount = 3000
 });
 this.Add(new Spending
 {

CHAPTER 4 ■ DATA BINDING

284

 ParentCollection = this,
 Item = "Education",
 Amount = 500
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Entertainment",
 Amount = 125
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Loans",
 Amount = 750
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Medical",
 Amount = 80
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 Item = "Miscellaneous",
 Amount = 175
 });
 }

 public double Total
 {
 get
 {
 return this.Sum(spending => spending.Amount);
 }
 }
 }

 public class Spending : INotifyPropertyChanged
 {

 public event PropertyChangedEventHandler PropertyChanged;
 internal void RaisePropertyChanged(PropertyChangedEventArgs e)
 {

CHAPTER 4 ■ DATA BINDING

285

 if (PropertyChanged != null)
 {
 PropertyChanged(this, e);
 }
 }

 SpendingCollection _ParentCollection = null;

 public SpendingCollection ParentCollection
 {
 get { return _ParentCollection; }
 set { _ParentCollection = value; }
 }

 private string _Item;
 public string Item
 {
 get { return _Item; }
 set
 {
 string OldVal = _Item;
 if (OldVal != value)
 {
 _Item = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("Item"));

 }
 }
 }

 private double _Amount;
 public double Amount
 {
 get { return _Amount; }
 set
 {
 double OldVal = _Amount;
 if (OldVal != value)
 {
 _Amount = value;

 foreach (Spending sp in ParentCollection)
 sp.RaisePropertyChanged(new PropertyChangedEventArgs("Amount"));

CHAPTER 4 ■ DATA BINDING

286

 }
 }
 }
 }
}

Listing 4-15 shows the XAML for the page. If you look at the resources section, you will notice two
value converters. SpendingToBarWidthConverter converts a double value representing Spending to
another double value representing a corresponding bar width, and vice versa.
SpendingToPercentageStringConverter converts a Spending value to a percentage of the total spending,
and vice versa. These converter implementations will be discussed in more detail momentarily.

Listing 4-15. XAML for the Page

<UserControl x:Class="Recipe4_4.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 xmlns:local="clr-namespace:Recipe4_4"
 Width="800" Height="510">

 <UserControl.Resources>
 <local:SpendingCollection x:Key="REF_SpendingList" />
 <local:SpendingToBarWidthConverter x:Key="REF_SpendingToBarWidthConverter" />
 <local:SpendingToPercentageStringConverter
 x:Key="REF_SpendingToPercentageStringConverter" />
 <DataTemplate x:Key="dtBarTemplate">
 <Grid HorizontalAlignment="Left" VerticalAlignment="Stretch"
 Height="30" Margin="0,2,0,0" >
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*" />
 <RowDefinition Height="0.5*" />
 </Grid.RowDefinitions>
 <Rectangle Grid.Row="1" VerticalAlignment="Stretch"
 Fill="Black" HorizontalAlignment="Left"
 Width="{Binding Amount,Mode=TwoWay,
 Converter={StaticResource REF_SpendingToBarWidthConverter},
 ConverterParameter={StaticResource REF_SpendingList}}"
 MouseMove="Rectangle_MouseMove"
 MouseLeftButtonDown="Rectangle_MouseLeftButtonDown"
 MouseLeftButtonUp="Rectangle_MouseLeftButtonUp"/>
 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <TextBlock Text="{Binding Item}" FontSize="9" />
 <TextBlock Text="{Binding Amount,
 Converter={StaticResource REF_SpendingToPercentageStringConverter},

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ DATA BINDING

287

 ConverterParameter={StaticResource REF_SpendingList}}"
 Margin="5,0,0,0"
 FontSize="9"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White" Width="694">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <data:DataGrid HorizontalAlignment="Stretch" Margin="8,8,8,8"
 VerticalAlignment="Stretch"
 HeadersVisibility="Column" x:Name="dgSpending"
 ItemsSource="{StaticResource REF_SpendingList}"
 AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header="Item"
 Binding="{Binding Item,Mode=TwoWay}"/>
 <data:DataGridTextColumn Header="Value" Width="100"
 Binding="{Binding Amount,Mode=TwoWay}"/>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <Grid HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Grid.Column="1" Margin="8,8,8,8" x:Name="GraphRoot"
 DataContext="{StaticResource REF_SpendingList}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="20"/>
 </Grid.RowDefinitions>
 <Rectangle Height="Auto" HorizontalAlignment="Left"
 VerticalAlignment="Stretch" Width="2"
 Stroke="#FF000000" StrokeThickness="0"
 Fill="#FF000000" x:Name="rectYAxis" Margin="0,0,0,0"/>
 <Rectangle Height="2" HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom" Fill="#FF000000"
 Stroke="#FF000000" StrokeThickness="0"
 Stretch="Fill" x:Name="rectXAxis" Margin="0,0,0,0"
 Width="350" />
 <Grid HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Width="Auto" Grid.Row="1" Margin="2,0,0,0"
 x:Name="gridMarkers">
 <Grid.ColumnDefinitions>

7

CHAPTER 4 ■ DATA BINDING

288

 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.1*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.3*" />
 <RowDefinition Height="0.7*" />
 </Grid.RowDefinitions>
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="0" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="1" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="2" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="3" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="4" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="5" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="6" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="7" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="8" />
 <Rectangle Width="2" Fill="Black" VerticalAlignment="Stretch"
 HorizontalAlignment="Right" Grid.Column="9" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="0" Text="10%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="1" Text="20%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="2" Text="30%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"

CHAPTER 4 ■ DATA BINDING

289

 Grid.Row="1" Grid.Column="3" Text="40%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="4" Text="50%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="5" Text="60%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="6" Text="70%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="7" Text="80%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="8" Text="90%" FontSize="11"
 FontWeight="Bold" />
 <TextBlock HorizontalAlignment="Right" VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="9" Text="100%" FontSize="11"
 FontWeight="Bold" />
 </Grid>
 <Grid Height="Auto" HorizontalAlignment="Stretch" Margin="2,0,0,2"
 VerticalAlignment="Stretch" Width="Auto" x:Name="gridBars"
 ShowGridLines="True">
 <ItemsControl ItemsSource="{StaticResource REF_SpendingList}"
 ItemTemplate="{StaticResource dtBarTemplate}" />
 </Grid>
 </Grid>
 </Grid>
</UserControl>

The rest of the XAML is pretty simple. The SpendingCollection, through a resource reference
named REF_SpendingList, is bound to a DataGrid named dgSpending. The bar graph is implemented as
an ItemsControl, once again bound to the same SpendingCollection instance, using a DataTemplate
named dtBarTemplate for each bar.

Note how you use the converters inside dtBarTemplate. You bind the Width of a Rectangle directly to
the Amount property on the bound Spending instance and then use the Converter property of the Binding
to associate the SpendingToBarWidthConverter. You also bind the Text property of a TextBlock similarly,
using the SpendingToPercentageStringConverter instead. On both occasions, you also pass in the entire
SpendingCollection instance through the ConverterParameter property of the Binding. The
ConverterParameter property value maps to the method parameter named parameter in both the
Convert() and ConvertBack() methods on the value converter. This makes the collection available
inside the converter code.

SpendingToBarWidthConverter, shown in Listing 4-16, is used to convert a spending value to the
length of the corresponding bar in the bar graph; both data types are double.

CHAPTER 4 ■ DATA BINDING

290

Listing 4-16. Value Converter Converting Spending to Bar Width

using System;
using System.Windows;
using System.Windows.Data;
using System.Windows.Shapes;

namespace Recipe4_4
{
 public class SpendingToBarWidthConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //verify validity of all the parameters
 if (value.GetType() != typeof(double) || targetType != typeof(double)
 || parameter == null
 || parameter.GetType() != typeof(SpendingCollection))
 return null;
 //cast appropriately
 double Spending = (double)value;
 double Total = ((SpendingCollection)parameter).Total;
 //find the xAxis
 Rectangle rectXAxis = (Rectangle)((MainPage)Application.Current.RootVisual)
 .FindName("rectXAxis");
 //calculate bar width in proportion to the xAxis width
 return (Spending / Total) * rectXAxis.Width;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //verify validity of all the parameters
 if (value.GetType() != typeof(double) || targetType != typeof(double)
 || parameter == null
 || parameter.GetType() != typeof(SpendingCollection))
 return null;
 //cast appropriately
 double BarWidth = (double)value;
 double Total = ((SpendingCollection)parameter).Total;
 //find the xAxis
 Rectangle rectXAxis = (Rectangle)((MainPage)Application.Current.RootVisual)
 .FindName("rectXAxis");
 //calculate new spending keeping total spending constant based on

CHAPTER 4 ■ DATA BINDING

291

 //new bar width to xAxis width ratio
 return (BarWidth / rectXAxis.Width) * Total;
 }
 }
}

To convert the spending value into bar width in SpendingToBarWidthConverter.Convert(), you
calculate the ratio of the spending value in question to the total spending evaluated from the
SpendingCollection passed in as parameter. You then calculate the bar width as the same ratio applied
to the total width of the X axis of the graph, also defined as a Rectangle named rectXAxis in XAML. In
SpendingToBarWidthConverter.ConvertBack(), you reverse that calculation.

Listing 4-17 shows the SpendingToPercentageStringConverter code. The calculation of the
percentage value in Convert() is again based off the spending total derived from the
SpendingCollection instance and then formatted appropriately to a string. Since you never do the
reverse conversion, you do not implement ConvertBack() in this case.

Listing 4-17. Value Converter Converting Spending to a Percentage String

using System;
using System.Windows.Data;

namespace Recipe4_4
{
 public class SpendingToPercentageStringConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //verify validity of all the parameters
 if (value.GetType() != typeof(double) || targetType != typeof(string)
 || parameter == null
 || parameter.GetType() != typeof(SpendingCollection))
 return null;
 //cast appropriately
 double Spending = (double)value;
 double Total = ((SpendingCollection)parameter).Total;
 //calculate the spending percentage and format as string
 return ((Spending / Total) * 100).ToString("###.##") + " %";
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

CHAPTER 4 ■ DATA BINDING

292

■ Note There is no requirement that a value converter also perform a type conversion. In the code sample for
SpendingToBarWidthConverter, for example, you convert values of the same data type double, where the
conversion is one of context—that is, from one kind of measure (Spending) to another (Width). Therefore, it is

called a value conversion. There is another concept known as a TypeConverter, which is discussed in more detail

in Chapter 5.

Listing 4-18 shows the codebehind for the MainPage. Of note is the MouseMove handler
Rectangle_MouseMove() for each Rectangle representing a bar in the ItemsControl. In the handler, you
calculate the distance moved as the difference of the current mouse position and its previous position
and change the Width of the bar accordingly. You then store the current position as the previous
position for the next move.

Listing 4-18. Codebehind for the Page

using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Shapes;
namespace Recipe4_4
{
 public partial class MainPage : UserControl
 {
 private bool MouseLeftBtnDown = false;
 Point PreviousPos;
 public MainPage()
 {
 InitializeComponent();
 }

 private void Rectangle_MouseMove(object sender, MouseEventArgs e)
 {
 if (MouseLeftBtnDown)
 {
 Rectangle rect = (Rectangle)sender;
 Point CurrentPos = e.GetPosition(sender as Rectangle);
 double Moved = CurrentPos.X – PreviousPos.X;
 if (rect.Width + Moved >= 0)
 {
 rect.Width += Moved;
 }
 PreviousPos = CurrentPos;
 }

CHAPTER 4 ■ DATA BINDING

293

 }

 private void Rectangle_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 MouseLeftBtnDown = true;
 PreviousPos = e.GetPosition(sender as Rectangle);
 }

 private void Rectangle_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 MouseLeftBtnDown = false;
 }
 }
}

4-5. Binding Across Elements
Problem
You would like to data bind some property of a XAML element to a property on another element on the
page or to a different property on the source element itself.

Solution
To bind to a property on another element, name the source element, and then use the ElementName
property on the binding. To bind to a property on the same element, use the RelativeSource property
on the binding.

How It Works
In earlier recipes in this chapter, you have walked through binding a property (target) of a XAML
element to a property (source) on a CLR object. This is one possible scenario. You may encounter
situations where the binding scenarios are slightly different in terms of the binding source.

Binding to Another Element
In this scenario, a property on an element on a page is data bound to a property on another element
on the same page. You can achieve this by setting the Binding.ElementName property on the binding
declaration to the name of the source element and the Binding.Path property to the name of the
property on the element. Note that this feature was introduced in Silverlight 3.

For an example, consider a Slider control on a page, with a TextBox on the same page displaying
the current value of the Slider. This snippet illustrates such a binding arrangement:

CHAPTER 4 ■ DATA BINDING

294

<TextBox Text=”{Binding Path=Value,ElementName=sliderSource, Mode=OneWay}” />
<Slider x:Name=”sliderSource”
 Minimum=”0”
 Maximum=”100” />

Note that the Binding.ElementName on the TextBox.Text property points to the Slider on the page.
The rest of the binding declaration follows the usual binding rules; for instance, if you were to set the
Binding.Mode value to TwoWay, editing the TextBox.Text to a permissible value within the Slider’s range
would actually reset the Slider thumb to that value.

Binding to Self
In this scenario, a property on an element is data bound to another property on the same element.
This is made possible by using the Binding.RelativeSource property. The Binding.RelativeSource
property can be set to one of the two values specified in the System.Windows.Data.RelativeSourceMode
enumeration: Self and TemplatedParent. Using the RelativeSourceMode.Self value allows the binding
to use the element itself as a source for the binding.

In the following code snippet, you bind the ForeGround property of a TextBox to the Text property of the
same TextBox. The intent is that if the user types in a valid color name in the TextBox, the edited text is
displayed in that color. Since there is no conversion from string to a brush, you rely on a value converter to
do the conversion for you:

<TextBox
 Foreground=”{Binding Path=Text,RelativeSource={RelativeSource Self},
 Converter={StaticResource REF_ColorStringToBrushConverter}” />

Note the syntax of the RelativeSource attribute setting in the preceding binding expression. The
format RelativeSource={RelativeSource <RelativeSourceMode>} is the required syntax.

Binding to the TemplatedParent
An instance of a control to which a control template is applied is the TemplatedParent to any element
within the control template definition. The following snippet shows a possible binding where a
TextBox within a control template is binding its Foreground property to the TemplatedParent’s
Foreground property:

<ControlTemplate TargetType=”MyControl”>
 …
 <TextBox
 Foreground=
 “{Binding Path=Foreground,RelativeSource={RelativeSource TemplatedParent}}” />
 …

</ControlTemplate>

This will cause the TextBox to inherit the same Foreground brush that the developer decides to set
on any particular instance of the control named MyControl.

CHAPTER 4 ■ DATA BINDING

295

This scenario is only useful within the context of control templating. Controls and control
templates are discussed in Chapter 5, and we will cover this scenario in more detail there. This recipe
does not elaborate on this scenario any more.

The Code
The code sample for this recipe illustrates the element binding and self binding techniques discussed
above. The sample uses the new 3-D capabilities in Silverlight to rotate a simple visual along the X, Y,
and Z axes of a 3-D plane. The visual contains a Grid with the current angle values for each rotation
axis displayed within a Border, and three separate Sliders are used to control the rotation angles. For
more on the Silverlight 3-D capabilities please refer to Chapter 3 in this book.

Figure 4-8 shows the sample in action.

Figure 4-8. Element and Self Binding sample

The majority of the code is encapsulated in a user control named RotatorDemoControl. Listing 4-19
shows the complete XAML for RotatorDemoControl.

Listing 4-19. XAML for RotatorDemoControl

<UserControl x:Class=”Recipe4_5.RotatorDemoControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 xmlns:local=”clr-namespace:Recipe4_5”
 >

 <Grid x:Name=”LayoutRoot”>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 4 ■ DATA BINDING

296

 <Grid.RowDefinitions>
 <RowDefinition Height=”0.75*” />
 <RowDefinition Height=”0.25*” />
 </Grid.RowDefinitions>
 <Grid x:Name=”target”
 Width=”275”
 Height=”100”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Border BorderThickness=”2”
 Grid.RowSpan=”3”
 Grid.ColumnSpan=”3”
 BorderBrush=”Red”
 Background=”AliceBlue”></Border>
 <TextBlock Text=”Rotation X”
 Margin=”3,0,0,0” />
 <TextBlock Text=”:”
 Grid.Column=”1” />
 <TextBlock Text=”{Binding Xangle}”
 Grid.Column=”2”
 Margin=”0,0,0,3” />
 <TextBlock Text=”Rotation Y”
 Grid.Row=”1”
 Margin=”3,0,0,0” />
 <TextBlock Text=”:”
 Grid.Column=”1”
 Grid.Row=”1” />
 <TextBlock Text=”{Binding Yangle}”
 Grid.Column=”2”
 Grid.Row=”1”
 Margin=”0,0,0,3” />
 <TextBlock Text=”Rotation Z”
 Grid.Row=”2”
 Margin=”3,0,0,0” />
 <TextBlock Text=”:”
 Grid.Column=”1”
 Grid.Row=”2” />

CHAPTER 4 ■ DATA BINDING

297

 <TextBlock Text=”{Binding Zangle}”
 Grid.Column=”2”
 Grid.Row=”2”
 Margin=”0,0,0,3” />
 <Grid.Projection>
 <PlaneProjection x:Name=”gridProjection” />
 </Grid.Projection>
 </Grid>
 <StackPanel Orientation=”Vertical” HorizontalAlignment=”Center”
 Grid.Row=”1”>
 <StackPanel Orientation=”Horizontal”
 Margin=”0,10,0,10”>
 <TextBlock Text=”Rotate on X Axis: “ />
 <Slider Minimum=”0”
 Maximum=”360”
 x:Name=”sliderX”
 Value=
 “{Binding ElementName=gridProjection, Mode=TwoWay, Path=RotationX}”
 Width=”125” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal”
 Margin=”0,10,0,10”>
 <TextBlock Text=”Rotate on Y Axis: “ />
 <Slider Minimum=”0”
 Maximum=”360”
 x:Name=”sliderY”
 Value=
 “{Binding ElementName=gridProjection, Mode=TwoWay, Path=RotationY}”
 Width=”125” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal”
 Margin=”0,10,0,10”>
 <TextBlock Text=”Rotate on Z Axis: “ />
 <Slider Minimum=”0”
 Maximum=”360”
 x:Name=”sliderZ”
 Value=
 “{Binding ElementName=gridProjection, Mode=TwoWay, Path=RotationZ}”
 Width=”125” />
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

CHAPTER 4 ■ DATA BINDING

298

As shown in Listing 4-19, the PlaneProjection named gridProjection projects the Grid to a 3-D
plane. The PlaneProjection type exposes three properties, namely RotationX, RotationY and RotationZ,
each of which can be independently set to an angle value between 0 and 360 degrees to rotate the Grid
along that axis.

If you note the binding expression for the Value property of the Slider named sliderX, you will see
that it is bound directly in a TwoWay mode to the RotationX property of gridProjection, utilizing the
ElementName binding attribute. The range for sliderX is set to vary between 0 and 360, and changing
this value will cause gridProjection to rotate along the X axis by that amount. The other two Sliders,
sliderY and sliderZ, follow a similar arrangement to affect the RotationY and RotationZ properties of
the gridProjection element.

Listing 4-20 shows the codebehind for the RotatorDemoControl.

Listing 4-20. Codebehind for RotatorDemoControl

using System.ComponentModel;
using System.Windows;
using System.Windows.Controls;

namespace Recipe4_5
{
 public partial class RotatorDemoControl : UserControl, INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 public RotatorDemoControl()
 {
 InitializeComponent();

 sliderX.ValueChanged +=
 new RoutedPropertyChangedEventHandler<double>((s, e) =>
 {
 Xangle = sliderX.Value;
 });
 sliderY.ValueChanged +=
 new RoutedPropertyChangedEventHandler<double>((s, e) =>
 {
 Yangle = sliderY.Value;
 });
 sliderZ.ValueChanged +=
 new RoutedPropertyChangedEventHandler<double>((s, e) =>
 {
 Zangle = sliderZ.Value;
 });
 }

 private double _Xangle = default(double);

CHAPTER 4 ■ DATA BINDING

299

 public double Xangle
 {
 get
 {
 return _Xangle;
 }
 set
 {
 if (value != _Xangle)
 {
 _Xangle = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(“Xangle”));
 }

 }
 }

 private double _Yangle = default(double);

 public double Yangle
 {
 get
 {
 return _Yangle;
 }

 set
 {
 if (value != _Yangle)
 {
 _Yangle = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(“Yangle”));
 }

 }
 }

 private double _Zangle = default(double);
 public double Zangle
 {
 get
 {
 return _Zangle;

CHAPTER 4 ■ DATA BINDING

300

 }
 set
 {
 if (value != _Zangle)
 {
 _Zangle = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(“Zangle”));
 }

 }
 }
 }

}

As Listing 4-20 shows, the RotatorDemoControl control class exposes three properties named
Xangle, Yangle, and Zangle with property change notification enabled. These values are updated when
the corresponding slider values are changed, as shown in the event handlers of the ValueChanged
events of the Sliders, in the constructor of the RotatorDemoControl class.

If you refer to the RotatorDemoControl XAML in Listing 4-19, you will note that there are three
TextBlocks inside the rotated Grid that are respectively bound to these properties. The intention is to
display the angle values as the Grid is rotated. Looking at the binding statements for these TextBlocks,
you will note that they simply provide the Binding.Path values pointing to the properties on
RotatorDemoControl. But how do the bindings know to use the control class as its data source? Take a
look at Listing 4-21 that shows the XAML for the MainPage, which actually declares the
RotatorDemoControl user control.

Listing 4-21. XAML for MainPage

<UserControl x:Class=”Recipe4_5.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:Recipe4_5”
 Width=”640”
 Height=”480”>
 <Grid x:Name=”LayoutRoot”
 Background=”White”>
 <local:RotatorDemoControl
 DataContext=”{Binding RelativeSource={RelativeSource Self}}” />
 </Grid>
</UserControl>

Listing 4-21 shows that the DataContext for the RotatorDemoControl is bound to itself because the
RelativeSource attribute is set to Self. This then sets the RotatorDemoControl instance as the data
source for the TextBlock bindings referred to earlier and helps display the angle values as notified
through the corresponding properties on the RotatorDemoControl class.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

CHAPTER 4 ■ DATA BINDING

301

4-6. Validating Input for Bound Data

Problem
You need to capture data validation errors in your application code and provide visual indications of
such errors if needed.

Solution
Attach handlers to the BindingValidationError event of the control in question, and ensure that the
binding is set to raise the event on validation exceptions.

How It Works
As you create UIs that are data bound to various controls in a TwoWay binding so that users of your
application can edit the data, you often have the need for those edits to pass validation checks. And in
the event one or more of those validations fail, you may want to capture the errors and display them to
your users in a meaningful way.

Validation Error Notification
There is built-in support for notification of validation errors in the data binding subsystem within
Silverlight. To enable this support, the Binding.ValidatesOnExceptions property needs to be set to true
on the binding. This allows the framework to capture any exceptions raised during the setting of a
property on a data source or during a type conversion and propagate them to your code as validation
errors. This prevents the otherwise normal flow of your application suffering a crash from the
exception being unhandled.

Most of the controls in the base class library that may typically be used in two-way bindings
provide a built-in user interface to display the binding validation error to the user. The built-in user
interface usually provides a small error icon overlaid on the control, hovering on which displays the
error message in a tooltip beside the control. The error message displayed is the Exception.Message
property value of the raised exception. Once the error is corrected, the control logic automatically
removes the error user interface.

Figure 4-9 shows a TextBox control displaying a validation error with the default error user
interface.

Figure 4-9. TextBox control displaying validation error using default error UI

Getting Error Information
In some cases, it may not be enough to simply display the error message. You may want programmatic
access to the error information, for additional reasons like logging or some other custom handling of
the error beyond the display of the standard error user interface.

To enable this, the FrameworkElement class (and, by inheritance, every control) can raise the
BindingValidationError event whenever an exception gets propagated as a validation error or an

CHAPTER 4 ■ DATA BINDING

302

existing validation error is removed. To instruct the binding subsystem to raise this event, you need to
set the Binding.NotifyOnValidationError property to true on the binding.

If you handle the BindingValidationError event, you can access detailed error information
through the event argument of type ValidationErrorEventArgs. The ValidationErrorEventArgs.Action
property, of type ValidationErrorEventAction, has two possible values—
ValidationErrorEventAction.Added (indicating that a validation error has occurred) and
ValidationErrorEventAction.Removed (indicating that an error was corrected). The
ValidationErrorEventArgs.Exception property gives you access to the actual exception that caused the
validation error.

Getting a Validation Error Summary
In many applications, it is common to show a summary of all the errors that a user might have made in
performing the necessary data input. Typically, a summary display such as that will point out the fields
where the errors were made, the nature of the error, and in some cases, will also include automatic
navigation (click the entry in the summary to navigate to the field). This feature is also built into the
Silverlight binding validation mechanism now and is enabled through the
System.Windows.Controls.ValidationSummary control and its related classes in the
System.Windows.Controls.Data.Input assembly.

Once you place a ValidationSummary control in your page, the binding subsystem automatically
knows to populate it with the error entries and then binding errors occur. There is no additional
wiring up that you have to perform. The following snippet shows a sample declaration:

<input:ValidationSummary />

Also note that validation errors are bubbled up the visual tree by the binding subsystem. This
means that the ValidationSummary control can be placed anywhere in your page, as long as it is higher
in the visual tree than the control(s) whose validation errors it is supposed to display.

Note that the default error and validation summary user interfaces can be customized using
control templating. Please see Chapter 5 for more information on this.

Let’s take a look at how all of this might work.

The Code
You’ll modify Recipe 4-3 to add input validation. You remove the custom collection class in favor of
using a simple ObservableCollection. To add the validation on the data source, you adjust some of the
property setters to throw exceptions if certain validation rules are not met. You also change the types
of Employee.PhoneNum and Address.ZipCode properties to string to simply the validation logic. The
application data classes with some of these modified property setters are shown in Listing 4-22.

Listing 4-22. Application Data Classes

using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Linq;
namespace Recipe4_6
{
 public class Employee : INotifyPropertyChanged

CHAPTER 4 ■ DATA BINDING

303

 {
 //InotifyPropertyChanged implementation
 public event PropertyChangedEventHandler PropertyChanged;
 private void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 public Employee()
 {
 }

 private string _FirstName;
 public string FirstName
 {
 get { return _FirstName; }
 set
 {
 string OldVal = _FirstName;
 if (OldVal != value)
 {
 _FirstName = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“FirstName”));
 }
 }
 }
 private string _LastName;
 public string LastName
 {
 get { return _LastName; }
 set
 {
 string OldVal = _LastName;
 if (OldVal != value)
 {
 _LastName = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“LastName”));
 }
 }
 }
 private string _PhoneNum;
 public string PhoneNum
 {
 get { return _PhoneNum; }

CHAPTER 4 ■ DATA BINDING

304

 set
 {
 string OldVal = _PhoneNum;

 if (value.Length != 10)
 throw new Exception(“Phone Number has to be exactly 10 digits”);
 try
 {
 Convert.ToInt64(value);
 }
 catch
 {
 throw new Exception(“Phone Number has to be exactly 10 digits”);
 }

 if (OldVal != value)
 {
 _PhoneNum = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“PhoneNum”));
 }
 }
 }
 private Address _Address;
 public Address Address
 {
 get { return _Address; }
 set
 {
 Address OldVal = _Address;
 if (OldVal != value)
 {
 _Address = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“Address”));
 }
 }
 }
 private bool _InError = default(bool);

 public bool InError
 {
 get
 {
 return _InError;
 }

CHAPTER 4 ■ DATA BINDING

305

 set
 {
 if (value != _InError)
 {
 _InError = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(“InError”));
 }

 }
 }
 }

 public class Address : InotifyPropertyChanged
 {

 private static List<string> StateList =
 new List<string>(){ “AL”,”AK”,”AS”,”AZ”,”AR”,”CA”,”CO”,”CT”,”DE”,”DC”,”FM”,
 “FL”,”GA”,”GU”,”HI”,”ID”,”IL”,”IN”,”IA”,”KS”,”KY”,”LA”,”ME”,”MH”,”MD”,”MA”,
 “MI”,”MN”,”MS”,”MO”,”MT”,”NE”,”NV”,”NH”,”NJ”,”NM”,”NY”,”NC”,”ND”,”MP”,”OH”,

« OK », »OR », »PW », »PA », »PR », »RI », »SC », »SD », »TN », »TX », »UT », »VT », »VI »,
»VA », »WA »,
 “WV”,”WI”,”WY” };

 public event PropertyChangedEventHandler PropertyChanged;
 private void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 private string _Street;
 public string Street
 {
 get { return _Street; }
 set
 {
 string OldVal = _Street;
 if (OldVal != value)
 {
 _Street = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“Street”));
 }
 }

CHAPTER 4 ■ DATA BINDING

306

 }
 private string _City;
 public string City
 {
 get { return _City; }
 set
 {
 string OldVal = _City;

 if (OldVal != value)
 {
 _City = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“City”));
 }
 }
 }
 private string _State;
 public string State
 {
 get { return _State; }
 set
 {
 string OldVal = _State;
 //length needs to be 2 characters
 if (StateList.Contains(value) == false)
 throw new Exception(
 “State needs to be the 2 letter abbreviation for valid US State”
);
 if (OldVal != value)
 {
 _State = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“State”));
 }
 }
 }
 private string _ZipCode;
 public string ZipCode
 {
 get { return _ZipCode; }
 set
 {
 string OldVal = _ZipCode;
 //length needs to be 5 characters
 if (value.Length != 5)
 throw new Exception(“Zipcode needs to be exactly 5 digits”);

CHAPTER 4 ■ DATA BINDING

307

 try
 {
 Convert.ToInt32(value);
 }
 catch
 {
 throw new Exception(“Zipcode needs to be exactly 5 digits”);
 }

 if (OldVal != value)
 {
 _ZipCode = value;
 RaisePropertyChanged(new PropertyChangedEventArgs(“ZipCode”));
 }
 }
 }
 }

}

As Listing 4-22 shows, Employee.PhoneNum validates a phone number if it has exactly ten digits in its
setter and raises an Exception otherwise. Similarly, Address.State and Address.ZipCode check for a
two-letter state abbreviation and a five-digit ZIP code, respectively, and raise Exceptions if those
criteria are not met. Also note the new InError property on the Employee class; we will address its use
in a little bit.

Listing 4-23 shows the complete XAML for the page.

Listing 4-23. XAML for the Page

<UserControl x:Class=”Recipe4_6.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:Recipe4_6”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:input=
“clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input”
 mc:Ignorable=”d”
 Width=”400”
 Height=”450”>

 <UserControl.Resources>

 <local:BoolToVisibilityConverter x:Key=”REF_BoolToVisibilityConverter” />

 <DataTemplate x:Key=”dtEmployee”>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

CHAPTER 4 ■ DATA BINDING

308

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <TextBlock Text=”{Binding FirstName}”/>
 <TextBlock Text=”{Binding LastName}”
 Grid.Column=”1”
 Grid.Row=”0”
 Margin=”5,0,0,0” />
 <TextBlock Text=” -> Error!!” Foreground=”Red”
 Visibility=
 “{Binding InError, Converter={StaticResource REF_BoolToVisibilityConverter}}”
 Grid.Column=”2” />

 </Grid>
 </DataTemplate>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot”
 Background=”White”
 Margin=”10,10,10,10”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>

 <ListBox Grid.Row=”0”
 x:Name=”lbx_Employees”
 ItemTemplate=”{StaticResource dtEmployee}”
 SelectionChanged=”lbx_Employees_SelectionChanged” />

 <Grid x:Name=”grid_NewButton”
 Margin=”0,2,0,0”
 Grid.Row=”1”
 HorizontalAlignment=”Right”>
 <Button x:Name=”btn_New”
 Click=”btn_New_Click”
 Content=”New Employee” />
 </Grid>

 <input:ValidationSummary Grid.Row=”2” Margin=”0,10,0,5”/>

CHAPTER 4 ■ DATA BINDING

309

 <Border Grid.Row=”3”
 Visibility=”Collapsed”
 x:Name=”border_EmployeeForm”
 Margin=”0,2,0,0”
 BorderBrush=”Black”
 BorderThickness=”1”
 Padding=”1,1,1,1”>
 <Grid x:Name=”grid_EmployeeForm”>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.142*” />
 <ColumnDefinition Width=”0.379*” />
 <ColumnDefinition Width=”0.1*” />
 <ColumnDefinition Width=”0.097*” />
 <ColumnDefinition Width=”0.082*” />
 <ColumnDefinition Width=”0.2*” />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”0.10*” />
 <RowDefinition Height=”0.15*” />
 <RowDefinition Height=”0.15*” />
 <RowDefinition Height=”0.15*” />
 <RowDefinition Height=”0.45*” />
 </Grid.RowDefinitions>

 <TextBox HorizontalAlignment=”Stretch”
 Margin=”1,1,1,1”
 x:Name=”tbxFName”
 VerticalAlignment=”Stretch”
 Text=”{Binding FirstName, Mode=TwoWay}”
 Grid.Row=”1”
 Width=”Auto”
 Grid.RowSpan=”1”
 Grid.ColumnSpan=”2”
 Grid.Column=”1” />
 <TextBox HorizontalAlignment=”Stretch”
 Margin=”1,1,1,1”
 x:Name=”tbxLName”
 VerticalAlignment=”Stretch”
 Text=”{Binding LastName, Mode=TwoWay}”
 Grid.Row=”1”
 Grid.Column=”3”
 Width=”Auto”
 Grid.RowSpan=”1”
 Grid.ColumnSpan=”3” />

CHAPTER 4 ■ DATA BINDING

310

 <TextBlock HorizontalAlignment=”Stretch”
 Margin=”1,1,1,1”
 VerticalAlignment=”Stretch”
 Text=”Last”
 TextWrapping=”Wrap”
 Grid.RowSpan=”1”
 Grid.Column=”4”
 Grid.ColumnSpan=”2”
 Height=”Auto”
 Width=”Auto” />
 <TextBlock HorizontalAlignment=”Center”
 Margin=”1,1,1,1”
 VerticalAlignment=”Center”
 Text=”First”
 TextWrapping=”Wrap”
 Grid.RowSpan=”1”
 Grid.Column=”1”
 Width=”Auto”
 Height=”Auto” />
 <TextBlock HorizontalAlignment=”Center”
 Margin=”1,1,1,1”
 VerticalAlignment=”Stretch”
 Text=”Name”
 TextWrapping=”Wrap”
 Grid.RowSpan=”1”
 Grid.Row=”1”
 Height=”Auto”
 Width=”Auto” />
 <TextBlock HorizontalAlignment=”Center”
 Margin=”1,1,1,1”
 VerticalAlignment=”Stretch”
 Text=”Street”
 TextWrapping=”Wrap”
 Grid.Row=”2”
 Width=”Auto” />
 <TextBox HorizontalAlignment=”Stretch”
 x:Name=”tbxStreet”
 VerticalAlignment=”Stretch”
 Text=”{Binding Address.Street, Mode=TwoWay}”
 Grid.Row=”2”
 Margin=”1,1,1,1”
 Grid.Column=”1”
 Grid.ColumnSpan=”5”
 Width=”Auto” />
 <TextBlock HorizontalAlignment=”Center”
 VerticalAlignment=”Stretch”

CHAPTER 4 ■ DATA BINDING

311

 Text=”City”
 TextWrapping=”Wrap”
 Margin=”1,1,1,1”
 Grid.Row=”3” />
 <TextBlock Text=”State”
 Margin=”1,1,1,1”
 TextWrapping=”Wrap”
 Grid.Column=”2”
 Grid.Row=”3”
 HorizontalAlignment=”Center” />
 <TextBlock Text=”Zip”
 Margin=”1,1,1,1”
 TextWrapping=”Wrap”
 Grid.Column=”4”
 Grid.Row=”3”
 HorizontalAlignment=”Center” />
 <TextBox HorizontalAlignment=”Stretch”
 x:Name=”tbxCity”
 Margin=”1,1,1,1”
 VerticalAlignment=”Stretch”
 Text=”{Binding Address.City, Mode=TwoWay}”
 Grid.Row=”3”
 Grid.Column=”1” />
 <TextBox Background=”Transparent”
 Grid.Column=”3”
 Margin=”1,1,1,1”
 Grid.Row=”3”
 Text=”{Binding Address.State, Mode=TwoWay,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}”
 x:Name=”tbxState”>
 </TextBox>
 <TextBox Background=”Transparent”
 Grid.Column=”5”
 Grid.Row=”3”
 Margin=”1,1,1,1”
 Text=”{Binding Address.ZipCode, Mode=TwoWay ,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}”
 x:Name=”tbxZipCode” />

 <TextBlock HorizontalAlignment=”Center”
 VerticalAlignment=”Stretch”
 Text=”Phone”
 Margin=”1,1,1,1”
 TextWrapping=”Wrap”
 Grid.Row=”4” />
 <TextBox Grid.Column=”1”

CHAPTER 4 ■ DATA BINDING

312

 Grid.Row=”4”
 Margin=”1,1,1,1”
 Text=”{Binding PhoneNum, Mode=TwoWay ,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}”
 x:Name=”tbxPhoneNum” />
 <Button Grid.Column=”5”
 Margin=”1,1,1,1”
 Grid.Row=”4”
 Height=”30.911”
 VerticalAlignment=”Top”
 Content=”Close”
 x:Name=”btnClose”
 Click=”btnClose_Click” />
 </Grid>
 </Border>
 </Grid>
</UserControl>

Note the binding expression for the TextBox. Text for displaying and editing a state, a ZIP code, and a
phone number sets both ValidatesOnExceptions and NotifyOnValidationError to true. Also note that the
dtEmployee data template now includes an extra TextBlock with its Visibility property bound to the InError
property of the bound Employee instance. This TextBlock then displays an error string in red beside the
Employee name when Employee.InError is set to true for the currently selected Employee instance in the
lbx_Employees and hides it when not. Since the InError property is Boolean in type, you use a value converter
to convert it to type Visibility for the binding to work. Value converters were covered in more detail in
Recipe 4-4. For the source code of the converter used here, you can look at the BoolToVisibilityConverter
class in the sample code for this recipe.

And last, note the ValidationSummary control in the second row of the top level Grid. As validation
errors are made, the ValidationSummary control gets populated with entries describing the error, and
clicking one of the items positions you in the control in error.

Listing 4-24 shows the complete codebehind for the page.

Listing 4-24. MainPage Codebehind

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Collections.ObjectModel;
using System.Collections.Generic;

namespace Recipe4_6
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

CHAPTER 4 ■ DATA BINDING

313

 //initialize the employee collection with some sample data
 ObservableCollection<Employee> empColl = new ObservableCollection<Employee>();

 empColl.Add(new Employee
 {
 FirstName = “Joe”,
 LastName = “Duffin”,
 PhoneNum = “2125551212”,
 Address = new Address
 {
 Street = “2000 Mott Street”,
 City = “New York”,
 State = “NY”,
 ZipCode = “10006”
 }
 });

 empColl.Add(new Employee
 {
 FirstName = “Alex”,
 LastName = “Bleeker”,
 PhoneNum = “7185551212”,
 Address = new Address
 {
 Street = “11000 Clover Street”,
 City = “New York”,
 State = “NY”,
 ZipCode = “10007”
 }
 });

 empColl.Add(new Employee
 {
 FirstName = “Nelly”,
 LastName = “Myers”,
 PhoneNum = “7325551212”,
 Address = new Address
 {
 Street = “12000 Fay Road”,
 City = “New York”,
 State = “NY”,
 ZipCode = “10016”
 }
 });

CHAPTER 4 ■ DATA BINDING

314

 lbx_Employees.ItemsSource = empColl;

 this.BindingValidationError +=
 new System.EventHandler<ValidationErrorEventArgs>((s, e) =>
 {

 if (lbx_Employees.SelectedItem == null) return;
 //change the InError property of the currently selected Employee
 if(e.Action == ValidationErrorEventAction.Added)
 (lbx_Employees.SelectedItem as Employee).InError = true;
 else
 (lbx_Employees.SelectedItem as Employee).InError = false;

 });

 }

 private void btn_New_Click(object sender, RoutedEventArgs e)
 {
 //get the bound collection
 ObservableCollection<Employee> empColl =
 (ObservableCollection<Employee>)lbx_Employees.ItemsSource;
 //create and initialize a new Employee
 Employee newEmp = new Employee();
 newEmp.Address = new Address();
 //add it to the collection
 empColl.Add(newEmp);
 //set the current selection to the newly added employee.
 //This will cause selection change to fire, and set the
 //datacontext for the form appropriately
 lbx_Employees.SelectedItem = newEmp;

 }

 private void lbx_Employees_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 //set the datacontext of the form to the selected Employee
 grid_EmployeeForm.DataContext = (Employee)lbx_Employees.SelectedItem;
 //show the form
 border_EmployeeForm.Visibility = Visibility.Visible;
 grid_NewButton.Visibility = Visibility.Collapsed;
 }

CHAPTER 4 ■ DATA BINDING

315

 private void btnClose_Click(object sender, RoutedEventArgs e)
 {
 //hide the form
 if (lbx_Employees.SelectedItem != null)
 (lbx_Employees.SelectedItem as Employee).InError = false;
 border_EmployeeForm.Visibility = Visibility.Collapsed;
 grid_NewButton.Visibility = Visibility.Visible;
 }
 }
}

As you can see in the C# codebehind, you don’t need to do anything special for the binding
subsystem to display validation errors. If you refer to the BindingValidationError event handler on the
page, you will see that you handle the event to update the InError property of the currently selected
Employee in the lbx_Employees. If a validation error has occurred, you set it to true, and to false
otherwise. If you refer to the XAML in Listing 4-23, this is the property change that notifies the data
template dtEmployee to change the visibility of the error indicator TextBlock.

Also note that you are able to handle the BindingValidationError event on the page, even though
the validation error happens at controls that are contained further down in the visual tree. As
mentioned before, BindingValidationError events are bubbled all the way up to the highest level
container in the XAML, so you are free to handle them anywhere in the visual tree, including in and
higher than the control where it happened.

■ Note If you are in debug mode in Visual Studio, the debugger will break at the exceptions raised in the
property setters for the data classes. This is normal, and if you continue with processing, you will see the
application behave the way it should. The Silverlight runtime absorbs the unhandled exceptions because of the

error handling property settings on the Binding and translates them to notifications. However, the Visual Studio

debugger has no notion of this, so it breaks on the exception if you are in debug mode.

Figure 4-10 illustrates the UI used to display a binding validation error, errors displayed in the
ValidationSummary, a summary item selected, and the tooltip UI displaying the actual error message in
the focused control that’s in error.

CHAPTER 4 ■ DATA BINDING

316

Figure 4-10. Input validation error display with validation summary

4-7. Controlling Updates
Problem
You would like to have explicit programmatic control on when property updates happen in a TwoWay
data binding scenario.

Solution
Set the UpdateSourceTrigger attribute to Explicit in the binding declaration and programmatically
invoke BindingExpression.UpdateSource().

How It Works
 The default behavior of most Silverlight controls is to send the updates occurring as a result of user
edits directly to the bound property as soon as they occur. For instance, when you change the text in a
TextBox, whose Text property is data bound in a TwoWay mode, the bound property is updated as soon as
the user tabs out or focus is shifted somewhere else through some other means.

Often, it may be desirable to hold the updates and batch them at the end of an edit session through
some explicit user-driven mechanism like a Save button. A multitude of reasons could drive a decision
like that: computed fields that can only be calculated when multiple other fields are populated,
validation logic that involves dependencies across multiple fields, some preprocessing of the edited
data before updates are applied, and so on.

Silverlight offers you this control through the Binding.UpdateSourceTrigger property. Setting this
property to UpdateSourceTrigger.Explicit causes the runtime to hold all property updates in the
anticipation that you will perform the updates explicitly in code. The following code snippet shows a

CHAPTER 4 ■ DATA BINDING

317

binding declaration for the Text property on a TextBox with the UpdateSourceTrigger attribute set to
Explicit:

<TextBox HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 x:Name="tbxLName"
 VerticalAlignment="Stretch"
 Text=
"{Binding LastName, Mode=TwoWay,UpdateSourceTrigger=Explicit}"
 Grid.Row="1"
 Grid.Column="3"
 Width="Auto"
 Grid.RowSpan="1"
 Grid.ColumnSpan="3" />

To actually perform the updates, you need to access the BindingExpression instance supporting the
binding in question and invoke the BindingExpression.UpdateSource() method on it. You can acquire the
BindingExpression instance in question by using the FrameworkElement.GetBindingExpression() method and
passing in the property whose related BindingExpression you may need. This code snippet shows an
example:

BindingExpression beLastName = tbxLName.GetBindingExpression(TextBox.TextProperty);
beLastName.UpdateSource();

Note that any validation logic that you have built into the property setters will execute only when
UpdateSource() is invoked for that specific binding. So if you are batching the calls to UpdateSource(), it
will cause all validation logic to be batched as well.

The Code
The code sample for this recipe extends the sample from Recipe 4-6 to add explicit update support. A
Save button is added to the employee edit user interface and any updates made are propagated back
when that button is clicked.

Figure 4-11 shows the state of the edit user interface before and after the Save button is clicked.
Note that while you have potentially incorrect data in the state, zipcode and phone number fields, the
validation check results only show up once the updates are attempted.

CHAPTER 4 ■ DATA BINDING

318

Figure 4-11. Employee edit user interface before and after batched update attempt

Listing 4-25 shows the XAML for the main page.

Listing 4-25. XAML for MainPage

<UserControl x:Class="Recipe4_7.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Recipe4_7"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:input="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"
 Width="400"
 Height="450">
 <UserControl.Resources>

 <local:BoolToVisibilityConverter x:Key="REF_BoolToVisibilityConverter" />

 <DataTemplate x:Key="dtEmployee">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 4 ■ DATA BINDING

319

 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}"
 Grid.Column="1"
 Grid.Row="0"
 Margin="5,0,0,0" />
 <TextBlock Text=" -> Error!!"
 Foreground="Red"
 Visibility=
 "{Binding InError, Converter={StaticResource REF_BoolToVisibilityConverter}}"
 Grid.Column="2" />

 </Grid>
 </DataTemplate>

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot"
 Background="White"
 Margin="10,10,10,10">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <ListBox Grid.Row="0"
 x:Name="lbx_Employees"
 ItemTemplate="{StaticResource dtEmployee}"
 SelectionChanged="lbx_Employees_SelectionChanged" />
 <Grid x:Name="grid_NewButton"
 Margin="0,2,0,0"
 Grid.Row="1"
 HorizontalAlignment="Right">
 <Button x:Name="btn_New"
 Click="btn_New_Click"
 Content="New Employee" />
 </Grid>
 <input:ValidationSummary Grid.Row="2"
 Margin="0,10,0,5" />
 <Border Grid.Row="3"
 Visibility="Collapsed"
 x:Name="border_EmployeeForm"
 Margin="0,2,0,0"
 BorderBrush="Black"
 BorderThickness="1"
 Padding="1,1,1,1">

CHAPTER 4 ■ DATA BINDING

320

 <Grid x:Name="grid_EmployeeForm">

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.142*" />
 <ColumnDefinition Width="0.379*" />
 <ColumnDefinition Width="0.1*" />
 <ColumnDefinition Width="0.097*" />
 <ColumnDefinition Width="0.082*" />
 <ColumnDefinition Width="0.2*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.10*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.15*" />
 <RowDefinition Height="0.45*" />
 </Grid.RowDefinitions>
 <TextBox HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 x:Name="tbxFName"
 VerticalAlignment="Stretch"
 Text=
 "{Binding FirstName, Mode=TwoWay, UpdateSourceTrigger=Explicit}"
 Grid.Row="1"
 Width="Auto"
 Grid.RowSpan="1"
 Grid.ColumnSpan="2"
 Grid.Column="1" />
 <TextBox HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 x:Name="tbxLName"
 VerticalAlignment="Stretch"
 Text=
 "{Binding LastName, Mode=TwoWay,UpdateSourceTrigger=Explicit}"
 Grid.Row="1"
 Grid.Column="3"
 Width="Auto"
 Grid.RowSpan="1"
 Grid.ColumnSpan="3" />
 <TextBlock HorizontalAlignment="Stretch"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Last"
 TextWrapping="Wrap"
 Grid.RowSpan="1"

CHAPTER 4 ■ DATA BINDING

321

 Grid.Column="4"
 Grid.ColumnSpan="2"
 Height="Auto"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"
 Margin="1,1,1,1"
 VerticalAlignment="Center"
 Text="First"
 TextWrapping="Wrap"
 Grid.RowSpan="1"
 Grid.Column="1"
 Width="Auto"
 Height="Auto" />
 <TextBlock HorizontalAlignment="Center"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Name"
 TextWrapping="Wrap"
 Grid.RowSpan="1"
 Grid.Row="1"
 Height="Auto"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text="Street"
 TextWrapping="Wrap"
 Grid.Row="2"
 Width="Auto" />
 <TextBox HorizontalAlignment="Stretch"
 x:Name="tbxStreet"
 VerticalAlignment="Stretch"
 Text=
 "{Binding Address.Street, Mode=TwoWay, UpdateSourceTrigger=Explicit}"
 Grid.Row="2"
 Margin="1,1,1,1"
 Grid.Column="1"
 Grid.ColumnSpan="5"
 Width="Auto" />
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Stretch"
 Text="City"
 TextWrapping="Wrap"
 Margin="1,1,1,1"
 Grid.Row="3" />

CHAPTER 4 ■ DATA BINDING

322

 <TextBlock Text="State"
 Margin="1,1,1,1"
 TextWrapping="Wrap"
 Grid.Column="2"
 Grid.Row="3"
 HorizontalAlignment="Center" />
 <TextBlock Text="Zip"
 Margin="1,1,1,1"
 TextWrapping="Wrap"
 Grid.Column="4"
 Grid.Row="3"
 HorizontalAlignment="Center" />
 <TextBox HorizontalAlignment="Stretch"
 x:Name="tbxCity"
 Margin="1,1,1,1"
 VerticalAlignment="Stretch"
 Text=
 "{Binding Address.City, Mode=TwoWay, UpdateSourceTrigger=Explicit}"
 Grid.Row="3"
 Grid.Column="1" />

 <TextBox Background="Transparent"
 Grid.Column="3"
 Margin="1,1,1,1"
 Grid.Row="3"
 Text=
 "{Binding Address.State, Mode=TwoWay,UpdateSourceTrigger=Explicit,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxState">
 </TextBox>

 <TextBox Background="Transparent"
 Grid.Column="5"
 Grid.Row="3"
 Margin="1,1,1,1"
 Text=
 "{Binding Address.ZipCode, Mode=TwoWay, UpdateSourceTrigger=Explicit,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxZipCode" />

 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Stretch"
 Text="Phone"
 Margin="1,1,1,1"

CHAPTER 4 ■ DATA BINDING

323

 TextWrapping="Wrap"
 Grid.Row="4" />
 <TextBox Grid.Column="1"
 Grid.Row="4"
 Margin="1,1,1,1"
 Text=
 "{Binding PhoneNum, Mode=TwoWay, UpdateSourceTrigger=Explicit,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxPhoneNum" />
 <StackPanel Orientation="Horizontal"
 Grid.Column="4"
 Margin="1,1,1,1"
 Grid.ColumnSpan="2"
 Grid.Row="4">
 <Button Height="30.911"
 Margin="2,2,2,0"
 VerticalAlignment="Top"
 Content="Save"
 x:Name="btnSave"
 Click="btnSave_Click" />
 <Button Height="30.911"
 Margin="2,2,2,0"
 VerticalAlignment="Top"
 Content="Close"
 x:Name="btnClose"
 Click="btnClose_Click" />
 </StackPanel>

 </Grid>
 </Border>
 </Grid>
</UserControl>

Note the changes in XAML to the Binding declarations to set the UpdateSourceTrigger to Explicit.
Listing 4-26 shows the codebehind.

Listing 4-26. Codebehind to MainPage

using System.Collections.ObjectModel;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
namespace Recipe4_7
{

CHAPTER 4 ■ DATA BINDING

324

 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 //initialize the employee collection with some sample data
 ObservableCollection<Employee> empColl =
 new ObservableCollection<Employee>();

 empColl.Add(new Employee
 {
 FirstName = "Joe",
 LastName = "Duffin",
 PhoneNum = "2125551212",
 Address = new Address
 {
 Street = "2000 Mott Street",
 City = "New York",
 State = "NY",
 ZipCode = "10006"
 }
 });

 empColl.Add(new Employee
 {
 FirstName = "Alex",
 LastName = "Bleeker",
 PhoneNum = "7185551212",
 Address = new Address
 {
 Street = "11000 Clover Street",
 City = "New York",
 State = "NY",
 ZipCode = "10007"
 }
 });

empColl.Add(new Employee
 {
 FirstName = "Nelly",
 LastName = "Myers",
 PhoneNum = "7325551212",
 Address = new Address
 {

CHAPTER 4 ■ DATA BINDING

325

 Street = "12000 Fay Road",
 City = "New York",
 State = "NY",
 ZipCode = "10016"
 }
 });

 lbx_Employees.ItemsSource = empColl;

 this.BindingValidationError +=
 new System.EventHandler<ValidationErrorEventArgs>((s, e) =>
 {

 if (lbx_Employees.SelectedItem == null) return;
 //change the InError property of the currently selected Employee
 if (e.Action == ValidationErrorEventAction.Added)
 (lbx_Employees.SelectedItem as Employee).InError = true;
 else
 (lbx_Employees.SelectedItem as Employee).InError = false;

 });
 }

 private void btn_New_Click(object sender, RoutedEventArgs e)
 {
 //get the bound collection
 ObservableCollection<Employee> empColl =
 (ObservableCollection<Employee>)lbx_Employees.ItemsSource;
 //create and initialize a new Employee
 Employee newEmp = new Employee();
 newEmp.Address = new Address();
 //add it to the collection
 empColl.Add(newEmp);
//set the current selection to the newly added employee.
 //This will cause selection change to fire, and set the
 //datacontext for the form appropriately
 lbx_Employees.SelectedItem = newEmp;

 }

 private void lbx_Employees_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 //set the datacontext of the form to the selected Employee
 grid_EmployeeForm.DataContext = (Employee)lbx_Employees.SelectedItem;

CHAPTER 4 ■ DATA BINDING

326

 //show the form
 border_EmployeeForm.Visibility = Visibility.Visible;
 grid_NewButton.Visibility = Visibility.Collapsed;
 }

 private void btnClose_Click(object sender, RoutedEventArgs e)
 {
 //hide the form
 border_EmployeeForm.Visibility = Visibility.Collapsed;
 grid_NewButton.Visibility = Visibility.Visible;
 }

 private void btnSave_Click(object sender, RoutedEventArgs e)
 {

 var bindingExpressions =
 grid_EmployeeForm.Children.OfType<TextBox>().
 Select((tbx)=>tbx.GetBindingExpression(TextBox.TextProperty));
 foreach (BindingExpression be in bindingExpressions) be.UpdateSource();
 }
 }
}

Note the code in the Click event handler for btnSave. You perform a quick LINQ query on
grid_EmployeeForm.Children collection to get access to the BindingExpressions for the Text property of
all the children of type TextBox. You then proceed to iterate through the collection of
BindingExpressions and call UpdateSource() on each of them.

4-8. Providing reasonable defaults for bound data

Problem
You want to provide some default binding behavior for data bound fields—such as formatting, null
value replacements, or fallback values in case of input validation failure.

Solution
Use the string format, null value replacement, and fallback value features of the Binding type.

How It Works
Silverlight 4 adds support for null value replacement, fallback values, and string formatting to data
binding.

CHAPTER 4 ■ DATA BINDING

327

Null Value Replacement
Data fields or properties in backing business objects often have differing connotations for what
represents a null value within that application’s context. For example a null CLR string may not be
acceptable by a business logic layer whereas an empty string or the string “null” may indicate that a
database null value needs to be stored in the bound data field. Another example could be a business
data type of nullable<int> bound to a TextBox, where an empty string entered in the UI cannot be
automatically converted to a nullable<int>. Similarly, on the UI side of things, a null value of type such
as nullable<int> coming from the business logic layer may need a specific visual representation, such
as an empty string.

Typically, developers have employed value converters to perform these types of conversions. The
Binding element in Silverlight 4 exposes a property named TargetNullValue (defined in the
BindingBase class) that allows this problem to be solved much more elegantly. TargetNullValue is of
type object, and when set to a specific value does the following:

• On transfer of data from the data source to the target property, the binding displays the
value specified in the TargetNullValue, whenever the source data is a CLR null value.

• On transfer of data from the target to the data source, the binding transfers a CLR null
value whenever it encounters the value specified in TargetNullValue.

As an example, look at this snippet:

<TextBox Text="{Binding Path=WeddingAnniversaryDate, TargetNullValue=``}"/>

If the WeddningAnniversaryDate source property was of type nullable<DateTime> (or DateTime?
In C# terms), then a CLR null value from the property will displayed as an empty string in the UI.
Conversely, if an unmarried user applies an empty string in the UI, the value transferred to the
underlying business object’s WeddingAnniversaryDate property will be a CLR null.

Fallback value
There can be several reasons why an error might occur in transferring a value from a source property
to a target through a binding: an invalid property path specification in the binding declaration in
XAML, errors in value conversion, a specific ValueConverter throwing an exception, string formatting
errors, etc.

To avoid an application exception during such scenarios, it would be handy to be able to provide
some sort of fallback value that the UI can display in face of such exceptions without causing the
application to fail. Silverlight 4 introduces a FallbackValue property (again through the BindingBase
class) that allows you to do exactly that. This snippet shows an example:

<TextBox Text="{Binding Path=Salary, FallbackValue=0}"/>

In this snippet, if there was any kind of error in trying to transfer the value of the Salary data field to
the bound Text property of the TextBox, the value 0 specified in the FallbackValue attribute will be
displayed. Note that FallbackValue only applies to the transfer of data from source to target and not
vice versa.

CHAPTER 4 ■ DATA BINDING

328

String Formatting
Silverlight 4 also adds a StringFormat property to the Binding type. Setting the StringFormat type to
an appropriate format allows you to apply a formatting to a value when displayed as text on the UI.
This snippet shows an example:

<TextBox Text="{Binding Path=PhoneNum, StringFormat=(###) ###-####}"/>

Let’s assume that the PhoneNum field in the backing class is a long value. With the applied
StringFormat, a PhoneNum value of 7325551212 will display as (732) 555-1212. Any valid string
format as allowed by the String.Format() method is an acceptable value. For the various string
formatting options, a good reference is the documentation for the String.Format() method.

You can also use the standard parameter substitution mechanism in the format. The snippet below
shows an example where a positioned parameter specifies the formatting of the phone number:

<TextBox Text="{Binding Path=PhoneNum,
 StringFormat='Phone No: \{0:(###) ###-####\}' }"/>

In this case, a source value of 7325551212 will be formatted as Phone No: (732) 555-1212. Note that
since bindings in Silverlight always bind a single value to a single property, using more than one
parameter substitution value (i.e. more than the 0th placeholder in the above format) is an error. Also
note that the “{” and the “}” tokens are escaped with a “\” to prevent the XAML parser from considering
them as part of the binding expression rather than the format string.

The Code
To demonstrate the above features, you adapt the code sample from Recipe 4-6. For more details about
that sample, please refer back to Recipe 4-6, as we will only discuss the changes we make for this
recipe.

Listing 4-27 shows the relevant changes to the data source classes in the dataclasses.cs file.

Listing 4-27. Changes to the data source classes

public class Employee : INotifyPropertyChanged
{
 ...

 private long _PhoneNum = 9999999999;
 public long PhoneNum
 {
 get { return _PhoneNum; }
 set
 {
 long OldVal = _PhoneNum;

 if (_PhoneNum.ToString().Trim().Length != 10)
 throw new Exception("Phone Number has to be exactly 10 digits");

CHAPTER 4 ■ DATA BINDING

329

 if (OldVal != value)
 {
 _PhoneNum = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("PhoneNum"));
 }
 }
 }

 ...
}

public class Address : INotifyPropertyChanged
{

 ...

 private string _ZipCode = null;
 public string ZipCode
 {
 get
 {
 if (_ZipCode == null)
 throw new Exception();
 else
 return _ZipCode;
 }
 set
 {
 string OldVal = _ZipCode;
 //length needs to be 5 characters
 if (value.Length != 5)
 throw new Exception("Zipcode needs to be exactly 5 digits");
 try
 {
 Convert.ToInt32(value);
 }
 catch
 {
 throw new Exception("Zipcode needs to be exactly 5 digits");
 }

 if (OldVal != value)
 {
 _ZipCode = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("ZipCode"));

CHAPTER 4 ■ DATA BINDING

330

 }
 }
 }
}

You change the PhoneNum property to be of type long and initialize it to a default value. You also
change the ZipCode property to of type string and throw an exception in the property getter if the
current value is null. We will explain the motivation behind the changes as we examine the
corresponding changes in the XAML in the next listing. Listing 4-28 shows the relevant changes made
to the bindings in MainPage.xaml highlighted in bold.

Listing 4-28. Changes to bindings in MainPage.xaml

<Grid x:Name="grid_EmployeeForm">
 ...
 <TextBox Background="Transparent"
 Grid.Column="3"
 Margin="1,1,1,1"
 Grid.Row="3"

 Text="{Binding Address.State, Mode=TwoWay, TargetNullValue='NJ',
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxState">
 </TextBox>
 <TextBox Background="Transparent"
 Grid.Column="5"
 Grid.Row="3"
 Margin="1,1,1,1"
 Text="{Binding Address.ZipCode, Mode=TwoWay ,FallbackValue='08820',
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxZipCode" />

 <TextBox Grid.Column="1"
 Grid.Row="4"
 Margin="1,1,1,1"

 Text="{Binding PhoneNum, Mode=TwoWay ,StringFormat=(###) ###-####,
 ValidatesOnExceptions=True,NotifyOnValidationError=True}"
 x:Name="tbxPhoneNum" />

 ...
</Grid>

The first change to note in Listing 4-28 is the addition of the TargetNullValue attribute to the
binding to the Text property on the tbxState TextBox. Since the initial value of the bound property State
on the Address class is a CLR null, the binding populates the Text property with the initial value of ‘NJ’
when the new employee form is initially displayed.

CHAPTER 4 ■ DATA BINDING

331

The second change to note is the use of the FallbackValue attribute on the binding for the
tbxZipCode TextBox. If you refer back to Listing 4-27, you will note that you changed the bound
property Address.ZipCode to throw an exception in the property getter when the property value is null.
Since this is the case when a new instance of the data class is initially created, this causes the binding
to result in an error, and consequently the FallbackValue to be used to populate the Text property.

The last change to note is the use of the StringFormat attribute on the binding for the
tbxPhoneNum property. You may have noticed in Listing 4-27 that you changed the backing property
PhoneNum to a long. The application of the specified StringFormat causes a long value of 7325551212
to be displayed as (732) 555-1212 whereas without the format applied, it would have been converted to
the string 7325551212 and displayed as is.

Figure 4-12 shows the New Employee form open with no data entered.

Figure 4-12. New Employee form with the binding enhancements applied.

CHAPTER 4 ■ DATA BINDING

332

C H A P T E R 5

■ ■ ■

333

Controls

If you are a presentation layer developer or designer, we do not need to tell you how important controls
can be in building quality user interfaces efficiently with a modular approach. To that end, any good UI
development framework comes with a comprehensive library of controls, and Silverlight is no exception.
From basic controls like Button, RadioButton, and CheckBox to more advanced controls like Calendar and
DataGrid, Silverlight offers a fairly wide set to choose from. Most of the Silverlight controls distributed as a
part of the core runtime are found in the System.Windows.Controls and
System.Windows.Controls.Primitives namespaces in the System.Windows assembly. Additional controls
are distributed as a part of the Silverlight SDK and are found in the System.Windows.Controls.dll and
System.Windows.Controls.Data.dll assemblies. The core runtime control assembly is added to all
Silverlight projects created using Visual Studio, with references to the other two assemblies and
appropriate namespace mappings for XAML usage added as necessary.

Controls do not always meet the developer’s needs right out of the box. More often than not, their
default UI must be adapted for a specific application’s needs. All Silverlight controls expose rich APIs
consisting of various properties and methods that can be used to further customize the control’s UI.
Silverlight also incorporates the concept of styles. Styles allow you to collect specific settings for a
control type and reapply them across many control instances, helping you achieve reuse as well UI
standardization. And lastly, for those scenarios where the control developer’s intent simply does not
satisfy your UI needs, Silverlight also incorporates control templates, a feature that allows you to
completely replace a control’s default UI with your own while leaving the control’s behavior intact.

Silverlight also allows you to write your own controls. You can write user controls (alternatively
called composite controls) that are more application or domain specific and are usually crafted by
composing a UI out of other existing controls. Or you can write custom controls, a more advanced
control implementation strategy resulting in more general-purpose usage and allowing you to
benefit from features like control templates.

Although this chapter is on controls, we will not to cover in detail the usage and API for each control that
Silverlight comes with. That information is easily found in the Silverlight documentation at
msdn.microsoft.com/en-us/library/cc189048(VS.95).aspx and in other books on Silverlight like Matthew
MacDonald’s Pro Silverlight 4 in C# (Apress, 2010). Instead, we will focus more on the following:

• Various extensibility mechanisms in the Silverlight control framework

• Common control customization scenarios

• Control authoring

Our hope is that once you get familiar with using the controls with help from the sources we’ve
mentioned, these recipes will give you that additional knowledge to make you truly productive in
using and authoring controls.

CHAPTER 5 ■ CONTROLS

334

A Word About the Samples
Most of the control recipes in this chapter need to use some form of application data. To make it easier
to structure the sample code, and to avoid having to repetitively explain the data source logic, we
include a common Windows Communication Foundation (WCF) web service and use it as the data
source for the recipes wherever applicable. The WCF service defines a set of service operations that
expose various data elements from the Production schema in the AdventureWorks Online Transaction
Processing (OLTP) sample database. LINQ to SQL is used to generate the data model and
corresponding data classes for the tables in the schema that we use in the various samples. Once you
download the sample code, the WCF service is in the AdventureWorksDataService project in the
Ch05_Controls Visual Studio solution.

We use SQL Server 2008 Express version, which you can download for free from
www.microsoft.com/express/sql/download/default.aspx. When you install the product, take care to
name the server SQLEXPRESS. This is the server name that the code samples expect. If you must change
it, visit the Web.config files for the web service project, and change the database connection strings to
reflect your chosen server name.

You will also need to install the AdventureWorks OLTP database sample for SQL Server 2008, which
you can download at msftdbprodsamples.codeplex.com/releases/view/4004. Note that you can get this
database in two flavors: one that uses the new SQL Server 2008 data types and schema and one that
continues to use the SQL Server 2005 versions. We chose to use the 2005 schema version to attain a
larger reach for those who might already have AdventureWorks installed, so keep that in mind while
downloading. The installer packages will most likely be named AdventureWorksDB.msi or
AdventureWorksDB_x64.msi, depending on your choice of the 32-bit or 64-bit architecture.

We do not discuss the WCF service code in this chapter, and we hope you will navigate to the
sample code to take a look as needed. To learn more about using a WCF service with Silverlight, check
out Chapter 7. Recipe 7-4 uses LINQ to SQL in a similar approach as used here in the AdventureWorks
service and will provide you with a good background for the related techniques.

5-1. Customizing a Control’s Basic Appearance

Problem
You want to customize the look and feel of a control by setting various properties. Furthermore, you
want to create an artifact that can be used repeatedly to apply these property values to multiple
controls of the same type.

Solution
Create a style in XAML containing the necessary property settings. Then, apply the style to all controls
of that type to get a consistent look and feel.

How It Works
A style is a collection of property value settings targeted to a control of a specific type. Styles are
typically defined in XAML as a resource in a ResourceDictionary. The TargetType property for a style
determines what control type the Style can be applied to. Once defined, the style can be accessed in
XAML using the StaticResource markup extension.

http://www.microsoft.com/express/sql/download/default.aspx

CHAPTER 5 ■ CONTROLS

335

Property settings in style definitions are defined using the <Setter> element, where Setter.Property
is set to the name of the property on the target that you want the style to influence and Setter.Value
contains the value that you want to apply. The following code shows a simple style definition for a
Button, where the Foreground and the FontSize properties of the Button will be set to the values
specified in the style definition:

<Style TargetType="Button"
 x:Key="STYLE_Button">
 <Setter Property="Foreground"
 Value="#FFE41414" />
 <Setter Property="FontSize"
 Value="18" />
</Style>

The FrameworkElement base class, and as such every control in the Silverlight Control Framework,
exposes a Style dependency property. This property can be set on any control on a page, either in
XAML or in the codebehind, to apply a style to that control. The following code shows the application of
a style to a Button control:

<Button Style="{StaticResource STYLE_Button}" />

Starting with Silverlight 3, styles also support inheritance (i.e., you can define a new style based

on an existing style). In the new style definition, you can choose to redefine existing property settings
to new values, as well as add new property settings. The BasedOn attribute on a style definition needs
to be set to the base style from which you are inheriting the current style. This code shows an inherited
style definition:

<Style TargetType="Button"
 x:Key="STYLE_InheritedButton"
 BasedOn="{StaticResource STYLE_Button}">
 <Setter Property="Width"
 Value="225" />
 <Setter Property="FontFamily"
 Value="Trebuchet" />
</Style>

Style Scoping

Also recall that styles are declared as resources. Consequently, in XAML markup, styles are scoped by
the resource dictionary to which they belong. For example, a style defined in the Resources section of a
page can be applied to any element in that page at any level of the hierarchy, whereas a style defined
in the Resources section of a Grid can only be applied to elements within that Grid. To have a style be
universally available to an application, you can define the style in the Application.Resources section
in your App.xaml file. You can also use a MergedResourceDictionary to bring in styles defined in
external resource dictionaries. For more on ResourceDictionary and MergedResourceDictionary, please
refer to related recipes in Chapter 2.

CHAPTER 5 ■ CONTROLS

336

The Code
The code sample in Listing 5-1 demonstrates how to define styles and apply them to controls. The
XAML page contains three instances each of a Button. Two of the Button instances have styles applied
to them to illustrate the resulting changes in look and feel.

Listing 5-1. MainPage.xaml with a sample style targeting a button

<UserControl x:Class="Recipe5_1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400"
 Height="300">
 <UserControl.Resources>
 <Style TargetType="Button"
 x:Key="STYLE_Button">
 <Setter Property="Width"
 Value="100" />
 <Setter Property="Height"
 Value="30" />
 <Setter Property="Foreground"
 Value="#FFE41414" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1"
 StartPoint="0.5,0">
 <GradientStop Color="#FFE26F56" />
 <GradientStop Color="#FFDA390B"
 Offset="1" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="FontSize"
 Value="18" />
 <Setter Property="FontFamily"
 Value="Georgia" />
 </Style>

 <Style TargetType="Button"
 x:Key="STYLE_InheritedButton" BasedOn="{StaticResource STYLE_Button}">
 <Setter Property="Width"
 Value="225" />
 <Setter Property="FontFamily"
 Value="Trebuchet" />
 <Setter Property="Cursor"
 Value="Hand" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

337

 <Setter Property="Margin"
 Value="0,10,0,10" />
 </Style>

 </UserControl.Resources>

 <StackPanel x:Name="LayoutRoot"
 Background="White">
 <Button Content="Not Styled"
 Margin="0,0,0,20" />

 <Button Content="Styled" x:Name="Styled"
 Style="{StaticResource STYLE_Button}" />
 <Button Content="Inherited Style" x:Name="Inherited"
 Style="{StaticResource STYLE_InheritedButton}" />
 </StackPanel>

</UserControl>

The style named STYLE_Button is being applied to the Button named Styled, setting several

properties including its Height, Width, Foreground, and Background brushes, as well as some of the font-
related properties.

The style named STYLE_InheritedButton inherits from STYLE_Button. You override the Width
property to change its value to 225 from the original 100, and you override the FontFamily property to
change it to the Trebuchet font. You also add two new property settings in the inherited style: a Margin
property value setting and a Cursor property value setting. STYLE_InheritedButton is then applied to
the Button named Inherited.

■ Note Note the property element syntax for defining the Background property. The property element syntax

allows setting the property value as a child element to the <Setter> element, instead of the inline string literal

using the Value attribute. This can be used when the values being set are complex enough that they cannot be

represented as a simple string literal.

Figure 5-1 shows the result of applying the style.

Figure 5-1. Styled buttons versus the default look and feel

CHAPTER 5 ■ CONTROLS

338

Also note the Content property setting of the Button in Listing 5-1. A control’s content model is
discussed more in Recipe 5-2. For now, it is sufficient to think of it as a way of placing additional
content such as a text label inside the control.

5-2. Replacing the Default UI of a Control

Problem
Every control has an out-of-the-box user interface. You want to replace this default UI with a custom
one without having to write a new control.

Solution
Design a custom control template to express the new UI for the control, and apply it to the control
using the Template property or through a Style in your application’s XAML.

How It Works
Every Silverlight control that renders itself visually at runtime needs its UI defined as a part of the
control writing process. The preferred mode of defining this UI is by designing a self-contained block
of XAML and associating it with the control so that it can be loaded and rendered by the control code.
This block of XAML is what forms the default control template for that control. Recipe 5-10 shows you
how to specify the default control template when writing a custom control. The next few sections focus
on the mechanics of the control template itself and explore things you need to be aware of in
modifying or replacing the control template for an existing control.

Control Template Syntax

A control template always starts with the XAML element <ControlTemplate>. The TargetType attribute
must supply the CLR type of the control to which the template can be applied. Here is a sample
declaration:

<UserControl.Resources>
 <ControlTemplate x:Key="ctCustomRadioButton" TargetType="RadioButton">
 <!--Template Definition Here -->
 </ControlTemplate>
</UserControl.Resources>

Inside the <ControlTemplate> tag, you can have any XAML as long as it is renderable. The template
is typically defined as a stand-alone resource in a resource dictionary, where the x:Key attribute
specifies the unique key for the template by which it can be referenced when applied to the control. For
more on declaring resources, refer to Chapter 2.

Setting the Template

The Control base class exposes a Template property that can be set on any control to replace its
template, as shown here:

CHAPTER 5 ■ CONTROLS

339

<RadioButton Template="{StaticResource ctCustomRadioButton}"/>

You can also use a style to apply a template to a control, like so:

<Style TargetType="RadioButton" x:Name="styleGelRadioButton">
 <Setter Property="Template" Value="{StaticResource ctCustomRadioButton}"/>
 <!--Other setters here -->
</Style>
<!--apply the Style and hence the template-->
<RadioButton Style="{StaticResource styleGelRadioButton}"/>

In the previous examples, you define the control templates as stand-alone resources; then, you
reference them in a style or apply them using the Template property. Note that control templates can
also be defined inline without having to declare them as a separate resource. The following XAML
code demonstrates this:

<!-- defined in place in a Style -->
<Style TargetType="RadioButton" x:Name="styleGelRadioButton">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="RadioButton">
 <!-- rest of the template -->
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <!-- rest of the setters -->
</Style>

<!-- defined in place in a control declaration -->
<RadioButton>
 <RadioButton.Template>
 <ControlTemplate TargetType="RadioButton">
 <!-- rest of the template -->
 </ControlTemplate>
 </RadioButton.Template>
</RadioButton>

Using Expression Blend to Design a Template

Expression Blend offers excellent support for designing Silverlight user interfaces, including
designing custom templates for controls. For a general introduction to Expression Blend usage and to
UI design, refer to Chapters 1 and 3, respectively. This recipe discusses Expression Blend 3 features
that apply to control template design.

Once you have the control added to your scene in the Expression Blend designer window, you can
right-click the control to bring up its context menu, as shown in Figure 5-2.

CHAPTER 5 ■ CONTROLS

340

Figure 5-2. Control context menu in Expression Blend

You have the option of either creating an empty control template or having Expression Blend
generate a copy of the default template. If the modifications you want to make are minor, it is often
helpful to start with a copy. A copy also gives you a good look into the intentions of the original
designers of the control. Note that when you choose to edit a copy, Expression Blend actually creates a
style with the control template defined within that style using a setter for the Template property.

Once you specify a key for the new control template for the RadioButton as shown in Figure 5-3 (or
the encapsulating style, in the event you decide to edit a copy), Expression Blend switches the designer
over to the control template for the RadioButton. If you chose to create an empty template, Expression
Blend creates a mostly empty visual tree for the control contained in a Grid for layout. If you chose to
edit a copy, Expression Blend creates a style that contains a copy of the entire visual tree as supplied by
the default template, which you can then modify. Figure 5-4 shows the differences.

Figure 5-3. Naming a template

CHAPTER 5 ■ CONTROLS

341

Figure 5-4. Empty control template versus editing a copy

From here on, designing the template is similar to designing any other XAML-based UI in
Expression Blend. Some additional features are discussed next.

Template Bindings

When you are designing a control template, you have the option of setting values for the properties of the
various elements that make up that template. In many cases, it may make sense to derive those values
from the corresponding property settings on the control at the point of its use in an application. For
example, you may want the Background property of an element inside the control template of a control to
assume whatever value is set on the Background property on the control itself when it is being used.
However, when you are designing the control template, you have no way of knowing what those values
might be. Therefore, you need a mechanism to indicate that a certain property value on an element in
the template will be bound to a matching property value of the control at the point of use. The
TemplateBinding construct allows you to do just that:

<ControlTemplate x:Key="ctGelRadioButton" TargetType="RadioButton">
 <Grid MaxHeight="{TemplateBinding MaxHeight}"
 MaxWidth="{TemplateBinding MaxWidth}"
 Background="{TemplateBinding Background}">
 <Ellipse Margin="0,0,0,0" x:Name="OuterRing"
 Stroke="{TemplateBinding Foreground}" StrokeThickness="2">
 </Ellipse>
 </Grid>
</ControlTemplate>

For the RadioButton control template shown here, you have the MaxHeight, MaxWidth, and
Background properties of the top-level Grid and the Foreground property of the Ellipse template bound.
These template bindings will cause whatever values are supplied to these properties in a RadioButton
declaration to be applied to these elements in the template. Template bindings are useful when you
need the control consumer to be able to affect properties of the parts of the control template without

CHAPTER 5 ■ CONTROLS

342

having direct access to the parts themselves. However, it is not mandatory that template bindings be
used in every control template definition.

If you are designing the template in Expression Blend 3, the context menu for each property
(accessible by clicking the little rectangle on the right of the property editor) offers the choices of
parent properties that you can bind to (see Figure 5-5).

Figure 5-5. Binding a property within a template using Expression Blend 3

Content Model and Presenter Controls

Controls often present content to the user, as well as interactivity and event functionality. For
example, in Figure 5-6, the Option 1 is the content being displayed by the radio button. The part of the
control design that specifies how it displays content is called the content model of the control.

Figure 5-6. Radio button with simple content

To better understand this, let’s consider the System.Windows.Controls.ContentControl type. The
ContentControl has a dependency property called Content that can be set or bound to any content,
which the ContentControl instance then displays. In case there is no built-in knowledge of how to
display this content, you can also associate a data template through the ContentTemplate property to
facilitate the display of the content. More than being useful in and of itself, the ContentControl serves
as a base class for many other controls in Silverlight, such as Label, Button, or the RadioButton shown
earlier.

The following code shows the XAML declaration for the RadioButton in Figure 5-6:

<RadioButton Content="Option 1" />

Figure 5-7 shows a radio button with slightly more complex content, including a text caption and
an image displayed with the help of a data template.

CHAPTER 5 ■ CONTROLS

343

Figure 5-7. Radio button with complex content

This XAML code shows the RadioButton declaration:

<RadioButton Content="{Binding}" x:Name="rbtn">
 <RadioButton.ContentTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Caption}" Grid.Column="0"
TextAlignment="Center" HorizontalAlignment="Center" VerticalAlignment="Center"/>
 <Image Source="{Binding Icon}" Grid.Column="1" Stretch="Fill"
idth="24" Height="24" Margin="3,0,0,0"/>
 </Grid>
 </DataTemplate>
 </RadioButton.ContentTemplate>
</RadioButton>

The content for the RadioButton can be set by setting its DataContext property to some instance of
a CLR type that exposes two properties: Caption and Icon.

When you modify the control template for a control, you should be aware of the intended content
model for that control. To be fair to the control author’s intentions, try to retain the same content
model in your custom template. To facilitate this, the Silverlight control framework provides a specific
category of controls called presenters. A presenter’s purpose is to create a placeholder for content
inside a control template. Through appropriate template bindings, content gets passed on to the
presenter, which then displays the content in the rest of the visual tree of the template. You can also
associate a data template (again, preferably through a template binding), which is then used by the
presenter to display the content.

Several types of content models and corresponding presenters are supplied in the framework,
and you will look at many of them in this chapter. For this sample, you need to understand the most
fundamental of them all: the ContentPresenter control.

This XAML shows a ContentPresenter in action in a template for a RadioButton:

<ControlTemplate x:Key="ctCustomRadioButton"
 TargetType="RadioButton">
 <Grid>
 <!-- rest of the template -->
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Grid.Column="1" Margin="2,0,0,2"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"/>
 </Grid>

CHAPTER 5 ■ CONTROLS

344

</ControlTemplate>

Notice the template bindings for the Content and the ContentTemplate properties of the
ContentPresenter, which allow the values set for these properties on any instance of the RadioButton to
be passed into the ContentPresenter for display. As you saw in Figures 5-6 and 5-7, the content (a
string in the first case and some XAML with a specific data binding for the image in the second) is
passed in using this mechanism. If those template bindings were absent or if you did not have a
ContentPresenter, setting the Content or the ContentTemplate property on the RadioButton would have
no effect, since there would be no placeholder inside the control’s template to display that content.

Visual State Management

Controls often change their visual state as users interact with them. A check mark that appears in a
Checkbox or a Button when it is clicked is an example of a visual state change. The Silverlight control
framework includes a Visual State Manager (VSM) component that can be used to manage these state
transitions.

The various possible visual states for a control are defined by the control author and further
logically grouped into state groups. Each state managed by the VSM is implemented as a StoryBoard
that can contain one or more animations that define the visual representation of moving from one
state to another. When designing a control template using Expression Blend, you can see the various
state groups and the specific states in the States editor, as shown in Figure 5-8.

Figure 5-8. The control template’s States editor in Expression Blend

CHAPTER 5 ■ CONTROLS

345

When you select a specific state, Expression Blend transitions into a storyboard recording mode
for that state (see Figure 5-9).

Figure 5-9. Recording a state change

Recording a state change works just like recording a regular storyboard in Expression Blend,
including the use of the storyboard time line editor to define a timeline for a specific keyframe
animation in the state storyboard. For more on animation and storyboards, refer to Chapter 3.

In addition to defining each individual state as a storyboard, you can also optionally define the
time duration of the transition from one state to another. Clicking the state transition icon displays all
the possible state transitions involving that state. Figure 5-10 shows the possible transitions to and
from the MouseOver state for a control template, with * indicating any state.

Figure 5-10. State transitions for the MouseOver state

In Figure 5-10, the transition duration from another state to the MouseOver state has been defined
as a quarter of a second. The following XAML shows a sample set of states and some of the possible
transitions defined:

CHAPTER 5 ■ CONTROLS

346

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000" To="MouseOver"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000" From="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Disabled"/>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="OuterRing"
 Storyboard.TargetProperty=
 "(Shape.Stroke).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="InnerCore"
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[1].(GradientStop.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Pressed"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Focused">

CHAPTER 5 ■ CONTROLS

347

 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="ContentFocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="CheckStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000" To="Checked"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000" From="Checked"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Unchecked">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Checked">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="InnerCore"
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[0].(GradientStop.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>

CHAPTER 5 ■ CONTROLS

348

 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Indeterminate"/>
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

Each visual state for the control is declared as a <vsm:VisualState> element, and each state has an
associated storyboard, which can include one or more animations that all get executed by the runtime
when that visual state is reached. These animations typically animate various properties of different
parts of the control template to give the necessary visual cue indicating the state change. As an
example, in the MouseOver state storyboard, you have two animations defined within the storyboard.
The first one animates the Stroke property on an element named OuterRing to a different solid color.
The second one animates the Fill property of another element named InnerCore to a different
gradient. You can also have an empty storyboard if you do not want to define any particular visual
change for the control upon reaching that state. The control’s code determines when a specific visual
state is reached. You will see exactly how that is done in Recipe 5-11 which discusses a custom control
implementing custom visual states.

You should also note the <vsm:VisualStateGroup> declarations that group visual states together. The
VisualStateManager mandates that each state be contained in a group (even if that is the only state in it) and
that each state be defined in exactly one group. You can also see <vsm:VisualTransition> elements declared
inside a state group. Each defined visual transition is a way to specify a time duration over which a
transition from one state to another in a group should happen. In the previous example, transition from any
state to the MouseOver state or the reverse is specified to happen over a quarter of a second, as it is for the
Checked state.

Note that you are not required to define an explicit storyboard for each state. For example, it is
common to not define anything explicit for the Normal state, since the default visual representation
of the control template can be considered its normal state. However, that does not mean that you
can leave out the state definition completely. In the case of the Normal state, for example, the empty
storyboard causes the RadioButton to revert to its default look when none of the other defined visual
states are applicable; thus, the Normal state is reached. If you left out that state definition, the control
would never revert to the default look once it transitions out of another state. Recipe 5-11 provides
another look at visual states from a control author’s perspective.

The Code
The code sample in this recipe replaces the default control template of a RadioButton with a custom
template. Listing 5-2 shows the full XAML for the page.

Listing 5-2. Defining and applying a custom RadioButton control template

<UserControl x:Class="Recipe5_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">
 <UserControl.Resources>
 <!-- The Custom Control Template targeting a RadioButton -->
 <ControlTemplate x:Key="ctCustomRadioButton"
 TargetType="RadioButton">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

349

 <Grid Background="{TemplateBinding Background}"
 MinHeight="{TemplateBinding MinHeight}"
 MinWidth="{TemplateBinding MinWidth}"
 MaxWidth="{TemplateBinding MaxWidth}"
 MaxHeight="{TemplateBinding MaxHeight}">
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000"
 To="MouseOver"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000"
 From="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Disabled"/>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="OuterRing"
 Storyboard.TargetProperty=
 "(Shape.Stroke).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="InnerCore"
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[1].(GradientStop.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Pressed"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">

CHAPTER 5 ■ CONTROLS

350

 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Focused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="ContentFocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="FocusIndicator"
 Storyboard.TargetProperty="Visibility"
 Duration="0">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="CheckStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000"
 To="Checked"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2500000"
 From="Checked"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Unchecked">
 <Storyboard/>

CHAPTER 5 ■ CONTROLS

351

 </vsm:VisualState>
 <vsm:VisualState x:Name="Checked">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="InnerCore"
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[0].(GradientStop.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF144EEA"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Indeterminate"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.20*"/>
 <ColumnDefinition Width="0.80*"/>
 </Grid.ColumnDefinitions>
 <Ellipse Margin="0,0,0,0" x:Name="OuterRing"
 Stroke="#00000000" StrokeThickness="2">
 <Ellipse.Fill>
 <LinearGradientBrush
 EndPoint="1.13300001621246,1.13999998569489"
 StartPoint="-0.0640000030398369,-0.0560000017285347">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FFADADAD" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Grid Margin="0,0,0,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*"/>
 <ColumnDefinition Width="0.6*"/>
 <ColumnDefinition Width="0.2*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.2*"/>
 <RowDefinition Height="0.6*"/>
 <RowDefinition Height="0.2*"/>
 </Grid.RowDefinitions>
 <Ellipse x:Name="InnerRing"
 Fill="#FF000000"
 Grid.Column="1" Grid.Row="1"/>

CHAPTER 5 ■ CONTROLS

352

 <Ellipse Grid.Row="1" Grid.Column="1"
 x:Name="InnerCore" Margin="0,0,0,0">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF"/>
 <GradientStop Color="#FF000000" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 </Grid>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Grid.Column="1" Margin="2,0,0,2"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"/>
 <Rectangle Stroke="Black" x:Name="FocusIndicator" Grid.Column="1"
 StrokeThickness="0.5" Height="1"
 HorizontalAlignment="Stretch" VerticalAlignment="Bottom"
 Margin="2,0,0,0" />
 </Grid>
 </ControlTemplate>

 <!-- A style targeting the RadioButton referencing the control template -->
 <Style TargetType="RadioButton" x:Name="styleGelRadioButton">
 <Setter Property="Template" Value="{StaticResource ctCustomRadioButton}"/>
 <Setter Property="Height" Value="20" />
 <Setter Property="Width" Value="100" />
 <Setter Property="Background" Value="Transparent" />
 </Style>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White" Margin="20,20,20,20">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*"/>
 <RowDefinition Height="0.5*"/>
 </Grid.RowDefinitions>
 <!-- A RadioButton with default look & feel -->
 <RadioButton HorizontalAlignment="Left" VerticalAlignment="Top"
 Content="RadioButton" GroupName="Test" Grid.Row="0"/>
 <!-- A RadioButton with the style (and hence the custom template) applied -->
 <RadioButton HorizontalAlignment="Left" VerticalAlignment="Top"
 Content="RadioButton"
 Style="{StaticResource styleGelRadioButton}"
 GroupName="Test" Grid.Row="1"/>

CHAPTER 5 ■ CONTROLS

353

 </Grid>
</UserControl>

In Listing 5.2, the RadioButton control template, named ctCustomRadioButton, is primarily made up
of three Ellipses (two Ellipses named InnerRing and InnerCore, situated in a Grid within the outer
Ellipse named OuterRing). There is also a ContentPresenter to display any bound content, as well as a
Rectangle (with Height set to 1 so that it appears as an underscore below the content) serving as a focus
indicator, which has its Visibility initially set to Collapsed.

 Figure 5-11 shows the Normal state comparisons between the custom template RadioButton and the
default template.

Figure 5-11. RadioButton Normal state with (left) and without (right) the custom template

The MouseOver state is defined using a storyboard that changes the Stroke color of OuterRing and
the Fill color of InnerRing. The result in comparison to the default RadioButton template is shown in
Figure 5-12.

Figure 5-12. RadioButton MouseOver state with (left) and without (right) the custom template

The Focused and ContentFocused state storyboards make the FocusIndicator rectangle visible,
while the Unfocused state storyboard hides it. The Checked state storyboard modifies the Fill color of
the ellipse InnerCore. Figure 5-13 shows the Checked state of the RadioButton with focus on it.

Figure 5-13. RadioButton Checked and Focused states with (left) and without (right) the custom
template

You also declare a style named styleGelRadioButton. You reference ctCustomRadioButton using a
setter for the Template property and set a few other defaults for some of the other properties in the
control template. And last, for the page’s UI, you declare two RadioButtons—one using just the default
look and feel defined by the framework and the other with the style styleGelRadioButton applied to it
so that the custom template gets applied to it as well—to help you compare them visually.

Another important thing to note is the presence of specific elements in the control template
definition with predetermined names. This is covered more in Recipe 5-10 when you learn how to
write custom controls, but it is worth mentioning here in context of template customization. When the
original control author designs the control, there may be dependencies in the control’s code or in the
definition of the default state change storyboards that require specific names for different parts of the
control template. If you decide to leave those elements out of your new control template or name them
differently, certain parts of the control’s feature set or its visual representation may be rendered
unavailable.

An example in Listing 5-2 is the Rectangle named FocusIndicator. The RadioButton’s default
implementation includes state definitions for the Focused, Unfocused, and ContentFocused states
that toggles the visibility of this Rectangle based on whether focus is on the control. If you leave

CHAPTER 5 ■ CONTROLS

354

out or rename this Rectangle in your new template, you need to reauthor the state storyboards
appropriately for the focus visual cue to function.

Control authors are advised to write controls defensively so that a name dependency does not crash an
application; instead, the control just silently shuts down the dependent feature. However, depending on the
importance of the named element in the control’s overall functionality, leaving or renaming certain
elements may render the control useless. We suggest that you look at the definition of the default control
template in the documentation on the MSDN website. This knowledge can help you make an informed
decision about any modifications.

However, if the dependency is in XAML through some state storyboard reference, you have the
ability to modify the storyboard if you modify the element.

5-3. Customizing the Default ListBoxItem UI

Problem
You want to customize the default look and feel of an item inside a data-bound ListBox beyond what
can be done using data templates.

Solution
Define and apply a custom control template to the ListBoxItem using the ItemContainerStyle on the ListBox.

How It Works
In data-bound ListBox scenarios, you typically do not explicitly add each individual item that the
ListBox displays. When you bind the ItemsSource property on the ListBox to a collection (or set it in
code), an entry is added to the ListBox automatically for each data item in the collection, optionally
formatted based on a data template bound to the ItemTemplate property.

■ Note For more on data binding and data templates, refer to Chapter 4.

Perhaps you want to change the look and feel of the items beyond what the data template feature
affords you. Say you want to change the selection behavior from the default display of a light blue
selection bar to some other mode of selection display. Or you may notice that no matter what your data
template specifies, each item is displayed within a rectangular boundary, and you don’t like that look.

Each such generated item is of type ListBoxItem, in turn derived from ContentControl. The default
template applied to this ListBoxItem specifies some of the UI behavior of these items, including the
ones just mentioned as examples.

To customize that behavior, you need to design a custom template for the ListBoxItem control and
apply it to each ListBoxItem in the ListBox. The ListBox control exposes a property named
ItemContainerStyle, which can be bound to a style that gets applied to each ListBoxItem as it is
generated. You can use this style to associate your custom template to the ListBoxItems in the ListBox.

CHAPTER 5 ■ CONTROLS

355

The Code
This code sample demonstrates a custom template for a ListBoxItem. For the data source in this sample,
use the AdventureWorks WCF service discussed in the introduction to this chapter. Listing 5-3 shows the
XAML for the page with the control template defined in the resources section.

Listing 5-3. XAML for the MainPage showing ListBoxItem control template

<UserControl x:Class="Recipe5_3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="700" Height="800"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">
 <UserControl.Resources>
 <DataTemplate x:Key="dtProductInfo">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0" VerticalAlignment="Center"
 HorizontalAlignment="Left" Text="{Binding Name}"
 Margin="3,3,3,3"/>
 <StackPanel HorizontalAlignment="Left" Grid.Row="1"
 Orientation="Horizontal" Margin="3,3,3,3">
 <TextBlock Text="$" Margin="0,0,2,0" />
 <TextBlock Grid.Row="1" Text="{Binding ListPrice}"/>
 </StackPanel>

 <StackPanel HorizontalAlignment="Left" Grid.Row="2"
 Orientation="Horizontal" Margin="3,3,3,3">
 <Ellipse Height="15" Width="15"
 Fill="{Binding InventoryLevelBrush}" Margin="0,0,2,0" />
 <TextBlock Text="{Binding InventoryLevelMessage}" />
 </StackPanel>
 </Grid>
 </DataTemplate>

 <!-- custom ListBoxItem control template -->
 <ControlTemplate x:Key="ctCustomListBoxItem" TargetType="ListBoxItem">
 <Grid Background="{TemplateBinding Background}"
 Margin="{TemplateBinding Margin}">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.225*" MinHeight="20"/>
 <RowDefinition Height="0.775*"/>
 </Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

356

 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition
 GeneratedDuration="00:00:00.0500000" To="MouseOver"/>
 <vsm:VisualTransition
 GeneratedDuration="00:00:00.0500000" From="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="BottomBorder"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF68A3DE"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Selected">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="TopBorder"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FFFF2D00"/>
 </ColorAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="SelectionIndicator"
 Storyboard.TargetProperty="(UIElement.Visibility)">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <vsm:Visibility>Visible</vsm:Visibility>

CHAPTER 5 ■ CONTROLS

357

 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="SelectedUnfocused">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="TopBorder"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FFFF2D00"/>
 </ColorAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="SelectionIndicator"
 Storyboard.TargetProperty="(UIElement.Visibility)">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <vsm:Visibility>Visible</vsm:Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Focused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="FocusRect"
 Storyboard.TargetProperty="(UIElement.Visibility)">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <vsm:Visibility>Visible</vsm:Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>

CHAPTER 5 ■ CONTROLS

358

 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border HorizontalAlignment="Stretch"
 Margin="0,0,0,0"
 VerticalAlignment="Stretch"
 CornerRadius="5,5,0,0"
 BorderBrush="#FF000000"
 BorderThickness="2,2,2,0"
 Background="#00000000"
 x:Name="TopBorder">
 <Grid x:Name="SelectionIndicator" Visibility="Collapsed"
 Width="18" Height="18"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" Margin="2,2,2,2">
 <Path x:Name="Path" Stretch="Fill"
 StrokeThickness="1.99975" StrokeLineJoin="Round"
 Stroke="#FF000000" Fill="#FF27BC0F"
 Data="F1 M 0.999876,18.0503C 2.60366,
 16.4731 4.23013,14.9006 5.86216,13.3491L 12.6694,
 18.7519C 14.239,10.2011 20.9487,3.27808 29.8744,
 0.999878L 31.4453,2.68387C 23.1443,
 9.95105 17.8681,19.7496 16.5592,
 30.3293L 16.5592,30.2592L 0.999876,18.0503 Z "/>
 </Grid>
 </Border>
 <Border Margin="0,0,0,0" CornerRadius="0,0,5,5"
 BorderBrush="#FF000000" BorderThickness="2,2,2,2"
 Grid.Row="1" Padding="3,3,3,3" x:Name="BottomBorder"
 Background="#00000000">
 <Grid>
 <ContentPresenter HorizontalAlignment="Left"
 Margin="3,3,3,3"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"/>
 <Rectangle HorizontalAlignment="Stretch" Margin="0,0,0,0" Width="Auto"
 Stroke="#FF000000"
 StrokeDashArray="0.75 0.15 0.25 0.5 0.25"
 x:Name="FocusRect" Visibility="Collapsed"/>
 </Grid>
 </Border>
 </Grid>
 </ControlTemplate>

CHAPTER 5 ■ CONTROLS

359

 <!-- style using the custom ListBoxItem control template -->
 <Style x:Key="styleCustomListBoxItem" TargetType="ListBoxItem">
 <Setter Property="Template"
 Value="{StaticResource ctCustomListBoxItem}"/>
 <Setter Property="Margin" Value="3,5,3,5" />
 </Style>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White" Height="Auto" Margin="20,20">
 <StackPanel Orientation="Horizontal" VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch">
 <ListBox x:Name="lbxStandard" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Margin="0,0,25,0"
 ItemTemplate="{StaticResource dtProductInfo}" />

 <!-- applying a custom ListBoxItemTemplate using the ItemContainerStyle -->
 <ListBox x:Name="lbxCustom"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 ItemTemplate="{StaticResource dtProductInfo}"
 ItemContainerStyle="{StaticResource styleCustomListBoxItem}"/>
 </StackPanel>

 </Grid>
</UserControl>

Your control template named ctCustomListBoxItem is defined as two Border elements placed in two
Rows of a top-level Grid. The Border element named TopBorder contains a Grid SelectionIndicator,
encapsulating a Path that represents a check mark. The BottomBorder element contains a
ContentPresenter with appropriate TemplateBindings defined for several properties, including the
Content and the ContentTemplate properties so that, once data bound, the data for each ListBoxItem gets
displayed through this ContentPresenter inside BottomBorder. You also include a Rectangle named
FocusRect with a dotted border; this Rectangle is overlaid on the ContentPresenter but is initially kept
hidden because you set the Visibility property to Visibility.Collapsed.

Figure 5-14 compares the Normal state of a ListBoxItem using this template to that of the default
look and feel (with both ListBoxes bound to the same data source and using the same data template,
defined as dtProductInfo in Listing 5-3). For more on data templates, refer to Chapter 4.

Figure 5-14. Normal ListBoxItem state with (left) and without (right) the custom template

CHAPTER 5 ■ CONTROLS

360

If you refer to the storyboard for the MouseOver visual state in Listing 5-3, you will see that the
background color of BottomBorder changes to indicate the state change. Figure 5-15 shows the result.

Figure 5-15. MouseOver state with (left) and without (right) the custom template

On a transition to the Selected state, you change the background color of TopBorder and make
visible the SelectionIndicator Grid that contains the check mark. This gives the selected item a colored
top bar with a check mark in it. For the Focused state, you make visible the focus indicator Rectangle
FocusRect. Note that you also define a storyboard for the SelectedUnfocused state when an item is
selected but the current focus is elsewhere; in that case, the colored top border and check mark are
visible but the focus rectangle is hidden. Figure 5-16 shows the results in comparison.

Figure 5-16. Selected state with focus with (left) and without (right) the custom template

You also define a style resource, styleCustomListBoxItem, in Listing 5-3 that associates the
control template to a ListBoxItem. To show the control template in action, you have added two
ListBoxes, named lbxStandard and lbxCustom, to your page, each using the same data template
(dtProductInfo) as the ItemTemplate. However, lbxCustom has its style set to
styleCustomListBoxItem.

Listing 5-4 shows the codebehind for the page.

Listing 5-4. Codebehind for the MainPage containing the ListBox

using System;
using System.Windows.Controls;
using System.Windows.Media;
using Recipe5_3.AdvWorks;

namespace Recipe5_3
{
 public partial class MainPage : UserControl
 {
 //WCF service client
 AdvWorksDataServiceClient client =
 new AdvWorksDataServiceClient();
 public MainPage()
 {

CHAPTER 5 ■ CONTROLS

361

 InitializeComponent();
 GetData();
 }

 private void GetData()
 {
 client.GetInventoryCompleted +=
 new EventHandler<GetInventoryCompletedEventArgs>(
 delegate(object sender, GetInventoryCompletedEventArgs e)
 {
 Product product = e.UserState as Product;
 product.ProductInventories = e.Result;
 product.InventoryLevelBrush = null;
 product.InventoryLevelMessage = null;

 });
 client.GetProductsCompleted +=
 new EventHandler<GetProductsCompletedEventArgs>(
 delegate(object sender, GetProductsCompletedEventArgs e)
 {

 lbxStandard.ItemsSource = e.Result;
 lbxCustom.ItemsSource = e.Result;

 foreach (Product p in e.Result)
 {
 client.GetInventoryAsync(p, p);
 }
 });

 client.GetProductsAsync();
 }
 }
}

namespace Recipe5_3.AdvWorks
{

 public partial class Product
 {
 private SolidColorBrush _InventoryLevelBrush;

 public SolidColorBrush InventoryLevelBrush
 {
 get

CHAPTER 5 ■ CONTROLS

362

 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ?
 new SolidColorBrush(Colors.Gray) :
 (this.ProductInventories[0].Quantity > this.SafetyStockLevel ?
 new SolidColorBrush(Colors.Green) :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 new SolidColorBrush(Colors.Yellow) : new SolidColorBrush(Colors.Red)));
 }
 set
 {
 //no actual value set here - just property change raised
 //can be set to null in code to cause rebinding, when
 //ProductInventories changes
 RaisePropertyChanged("InventoryLevelBrush");
 }

 }
 private string _InventoryLevelMessage;

 public string InventoryLevelMessage
 {
 get
 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ? "Stock Level Unknown"
 : (this.ProductInventories[0].Quantity > this.SafetyStockLevel
 ? "In Stock" :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 "Low Stock" : "Reorder Now"));
 }
 set
 {
 //no actual value set here - just property change raised
 //can be set to null in code to cause rebinding,
 //when ProductInventories changes
 RaisePropertyChanged("InventoryLevelMessage");
 }
 }
 }
}

You set the ItemsSource properties for both lbxStandard and lbxCustom to a list of Product data
items obtained from the AdventureWorks WCF service, as shown in the GetData() method in Listing 5-4.
You also populate inventory information for each Product instance from the same service as a
collection of ProductInventory instances.

CHAPTER 5 ■ CONTROLS

363

In the declaration of dtProductInfo in Listing 5-3, note the Ellipse with its Fill property bound to
InventoryLevelBrush and the TextBlock with its Text property bound to InventoryLevelMessage. These
are both calculated values, exposed as properties on the Product class extended using the partial class
facility, as shown in Listing 5-4. The InventoryLevelBrush property returns a SolidColorBrush of
different colors based on whether the total inventory is above or below certain levels, indicated by the
SafetyStockLevel and ReorderPoint properties of the Product data class. The InventoryLevelMessage
property applies the same logic to return differently formatted text messages instead.

5-4. Displaying Information in a Pop-up

Problem
You want to display a portion of the UI in a pop-up in response to an input event such as a mouse click.

Solution
Use the Popup element to contain and display the necessary UI.

How It Works
Pop-ups are frequently used in UI design to display on-the-fly information in response to input events.
Typical examples include cascading menus, context menus, the drop-down portion of a combo box, and
tooltips. Silverlight includes a type named Popup in the System.Windows.Controls.Primitives namespace.
The Popup type is used by several other controls in the framework, such as the DatePicker, the ToolTip, and
the DataGrid. You can use it in your own code as well.

Creating and Initializing the Pop-up

The Popup type is not a control—it derives directly from the FrameworkElement type. It is meant to be a
container for a tree of elements and, therefore, has no visual representation of its own. While you can
include a Popup in XAML, because of positioning requirements, it is much more common to create an
instance of the Popup in code and set its Child property to the root of the element tree representing the
content you want to display inside the Popup. This code shows setting a ListBox as the Popup.Child:

Popup popupProducts = new Popup();
ListBox popupContent = new ListBox();
popupProducts.Child = popupContent;

Once you have prepared the Popup, you can toggle the Popup.IsOpen property to show or hide it.

Positioning the Pop-up

In most cases, you want to display the Popup at a dynamically determined position on the page, relative
to coordinates of an input event, such as a mouse click, or to that of some other element on the form.
This explains why a Popup is typically not included by a designer in the XAML for the page but rather
created in code—it does not make sense to subject it to the constraints of the layout system and
determine its position up front unless you are using absolute positioning and a container like the
Canvas.

CHAPTER 5 ■ CONTROLS

364

To assist in the process of determining its position, the Popup type exposes two properties of type
double: VerticalOffset and HorizontalOffset. These properties define offsets from the top and left
corners, respectively, of the root element of the Page and are both set to zero by default, causing the
Popup to display at the top-left corner of the Page root. To determine the appropriate page-based offsets
for a Popup relative to some other element on the page, you need to perform some coordinate
transforms. To understand this problem a little better, take a look at Figure 5-17.

Figure 5-17. Coordinate transformation for a Popup instance

When you initially create a Popup instance, it is located at the top-left corner of the Page at
coordinates (0,0) which is shown by the dotted outline of the Popup in Figure 5-17.

Let’s assume you need to align the Popup to the bottom-left corner of an element in the Page
named AnchorElement, which has Width set to w and Height set to h ; its top-left coordinates are (x,y)
relative to the Page, as shown in Figure 5-17. If you defined the Popup’s desired coordinates with respect
to the AnchorElement’s coordinate space alone, they would be (0,h).

However, since you are going to position the Popup within the Page, you need to translate (0,h) in
AnchorElement’s coordinate space (the source coordinate space) to a suitable set of coordinates in the
Page’s coordinate space (the target coordinate space). Those would be (x,y + h) for it to be positioned at
the desired spot, which means that the Popup needs to be offset by x horizontally and by y + h vertically
from its original position of (0,0) within the Page to reach its new position.

The following code shows how to achieve this:

GeneralTransform coordTnsfrm = this.TransformToVisual(AnchorElement);
Point pt = coordTnsfrm.Transform(new Point(0.0, AnchorElement.ActualHeight));
popupProducts.HorizontalOffset = pt.X;
popupProducts.VerticalOffset = pt.Y;

CHAPTER 5 ■ CONTROLS

365

Here you invoke TransformToVisual() on an UIElement that owns the target coordinate space and
pass in another UIElement whose coordinate space acts as the source. The GeneralTransform that is
returned from the call to TransformToVisual() can then be used to transform a Point defined in the
source space to one in the target space.

You also transform a Point in AnchorElement’s coordinate space with X set to 0 and Y set to the
height of AnchorElement (i.e., the bottom-left corner of AnchorElement) to the appropriate equivalent in
the Page’s coordinate space. You then use the X,Y values of the resulting Point to set the
HorizontalOffset and the VerticalOffset values on the Popup to position it as you intended on the
page.

Creating Pop-up Content

In initializing a Popup in code with content—that is, setting its Child property—you should avoid
creating and initializing the entire content in code, especially if the content represents a fairly
complex UI. You almost always want to take advantage of tools like Expression Blend to do that.

In the following code sample, you simply need a single ListBox to be the only child of the Popup.
Therefore, you are not burdened with creating an overly complex UI in code. However, if you are ever
faced with this challenge elsewhere and want to avoid the need to code an UI tree, you can use the
ContentControl and data templates shown here:

Popup popupProducts = new Popup();
ContentControl popupContent = new ContentControl();
popupContent.ContentTemplate = this.Resources["dtPopupData"] as DataTemplate;
popupProducts.Child = popupContent;
popupContent.DataContext = ProdList;

Set the ContentTemplate of the ContentControl to a data template resource, initialize Popup.Child
with the ContentControl, and then bind the ContentControl to appropriate data. This gives you the
opportunity to host a fairly complex UI in a Popup but design it as a data template using a tool like
Expression Blend, thus expressing it as XAML and keeping your code free of significant element
creation and initialization logic.

The Code
The code sample for this recipe uses the Popup type to build a cascading menu that looks similar to the
ones in Visual Studio.

Figure 5-18 shows the resulting menu’s look and feel. Keep in mind that this sample does not aim
to illustrate a full-scale menu framework but rather just a usage pattern for the Popup type. However, if
you ever do build a menu system using Silverlight, you will probably use the Popup type, and the code in
this sample will come in handy.

CHAPTER 5 ■ CONTROLS

366

Figure 5-18. A cascading menu built using the Popup type

Listing 5-5 shows the MenuItemData class used to hold the data for a single menu item.

Listing 5-5. Data type for a single menu item

using System.Collections.Generic;
using System.Windows;
using System.Windows.Media.Imaging;

namespace Recipe5_4
{
 //data for a single menu item
 public class MenuItemData
 {
 //image URI string used to load the image
 internal string ImageUri
 {
 set
 {
 MenuItemImage = new BitmapImage();
 MenuItemImage.SetSource(this.GetType().Assembly.
 GetManifestResourceStream(this.GetType().Namespace + "." + value));
 }
 }
 //menu item image
 public BitmapImage MenuItemImage { get; set; }
 //menu item caption
 public string MenuItemCaption { get; set; }
 //children items for submenus
 public List<MenuItemData> Children { get; set; }
 //parent menu item
 public MenuItemData Parent { get; set; }
 //toggle submenu arrow visibility based on presence of children items
 public Visibility SubMenuArrow
 {

CHAPTER 5 ■ CONTROLS

367

 get
 {
 return (Children == null
 || Children.Count == 0 ?
 Visibility.Collapsed : Visibility.Visible);
 }
 }
 }
}

The ImageUri property setter is used to load an image bitmap that can be accessed through the
MenuItemImage property. See Chapter 2 for more about loading assembly-embedded resources using
GetManifestResourceStream(). A submenu is defined by having entries in the Children collection. For
an item in a submenu, the parent MenuItemData instance is contained in the Parent property. The
SubMenuArrow property will be bound appropriately in XAML to control the visibility of the right arrow
mark that indicates the presence of a submenu.

Listing 5-6 shows the codebehind for the page.

Listing 5-6. Codebehind for the MainPage used to display the pop-up menu

using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Input;
using System.Windows.Media;

namespace Recipe5_4
{
 public partial class MainPage : UserControl
 {
 //data for the top level menu
 internal List<MenuItemData> TopMenuData = null;
 //popups for the topmenu and the submenu
 Popup TopMenu, SubMenu;
 //Listboxes for the menu content
 ListBox lbxTopMenu, lbxSubMenu;

 public MainPage()
 {
 InitializeComponent();
 //initialize the menu data
 TopMenuData = new List<MenuItemData>
 {
 new MenuItemData{MenuItemCaption="Camera", ImageUri="Camera.png"},
 new MenuItemData{MenuItemCaption="CD Drive",ImageUri="CD_Drive.png"},

CHAPTER 5 ■ CONTROLS

368

 new MenuItemData{MenuItemCaption="Computer",ImageUri="Computer.png"},
 new MenuItemData{MenuItemCaption="Dialup",ImageUri="Dialup.png"},
 new MenuItemData{MenuItemCaption="My Network",ImageUri="mynet.png"},
 new MenuItemData{MenuItemCaption="Mouse",ImageUri="Mouse.png"}
 };

 TopMenuData[4].Children = new List<MenuItemData>
 {
 new MenuItemData{MenuItemCaption="Network Folder",
 ImageUri="Network_Folder.png",Parent = TopMenuData[4]},
 new MenuItemData{MenuItemCaption="Network Center",
 ImageUri="Network_Center.png",Parent = TopMenuData[4]},
 new MenuItemData{MenuItemCaption="Connect To",
 ImageUri="Network_ConnectTo.png",Parent = TopMenuData[4]},
 new MenuItemData{MenuItemCaption="Internet",
 ImageUri="Network_Internet.png",Parent = TopMenuData[4]}
 };

 //create and initialize the top menu popup
 TopMenu = new Popup();
 lbxTopMenu = new ListBox();
 //set the listbox style to apply the menu look templating
 lbxTopMenu.Style = this.Resources["styleMenu"] as Style;
 //bind the topmenu data
 lbxTopMenu.ItemsSource = TopMenuData;
 TopMenu.Child = lbxTopMenu;

 //create and initialize the submenu
 SubMenu = new Popup();
 lbxSubMenu = new ListBox();
 lbxSubMenu.MouseLeave += new MouseEventHandler(lbxSubMenu_MouseLeave);
 lbxSubMenu.Style = this.Resources["styleMenu"] as Style;
 SubMenu.Child = lbxSubMenu;
 }

 //set the top menu position
 private void SetTopMenuPosition(Popup Target,
 FrameworkElement CoordSpaceSource)
 {
 //get the transform to use
 GeneralTransform transform = this.TransformToVisual(CoordSpaceSource);
 //transform the left-bottom corner
 Point pt = transform.Transform(new Point(0.0,
 CoordSpaceSource.ActualHeight));
 //set offsets accordingly

CHAPTER 5 ■ CONTROLS

369

 Target.HorizontalOffset = pt.X;
 Target.VerticalOffset = pt.Y;
 }
 //set the submenu position
 private void SetSubMenuPosition(Popup Target,
 FrameworkElement CoordSpaceSource, int ItemIndex,
 FrameworkElement ParentMenuItem)
 {

 //get the transform to use
 GeneralTransform transform = this.TransformToVisual(CoordSpaceSource);
 //transform the right-top corner
 Point pt = transform.Transform(
 new Point(ParentMenuItem.ActualWidth,
 CoordSpaceSource.ActualHeight +
 (ParentMenuItem.ActualHeight * ItemIndex)));
 //set offsets accordingly
 Target.HorizontalOffset = pt.X;
 Target.VerticalOffset = pt.Y;
 }

 private void btnDropDown_Click(object sender, RoutedEventArgs e)
 {
 //position the top menu
 SetTopMenuPosition(TopMenu, LayoutRoot);
 //show or hide
 TopMenu.IsOpen = !TopMenu.IsOpen;
 }

 private void LbxItemRoot_MouseEnter(object sender, MouseEventArgs e)
 {
 //get the listboxitem for the selected top menu item
 ListBoxItem lbxItem = (sender as Grid).Parent as ListBoxItem;
 //get the bound MenuItemData
 MenuItemData midTop = (sender as Grid).DataContext as MenuItemData;
 //do we have children and are we on the top menu?
 if (midTop.Parent == null &&
 (midTop.Children == null || midTop.Children.Count == 0))
 {
 //do not show the submenu
 SubMenu.IsOpen = false;
 }
 else if (midTop.Children != null && midTop.Children.Count > 0)
 {
 //yes - position sub menu
 SetSubMenuPosition(SubMenu, LayoutRoot, TopMenuData.IndexOf(midTop),

CHAPTER 5 ■ CONTROLS

370

 (sender as Grid));
 //bind to children MenuItemData collection
 lbxSubMenu.ItemsSource = midTop.Children;
 //show submenu
 SubMenu.IsOpen = true;
 }

 }
 //leaving submenu - close it
 void lbxSubMenu_MouseLeave(object sender, MouseEventArgs e)
 {
 SubMenu.IsOpen = false;
 }
 }
}

In the constructor, you populate the data structures needed to create and initialize two Popups:
TopMenu for the top-level menu, and SubMenu for a cascading submenu. ListBoxes lbxTopMenu and
lbxSubMenu are used to provide the content inside the Popups, with a style named styleMenu customizing
them to look like a menu. The data for the menus is stored as MenuItemData instances in the TopMenuData
collection, with the Children property of the MenuItemData captioned My Network filled with items for a
submenu.

The top menu is displayed in the click handler btnDropDown_Click() of the menu drop-down
button. You first call SetTopMenuPosition() to position the Popup, and then toggle its IsOpen property so
that the menu either displays or is removed if it is already on display. The cascading submenu is
displayed in the MouseEnter handler LbxItemRoot_MouseEnter() of an item in the top-level menu. You
check to see if the top-level menu item has children, and if it does, you invoke SetSubMenuPosition() to
position the submenu, set its data source Children collection, and toggle its display. In the MouseLeave
event handler of the ListBox lbxSubMenu representing the submenu, you turn off the submenu.

Let’s look at the SetTopMenuPosition() and SetSubMenuPosition() methods used to position the
Popups. In both methods, the second parameter named CoordSpaceSource represents the source element
whose coordinate space you need to transform from. In Listing 5-6, in the case of
SetTopMenuPosition(), this parameter is LayoutRoot, which is the Grid containing the menu drop-down
button. The top menu Popup is then positioned along the Grid’s bottom-left corner. In
SetSubMenuPosition(), you again use LayoutRoot. But SetSubMenuPosition() accepts two additional
parameters. The third parameter, named ItemIndex, represents the index of the selected item in
lbxTopMenu, and the fourth parameter, named ParentMenuItem, is the containing Grid for the
ListBoxItem on the top menu that has been just selected. To align the submenu pop-up with the top-
right corner of the ListBoxItem, you acquire the coordinate space transform as before. But then you
transform the point using ParentMenuItem.ActualWidth as the x parameter to the Point instance, and
the total height of all menu items up to but not including the one identified by ItemIndex as the y
parameter. This causes the submenu to be positioned along the right edge of the top menu, with its top
edge horizontally aligned with the parent menu item currently selected in the top menu.

Listing 5-7 shows the XAML for the page.

Listing 5-7. XAML for the page hosting the pop-up menu

<UserControl x:Class="Recipe5_4.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

371

 Width="400" Height="300"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">
 <UserControl.Resources>

 <ControlTemplate x:Key="ctMenuItem" TargetType="ListBoxItem">
 <Grid x:Name="LbxItemRoot" Height="20"
 MouseEnter="LbxItemRoot_MouseEnter"
 DataContext="{TemplateBinding Content}" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="24.0" MaxWidth="24.0"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="SelectionIndicator"
 Storyboard.TargetProperty="(UIElement.Visibility)">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <vsm:Visibility>Visible</vsm:Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected"/>
 <vsm:VisualState x:Name="Selected"/>
 <vsm:VisualState x:Name="SelectedUnfocused"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused"/>
 <vsm:VisualState x:Name="Focused"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border Margin="0,0,0,0" Grid.Column="0" BorderThickness="0,0,2,0">
 <Border.Background>

CHAPTER 5 ■ CONTROLS

372

 <LinearGradientBrush
 EndPoint="0.912000000476837,0.509999990463257"
 StartPoint="0,0.514999985694885">
 <GradientStop Color="#FFDDE9F4"/>
 <GradientStop Color="#FFADD5F5" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <Border.BorderBrush>
 <LinearGradientBrush
 EndPoint="1.37399995326996,0.485000014305115"
 StartPoint="0.275000005960464,0.485000014305115">
 <GradientStop Color="#FF000000" Offset="0.5"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Border.BorderBrush>
 </Border>
 <Border Grid.Column="1" Background="White" />
 <Border HorizontalAlignment="Stretch"
 Margin="2,2,2,2" Width="Auto"
 Grid.Column="0" Grid.ColumnSpan="2"
 CornerRadius="3,3,3,3"
 BorderBrush="#FF1E7CDA"
 BorderThickness="1,1,1,1" x:Name="SelectionIndicator"
 Visibility="Collapsed">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="0.009"/>
 <GradientStop Color="#FF7AC5F0" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 </Border>
 <Grid Margin="2,2,2,2" Grid.ColumnSpan="2" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Background="Transparent">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="22px"/>
 <ColumnDefinition Width="auto"/>
 <ColumnDefinition Width="auto"/>
 </Grid.ColumnDefinitions>
 <Image
 Source="{Binding MenuItemImage}"
 Width="16" Height="16" Stretch="Fill"
 Margin="3,0,3,0" Grid.Column="0"/>
 <TextBlock
 Text="{Binding MenuItemCaption}" Margin="3,0,3,0"
 Grid.Column="1"/>

CHAPTER 5 ■ CONTROLS

373

 <Path x:Name="SubMenuArrow" Width="8" Height="8" Stretch="Fill"
 Fill="#FF000000"
 Data="F1 M 8.25,4.76315L 0,0L 0,9.52628L 8.25,4.76315 Z "
 Grid.Column="2" Visibility="{Binding SubMenuArrowVisibility}"
 Margin="3,0,5,0"/>
 </Grid>
 </Grid>
 </ControlTemplate>

 <Style TargetType="ListBoxItem" x:Key="styleMenuItem">
 <Setter Property="Template" Value="{StaticResource ctMenuItem}" />
 </Style>

 <ControlTemplate x:Key="ctMenuList" TargetType="ListBox">
 <Grid>
 <Border HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Background="Black" Margin="2.5,2.5,-2.5,-2.5" Opacity="0.35"/>
 <Border BorderBrush="#FFA7A7A7" BorderThickness="1"
 HorizontalAlignment="Left" VerticalAlignment="Top" >
 <ItemsPresenter/>
 </Border>
 </Grid>
 </ControlTemplate>

 <Style x:Key="styleMenu" TargetType="ListBox">
 <Setter Property="Template" Value="{StaticResource ctMenuList}" />
 <Setter Property="ItemContainerStyle"
 Value="{StaticResource styleMenuItem}" />
 </Style>

 <ControlTemplate TargetType="Button" x:Key="ctButton">
 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="Center"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 />
 </ControlTemplate>

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" HorizontalAlignment="Left" VerticalAlignment="Top">
 <StackPanel Orientation="Horizontal">
 <Border BorderThickness="1,1,0,1" BorderBrush="#FF4169B1"
 HorizontalAlignment="Left" x:Name="border">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFD9E9FB"/>

CHAPTER 5 ■ CONTROLS

374

 <GradientStop Color="#FF88BCF9" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <Image Width="16" Height="16" Source="Menu.png" Margin="5,5,5,5"/>
 </Border>
 <Border BorderThickness="0,1,1,1" BorderBrush="#FF4169B1"
 HorizontalAlignment="Left" x:Name="border1">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFD9E9FB"/>
 <GradientStop Color="#FF88BCF9" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <Button Height="16" Template="{StaticResource ctButton}"
 x:Name="btnDropDown" Margin="0,5,5,5" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Click="btnDropDown_Click"
Padding="5,5,5,5">
 <Button.Content>
 <Path x:Name="Path" Width="11.2578" Height="9.80142" Stretch="Fill"
 Fill="#FF000000"
 Data="F1 M 12.3926,10.3748L 18.1113,0.677055L 6.85348,
 0.573364L 12.3926,10.3748 Z "/>
 </Button.Content>
 </Button>
 </Border>
 </StackPanel>
 </Grid>
</UserControl>

The UI contains only the representation of the initial menu drop-down button. This consists of
everything that is inside the Grid named LayoutRoot, primarily a Button with its content set to a Path
that displays the down arrow and an Image that is bound to a resource in the assembly named Menu.png,
both contained inside some Borders.

The control template ctMenuItem is what gives each item the look and feel when it is applied to a
ListBoxItem. Each ListBoxItem is bound to an instance of MenuItemData and is implemented using an
Image bound to MenuItemImage, a TextBlock bound to MenuItemCaption, and a Path displaying a right
arrow with its Visibility property bound to SubMenuArrow. The selection indicator is implemented as a
Border with initial Visibility set to Collapsed. The visual state for MouseOver is used to make the
selection indicator visible as the user moves her mouse among items in the menu. You also customize
the ListBox that represents an entire drop-down by applying another control template named
ctMenuList to it. This puts an ItemsPresenter control inside a couple of Borders and gets rid of the usual
scroll bars and other elements that are a part of a ListBox default template.

You apply the control templates to the Popups when you create the code, via the Style named
styleMenu, as you have already seen in Listing 5-6.

CHAPTER 5 ■ CONTROLS

375

5-5. Displaying Row Details in a DataGrid

Problem
You need to display additional detail information about a bound row in a DataGrid on demand so that
the details portion is displayed in place within the DataGrid.

Solution
Use the RowDetailsTemplate property of the DataGrid to associate a data template that can be used to
display additional data on demand.

How It Works
The DataGrid.RowDetailsTemplate property accepts a data template (covered in Chapter 4) that can be
used to display additional data in place, associated with a bound row. This feature comes handy in
many scenarios—to provide master-detail data where multiple detail records need to be displayed for
a top-level row or where additional information, not otherwise bound to top-level columns, needs to
be displayed adjacent to a row.

The DataGrid.RowDetailsVisibilityMode property controls the visibility of the row details
information at DataGrid scope. That is, setting it to Visible keeps it always visible for every bound row,
whereas setting it to VisibleWhenSelected makes the details portion of a row visible when the row is
selected and collapsed back when selection moves off to another row. To control row details’ visibility
in code, set this property to Collapsed, which hides row details for every row, and instead use the
DataGridRow.DetailsVisibility property on the individual row.

The DataGrid also exposes two useful events: LoadingRowDetails and UnloadingRowDetails.
LoadingRowDetails is raised when the DataGrid initially applies the RowDetailsTemplate to the row. This
is especially useful if you want to load the data for the row details in a delayed fashion—placing the
code to load the data in the handler for LoadingRowDetails ensures that the data is only loaded when
the user first expands the row details and is never executed again, unless the row details are explicitly
unloaded. UnloadingRowDetails is raised when the rows are unloaded, such as when a method like
DataGrid.ClearRows() is invoked.

The DataGrid also raises another event called RowDetailsVisibilityChanged every time a row
detail is either made visible or is collapsed.

■ Note The DataGrid control is found in the System.Windows.Controls.Data assembly in the

System.Windows.Controls namespace.

The Code
For this code sample, you bind a DataGrid to product data sourced from the AdventureWorks WCF service.
Each row, in addition to the bound columns, also displays some row details data, including an image of
the product, inventory information, a product description, and another DataGrid displaying the cost
history records of the product demonstrating a master-detail arrangement. Figure 5-19 shows the
DataGrid with the row details of a row expanded.

CHAPTER 5 ■ CONTROLS

376

Figure 5-19. Bound DataGrid using a RowDetailstemplate

Listing 5-8 shows the XAML for the page.

Listing 5-8. XAML for the page hosting the DataGrid with row details

<UserControl x:Class="Recipe5_5.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 Width="900" Height="600" >
 <UserControl.Resources>
 <DataTemplate x:Key="dtProductRowDetails">
 <Grid Height="350" Width="646">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.127*"/>
 <RowDefinition Height="0.391*"/>
 <RowDefinition Height="0.482*"/>
 </Grid.RowDefinitions>
 <Grid.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF7D7A7A"/>
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Grid.Background>
 <Grid.ColumnDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

377

 <ColumnDefinition Width="0.245*"/>
 <ColumnDefinition Width="0.755*"/>
 </Grid.ColumnDefinitions>
 <Border HorizontalAlignment="Stretch" Margin="5,5,5,5"
 VerticalAlignment="Stretch" Grid.RowSpan="2"
 BorderThickness="4,4,4,4">
 <Border.BorderBrush>
 <LinearGradientBrush
 EndPoint="1.02499997615814,0.448000013828278"
 StartPoint="-0.0130000002682209,0.448000013828278">
 <GradientStop Color="#FF000000"/>
 <GradientStop Color="#FF6C6C6C" Offset="1"/>
 </LinearGradientBrush>
 </Border.BorderBrush>
 <Image MinHeight="50" MinWidth="50"
 Source="{Binding ProductPhoto.LargePhotoPNG}"
 Stretch="Fill"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch"/>
 </Border>
 <Grid HorizontalAlignment="Stretch" Margin="8,8,8,0"
 VerticalAlignment="Stretch"
 Grid.Column="1" Grid.RowSpan="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*"/>
 <ColumnDefinition Width="0.3*"/>
 <ColumnDefinition Width="0.05*"/>
 <ColumnDefinition Width="0.4*"/>
 </Grid.ColumnDefinitions>
 <StackPanel HorizontalAlignment="Stretch" Grid.Column="0"
 Orientation="Horizontal" Margin="1,0,1,0">
 <Ellipse Height="15" Width="15"
 Fill="{Binding InventoryLevelBrush}" Margin="0,0,2,0" />
 <TextBlock Text="{Binding InventoryLevelMessage}" FontSize="12"
 FontWeight="Bold"
 VerticalAlignment="Center" Margin="2,0,0,0"/>
 </StackPanel>
 <TextBlock HorizontalAlignment="Stretch"
 VerticalAlignment="Center"
 Grid.ColumnSpan="1"
 Text="{Binding ProductCategory.Name}"
 TextAlignment="Right" TextWrapping="Wrap"
 Grid.Column="1" FontSize="13"/>
 <TextBlock HorizontalAlignment="Stretch"
 VerticalAlignment="Center"
 Grid.Column="2" Text="/"

CHAPTER 5 ■ CONTROLS

378

 TextWrapping="Wrap" TextAlignment="Center"
 FontSize="13" />
 <TextBlock HorizontalAlignment="Stretch"
 VerticalAlignment="Center"
 Grid.Column="3" Grid.ColumnSpan="1"
 Text="{Binding ProductSubCategory.Name}"
 TextWrapping="Wrap" TextAlignment="Left"
 FontSize="13"/>
 </Grid>
 <StackPanel Orientation="Vertical"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Margin="8,8,8,8"
 Grid.ColumnSpan="2"
 Grid.Row="2" Grid.RowSpan="1" >
 <TextBlock Height="Auto" Width="Auto"
 FontSize="12" FontWeight="Bold"
 Text="Cost History" Margin="0,0,0,10"/>
 <data:DataGrid AutoGenerateColumns="False"
 ItemsSource="{Binding ProductCostHistories}">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding StartDate}"
 Header="Start"/>
 <data:DataGridTextColumn Binding="{Binding EndDate}"
 Header="End"/>
 <data:DataGridTextColumn
 Binding="{Binding StandardCost}"
 Header="Cost"/>
 </data:DataGrid.Columns>
 </data:DataGrid>
 </StackPanel>
 <Border HorizontalAlignment="Stretch"
 Margin="8,8,8,8"
 VerticalAlignment="Stretch"
 Grid.Column="1"
 Grid.Row="1"
 Grid.RowSpan="1"
 BorderBrush="#FF000000"
 BorderThickness="1,1,1,1">
 <TextBox Height="Auto" Width="Auto"
 FontSize="12"
 FontWeight="Bold"
 Text="{Binding ProductDescription.Description,Mode=TwoWay}"
 TextWrapping="Wrap"/>
 </Border>

CHAPTER 5 ■ CONTROLS

379

 </Grid>
 </DataTemplate>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid x:Name="dgProducts" AutoGenerateColumns="False"
 RowDetailsTemplate="{StaticResource dtProductRowDetails}"
 RowDetailsVisibilityMode="Collapsed">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn
 Binding="{Binding ProductID}" Header="ID" />
 <data:DataGridTextColumn
 Binding="{Binding Name}" Header="Name" />
 <data:DataGridTextColumn
 Binding="{Binding ProductNumber}" Header="Number"/>
 <data:DataGridTextColumn
 Binding="{Binding ListPrice}" Header="List Price"/>
 <data:DataGridTextColumn
 Binding="{Binding Style}" Header="Style"/>
 <data:DataGridTextColumn
 Binding="{Binding Color}" Header="Color"/>
 <data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate x:Key="dtShowDetailTemplate">
 <Button Content="..." x:Name="ShowDetails"
 Click="ShowDetails_Click" />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
 </data:DataGrid>
 </Grid>
</UserControl>

The data template used for the RowDetailsTemplate is named dtProductRowDetails and contains
fields bound to several properties in the Product data class plus some nested classes. It displays an
image of the product along with category and inventory information.

To use the data template in the DataGrid named dgProducts, set the
DataGrid.RowDetailsVisibilityMode to Collapsed so that all rows have their detail information hidden to
start with. To allow users to display row details on demand, an extra column of type
DataGridTemplateColumn is added to the DataGrid with a specific CellTemplate containing a Button. (You
will learn more about column templates in the next recipe.) The CellTemplate causes a Button to be
displayed in the last column of each bound row, and you use the Button’s click handler
ShowDetails_Click() to allow the user to toggle the Visibility of the row detail information, as shown the
codebehind for the page in Listing 5-9.

CHAPTER 5 ■ CONTROLS

380

Listing 5-9. Codebehind for the MainPage hosting the DataGrid

using System;
using System.IO;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using Recipe5_5.AdvWorks;

namespace Recipe5_5
{
 public partial class MainPage : UserControl
 {
 AdvWorksDataServiceClient client =
 new AdvWorksDataServiceClient();

 public MainPage()
 {
 InitializeComponent();
 //async completion callbacks for the web service calls to get data
 client.GetPhotosCompleted +=
 new EventHandler<GetPhotosCompletedEventArgs>(
 delegate(object s1, GetPhotosCompletedEventArgs e1)
 {
 (e1.UserState as Product).ProductPhoto = e1.Result;
 });
 client.GetInventoryCompleted +=
 new EventHandler<GetInventoryCompletedEventArgs>(
 delegate(object s2, GetInventoryCompletedEventArgs e2)
 {
 (e2.UserState as Product).ProductInventories = e2.Result;
 (e2.UserState as Product).InventoryLevelBrush = null;
 (e2.UserState as Product).InventoryLevelMessage = null;
 });
 client.GetCategoryCompleted +=
 new EventHandler<GetCategoryCompletedEventArgs>(
 delegate(object s3, GetCategoryCompletedEventArgs e3)
 {
 (e3.UserState as Product).ProductCategory = e3.Result;
 });
 client.GetSubcategoryCompleted +=
 new EventHandler<GetSubcategoryCompletedEventArgs>(
 delegate(object s4, GetSubcategoryCompletedEventArgs e4)

CHAPTER 5 ■ CONTROLS

381

 {
 (e4.UserState as Product).ProductSubCategory = e4.Result;
 });
 client.GetDescriptionCompleted +=
 new EventHandler<GetDescriptionCompletedEventArgs>(
 delegate(object s5, GetDescriptionCompletedEventArgs e5)
 {
 (e5.UserState as Product).ProductDescription = e5.Result;
 });
 client.GetProductCostHistoryCompleted +=
 new EventHandler<GetProductCostHistoryCompletedEventArgs>(
 delegate(object s6, GetProductCostHistoryCompletedEventArgs e6)
 {
 (e6.UserState as Product).ProductCostHistories = e6.Result;
 });

 //LoadingRowDetails handler - here we make the calls to load
 //row details data on demand
 dgProducts.LoadingRowDetails +=
 new EventHandler<DataGridRowDetailsEventArgs>(
 delegate(object sender, DataGridRowDetailsEventArgs e)
 {
 Product prod = e.Row.DataContext as Product;
 if (prod.ProductInventories == null)
 client.GetInventoryAsync(prod, prod);
 if (prod.ProductCategory == null && prod.ProductSubcategoryID != null)
 client.GetCategoryAsync(prod, prod);
 if (prod.ProductSubCategory == null &&
 prod.ProductSubcategoryID != null)
 client.GetSubcategoryAsync(prod, prod);
 if (prod.ProductDescription == null)
 client.GetDescriptionAsync(prod, prod);
 if (prod.ProductPhoto == null)
 client.GetPhotosAsync(prod, prod);
 if (prod.ProductCostHistories == null)
 client.GetProductCostHistoryAsync(prod, prod);
 });
 GetData();
 }

 private void GetData()
 {
 //get the top level product data
 client.GetProductsCompleted +=
 new EventHandler<GetProductsCompletedEventArgs>(

CHAPTER 5 ■ CONTROLS

382

 delegate(object sender, GetProductsCompletedEventArgs e)
 {
 dgProducts.ItemsSource = e.Result;
 });
 client.GetProductsAsync();
 }

 private void ShowDetails_Click(object sender, RoutedEventArgs e)
 {
 DataGridRow row = DataGridRow.GetRowContainingElement(sender as Button);
 row.DetailsVisibility =
 (row.DetailsVisibility == Visibility.Collapsed ?
 Visibility.Visible : Visibility.Collapsed);
 }
 }
}

namespace Recipe5_5.AdvWorks
{
 public partial class ProductPhoto
 {
 private BitmapImage _LargePhotoPNG;

 public BitmapImage LargePhotoPNG
 {
 get
 {
 BitmapImage bim = new BitmapImage();
 MemoryStream ms = new MemoryStream(this.LargePhoto.Bytes);
 bim.SetSource(ms);
 ms.Close();
 return bim;
 }
 set
 {
 RaisePropertyChanged("LargePhotoPNG");
 }
 }
 }

public partial class Product
 {
 private SolidColorBrush _InventoryLevelBrush;

CHAPTER 5 ■ CONTROLS

383

 public SolidColorBrush InventoryLevelBrush
 {
 get
 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ?
 new SolidColorBrush(Colors.Gray) :
 (this.ProductInventories[0].Quantity > this.SafetyStockLevel ?
 new SolidColorBrush(Colors.Green) :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 new SolidColorBrush(Colors.Yellow) :
 new SolidColorBrush(Colors.Red)));
 }
 set
 {
 //no actual value set here - just property change raised
 RaisePropertyChanged("InventoryLevelBrush");
 }

 }
 private string _InventoryLevelMessage;
 public string InventoryLevelMessage
 {
 get
 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ?
 "Stock Level Unknown" :
 (this.ProductInventories[0].Quantity > this.SafetyStockLevel ?
 "In Stock" :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 "Low Stock" : "Reorder Now"));
 }
 set
 {
 //no actual value set here - just property change raised
 RaisePropertyChanged("InventoryLevelMessage");
 }
 }
 private ProductSubcategory _productSubCategory;
 public ProductSubcategory ProductSubCategory
 {
 get { return _productSubCategory; }
 set
 {

CHAPTER 5 ■ CONTROLS

384

 _productSubCategory = value;
 RaisePropertyChanged("ProductSubCategory");
 }
 }
 private ProductCategory _productCategory;
 public ProductCategory ProductCategory
 {
 get { return _productCategory; }
 set { _productCategory = value; RaisePropertyChanged("ProductCategory"); }
 }
 private ProductDescription _productDescription;
 public ProductDescription ProductDescription
 {
 get { return _productDescription; }
 set
 {
 _productDescription = value;
 RaisePropertyChanged("ProductDescription");
 }
 }
 private ProductReview _productReview;
 public ProductReview ProductReview
 {
 get { return _productReview; }
 set { _productReview = value; RaisePropertyChanged("ProductReview"); }
 }
 private ProductPhoto _productPhoto;
 public ProductPhoto ProductPhoto
 {
 get { return _productPhoto; }
 set { _productPhoto = value; RaisePropertyChanged("ProductPhoto"); }
 }
 }
}

Once again, the data is acquired by calling the AdventureWorks WCF service. The GetData() method
loads the initial product data into the rows to which the DataGrid is bound. You set the DataGrid’s
ItemsSource in the completion handler for the GetProductsAsync() web service call. When the user toggles
the visibility of a row’s details for the first time, the LoadingRowDetails event is raised, and the row detail
data is fetched from the web service in that handler, defined using an anonymous delegate.

The row detail data, once fetched, is bound to various parts of the UI by setting appropriate
properties in the already bound Product instance, which, in turn, uses property change notification to
update the UI. Just as in the previous recipes, you extend the Product partial class, as generated by the
WCF service proxy, to include the additional property definitions.

CHAPTER 5 ■ CONTROLS

385

5-6. Applying Custom Templates to a DataGrid
Cell

Problem
You need a customized way of viewing and editing data that is not supported out of the box by any of
the typed DataGridColumns like DataGridTextColumn or DataGridCheckBoxColumn. For example, say you
want to view a color value rendered as a color stripe instead of the color name string literal.

Solution
Use the CellTemplate and the CellEditingTemplate properties of the DataGridTemplateColumn to apply
custom viewing and editing templates.

How It Works
The various DataGridColumn types like DataGridTextColumn and DataGridCheckBoxColumn are designed to
support binding to specific CLR data types, such as String and Boolean, or to types that can be
automatically converted to these types. The way that the data is viewed and edited in cells of these
specific column types is predetermined by the framework. However, the need for custom UIs for
viewing and editing data was well anticipated; the DataGridTemplateColumn is supplied for exactly that
purpose.

The DataGridTemplateColumn exposes two properties, CellTemplate and CellEditingTemplate, both
of which accept data templates. Data templates are covered in greater detail in Chapter 4. When the
column is data bound, the DataGrid binds the cell data item to the data template specified in
CellTemplate to display the data in view mode. When the cell enters edit mode, the DataGrid switches to
the CellEditingTemplate.

The Code
In this sample, you use a DataGrid bound to product data fetched from the AdventureWorks WCF service.
The Product class exposes a Color property, which is defined as a String on the class. You bind the Color
property to one of the DataGrid columns and thereby create a more intuitive interface where the user
can actually view the color itself for both viewing and editing the Color value, as compared to the
default string editing experience exposed by the DataGridTextColumn. Listing 5-10 shows the XAML.

Listing 5-10. XAML for the MainPage Used to Demonstrate Custom DataGrid Column Templates

 <UserControl x:Class="Recipe5_6.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 xmlns:local="clr-namespace:Recipe5_6"
 Width="800" Height="400"

>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

386

 <UserControl.Resources>
 <local:ColorNameToBrushConverter x:Key="REF_ColorNameToBrushConverter"/>
 <DataTemplate x:Key="dtColorViewTemplate">
 <Border CornerRadius="5,5,5,5" BorderBrush="Black"
 BorderThickness="1,1,1,1" VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch" Margin="1,1,1,1"
 Background="{Binding Color,
 Converter={StaticResource REF_ColorNameToBrushConverter}}"/>
 </DataTemplate>
 <DataTemplate x:Key="dtColorEditingTemplate">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <ListBox Grid.Row="0" VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch"
 ItemsSource="{Binding ColorList}"
 SelectedItem="{Binding Color, Mode=TwoWay}"
 Height="200">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border CornerRadius="5,5,5,5" BorderBrush="Black"
 BorderThickness="1,1,1,1" Height="25" Width="70"
 Margin="2,5,2,5"
 Background=
 "{Binding Converter=
 {StaticResource REF_ColorNameToBrushConverter}}"/>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>
 </DataTemplate>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid x:Name="dgProducts" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding ProductID}"
 Header="ID" />
 <data:DataGridTextColumn Binding="{Binding Name}"
 Header="Name" />
 <data:DataGridTemplateColumn
 CellTemplate="{StaticResource dtColorViewTemplate}"
 CellEditingTemplate="{StaticResource dtColorEditingTemplate}"
 Header="Color" Width="100"/>

CHAPTER 5 ■ CONTROLS

387

 </data:DataGrid.Columns>
 </data:DataGrid>
 </Grid>
</UserControl>

In the DataGrid declaration named dgProducts, you use a DataGridTemplateColumn to bind to
Product.Color. To get the custom UI for viewing and editing the Color property, you define two data
templates, dtColorTemplate and dtColorEditingTemplate, and use them to set the CellTemplate and the
CellEditingTemplate properties.

In view mode, where the bound DataGridTemplateColumn uses the CellTemplate to bind the data, you
bind the Color value to the Background property of a Border, as shown in the dtColorViewTemplate
template. In edit mode, where CellEditingTemplate is used, dtColorEditingTemplate uses a ListBox to
display the list of available colors. The ListBox.SelectedItem is bound to Product.Color to represent the
currently selected color. The binding mode is set to TwoWay so that any changes made by the user updates
the Product instance and is reflected in the DataGrid when the cell moves out of edit mode.

Listing 5-11 shows the codebehind for the page.

Listing 5-11. Codebehind for the MainPage Demonstrating Custom DataGrid Column Templates

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Reflection;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Media;
using Recipe5_6.AdvWorks;

namespace Recipe5_6
{
 public partial class MainPage : UserControl
 {
 AdvWorksDataServiceClient client =
 new AdvWorksDataServiceClient();
 bool EditingColor = false;
 public MainPage()
 {
 InitializeComponent();
 GetData();
 }

 private void GetData()
 {
 client.GetProductsCompleted +=
 new EventHandler<GetProductsCompletedEventArgs>(
 delegate(object sender, GetProductsCompletedEventArgs e)

CHAPTER 5 ■ CONTROLS

388

 {
 dgProducts.ItemsSource = e.Result;
 });

 client.GetProductsAsync();
 }
 }

 public class ColorNameToBrushConverter : IValueConverter
 {
 //convert from a string Color name to a SolidColorBrush
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //substitute a null with Transparent
 if (value == null)
 value = "Transparent";
 //make sure the right types are being converted
 if (targetType != typeof(Brush) || value.GetType() != typeof(string))
 throw new NotSupportedException(
 string.Format("{0} to {1} is not supported by {2}",
 value.GetType().Name,
 targetType.Name,
 this.GetType().Name));

 SolidColorBrush scb = null;
 try
 {
 //get all the static Color properties defined in
 //System.Windows.Media.Colors
 List<PropertyInfo> ColorProps = typeof(Colors).
 GetProperties(BindingFlags.Public | BindingFlags.Static).ToList();
 //use LINQ to find the property whose name equates
 //to the string literal we are trying to convert
 List<PropertyInfo> piTarget = (from pi in ColorProps
 where pi.Name == (string)value
 select pi).ToList();
 //create a SolidColorBrush using the found Color property.
 //If none was found i.e. the string literal being converted
 //did not match any of the defined Color properties in Colors
 //use Transparent
 scb = new SolidColorBrush(piTarget.Count == 0 ?
 Colors.Transparent : (Color)(piTarget[0].GetValue(null, null)));
 }
 catch

CHAPTER 5 ■ CONTROLS

389

 {
 //on exception, use Transparent
 scb = new SolidColorBrush(Colors.Transparent);
 }
 return scb;

 }
 //convert from a SolidColorBrush to a string Color name
 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //make sure the right types are being converted
 if (targetType != typeof(string) || value.GetType() != typeof(Brush))
 throw new NotSupportedException(
 string.Format("{0} to {1} is not supported by {2}",
 value.GetType().Name,
 targetType.Name,
 this.GetType().Name));

 string ColorName = null;
 try
 {
 //get all the static Color properties defined
 //in System.Windows.Media.Colors
 List<PropertyInfo> ColorProps = typeof(Colors).
 GetProperties(BindingFlags.Public | BindingFlags.Static).ToList();
 //use LINQ to find the property whose value equates to the
 //Color on the Brush we are trying to convert
 List<PropertyInfo> piTarget = (from pi in ColorProps
 where (Color)pi.GetValue(null, null)
 == ((SolidColorBrush)value).Color
 select pi).ToList();
 //If a match is found get the Property name, if not use "Transparent"
 ColorName = (piTarget.Count == 0 ? "Transparent" : piTarget[0].Name);
 }
 catch
 {
 //on exception use Transparent
 ColorName = "Transparent";
 }
 return ColorName;
 }
 }
}

CHAPTER 5 ■ CONTROLS

390

namespace Recipe5_6.AdvWorks
{
 public partial class Product
 {
 private ObservableCollection<string> _ColorList;
 //color literals defined in System.Windows.Media.Colors
 public ObservableCollection<string> ColorList
 {
 get
 {
 return new ObservableCollection<string> {
 "Black",
 "Blue",
 "Brown",
 "Cyan",
 "DarkGray",
 "Gray",
 "Green",
 "LightGray",
 "Magenta",
 "Orange",
 "Purple",
 "Red",
 "Transparent",
 "White",
 "Yellow" };
 }
 }
 }
}

The ListBox.ItemsSource is bound to the Product.ColorList property, defined in a partial
extension of the Product proxy data type, which returns a collection of string literals representing
names of the Color properties, as defined in the System.Windows.Media.Colors type. To display each
item, an ItemTemplate similar to that in the view mode is used, where a Border is used to display the
color choice by binding the Color value to Border.Background.

Figure 5-20 compares the DataGrid Color column in view mode and edit mode.

CHAPTER 5 ■ CONTROLS

391

Figure 5-20. The Color column in view mode (left) and edit mode (right)

Also note in Listing 5-10 the use of a value converter of type ColorNameToBrushConverter. Since the
Border.Background property is of type SolidColorBrush and Product.Color is a string literal, you need to
facilitate an appropriate value conversion. Listing 5-11 shows the value converter code as well in the
ColorNameToBrushConverter class. See Chapter 4 for more details on a value converter.

In both the conversion functions in the value converter implementation, you use reflection to
enumerate the list of static properties of type Color defined on the type System.Windows.Media.Colors,
each of which are named for the Color they represent. In Convert(), while trying to convert a Color
name string to a SolidColorBrush, you find the matching Color property in the enumerated list of
properties and use that to create and return the brush. In ConvertBack(), while trying to convert a
SolidColorBrush to a color name string, you find the property with a Color value matching the
SolidColorBrush.Color and use the property name as the color name string. If no matches are found or
if exceptions occur, it falls back to Colors.Transparent as the default value.

5-7. Creating Custom Column Types for a
DataGrid

Problem
You want to create a custom column type for a DataGrid to enable specific functionality to handle a
particular data type or data item.

Solution
Extend the DataGridBoundColumn class, and add functionality to handle the view and edit modes for the
intended data type or data item.

How It Works
The framework ships with a few prebuilt DataGrid column types for handling some of the standard data
types. DataGridTextColumn is one of the most useful ones and can be used to view and edit any data that
can be converted to a meaningful text representation. DataGridCheckBoxColumn is another one that can

s

CHAPTER 5 ■ CONTROLS

392

be used to view and edit a Boolean value as a CheckBox and with the current value mapped to its checked
state.

In some situations, you want to implement custom logic to handle a specific data type or a program
data item bound to a DataGrid column. One way to achieve that is through the use of the
DataGridTemplateColumn column type and the use of CellTemplate and CellEditingTemplate, as shown
in Recipe 5-6. Yet another way is to create a new column type that encapsulates the custom logic, much
like the ones that the framework ships with. The logic encapsulation in creating this custom column
offers you the advantage of not having to rely on the consumers (UI layer developers) of your data to
supply appropriate data templates, as well as the ability to standardize and lock down how a specific
data type or item gets treated inside a DataGrid.

In this second approach, you start by creating a new class extending the
System.Windows.Controls.DataGridBoundColumn class in the System.Windows.Controls.Data assembly,
which is also the base class for the framework-provided column types mentioned earlier. The
DataGridBoundColumn exposes an API of abstract methods that allows you to easily control the UI and
data-binding logic of cells in the custom column as they are switched between view and edit modes.
The methods in this API that you will override most often are GenerateElement(),
GenerateEditingElement(), PrepareCellForEdit(), and CancelCellEdit(). All of these methods, except
CancelCellEdit(), are abstract methods; therefore it is mandatory that you provide an appropriate
implementation in your custom column code.

The GenerateElement() Method

This method is expected to create the UI that would be used by the DataGrid to display the bound value
in every cell of that column. The created UI is returned in the form of a FrameworkElement from
GenerateElement(). By overriding this method and supplying your custom logic, you can change the UI
a bound cell uses to display its content. You are also expected to create and set appropriate data
bindings for your newly created UI in this method so that data items are appropriately displayed in
every cell. To do that, you can obtain the data binding set by the user in the XAML for the column
through the DataGridBoundColumn.Binding property. You can then use the SetBinding() method to apply
that binding to the appropriate parts of the UI you create before returning the UI as a
FrameworkElement.

Also note that this method accepts two parameters passed in by the containing DataGrid: a cell of
type DataGridCell and a data item of type object. The first parameter contains a reference to the
instance of the DataGridCell that is currently being generated, and the second parameter refers to the
data item bound to the current row. You don’t have to use these parameters to successfully implement
this method. One interesting use of these parameters is in a computed column scenario. Since the
dataItem parameter contains the entire item bound to that row, you can easily compute a value based
on parts of the data item and use that as the cell value bound to the UI you return from this method. We
leave it to you to experiment further with these parameters.

The GenerateEditingElement() Method

This method is somewhat similar to GenerateElement() in purpose but is used for edit mode rather than
view mode. When the user switches a cell to edit mode—for example, by clicking it—the DataGrid calls
this method on the column type to generate the UI for the editing experience. The generated UI is
again returned as a FrameworkElement. You can override this method in your custom column type to
create a custom edit UI for your data type or item. The same requirements for applying the appropriate
data bindings before you return the generated UI, as discussed for GenerateElement() earlier, apply
here. Also note that this method accepts the same parameter set as GenerateElement().

CHAPTER 5 ■ CONTROLS

393

The PrepareCellForEdit() Method

This method is called by the DataGrid to obtain the unedited value from the bound cell before entering
edit mode. The unedited value is retained by the DataGrid and made available to you in
CancelCellEdit() so that edits made to the cell can be undone should a user choose to cancel an edit
operation. The FrameworkElement type you created for the edit mode UI in GenerateEditingElement() is
made available to you as the editingElement parameter. You can use that to obtain the current unedited
value for the cell. The second parameter to this method, editingEventArgs, is of type RoutedEventArgs. It
contains information about the user gesture that caused the cell to move to edit mode. For keyboard-
based input, it can be cast to KeyEventArgs; for mouse input gestures, it can be cast to
MouseButtonEventArgs. You should check the result of your cast to verify that it is non-null before using
the parameter. This parameter can be used to implement additional logic, such as different editing
behaviors if a specific key is pressed.

The CancelCellEdit() Method

This method is called if a user cancels an edit operation. The unedited value bound to the cell, prior to
any changes made by the user in edit mode, is made available to you via the uneditedValue parameter,
as is the FrameworkElement representing the edit UI through the editingElement parameter. You can
undo the changes made by resetting the editingElement using the uneditedValue. The uneditedValue
parameter is of type object, and consequently you will need to cast it to the appropriate type based on
the bound data before you use it to reset the edit changes.

The Code
The code sample in this recipe creates a custom column type named DataGridDateColumn for editing
DateTime types using the DatePicker control. Listing 5-12 shows the code for DataGridDateColumn.

Listing 5-12. DataGridDateColumn Class
using System;
using System.ComponentModel;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Media;

namespace Recipe5_7
{
 public class DataGridDateColumn : DataGridBoundColumn
 {
 [TypeConverter(typeof(DataGridDateTimeConverter))]
 public DateTime DisplayDateStart { get; set; }

 public Binding DisplayDateEndBinding { get; set; }

 protected override void CancelCellEdit(FrameworkElement editingElement,
 object uneditedValue)

CHAPTER 5 ■ CONTROLS

394

 {
 //get the DatePicker
 DatePicker datepicker = (editingElement as Border).Child as DatePicker;
 if (datepicker != null)
 {
 //rest the relevant properties on the DatePicker to the original value
 //to reflect cancellation and undo changes made
 datepicker.SelectedDate = (DateTime)uneditedValue;
 datepicker.DisplayDate = (DateTime)uneditedValue;
 }
 }

 //edit mode
 protected override FrameworkElement GenerateEditingElement(
DataGridCell cell, object dataItem)
 {
 //create an outside Border
 Border border = new Border();
 border.BorderBrush = new SolidColorBrush(Colors.Blue);
 border.BorderThickness = new Thickness(1);
 border.HorizontalAlignment = HorizontalAlignment.Stretch;
 border.VerticalAlignment = VerticalAlignment.Stretch;
 //create the new DatePicker
 DatePicker datepicker = new DatePicker();
 //bind the DisplayDate to the bound data item
 datepicker.SetBinding(DatePicker.DisplayDateProperty,
 base.Binding);
 //bind the SelectedDate to the same
 datepicker.SetBinding(DatePicker.SelectedDateProperty,
 base.Binding);
 //bind the DisplayDate range
 //start value is provided directly through a property
 datepicker.DisplayDateStart = this.DisplayDateStart;
 //end value is another binding allowing developer to bind
 datepicker.SetBinding(DatePicker.DisplayDateEndProperty,
 this.DisplayDateEndBinding);
 border.Child = datepicker;
 //return the new control
 return border;
 }

 //view mode
 protected override FrameworkElement GenerateElement(DataGridCell cell,
object dataItem)
 {

CHAPTER 5 ■ CONTROLS

395

 //create a TextBlock
 TextBlock block = new TextBlock();
 //bind the displayed text to the bound data item
 block.SetBinding(TextBlock.TextProperty, base.Binding);
 //return the new control
 return block;
 }

 protected override object PrepareCellForEdit(FrameworkElement editingElement,
 RoutedEventArgs editingEventArgs)
 {
 //get the datepicker
 DatePicker datepicker = (editingElement as Border).Child as DatePicker;
 //return the initially displayed date, which is the
 //same as the unchanged data item value
 return datepicker.DisplayDate;
 }
 }
}

In GenerateElement(), you create a TextBlock as your control of choice to display the bound data.
You then set the binding on the TextBlock.Text property to the Binding property on the column so that
the date is displayed inside the TextBlock. In GenerateEditingElement(), you instead create a Border
and nest a DatePicker control in it for date editing. Once the DatePicker control is created, you set both
the DisplayDate (the date displayed in the editable text portion of the DatePicker) and the SelectedDate
(the date value selected in the drop-down portion of the DatePicker) initially to the Binding property on
the column. You also set a couple of other bindings that will be explained later in the recipe before you
return the Border. In PrepareCellForEdit(), you return the currently displayed date to the DataGrid for
retention in case of a cancellation, and in CancelCellEdit(), you reset the appropriate values on the
DatePicker instance to the unedited value saved earlier through PrepareCellForEdit().

Listing 5-13 shows the XAML declaration of a DataGrid using the DataGridDateColumn type. Again,
you use the AdventureWorks WCF service as a data source.

Listing 5-13. XAML for the MainPage Demonstrating Custom DataGrid Column

<UserControl x:Class="Recipe5_7.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 xmlns:local="clr-namespace:Recipe5_7"
 Width="800" Height="400"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <UserControl.Resources>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 5 ■ CONTROLS

396

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid x:Name="dgProducts" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn
 Binding="{Binding ProductID}" Header="ID" />
 <data:DataGridTextColumn
 Binding="{Binding Name}" Header="Name" />
 <local:DataGridDateColumn
 Binding="{Binding SellStartDate}"
 DisplayDateStart="01/01/2000"
 DisplayDateEndBinding="{Binding DisplayDateEnd}"
 Header="Available From" />
 </data:DataGrid.Columns>
 </data:DataGrid>
 </Grid>
</UserControl>

One of the challenges of this approach is that the developer using the DataGridDateColumn may
want to control some behavior of the internal DatePicker instance. For example, the DatePicker control
exposes DisplayDateStart and DisplayDateEnd properties that determine the date range that the
DatePicker drop-down is limited to; however, the developer may want to specify this range when using
the DataGridDateColumn. Unfortunately, since the DatePicker control instance is not visible outside the
DataGridDateColumn code, there is no direct way for the developer to do so.

One way to allow developers to control these properties is to create corresponding properties on
DataGridDateColumn so that they can be set in XAML, and those values can be used in the code to set the
DatePicker properties. Referring to the DataGridDateColumn class in Listing 5-12, you can see the
DisplayDateStart property of type DateTime; note that it is being set to a date string in the XAML in
Listing 5-13. The value of this property is then used inside GenerateEditingElement() to set the
similarly named property on the DatePicker instance.

Since the date string set in XAML needs to be converted to a DateTime type for the code to work
correctly, you need a type conversion mechanism. The framework contains the TypeConverter class,
which you can extend to create a type converter of your own. Listing 5-14 shows a type converter that
converts from String to DateTime.

Listing 5-14. DataGridDateTimeConverter Class

using System;
using System.ComponentModel;
using System.Globalization;

namespace Recipe5_7
{
 public class DataGridDateTimeConverter : TypeConverter
 {
 public override bool CanConvertFrom(ITypeDescriptorContext context,
 Type sourceType)
 {

CHAPTER 5 ■ CONTROLS

397

 return (typeof(string) == sourceType);
 }
 public override bool CanConvertTo(ITypeDescriptorContext context,
 Type destinationType)
 {
 return (typeof(DateTime) == destinationType);
 }
 public override object ConvertFrom(ITypeDescriptorContext context,
 CultureInfo culture, object value)
 {
 DateTime target;
 target = DateTime.ParseExact(value as string, "d",
 CultureInfo.CurrentUICulture);
 return target;
 }
 }
}

The TypeConverterAttribute can be used to attach this type converter to your
DataGridDateColumn.DisplayDateStart property, as shown in Listing 5-12. Note that in overriding the
ConvertFrom() method in the TypeConverter implementation, the system passes in a CultureInfo instance
as the second parameter. The CultureInfo parameter allows you to inspect the current culture. If you
need to implement any additional conversion logic based on the locale, you can check this parameter
and take the needed action in your code. In your case, you do not use the value, but just pass in
CultureInfo.CurrentUICulture in your call to Datetime.ParseExact() to allow the DateTime value type to
handle the rest of the conversion logic.

You might want to have such a property set as a binding instead of a direct value setting, much like
the Binding property on any DataGrid column. This allows the developer to associate a data binding
with the property and lets its value be derived at runtime from the source it is bound to, as opposed to
being hard-coded.

As an example, say you want to expose a property named DisplayDateEndBinding on the
DataGridDateColumn and use that to drive the value of the DisplayDateEnd property of the DatePicker
instance. You can see the declaration of this property in Listing 5-12, and it is bound to a property
named DisplayDateEnd on the data source in the XAML in Listing 5-13. It can then be used to attach the
same binding to the DatePicker.DisplayDateEnd property, as shown in the GenerateEditingElement()
method in Listing 5-12. There is not much code to discuss, beyond a call to the AdventureWorks WCF
service; we encourage the user to refer to the sample code for the book.

Figure 5-21 shows the DataGridDateColumn in action.

CHAPTER 5 ■ CONTROLS

398

Figure 5-21. DataGridDateColumn in edit mode

5-8. Creating a Composite User Control

Problem
You need to compose a UI using existing controls and package it in a reusable format.

Solution
Use the Visual Studio 2010 Silverlight user control template to create a new class deriving from
UserControl, and then add controls to UserControl to compose an UI.

How It Works
Silverlight offers two kinds of controls: user controls and custom controls. User controls are an
effective way to package UI and related client-side processing logic tied to a specific business or
application domain into a reusable unit that can then be consumed as a tag in XAML, similar to any
other built-in primitive shape like Ellipse or Rectangle. There is excellent tool support for designing
and implementing user controls both in Visual Studio and Expression Blend, making it the default
choice for creating reusable user interface components with reasonable ease.

User controls allow you to create composite UIs by combining other custom or user controls. This
ability makes them especially suitable for writing composite controls—in fact, most user controls that
you end up writing will be composite controls.

Custom controls, on the other hand, are the more powerful controls in Silverlight. All the controls
in the System.Windows.Controls namespace that come with the framework are built as custom controls;
using them is typically the preferred way of implementing more general-purpose UI components that
are not limited to one particular application or business domain. Custom controls also enable

CHAPTER 5 ■ CONTROLS

399

powerful features, such as control templates that allow radical customization of the control user
interface. The recipes later in this chapter cover custom control development in greater detail.

The following sections review a few concepts critical to understanding how a control works. This
information will increase your understanding of a user control and it will be good background for
later recipes that discuss custom controls.

User Control Structure

Creating a user control is fairly easy if you are using Visual Studio 2010. With the Silverlight tools
installed, Visual Studio offers you a template to add a new user control to a Silverlight project, through
the Add New Item dialog box (see Figure 5-22).

Figure 5-22. Adding a new Silverlight user control to your project

Once you add a user control, you should see a XAML document coupled with a codebehind file
defining the user control. User controls are defined as partial classes deriving from the UserControl
type in the System.Windows.Controls namespace. Visual Studio generates one such class when you add
a new user control. The following is such a class for a user control named PagedProductsGrid:

CHAPTER 5 ■ CONTROLS

400

namespace CompositeControlLib
{
 public partial class PagedProductsGrid : UserControl
 {

 public PagedProductsGrid()
 {
 InitializeComponent();
 }

 }
}

In the generated XAML document for the user control, you should see some skeletal XAML initially
generated by Visual Studio, as shown here:

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 x:Class="CompositeControlLib .PagedProductsGrid"
 d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot"/>

</UserControl>

You will notice that the Visual Studio template adds a top-level Grid (conventionally named

LayoutRoot) in the XAML. You can define the rest of the UI for the user control inside this Grid. Should
you choose to, you can rename the Grid or even replace the Grid with some other container.

Note the x:Class attribute in the UserControl declaration in XAML. The value set here needs to be
the namespace-qualified name of the partial class defined in the codebehind file. This mechanism
allows the XAML declaration of the user control to be associated with the user control class at compile
time.

XAML Loading

So how does the XAML for the user control get loaded at runtime? When you compile the user control project,
a XAML parser generates some additional code to extend the user control partial class. This code is usually
found in a file named <controlname>.g.i.cs inside the \obj\debug folder below your project’s root folder.
This generated code adds some startup functionality, which is encapsulated in a method named
InitializeComponent(). You will find that the Visual Studio template already adds a call to
InitializeComponent() to the constructor of your user control class. Listing 5-15 shows the generated code
for a user control.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 5 ■ CONTROLS

401

Listing 5-15. Visual Studio–generated startup code for a UserControl

namespace CompositeControlLib
{
 public partial class PagedProductsGrid : System.Windows.Controls.UserControl
 {
 internal System.Windows.Controls.Grid LayoutRoot;
 internal System.Windows.Controls.DataGrid dgProductPage;
 internal System.Windows.Controls.ListBox lbxPageNum;
 private bool _contentLoaded;

 /// <summary>
 /// InitializeComponent
 /// </summary>
 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public void InitializeComponent()
 {
 if (_contentLoaded)
 {
 return;
 }
 _contentLoaded = true;
 System.Windows.Application.LoadComponent(
 this,
 new System.Uri("/CompositeControlLib;component/PagedProductsGrid.xaml",
 System.UriKind.Relative));
 this.LayoutRoot =
 ((System.Windows.Controls.Grid)(this.FindName("LayoutRoot")));
 this.dgProductPage =
 ((System.Windows.Controls.DataGrid)(this.FindName("dgProductPage")));
 this.lbxPageNum =
 ((System.Windows.Controls.ListBox)(this.FindName("lbxPageNum")));
 }
 }
}

At the crux of this code is the LoadComponent() method, used at runtime to load the XAML included
as a resource in the compiled assembly. Once the element tree defined in the XAML is formed, the
FrameworkElement.FindName() is used to locate and store the instances for every named control in your
XAML definition so that you can refer to them in your code. To learn more about resources and
resource loading, refer to the recipes in Chapter 2 of this book.

CHAPTER 5 ■ CONTROLS

402

Dependency Properties

Control types expose properties as a means to allow the control consumer (a developer or a designer)
to get or set various attributes of a control instance. Since controls in Silverlight are also .NET classes,
properties can be implemented using the standard CLR property syntax.

Silverlight provides an extension to the standard CLR property system by introducing a new
concept called a dependency property. A dependency property provides additional functionality that
cannot be implemented using standard CLR properties. Among other features, the extended
functionality includes the following:

• Data binding: Dependency properties can be data bound using either the XAML {Binding. .
.} markup extension or the Binding class in code, thus allowing evaluation of its value at
runtime. For more on data binding, see Chapter 4.

• Styles: Dependency properties can be set using setters in a style. For more on using styles,
see recipe 5-1. Note that only dependency properties can be set using styles.

• Resource referencing: A dependency property can be set to refer to a predefined resource
defined in a resource dictionary using the {StaticResource. . .} markup extension in
XAML. For more on resources, refer to Chapter 2.

• Animations: For a property to be animated, it needs to be a dependency property. For more
on animations, see Chapter 3.

A dependency property is implemented in code as a public static member of type
DependencyProperty, where the implementing type needs to derive from DependencyObject. Listing 5-16
shows a sample declaration of a dependency property named MaximumProperty, representing a double
valued maximum for some range.

Listing 5-16. Sample DependencyProperty declaration

public static DependencyProperty MaximumProperty =
 DependencyProperty.Register("Maximum",
 typeof(double?),
 typeof(NumericUpdown),
 new PropertyMetadata(100,new PropertyChangedCallback(MaximumChangedCallback)));

public double? Maximum
{
 get
 {
 return (double?)GetValue(MaximumProperty);
 }
 set
 {
 SetValue(MaximumProperty, value);
 }
}

internal static void MaximumChangedCallback(DependencyObject Target,
DependencyPropertyChangedEventArgs e)

CHAPTER 5 ■ CONTROLS

403

{
 NumericUpdown target = Target as NumericUpdown;
 //other code to respond to the property change
}

The static method DependencyProperty.Register() is used to register the property with the
Silverlight property system. The parameters to the method are a name for the property, the property
data type, the containing type, and a PropertyMetadata instance. In the code above, note the string
"Maximum" as the property name, double? as the data type for the property, and the property owner as a
type named NumericUpdown. The PropertyMetadata parameter is constructed by passing in a default
value for the property and a delegate to a static callback method that is invoked when the property
value changes. Notice that the defaultValue parameter is of type object. Also note that the callback
method is only required if you intend to take some action when the value of the dependency property
changes. If the value change has no impact on your control’s logic, PropertyMetadata has another
constructor that only accepts the defaultValue parameter.

A conventional way of naming the dependency property is by concatenating the string "Property"
to the property name. You are free to change that convention; however, it is to your benefit to stick with
it. The framework and the Silverlight SDK follow the same convention, and developers around the
world will soon get used to this convention to determine whether or not a property is a dependency
property.

Although the dependency property is declared static, the Silverlight property system maintains
and provides access to values of the property on a per-instance basis. The
DependencyObject.GetValue() method accepts a dependency property and returns the value of the
property for the instance of the declaring type within which GetValue() is invoked. The returned value
is typed as Object, and you will need to cast it to the appropriate type before using it. SetValue()
accepts a dependency property and a value and sets that value for the instance within which
SetValue() is invoked. A CLR property wrapper of the same name, minus the "Property" extension (as
shown in Listing 5-16) is typically provided as shorthand to using the GetValue()/SetValue() pair for
manipulating the property in code.

The instance on which the property change happened is passed in as the first parameter to the
static property change callback handler. This allows you to cast it appropriately, as shown in
MaximumChangedCallback() in Listing 5-16, and then take action on that instance in response to the
property value change. The second parameter of type DependencyPropertyChangedEventArgs exposes
two useful properties: the OldValue property exposes the value of the property before the change, and
the NewValue property exposes the changed value.

The Code
The code sample for this recipe builds a user control named PagedProductsGrid that displays Product
data in a grid form, coupled with paging logic, where the consumer of the control gets to specify how
many records to display per page and the control automatically adds a pager at the bottom that allows
the user to navigate through pages.

Figure 5-23 shows the control in action. Also shown is the pager at the bottom, with the selected
page in a solid blue rectangle.

CHAPTER 5 ■ CONTROLS

404

Figure 5-23. Paged product data composite control

Listing 5-17 shows the XAML for the PagedProductsGrid user control.

Listing 5-17. XAML for PagedProductsGrid user control

<UserControl
 x:Class="Recipe5_8.PagedProductsGrid"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 Width="700" Height="300">
 <UserControl.Resources>
 <!-- control template for Pager ListBoxItem -->
 <ControlTemplate TargetType="ListBoxItem" x:Key="ctLbxItemPageNum">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="ContentBorder"
 Storyboard.TargetProperty=
 "(Border.BorderBrush).(SolidColorBrush.Color)">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

405

 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF091F88"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Selected">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="ContentBorder"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF1279F5"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="SelectedUnfocused">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="ContentBorder"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF1279F5"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Focused">
 <Storyboard/>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <Border HorizontalAlignment="Left"

CHAPTER 5 ■ CONTROLS

406

 VerticalAlignment="Top"
 Margin="5,5,5,5"
 Padding="5,5,5,5"
 BorderBrush="#00091F88"
 BorderThickness="2,2,2,2"
 Background="#001279F5"
 x:Name="ContentBorder">
 <ContentPresenter
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"/>
 </Border>
 </Grid>
 </ControlTemplate>
 <!-- style applying the Pager ListBoxItem control template -->
 <Style x:Key="stylePageNum" TargetType="ListBoxItem">
 <Setter Property="Template" Value="{StaticResource ctLbxItemPageNum}" />
 </Style>
 <!-- Horizontal panel for the Pager ListBox -->
 <ItemsPanelTemplate x:Key="iptHorizontalPanel">
 <StackPanel Orientation="Horizontal"/>
 </ItemsPanelTemplate>

 <!--Control template for Pager ListBox-->
 <ControlTemplate x:Key="ctlbxPager" TargetType="ListBox">
 <Grid>
 <ItemsPresenter HorizontalAlignment="Left" VerticalAlignment="Top" />
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Border Background="LightGray" BorderBrush="Black" BorderThickness="2,2,2,2">
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="85*" />
 <RowDefinition Height="15*" />
 </Grid.RowDefinitions>
 <!-- data grid to display Products data -->
 <data:DataGrid x:Name="dgProductPage" AutoGenerateColumns="False"
 Grid.Row="0"
 SelectionChanged="dgProductPage_SelectionChanged">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding ProductID}"
 Header="ID" />
 <data:DataGridTextColumn Binding="{Binding Name}"
 Header="Name"/>

CHAPTER 5 ■ CONTROLS

407

 <data:DataGridTextColumn Binding="{Binding ProductNumber}"
 Header="Number"/>
 <data:DataGridTextColumn Binding="{Binding SellStartDate}"
 Header="Sell From"/>
 <data:DataGridTextColumn Binding="{Binding SellEndDate}"
 Header="Sell Till"/>
 <data:DataGridTextColumn Binding="{Binding Style}"
 Header="Style"/>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <!-- Pager Listbox-->
 <ListBox x:Name="lbxPager" Grid.Row="1"
 HorizontalAlignment="Right" VerticalAlignment="Center"
 SelectionChanged="lbxPager_SelectionChanged"
 ItemsPanel="{StaticResource iptHorizontalPanel}"
 ItemContainerStyle="{StaticResource stylePageNum}"
 Template="{StaticResource ctlbxPager}">
 </ListBox>
 </Grid>
 </Border>
</UserControl>

The user control has two primary parts: a DataGrid named dgProductPage with columns bound to
the Product data type, and a ListBox named lbxPager acting as a pager.

The first thing to note about the pager ListBox is that you replace its default ItemsPanel with a
horizontal StackPanel so that the page numbers appear horizontally moving from left to right. This is
done by defining a custom ItemsPanelTemplate, named iptHorizontalPanel, and associating that with
the ItemsPanel property on the ListBox. Panel customization is discussed in greater detail in later
recipes.

You apply a custom control template, named ctlbxPager, to the ListBox. It simplifies the ListBox
significantly, just leaving an ItemsPresenter for displaying the items inside a Grid.

You also customize each ListBoxItem by applying a custom control template, named
ctLbxItemPageNum, to the ListBoxItem. The template defines the ListBoxItem as a ContentPresenter
within a Border and adds storyboards for the MouseOver, Selected, and SelectedUnfocused visual states
(a solid blue rectangle around the page number to indicate the selected page and a blue border to
indicate the one on which the mouse is hovering). A style named StylePageNum is used to associate this
with the ListBox through its ItemContainerStyle property.

Again, the AdventureWorks WCF service delivers the data to the control. The following code shows
the implementation of the AdventureWorks WCF service operation GetProductPage(), which returns a
page of product data:

public List<Product> GetProductPage(int SkipCount, int TakeCount)
{
 ProductsDataContext dc = new ProductsDataContext();

 return (from Prod in dc.Products select Prod).Skip(SkipCount).
Take(TakeCount).ToList();
}

CHAPTER 5 ■ CONTROLS

408

The SkipCount parameter to GetProductPage() indicates the number of rows to skip, and the
TakeCount parameter indicates the number of rows to return after the skipping is done. LINQ exposes
two handy operators, Skip and Take, that allow you to do just that on a collection of items.

Listing 5-18 shows the control codebehind.

Listing 5-18. Codebehind for the PagedProductsGrid Control

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using Recipe5_8.AdvWorks;

namespace Recipe5_8
{
 public partial class PagedProductsGrid : UserControl
 {
 //WCF service proxy
 AdvWorksDataServiceClient client = new AdvWorksDataServiceClient();
 //raise an event when current record selection changes
 public event EventHandler<DataItemSelectionChangedEventArgs>
 DataItemSelectionChanged;
 //RecordsPerPage DP
 DependencyProperty RecordsPerPageProperty =
 DependencyProperty.Register("RecordsPerPage",
 typeof(int),
 typeof(PagedProductsGrid),
 new PropertyMetadata(20,
 new PropertyChangedCallback(
 PagedProductsGrid.RecordsPerPageChangedHandler)
));
 //CLR DP Wrapper
 public int RecordsPerPage
 {
 get
 {
 return (int)GetValue(RecordsPerPageProperty);
 }

 set
 {
 SetValue(RecordsPerPageProperty, value);
 }
 }
 //RecordPerPage DP value changed

CHAPTER 5 ■ CONTROLS

409

 internal static void RecordsPerPageChangedHandler(DependencyObject sender,
 DependencyPropertyChangedEventArgs e)
 {
 PagedProductsGrid dg = sender as PagedProductsGrid;
 //call init data
 dg.InitData();
 }

 public PagedProductsGrid()
 {
 InitializeComponent();
 }

 internal void InitData()
 {
 //got data
 client.GetProductPageCompleted +=
 new EventHandler<GetProductPageCompletedEventArgs>(
 delegate(object Sender, GetProductPageCompletedEventArgs e)
 {
 //bind grid
 dgProductPage.ItemsSource = e.Result;
 });

 //got the count
 client.GetProductsCountCompleted +=
 new EventHandler<GetProductsCountCompletedEventArgs>(
 delegate(object Sender, GetProductsCountCompletedEventArgs e)
 {
 //set the pager control
 lbxPager.ItemsSource = new List<int>(Enumerable.Range(1,
 (int)Math.Ceiling(e.Result / RecordsPerPage)));
 //get the first page of data
 client.GetProductPageAsync(0, RecordsPerPage);
 });
 //get the product count
 client.GetProductsCountAsync();
 }
 //page selection changed
 private void lbxPager_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 //get page number
 int PageNum = (int)(lbxPager.SelectedItem);
 //fetch that page - handler defined in InitData()

CHAPTER 5 ■ CONTROLS

410

 client.GetProductPageAsync(RecordsPerPage * (PageNum - 1), RecordsPerPage);

 }
 //record selection changed
 private void dgProductPage_SelectionChanged(object sender, EventArgs e)
 {
 if (this.DataItemSelectionChanged != null)
 {
 //raise DataItemSelectionChanged
 this.DataItemSelectionChanged(this,
 new DataItemSelectionChangedEventArgs {
 CurrentItem = dgProductPage.SelectedItem as Product
 });
 }
 }
 }

 public class DataItemSelectionChangedEventArgs : EventArgs
 {
 public Product CurrentItem { get; internal set; }
 }
}

The InitData() function is used to load the data into the DataGrid. To facilitate paging, you first
record the total number of Products available by calling the GetProductsCountAsync() service
operation. In the callback handler for GetProductsCountAsync(), you set the lbxPager ListBox data to be
a range of numbers, starting with 1 and ending at the maximum number of pages expected based on
the record count retrieved earlier. You set the value of the RecordsPerPage property that the developer
has set.

You then call the service operation GetProductPageAsync() with SkipCount set to 0 and TakeCount
set to the value of RecordsPerPage. The retrieved Product data gets bound to the DataGrid dgProductPage
as the first page of data.

 If the value of RecordsPerPage changes at runtime, you reinitialize the grid by calling InitData() again
in RecordsPerPageChangedHandler(). You also handle the navigation to a different page by handling the
SelectionChanged event in lbxPager, where you retrieve the page requested and call
GetProductsDataAsync() again, with SkipCount set to the product of RecordsPerPage times the number of
pages before the current one selected and TakeCount again set to RecordsPerPage.

To demonstrate events from a user control, you also define and raise an event named
DataItemSelectionChanged whenever the current row selection in a DataGrid changes. You handle a
change in row selection in the internal DataGrid dgProductPage, and in that handler, you raise the
event.
A custom event argument type of DataItemSelectionChangedEventArgs, also shown in Listing 5-18, is
used to pass the actual Product instance bound to the current row to the event consumer.

To consume the user control in a page, you add a reference to the assembly containing the user
control to your project. You then add a custom namespace declaration to dereference the types within
the assembly in the page’s XAML. Finally, you declare an instance of the control prefixed with the
custom namespace in the XAML. Listing 5-19 shows the XAML for your consuming page.

CHAPTER 5 ■ CONTROLS

411

■ Note There is no strict requirement to implement your user control in a separate assembly from the

application consuming it. We simply find it to be a best practice to follow, one that makes the control a lot more

distributable and reusable.

Listing 5-19. XAML for the Test Page Hosting the User Control

<UserControl x:Class="Recipe5_8.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:composite=
"clr-namespace:Recipe5_8;assembly=Recipe5_8.ControlLib"
 >
 <Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <!-- user control declaration -->
 <composite:PagedProductsGrid x:Name="PagedGrid"
 RecordsPerPage="30"
 DataItemSelectionChanged="PagedGrid_DataItemSelectionChanged"
 Grid.Row="0" HorizontalAlignment="Left"/>
 <!-- content control with a data template that gets bound to
 selected data passed through user control raised event -->
 <ContentControl x:Name="ProductCostInfo" Grid.Row="1" Margin="0,20,0,0">
 <ContentControl.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock
 Text="The currently selected product has a list price of $ "/>
 <TextBlock Text="{Binding ListPrice}"
 Margin="0,0,10,0"
 Foreground="Blue"/>
 <TextBlock Text="and a standard cost of $ "/>
 <TextBlock Text="{Binding StandardCost}"
 Foreground="Blue"/>
 </StackPanel>
 </DataTemplate>
 </ContentControl.ContentTemplate>
 </ContentControl>
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

412

The custom namespace composite brings in the actual .NET namespace and the assembly
reference into the XAML so that control can be referenced. You can then declare the control by
prefixing its opening and closing tags with the namespace prefix. In Listing 5-19, you set the
RecordsPerPage property to a value of 30 so that the control displays 30 records per page. If you refer to
Listing 5-18, you will note a default value of 20 to RecordsPerPage in the PropertyMetadata constructor
while registering the DependencyProperty. In the event you do not bind the RecordsPerPage property to
some value in XAML, 20 will be the value applied as a default. To illustrate consuming the
DataItemChanged event that you equipped the user control to raise, you also add a ContentControl
named ProductCostInfo in your page with a data template that binds a couple of TextBlocks to the
ListPrice and the StandardCost properties of a Product instance. You handle the DataItemChanged
event, and in the handler, you bind the Product received through the event arguments to the
ContentControl, as shown in the codebehind for the page in Listing 5-20.

Listing 5-20. Codebehind for the test page hosting the UserControl

using System.Windows.Controls;

namespace Recipe5_8
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 }

 private void PagedGrid_DataItemSelectionChanged(object sender,
 DataItemSelectionChangedEventArgs e)
 {
 if (e.CurrentItem != null)
 ProductCostInfo.Content = e.CurrentItem;
 }
 }
}

If you refer to Figure 5-23, you will see the resulting text on the page, right below the user control,
showing the ListPrice and the StandardCost of the currently selected Product.

5-9. Creating a Custom Layout Container

Problem
You need to implement custom layout logic for child controls inside a parent container.

CHAPTER 5 ■ CONTROLS

413

Solution
Implement a custom Panel to encapsulate the custom layout logic.

How It Works
Laying out your controls and other visual elements is an important part of crafting a compelling user
interface. However, it always helps if the framework you are using provides some assistance in
achieving that layout. There are some common layout scenarios, such as arranging your elements in a
stack either vertically or horizontally, or specifying their position in terms of rows and columns in a
table-like arrangement. There is also absolute positioning, where you provide the exact X and Y
coordinates for your element.

The Silverlight libraries include several layout containers that help the process. Layout containers
are elements that can contain other elements such as children and implement a specific layout logic
that arranges the children accordingly. Canvas, StackPanel, and Grid found in System.Windows.Controls
are a few of these layout containers, with their layout logic consisting of absolute positioning, ordered
stacking, and table style positioning, respectively. For more on layout containers and design-time
support, refer to Chapter 3.

Motivation and Mechanics

The challenge for framework designers is that it is hard to foresee all possible layout scenarios and
implement a container for each in the framework. Consequently, there needs to be a way in which you
can easily implement your own layout logic and plug it in so that it functions seamlessly with the rest
of the framework types, just the way the built-in containers do.

The System.Windows.Controls.Panel abstract class was designed for exactly this purpose. The set of
standard built-in layout containers like Grid and StackPanel extend the Panel class to implement their
layout logic, and so can you.

To create your custom layout logic, you need to provide implementations of two virtual methods:
MeasureOverride() and ArrangeOverride(). At runtime, these two methods are called on any custom
panel implementation you build to give you an opportunity to appropriately lay out any contained
children. Note that these two methods are defined in the FrameworkElement type, from which Panel itself
derives. However, FrameworkElement has no built-in notion of child items, whereas the Panel class does
by exposing a Children collection. Therefore, you will use the Panel class as the root for all custom
layout containers.

Now, let’s look at the MeasureOverride() and ArrangeOverride() methods.

The MeasureOverride() Method

Layout essentially happens in two passes. In the first pass, the runtime provides an opportunity for the
container to evaluate the size requirements of all its children and return the total size requirement
based on its layout logic.

This first pass is implemented in MeasureOverride(). The parameter passed in to
MeasureOverride() by the runtime is the total availableSize for all children of that container to be laid
out. The goal of the MeasureOverride() method is to look at each child individually, calculate the size
requirements of each, and compute a total size requirement, which is then returned from
MeasureOverride() to the runtime. It is in computing this calculated total that you apply your layout
logic. However, there is a standard way for measuring the desired size of each child that goes into that
calculation. You need to call the Measure() method on each child, passing in the availableSize
parameter, and the child returns its desired size. Measure() is a method implemented in UIElement, and

CHAPTER 5 ■ CONTROLS

414

it is a requirement to call Measure() on each child to guarantee accurate size measurement and
placement in your layout.

This computed total may be greater than the availableSize parameter passed in, to indicate that
more room is required for ideal layout of all the children for this container. However, what is finally
granted is up to the runtime, based on the overall UI and the room available within the plug-in to display
all content inside and outside this container.

The ArrangeOverride() Method

In the second pass of the layout process, the layout system calculates the most space it can allocate to a
container based on the rest of the UI, and then calls ArrangeOverride(), passing that value in as the
finalSize parameter. Keep in mind that the finalSize value may be less than the desired size that your
MeasureOverride() implementation had calculated.

It is now up to your implementation of ArrangeOverride() to figure out a strategy of laying out the
child elements within the finalSize determined by the layout system. The actual process of laying each
individual child is done by calling the Arrange() method on the child itself. The Arrange() method
accepts a Rectangle that determines the final area within which the child should be positioned. The
return value from ArrangeOverride() is the finalSize required by the container, and unless your
implementation can lay everything out within a space smaller than the finalSize value passed in, this
in most cases is the unchanged value contained in the finalSize parameter.

Note that it is mandatory to call the Measure() and Arrange() methods on all children elements to
have them laid out and rendered by the layout system. And since that is what you do inside
MeasureOverride() and ArrangeOverride(), implementing overrides for both of these methods is also a
requirement when implementing a layout container like a custom panel.

The Code
In this code sample, you will build a layout container extending the Panel type that can arrange its
children in either a horizontal orientation (in rows) or a vertical one (in columns). It also
automatically wraps all its children into successive rows or columns based on available space. The
implementing type is named WrapPanel, and Listing 5-21 shows the code.

Listing 5-21. WrapPanel implementation

using System;
using System.Windows;
using System.Windows.Controls;

namespace Recipe5_9
{
 public class WrapPanel : Panel
 {
 //Orientation dependency property
 DependencyProperty OrientationProperty =
 DependencyProperty.Register("Orientation", typeof(Orientation),
 typeof(WrapPanel),
 new PropertyMetadata(
 new PropertyChangedCallback(OrientationPropertyChangedCallback)));

CHAPTER 5 ■ CONTROLS

415

 public Orientation Orientation
 {
 get
 {
 return (Orientation)GetValue(OrientationProperty);
 }
 set
 {
 SetValue(OrientationProperty, value);
 }
 }
 private static void OrientationPropertyChangedCallback(
 DependencyObject target, DependencyPropertyChangedEventArgs e)
 {
 //cause the layout to be redone on change of Orientation
 if (e.OldValue != e.NewValue)
 (target as WrapPanel).InvalidateMeasure();
 }

 public WrapPanel()
 {
 //initialize the orientation
 Orientation = Orientation.Horizontal;
 }
 protected override Size MeasureOverride(Size availableSize)
 {
 double DesiredWidth = 0;
 double DesiredHeight = 0;
 double RowHeight = 0;
 double RowWidth = 0;
 double ColHeight = 0;
 double ColWidth = 0;

 //call Measure() on each child - this is mandatory.
 //get the true measure of things by passing in infinite sizing
 foreach (UIElement uie in this.Children)
 uie.Measure(availableSize);
 //for horizontal orientation - children laid out in rows
 if (Orientation == Orientation.Horizontal)
 {
 //iterate over children
 for (int idx = 0; idx < this.Children.Count; idx++)
 {

 //if we are at a point where adding the next child would

CHAPTER 5 ■ CONTROLS

416

 //put us at greater than the available width
 if (RowWidth + Children[idx].DesiredSize.Width
 >= availableSize.Width)
 {
 //set the desired width to the max of row width so far
 DesiredWidth = Math.Max(RowWidth, DesiredWidth);
 //accumulate the row height in preparation to move on to the next row
 DesiredHeight += RowHeight;
 //initialize the row height and row width for the next row iteration
 RowWidth = 0;
 RowHeight = 0;
 }
 //if on the other hand we are within width bounds
 if (RowWidth + Children[idx].DesiredSize.Width
 < availableSize.Width)
 {
 //increment the width of the current row by the child's width
 RowWidth += Children[idx].DesiredSize.Width;
 //set the row height if this child is taller
 //than the others in the row so far
 RowHeight = Math.Max(RowHeight,
 Children[idx].DesiredSize.Height);

 }
 //this means we ran out of children in the middle or exactly at the end
 //of a row
 if (RowWidth != 0 && RowHeight != 0)
 {
 //account for the last row
 DesiredWidth = Math.Max(RowWidth, DesiredWidth);
 DesiredHeight += RowHeight;
 }

 }
 }
 else //vertical orientation - children laid out in columns
 {
 //iterate over children
 for (int idx = 0; idx < this.Children.Count; idx++)
 {
 //if we are at a point where adding the next child would
 //put us at greater than the available height
 if (ColHeight + Children[idx].DesiredSize.Height
 >= availableSize.Height)
 {

CHAPTER 5 ■ CONTROLS

417

 //set the desired height to max of column height so far
 DesiredHeight = Math.Max(ColHeight, DesiredHeight);
 //accumulate the column width in preparation to
 //move on to the next column
 DesiredWidth += ColWidth;
 //initialize the column height and column width for the
 //next column iteration
 ColHeight = 0;
 ColWidth = 0;
 }
 //if on the other hand we are within height bounds
 if (ColHeight + Children[idx].DesiredSize.Height
 < availableSize.Height)
 {
 //increment the height of the current column by the child's height
 ColHeight += Children[idx].DesiredSize.Height;
 //set the column width if this child is wider
 //than the others in the column so far
 ColWidth = Math.Max(ColWidth,
 Children[idx].DesiredSize.Width);
 }
 }
 //this means we ran out of children in the middle or exactly at the end
 //of a column
 if (RowWidth != 0 && RowHeight != 0)
 {
 //account for the last row
 DesiredHeight = Math.Max(ColHeight, DesiredHeight);
 DesiredWidth += ColWidth;
 }
 }
 //return the desired size
 return new Size(DesiredWidth, DesiredHeight);
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 double ChildX = 0;
 double ChildY = 0;
 double FinalHeight = 0;
 double FinalWidth = 0;
 //horizontal orientation - children in rows
 if (Orientation == Orientation.Horizontal)
 {
 double RowHeight = 0;

CHAPTER 5 ■ CONTROLS

418

 //iterate over children
 for (int idx = 0; idx < this.Children.Count; idx++)
 {
 //if we are about to go beyond width bounds with the next child
 if (ChildX + Children[idx].DesiredSize.Width
 >= finalSize.Width)
 {
 //move to next row
 ChildY += RowHeight;
 FinalHeight += RowHeight;
 FinalWidth = Math.Max(FinalWidth, ChildX);
 //shift to the left edge to start next row
 ChildX = 0;
 }
 //if we are within width bounds
 if (ChildX + Children[idx].DesiredSize.Width
 < finalSize.Width)
 {
 //lay out child at the current X,Y coords with
 //the desired width and height
 Children[idx].Arrange(new Rect(ChildX, ChildY,
 Children[idx].DesiredSize.Width,
 Children[idx].DesiredSize.Height));
 //increment X value to position next child horizontally right after the
 //currently laid out child
 ChildX += Children[idx].DesiredSize.Width;
 //set the row height if this child is taller
 //than the others in the row so far
 RowHeight = Math.Max(RowHeight,
 Children[idx].DesiredSize.Height);
 }
 }
 }
 else //vertical orientation - children in columns
 {
 double ColWidth = 0;
 //iterate over children
 for (int idx = 0; idx < this.Children.Count; idx++)
 {
 //if we are about to go beyond height bounds with the next child
 if (ChildY + Children[idx].DesiredSize.Height
 >= finalSize.Height)
 {
 //move to next column
 ChildX += ColWidth;

CHAPTER 5 ■ CONTROLS

419

 FinalWidth += ColWidth;
 FinalHeight = Math.Max(FinalHeight, ChildY);
 //shift to the top edge to start next column
 ChildY = 0;
 }
 //if we are within height bounds
 if (ChildY + Children[idx].DesiredSize.Height
 < finalSize.Height)
 {
 //lay out child at the current X,Y coords with
 //the desired width and height
 Children[idx].Arrange(new Rect(ChildX, ChildY,
 Children[idx].DesiredSize.Width,
 Children[idx].DesiredSize.Height));
 //increment Y value to position next child vertically right below the
 //currently laid out child
 ChildY += Children[idx].DesiredSize.Height;
 //set the column width if this child is wider
 //than the others in the column so far
 ColWidth = Math.Max(ColWidth,
 Children[idx].DesiredSize.Width);
 }
 }
 }
 //return the original final size
 return finalSize;
 }
 }
}

Let’s first look at the measure pass. As noted previously, in MeasureOverride(), you are given the
available size to work with, and you return the total desired size of the container in question with all
its children. You can see in Listing 5-21 that you start off by calling Measure() on every child in the
Children collection.

It is worth noting here that the measuring and arranging tasks are both recursive in nature. When you
call Measure() on every child, the runtime ultimately calls MeasureOverride() on that child, which in turn
calls Measure() on any children that child might have, and so on until MeasureOverride() gets called on
every leaf element (i.e., an element without any more children). The desired size returned by
MeasureOverride() at every level of recursion travels back to its parent and is available through the
DesiredSize property on the child.

Once you call Measure() on each of the children in your code, and consequently populate the
DesiredSize property on each of them, you then need to calculate the desired size of the entire WrapPanel
based on the individual desired sizes of each child. To do that, you iterate over the Children collection and
try to arrange them along rows or columns, based on the Orientation value of Horizontal or Vertical,
respectively. Note that you do not actually create any rows or columns; rather, you simply try to calculate the
size of such rows or columns.

So for example, in a Horizontal orientation, as you iterate over each child you add its width to a
counter named RowWidth, indicating the current row’s width. You also keep a track of the row’s height

CHAPTER 5 ■ CONTROLS

420

by constantly evaluating the maximum height among the children added to that row up to that point.
Once you reach a point where the addition of the next child would cause the row to go beyond the Width
component of the DesiredSize parameter, you consider the row complete.

At this point, you track the maximum width of any such row calculated so far in a counter named
DesiredWidth. The assumption is that the children could all have different sizes. In case they are all
similarly sized, all those rows would be equal width as well, since the rows would break off at the exact
same point every time. You also keep a measure of how much you are consuming on the Y axis with
each row, using a counter named DesiredHeight, by adding up each row’s height.

If the orientation was vertical, a similar logic is followed, with height and width interchanged.
Once you have iterated over each child, you have your desired size in the combination of the
DesiredWidth and DesiredHeight counters, and you pass that out of MeasureOverride().

The arrange pass is similar in logic. You get the finalSize as the parameter to ArrangeOverride().
You break up your logic based on the Orientation setting as before. But this time, you actually lay each
child out by calling the Arrange() method on the child. The UIElement.Arrange() method accepts a
Rectangle and lays the element inside that Rectangle. As you iterate through each element, you
increment placement coordinates (either the x value or the y value based on whether you are laying
out in rows or columns) to position child elements one after the other, and when you reach bounds
where you have to break into the next row or column, you move by either the row height or the column
width calculated in a similar fashion, as you did in the MeasureOverride() implementation.

The Orientation property is implemented as a dependency property of type
System.Windows.Controls.Orientation that can be used to specify a horizontal or vertical layout. In
OrientationPropertyChangedCallback(), you call InvalidateMeasure() on the WrapPanel instance, if the
property value is being changed. InvalidateMeasure() causes the layout system to redo the layout,
starting again with the measure pass.

Using the WrapPanel

Let’s consider using the WrapPanel in a user interface. One straightforward option is to use it in similar
fashion to a StackPanel:

<wrappanellib:WrapPanel Orientation="Horizontal">
 <TextBlock Text="Child 1"/>
 <TextBlock Text="Child 2"/>
 <TextBlock Text="Child 3"/>
 <TextBlock Text="Child 4"/>
 <TextBlock Text="Child 5"/>
 <TextBlock Text="Child 6"/>
 <TextBlock Text="Child 7"/>
 <TextBlock Text="Child 8"/>
 <Button Content="Child 9" Width="60" Height="30"/>
 <Button Content="Child 10" Width="70" Height="30"/>
 <Button Content="Child 11" Width="60" Height="30"/>
 <RadioButton Content="Child 12" Width="90" Height="30"/>
 <RadioButton Content="Child 13" Width="60" Height="30"/>
 <Button Content="Child 14" Width="80" Height="30"/>
 <Button Content="Child 15" Width="60" Height="30"/>
</wrappanellib:WrapPanel>

CHAPTER 5 ■ CONTROLS

421

This code shows the standard XAML usage pattern where all children, a mixed bag of controls in
this case, are listed within the WrapPanel declaration, much in the fashion of any other layout container.
You should be able to cut and paste this code in your own sample application and use it as is. Just
remember to reference the assembly from the sample code, and create a namespace mapping (you
have mapped the wrappanellib namespace here).

One of the interesting usages of a panel is to assist in the layout process of an ItemsControl,
which is the primary base control for visually representing a collection of many items. ItemsControl
exposes a property named ItemsPanel of type ItemsPanelTemplate that can be defined in terms of any
type that extends Panel. A better control is the ListBox, which extends the ItemsControl and, by virtue of
that, uses a panel internally for layout. Let’s see how to replace the layout panel for a ListBox and
control some of the panel’s properties as well.

Listing 5-22 shows the XAML for a page with a ListBox in it, with its default panel replaced with
your own WrapPanel from this recipe.

Listing 5-22. XAML for a ListBox using the WrapPanel for layout

<UserControl x:Class="Recipe5_9.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Recipe5_9"
 xmlns:wrappanellib=
"clr-namespace:Recipe5_9;assembly=Recipe5_9.WrapPanel"
 Width="585" Height="440">
 <UserControl.Resources>

 <local:ImagesCollection x:Key="dsImages" />

 <DataTemplate x:Key="dtImageItem">
 <Grid Background="#007A7575" Margin="10,10,10,10" >

 <Rectangle Fill="#FF7A7575" Stroke="#FF000000"
 RadiusX="5" RadiusY="5"/>
 <Image Margin="10,10,10,10" Width="50" Height="50"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Source="{Binding ImageFromResource}"/>

 </Grid>
 </DataTemplate>

<Style TargetType="ListBox" x:Key="STYLE_WrapPanelListBox">
 <Setter Property="ItemsPanel">
 <Setter.Value>
 <ItemsPanelTemplate>
 <wrappanellib:WrapPanel Orientation="{Binding CurrentOrientation}"
 Width="600" Height="600"/>
 </ItemsPanelTemplate>
 </Setter.Value>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

422

 </Setter>
 </Style>

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <ListBox x:Name="lbxWrapPanelTest" Grid.Row="0"
 ItemTemplate="{StaticResource dtImageItem}"
 ItemsSource="{StaticResource dsImages}"
 Style="{StaticResource STYLE_WrapPanelListBox}">
 </ListBox>
 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <RadioButton Content="Horizontal Arrangement" Margin="0,0,20,0"
 GroupName="OrientationChoice" x:Name="rbtnHorizontal"
 Checked="rbtnHorizontal_Checked" IsChecked="True"/>
 <RadioButton Content="Vertical Arrangement" Margin="0,0,0,0"
 GroupName="OrientationChoice" x:Name="rbtnVertical"
 Checked="rbtnVertical_Checked"/>
 </StackPanel>
 </Grid>

</UserControl>

The first thing to note is the ItemsPanelTemplate definition for the ListBox. The internal
implementation of the ListBox in the framework uses a StackPanel as the panel, but you redefine it to
use your own WrapPanel and set it as the value of the ItemsPanel property in a style targeting a ListBox.
You then apply the style to the ListBox lbxWrapPanelTest. We will come back to this definition in a
moment.

Also notice that lbxWrapPanelTest gets its data from a data source named dsImages pointing to a
collection named ImagesCollection. The ItemTemplate is set to a data template dtImageItem that
displays some images contained in dsImages; each image is encapsulated in a type named
CustomImageSource.

Listing 5-23 shows the code for CustomImageSource and ImagesCollection.

Listing 5-23. Code for CustomImageSource and ImagesCollection types

using System.Windows.Media.Imaging;
using System.Reflection;
using System.Collections.Generic;

namespace Recipe5_9
{
 public class CustomImageSource

CHAPTER 5 ■ CONTROLS

423

 {
 public string ImageName { get; set; }
 private BitmapImage _bitmapImage;
 public BitmapImage ImageFromResource
 {
 get
 {
 if (_bitmapImage == null)
 {
 _bitmapImage = new BitmapImage();
 _bitmapImage.SetSource(
 this.GetType().Assembly.GetManifestResourceStream(ImageName));
 }

 return _bitmapImage;
 }
 }
 }
 public class ImagesCollection : List<CustomImageSource>
 {
 public ImagesCollection()
 {
 Assembly thisAssembly = this.GetType().Assembly;
 List<string> ImageNames =
 new List<string>(thisAssembly.GetManifestResourceNames());

 foreach (string Name in ImageNames)
 {
 if (Name.Contains(".png"))
 this.Add(new CustomImageSource { ImageName = Name });
 }
 }
 }
}

The images used in this sample are embedded as resources in the project assembly.
ImagesCollection uses GetManifestResourceNames() to get a collection of the string names of all the
embedded resources. It then iterates over the collection of resource names and uses
GetManifestResourceStream() to acquire each resource as a stream. It creates a new CustomImageSource
for each one ending with the .png extension indicating an image resource, and the CustomImageSource
type constructor loads the image.

Let’s take another look at that ItemsPanelTemplate definition. Once the ItemsPanel property is set
on the ListBoxItem, the panel instance that is created internally by the ListBox is not made available
to your application code in any way. However, there may be a need to access properties on the
underlying panel from application code. An example could be the need to change your WrapPanel’s

CHAPTER 5 ■ CONTROLS

424

Orientation property to influence the ListBox’s layout. However, since the panel is not directly
exposed, you need to take a slightly indirect approach to this.

Inside the ItemsPanelTemplate declaration, the WrapPanel has full access to the DataContext of its
parent ListBox lbxWrapPanelTest. This gives you a way to bind a property exposed by the panel to
application data, as long as that data is made available through the ListBox’s DataContext. As shown in
Listing 5-21, you bind the WrapPanel.Orientation property to the CurrentOrientation property of some
data item. Further, you have two RadioButtons on the page with Checked event handlers defined in the
codebehind. Listing 5-24 shows the codebehind for the page.

Listing 5-24. Codebehind for the MainPage hosting the ListBox

using System.Windows.Controls;
using System.ComponentModel;

namespace Recipe5_9
{
 public partial class MainPage : UserControl
 {
 ListBoxPanelOrientation CurrentLbxOrientation =
 new ListBoxPanelOrientation { CurrentOrientation = Orientation.Horizontal };
 public MainPage()
 {
 InitializeComponent();
 lbxWrapPanelTest.DataContext = CurrentLbxOrientation;
 }

 private void rbtnHorizontal_Checked(object sender,
 System.Windows.RoutedEventArgs e)
 {
 CurrentLbxOrientation.CurrentOrientation = Orientation.Horizontal;
 }

 private void rbtnVertical_Checked(object sender,
 System.Windows.RoutedEventArgs e)
 {
 CurrentLbxOrientation.CurrentOrientation = Orientation.Vertical;
 }
 }
 public class ListBoxPanelOrientation : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 private Orientation _Current;
 public Orientation CurrentOrientation
 {
 get { return _Current; }

CHAPTER 5 ■ CONTROLS

425

 set
 {
 _Current = value;
 if (PropertyChanged != null)
 PropertyChanged(this,
 new PropertyChangedEventArgs("CurrentOrientation"));
 }
 }
 }
}

The ListBoxPanelOrientation type exposes the CurrentOrientation property enabled with property
change notification. You construct and initialize an instance of ListBoxPanelOrientation, and set it to
the ListBox’s DataContext. This causes the internal WrapPanel instance to adopt this orientation through
the binding discussed earlier. In the Checked event handlers of the RadioButtons, you change the
CurrentOrientation value, which causes the ListBox to change its orientation dynamically, again
because of the property change notification flowing back to the WrapPanel through the binding.

Figure 5-24 shows the ListBox and the contained WrapPanel in action.

Figure 5-24. A ListBox using the WrapPanel with different orientations

5-10. Creating a Custom Control

Problem
You need to create a control structured in the same way as the controls in the framework, offering
some of the same facilities like control templating.

CHAPTER 5 ■ CONTROLS

426

Solution
Create a class that derives from either control or another type control derived type, provide a default
control template in XAML, and implement control behavior by adding code to the derived class.

How It Works
For a general introduction to controls, dependency properties, and events, check out Recipe 5-8. You
can also look at Recipe 5-1 for background information on styles and Recipe 5-2 for information on
control templates. In this recipe, we assume that you understand these topics.

Custom Control Structure

Custom controls are types that extend the Control, ContentControl, or ItemsControl class. The first thing
to note is how a custom control defines its user interface.

Every assembly containing a custom control needs to contain a XAML file named generic.xaml as
an assembly resource embedded in a folder named Themes. This naming standard is mandatory
because this resource is where the runtime looks for the default control UI. However, Visual Studio
2010 does not automatically generate a generic.xaml for you; you have to explicitly create and add the
file to your project. To do this, first add a blank project folder named Themes to your control project.
Then, add a blank text file named generic.xaml to the Themes folder.

The generic.xaml file has to contain a ResourceDictionary, which in turn contains styles that
define the default UI for each custom control contained in that assembly. This code shows a sample:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:Recipe5_10">
 <!-- BEGIN: Progress Bar -->
 <ControlTemplate TargetType="local:ProgressBar" x:Key="ctProgressBar">
 <Grid>
 <!-- template definition -->
 </ControlTemplate>
 <Style TargetType="local:ProgressBar">
 <Setter Property="Template" Value="{StaticResource ctProgressBar}"/>
 <!-- other setters -->
 </Style>
 <!-- END: Progress Bar -->
</ResourceDictionary>

■ Note The code below contains a ProgressBar control sample. This does not reflect the template for the

ProgressBar control that is shipped with the Silverlight libraries. It is purely an example that we chose to

illustrate the concept here.

If you copy the ResourceDictionary snippet without the content in between to your generic.xaml,
you have the basic structure ready to start adding templates to it.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

427

As you can see, the UI of the control is defined as a control template, and then a style targeted
toward the control’s type associates the control template with the Template property. In the constructor
of the custom control, you need to instruct the runtime to apply this style to your custom control by
setting the DefaultStyleKey property defined on the Control base class to the type of the control itself.
As you may have noted in the earlier code snippet, the style in this case does not need an x:Key
attribute. This association is mandatory as well, since without it, your custom control will not have a
default UI.

The following code shows an example:

public ProgressBar()
{
 base.DefaultStyleKey = typeof(ProgressBar);
}

With the DefaultStyleKey properly set, the runtime calls the OnApplyTemplate() virtual method on
the control class. OnApplyTemplate() is an interception of the template-loading process, where your
control code is given an opportunity to access the constituent parts of the template, store them for
future references in your control code elsewhere, and initialize any of these parts as needed. To take
advantage of this, you provide an override of OnApplyTemplate(). To acquire references to any of the
parts of the template, you can use the GetTemplateChild() method in that override. The following code
snippet shows how to acquire an element named elemPBar in an OnApplyTemplate() override, store it in
a local variable, and initialize its Width to 10:

internal FrameworkElement elemPBar { get; set; }

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();
 elemPBar = this.GetTemplateChild("elemPBar") as FrameworkElement;
 if(elemPBar != null)
 elemPBar.Width = 10;
}

Note that providing an override to OnApplyTemplate() is not mandatory. However, in real
situations, very rarely will you author a control that does not need to manipulate some part of its UI,
and OnApplyTemplate() is the only place where you can get access to those elements.

You may also have observed that a hard dependency is created on the expected template structure
in this process, because GetTemplateChild() looks for a part by its name (provided through the x:Name
attribute in the template definition). Keep the following in mind:

• In your implementation of OnApplyTemplate(), always remember to call OnApplyTemplate()
on the base class. This is especially important since you might be extending another custom
control (and not Control or ContentControl directly). Calling OnApplyTemplate() on the base
type gives it the opportunity to do its own initialization properly.

• Code defensively by being prepared to encounter situations where a certain named
template part you are looking for using GetTemplateChild() may not exist. This could
happen if a developer was applying his or her own custom control template to your control
and that template was designed without this named part in it. Checking for a null value
before referencing the part anywhere else in your code is a good practice, since
GetTemplateChild() would return null if the part was not found.

CHAPTER 5 ■ CONTROLS

428

• Try to use a highest base class approach in assuming the part’s CLR type in your code. For
example, in the previous code where you demonstrated OnApplyTemplate(), you were
casting the part to a FrameworkElement and then accessing its Width property. If the
properties and methods exposed by a FrameworkElement provided enough functionality to
manipulate the part to the desired level everywhere in your code, using it as a
FrameworkElement is sufficient for your needs. This allows a developer applying a custom
template to your code to specify a different type for the same named part, as long as both
the original and the replacement both inherit from the same base class (in your case
FrameworkElement). For instance, the default template may have a part as a Rectangle. Since
you only use its Width and Height properties in your control code, a developer can easily
substitute that with a Border with the same name in his or her custom template.

Even with all of these safeguards, it never hurts to let other developers know your original intent
for the template, what type it is, and which parts of the template are named. To assist in this, the
framework defines an attribute named TemplatePartAttribute in System.Windows with two properties:
Name, which contains the string name of a part, and Type, which contains the CLR type of the part
element. Applying this attribute to your control class allows other code and design tools to use
reflection on your control type and discover your template part name and type requirements. You can
apply it multiple times, once for each named part required. This code shows an application:

[TemplatePart(Name="elemPBar",Type=typeof(FrameworkElement))]
public class ProgressBar : ContentControl
{
}

One other thing to consider while implementing a custom control from scratch (that is, if you are
not extending an existing control) is the choice of using the Control, ContentControl, or ItemsControl
type as the base class. The general guideline is that if your control needs to display additional content
beyond what is specified in the control’s template, and if you need to allow developers to specify
where that content comes from and how it is displayed, you should extend ContentControl. The Content
property defined on ContentControl allows your control to take advantage of data binding for the
content, and the ContentTemplate property lets you use a data template to display the content. If your
control is expected to display a collection of data items with the ability to bind to a source for those
items plus specify a data template for displaying each item, you should extend ItemsControl; the
ItemsSource and ItemTemplate properties on the ItemsControl facilitate those features. If none of the
above is a requirement, you are free to directly extend the Control class.

TemplateBinding vs. RelativeSource Binding to TemplatedParent

In Recipe 5-2, while discussing control templating, we pointed out the TemplateBinding declaration that
allows you to bind the value of an element’s property to another property on the template parent (i.e.,
an instance of the control whose control template the element is situated in). However, there is an
alternative to the TemplateBinding syntax.

Recipe 4-5 in Chapter 4 discussed the RelativeSource property on the Binding type, but only the
effect of setting RelativeSource to RelativeSource.Self. Setting the property of an element within a
control template to use a binding with RelativeSource set to RelativeSource.TemplatedParent has the
same effect as using a TemplateBinding. So, in effect, the two syntaxes in the following code achieve
similar results:

CHAPTER 5 ■ CONTROLS

429

PropertyFoo="{TemplateBinding SomeParentProperty}"

PropertyFoo=
 "{Binding SomeParentProperty, RelativeSource={RelativeSource TemplatedParent}}"

There are some significant advantages in using the latter syntax based on a regular Binding: you
can take advantage of all the usual Binding niceties, like value conversion if the values of the source
and the destination are incompatible and binding direction settings to control the flow of data
between the two.

You may be wondering which syntax to use in control templating scenarios and when. Our
general guidance is to use the regular Binding syntax with RelativeSource set to TemplatedParent
whenever possible, as this gives you a much richer programming model and better control on the
binding for reasons mentioned above. There is a supposed minimal performance gain in using
TemplateBinding over a regular Binding, but we have not seen any noticeable difference in a decent-
sized control template (one with 10 to 30 template bindings) versus a similar number of regular
bindings with RelativeSource.TemplatedParent.

The rest of the functionality of the custom control can be implemented using familiar concepts
such as dependency properties, events, methods, and control template design. The only other concept
of paramount importance in custom control authoring is that of visual states. For more on visual states
from a control consumer’s perspective, refer to Recipe 5-2. We will discuss visual state management
from a control author’s perspective in more detail in the next recipe. In the code sample for this recipe,
we deliberately do not deal with visual states in an effort to simplify the example.

The Code
The code sample for this recipe illustrates the basic custom control concepts by implementing a
ProgressBar control.

■ Note The Silverlight control framework includes a ProgressBar control, and we in no way claim that you

should use this implementation over the framework-supplied one. We chose this purely as a way to show you

how to write a custom control, and we hope that purpose will be served here.

Listing 5-25 shows the generic.xaml for the ProgressBar control default UI.

Listing 5-25. The generic.xaml for ProgressBar

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:Recipe5_10">

 <local:OrientationToTransformConverter
 x:Key="REF_OrientationToTransformConverter" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

430

 <ControlTemplate TargetType="local:ProgressBar" x:Key="ctProgressBar">
 <Grid RenderTransformOrigin="0.5,0.5"
 x:Name="LayoutRoot"
 RenderTransform="{Binding Orientation,
 RelativeSource={RelativeSource TemplatedParent},
 Converter={StaticResource REF_OrientationToTransformConverter}}">
 <Rectangle Fill="{TemplateBinding Background}"
 Stroke="Transparent" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" x:Name="rectBackground"/>
 <Rectangle x:Name="elemPBar"
 Fill="{TemplateBinding Foreground}"
 Stroke="Transparent"
 VerticalAlignment="Stretch"
 Width="0" HorizontalAlignment="Left"/>
 <ContentPresenter
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Content="{TemplateBinding Content}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"/>
 </Grid>
 </ControlTemplate>

 <Style TargetType="local:ProgressBar">
 <Setter Property="Template" Value="{StaticResource ctProgressBar}"/>
 <Setter Property="Height" Value="30" />
 <Setter Property="Width" Value="200" />
 <Setter Property="MaximumValue" Value="100" />
 <Setter Property="MinimumValue" Value="0" />
 <Setter Property="Orientation"
 Value="Horizontal" />
 <Setter Property="Foreground" >
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF0040FF"/>
 <GradientStop Color="#FF8FA8F5" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Background" Value="White" />
 </Style>

</ResourceDictionary>

The control template ctProgressBar is made up of two Rectangles, one acting as a background for
the control, and the other (named elemPBar) acting as the progress meter with its initial Width set to 0.

CHAPTER 5 ■ CONTROLS

431

This is the named template part that you acquire in your code later, and you’ll change the Width based
on CurrentValue.

You would like the user to have the ability to place content such as the current progress amount
inside the control. You would also like users to be able to associate a data template with the control,
and thus define how any content should be formatted. As you will see when we discuss the control code,
your control class will extend ContentControl, and you include a ContentPresenter with the appropriate
TemplateBindings in place. For some background on the control content model and TemplateBinding,
refer to Recipe 5-2.

Also note the resource declaration of a type named OrientationToTransformConverter and a binding
setting on the RenderTransform property of the Grid LayoutRoot.

The style targeted to the ProgressBar control is what allows you to associate this template with the
DefaultStyleKey property in code.

Listing 5-26 shows the control code.

Listing 5-26. ProgressBar control code

using System.Windows;
using System.Windows.Controls;
using System.Windows.Shapes;
using System.ComponentModel;

namespace Recipe5_10
{
 [TemplatePart(Name="elemPBar",Type=typeof(FrameworkElement))]
 public class ProgressBar : ContentControl
 {
 public static DependencyProperty CurrentValueProperty =
 DependencyProperty.Register("CurrentValue",
 typeof(double), typeof(ProgressBar),
 new PropertyMetadata(0.0,
 new PropertyChangedCallback(ProgressBar.OnCurrentValueChanged)));
 public double CurrentValue
 {
 get { return (double)GetValue(CurrentValueProperty); }
 set { SetValue(CurrentValueProperty, value); }
 }

 public static DependencyProperty MaximumValueProperty =
 DependencyProperty.Register("MaximumValue",
 typeof(double), typeof(ProgressBar), new PropertyMetadata(100.0));
 public double MaximumValue
 {
 get { return (double)GetValue(MaximumValueProperty); }
 set { SetValue(MaximumValueProperty, value); }
 }
 public static DependencyProperty MinimumValueProperty =
 DependencyProperty.Register("MinimumValue",

CHAPTER 5 ■ CONTROLS

432

 typeof(double), typeof(ProgressBar), new PropertyMetadata(0.0));
 public double MinimumValue
 {
 get { return (double)GetValue(MinimumValueProperty); }
 set { SetValue(MinimumValueProperty, value); } }

 public Orientation Orientation
 {
 get { return (Orientation)GetValue(OrientationProperty); }
 set { SetValue(OrientationProperty, value); }
 }

 public static readonly DependencyProperty OrientationProperty =
 DependencyProperty.Register("Orientation",
 typeof(Orientation), typeof(ProgressBar),
 new PropertyMetadata(Orientation.Horizontal));

 internal FrameworkElement elemPBar { get; set; }

 public ProgressBar()
 {
 base.DefaultStyleKey = typeof(ProgressBar);
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();
 elemPBar = this.GetTemplateChild("elemPBar") as FrameworkElement;
 }
 internal static void OnCurrentValueChanged(DependencyObject Target,
 DependencyPropertyChangedEventArgs e)
 {
 ProgressBar pBar = Target as ProgressBar;
 if (pBar.elemPBar != null)
 {
 pBar.elemPBar.Width = (pBar.ActualWidth * (double)e.NewValue)
 / (pBar.MaximumValue - pBar.MinimumValue);
 }

 }

 }

CHAPTER 5 ■ CONTROLS

433

}
Your ProgressBar control exposes three dependency properties all of type double: MaximumValue and

MinimumValue, which indicate the range of progress, and CurrentValue, which indicates the current
progress at any instant. As you see in the constructor, you load the default UI by setting the
DefaultStyleKey property to the type of the ProgressBar control itself, which will load the style targeted
to this control type from generic.xaml defined in Listing 5-25. In OnApplyTemplate(), you try to acquire
a reference to a template part named elemPBar as a FrameworkElement and store it. Note that in the
template in Listing 5-25, the template part is defined as a Rectangle, but you expect it to be any
derivative of FrameworkElement in your code, since all you need is the Width property.

Accordingly, you also decorate the ProgressBar class with a TemplatePartAttribute appropriately
initialized.

In the property change callback for the CurrentValue dependency property, you check to see if you
indeed have access to a template named elemPBar. If you do, you set the Width property of that
FrameworkElement to a ratio of the CurrentValue, available through the NewValue property of the
DependencyPropertyChangedEventArgs parameter, to the range of the ProgressBar instance.

Also note the Orientation DependencyProperty defined on the control. You want the ProgressBar to
be displayed either horizontally or vertically depending on the Orientation setting. An easy way of
doing this would be to apply a RotateTransform of –90 degrees to the entire ProgressBar whenever the
Orientation changes to Vertical. To facilitate that, you first define a value converter that accepts an
Orientation and returns a Transform. Listing 5-27 shows the code for this value converter.

Listing 5-27. Value converter to convert orientation to a RotateTransform

using System;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Media;
namespace Recipe5_10
{
 public class OrientationToTransformConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 //check to see that the parameter types are conformant
 if (value == null || !(value is Orientation) ||
 targetType != typeof(Transform))
 return null;
 if ((Orientation)value == Orientation.Horizontal)
 {
 return new RotateTransform() { Angle = 0 };
 }
 else
 {
 return new RotateTransform() { Angle = -90 };
 }

 }

CHAPTER 5 ■ CONTROLS

434

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

If you refer to the control template XAML in Listing 5-25, you will see that the RenderTransform property on
the outermost Grid named LayoutRoot is now bound to the Orientation property on the control using a regular
binding with RelativeSource set to TemplatedParent and using the OrientationToTransformConveter from
Listing 5-27. Had you used a TemplateBinding instead, you would not have the ability to use the value converter
the way you did here.

Using the Control

To use your code, you build a small application that downloads all the photos in the ProductPhotos table
through the AdventureWorks WCF service. Use the WebClient type to download the photos (for more on
the WebClient, see recipe 7-4).

You display the photos in a ListBox and use the WrapPanel you created in Recipe 5-10 to lay out the
photos. You use ProgressBar controls to display the individual download progress of each photo and
another one for overall progress.

Listing 5-28 shows the XAML for your test page.

Listing 5-28. XAML for the MainPage hosting the photo ListBox

<UserControl x:Class="Recipe5_10.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:custom=
"clr-namespace:Recipe5_10;assembly=Recipe5_10.PBarLib"
 xmlns:wrap=
"clr-namespace:Recipe5_9;assembly=Recipe5_9.WrapPanel"
 Width="700" Height="500">
 <UserControl.Resources>
 <DataTemplate x:Key="dtImageDisplay">
 <Border BorderBrush="Black" Padding="3,3,3,3"
 BorderThickness="2,2,2,2" CornerRadius="2,2,2,2">
 <Grid>
 <Image Source="{Binding PngImage}" Height="75"
 Width="75" Stretch="Uniform"
 Visibility="{Binding ImageVisible}"/>
 <custom:ProgressBar Height="25" Width="70" Margin="2,0,2,0"
 CurrentValue="{Binding DownloadProgress}"
 Content="{Binding DownloadProgress}"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

435

 Visibility="{Binding ProgBarVisible}"
 MaximumValue="100" MinimumValue="0"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 HorizontalContentAlignment="Left"
 VerticalContentAlignment="Center">
 <custom:ProgressBar.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock FontSize="10" Text="Downloaded" Margin="0,0,2,0"/>
 <TextBlock FontSize="10" Text="{Binding}" Margin="0,0,2,0"/>
 <TextBlock FontSize="10" Text="%" />
 </StackPanel>
 </DataTemplate>
 </custom:ProgressBar.ContentTemplate>
 </custom:ProgressBar>
 </Grid>
 </Border>
 </DataTemplate>
 <ControlTemplate TargetType="custom:ProgressBar" x:Key="ctCustomProgressBar">
 <Grid>
 <Border Background="{TemplateBinding Background}"
 BorderBrush="Black"
 HorizontalAlignment="Stretch" CornerRadius="5,5,5,5"
 VerticalAlignment="Stretch"/>
 <Border x:Name="elemPBar"
 Background="{TemplateBinding Foreground}"
 BorderBrush="Transparent"
 VerticalAlignment="Stretch" CornerRadius="5,5,5,5"
 Width="0" HorizontalAlignment="Left"/>
 <ContentPresenter
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Content="{TemplateBinding Content}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 HorizontalContentAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalContentAlignment="{TemplateBinding VerticalContentAlignment}"
 Foreground="Black"/>
 </Grid>
 </ControlTemplate>

 <Style TargetType="custom:ProgressBar" x:Key="STYLE_CustomProgressBar" >
 <Setter Property="Template" Value="{StaticResource ctCustomProgressBar}"/>
 <Setter Property="Foreground" >
 <Setter.Value>

CHAPTER 5 ■ CONTROLS

436

 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF0040FF"/>
 <GradientStop Color="#FF8FA8F5" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Background" Value="White" />
 </Style>

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>
 <ListBox ItemTemplate="{StaticResource dtImageDisplay}" x:Name="lbxImages" >
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <wrap:WrapPanel Orientation="Horizontal" Height="1300" Width="700"/>
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>
 <custom:ProgressBar x:Name="pbarOverallProgress " Height="40" Width="600"
 CurrentValue="{Binding ImageCount}"
 Grid.Row="1" Margin="0,10,0,0"
 MaximumValue="{Binding TotalImages}"
 MinimumValue="0"
 Content="{Binding}"
 Style="{StaticResource STYLE_CustomProgressBar}"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center">
 <custom:ProgressBar.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock FontSize="13" Text="Downloaded" Margin="0,0,2,0"/>
 <TextBlock FontSize="13" Text="{Binding ImageCount}"
 Margin="0,0,2,0"/>
 <TextBlock FontSize="13" Text="of" Margin="0,0,2,0"/>
 <TextBlock FontSize="13" Text="{Binding TotalImages}"
 Margin="0,0,2,0"/>
 <TextBlock FontSize="13" Text="images" />
 </StackPanel>
 </DataTemplate>

CHAPTER 5 ■ CONTROLS

437

 </custom:ProgressBar.ContentTemplate>
 </custom:ProgressBar>

 </Grid>
</UserControl>

You use a data template named dtImageDisplay to display the images as items in your ListBox
lbxImages. Note that dtImageDisplay includes an Image control and a ProgressBar control. Image.Source is
bound to the PngImage property of the current data item. The MinimumValue and MaximumValue properties on
ProgressBar are set to a range of 0 to 100 to indicate a percentage value of progress, and the CurrentValue is
bound to the DownloadProgress property of the current data item. The Content property on the ProgressBar is
also bound to the DownloadProgress value, and a ContentTemplate is defined for the ProgressBar so that the
DownloadProgress is displayed in a TextBlock within the ContentTemplate. The Visibility properties of both
the Image and the ProgressBar controls are bound to two properties on the current data item as well.

The pbarOverallProgress Progressbar is set with its CurrentValue bound to the ImageCount property
and its MaximumValue bound to the TotalImages property of the DataContext of the LayoutRoot Grid. You
again define an appropriate ContentTemplate to display the overall progress of your download in terms
of the number of images downloaded.

Also note that you define a custom control template for the ProgressBar control and associate it
with pbarOverallProgress through a style. In this template, you use Borders with rounded corners to
replace the Rectangles used in the default template. Since you satisfy the named template part
requirement, and both Border and Rectangle extend FrameworkElement (which is what you expect in your
control code), your control continues to work fine with this new control template.

Listing 5-29 shows the codebehind for the page.

Listing 5-29. Codebehind for the page populating the photo ListBox

using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.IO;
using System.Net;
using System.Threading;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Imaging;
using System.Xml.Linq;
using Recipe5_10.AdvWorks;

namespace Recipe5_10
{
 public partial class MainPage : UserControl
 {
 AdvWorksDataServiceClient client =
 new AdvWorksDataServiceClient();

 private const string DownloadSvcUri =
 "http://localhost:9191/AdvWorksPhotoService.svc/Photos?Id={0}";

http://localhost:9191/AdvWorksPhotoService.svc/Photos?Id=

CHAPTER 5 ■ CONTROLS

438

 internal TotalDownloadCounter TotalDownloadData = null;

 internal ObservableCollection<ImageData> listImages =
 new ObservableCollection<ImageData>();

 public MainPage()
 {
 InitializeComponent();
 GetPhotos();
 }

 private void GetPhotos()
 {
 listImages.Clear();
 lbxImages.ItemsSource = listImages;

 client.GetPhotoIdsCompleted +=
 new EventHandler<GetPhotoIdsCompletedEventArgs>(
 delegate(object sender, GetPhotoIdsCompletedEventArgs e)
 {
 TotalDownloadData =
 new TotalDownloadCounter
 {
 ImageCount = 0,
 TotalImages = e.Result.Count
 };
 LayoutRoot.DataContext = TotalDownloadData;
 foreach (int PhotoId in e.Result)
 {
 ImageData TempImageData =
 new ImageData
 {
 DownloadProgress = 0,
 ImageVisible = Visibility.Collapsed,
 ProgBarVisible = Visibility.Visible,
 PngImage = new BitmapImage()
 };

 listImages.Add(TempImageData);
 DownloadPhoto(PhotoId, TempImageData);
 }
 });
 client.GetPhotoIdsAsync();
 }

CHAPTER 5 ■ CONTROLS

439

 private void DownloadPhoto(int PhotoId, ImageData TempImageData)
 {
 WebClient wc = new WebClient();
 wc.DownloadProgressChanged +=
 new DownloadProgressChangedEventHandler(
 delegate(object sender, DownloadProgressChangedEventArgs e)
 {
 (e.UserState as ImageData).DownloadProgress = e.ProgressPercentage;
 Thread.Sleep(5);
 });
 wc.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 delegate(object sender, DownloadStringCompletedEventArgs e)
 {
 ImageData ImgSource = e.UserState as ImageData;
 //parse XML formatted response string into an XDocument
 XDocument xDoc = XDocument.Parse(e.Result);
 //grab the root, and decode the default base64
 //representation into the image bytes
 byte[] Buff = Convert.FromBase64String((string)xDoc.Root);
 //wrap in a memory stream, and
 MemoryStream ms = new MemoryStream(Buff);
 ImgSource.PngImage.SetSource(ms);
 ms.Close();
 (e.UserState as ImageData).ProgBarVisible = Visibility.Collapsed;
 (e.UserState as ImageData).ImageVisible = Visibility.Visible;
 ++TotalDownloadData.ImageCount;
 });

 wc.DownloadStringAsync(new Uri(
 string.Format(DownloadSvcUri, PhotoId)), TempImageData);
 }
 }

 public class TotalDownloadCounter : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 private double _TotalImages;
 public double TotalImages
 {
 get { return _TotalImages; }
 set
 {
 _TotalImages = value;
 if (PropertyChanged != null)

CHAPTER 5 ■ CONTROLS

440

 PropertyChanged(this, new PropertyChangedEventArgs("TotalImages"));
 }
 }
private double _ImageCount;
 public double ImageCount
 {
 get { return _ImageCount; }
 set
 {
 _ImageCount = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ImageCount"));
 }
 }
 }

 public class ImageData : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 private double _DownloadProgress;
 public double DownloadProgress
 {
 get { return _DownloadProgress; }
 set
 {
 _DownloadProgress = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("DownloadProgress"));
 }
 }
 private Visibility _ImageVisible;
 public Visibility ImageVisible
 {
 get { return _ImageVisible; }
 set
 {
 _ImageVisible = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ImageVisible"));
 }
 }
private Visibility _ProgBarVisible;
 public Visibility ProgBarVisible
 {
 get { return _ProgBarVisible; }

CHAPTER 5 ■ CONTROLS

441

 set
 {
 _ProgBarVisible = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ProgBarVisible"));
 }
 }
 private BitmapImage _PngImage;
 public BitmapImage PngImage
 {
 get { return _PngImage; }
 set
 {
 _PngImage = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("PngImage"));
 }
 }
 }
}

Instances of the TotalDownloadCounter and the ImageData types serve as the data sources for
various bindings in your XAML in Listing 5-28.

In the GetPhotos() method, you first get all the photo IDs through the GetPhotoIds() service
operation. On completion, you initialize a new instance of TotalDownloadCounter and set the
DataContext on LayoutRoot. You then iterate over the photo IDs and use the DownloadPhoto() method to
download the photo. You create and initialize an ImageData instance so that the individual ProgressBar
in the photo data template is visible, add it to the collection data source bound to the ListBox, and pass
it to DownloadPhoto().

In DownloadPhoto(), you handle the DownloadProgressChanged event on the WebClient and update the
DownloadProgress property of the ImageData instance, which causes each individual ProgressBar to report
the download progress of that photo. Once the download is completed, you handle
DownloadStringCompleted, where you convert the downloaded Base64 encoded string into an image and
set the PngImage property to display the image. You also hide the individual ProgressBar and display the
Image by setting the appropriately bound Visibility properties. Finally, you increment the
TotalDownloadData.ImageCount so the pbarOverallProgress reports the number of full images downloaded
so far.

To test the Orientation property of the ProgressBar control discussed earlier, set the Orientation
property on the individual ProgressBar controls in the dtImageDisplay data template shown in Listing
5-28 to Vertical.

Figure 5-25 shows the user interface for the sample.

CHAPTER 5 ■ CONTROLS

442

Figure 5-25. Displaying a progress bar when downloading photos

5-11. Defining a Custom Visual State

Problem
You want to define a custom visual state in a custom control that you are creating.

Solution
Use the TemplateVisualStateAttribute to declare the custom visual state on the control, define
storyboards for the states in the control template, and then use VisualStateManager.GoToState() to
navigate to the state when appropriate.

How It Works
As mentioned in Recipe 5-2, a visual state is identified by its x:Name attribute value and its
membership is specified in a named group of states. And you also saw that a visual state is
implemented in terms of a storyboard inside the control template for the control. Consult Recipe 5-2
for detailed background information on how you might be able to use them while consuming a control.
This recipe covers how to add your own visual state definition to a custom control.

CHAPTER 5 ■ CONTROLS

443

The TemplateVisualStateAttribute type is the mechanism you use to add a visual state to your
custom control implementation, where you specify the name and group membership of the state. This
code shows an example of adding two visual states to a custom control type named Expander:

[TemplateVisualState(Name = "Expanded", GroupName = "ExpanderStates")]
[TemplateVisualState(Name = "Normal", GroupName = "CommonStates")]
public class Expander : ContentControl
{

}

Note that the TemplateVisualState attribute declarations are purely suggestive in nature and are
not required in order for visual states to work correctly. They help in providing information to the
developer and to tools like Expression Blend (through .NET reflection) as to what visual states and
state groups are expected by the control in its control template.

The System.Windows.VisualStateManager type is central to how visual states work. You use the
VisualStateManager.GoToState() static method in appropriate places in your code where you might
want to navigate the control to that state. The following code shows an example where you are
navigating to the Expanded state on a specific event handler inside a control’s implementation:

void btnToggler_Checked(object sender, RoutedEventArgs e)
{
 VisualStateManager.GoToState(this, "Expanded", true);
}

The first parameter to GoToState() is the control instance itself, and the last parameter, if set to
true, instructs the VisualStateManager to use any transitions defined in the control template; if it’s set
to false, transitions are ignored.

The Code
The code sample implements an Expander custom control with a header and body area, each with their
own content and content template options. The default template also defines a
Systems.Windows.Controls.Primitives.ToggleButton used to expand and contract the body of the
Expander. The ToggleButton type is the base class for multistate buttons like CheckBox and RadioButton
and exposes Checked and Unchecked states.

Listing 5-30 shows the control implementation for Expander.

Listing 5-30. Expander control code

using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;

namespace Recipe5_11
{
 [TemplateVisualState(Name = "Expanded", GroupName = "ExpanderStates")]
 [TemplateVisualState(Name = "Normal", GroupName = "CommonStates")]
 public class Expander : ContentControl

CHAPTER 5 ■ CONTROLS

444

 {

 public static DependencyProperty HeaderContentProperty =
 DependencyProperty.Register("HeaderContent", typeof(object),
 typeof(Expander),
 new PropertyMetadata(null));
 public object HeaderContent
 {
 get
 {
 return GetValue(HeaderContentProperty);
 }
 set
 {
 SetValue(HeaderContentProperty, value);
 }
 }

 public static DependencyProperty HeaderContentTemplateProperty =
 DependencyProperty.Register("HeaderContentTemplate", typeof(DataTemplate),
 typeof(Expander),
 new PropertyMetadata(null));
 public object HeaderContentTemplate
 {
 get
 {
 return (DataTemplate)GetValue(HeaderContentTemplateProperty);
 }
 set
 {
 SetValue(HeaderContentTemplateProperty, value);
 }
 }

 private ToggleButton btnToggler;

 public Expander()
 {
 base.DefaultStyleKey = typeof(Expander);
 }
 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();
 btnToggler = GetTemplateChild("toggler") as ToggleButton;
 if (btnToggler != null)

CHAPTER 5 ■ CONTROLS

445

 {
 btnToggler.Checked += new RoutedEventHandler(btnToggler_Checked);
 btnToggler.Unchecked += new RoutedEventHandler(btnToggler_Unchecked);
 }
 }

 void btnToggler_Unchecked(object sender, RoutedEventArgs e)
 {
 VisualStateManager.GoToState(this, "Normal", true);
 }

 void btnToggler_Checked(object sender, RoutedEventArgs e)
 {
 VisualStateManager.GoToState(this, "Expanded", true);
 }

 }
}

You can see the definitions for the two visual states Expanded and Normal in Listing 5-30. In
OnApplyTemplate(), you try to acquire the ToggleButton that you expect to be in the template. If you do,
you attach handlers to the Checked and Unchecked events. In the btnToggler_Checked() handler, you
navigate to the Expanded visual state, and in the btnToggler_Unchecked() handler, you navigate back to
the Normal visual state.

As far as the control implementation goes, this is all you need to do to enable the visual states. The
rest of the control’s code is to support the Expander functionality. The two dependency properties,
HeaderContent and HeaderContentTemplate, are defined to give the user an opportunity to provide
content and define a data template for the Header part of the control. The Content and the
ContentTemplate properties that the control inherits from ContentControl serve the same purpose for
Expander body.

Listing 5-31 shows generic.xaml for the Expander.

Listing 5-31. The generic.xaml for the Expander control

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Recipe5_11"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 >
 <ControlTemplate TargetType="ToggleButton" x:Key="ctExpanderToggle">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.3*" />
 <RowDefinition Height="0.4*" />
 <RowDefinition Height="0.3*" />
 </Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

446

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.3*" />
 <ColumnDefinition Width="0.4*" />
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 To="MouseOver"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00" From="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="Path"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF000000"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>

 </vsm:VisualStateGroup>

 </vsm:VisualStateManager.VisualStateGroups>
 <Path x:Name="Path" Stretch="Fill" Fill="#FF054B4A"
 Data="F1 M 15.1257,30.0726L 30.1081,0L 0,0.0718536L 15.1257,30.0726 Z "
 RenderTransformOrigin="0.5,0.5" Grid.Row="1" Grid.Column="1"/>
 </Grid>
 </ControlTemplate>

 <Style x:Key="styleExpanderToggle" TargetType="ToggleButton">
 <Setter Property="Template" Value="{StaticResource ctExpanderToggle}"/>
 </Style>

 <ControlTemplate x:Key="ctExpander" TargetType="local:Expander">
 <Grid HorizontalAlignment="{TemplateBinding HorizontalAlignment}"
 VerticalAlignment="{TemplateBinding VerticalAlignment}">
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="ExpanderStates">
 <vsm:VisualStateGroup.Transitions>

CHAPTER 5 ■ CONTROLS

447

 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 To="Expanded"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 From="Expanded"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Expanded">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="Body"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.2*"/>
 <RowDefinition Height="0.8*"/>
 </Grid.RowDefinitions>
 <Border Height="Auto" Margin="0,0,0,0" VerticalAlignment="Stretch"
 Grid.Row="0" BorderThickness="2,2,2,2" BorderBrush="#FF000000"
 x:Name="Header">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF0BC4C3"/>
 <GradientStop Color="#FF055352" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.80*"/>
 <ColumnDefinition Width="0.20*"/>
 </Grid.ColumnDefinitions>
 <ToggleButton HorizontalAlignment="Center" VerticalAlignment="Center"
 Content="ToggleButton" Margin="2,2,2,2" Grid.Column="1"
 Style="{StaticResource styleExpanderToggle}"

CHAPTER 5 ■ CONTROLS

448

 x:Name="toggler" >
 </ToggleButton>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="{TemplateBinding HeaderContent}"
 ContentTemplate="{TemplateBinding HeaderContentTemplate}"
 x:Name="cpHdr"/>
 </Grid>
 </Border>
 <Border Height="Auto" Margin="0,0,0,0" VerticalAlignment="Stretch"
 Grid.Row="1" Background="#FFFFFFFF"
 BorderThickness="2,0,2,2" BorderBrush="#FF000000"
 x:Name="Body"
 Visibility="Collapsed">
 <ContentPresenter HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 x:Name="cpBody"/>
 </Border>
 </Grid>

 </ControlTemplate>
 <Style TargetType="local:Expander">
 <Setter Property="HeaderContent" Value="Header here" />
 <Setter Property="HeaderContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <TextBlock Text="{Binding}" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Content" Value="Body here" />
 <Setter Property="ContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <TextBlock Text="{Binding}" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Template" Value="{StaticResource ctExpander}" />
 </Style>
</ResourceDictionary>

CHAPTER 5 ■ CONTROLS

449

The ctExpander control template is made up of two primary parts: the header and the body. The
header portion is a Border named Header, a ContentPresenter named cpHdr, and a ToggleButton named
toggler. cpHdr has its Content and ContentTemplate properties bound to the HeaderContent and the
HeaderContentTemplate dependency properties, respectively, on the control. The body is a Border
named Body, within which is another ContentPresenter cpBody with its Content and ContentTemplate
properties bound to the identical properties on the Expander control itself. The Border named Body has
its initial visibility set to Collapsed. You also apply a custom template to the ToggleButton to fix its
content to a Path representing a directional arrow pointing downward and include a specific
MouseOver state to vary the color.

In ctExpander, you can also see the Expanded visual state defined as a storyboard, in which you use
an ObjectAnimation to transition Body to a Visible state. Note that this is the default implementation of
the state storyboard as defined by the original control author in the default template.

If you were to use the Expander control as defined here on a page, you would see the output as
shown in Figure 5-26, which shows the Expander both in its Normal and Expanded states.

Figure 5-26. Expander control using default UI in Normal and Expanded states

Now, let’s say you want to rotate the ToggleButton directional arrow to point upward when the
body is expanded to provide a visual cue to the user that the body will be Collapsed again on the next
click of the ToggleButton. You want to do this without changing the control, but by providing a custom
template when you use the control. Listing 5-32 shows an XAML page where you create a copy of the
Expander control template and add an additional animation to the Expanded visual state to achieve this.

Listing 5-32. Addition to the Expanded visual state through a custom yemplate

<UserControl x:Class="Recipe5_11.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:exp=
"clr-namespace:Recipe5_11;assembly=Recipe5_11.ExpLib"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 Width="400" Height="300">
 <UserControl.Resources>
 <ControlTemplate TargetType="ToggleButton" x:Key="ctExpanderToggle">
 <Grid>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

450

 <Grid.RowDefinitions>
 <RowDefinition Height="0.3*" />
 <RowDefinition Height="0.4*" />
 <RowDefinition Height="0.3*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.3*" />
 <ColumnDefinition Width="0.4*" />
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 To="MouseOver"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00" From="MouseOver"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="Path"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF000000"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Path x:Name="Path" Stretch="Fill" Fill="#FF054B4A"
 Data="F1 M 15.1257,30.0726L 30.1081,0L 0,0.0718536L 15.1257,30.0726 Z "
 RenderTransformOrigin="0.5,0.5" Grid.Row="1" Grid.Column="1"/>
 </Grid>
 </ControlTemplate>
 <Style x:Key="styleExpanderToggle" TargetType="ToggleButton">
 <Setter Property="Template" Value="{StaticResource ctExpanderToggle}"/>
 </Style>
 <ControlTemplate x:Key="ctCustomExpander" TargetType="exp:Expander">
 <Grid HorizontalAlignment="{TemplateBinding HorizontalAlignment}"
 VerticalAlignment="{TemplateBinding VerticalAlignment}">
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="ExpanderStates">

CHAPTER 5 ■ CONTROLS

451

 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 To="Expanded"/>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 From="Expanded"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Expanded">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="toggler"
 Storyboard.TargetProperty=
"(UIElement.RenderTransform).(TransformGroup.Children)[2].(RotateTransform.Angle)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="-180"/>
 </DoubleAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="Body"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.2*"/>
 <RowDefinition Height="0.8*"/>
 </Grid.RowDefinitions>
 <Border Height="Auto" Margin="0,0,0,0" VerticalAlignment="Stretch"
 Grid.Row="0" BorderThickness="2,2,2,2" BorderBrush="#FF000000"
 x:Name="Header">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF0BC4C3"/>
 <GradientStop Color="#FF055352" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>

CHAPTER 5 ■ CONTROLS

452

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.80*"/>
 <ColumnDefinition Width="0.20*"/>
 </Grid.ColumnDefinitions>
 <ToggleButton HorizontalAlignment="Center" VerticalAlignment="Center"
 Content="ToggleButton" Margin="2,2,2,2" Grid.Column="1"
 Style="{StaticResource styleExpanderToggle}"
 x:Name="toggler" RenderTransformOrigin="0.5,0.5">
 <ToggleButton.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </ToggleButton.RenderTransform>
 </ToggleButton>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="{TemplateBinding HeaderContent}"
 ContentTemplate="{TemplateBinding HeaderContentTemplate}"
 x:Name="cpHdr"/>
 </Grid>
 </Border>
 <Border Height="Auto" Margin="0,0,0,0" VerticalAlignment="Stretch"
 Grid.Row="1" Background="#FFFFFFFF"
 BorderThickness="2,0,2,2" BorderBrush="#FF000000"
 x:Name="Body"
 Visibility="Collapsed">
 <ContentPresenter HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 x:Name="cpBody"/>
 </Border>
 </Grid>
 </ControlTemplate>
 <Style TargetType="exp:Expander" x:Key="STYLE_Expander">
 <Setter Property="Template" Value="{StaticResource ctCustomExpander}" />
 </Style>

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <exp:Expander Height="300" Width="200" Content="My Body"

CHAPTER 5 ■ CONTROLS

453

 HeaderContent="My Header"
 Style="{StaticResource STYLE_Expander}" />
 </Grid>
</UserControl>

As mentioned before, ctCustomExpander is a copy of the default control template for the Expander
control. You can use Expression Blend to create a copy of a control template for a control. Recipe 5-2
covers provides more information on using Expression Blend for control templates. The addition to
note here is the definition of the Expanded visual state in the ctCustomExpander control template, as well
as in the ToggleButton named toggler. You add a TransformGroup to toggler and set its
RenderTransformOrigin to (0.5,0.5). You then add an animation targeting toggler to the Expanded state
storyboard to animate the angle of a RotateTransform on toggler to –180 degrees. This has the desired
effect. Since the normal state defines no modifications to the template parts, the ToggleButton returns
to its original downward-pointing state, once you move off of the Expanded state, by clicking it again to
collapse the body. You can find more on animations in Chapter 3.

Also note that in both the default control template definition for the Expander in Listing 5-31 and
in the custom control template definition for the same in Listing 5-32, you have left out several of the
common state storyboard definitions for the ToggleButton, such as those for the Checked and Unchecked
visual states. This is because, in your example, you do not need to provide the user with any specific
visual cues when these states occur. However, that does not mean that these states are not occurring at
all. The ToggleButton control’s code implementation does navigate to these states, but because of the
lack of a storyboard definition in the templates, no corresponding visual state change occurs. Also note
that you have defined the Normal visual state for the ToggleButton in both cases as an empty storyboard.
You need this definition to allow visual state navigation to the initial normal visual state of the
ToggleButton from any of our other visual states, like Expanded. Without this definition, once a visual
state change took place, the ToggleButton control would never be able to return to its normal visual
state.

Figure 5-27 shows the Expander control with the additions made to the Expanded visual state.

Figure 5-27. Expander control with Expanded visual state additions through a custom template

CHAPTER 5 ■ CONTROLS

454

5-12. Controlling ScrollViewer Scroll Behavior

Problem
You want to programmatically control the scroll behavior of elements placed within a ScrollViewer
control.

Solution
Traverse the visual tree to access the ScrollBars in the ScrollViewer, and handle
ScrollBar.ValueChanged events to determine element positioning within the ScrollViewer.

How It Works
The System.Windows.Controls.ScrollViewer is a container control that can host content whose
dimensions are much larger than the dimensions of the ScrollViewer itself. When the hosted content
dimensions become larger in either Width or Height or both than the containing ScrollViewer,
horizontal and vertical Scrollbars can be automatically displayed by the ScrollViewer to allow the
user to view the content by scrolling within the ScrollViewer. In fact, many of the built-in controls like
ListBox and DataGrid utilize a ScrollViewer internally to host content that has dimensions much
greater than the container itself.

In scenarios where a ScrollViewer is used, you may also encounter the need to have some of the
elements in the contained content follow a different scroll behavior than the default behavior imposed
by the containing ScrollViewer. For instance, you may want a portion of the content to be constantly
visible no matter in which direction and by how much the ScrollViewer is scrolled.

An appropriate attempt would be to figure out the amount of scroll and then apply an appropriate
margin to the element that you want to keep visible (i.e., move the element in the direction of the
scroll to keep it from disappearing beyond the visible bounds of the ScrollViewer).

The challenge with this is that the ScrollViewer does not raise any events as users scroll through
the content. If you could access the ScrollBar controls contained in the ScrollViewer, you could attach
handlers to the ValueChanged events of the ScrollBar and implement the necessary logic. Given that
the ScrollViewer does not provide direct access to the internal ScrollBar control instances, how do
you go about doing that?

The VisualTreeHelper class

The System.Windows.Media.VisualTreeHelper class can help in traversing a visual tree and accessing
elements in the tree that you do not have access to. The VisualTreeHelper class has several static utility
methods that can be used to access the visual tree in several ways. The
FindElementsInHostCoordinates() method has two overloads that accept a Rect or a Point defined in
host coordinates (that is the coordinate system of the application’s root visual) and find all the
elements in the visual tree that intersect with that Point or fall within that Rect. Each overload also
accepts a UIElement as a second parameter to denote the root of the search in the visual tree. If this
parameter is set to null, the search covers the entire tree starting from the root. The VisualTreeHelper
has other interesting methods like GetParent() to get the visual parent of an element or GetChild() to
retrieve a child of an element at a specific index, and we encourage the reader to look up
VisualTreeHelper documentation in MSDN at msdn.microsoft.com/en-us/library/system.windows.
media.visualtreehelper(VS.95).aspx. This class can come in handy very often.

CHAPTER 5 ■ CONTROLS

455

For this recipe, you can use FindElementsInHostCoordinates() to locate the ScrollBars internal to
the ScrollViewer’s template definition and then respond to their events to control the scrolling
behavior.

Let’s now look at the code sample to see exactly how all of this ties together.

The Code
The code sample for this recipe hosts a ListBox within a ScrollViewer. The ListBox uses the WrapPanel
developed and used in Recipe 5-9 as its ItemsPanel. Within the ScrollViewer is also a separate menu
area that contains a ComboBox populated by product category data retrieved from the AdventureWorks
WCF service discussed at the beginning of this chapter. Also, a Button in the menu area fetches all the
products for that product category and populates the ListBox. Once the ListBox is populated, you will
notice that scrolling the ScrollViewer scrolls the ListBox, but the menu area remains constantly in its
position no matter the amount or the direction of the scroll.

Figure 5-28 shows the user interface of the application with the ScrollViewer scrolled partially
both downward and to the right.

Figure 5-28. ScrollViewer in a partially scrolled state with scroll invariant content

Listing 5-33 shows the XAML for the page.

Listing 5-33. XAML for MainPage

<UserControl x:Class="Recipe5_12.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ CONTROLS

456

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:Panel=
"clr-namespace:Recipe5_9;assembly=Recipe5_9.WrapPanel"
 Width="640"
 Height="474">
 <UserControl.Resources>

 <DataTemplate x:Key="dtProductItem">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.694*" />
 <RowDefinition Height="0.153*" />
 <RowDefinition Height="0.153*" />
 </Grid.RowDefinitions>
 <Image MaxHeight="50"
 MaxWidth="50"
 Source="{Binding ProductPhoto.LargePhotoPNG}"
 Stretch="Fill"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch" />
 <TextBlock Text="{Binding Name}"
 TextWrapping="Wrap"
 Margin="8,8,8,10"
 Grid.Row="1" />
 <TextBlock Text="{Binding ProductSubCategory.Name}"
 TextWrapping="Wrap"
 Margin="8,8,8,10"
 Grid.Row="2" />
 </Grid>
 </DataTemplate>
 <DataTemplate x:Key="dtCategory">
 <TextBlock Text="{Binding Name}" />
 </DataTemplate>
 </UserControl.Resources>

 <ScrollViewer VerticalScrollBarVisibility="Auto"
 x:Name="scrollViewer"
 Padding="0"
 HorizontalScrollBarVisibility="Auto">
 <Grid x:Name="LayoutRoot">

 <Grid x:Name="ProductsData"
 Margin="0,50,0,0">
 <ListBox x:Name="lbxProducts"

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 5 ■ CONTROLS

457

 ItemTemplate="{StaticResource dtProductItem}"
 SelectionMode="Single">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <Panel:WrapPanel Orientation="Vertical"
 Width="950"
 Height="650" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>
 </Grid>

 <Border x:Name="brdrTopMenu"
 Height="50"
 VerticalAlignment="Top"
 HorizontalAlignment="Left"
 Margin="20,0,0,0"
 BorderBrush="Black"
 BorderThickness="1"
 Background="#FFA8A3A3"
 Padding="2,2,2,2">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.194*" />
 <ColumnDefinition Width="0.414*" />
 <ColumnDefinition Width="0.392*" />
 </Grid.ColumnDefinitions>
 <ComboBox x:Name="cbxCategories"
 ItemTemplate="{StaticResource dtCategory}"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 Width="256"
 Height="26"
 Grid.Column="1" />
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Product Category"
 TextWrapping="Wrap" />
 <Button x:Name="btnGetProducts"
 Margin="31,11,0,14"
 Content="Get Products"
 HorizontalAlignment="Left"
 Width="95"
 Grid.Column="2"
 VerticalAlignment="Center"

CHAPTER 5 ■ CONTROLS

458

 Click="btnGetProducts_Click" />
 </Grid>
 </Border>

 </Grid>
 </ScrollViewer>

</UserControl>

The Grid named ProductsData contains the ListBox that displays the product items. The Border
named brdrTopMenu contains the ComboBox displaying the product category information and the Button
that causes the product items for that category to be fetched and displayed. Both productsData and
brdrTopMenu are further contained within a Grid named LayoutRoot, which in turn sits within a
ScrollViewer named scrollViewer. The goal is to have scrollViewer be scrolled in any direction and
have productsData (and hence the contained ListBox) be scrolled accordingly, but brdrTopMenu (and
everything within) be always visible at the same position.

Listing 5-34 shows the codebehind implementing the necessary logic.

Listing 5-34. Codebehind for MainPage

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using Recipe5_12.AdvWorks;

namespace Recipe5_12
{
 public partial class MainPage : UserControl
 {
 internal ScrollBar HScollBar = null;
 internal ScrollBar VScollBar = null;

 public MainPage()
 {
 InitializeComponent();

 AdvWorksDataServiceClient client = new AdvWorksDataServiceClient();
 client.GetAllCategoriesCompleted +=
 new EventHandler<GetAllCategoriesCompletedEventArgs>((s, e) =>
 {

CHAPTER 5 ■ CONTROLS

459

 cbxCategories.ItemsSource = e.Result;
 });
 client.GetAllCategoriesAsync();

 scrollViewer.LayoutUpdated += new EventHandler((s, e) =>
 {
 if (HScollBar == null || VScollBar == null)
 {
 List<ScrollBar> scbars =
 VisualTreeHelper.FindElementsInHostCoordinates(
 scrollViewer.TransformToVisual(
 Application.Current.RootVisual).TransformBounds(
 new Rect(0, 0, scrollViewer.ActualWidth, scrollViewer.ActualHeight)),
 scrollViewer).
 Where((uie) => uie is ScrollBar).Cast<ScrollBar>().ToList();

 foreach (ScrollBar sc in scbars)
 {
 if (sc.Orientation == Orientation.Horizontal && HScollBar == null)
 {
 HScollBar = sc;
 sc.ValueChanged +=
 new RoutedPropertyChangedEventHandler<double>(OnHScrollValueChanged);
 }
 else if (sc.Orientation == Orientation.Vertical && VScollBar == null)
 {
 VScollBar = sc;
 sc.ValueChanged +=
 new RoutedPropertyChangedEventHandler<double>(OnVScrollValueChanged);
 }
 }
 }
 });
 }

 void OnHScrollValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {

 brdrTopMenu.Margin = new Thickness
 {
 Left = brdrTopMenu.Margin.Left + (e.NewValue - e.OldValue),
 Top = brdrTopMenu.Margin.Top,
 Right = brdrTopMenu.Margin.Right,
 Bottom = brdrTopMenu.Margin.Bottom

CHAPTER 5 ■ CONTROLS

460

 };

 }

 void OnVScrollValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {
 brdrTopMenu.Margin = new Thickness
 {
 Left = brdrTopMenu.Margin.Left,
 Top = brdrTopMenu.Margin.Top + (e.NewValue - e.OldValue),
 Right = brdrTopMenu.Margin.Right,
 Bottom = brdrTopMenu.Margin.Bottom
 };
 }

 private void btnGetProducts_Click(object sender, RoutedEventArgs e)
 {
 AdvWorksDataServiceClient client = new AdvWorksDataServiceClient();
 client.GetProductsForCategoryCompleted +=
 new EventHandler<GetProductsForCategoryCompletedEventArgs>((s, args) =>
 {
 lbxProducts.ItemsSource = args.Result;
 client.GetSubcategoryCompleted +=
 new EventHandler<GetSubcategoryCompletedEventArgs>((s1, e1) =>
 {
 (e1.UserState as Product).ProductSubCategory = e1.Result;
 });
 client.GetPhotosCompleted +=
 new EventHandler<GetPhotosCompletedEventArgs>((s2, e2) =>
 {
 (e2.UserState as Product).ProductPhoto = e2.Result;
 });
 client.GetInventoryCompleted +=
 new EventHandler<GetInventoryCompletedEventArgs>((s3, e3) =>
 {
 Product p = (e3.UserState as Product);
 p.ProductInventories = e3.Result;
 p.InventoryLevelBrush = null;
 p.InventoryLevelMessage = null;
 });
 foreach (Product prod in args.Result)
 {
 client.GetPhotosAsync(prod, prod);
 client.GetSubcategoryAsync(prod, prod);
 client.GetInventoryAsync(prod, prod);

CHAPTER 5 ■ CONTROLS

461

 }

 });
 if (cbxCategories.SelectedItem != null)
 client.
 GetProductsForCategoryAsync(
 cbxCategories.SelectedItem as ProductCategory);
 }

 }
}
namespace Recipe5_12.AdvWorks
{
 public partial class ProductPhoto
 {
 private BitmapImage _LargePhotoPNG;

 public BitmapImage LargePhotoPNG
 {
 get
 {
 BitmapImage bim = new BitmapImage();
 MemoryStream ms = new MemoryStream(this.LargePhoto.Bytes);
 bim.SetSource(ms);
 ms.Close();
 return bim;
 }
 set
 {
 RaisePropertyChanged("LargePhotoPNG");
 }
 }
 }

 public partial class Product
 {
 private SolidColorBrush _InventoryLevelBrush;
 public SolidColorBrush InventoryLevelBrush
 {
 get
 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ?
 new SolidColorBrush(Colors.Gray) :
 (this.ProductInventories[0].Quantity > this.SafetyStockLevel ?

CHAPTER 5 ■ CONTROLS

462

 new SolidColorBrush(Colors.Green) :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 new SolidColorBrush(Colors.Yellow) :
 new SolidColorBrush(Colors.Red)));
 }
 set
 {
 //no actual value set here - just property change raised
 RaisePropertyChanged("InventoryLevelBrush");
 }
 }
 private string _InventoryLevelMessage;
 public string InventoryLevelMessage
 {
 get
 {
 return (this.ProductInventories == null
 || this.ProductInventories.Count == 0) ?
 "Stock Level Unknown" :
 (this.ProductInventories[0].Quantity > this.SafetyStockLevel ?
 "In Stock" :
 (this.ProductInventories[0].Quantity > this.ReorderPoint ?
 "Low Stock" : "Reorder Now"));
 }
 set
 {
 //no actual value set here - just property change raised
 RaisePropertyChanged("InventoryLevelMessage");
 }
 }
 private ProductSubcategory _productSubCategory;
 public ProductSubcategory ProductSubCategory
 {
 get { return _productSubCategory; }
 set
 {
 _productSubCategory = value;
 RaisePropertyChanged("ProductSubCategory");
 }
 }
 private ProductCategory _productCategory;
 public ProductCategory ProductCategory
 {
 get { return _productCategory; }
 set { _productCategory = value; RaisePropertyChanged("ProductCategory"); }

CHAPTER 5 ■ CONTROLS

463

 }

 private ProductPhoto _productPhoto;
 public ProductPhoto ProductPhoto
 {
 get { return _productPhoto; }
 set { _productPhoto = value; RaisePropertyChanged("ProductPhoto"); }
 }
 }
}

We are going to discuss only the portions of the code that pertain to the immediate problem here.
For an explanation of the rest of the code, most of which deals with WCF service calls to the
AdventureWorks service to fetch data, refer to Recipe 5-3.

In Listing 5-34, note the handler for the LayoutUpdated event for the ScrollViewer. You use the
VisualTreeHelper.FindElementsInHostCoordinates() method to try to locate the two ScrollBars in the
ScrollViewer. You pass in a Rect instance that contains a rectangle defining the bounds of the
ScrollViewer transformed to host coordinates. For an explanation of coordinate system
transformation using the TransformToVisual() method, refer to Recipe 5-4. You also pass in the
ScrollViewer as the second parameter to start the search of the visual tree at the ScrollViewer moving
down. Finally, you filter the resulting collection using LINQ to extract just the ScrollBar typed
instances.

Once that is done, wire up the handler to the ValueChanged events of each ScrollBar, and store
them in two member variables named HScrollBar and VScrollBar, respectively. This needs a little bit
more explanation. The ScrollViewer can be configured to display its ScrollBars automatically as
needed (i.e., when the content dimensions grow beyond the visible bounds). Thus, depending on the
current dimensions of the content and the ScrollViewer settings, either or neither ScrollBar may show
up initially. Since the LayoutUpdated event gets raised by the ScrollViewer each time such a layout
change occurs, you are guaranteed to eventually locate both ScrollBars, even if they are not available
on the first occurrence of that event. To avoid attaching event handlers multiple times to the
ValueChanged events, you store them in local variables and check for null to ensure this is the first
time you are locating them.

If you look at the handlers for the ValueChanged events, named OnHScrollValueChanged and
OnVScrollValueChanged, you simply set the appropriate Margin dimension on the brdrTopMenu element
to the amount covered in the last scroll event. The Margin dimension is either Margin.Left or
Margin.Top depending on whether the scroll is a horizontal or a vertical one. This shift of Margin works
both ways—depending on the direction of the scroll, the difference of e.NewValue and e.OldValue may
be a positive or a negative value, thus moving the brdrTopMenu further away from or closer to the edge
in question. This causes the brdrTopMenu to always seem to stay visible at the same position with
respect to the visible portion of the content within the ScrollViewer.

5-13. Customizing the Binding Validation User
Interface

Problem
You want to customize the default user interface built into Silverlight for displaying binding validation
errors and validation summary.

CHAPTER 5 ■ CONTROLS

464

Solution
To modify the validation error displayed at the control that is in error, customize the control template
and change the ValidationTooltipTemplate. To customize the ValidationSummary user interface, modify
the ValidationSummary control template, which is a new addition in Silverlight 3.

How It Works
This recipe discusses the mechanisms to modify that default user interface. For more details on how the
default user interface for displaying binding validation errors are utilized, refer to Recipe 4-6.

Validation Error Tooltip

The default user interface of a validation error involves a red border and a corner glyph on the control
concerned and a ToolTip containing the error message that appears alongside the control when the
user hovers on the glyph. Figure 5-29a shows this user interface.

Figure 5-29a. Default user interface for validation error message

This user interface is built into the template of the control with which the error display is
associated. Unfortunately, there is no straightforward way to replace this user interface other than
modifying the control template of the control in question. Let’s use a TextBox control as an example,
with its default control template shown in Listing 5-35. For the sake of brevity, we have listed only the
portions pertinent to validation error display.

Listing 5-35. Partial control template of a TextBox control

<Style x:Key="styleTextBoxDefault" TargetType="TextBox">
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="Background" Value="#FFFFFFFF"/>
 <Setter Property="Foreground" Value="#FF000000"/>
 <Setter Property="Padding" Value="2"/>
 <Setter Property="BorderBrush">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFA3AEB9" Offset="0"/>
 <GradientStop Color="#FF8399A9" Offset="0.375"/>
 <GradientStop Color="#FF718597" Offset="0.375"/>
 <GradientStop Color="#FF617584" Offset="1"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Template">

CHAPTER 5 ■ CONTROLS

465

 <Setter.Value>
 <ControlTemplate TargetType="TextBox">
 <Grid x:Name="RootElement">
 <VisualStateManager.VisualStateGroups>
 ...
 <VisualStateGroup x:Name="ValidationStates">
 <VisualState x:Name="Valid"/>
 <VisualState x:Name="InvalidUnfocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ValidationErrorElement"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="InvalidFocused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ValidationErrorElement"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="validationTooltip"
 Storyboard.TargetProperty="IsOpen">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <System:Boolean>True</System:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 ...

CHAPTER 5 ■ CONTROLS

466

 <Border x:Name="ValidationErrorElement" Visibility="Collapsed"
 BorderBrush="#FFDB000C" BorderThickness="1" CornerRadius="1">
 <ToolTipService.ToolTip>
 <ToolTip x:Name="validationTooltip"
 DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}"
 Template="{StaticResource ValidationToolTipTemplate}"
 Placement="Right"
 PlacementTarget=
 "{Binding RelativeSource={RelativeSource TemplatedParent}}">
 <ToolTip.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="validationTooltip"
 Storyboard.TargetProperty="IsHitTestVisible">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <System:Boolean>true</System:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </ToolTip.Triggers>
 </ToolTip>
 </ToolTipService.ToolTip>
 <Grid Height="12" HorizontalAlignment="Right" Margin="1,-4,-4,0"
 VerticalAlignment="Top" Width="12" Background="Transparent">
 <Path Fill="#FFDC000C" Margin="1,3,0,0"
 Data="M 1,0 L6,0 A 2,2 90 0 1 8,2 L8,7 z"/>
 <Path Fill="#ffffff" Margin="1,3,0,0"
 Data="M 0,0 L2,0 L 8,6 L8,8"/>
 </Grid>
 </Border>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The first thing to notice is the Border element named ValidationErrorElement, which has
additional elements in it that constitute the red border and glyph displayed on a validation error. If
you look at the visual states defined on the TextBox control, you will see that the InvalidFocused and

CHAPTER 5 ■ CONTROLS

467

InvalidUnfocused states actually make the validationErrorElement visible and those states are
navigated to from within the TextBox code when a validation error happens.

You should also note the ToolTip named validationToolTip associated with
validationErrorElement. This is what causes the ToolTip error to display when the user hovers on the
glyph. tooltipErrorDisplay has its control template bound to a control template name
ValidationToolTipTemplate. This control template is also automatically created whenever you create a
custom template for the TextBox (or any other control that supports validation) in Expression Blend 3;
the default version is listed in Listing 5-36.

Listing 5-36. Default ValidationTooltipTemplate definition

<ControlTemplate x:Key="ValidationToolTipTemplate">
 <Grid x:Name="Root" Margin="5,0" Opacity="0" RenderTransformOrigin="0,0">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="OpenStates">
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0"/>
 <VisualTransition GeneratedDuration="0:0:0.2" To="Open">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="xform"
 Storyboard.TargetProperty="X">
 <SplineDoubleKeyFrame KeyTime="0:0:0.2" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0:0:0.2" Value="1"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 <VisualState x:Name="Closed">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Open">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="xform"
 Storyboard.TargetProperty="X">
 <SplineDoubleKeyFrame KeyTime="0" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">

CHAPTER 5 ■ CONTROLS

468

 <SplineDoubleKeyFrame KeyTime="0" Value="1"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Grid.RenderTransform>
 <TranslateTransform x:Name="xform" X="-25"/>
 </Grid.RenderTransform>
 <Border Margin="4,4,-4,-4" Background="#052A2E31" CornerRadius="5"/>
 <Border Margin="3,3,-3,-3" Background="#152A2E31" CornerRadius="4"/>
 <Border Margin="2,2,-2,-2" Background="#252A2E31" CornerRadius="3"/>
 <Border Margin="1,1,-1,-1" Background="#352A2E31" CornerRadius="2"/>
 <Border Background="#FFDC000C" CornerRadius="2"/>
 <Border CornerRadius="2">
 <TextBlock Margin="8,4,8,4" MaxWidth="250" UseLayoutRounding="false"
 Foreground="White"
 Text="{Binding (Validation.Errors)[0].ErrorContent}"
 TextWrapping="Wrap"/>
 </Border>
 </Grid>
</ControlTemplate>

The easiest place to start modifying the default appearance of the validation error display is by
modifying the ValidationTooltipTemplate. There is a small example of this in the code sample to
follow.

Also note the binding declaration for the Text property of the TextBlock displaying the error
message. The System.Windows.Controls.Validation class is static and exposes a dependency property
named Errors, defined as a collection of ValidationError types. The ValidationError type, in turn,
exposes an ErrorContent property of type Object and an Exception property of type Exception to define
the actual error that it represents. Binding the Text property to the ErrorContent property of the
ValidationError type causes the error to be displayed within the ToolTip.

The ValidationSummary Control

The ValidationSummary control is used to display a collection of all validation errors on a form at any
time during the edit process, and its default use is described in Recipe 4-6, whereas Figure 5-29b shows
an example of the default user interface.

CHAPTER 5 ■ CONTROLS

469

Figure 5-29b Default User Interface for Validation Summary

To enable customizing the header area of the ValidationSummary control, a HeaderTemplate

property of type DataTemplate is available on the ValidationSummary control, which, in turn, uses the
value set in the ValidationSummary.Header property as its data source. There is an example of this later
on in the code sample.

The ValidationSummary control internally uses a ListBox to display the list of errors. Each item in
the ListBox gets bound to an instance of a System.Windows.Controls.ValidationSummaryItem type. The
ValidationSummaryItem instance is created automatically by the runtime for each validation error and
exposes a MessageHeader and Message property that gets bound to each item in the ListBox using the
ItemTemplate property setting on the internal ListBox.

The data template used for the ListBox.ItemTemplate inside the ValidationSummary is
unfortunately defined within the default control template and not exposed externally through the
ValidationSummary control. So, to replace that data template and change how the
ValidationSummaryItem properties get bound and displayed, you need to provide a custom template for
the entire ValidationSummary control.

If, however, you want to change the UI for each ListBoxItem that represents an error item, you can
set ValidationSummary.ErrorStyle to a custom style containing your custom control template for a
ListBoxItem without having to modify the entire ValidationSummary control template. The style applied
here gets bound to the ItemContainerStyle property of the ListBox that ValidationSummary uses
internally, and hence impacts the look and feel of the ListBoxItem for each individual error item. We
will look at an example of this as well.

The Code
To illustrate these ideas, we extend the code sample from Recipe 4-7. Since there are no changes to the
codebehind for this, we only focus on the XAML, listing only the pertinent parts. We encourage you to
go to the download files available for this book for the complete code listings. Let’s start with a
customization to the ValidationToolTipTemplate control template, as shown in Listing 5-37.

CHAPTER 5 ■ CONTROLS

470

Listing 5-37. Customized ValidationToolTipTemplate

<ControlTemplate x:Key="CustomValidationToolTipTemplate">
 <Grid x:Name="Root"
 Margin="5,0"
 Opacity="0"
 RenderTransformOrigin="0,0">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="OpenStates">
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0" />
 <VisualTransition GeneratedDuration="0:0:0.2"
 To="Open">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="xform"
 Storyboard.TargetProperty="X">
 <SplineDoubleKeyFrame KeyTime="0:0:0.2"
 Value="0" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0:0:0.2"
 Value="1" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 <VisualState x:Name="Closed">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0"
 Value="0" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Open">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="xform"
 Storyboard.TargetProperty="X">
 <SplineDoubleKeyFrame KeyTime="0"
 Value="0" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="Opacity">

CHAPTER 5 ■ CONTROLS

471

 <SplineDoubleKeyFrame KeyTime="0"
 Value="1" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Grid.RenderTransform>
 <TranslateTransform x:Name="xform"
 X="-25" />
 </Grid.RenderTransform>
 <Border Margin="4,4,-4,-4"
 Background="#052A2E31"
 CornerRadius="5" />
 <Border Margin="3,3,-3,-3"
 Background="#152A2E31"
 CornerRadius="4" />
 <Border Margin="2,2,-2,-2"
 Background="#252A2E31"
 CornerRadius="3" />
 <Border Margin="1,1,-1,-1"
 Background="#352A2E31"
 CornerRadius="2" />
 <Border Background="#FFDC000C"
 CornerRadius="2" />
 <Border CornerRadius="2">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Margin="8,4,8,4"
 MaxWidth="250"
 UseLayoutRounding="false"
 Foreground="White"
 Text="{Binding (Validation.Errors)[0].ErrorContent}"
 TextWrapping="Wrap" />
 <Border Background="White"
 Margin="6,2,6,2"
 BorderThickness="1"
 BorderBrush="Black"
 Grid.Row="1">
 <TextBlock UseLayoutRounding="false"
 MaxWidth="250"
 Margin="2"

CHAPTER 5 ■ CONTROLS

472

 Foreground="Black"
 Text="{Binding (Validation.Errors)[0].Exception.StackTrace}"
 TextWrapping="Wrap" />
 </Border>
 </Grid>
 </Border>
 </Grid>
</ControlTemplate>

If you compare this with the default implementation in Listing 5-34, you will note the addition of
an extra TextBlock contained with a Border to the template with the TextBlock.Text property bound to
the ValidationError.Exception.StackTrace property for the error being displayed.

Listing 5-38 shows the binding of the CustomValidationTooltipTemplate control template to the
ToolTip.Template property for the validationToolTip within the TextBox control template and the
containing TextBox style being applied to a TextBox.

Listing 5-38. Applying CustomValidationToolTipTemplate to a TextBox

<Style x:Key="styleTextBox"
 TargetType="TextBox">
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="TextBox">
 <Grid x:Name="RootElement">
 ...
 <Border x:Name="ValidationErrorElement"
 Visibility="Collapsed"
 BorderBrush="#FFDB000C"
 BorderThickness="1"
 CornerRadius="1">
 <ToolTipService.ToolTip>
 <ToolTip x:Name="validationTooltip"
 DataContext=
 "{Binding RelativeSource={RelativeSource TemplatedParent}}"
 Template="{StaticResource CustomValidationToolTipTemplate}"
 Placement="Right"
 PlacementTarget="
 {Binding RelativeSource={RelativeSource TemplatedParent}}">
 ...
 </ToolTip>
 </ToolTipService.ToolTip>
 ...
 </Grid>
 </ControlTemplate>
 </Setter.Value>

CHAPTER 5 ■ CONTROLS

473

 </Setter>
</Style>

…
…

<TextBox Background="Transparent"
 Grid.Column="3"
 Margin="1,1,1,1"
 Grid.Row="3"
 Text="{Binding Address.State, Mode=TwoWay,
 NotifyOnValidationError=True, UpdateSourceTrigger=Explicit,
 ValidatesOnExceptions=True}"
 x:Name="tbxState"
 Style="{StaticResource styleTextBox}" />

This causes the stack trace to be displayed right below the error message, as shown in Figure 5-30a.

Figure 5-30a. Customized ValidationToolTipTemplate with a stack trace display

 Let’s look at the ValidationSummary control customization now. Start by creating a custom control
template for each individual ListBoxItem within the ValidationSummaryItem, as shown in Listing 5-39.
Recall that this template can be applied through the ValidationSummary.ErrorStyle property to change
the look and feel of each individual error item.

Listing 5-39. Control Template for the ListBoxItem used to display individual error items in a
Validation Summary

<Style x:Key="styleValidationSummaryErrorItem" TargetType="ListBoxItem">
 <Setter Property="Padding" Value="3"/>
 <Setter Property="HorizontalContentAlignment" Value="Left"/>
 <Setter Property="VerticalContentAlignment" Value="Top"/>
 <Setter Property="Background" Value="Transparent"/>
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="TabNavigation" Value="Local"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListBoxItem">
 <Grid x:Name="grid" Background="{TemplateBinding Background}">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">

CHAPTER 5 ■ CONTROLS

474

 <VisualState x:Name="Normal"/>
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="fillColor" Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0" Value=".35"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="contentPresenter" Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0" Value=".55"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name="SelectionStates">
 <VisualState x:Name="Unselected"/>
 <VisualState x:Name="Selected">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames

 Storyboard.TargetName="fillColor2"
 Storyboard.TargetProperty="Opacity">
 <SplineDoubleKeyFrame KeyTime="0" Value=".75"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="contentPresenter"
Storyboard.TargetProperty="(UIElement.Effect).(DropShadowEffect.ShadowDepth)">
 <EasingDoubleKeyFrame KeyTime="00:00:00" Value="8"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="(UIElement.Effect).(DropShadowEffect.Opacity)">
 <EasingDoubleKeyFrame KeyTime="00:00:00" Value="1"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="SelectedUnfocused">
 <Storyboard>

CHAPTER 5 ■ CONTROLS

475

 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="(UIElement.Effect).(DropShadowEffect.ShadowDepth)">
 <EasingDoubleKeyFrame KeyTime="00:00:00" Value="5"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="(UIElement.Effect).(DropShadowEffect.Opacity)">
 <EasingDoubleKeyFrame KeyTime="00:00:00" Value="0.6"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name="FocusStates">
 <VisualState x:Name="Focused">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Duration="0"
Storyboard.TargetName="FocusVisualElement" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Unfocused"/>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Rectangle x:Name="fillColor" Fill="#FFBADDE9" RadiusX="1" RadiusY="1"
 IsHitTestVisible="False" Opacity="0"/>
 <Rectangle x:Name="fillColor2" Fill="#FFBADDE9" RadiusX="1"
 RadiusY="1" IsHitTestVisible="False" Opacity="0"/>
 <ContentPresenter x:Name="contentPresenter"
 HorizontalAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 Margin="{TemplateBinding Padding}"
 Content="{TemplateBinding Content}"
 ContentTemplate=
 "{TemplateBinding ContentTemplate}">
 <ContentPresenter.Effect>
 <DropShadowEffect Opacity="0"/>
 </ContentPresenter.Effect>

CHAPTER 5 ■ CONTROLS

476

 </ContentPresenter>
 <Rectangle x:Name="FocusVisualElement" Stroke="#FF6DBDD1"
 StrokeThickness="1" RadiusX="1" RadiusY="1"
 Visibility="Collapsed"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

This control template is pretty much identical to the original as generated through Expression
Blend. The only changes are the addition of a DropShadowEffect to the ContentPresenter in the
template and some animated changes to some DropShadowEffect properties as the various selection
state changes happen on the ListBoxItem. You can, however, change this template as much as you want
to as long as it targets a ListBoxItem.

Listing 5-40 also shows a custom template for the entire ValidationSummary control that changes
the ItemTemplate data template for the internal ListBox. In the interest of brevity, only the pertinent
portions are shown.

Listing 5-40. Partial implementation of a ValidationSummary control template

<Style x:Key="styleValidationSummary"
 TargetType="input:ValidationSummary">
 ...
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="input:ValidationSummary">
 <Grid x:Name="ValidationSummary">

 ...
 <ListBox x:Name="SummaryListBox"
 Height="Auto"
 Style="{TemplateBinding SummaryListBoxStyle}"
 Background="{x:Null}"
 BorderThickness="0"
 Foreground="{TemplateBinding Foreground}"
 Padding="{TemplateBinding Padding}"
 Grid.Row="1"
 ItemContainerStyle="{TemplateBinding ErrorStyle}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Margin="4,0,0,0"
 FontWeight="Bold"
 Foreground="Red"
 Text="{Binding MessageHeader}" />
 <TextBlock Margin="4,0,0,0"

CHAPTER 5 ■ CONTROLS

477

 Text="{Binding Message}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 ...

 </Grid>
 </Border>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The only change here is in the DataTemplate definition; you turn the ForeGround color of the
message header TextBlock to red. Listing 5-41 shows how all of this can be applied to a
ValidationSummary control.

Listing 5-41. ValidationSummary control with a custom template and custom header and item styles

<input:ValidationSummary Grid.Row="2"
 Header="{Binding ElementName=lbx_Employees, Path=SelectedItem}"
 Margin="0,10,0,5"
 ErrorStyle=
 "{StaticResource styleValidationSummaryErrorItem}"
 Style="{StaticResource styleValidationSummary}" >
 <input:ValidationSummary.HeaderTemplate>
 <DataTemplate>
 <Grid Background="Blue">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock UseLayoutRounding="False"
 Foreground="White"
 Text="Editing Errors:" />
 <TextBlock UseLayoutRounding="False"
 Foreground="White"
 FontWeight="Bold"
 Text="{Binding FullName}"
 Grid.Column="1" />
 </Grid>
 </DataTemplate>
 </input:ValidationSummary.HeaderTemplate>
</input:ValidationSummary>

CHAPTER 5 ■ CONTROLS

478

Note in Listing 5-40 that you apply the ListBoxItem template by applying the containing style to
the ValidationSummary.ErrorStyle property and apply the custom ValidationSummary template by
applying the containing style to the ValidationSummary control itself. Note also that you define a new
HeaderTemplate data template. You display the full name of the employee whose information has
suffered the edit errors by binding a TextBlock in the HeaderTemplate to the FullName property of the
currently selected Employee. And the current employee selection is passed in by binding the
ValidationSummary.Header property to the SelectedItem property of lbx_Employees ListBox using the
ElementName attribute on the binding.

Figure 5-30b shows the ValidationSummary customizations applied.

Figure 5-30b. ValidationSummary Control customizations

■ Note As a final note, we have deliberately kept the amount of modifications made to the validation UI

templates here to a minimum. Our intention with this recipe was to show you the “where” and “how” of the

validation UI customization mechanism. Once you know the right hooks, your creativity is the only limiting factor

to how much customization you can make.

CHAPTER 5 ■ CONTROLS

479

5-14. Control Behavior in Expression Blend

Problem
You want to author custom controls that integrate well with the Expression Blend 3 design
environment.

Solution
Use the various designer-targeted attributes to decorate your control properties and take appropriate
care to not execute control code in design mode that can cause problems within a designer
environment.

How It Works
If you intend to develop custom Silverlight controls, there is always a chance that your controls will be
used by designers from within Expression Blend to design application user interfaces. There are steps
you can take as a control author to ensure that your controls are well behaved when used with the
Expression Blend environment.

Property Attributes

There are several attributes in the System.ComponentModel namespace in the System assembly that you
can use to make sure that the control properties are well integrated with the Expression Blend
property editor.

CategoryAttribute
As you may have noticed, control properties are grouped into categories within the Expression Blend
property editor. Some of the common property categories within Expression Blend are Layout and
Appearance. To make sure your control property is displayed in the appropriate category, you can
decorate your property declaration with the CategoryAttribute, passing in a category name string. The
following code shows a sample attribution for a dependency property named CurrentValue to a
category named ProgressBar Values:

[Category("ProgressBar Values")]
public double CurrentValue
{
 get { return (double)GetValue(CurrentValueProperty); }
 set { SetValue(CurrentValueProperty, value); }

}

This will cause a new category pane with the title ProgressBar Values to be introduced in the
Blend property editor, and this property will show up in that category pane, as shown in Figure 5-31.

Figure 5-31. A custom property category in Expression Blend

CHAPTER 5 ■ CONTROLS

480

Note that you can also add a custom control property to a pre-existing category using the same
attribute—just use the pre-existing category name as the parameter when you apply the
CategoryAttribute. Figure 5-32 shows a custom property named Orientation showing up in the Layout
category in Blend, along with several other properties that the control inherited.

Figure 5-32. A property added to an existing category in Expression Blend

Also note that if you do not supply a CategoryAttribute to a custom property, it is displayed in the
Miscellaneous category within Blend. It is always a good idea to supply a CategoryAttribute to help the
designer intuitively find the property in an aptly named category.

DescriptionAttribute
The DescriptionAttribute allows you to add a short description to your property. When the designer
hovers over the property label in the Expression Blend property editor, Blend displays this description
in a tooltip. If applied well, these descriptions can be immensely helpful to the designer in deciphering
the purpose of the property. The following code shows the Description attribute applied to a custom
property:

[Description("The current value as indicated by the Progress Bar.")]
public double CurrentValue
{
 get { return (double)GetValue(CurrentValueProperty); }
 set { SetValue(CurrentValueProperty, value); }

}

Figure 5-33 shows this description being displayed within the Expression Blend property tooltip.

Figure 5-33. DescriptionAttribute applied to a property

CHAPTER 5 ■ CONTROLS

481

EditorBrowsableAttribute
The EditorBrowsableAttribute controls whether a property can be made visible in the property editor
in Expression Blend, and if so, in what capacity. You can pass in one of three possible enumerated
values in constructing the attribute instance. EditorBrowsableState.Always causes the property to be
displayed in the default manner, whereas EditorBrowsableState.Never hides the property from being
visible in the property editor. If you have a property that you intend to set only programmatically and
not by a designer, this option might be a good one to use. And last, EditorBrowsableState.Advanced
shows the property in the advanced section of the property pane for that category. The advanced
section is collapsed by default and can be expanded by clicking the small arrow icon at the bottom-
center of the property pane. This expanded section allows you to potentially mark certain properties
for only advanced use. The following code applies the EditorBrowsableAttribute to a property, using
the EditorBrowsableState.Advanced enumerated value. Also note that more than one of these attributes
can be applied to a property as needed:

[Category("ProgressBar Values")]
[Description("The maximum value that can be measured by the Progress Bar")]
[EditorBrowsable(EditorBrowsableState.Advanced)]
public double MaximumValue
{
 get { return (double)GetValue(MaximumValueProperty); }
 set { SetValue(MaximumValueProperty, value); }

}

Figure 5-34 shows this property in the advanced portion of the property pane.

Figure 5-34. EditorBrowsableAttribute setting on a property

Designer-Unsafe Code

Although a custom control should be as general purpose as possible, there are custom controls in which
control logic involves execution of code that relies on other aspects of the consuming application. An
example of this could be parts of the control code calling out to a web service or being reliant on the
presence of another application object in memory.

Keep in mind that when your control is loaded by Expression Blend, it is not running within the
context of an application. In fact, application-dependent logic may actually cause exceptions that will
result in Expression Blend failing to loading your control at design time. If you cannot avoid having
that kind of logic in your control, you need to guard it so that it does not execute when the control is
loaded in a designer.

The best way to protect your application-dependent logic is to use the
System.ComponentModel.DesignerProperties static class. The DesignerProperties.IsInDesignTool
property returns true when the control is in design mode, and false otherwise. So when you want to
execute control logic only if the control is being used outside the designer environment, you can
conditionally execute that code only when DesignerProperties.IsInDesignTool is false.

CHAPTER 5 ■ CONTROLS

482

When Expression Blend loads your custom control to the design surface, it will execute the control

constructor and your override for the OnApplyTemplate() method, if you have one. It will also execute
any DependencyProperty change handlers that you may have associated with your DependencyProperty
definitions when these properties are set for the first time (the default settings applied through the
PropertyMetadata) or as they are set at design time through the property editor. These areas in your
control code are where you should be especially careful to guard any code that might not execute
successfully outside the context of an application.

Including Sample Data

Controls often get the data they display from runtime data bindings. ContentControl and ItemsControl types
(and their derivatives) are great examples of this. However, at design time, for a user to visualize the
changes that some of their property settings might make on the control’s look and feel, it is beneficial to
have the control show some sample data within the designer. You can easily supply this data in your code,
but you need to make sure that this code executes only when the control is being used within a designer—in
effect, exactly the opposite behavior from that discussed in the previous section. The
DesignerProperties.IsInDesignTool property can help here as well. With it, you can execute the code that
adds sample data to your control at design time, only when the IsInDesignTool property is set to True. The
following code shows the Content property of a custom ProgressBar control being set to some mock content
at design time—in both the OnApplyTemplate() override as the initial value and the DependencyProperty
change handler for the CurrentValue property. In both cases, you guard the code to ensure that this code only
executes within the designer like so:

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();
 //other code
 if (DesignerProperties.IsInDesignTool)
 {
 this.Content = string.Format("Progress {0}%", this.CurrentValue);
 }

}
internal static void OnCurrentValueChanged(DependencyObject Target,
 DependencyPropertyChangedEventArgs e)
{
 ProgressBar pBar = Target as ProgressBar;
 //other code
 if (DesignerProperties.IsInDesignTool)
 {
 pBar.Content = string.Format("Progress {0}%", (double)e.NewValue);
 }

}

Figure 5-35 shows the state of the ProgressBar control with the sample data in the designer when
the CurrentValue property is changed to 30.

CHAPTER 5 ■ CONTROLS

483

Figure 5-35. Custom Control with sample content

The Code
To illustrate these ideas, we show the application of the attributes and practices discussed on the
sample ProgressBar control built in Recipe 5-10. Listing 5-42 shows the code for the control. Since
there are no changes to the control template, the XAML is not listed here. To see the effects of this code,
place this control on a XAML page within Expression Blend and play with the various custom
properties in the property editor.

Listing 5-42. ProgressBar control sample with designer-related attribution and practices

using System.Windows;
using System.Windows.Controls;
using System.Windows.Shapes;
using System.ComponentModel;

namespace Recipe5_14
{
 [TemplatePart(Name="elemPBar",Type=typeof(FrameworkElement))]
 public class ProgressBar : ContentControl
 {

 public static DependencyProperty CurrentValueProperty =
 DependencyProperty.Register("CurrentValue",
 typeof(double), typeof(ProgressBar),
 new PropertyMetadata(0.0,
 new PropertyChangedCallback(ProgressBar.OnCurrentValueChanged)));
 [Category("ProgressBar Values")]

CHAPTER 5 ■ CONTROLS

484

 [Description("The current value indicated by the Progress Bar")]
 public double CurrentValue
 {
 get { return (double)GetValue(CurrentValueProperty); }
 set { SetValue(CurrentValueProperty, value); }
 }

 public static DependencyProperty MaximumValueProperty =
 DependencyProperty.Register("MaximumValue",
 typeof(double), typeof(ProgressBar), new PropertyMetadata(100.0));

 [Category("ProgressBar Values")]
 [Description("The maximum value that can be measured by the Progress Bar")]
 [EditorBrowsable(EditorBrowsableState.Advanced)]
 public double MaximumValue
 {
 get { return (double)GetValue(MaximumValueProperty); }
 set { SetValue(MaximumValueProperty, value); }
 }

 public static DependencyProperty MinimumValueProperty =
 DependencyProperty.Register("MinimumValue",
 typeof(double), typeof(ProgressBar), new PropertyMetadata(0.0));

 [Category("ProgressBar Values")]
 [EditorBrowsable(EditorBrowsableState.Advanced)]
 [Description("The minimum value that can be measured by the Progress Bar")]
 public double MinimumValue
 {
 get { return (double)GetValue(MinimumValueProperty); }
 set { SetValue(MinimumValueProperty, value); } }

 [Category("Layout")]
 public Orientation Orientation
 {
 get { return (Orientation)GetValue(OrientationProperty); }
 set { SetValue(OrientationProperty, value); }
 }

 public static readonly DependencyProperty OrientationProperty =
 DependencyProperty.Register("Orientation",
 typeof(Orientation), typeof(ProgressBar),
 new PropertyMetadata(Orientation.Horizontal));
 internal FrameworkElement elemPBar { get; set; }

CHAPTER 5 ■ CONTROLS

485

 public ProgressBar()
 {
 base.DefaultStyleKey = typeof(ProgressBar);
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();
 elemPBar = this.GetTemplateChild("elemPBar") as FrameworkElement;

 if (DesignerProperties.IsInDesignTool)
 {
 this.Content = string.Format("Progress {0}%",this.CurrentValue);
 }

 }

 internal static void OnCurrentValueChanged(DependencyObject Target,
 DependencyPropertyChangedEventArgs e)
 {
 ProgressBar pBar = Target as ProgressBar;
 if (pBar.elemPBar != null)
 {
 pBar.elemPBar.Width = (pBar.ActualWidth * (double)e.NewValue)
 / (pBar.MaximumValue - pBar.MinimumValue);
 }
 if (DesignerProperties.IsInDesignTool)
 {
 pBar.Content = string.Format("Progress {0}%", (double)e.NewValue);
 }

 }

 }
}

CHAPTER 5 ■ CONTROLS

486

5.15 Enhancing the Design Experience with
Behaviors and Triggers

Problem
You want to package reusable application behaviors in code for easy consumption by designers using
Expression Blend.

Solution
Use the behavior, trigger, and action concepts from the Expression Blend SDK to package and expose
your reusable behaviors.

How It Works
It is not uncommon for developers to have to add repetitive code to expose certain behaviors in their
applications. Take, for example, a video player that has a MediaElement and a Slider control
representing the video timeline. It is common practice to add a timer to your code and move the slider
thumb automatically as the timer ticks, in response to the playing video’s progression through its
duration. What is the best way to package such code so that designers (who typically work within
Expression Blend and not directly with code) can easily use a visual paradigm, such as drag and drop,
to add these types of behaviors to the application at design time?

The Expression Blend SDK exposes the concepts of behaviors, triggers, and actions that allow a
developer to encapsulate code and expose them to designers through Blend so that they can be applied
to all applications at design time.

The sample here uses Expression Blend and the associated SDK. You will find all the necessary
classes in a namespace named System.Windows.Interactivity in an identically named assembly
available as a part of the Expression Blend SDK.

Behavior

A Blend behavior is represented by the Behavior<T> type where T is the type of object that the behavior
can be associated with at design time. The Behavior<T> type extends the Behavior type which defines
the Behavior.AssociatedObject property and two virtual methods, OnAttached() and OnDetaching().To
implement your custom behavior, you will need to derive from Behavior<T> and associate the behavior
with the target object in XAML. Once the behavior is added to your project, Blend displays the behavior
in the Assets tab. Then, you attach the behavior to the target object by dragging and dropping the
behavior on the object in Blend. Figure 5-36 shows the Assets tab with the Behaviors listed and the
object tree with the Behavior applied to a MediaElement.

CHAPTER 5 ■ CONTROLS

487

Figure 5-36. Assets tab with behaviors

A Behavior instance does not need any external stimulus to act; it simply executes a set of methods
during the lifecycle of the object it is associated with. The OnAttached() method is executed when the
behavior attaches itself to the target object, and the OnDetaching() method executes when the behavior
detaches itself from the target object (typically when the target object goes out of scope). To implement
your own custom behavior, you will need to provide concrete implementations of OnAttached() and
OnDetaching() in your Behavior<t> derived class. The Behavior.AssociatedObject property represents
the actual object instance at the runtime that the behavior is attached to. Most custom behaviors
typically associate event handlers to events on the AssociatedObject in the OnAttached()
implementation and take specific actions when those events occur to express the desired behavior.
You will see a behavior implementation in the code sample later.

Triggers and Actions

While behaviors do not accept a specific stimulus to get executed, that scenario is enabled using a
trigger/action pair. A trigger represents a specific stimulus and causes one or more actions to execute.

A trigger is represented through the TriggerBase class, with a TriggerBase<T> class derived from
TriggerBase that allows you to specify the type to which the trigger applies. TriggerBase also defines
the OnAttached() and OnDetaching() methods and the AssociatedObject property similar to a Behavior
with the same intended usage. To implement your concrete trigger, you will typically derive from
TriggerBase<T>.

TriggerBase also defines an Invoke() method which you can call from your trigger
implementation to actually cause the trigger to fire all associated actions. The associated actions are
contained in the Actions property of type TriggerActionCollection on the TriggerBase class. The
Invoke() method accepts a parameter of type Object that gets passed in to the action. This allows you to
pass in any state information from the trigger to the action.

To implement an action, you can derive from either TriggerAction<T> or
TargetedTriggerAction<T>, where T is the type of the object the action acts upon. Both types define the
standard OnAttached() and OnDetaching() lifecycle methods, as well as the AssociatedObject
property with identical semantics as described before. They also provide a virtual method named
Invoke() which you override in your derived action implementation to implement the actual action
logic. The state passed in through the Trigger.Invoke() method is made available to your
implementation of the action through the only parameter to the Invoke() method on the action.

The TargetedTriggerAction<T> type is special in that it allows you to have the action be executed
on a target object that is different from the object on which the trigger was fired. The Target property
on the TargetedTriggerAction specifies the target to which the action is applied, which is different from
the AssociatedObject property.

CHAPTER 5 ■ CONTROLS

488

TargetedTriggerAction also exposes a TargetChanged() method that is executed whenever the
target of the action is first set and later changed, and the oldTarget and newTarget parameters provide
you the old and new target objects. Associating a TriggerAction with an object in Blend is very similar
to associating a behavior.

The Code
The code sample illustrates a Behavior and a TriggerBase/TargetedTriggerAction pair. Both are
implemented in the 5.15 TriggerLib project in the sample code for this recipe.

The behavior targets the MediaElement type and allows the user to click on the any MediaElement to
which the behavior is attached to start playing if it is paused or pause if it is playing. Listing 5-43 shows
the behavior code.

Listing 5-43. Code for MediaElementStartPauseBehavior

public class MediaElementStartPauseBehavior : Behavior<MediaElement>
{
 bool MouseDown = false;
 protected override void OnAttached()
 {
 base.OnAttached();
 //handle the appropriate mouse events on the MediaElement
 this.AssociatedObject.MouseLeftButtonDown +=
 new MouseButtonEventHandler(AssociatedObject_MouseLeftButtonDown);
 this.AssociatedObject.MouseLeftButtonUp +=
 new MouseButtonEventHandler(AssociatedObject_MouseLeftButtonUp);
 this.AssociatedObject.MouseLeave +=
 new MouseEventHandler(AssociatedObject_MouseLeave);
 }

 void AssociatedObject_MouseLeave(object sender, MouseEventArgs e)
 {
 //leaving the MediaElement - release capture is captured
 if (MouseDown)
 {
 MouseDown = false;
 this.AssociatedObject.ReleaseMouseCapture();
 }
 }

 void AssociatedObject_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 //click completed
 if (MouseDown)
 {

CHAPTER 5 ■ CONTROLS

489

 //if playing
 if (this.AssociatedObject.CurrentState == MediaElementState.Playing)
 {
 //pause
 this.AssociatedObject.Pause();
 }
 else
 {
 //play
 this.AssociatedObject.Play();
 }
 //release capture
 this.AssociatedObject.ReleaseMouseCapture();
 MouseDown = false;
 }
 }

 void AssociatedObject_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 //capture mouse
 if (MouseDown == false)
 {
 MouseDown = true;
 this.AssociatedObject.CaptureMouse();
 }
 }

 protected override void OnDetaching()
 {
 base.OnDetaching();
 //unhook handlers
 this.AssociatedObject.MouseLeftButtonDown -=
 AssociatedObject_MouseLeftButtonDown;
 this.AssociatedObject.MouseLeftButtonUp -=
 AssociatedObject_MouseLeftButtonUp;
 this.AssociatedObject.MouseLeave -=
 AssociatedObject_MouseLeave;
 }
}

As you can see, you attach handlers to the appropriate mouse events on the MediaElement (made

available through the AssociatedObject property) in the OnAttached() override and detach the handlers
in the OnDetaching() implementation. In your MouseLeftButtonUp event handler, you simply check the
MediaElement.CurrentState property and accordingly either start playing or pause the media. The rest

CHAPTER 5 ■ CONTROLS

490

of the mouse event handlers implement some housekeeping code around mouse event handling.
Listing 5-44 shows the XAML for the behavior attached to a MediaElement, where i is the XML
namespace declaration for the assembly containing the behavior.

Listing 5-44. XAML for the behavior applied to a MediaElement

<MediaElement x:Name="mediaElement" AutoPlay="True" Height="270"
 Margin="15,15,8,15"
 Source="http://localhost/media/AdrenalineRush.wmv"
 Stretch="Fill">
 <i:Interaction.Behaviors>
 <Triggers:MediaElementStartPauseBehavior/>
 </i:Interaction.Behaviors>
</MediaElement>

For your trigger/action sample, you implement a trigger that applies to a MediaElement that starts a

timer and executes at a specific interval while the media plays. Listing 5-45 shows the code for the
trigger.

Listing 5-45. Code for MediaElementPlaybackTrigger

public class MediaElementPlaybackTrigger : TriggerBase<MediaElement>
{
 DispatcherTimer playbacktimer = new DispatcherTimer();
 public double Interval
 {
 get { return (double)GetValue(IntervalProperty); }
 set { SetValue(IntervalProperty, value); }
 }

 // Using a DependencyProperty as the backing store for Interval. This enables animation,
styling, binding, etc...
 public static readonly DependencyProperty IntervalProperty =
 DependencyProperty.Register("Interval", typeof(double),
 typeof(MediaElementPlaybackTrigger), new PropertyMetadata(200));

 protected override void OnAttached()
 {
 base.OnAttached();
 this.AssociatedObject.CurrentStateChanged +=
 new RoutedEventHandler(AssociatedObject_CurrentStateChanged);
 playbacktimer.Interval = TimeSpan.FromMilliseconds(Interval);
 playbacktimer.Tick += new EventHandler(playbacktimer_Tick);
 }

 void playbacktimer_Tick(object sender, EventArgs e)
 {

http://localhost/media/AdrenalineRush.wmv

CHAPTER 5 ■ CONTROLS

491

 this.InvokeActions(this.AssociatedObject.Position.TotalMilliseconds /
 this.AssociatedObject.NaturalDuration.TimeSpan.TotalMilliseconds);
 }

 void AssociatedObject_CurrentStateChanged(object sender, RoutedEventArgs e)
 {
 if (this.AssociatedObject.CurrentState == MediaElementState.Playing)
 {
 playbacktimer.Start();
 }
 else
 {
 playbacktimer.Stop();
 }
 }
 protected override void OnDetaching()
 {
 base.OnDetaching();
 this.AssociatedObject.CurrentStateChanged -=
 AssociatedObject_CurrentStateChanged;
 playbacktimer.Tick -= playbacktimer_Tick;
 }
}

You declare a property named Interval that allows the designer to specify in milliseconds how

frequently the timer needs to fire. In the OnAttached() implementation, you initialize the timer and set
its interval as set in the Interval property. You also attach a handler to the Tick event of the timer, as
well as the CurrentStateChanged event of the MediaElement (available through the AssociatedObject
property). In the handler for the MediaElement.CurrentStateChanged, you either start or stop the timer
depending on whether the media is playing or not. In the Tick event handler of the timer, you invoke
any associated actions passing in the current state of play as a ratio of the current position to the total
duration in milliseconds. Listing 5-46 shows the related TargetedTriggerAction.

Listing 5-46. Code for the SliderPlaybackProgressAction

public class SliderPlaybackProgressAction : TargetedTriggerAction<Slider>
{
 protected override void OnAttached()
 {
 base.OnAttached();
 }
 protected override void OnDetaching()
 {
 base.OnDetaching();
 }
 protected override void OnTargetChanged(Slider oldTarget, Slider newTarget)

CHAPTER 5 ■ CONTROLS

492

 {
 base.OnTargetChanged(oldTarget, newTarget);
 }
 protected override void Invoke(object parameter)
 {
 (this.Target as Slider).Value = 100 * (double)parameter;
 }
}

In the Invoke() override in the action, you simply set the Slider.Value to a percentage value as
obtained through the passed in state. In your implementation, the Slider.MaxValue is set to 100 and the
Slider.MinValue is set to 1, but if you define a different range, you will need to change this logic
appropriately. Listing 5-47 shows the XAML of the trigger and the action applied to the MediaElement.

Listing 5-47 XAML for the trigger and the action

<MediaElement x:Name="mediaElement" AutoPlay="True" Height="270"
 Margin="15,15,8,15" Source="http://localhost/media/AdrenalineRush.wmv"
 Stretch="Fill">
 <i:Interaction.Triggers>
 <Triggers:MediaElementPlaybackTrigger>
 <Triggers:SliderPlaybackProgressAction TargetName="slider"
 />
 </Triggers:MediaElementPlaybackTrigger>
 </i:Interaction.Triggers>
 <i:Interaction.Behaviors>
 <Triggers:MediaElementStartPauseBehavior/>
 </i:Interaction.Behaviors>
</MediaElement>
<Slider x:Name="slider" Minimum="0" Maximum="100" Value="0" Margin="0"/>

Note that the action actually refers to the Slider control through its TargetName property. This is

possible because you use the TargetedTriggerAction type as the base class, which allows you to target
the action to a different element on the page other than the MediaElement.

To associate the trigger and the action, you drag and drop the action on the MediaElement in Blend
as you would do for the behavior. Once you have associated the action, you can go to the property page
of the associated action and select a trigger for the action. Figure 5-37 shows the action property page.

http://localhost/media/AdrenalineRush.wmv

CHAPTER 5 ■ CONTROLS

493

Figure 5-37. Property page for SliderPlaybackProgressAction.

You can click the New button for the TriggerType field, which brings up a selection dialog shown
in Figure 5-38 to allow you to select the appropriate trigger for the action.

Figure 5-38. Trigger selection dialog.

CHAPTER 5 ■ CONTROLS

494

Once you select the MediaElementPlaybackTrigger, you are returned to the property page for the
action, where you can now set the Interval property on the trigger as well, as shown in Figure 5-39.

Figure 5-39. Trigger property setting

Note that the XAML for the trigger, action, and behavior shown earlier is automatically generated

as you use Blend to apply these constructs to your code.

C H A P T E R 6

■ ■ ■

 495

Browser Integration

Silverlight 4 is a web browser–hosted control that runs in Internet Explorer, Firefox, and Chrome on
the PC and Macintosh computers. As such, there will be scenarios where developers need to customize
how the control is configured. There will also be cases where developers need to modify the web
browser Document Object Model (DOM) from Silverlight as well as situations where developers need
to modify the Silverlight application from the DOM.

■ Note Any performance or functionality differences that appear among Firefox, Safari, and Internet Explorer
are considered bugs by Microsoft.

In Chapter 2, which focuses on the basics of the Silverlight programming model, we included
recipes related to interacting with the browser:

• Recip e 2-1. Lev erage and Locat e Cust om Cont rols demonstrates how to use
FindName from JavaScript to locate and manipulate XAML elements from JavaScript.

• Recip e 2-2. Dynamically Loadi ng XA ML implements JavaScript that creates a piece of
XAML and attaches it to the Silverlight control Visual Tree.

In this chapter, we cover how to customize the Silverlight 4 plug-in control within the browser. We
also explain how to interact with the web browser DOM to provide a fully integrated web browsing
experience.

6-1. Host Silverlight on Any Technology
Problem
You need to host the Silverlight 4 content in any technology that renders HTML.

CHAPTER 6 ■ BROWSER INTEGRATION

496

Solution
Configure the Silverlight 4 browser control directly in HTML using the <object> tag. Modify or create
JavaScript functions for error handling, loading, resizing, and so forth.

How It Works
The Silverlight 4 browser control is configurable with any web server-side technology such as
ASP.NET, ASP classic, Java Server Pages (JSP), Ruby, or PHP because it is configured using the standard
HTML <object> tag.

When you create a new Silverlight application, you have the option of having the project wizard
create two test pages for the new Silverlight application, an .aspx test page and an .html test page.
These pages serve as a starting point for configuring the Silverlight control. Here is a sample <object>
tag that can be placed into any HTML page rendering technology, whether ASP.NET, Java Server
Pages, PHP, or plain old HTML:

<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Ch06_BrowserIntegration.Recipe6_1.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=
149156&v=4.0.50401.0" style="text-decoration: none">
 <img src="http://go.microsoft.com/fwlink/?
LinkId=161376" alt="Get Microsoft Silverlight"
 style="border-style: none" />

</object>

The typical page includes a few CSS styles and a JavaScript function named onSilverlightError as
well as a script include for Silverlight.js. The onSilverlightError function provides reporting for
errors that are not handled within the Silverlight application. Some errors cannot be handled in the
Silverlight application, such as problems downloading the application .xap file.

Unhandled errors in the Silverlight application will bubble up to the Silverlight browser control
and be reported to the user via the onSilverlightError function or any custom JavaScript function you
write. By default, the onSilverlightError function is wired to the Silverlight control in the following
line of code:

<param name="onerror" value="onSilverlightError" />

You do not have to use the onSilverlightError function as is. You can customize it or tap into any
existing JavaScript error-handling routines that are part of an existing application as long at the
handler has the same message signature.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ BROWSER INTEGRATION

497

■ Caution Any errors bubbled up to the onSilverlightError function will cause the Silverlight application to
stop working. Try to handle all errors within the Silverlight application. Only catastrophic errors should be allowed
to bubble up.

Within the <object> tag are <param> tags that define parameters configured for the Silverlight
browser plug-in. The one mandatory parameter is source, which defines the location of the application
.xap file, or optionally, points to inline XAML if you’re using the Silverlight unmanaged JavaScript
programming model.

Recommended events are onError and onResize. As mentioned earlier, by default, the onError
parameter is set to the onSilverlightError function to report unhandled exceptions as well as runtime
errors that occur at the plug-in level in the HTML page. The onResize event is covered in Recipe 6-4. Table
6-1 lists other interesting parameters.

Table 6-1. Additional Optional Parameters

Parameter Description

autoUpgrade Allows the developer to control whether an end user’s Silverlight plug-in
should be upgraded. The end user can still opt out even if the option is set
to true.

background Sets the background color for the Silverlight 4 plug-in behind any
Silverlight application content that renders to the content area but in
front of HTML. This property defaults to null.

enableFramerateCounter Displays the current frame rate in the browser’s status bar in Internet
Explorer on Windows. The default is false.

enableHtmlAccess Enables or disables access to the web browser DOM. The default value is
false. Set it to true if you want to access the web page from Silverlight.
See Recipe 6-5 for more information.

initParams Comma-delimited string of initialization information in the form of
key1=value1, key2=value2, and so on that can be accessed within
Silverlight using managed code. Recipes 6-7 and 6-8 show you how to
process parameters.

minRuntimeVersion Specifies the minimum Silverlight runtime version required by the
Silverlight application.

maxFrameRate Specifies the upper limit on the frame rate for rendering content, with a
default value of 60 frames per second.

onLoad

Set to a JavaScript function that fires after the Silverlight plug-in is
instantiated and the XAML Visual Tree is loaded. See Recipe 2-4 for an
example that uses onLoad.

CHAPTER 6 ■ BROWSER INTEGRATION

498

windowless When the windowless param is set to true (not the default), the Silverlight
plug-in does not have its own rendering window. Instead, the plug-in
content is displayed directly by the browser window. This enables
Silverlight content to visually overlap and blend with HTML content if
the plug-in and its content both specify background transparency.

splashScreenSource Set to the value of an .xaml file that is displayed as a splash screen while
the application pointed to in the Source parameter is downloaded. See the
MSDN documentation at msdn.microsoft.com/en-us/library/
system.web.ui.silverlightcontrols.silverlight.splashscreensource

(VS.95).aspx.

For more information on the other available parameters and instantiation objects, refer to the
MSDN Silverlight documentation at msdn.microsoft.com/en-
us/library/cc838259%28v=VS.95%29.aspx.

Within the <object> tag is an <a> HTML tag that displays the “Get Silverlight” image when the
browser plug-in is not installed. Clicking the image will download the browser plug-in required by the
Silverlight application. Since this recipe is about the HTML page, we don’t do anything relevant within
the Silverlight application itself.

The Code
We generally do not show the source code for the hosting HTML page or ASPX page in our recipes,

because most of the work is done in the MainPage.xaml and MainPage.xaml.cs files that are in the
Silverlight 4 application project. In this recipe, however, we will walk through the source for the HTML
test page, which can be used with any web serving technology. Listing 6-1 serves as a starting point for
hosting the Silverlight browser control generated by Visual Studio, but you can use it as a starting
point for hosting Silverlight 4 in any web technology.

The HTML page in Listing 6-1 consists of a few CSS styles to lay out the page, an error handling
JavaScript script, and the HTML to host the control. The script reports runtime errors or unhandled
exceptions by passing the error message to the browser in this line of code:

throw new Error(errMsg);

You can modify the JavaScript event as needed. For example, at the end of the onSilverlightError
function you could instead assign errMessage to a <div> tag added to the page, and the message will be
displayed in the <div> tag to the user with a message to restart.

Listing 6-1. Typical Recipe HTML Test Page File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Test Page for Recipe 6.1</title>
 <style type="text/css">
 html, body
 {
 height: 100%;

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6 ■ BROWSER INTEGRATION

499

 overflow: auto;
 }
 body
 {
 padding: 0;
 margin: 0;
 }
 #silverlightControlHost
 {
 height: 100%;
 text-align: center;
 }
 </style>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript">
 function onSilverlightError(sender, args) {
 var appSource = "";
 if (sender != null && sender != 0) {
 appSource = sender.getHost().Source;
 }

 var errorType = args.ErrorType;
 var iErrorCode = args.ErrorCode;

 if (errorType == "ImageError" || errorType == "MediaError") {
 return;
 }

 var errMsg = "Unhandled Error in Silverlight Application "
 + appSource + "\n";

 errMsg += "Code: " + iErrorCode + " \n";
 errMsg += "Category: " + errorType + " \n";
 errMsg += "Message: " + args.ErrorMessage + " \n";

 if (errorType == "ParserError") {
 errMsg += "File: " + args.xamlFile + " \n";
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 else if (errorType == "RuntimeError") {
 if (args.lineNumber != 0) {
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }

CHAPTER 6 ■ BROWSER INTEGRATION

500

 errMsg += "MethodName: " + args.methodName + " \n";
 }

 throw new Error(errMsg);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server" style="height: 100%">
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Ch06_BrowserIntegration.Recipe6_1.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?
 LinkID=149156&v=4.0.50401.0" style="text-decoration: none">
 <img src="http://go.microsoft.com/fwlink/?
 LinkId=161376" alt="Get Microsoft Silverlight"
 style="border-style: none" />

 </object>
 <iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0px;width: 0px;
 border:0px"></iframe>
 </div>
 </form>
</body>
</html>

6-2. Setting Focus for Keyboard Input
Problem
You want to ensure that the Silverlight control in a web page has focus when the page initially loads.

Solution
Create a JavaScript event handler and assign it to the Silverlight browser control’s onLoad event
handler.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ BROWSER INTEGRATION

501

How It Works
There are two levels of focus within a Silverlight application: at the browser level and within the
Silverlight control itself. The Silverlight control cannot receive keyboard input unless it has focus
within the web browser.

One way to ensure that the Silverlight application is completely downloaded and fully loaded is to
create an onload JavaScript event handler sets the focus to the Silverlight control. Attach the onload
event handler to the Silverlight browser control, and then set the focus on the control.

The Code
First, create a simple Silverlight application that has a TextBlock with a title for the screen and three
TextBox controls for first name, last name, and favorite color.

Besides the layout and gradient modifications, you also set TabIndex to 0 for the Enter First Name
TextBox, set TabIndex to 1 for the Enter Last Name TextBox, and set TabIndex to 2 for the Enter Favorite
Color TextBox. At this point, when you run the application, the cursor is not blinking in the
TextFirstName TextBox, because the Silverlight application does not have focus on initial web page
load. If you click anywhere on the Silverlight application, focus is sent to the TextFirstName TextBox
because it has a tab index of 0.

The next bit of code for this recipe sets focus on the Silverlight browser control using JavaScript on
the web page. You first modify the HTML page by assigning an ID of Silverlight1 to the <object>
element that defines the Silverlight browser control. After that, you add a simple JavaScript event
handler to a <script> block that sets focus on the <object> element for the Silverlight browser control:

function onSilverlightLoad(sender, args)
{
 var ctrl = document.getElementById("Silverlight1");
 ctrl.focus();
}

The final step is to wire the onSilverlightLoad event handler into the Silverlight browser control’s
onload event with this line of code within the <object> tag:

<param name="onload" value="onSilverlightLoad" />

When you run the page, you can see that focus is set on the first TextBox on loading the web page.
To verify the behavior, remove the <param> tag for setting onload, and run the page again to see that
focus is not moved to the Silverlight control without the onload event handler. Figure 6-1 shows the
page as initially loaded without clicking the web page or the Silverlight browser control. Listing 6-2
shows the source code for the Silverlight application, and Listing 6-3 contains the source code for the
HTML file, which is the same for the .aspx file.

CHAPTER 6 ■ BROWSER INTEGRATION

502

Figure 6-1. Focus set on TextBox with TabIndex of 0

Listing 6-2. Recipe 6-2’s MainPage.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="204" d:DesignWidth="199">
 <Border CornerRadius="20,20,20,20">
 <Border.Background>
 <RadialGradientBrush>
 <GradientStop Color="#FFFA6607" Offset="0.0040000001899898052"/>
 <GradientStop Color="#FFD4A282" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <Grid x:Name="LayoutRoot" Margin="4,4,4,4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.078*"/>
 <ColumnDefinition Width="0.844*"/>
 <ColumnDefinition Width="0.078*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.26*"/>
 <RowDefinition Height="0.74*"/>
 </Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

503

 <TextBlock Margin="4,4,6,23" FontSize="16" TextAlignment="Center"
 TextWrapping="Wrap" Grid.Column="1" d:LayoutOverrides="Height">
 <Run Foreground="#FF000080" Text="Collect Data"/></TextBlock>
 <StackPanel Margin="4,4,4,4" Grid.Row="1" Grid.Column="1">
 <Border Height="Auto" Width="Auto" CornerRadius="10,10,10,10"
 Margin="4,4,4,4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF69E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" Height="Auto" x:Name="TextFirstName"
 Width="Auto" Foreground="#FF0000FF" Text="Enter First Name"
 TextWrapping="Wrap" TabIndex="0"/>
 </Border>
 <Border Height="Auto" CornerRadius="10,10,10,10" Width="Auto"
 Margin="4,4,4,4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF94E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" Height="Auto" x:Name="TextLastName"
 Width="Auto" Foreground="#FF0000FF" Text="Enter Last Name"
 TextWrapping="Wrap" TabIndex="1"/>
 </Border>
 <Border Height="Auto" CornerRadius="10,10,10,10" Width="Auto"
 Margin="4,4,4,4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF94E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" Height="Auto" x:Name="TextFavoriteColor"
 Width="Auto" Foreground="#FF0000FF" Text="Enter Favorite Color"
 TextWrapping="Wrap" TabIndex="2"/>
 </Border>
 </StackPanel>
 </Grid>
 </Border>
</UserControl>

CHAPTER 6 ■ BROWSER INTEGRATION

504

Listing 6-3. Recipe 6-2’s TestPage.html File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Test Page for Recipe 6.2</title>
 <style type="text/css">
 html, body
 {
 height: 100%;
 overflow: auto;
 }
 body
 {
 padding: 0;
 margin: 0;
 }
 #silverlightControlHost
 {
 height: 100%;
 text-align: center;
 }
 </style>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript">
 function onSilverlightLoad(sender, args) {
 var ctrl = document.getElementById("Silverlight1");
 ctrl.focus();
 }
 </script>
 <script type="text/javascript">
 function onSilverlightError(sender, args) {
 var appSource = "";
 if (sender != null && sender != 0) {
 appSource = sender.getHost().Source;
 }

 var errorType = args.ErrorType;
 var iErrorCode = args.ErrorCode;

 if (errorType == "ImageError" || errorType == "MediaError")
 {
 return;
 }

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6 ■ BROWSER INTEGRATION

505

 var errMsg = "Unhandled Error in Silverlight Application " +
 appSource + "\n";

 errMsg += "Code: " + iErrorCode + " \n";
 errMsg += "Category: " + errorType + " \n";
 errMsg += "Message: " + args.ErrorMessage + " \n";

 if (errorType == "ParserError") {
 errMsg += "File: " + args.xamlFile + " \n";
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 else if (errorType == "RuntimeError") {
 if (args.lineNumber != 0) {
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 errMsg += "MethodName: " + args.methodName + " \n";
 }

 throw new Error(errMsg);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server" style="height: 100%">
 <div id="silverlightControlHost">
 <object id="Silverlight1" data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Ch06_BrowserIntegration.Recipe6_2.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="onload" value="onSilverlightLoad" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=
 4.0.50401.0" style="text-decoration: none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight"
 style="border-style: none" />

 </object>
 <iframe id="_sl_historyFrame" style="visibility: hidden;

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ BROWSER INTEGRATION

506

 height: 0px; width: 0px;border: 0px"></iframe>
 </div>
 </form>
</body>
</html>

6-3. Implementing a Full-Screen UI
Problem
You want your Silverlight application to run in full-screen mode as well as embedded mode.

Solution
To support full-screen mode, create an input mechanism such as a button or key combination to
initiate full-screen mode. In the event handler for the button or key press, set IsFullScreen on the
plug-in to true, and resize the UI elements to take up the entire screen.

How It Works
All of the examples in the previous chapters run Silverlight in embedded mode within the boundaries
of the browser window. In full-screen mode, the Silverlight plug-in displays over the entire screen
contents, rendering at the current resolution of the operating system. To toggle full-screen mode, call
this line of code:

Application.Current.Host.Content.IsFullScreen =
 !Application.Current.Host.Content.IsFullScreen;

This line of code toggles full-screen mode, switching to full-screen mode if the plug-in is currently
in embedded mode. This line of code will work only if it is in either a button or key press event
handler. This is for security reasons— to ensure that user input has switched the plug-in to full-screen
mode. In other words, the application user initiated the action and she knows that the plug-in is
running in full-screen mode.

■ Note If you try to switch to full-screen mode in the Load event, it will be ignored for security reasons. Full-
screen mode requires that the user initiate full screen via a button click or key press event handler.

Once in full-screen mode, the UI elements do not automatically resize. Figure 6-2 shows what a
216 x 334-pixel UI looks like when IsFullScreen is set to true on a monitor that is set to a 1680 x
1050-pixel screen resolution.

CHAPTER 6 ■ BROWSER INTEGRATION

507

Figure 6-2. Full-screen mode without resizing content

The embedded UI renders in full screen at the same size as when in embedded mode unless the
developer takes steps to resize the content in the
Application.Current.Host.Content.FullScreenChanged event. There are generally three ways to
handle resizing the UI:

• Automatically resize using a ScaleTransform.

• Manually resize by scaling pieces of the UI and repositioning elements as necessary to
achieve the desired appearance.

• Leverage the VisualStateManager to define an embedded and full-screen state.

Using a ScaleTransform is the quickest way to implement full screen because it takes advantage of
the scalable vector graphics to maintain a crisp appearance upon resize. The downside is that applying
a ScaleTransform to the entire UI may scale up parts of the UI that shouldn’t be scaled, such as text or
buttons.

Manually resizing pieces of the UI and manually repositioning elements provides precise control
but takes more work. The advantage is that you can achieve the exact desired appearance for the entire
UI by only scaling and repositioning as needed when done manually.

We cover how to design a UI with the Visual State Manager in Chapter 5, which is the
recommended way to proceed.

CHAPTER 6 ■ BROWSER INTEGRATION

508

The Code
This recipe demonstrates using the ScaleTransform, but with a twist. You will employ an overall
ScaleTransform to scale up the UI when in full-screen mode, but you will also apply another
ScaleTransform to limit how large the buttons grow when in full-screen mode.

Figure 6-3 shows the UI for the application before implementing full-screen mode. The
application includes a Border, a MediaElement, and a few Button controls to control the content
playback. Set a RectangleGeometry on the MediaElement.Clip property to give it rounded corners.

Figure 6-3. Embedded view of the simple media player

Copy a video from the sample videos included with Windows into the ClientBin/Video folder in the

TestWeb web application project and rename the video to video.wmv.

■ Note Chapter 8 provides in-depth coverage on how to integrate rich media.

You configure /Video/video.wmv for the MediaElement.Source property so that video plays when the
UI is run. You also implement the events for the Play/Pause Button, the Stop Button, and the FullScreen
Button to create the UI in Figure 6-3; the latter's event handler is shown here:

private void FullScreenButton_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen =
 !Application.Current.Host.Content.IsFullScreen;
 if (Application.Current.Host.Content.IsFullScreen)

CHAPTER 6 ■ BROWSER INTEGRATION

509

 {
 FullScreenButton.Content = "Emb";
 }
 else
 {
 FullScreenButton.Content = "Full";
 }
}

Next, you implement resizing functionality when the browser plug-in switches between full-
screen and embedded mode. First, create a ScaleTransform for the entire UI with this XAML:

<UserControl.RenderTransform>
 <ScaleTransform ScaleX="1" ScaleY="1" x:Name="ScaleToFullScreen" />
</UserControl.RenderTransform>

Then, implement the FullScreenChanged event on the browser plug-in by adding this code to the
constructor for the Page class:

Application.Current.Host.Content.FullScreenChanged +=
 new EventHandler(Content_FullScreenChanged);

We initialize the embeddedWidth / embeddedHeight and pluginWidth / pluginHeight variables in the
Loaded event for the page. Here is the Content_FullScreenChanged event handler where we use thse
values to adjust when the application runs full screen or not:

void Content_FullScreenChanged(object sender, EventArgs e)
{
 if (!Application.Current.Host.Content.IsFullScreen)
 {
 ScaleToFullScreen.ScaleX = 1.0d;
 ScaleToFullScreen.ScaleY = 1.0d;
 }
 else
 {
 double pluginWidth = Application.Current.Host.Content.ActualWidth;
 double pluginHeight = Application.Current.Host.Content.ActualHeight;
 double scaleX = pluginWidth / _embeddedWidth;
 double scaleY = pluginHeight / _embeddedHeight;

 ScaleToFullScreen.ScaleX = scaleX;
 ScaleToFullScreen.ScaleY = scaleY;
 }
}

The code first checks to see if the browser plug-in is not in full-screen mode and sets the
ScaleToFullScreen ScaleTransform’s ScaleX and ScaleY attributes to 1 or embedded mode. To calculate

CHAPTER 6 ■ BROWSER INTEGRATION

510

the scaling factors, you use the ActualWidth and ActualHeight values to determine the scaling factor.
ActualWidth and ActualHeight reflect the actual rendering size of the Silverlight plug-in. When the
ActualWidth or ActualHeight changes, it causes the onResize event configured in the HTML as a
JavaScript function that fires when the plug-in is in embedded mode. If the browser plug-in is in full-
screen mode, the onResize event fires. It first obtains the screen width and height from the ActualWidth
and ActualHeight properties. Next, it calculates a scale factor to apply to the ScaleToFullScreen
transform for the entire content, immediately resulting in scaling the UI to full the screen. Figure 6-4
shows the results.

Figure 6-4. Full-screen mode with uniform scale applied

There may be scenarios where you don’t want all of the content to be scaled uniformly. In this
example, when viewed on a monitor in full-screen mode with the uniform scale applied, the Button
elements appear a bit large even though they were evenly scaled.

In this case, you can apply a different scale to the Button elements so that they are scaled up to a
lesser degree in full-screen mode. You can also reposition the buttons to the lower-right corner when
in full-screen mode. You first create a ScaleTransform resource on the UserControl element so that you
can apply it to multiple parts of the UI if desired:

<UserControl.Resources>
 <ScaleTransform ScaleX="1" ScaleY="1" x:Key="ReduceScaleTransform" />
</UserControl.Resources>

You apply the ReduceScaleTransform to the StackPanel element containing the Buttons by setting
the RenderTransform attribute on the StackPanel like this:

RenderTransform="{StaticResource ReduceScaleTransform}"

CHAPTER 6 ■ BROWSER INTEGRATION

511

You alter the FullScreenChanged event so that it applies a reduced scale for this transform by
adding this code when in full-screen mode:

((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleX = scaleX * .10d;
((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleY = scaleY * .10d;
ButtonPanel.HorizontalAlignment = HorizontalAlignment.Right;

You reduce the scale by taking the calculated uniform scale in the local variable scaleX and
multiplying it by 0.1, which was determined by trial and error to look good on the screen. You also
align the StackPanel to the right in full-screen mode and return to the center when in embedded mode.
Figure 6-5 has the final UI in full screen mode.

Figure 6-5. Recipe 6-3’s final full screen UI

In Figure 6-5, the buttons are a little smaller and don't have giant text, which would detract from
the video. As you can see, it is possible to use multiple ScaleTransform objects to achieve a reasonable
user interface. Listings 6-4 and 6-5 contain the XAML and code for this recipe.

Listing 6-4. Recipe 6-3’s MainPage.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" Height="216" Width="334">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

512

 <UserControl.Resources>
 <ScaleTransform ScaleX="1" ScaleY="1" x:Key="ReduceScaleTransform" />
 </UserControl.Resources>
 <UserControl.RenderTransform>
 <ScaleTransform ScaleX="1" ScaleY="1" x:Name="ScaleToFullScreen" />
 </UserControl.RenderTransform>
 <Border CornerRadius="13,13,13,13" Margin="4"
 x:Name="MediaPlayerFrame">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Reflect">
 <GradientStop Color="#FF28D7A4" Offset="0.5"/>
 <GradientStop Color="#FF70E1BF" Offset="1"/>
 <GradientStop Color="#FF70E1BF" Offset="0.0040000001899898052"/>
 </RadialGradientBrush>
 </Border.Background>
 <Grid x:Name="MediaPlayerPanel" Height="210" Width="328">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.848*"/>
 <RowDefinition Height="0.152*"/>
 </Grid.RowDefinitions>
 <MediaElement x:Name="mediaElement" Source="/Video/Video.wmv"
 Margin="4,2,4,2" MediaEnded="mediaElement_MediaEnded">
 <MediaElement.Clip>
 <RectangleGeometry Rect="0,0,260,170" RadiusX="20" RadiusY="20"/>
 </MediaElement.Clip>
 </MediaElement>
 <StackPanel x:Name="ButtonPanel" Grid.Column="0" Grid.Row="1"
 Orientation="Horizontal" Margin="2" HorizontalAlignment="Center"
 RenderTransform="{StaticResource ReduceScaleTransform}" Height="26">
 <Button x:Name="PlayPauseButton" Content="Pause" Margin="2"
 Click="PlayPauseButton_Click" MaxWidth="57" MaxHeight="34.5"/>
 <Button Content="Stop" x:Name="StopButton" Margin="2"
 Click="StopButton_Click" MaxWidth="47" MaxHeight="35" />
 <Button Content="Full" x:Name="FullScreenButton" Margin="2"
 Click="FullScreenButton_Click" MaxWidth="47" MaxHeight="38"/>
 </StackPanel>
 </Grid>
 </Border>
</UserControl>

Listing 6-5. Recipe 6-4’s MainPage.xaml.cs File

using System;
using System.Windows;
using System.Windows.Controls;

CHAPTER 6 ■ BROWSER INTEGRATION

513

using System.Windows.Media;

namespace Ch06_BrowserIntegration.Recipe6_3
{
 public partial class MainPage : UserControl
 {
 private double _embeddedWidth;
 private double _embeddedHeight;

 public MainPage()
 {
 InitializeComponent();
 Application.Current.Host.Content.FullScreenChanged += new
 EventHandler(Content_FullScreenChanged);
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 //Store the embedded with and height so that we can
 //calculate the proper scale factor
 _embeddedWidth = this.Width;
 _embeddedHeight = this.Height;
 }

 void Content_FullScreenChanged(object sender, EventArgs e)
 {
 if (!Application.Current.Host.Content.IsFullScreen)
 {
 ScaleToFullScreen.ScaleX = 1.0d;
 ScaleToFullScreen.ScaleY = 1.0d;
 ((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleX = 1.0d;
 ((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleY = 1.0d;
 ButtonPanel.HorizontalAlignment = HorizontalAlignment.Center;
 }
 else
 {
 double pluginWidth = Application.Current.Host.Content.ActualWidth;
 double pluginHeight = Application.Current.Host.Content.ActualHeight;
 double scaleX = pluginWidth / _embeddedWidth;
 double scaleY = pluginHeight / _embeddedHeight;

 ScaleToFullScreen.ScaleX = scaleX;
 ScaleToFullScreen.ScaleY = scaleY;
 ((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleX =

CHAPTER 6 ■ BROWSER INTEGRATION

514

 scaleX * .10d;
 ((ScaleTransform)this.Resources["ReduceScaleTransform"]).ScaleY =
 scaleY * .10d;
 ButtonPanel.HorizontalAlignment = HorizontalAlignment.Right;
 }
 }

 private void FullScreenButton_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Host.Content.IsFullScreen =
 !Application.Current.Host.Content.IsFullScreen;
 if (Application.Current.Host.Content.IsFullScreen)
 {
 FullScreenButton.Content = "Emb";
 }
 else
 {
 FullScreenButton.Content = "Full";
 }
 }

 private void PlayPauseButton_Click(object sender, RoutedEventArgs e)
 {
 if ((mediaElement.CurrentState == MediaElementState.Stopped) ||
 (mediaElement.CurrentState == MediaElementState.Paused))
 {
 mediaElement.Play();
 PlayPauseButton.Content = "Pause";
 }
 else if (mediaElement.CurrentState == MediaElementState.Playing)
 {
 mediaElement.Pause();
 PlayPauseButton.Content = "Play";
 }
 }

 private void StopButton_Click(object sender, RoutedEventArgs e)
 {
 mediaElement.Stop();
 PlayPauseButton.Content = "Play";
 }

 private void mediaElement_MediaEnded(object sender, RoutedEventArgs e)
 {
 mediaElement.Position = new TimeSpan(0);

CHAPTER 6 ■ BROWSER INTEGRATION

515

 PlayPauseButton.Content = "Play";
 }
 }
}

6-4. Calling a JavaScript Method from Managed Code
Problem
You have existing JavaScript code in a web application that you want to integrate into your Silverlight
application without converting it to managed code.

Solution
Take advantage of the HTML Bridge to access JavaScript elements via the System.Windows.Browser
namespace. Use the HtmlDocument object to obtain a reference to the HTML page’s DOM. Use the
HtmlPage object to invoke JavaScript methods.

How It Works
Silverlight 4 has technology for interacting between the Silverlight 4 managed code and the hosting
browser’s HTML DOM called the HTML Bridge. The HTML Bridge enables developers to call
JavaScript from Silverlight managed code and expose entire managed code types to JavaScript. We’ll
cover the latter in Recipe 6-5.

Developers can enable or disable HTML Bridge functionality by setting the enableHtmlAccess
parameter on the Silverlight browser plug-in to true; the default is false, to disable the HTML Bridge
as a security best practice.

For the default test page, add the following <param> to the <object> tag that instantiates the
Silverlight plug-in:

<param name="enableHtmlAccess" value="true" />

Once this step is complete, it is possible to interact between managed code and the HTML DOM.
For more information on the HTML Bridge security settings, go to msdn.microsoft.com/en-
us/library/cc645023(VS.96).aspx.

Managed types can be passed as parameters to JavaScript functions and objects, and managed
types can be returned from JavaScript functions. You can also assign managed types as event handlers
for JavaScript as well as call JavaScript event handlers from managed types. Visit this site for more
information on how to map types between the technologies: msdn.microsoft.com/en-
us/library/cc645079(VS.96).aspx

When writing JavaScript, you access HTML DOM objects using the document.getElementById
method to obtain a reference to a named object within the HTML web page. Silverlight has similar
functionality using this code:

HtmlDocument doc = HtmlPage.Document;
HtmlElement element = doc.GetElementById("Button1");

CHAPTER 6 ■ BROWSER INTEGRATION

516

This code obtains a reference to Button1 on the HTML page as an HtmlElement object in managed
code. With the HtmlElement reference, developers can manipulate properties, attach events, and
invoke methods, among other abilities listed in the MSDN Silverlight documentation at:
msdn.microsoft.com/en-us/library/system.windows.browser.htmlelement(VS.96).aspx

The System.Windows.Browser namespace has other useful classes when interacting with JavaScript
and the browser; these are listed in Table 6-2.

Table 6-2. Key Classes in System.Windows.Browser Namespace

Class Description

BrowserInformation Obtains the name, version, and operating system of the web browser
hosting Silverlight.

HtmlDocument Used to access the HTML DOM from managed code.

HtmlElement Represents an HTML element in the DOM.

HtmlPage Grants access to the browser’s DOM via the Document property, which
can be assigned to and accessed via an instance of HtmlDocument.

HtmlWindow Represents a JavaScript window object in managed code.

HtmlUtility Provides useful methods to encode and decode HTML and URL strings.

Additional classes related to making managed code are available in JavaScript (see Recipe 6-6).

Here, you focus on accessing JavaScript elements and methods from managed code. To call
JavaScript from managed code, you have to first enable browser interaction as described earlier by
setting enableHtmlAccess to true. Next, you can invoke the JavaScript method from Silverlight by using
the following line of code:

HtmlPage.Window.Invoke("fooGetData", args);

This line of code calls a JavaScript method named fooGetData, passing in arguments in an object
array named args. The Invoke() method returns an object so if the JavaScript function fooGetData
returns data, it can be received directly in Silverlight per the rules on mapping data types between
Silverlight and JavaScript. See this site for details: msdn.microsoft.com/en-
us/library/cc645079(VS.96).aspx

The code for this recipe takes advantage of the HTML Bridge functionality to manipulate elements
in the browser DOM as well as to invoke a JavaScript AJAX call from managed code and then have the
JavaScript AJAX method call back into the Silverlight application with the returned data.

■ Note In Recipe 6-5, you will learn how to call managed code from JavaScript.

CHAPTER 6 ■ BROWSER INTEGRATION

517

The Code
You first create a simple user interface based on Recipe 2-5, where you pull in XML data embedded
into the .xap file. In this recipe, you call a JavaScript method that uses the Microsoft AJAX Library to
make a web request to retrieve the XML data from the server. However, before you find out how to
retrieve the XML data via JavaScript, let’s look at some additional points on the Silverlight and web
page user interface.

In the Silverlight application UI for this recipe, you add a button called Update Data that, when
clicked, makes the JavaScript call to retrieve the data. You also apply a little bit of styling by wrapping
the Grid named LayoutRoot within a Border control named LayoutRootBorder. Then, on the outside, you
apply another Grid with a Background SolidColorBrush that matches the second gradient stop on the
GradientBrush applied to the LayoutRootBorder object.

You use the same brush for the outer Grid so that it blends with the background color set on the
hosting web page. In Page_Loaded for the Silverlight application, you apply a bit of styling to the web
page:

doc = HtmlPage.Document;
doc.SetProperty("bgColor", GetColor());
doc.GetElementById("silverlightControlHost").
 SetStyleAttribute("width",this.Width.ToString());
doc.GetElementById("silverlightControlHost").
 SetStyleAttribute("height", this.Height.ToString());

You obtain a reference to the DOM and set the background color (bgColor) of the web page to match
the second gradient stop SolidColorBrush value on the Border control, which you obtain in the
GetColor() method shown here:

private string GetColor()
{
 GradientBrush gb = LayoutRootBorder.Background as GradientBrush;
 //Set background color to second gradient stop
 GradientStop gs = gb.GradientStops[1];
 return gs.Color.R.ToString("X2") + gs.Color.G.ToString("X2") +
 gs.Color.B.ToString("X2");
}

In the default test pages, you modify the default styling for the div tag hosting the Silverlight
control to this:

#silverlightControlHost
{
 top: 100px;
 left: 100px;
 float: right;
}

The style is applied to the <div> tag containing the Silverlight plug-in control by name because the
name of the div tag is silvelightcontrolhost.

CHAPTER 6 ■ BROWSER INTEGRATION

518

This style repositions the Silverlight plug-in along the right side of the browser window with some
space from the right edge. There is some random chapter text at the top of the page just to fill in the
page a bit (see Figure 6-6). Listing 6-6 has the XAML and Listing 6-7 has the codebehind for this recipe.

Figure 6-6. Recipe 6-4’s initial UI

Listing 6-6. Recipe 6-4’s MainPage.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_4.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" Width="600" Height="300"
 d:DesignHeight="300" d:DesignWidth="600">
 <Grid Background="#FFAFC6FE">
 <Border x:Name="LayoutRootBorder" CornerRadius="20,20,20,20" >
 <Border.Background>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

519

 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF443EE1" Offset="0.0040000001899898052"/>
 <GradientStop Color="#FFAFC6FE" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid x:Name="LayoutRoot" Margin="12,12,12,12" Background="{x:Null}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.058*"/>
 <ColumnDefinition Width="0.878*"/>
 <ColumnDefinition Width="0.065*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.097*"/>
 <RowDefinition Height="0.83*"/>
 <RowDefinition Height="0.073*"/>
 </Grid.RowDefinitions>
 <Button Height="Auto" HorizontalAlignment="Left" Margin="4,0,0,4"
 VerticalAlignment="Bottom" Width="Auto" Grid.Column="1"
 Content="Update Data"
 x:Name="UpdateDataButton" Click="UpdateDataButton_Click"/>
 <Border Grid.Column="1" Grid.Row="1" CornerRadius="13,13,13,13"
 Margin="10,10,10,10" >
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF4B4897"/>
 <GradientStop Color="#FF2F2AAA" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 <ListBox x:Name="BookListBox" Margin="8,8,8,8" Background="{x:Null}"
 BorderBrush="{x:Null}"
 Foreground="#FF4EBA61" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="2,2,2,2">
 <TextBlock Text="{Binding Path=ISBN}" Margin="0,0,0,2"/>
 <TextBlock Text="{Binding Path=Title}" Margin="0,0,0,2"/>
 <TextBlock Width="550" Text="{Binding Path=Description}"
 TextWrapping="Wrap" Margin="0,0,0,10"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Border>
 </Grid>
 </Border>

CHAPTER 6 ■ BROWSER INTEGRATION

520

 </Grid>
</UserControl>

Listing 6-7. Recipe 6-4’s MainPage.xaml.cs File

using System.Windows;
using System.Windows.Browser;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Media;

namespace Ch06_BrowserIntegration.Recipe6_4
{
 public partial class MainPage : UserControl
 {
 HtmlDocument doc;

 public MainPage()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 doc = HtmlPage.Document;
 doc.SetProperty("bgColor", GetColor());
 doc.GetElementById("silverlightControlHost").
 SetStyleAttribute("width", this.Width.ToString());
 doc.GetElementById("silverlightControlHost").
 SetStyleAttribute("height", this.Height.ToString());

 //Make scriptable type available to JavaScript
 HtmlPage.RegisterScriptableObject(“MainPage”, this);
 }

 private string GetColor()
 {
 GradientBrush gb = LayoutRootBorder.Background as GradientBrush;
 //Set background color to second gradient stop
 GradientStop gs = gb.GradientStops[1];
 //Remove alpha component from brush since it doesn't work for html
 //elements when setting background color. ToString("X2") formats the
 //byte value as a hexidecimal value forcing 2 digits each if there are
 // not two digits for each component, it will cause an error.

CHAPTER 6 ■ BROWSER INTEGRATION

521

 return gs.Color.R.ToString("X2") + gs.Color.G.ToString("X2") +
 gs.Color.B.ToString("X2");
 }

 private void UpdateDataButton_Click(object sender, RoutedEventArgs e)
 {
 HtmlPage.Window.Invoke("getDataUsingJavaScriptAjaxAsync");
 }

 [ScriptableMember]
 public void SetBookXMLData(string data)
 {
 ApressBooks books = new ApressBooks(data);
 Binding b = new Binding("ApressBookList");
 b.Source = books.ApressBookList;
 BookListBox.ItemsSource = books.ApressBookList;
 }
 }
}

Now, let’s see the JavaScript method created for this recipe that is called from Silverlight. You put
all of your scripts into a js folder in the TestWeb web application. For the default test pages, download
the Microsoft AJAX Library and add a script reference to bring it into the web page:

 <script type="text/javascript"
 src="js/System.Web.Extensions/1.0.61025.0/MicrosoftAjax.js"/>

■ Note Download the Microsoft AJAX Library from http://www.asp.net/ajaxlibrary/download.ashx We use
the Microsoft AJAX Library as a convenient way to make a web request call that is abstracted from the browser,
whether it’s Internet Explorer, Firefox, or Safari. Listing 6-8 has the source code for the asynchronous Java web
request call.

Listing 6-8. Recipe6.4.js File

///<reference name="MicrosoftAjax.js"
function getDataUsingJavaScriptAjaxAsync() {
 ///<summary>This method makes a web request to obtain an XML file</summary>
 ///<returns type="String" />
 var req = new Sys.Net.WebRequest();
 req.set_url("http://localhost:9090/xml/ApressBooks.xml");
 req.set_httpVerb("GET");
 req.set_userContext("user's context");
 req.add_completed(OnWebRequestCompleted);

http://www.asp.net/ajaxlibrary/download.ashx
http://localhost:9090/xml/ApressBooks.xml

CHAPTER 6 ■ BROWSER INTEGRATION

522

 req.invoke();
}

function OnWebRequestCompleted(executor, eventArgs) {
 if (executor.get_responseAvailable()) {
 var xmlString = executor.get_responseData();
 //Call Managed Code method to pass back data - Covered in Recipe 6.6
 document.getElementById("Xaml1").Content.MainPage.SetBookXMLData(xmlString);
 }
}

Although this book does not focus on ASP.NET AJAX, we will cover the highlights of Listing 6-8. The
first line (with the <reference name..> element commented out with three slashes) is the equivalent of
a using in C#, and it brings in the Microsoft AJAX Library script file. The Sys.Net.WebRequest JavaScript
class is used to make the web request asynchronously. When getDataUsingJavaScriptAjaxAsync is
invoked in the Silverlight application’s UpdateDataButton_Click event handler, the data is not
immediately returned to the Silverlight application when this event handler executes:

private void UpdateDataButton_Click(object sender, RoutedEventArgs e)
{
 HtmlPage.Window.Invoke("getDataUsingJavaScriptAjaxAsync");
 }

Instead, the web request asynchronously retrieves the data, which is returned via the
OnWebRequestCompleted JavaScript method. The OnWebRequestCompleted JavaScript method shown in
Listing 6-8 invokes a scriptable method called SetBookXMLData() located in the Silverlight application
in order to return the data. A scriptable method is a managed code method that is made available in
JavaScript. We cover how to call managed code in Recipe 6-6 in detail.

To summarize, when the Silverlight Update Data Button is clicked, the event handler invokes the
JavaScript method getDataUsingJavaScriptAjaxAsync to initiate the asynchronous call and immediately
return—that is, the UI thread is not blocking. When the ApressBooks.xml data is returned to the
browser, the OnWebRequestCompleted JavaScript method passes the data back to Silverlight, where it is
parsed by the class named ApressBooks using LINQ to XML. (This LINQ to XML functionality was
covered in Recipe 2-5, so we don’t show the listing here.) The only difference is that the data binding
that happens in XAML without any C# code in Recipe 2-5 is now handled via this method in the Page
class codebehind file:

[ScriptableMember]
public void SetBookXMLData(string data)
{
 ApressBooks books = new ApressBooks(data);
 Binding b = new Binding("ApressBookList");
 b.Source = books.ApressBookList;
 BookListBox.ItemsSource = books.ApressBookList;
}

Figure 6-7 shows the final UI when the button is clicked.

CHAPTER 6 ■ BROWSER INTEGRATION

523

Figure 6-7. The final UI when the button is clicked

6-5. Calling a Managed Code Method from JavaScript
Problem
You prefer to write complex operations in managed code but need to call the method from JavaScript as
part of integrating Silverlight with a web site.

Solution
To make a managed code operation available in the browser, mark member functions with the
ScriptableMember attribute. Next, make the scriptable type available on the HTML DOM by registering
an instance of the scriptable object by calling HtmlPage.RegisterScriptableObject.

CHAPTER 6 ■ BROWSER INTEGRATION

524

How It Works
There will be scenarios where a Silverlight application needs to be tightly integrated with web content
such as when you have a robust existing web application where you are introducing Silverlight into the
user experience. Cases where a web application needs to perform complex client-side calculations that
would be better handled by managed code are great scenarios where the integration capabilities can
prove valuable.

Developers can enable or disable HTML Bridge functionality by setting the enableHtmlAccess
parameter on the Silverlight browser plug-in to a Boolean value, with the default false, which disables
the HTML Bridge.

For the default test page, add the following <param> to the <object> tag that instantiates the Silverlight
plug-in:

<param name="enableHtmlAccess" value="true" />

Once this step is complete, it is possible to interact between managed code and the HTML DOM.
For more information on the HTML Bridge security settings, see msdn.microsoft.com/en-
us/library/cc645023(VS.96).aspx

Managed types can be passed as parameters to JavaScript functions and objects, and managed
types can be returned from JavaScript functions. You can also assign managed types as event handlers
for JavaScript as well as call JavaScript event handlers from managed types. Refer to this site for more
information on how to map types between the technologies: msdn.microsoft.com/en-
us/library/cc645079(VS.96).aspx

To make an entire type available for scripting, mark it with the ScriptableType attribute. To mark
individual methods as scriptable, apply the ScriptableMember to the individual methods. Both attributes
reside in the System.Windows.Browser namespace.

To call a managed code method from JavaScript, you first declare the method and then decorate it
with the ScriptableMember attribute as shown here:

[ScriptableMember]
public string MyMethod()
{
}

The next step is to make the object and its scriptable method available to JavaScript via the HTML
Bridge by making this call in either App.Startup or Page.Load events. Here is an example for this step:

HtmlPage.RegisterScriptableObject("foo", RootVisual); //App_Startup
HtmlPage.RegisterScriptableObject("foo", this); //Page_Load

If you need to pass a parameter to the managed scriptable method, you obtain a reference to an
instance of the managed type with JavaScript code similar to this example below:

var MyList =
 slPlugin.Content.BarObject.createManagedObject("List<string>");

You can then populate the variable reference in JavaScript using the corresponding JavaScript
type’s methods.

The final step is to call the scriptable method from JavaScript. The JavaScript code can be
anywhere in the test page such as document.load, Silverlight.onLoad or an event handler such as a
button click. The HTML Bridge provides access to the managed code events via the Silverlight plug-

CHAPTER 6 ■ BROWSER INTEGRATION

525

in’s Content property to make the call. Based on the example RegisterScriptableObject() and your
scriptable method MyMethod, this line of JavaScript code shows how to make the call:

strVariable = document.getElementById("Xaml1").Content.foo.MyMethod();

When you register the object that has the scriptable methods, the first parameter passed into
RegisterScriptableObject() is called the scriptKey. The value passed in as the scriptKey, in this case
foo, is appended to Content after using getElementById() to find the Silverlight plug-in in the DOM.
You can then call method names using Content.foo.MethodName as shown above.

You can also wire up a managed code event handler directly to a JavaScript event such as an
HTML Button click. First, create an event handler in the Silverlight application that follows this method
signature:

[ScriptableMember]
private void MyJavaScriptEventHandler(object o, EventArgs e)
{
 // Code goes here…
}

Next, find the HTML element where the managed code event handler should be attached and
attach the event handler to the desired JavaScript event referencing the Silverlight application with
the “this” parameter, like so:

doc.GetElementById("Button1").AttachEvent("click",
 new EventHandler(this.MyJavaScriptEventHandler));

When the HTML button Button1 is clicked on the web page, the managed code event
MyJavaScriptEventHandler() will execute.

The Code
This recipe implements the concepts to show the rich integration possible between Silverlight and the
HTML DOM. The first step is to set the enableHtmlAccess parameter to true so that the HTML Bridge is
available in both the HTML and ASPX test page following the steps listed earlier. For the HTML page,
there is only one way to build it: with plain old HTML and JavaScript by adding a <script> tag to bring
in a separate JavaScript file in the js folder named Recipe6.5.js.

First, you call a managed scriptable method with parameters. As mentioned in the previous
section, you create a reference to a managed object that can then be populated using JavaScript code:

var MyList =
slPlugin.Content.BarObject.createManagedObject("List<string>");
MyList.push("Rob","Jit","Harry");
slPlugin.Content.BarObject.Foo(MyList);

The preceding code in onSilverlightLoaded creates a list object, populates it with some values and
then passes it in to the Foo method. If you set a breakpoint in the Foo method, you will see that the
method is successfully called and the values passed in. One other item to note is that you use this line
of code in Page_Loaded to make the Bar class available in JavaScript:

 HtmlPage.RegisterScriptableObject("BarObject", new Bar());

CHAPTER 6 ■ BROWSER INTEGRATION

526

You could pass in a signature that uses a constructor that takes a parameter as well as the default
constructor signature. Next, you want to grab the background color of the Silverlight control’s main
Grid control and apply it to the HTML page and a text input HTML element. For the HTML page, after
enabling the HTML Bridge, you create an onSilverlightLoaded JavaScript event that you wire to the
Silverlight plug-in’s OnLoad event handler. You also change the following line of code to transparent
instead of white in the Silverlight plug-in parameter list because you want the application to configure
the background at runtime:

<param name="background" value="transparent />

The next step is to create the Silverlight managed code method on the Page class that you want to
call from JavaScript. You name the method GetMyBackGroundColor() because it determines the color of
the LayoutRoot Grid control and returns the color value as a red, green, blue (RGB) hexadecimal value.
If the Grid.Background points to a GradientBrush, you grab the color value of the first GradientStop and
pass that color back as the return value on the GetMyBackgroundColor method. Here is the line of code
from Page_Load to make the entire MainPage class and its method like the GetMyBackGroundColor method
available in JavaScript:

HtmlPage.RegisterScriptableObject("MainPage", this);

In the onSilverlightLoaded JavaScript event, you access the GetMyBackgroundColor() method with
the following line of code:

colorRGB = document.getElementById("Xaml1").Content.MainPage.
GetMyBackgroundColor();

Once you have the color, you use the following to assign it to the text input control’s
backgroundColor property and to the document.bgColor property as well:

txt1 = document.getElementById("Text1");
txt1.value = colorRGB;
txt1.style.backgroundColor = colorRGB;
document.bgColor = colorRGB;

You set the width style attribute on the <div> containing Silverlight to equal the width of the
Silverlight content from managed code in the Page.SizeChanged event. If you didn’t do this, the
document.bgColor value would not be visible. Otherwise, the default setting for the <div> in the
generated test pages is to take over the entire browser screen height, and the background color set on
the HTML page is not visible for most of the page.

To set the Width from managed code, you configure an ID on the HTML <div> tag to
silverlightControlHost, which matches the name automatically generated in the HTML test page. In
managed code, you attach an event handler to the Page’s SizeChanged event and execute the following
code:

HtmlDocument doc = HtmlPage.Document;
doc.GetElementById("silverlightControlHost").
 SetStyleAttribute("width", this.Width.ToString());

This code calls SetStyleAttribute() for the width attribute on the <div> and configures it with the
Width configured on the managed code Page object. Figure 6-7 shows the results.

CHAPTER 6 ■ BROWSER INTEGRATION

527

The Silverlight control is on the left side in Figure 6-8 just below the HTML Button, the “Color from
Silverlight” text, and the text input HTML control with the RGB value returned by the
GetMyBackgroundColor() method.

The Silverlight control in Figure 6-8 has a gradient that runs from top to bottom; the first gradient
stop at the top matches the background color for the rest of the web page. Because you set the <div>
width to match the Silverlight content Width, the light blue appears to wrap around the Silverlight plug-
in. The light blue does not appear below the Silverlight plug-in because the height attribute remains
set at 100% for the <div> containing the Silverlight plug-in.

Figure 6-8. Setting the web page background color from managed code

The other custom code that you implement maps a managed code event handler to an HTML
button Click event on the web page. The managed code method name is InvokedFromHtmlButtonClick()
with this code:

private void InvokedFromHtmlButtonClick(object o, EventArgs e)
{
 MessageTextBlock.Text = "HTML button clicked at " + DateTime.Now.ToString();
}

You attach the managed code to the HTML button with this code in the Page_Load event handler:

HtmlDocument doc = HtmlPage.Document;

CHAPTER 6 ■ BROWSER INTEGRATION

528

doc.GetElementById("Button1").AttachEvent("click",
 new EventHandler(this.InvokedFromHtmlButtonClick));

When you click the button in the UI shown in Figure 6-8, Figure 6-9 is the resulting UI.

Figure 6-9. Updated text with date and time displayed

Since an ASP.NET Button server control always performs postback by default, you use an HTML
input button on the .aspx page. It is possible to prevent the postback using client-side JavaScript;
however, you want to call a Silverlight managed code method instead. Listing 6-9 shows the
MainPage.xaml file; Listing 6-10 shows the MainPage.xaml.cs file.

Listing 6-9. Recipe 6-5’s MainPage.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_5.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

529

 <Grid.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF75C6E8"/>
 <GradientStop Color="#FF2828AA" Offset="1"/>
 </LinearGradientBrush>
 </Grid.Background>

 <Grid.RowDefinitions>
 <RowDefinition Height="13*"/>
 <RowDefinition Height="43*"/>
 <RowDefinition Height="244*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.035*"/>
 <ColumnDefinition Width="0.91*"/>
 <ColumnDefinition Width="0.055*"/>
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="MessageTextBlock" HorizontalAlignment="Left"
 Margin="4,4,0,0" VerticalAlignment="Top" Grid.Column="1" Grid.Row="1"
 Text="Your text goes here..." TextWrapping="Wrap"
 d:LayoutOverrides="HorizontalAlignment, VerticalAlignment, GridBox"
 FontSize="14" Width="194.999"/>
 <StackPanel Margin="4" Grid.Row="2" Grid.Column="1" >
 <Border Height="Auto" Width="Auto" CornerRadius="10,10,10,10"
 Margin="4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF69E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" Height="Auto" x:Name="TextFirstName"
 Width="Auto" Foreground="#FF0000FF" Text="Enter First Name"
 TextWrapping="Wrap" TabIndex="0" BorderBrush="{x:Null}" Margin="2"/>
 </Border>
 <Border Height="Auto" CornerRadius="10,10,10,10" Width="Auto"
 Margin="4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF94E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" Height="Auto" x:Name="TextLastName"
 Width="Auto" Foreground="#FF0000FF" Text="Enter Last Name"

CHAPTER 6 ■ BROWSER INTEGRATION

530

 TextWrapping="Wrap" TabIndex="1" BorderBrush="{x:Null}" Margin="2"/>
 </Border>
 <Border Height="Auto" CornerRadius="10,10,10,10" Width="Auto"
 Margin="4">
 <Border.Background>
 <RadialGradientBrush SpreadMethod="Pad">
 <GradientStop Color="#FFD0CDAF"/>
 <GradientStop Color="#FF94E247" Offset="1"/>
 </RadialGradientBrush>
 </Border.Background>
 <TextBox Background="{x:Null}" x:Name="TextFavoriteColor"
 Width="Auto" Foreground="#FF0000FF" Text="Enter Favorite Color"
 TextWrapping="Wrap" TabIndex="2" BorderBrush="{x:Null}" Margin="2"/>
 </Border>
 </StackPanel>
 </Grid>
</UserControl>

Listing 6-10. Recipe 6-5’s MainPage.xaml.cs File

using System;
using System.Windows;
using System.Windows.Browser;
using System.Windows.Controls;
using System.Windows.Media;

namespace Ch06_BrowserIntegration.Recipe6_5
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
 SizeChanged += new SizeChangedEventHandler(Page_SizeChanged);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 //Make scriptable type available to JavaScript
 HtmlPage.RegisterScriptableObject(“MainPage”, this);
 HtmlPage.RegisterScriptableObject("BarObject", new Bar());

 HtmlDocument doc = HtmlPage.Document;
 doc.GetElementById("Button1").AttachEvent("click",

CHAPTER 6 ■ BROWSER INTEGRATION

531

 new EventHandler(this.InvokedFromHtmlButtonClick));
 }

 void Page_SizeChanged(object sender, SizeChangedEventArgs e)
 {
 //Set width of Div containing the SilverlightControl to width
 //of Silverlight content so that the HTML background displays
 //along side of the Silverlight control. Otherwise the Silverlight
 //control will take up the entire page based on the html in the
 //default test pages that are created.
 HtmlDocument doc = HtmlPage.Document;
 doc.GetElementById("silverlightControlHost").SetStyleAttribute("width",
 this.Width.ToString());
 }

 [ScriptableMember]
 public string GetMyBackgroundColor()
 {
 Brush b = LayoutRoot.Background;
 if (b is SolidColorBrush)
 {
 SolidColorBrush scb = b as SolidColorBrush;
 //Remove alpha component from brush since it doesn't work for
 //html elements when setting background color.
 //ToString("X2") formats the byte value as a hexidecimal value
 //forcing 2 digits each if there are not two digits for each
 //component, it will cause a JavaScript error.
 return scb.Color.R.ToString("X2") + scb.Color.G.ToString("X2") +
 scb.Color.B.ToString("X2");
 }
 else if (b is GradientBrush)
 {
 GradientBrush gb = b as GradientBrush;
 //Arbitrarily pick the color of first gradient stop as the color
 //to pass back as the returned value.
 GradientStop gs = gb.GradientStops[0];
 //Remove alpha component from brush since it doesn't work for html
 //elements when setting background color. ToString("X2") formats the
 //byte value as a hexidecimal value forcing 2 digits each. If there
 // are not two digits for each component, it will cause a JavaScript
 //error.

 return gs.Color.R.ToString("X2") + gs.Color.G.ToString("X2") +
 gs.Color.B.ToString("X2");
 }
 else

CHAPTER 6 ■ BROWSER INTEGRATION

532

 return "#FFFFFF";
 }

 private void InvokedFromHtmlButtonClick(object o, EventArgs e)
 {
 MessageTextBlock.Text = "HTML button clicked at " +
 DateTime.Now.ToString();
 }
 }

 [ScriptableType]
 public class Bar
 {
 [ScriptableMember]
 public void Foo(List<string> param)
 { //Set a breakpoint
 }
 }
}

6-6. Exchanging Data Among Multiple Plug-ins
Problem
You have more than one Silverlight plug-in in your web page hosting content and you need to
exchange data among the plug-ins.

Solution
Use the HTML Bridge covered in Recipes 6-5 and 6-6 to expose methods from Silverlight to JavaScript
using the ScriptableMethodAttribute. Call the methods as JavaScript methods using
HtmlPage.Window.Invoke().

How It Works
We cover the details on working with the HTML Bridge in Recipes 6-5 and 6-6. This recipe focuses on
using the HTML Bridge to implement communication between multiple instances of the same
Silverlight application.

This recipe implements communication via the HTML Bridge, which means that the data passed
via the HTML Bridge must be JavaScript compatible. Refer to this site for more information on how to
map types between the technologies: msdn.microsoft.com/en-us/library/cc645079(VS.96).aspx

CHAPTER 6 ■ BROWSER INTEGRATION

533

In this example, you implement pushing data as well as requesting data between two instances of
the same Silverlight application. You establish a convention of naming the JavaScript methods with the
name of the Silverlight plug-in ID as a prefix to the method name.

The Silverlight plug-in supports initialization parameters in the form of key/value pairs in a
string like "Key1=Value1;Key2=Value2;Key3=Value3", providing support for multiple initialization
parameters. In your case, you have one parameter that you pass in on the <object> tag in the .html
page; this parameter is the other Silverlight plug-in you want to work with:

<param name="initParams" value="PartnerControl=Xaml2" />

This code parses the initParams in Page_Loaded but you could also place this code in App_Startup as
well:

//Get passed parameter for partner control
 string initParams = HtmlPage.Plugin.GetProperty("initParams").ToString();
 string[] paramsArray = initParams.Split(';');
 string[] KeyValue = paramsArray[0].Split('=');
 _partnerControlID = KeyValue[1];

You pass in the parameter so that you know which control to talk to. The correct control is chosen
by calling JavaScript methods that are prefixed with the partner control’s name. So when sending data
to the partner control, you make this call:

HtmlPage.Window.Invoke(_partnerControlID + "DoReceive", args);

In the DoReceive JavaScript functions, you pass in data from the control from a button click
initiated by the user, calling the managed code function ReceiveData() from JavaScript, and passing in
the data.

When requesting data, you make this call:

string str = (string)HtmlPage.Window.Invoke(_partnerControlID + "RequestData");

In the RequestData JavaScript functions, you invoke the managed code RequestData() method via
the JavaScript method. The managed code RequestData() method returns the data, which is then
returned to the calling application via the HTML Bridge.

This simple convention provides an easy means of communicating between multiple Silverlight
plug-ins within the same web page.

The Code
In this recipe’s sample code, you modify the default test web pages, adding an additional instance of
the Silverlight plug-in of the same Silverlight application, so both plug-in instances point to the
Ch06_BrowserIntegration.Recipe6_6.xap file. In both the .aspx and .html pages, you ensure that both
Silverlight plug-in controls as well as their parent <div> containers have unique IDs in the page.

You also modify the test pages so that the height and width on all of the controls isn’t set to 100% in
order to keep the two plug-in instances visible and near each other to facilitate testing. You set the
<object> tags hosting the Silverlight plug-in to 100% for Height and Width. You create the four JavaScript
functions to implement data-push and data-request in Recipe6.6.js located in the js folder. Listing 6-
11 has the four JavaScript functions.

CHAPTER 6 ■ BROWSER INTEGRATION

534

Listing 6-11. Recipe 6-6’s JavaScript File

function Xaml1DoReceive(data)
{
 document.getElementById("Xaml1").Content.MainPage.ReceiveData(data);
}

function Xaml1RequestData()
{
 return document.getElementById("Xaml1").Content.MainPage.RequestData();
}

function Xaml2DoReceive(data)
{
 document.getElementById("Xaml2").Content.MainPage.ReceiveData(data);
}

function Xaml2RequestData(data)
{
 return document.getElementById("Xaml2").Content.MainPage.RequestData();
}

The XAML markup has a TextBlock at the top of the UI where the ID of the control instance is
displayed. The ID is retrieved and set to the Text value of the TextBlock using this code:

ControlID.Text = HtmlPage.Plugin.Id;

The UI also has two buttons that make the calls to the appropriate JavaScript method with the Send
Data button making the following call to push data to the other application hosted in a separate
Silverlight plug-in on the same page:

HtmlPage.Window.Invoke(_partnerControlID + "DoReceive", args);

The _args parameter is an object array that contains one entry. The other button, Request Data,
makes this call to pull data from the other Silverlight application hosted on the page:

string str = (string)HtmlPage.Window.
 Invoke(_partnerControlID + "RequestData");

There is a TextBox control so that the user can type data to send at the upper-right part of the UI.
There are two TextBox controls on the lower-right part of the UI where pushed data is received and
requested data is loaded, as shown in Figure 6-10. Listings 6-12 and 6-13 have the XAML and
codebehind file for this recipe.

CHAPTER 6 ■ BROWSER INTEGRATION

535

Figure 6-10. Recipe 6-6’s user interface

Listing 6-12. Recipe 6-6’s MainPage.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_6.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 Width="400" Height="250"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot">
 <Grid.Background>
 <RadialGradientBrush>
 <GradientStop Color="#FFFFFFFF"/>
 <GradientStop Color="#FFB98585" Offset="1"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

536

 </RadialGradientBrush>
 </Grid.Background>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.067*"/>
 <RowDefinition Height="0.433*"/>
 <RowDefinition Height="0.43*"/>
 <RowDefinition Height="0.07*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.055*"/>
 <ColumnDefinition Width="0.442*"/>
 <ColumnDefinition Width="0.45*"/>
 <ColumnDefinition Width="0.052*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="SendDataButton" Height="Auto" Margin="4,4,4,0"
 Click="SendDataButton_Click" Grid.Column="1" Grid.Row="1"
 VerticalAlignment="Top" Content="Send Data"/>
 <StackPanel Margin="4,4,4,4" Grid.Column="2" Grid.Row="1">
 <TextBlock Height="Auto" Width="Auto" Text="Data to Send:"
 TextWrapping="Wrap" Margin="2,2,2,2"/>
 <TextBox Height="24" Width="Auto" Text="" TextWrapping="Wrap"
 Margin="2,2,2,2" x:Name="DataToSend"/>
 </StackPanel>
 <Button x:Name="RequestDataButton" Height="Auto" Margin="4,4,4,0"
 Click="RequestDataButton_Click" Grid.Column="1" Grid.Row="2"
 VerticalAlignment="Top" Content="Request Data" />
 <StackPanel Margin="0,4,8,4" Grid.Column="2" Grid.Row="2">
 <TextBlock Height="Auto" Margin="2,2,2,2" Width="Auto"
 Text="Received Data:" TextWrapping="Wrap"/>
 <TextBox Height="24" Margin="2,2,2,2" Width="Auto"
 Text="" TextWrapping="Wrap" x:Name="ReceivedData"/>
 <TextBlock Height="16" Width="101"
 Text="Requested Data:" TextWrapping="Wrap"/>
 <TextBox Height="24" Width="Auto"
 Text="" TextWrapping="Wrap" x:Name="RequestedData"/>
 </StackPanel>

 <TextBlock HorizontalAlignment="Left" Margin="4,0,0,4" Width="102"
 Grid.Column="1" Text="TextBlock" TextWrapping="Wrap"
 d:LayoutOverrides="HorizontalAlignment" x:Name="ControlID"/>
 </Grid>
</UserControl>

CHAPTER 6 ■ BROWSER INTEGRATION

537

Listing 6-13. Recipe 6-6’s MainPage.xaml.cs File

using System;
using System.Windows;
using System.Windows.Browser;
using System.Windows.Controls;

namespace Ch06_BrowserIntegration.Recipe6_6
{
 public partial class MainPage : UserControl
 {
 private string _partnerControlID;
 public MainPage()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 //Make scriptable type available to JavaScript
 //Enable call to ReceiveData from JavaScript
 HtmlPage.RegisterScriptableObject(“MainPage”, this);
 //Get the ID of the Silverlight Plug-in Control Parent
 string parentId = HtmlPage.Plugin.Parent.Id;
 //Get the ID of the Silverlight Plug-in Control
 ControlID.Text = HtmlPage.Plugin.Id;
 //Obtain a reference to the DOM
 HtmlDocument doc = HtmlPage.Document;
 //Set height and width on parent div so
 //that the control displays properly
 doc.GetElementById(parentId).
 SetStyleAttribute("width", this.Width.ToString());
 doc.GetElementById(parentId).
 SetStyleAttribute("height", this.Height.ToString());
 //Get passed parameter for partner control
 string initParams =
 HtmlPage.Plugin.GetProperty("initParams").ToString();
 string[] paramsArray = initParams.Split(';');
 string[] KeyValue = paramsArray[0].Split('=');
 _partnerControlID = KeyValue[1];
 }

 [ScriptableMember]
 public void ReceiveData(object receivedData)

CHAPTER 6 ■ BROWSER INTEGRATION

538

 {
 ReceivedData.Text = (string)receivedData;
 }

 [ScriptableMember]
 public string RequestData()
 {
 if (DateTime.Now.Millisecond < 500)
 return "RequestedData" + DateTime.Now.ToString();
 else
 return null;
 }

 private void SendDataButton_Click(object sender, RoutedEventArgs e)
 {
 object[] args = new object[1];
 args[0] = DataToSend.Text ;
 HtmlPage.Window.Invoke(_partnerControlID + "DoReceive",args);
 }

 private void RequestDataButton_Click(object sender, RoutedEventArgs e)
 {
 string str = (string)HtmlPage.Window.
 Invoke(_partnerControlID + "RequestData");
 if (str != null)
 RequestedData.Text = str;
 else
 RequestedData.Text = "no data";
 }
 }
}

6-7. Layering HTML over the Silverlight Plug-in
Problem
You need to blend the UI of a Silverlight application with HTML such that the HTML can overlay the
Silverlight control when running within the browser.

Solution
Configure the Silverlight plug-in hosting the Silverlight UI so that it supports HTML overlaying the
Silverlight content.

CHAPTER 6 ■ BROWSER INTEGRATION

539

How It Works
By default, the Silverlight plug-in runs within its own Window such that HTML content can flow
around it or is hidden behind the control if absolutely positioning HTML content. Recipe 6-8 covers
how to host HTML content when running Out-of-Browser, however, the WebBrowser control doesn’t
run when running within the browser. For the in-browser scenario, you can follow the steps in this
recipe to try to match the UI of an OOB application by more closely integrating the HTML with the
plug-in content.

You can configure the Silverlight plug-in to allow HTML content to flow over the Silverlight UI. To
do so, set the background parameter to a value of transparent, set the windowless parameter to true,
and configure the z-index for the div hosting the plug-in to zero. These three steps configure the plug-
in to have HTML text overlay it. The last step is to create HTML to overlay the control that is
positioned over the top of the plugin and has style settings to make the background transparent and a z-
index of greater than what is configured on the plug-in (in your case, greater than 1, which is set on the
plug-in as the z_index).

The Code
For this project, you create a simple Silverlight application that contains a rectangle and some
Silverlight text that overlays it as shown in Figure 6-11.

Figure 6-11. Recipe 6-7’s design-time user interface

Next, turn to the HTML page to configure the Silverlight plug-in HTML and to create a simple
piece of HTML to overlay the plug-in. You configure the div hosting the plug-in to have a z-index of 0.
You also enable windowless mode and set the background on the plug-in to transparent as shown
here:

<div id="silverlightControlHost"
style="width: 400px; height: 300px; position: absolute;z-index: 0">

CHAPTER 6 ■ BROWSER INTEGRATION

540

 <object data="data:application/x-silverlight-2," type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Ch06_BrowserIntegration.Recipe6_7.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="transparent" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <param name="windowless" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0" style="text-
decoration: none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft
Silverlight"
 style="border-style: none" />

 </object>
 <iframe id="_sl_historyFrame" style="visibility: hidden; height: 0px;
 width: 0px; border: 0px"></iframe>
</div>

Windowless mode causes the browser to render the Silverlight content instead of a separate
Window handling the rendering. This can have performance implications for a UI that is heavy with
animations so please keep that in mind.

Next, create a little bit of HTML to partially render over the Silverlight plug-in:

<div style="background: transparent;
 color: Green; z-index: 1; position: absolute">
 Hi There in HTML!
</div>

Note that the style on the div is configured to have a transparent background, absolute positioning,
and a z-index of 1 to overlay the plug-in. This results in this UI at runtime as shown in Figure 6-12.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ BROWSER INTEGRATION

541

 Figure 6-12. Recipe 6-7’s final user interface at runtime

Note the HTML text that overlays the Silverlight plug-in. Without the configuration you performed

on the hosting web page, the plug-in would have simply rendered under the HTML text. To layer the
HTML over the plug-in, you could have left the background as white. However, the point was to
demonstrate how to layer HTML over the plug-in and vice-versa; configuring the background to
transparent demonstrated both scenarios.

6-8. Hosting HTML in a Silverlight Application
Problem
You need to host HTML including ActiveX controls such as the Adobe Flash player within your
Silverlight application.

Solution
Use the WebBrowser control in an Out-of-Browser Silverlight 4 application.

CHAPTER 6 ■ BROWSER INTEGRATION

542

How It Works
Silverlight 4 supports embedding a browser control within an Out-of-Browser Silverlight application
that matches the browser available on the platform such as Safari on Mac. The WebBrowser control is
not supported and is disabled when viewing the application in the browser.

■ Note Out-of-Browser applications are covered in Chapter 8.

It is very easy to use the WebBrowser control. Just drag and drop it onto your Silverlight UI and
configure one of its properties to either load local content such as HTML downloaded as part of an RSS
feed or navigate to a full web page such as xbox.com or YouTube.com.

The WebBrowser.Navigate method loads a URI object such as a full HTTP link. You can use
WebBrowser.NavigateToString method to render a string of HTML content. You can also set the
WebBrowser.Source property directly. The WebBrowser.LoadCompleted event is helpful if you need to
alter the UI once the WebBrowser control loads its content. As background, the WebBrowser control wraps
Internet Explorer 7 in terms of HTML rendering capabilities

The Code
For the code, you follow the process described in Recipe 8-1 to create an Out-of-Browser Silverlight
application, since that is required in order to leverage the WebBrowser control. You create a simple
application that includes a TextBox, a Button, and the WebBrowser control. Here’s a snippet of the XAML:

<Grid>
 <WebBrowser x:Name="BrowserControl" Margin="8,38,58,8" />
 <StackPanel Height="26" Margin="4,8,4,4" Orientation="Horizontal"
 VerticalAlignment="Top" d:LayoutOverrides="Width">
 <TextBox HorizontalAlignment="Left" x:Name="textBox1"
 Width="333" Margin="2,2,2,0" Background="{x:Null}"
 Foreground="LightGray" SelectionForeground="#FF1B1B1B"
 Text="http://youtube.com" />
 <Button Content="Go" Margin="7,2,2,2" x:Name="button1"
 Width="36" Click="button1_Click" />
 </StackPanel>
</Grid>

Figure 6-13 shows the UI at design time.

http://youtube.com

CHAPTER 6 ■ BROWSER INTEGRATION

543

Figure 6-13. Recipe 6-8’s user interface at design time

When a user clicks the Go button, this line of code fires:

BrowserControl.Navigate(new Uri(textBox1.Text));

In order to run the application, right-click on the Silverlight plug-in and select Install this
application. After installing the application as outlined in Recipe 8-1, run it from the desktop by
clicking on the 6-8 icon link located on the pc desktoop. Figure 6-14 shows a screenshot of the UI at
runtime with You Tube loaded and playing Adobe Flash video.

Figure 6-14. Recipe 6-8’s user interface at runtime

CHAPTER 6 ■ BROWSER INTEGRATION

544

We don’t show the full listing because most of the code is generated via working in Expression
Blend 4. All of the relevant code is discussed above.

6-9. Painting a Silverlight Element with HTML
Problem
You are building an Out-of-Browser application that incorporates the WebBrowser control and would
like to incorporate the web page contents as part of your user experience.

Solution
Use the WebBrowserBrush brush to paint Silverlight elements with the contents of the WebBrowser
control.

How It Works
The WebBrowserBrush has a SetSource property that takes a WebBrowser control for a value. When you
apply a WebBrowserBrush to a XAML element such as a Rectangle, the element is painted with the
assigned WebBrowser control’s content. This is useful if you want to create a reflection of the contents of
the browser control or use the WebBrowser control content in an animation.

The Code
For this recipe, grab the code from Recipe 6-8 as a start and update the Out-of-Browser icons. (Please
refer to Recipe 8-1 if you are unsure how to create an Out-of-Browser application.)

In Expression Blend, adjust the UI to make space for a Rectangle element to the right of and below
the WebBrowser control. Add a Rectangle to the right of the WebBrowser control and another Rectangle
over the top of the WebBrowser Control. Name the Rectangle over top ReflectionRect and apply a
transform to it by moving its center of rotation to just below the WebBrowser control and rotate it 180
degrees. You should apply a Skew of 20 to the X component and an OpacityMask brush to enhance the
reflection appearance. Figure 6-15 shows the UI at design time in Expression Blend.

CHAPTER 6 ■ BROWSER INTEGRATION

545

Figure 6-15. Recipe 6-9’s user interface in Blend

For the codebehind, the Go button performs the same task as in Recipe 6-8 of loading up the
content. You hook into the WebBrowser.LoadCompleted event to apply the WebBrowser content to the
WebBrowserBrush objects for both Rectangles as shown here:

private void BrowserControl_LoadCompleted(object sender,
System.Windows.Navigation.NavigationEventArgs e)
{
 ((WebBrowserBrush)rectangle1.Fill).SetSource(BrowserControl);
 ((WebBrowserBrush)ReflectionRect.Fill).SetSource(BrowserControl);

 AnimateRectangle.Begin();
}

You also animate the rectangle on the right side just to demonstrate possibilities. Figure 6-16
shows the final UI.

CHAPTER 6 ■ BROWSER INTEGRATION

546

Figure 6-16. Recipe 6-9’s user interface at runtime

6-10. Taking Advantage of the Navigation Framework
Problem
You want to add navigation to your Silverlight application, including support for the browser Back and
Forward buttons and URI mapping, and you want the ability to interact with the browser history
journal. You would like to have custom URI mappings as well as the ability to programmatically
navigate to Silverlight pages using query parameters.

Solution
Take advantage of the Navigation Framework introduced in Silverlight 3 with the new Silverlight
Navigation Application project template.

How It Works
In Silverlight 2, providing an application that easily navigated between XAML pages was difficult for
developers. In Silverlight 3 and later, Microsoft introduced the Navigation Framework and the new
Silverlight Navigation Application project template that allows users to easily navigate between
pages. This application template provides support for the browser Back and Forward buttons as well as
providing the user with the ability to bookmark a page in a Silverlight application.

When you create a new application with the Silverlight Navigation Application template, more
than the usual user interface is created. Figure 6-17 shows the initial project layout.

CHAPTER 6 ■ BROWSER INTEGRATION

547

Figure 6-17. The Silverlight Navigation Application initial project layout

The additional user interface capabilities help demonstrate how to plug into the framework to
speed adoption. You can, of course, completely change the user interface to suite your needs and still
take advantage of the navigation framework.

In Figure 6-17, you see the familiar App.xaml and MainPage.xaml files. In this project template,
MainPage.xaml acts as a container for the views listed in the Views folder. The Assets folder is a
convenient place to locate additional styles and other resources that are part of an application.

When you run the initial application without making changes, you see the application shown in
Figure 6-18.

Figure 6-18. Silverlight Navigation Application initial application UI at runtime

The full URL is shown here:

http://localhost:9090/Recipe6.10TestPage.aspx#/Home

http://localhost:9090/Recipe6.10TestPage.aspx#/Home

CHAPTER 6 ■ BROWSER INTEGRATION

548

Next, click the about button to shift the application to the About view located at /Views/About.xaml
in the project setup files, resulting in a similar display as in Figure 6-17 but with the text “About page
content” and the following URL:

http://localhost:9090/Recipe6.10TestPage.aspx#/About

Each page results in a navigation entry in the browser history, as you would expect. However, with
the Silverlight Navigation Application template, it is possible to bookmark the About view directly by
adding the URL http://localhost:9090/Recipe6.10TestPage.aspx#/About to the favorites in the web
browser or as a shortcut.

The System.Windows.Controls.Navigation namespace includes the key controls that provide the
navigation application functionality, specifically the Frame and Page classes.

The UserControl class is the type for the MainPage object when the Navigation Application template
creates a new project. The project contains a Frame object named ContentFrame by default. The Frame
class acts as a host for the views that are part of a Navigation Application project. The individual view
objects inherit from the System.Windows.Controls.Page class. The Page class is very similar to the
UserControl class but adds the capability to be hosted in a Frame object. The Page class also adds the
Title property, which is set as the title of the page in the web browser, as shown in Figure 6-18 (above
Home in the browser title bar caption).

The Frame class integrates with the browser history by default via the JournalOwnership property,
which can take one of three values:

• Automatic: Whether or not this Frame will create and use its own journal depends on its
parent. If the parent or browser allows it, the navigation will be recorded in the browser
journal.

• OwnsJournal: The Frame maintains its own journal tied into the Browser journal.

• UsesParentJournal: The Frame object uses the journal of the next available navigation host
up the XAML content tree, if one exists. Otherwise, navigation history is not maintained for
the Frame object if a journal is not available on a parent control.

Figure 6-19 shows the browser journaling after navigating several times between the Home and
About pages.

Figure 6-19. Silverlight Navigation Application project browser journaling integration

http://localhost:9090/Recipe6.10TestPage.aspx#/About
http://localhost:9090/Recipe6.10TestPage.aspx#/About

CHAPTER 6 ■ BROWSER INTEGRATION

549

The Code
For this recipe, you add a couple of views by right-clicking the View folder, selecting Add | New Item,
and then selecting Silverlight Page in the list. Name the new view items ItemList and ItemDetails. You
want to make the new Page object available in the UI, so you add two new HyperlinkButton objects to
the LinksStackPanel object in MainPage.xaml:

<HyperlinkButton x:Name="Link2" Style="{StaticResource LinkStyle}"
 NavigateUri="/ItemList"
 TargetName="ContentFrame" Content="item list"/>
<Rectangle x:Name="Divider2" Style="{StaticResource DividerStyle}"/>
<HyperlinkButton x:Name="Link3" Style="{StaticResource LinkStyle}"
 NavigateUri="/ItemDetails" TargetName="ContentFrame"
 Content="item details"/>
<Rectangle x:Name="Divider3" Style="{StaticResource DividerStyle}"/>

The important property is NavigateUri, where you set the value to the XAML page name without the
.xaml extension and that it must be prefixed with a forward slash. Content is the title for the hyperlink
when displayed in the UI. This results in the UI shown in Figure 6-20.

Figure 6-20. The updated UI with additional menu items

You can navigate to the new pages just as before, and the navigation will be journaled in the
browser history.

You probably noticed that the application is fairly well styled when compared to the normal
Silverlight Application template. This helps you visualize the application right away. Conveniently, all
of the styles are defined separately in a ResourceDictionary in App.xaml under the Assets project
folder:

<ResourceDictionary Source="Assets/Styles.xaml"/>

This centralizes the styles location for easy editing. It is important to note that the default
application layout is not mandatory. For example, you can change the navigation to the left and stack
the buttons vertically in a Microsoft Outlook type of layout.

CHAPTER 6 ■ BROWSER INTEGRATION

550

We have not yet covered how to create custom URI mappings or how to pass query parameters
when navigating programmatically in code. When the recipe application is initially loaded, the
following URL loads:

http://localhost:9090/Recipe6.10TestPage.html#/Home

The portion of the URL after the hash, /Home, is mapped to the Home.Xaml page by markup located in
MainPage.xaml, shown in Listing 6-14, for the Frame.UriMapper object.

Listing 6-14. Recipe 6-10’s Main Page.xaml File

<UserControl
 x:Class="Ch06_BrowserIntegration.Recipe6_14.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:navigation=
 "clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation"
 xmlns:uriMapper=
 "clr-namespace:System.Windows.Navigation;
 assembly=System.Windows.Controls.Navigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot" Style="{StaticResource LayoutRootGridStyle}">
 <Border x:Name="ContentBorder" Style="{StaticResource ContentBorderStyle}">
 <navigation:Frame x:Name="ContentFrame"
 Style="{StaticResource ContentFrameStyle}"
 Source="/Home" Navigated="ContentFrame_Navigated"
 NavigationFailed="ContentFrame_NavigationFailed">
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri="/ItemDetails/{lastName}"
 MappedUri="/Views/ItemDetails.xaml?lastName={lastName}"/>
 <uriMapper:UriMapping Uri="" MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 <uriMapper:UriMapping Uri="foo" MappedUri="/Views/About.xaml"/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
 </navigation:Frame>
 </Border>
 <Grid x:Name="NavigationGrid" Style="{StaticResource NavigationGridStyle}">
 <Border x:Name="BrandingBorder" Style="{StaticResource BrandingBorderStyle}">
 <StackPanel x:Name="BrandingStackPanel"

http://localhost:9090/Recipe6.10TestPage.html#/Home
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 6 ■ BROWSER INTEGRATION

551

 Style="{StaticResource BrandingStackPanelStyle}">
 <ContentControl Style="{StaticResource LogoIcon}"/>
 <TextBlock x:Name="ApplicationNameTextBlock"
 Style="{StaticResource ApplicationNameStyle}" Text="Application Name"/>
 </StackPanel>
 </Border>
 <Border x:Name="LinksBorder" Style="{StaticResource LinksBorderStyle}">
 <StackPanel x:Name="LinksStackPanel"
 Style="{StaticResource LinksStackPanelStyle}">
 <HyperlinkButton x:Name="Link1" Style="{StaticResource LinkStyle}"
 NavigateUri="/Home" TargetName="ContentFrame" Content="home"/>
 <Rectangle x:Name="Divider1" Style="{StaticResource DividerStyle}"/>
 <HyperlinkButton x:Name="Link2" Style="{StaticResource LinkStyle}"
 NavigateUri="/ItemList"
 TargetName="ContentFrame" Content="item list"/>
 <Rectangle x:Name="Divider2" Style="{StaticResource DividerStyle}"/>
 <HyperlinkButton x:Name="Link3" Style="{StaticResource LinkStyle}"
 NavigateUri="/ItemDetails" TargetName="ContentFrame"
 Content="item details"/>
 <Rectangle x:Name="Divider3" Style="{StaticResource DividerStyle}"/>
 <HyperlinkButton x:Name="Link4" Style="{StaticResource LinkStyle}"
 NavigateUri="/About" TargetName="ContentFrame"
 Content="about"/>
 </StackPanel>
 </Border>
 </Grid>
 </Grid>
</UserControl>

Find the UriMapper object in the listing, and you will see this automatically generated UriMapping
as well as the default mapping that points to Home.xaml:

<uriMapper:UriMapping Uri="/{pageName}"
MappedUri="/Views/{pageName}.xaml"/>

The {pageName} value is a substitution variable such that when /Home is passed in as a URI, the Home
is translated to load /Views/Home.xaml as the Silverlight Page object to load in the Frame. There is
another URI mapping for this URL:

http://localhost:9090/Recipe6.10TestPage.html#foo

If you change /Home to foo and run the page, About.xaml will load. This URI mapping makes it
happen:

<uriMapper:UriMapping Uri="foo" MappedUri="/Views/About.xaml"/>

Here, you do not append a slash (/) to the front so foo is appended directly at the end of the URL
right after the hash to load the mapped URI. Note that the full URL with #foo at the end can be
bookmarked, and the bookmark will load the application with the About.xaml page displayed.

http://localhost:9090/Recipe6.10TestPage.html#foo

CHAPTER 6 ■ BROWSER INTEGRATION

552

The last bit of code allows you to programmatically navigate from one page to another page
within a Silverlight Navigation Application project. As mentioned, you added two pages named
ItemList.xaml and ItemDetails.xaml as view items for the application. The ItemList view contains a
simple DataGrid pointing to automatically generated sample data in Expression Blend 3, which was
covered in Chapter 2. The ItemDetails view contains a text box where you will display the passed-in
query string value containing the fictitious last name generated in the sample data. We don’t include
the XAML listings for these files because the action is in the codebehind files shown in Listings 6-15
and 6-16.

Listing 6-15. Recipe 6-10’s ItemList.Xaml.cs Code File

using System;
using System.Windows.Controls;
using System.Windows.Navigation;
using Expression.Blend.SampleData.SampleDataSource;

namespace Ch06_BrowserIntegration.Recipe6_2.Views
{
 public partial class ItemList : Page
 {
 public ItemList()
 {
 InitializeComponent();
 }

 // Executes when the user navigates to this page.
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }

 private void DataGrid_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {

 //Navigate with parameters
 string lastName = ((Item)itemsDataGrid.SelectedItem).LastName;
 this.NavigationService.Navigate(
 new Uri(String.Format("/ItemDetails/{0}", lastName.ToString()),
 UriKind.Relative));
 }
 }
}

CHAPTER 6 ■ BROWSER INTEGRATION

553

Listing 6-16. Recipe 6-10’s ItemDetails.Xaml.cs Code File

using System.Windows.Controls;
using System.Windows.Navigation;

namespace Ch06_BrowserIntegration.Recipe6_2.Views
{
 public partial class ItemDetails : Page
 {
 public ItemDetails()
 {
 InitializeComponent();
 }

 // Executes when the user navigates to this page.
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 if (this.NavigationContext.QueryString.ContainsKey("lastName"))
 itemDetails.Text = "'lastName' query parameter equals "+
 this.NavigationContext.QueryString["lastName"];
 }
 }
}

As shown in Listing 6-16 the ItemListcontains a DataGrid that has a DataGrid_SelectionChanged
event attached that fires when an item is selected in the ItemList control. This event programmatically
navigates to the ItemDetails page using the NavigationService.Navigate method:

string lastName = ((Item)itemsDataGrid.SelectedItem).LastName;
this.NavigationService.Navigate(
new Uri(String.Format("/ItemDetails/{0}", lastName.ToString()),
UriKind.Relative));

To comply with the URI template in MainPage.xaml, append the query parameter, the LastName field
from the selected record, to the end of the URI, which replaces the {0} in the URI string. The UriMapper
in MainPage.xaml loads the ItemDetails view with the passed-in LastName value as a query parameter
like this:

/Views/ItemDetails.xaml?lastName=passedInLastName"

In the ItemDetails.xaml.cs file’s OnNavigatedTo event handler, you process the query string with
the NavigationContext object:

if (this.NavigationContext.QueryString.ContainsKey("lastName"))
itemDetails.Text = "'lastName' query parameter equals "+
 this.NavigationContext.QueryString["lastName"];

This code results in the UI as shown in Figure 6-21.

CHAPTER 6 ■ BROWSER INTEGRATION

554

Figure 6-21. The UI showing captured query parameters

The functionality just covered allows developers to pass parameters or state between navigation
Page objects for a more unified UI. However, if you look at Figure 6-22 closely, you’ll notice that the
item details button is not highlighted as expected, as it is when you manually click between tabs. The
issue is the default URI comparison logic in MainPage.xaml.cs shown here:

if (hb.NavigateUri.ToString().Equals(e.Uri.ToString()))

When you programmatically navigate between tabs, you append parameters to Uri, which is the
Uri value on e.Uri in the ContentFrame_Navigated event in MainPage.xaml.cs. When this value is
compared to the configured NavigateUri on all of the navigation Hyperlink buttons, the comparison
will fail. So change the logic to perform this check instead:

if (e.Uri.ToString().Contains(hb.NavigateUri.ToString()))

With this update, the URI that is being navigated to is checked to see if it contains the configured
NavigateUri of any of the Hyperlink buttons. If the check passes, the highlighted state is set on the
hyperlink, as shown in Figure 6-22.

Figure 6-22. The UI showing captured query parameters with correct visual state

CHAPTER 6 ■ BROWSER INTEGRATION

555

6-11. Embedding Silverlight within a Windows Gadget
Problem
You want to build a gadget for the Windows Sidebar that includes the Silverlight 4 plug-in control for
both Windows Vista and Windows 7.

Solution
The Windows Sidebar hosts gadgets that are based on an HTML and JavaScript programming model.
As such, gadgets can host ActiveX controls such as the Silverlight plug-in.

How It Works
Windows Sidebar gadgets are meant to be visually appealing and focused on performing a single task
well, such as tracking stock quotes, tracking system resource utilization, reporting internal training
status, and so forth. Given the ability to create rich user interfaces for web pages in Silverlight, it is a
very interesting scenario to host Silverlight in a Windows Sidebar gadget.

■ Note Windows Sidebar gadgets that include Silverlight 4 can only be hosted in 32-bit Sidebar process.

Windows Sidebar gadgets generally have small user interfaces in order to fit in the Sidebar.
MSDN has sizing guidelines of 130 pixels in height when docked, which includes 5 pixels of drop
shadow—2 pixels on the left, and 3 pixels on the right.

Gadgets can be detached from the Windows Sidebar. In Windows 7, gadgets are free floating by
default. When detached or floating, the recommended size is 400 pixels by 400 pixels. Gadgets can have
an options dialog box with a client area of 278 pixels wide and no more than 400 pixels high. For more
information on Windows Sidebar gadgets interface guidelines, see msdn.microsoft.com/en-
us/library/aa974179.aspx

Now that you know the basics on the UI for gadgets, here are the three simple steps to create a
Windows Sidebar gadget:

1. Create a development folder for all of the gadget files.

2. Add the HTML pages, CSS, and JavaScript files to the development folder.

3. Create a manifest file, and add it to the development folder.

For the first step, create a web site project named SilverlightRecipesGadget in the file system
under the Code\Ch06_BrowserIntegration folder in the sample code. Remove the App_Data folder,
Default.aspx file, and web.config file from the project, since you don’t need them.

CHAPTER 6 ■ BROWSER INTEGRATION

556

For the second step, add three HTML files named DockedUndockedView.html, FlyoutView.html, and
SettingsView.html, as well as four folders: a js folder for JavaScript files, a css folder for CSS files, a img
folder for images, and a ClientBin folder for the Silverlight .xap file. Add Silverlight.js to your
project in the js folder and create placeholder JavaScript and CSS files in their respective folders. You
obtain Silverlight.js from this folder in the files system:

%ProgramFiles%\Microsoft SDKs\Silverlight\v2.0\Tools

Figure 6-23 shows the initial layout of your Silverlight gadget web project in the Visual Studio
Solution Explorer tool window.

Figure 6-23. Recipe 6-11’s initial Silverlight gadget web project layout

Go to the project properties for the SilverlightRecipesGadget project, and add the “6-11
Embedding Silverlight within a Windows Gadget” project to the Silverlight tab. You do not create test
pages in the Add Silverlight Application wizard because you don’t need them in this project.
Completing the wizard will automatically copy the output from your Silverlight application to the
ClientBin folder for the gadget each time the application is compiled.

For the third step, add an XML file to the web project and name it Gadget.xml. This file defines the
startup HMTL page, title, authors, and so on for the gadget. For more information about the format of
Gadget.xml, see msdn.microsoft.com/en-gb/library/bb508509(VS.85).aspx

Essentially, you code gadgets as you would code HTML files. The gadget runs in an Internet
Explorer window that doesn’t have any of the browser chrome. You can manipulate the DOM, make
AJAX calls, and access system resources.

There are several views available for a gadget: docked, undocked, flyout, and settings. Figure 6-24
shows the different views available for a gadget.

CHAPTER 6 ■ BROWSER INTEGRATION

557

Figure 6-24. Available gadget views

As mentioned, gadgets consist of HTML pages. Your gadget has the following HMTL pages to
provide all of the views listed in Figure 6-24:

• DockedUndockedView.html: Displays the docked and undocked views for the gadget and
defines the startup HTML view specified in the Gadget.xml manifest

• FlyoutView.html: Displays the flyout view for the gadget

• SettingsView.html: Displays the settings view for the gadget

CHAPTER 6 ■ BROWSER INTEGRATION

558

In general, when you first create a Silverlight application, it includes an Application object named
App located in the Application.xaml file and a single UserControl object named Page located in
MainPage.xaml. The Page UserControl is defined as the startup UI and configured as the App.RootVisual
for the Application object in the Application_Startup method located in App.xaml.cs.

For your Silverlight 4 gadget, your goal is to handle all of the UI views shown in Figure 6-24 with
the same Silverlight application. You do this by including additional Silverlight UserControl objects to
handle the various views:

• DockedView.xaml: Displays the Silverlight UI when the gadget is in a docked state and serves
as the startup view in DockedUndockedView.html (originally the Page UserControl that you
just renamed to DockedView)

• UndockedView.xaml: Displays the Silverlight UI when the gadget is in an undocked state or
floating on the Windows desktop

• FlyoutView.xaml: Displays the Silverlight UI when the gadget displays the flyout view in
FlyoutView.html

• SettingsView.xaml: Displays the Silverlight UI when the gadget displays the settings view
in SettingsView.html

The UI connection point between the hosting HTML pages and corresponding UserControl objects
is the Silverlight plug-in installation. You take advantage of the initialization parameter functionality
on the Silverlight plug-in to tell the Silverlight application which UserControl to display.

The gadget development model is based on HTML and JavaScript. The programming connection
point between gadget programmability and the Silverlight application is the HTML Bridge
functionality that enables Silverlight to access JavaScript methods as well as enables JavaScript to
access managed code methods.

When a user manipulates a gadget to show the flyout view, undock the gadget, or display settings,
the gadget API fires JavaScript events. Your approach is to have the JavaScript stub method that receives
the gadget API event call the appropriate method in the Silverlight application to update the UI, save
settings, and so forth. This puts most of the actual application logic into the Silverlight application,
which is where you want it so that you can take advantage of the managed programming model.

There are additional options and considerations, such as multilanguage support, involved in
developing a gadget that are not cover here. Refer to the MSDN documentation to learn more about
building a Windows Sidebar gadget: msdn.microsoft.com/en-us/library/bb456468.aspx

The final step is packaging up the gadget, which is simple: just zip up the contents and change the
.zip extension.gadget. For your example, navigate to the Code\Ch06_BrowserIntegration\
SilverlightRecipesGadget folder, select all of the contents, right-click one of the files, and select Send to |
Compressed (zipped) Folder. It will want to name one of the files or folders with a .zip extension. Simply
rename it to whatever you like but change the extension to .gadget. Double-clicking the .gadget file
results in the UI shown in Figure 6-25.

CHAPTER 6 ■ BROWSER INTEGRATION

559

Figure 6-25. Installing the Silverlight recipes gadget

Gadgets can also be deployed as a .cab file, which can be signed to avoid the prompt shown in
Figure 6-25, but once you click the Install button shown in Figure 6-25, the gadget will display in the
Windows Sidebar unless you are on a 64-bit version of Windows, in which case you need to run the 32-
bit version of Sidebar.exe.

■ Note When testing a new gadget, you can delete the installation files from this location: %userprofile%\
AppData\Local\Microsoft\Windows Sidebar\Gadgets.

While automated debugging of code running in the Windows Sidebar is not available, you can still
attach the debugger to the sidebar and step through breakpoints for both the Silverlight and JavaScript
code. When debugging, deploy the gadget with a debug build of the Silverlight application, package it in
a ZIP file, and change the extension to .gadget. Once the gadget is installed, attach the debugger using
the Visual Studio 2008 Debug ❜ Attach to Process dialog box, as shown in Figure 6-26.

You can enable script debugging in Visual Studio for gadgets as well by following the steps at
msdn.microsoft.com/en-us/library/bb456467(VS.85).aspx We recommend that you take advantage of
Silverlight and JavaScript debugging support to speed development. When we tried both JavaScript and
Silverlight debugging with breakpoints in the Silverlight code and JavaScript code, JavaScript
debugging worked fine, but breakpoints set in Silverlight were not hit. Disabling JavaScript debugging
in Internet Explorer and restarting the Windows Sidebar allowed Silverlight breakpoints to function
as expected.

CHAPTER 6 ■ BROWSER INTEGRATION

560

Figure 6-26. The Visual Studio 2010 Attach to Process dialog box

The sample code for this recipe is meant to be a gadget template to help you get started with
developing your own gadgets. The Silverlight UI portions are simply placeholders for building a more
useful gadget, but using this recipe as a template will greatly speed gadget development.

To get started building gadgets with Silverlight 4, a separate solution is included with the source code
contained in SLforGadgetSolution.zip located in the \Code\Ch06_BrowserIntegration folder. This solution
contains a bare-bones implementation of the Silverlight project with docking and undocking, flyout menus,
and settings support in a simple two-project Visual Studio solution.

The Code
Since you use the same Silverlight application or .xap file for all of the gadget project web pages, you
need a method to load the correct view into the Silverlight application depending on the .html page
hosting the Silverlight application as described in this recipe’s “How It Works” section. Take
advantage of the initParams parameter available on the Silverlight plug-in control, which was first
demonstrated in Recipe 6-6. For example, in the DockedUndockedView.html page, you have this value
configured or the Silverlight plug-in control:

<param name ="initParams" value="View=DockedUndocked" />

The three HTML pages named DockedUndockedView.html, FlyoutView.html, and SettingsView.html
all follow this pattern. Listing 6-17 shows the source code for DockedUndockedView.html.

CHAPTER 6 ■ BROWSER INTEGRATION

561

Listing 6-17. DockedUndockedView.html File

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Silverlight 4 Recipes</title>
 <link href="css/DockedUndockedView.css" rel="stylesheet" type="text/css" />
 <script language="javascript" type="text/javascript"
 src="/js/Silverlight.js"></script>
 <script language="javascript" type="text/javascript"
 src="/js/Shared.js"></script>
 <script language="javascript" type="text/javascript"
 src="/js/DockedUndockedView.js"></script>

</head>
<body onload="loadGadget();">
 <div id="errorLocation" style="font-size: small; color: Gray;">
 </div>
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%" id="XamlGadget">
 <param name="source"
 value="x-gadget:///ClientBin/Ch06_BrowserIntegration.Recipe6_11.xap" />
 <param name="onerror" value="onSilverlightError" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <param name="enableHtmlAccess" value="true" />
 <param name="windowless" value="true" />
 <param name="background" value="transparent" />
 <param name="initParams" value="View=DockedUndocked" />
 <param name="onload" value="onSilverlightLoad" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v
 =4.0.50401.0" style="text-decoration:none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

 </object>
 <g:background src="/img/transparentDocked.png"
 mce_src="/img/transparentDocked.png"
 id="transparentBackground" style="width: 130px;
 height: 200px; z-index: -1" />
 </div>
</body>
</html>

http://www.w3.org/1999/xhtml
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50401.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 6 ■ BROWSER INTEGRATION

562

The HTML page in Listing 6-17 pulls in three JavaScript files: Silverlight.js, Shared.js, and
DockedUndocked.js. You pull in Silverlight.js in case you need it. Shared.js has a common
onSilverlightLoad handler for all three pages that sets focus to the gadget in HTML. DockedUndocked.js
is covered next.

For the gadget UI, you want to have rounded corners for all views. Listing 6-18 shows the XAML for
DockedView.xaml, which is the UserControl displayed when the gadget is docked.

Listing 6-18. DockedView.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_11.DockedView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="130" Height="200" Background="#00FFFFFF"
 HorizontalAlignment="Left" VerticalAlignment="Top">
 <Grid Background="#00FFFFFF" >
 <Border CornerRadius="15,15,15,15">
 <Border.Background>
 <LinearGradientBrush EndPoint="-0.227,0.337"
 StartPoint="1.227,0.663">
 <GradientStop Color="#FFB9D4C6" Offset="0.397"/>
 <GradientStop Color="#FF65E8A5" Offset="1"/>
 <GradientStop Color="#FF65E8A5"/>
 <GradientStop Color="#FFB9D4C6" Offset="0.554"/>
 <GradientStop Color="#FFB9D4C6" Offset="0.482"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid x:Name="LayoutRoot" Margin="4" Background="{x:Null}">
 <TextBlock Text="Cool Docked Silverlight 4 UI goes here"
 TextWrapping="Wrap"/>
 </Grid>
 </Border>
 </Grid>
</UserControl>

In Listing 6-18, you set the UserControl and outer Grid control to a transparent background. You also
ensure that the Silverlight plug-in in the HTML page is configured with a transparent background. Even
after setting CornerRadius to 15 for all corners, a white background was visible at the rounded corners in
the UI. So you follow these steps to allow a transparent background at the corners: Create a transparent
.png using Paint.NET (or your favorite drawing tool). In Paint.NET, create a new 130-pixel-wide by
200-pixel-high image for the docked dimensions of the gadget. Next, chose Layers | Layer Properties
and set Opacity to 0. Then, save the image to the img folder as transparentDocked.png.

The gadget JavaScript API provides additional functionality, such as setting the gadget background
with the g:background tag. Add this HTML to the DockedUndockedView.html file inside the <div> hosting
the Silverlight control to configure the background to provide rounded corners to your gadget:

<g:background src="/img/transparentDocked.png"
mce_src="/img/transparentDocked.png"
id="transparentBackground" style="width:130px;height:200px;z-index:-1"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 6 ■ BROWSER INTEGRATION

563

This code results in the rounded corners being transparent; however, a slight magenta color can
be seen at the corners. This is an artifact of having two transparent objects overlapping within
Internet Explorer, which is the rendering engine in the Windows Sidebar.

An additional step is required when displaying the docked or undocked view, because they are
both hosted in the same HTML page, DockedUndockedView.html. To handle this, you wire up events in
DockedUndockedView.js, shown in Listing 6-19.

Each page has a loadGadget event hooked into the HTML body tag’s onload event. loadGadget is the
same name for all three HTML pages, but each one does something different specific to the view.
Listing 6-19 shows DockedUndockedView.js.

Listing 6-19. DockedUndockedView.js File

function loadGadget() {
 System.Gadget.onDock = dockStateChanged;
 System.Gadget.onUndock = dockStateChanged;

 System.Gadget.Flyout.file = "FlyoutView.html";
 System.Gadget.settingsUI = "SettingsView.html";
}

function dockStateChanged() {
 //change size depending on state
 if (System.Gadget.docked) {
 document.body.style.width = "130px";
 document.body.style.height = "200px";
 document.getElementById("XamlGadget").Content.
 GadgetApp.DockGadget(true);
 }
 else {
 document.body.style.width = "400px";
 document.body.style.height = "290px";
 document.getElementById("XamlGadget").Content.
 GadgetApp.DockGadget(false);
 }
}

In loadGadget for the Docked/Undocked view, you assign the event handler dockStateChanged to
the gadget events onDock and onUndock by passing in true to dock it or false to undock. When this
JavaScript event handler fires, it sets the dimensions on the <body> tag to fit the UI and then switches
between the Silverlight docked or undocked UI via the HTML Bridge with this call:

document.getElementById("XamlGadget").Content.GadgetApp.DockGadget(false);

To allow the UI to change, you need to take an additional step to switch between the
DockedView.xaml and UndockedView.xaml UserControl objects depending on the gadget’s current state of
being docked or undocked. Here is the typical Application_Startup method for a Silverlight
application:

private void Application_Startup(object sender, StartupEventArgs e)
{

CHAPTER 6 ■ BROWSER INTEGRATION

564

 this.RootVisual = new MainPage();
}

For your Silverlight application, you have additional logic in GadgetApp.xaml.cs to choose which
UserControl to configure for Application.RootVisual. In your Application_Startup, you first determine
which view is requested by obtaining the initialization parameters specified in the hosting HTML
page:

 //Get passed parameter to choose the view.
 string initParams =
 HtmlPage.Plugin.GetProperty("initParams").ToString();
 string[] paramsArray = initParams.Split(';');
 string[] KeyValue = paramsArray[0].Split('=');

Next, use the value for KeyValue[1] in a switch statement to select which view to display. You
cannot simply switch the value configured on Application.RootVisual as it will not work. You set an
empty Grid as RootVisual and then add the necessary UserControl as a child to the Grid configured as
RootVisual:

switch (KeyValue[1])
{ //For DockedUndocked, we set Grid as root
 //so that we can switch user controls later
 //at runtime for docked and undocked states.
 case "DockedUndocked": _rootControl = new Grid();
 this.RootVisual = _rootControl;
 _dockedView = new DockedView();
 _rootControl.Children.Clear();
 _rootControl.Children.Add(_dockedView); break;
 case "Flyout": this.RootVisual = new FlyoutView(); break;
 case "Settings": this.RootVisual = new SettingsView(); break;
}

Since the docked and undocked views are hosted in the same HTML page,
DockedUndockedView.html, you need to take additional steps so that you can switch the UI depending on
whether the gadget is docked or floating. First, declare three private reference variables at the top of
the GadgetApp Application instance:

//Use this as root control so that the user controls
//can be switched from docked to undocked
private Grid _rootControl;
//Hold references to Docked and Undocked Views
private DockedView _dockedView ;
private UndockedView _unDockedView ;

You configure Application.RootVisual to point to a Grid control referenced by _rootControl and
add the DockedView and UndockedView instances as the child to the root Grid control depending on the
docked or undocked state. Listing 6-20 shows the full source code for GadgetApp.xaml.cs.

CHAPTER 6 ■ BROWSER INTEGRATION

565

Listing 6-20. GadgetApp.xaml.cs File

using System;
using System.Windows;
using System.Windows.Browser;
using System.Windows.Controls;

namespace Ch06_BrowserIntegration.Recipe6_11
{
 public partial class GadgetApp : Application
 {
 //Use this as root control so that the user controls
 //can be switched from docked or undocked
 private Grid _rootControl;
 //Hold references to Docked and Undocked Views
 private DockedView _dockedView;
 private UndockedView _unDockedView;

 public GadgetApp()
 {
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
 }

 private void Application_Startup(object sender, StartupEventArgs e)
 {
 //Get passed parameter for partner control
 string initParams =
 HtmlPage.Plugin.GetProperty("initParams").ToString();
 string[] paramsArray = initParams.Split(';');
 string[] KeyValue = paramsArray[0].Split('=');
 switch (KeyValue[1])
 {

 //For DockedUndocked, we set Grid as root
 //so that we can switch user controls later
 //at runtime for docked and undocked states.
 case "DockedUndocked": _rootControl = new Grid();
 this.RootVisual = _rootControl;
 _dockedView = new DockedView();
 _rootControl.Children.Clear();
 _rootControl.Children.Add(_dockedView);

i

CHAPTER 6 ■ BROWSER INTEGRATION

566

 break;
 case "Flyout": this.RootVisual = new FlyoutView();
 break;
 case "Settings": this.RootVisual = new SettingsView();
 break;
 }
 //Make GadgetApp instance available so that script
 //can call DockGadget method from JavaScript
 HtmlPage.RegisterScriptableObject("GadgetApp", this);
 }

 private void Application_Exit(object sender, EventArgs e)
 {

 }

 private void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
 {
 if (!System.Diagnostics.Debugger.IsAttached)
 {
 e.Handled = true;
 Deployment.Current.Dispatcher.BeginInvoke(
 delegate { ReportErrorToDOM(e); });
 }
 }

 private void ReportErrorToDOM(ApplicationUnhandledExceptionEventArgs e)
 {
 try
 {
 string errorMsg = e.ExceptionObject.Message +
 e.ExceptionObject.StackTrace;
 errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");

 System.Windows.Browser.HtmlPage.Window.Eval(
 "throw new Error(\"Unhandled Error in Silverlight 4 Application " +
 errorMsg + "\");");
 }
 catch (Exception)
 {
 }
 }

 [ScriptableMember]

CHAPTER 6 ■ BROWSER INTEGRATION

567

 public void DockGadget(Boolean state)
 {
 switch (state)
 {
 case true: _rootControl.Children.Clear();
 _rootControl.Children.Add(_dockedView); break;
 //First time undocking, create undocked view
 case false: if (null == _unDockedView)
 _unDockedView = new UndockedView();
 //Switch to undocked view when gadget undocked
 _rootControl.Children.Clear();
 _rootControl.Children.Add(_unDockedView); break;
 }
 }
 }
}

The DockGadget method in Listing 6-20 is located in GadgetApp.xaml.cs and called by the JavaScript
code to switch from the docked to undocked view for the Silverlight application. If true is passed in
from JavaScript, the DockGadget method clears the children on the rootControl and adds the saved
dockedView instance as the child control to the root Grid. If false is passed in, the UndockedView is
created and a reference saved and added as the child control of the root Grid.

Setting the enableHtmlAccess parameter on the Silverlight plug-in to true and calling the below
line of code in Application_Startup in GadgetApp.xaml.cs makes the ScriptableMember
GadgetApp.DockGadget method available in the JavaScript code:

HtmlPage.RegisterScriptableObject("GadgetApp", this);

There is a button in the DockedView UI that, when clicked, shows the flyout using this line of code
that calls the gadget API:

HtmlPage.Window.Eval(@"System.Gadget.Flyout.show = true;");

For the flyout view, a simple button closes the flyout when clicked, using this line of code that calls
into the gadget API:

HtmlPage.Window.Eval(@"System.Gadget.Flyout.show = false;");

We don’t list the code for FlyoutView and UndockedView, since they are mostly placeholders for
content that expands when a user hovers over a particular element or clicks a button; they just provide
more information.

The additional core gadget functionalities you implement are saving and retrieving settings for

the gadget in the SettingsView UserControl. These gadget functions include the ability to persist
settings for the gadget. As an example, the Weather Gadget included with Windows has a setting that
allows a user to pick location for weather information. In JavaScript, these are the two methods to read
and write settings:

System.Gadget.Settings.Read(key);
System.Gadget.Settings.Write(key,value);

CHAPTER 6 ■ BROWSER INTEGRATION

568

For your Silverlight 4 gadget, you try to execute as much of the application as possible within
Silverlight 4 in the SettingsView control, but you still need code in JavaScript to wire up the Silverlight
code with the gadget functionality. As an example, the previous settings’ API functions are called from
the SettingsView.xaml UserControl code in the LoadGadgetSettings and SaveGadgetSettings methods.
Listings 6-21 and 6-22 show the code for the SettingsView UserControl.

Listing 6-21. SettingsView.xaml File

<UserControl x:Class="Ch06_BrowserIntegration.Recipe6_8.SettingsView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="250" Height="250">
 <Grid >
 <Border CornerRadius="15,15,15,15">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="1.164,-1.028">
 <GradientStop Color="#FF808080"/>
 <GradientStop Color="#FF808080" Offset="1"/>
 <GradientStop Color="#FF96D7A8" Offset="0.50400000810623169"/>
 </LinearGradientBrush>
 </Border.Background>
 <Grid x:Name="LayoutRoot" Margin="4">
 <StackPanel Margin="0">
 <TextBlock Margin="2,2,2,0" Text="Setting 1:" TextWrapping="Wrap"/>
 <TextBox x:Name="Setting1" Margin="2,0,2,2" TextWrapping="Wrap"/>
 <TextBlock Text="Setting 2:" Margin="2,2,2,0" TextWrapping="Wrap"/>
 <TextBox x:Name="Setting2" Margin="2,0,2,2" TextWrapping="Wrap"/>
 </StackPanel>
 </Grid>
 </Border>
 </Grid>
</UserControl>

Listing 6-22. SettingsView.xaml.cs File

using System;
using System.Windows.Browser;
using System.Windows.Controls;

namespace Ch06_BrowserIntegration.Recipe6_8
{
 public partial class SettingsView : UserControl
 {
 public SettingsView()
 {
 InitializeComponent();

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 6 ■ BROWSER INTEGRATION

569

 HtmlPage.RegisterScriptableObject("SettingsView", this);
 //Load settings for gadget
 LoadGadgetSettings();
 }

 private void LoadGadgetSettings()
 {
 try
 {
 //Textbox control name is also Setting name in this example.
 Setting1.Text = (HtmlPage.Window.Eval("System.Gadget.Settings") as
 ScriptObject).Invoke("read", Setting1.Name) as string;
 Setting2.Text = (HtmlPage.Window.Eval("System.Gadget.Settings") as
 ScriptObject).Invoke("read", Setting2.Name) as string;
 }
 catch (Exception err)
 {
 //do something with exception here
 }
 }

 [ScriptableMember]
 public void SaveGadgetSettings()
 {
 try
 {
 (HtmlPage.Window.Eval("System.Gadget.Settings") as ScriptObject).
 Invoke("write", Setting1.Name, Setting1.Text);
 (HtmlPage.Window.Eval("System.Gadget.Settings") as ScriptObject).
 Invoke("write", Setting2.Name, Setting2.Text);
 }
 catch (Exception err)
 {
 //do something with exception here
 }
 }
 }
}

The LoadGadgetSettings and SaveGadgetSettings methods are called from JavaScript events
located in SettingsView.js that are wired up in Listing 6-23.

Listing 6-23. SettingsView.js File

function loadSettingsView()

CHAPTER 6 ■ BROWSER INTEGRATION

570

{
 System.Gadget.onSettingsClosed = settingsViewClosed;
 System.Gadget.onSettingsClosing = settingsViewClosing;
}

function settingsViewClosed(event) {
}

function settingsViewClosing(event) {
 document.getElementById("XamlGadget").Content.
 SettingsView.SaveGadgetSettings();

 if (event.closeAction == event.Action.commit)
 {
 //call Method to save settings in the SettingsView UserControl
 document.getElementById("XamlGadget").
 Content.SettingsView.SaveGadgetSettings();
 }

 // Allow the Settings dialog to close.
 event.cancel = false;
}

The JavaScript function loadSettingsView is called when the <body> tag loads in SettingsView.html.
This function wires up two JavaScript events to onSettingsClosed and onSettingsClosing. The
settingsViewClosed JavaScript event is not used in your code, but leave it as a placeholder. The
settingsViewClosing JavaScript makes the call into the SettingsView Silverlight UserControl in this
line of code:

document.getElementById("XamlGadget").Content.
 SettingsView.SaveGadgetSettings();

This pattern of implementing the logic in Silverlight but wiring up the events in JavaScript is the
approach you take to implement the gadget functionality code as much as possible.

The last file is the XML file, the manifest file for your gadget, shown in Listing 6-24.

Listing 6-24. Gadget.xml File

<?xml version="1.0" encoding="utf-8" ?>
<gadget>
 <name>Silverlight 4 Recipes Gadget</name>
 <namespace>Ch06_BrowserIntegration</namespace>
 <version>1.0</version>
 <author name="Rob Cameron and Jit Ghosh">
 </author>
 <copyright>2008</copyright>
 <description>Testing Silverlight in a Gadget</description>

CHAPTER 6 ■ BROWSER INTEGRATION

571

 <icons>
 </icons>
 <hosts>
 <host name="sidebar">
 <base type="HTML" apiVersion="1.0.0"
 src="DockedUndockedView.html" />
 <permissions>full</permissions>
 <platform minPlatformVersion="1.0" />
 </host>
 </hosts>
</gadget>

■ Note If you’re using Notepad or some other text editor to create the file, be sure to save the manifest file as
Gadget.xml with encoding as UTF-8; otherwise, it will not be recognized as a valid gadget.

6-12. Embedding Silverlight in an Internet Explorer 8 Web
Slice
Problem
You need to host Silverlight 4 content in an Internet Explorer 8 Web Slice.

Solution
Internet Explorer 8 (IE8) Web Slices are based on an HTML and JavaScript programming model. As
such, IE8 Web Slices can host ActiveX controls, such as the Silverlight plug-in.

How It Works
An IE8 Web Slice is a new browser feature that allows web site users to subscribe to a portion of a web
page. Web Slices are based on the hAtom and hSlice microformats. It is very easy to create a web slice in
an existing web page by simply annotating the HTML with class names for title, entry content as well
as other properties. For more information regarding Web Slices, go to the Web Slices link on MSDN at
msdn.microsoft.com/en-us/library/cc956158(VS.85).aspx.

The Code
In order to create your web slice, first you reduce the test pages to just the code necessary to create a
web slice. Listing 6-25 has the source code for the .html page.

CHAPTER 6 ■ BROWSER INTEGRATION

572

Listing 6-25. Recipe 6-12’s Test Page .html File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Test Page for Recipe 6.12/title>
</head>
<body>
 <form id="form1" runat="server" style="height: 100%">
 <div id="Recipe6.12WebSlice" class=hslice><!--Web Slice class -->
 <H3 class=entry-title>Recipe6.12 WebSlice Title</H3> <!--Web Slice Title class -->
 <a rel="entry-content" href=
 "http://localhost:9090/Recipe6.12WebSlice.aspx" style="display:none;">
 </div>
 </form>
</body>
</html>

You can certainly put more content into this page, but this is reduced to just what is necessary to
demonstrate a Web Slice. The updated test pages do two things: identify the Web Slice content and
bootstrap installation with the help of IE8. Essentially, a Web Slice is a container HTML control, such as
a <div>, that has a particular class attribute applied to it. In your case, the <div> with the id of
Recipe6.9WebSlice has the class value of hslice on it to identify that it is a Web Slice container. You
can add a title to the Web Slice by assigning an HTML element the class value of entry-title, which
you do on an <h3> tag. The text contained in the HTML element with the entry-title class is also the text
that is used to represent the title of the Web Slice in IE8’s Favorites bar. Configuring these classes in
HTML causes IE to display the Install a Web Slice button when the user mouses over the <div> tag, as
shown in Figure 6-27.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://localhost:9090/Recipe6.12WebSlice.aspx

CHAPTER 6 ■ BROWSER INTEGRATION

573

Figure 6-27. The Add a Web Slice button and dialog

When you move the mouse over the Web Slice <div>, the green button appears over the <div> text.
When you click the green button, it displays the Add a Web Slice dialog box. This adds the Web Slice to
the Favorites section in IE8, as shown in Figure 6-28.

Figure 6-28. The installed Web Slice

CHAPTER 6 ■ BROWSER INTEGRATION

574

After installation, the user can navigate to any web site and still be able to bring up the Web Slice
by clicking the link in the Favorites section of IE8. In your case, the Web Slice displays a fictitious graph
for a fictitious company, but you can display anything in a Web Slice that you can create in Silverlight.

So far, we have not explained where, exactly, the Silverlight content is loaded from. As noted
previously, the <a> tag in Listing 6-26 is part of the Web Slice, which in your case points to a file named
Recipe6.9WebSlice.aspx:

<a rel="entry-content" style="display:none;"
href="http://localhost:9090/Recipe6.12WebSlice.aspx" >

We first tried putting the Silverlight <object> tag directly in the same page as the test page by
adding the entry-content class to a <div> where the Silverlight control is instantiated, but that did not
work. We note this as background in case you wish to build a Web Slice that does not use Silverlight and
want to keep the Web Slice content in the same page.

Listing 6-26 has the code for the Web Slice.

Listing 6-26. Recipe 6-12’s Web Slice .aspx

<%@ Page Language="C#" AutoEventWireup="true" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Test Page for Recipe 6.12</title>
 <style type="text/css">
 html, body
 {
 height: 100%;
 width: 100%;
 }
 body
 {
 padding: 0;
 margin: 0;
 }
 #silverlightControlHost
 {
 height: 100%;
 width: 100%;
 text-align: center;
 }
 </style>
 <script type="text/javascript" src="Silverlight.js"></script>

 <script type="text/javascript">
 function onSilverlightError(sender, args) {
 var appSource = "";

http://localhost:9090/Recipe6.12WebSlice.aspx
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 6 ■ BROWSER INTEGRATION

575

 if (sender != null && sender != 0) {
 appSource = sender.getHost().Source;
 }

 var errorType = args.ErrorType;
 var iErrorCode = args.ErrorCode;

 if (errorType == "ImageError" || errorType == "MediaError") {
 return;
 }

 var errMsg = "Unhandled Error in Silverlight Application " + appSource + "\n";

 errMsg += "Code: " + iErrorCode + " \n";
 errMsg += "Category: " + errorType + " \n";
 errMsg += "Message: " + args.ErrorMessage + " \n";

 if (errorType == "ParserError") {
 errMsg += "File: " + args.xamlFile + " \n";
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 else if (errorType == "RuntimeError") {
 if (args.lineNumber != 0) {
 errMsg += "Line: " + args.lineNumber + " \n";
 errMsg += "Position: " + args.charPosition + " \n";
 }
 errMsg += "MethodName: " + args.methodName + " \n";
 }

 throw new Error(errMsg);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server" style="height:100%; width:100%">
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2," type=
 "application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value=
 "ClientBin/Ch06_BrowserIntegration.Recipe6_12.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />

CHAPTER 6 ■ BROWSER INTEGRATION

576

 <param name="minRuntimeVersion" value="3.0.40613.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40613.0"
 style="text-decoration: none">
 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight" style="border-style: none" />

 </object>
 <iframe id="_sl_historyFrame" style="visibility: hidden; height:
 0px; width: 0px; border: 0px"></iframe>
 </div>
 </form>
</body>
</html>

This page has some minor modifications related to styles that differ from the typical test page; these
deviations prevent scroll bars from appearing when the Web Slice preview is displayed in the IE8
Favorites toolbar. So, add style="height:100%; width:100%"> to the form page. Also, add the same values
to the CSS style for #silverlightControlHost and for the <html> and <body> tags. Lastly, remove the
overflow: auto; attribute. This results in the nice clean Web Slice display shown in Figure 6-28.

http://go.microsoft.com/fwlink/?LinkID=149156&v=3.0.40613.0
http://go.microsoft.com/fwlink/?LinkId=108181

C H A P T E R 7

■ ■ ■

577

Networking and Web Service
Integration

In modern, well-architected, loosely coupled systems, a common practice is to expose application
processing logic and server-resident data as a set of services. The term service is used fairly
generically in this context—a service can be anything that has a known endpoint accessible over a
standard web protocol like HTTP, offering information exchange capabilities using a standard format
like SOAP, plain XML, or JavaScript Object Notation (JSON).

For a server-side UI framework like ASP.NET or a desktop application built using .NET, you can
use the full power of the .NET Framework’s web service stack to consume these services from the
presentation layer of your application.

In the same vein, if you are developing Silverlight-based user experiences, you will often need to
consume these services directly from your client-side Silverlight code. The Silverlight .NET libraries
include networking APIs that allow you to do just that. The Silverlight network programming stack lets
you take advantage of the following high-level features:

• Communicating over HTTP or HTTPS with web services

• Seamlessly integrating with Windows Communication Foundation–based services

• Exchanging plain old XML (POX) or JSON-formatted data to communicate with services

• Enabling TCP-based communication through TCP sockets

• Responding to network availability state changes from locally installed applications

• Enabling local communication between multiple Silverlight applications on the same web
page

Note that Silverlight only supports communication with WS-I Basic Profile 1.1–compliant
endpoints for SOAP 1.1 over HTTP(S) style message exchange.

Some of the more modern web service standards, such as the WS-* family of protocols, offer a
standardized way of enabling advanced distributed computing features in a service-oriented
architecture (SOA). Most of these standards are meant for complex SOAs where many services interact
with one another across various server platform implementations. Some examples are

• Reliable message delivery using WS-ReliableMessaging

• Atomic transactions across services using WS-AtomicTransactions

• Advanced distributed, cross-platform security mechanisms using WS-Security that go
beyond the traditional point-to-point Secure Sockets Layer (SSL) usage

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

578

These standards are typically implemented in a layered fashion on top of the basic SOAP standard
mentioned earlier, and any client framework enabled for these standards needs client-side
implementation. A full implementation of these standards, however, would have meant a significant
increase in the size of the runtime and libraries that the Silverlight plug-in contains. To keep a small
footprint and provide the efficient, responsive, cross-platform user experience of Silverlight, a
decision was made to not support the WS-* standards at this point.

Also of note is the increased use of Representational State Transfer (REST)-styled services in Web
2.0–type web applications, which seems to be a continuing trend. REST is a way of accessing resources
over HTTP, where every resource thus accessible is identifiable with a URI. RESTful services typically
use either plain XML or other lightweight formats like JSON to exchange messages over HTTP;
operations on such services are equivalent to either acquiring or sending such resources to specified
endpoints. These techniques are well supported in Silverlight, as you will see in this chapter.

■ NNote In the recipes, we have chosen to use Windows Communication Foundation (WCF) to implement the
HTTP-based services. As needed, we highlight the specific WCF-related requirements for the services to be usable
by Silverlight, but a detailed treatment of WCF is beyond the scope of this book. We also use LINQ and LINQ to

XML queries in several of the recipes in this chapter. For more details about WCF, LINQ, and LINQ to XML, refer to
the appropriate documentation in the MSDN library at msdn.microsoft.com/en-us/library/default.aspx. You
can also refer to Pro LINQ: Language Integrated Query in C# 2008 (Apress, 2007) and Pro WCF: Practical Microsoft
SOA Implementation (Apress, 2007) for in-depth treatments.

A Quick Word about the Samples
The WCF web services in the sample code for this chapter are created as file-system web projects. This
is to avoid a dependency on Microsoft Internet Information Services (IIS) and to ensure that you can
run all the code samples on your machine without needing IIS. However, keep in mind that we did this
purely to reduce the effort in getting the book samples up and running after they are downloaded. For
all practical purposes, you should consider a state-of-the-art, industry-leading web application server
like IIS for your mission-critical sites and services, whether in a development, test, or production
environment.

Also note that file-system web projects are debugged using a development web server built into
Visual Studio. When you are in debug mode, Visual Studio takes care of starting up the necessary
services. However, if you are running the client from outside Visual Studio or browsing to the test page
from inside Visual Studio, the services and development web server are not started automatically. The
best way to start them manually is to browse to your .svc page for the service project from within the
Visual Studio Solution Explorer.

In addition, the Visual Studio development web server randomly picks a port for applications. This
is not desirable, especially for web services, because you need to specify the URI for the service in your
client code or configuration. You can instruct Visual Studio to always use a fixed port on a per-project
basis, from the project’s Debug properties page. We have done so in the sample projects already. Take
care not to specify the same port on services that need to run together.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

579

7-1. Consuming a WCF Service

Problem
Your Silverlight application needs to communicate with a WCF service.

Solution
Add a reference to the WCF service to your Silverlight application, and use the generated proxy classes
to invoke the service.

How It Works
From the context menu of the Silverlight project in Solution Explorer, select Add Service Reference.
This brings up the dialog shown in Figure 7-1.

Figure 7-1. Visual Studio 2008 Add Service Reference dialog

You have the option of entering the URL of the service endpoint or, if the service project is part of
your solution, of clicking Discover to list those services. After the service(s) are listed, select the
appropriate service and click OK to add a reference to the service to your application, which generates
a set of proxy classes. You can change the namespace in which the generated proxy lives by changing
the default namespace specified by the dialog.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

580

Additionally, you have the option to further customize the generated proxy by clicking the
Advanced button. This brings up the dialog shown in Figure 7-2, where you can specify, among other
options, the collection types to be used by the proxy to express data collections and dictionaries being
exchanged with the service.

Figure 7-2. Visual Studio 2008 Service Reference Settings dialog

To display the generated proxy files, select the proxy node under the Service References node in
your project tree, and then click the Show All Files button on the top toolbar on the Visual Studio
Solution Explorer. The proxy node has the same name as the service for which you generated the proxy.
You can find the generated proxy code in the Reference.cs file under the Reference.svcmap node in the
project, as shown in Figure 7-3.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

581

Figure 7-3. Visual Studio 2008 generated service proxy

Invoking a Service Operation
Assuming a service named ProductManager exists, Reference.cs contains a client proxy class for the
service named ProductManagerClient. It also contains the data-contract types exposed by the service.

Silverlight uses an asynchronous invoke pattern—all web-service invocations are offloaded to a
background thread from the local thread pool, and control is returned instantly to the executing
Silverlight code. The proxy-generation mechanism implements this by exposing an xxxAsync() method
and xxxCompleted event pair on the client proxy, where xxx is an operation on the service. To invoke
the service operation from your Silverlight code, you execute the xxxAsync() method and handle the
xxxCompleted event, in which you can extract the results returned by the service call from the event
arguments. Note that although the service-invocation code executes on a background thread, the
framework switches context to the main UI thread before invoking the completion event handler so
that you do not have to worry about thread safety in your implementation of the handler.

Listing 7-1 shows such a pair from the generated proxy code for a service operation named
GetProductHeaders.

Listing 7-1. Generated proxy code for a service operation

public event System.EventHandler<GetProductHeadersCompletedEventArgs>
GetProductHeadersCompleted;

public partial class GetProductHeadersCompletedEventArgs :
 System.ComponentModel.AsyncCompletedEventArgs
{

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

582

private object[] results;

 public GetProductHeadersCompletedEventArgs(object[] results,
 Exception exception, bool cancelled, object userState) :
 base(exception, cancelled, userState)
 {
 this.results = results;
 }

 public List<ProductHeader> Result
 {
 get
 {
 base.RaiseExceptionIfNecessary();
 return ((System.Collections.Generic.List<ProductHeader>)(this.results[0]));
 }
 }
}

public void GetProductDetailAsync(ushort ProductId) {
 this.GetProductDetailAsync(ProductId, null);
 }

Note the custom event argument type named GetProductHeadersCompletedEventArgs in Listing 7-1.

Silverlight creates one of these for every unique operation in your service. Each exposes a Result
property as shown, which is strongly typed (in this case, to a List<ProductHeader>) to help you avoid
any casting or conversion in retrieving the result of the service call.

Configuring a WCF Service for Silverlight
As indicated in the introduction to this chapter, Silverlight requires a SOAP/HTTP-based service to be
WS-I Basic Profile 1.1 compliant. In WCF terms, that means using BasicHttpBinding on the service
endpoint. Listing 7-2 shows a sample configuration section of a service that uses BasicHttpBinding.

Listing 7-2. WCF Service Configuration in Web.config

<system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="LargeMessage_basicHttpBinding"
 maxReceivedMessageSize="1048576" />
 </basicHttpBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="True"/>
 <services>

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

583

 <service behaviorConfiguration="ServiceBehavior"
 name="Recipe7_1.ProductsDataSoapService.ProductManager">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration="LargeMessage_basicHttpBinding"
 contract=
"Recipe7_1.ProductsDataSoapService.IProductManager" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

The additional endpoint utilizing mexHttpBinding is required to expose service-contract metadata,

which is needed for the client proxy generation described earlier in this section. Note the setting of the
maxReceivedMessageSize property on the binding to about 1 MB (defined in bytes). This increases it
from its default value of about 65 KB, because you anticipate the messages in the code sample to be
larger than that limit.

Also note that similar configuration settings are needed on the Silverlight client to initialize the
proxy and consume the service. When you generate the proxy, this is automatically generated for you
and stored in a file called ServiceReferences.ClientConfig. This file is packaged into the resulting .xap
file for your Silverlight application, and the settings are automatically read in when you instantiate a
service proxy.

The Code
The code sample for this recipe builds a simple master-detail style UI over product inventory data
exposed by a WCF service. Listing 7-3 shows the service contract for the WCF service.

Listing 7-3. Service contract for the service in ServiceContract.cs

using System.Collections.Generic;
using System.ServiceModel;

namespace Recipe7_1.ProductsDataSoapService
{
 [ServiceContract]
 public interface IProductManager
 {
 [OperationContract]

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

584

 List<ProductHeader> GetProductHeaders();
 [OperationContract]
 void UpdateProductHeaders(List<ProductHeader> Updates);

 [OperationContract]
 ProductDetail GetProductDetail(ushort ProductId);

 [OperationContract]
 void UpdateProductDetail(ProductDetail Update);
 }
}

A service contract models the external interface that the service exposes to the world. You can

represent the service contract in a common language runtime (CLR) programming language of your
choice (C# in this case). The contract itself is an interface, with the operations defined as method
signatures in the interface. The attribution of the interface with ServiceContractAttribute, and that of
the operations with OperationContractAttribute, indicates to the WCF runtime that this interface is
representative of a service contract. When you try to generate a proxy (or model it by hand) using
Visual Studio, the Web Service Definition Language (WSDL) that is returned by the service and used to
model the proxy also maps to this service contract.

The service contract in Listing 7-3 is implemented as an interface named IProductManager, allows
retrieval of a collection of all ProductHeader objects through GetProductHeaders(), and accepts batched
ProductHeader changes through UpdateProductHeaders(). It also lets you retrieve ProductDetail using
GetProductDetail() for a specific product, in addition to allowing updates to ProductDetail information
for a product using UpdateProductDetail() in a similar fashion.

Listing 7-4 shows the data contracts used in the service.

Listing 7-4. Data contracts for the service in DataContracts.cs

namespace Recipe7_1.ProductsDataSoapService
{
 [DataContract]
 public partial class ProductHeader
 {
 private ushort? productIdField;
 private decimal? listPriceField;
 private string nameField;
 private string sellEndDateField;
 private string sellStartDateField;

 [DataMember]
 public ushort? ProductId
 {
 get { return this.productIdField; }
 set { this.productIdField = value; }
 }
 [DataMember]

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

585

 public decimal? ListPrice
 {
 get { return this.listPriceField; }
 set { this.listPriceField = value; }
 }
 [DataMember]
 public string Name
 {
 get { return this.nameField; }
 set { this.nameField = value; }
 }
 [DataMember]
 public string SellEndDate
 {
 get { return this.sellEndDateField; }
 set { this.sellEndDateField = value; }
 }
 [DataMember]
 public string SellStartDate
 {
 get { return this.sellStartDateField; }
 set { this.sellStartDateField = value; }
 }
 }

 [DataContract]
 public partial class ProductDetail
 {

 private ushort? productIdField;
 private string classField;
 private string colorField;
 private byte? daysToManufactureField;
 private string discontinuedDateField;
 private string finishedGoodsFlagField;
 private string makeFlagField;
 private string productLineField;
 private string productNumberField;
 private ushort? reorderPointField;
 private ushort? safetyStockLevelField;
 private string sizeField;
 private decimal? standardCostField;
 private string styleField;
 private string weightField;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

586

 [DataMember]
 public ushort? ProductId
 {
 get { return this.productIdField; }
 set { this.productIdField = value; }
 }
 [DataMember]
 public string Class
 {
 get { return this.classField; }
 set { this.classField = value; }
 }
 [DataMember]
 public string Color
 {
 get { return this.colorField; }
 set { this.colorField = value; }
 }
 [DataMember]
 public byte? DaysToManufacture
 {
 get { return this.daysToManufactureField; }
 set { this.daysToManufactureField = value; }
 }
 [DataMember]
 public string DiscontinuedDate
 {
 get { return this.discontinuedDateField; }
 set { this.discontinuedDateField = value; }
 }
 [DataMember]
 public string FinishedGoodsFlag
 {
 get { return this.finishedGoodsFlagField; }
 set { this.finishedGoodsFlagField = value; }
 }
 [DataMember]
 public string MakeFlag
 {
 get { return this.makeFlagField; }
 set { this.makeFlagField = value; }
 }
 [DataMember]
 public string ProductLine
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

587

 get { return this.productLineField; }
 set { this.productLineField = value; }
 }
 [DataMember]
 public string ProductNumber
 {
 get { return this.productNumberField; }
 set { this.productNumberField = value; }
 }
 [DataMember]
 public ushort? ReorderPoint
 {
 get { return this.reorderPointField; }
 set { this.reorderPointField = value; }
 }
 [DataMember]
 public ushort? SafetyStockLevel
 {
 get { return this.safetyStockLevelField; }
 set { this.safetyStockLevelField = value; }
 }
 [DataMember]
 public string Size
 {
 get { return this.sizeField; }
 set { this.sizeField = value; }
 }
 [DataMember]
 public decimal? StandardCost
 {
 get { return this.standardCostField; }
 set { this.standardCostField = value; }
 }
 [DataMember]
 public string Style
 {
 get { return this.styleField; }
 set { this.styleField = value; }
 }
 [DataMember]
 public string Weight
 {
 get { return this.weightField; }
 set { this.weightField = value; }
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

588

 }
}

Any custom CLR type that you define in your application and use in your service operations needs

to be explicitly known to the WCF runtime. This is so that it can be serialized to/deserialized from the
wire format (SOAP/JSON, and so on) to your application code format (CLR type). To provide this
information to WCF, you must designate these types as data contracts. The DataContractAttribute is
applied to the type, and each property member that you may want to expose is decorated with the
DataMemberAttribute. Leaving a property undecorated does not serialize it, and neither is it included in
the generated proxy code.

In this case, you define data contracts for the ProductHeader and the ProductDetail types that you
use in the service contract. Note that WCF inherently knows how to serialize framework types such as
primitive types and collections. Therefore, you do not need specific contracts for them.

Listing 7-5 shows the full implementation of the service in the ProductManager class,
implementing the service contract IProductManager.

Listing 7-5. Service implementation in ProductManager.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.ServiceModel.Activation;
using System.Web;
using System.Xml.Linq;

namespace Recipe7_1.ProductsDataSoapService
{
 [AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class ProductManager : IProductManager
 {
 public List<ProductHeader> GetProductHeaders()
 {
 //open the local XML data file for products
 StreamReader stmrdrProductData = new StreamReader(
 new FileStream(HttpContext.Current.Request.MapPath(
 "App_Data/XML/Products.xml"), FileMode.Open));
 //create a Linq To XML Xdocument and load the data
 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 //close the stream
 stmrdrProductData.Close();
 //transform the XML data to a collection of ProductHeader
 //using a Linq To XML query
 IEnumerable<ProductHeader> ProductData =
 from elemProduct in xDocProducts.Root.Elements()
 select new ProductHeader

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

589

 {
 Name = elemProduct.Attribute("Name") != null ?
 elemProduct.Attribute("Name").Value : null,
 ListPrice = elemProduct.Attribute("ListPrice") != null ?
 new decimal?(Convert.ToDecimal(
 elemProduct.Attribute("ListPrice").Value))
 : null,
 ProductId = elemProduct.Attribute("ProductId") != null ?
 new ushort?(Convert.ToUInt16(
 elemProduct.Attribute("ProductId").Value)) :
 null,
 SellEndDate = elemProduct.Attribute("SellEndDate") != null ?
 elemProduct.Attribute("SellEndDate").Value : null,
 SellStartDate = elemProduct.Attribute("SellStartDate") != null ?
 elemProduct.Attribute("SellStartDate").Value : null
 };
 //return a List<ProductHeader>
 return ProductData.ToList();
 }

 public void UpdateProductHeaders(List<ProductHeader> Updates)
 {
 //open the local data file and load into an XDocument
 StreamReader stmrdrProductData = new StreamReader(
 new FileStream(HttpContext.Current.Request.MapPath(
 "App_Data/XML/Products.xml"), FileMode.Open));
 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 stmrdrProductData.Close();
 //for each of the ProductHeader instances
 foreach (ProductHeader Prod in Updates)
 {
 //find the corresponding XElement in the loaded XDocument
 XElement elemTarget =
 (from elemProduct in xDocProducts.Root.Elements()
 where Convert.ToUInt16(elemProduct.Attribute("ProductId").Value)
 == Prod.ProductId
 select elemProduct).ToList()[0];
 //and updates the attributes with the changes
 if (elemTarget.Attribute("Name") != null)
 elemTarget.Attribute("Name").SetValue(Prod.Name);
 if (elemTarget.Attribute("ListPrice") != null
 && Prod.ListPrice.HasValue)
 elemTarget.Attribute("ListPrice").SetValue(Prod.ListPrice);
 if (elemTarget.Attribute("SellEndDate") != null)
 elemTarget.Attribute("SellEndDate").SetValue(Prod.SellEndDate);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

590

 if (elemTarget.Attribute("SellStartDate") != null)
 elemTarget.Attribute("SellStartDate").SetValue(Prod.SellStartDate);
 }
 //save the XDocument with the changes back to the data file
 StreamWriter stmwrtrProductData = new StreamWriter(
 new FileStream(HttpContext.Current.Request.MapPath(
 "App_Data/XML/Products.xml"), FileMode.Truncate));
 xDocProducts.Save(stmwrtrProductData);
 stmwrtrProductData.Close();

 }

 public ProductDetail GetProductDetail(ushort ProductId)
 {
 StreamReader stmrdrProductData = new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));

 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 stmrdrProductData.Close();

 IEnumerable<ProductDetail> ProductData =
 from elemProduct in xDocProducts.Root.Elements()
 where elemProduct.Attribute("ProductId").Value == ProductId.ToString()
 select new ProductDetail
 {
 Class = elemProduct.Attribute("Class") != null ?
 elemProduct.Attribute("Class").Value : null,
 Color = elemProduct.Attribute("Color") != null ?
 elemProduct.Attribute("Color").Value : null,
 DaysToManufacture = elemProduct.Attribute("DaysToManufacture") != null ?
 new byte?(
 Convert.ToByte(elemProduct.Attribute("DaysToManufacture").Value))
 : null,
 DiscontinuedDate = elemProduct.Attribute("DiscontinuedDate") != null ?
 elemProduct.Attribute("DiscontinuedDate").Value : null,
 FinishedGoodsFlag = elemProduct.Attribute("FinishedGoodsFlag") != null ?
 elemProduct.Attribute("FinishedGoodsFlag").Value : null,

 MakeFlag = elemProduct.Attribute("MakeFlag") != null ?
 elemProduct.Attribute("MakeFlag").Value : null,
 ProductId = elemProduct.Attribute("ProductId") != null ?
 new ushort?(
 Convert.ToUInt16(elemProduct.Attribute("ProductId").Value))

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

591

 : null,
 ProductLine = elemProduct.Attribute("ProductLine") != null ?
 elemProduct.Attribute("ProductLine").Value : null,
 ProductNumber = elemProduct.Attribute("ProductNumber") != null ?
 elemProduct.Attribute("ProductNumber").Value : null,
 ReorderPoint = elemProduct.Attribute("ReorderPoint") != null ?
 new ushort?(
 Convert.ToUInt16(elemProduct.Attribute("ReorderPoint").Value))
 : null,
 SafetyStockLevel = elemProduct.Attribute("SafetyStockLevel") != null ?
 new ushort?(
 Convert.ToUInt16(elemProduct.Attribute("SafetyStockLevel").Value))
 : null,
 StandardCost = elemProduct.Attribute("StandardCost") != null ?
 new decimal?(Convert.ToDecimal(
 elemProduct.Attribute("StandardCost").Value))
 : null,
 Style = elemProduct.Attribute("Style") != null ?
 elemProduct.Attribute("Style").Value : null

 };

 return ProductData.ToList()[0];
 }
 public void UpdateProductDetail(ProductDetail Update)
 {
 StreamReader stmrdrProductData = new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));
 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 stmrdrProductData.Close();

 XElement elemTarget =
 (from elemProduct in xDocProducts.Root.Elements()
 where Convert.ToUInt16(elemProduct.Attribute("ProductId").Value)
 == Update.ProductId
 select elemProduct).ToList()[0];

 if (elemTarget.Attribute("Class") != null)
 elemTarget.Attribute("Class").SetValue(Update.Class);
 if (elemTarget.Attribute("Color") != null)
 elemTarget.Attribute("Color").SetValue(Update.Color);
 if (elemTarget.Attribute("DaysToManufacture") != null
 && Update.DaysToManufacture.HasValue)

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

592

 elemTarget.Attribute("DaysToManufacture").
 SetValue(Update.DaysToManufacture);
 if (elemTarget.Attribute("DiscontinuedDate") != null)
 elemTarget.Attribute("DiscontinuedDate").
 SetValue(Update.DiscontinuedDate);
 if (elemTarget.Attribute("FinishedGoodsFlag") != null)
 elemTarget.Attribute("FinishedGoodsFlag").
 SetValue(Update.FinishedGoodsFlag);
 if (elemTarget.Attribute("MakeFlag") != null)
 elemTarget.Attribute("MakeFlag").
 SetValue(Update.MakeFlag);
 if (elemTarget.Attribute("ProductLine") != null)
 elemTarget.Attribute("ProductLine").
 SetValue(Update.ProductLine);
 if (elemTarget.Attribute("ProductNumber") != null)
 elemTarget.Attribute("ProductNumber").
 SetValue(Update.ProductNumber);
 if (elemTarget.Attribute("ReorderPoint") != null
 && Update.ReorderPoint.HasValue)
 elemTarget.Attribute("ReorderPoint").
 SetValue(Update.ReorderPoint);
 if (elemTarget.Attribute("SafetyStockLevel") != null
 && Update.SafetyStockLevel.HasValue)
 elemTarget.Attribute("SafetyStockLevel").
 SetValue(Update.SafetyStockLevel);
 if (elemTarget.Attribute("StandardCost") != null
 && Update.StandardCost.HasValue)
 elemTarget.Attribute("StandardCost").
 SetValue(Update.StandardCost);
 if (elemTarget.Attribute("Style") != null)
 elemTarget.Attribute("Style").
 SetValue(Update.Style);

 StreamWriter stmwrtrProductData =
 new StreamWriter(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Truncate));

 xDocProducts.Save(stmwrtrProductData);
 stmwrtrProductData.Close();
 }
 }
}

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

593

We discuss the operations for handling product headers briefly. The ones to handle product details

are implemented in a similar fashion and should be easy to follow.
All the data for this service is stored in a local data file named Products.xml. In the

GetProductHeaders() method, you open the file and read the XML data into an XDocument instance. A
LINQ query is used to navigate the XDocument and transform the XML data into a collection of
ProductHeader instances. In UpdateProductHeaders(), the XElement instance corresponding to each
product is updated with the changes in the ProductHeader instance, and the changes are saved to the
same data file.

Note the use of the AspNetCompatibilityRequirementsAttribute setting on the service class,
indicating that support to be required. In order to get to the data files on the file system, you map the
incoming HTTP request to a server path in the code. And the HttpContext type that makes the current
request available to you is available only if ASP.NET support is enabled this way. This setting needs
the corresponding configuration setting

<serviceHostingEnvironment aspNetCompatibilityEnabled="True"/>

already shown in Listing 7-2.

Figure 7-4 shows the Silverlight application’s UI, and Listing 7-6 lists the XAML for the page.

Figure 7-4. The UI consuming products data from a WCF service

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

594

Listing 7-6. XAML for the page in MainPage.xaml

<UserControl x:Class="Recipe7_1.ProductsDataViewer.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:DataControls=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 Width="800" Height="600">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50*" />
 <RowDefinition Height="5*" />
 <RowDefinition Height="45*" />
 </Grid.RowDefinitions>
 <!-- Top Data Grid -->
 <DataControls:DataGrid
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 x:Name="ProductHeaderDataGrid"
 Grid.Row="0"
 SelectionChanged="ProductHeaderDataGrid_SelectionChanged"
 CurrentCellChanged="ProductHeaderDataGrid_CurrentCellChanged"
 BeginningEdit="ProductHeaderDataGrid_BeginningEdit">
 <DataControls:DataGrid.Columns>
 <DataControls:DataGridTextColumn
 Header="Id"
 Binding="{Binding ProductId}" />
 <DataControls:DataGridTextColumn
 Header="Name"
 Binding="{Binding Name, Mode=TwoWay}" />
 <DataControls:DataGridTextColumn
 Header="Price"
 Binding="{Binding ListPrice, Mode=TwoWay}" />
 <DataControls:DataGridTextColumn
 Header="Available From"
 Binding="{Binding SellStartDate, Mode=TwoWay}" />
 <DataControls:DataGridTextColumn
 Header="Available Till"
 Binding="{Binding SellEndDate, Mode=TwoWay}" />
 </DataControls:DataGrid.Columns>
 </DataControls:DataGrid>
 <!-- Butons -->
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

595

 VerticalAlignment="Center" Grid.Row ="1">
 <Button x:Name="Btn_SendHeaderUpdates" Content="Update Product Headers"
 Width="200" Click="Click_Btn_SendHeaderUpdates" Margin="0,0,20,0"/>
 <Button x:Name="Btn_SendDetailUpdates" Content="Update Product Detail"
 Width="200" Click="Click_Btn_SendDetailUpdate"/>
 </StackPanel>
 <Rectangle Stroke="Black" StrokeThickness="4" Grid.Row="2" />
 <!-- Data entry form -->
 <Grid Grid.Row="2" x:Name="ProductDetailsGrid" Margin="10,10,10,10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal"
 Grid.Row="0"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="2,0,0,0">
 <TextBlock Text="Product Details for - "
 FontWeight="Bold"
 TextDecorations="Underline"/>
 <TextBlock Text="{Binding ProductId}"
 FontWeight="Bold"
 TextDecorations="Underline"/>
 </StackPanel>
 <TextBlock Text="Color" Grid.Row="1" Grid.Column="0"
 Margin="2,2,15,2" />
 <TextBlock Text="Days To Manufacture" Grid.Row="2" Grid.Column="0"
 Margin="2,2,15,2" />
 <TextBlock Text="Discontinued On" Grid.Row="3" Grid.Column="0"
 Margin="2,2,15,2" />
 <TextBlock Text="Finished Goods" Grid.Row="4" Grid.Column="0"
 Margin="2,2,15,2" />

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

596

 <TextBlock Text="Make Flag" Grid.Row="5" Grid.Column="0"
 Margin="2,2,15,2" />
 <TextBlock Text="Product Line" Grid.Row="6" Grid.Column="0"
 Margin="2,2,15,2" />
 <TextBlock Text="Class" Grid.Row="7" Grid.Column="0"
 Margin="2,2,15,2"/>
 <TextBlock Text="Reorder Point" Grid.Row="1" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Safety Stock Level" Grid.Row="2" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Size" Grid.Row="3" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Weight" Grid.Row="4" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Standard Cost" Grid.Row="5" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Style" Grid.Row="6" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBlock Text="Number" Grid.Row="7" Grid.Column="2"
 Margin="2,2,15,2" />
 <TextBox Text="{Binding Color,Mode=TwoWay}"
 Grid.Row="1" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding DaysToManufacture,Mode=TwoWay}"
 Grid.Row="2" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding DiscontinuedDate,Mode=TwoWay}"
 Grid.Row="3" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding FinishedGoodsFlag,Mode=TwoWay}"
 Grid.Row="4" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding MakeFlag,Mode=TwoWay}"
 Grid.Row="5" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding ProductLine,Mode=TwoWay}"
 Grid.Row="6" Grid.Column="1" Margin="2,2,25,2" />
 <TextBox Text="{Binding Class,Mode=TwoWay}"
 Grid.Row="7" Grid.Column="1" Margin="2,2,25,2"/>
 <TextBox Text="{Binding ReorderPoint,Mode=TwoWay}"
 Grid.Row="1" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding SafetyStockLevel,Mode=TwoWay}"
 Grid.Row="2" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding Size,Mode=TwoWay}"
 Grid.Row="3" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding Weight,Mode=TwoWay}"
 Grid.Row="4" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding StandardCost,Mode=TwoWay}"
 Grid.Row="5" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding Style,Mode=TwoWay}"

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

597

 Grid.Row="6" Grid.Column="3" Margin="2,2,25,2" />
 <TextBox Text="{Binding ProductNumber,Mode=TwoWay}"
 Grid.Row="7" Grid.Column="3" Margin="2,2,25,2" />
 </Grid>
 </Grid>
</UserControl>

The preceding XAML uses a DataGrid named ProductHeaderDataGrid to display the ProductHeader

properties. For each selected ProductHeader, to display the related details in a master-detail fashion,
you further bind the ProductDetail properties to controls in a Grid named ProductDetailsGrid, which
uses TextBlocks for labels and appropriately bound TextBoxes for property values, to create a data-
entry form for the bound ProductDetail.

You also include two Buttons inside a StackPanel to provide the user with a way to submit updates
to ProductHeaders or a ProductDetail.

Listing 7-7 shows the codebehind for the MainPage.

Listing 7-7. Codebehind for MainPage in MainPage.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using Recipe7_1.ProductsDataViewer.ProductsDataSoapService;

namespace Recipe7_1.ProductsDataViewer
{
 public partial class MainPage : UserControl
 {
 ProductsDataSoapService.ProductManagerClient client = null;
 bool InEdit = false;
 public MainPage()
 {
 InitializeComponent();
 //create a new instance of the proxy
 client = new ProductsDataSoapService.ProductManagerClient();
 //add a handler for the GetProductHeadersCompleted event
 client.GetProductHeadersCompleted +=
 new EventHandler<GetProductHeadersCompletedEventArgs>(
 client_GetProductHeadersCompleted);
 //add a handler for the UpdateProductHeadersCompleted event
 client.UpdateProductHeadersCompleted +=
 new EventHandler<System.ComponentModel.AsyncCompletedEventArgs>(
 client_UpdateProductHeadersCompleted);
 //add a handler for GetProductDetailCompleted
 client.GetProductDetailCompleted +=

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

598

 new EventHandler<GetProductDetailCompletedEventArgs>(
 client_GetProductDetailCompleted);
 //invoke the GetProductHeaders() service operation
 client.GetProductHeadersAsync();
 }

 void ProductHeaderDataGrid_SelectionChanged(object sender, EventArgs e)
 {
 if (ProductHeaderDataGrid.SelectedItem != null)
 //invoke the GetProductDetails() service operation,
 //using the ProductId of the currently selected ProductHeader
 client.GetProductDetailAsync(
 (ProductHeaderDataGrid.SelectedItem as
 ProductsDataSoapService.ProductHeader).ProductId.Value);
 }

 void client_GetProductDetailCompleted(object sender,
 GetProductDetailCompletedEventArgs e)
 {
 //set the datacontext of the containing grid
 ProductDetailsGrid.DataContext = e.Result;
 }
 void client_UpdateProductHeadersCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
 {
 client.GetProductHeadersAsync();
 }

 void client_GetProductHeadersCompleted(object sender,
 GetProductHeadersCompletedEventArgs e)
 {
 //bind the data of form List<ProductHeader> to the ProductHeaderDataGrid
 ProductHeaderDataGrid.ItemsSource = e.Result;
 }

 void ProductHeaderDataGrid_CurrentCellChanged(object sender,
 EventArgs e)
 {
 //changing the dirty flag on a cell edit for the ProductHeader data grid
 if (InEdit && (sender as DataGrid).SelectedItem != null)
 {
 ((sender as DataGrid).SelectedItem as ProductHeader).Dirty = true;
 InEdit = false;
 }
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

599

 private void ProductHeaderDataGrid_BeginningEdit(object sender,
 DataGridBeginningEditEventArgs e)
 {
 InEdit = true;
 }

 void Click_Btn_SendHeaderUpdates(object Sender, RoutedEventArgs e)
 {
 //get all the header items
 List<ProductHeader> AllItems =
 ProductHeaderDataGrid.ItemsSource as List<ProductHeader>;
 //use LINQ to filter out the ones with their dirty flag set to true
 List<ProductHeader> UpdateList =
 new List<ProductHeader>
 (
 from Prod in AllItems
 where Prod.Dirty == true
 select Prod
);
 //send in the updates
 client.UpdateProductHeadersAsync(UpdateList);
 }

 void Click_Btn_SendDetailUpdate(object Sender, RoutedEventArgs e)
 {
 //send the ProductDetail update
 client.UpdateProductDetailAsync(ProductDetailsGrid.DataContext as
 ProductsDataSoapService.ProductDetail);
 }

 }
}

To fetch and bind the initial ProductHeader data, in the constructor of the MainPage, you create an

instance of the ProductService.ProductManagerClient type, which is the proxy class created by adding
the service reference to the Silverlight project. You then invoke the GetProductHeaders() operation on
the service. Handle the GetProductHeadersCompleted event, and, in it, bind the data to the DataGrid. The
data is made available to you in the Results property of the GetProductHeadersCompletedEventArgs type.

Handle the row-selection change for the DataGrid in ProductHeaderDataGrid_SelectionChanged(),
and fetch and bind the appropriate product details information similarly.

To reduce the amount of data sent in updates, you send only the data that has changed. As shown
in Listing 7-8, you extend the partial class for the ProductHeader data contract to include a Dirty flag so
that you can track only the ProductHeader instances that have changed.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

600

Listing 7-8. Extension to ProductHeader type to include a dirty flag

namespace Recipe7_1.ProductsDataViewer.ProductsDataSoapService
{
 public partial class ProductHeader
 {
 //dirty flag
 public bool Dirty { get; set; }
 }
}

Referring back to Listing 7-7, you see that to use the Dirty flag appropriately, you handle the

BeginningEdit event on the ProductHeaderDataGrid. This event is raised whenever the user starts to
edit a cell. In the handler, you set a flag named InEdit to indicate that an edit process has started. You
also handle the CurrentCellChanged event, which is raised whenever the user navigates away from a
cell to another one. In this handler, you see if the cell was in edit mode by checking the InEdit flag. If it
was, you get the current ProductHeader data item from the SelectedItem property of the DataGrid and
set its Dirty flag appropriately.

You handle the Click event of the button Btn_SendHeaderUpdates to submit the ProductHeader
updates. Using a LINQ query on the currently bound collection of ProductHeaders, you filter out the
changed data based on the Dirty flag, and you pass on the changed data set via
UpdateProductHeadersAsync(). To update a ProductDetail, pass on the currently bound ProductDetail
instance to UpdateProductDetailAsync().

7-2. Exchanging XML Messages over HTTP
Problem
Your Silverlight application needs to exchange POX messages with an HTTP endpoint.

Solution
Use the HttpWebRequest/HttpWebResponse pair of types in System.Net to exchange POX messages with an
HTTP endpoint.

How It Works
POX-style message exchange can be an attractive alternative to the more structured SOAP-based
message exchange. It does not impose any of the specific format requirements of SOAP, and there is
much more freedom regarding how messages are structured. Consequently, it requires fewer
infrastructural requirements, benefits from more implementation options, and can be consumed by
almost any XML-aware runtime environment.

The downside of such loose-format messaging, however, is that very often, client frameworks do
not have the luxury of tool-based assistance like Visual Studio’s service proxy-generation features.
Also, client APIs that consume such services are somewhat lower level—in most cases, they implement
some sort of request/response mechanism over HTTP, with support for HTTP-related features, like
choice of verbs or Multipurpose Internet Mail Extensions (MIME) types.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

601

Using HttpWebRequest/HttpWebResponse in Silverlight
The HttpWebRequest/HttpWebResponse types implement an API that allows Silverlight clients to send
requests and receive responses from HTTP endpoints in an asynchronous fashion.

HttpWebRequest and HttpWebResponse are abstract classes and hence are not directly constructable.
To use the API, you start by invoking the static Create() method on the HttpWebRequest type, supplying
the URL of the endpoint you wish to interact with. What is returned to you is an instance of
WebRequest—the base class for HttpWebRequest. You have the option of setting the desired HTTP verb to
use through the HttpWebRequest.Method property—HttpWebRequest supports GET and POST. The default
value of the Method property on a newly created web request is GET. You really only need to set it if you
are going to use POST.

You also have the option of setting the MIME type using the ContentType property.

Using GET
The GET verb is typically used to request a web resource from an endpoint. The request is represented
as the URI of the resource, with optional additional query string parameters. You invoke a GET request
using the BeginGetResponse() method on the WebRequest instance. Pass a delegate of the form
AsyncResult around a handler that you implement. This handler gets called back when the async
request operation completes. In the handler, call EndGetResponse() to access any response information
returned in the form of a WebResponse instance. You can then call WebResponse.GetResponseStream() to
access the returned content.

Using POST
If you need to submit content back to an HTTP endpoint for processing, and you want to include the
data in the body of the request, you must use the POST verb. To POST content, you need to write the
content to be posted into the request stream. To do this, first call BeginGetRequestStream(), again
passing in an AsyncResult delegate. In the handler, call EndGetRequestStream() to acquire a stream to
the request’s body, and write the content you intend to POST to that stream. Then, call
BeginGetResponse() using the same pattern outlined earlier.

Handling Asynchronous Invocation
The methods discussed here follow an asynchronous invocation pattern. The BeginGetResponse() and
BeginGetRequestStream() methods dispatch the execution to a randomly allocated background thread,
returning control to your main application thread right away. The AsyncResult handlers that you pass
in as callbacks are invoked on these background threads. If you want to access any parts of your object
model created on the main thread—such as the controls on the page or any types that you instantiate
elsewhere in your code—from one of these handlers, you cannot do it in the normal fashion, because
doing so causes a cross-thread access violation. You need to first switch context to the thread that owns
the object you are trying to access. To do this, you must use a type called Dispatcher.

The Dispatcher type is designed to manage work items for a specific thread. More specifically, in
this context, a Dispatcher exposes methods that allow you to execute a piece of code in the context of the
thread that owns the Dispatcher. The DependencyObject type, and hence all derived types, exposes a
Dispatcher instance, which is associated with the thread that creates the type. One of the easiest
instances you can get hold of is exposed on the Page itself.

To use the Dispatcher, use the static BeginInvoke() function, passing in a delegate to the method
that you want to execute on the Dispatcher’s thread, regardless of which thread it is called from.
Dispatcher ensures a proper thread-context switch to execute the targeted method on its owning
thread. For instance, if you want to access some element on the Page from a background thread, you use
the Page’s Dispatcher as described.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

602

■ NNote Although we chose POX messages as the first example of demonstrating this API, the types are a general-
purpose means of HTTP communication from Silverlight. You can exchange other kinds of information over HTTP

using these as well. We show you another example using JSON in Recipe 7-3.

Configuring WCF to Use Non-SOAP Endpoints
Although the Silverlight techniques demonstrated in this API can be used with any HTTP endpoint that
accepts and responds with POX messages, we have chosen to implement the POX/HTTP endpoint
using WCF.

WCF by default uses SOAP-based message exchange, but it also enables a web programming
model that allows non-SOAP endpoints over HTTP to be exposed from WCF services. This allows
REST-style services to use formats like POX or JSON to exchange messages with clients.

To enable web-style, URI-based invocation of operations on these services, apply one of the
WebGetAttribute or WebInvokeAttribute types found in System.ServiceModel.Web to the operations. The
WebGetAttribute mandates use of the HTTP GET verb to acquire a resource; hence the only way to pass
in parameters to such an operation is through query string parameters on the client that are mapped
by the WCF runtime to parameters in the operation. As an example, here is the declaration of a GET-
style operation:

[OperationContract]
[WebGet()]
Information GetSomeInformation(int Param);

You can invoke this operation by sending an HTTP GET request to an URI endpoint, formatted

like so:

http://someserver/someservice.svc/GetSomeInformation?Param=50

WebInvokeAttribute defaults to the use of the POST verb but can also be specified to accept the PUT

or DELETE verb. If you are using POST, the message body is expected to be in the POST body content,
whereas you can continue to use query-string style parameters with a verb like PUT. However, keep in
mind that Silverlight only allows the use of POST, not PUT or DELETE.

In addition to using these attributes to decorate your WCF operations, you also need to specify the
appropriate binding and behavior. To use POX messaging over HTTP, you must use WebHttpBinding for
the endpoint. Here is a snippet from a WCF config file that shows this:

<endpoint address="" binding="webHttpBinding" contract="IProductManager" />

The Code
The code sample for this recipe reuses the example used in Recipe 7-1. To illustrate the concept,
change the WCF service to use POX messages over HTTP, and implement the client using the
HttpWebRequest/
HttpWebResponse API.

Listing 7-9 shows the service contract for the WCF service adapted for POX exchange over HTTP.

http://someserver/someservice.svc/GetSomeInformation?Param=50

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

603

Listing 7-9. Service contract for the POX Service in ServiceContract.cs

using System.ServiceModel;
using System.ServiceModel.Web;
using System.Xml;

namespace Recipe7_2.ProductsDataPOXService
{
 [ServiceContract]
 public interface IProductManager
 {
 [OperationContract]
 [XmlSerializerFormat()]
 [WebGet()]
 XmlDocument GetProductHeaders();

 [OperationContract]
 [XmlSerializerFormat()]
 [WebInvoke()]
 void UpdateProductHeaders(XmlDocument Updates);

 [OperationContract]
 [XmlSerializerFormat()]
 [WebGet()]
 XmlDocument GetProductDetail(ushort ProductId);

 [OperationContract]
 [XmlSerializerFormat()]
 [WebInvoke()]
 void UpdateProductDetail(XmlDocument Update);
 }
}

POX messages are just blocks of well-formed XML. Consequently, you use the

System.Xml.XmlDocument type to represent the messages being exchanged. Because XmlDocument does
not have the WCF DataContractAttribute applied to it, WCF cannot use the default data-contract
serialization to serialize these messages. So, you also apply
System.ServiceModel.XmlSerializerFormatAttribute() to the service operations to use XML
serialization.

Listing 7-10 shows the implementation of the GetProductHeaders() and the
UpdateProductHeaders() operations.

Listing 7-10. Service implementation for POX service in ProductManager.cs

using System.IO;
using System.Linq;
using System.ServiceModel.Activation;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

604

using System.Web;
using System.Xml;
using System.Xml.Linq;

namespace Recipe7_2.ProductsDataPOXService
{
 [AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Required)]
 public class ProductManager : IProductManager
 {
 public XmlDocument GetProductHeaders()
 {
 //open the local data file
 StreamReader stmrdrProductData =
 new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));
 //create and load an XmlDocument
 XmlDocument xDoc = new XmlDocument();
 xDoc.LoadXml(stmrdrProductData.ReadToEnd());
 stmrdrProductData.Close();

 //return the document
 HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache);
 return xDoc;
 }

 public void UpdateProductHeaders(XmlDocument Updates)
 {
 //load the XmlDocument containing the updates into a LINQ XDocument
 XDocument xDocProductUpdates = XDocument.Parse(Updates.OuterXml);
 //load the local data file
 StreamReader stmrdrProductData =
 new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));
 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 stmrdrProductData.Close();
 //for each of the updated records, find the matching record in the local data
 //using a LINQ query
 //and update the appropriate fields
 foreach (XElement elemProdUpdate in xDocProductUpdates.Root.Elements())
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

605

 XElement elemTarget =
 (from elemProduct in xDocProducts.Root.Elements()
 where elemProduct.Attribute("ProductId").Value ==
 elemProdUpdate.Attribute("ProductId").Value
 select elemProduct).ToList()[0];
 if (elemTarget.Attribute("Name") != null)
 elemTarget.Attribute("Name").
 SetValue(elemProdUpdate.Attribute("Name").Value);
 if (elemTarget.Attribute("ListPrice") != null)
 elemTarget.Attribute("ListPrice").
 SetValue(elemProdUpdate.Attribute("ListPrice").Value);
 if (elemTarget.Attribute("SellEndDate") != null)
 elemTarget.Attribute("SellEndDate").
 SetValue(elemProdUpdate.Attribute("SellEndDate").Value);
 if (elemTarget.Attribute("SellStartDate") != null)
 elemTarget.Attribute("SellStartDate").
 SetValue(elemProdUpdate.Attribute("SellStartDate").Value);
 }
 //save the changes
 StreamWriter stmwrtrProductData =
 new StreamWriter(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Truncate));
 xDocProducts.Save(stmwrtrProductData);
 stmwrtrProductData.Close();
 }

 public XmlDocument GetProductDetail(ushort ProductId)
 {
 StreamReader stmrdrProductData =
 new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));
 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 XDocument xDocProdDetail = new XDocument(
 (from xElem in xDocProducts.Root.Elements()
 where xElem.Attribute("ProductId").Value == ProductId.ToString()
 select xElem).ToList()[0]);

 XmlDocument xDoc = new XmlDocument();
 xDoc.LoadXml(xDocProdDetail.ToString());
 stmrdrProductData.Close();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

606

 HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache);
 return xDoc;
 }
 public void UpdateProductDetail(XmlDocument Update)
 {
 XDocument xDocProductUpdates = XDocument.Parse(Update.OuterXml);
 XElement elemProdUpdate = xDocProductUpdates.Root;
 StreamReader stmrdrProductData =
 new StreamReader(
 new FileStream(
 HttpContext.Current.Request.MapPath("App_Data/XML/Products.xml"),
 FileMode.Open));

 XDocument xDocProducts = XDocument.Load(stmrdrProductData);
 stmrdrProductData.Close();

 XElement elemTarget =
 (from elemProduct in xDocProducts.Root.Elements()
 where elemProduct.Attribute("ProductId").Value ==
 elemProdUpdate.Attribute("ProductId").Value
 select elemProduct).ToList()[0];

 if (elemTarget.Attribute("Class") != null)
 elemTarget.Attribute("Class").
 SetValue(elemProdUpdate.Attribute("Class").Value);
 if (elemTarget.Attribute("Color") != null)
 elemTarget.Attribute("Color").
 SetValue(elemProdUpdate.Attribute("Color").Value);
 if (elemTarget.Attribute("DaysToManufacture") != null)
 elemTarget.Attribute("DaysToManufacture").
 SetValue(elemProdUpdate.Attribute("DaysToManufacture").Value);
 if (elemTarget.Attribute("DiscontinuedDate") != null)
 elemTarget.Attribute("DiscontinuedDate").
 SetValue(elemProdUpdate.Attribute("DiscontinuedDate").Value);
 if (elemTarget.Attribute("FinishedGoodsFlag") != null)
 elemTarget.Attribute("FinishedGoodsFlag").
 SetValue(elemProdUpdate.Attribute("FinishedGoodsFlag").Value);
 if (elemTarget.Attribute("MakeFlag") != null)
 elemTarget.Attribute("MakeFlag").
 SetValue(elemProdUpdate.Attribute("MakeFlag").Value);
 if (elemTarget.Attribute("ProductLine") != null)
 elemTarget.Attribute("ProductLine").
 SetValue(elemProdUpdate.Attribute("ProductLine").Value);
 if (elemTarget.Attribute("ProductNumber") != null)
 elemTarget.Attribute("ProductNumber").

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

607

 SetValue(elemProdUpdate.Attribute("ProductNumber").Value);
 if (elemTarget.Attribute("ReorderPoint") != null)
 elemTarget.Attribute("ReorderPoint").
 SetValue(elemProdUpdate.Attribute("ReorderPoint").Value);
 if (elemTarget.Attribute("SafetyStockLevel") != null)
 elemTarget.Attribute("SafetyStockLevel").
 SetValue(elemProdUpdate.Attribute("SafetyStockLevel").Value);
 if (elemTarget.Attribute("StandardCost") != null)
 elemTarget.Attribute("StandardCost").
 SetValue(elemProdUpdate.Attribute("StandardCost").Value);
 if (elemTarget.Attribute("Style") != null)
 elemTarget.Attribute("Style").
 SetValue(elemProdUpdate.Attribute("Style").Value);

 StreamWriter stmwrtrProductData = new StreamWriter(new FileStream(HttpContext.
Current.Request.MapPath("App_Data/XML/Products.xml"), FileMode.Truncate));
 xDocProducts.Save(stmwrtrProductData);
 stmwrtrProductData.Close();
 }
 }
}

Because GetProductHeaders() returns a POX message, you open the local data file, load the XML

content into an XmlDocument instance, and return the XmlDocument instance. The
XmlSerializerFormatAttribute on the operation ensures that the XML content is formatted as it is on
the wire.

In UpdateProductHeaders(), you receive the updates as a POX message. You parse the content of the
message and load it into an instance of the XDocument type so that it can participate in a LINQ to XML
query. You use the query to find the matching records in the local XML data, also loaded in an
XDocument, and copy over the updates before you save the local data back to its file store.

The GetProductDetail() and UpdateProductDetail() methods follow the same implementation
pattern.

Note the call to SetCacheability() to set the cache policy to NoCache before you return data from
the GetProductHeaders() and GetProductDetail() methods. The Silverlight network stack relies on the
browser’s network stack, and the default behavior has the browser look for the data requested in its
own cache first. Setting this in the server response causes the browser to never cache the returned
data, so that every time the client calls the service operation, the operation is invoked and current data
is returned. This is important for data that can be changed between requests, as in this case with the
update operations. For purely lookup data that seldom changes, you may want to leave the browser
cache on, and possibly stipulate an expiration. You can refer to more information about controlling the
browser-caching policy from the server on MSDN at msdn.microsoft.com/en-
us/library/system.web.httpresponse.cache.aspx.

Now, let’s look at the client code in the codebehind class. Because the complete code listing is
repetitive between the product header- and product detail-related functionality, we list only the code
pertaining to the acquiring and updating product headers. You can access the book’s sample code to get
the full implementation.

Listing 7-11 shows the product header-related functionality.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

608

Listing 7-11. Partial listing of the codebehind in MainPage.xaml.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Xml.Linq;
namespace Recipe7_2.POXProductsDataViewer
{
 public partial class MainPage : UserControl
 {
 private const string ServiceUri =
 "http://localhost:9292/ProductsPOXService.svc";
 bool InEdit = false;

 public MainPage()
 {
 InitializeComponent();

 RequestProductHeaders();
 }

 private List<ProductHeader> DeserializeProductHeaders(string HeaderXml)
 {
 //load into a LINQ to XML Xdocument
 XDocument xDocProducts = XDocument.Parse(HeaderXml);
 //for each Product Xelement, project a new ProductHeader
 List<ProductHeader> ProductList =
 (from elemProduct in xDocProducts.Root.Elements()
 select new ProductHeader
 {
 Name = elemProduct.Attribute("Name") != null ?
 elemProduct.Attribute("Name").Value : null,
 ListPrice = elemProduct.Attribute("ListPrice") != null ?
 new decimal?(
 Convert.ToDecimal(elemProduct.Attribute("ListPrice").
 Value)) : null,
 ProductId = elemProduct.Attribute("ProductId") != null ?
 new ushort?(Convert.ToUInt16(elemProduct.Attribute("ProductId").
 Value)) : null,
 SellEndDate = elemProduct.Attribute("SellEndDate") != null ?

http://localhost:9292/ProductsPOXService.svc

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

609

 elemProduct.Attribute("SellEndDate").Value : null,
 SellStartDate = elemProduct.Attribute("SellStartDate") != null ?
 elemProduct.Attribute("SellStartDate").Value : null

 }).ToList();
 //return the list
 return ProductList;
 }

 private void RequestProductHeaders()
 {
 //create and initialize an HttpWebRequest
 WebRequest webReq = HttpWebRequest.Create(
 new Uri(string.Format("{0}/GetProductHeaders", ServiceUri)));

 //GET a response, passing in OnProductHeadersReceived
 //as the completion callback, and the WebRequest as state
 webReq.BeginGetResponse(
 new AsyncCallback(OnProductHeadersReceived), webReq);
 }

 private void OnProductHeadersReceived(IAsyncResult target)
 {
 //reacquire the WebRequest from the passed in state
 WebRequest webReq = target.AsyncState as WebRequest;
 //get the WebResponse
 WebResponse webResp = webReq.EndGetResponse(target);

 //get the response stream, and wrap in a StreamReader for reading as text
 StreamReader stmReader = new StreamReader(webResp.GetResponseStream());
 //read the incoming POX into a string
 string ProductHeadersXml = stmReader.ReadToEnd();
 stmReader.Close();

 //use the Dispatcher to switch context to the main thread
 //deserialize the POX into a Product Header collection,
//and bind to the DataGrid
 Dispatcher.BeginInvoke(new Action(delegate
 {
 ProductHeaderDataGrid.ItemsSource =
 DeserializeProductHeaders(ProductHeadersXml);
 }), null);

 }
 private void UpdateProductHeaders()

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

610

 {
 //create and initialize an HttpWebRequest
 WebRequest webReq = HttpWebRequest.Create(
 new Uri(string.Format("{0}/UpdateProductHeaders", ServiceUri)));
 //set the VERB to POST
 webReq.Method = "POST";
 //set the MIME type to send POX
 webReq.ContentType = "text/xml";
 //begin acquiring the request stream
 webReq.BeginGetRequestStream(
 new AsyncCallback(OnProdHdrUpdReqStreamAcquired), webReq);
 }

 private void OnProdHdrUpdReqStreamAcquired(IAsyncResult target)
 {
 //get the passed in WebRequest
 HttpWebRequest webReq = target.AsyncState as HttpWebRequest;
 //get the request stream, wrap in a writer
 StreamWriter stmUpdates =
 new StreamWriter(webReq.EndGetRequestStream(target));
 Dispatcher.BeginInvoke(new Action(delegate
 {
 //select all the updated records
 List<ProductHeader> AllItems =
 ProductHeaderDataGrid.ItemsSource as List<ProductHeader>;
 List<ProductHeader> UpdateList = new List<ProductHeader>
 (
 from Prod in AllItems
 where Prod.Dirty == true
 select Prod
);

 //use LINQ to XML to transform to XML
 XElement Products = new XElement("Products",
 from Prod in UpdateList
 select new XElement("Product",
 new XAttribute("Name", Prod.Name),
 new XAttribute("ListPrice", Prod.ListPrice),
 new XAttribute("ProductId", Prod.ProductId),
 new XAttribute("SellEndDate", Prod.SellEndDate),
 new XAttribute("SellStartDate", Prod.SellStartDate)));

 //write the XML into the request stream
 Products.Save(stmUpdates);
 stmUpdates.Close();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

611

 //start acquiring the response
 webReq.BeginGetResponse(
 new AsyncCallback(OnProdHdrsUpdateCompleted), webReq);
 }));

 }

 private void OnProdHdrsUpdateCompleted(IAsyncResult target)
 {
 HttpWebRequest webResp = target.AsyncState as HttpWebRequest;
 HttpWebResponse resp =
 webResp.EndGetResponse(target) as HttpWebResponse;
 //if response is OK, refresh the grid to
 //show that the changes actually happened on the server

 if (resp.StatusCode == HttpStatusCode.OK)
 RequestProductHeaders();
 }
 void ProductHeaderDataGrid_SelectionChanged(object sender, EventArgs e)
 {
 if (ProductHeaderDataGrid.SelectedItem != null)
 {

 //invoke the GetProductDetails() service operation,
 //using the ProductId of the currently selected ProductHeader
 RequestProductDetail(
 (ProductHeaderDataGrid.SelectedItem
 as ProductHeader).ProductId.Value);
 }
 }
 void ProductHeaderDataGrid_CurrentCellChanged(object sender,
 EventArgs e)
 {
 //changing the dirty flag on a cell edit for the ProductHeader data grid
 if (InEdit && (sender as DataGrid).SelectedItem != null)
 {
 ((sender as DataGrid).SelectedItem as ProductHeader).Dirty = true;
 InEdit = false;
 }
 }
 private void ProductHeaderDataGrid_BeginningEdit(object sender,
 DataGridBeginningEditEventArgs e)
 {
 InEdit = true;
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

612

 void Click_Btn_SendHeaderUpdates(object Sender, RoutedEventArgs e)
 {
 UpdateProductHeaders();
 }
 void Click_Btn_SendDetailUpdate(object Sender, RoutedEventArgs e)
 {
 UpdateProductDetail();
 }

 //Product detail functionality omitted –
 //please refer to sample code for full listing
 }
}

In the RequestProductHeaders() method, you create the HttpWebRequest and submit it

asynchronously using BeginGetResponse(). Note the passing of the WebRequest instance as the state
parameter to BeginGetResponse(). On completion of the async call, when the supplied callback handler
OnProductHeadersReceived() is called back, you need access to the WebRequest instance in order to
complete the call by calling EndGetResponse() on it. Passing it in as the state parameter provides access
to it in a thread-safe way, inside the handler executing on a background thread.

In OnProductHeadersReceived(), you obtain the WebRequest from the IAsyncResult.AsyncState
parameter and then obtain the WebResponse using the EndGetResponse() method on the WebRequest.
Open the response stream using WebResponse.GetResponseStream(), read the POX message from that
stream, and bind the data to the ProductHeaderDataGrid after deserializing it into a suitable collection
of ProductHeaders using DeserializeProductHeaders(). DeserializeProductHeaders() uses a LINQ to
XML query to transform the POX message to an instance of List<ProductHeader>.

To send updates back to the service, you use the UpdateProductHeaders() method. Set the Method
property of the request to POST, with the MIME type appropriately set to text/XML. Then,
asynchronously acquire the request stream with a call to BeginGetRequestStream().

When BeginGetRequestStream() is completed, the OnProdHdrUpdReqStreamAcquired() callback occurs
on a background thread. In the handler, switch thread context back to the main thread using
Dispatcher.Invoke(). In the delegate passed to Invoke(), filter out the updated records and transform
the records to XML using LINQ to XML, and then serialize the resulting XML to the request stream.
After closing the stream, submit the POST calling BeginGetResponse(). After the POST completes, you
have the ability to check the StatusCode property to decide on your course of action. If the code is
HttpStatusCode.OK, refresh the data from the server by calling RequestProductDetail() again. The only
other possible value is HttpStatusCode.NotFound, which indicates a problem with the service call and
can be used to display a suitable error message.

Also shown in Listing 7-11 is the handling of the dirty flag, row edits, and button-click handlers for
submitting updates, which remain the same as in Recipe 7-1 and hence are not discussed here.

The UI for this sample, and therefore the XAML, remain exactly the same as in Recipe 7-1.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

613

7-3. Using JSON Serialization over HTTP

Problem
Your Silverlight application needs to exchange JavaScript Object Notation (JSON) messages with an
HTTP endpoint.

Solution
Use the HttpWebRequest/HttpWebResponse pair of types to exchange JSON messages with the HTTP
endpoint. Use DataContractJsonSerializer to serialize/deserialize JSON data.

How It Works
The techniques used in this recipe are largely similar to the ones in Recipe 7-2, so we will highlight the
differences.

JSON
JSON is a very lightweight format that can be applied to data exchanged on the wire between
computers. JSON is textual, like XML, and is based on a subset of the JavaScript programming language,
borrowing those portions of the JavaScript syntax that are needed to represent data structures and
collections. JSON has gained a lot of popularity of late as a serialization format of choice, especially for
Ajax web applications, where objects and collections need to be serialized to and from JavaScript code.
For more on the format specification, and a more detailed introduction, visit www.json.org.

Listing 7-12 shows the JSON serialized representation of an instance of the ProductDetail class
(which we use in the past recipes and continue to use here), for ProductId of value 680.

Listing 7-12. JSON representation of a ProductDetail instance

{"Class":"H",
"Color":"Black",
"DaysToManufacture":1,
"DiscontinuedDate":"",
"FinishedGoodsFlag":"True",
"MakeFlag":"True",
"ProductId":680,
"ProductLine":"R ",
"ProductNumber":"FR-R92B-58",
"ReorderPoint":375,
"SafetyStockLevel":500,
"Size":null,
"StandardCost":1059.31,
"Style":"U ",
"Weight":null}

http://www.json.org

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

614

It is easy to note that the serialized format does not contain any details about the actual CLR type

or even the data types of the properties being serialized—it is a collection of named properties and
their values. It is the job of an appropriate JSON serializer on both ends of the wire to take this textual
format and convert it into an instance of a class.

Part of JSON’s popularity is based on the fact that it is much more compact than XML in most
cases—although both are textual, JSON is less verbose. However, JSON has some disadvantages as well.
It was designed to be a serialization format and therefore is not meant to be used in a stand-alone
way. In other words, the serialized textual format shown earlier is not much use until you turn it back
into an object. XML, on the other hand, enjoys facilities that can be used to operate on the XML itself,
such as XPath, XQuery, XSL transformations, and LINQ to XML, whereby the serialized XML can be
useful to you without having to be deserialized into an object structure.

If you must choose formats, and you have control on both ends of the wire, JSON is preferable if
you never intend to operate directly on the serialized form; XML is preferable otherwise. If you do not
have control on both ends, the choice may already be made for you.

Using the DataContractJsonSerializer Type
Silverlight provides the DataContractJsonSerializer type in System.Runtime.Serialization.Json. It lets
you serialize or deserialize JSON data to and from CLR types decorated with the DataContract attribute.

To use DataContractSerializer, create a new instance of it, and initialize it with the type of the
CLR object you want to serialize:

DataContractJsonSerializer jsonSer = new
 DataContractJsonSerializer(typeof(List<ProductHeader>));

To deserialize some JSON data, pass in a reference to the stream containing the JSON data to the

ReadObject() method, and cast the returned object to the desired type:

List<ProductHeader> productList =
jsonSer.ReadObject(jsonStream) as List<ProductHeader>;

DataContractJsonSerializer supports object trees with nested objects, and ReadObject() returns to

you the object at the root of the tree.
To serialize objects to JSON, use the WriteObject() method, passing in a destination stream, and

the root object in the object tree that you want serialized:

jsonSer.WriteObject(jsonStream,rootObject);

Configuring WCF to Use JSON
We continue to use the WCF service from the previous recipes, but let’s configure it this time to use
JSON formatting on the messages exchanged.

WebGetAttribute and WebInvokeAttribute expose two properties that let you control this formatting:
RequestFormat and ResponseFormat. Both properties are of type WebMessageFormat, which is an enum. You
need to set RequestFormat to WebMessageFormat.Json to enable the service to accept JSON-formatted
requests; set ResponseFormat identically to send JSON-formatted responses from the service.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

615

You must also configure your WCF service endpoint to specify the use of a JSON serializer. To do
this, you apply a custom behavior to the endpoint. Define a behavior named ScriptBehavior; the
webHttp element in it enforces the use of JSON:

<endpointBehaviors>
 <behavior name="ScriptBehavior">
 <webHttp/>
 </behavior>
</endpointBehaviors>

You can apply the behavior to an endpoint as shown here:

<endpoint address="" behaviorConfiguration="ScriptBehavior" binding="webHttpBinding"
 contract="IProductManager" />

The Code
The code for this sample is virtually identical to that from Recipe 7-2. Listing 7-13 shows the service
contract modified to use JSON.

Listing 7-13. Service contract modified for JSON in ServiceContract.cs

using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Web;

namespace Recipe7_3.ProductsDataJSONService
{
 [ServiceContract]
 public interface IProductManager
 {
 [OperationContract]
 [WebGet(ResponseFormat = WebMessageFormat.Json)]
 List<ProductHeader> GetProductHeaders();

 [OperationContract]
 [WebInvoke(RequestFormat = WebMessageFormat.Json)]
 void UpdateProductHeaders(List<ProductHeader> Updates);

 [OperationContract]
 [WebGet(ResponseFormat = WebMessageFormat.Json)]
 ProductDetail GetProductDetail(ushort ProductId);

 [OperationContract]
 [WebInvoke(RequestFormat = WebMessageFormat.Json)]
 void UpdateProductDetail(ProductDetail Update);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

616

 }
}

You specify the RequestFormat and the ResponseFormat properties of the WebGet and WebInvoke

attributes to use JSON. In this case, in the methods GetProductHeaders() and GetProductDetail(), you
only need to specify ResponseFormat, because the query is performed using a GET. In case of the update
methods, you do not expect a response back from the POST, so only the RequestFormat is set to use JSON;
thus the data sent to the service is formatted appropriately. However, when using POST, you may
encounter scenarios where you are both sending and receiving data, in which case you need to specify
both properties in WebInvokeAttribute.

Because almost all of the codebehind for the MainPage in this sample is identical to that in Recipe
7-2, we highlight the differences in Listing 7-14. The only real difference is in the way you serialize
and deserialize the messages.

Listing 7-14. Codebehind for JSON serialization and deserialization in MainPage.xaml.cs

private List<ProductHeader> DeserializeProductHeaders(Stream HeaderJson)
{
 //create and initialize a new DataContractJsonSerializer
 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(List<ProductHeader>));
 //Deserialize - root object returned and cast
 List<ProductHeader> ProductList =
 jsonSer.ReadObject(HeaderJson) as List<ProductHeader>;
 return ProductList;
}
private void OnProdHdrUpdReqStreamAcquired(IAsyncResult target)
{
 HttpWebRequest webReq = target.AsyncState as HttpWebRequest;
 Stream stmUpdates = webReq.EndGetRequestStream(target);
 Dispatcher.BeginInvoke(new Action(delegate
 {
 List<ProductHeader> AllItems =
 ProductHeaderDataGrid.ItemsSource as List<ProductHeader>;

 List<ProductHeader> UpdateList =
 new List<ProductHeader>
 (
 from Prod in AllItems
 where Prod.Dirty == true
 select Prod
);
 //create and initialize a DataContractJsonSerializer
 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(List<ProductHeader>));
 //write object tree out to the stream
 jsonSer.WriteObject(stmUpdates, UpdateList);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

617

 stmUpdates.Close();

 webReq.BeginGetResponse(
 new AsyncCallback(OnProductHeadersUpdateCompleted), webReq);
 }));
}
private ProductDetail DeserializeProductDetails(Stream DetailJson)
{

 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(ProductDetail));
 ProductDetail Detail =
 jsonSer.ReadObject(DetailJson) as ProductDetail;
 return Detail;
}
private void OnProductDetailUpdateRequestStreamAcquired(IAsyncResult target)
{
 HttpWebRequest webReq =
 (target.AsyncState as object[])[0] as HttpWebRequest;
 Stream stmUpdates = webReq.EndGetRequestStream(target);

 ProductDetail Detail =
 (target.AsyncState as object[])[1] as ProductDetail;

 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(ProductDetail));
 jsonSer.WriteObject(stmUpdates, Detail);
 stmUpdates.Close();
 webReq.BeginGetResponse(
new AsyncCallback(OnProductDetailsUpdateCompleted), webReq);
}

The DeserializeProductHeaders() method uses a DataContractJsonSerializer to deserialize JSON

data from a stream to a List<ProductHeader>. You create a new instance of DataContractJsonSerializer,
passing in the targeted CLR type. You then call the ReadObject() method, passing in the stream
containing the serialized object tree. This deserializes the object and returns it to you as an Object,
which you must cast appropriately. Note that if an object tree is serialized into the stream, on
deserialization the entire tree is reconstructed and the root object of the tree is returned to you.

In OnProdHdrUpdReqStreamAcquired(), you switch to the main thread using Dispatcher.Invoke().
Prior to sending an update to a ProductHeader, you serialize a List<ProductHeader> containing the
updates to a stream as JSON. After you filter out the collection of ProductHeaders containing the updates
using LINQ, you again use a newly constructed DataContractJsonSerializer instance, this time
initializing it with the type of List<ProductHeader>. You then call the WriteObject() method on it,
passing in the target stream and the List<ProductHeader> instance containing the updates that you
want to serialize.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

618

DeserializeProductDetails() and OnProductDetailUpdateRequestStreamAcquired() are
implemented following the same pattern and should be self-explanatory.

Note that DataContractJsonSerializer needs the data types that are serialized to be declared as

DataContracts, as in Recipe 7-1. Consequently, the data model used is identical to that in Recipe 7-1.
Also note that while sending POST requests that contain JSON-formatted data, you must set the

MIME type appropriately by setting the ContentType property on the request to the string
“application/json” like so:

WebRequest webReq = HttpWebRequest.Create
 (new Uri(string.Format("{0}/UpdateProductHeaders",ServiceUri)));
webReq.Method = "POST";
webReq.ContentType = "application/json";

The rest of the application, including its UI logic and the remainder of the codebehind, is identical

to Recipe 7-2.

7-4. Accessing Resources over HTTP

Problem
You need to access resources located at a remote HTTP endpoint from your Silverlight application. You
may need to read from or write to remote streams or have to download/upload resources over HTTP.

Solution
Use the WebClient API to read from or write to remote resources, or download or upload resources.

How It Works
The WebClient type has a convenient collection of methods that let you access resources over HTTP.
You can use the WebClient class in two basic modes: uploading/downloading resources as strings and
reading from or writing to streams, both over HTTP.

Downloading/Uploading Resources
You can use the DownloadStringAsync() method to asynchronously download any resource over HTTP
as the long as the resource is (or can be converted to) a string. DownloadStringAsync() accepts a URI to
the resource and raises the DownloadStringProgressChanged event to report download progress.
Download completion is signaled when the DownloadStringCompleted event is raised. The
DownloadStringCompletedEventArgs.Result property exposes the downloaded string resource.

The UploadStringAsync() method similarly accepts the upload endpoint URI. It also accepts the
string resource to upload and reports completion by raising the UploadStringCompleted event.

Both methods accept a user-supplied state object, which is made available in the progress change
and the completion event handlers through the UserState property on the

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

619

DownloadProgressChangedEventArgs, DownloadStringCompletedEventArgs, or
UploadStringCompletedeventArgs parameter.

Reading/Writing Remote Streams
The OpenReadAsync() method accepts a remote HTTP URI and attempts to download the resource and
make it available as a locally readable stream. Download progress is reported using the
DownloadProgressChanged event, as mentioned earlier. The completion of the asynchronous read is
signaled by the runtime by raising the OpenReadCompleted event. In the handler for OpenReadCompleted,
the OpenReadCompletedEventArgs.Result property exposes the resource stream.

The OpenWriteAsync() method behaves slightly differently. Before it tries to access the remote
resource, it raises the OpenWriteCompleted event synchronously. In the handler for this event, you are
expected to write to the OpenWriteCompletedEventArgs.Result stream the data you want to save to the
remote resource. After this stream is written and closed, and the handler returns, the runtime attempts
to asynchronously send the data to the remote endpoint.

WebClient and HTTP Endpoints
In previous recipes, we outline the use of the HttpWebRequest/HttpWebResponse APIs with POX- or JSON-
enabled web services. Although the WebClient API is primarily meant for accessing remote resources,
its DownloadStringAsync() and UploadStringAsync() APIs can be effectively used for similar web-
service communication as well, where POX or JSON messages formatted as strings are exchanged
using this API set. Additionally, WebClient can work with other HTTP endpoints such as ASP.NET web
pages. The code samples use a mix of WCF services and ASP.NET pages to illustrate this.

Canceling Long-Running Operations
Depending on the size of the resource being accessed, the available network bandwidth, and similar
factors, download operations can be long-running, and it is desirable to provide application users with
a way to cancel an operation should they choose to do so. The WebClient type exposes a property called
IsBusy, which when true indicates that the WebClient instance is currently performing a background
operation. Calling CancelAsync() on a WebClient instance attempts to cancel any such running
operation. Note that because the operation is on a background thread, if CancelAsync() succeeds, the
completion handler is invoked on the main thread, just as it would be on a successful completion. In
the handler, you can check the Cancelled property on the event argument parameter to see if the
operation was canceled or if it was a normal completion.

We show the use of all these in the following sample for this recipe.

The Code
The sample used here implements a simple photo-management application. The UI for the application
is shown in Figure 7-5.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

620

Figure 7-5. The photo-management application UI

The application downloads a ZIP file on start and displays image thumbnails contained in the ZIP.
When you select a specific thumbnail, the full-resolution image is downloaded. Additional custom
metadata can be associated with the image and saved to the server. Clicking the Upload button allows
the user to select and upload a locally available JPEG image file.

The back-end functionality is divided into three sets of operations related to metadata
management, photo downloads, and photo uploads, and is implemented across two WCF services and a
pair of ASP.NET pages.

Listing 7-15 shows the service and data contracts for the various services.

Listing 7-15. Service and data contracts for the WCF services in Contracts.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

621

using System.ServiceModel;
using System.ServiceModel.Web;

namespace Recipe7_4.PhotoService
{
 [ServiceContract]
 public interface IPhotoDownload
 {
 [OperationContract]
 [WebGet()]
 //get the zip file containing the thumbnails
 Stream GetThumbs();

 [OperationContract]
 [WebGet(UriTemplate = "Photos?Name={PhotoName}")]
 //get a full resolution image
 byte[] GetPhoto(string PhotoName);
 }

 [ServiceContract]
 public interface IMetadata
 {
 [OperationContract]
 [WebGet(ResponseFormat = WebMessageFormat.Json)]
 //get the names of all the JPEG images available for download
 List<string> GetPhotoFileNames();

 [OperationContract]
 [WebGet(UriTemplate = "PhotoMetadata?Id={PhotoId}",
ResponseFormat = WebMessageFormat.Json)]
 //get the metadata for a specific image
 PhotoMetaData GetPhotoMetaData(string PhotoId);

 }

 [DataContract]
 public class PhotoMetaData
 {
 [DataMember]
 public string Id { get; set; }
 [DataMember]
 public string Name { get; set; }
 [DataMember]
 public string Description { get; set; }
 [DataMember]

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

622

 public string Location { get; set; }
 [DataMember]
 public int? Rating { get; set; }
 [DataMember]
 public DateTime? DateTaken { get; set; }
 }
}

The sample code for this recipe contains the full implementation of two WCF services,

Metadata.svc and PhotoDownload.svc, that implement the IMetadata and IPhotoDownload contracts
respectively, as shown in Listing 7-15. They handle the tasks of downloading metadata and photos.
Because the implementation of the WCF services is similar in structure to the implementations
described in previous recipes in this chapter, we do not discuss it here. You are encouraged to look at
the sample code for this book.

Listing 7-16 shows the codebehind for MetadataUpload.aspx. The page markup contains nothing of
relevance because the page does not render anything; it is used purely as an endpoint to which some
data is posted by a WebClient instance.

Listing 7-16. MetadataUpload.aspx page codebehind in MetadataUpload.aspx.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization.Json;

namespace Recipe7_4.PhotoService
{
 public partial class MetadataUpload : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Request.HttpMethod == "POST")
 {
 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(PhotoMetaData));
 SetPhotoMetaData(
 jsonSer.ReadObject(Request.InputStream) as PhotoMetaData);
 Response.SuppressContent = true;
 }
 }

 public void SetPhotoMetaData(PhotoMetaData MetaData)
 {
 PhotoStoreDataContext dcPhoto = new PhotoStoreDataContext();
 List<PhotoData> pds = (from pd in dcPhoto.PhotoDatas
 where pd.PhotoId == MetaData.Id
 select pd).ToList();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

623

 if (pds.Count == 0)
 {
 dcPhoto.PhotoDatas.InsertOnSubmit(new PhotoData {
 PhotoId = MetaData.Id, Name = MetaData.Name,
 Location = MetaData.Location, DateTaken = MetaData.DateTaken,
 Description = MetaData.Description, Rating = MetaData.Rating });
 }
 else
 {
 pds[0].Name = MetaData.Name;
 pds[0].DateTaken = MetaData.DateTaken;
 pds[0].Description = MetaData.Description;
 pds[0].Location = MetaData.Location;
 pds[0].Rating = MetaData.Rating;
 }
 dcPhoto.SubmitChanges();
 }
 }
}

As you can see in Listing 7-16, you check for an incoming POST request in the Page_Load handler

of the ASPX page and deserialize the JSON stream into a PhotoMetadata object. You then pass the
PhotoMetadata instance to SetPhotoMetadata(), which uses LINQ to SQL to update the database. Before
you return from the Page_Load handler, you set Response.SuppressContent to true. This ensures that
there is no HTML markup response from the page, because you need none.

Listing 7-17 shows the implementation of PhotoUpload.aspx, which is structured in a similar
fashion.

Listing 7-17. PhotoUpload.aspx codebehind in PhotoUpload.aspx.cs

using System;
using System.IO;
using System.Web;

namespace Recipe7_4.PhotoService
{
 public partial class PhotoUpload1 : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Request.HttpMethod == "POST")
 {
 AddPhoto(Request.InputStream);
 Response.SuppressContent = true;
 }
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

624

 public void AddPhoto(Stream PhotoStream)
 {
 //get the file name for the photo
 string PhotoName =
 HttpContext.Current.Request.Headers["Image-Name"];
 if (PhotoName == null) return;
 //open a file stream to store the photo
 FileStream fs = new FileStream(
 HttpContext.Current.Request.MapPath
 (string.Format("APP_DATA/Photos/{0}", PhotoName)),
 FileMode.Create, FileAccess.Write);
 //read and store
 BinaryReader br = new BinaryReader(PhotoStream);
 BinaryWriter bw = new BinaryWriter(fs);

 int ChunkSize = 1024 * 1024;
 byte[] Chunk = null;
 do
 {
 Chunk = br.ReadBytes(ChunkSize);
 bw.Write(Chunk);
 bw.Flush();
 } while (Chunk.Length == ChunkSize);

 br.Close();
 bw.Close();
 }
 }
}

Note that the images and the ZIP file containing the thumbnails are stored on the server file

system, under the App_Data folder of the ASP.NET web application hosting the WCF services. The
metadata for each image, however, is stored in a SQL Server database. For the samples, we use SQL
Server 2008 Express version, which you can download for free from www.microsoft.com/express/
sql/download/default.aspx. When you install the product, take care to name the server SQLEXPRESS.
This is the default name that the SQL 2008 installer uses, and so does the code sample. If you change it,
visit the web.config files for the web service project named “7.4 PhotoService” in the sample code for
this recipe, and change the database-connection strings to reflect your chosen server name. The
following snippet shows the configuration entry in web.config:

<connectionStrings>

 <add name="SLBook_recipe_7_4_dbConnectionString"
 connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=Recipe_7_4_db;
Integrated Security=True" providerName="System.Data.SqlClient"/>
</connectionStrings>

http://www.microsoft.com/express

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

625

After SQL 2008 is installed, you need to create a database named Recipe_4_7_db and run the

Recipe_7_4_db.sql file included with the sample code to create the necessary data model. We also
include a database backup file named Recipe_4_7_db.bak, which you can restore into your SQL 2008
instance in lieu of creating the database and running the queries yourself.

Listing 7-18 shows some of the data types used in the client application.

Listing 7-18. Data types used in the client application in DataTypes.cs

using System;
using System.ComponentModel;
using System.Runtime.Serialization;
using System.Windows;
using System.Windows.Media.Imaging;

namespace Recipe7_4.PhotoClient
{
 public class WrappedImage : INotifyPropertyChanged
 {
 //bound to the thumbnail
 public BitmapImage Small { get; set; }
 //bound to the full res image
 public BitmapImage Large { get; set; }
 //Metadata
 private PhotoMetaData _Info = null;
 public PhotoMetaData Info
 {
 get { return _Info; }
 set
 {
 _Info = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Info"));
 }
 }
 //Download Progress
 private double _PercentProgress;
 public double PercentProgress
 {
 get { return _PercentProgress; }
 set
 {
 _PercentProgress = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("PercentProgress"));
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

626

 }
 //show the progress bar
 private Visibility _ProgressVisible = Visibility.Collapsed;
 public Visibility ProgressVisible
 {
 get { return _ProgressVisible; }
 set
 {
 _ProgressVisible = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ProgressVisible"));
 }
 }
 //parts removed for brevity

 //download completed - show the image
 private Visibility _ImageVisible = Visibility.Collapsed;
 public Visibility ImageVisible
 {
 get { return _ImageVisible; }
 set
 {
 _ImageVisible = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ImageVisible"));
 }
 }
 //name of the thumbnail file
 private string _ThumbName;
 public string ThumbName
 {
 get { return _ThumbName; }
 set
 {
 _ThumbName = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ThumbName"));
 }
 }
 //name of the image file
 private string _FileName;
 public string FileName
 {
 get { return _FileName; }
 set

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

627

 {
 _FileName = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("FileName"));
 }
 }

 public event
 PropertyChangedEventHandler PropertyChanged;

 }
 [DataContract]
 public class PhotoMetaData : INotifyPropertyChanged
 {
 //a unique Id for the image file - the file name
 private string _Id;
 [DataMember]
 public string Id
 {
 get { return _Id; }
 set
 {
 _Id = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Id"));
 }
 }
 //a user supplied friendly name
 private string _Name;
 [DataMember]
 public string Name
 {
 get { return _Name; }
 set
 {
 _Name = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Name"));
 }
 }
 private string _Description;
 [DataMember]
 public string Description
 {
 get { return _Description; }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

628

 set
 {
 _Description = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Description"));
 }
 }
 private string _Location;
 [DataMember]
 public string Location
 {
 get { return _Location; }
 set
 {
 _Location = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Location"));
 }
 }
 private int? _Rating;
 [DataMember]
 public int? Rating
 {
 get { return _Rating; }
 set
 {
 _Rating = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Rating"));
 }
 }
 private DateTime? _DateTaken;
 [DataMember]
 public DateTime? DateTaken
 {
 get { return _DateTaken; }
 set
 {
 _DateTaken = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("DateTaken"));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

629

 }
}

The WrappedImage type, as shown in Listing 7-18, is used to wrap an image and its metadata. It

implements INotifyPropertyChange to facilitate data binding to XAML elements in the UI. For more
about data binding and property-change notifications, refer to Chapter 4.The WrappedImage type
contains individual BitmapImage instances for the thumbnail and the high-resolution image, and a few
other properties that relate to download-progress reporting and visibility of different parts of the UI.

Also shown is the PhotoMetadata data-contract type used to transfer metadata to and from the WCF
services. The difference between the client implementation of PhotoMetadata shown here and the one
used in the service shown in Listing 7-15 is that you add property-change notification code to each
property in the client-side implementation.

Listing 7-19 shows the XAML for MainPage. The XAML for this page is fairly extensive, so we discuss
only pertinent portions briefly.

Listing 7-19. XAML for MainPage in MainPage.xaml.cs

<UserControl x:Class="Recipe7_4.PhotoClient.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 FontFamily="Trebuchet MS" FontSize="11"
 Width="800" Height="700"
 xmlns:Controls
 ="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">
 <UserControl.Resources>

 <DataTemplate x:Key="dtProgressMessage">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Processing" Margin="0,0,5,0" Foreground="Red"/>
 <TextBlock Text="{Binding}" Margin="0,0,2,0" Foreground="Red"/>
 <TextBlock Text="%" Foreground="Red"/>
 </StackPanel>
 </DataTemplate>

 <DataTemplate x:Key="dtThumbnail">
 <Grid>
 <Image Width="100" Height="75"
 Source="{Binding '', Mode=OneWay, Path=Small}"
 Stretch="Fill" Margin="5,5,5,5"/>
 </Grid>
 </DataTemplate>

 <DataTemplate x:Key="dtLargePhoto">
 <Grid VerticalAlignment="Top" HorizontalAlignment="Stretch" Height="Auto">
 <Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

630

 <RowDefinition Height="0.8*"/>
 <RowDefinition Height="0.2*"/>
 </Grid.RowDefinitions>
 <Image HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Source="{Binding '', Mode=OneWay, Path=Large}"
 Stretch="Uniform" Grid.Row="0"
 Margin="0,0,0,0"
 Visibility="{Binding Mode=OneWay, Path=ImageVisible}"/>
 <CheckBox Content="{Binding '',Mode=OneWay, Path=FileName}"
 Grid.Row="1" HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Foreground="Black"
 Margin="0,0,0,0" FontSize="16" FontWeight="Bold"
 x:Name="btnMeta" Checked="btnMeta_Checked"
 Unchecked="btnMeta_Unchecked" />
 <ProgressBar
 Maximum="100" Minimum="100" Width="290" Foreground="Red" Height="30"
 Value="{Binding Mode=OneWay, Path=PercentProgress}"
 Visibility="{Binding Mode=OneWay, Path=ProgressVisible}"
 HorizontalAlignment="Center" VerticalAlignment="Center"/>
 </Grid>
 </DataTemplate>

 <DataTemplate x:Key="dtPhotoMetaData">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.15*"/>
 <RowDefinition Height="0.10*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.5*" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="0"
 Grid.ColumnSpan="2" Text="Edit Metadata"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" Margin="3,3,3,3"/>
 <TextBlock Grid.Row="1" Grid.Column="0"
 Text="Name:" Margin="3,3,3,3" />

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

631

 <TextBlock Grid.Row="2" Grid.Column="0"
 Text="Description:" Margin="3,3,3,3" />
 <TextBlock Grid.Row="3" Grid.Column="0"
 Text="Location:" Margin="3,3,3,3" />
 <TextBlock Grid.Row="4" Grid.Column="0"
 Text="Rating:" Margin="3,3,3,3" />
 <TextBlock Grid.Row="5" Grid.Column="0"
 Text="Date Taken:" Margin="3,3,3,3" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding Mode=TwoWay,Path=Info.Name}"
 Width="275" Margin="3,3,3,3" />
 <TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Mode=TwoWay,Path=Info.Description}"
 Width="275" Margin="3,3,3,3" TextWrapping="Wrap"
 AcceptsReturn="True" />
 <TextBox Grid.Row="3" Grid.Column="1"
 Text="{Binding Mode=TwoWay,Path=Info.Location}"
 Width="275" Margin="3,3,3,3" TextWrapping="Wrap"
 AcceptsReturn="True" />
 <TextBox Grid.Row="4" Grid.Column="1"
 Text="{Binding Mode=TwoWay,Path=Info.Rating}"
 Width="275" Margin="3,3,3,3" />
 <Controls:DatePicker Grid.Row="5" Grid.Column="1"
 SelectedDate="{Binding Mode=TwoWay,Path=Info.DateTaken}"
 Width="275" Margin="3,3,3,3"/>
 <Button Content="Save Changes" x:Name="btnSaveMetaData"
 Grid.Row="6" Grid.ColumnSpan="2" HorizontalAlignment="Center"
 VerticalAlignment="Center" Height="30" Width="100"
 Margin="10,10,10,10" Click="btnSaveMetaData_Click"/>
 </Grid>
 </DataTemplate>

 <ControlTemplate x:Key="ctThumbnailListBoxItem" TargetType="ListBoxItem">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualState x:Name="Normal">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrHover"

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

632

 Storyboard.TargetProperty=
 "(Border.BorderBrush).(SolidColorBrush.Color)">
 <SplineColorKeyFrame
 KeyTime="00:00:00" Value="#FF0748BD"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected"/>
 <vsm:VisualState x:Name="Selected">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrSelect"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame
 KeyTime="00:00:00" Value="#FF0748BD"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="SelectedUnfocused"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Unfocused"/>
 <vsm:VisualState x:Name="Focused"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 x:Name="brdrHover" BorderBrush="#FF000000"
 BorderThickness="5" CornerRadius="3,3,3,3"
 Margin="3,3,3,3" >
 <Border CornerRadius="3,3,3,3" Padding="7,7,7,7"
 Background="Transparent">
 <Border x:Name="brdrSelect" Background="#FF9AE1F5"
 CornerRadius="3,3,3,3" Padding="3,3,3,3" >
 <ContentPresenter
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="Left"
 />
 </Border>

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

633

 </Border>
 </Border>
 </Grid>
 </ControlTemplate>
 <Style x:Key="styleThumbnailListBoxItem" TargetType="ListBoxItem">
 <Setter Property="IsEnabled" Value="true" />
 <Setter Property="Foreground" Value="#FF000000" />
 <Setter Property="HorizontalContentAlignment" Value="Left" />
 <Setter Property="VerticalContentAlignment" Value="Top" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Background" Value="White" />
 <Setter Property="Padding" Value="2,0,0,0" />
 <Setter Property="Template" Value="{StaticResource ctThumbnailListBoxItem}"/>
 </Style>
 </UserControl.Resources>

 <Grid Background="BurlyWood">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="150"/>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <ListBox HorizontalAlignment="Stretch"
 Margin="5,5,5,5"
 Width="Auto"
 SelectionChanged="lbxThumbs_SelectionChanged"
 ItemTemplate="{StaticResource dtThumbnail}"
 x:Name="lbxThumbs"
 ItemContainerStyle="{StaticResource styleThumbnailListBoxItem}"
 Grid.ColumnSpan="2" Visibility="Collapsed">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal"/>
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>
 <StackPanel x:Name="visualThumbZipDownload" Margin="0,20,0,0">
 <ProgressBar
 Maximum="100" Minimum="0" Height="30" Foreground="Red"
 Width="290" x:Name="pbarThumbZipDownload"
 Visibility="Visible" HorizontalAlignment="Center"

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

634

 VerticalAlignment="Center"/>
 <Button x:Name="btnZipDownloadCancel"
 Content="Cancel"
 Click="btnZipDownloadCancel_Click"
 HorizontalAlignment="Center" Width="125" />
 </StackPanel>

 <ContentControl x:Name="contentctlLargeImage"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Grid.Row="1" Margin="8,8,8,8"
 ContentTemplate="{StaticResource dtLargePhoto}"
 Grid.RowSpan="1"/>
 <ContentControl x:Name="contentctlImageInfo"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 Grid.Row="1" Grid.Column="1"
 Margin="8,0,8,0"
 ContentTemplate="{StaticResource dtPhotoMetaData}"
 Grid.RowSpan="1" Visibility="Collapsed"/>
 <Grid HorizontalAlignment="Stretch" Margin="8,8,8,8"
 VerticalAlignment="Stretch" Grid.Row="2">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*"/>
 <ColumnDefinition Width="0.5*"/>
 </Grid.ColumnDefinitions>
 <Button HorizontalAlignment="Right"
 VerticalAlignment="Stretch" Content="Previous"
 Margin="8,0,8,0" Height="32.11" x:Name="btnPrevious"
 Width="99.936"
 Click="btnPrev_Click"/>
 <Button Margin="8,0,8,0" VerticalAlignment="Stretch"
 Content="Next" HorizontalAlignment="Left"
 Height="31.11" x:Name="btnNext"
 Grid.Column="1" Width="99.936"
 Click="btnNext_Click"/>
 <Button HorizontalAlignment="Left" Margin="0,0,0,0"
 Width="100" Content="Upload" x:Name="btnUpload"
 Click="btnUpload_Click"/>
 </Grid>
 </Grid>
</UserControl>

The main UI is made up of a ListBox named lbxThumbs and two ContentControls named

contentctlLargeImage and contentctlImageInfo. A ProgressBar control is also used on MainPage, as well

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

635

as Buttons for image navigation (btnPrevious and btnNext), a Button to cancel the thumbnail ZIP
download (btnZipDownloadCancel), and a Button to upload a local image to the server (btnUpload).

You apply a custom Panel to the ListBox lbxThumbs to change its orientation to display the
thumbnail items horizontally from left to right. You also apply a custom control template to each
ListBoxItem, using the ItemContainerStyle property of the ListBox, to change the default look and feel
of a ListBoxItem. Custom Panels and ControlTemplates are discussed in more detail in Chapter 5.

The dtLargePhoto data template is used to display a selected image and is made up of an Image
control, a CheckBox control that can be used to toggle the visibility of the image’s metadata, and a
ProgressBar that displays the download progress of an image. The Image is bound to the Large property
on the WrappedImage type. dtLargePhoto is applied to the ContentControl contentctlLargeImage in the
main UI, using its ContentTemplate property.

The dtPhotoMetaData data template creates a data-entry form for image metadata. It has edit
controls data-bound to properties in the PhotoMetadata data contract and is applied to the
ContentControl contentctlImageInfo in the main UI again, with initial Visibility of the
ContentControl set to Collapsed.

The dtThumbnail data template is applied to the ListBox lbxThumbnails through its ItemTemplate
property. dtThumbnail also contains an Image control, bound to WrappedImage.Small.

Now, let’s look at how the WebClient is used in this MainPage’s codebehind to access resources and
interact with web services. Listing 7-20 shows the codebehind for MainPage.

Listing 7-20. Codebehind for the PhotoClient application page in MainPage.xaml.cs

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.IO;
using System.Net;
using System.Runtime.Serialization.Json;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media.Imaging;
using System.Windows.Resources;
using System.Xml.Linq;

namespace Recipe7_4.PhotoClient
{
 public partial class Page : UserControl
 {

 private const string MetadataDownloadUri =
 "http://localhost:9494/MetaData.svc";
 private const string MetadataUploadUri =
 "http://localhost:9494/MetaDataUpload.aspx";
 private const string PhotoDownloadUri =
 "http://localhost:9494/PhotoDownload.svc";
 private const string PhotoUploadUri =
 "http://localhost:9494/PhotoUpload.aspx";

http://localhost:9494/MetaData.svc
http://localhost:9494/MetaDataUpload.aspx
http://localhost:9494/PhotoDownload.svc
http://localhost:9494/PhotoUpload.aspx

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

636

 ObservableCollection<WrappedImage> ImageSources =
 new ObservableCollection<WrappedImage>();
 WebClient wcThumbZip = new WebClient();
 public Page()
 {
 InitializeComponent();
 lbxThumbs.ItemsSource = ImageSources;
 contentctlLargeImage.Content = new WrappedImage();
 GetImageNames();
 }

 private void GetImageNames()
 {
 //create a WebClient
 WebClient wcImageNames = new WebClient();
 //attach a handler to the OpenReadCompleted event
 wcImageNames.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(
 delegate(object sender, OpenReadCompletedEventArgs e)
 {
 //initialize a JSON Serializer
 DataContractJsonSerializer jsonSer =
 new DataContractJsonSerializer(typeof(List<string>));
 //deserialize the returned Stream to a List<string>
 List<string> FileNames =
 jsonSer.ReadObject(e.Result) as List<string>;
 //start loading the thumbnails
 LoadThumbNails(FileNames);
 });
 //Start reading the remote resource as a stream
 wcImageNames.OpenReadAsync(
 new Uri(string.Format("{0}/GetPhotoFileNames", MetadataDownloadUri)));

 }

 private void LoadThumbNails(List<string> ImageFileNames)
 {
 wcThumbZip.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(wcThumbZip_OpenReadCompleted);
 wcThumbZip.DownloadProgressChanged +=
 new DownloadProgressChangedEventHandler
 (
 delegate(object Sender, DownloadProgressChangedEventArgs e)
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

637

 //set the progress bar value to the reported progress percentage
 pbarThumbZipDownload.Value = e.ProgressPercentage;
 }
);
 //start reading the thumbnails zip file as a stream,
 //pass in the ImageFileNames List<string> as user state
 wcThumbZip.OpenReadAsync(
 new Uri(
 string.Format("{0}/GetThumbs", PhotoDownloadUri)), ImageFileNames);
 }

 void wcThumbZip_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e)
 {
 //if operation was cancelled, return.
 if (e.Cancelled) return;
 //grab the passed in user state from
 //e.UserState, and cast it appropriately
 List<string> FileNames = e.UserState as List<string>;
 //create a StreamResourceInfo wrapping the returned stream,
 //with content type set to .PNG
 StreamResourceInfo resInfo = new StreamResourceInfo(e.Result, "image/png");
 //for each file name
 for (int i = 0; i < FileNames.Count; i++)
 {
 //create and initialize a WrappedImage instance
 WrappedImage wi =
 new WrappedImage
 {
 Small = new BitmapImage(),
 Large = null,
 FileName = FileNames[i] + ".jpg",
 ThumbName = FileNames[i] + ".png"
 };
 try
 {
 //Read the thumbnail image from the returned stream (the zip file)
 Stream ThumbStream = Application.GetResourceStream(
 resInfo, new Uri(wi.ThumbName, UriKind.Relative)).Stream;
 //and save it in the WrappedImage instance
 wi.Small.SetSource(ThumbStream);
 //and bind it to the thumbnail listbox
 ImageSources.Add(wi);
 }
 catch

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

638

 {
 }
 }
 //hide the progress bar and show the ListBox
 visualThumbZipDownload.Visibility = Visibility.Collapsed;
 lbxThumbs.Visibility = Visibility.Visible;
 }
 private void btnZipDownloadCancel_Click(object sender, RoutedEventArgs e)
 {
 //if downloading thumbnail zip , issue an async request to cancel
 if (wcThumbZip != null && wcThumbZip.IsBusy)
 wcThumbZip.CancelAsync();
 }

 //thumbnail selection changed
 private void lbxThumbs_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 //get the WrappedImage bound to the selected item
 WrappedImage wi = (e.AddedItems[0] as WrappedImage);
 //bind it to the large image display, as well to the metadata display
 contentctlLargeImage.Content = wi;
 contentctlImageInfo.Content = wi;
 //if the large image has not been downloaded
 if (wi.Large == null)
 {
 //display the progress bar and hid the large image control
 wi.ProgressVisible = Visibility.Visible;
 wi.ImageVisible = Visibility.Collapsed;
 //initialize the BitmapImage for the large image
 wi.Large = new BitmapImage();
 //new web client
 WebClient wcLargePhoto = new WebClient();
 //progress change handler
 wcLargePhoto.DownloadProgressChanged +=
 new DownloadProgressChangedEventHandler(
 delegate(object Sender, DownloadProgressChangedEventArgs e1)
 {
 //update value bound to progress bar
 wi.PercentProgress = e1.ProgressPercentage;
 });
 //completion handler
 wcLargePhoto.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 wcLargePhoto_DownloadStringCompleted);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

639

 //download image bytes as a string, pass
 //in WrappedImage instance as user supplied state
 wcLargePhoto.DownloadStringAsync(
 new Uri(string.Format("{0}/Photos?Name={1}",
 PhotoDownloadUri, wi.FileName)), wi);
 }
 }
 //large image download completed
 void wcLargePhoto_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 //get the WrappedImage instance from user supplied state
 WrappedImage wi = (e.UserState as WrappedImage);
 //parse XML formatted response string into an XDocument
 XDocument xDoc = XDocument.Parse(e.Result);
 //grab the root, and decode the default base64
 //representation into the image bytes
 byte[] Buff = Convert.FromBase64String((string)xDoc.Root);
 //wrap in a memory stream, and
 MemoryStream ms = new MemoryStream(Buff);
 wi.Large.SetSource(ms);
 wi.ProgressVisible = Visibility.Collapsed;
 wi.ImageVisible = Visibility.Visible;
 GetPhotoMetadata(wi);
 }

 private void btnPrev_Click(object sender, RoutedEventArgs e)
 {
 if (lbxThumbs.SelectedIndex == 0) return;
 lbxThumbs.SelectedIndex = lbxThumbs.SelectedIndex - 1;
 }

 private void btnNext_Click(object sender, RoutedEventArgs e)
 {
 if (lbxThumbs.SelectedIndex == lbxThumbs.Items.Count - 1) return;
 lbxThumbs.SelectedIndex = lbxThumbs.SelectedIndex + 1;
 }

 private void btnMeta_Checked(object sender, RoutedEventArgs e)
 {
 contentctlImageInfo.Visibility = Visibility.Visible;
 }

 private void btnMeta_Unchecked(object sender, RoutedEventArgs e)
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

640

 contentctlImageInfo.Visibility = Visibility.Collapsed;
 }

 private void GetPhotoMetadata(WrappedImage wi)
 {

 WebClient wcMetadataDownload = new WebClient();
 wcMetadataDownload.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 delegate(object sender, DownloadStringCompletedEventArgs e)
 {
 DataContractJsonSerializer JsonSer =
 new DataContractJsonSerializer(typeof(PhotoMetaData));
 //decode UTF8 string to byte[], wrap in a memory string and
 //deserialize to PhotoMetadata using DatacontractJsonSerializer
 PhotoMetaData pmd = JsonSer.ReadObject(
 new MemoryStream(new UTF8Encoding().GetBytes(e.Result)))
 as PhotoMetaData;
 //data bind
 (e.UserState as WrappedImage).Info = pmd;
 });
 wcMetadataDownload.DownloadStringAsync(
 new Uri(string.Format("{0}/PhotoMetadata?Id={1}",
 MetadataDownloadUri,
 wi.FileName)), wi);
 }

 private void btnSaveMetaData_Click(object sender, RoutedEventArgs e)
 {
 SetPhotoMetadata(contentctlImageInfo.Content as WrappedImage);
 }
 //upload metadata
 private void SetPhotoMetadata(WrappedImage wi)
 {
 //new WebClient
 WebClient wcMetadataUpload = new WebClient();
 //serialize the metadata as JSON
 DataContractJsonSerializer JsonSer =
 new DataContractJsonSerializer(typeof(PhotoMetaData));
 MemoryStream ms = new MemoryStream();
 JsonSer.WriteObject(ms, wi.Info);
 //convert serialized form to a string
 string SerOutput = new UTF8Encoding().
 GetString(ms.GetBuffer(), 0, (int)ms.Length);
 ms.Close();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

641

 //upload string
 wcMetadataUpload.UploadStringAsync(
 new Uri(MetadataUploadUri), "POST",
 SerOutput);
 }

 //upload local image file
 private void btnUpload_Click(object sender, RoutedEventArgs e)
 {
 //open a file dialog and allow the user to select local image files
 OpenFileDialog ofd = new OpenFileDialog();
 ofd.Filter = "JPEG Images|*.jpg;*.jpeg";
 ofd.Multiselect = true;
 if (ofd.ShowDialog() == false) return;
 //for each selected file
 foreach (FileInfo fdfi in ofd.Files)
 {
 //new web client
 WebClient wcPhotoUpload = new WebClient();
 //content type
 //wcPhotoUpload.Headers["Content-Type"] = "image/jpeg";
 //name of the file as a custom property in header
 wcPhotoUpload.Headers["Image-Name"] = fdfi.Name;
 wcPhotoUpload.OpenWriteCompleted +=
 new OpenWriteCompletedEventHandler(wcPhotoUpload_OpenWriteCompleted);
 //upload image file - pass in the image file stream as user supplied state
 wcPhotoUpload.OpenWriteAsync(new Uri(PhotoUploadUri),
 "POST", fdfi.OpenRead());
 }
 }

 void wcPhotoUpload_OpenWriteCompleted(object sender,
OpenWriteCompletedEventArgs e)
 {
 //get the image file stream from the user supplied state
 Stream imageStream = e.UserState as Stream;
 //write the image file out to the upload stream available in e.Result
 int ChunkSize = 1024 * 1024;
 int ReadCount = 0;
 byte[] Buff = new byte[ChunkSize];
 do
 {
 ReadCount = imageStream.Read(Buff, 0, ChunkSize);
 e.Result.Write(Buff, 0, ReadCount);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

642

 } while (ReadCount == ChunkSize);
 //close upload stream and return - framework will upload in the background
 e.Result.Close();
 }
 }
}

The GetImageNames() method uses WebClient.OpenReadAsync() to acquire a list of names for all the

image files available to you for download. In the operation contract for IMetaData.GetPhotoFileNames()
in Listing 7-15, notice that the response format is specified as JSON. In the
WebClient.OpenReadCompleted event handler (implemented using the C# anonymous delegate feature),
you use the DataContractJsonSerializer to deserialize content from the returned stream into a
List<string> of the file names. You then call the LoadThumbnails() method, passing in the list of file
names.

The LoadThumbnails() method uses the WebClient.OpenReadAsync() method again to start
downloading the thumbnail ZIP file. In the WebClient.DownloadProgressChanged event handler, the
ProgressBar control pbarThumbZipDownload is updated with the percentage of progress. In case of a long
download, a Cancel button is provided. You handle the cancellation in btnZipDownloadCancel_Click(),
where you check to see if the WebClient is currently downloading using the IsBusy property, and if so,
issue a cancellation request. The UI for thumbnail ZIP download and cancellation is shown in Figure
7-6.

Figure 7-6. Thumbnail ZIP download

The OpenReadCompleted handler wcThumbZip_OpenReadCompleted() first checks to see if the operation
was canceled. If not, the file name list is retrieved from the user state, and each thumbnail is retrieved
from the ZIP file using the Application.GetResourceStream() method. This method can read individual
streams compressed inside a ZIP, as long as the correct content type (in this case, image/png) is
provided using the StreamResourceInfo type parameter. The returned stream from
GetResourceStream() is the thumbnail file, which is data-bound to the UI via a new instance of a
WrappedImage. You create the WrappedImage, initialize its Small property to the thumbnail image, set its
FileName and ThumbName properties, and then add it to the ImageSources collection. The ImageSources
collection was already bound to lbxThumbs as its ItemsSource in the constructor of the page.

Now, let’s look at downloading the full image and its metadata. In the SelectionChanged handler
lbxThumbs_SelectionChanged() for the thumbnails ListBox, you acquire the WrappedImage instance
bound to the current thumbnail and bind it to the ContentControl contentctlLargeImage as well. You
then determine whether the image corresponding to that thumbnail has been downloaded already by
checking the WrappedImage.Large property for null. If it is null, you use the DownloadStringAsync()
method to download the image. The operation contract of the IPhotoDownload.GetPhoto() in Listing 7-
15 shows you that the image is being returned from the service as an array of bytes, but the default
WCF DataContractSerializer knows how to serialize the byte[] to a Base64-encoded string. The
message returned from GetPhoto() in the completion handler
wcLargePhoto_DownloadStringCompleted() is an XML fragment, containing only one element: the
Base64-encoded string representing the image. You access the result as an XDocument instance, parsing
it using the XDocument.Parse() method. You then decode the root of this XDocument instance back to an
array of bytes. You wrap it into a temporary memory stream, set it as the source for the BitmapImage
bound to the large image control, and proceed to fetch the metadata.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

643

The PhotoMetadata is returned from the service formatted as JSON. The GetPhotoMetadata()
method also uses DownloadStringAsync() to acquire the metadata, decodes the downloaded string from
its UTF8 string form to the constituent byte array, deserializes the byte array using the
DataContractJasonSerializer, and then binds the resulting PhotoMetadata instance to the metadata UI
through the WrappedImage.Info property.

In the SetPhotoMetadata() method, the PhotoMetadata instance is serialized to JSON and then
encoded to a UTF8 string, which is then uploaded using the UploadStringAsync() method. Note that the
upload uses the MetadataUpload.aspx page as the endpoint. This code sample does not handle the
upload-completion event, but you can do so to check for any upload errors.

The last piece of this solution is the image-upload logic. In the click handler btnUpload_Click() for
the Upload button, you use the OpenFileDialog to allow the user to select one or more local image files.
You can learn more about the OpenFileDialog class in Chapter 2. Each image file is then uploaded using
OpenWriteAsync(). Note that the Content-Type HTTP header is set to the image/jpeg MIME type to
ensure proper encoding. Also note the use of the custom header property Image-Name to upload the
name of the image file. As shown in Listing 7-17, this is extracted and used in the codebehind of the
PhotoUpload.aspx page to name the image file on the server, after it has been uploaded.

As mentioned earlier, OpenWriteAsync() immediately calls the completion handler
wcPhotoUpload_OpenWriteCompleted(), where you write the image file to the upload stream made
available through the OpenWriteCompletedEventArgs.Result property. When the stream is closed and
the handler returns, the framework uploads the file asynchronously.

■ NNote You may have noticed the absence of any upload-progress notification handlers. Silverlight does not

supply any upload-progress notifications, although future versions may.

7-5. Using Sockets to Communicate over TCP

Problem
You need a Silverlight application to communicate with server-side applications using TCP sockets.

Solution
Use the System.Net.Sockets.Socket type and related types to connect and exchange data with a server-
side TCP socket.

How It Works
Silverlight supports socket communication through the System.Net.Sockets.Socket type. This class
exposes an API to connect to a TCP endpoint at a specified IP address/port combination, send data to
that endpoint, and receive data from that endpoint.

However, the Socket type in Silverlight is slightly different from the equivalent type in the desktop
and server versions of the .NET Framework; it supports only the client behavior and has no server
abilities. In other words, unlike the desktop or the server version, the Silverlight version does not
expose the ability to go into a listen mode and accept incoming connections. Therefore, although

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

644

Silverlight applications can easily use TCP sockets to exchange data with server applications, a
Silverlight application cannot act as a socket-based server.

The Sockets API in Silverlight
All socket functionality in Silverlight works asynchronously, thus avoiding any blocking calls that
would prevent the main thread from blocking execution while waiting for any such call completion.
This is in line with other networking and web services APIs that you have studied in earlier recipes in
this chapter. However, the design pattern for the Socket’s asynchronous APIs is somewhat different
from the previously discussed Begin-End pattern, as you see in a moment.

The life of a socket connection begins by creating a new instance of a Socket and calling the
ConnectAsync() method on the socket instance. The call to ConnectAsync() is nonblocking and returns
immediately. To be notified on completion of the connection process, you can attach a handler to the
Completed event of the SocketAsyncEventArgs parameter, which then is called back by the runtime. The
following code excerpt shows a sample of this:

//create a new socket
Socket ClientSocket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
//create a new SocketEventArgs
SocketAsyncEventArgs sockEvtArgs = new SocketAsyncEventArgs {
 RemoteEndPoint = new IPEndPoint(IPAddress.Parse("192.168.0.10"), 4502),
 UserToken = MyData };
//connect a completion handler
sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 delegate(object sender, SocketAsyncEventArgs e)
 {
 if (e.SocketError == SocketError.Success)
 {

 //connection succeeded - do something
 }
 });
//connect asynchronously
ClientSocket.ConnectAsync(sockEvtArgs);

As you can see, the Socket construction parameters let you specify the following:

• The type of addressing scheme used between IPv4 or IPv6 (which also enables IPv4) using
the AddressFamily enumeration. To specify an IPv4 addressing scheme, use
AddressFamily.InterNetwork; for IPv6, use AddressFamily.InterNetworkV6.

• The SocketType (the only available value is Stream).

• The ProtocolType (the only supported protocol is TCP).
Alternatively, you can set all the enumeration values to unspecified, and the values are inferred

at runtime.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

645

The endpoint being connected to is specified as the RemoteEndPoint property of the
SocketEventArgs parameter. You can set it to an instance of IPEndPoint if you know the exact IP address
or that of a DnsEndPoint if you have a hostname and want the DNS system to translate it to an IP
address for you. Additionally, you need to supply the port. You can also supply any user state in the
UserToken parameter.

When the connection is made, the Completed event handler is called, and further information is
made available to you through the SocketAsyncEventArgs instance passed into the handler. The
SocketError property gives you a success status or the type of error that was encountered, and the
UserToken parameter can be used to extract any supplied user state.

There is a static version of ConnectAsync(), which behaves similarly. Because you do not explicitly
create a Socket instance to use the static version, a connected Socket instance is made available to you
through the ConnectSocket property on the SocketEventArgs instance in the Completed handler.

After you are connected, you can begin sending and receiving data. To send data, you can use the
SendAsync() method. The data to be sent must be represented as a byte[] and can be copied to the
SocketAsynceventArgs.Buffer using the SetBuffer() method, as shown here:

SocketAsyncEventArgs sockEvtArgsSend = new SocketAsyncEventArgs();
sockEvtArgsSend.SetBuffer(MyData, 0, MyData.Length);
sockEvtArgsSend.Completed +=
 new EventHandler<SocketAsyncEventArgs>(SendRequest_Completed);
ClientSocket.SendAsync(sockEvtArgsSend);

Receiving data uses a similar implementation. To receive data, you allocate a byte[] and assign it

using the SocketAsyncEventargs.SetBuffer() method as the receiving buffer, followed by a call to
ReceiveAsync(). Note that the Silverlight socket implementation gives you no indication when you are
about to receive data from a remote endpoint; nor can you poll the socket from time to time.
Consequently, when the call to ReceiveAsync() returns in the Completed handler, you may want to
execute the code to receive again, thus keeping your client socket in a continuous receive mode. The
following code shows such an arrangement:

private void ReceiveMessage()
{
 //allocate memory
 byte[] ReceiveBuffer = new Byte[1024];
 SocketAsyncEventArgs sockEvtArgsReceive = new SocketAsyncEventArgs();
 //set the receive buffer
 sockEvtArgsReceive.SetBuffer(ReceiveBuffer, 0, 1024);
 sockEvtArgsReceive.Completed +=
 new EventHandler<SocketAsyncEventArgs>(Receive_Completed);
 //receive
 ClientSocket.ReceiveAsync(sockEvtArgsReceive);
}
void Receive_Completed(object sender, SocketAsyncEventArgs e)
{
 if (e.SocketError == SocketError.Success)
 {
 //switch context
 ParentPage.Dispatcher.BeginInvoke(new Action(delegate

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

646

 {
 //access the received data
 byte[] Message = new byte[e.BytesTransferred];
 Array.Copy(e.Buffer, 0, Message, 0, e.BytesTransferred);
 //do something to process the received message

 //keep receiving
 ReceiveMessage();
 }));
 }
}

■ NNote The Completed handlers are called on a background thread, necessitating a context switch using

Dispatcher, before you can invoke code running on the main UI thread. For more about Dispatcher, refer to

Recipe 7-2 in this chapter or to Chapter 2.

Cross-Domain Policy and Port Requirements
Silverlight applications using sockets have to satisfy cross-domain policy requirements to access
remote socket servers. Cross-domain policies for both HTTP and TCP communications are discussed in
greater detail in Recipe 7-6. There is also a restriction on the range of ports that a Silverlight client
can connect to—the port must be within the inclusive range of 4502 to 4534.

The Code
The code sample for this recipe builds a simple one-to-one chat application that consists of a server
program that acts as the listener and the gateway for exchanging text-based messages between
Silverlight clients.

Running the Sample Code
To start the whole environment, you must first start up the sockets server and the policy server. Both of
these are console programs and can be started either from the command line or from inside Visual
Studio if you intend to start them in debug mode. The sockets server, which is named ChatBroker.exe,
accepts one parameter on the command line: the port number you want it to listen on. Ensure that this
is within the allowed port range of 4502 to 4534, inclusive. If you are debugging this from within Visual
Studio, you can specify the parameter in your project’s Debug properties page. The policy server is
called PolicyServer.exe and does not need any startup parameters.

When you have the server instances up and running, you can then start (either in debug mode or
by browsing to the page) the client. Figure 7-7 shows the various states of the Silverlight client.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

647

Figure 7-7. Various states of the Silverlight chat client

You can specify the IP address and the port at which the sockets server is listening, as well as a
name that you want to use in the conversation. After the user logs in, the client displays a list of all
other participants currently connected to the server. You can click a participant and start a
conversation. To simulate multiple participants, open multiple instances of the client and log in with
multiple names.

The Client
The Silverlight client communicates with the server program using TCP sockets. The messages
exchanged by the Silverlight client and the server program are expressed as data contracts, and you
use JSON as the serialization format. You further convert the JSON-formatted messages to byte arrays
before you can use them with sockets.

The applicable data contracts are shown in Listing 7-21.

Listing 7-21. Data contracts to represent various messages in MessageTypes.cs

using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Json;

[DataContract]
[KnownType(typeof(ConnectionDisconnectionRequest))]
[KnownType(typeof(ConnectionReply))]
[KnownType(typeof(ConnectionDisconnectionNotification))]

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

648

[KnownType(typeof(TextMessage))]
[KnownType(typeof(ChatEndNotification))]
// a wrapper message that contains the actual message,
// facilitating easy serialization and deserialization
public class MessageWrapper
{
 [DataMember]
 public object Message { get; set; }

 //Deserialize a byte[] into a MessageWrapper
 public static MessageWrapper DeserializeMessage(byte[] Message)
 {
 MemoryStream ms = new MemoryStream(Message);
 DataContractJsonSerializer dcSer =
 new DataContractJsonSerializer(typeof(MessageWrapper));
 MessageWrapper mw = dcSer.ReadObject(ms) as MessageWrapper;
 return mw;
 }
 //serialize a MessageWrapper into a MemoryStream
 public static MemoryStream SerializeMessage(MessageWrapper Message)
 {
 MemoryStream ms = new MemoryStream();
 DataContractJsonSerializer dcSer =
 new DataContractJsonSerializer(typeof(MessageWrapper));
 dcSer.WriteObject(ms, Message);
 return ms;
 }
}

//a request from a client to the server for either a connection or a disconnection
[DataContract]
public class ConnectionDisconnectionRequest
{
 [DataMember]
 public string From { get; set; }
 [DataMember]
 public bool Connect { get; set; }

}
//a reply from the server on successful connection
[DataContract]
public class ConnectionReply
{
 [DataMember]
 public List<string> Participants;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

649

}
//a broadcast style notification to all connected clients about a
//specific client's connection/disconnection activity
[DataContract]
public class ConnectionDisconnectionNotification
{
 [DataMember]
 public string Participant { get; set; }
 [DataMember]
 public bool Connect { get; set; }
}
//a notification from a client to the server that it has ended a chat
[DataContract]
public class ChatEndNotification
{
 [DataMember]
 public string From { get; set; }
 [DataMember]
 public string To { get; set; }
}
//a chat message
[DataContract]
public class TextMessage
{
 [DataMember]
 public string From { get; set; }
 [DataMember]
 public string To { get; set; }
 [DataMember]
 public string Body { get; set; }
}

You use DataContractJsonSerializer to serialize and deserialize the message types shown in Listing

7-21. For more details about JSON serialization and DataContractJsonSerializer, refer to Recipe 7-3.
Because you have to deserialize from a byte[] to a CLR type on receiving a message, you face the

challenge of not knowing the actual type information to pass on to DataContractJsonSerializer. To
resolve this problem, you introduce a wrapper type named MessageWrapper, as shown in Listing 7-19,
with a Body property of type object that contains the instance of the specific message you want to send.
All messages are wrapped in this type before they are serialized to be sent out through the socket.

The KnownTypeAttributes applied to MessageWrapper ensures that the serializer uses the correct CLR
type for the contained message while serializing the MessageWrapper instance to JSON, even though the
Body property is of type object. It also allows you to specify typeof(MessageWrapper) as the parameter to
the DataContractJsonSerializer instance for deserialization, ensuring that the correct type is used to
deserialize the contained message. You define two static methods, DeserializeMessage() and
SerializeMessage(), on the MessageWrapper type that encapsulates this logic.

Before you move into the sockets code, let’s quickly look at the XAML UI. Listing 7-22 lists the
XAML for MainPage.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

650

Listing 7-22. XAML for the chat client page in MainPage.xaml

<UserControl x:Class="Recipe7_5.ChatClient.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="308" Height="550"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows">
 <UserControl.Resources>
 <ControlTemplate x:Key="ctTalkButton" TargetType="Button">
 <Grid>
 <Image Source="SpeechMicHS.png"/>
 </Grid>
 </ControlTemplate>
 <DataTemplate x:Key="dtConversation">
 <Grid Width="Auto" Height="Auto">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.191*"/>
 <RowDefinition Height="0.809*"/>
 </Grid.RowDefinitions>
 <TextBlock Text="{Binding From}"
 TextWrapping="Wrap"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Foreground="#FF1C2E7C"/>
 <TextBlock Text="{Binding Body}"
 TextWrapping="Wrap"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Top"
 d:LayoutOverrides="VerticalAlignment"
 Grid.Row="1"
 Margin="8,8,8,8"
 FontSize="12"
 FontFamily="Georgia"
 FontWeight="Normal"/>
 </Grid>
 </DataTemplate>
 <ControlTemplate x:Key="ct_lbxConversationItem" TargetType="ListBoxItem">
 <Grid Background="{TemplateBinding Background}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

651

 <ContentPresenter
 HorizontalContentAlignment="{TemplateBinding HorizontalContentAlignment}"
 Padding="{TemplateBinding Padding}"
 VerticalContentAlignment="{TemplateBinding VerticalContentAlignment}"
 HorizontalAlignment="Stretch" Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 TextAlignment="{TemplateBinding TextAlignment}"
 TextDecorations="{TemplateBinding TextDecorations}"
 TextWrapping="Wrap"/>
 </Grid>
 </ControlTemplate>
 <Style x:Key="style_lbxitemConversation" TargetType="ListBoxItem">
 <Setter Property="IsEnabled" Value="true"/>
 <Setter Property="Foreground" Value="#FF000000"/>
 <Setter Property="HorizontalContentAlignment" Value="Left"/>
 <Setter Property="VerticalContentAlignment" Value="Top"/>
 <Setter Property="Cursor" Value="Arrow"/>
 <Setter Property="TextAlignment" Value="Left"/>
 <Setter Property="TextWrapping" Value="Wrap"/>
 <Setter Property="FontSize" Value="12"/>
 <Setter Property="Background" Value="White"/>
 <Setter Property="Padding" Value="2,0,0,0"/>
 <Setter Property="Template"
 Value="{StaticResource ct_lbxConversationItem}"/>
 </Style>

 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Border Padding="4,4,4,4" BorderBrush="Black"
 Background="LightBlue" BorderThickness="4"
 Grid.RowSpan="3"/>
 <Grid Visibility="Visible" x:Name="viewLogin" Width="300" Height="550">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.364*"/>
 <RowDefinition Height="0.086*"/>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.35*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

652

 <ColumnDefinition Width="0.3*"/>
 <ColumnDefinition Width="0.43*"/>
 <ColumnDefinition Width="0.27*"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="IP" Grid.Row="0" Grid.Column="1" VerticalAlignment="Bottom"
 HorizontalAlignment="Center" Margin="0,0,0,3" FontFamily="Arial"
 FontSize="12" />
 <TextBlock Text="Port" Grid.Row="0" Grid.Column="2"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center" Margin="0,0,0,3"
 FontFamily="Arial" FontSize="12" />
 <TextBlock Text="Server :" Grid.Row="1" Grid.Column="0"
 VerticalAlignment="Center" HorizontalAlignment="Left"
 Margin="0,0,0,0" Width="82" FontSize="12"
 FontFamily="Arial" TextAlignment="Right" />
 <TextBlock Text="Your Name :" Grid.Row="2" Grid.Column="0"
 VerticalAlignment="Center"
 HorizontalAlignment="Left"
 Margin="0,0,0,0" Width="82" FontSize="12"
 FontFamily="Arial" TextAlignment="Right" />
 <TextBox FontSize="16" x:Name="tbxIPAddress"
 Text="{Binding IP, Mode=TwoWay}"
 HorizontalContentAlignment="Center" HorizontalAlignment="Stretch"
 Grid.Row="1" Grid.Column="1" Margin="4,0,4,0"
 VerticalAlignment="Center" TextWrapping="NoWrap"
 VerticalScrollBarVisibility="Disabled" Height="25" />
 <TextBox FontSize="16" x:Name="tbxPort" Text="{Binding Port, Mode=TwoWay}"
 HorizontalContentAlignment="Center" Width="Auto"
 HorizontalAlignment="Stretch" Grid.Row="1" Grid.Column="2"
 Margin="4,0,4,0" VerticalAlignment="Center" TextWrapping="NoWrap"
 VerticalScrollBarVisibility="Disabled" Height="25" />
 <TextBox FontSize="16" x:Name="tbxParticipantName" Text
 ="{Binding Me, Mode=TwoWay}"
 HorizontalContentAlignment="Center" Width="Auto"
 HorizontalAlignment="Stretch" Grid.Row="2" Grid.Column="1"
 Grid.ColumnSpan="2" Margin="4,0,4,0" VerticalAlignment="Center"
 TextWrapping="NoWrap" VerticalScrollBarVisibility="Disabled"
 Height="25" />
 <HyperlinkButton FontFamily="Arial" FontSize="16"
 HorizontalAlignment="Center" Margin="0,8,0,0"
 x:Name="btnJoin" VerticalAlignment="Top" Grid.Row="3"
 Grid.Column="1" Grid.ColumnSpan="1"
 Content="Click here to join" Click="btnJoin_Click"/>
 </Grid>
 <Grid HorizontalAlignment="Stretch" VerticalAlignment="Stretch"

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

653

 Grid.Row="1" Visibility="Collapsed"
 x:Name="viewParticipants" Width="300" Height="550">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.9*"/>
 </Grid.RowDefinitions>
 <ListBox HorizontalAlignment="Stretch" Margin="8,8,8,8"
 VerticalAlignment="Stretch" Grid.Row="1"
 x:Name="lbxParticipants"
 ItemsSource="{Binding Participants, Mode=TwoWay}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid VerticalAlignment="Stretch" HorizontalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.854*"/>
 <ColumnDefinition Width="0.146*"/>
 </Grid.ColumnDefinitions>
 <TextBlock FontSize="12" Text="{Binding}" TextAlignment="Left"
 TextWrapping="Wrap" HorizontalAlignment="Stretch"
 Margin="5,5,5,5" VerticalAlignment="Stretch"/>
 <Button Template="{StaticResource ctTalkButton}"
 HorizontalAlignment="Right" Margin="8,8,8,8"
 Grid.Column="1" Content="Button" Click="btnTalk_Click"
 Tag="{Binding}"/>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <HyperlinkButton HorizontalAlignment="Right" VerticalAlignment="Center"
 Content="Click to Logoff" Margin="8,8,8,8" FontSize="14"
 x:Name="btnLogoff" Click="btnLogoff_Click" />
 </Grid>
 <Grid HorizontalAlignment="Stretch" VerticalAlignment="Stretch" Grid.Row="2"
 Visibility="Collapsed" x:Name="viewChat" Width="300" Height="550">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.053*"/>
 <RowDefinition Height="0.607*"/>
 <RowDefinition Height="0.284*"/>
 <RowDefinition Height="0.056*"/>
 </Grid.RowDefinitions>
 <ListBox HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Margin="8,8,8,8" x:Name="lbxConversation" Grid.Row="1"
 ItemTemplate="{StaticResource dtConversation}"
 ItemsSource="{Binding Conversation, Mode=TwoWay}"
 ItemContainerStyle="{StaticResource style_lbxitemConversation}"/>

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

654

 <TextBox HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Text="{Binding MessageBody, Mode=TwoWay}" TextWrapping="Wrap"
 Grid.Row="2" Margin="8,8,8,8" VerticalScrollBarVisibility="Auto"
 FontFamily="Courier New" Foreground="#FF0B356A"
 x:Name="tbxMessage"/>
 <HyperlinkButton HorizontalAlignment="Center" VerticalAlignment="Center"
 Content="Click to Send" Grid.Row="3"
 Margin="0,0,0,0" FontSize="14" x:Name="btnSend"
 Click="btnSend_Click"/>
 <HyperlinkButton FontSize="14" HorizontalAlignment="Right" Margin="0,0,8,8"
 x:Name="btnEndChat" VerticalAlignment="Stretch"
 Content="End Chat" Click="btnEndChat_Click"/>
 </Grid>
 </Grid>
</UserControl>

The XAML is pretty simple. The UI is broken into three views, contained in three corresponding

Grids: viewLogin, viewParticipants, and viewChat.
viewLogin exposes the login UI, made up of TextBoxes to accept the IP address, the server port, and

the participant name. The fields are bound to properties on the ClientConnectionManager class, which
we discuss momentarily. It also contains a HyperlinkButton, which when clicked initiates the login
process.

viewParticipants contains a ListBox named lbxParticipants that displays the currently joined
participants, except for the participant logged in through this client instance. lbxParticipants is bound
to the ClientConnectionManager.Participants property. The data template for each item consists of a
TextBlock showing the participant name, and a custom templated Button displaying an icon, which
when clicked initiates a conversation with the corresponding participant. Another HyperlinkButton
lets the user log off.

viewChat contains a ListBox named lbxConversation that displays the conversation history, bound
to the ClientConnectionManager.Conversation property, and a TextBox that lets the user type in a
message, bound to ClientConnectionManager.MessageBody. It also contains two more HyperlinkButtons
to send a message and to end a chat.

viewParticipants and viewChat are initially hidden and are made visible depending on the state
of the application.

Let’s now look at the codebehind for MainPage in Listing 7-23.

Listing 7-23. Codebehind for the MainPage in MainPage.xaml.cs

using System.Windows;
using System.Windows.Controls;

namespace Recipe7_5.ChatClient
{
 public partial class MainPage : UserControl
 {
 public ClientConnectionManager ConnManager { get; set; }

 public MainPage()

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

655

 {
 InitializeComponent();
 //initialize the ClientConnectionManager
 ConnManager = new ClientConnectionManager { ParentPage = this };
 //set the data context to the ClientConnetionManager
 LayoutRoot.DataContext = ConnManager;
 }

 private void btnJoin_Click(object sender, RoutedEventArgs e)
 {
 ConnManager.Join();
 }
 private void btnLogoff_Click(object sender, RoutedEventArgs e)
 {
 ConnManager.Disconnect();
 }

 private void btnTalk_Click(object sender, RoutedEventArgs e)
 {
 //get the participant name from the Button.Tag
 //which was bound to the name at data binding
 ConnManager.TalkingTo = (sender as Button).Tag as string;
 ShowChatView();
 }

 private void btnSend_Click(object sender, RoutedEventArgs e)
 {
 ConnManager.SendTextMessage();
 }

 private void btnEndChat_Click(object sender, RoutedEventArgs e)
 {
 ConnManager.SendChatEnd();
 }
 internal void ShowParticipantsView()
 {
 viewParticipants.Visibility = Visibility.Visible;
 viewLogin.Visibility = Visibility.Collapsed;
 viewChat.Visibility = Visibility.Collapsed;
 }
 internal void ShowChatView()
 {
 viewParticipants.Visibility = Visibility.Collapsed;
 viewLogin.Visibility = Visibility.Collapsed;
 viewChat.Visibility = Visibility.Visible;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

656

 }
 internal void ShowLoginView()
 {
 viewParticipants.Visibility = Visibility.Collapsed;
 viewLogin.Visibility = Visibility.Visible;
 viewChat.Visibility = Visibility.Collapsed;
 }
 }
}

The MainPage constructor creates a new instance of the ClientConnectionManager named

ConnManager, initializing its ParentPage property with this Page instance. This is done so that in the
ClientConnectionManager implementation, you have access to MainPage and its UI elements to effect
various state changes. You also set the DataContext of the topmost Grid named LayoutRoot to
ConnManager so that all the bindings to various properties of ClientConnectionManager that you saw in
the XAML can be put into effect.

The various Button click handlers are self-explanatory; corresponding functions in the
ClientConnectionManager are invoked from them. The ShowLoginView(), ShowParticipantsView(), and
ShowChatView() methods toggle between views and are used from within the ClientConnectionManager,
as you see next.

We have encapsulated all the client-side sockets–based communication and message processing
in ClientConnectionManager. Listing 7-24 shows the ClientConnectionManager class.

Listing 7-24. ClientConnectionManager in ConnectionManager.cs

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.IO;
using System.Net;
using System.Net.Sockets;

namespace Recipe7_5.ChatClient
{
 public class ClientConnectionManager : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 //create a new socket
 Socket ClientSocket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 //reference to the parent page
 public Page ParentPage { get; set; }
 //participants collection
 private ObservableCollection<string> _Participants;
 public ObservableCollection<string> Participants

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

657

 {
 get { return _Participants; }
 set
 {
 _Participants = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Participants"));
 }
 }
 //collection of all messages exchanged in a particular conversation
 private ObservableCollection<TextMessage> _Conversation;
 public ObservableCollection<TextMessage> Conversation
 {
 get { return _Conversation; }
 set
 {
 _Conversation = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Conversation"));
 }
 }
 //IP Address of the server connected to
 private string _IP;
 public string IP
 {
 get { return _IP; }
 set
 {
 _IP = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("IP"));
 }
 }
 //Port connected to
 private string _Port;
 public string Port
 {
 get { return _Port; }
 set
 {
 _Port = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Port"));
 }
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

658

 //name of the person logged in
 private string _Me;
 public string Me
 {
 get { return _Me; }
 set
 {
 _Me = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Me"));

 }
 }
 //the other person in a conversation
 private string _TalkingTo;
 public string TalkingTo
 {
 get { return _TalkingTo; }
 set
 {
 _TalkingTo = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("TalkingTo"));
 }
 }
 //the body of a conversation message
 private string _MessageBody;
 public string MessageBody
 {
 get { return _MessageBody; }
 set
 {
 _MessageBody = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("MessageBody"));
 }
 }
 //buffer used to receive messages
 private const int RECEIVEBUFFERSIZE = 10 * 1024;
 private byte[] ReceiveBuffer = new Byte[RECEIVEBUFFERSIZE];
 //constructor
 public ClientConnectionManager()
 {
 //initialize the collections
 Participants = new ObservableCollection<string>();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

659

 Conversation = new ObservableCollection<TextMessage>();
 }
 //called when the login button is clicked
 public void Join()
 {
 //create a new SocketEventArgs, specify the remote endpoint details
 SocketAsyncEventArgs sockEvtArgs =
 new SocketAsyncEventArgs
 {
 RemoteEndPoint = new IPEndPoint(IPAddress.Parse(IP),
 Convert.ToInt32(Port)),
 UserToken = Me
 };
 //connect a completion handler
 sockEvtArgs.Completed +=
 new EventHandler<SocketAsyncEventArgs>(Connection_Completed);
 //connect asynchronously
 ClientSocket.ConnectAsync(sockEvtArgs);

 }
 //connection completion handler
 void Connection_Completed(object sender, SocketAsyncEventArgs e)
 {
 //connected successfully, send a
 //ConnectionDisconnectionRequest with Connect=true
 if (e.SocketError == SocketError.Success)
 {
 SocketAsyncEventArgs sockEvtArgs =
 new SocketAsyncEventArgs { UserToken = e.UserToken };
 //serialize a new ConnectionDisconnectionMessage into a MemoryStream
 MemoryStream SerializedStream =
 MessageWrapper.SerializeMessage(
 new MessageWrapper
 {
 Message = new ConnectionDisconnectionRequest
 {
 From = e.UserToken as string,
 Connect = true
 }
 });
 //set buffer to the contents of the memorystream
 sockEvtArgs.SetBuffer(SerializedStream.GetBuffer(),
 0, (int)SerializedStream.Length);
 sockEvtArgs.Completed +=
 new EventHandler<SocketAsyncEventArgs>(ConnectionRequestSend_Completed);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

660

 //send
 ClientSocket.SendAsync(sockEvtArgs);
 }
 }
 //ConnectionDisconnectionRequest send completion handler
 void ConnectionRequestSend_Completed(object sender, SocketAsyncEventArgs e)
 {
 //sent successfully
 if (e.SocketError == SocketError.Success)
 {
 //start receiving messages
 ReceiveMessage();
 //switch context
 ParentPage.Dispatcher.BeginInvoke(new Action(delegate
 {
 //switch view to participants
 ParentPage.ShowParticipantsView();
 }));
 }
 }
 //receive a message
 private void ReceiveMessage()
 {
 SocketAsyncEventArgs sockEvtArgsReceive = new SocketAsyncEventArgs();
 sockEvtArgsReceive.SetBuffer(ReceiveBuffer, 0, RECEIVEBUFFERSIZE);
 sockEvtArgsReceive.Completed +=
 new EventHandler<SocketAsyncEventArgs>(Receive_Completed);
 ClientSocket.ReceiveAsync(sockEvtArgsReceive);
 }
 //receive completion handler
 void Receive_Completed(object sender, SocketAsyncEventArgs e)
 {
 if (e.SocketError == SocketError.Success)
 {
 ParentPage.Dispatcher.BeginInvoke(new Action(delegate
 {
 //copy the message to a temporary buffer - this is
 //because we reuse the same buffer for all SocketAsyncEventArgs,
 //and message lengths may vary
 byte[] Message = new byte[e.BytesTransferred];
 Array.Copy(e.Buffer, 0, Message, 0, e.BytesTransferred);
 //process the message
 ProcessMessage(Message);
 //keep receiving
 ReceiveMessage();

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

661

 }));
 }
 }
 //process a message
 internal void ProcessMessage(byte[] Message)
 {
 //deserialize the message into the wrapper
 MessageWrapper mw = MessageWrapper.DeserializeMessage(Message);
 //check type of the contained message
 //correct type resolution is ensured through the
 //usage of KnownTypeAttribute on the MessageWrapper
 //data contract declaration
 if (mw.Message is TextMessage)
 {
 //receiving a text message from someone -
 //switch to chat view if not there already
 ParentPage.ShowChatView();
 //remember the other party in the conversation
 if (this.TalkingTo == null)
 this.TalkingTo = (mw.Message as TextMessage).From;
 //data bind the text of the message
 Conversation.Add(mw.Message as TextMessage);
 }
 //someone has ended an ongoing chat
 else if (mw.Message is ChatEndNotification)
 {
 //reset
 this.TalkingTo = null;
 //reset
 Conversation.Clear();
 //go back to participants list
 ParentPage.ShowParticipantsView();
 }
 //server has sent a reply to your connection request
 else if (mw.Message is ConnectionReply)
 {
 //reset
 Participants.Clear();
 //get the list of the other participants
 List<string> ReplyList = (mw.Message as ConnectionReply).Participants;
 //data bind
 foreach (string s in ReplyList)
 Participants.Add(s);

 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

662

 //someone has connected or disconnected
 else if (mw.Message is ConnectionDisconnectionNotification)
 {
 ConnectionDisconnectionNotification notif =
 mw.Message as ConnectionDisconnectionNotification;
 //if it is a connection
 if (notif.Connect)
 //add to participants list
 Participants.Add(notif.Participant);
 else
 {
 //remove from participants list
 Participants.Remove(notif.Participant);
 //if you were in a conversation with this person,
 //go back to the participants view
 if (notif.Participant == TalkingTo)
 {
 ParentPage.ShowParticipantsView();
 }
 }
 }
 }
 //send a text message
 internal void SendTextMessage()
 {
 //package the From, To and Text of the message
 //into a TextMessage, and then into a wrapper
 MessageWrapper mwSend =
 new MessageWrapper
 {
 Message = new TextMessage {
 From = Me, To = TalkingTo, Body = MessageBody }
 };
 //serialize
 MemoryStream SerializedStream = MessageWrapper.SerializeMessage(mwSend);
 SocketAsyncEventArgs sockEvtArgsSend =
 new SocketAsyncEventArgs { UserToken = mwSend.Message };
 //grab the byte[] and set the buffer
 sockEvtArgsSend.SetBuffer(
 SerializedStream.GetBuffer(), 0, (int)SerializedStream.Length);
 //attach handler
 sockEvtArgsSend.Completed +=
 new EventHandler<SocketAsyncEventArgs>(SendTextMessage_Completed);
 //send
 ClientSocket.SendAsync(sockEvtArgsSend);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

663

 }
 //send completed
 void SendTextMessage_Completed(object sender, SocketAsyncEventArgs e)
 {
 //success
 if (e.SocketError == SocketError.Success)
 {
 //switch context
 ParentPage.Dispatcher.BeginInvoke(new Action(delegate
 {
 //send was successful, add message to ongoing conversation
 Conversation.Add(e.UserToken as TextMessage);
 //reset edit box
 MessageBody = "";
 }));
 }
 }
 //disconnect
 internal void Disconnect()
 {
 SocketAsyncEventArgs sockEvtArgs = new SocketAsyncEventArgs();
 //package a ConnectionDisconnectionRequest with Connect=false
 MemoryStream SerializedStream =
 MessageWrapper.SerializeMessage(
 new MessageWrapper
 {
 Message = new ConnectionDisconnectionRequest
 {
 From = Me,
 Connect = false
 }
 });
 sockEvtArgs.SetBuffer(
 SerializedStream.GetBuffer(), 0, (int)SerializedStream.Length);
 sockEvtArgs.Completed +=
 new EventHandler<SocketAsyncEventArgs>(DisconnectRequest_Completed);
 ClientSocket.SendAsync(sockEvtArgs);
 }
 //disconnect completed
 void DisconnectRequest_Completed(object sender, SocketAsyncEventArgs e)
 {
 //success
 if (e.SocketError == SocketError.Success)
 {
 //reset my identity

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

664

 this.Me = null;
 //clear all participants
 Participants.Clear();
 //show login screen
 ParentPage.ShowLoginView();
 }
 }
 //end a chat
 internal void SendChatEnd()
 {
 MessageWrapper mwSend =
 new MessageWrapper
 {
 Message = new ChatEndNotification { From = Me, To = TalkingTo }
 };
 MemoryStream SerializedStream =
 MessageWrapper.SerializeMessage(mwSend);
 SocketAsyncEventArgs sockEvtArgsSend =
 new SocketAsyncEventArgs { UserToken = mwSend.Message };
 sockEvtArgsSend.SetBuffer(
 SerializedStream.GetBuffer(), 0, (int)SerializedStream.Length);
 sockEvtArgsSend.Completed +=
 new EventHandler<SocketAsyncEventArgs>(SendChatEnd_Completed);
 ClientSocket.SendAsync(sockEvtArgsSend);
 }
 //chat ended
 void SendChatEnd_Completed(object sender, SocketAsyncEventArgs e)
 {
 //success
 if (e.SocketError == SocketError.Success)
 {
 //switch context
 ParentPage.Dispatcher.BeginInvoke(new Action(delegate
 {
 //reset identity of the other participant
 this.TalkingTo = null;
 //clear the conversation
 Conversation.Clear();
 //switch back to the participants view
 ParentPage.ShowParticipantsView();
 }));
 }
 }
 }
}

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

665

As discussed before, ClientConnectionManager is used as the datasource for most of the data bound

to the XAML for the client UI, and therefore implements INotifyPropertyChanged; the appropriate
property setters raise PropertyChanged events.

After the user specifies the IP address, a port, and a participant name in the initial login screen,
you establish a connection to the server. To do this, call the Join() method, which uses the
Socket.ConnectAsync() method to establish the server connection. You specify the details of the remote
endpoint (IP address and port) in the SocketeventArgs parameter. You also specify
Connection_Completed() as the completion handler for ConnectAsync().

When a successful socket connection is established, in Connection_Completed() you send the first
application-specific message of type ConnectionDisconnectionRequest to the server, with the
ConnectionDisconnectionRequest.Connect property set to True, to indicate a request for connection. You
wrap the message in an instance of the MessageWrapper type, serialize it to a MemoryStream, and use the
MemoryStream contents to fill the send buffer. Attach ConnectionRequestSend_Completed() as the
completion handler, and then call SendAsync() to send the request.

When the send request returns, ConnectionRequestSend_Completed() is invoked; you check for a
successful send by checking the SocketAsyncEventArgs.SocketError property. In the event of a
successful operation, this property is set to SocketError.Success; a plethora of other values indicate
different error conditions. On a successful send, you prepare the client for receiving a message back
from the server by calling ReceiveMessage(). You also switch the client UI to display the view with the
list of participants by calling ShowParticipantsView() on the Page.

In ReceiveMessage(), you use a preallocated buffer to receive all your messages. You call
Socket.ReceiveAsync() to start receiving messages, after attaching the Receive_Completed()
completion handler. When a message is successfully retrieved, you copy it out of the message buffer
into a temporary one before you process the message and take appropriate action. Note that you call
ReceiveMessage() again as soon as you complete processing the previous message in order to keep the
socket in a constant receive mode and not miss any incoming messages—albeit on a background
thread because of the asynchronous nature of ReceiveAsync().

The ProcessMessage() method is central to the client-side message processing. Incoming
messages are deserialized from byte[] to MessageWrapper instances by calling
MessageWrapper.DeserializeMessage(), as shown in Listing 7-19. The type of the contained message in
MessageWrapper.Body is used to determine the action taken.

The first message a client receives is the server’s acknowledgment of the connection, in the form
of a ConnectionReply message. The ConnectionReply.Participants collection contains the names of all
the other participants logged in; you bind that collection to the participants ListBox on the UI and
switch the view by calling ShowParticipantsView() on the page.

For incoming TextMessage instances, if the client is not already in chat mode, you switch the UI
appropriately by calling ShowChatView() and then display the message by adding it to the
Conversations collection bound to the ListBox used to display a conversation. You also set the
ClientConnectionManager.TalkingTo property to the name of the participant from whom you are
receiving the message, as indicated by the TextMessage.From property.

Clients can also receive a couple of other types of messages. When you receive a
ChatEndNotification, you reset the TalkingTo property, clear the conversation ListBox, and switch to
the participants view. For a ConnectionDisconnectionNotification, if the Connect property is True
(indicating that a new participant is connecting), you add the participant to the bound Participants
property; otherwise, you remove them, and switch views if you were currently in conversation with the
disconnecting participant.

The ClientConnectionManager class also implements various methods for sending different types
of messages from the client. All of these methods follow the same pattern demonstrated when you sent
the first ConnectionDisconnectionRequest earlier: you create and initialize a new message instance of
the appropriate message type, serialize it using MessageWrapper.SerializeMessage(), and then send it
using Socket.SendAsync().

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

666

The Chat Server
The chat server is implemented as a console program. The functionality is divided into two primary
classes: ConnectionListener, which accepts incoming client connections, hands them over to a
ServerConnectionManager instance, and continues to listen for more connections; and
ServerConnectionManager, which manages and processes messages for each connected client and then
routes messages between clients.

Listing 7-25 shows the ConnectionListener class that you use in the server program to listen and
accept incoming connections from clients.

Listing 7-25. ConnectionListener class in ConnectionListener.cs

using System;
using System.Net;
using System.Net.Sockets;

namespace Recipe7_5.ChatBroker
{
 internal class ConnectionListener
 {
 //the socket used for listening to incoming connections
 Socket ListenerSocket { get; set; }
 SocketAsyncEventArgs sockEvtArgs = null;
 //new server connection manager
 ServerConnectionManager ConnManager = new ServerConnectionManager();
 //run the connection listener
 internal void Run(int Port)
 {
 //create a new IP endpoint at the specific port,
 //and on any available IP address
 IPEndPoint ListenerEndPoint = new IPEndPoint(IPAddress.Any, Port);
 //create the listener socket
 ListenerSocket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 //bind to the endpoint
 ListenerSocket.Bind(ListenerEndPoint);
 //listen with a backlog of 20
 ListenerSocket.Listen(20);
 Console.WriteLine("Waiting for incoming connection ...");
 //start accepting connections
 AcceptIncoming();
 }
 //accept incoming connections
 internal void AcceptIncoming()
 {
 //pass in the server connection manager

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

667

 sockEvtArgs = new SocketAsyncEventArgs { UserToken = ConnManager };
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 delegate(object Sender, SocketAsyncEventArgs e)
 {
 Console.WriteLine("Accepted connection..." +
 "Assigning to Connection Manager...." +
 "Waiting for more connections...");
 //pass the connected socket to the server connection manager
 ConnManager.Manage(e.AcceptSocket);
 //keep listening
 AcceptIncoming();
 });
 //accept an incoming connection
 ListenerSocket.AcceptAsync(sockEvtArgs);
 }
 }
}

The ConnectionListener class is instantiated and launched by calling its Run() method from the

server program’s Main() method. In Run(), you create an IPEndpoint using the port number passed in as
a command-line argument. Specifying IPAddress.Any as the IPAddress parameter allows the listener to
listen on all available IP addresses on the machine, which is especially handy on machines that have
multiple active network connections. You then bind the socket to the endpoint and start listening by
calling Socket.Listen(). The parameter to Listen() specifies the size of the backlog of incoming
connections that the runtime maintains for you while you process them one at a time. Finally, you call
AcceptIncoming().

The AcceptIncoming() method uses Socket.AcceptAsync() on the listener socket to asynchronously
accept an incoming connection. In the Completed handler of SocketAsyncEventArgs, the connected
client socket is available in the SocketAsyncEventArgs.AcceptSocket property. You pass this socket on to
an instance of the ServerConnectionManager type through its Manage() method. You then continue to
accept more incoming connections.

The ServerConnectionManager type is used to manage all connected client sockets. You also define
a Participant type to represent a specific connected client and its communications. Listing 7-26 shows
the code for these two classes.

Listing 7-26. Implementation for ServerConnectionManager and participant types in
MessageProcessing.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net.Sockets;
using System.Threading;

namespace Recipe7_5.ChatBroker
{
 internal class ServerConnectionManager

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

668

 {

 //list of participants
 private List<Participant> _Participants = new List<Participant>();
 internal List<Participant> Participants
 {
 get { return _Participants; }
 }
 //accept and manage a client socket
 internal void Manage(Socket socket)
 {
 //create a new Participant around the client socket
 Participant p = new Participant { ClientSocket = socket, Parent = this };
 //add it to the list
 _Participants.Add(p);
 //start up the participant
 p.StartUp();
 }
 //broadcast a message from a participant to all other participants
 internal void Broadcast(string From, MessageWrapper Message)
 {
 //get a list of all participants other than the one sending the message
 List<Participant> targets = (from p in Participants
 where p.Name != From
 select p).ToList();
 //iterate and add to the Send queue for each
 foreach (Participant p in targets)
 {
 lock (p.QueueSyncRoot)
 {
 p.SendQueue.Enqueue(Message);
 }
 }
 }
 //send a message to a specific participant
 internal void Send(string To, MessageWrapper Message)
 {
 //get the Participant from the list
 Participant target = (from p in Participants
 where p.Name == To
 select p).ToList()[0];
 //add to the send queue for the participant
 lock (target.QueueSyncRoot)
 {
 target.SendQueue.Enqueue(Message);

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

669

 }
 }
 }

 internal class Participant
 {
 //lock target
 internal object QueueSyncRoot = new object();
 //name as specified at the client
 internal string Name { get; set; }
 //the connected client socket
 internal Socket ClientSocket { get; set; }
 //a reference back to the ServerConnectionManager instance
 internal ServerConnectionManager Parent { get; set; }
 //are we currently receiving a message from this participant?
 bool Receiving = false;
 //are we currently sending a message to this participant?
 bool Sending = false;
 //a queue to hold messages being sent to this participant
 private Queue<MessageWrapper> _SendQueue = new Queue<MessageWrapper>();
 internal Queue<MessageWrapper> SendQueue
 {
 get { return _SendQueue; }
 set { _SendQueue = value; }
 }
 //check to see if there are messages in the queue
 private int HasMessage()
 {
 lock (QueueSyncRoot)
 {
 return SendQueue.Count;
 }
 }
 //start the participant up
 internal void StartUp()
 {
 //create the receiver thread
 Thread thdParticipantReceiver = new Thread(new ThreadStart(
 //thread start delegate
 delegate
 {
 //loop while the socket is valid
 while (ClientSocket != null)
 {
 //if there is no data available OR

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

670

 //we are currently receiving, continue
 if (ClientSocket.Available <= 0 || Receiving) continue;
 //set receiving to true
 Receiving = true;
 //begin to receive the next message
 ReceiveMessage();
 }
 }));
 //set thread to background
 thdParticipantReceiver.IsBackground = true;
 //start receiver thread
 thdParticipantReceiver.Start();
 //create the sender thread
 Thread thdParticipantSender = new Thread(new ThreadStart(
 //thread start delegate
 delegate
 {
 //loop while the socket is valid
 while (ClientSocket != null)
 {
 //if there are no messages to be sent OR
 //we are currently sending, continue
 if (HasMessage() == 0 || Sending) continue;
 //set sending to true
 Sending = true;
 //begin sending
 SendMessage();
 }
 }));
 //set thread to background
 thdParticipantSender.IsBackground = true;
 //start sender thread
 thdParticipantSender.Start();
 }
 //receive a message
 private void ReceiveMessage()
 {
 SocketAsyncEventArgs sockEvtArgs = new SocketAsyncEventArgs();
 //allocate a buffer as large as the available data
 sockEvtArgs.SetBuffer(
 new byte[ClientSocket.Available], 0, ClientSocket.Available);
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 //completion handler
 delegate(object sender, SocketAsyncEventArgs e)
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

671

 //process the message
 ProcessMessage(e.Buffer);
 //done receiving, thread loop will look for next
 Receiving = false;
 });
 //start receiving
 ClientSocket.ReceiveAsync(sockEvtArgs);
 }
 internal void ProcessMessage(byte[] Message)
 {
 //deserialize message
 MessageWrapper mw = MessageWrapper.DeserializeMessage(Message);
 //if text message
 if (mw.Message is TextMessage)
 {
 //send it to the target participant
 Parent.Send((mw.Message as TextMessage).To, mw);
 }
 //if it is a ConnectionDisconnectionRequest
 else if (mw.Message is ConnectionDisconnectionRequest)
 {
 ConnectionDisconnectionRequest connDisconnReq =
 mw.Message as ConnectionDisconnectionRequest;
 //if connecting
 if (connDisconnReq.Connect)
 {
 this.Name = connDisconnReq.From;
 //broadcast to everyone else
 Parent.Broadcast(this.Name, new MessageWrapper
 {
 Message = new ConnectionDisconnectionNotification
 {
 Participant = this.Name,
 Connect = true
 }
 });
 //send the list of all participants other than
 //the one connecting to the connecting client
 Parent.Send(this.Name, new MessageWrapper
 {
 Message = new ConnectionReply
 {
 Participants =
 (from part in Parent.Participants
 where part.Name != this.Name

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

672

 select part.Name).ToList()
 }
 });
 }
 else //disconnecting
 {
 //remove from the participants list
 Parent.Participants.Remove(this);
 //close socket
 this.ClientSocket.Close();
 //reset
 this.ClientSocket = null;
 //broadcast to everyone else
 Parent.Broadcast(this.Name, new MessageWrapper
 {
 Message = new ConnectionDisconnectionNotification
 {
 Participant = this.Name,
 Connect = false
 }
 });
 }
 }
 //chat end
 else if (mw.Message is ChatEndNotification)
 {
 //send it to the other participant
 Parent.Send((mw.Message as ChatEndNotification).To, mw);
 }
 }
 //send a message
 private void SendMessage()
 {
 MessageWrapper mw = null;
 //dequeue a message from the send queue
 lock (QueueSyncRoot)
 {
 mw = SendQueue.Dequeue();
 }
 SocketAsyncEventArgs sockEvtArgs =
 new SocketAsyncEventArgs { UserToken = mw };
 //serialize and pack into the send buffer
 MemoryStream SerializedMessage =
 MessageWrapper.SerializeMessage(mw);
 sockEvtArgs.SetBuffer(

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

673

 SerializedMessage.GetBuffer(), 0, (int)SerializedMessage.Length);
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 //completion handler
 delegate(object sender, SocketAsyncEventArgs e)
 {
 //not sending anymore
 Sending = false;
 });
 //begin send
 ClientSocket.SendAsync(sockEvtArgs);
 }
 }
}

An instance of a Participant is created and stored in a list when the ServerConnectionManager

receives a connected client socket through the Manage() method. The Participant.Startup() method
starts two background threads—one each for receiving and sending messages, each of which continue
as long as the client socket for that Participant is valid.

The receive thread calls the ReceiveMessage() method, provided that there is data to be read (as
determined by the Socket.Available property) and that the Receiving boolean flag is set to false. The
flag is set to true prior to calling ReceiveMessage() and is reset after ReceiveMessage() returns so that
the socket is always ready to receive the next message as soon as it arrives.

ReceiveMessage() uses the ProcessMessage() method to process and act on a received message.
ProcessMessage() is structured similarly to the one in the Silverlight client in that it deserializes a
message and looks at the type of the contained Body property to determine the course of action. For
messages that are intended to be delivered to other participants, ProcessMessage delivers it to that
participant either through ServerConnectionManager.Broadcast(), which delivers a message to all
participants except for the one sending it, or by ServerConnectionManager.Send(), which delivers it to
a single targeted participant. Delivery of a message in this case is achieved by adding the message to a
send queue of type Queue<MessageWrapper> defined in each participant.

The send thread continously checks the Sending flag (used similarly to the Receiving flag) and the
presence of messages in the queue of the owning participant using Participant.HasMessage(). When a
message is found, SendMessage() is called, which then serializes the message and sends it out through
the participant’s socket.

The Policy Server
The policy server is similarly implemented as a console program that listens on all available IP
addresses, bound to a well-known port 943. Listing 7-27 shows the code for the policy server.

Listing 7-27. Implementation for the PolicyServer type in PolicyListener.cs

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Text;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

674

namespace Recipe7_5.PolicyServer
{

 internal class PolicyListener
 {
 Socket ListenerSocket { get; set; }
 SocketAsyncEventArgs sockEvtArgs = null;
 //valid policy request string
 public static string ValidPolicyRequest = "<policy-file-request/>";

 public PolicyListener()
 {
 //bind to all available addresses and port 943
 IPEndPoint ListenerEndPoint =
 new IPEndPoint(IPAddress.Any, 943);
 ListenerSocket =
 new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
 ListenerSocket.Bind(ListenerEndPoint);
 ListenerSocket.Listen(20);
 }
 internal void ListenForPolicyRequest()
 {
 sockEvtArgs = new SocketAsyncEventArgs();
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 delegate(object Sender, SocketAsyncEventArgs e)
 {
 //process this request
 ReadPolicyRequest(e.AcceptSocket);
 //go back to listening
 ListenForPolicyRequest();
 });
 ListenerSocket.AcceptAsync(sockEvtArgs);
 }
 private bool ReadPolicyRequest(Socket ClientSocket)
 {
 SocketAsyncEventArgs sockEvtArgs =
 new SocketAsyncEventArgs { UserToken = ClientSocket };
 sockEvtArgs.SetBuffer(
 new byte[ValidPolicyRequest.Length], 0, ValidPolicyRequest.Length);
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 delegate(object Sender, SocketAsyncEventArgs e)
 {
 if (e.SocketError == SocketError.Success)
 {
 //get policy request string

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

675

 string PolicyRequest = new UTF8Encoding().
 GetString(e.Buffer, 0, e.BytesTransferred);
 //check for valid format
 if (PolicyRequest.CompareTo(ValidPolicyRequest) == 0)
 //valid request-send policy
 SendPolicy(e.UserToken as Socket);
 }
 });
 return ClientSocket.ReceiveAsync(sockEvtArgs);
 }
 private void SendPolicy(Socket ClientSocket)
 {
 //read the policy file
 FileStream fs = new FileStream("clientaccesspolicy.xml", FileMode.Open);
 byte[] PolicyBuffer = new byte[(int)fs.Length];
 fs.Read(PolicyBuffer, 0, (int)fs.Length);
 fs.Close();

 SocketAsyncEventArgs sockEvtArgs =
 new SocketAsyncEventArgs { UserToken = ClientSocket };
 //send the policy
 sockEvtArgs.SetBuffer(PolicyBuffer, 0, PolicyBuffer.Length);
 sockEvtArgs.Completed += new EventHandler<SocketAsyncEventArgs>(
 delegate(object Sender, SocketAsyncEventArgs e)
 {
 //close this connection
 if (e.SocketError == SocketError.Success)
 (e.UserToken as Socket).Close();
 });
 ClientSocket.SendAsync(sockEvtArgs);
 }
 }
}

After a connection request is accepted by the policy server, it attempts to receive a policy request

from the client and checks it for validity by comparing it to the string literal <policy-file-request/>. If
valid, the policy file is read into memory and sent back to the client through the connected client
socket. When the send is completed, the socket connection is closed, and the policy server keeps
listening for more policy requests.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

676

7-6. Enabling Cross-Domain Access

Problem
You need your Silverlight client to access resources or services in a domain different from the one
from which it originated.

Solution
Create an appropriate cross-domain policy on the target domain.

How It Works
Attacks where malicious code may make unauthorized calls to a remote services domain or flood the
network with a large number of calls to effect denial of service are common threats on the Internet. To
prevent this, Silverlight requires an explicit opt-in for a target remote domain to allow a Silverlight
application to access network resources in that domain. The domain from which the Silverlight
application is served is also called the site of origin, and a remote domain is any network location other
than the site of origin.

This opt-in is implemented by way of a policy file that is downloaded by the Silverlight runtime
and evaluated for access permissions. The policy file is defined in an XML syntax and must be named
clientaccesspolicy.xml.

For HTTP-based communication (which includes the WebClient and the other HTTP
communication classes, as well as the Silverlight WCF client proxy implementation), the owner of the
target domain needs to place such a policy file at the root of the target site. When your Silverlight
application makes the first HTTP request to the target domain in question, the Silverlight runtime tries
to download the policy file from the site’s root. If the download is successful, the runtime then
evaluates the policy settings in the file to determine whether appropriate access has been granted to
the resources being requested by the client application. On successful evaluation and the presence of
appropriate permissions, the application is allowed to continue with the network call. Otherwise, the
network call fails. Figure 7-8 shows the sequence of calls for cross-domain access over HTTP.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

677

Figure 7-8. Call sequence for cross-domain access over HTTP

Also note that Silverlight supports the Flash cross-domain access policy format as well. In the
previous scenario, if a clientaccesspolicy.xml is not found, the runtime tries to download a Flash
policy file named crossdomain.xml and base resource access on the policy specified there.

For sockets-based communication, a similar policy file is used, but there are a few more details.
For Silverlight applications using sockets, the cross-domain policy requirements apply to cross-
domain calls as well as those back to the site of origin. On the first attempt to open a connection to a
TCP endpoint from a Silverlight application, the runtime attempts to open another TCP connection to
the target server (cross-domain or site of origin) at port 943. If this connection succeeds, the runtime
then tries to download the policy file over this connection. If the download succeeds, the connection is
closed and the downloaded policy file is used for the rest of the session. Figure 7-9 shows the sequence
of calls for cross-domain access over TCP sockets.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

678

Figure 7-9. Call sequence for cross-domain access over TCP sockets

All of this happens behind the scenes as far as your Silverlight code is concerned, so no specific
design or code consideration is necessary on the client side for either your HTTP or sockets-based
code. However, if you are also implementing the sockets-based server, you need to implement a
listener on port 943 and be prepared to serve the policy file when the request comes in. The request is
in the form of a special string constant of the value <policy-file-request/>.

The Code

Listing 7-28 shows a sample policy file for HTTP resource access.

Listing 7-28. Sample clientaccesspolicy.xml for HTTP Access

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="MyHeader, X-API-*">
 <domain uri="http://subdomain1.mydomain.com"/>
 <domain uri="http://subdomain2.mydomain.com"/>
 <domain uri="http://mydomain.com:8181"/>

http://subdomain1.mydomain.com
http://subdomain2.mydomain.com
http://mydomain.com:8181

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

679

 </allow-from>
 <grant-to>
 <resource path="/images "/>
 <resource path="/services" include-subpaths="True"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Multiple domain entries can be used to specify specific subdomains on a root domain or

nonstandard HTTP ports that are allowed to be accessed. If your domain does not have subdomains or
nonstandard ports, or if you want to grant access to the entire domain regardless, include one domain
entry, as shown here:

<allow-from>
 <domain uri="*"/>
</allow-from>

Each resource entry specifies a resource for which access permission is granted, with the path

property containing the root relative path to the resource. The optional include-subpaths defaults to
False and can be left out. If you want to grant access to subpaths for a specific path as well, set include-
subpaths to True, as shown in Listing 7-28. Specifying one resource entry with the path value set to /
and include-subpaths set to True allows full access to all resources in the site, as shown here:

<grant-to>
 <resource path="/" include-subpaths="True"/>
</grant-to>

The optional http-request-headers attribute on the allow-from element can be a comma-

separated list of allowed HTTP request headers, where you can use an asterisk (*) as a part of a header
name to indicate a wildcard. You can also replace the entire list and use the * wildcard to allow all
possible headers. If the attribute is left out, no HTTP headers are allowed.

Listing 7-29 shows a clientaccesspolicy.xml file for sockets-based access.

Listing 7-29. Sample clientaccesspolicy.xml for sockets-based access

<?xml version="1.0" encoding ="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*" />
 </allow-from>
 <grant-to>
 <socket-resource port="4502-4534" protocol="tcp" />
 </grant-to>
 </policy>

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

680

 </cross-domain-access>
</access-policy>

The difference here is in the use of the socket-resource element. The socket-resource element

has two attributes. The port attribute can be used to specify the range of ports allowed, where the range
has to be within 4502–4534. The protocol attribute allows tcp as the only possible value in this version
of Silverlight. They are both required attributes.

For complete details on the policy syntax, refer to the related MSDN documentation at
msdn.microsoft.com/en-us/library/cc645032(VS.95).aspx.

7-7. Exchanging Data between Silverlight Applications

Problem
You have two or more separate Silverlight applications composing parts of your overall web page, and
you need these applications to exchange data with each other.

Solution
Use the local connection feature in Silverlight 3 to enable communication channels between these
applications and facilitate cross-application data exchange.

How It Works

The local-connection feature in Silverlight 3 enables you to establish communication channels
between two or more Silverlight applications on the same web page.

Receiver Registration
In this mode of communication, an application can act as a sender, a receiver, or both. To register itself
with the communication system as a receiver, the application has to provide a unique identity, using
which messages are directed to it. This identity is a combination of a receiver name (expressed using a
string literal) and the application’s web domain name, and needs to yield a unique identifier within
the scope of the containing page.

To register itself as a receiver, the application can create an instance of the LocalMessageReceiver
class in System.Windows.Messaging, passing in the receiver name as shown here:

LocalMessageReceiver ThisReceiver = new LocalMessageReceiver("ThisReceiverName");

Using this version of the constructor registers the receiver name as unique in its originating

domain—other receivers in the page can have the same receiver name as long as they belong to
different domains. Registering in this fashion also allows the receiver to receive messages only from
those senders on the page that originate from the same domain as the receiver.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

681

The local-connection API offers granular control over the message receiving heuristics. An
overloaded constructor for the LocalMessageReceiver class is made available with the following
signature:

public LocalMessageReceiver(string receiverName,
 ReceiverNameScope nameScope, IEnumerable<string> allowedSenderDomains);

The ReceiverNameScope enumeration used in the second parameter has two possible values.
ReceiverNameScope.Domain has the same effect as the previous constructor, requiring that the receiver
name be unique within all receivers on the page originating from the same domain. However,
ReceiverNameScope.Global requires that the receiver name be unique across all receivers on the page,
regardless of their originating domain name.

The third parameter, allowedSenderDomains, enables extending the list of sender domains from
which the receiver can receive messages beyond the receiver’s originating domain. Setting it to
LocalMessageReceiver.AnyDomain allows the receiver to receive messages from any sender on the page,
regardless of the sender’s originating domain. You can also set allowedSenderDomains to a selective list
of the domains from which you want to allow message receipt. The following code shows a receiver
being registered as unique across all receiver domains on the page, with the abilty to receive
messages from senders in two specific domains (http://www.microsoft.com and
http://www.silverlight.net):

LocalMessageReceiver ThisReceiver =
 new LocalMessageReceiver("ThisReceiverName",
 ReceiverNameScope.Global, new List<string>{ "http://www.microsoft.com",
 "http://www.silverlight.net"});

Receiving Messages
When a receiver has been registered, you need to attach a handler to the
LocalMessageReceiver.MessageReceived event to receive messages and then call the
LocalMessageReceiver.Listen() method to start listening for incoming messages asynchronously.
Here is an example:

ThisReceiver.MessageReceived +=
 new EventHandler<MessageReceivedEventArgs>((s, e) =>
 {
 string Msg = e.Message;

 //do something with the received message
 ...
 //optionally send a response message
 string ResponseMessage = PrepareResponseMessage();
 e.Response = ResponseMessage;

 });
ThisReceiver.Listen();

The MessageReceivedEventArgs.Message property contains the string message that was sent. When

your code has processed the message, you can also send a response message back to the sender in the

http://www.microsoft.comandwww.silverlight.net):
http://www.microsoft.com
http://www.silverlight.net

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

682

MessageReceivedEventArgs.Response property. The response message follows the same rules as any
other local connection message: it must be a string that is less than 1 MB in size. We talk more about
the Response property in a bit.

Sending Messages
A sender application has no explicit registration process. To send messages to a receiver, you must
construct an instance of System.Windows.Messaging.LocalMessageSender as shown here, passing in the
receiver name and the receiver domain as parameters:

LocalMessageSender ThisSender =
 new LocalMessageSender("SomeReceiver","http://localhost");

You can also pass the value LocalMessageSender.Global as the second parameter. In that case, the

system attempts to deliver the message to all receivers with the specified name on the page, regardless
of what domain they belong to.

Local-connection messages are always sent asynchronously using the
LocalMessageSender.SendAsync() method, as show here:

string MyMessage;
//create a message here
ThisSender.SendAsync(MyMessage);

As you can see, the message being sent is of type String. In the current version of Silverlight, only

string messages less than 1 MB can be sent and received using the local-connection system. This may
seem limiting initially. But consider that you can express any Silverlight data structure in either JSON
or XML strings using the Silverlight-supplied serialization mechanisms like data-contract
serialization or LINQ to XML XDocument serialization. With that in mind, this approach allows you to
build fairly effective and rich data-exchange scenarios.

After the message has been sent, or an attempt to do so fails, the
LocalMessageSender.SendCompleted event is raised by the runtime. You need to handle the event to do
any error handling or response processing, as shown here:

ThisSender.SendCompleted +=
 new EventHandler<SendCompletedEventArgs>((s, e) =>
 {
 if (e.Error != null)
 {
 //we had an error sending the message - do some error reporting here
 }
 else if (e.Response != null)
 {
 //the receiver sent a response - process it here
 }
 });

Because the send operation is asynchronous and returns immediately, the local-connection

system does not raise a direct exception to the sender if a send operation is unsuccessful.

http://localhost

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

683

Consequently, in the SendCompleted event handler, you should check the SendCompletedEventArgs.Error
property of type Exception for any exception that may be raised in the event of an unsuccessful send
attempt. In case of a send-related error, this may be set to an instance of
System.Windows.Messaging.SendFailedException.

If the send was successful, the SendCompletedEventArgs.Response may contain a response message,
depending on whether the receiver sent a response back.

Request-Response
The Response property is interesting in that it lets you establish a rudimentary request-response
correlation using the local connection.

There are no limitations on an application being both a sender and a receiver at the same time.
For an application to be both a sender and a receiver, you must perform the appropriate receiver
registration and then create both a LocalMessageSender and a LocalMessageReceiver instance, as shown
in the previous sections. One way to send responses from a receiver back to a sender would be a role-
reversal strategy, where the receiver acts as a sender and the sender acts as a receiver for the
response message path. However, because the order of message delivery is not guaranteed in the
current implementation, this puts the onus on you to include additional details in the message body,
should you need to correlate a sent message with its response.

The Response properties on the MessageReceivedEventArgs and MessageSentEventArgs types let you
circumvent that. MessageReceivedEventArgs also contains a Message property and a SenderDomain
property, which let the receiver application accurately pair the right response with the incoming
message. MessageSentEventArgs also contains Message and Response properties, in addition to
information about the receiver that sent the response through the ReceiverDomain and ReceiverName
properties. This allows the sender to accurately pair a receiver response with a specific sent message.

The Code
The code sample for this recipe builds on the sample from Recipe 4-4 in Chapter 4. That recipe has a
simple spending analysis application for a family; the expenditures for different categories are
maintained in a DataGrid and also graphed in a bar graph as a percentage of the total. The application
allows you to change the spending in each category to different values and watch the graph change
accordingly. It also lets you drag any bar in the graph using your mouse and watch the corresponding
value change in the DataGrid, maintaining the same total.

To adapt that sample to this recipe, you break it into two separate applications. The application
named 7.7 HomeExpenseWorksheet encapsulates the DataGrid-based worksheet portion of the sample,
whereas the 7.7 HomeExpenseGraph application encapsulates the bar-graph implementation. You
then use local-connection-based messaging between the two applications to implement the necessary
communication.

Figure 7-10 shows the applications hosted on the same page.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

684

Figure 7-10. The expense worksheet and the expense graph applications on the same page

Before we discuss the local-connection-related code changes, let’s quickly look at the XAML for the
expense worksheet application, shown in Listing 7-30.

Listing 7-30. XAML for the HomeExpenseWorksheet application in MainPage.xaml

<UserControl x:Class="Recipe7_7.HomeExpenseWorksheet.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 Width="300"
 Height="600">

 <Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.8*" />
 <RowDefinition Height="0.2*" />
 </Grid.RowDefinitions>
 <data:DataGrid HorizontalAlignment="Stretch"
 Margin="8,8,8,8"
 VerticalAlignment="Stretch"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

685

 HeadersVisibility="All"
 Grid.Row="0"
 x:Name="dgSpending"
 AutoGenerateColumns="False"

 CellEditEnded="dgSpending_CellEditEnded">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header="Item"
 Binding="{Binding Item,Mode=TwoWay}" />
 <data:DataGridTextColumn Header="Value"
 Width="100"
 Binding="{Binding Amount,Mode=TwoWay}" />
 </data:DataGrid.Columns>
 </data:DataGrid>
 <StackPanel Orientation="Horizontal"
 Grid.Row="1"
 HorizontalAlignment="Right">
 <Button x:Name="btnAddItem"
 Margin="3,3,3,3"
 Height="30"
 Width="85"
 Content="Add Item"
 Click="btnAddItem_Click" />
 <Button x:Name="btnRemoveItem"
 Margin="3,3,3,3"
 Height="30"
 Width="85"
 Content="Remove Item"
 Click="btnRemoveItem_Click" />
 </StackPanel>
 </Grid>
</UserControl>

The code in Listing 7-30 shows the only notable changes made to the XAML, as adapted from

Recipe 4-4. As you can see, you add two buttons: clicking btnAddItem adds a new row to the DataGrid,
and clicking btnRemoveItem removes the currently selected item from the DataGrid. You also attach a
handler to the CellEditEnded event of the DataGrid. We cover the details of the implementations of
these handlers later in this section.

The XAML for the HomeExpenseGraph application remains largely the same as the comparable
part in Recipe 4-4. We do not cover it again here, but we urge you to refer back to the code samples or
to Recipe 4-4.

To start with the local-connection implementation, recall that messages are string based.
However, strings are cumbersome to work with, so you define the application messages as a custom
CLR type named Message and then resort to serialization to convert Message instances to string
representations before sending them. Listing 7-31 shows the Message type.

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

686

Listing 7-31. The Message custom type in Messages.cs

using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Text;

namespace Recipe7_7.SD
{
 public enum MessageType
 {
 ItemRemoved,
 ItemsValueChanged
 }

 [DataContract]
 public class Message
 {
 [DataMember]
 public MessageType MsgType { get; set; }
 [DataMember]
 public List<Spending> Items { get; set; }
 public static string Serialize(Message Msg)
 {
 DataContractSerializer dcSer = new DataContractSerializer(typeof(Message));
 MemoryStream ms = new MemoryStream();
 dcSer.WriteObject(ms, Msg);
 ms.Flush();
 string RetVal = Encoding.UTF8.GetString(ms.GetBuffer(), 0, (int)ms.Length);
 ms.Close();
 return RetVal;
 }

 public static Message Deserialize(string Msg)
 {
 DataContractSerializer dcSer = new DataContractSerializer(typeof(Message));
 MemoryStream ms = new MemoryStream(Encoding.UTF8.GetBytes(Msg));
 Message RetVal = dcSer.ReadObject(ms) as Message;
 ms.Close();
 return RetVal;
 }
 }
}

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

687

You handle two kinds of messages in the local connection implementation between the worksheet
and the graph applications, as defined in the MessageType enumeration. The MessageType.ItemRemoved
value indicates a message that communicates the removal of one or more items; it is sent from the
worksheet to the graph only when rows are removed from the worksheet. The
MessageType.ItemsValueChanged typed message can be sent in either direction when the values of one
or more items change—either in the worksheet for an existing item or a newly added item through
user edits, or in the graph when the user drags a bar to resize it.

The Message class contains the MessageType and a list of Items with changed values or a list of Items
that were removed. It also defines two static methods that use DataContractSerialization to serialize
and deserialize instances of the Message type to and from a string representation. Note that you have
the Message class attributed as a DataContract with the Mistyped and Items properties attributed as
DataMember.

An individual data item for the application is defined as a class named Spending, and a custom
class named SpendingCollection deriving from ObservableCollection<Spending> defines the data
collection that initially populates the worksheet and the graph. These classes are not changed much
from Recipe 4-4, so we do not cover them in detail. Listing 7-32 shows these classes.

Listing 7-32. Data classes in DataClasses.cs

using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Linq;
using System.Runtime.Serialization;
namespace Recipe7_7.SD
{
 public class SpendingCollection : ObservableCollection<Spending>
 {
 public SpendingCollection()
 {
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 1,
 Item = "Utilities",
 Amount = 300
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 2,
 Item = "Food",
 Amount = 350
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 3,

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

688

 Item = "Clothing",
 Amount = 200
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 4,
 Item = "Transportation",
 Amount = 75
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 5,
 Item = "Mortgage",
 Amount = 3000
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 6,
 Item = "Education",
 Amount = 500
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 7,
 Item = "Entertainment",
 Amount = 125
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 8,
 Item = "Loans",
 Amount = 750
 });
 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 9,
 Item = "Medical",
 Amount = 80
 });

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

689

 this.Add(new Spending
 {
 ParentCollection = this,
 ID = 10,
 Item = "Miscellaneous",
 Amount = 175
 });
 }

 public double Total
 {
 get
 {
 return this.Sum(spending => spending.Amount);
 }
 }
 }

 [DataContract]
 public class Spending : INotifyPropertyChanged
 {

 public event PropertyChangedEventHandler PropertyChanged;
 internal void RaisePropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, e);
 }
 }

 public override int GetHashCode()
 {
 return ID.GetHashCode();
 }

 public override bool Equals(object obj)
 {
 return (obj is Spending) ? this.ID.Equals((obj as Spending).ID) : false;
 }

 SpendingCollection _ParentCollection = null;

 public SpendingCollection ParentCollection
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

690

 get { return _ParentCollection; }
 set
 {
 _ParentCollection = value;
 if (ParentCollection != null)
 {
 foreach (Spending sp in ParentCollection)
 sp.RaisePropertyChanged(new PropertyChangedEventArgs("Amount"));
 }
 }
 }

 private int _ID = default(int);
 [DataMember]
 public int ID
 {
 get
 {
 return _ID;
 }

 set
 {
 if (value != _ID)
 {
 _ID = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("ID"));
 }
 }
 }

 private string _Item;
 [DataMember]
 public string Item
 {
 get { return _Item; }
 set
 {
 string OldVal = _Item;
 if (OldVal != value)
 {
 _Item = value;
 RaisePropertyChanged(new PropertyChangedEventArgs("Item"));

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

691

 }
 }
 }

 private double _Amount;
 [DataMember]
 public double Amount
 {
 get { return _Amount; }
 set
 {
 double OldVal = _Amount;
 if (OldVal != value)
 {
 _Amount = value;

 if (ParentCollection != null)
 {
 foreach (Spending sp in ParentCollection)
 sp.RaisePropertyChanged(new PropertyChangedEventArgs("Amount"));
 }
 }
 }
 }
 }
}

The only changes worth noting are the addition of an ID property to the Spending class to uniquely

identify it in a collection, and the overrides for GetHashCode() and Equals() to facilitate locating or
comparing spending instances based on their IDs. The changes are noted in bold in Listing 7-32.

Now, let’s look at the application code. Listing 7-33 lists the codebehind for the worksheet
application.

Listing 7-33. The MainPage codebehind in MainPage.xaml.cs for the HomeExpenseWorksheet
application

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Messaging;
using Recipe7_7.SD;

namespace Recipe7_7.HomeExpenseWorksheet
{
 public partial class MainPage : UserControl
 {

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

692

 //data source
 SpendingCollection SpendingList = new SpendingCollection();
 //create a sender
 LocalMessageSender WorksheetSender =
 new LocalMessageSender("SpendingGraph",
 LocalMessageSender.Global);
 //create a receiver
 LocalMessageReceiver WorksheetReceiver =
 new LocalMessageReceiver("SpendingWorksheet",
 ReceiverNameScope.Global, LocalMessageReceiver.AnyDomain);

 public MainPage()
 {
 InitializeComponent();

 //bind data
 dgSpending.ItemsSource = SpendingList;

 //handle message receipt
 WorksheetReceiver.MessageReceived+=
 new EventHandler<MessageReceivedEventArgs>((s,e) =>
 {
 //deserialize message
 Message Msg = Message.Deserialize(e.Message);
 //if item value changed
 if (Msg.MsgType == MessageType.ItemsValueChanged)
 {
 //for each item for which value has changed
 foreach (Spending sp in Msg.Items)
 {
 //find the corrsponding item in the data source and replace value
 SpendingList[SpendingList.IndexOf(sp)] = sp;
 }
 }
 });

 //handle send completion
 WorksheetSender.SendCompleted +=
 new EventHandler<SendCompletedEventArgs>((s, e) =>
 {
 //if error
 if (e.Error != null)
 {
 //we had an error sending the message - do some error reporting here
 }

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

693

 //if there was a response
 else if (e.Response != null)
 {
 //the receiver sent a response - process it here
 }
 });

 //start listening for incoming messages
 WorksheetReceiver.Listen();
 }

 //handle add row button click
 private void btnAddItem_Click(object sender, RoutedEventArgs e)
 {
 //add a new Spending instance to the data source
 SpendingList.Add(new Spending() { ParentCollection = SpendingList });
 }

 //handle a cell edit
 private void dgSpending_CellEditEnded(object sender,
 DataGridCellEditEndedEventArgs e)
 {
 //send a message
 WorksheetSender.SendAsync(Message.Serialize(
 new Message()
 {
 //message type - Item value changed
 MsgType = MessageType.ItemsValueChanged,
 //the changed Spending instance
 Items = new List<Spending> { e.Row.DataContext as Spending }
 }));
 }

 //remove the selected item
 private void btnRemoveItem_Click(object sender, RoutedEventArgs e)
 {
 //if there is a selected row
 if (dgSpending.SelectedItem != null)
 {
 //get the corresponding Spending instance
 Spending target = dgSpending.SelectedItem as Spending;
 //remove it from the data source
 SpendingList.Remove(target);
 //send a message
 WorksheetSender.SendAsync(Message.Serialize(

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

694

 new Message()
 {
 //message type - Item Removed
 MsgType = MessageType.ItemRemoved,
 //the item that was removed
 Items = new List<Spending> { target }
 }));
 }
 }
 }
}

As you can see, you start by creating a LocalMessageSender and a LocalMessageReceiver instance,

respectively, named WorksheetSender and WorksheetReceiver, as members of the codebehind class.
WorksheetSender is created to let you send messages to a receiver named SpendingGraph, which is
globally unique across all receivers on the page. WorksheetReceiver registers this application as a
receiver named SpendingWorksheet, again with a global namescope, and prepares to receive incoming
messages from senders in any domain.

During construction, you attach handlers to WorksheetReceiver.MessageReceived and
WorksheetSender.SendCompleted. In the MessageReceived handler, you deserialize the incoming
message and then process it. You only handle messages of type MessageType.ItemsValueChanged,
because these are the only types of messages the HomeExpenseGraph application can generate. As a
part of the processing, if you do receive Spending instances that have changed, you replace them
accordingly in the expense worksheet datasource. In the SendCompleted handler, you show a skeletal set
of statements for handling error conditions and response messages—we leave it as an exercise for
you to implement error handling and response correlation as needed.

In the Click event handler for the Button named btnAddItem, you add a new Spending item to the
datasource. However, you do not immediately send a message to the HomeExpenseGraph application,
because the Spending item still does not have any meaningful data. Instead, you use the CellEditEnded
event handler to send item-change notifications. In that handler, you construct a new Message instance
with the changed Spending item as the only item in the Message.Items collection, and you set the
MsgType property to MessageType.ItemsValueChanged. You then serialize the message and send it
through the WorksheetSender.SendAsync() method.

In the Click handler for btnRemoveItem, you first remove the Spending instance bound to the
selected DataGrid row from the datasource collection. Then, you use the same approach to serialize and
send a Message instance, with the MsgType property set to MessageType.ItemRemoved.

Let’s look at the HomeExpenseGraph application. Listing 7-34 shows the codebehind for the
MainPage in that application.

Listing 7-34. The MainPage aodebehind in MainPage.xaml.cs for the HomeExpenseGraph
application

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Messaging;
using System.Windows.Shapes;

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

695

using Recipe7_7.SD;

namespace Recipe7_7.HomeExpenseGraph
{
 public partial class MainPage : UserControl
 {
 //variables to enable mouse interaction
 private bool MouseLeftBtnDown = false;
 private bool Dragging = false;
 Point PreviousPos;
 //data source
 SpendingCollection SpendingList = null;
 //create a sender
 LocalMessageSender GraphSender =
 new LocalMessageSender("SpendingWorksheet",
 LocalMessageSender.Global);
 //create a receiver
 LocalMessageReceiver GraphReceiver =
 new LocalMessageReceiver("SpendingGraph",
 ReceiverNameScope.Global, LocalMessageReceiver.AnyDomain);

 public MainPage()
 {
 InitializeComponent();

 SpendingList = this.Resources["REF_SpendingList"] as SpendingCollection;
 //handle property changed for each Spending - this is used to send item
 //value changed messages
 foreach (Spending sp in SpendingList)
 {
 sp.PropertyChanged +=
 new System.ComponentModel.
 PropertyChangedEventHandler(Spending_PropertyChanged);
 }
 //handle message receipts
 GraphReceiver.MessageReceived +=
 new EventHandler<MessageReceivedEventArgs>((s, e) =>
 {
 //deserialize message
 Message Msg = Message.Deserialize(e.Message);
 //if value changed
 if (Msg.MsgType == MessageType.ItemsValueChanged)
 {
 //for each changed Spending instance
 foreach (Spending sp in Msg.Items)

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

696

 {
 //if it exists
 if (SpendingList.Contains(sp))
 {
 //replace it with the changed one
 SpendingList[SpendingList.IndexOf(sp)] = sp;
 }
 else
 {
 //add the new one
 SpendingList.Add(sp);
 }
 //handle property changed
 sp.PropertyChanged +=
 new System.ComponentModel.
 PropertyChangedEventHandler(Spending_PropertyChanged);
 //force a recalc of the bars in the graph
 sp.ParentCollection = SpendingList;
 }
 }
 //item removed
 else if (Msg.MsgType == MessageType.ItemRemoved)
 {
 foreach (Spending sp in Msg.Items)
 {
 //unhook the event handler
 SpendingList[SpendingList.IndexOf(sp)].PropertyChanged
 -= Spending_PropertyChanged;
 //remove from data source
 SpendingList.Remove(sp);
 }
 //force a recalc of the bars in the graph
 if (SpendingList.Count > 0)
 SpendingList[0].ParentCollection = SpendingList;

 }
 });

 //start listening for incoming messages
 GraphReceiver.Listen();
 }
 void Spending_PropertyChanged(object sender,
 System.ComponentModel.PropertyChangedEventArgs e)
 {
 //send a message

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

697

 GraphSender.SendAsync(
 Message.Serialize(
 new Message
 {
 //changed item
 Items = new List<Spending> { sender as Spending },
 //message type - item value changed
 MsgType = MessageType.ItemsValueChanged
 }));

 }

 private void Rectangle_MouseMove(object sender, MouseEventArgs e)
 {
 if (MouseLeftBtnDown)
 {
 Rectangle rect = (Rectangle)sender;
 if (Dragging == false)
 {
 Dragging = true;
 rect.CaptureMouse();
 }

 Point CurrentPos = e.GetPosition(sender as Rectangle);
 double Moved = CurrentPos.X - PreviousPos.X;
 if (rect.Width + Moved >= 0)
 {
 rect.Width += Moved;
 }
 PreviousPos = CurrentPos;
 }
 }

 private void Rectangle_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 MouseLeftBtnDown = true;
 PreviousPos = e.GetPosition(sender as Rectangle);
 }

 private void Rectangle_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 Rectangle rect = (Rectangle)sender;
 if (Dragging)

CHAPTER 7 ■ NETWORKING AND WEB SERVICE INTEGRATION

698

 {
 Dragging = false;
 rect.ReleaseMouseCapture();
 }
 MouseLeftBtnDown = false;
 }
 }
}

As before, this application needs to both send and receive messages. As shown in Listing 7-34, you

create instances of LocalMessageSender and LocalMessageReceiver such that this application can
receive messages from the worksheet application and send messages to it as well.

In the constructor, after the datasource is bound, you handle the PropertyChanged event for each
item in the collection. The PropertyChanged event is raised whenever the user drags a bar within the
graph; if you look at the handler for the PropertyChanged event, note that you send a message to the
other application indicating thus action.

You also handle the MessageReceived event as before. In the handler, you handle messages of both
types—where item values are changed and where items are removed.

If an item value changes, you check to see if the item that changed already exists or was newly
created in the worksheet application and does not exist in the datasource for this application. If it is an
existing item, you replace it with the changed item; if it is a new item, you add it to the collection. You
also attach a handler to the Spending item so that you can track changes to it in this application. Finally,
you set the Spending.ParentCollection property to the datasource to which it was added to in which it
was replaced. If you look at the definition of the Spending type in Listing 7-32, you see that this forces a
property-change notification for all the items in the datasource. The bar graph displays the spending
as percentages of the total, and this causes the bar graph’s bar widths to be recalculated based on the
new values.

If an item is removed, you first unattach the PropertyChanged event handler from the item that was
removed and then remove it from the datasource collection. When the removals are complete, you
force a similar recalculation of the bar widths based on the new percentages.

The rest of the code handles mouse events to enable user adjustments of the bars and is covered in
Recipe 4-4.

C H A P T E R 8

■ ■ ■

699

Building Out Of Browser
Silverlight Applications

In the default deployment model for Silverlight, an application is delivered through the Silverlight
plug-in embedded in a web page and consequently accessed through the user’s choice of browser. In
this scenario, the user must be connected to the web site that serves up the application.

Silverlight 3 extended that deployment model and introduced support for installing a Silverlight
application on your local desktop. After the application is installed, you can use your platform’s
traditional mechanism to launch and run the application (for example, clicking an icon on the Start
menu or desktop in Windows). This model of local installation is commonly known as the Out Of
Browser (OOB) activation model for a Silverlight application.

In the process, you are no longer required to navigate to the application’s source web site or open
a browser window, nor do you have to be connected to a network. The application runs in its own
window like any other installed application, providing the standard control mechanisms for the host
window (close, minimize, maximize, and so on).

Silverlight 4 extends the OOB model in many ways. There is further control over the application’s
look and feel; for example, you can control aspects of the application window such as removing the
default Windows chrome and supplying your own. You can also stipulate that the application be run
with an elevated set of permissions that afford access to the local file system or the ability to
interoperate with installed COM libraries through COM automation.

The recipes in this chapter show you how to take advantage of the OOB features of Silverlight,
specifically:

• Building an OOB application that can operate both in a connected and an offline mode

• Controlling the application window characteristics and customizing the window chrome

• Accessing the local file system

• Interoperating with system services on Windows through COM Interop

• Notification windows

8-1. Building a Silverlight application to run outside the
browser
Problem
You need to give your Silverlight application the ability to be locally installed on a desktop. You also
need the application to support execution with or without an available network connection.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

700

Solution
Use the local installation support provided by Silverlight to enable the user to locally install the
application. Use the network availability API in Silverlight to adapt your application logic to handle
execution in an offline mode.

How It Works

Preparing the Application
The first step in enabling local installation for a Silverlight application is to supply the necessary
installation settings in the Silverlight application manifest. Bring up the Project Properties page in
Visual Studio for the Silverlight project, and you’ll see an Enable running application out of the
browser check box (see Figure 8-1). Check that option, and then click the Out-of-Browser Settings
button to open the Out-of-Browser Settings dialog for the project (see Figure 8-2).

Figure 8-1. Enabling Out-of-Browser activation in Visual Studio

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

701

Figure 8-2. The Out-of-Browser Settings dialog

The Shortcut name field provides a user-friendly name for the application when it’s installed on
the desktop, and the Application description field provides a more detailed description. The Use GPU
Acceleration check box specifies whether the locally installed application uses GPU acceleration (if
available).

The installation process also requires that you provide four images, with square dimensions of 16,
32, 48 and 128 pixels each. These must be in PNG image format and must be included in the project
with the Content setting specified for each image in Visual Studio. To select the appropriate image,
click the adjoining Browse button to select from images included in your project, as shown in Figure 8-
3. Note that you can choose not to specify these images, in which case the runtime uses a set of default
images.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

702

Figure 8-3. Selecting OOB icons

You also specify the initial Width, Height, and the Window Title of the host window within which the
locally installed application launches. Note that these setting are the initial launch settings only, and
the application always launches in a host window of these dimensions. Also note that the default initial
location of the application window is centered on the screen, but if you check the Set window location
manually option, you can specify the initial Top and Left coordinates of the application window in
screen coordinates. Although the user can resize the host window when the application launches,
Silverlight has no built-in facility to remember those settings across launches; however, we will show
you in later recipes how to record these settings and control them programmatically. We will also
discuss the other options on the dialog in later recipes.

The settings specified in this process are stored as XML in a file named OutOfBrowserSettings.xml
under the Properties folder in your Silverlight project.

Installing the Application
If the installation settings are applied as discussed above, you can bring up the Silverlight context
menu on the application running in the browser. You’ll see an option to locally install the application,
as shown in Figure 8-4.

Figure 8-4. Local installation menu option in the Silverlight context menu

Selecting this option opens an installation options dialog. Figure 8-5 shows a sample.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

703

Figure 8-5. Installation options dialog for local installation of a Silverlight application

Note the text marked in bold in the dialog box. The title provided in the application identity
settings in the application manifest is used to identify the application, and the web URI indicates the
application’s site of origin (in this case, http://localhost indicates that the application is being
delivered from the local web server). The icon used in this dialog is the 128 x 128 pixel image provided
in the application manifest.

After the application is installed, you can launch it directly from either the Start menu icon or the
desktop shortcut added during the installation process, depending on your selection of the shortcut
locations in the install dialog.

To remove a locally installed application, you can to run the application, either locally or in-
browser by visiting the application web site, and bring up the Silverlight context menu. When the
application is installed locally, the context menu offers an option to remove the application from your
machine (see Figure 8-6). In Windows, you can also use Control Panel | Programs and Features to
remove the listed application.

Figure 8-6. Context menu option for local application removal

Customizing the Installation Flow
The default mechanism of installing a Silverlight application through the context menu option may not
always be a desirable choice. You may want to display a more visually appealing and slightly more
obvious way of indicating to the user that the application can be locally installed. You may also want to
have additional application logic tied to the process of the local installation. The
System.Windows.Application class exposes some APIs to help control programmatic installation.

With the appropriate installation settings present in the application manifest as described earlier,
invoking the static method Application.Install() from your application code has the same effect as
invoking the context menu option for local installation.

The Application.InstallState property also gives you the current install state of the application.
It is of the enumeration type System.Windows.InstallState and can have the following values:

• NotInstalled: The current application has not been locally installed on the machine.

• Installing: Either Application.Install() has been invoked or the user selected the install
option from the context menu, and the application is about to be locally installed.

• Installed: The currently running application is installed on the machine.

• InstallFailed: An attempt to install the application was made, but the attempt failed.

http://localhost

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

704

The ApplicationInstallStateChanged event is raised whenever the value of
Application.InstallState changes from one state to another in this list.

Note that the NotInstalled and Installed states are not necessarily indicative of the current
application being run in or out of browser. For instance, if you install an application locally but
navigate to the same application again on the same machine and load it in-browser from its site of
origin, the InstallState of the in-browser application instance reports Installed. To know if your
application is being launched locally or in-browser, rely on the Application.IsRunningOutOfBrowser
static property of type Boolean; it returns true when the application is running locally and false when
it is in-browser.

One obvious use of these APIs is to display different UIs to the user depending on the current
install state. As an example, see the XAML in Listings 8-1 and 8-2. Note that we have left some portions
out for brevity.

Listing 8-1. OnlinePage.xaml

<UserControl x:Class="Recipe8_1.OnlinePage"...>
 <Grid>
 ...
 <TextBlock Text="I am running in-browser".../>
 <Button x:Name="btnInstall"
 Content="Install Application"
 Click="btnInstall_Click"/>
 </Grid>
</UserControl>

Listing 8-2. LocalPage.xaml

<UserControl x:Class="Recipe8_1.LocalPage"...>
 <Grid x:Name="LayoutRoot"
 Background="White">
 <TextBlock Text="I am running locally"/>
 </Grid>
</UserControl>

Listing 8-1 shows a XAML page named OnlinePage.xaml that you want to display when the

application is running in-browser. Listing 8-2 shows LocalPage.xaml, which you want the same
application to display when running locally.

To detach the application, add the code shown here into the Click event handler of the Button
named btnInstall in Listing 8-1:

 private void btnInstall_Click(object sender, RoutedEventArgs e)
{
 if(Application.Current.InstallState == InstallState.NotInstalled)
 Application.Current.Install();
}

Check Application.InstallState; if it indicates that the code is currently running in-browser, you

invoke the Install() method to locally install the application.
You also make an additional check in the Application.StartUp event handler and load the

appropriate page:

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

705

private void Application_Startup(object sender, StartupEventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser)
 this.RootVisual = new LocalPage();
 else
 this.RootVisual = new OnlinePage();
}

We look at using the InstallState property and installation customization in more detail in this

recipe’s code sample.

Sensing Network Availability
When you are running a locally installed application, you may want to add application logic that
allows the application to behave reasonably well in the absence of network connectivity.

Silverlight provides support in the framework for sensing network connectivity. As network state
changes during the lifetime of your application, you can handle the static NetworkAddressChanged event
in the System.Net.NetworkInformation.NetworkChange class to receive network-change notifications
from the runtime. This event is raised any time any one of your computer’s existing network
interfaces goes through a network address change.

However, not all such notifications indicate unavailability of a network connection; they may
indicate a transition from one valid network address to another. To determine if a valid network
connection is available, in the event handler of the NetworkAddressChanged event (and anywhere else
in your code), you can invoke the static GetIsNetworkAvailable() method in the
System.Net.NetworkInformation.NetworkInterface class. This method returns true if an active network
connection is available or false if not.

Updating Locally Installed Applications
The local installation deployment model also adds support for application-initiated self-updates for
application code. The related API lets you check for updates to the application code at the site of origin
and asynchronously download the changes.

The Application.CheckAndDownloadUpdateAsync() method checks for any updates to the application
code at the site of origin. If it finds an updated version, the updated bits are downloaded to the local
machine’s application cache asynchronously. The Application.CheckAndDownloadUpdateCompleted
event is raised when the download process completes or if the check reveals no changes. The
CheckAndDownloadUpdatedCompletedEventArgs.UpdateAvailable property is set to true if updates were
downloaded or false if no updates were available. To apply the updates, the user needs to restart the
application.

Listing 8-3 shows a possible use of the application-update feature.

Listing 8-3. Code to Update an Application with Changes

private void Application_Startup(object sender, StartupEventArgs e)
{
 if(Application.Current.InstallState == InstallState.Installed
 && Application.Current.IsRunningOutOfBrowser &&

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

706

 NetworkInterface.GetIsNetworkAvailable())
 {
 Application.Current.CheckAndDownloadUpdateCompleted+=
 new CheckAndDownloadUpdateCompletedEventHandler((s,args)=>
 {
 if (args.UpdateAvailable)
 {
 MessageBox.Show("New updates are available for this application." +
 "Please restart the application to apply updates.","Update Status",
 MessageBoxButton.OK);
 this.RootVisual = new CheckUpdatePage();
 }
 else
 this.RootVisual = new MainPage();
 });
 Application.Current.CheckAndDownloadUpdateAsync();

 }
 else
 this.RootVisual = new MainPage();
}

As shown in Listing 8-3, you check to see if the application is running from a locally installed

version out of the browser and has network connectivity. If so, you proceed to invoke
CheckAndDownloadUpdatesAsync(). In the CheckAndDownloadUpdateCompleted handler, you check to see if
updates are available. If there are updates, you display an appropriate message and use a different
root visual to prevent the main application from running without the updates being applied.

Note that whether you want to enforce the download of an available update depends on
application logic specified as shown in Listing 8-3. Should you choose to, you can let the user continue
without applying the update, as long as your application can function as an older version without
causing any errors.

The Code
The code sample for this recipe builds a simple note-taking application that allows the user to take
notes that have a title and a body and stores them on the server categorized by the date the note was
taken. The application can also be installed locally; the user can operate the locally installed
application even when disconnected from the network by providing a local note store. The user can
then synchronize the local note store with the server when network connectivity is restored.

Figure 8-7 shows the application two ways, running in-browser and locally installed.

x

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

707

Figure 8-7. NoteTaker application running in-browser and out of browser

The application displays the currently stored notes in a TreeView control, with the top-level nodes
displaying the dates containing individual nodes for each note stored on that date. The user can use the
buttons on the UI (from left to right) to install the application locally; synchronize any notes stored
offline with the server version of notes data; create a new note; save a note; or remove a selected note,
respectively. (Note that when you run the application locally, the install button is not displayed). The
small Ellipse to the left of the buttons is colored green to indicate network availability and red
otherwise.

A WCF service acts as the data source for the application. The WCF service uses the file system to
store notes. Each note file is named with the unique ID of the note and is stored in a folder named after
the date the note was created, along with other notes that have the same creation date. We do not go
through the details of the service implementation in this recipe, but you are encouraged to look at the
sample code, as well as Recipe 7.1, for more details of WCF integration with Silverlight.

Listing 8-4 shows the service contract definition as well as the data contract that defines the Note

type.

Listing 8-4. Service and Data Contracts for the Note Manager WCF Service in INoteManager.cs

[ServiceContract]
public interface INoteManager
{
 //Get all the dates for which we have notes stored
 [OperationContract]
 List<DateTime> GetDates();

 //Get all the notes for a specific date
 [OperationContract]
 List<Note> GetNotesForDate(DateTime ForDate);

 //Add a note to the note store
 [OperationContract]
 void AddNote(Note note);

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

708

 //Remove a note from the note store
 [OperationContract]
 void RemoveNote(DateTime ForDate, string NoteID);
}

[DataContract]
public class Note
{
 //Unique ID for the note
 [DataMember]
 public string NoteID { get; set; }
 //When was the note created or last modified ?
 [DataMember]
 public DateTime LastModified { get; set; }
 //When was the note last synchronized ?
 [DataMember]
 public DateTime? LastSynchronized { get; set; }
 //Note title
 [DataMember]
 public string Title { get; set; }
 //Note body
 [DataMember]
 public string Body { get; set; }
}

Let’s look at the UI of the application in XAML before we discuss the code. Listing 8-5 shows

relevant portions of the XAML for MainPage.xaml.

Listing 8-5. XAML for the NoteTaker Application UI in MainPage.xaml

<UserControl
 ...
 DataContext="{Binding RelativeSource={RelativeSource Self}}">
 <UserControl.Resources>
 <DataTemplate x:Key="dtNoteItem">
 <Grid>
 ...
 <Image
 Source="/Recipe8_1.OfflineNoteTaker;component/images/Note.png".../>
 <TextBlock Text="{Binding Path=Title}" .../>
 </Grid>
 </DataTemplate>

 <windows:HierarchicalDataTemplate
 ItemsSource="{Binding Path=Notes, Mode=OneWay}"
 ItemTemplate="{StaticResource dtNoteItem}"

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

709

 x:Key="dtDateItem">
 <Grid>
 ...
 <Image
 Source="/ Recipe8_1.OfflineNoteTaker;component/images/Date.png".../>
 <TextBlock Text="{Binding Path=Date}"... />
 </Grid>
 </windows:HierarchicalDataTemplate>

 <local:BoolToVisibilityConverter x:Key="REF_BoolToVisibilityConverter" />
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot"...>
 ...
 <Grid ...>
 ...
 <Button x:Name="btnInstall"
 Click="btnInstall_Click"
 Content="Install"
 Visibility="{Binding
 Converter={StaticResource REF_BoolToVisibilityConverter},
 ConverterParameter=reverse, Mode=OneWay, Path=Installed}"...>
 ...
 </Button>
 <Button x:Name="btnSynchronize"
 Click="btnSynchronize_Click"
 Content="Synchronize"
 Visibility="{Binding
 Converter={StaticResource REF_BoolToVisibilityConverter},
 Mode=OneWay, Path=NetworkOn}"...>
 ...
 </Button>
 <Button Content="New"
 x:Name="btnNew"
 Click="btnNew_Click"...>
 ...
 </Button>
 <Button Content="Save"
 x:Name="btnSave"
 Click="btnSave_Click"...>
 ...
 </Button>
 <Button x:Name="btnRemove"
 Click="btnRemove_Click"
 Content="Remove"...>

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

710

 ...
 </Button>
 </Grid>

 <Grid...>
 ...
 <TextBox x:Name="tbxTitle"
 Text="{Binding Path=CurrentNote.Title, Mode=TwoWay}"
 TextWrapping="NoWrap"...>
 ...
 </TextBox>
 <TextBox x:Name="tbxBody"
 Text="{Binding Path=CurrentNote.Body, Mode=TwoWay}"
 TextWrapping="Wrap"
 AcceptsReturn="True"...>
 ...
 </TextBox>
 </Grid>
 <controls:TreeView x:Name="NotesTree"
 ItemsSource="{Binding Path=NotesByDate, Mode=OneWay}"
 ItemTemplate="{StaticResource dtDateItem}"...>
 ...
 </controls:TreeView>
 <Grid ...>
 <Ellipse x:Name="signNoNetwork"
 Fill="#FFFF0000"
 Visibility="{Binding Path=NetworkOn,Mode=OneWay,
 Converter={StaticResource REF_BoolToVisibilityConverter},
 ConverterParameter='reverse'}".../>
 <Ellipse x:Name="signNetworkOn"
 Fill="#FF75FF00"
 Visibility="{Binding Path=NetworkOn,Mode=OneWay,
 Converter={StaticResource REF_BoolToVisibilityConverter}}"... />
 </Grid>
 </Grid>
</UserControl>

The first thing to note in the XAML in Listing 8-5 is that the DataContext for the top level

UserControl is bound to the MainPage code-behind class using the RelativeSource.Self enumerated
value. This allows the rest of the UI to bind to properties defined directly on the MainPage class, without
having to resort to defining separate data-class types for the most part. For more details about
RelativeSource binding, refer to Chapter 4.

The TreeView control instance named NotesTree displays currently stored notes.
NotesTree.ItemsSource is bound to a property named NotesByDate of type
ObservableCollection<TreeNodeData>, where TreeNodeData is a data class representing a top-level item
in the TreeView. Listing 8-6 shows the TreeNodeData class.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

711

Listing 8-6. TreeNodeData Data Class in MainPage.xaml.cs

//Represents a top level node (Date) in the tree view
//with children nodes (Note)
public class TreeNodeData : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 private DateTime _Date = default(DateTime);
 public DateTime Date
 {
 get
 {
 return _Date;
 }
 set
 {
 if (value != _Date)
 {
 _Date = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Date"));
 }
 }
 }

 private ObservableCollection<Note> _Notes =
 default(ObservableCollection<Note>);
 public ObservableCollection<Note> Notes
 {
 get
 {
 return _Notes;
 }
 set
 {
 if (value != _Notes)
 {
 _Notes = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Notes"));
 }
 }
 }
}

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

712

Note that the TreeNodeData class is hierarchical in nature, in that each instance contains a Date
property that defines the data at that level and a Notes property of type ObservableCollection <Note>
that defines the data collection for the sublevel. Referring back to Listing 8-5, observe the use of the
HierarchicalDataTemplate type to define the UI for the top-level nodes of NotesTree.

A HierarchicalDataTemplate is an extension of the data-template type meant to be used with
hierarchical data sets such as the ones defined by a collection of TreeNodeData instances. It provides for
data-template chaining that lets you define a data template for multiple levels of a hierarchical data
set. In addition to binding a data item to a HierarchicalDataTemplate, you can set the ItemTemplate and
ItemsSource properties of the template. The HierarchicalDataTemplate then applies the data template
in the ItemTemplate property to each element in the collection bound to the ItemsSource.

In the example, dtDateItem is a HierarchicalDataTemplate containing the necessary XAML to
display the dates as the top-level nodes; it is bound to TreeNodeData, defined in Listing 8-6. The
ItemTemplate property on dtDateItem is set to use the dtNoteItem data template, whereas its ItemsSource
is bound to the TreeNodeData.Notes property. This causes every Note instance in the Notes collection to
use the dtNoteItem data template and be displayed as children to the corresponding date item in the
TreeView.

Note that there is no system-enforced limit on this kind of chaining. Unlike in the example, if you
need more levels in the hierarchy and you have a data structure that supports such nesting, you can use
additional HierarchicalDataTemplates as children. When you reach a level at which you no longer need
children items, you can resort to a simple DataTemplate.

The rest of the XAML is self-explanatory. The buttons on the UI serve different functions that we
look at a moment when we explore the codebehind. The tbxTitle and tbxBody TextBoxes are bound to
the Title and the Body properties of the CurrentNote property of the MainPage class, and the
signNoNetwork and signNetworkOn ellipses are colored red and green and are both bound to the
MainPage.NetworkOn property to be made visible conditionally depending on the value of the NetworkOn
property. A ValueConverter converts bool to the Visibility type for these bindings.

Before we look at the main application codebehind, let’s cover one more aspect of the sample.
Because the application is designed to work seamlessly even in the absence of a network connection,
it needs an interface to store and retrieve note data from local storage when the WCF service cannot
be reached. To facilitate that, you create a class called LocalNoteManagerClient, shown in Listing 8-7.
This class mirrors the service contract used on the WCF service, but it implements all the note data-
management functionality using the isolated storage feature in Silverlight. To learn more about
isolated storage, see Chapter 3.

Listing 8-7. LocalNoteManagerClient Class for Local Note Management

//Manages notes on the local client using Isolated Storage as the backing store
public class LocalNoteManagerClient
{
 //gets all the dates
 public List<DateTime> GetDates()
 {
 IsolatedStorageFile AppStore =
 IsolatedStorageFile.GetUserStoreForApplication();
 //get all the existing folders - each folder represents a date
 //for which notes exist
 string[] val = AppStore.GetDirectoryNames();
 return AppStore.GetDirectoryNames().
 Select((sz) => DateTime.Parse(sz.Replace("_","/"))).ToList();
 }

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

713

 //gets all the notes stored in local storage for a specific date
 public ObservableCollection<Note> GetNotesForDate(DateTime ForDate)
 {
 ObservableCollection<Note> RetVal = new ObservableCollection<Note>();
 IsolatedStorageFile AppStore =
 IsolatedStorageFile.GetUserStoreForApplication();
 //get the folder corresponding to this date
 string DirPath = ForDate.ToShortDateString().Replace("/", "_");
 //if folder exists
 if (AppStore.DirectoryExists(DirPath))
 {
 //get all the files
 string[] FileNames = AppStore.
 GetFileNames(System.IO.Path.Combine(DirPath, "*.note"));
 foreach (string FileName in FileNames)
 {
 //open a file
 IsolatedStorageFileStream fs = AppStore.
 OpenFile(System.IO.Path.Combine(DirPath, FileName), FileMode.Open);
 //deserialize
 DataContractJsonSerializer serNote =
 new DataContractJsonSerializer(typeof(Note));
 //add to returned collection
 RetVal.Add(serNote.ReadObject(fs) as Note);
 //close file
 fs.Close();
 }
 }
 //return collection
 return RetVal;
 }
 //adds a note to local storage
 public void AddNote(Note note)
 {
 IsolatedStorageFile AppStore =
 IsolatedStorageFile.GetUserStoreForApplication();
 string DirPath = note.LastModified.ToShortDateString().Replace("/", "_");
 //if a directory for the note date does not exist - create one
 if (AppStore.DirectoryExists(DirPath) == false)
 AppStore.CreateDirectory(DirPath);
 string FilePath = string.Format("{0}\\{1}",
 DirPath, note.NoteID + ".note");
 //create file, serialize and store
 IsolatedStorageFileStream fs = AppStore.
 OpenFile(FilePath, FileMode.Create);

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

714

 DataContractJsonSerializer serNote =
 new DataContractJsonSerializer(typeof(Note));
 serNote.WriteObject(fs, note);
 fs.Close();
 }
 //removes a note from local storage
 public void RemoveNote(DateTime ForDate, string NoteID)
 {
 IsolatedStorageFile AppStore =
 IsolatedStorageFile.GetUserStoreForApplication();
 string FilePath = string.Format("{0}\\{1}",
 ForDate.ToShortDateString().Replace("/", "_"), NoteID + ".note") ;

 if (AppStore.FileExists(FilePath))
 AppStore.DeleteFile(FilePath);
 }
}

Now, let’s look at the main application functionality, most of which is in the MainPage.xaml.cs

codebehind class. Listing 8-8 shows the MainPage class.

Listing 8-8. MainPage.xaml.cs Codebehind Class for the Offline NoteTaker

public partial class MainPage : UserControl, INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 //initialize to a blank note
 private Note _CurrentNote = new Note()
 {
 NoteID = Guid.NewGuid().ToString(),
 LastModified = DateTime.Now
 };

 //Tracks the currently selected/displayed note
 public Note CurrentNote
 {
 get { return _CurrentNote; }
 set
 {
 if (value != _CurrentNote)
 {
 _CurrentNote = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("CurrentNote"));
 }
 }

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

715

 }

 private ObservableCollection<TreeNodeData> _NotesByDate =
 default(ObservableCollection<TreeNodeData>);
 //Collection of TreeNodeData that binds to the TreeView to display saved notes
 public ObservableCollection<TreeNodeData> NotesByDate
 {
 get
 {
 //initialize to a blank collection
 if (_NotesByDate == null)
 _NotesByDate = new ObservableCollection<TreeNodeData>();
 return _NotesByDate;
 }
 set
 {
 if (value != _NotesByDate)
 {
 _NotesByDate = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("NotesByDate"));
 }
 }
 }

 //Indicates if the app is running offline - used to bind to XAML
 public bool Installed
 {
 get
 {
 return Application.Current.InstallState == InstallState.Installed;
 }
 }
 //Indicates if network connectivity is available - used to bind to XAML
 public bool NetworkOn
 {
 get
 {
 return NetworkInterface.GetIsNetworkAvailable();
 }
 }

 public MainPage()
 {
 InitializeComponent();

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

716

 //Refresh notes treeview
 RefreshNotesView();
 //listen for network connection/disconnection events
 NetworkChange.NetworkAddressChanged +=
 new NetworkAddressChangedEventHandler((s, a) =>
 {
 //update XAML bound property
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("NetworkOn"));
 //refersh the treeview to display remote/local notes appropriately
 RefreshNotesView();
 });
 //handle selection change in the notes treeview
 NotesTree.SelectedItemChanged +=
 new RoutedPropertyChangedEventHandler<object>((s, a) =>
 {
 if (a.NewValue is Note)
 {
 //set the CurrentNote property to the currently selected note
 CurrentNote = a.NewValue as Note;
 }
 });
 }

 //take the application offline
 private void btnInstall_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Install();
 }
 private void RefreshNotesView()
 {
 //clear current bound collection
 NotesByDate.Clear();
 //reinitialize the CurrentNote
 CurrentNote = new Note()
 {
 NoteID = Guid.NewGuid().ToString(),
 LastModified = DateTime.Now
 };
 //if we have network connectivity
 if (NetworkOn)
 {
 //use the WCF proxy
 NoteManagerClient client = new NoteManagerClient();
 //handle getting all the dates asynchronously

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

717

 client.GetDatesCompleted +=
 new EventHandler<GetDatesCompletedEventArgs>((sender, args) =>
 {

 foreach (DateTime dt in args.Result)
 {
 //create another instance of the WCF proxy
 NoteManagerClient client1 = new NoteManagerClient();
 //handle getting the notes for a date asynchronously
 client1.GetNotesForDateCompleted +=
 new EventHandler<GetNotesForDateCompletedEventArgs>((s, a) =>
 {
 //create a node for the date and add the notes to it
 NotesByDate.Add(
 new TreeNodeData()
 {
 Date = (DateTime)a.UserState,
 Notes = new ObservableCollection<Note>(a.Result)
 });
 });
 //get all the notes on the server for a specific date
 //pass in the date as user state
 client1.GetNotesForDateAsync(dt, dt);
 }
 });
 //get all the dates for which we have notes on the server
 client.GetDatesAsync();
 }
 else
 {
 //create a client for local note management
 LocalNoteManagerClient client = new LocalNoteManagerClient();
 //Get all the dates
 List<DateTime> dates = client.GetDates();
 foreach (DateTime dt in dates)
 {
 //get the notes for that date
 ObservableCollection<Note> notesForDate = client.GetNotesForDate(dt);
 //add to the treeview
 NotesByDate.Add(
 new TreeNodeData()
 {
 Date = dt,
 Notes = notesForDate
 });

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

718

 }
 }
 }

 //handle the Save button
 private void btnSave_Click(object sender, RoutedEventArgs e)
 {
 if (NetworkOn)
 {
 //use the WCF proxy
 NoteManagerClient client = new NoteManagerClient();
 client.AddNoteCompleted +=
 new EventHandler<AsyncCompletedEventArgs>((s, a) =>
 {
 //refresh the treeview
 RefreshNotesView();
 });
 //add the new/updated note to the server
 client.AddNoteAsync(CurrentNote);
 }
 else
 {
 //use the local note manager
 LocalNoteManagerClient client = new LocalNoteManagerClient();
 //add the note
 client.AddNote(CurrentNote);
 //refresh the tree view
 RefreshNotesView();
 }
 }

 //handle the New Button
 private void btnNew_Click(object sender, RoutedEventArgs e)
 {
 //reinitialize the CurrentNote
 CurrentNote = new Note()
 {
 NoteID = Guid.NewGuid().ToString(),
 LastModified = DateTime.Now
 };
 }

 //handle Remove button
 private void btnRemove_Click(object sender, RoutedEventArgs e)
 {

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

719

 //a valid existing note has to be selected
 if (CurrentNote == null ||
 NotesByDate.SelectMany((tnd) => tnd.Notes).
 Where((nt) => nt == CurrentNote).Count() > 0)
 return;

 if (NetworkOn)
 {
 //use the WCF proxy
 NoteManagerClient remoteClient = new NoteManagerClient();
 remoteClient.RemoveNoteCompleted +=
 new EventHandler<AsyncCompletedEventArgs>((s, a) =>
 {
 //refresh tree view
 RefreshNotesView();
 });
 //remove the note
 remoteClient.RemoveNoteAsync(CurrentNote.LastModified, CurrentNote.NoteID);
 }
 else
 {
 //use the local client
 LocalNoteManagerClient localClient = new LocalNoteManagerClient();
 //remove note
 localClient.RemoveNote(CurrentNote.LastModified, CurrentNote.NoteID);
 //refresh tree view
 RefreshNotesView();
 }
 }

 //handle Synchronize button
 private void btnSynchronize_Click(object sender, RoutedEventArgs e)
 {
 SynchronizeOfflineStore();
 }

 private void SynchronizeOfflineStore()
 {
 LocalNoteManagerClient localClient = new LocalNoteManagerClient();
 //Notes that are on the server with LastModifiedDate <= LastSynchronizedDate
 //but are missing on the client, must have been deleted on the client
 List<Note> NotesDeletedOnClient =
 NotesByDate.SelectMany((tnd) => tnd.Notes).Distinct().
 Where((nt) => nt.LastSynchronized >= nt.LastModified).
 Except(localClient.GetDates().

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

720

 SelectMany((dt) => localClient.GetNotesForDate(dt)).
 Distinct()).ToList();
 //remove the deleted notes from the server
 foreach (Note nt in NotesDeletedOnClient)
 {
 NoteManagerClient remoteClient = new NoteManagerClient();
 remoteClient.RemoveNoteAsync(nt.LastModified, nt.NoteID);
 }
 //Notes that are on the client with LastModifiedDate <= LastSynchronizedDate
 //but are missing on the server, must have been deleted on the server
 List<Note> NotesDeletedOnServer =
 localClient.GetDates().
 SelectMany((dt) => localClient.GetNotesForDate(dt)).Distinct().
 Where((nt) => nt.LastSynchronized >= nt.LastModified).Except(
 NotesByDate.SelectMany((tnd) => tnd.Notes).Distinct()).ToList();
 //remove the deleted notes from the client
 foreach (Note nt in NotesDeletedOnServer)
 localClient.RemoveNote(nt.LastModified, nt.NoteID);
 //get all the notes on the server that have not been synchronized with the
 //client. Since we are online, the notes represented in NotesByDate
 //constitutes the server state
 List<Note> NotesOutOfSyncOnServer =
 NotesByDate.SelectMany((tnd) => tnd.Notes).Distinct().
 Where((nt) => nt.LastSynchronized == null ||
 nt.LastSynchronized < nt.LastModified).ToList();
 //add the server side notes to the client
 foreach (Note nt in NotesOutOfSyncOnServer)
 {
 //set appropriate timestamps
 nt.LastSynchronized = DateTime.Now;
 nt.LastModified = nt.LastSynchronized.Value;
 localClient.AddNote(nt);
 }
 //get all the notes on the client that have not been synchronized with the
 //server.
 List<Note> NotesOutOfSyncOnClient =
 localClient.GetDates().
 SelectMany((dt) => localClient.GetNotesForDate(dt)).Distinct().
 Where((nt) => nt.LastSynchronized == null ||
 nt.LastSynchronized < nt.LastModified).ToList();

 //add the client side notes to the server
 foreach (Note nt in NotesOutOfSyncOnClient)
 {
 NoteManagerClient remoteClient = new NoteManagerClient();

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

721

 //timestamps
 nt.LastSynchronized = DateTime.Now;
 nt.LastModified = nt.LastSynchronized.Value;
 remoteClient.AddNoteAsync(nt);
 }
 //refresh
 RefreshNotesView();
 }
}

The MainPage class defines a few properties that are noteworthy. The NotesByDate property of type

ObservableCollection<TreeNodeData> defines the entire note collection at any point in time, and the
CurrentNote property defines the currently selected note in the UI. The Installed property wraps
around Application.InstallState and returns true if its value is InstallState.Installed. The
NetworkOn property wraps a call to NetworkInterface.GetIsNetworkAvailable() to indicate network
availability.

You use the RefreshNotesView() method to load any existing notes in the constructor of the page. As
shown in the definition of RefreshNotesView() in Listing 8-8, the NetworkOn property determines
network availability. If a network connection is available, you use the WCF service proxy to access the
note data and populate the NotesByDate collection, which in turn displays the data in the NotesTree
TreeView. In the absence of a network connection, you use the LocalNoteManagerClient class to access
the data from local storage and use it similarly.

■ NNote To create a network-unavailable state in your system, the easiest option is to turn off your network

adapter. If you have multiple adapters on and connected, make sure you turn all of them off.

In the constructor, you also handle a few events. You attach a handler to the
NetworkChange.NetworkAddressChanged event; in the event of a network state change, you update the UI
by raising the PropertyChanged event and invoke RefreshNotesView() again to acquire the note data
from the appropriate storage location. You also handle the SelectedItemChanged event on the NotesTree
TreeView control to set the value of the CurrentNote property to the currently selected note.

The handlers for the Click events on btnSave, btnRemove, btnNew, and btnInstall are
straightforward. In each of the first three handlers, you again use either the WCF service or local
storage, depending on the state of network availability. And btnInstall_Click() is a simple wrapper to
an invocation of Application.Install() that takes you through the local installation process, as
described in the previous section.

The last piece of this recipe is the data-synchronization logic. Before we delve into it, note that this
is merely a sample and the synchronization logic demonstrated here is implemented from scratch. If
you are building a sizeable application, you should investigate other scalable and robust data-
synchronization frameworks like the Microsoft Sync Framework. You can find more information about
the Sync Framework at msdn.microsoft.com/en-us/sync/default.aspx.

The synchronization logic in this sample is invoked through handling the Click event of the
btnSynchronize button on the UI and is encapsulated in the SynchronizeOfflineStore() method.
Because the Visibility property of btnSynchronize is tied to network availability through a binding to
the NetworkOn property, you are assured that this code is invoked only when the network is available.

The synchronization logic in SynchronizeOfflineStore() is straightforward. You first use the
LastModifiedDate and LastSynchronizedDate properties on the Note instances to look for notes that

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

722

have been deleted on one side of storage but still exist on the other side. The logic is simple: if a note
exists on one side and has been synchronized more recently than it has been modified, but it does not
exist on the other side, then it must have been deleted from the side on which it does not exist. You then
delete that note from the side on which it currently exists.

Next, you look for notes on either side with a modification date more recent than the last
synchronization date. These notes have been either added or updated, and the changes have not been
synchronized. You invoke AddNote() on the appropriate storage service contract for these notes. The
implementation of AddNote() on the WCF service and on LocalNoteManagerClient always creates a new
note. If the data synchronization required an update of a note with partial changes to its data on one
side, the complete note file is written again, but in effect it provides the desired result.

This takes care of propagating all the changes bi-directionally. On completion of this method, both
data stores are synchronized.

8-2. Controlling the Application Window

Problem
You want to control various aspects of the application window such as its position, size, chrome, move,
and resize behavior.

Solution
Use the properties and methods of the Window class, as well as the WindowState and WindowStyle settings.

How It Works

Window Attributes
When an application is running out of browser, the Application.Current.MainWindow property, which is
an instance of the Window class, represents the running window. The Window class exposes several
attributes of the running application window that can be programmatically controlled. Window.Top,
Window.Left, Window.Height and Window.Width expose the top and left coordinates and the height and
width of the window, respectively. Recall from recipe 8-1 that initial values of these properties can be
set at deployment as well as a part of your out of browser deployment settings.

Additionally the Window.Topmost property, when set to true, makes the application window the
topmost window in Z-order on the current desktop, and the Window.WindowState property can be set to
one of the values in the enumerated type WindowState that include WindowState.Maximized,
WindowState.Minimized and WindowState.Normal to define the various possible states of the window,
with WindowState.Normal being the default setting.

The application can also define a specific window style as defined in the WindowStyle enumerated
type. This attribute can however only be read at runtime through the
Deployment.Current.OutOfBrowserSettings.WindowSettings.WindowStyle property, and requires that it
be set through the out of browser settings at deployment. The WindowStyle enumeration defines three
WindowStyle values: None, SingleBorderWindow, and BorderlessRoundCornersWindow. WindowStyle.None
and WindowStyle.BorderlessRoundCornersWindow both produce borderless windows, with the second

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

723

option adding rounded corners. WindowStyle.SingleBorderWindow uses the default OS specific chrome.
Figure 8-8 shows the Out-of-Browser settings dialog with the window style setting being set.

Figure 8-8. Window Style setting for OOB deployment

Note that the Deployment.Current.OutOfBrowserSettings.WindowSettings property provides access
to other settings information such as the window title, the initial left-top coordinates, initial
dimensions etc., but all of these properties are read only. Some of the properties that can be changed at
runtime will need to be changed through the Window class, as discussed earlier. Also note that
specifying the window style requires that the application be marked to run with elevated trust when
run out of the browser. You should be aware that when an OOB application is installed with elevated
trust requirements, the install dialog looks a little different. Figure 8-9 shows the install dialog for an
OOB application requiring elevated trust.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

724

Figure 8-9. Install dialog for application requiring elevated trust

Resizing and moving a Window
In addition to the above window attributes, there are a few additional APIs provided to control the
resizing and moving of a window. The default OS-supplied window chrome provides you with the
necessary means to resize or move the window. But in cases where you set the WindowStyle property to
one of the values that create a borderless window, you may need to offer alternative means to the user
to resize and move the window. The Window.DragMove() method can be used to move the window
programmatically, especially in response to mouse events. DragMove() automatically moves the
window in the direction in which the mouse moves, by the amount that the mouse moves by between
calls to DragMove(). The Window.DragResize() method can be called to resize the window. DragResize()
accepts a single parameter of the enumerated type WindowResizeEdge. The WindowResizeEdge defines
the possible window edge values, one for each edge and one for each corner, such as
WindowResizeEdge.Bottom, WindowResizeEdge.BottomLeft, etc. DragResize () automatically resizes the
window by the amount the mouse has moved between calls to DragResize ().Note that both APIs
require the application to be installed and running with elevated trust.

The Code
The sample for this recipe extends the note taker application from recipe 8-1 to demonstrate the usage
of some of the attributes and APIs discussed above.

You modify the XAML and add three buttons to the top right corner of the LayoutRoot grid: a Button
to minimize the window named btnMinimize, a Button to toggle between the maximized and the normal
view of the window named btnMaximize, and a Button to close the window named btnClose. You then
change the out of browser settings for the application and set the Window Style field to “No Border” to
deploy it as a borderless window. Since the changes to the XAML are minimal, we do not list them here;
you can refer to the MainPage.xaml for the code sample to take a look at the changes. Figure 8-10 shows
the application running in a borderless window with the three buttons mentioned above.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

725

Figure 8-10. Offline Note taker application running in a borderless window style

You centralize the handling of the window resizing and moving functionality as well as the click
handlers to the three buttons mentioned above in a single class named WindowManager. Listing 8-9
shows the code for the WindowManager class.

Listing 8-9. WindowManager class

public static class WindowManager
{
 private static FrameworkElement ShellRoot;
 //a rect defined on the window determining the hit target that
 //we will use to determine if a mouse drag causes the window to move
 private static Rect MoveHandleRect = default(Rect);
 //the width from the edges of the window determining the hit target
 //we will use to determine if a mouse drag causes a resize
 private static double ResizeHandleWidth = 8;
 //store the old cursor to revert back when necessary
 static Cursor OldCursor = null;
 //current action on the window
 static Action CurrentAction = Action.None;

 //enumeration defining the current action on the window
 private enum Action
 {

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

726

 Moving, Resizing, None
 }
 //register the FrameworkElement whose mouse movements
 //will determine the various window move and resize logic
 public static void RegisterShell(FrameworkElement shellRoot,
 double resizeHandleWidth, Rect moveHandleRect,
 Button btnMinimize, Button btnMaximize, Button btnClose)
 {
 ShellRoot = shellRoot;
 ResizeHandleWidth = resizeHandleWidth;
 MoveHandleRect = moveHandleRect;
 OldCursor = ShellRoot.Cursor;
 //handle the various mouse events
 ShellRoot.MouseEnter += new MouseEventHandler(ShellRoot_MouseEnter);
 ShellRoot.MouseLeave += new MouseEventHandler(ShellRoot_MouseLeave);
 ShellRoot.MouseMove += new MouseEventHandler(ShellRoot_MouseMove);
 ShellRoot.MouseLeftButtonDown +=
 new MouseButtonEventHandler(ShellRoot_MouseLeftButtonDown);
 ShellRoot.MouseLeftButtonUp +=
 new MouseButtonEventHandler(ShellRoot_MouseLeftButtonUp);
 //handle the control button events
 btnClose.Click += new RoutedEventHandler(btnClose_Click);
 btnMaximize.Click += new RoutedEventHandler(btnMaximize_Click);
 btnMinimize.Click += new RoutedEventHandler(btnMinimize_Click);
 }

 private static void btnMinimize_Click(object sender,
 System.Windows.RoutedEventArgs e)
 {
 Application.Current.MainWindow.WindowState = WindowState.Minimized;
 }

 private static void btnMaximize_Click(object sender,
 System.Windows.RoutedEventArgs e)
 {
 Application.Current.MainWindow.WindowState =
 Application.Current.MainWindow.WindowState == WindowState.Maximized ?
 WindowState.Normal : WindowState.Maximized;
 }

 private static void btnClose_Click(object sender,
 System.Windows.RoutedEventArgs e)
 {
 Application.Current.MainWindow.Close();
 }

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

727

 private static void ShellRoot_MouseEnter(object sender, MouseEventArgs e)
 {
 SetMouseCursor(e);
 }
 static void ShellRoot_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 CurrentAction = (GetCurrentResizeEdge(e) != default(WindowResizeEdge)) ?
 Action.Resizing : (IsMouseOnMoveZone(e) ? Action.Moving : Action.None);

 }
 static void ShellRoot_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 CurrentAction = Action.None;
 }

 static void ShellRoot_MouseMove(object sender, MouseEventArgs e)
 {
 if (CurrentAction == Action.Resizing)
 {
 Application.Current.MainWindow.DragResize(GetCurrentResizeEdge(e));
 }
 else if (CurrentAction == Action.Moving)
 {
 Application.Current.MainWindow.DragMove();
 }
 else
 SetMouseCursor(e);
 }

 static void ShellRoot_MouseLeave(object sender, MouseEventArgs e)
 {
 if (CurrentAction != Action.None)
 {
 CurrentAction = Action.None;
 SetMouseCursor(e);
 }
 }

 private static void SetMouseCursor(MouseEventArgs e)
 {
 WindowResizeEdge ResizeZone = GetCurrentResizeEdge(e);

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

728

 if (ResizeZone != default(WindowResizeEdge) && OldCursor == default(Cursor))
 OldCursor = ShellRoot.Cursor;

 switch (ResizeZone)
 {
 case WindowResizeEdge.Top:
 case WindowResizeEdge.Bottom:
 ShellRoot.Cursor = Cursors.SizeNS;
 break;
 case WindowResizeEdge.Left:
 case WindowResizeEdge.Right:
 ShellRoot.Cursor = Cursors.SizeWE;
 break;
 case WindowResizeEdge.TopLeft:
 case WindowResizeEdge.BottomRight:
 ShellRoot.Cursor = Cursors.SizeNWSE;
 break;
 case WindowResizeEdge.TopRight:
 case WindowResizeEdge.BottomLeft:
 ShellRoot.Cursor = Cursors.SizeNESW;
 break;
 default:
 ShellRoot.Cursor = OldCursor;
 OldCursor = default(Cursor);
 break;
 }
 }

 private static bool IsMouseOnMoveZone(MouseEventArgs e)
 {
 return Application.Current.MainWindow.WindowState ==
 WindowState.Maximized ? false :
 MoveHandleRect.Contains(e.GetPosition(ShellRoot));
 }

 private static WindowResizeEdge GetCurrentResizeEdge(MouseEventArgs e)
 {
 WindowResizeEdge RetVal = default(WindowResizeEdge);
 if (Application.Current.MainWindow.WindowState == WindowState.Maximized)
 return RetVal;

 Point CurPos = e.GetPosition(ShellRoot);
 if (CurPos.X < ResizeHandleWidth)
 {
 if (CurPos.Y < ResizeHandleWidth)

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

729

 RetVal = WindowResizeEdge.TopLeft;
 else if (CurPos.Y > ShellRoot.ActualHeight - ResizeHandleWidth)
 RetVal = WindowResizeEdge.BottomLeft;
 else
 RetVal = WindowResizeEdge.Left;
 }
 else if (CurPos.X > ShellRoot.ActualWidth - ResizeHandleWidth)
 {
 if (CurPos.Y < ResizeHandleWidth)
 RetVal = WindowResizeEdge.TopRight;
 else if (CurPos.Y > ShellRoot.ActualHeight - ResizeHandleWidth)
 RetVal = WindowResizeEdge.BottomRight;
 else
 RetVal = WindowResizeEdge.Right;
 }
 else
 {
 if (CurPos.Y < ResizeHandleWidth)
 RetVal = WindowResizeEdge.Top;
 else if (CurPos.Y > ShellRoot.ActualHeight - ResizeHandleWidth)
 RetVal = WindowResizeEdge.Bottom;
 else
 RetVal = default(WindowResizeEdge);
 }
 return RetVal;
 }
}

The WindowManager class exposes a static method named RegisterShell() which takes in all the

parameters required for the WindowManager to enable window resize and moving. The shellRoot
parameter is the FrameworkElement instance whose mouse events the WindowManager attaches to
implement the resize and move logic. This would typically be a high level container in your visual tree
that covers the entire window area, such as the top level grid in your window design. The
resizeHandleWidth parameter determines the number of pixels from each edge of the window within
which a mouse drag is considered a cause for resize. The moveHandleRect defines the dimensions of a
rectangular area measured in terms of the coordinates of the shellRoot element, within which a mouse
drag is considered a cause for a window move. Lastly, the three button parameters refer to the three
control buttons on the window. The code for RegisterShell simply attaches handlers to the appropriate
events on the shellRoot and the buttons.

In the shellRoot_MouseEnter () handler, you set the mouse cursor appropriately by calling
SetMouseCursor() and in shellRoot_MouseLeave(), you reset the CurrentAction variable to
Action.None to indicate that neither a resize nor a move is happening any more, and call
SetMouseCursor() again.

SetMouseCursor() accepts a MouseEventArgs parameter passed in from the mouse event handlers,
and first calls GetCurrentResizeEdge() to get the resize edge the mouse might be on. If a valid
WindowResizeEdge is returned from GetCurrentResizeEdge(), you proceed to set the mouse cursor to the
appropriate value depending on the resize edge the mouse is currently on.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

730

GetCurrentResizeEdge() also accepts a MouseEventArgs and works out the WindowResizeEdge by
comparing the current mouse position to the calculated resize edges based on the ResizeHandleWidth
value and the ShellRoot dimensions.

On ShellRoot_MouseLeftButtonDown() you set the CurrentAction to Action.Resizing if
GetCurrentResizeEdge() reports the mouse to be on a valid edge, or else to CurrentAction.Moving if
IsMouseOnMoveZone() reports true. IsMouseOnMoveZone() also accepts the MouseEventArgs and uses the
current mouse coordinates to check if the mouse position falls within the rectangle designated by
MoveHandleRect. On ShellRoot_MouseLeftButtonUp() you reset the CurrentAction variable. And finally
on ShellRoot_MouseMove() handler, you either call Window.DragMove() or Window.DragResize()
depending on the value of the CurrentAction variable.

To handle processing the control button clicks, in btnMinimize_Click() you set the WindowState of
the MainWindow to WindowState.Minimized. In btnMaximizedClick() you set the WindowState to Normal if
the window is already maximized or you maximize it if it is not. And in btnClose_Click() you close the
MainWindow, causing the application to exit. Figure 8-11shows the application window being resized by
dragging the right edge.

Figure 8-11. Borderless window being resized

8-3. Using COM Interoperability and File System Access

Problem
You need to interoperate with COM based APIs and access the file system from an out of browser
Silverlight application.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

731

Solution
Use the built-in support for COM interoperability and file system access from an out of browser
Silverlight application running with elevated trust.

How It Works

COM Interoperability
A large number of system services and platform features on Microsoft Windows are exposed through
an integration technology called COM. Additionally, many applications, both from Microsoft (such as
Microsoft Office), as well as a multitude of 3rd party applications for Windows also enable extensibility
and programmability by exposing COM based APIs.

Silverlight 4 introduces the ability to interoperate with some of these system services and
application API’s through a COM Interoperability layer built into the Silverlight runtime. Before we
progress in describing how it all works, there are three very important points to be noted here:

• COM is a technology available on Microsoft Windows only. So if you build a Silverlight
application with features that take advantage of COM Interop, those features of your
application will only work when it runs on Windows.

• COM Interop through Silverlight 4 is only available when the application is running out of
browser with elevated trust.

• Not all COM components can be access through the Silverlight COM Interop feature. Only
COM objects that support COM Automation are accessible through Silverlight. COM
Automation capable COM objects implement a COM interface named Idispatch (or
IDispatchEx) and are scriptable through scripting languages such as JavaScript.

■ NNote A detailed treatment of COM is out of scope for this book. For more details on COM, you can refer to
msdn.microsoft.com/en-us/library/ms680573(VS.85).aspx. For more details on COM Automation, you can

refer to msdn.microsoft.com/en-us/library/ms221375.aspx .

Instantiating a COM object
Silverlight 4 exposes the COM Interoperability mechanism through the AutomationFactory class in the
System.Runtime.InteropServices.Automation namespace. The static CreateObject() method defined on
AutomationFactory accepts the ProgID of the COM object you are trying to instantiate and returns the
newly instantiated COM objected as a dynamic type instance on success.

The dynamic type is newly introduced in .Net 4 and Silverlight 4 runtime offers it as well. A
variable of type dynamic bypasses static (compile time) type checking. This makes the dynamic type
especially suited for representing COM types, as due to the implementation differences between
native APIs like COM and the common language runtime, the exact signature of a COM type is not
known while compiling the managed code, but only at runtime. Keep in mind that while authoring
code using a dynamic type, you can call any method or access any property on the variable of type
dynamic without the compiler checking whether the member actually exists on the underlying

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

732

implementing COM object. If the call is erroneous, your application fails at runtime. Also keep in mind
that, because of this lack of type description information during authoring, Visual Studio offers no
IntelliSense on dynamic typed variables. Consequently, having the API documentation available for
any COM API that you may want to access is very important for authoring correct Silverlight-based
COM Interop code.

Once you acquire the returned object from the AutomationFactory.CreateObject(), you can call
methods and access properties on it just like you would on any managed object, as long as the
members are implemented by the underlying COM object. Remember that these properties and
methods will also use dynamic types as return values, so feel free to cast them to appropriate CLR types,
and Silverlight will do the conversion for you.

You can also use AutomationFactory.GetObject() to acquire a reference to a COM object. While
CreateObject() will load the COM server containing the COM object you requested and start the
containing application if it is an out of process executable, GetObject() expects the COM server to be
already running. For example, calling CreateObject() to acquire a handle to a COM object defined in
the Microsoft Excel COM object model would cause Excel to start up, while GetObject() can be called if
you know Excel to already be running. The snippet below shows an example of creating a COM object,
accessing a property and calling a method on it:

dynamic devManager = AutomationFactory.CreateObject("WIA.DeviceManager");
dynamic DeviceInfoCollection = devManager.DeviceInfos;
devManager.RegisterEvent("{A28BBADE-64B6-11D2-A231-00C04FA31809}");

Note that AutomationFactory also exposes a property named IsAvailable that indicates if the COM

automation feature is available to your application at runtime. Before you attempt to create your first
COM object in your application, you should check the value of the property and ensure that COM
Interop is available to you in the current environment.

Handling a COM event
There are two ways to handle an event raised from the COM object in your Silverlight code. In the first
approach, you can use the static GetEvent() method on the AutomationFactory object to search for a
declared event by its string name. The first parameter to GetEvent() accepts the object returned from a
CreateObject() or a GetObject() call, and the second parameter accepts the string name of the event
you want to look for. If the event is found, an AutomationEvent instance is returned from GetEvent().
You can then add a handler to the AutomationEvent.EventRaised event to handle the occurrence of the
COM event. The AutomationEventArgs type parameter passed into your event handler implementation
exposes an Arguments property that contains any event parameters passed in from COM as a collection
of objects. The snippet below shows an example of searching for an event named OnEvent, registering a
handler, and accessing the event arguments inside the handler:

dynamic devManager = AutomationFactory.CreateObject("WIA.DeviceManager");
AutomationEvent evt = AutomationFactory.GetEvent(devManager, "OnEvent");
evt.EventRaised += new EventHandler<AutomationEventArgs>((s, e) =>
{
 string EventID = e.Arguments[0] as string;
 string DeviceID = e.Arguments[1] as string;
 string ItemID = e.Arguments[2] as string;
});

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

733

The other approach is to attach a handler to the event directly, using the dynamic instance of the
COM object. You would, of course, need to declare a delegate that matches the event signature as
documented for the COM object in question. The snippet below shows an example:

private delegate void OnEventHandler
 (string EventID, string DeviceID, string ItemID);

dynamic devManager = AutomationFactory.CreateObject("WIA.DeviceManager");
devManager.OnEvent += new OnEventHandler((evtID, DevID, ItemID) =>
{
 ...
});

File System Access
Although File System Access does not have anything to do with COM Interop, the code sample later in
the recipe uses both features, and so we thought it prudent to cover this topic in the same recipe. Note
that file system access as well requires that the application be running out of browser and with
elevated trust.

Up until Silverlight 3, the OpenFileDialog and SaveFileDialog types discussed in Chapter 3 have
been the only ways for Silverlight applications to access any file information on the local file system,
and only through user initiated code such as a button click. With a Silverlight 4 application running
with elevated trust, you now have the option of using the classes in System.IO for a much deeper access
to the file system. You can create new files and directories, enumerate the contents of a directory, get
detailed file information, etc. A full discussion of the types in System.IO is out of scope for this recipe,
but you can refer to msdn.microsoft.com/en-us/library/ms404278(VS.100).aspx for more details on the
common I/O tasks that you can perform using these types.

Note that your file system access is limited to the MyDocuments, MyMusic, MyVideos, and
MyPictures system folders and any sub folders and files within. To standardize the path to these
folders, Silverlight defines a SpecialFolder enumeration within the Environment type where the above
mentioned folders correspond to SpecialFolder.MyDocuments, SpecialFolder.MyMusic, ans so on. To
make sure that your code remains cross-platform, you should always use Environment.GetFolderPath()
and pass in one of these values to get the corresponding path for that platform. The snippet below
shows an example of enumerating the sub-folders for the MyDocuments folder:

string MyDocumentsPath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments);
IEnumerable<string> SubFolders = System.IO.Directory.
 EnumerateDirectories(MyDocumentsPath);

The Code
The code sample in this recipe shows an application for viewing photos from a digital camera that is
connected to your computer. The application offers the option of saving the photos to your local file
system.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

734

Windows Image Acquisition
Windows Image Acquisition (WIA) is an API built into Windows that provides a standard mechanism for
acquiring digital images from devices connected to your computer. These devices could be digital
cameras that store captured images, or scanners that can scan digital images of documents. WIA
exposes a COM Automation API and consequently is well suited for COM Interop-based access from
within Silverlight. To ease its use from within our application and to facilitate property binding, you
wrap the necessary parts of the WIA object model to create a strongly typed version. This wrapper code
is found in a file named wiaom.cs in the sample project for this recipe. We describe parts of it here to
illustrate the COM Interop aspects, but encourage you to look through the WIA Automation API at
msdn.microsoft.com/en-us/library/ms630827(VS.85).aspx as well the code in wiaom.cs for more details
on the wrapping approach.

The top level object in the WIA API is called the DeviceManager, and you wrap it in a CLR type
named WIADeviceManager. Listing 8-10 shows the WIADeviceManager class and a few related classes in
our wrapper object model.

Listing 8-10. WIA wrappers

public class WIAObject : INotifyPropertyChanged
{
 //hold the COM native object
 protected dynamic WIASource { get; private set; }
 //
 public WIAObject(dynamic Source)
 {
 WIASource = Source;
 Validate();
 }
 //validate the COM object
 protected virtual void Validate()
 {
 if (WIASource == null)
 throw new ArgumentNullException("Null source");
 }

 #region INotifyPropertyChanged Members

 protected void RaisePropertyChanged(string PropName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(PropName));
 }
 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
}

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

735

public class WIADeviceManager : WIAObject
{
 //raise a CLR event on handling a WIA Event
 public event EventHandler<WIAOnEventArgs> OnEvent;
 //delegate for handling DeviceManager.OnEvent
 private delegate void OnEventHandler
 (string EventID, string DeviceID, string ItemID);
 //get all the devices
 public IEnumerable<WIADeviceInfo> DeviceInfos
 {
 get
 {
 return (COMHelpers.COMIndexedPropertyToList(WIASource.DeviceInfos)
 as List<dynamic>).Select(
 (DeviceInfo) => new WIADeviceInfo(DeviceInfo));
 }
 }
 //construct
 private WIADeviceManager(dynamic Source)
 : base((object)Source)
 {
 //attach handler to onEvent event
 Source.OnEvent += new OnEventHandler((eID, dID, iID) =>
 {
 //raise our own OnEvent wrapper
 if (OnEvent != null)
 OnEvent(this, new WIAOnEventArgs()
 { EventID = eID, DeviceID = dID, ItemID = iID });
 });
 }
 //static factory method
 public static WIADeviceManager Create()
 {
 if (!AutomationFactory.IsAvailable)
 throw new InvalidOperationException
 ("COM Automation is not available");
 return new
 WIADeviceManager(AutomationFactory.CreateObject("WIA.DeviceManager"));
 }
 //register for a WIA event
 public void RegisterEvents(string DeviceID, IEnumerable<string> Events)
 {
 Events.Any((ev) => { WIASource.RegisterEvent(ev, DeviceID); return false; });
 }
 //unregister events

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

736

 public void UnregisterEvents(string DeviceID, IEnumerable<string> Events)
 {
 Events.Any((ev) => { WIASource.UnregisterEvent(ev, DeviceID);
 return false; });
 }
}
public class COMHelpers
{
 public static List<dynamic> COMIndexedPropertyToList(
 dynamic IndexedPropertyCollection)
 {
 List<dynamic> RetVal = null;
 if (RetVal == null)
 RetVal = new List<dynamic>(IndexedPropertyCollection.Count);
 else
 RetVal.Clear();
 for (int i = 1; i <= IndexedPropertyCollection.Count; i++)
 RetVal.Add(IndexedPropertyCollection[i]);
 return RetVal;
 }
}
public class WIADeviceInfo : WIAObject
{
 public WIADeviceInfo(dynamic Source)
 : base((object)Source)
 {
 }

 public WIADevice Connect()
 {
 WIADevice retval = new WIADevice(WIASource.Connect());
 return retval;
 }

 public WIADeviceType DeviceType
 {
 get
 {
 return (WIADeviceType)WIASource.Type;
 }
 }

 public string DeviceID
 {
 get { return (string)WIASource.DeviceID; }

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

737

 }

 public IEnumerable<WIAProperty> Properties
 {
 get { return (COMHelpers.COMIndexedPropertyToList(WIASource.Properties)
 as List<dynamic>).Select((Prop) => new WIAProperty(Prop)); }
 }
}

The WIADeviceManager.Create() is a wrapper factory method that creates an instance of the

DeviceManager COM automation type and returns an instance of a WIADeviceManager. The WIAObject
base class is used to hold the dynamic-typed COM automation object instance, implement property
change notification, and validate it to make sure it is not null on creation. You check
AutomationFactory.IsAvailable to make sure COM Automation is available in the environment you
are running before you attempt to create the COM object.

The DeviceManager COM object exposes a COM indexed property named DeviceInfos that
represents a collection of DeviceInfo COM objects, each entry representing a device connected to the
machine and recognizable by WIA. You wrap this property using WIADeviceManager.DeviceInfos. In the
property implementation, you use the COMIndexedPropertyToList() static method on the COMHelpers
class. In COMIndexedPropertyToList() you enumerate a COM indexed property and return an CLR List
instance populated with the same items.

The DeviceManager COM object also implements a RegisterEvent and an UnregisterEvent method
that allows for callers to register and unregister for specific events defined in the WIA automation API
as GUIDs. You define a RegisterEvents() wrapper method on WIADeviceManager that accepts a
collection of event GUID’s and registers each of them. Similarly,
WIADeviceManager.UnregisterEvents() unregisters an already registered set of events. The first
parameter to the RegisterEvent() and UnregisterEvent() methods are DeviceID’s for the device in
whose events you may be interested. You can pass the string “*” if you are interested in a specific
event for all connected devices at the moment. The DeviceManager object also raises a COM event
named OnEvent. You attach a handler to OnEvent in the WIADeviceManager constructor, and raise your
own OnEvent implementation, passing in a new instance of WIAEventArgs type populated with the
individual parameters obtained from the COM OnEvent handler.

There are several more WIA automation types that you have wrapped around in your wrapper
object model, but we do not list all of them here for brevity. The purpose of this section was to show you
a sample of COM Interop code, and the rest of the wrapper object model follows the exact same
principles and techniques shown so far. For the rest of the recipe, whenever you encounter a type with
a name starting with the string “WIA”, know that it is one of your wrapper types defined in wiaom.cs
wrapping around a corresponding automation type.

The Application Code
Figure 8-12 shows the application user interface.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

738

Figure 8-12. The client application user interface

On the left is a list of devices connected to the computer that WIA recognizes. The right side shows
the photo viewer with a pager control at the bottom to navigate through the photos on a connected
camera, plus as a button that allows the user to save a specific photo to the disk. To test the application’s
functionality, you will need a digital camera with some images already stored in it. Run the
application with the camera connected, or connect it to your PC with the application running. Then
select the camera device; the right hand pane should let you navigate through the images on the
camera as well as save them to your computer’s local file system

Note that Figure 8-12 shows both a scanner and a camera connected to the computer. Recall from
the earlier section that WIA recognizes scanners as source devices for digital images as well. In this
sample, however, you will only deal with digital camera-specific features. Listing 8-11 shows relevant
portions of the code for the MainPage.xaml from the application.

Listing 8-11. Portions of MainPage.xaml

<Grid x:Name="LayoutRoot" Background="Black">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.294*"/>
 <ColumnDefinition Width="0.706*"/>
 </Grid.ColumnDefinitions>
 <Border BorderBrush="White" BorderThickness="1" Margin="2">

 <ListBox Margin="0" x:Name="lbxDevices"
 ItemContainerStyle="{StaticResource styleImagingDeviceListBoxItem}"
 SelectionChanged="lbxDevices_SelectionChanged" Background="Black"/>
 </Border>
 <Border BorderBrush="White" BorderThickness="1" Margin="2" Grid.Column="1">

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

739

 <ContentControl x:Name="cntctlDataPane" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 HorizontalContentAlignment="Stretch"

 VerticalContentAlignment="Stretch" Margin="0" />
 </Border>
</Grid>

The ListBox named lbxDevices implements the device list shown in Figure 8-12 The

ContentControl cntctldataPane is used to display the photos; we will discuss the mechanics of that later
in the recipe. Listing 8-12 shows the codebehind for MainPage.xaml.

Listing 8-12. Codebehind for MainPage.xaml

public partial class MainPage : UserControl
{
 //event handler delegate to handle the WIADeviceManager.OnEvent event
 public delegate void WIADeviceManageOnEventHandler(string EventID,
 string DeviceID, string ItemID);
 //WIADeviceManager singleton
 WIADeviceManager wiaDeviceManager = null;
 //the collection of all connected devices
 ObservableCollection<WIADevice> WIADevicesColl =
 new ObservableCollection<WIADevice>();

 public MainPage()
 {
 InitializeComponent();
 //create the DeviceManager
 wiaDeviceManager = WIADeviceManager.Create();
 //register for connection and disconnection events for all devices
 //that WIA might recognize
 wiaDeviceManager.RegisterEvents("*",
 new string[]{WIAEventID.DeviceConnected,WIAEventID.DeviceDisconnected});
 //attach event handler for OnEvent
 wiaDeviceManager.OnEvent +=
 new EventHandler<WIAOnEventArgs>(wiaDeviceManager_OnEvent);
 //get and connect all the devices
 WIADevicesColl = new ObservableCollection<WIADevice>(
 wiaDeviceManager.DeviceInfos.Select((di) => di.Connect()));
 //set the device list
 lbxDevices.ItemsSource = WIADevicesColl;
 }

 void wiaDeviceManager_OnEvent(object sender, WIAOnEventArgs e)
 {
 //if a device just connected

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

740

 if (e.EventID == WIAEventID.DeviceConnected)
 {
 //connect it
 WIADevice wiaDevice = wiaDeviceManager.DeviceInfos.
 Where((di) => di.DeviceID == e.DeviceID).
 Select((di) => di.Connect()).First();
 //add to the bound collection
 WIADevicesColl.Add(wiaDevice);
 //if minimized - show notification
 if (Application.Current.MainWindow.WindowState ==
 WindowState.Minimized)
 {
 DeviceConnectDisconnectNotification notfcontent =
 new DeviceConnectDisconnectNotification()
 { DataContext = wiaDevice, Connected = true};
 NotificationWindow notfWindow = new NotificationWindow()
 { Height = 60, Width = 400, Content = notfcontent };
 notfcontent.NotificationParent = notfWindow;
 notfWindow.Show(30000);
 }
 }
 //if device disconnected
 else if (e.EventID == WIAEventID.DeviceDisconnected &&
 WIADevicesColl.Where((wiaDeviceInfo)=>wiaDeviceInfo.DeviceID
 == e.DeviceID).Count() > 0)
 {
 //remove it
 WIADevice wiaDevice = WIADevicesColl.
 Where((de) => de.DeviceID == e.DeviceID).First();
 WIADevicesColl.Remove(wiaDevice);
 }
 }

 private void lbxDevices_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 //get the selected device
 WIADevice Device = lbxDevices.SelectedValue as WIADevice;
 //display the content on the right pane
 DisplayCameraItems(Device);
 }

 private void DisplayCameraItems(WIADevice CameraDevice)
 {
 //create a new instance of the PhotoItems user control
 //and bind appropriate data

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

741

 cntctlDataPane.Content = new PhotoItems()
 { Device = CameraDevice,
 HorizontalAlignment = HorizontalAlignment.Stretch,
 VerticalAlignment = VerticalAlignment.Stretch };
 }
}

In the constructor of the MainPage class, you create an instance of the WIADeviceManager, which, as

discussed in the previous section, instantiates the DeviceManager COM object using COM Interop. You
also register to receive the OnEvent event for all devices whenever they connect to or disconnect from
the machine, and then attach a handler to the OnEvent handler. As discussed before, WIA events are
defined as GUIDs, and the WIAEventID type declares the WIA event’s GUIDs as named variables. Lastly,
you get back and bind the list of connected devices by calling the Connect() wrapper method on each
WIADeviceInfo exposed through the WIADeviceManager.DeviceInfos collection property.

In the OnEvent event handler, you either remove a device from your bound device collection if you
get a DeviceDisconnected event, or you add a new device if you get a DeviceConnected event. You also
show a notification window on device connection; we will discuss this later in the recipe.

In the SelectionChanged event handler for the device ListBox, you acquire the selected WIADevice
instance, and call DisplayCameraItems(), which in turn creates and displays a new instance of the
PhotoItems user control, passing in the selected WIADevice instance. Listing 8-13 shows portions of the
PhotoItems user control XAML.

Listing 8-13. PhotoItems user control XAML

<Grid x:Name="LayoutRoot" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <Image Source=
 "{Binding Converter={StaticResource REF_WIAImageFileToBitmapConverter}}"
 Stretch="Uniform" x:Name="Photo" Grid.RowSpan="2"/>
 <StackPanel Orientation="Horizontal" Grid.Row="2"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch">

 <Button x:Name="btnSave" Content="Save To Disk"
 Click="btnSave_Click" Width="90"/>
 <datacontrols:DataPager x:Name="PhotoPager" PageSize="1"
 DisplayMode="PreviousNext" IsTotalItemCountFixed="True"
 HorizontalAlignment="Stretch" VerticalAlignment="Stretch"/>
 </StackPanel>
</Grid>

A DataPager control named PhotoPager is used to navigate through the images. An Image control

named Photo is used to display the image, and the Button named btnSave allows the user to save an
image to the disk when clicked. Listing 8-14 shows the relevant portions from the codebehind for
PhotoItems.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

742

Listing 8-14. PhotoItems user control codebehind

void PhotoItems_Loaded(object sender, RoutedEventArgs args)
{

 PhotoPager.Source = new PagedCollectionView(
 Device.Items.Where((itm) => itm.Formats.Contains(WIAFormatID.JPEG)))
 { PageSize = 1 };

 ShowPhoto();
 PhotoPager.PageIndexChanged += new EventHandler<EventArgs>((s, e) =>
 {
 ShowPhoto();
 });
 return;
}

private void ShowPhoto()
{
 try
 {
 WIAImageFile img = ((PhotoPager.Source as PagedCollectionView).
 CurrentItem as WIAItem).Transfer(WIAFormatID.JPEG);
 if (img == null) Photo.DataContext = null;
 else
 Photo.DataContext = img.FileData;
 }
 catch (Exception Ex)
 {
 Photo.DataContext = null;
 }
}

Each WIADevice instance exposes a property named Items, which is collection of WIAItem objects

that wraps around the Items indexed property on the Device COM object. The items on the device (in
this case, the device is a camera) can be images or other types of device specific data. In the Loaded
event handler of the PhotoItem control, you query the Items property on the selected WIADevice, acquire
only the JPEG images, wrap the filtered collection into a PagedCollectionView, and set it as the
PhotoPager source. You also set the PageSize on the PhotoPager to one, ensuring that the user pages
forward or backward for each image. You then call ShowPhoto(). In ShowPhoto(), you invoke the
Transfer() COM method on the current WIAItem on the bound PagedCollectionView, which transfers the
physical image as a WIAImageFile instance to the computer from the device. You then bind the
WIAImageFile.FileData property to the Photo Image control shown in Listing 8-13. You call ShowPhoto()
once every time a user pages through the DataPager to transfer and display other images. As you can
also see in the XAML in Listing 8-13, a value converter named WIAImageFileToBitmapConverter is used
in the image binding to convert the raw image data to a Silverlight bitmap. We do not list that code
here, but you can find the converter in the PhotoItems.xaml.cs file in the sample project for this recipe.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

743

Saving Images to the disk
Listing 8-15 shows the code to save an image to the disk.

Listing 8-15. Saving an image to the disk

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 //get the current WIAItem
 WIAItem itm = ((PhotoPager.Source as PagedCollectionView).
 CurrentItem as WIAItem);
 //get the raw data
 byte[] FileData = Photo.DataContext as byte[];
 //get the filename from the Item Properties collection
 string filename = itm.Properties.ToList().Where((wiaprop) =>
 wiaprop.Name == "Item Name").Select((wiaprop) =>
 (string)wiaprop.Value).FirstOrDefault();
 //create a file
 FileStream fs = File.Create(

 System.IO.Path.Combine(
 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures),
 filename + ".jpeg"));
 //write
 fs.Write(FileData, 0, FileData.Length);

 //close file
 fs.Close();
}

As you can see in the code shown in bold, you first obtain a target path for the file by combining

the path to the MyPicture special folder with the file name obtained from the Item Name WIA property
on the current WIAItem. You then use the well-known FileStream API to write the data to the file on the
file system, just as you would in a regular desktop .Net application.

Taskbar Notification
If you refer back to the code in Listing 8-13, you will note that when you handle a device connection
event, you optionally display a notification window if the main application window is minimized.
Figure 8-13 shows this notification window in action.

CHAPTER 8 ■ BUILDING OUT OF BROWSER SILVERLIGHT APPLICATIONS

744

Figure 8-13. Notification window showing a device connected event

Silverlight 4 introduces the NotificationWindow type that enables this scenario. The
NotificationWindow type exposes a Content property that you can set to any content in your application,
and it exposes a Show() method that can be invoked with a timeout parameter in milliseconds so that
the notification remains displayed for the specified timeout. As you can see in Listing 8-13, you create
your NotificationWindow instance, set it to some content that displays the device connection
notification, and then show it for 30 seconds.

C H A P T E R 9

■ ■ ■

 745

Building LOB Applications

Many of the public Silverlight sites are media-focused as a result of Silverlight’s strong client-side media
capabilities, such as HD video coupled with a Windows Media Services or a smooth streaming back end.
Many other sites also publish interactive content beyond video; but for corporate development support
of traditional Create, Read, Update, and Delete (CRUD) applications as well as data-driven rich Internet
applications, you need a strong control set with rich data support.

Silverlight LOB Enhancements
Silverlight 3 introduced additional controls for line-of-business (LOB) application development. In
addition, Silverlight 3 introduced the new Silverlight Navigation Application project template, which
provides a great starter application for a LOB application. We covered the Silverlight Navigation
Application basics in Chapter 6 because it also provides great integration with the browser history and
support for direct page links.

Silverlight 4 builds on these capabilities with improved data-oriented controls as well as new
controls such as the RichTextBox control to display, enter, and edit rich text and the WebBrowser control
for hosting HTML within an out-of-browser (OOB) application. Speaking of which, Silverlight 4 greatly
improves OOB functionality to enhance LOB development. We cover the details of OOB development in
Chapter 8 but here are some highlights related to LOB development:

• HTML hosting in the WebBrowser control

• Pop-up alerts with the NotificationWindow class

• Support for elevated trust to the underlying platform

Other LOB-related enhancements in Silverlight 4 are drag-and-drop, clipboard access, right-click
mouse events, and printing. A major step forward is much better support for Commanding, which
allows developers to more easily implement Model-View-ViewModel applications when building data-
driven applications.

Data Access Enhancements
Silverlight 4 includes strong network service capabilities (refer to Chapter 7). In this chapter, we
highlight additional networking support for accessing data in a structured way via both WCF Data
Services and WCF RIA Services. The next two sections provide a high-level overview of these two
technologies. For a deeper discussion on these technologies and how they relate to other SOAP and
REST-based development models, please go to:

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

746

 blogs.msdn.com/endpoint/archive/2010/01/04/wcf-data-services-ria-services-alignment-
questions-and-answers.aspx.

WCF Data Services
Silverlight 4 includes rich support for accessing web data either on the Internet or intranet via WCF Data
Services. Formerly known as ADO.NET Data Services in Silverlight 3, WCF Data Services provides
support for REST-based data access as well as support for the new Open Data Protocol (OData) format.
You can learn more about OData at
www.odata.org/

Silverlight 4 introduces several improvements for WCF Data Services including a new
DataServiceCollection class that provides better data binding support with automatic updates to bound
controls and greatly simplifying REST development in Silverlight. WCF Data Services also supports both
out-of-browser and cross-domain execution in Silverlight 4.

WCF RIA Services
When you think LOB applications, you automatically think n-tier development. Introduced at Mix 09 in
beta as Microsoft .NET Rich Internet Applications (RIA) Services, the name has changed to WCF RIA
Services but the goal is the same, which is to simplify the development of n-tier solutions for Silverlight
RIA applications. WCF RIA Services is automatically installed when you download and install the
Silverlight 4 Tools for Visual Studio 2010.

The challenge with n-tier applications is flowing data across application tiers with support for edits,
validation, and so on. WCF RIA Services builds on the capabilities covered in Chapter 7 to provide a
framework that enables you to rapidly build Silverlight LOB n-tier applications.

WCF RIA Services provides a bridge between Silverlight 4’s rich presentation-tier capabilities and
ASP.NET’s powerful middle-tier capabilities on the server, including support for ASP.NET
authentication and user settings management.

To get started with WCF RIA Services, you create classes in the middle-tier web application that
inherit from the System.Web.DomainServices.DomainService base class to define a set of operations on
resources such as an ADO.NET Entity Model or other resources such as a user registration service. You
can have classes on the middle tier be available on the client-side in Silverlight by adding the
EnableClientAccess attribute to the middle-tier classes. WCF RIA Services will automatically generate
the corresponding client-side code into the presentation tier (the Silverlight application). At this point,
you can code against the generated client-side code without worrying about tracking and packaging up
changes and so forth to pass back to the middle tier. WCF RIA Services manages this for you.

9-1. Accessing RESTful Data using OData
Problem
You need to access web data in your Silverlight application.

Solution
Take advantage of existing REST and OData end-points either on the intranet or Internet.

http://www.odata.org

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

747

How It Works
Silverlight 4 includes a client development model that enables accessing REST and OData end-points by
simply using the Add Service Reference feature in Visual Studio 2010 to create the necessary client-side
representations of the server-side data.

To find your Web Data, navigate over to the odata.org site and click Producers to see what sample
data is available. You will connect to the OData Test read-only dataset available at
services.odata.org/OData/OData.svc/

The Code
To get started, right-click on Recipe 9-1 in Visual Studio and select Add Service Reference and enter the
URL for the sample OData service as shown in Figure 9-1.

Figure 9-1. Recipe 9-1 Adding an OData service reference

Clicking OK generates the necessary client-side code files to enable access to the service. Next, add
a using reference to bring in the client-side code:

using Ch09_LOBApplications.Recipe9_1.OdataDemoReadOnlyServiceReference
using System.Data.Services.Client

Then, add a MainPage_Loaded event handler on the main page where you do three things:

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

748

• Initialize the data service context to connect to the service

• Create a collection to store the data

• Define a handler for the LoadCompleted event for the collection when loaded

Here is the MainPage_Loaded event handler containing these steps:

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 context = new DemoService(
 new Uri("http://services.odata.org/OData/OData.svc/",
 UriKind.Absolute));
 Products = new DataServiceCollection<Product>(context);
 Products.LoadCompleted +=
 new EventHandler<LoadCompletedEventArgs>(Products_LoadCompleted);
}

As you can see, you configure the context variable to point to the OData test service. Next, you
instantiate a new DataServiceCollection with the Product type and assign a LoadCompleted event
handler. Then you add a Button to kick off loading the data and a DataGrid to display the data in the UI.
The LoadCompleted event fires when the GetProductsBtn is clicked.

In the GetProductsBtn Button event, you create a LINQ query to retrieve all of the products and then
pass the query in to the LoadAsync method on the Products variable of type
DataServiceCollection<Product>. The LoadAsync method uses the context variable to know where to
retrieve the data from. Here is the GetProductsBtn_Click event handler:

private void GetProductsBtn_Click(object sender, RoutedEventArgs e)
{
 ProductsGrid.DataContext = null;

 var ProductsQuery = from products in context.Products
 select products;

 Products.LoadAsync(ProductsQuery);
}

When LoadAsync completes, the DataServiceCollection.LoadCompleted event is fired on the
Products variable, which checks for an error; if no errors are present, it assigns the data to the
ProductsGrid.ItemSource property as shown in Listing 9-1.

Listing 9-1. The Recipe 9-1 Products_LoadCompleted Method

void Products_LoadCompleted(object sender, LoadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 // Load all pages of Orders before binding.
 if (Products.Continuation != null)

http://services.odata.org/OData/OData.svc

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

749

 {
 Products.LoadNextPartialSetAsync();
 }
 else
 {
 // Bind the root StackPanel element to the collection;
 // related object binding paths are defined in the XAML.
 ProductsGrid.ItemsSource = Products;
 ProductsGrid.UpdateLayout();

 // Re-enable the button since the loading is complete.
 GetProductsBtn.IsEnabled = true;

 // Set the focus to the first order, which loads the related items.
 ProductsGrid.SelectedIndex = 0;
 }
 }
 else
 {
 MessageBox.Show(string.Format("An error has occured: {0}", e.Error.Message));
 GetProductsBtn.IsEnabled = true;
 }
}

The result of this code is shown in Figure 9-2.

Figure 9-2. Recipe 9-1 UI after loading data

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

750

9-2. Using Visual Studio 2010 WCF Data Services Tooling
Problem
You have a database that you want to make available via REST and OData programming models.

Solution
Take advantage of Visual Studio 2010 tooling to publish a database via WCF Data Services and the OData
protocol and then access the database from Silverlight 4.

How It Works
You already saw the tooling on how to add a Service Reference to an OData service using Visual Studio
2010 in Recipe 9-1. In this recipe, you learn how to make a database available as a service using the
tooling in Visual Studio 2010 and then access that service from Silverlight.

The Code
Start by creating an ADO.NET Entity Framework Data Model named Northwind.edmx that contains all of
the tables in Northwind in a folder named DataModel in the ASP.NET TestWeb project. Next, create a
folder named DataService in the ASP.NET TestWeb project and then add a WCF Data Service item named
NorthwindDataService.svc to the DataService folder. Here is the generated data service code:

public class NorthwindDataService :
 DataService</* TODO: put your data source class name here */ >
{
 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and
 // service operations are visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset",EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule(
 // "MyServiceOperation", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;

 }
}

You perform the first TODO mentioned in the code by replacing the comment in the constructor
with the type TestWeb.DataModel.NorthwindEntities to make the entities available via the Data
Service. Next, you edit the InitializeService method to configure access rules for your entities by
granting all rights to all entities in this line of code:

config.SetEntitySetAccessRule("*", EntitySetRights.All);

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

751

When you run the service to display it in code, it looks like Figure 9-3.

Figure 9-3. Recipe 9-2 Northwind Data Service

To view just the Orders data, you can alter the URL by appending Orders to the end like this:

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

752

http://localhost:64524/DataService/NorthwindDataService.svc/Orders

Figure 9-4 shows the results as a feed.

Figure 9-4. Recipe 9-2 Northwind Data Service Orders feed

To view the feed as XML, go to Internet Explorer Tools | Internet Options | Content | Feed and Web
Slice Settings | and uncheck Turn on feed reading view. Figure 9-5 shows the feed as XML.

http://localhost:64524/DataService/NorthwindDataService.svc/Orders

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

753

Figure 9-5. Recipe 9-2 Northwind Data Service Orders feed as XML

Next, select Recipe 9-2 and right-click to bring up the Add Service Reference menu and click
Discover to automatically find the NorthwindDataService in the TestWeb project. Give the service a
namespace of NorthwindDataServiceReference and click OK to add the client side code to access the data
service.

Add a using clause to MainPage.xaml.cs to bring in the service namespace. The code is similar to
that in Recipe 9.1 and is shown in Listing 9-2.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

754

Listing 9-2. The Recipe 9-2 MainPage.Xaml.cs Codebehind File

using System;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using Ch09_LOBApplications.Recipe9_2.NorthwindDataServiceReference;
using System.Data.Services.Client;

namespace Ch09_LOBApplications.Recipe9_2
{
 public partial class MainPage : UserControl
 {
 NorthwindEntities NorthwindContext;
 DataServiceCollection<Customer> Customers;

 public MainPage()
 {
 InitializeComponent();
 }
 private void UserControl_Loaded(object sender, RoutedEventArgs e)
 {
 NorthwindContext = new NorthwindEntities(
 new Uri("DataService/NorthwindDataService.svc", UriKind.Relative));
 Customers = new DataServiceCollection<Customer>(NorthwindContext);
 Customers.LoadCompleted +=
 new EventHandler<LoadCompletedEventArgs>(Customers_LoadCompleted);
 }

 void Customers_LoadCompleted(object sender, LoadCompletedEventArgs e)
 {
 if (e.Error == null)
 {
 // Load all pages of Orders before binding.
 if (Customers.Continuation != null)
 {
 Customers.LoadNextPartialSetAsync();
 }
 else
 {
 // Bind the root StackPanel element to the collection;
 // related object binding paths are defined in the XAML.
 NorthwindDataGrid.ItemsSource = Customers;
 NorthwindDataGrid.UpdateLayout();

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

755

 // Re-enable the button since the loading is complete.
 GetCustomersBtn.IsEnabled = true;

 // Set the focus to the first order, which loads the related items.
 NorthwindDataGrid.SelectedIndex = 0;
 }
 }
 else
 {
 MessageBox.Show(
 string.Format("An error has occured: {0}", e.Error.Message));
 GetCustomersBtn.IsEnabled = true;
 }
 }

 private void GetCustomersBtn_Click(object sender, RoutedEventArgs e)
 {
 NorthwindDataGrid.DataContext = null;

 var CustomersQuery = from customers in NorthwindContext.Customers
 select customers;

 Customers.LoadAsync(CustomersQuery);
 }
 }
}

Figure 9-6 shows the data displayed in the final user interface.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

756

Figure 9-6. Final UI for Recipe 9-2

9-3. Implementing CRUD Operations in WCF Data Services
Problem
You need to have read-write access to data published via OData.

Solution
Take advantage of WCF Data Services enhancements such as DataServiceCollection available in
Silverlight 4 to implement CRUD operations.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

757

How It Works
WCF Data Services support entity tracking on the client so that you can submit a query to the service in
order to populate a DataServiceCollection that is databound to a UI control such as a DataGrid. You
used this technique in Recipe 9-1 and Recipe 9-2 to load read-only data. In this recipe, you do the same
but there’s a twist: now you can insert, update, and delete edits.

The code is covered in detail in the next subsection but here are the key points on how the code
works. In this recipe, you edit order details for the Northwind database, first loading all of the
Customers, the related Orders, and finally the related Order Detail line items. The code allows the user
to do the following:

• Delete the selected Order Details line item

• Update the Quantity for an existing Order Details line item

• Add an Order Details line item to an existing Order

You created a Service Reference to the Northwind Data Service in Recipe 9-2. The client-side proxy

provides the NorthwindEntities type that inherits from
System.Data.Services.Client.DataServiceContext. You create an instance of that class called
NorhwindContext, running all queries and operations through the DataServiceContext instance. This is
required in order to keep things synchronized across entities as you make edits.

Once you have the data context established, you go through the process of querying data and
enabling edits. The code is very simple once you see the pattern. Essentially, you identify the object to
be deleted, updated, or created and call methods on NorthwindContext to make it happen. The
operation occurs locally in the DataServiceCollection instance of interest (i.e. the Order_Details entity)
and then the changes are applied on the server via NorthwindContext.

The Code
Take advantage of the Northwind Data Service you created in Recipe 9-2 and add a service reference to
make it available in Recipe 9-3’s Silverlight application. In UserControl_Loaded you create a
DataServiceContext instance named NorthwindContext as before. You add one directive to have
NorthwindContext apply changes as a batch by updating SaveChangesDefaultOptions since the insert
operation affects multiple tables, as shown here:

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 NorthwindContext = new NorthwindEntities(
 new Uri("DataService/NorthwindDataService.svc", UriKind.Relative));
 NorthwindContext.SaveChangesDefaultOptions = SaveChangesOptions.Batch;
}

Next, you have a series of similar operations as in Recipe 9-1 and 9-2 where you load up three
DataGrid instances with Customer data, Customer Order data, and finally the corresponding Customer
Order Details data where you implement simple CRUD operations. (We don’t go through the data
loading code so as to not be redundant.) Essentially, when the user clicks the Load Northwind Customer
Data button, it populates the Customers DataServiceCollection<Customer> instance that is databound to
the top left DataGrid. The Load Customer Orders button loads the Orders that correspond to the
selected Customer into the DataGrid on the upper right. The same process is implemented to load up the
corresponding Order_Details in the DataGrid on the lower right. At this point, you have the data that

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

758

you want to perform edits on in the Order_Details data. Next, add a UI for making edits with buttons
that correspond to deleting, updating, and creating an Order_Details entity, as shown in figure 9-7.

Figure 9-7. The UI for Recipe 9-3

To load the data, simply clicked the Load Northwind Customer Data button, followed-by the Load
Customer Orders button, and finally the Load Customer Order Details button. You can select a
particular record before clicking the next step if desired to test it out but you must click the buttons in
that order for the simple UI to function.

The Delete Selected Line Item button does what it suggests: it deletes the selected Order_Details
record in the Customer Order Details DataGrid. Here is the event handler for the button:

private void DeleteDetailsItemBtn_Click(object sender, RoutedEventArgs e)
{

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

759

 if (CustomerOrderDetailsDataGrid.SelectedItem != null)
 {
 NorthwindContext.DeleteObject(
 (Order_Detail)CustomerOrderDetailsDataGrid.SelectedItem);
 NorthwindContext.BeginSaveChanges(
 SaveChangesOptions.Batch, ChangesSaved, NorthwindContext);
 }
}

Since you have the Order_Details object to be deleted already on the client as part of the
CustomerOrderDetails DataServiceCollection<Order_Detail> collection, you can simply pass in the
DataGrid SelectedItem to DeleteObject and all of the change tracking magic on the client takes care of
the rest. However, to push the changes to the server, call BeginSaveChanges on the NorthwindContext
object which knows where the WCF Data Service lives and how to apply the changes.

The code to perform the update operation is a little bit more complicated but not much more. Here
is the code:

private void UpdateDetailsItemBtn_Click(object sender, RoutedEventArgs e)
{
 ((Order_Detail)CustomerOrderDetailsDataGrid.SelectedItem).Quantity =
 Convert.ToInt16(EditQuantity.Text);
 NorthwindContext.UpdateObject(
 (Order_Detail)CustomerOrderDetailsDataGrid.SelectedItem);

 NorthwindContext.BeginSaveChanges(
 SaveChangesOptions.Batch, ChangesSaved, NorthwindContext);
}

The code is similar except you call the NorthwindContext.UpdateObject method and pass in the
modified object to complete the changes on the client and to mark the edited Order_Details entity as
modified. You edit the selected Order_Details entity by updating the Quantity value to match what is
entered in the EditQuantity TextBox.

The code to insert a new Order_Details entity as a child to the selected Customer Order is shown
here:

private void InsertlineItemBtn_Click(object sender, RoutedEventArgs e)
{
 Order_Detail od = new Order_Detail();
 Order SelectedOrder = (Order)CustomerOrdersDataGrid.SelectedItem ;
 Product SelectedProduct = (Product)ProductsDataGrid.SelectedItem ;
 od.Order = SelectedOrder;
 od.OrderID = SelectedOrder.OrderID;
 od.Product = SelectedProduct;
 od.ProductID = SelectedProduct.ProductID;
 od.Quantity = Convert.ToInt16(InsertProdQuantity.Text);
 od.UnitPrice = (Decimal)SelectedProduct.UnitPrice;

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

760

 NorthwindContext.AddToOrder_Details(od);
 NorthwindContext.BeginSaveChanges(ChangesSaved, NorthwindContext);
}

You have a small DataGrid on the left that lists all of the possible Products that you can add as a new
line item to the selected Order. Otherwise, the code to create the new Order_Details entity is very
straightforward. When the Service Reference client proxy is created, it automatically generates a method
called AddToOrder_Details on the NorthwindContext variable where you pass in the new Order_Details
entity to add the line item to the Order. As before, client-side changes are persisted to the service via the
BeginSaveChanges method, which is very different when compared to the ADO.NET Entity Framework

The last item to mention is the ChangesSaved method that is called after changes are persisted by
NorthwindContext shown here:

private void ChangesSaved(Object state)
{
 EditsMessage.Text = "Selected Line Item Modified + " + DateTime.Now.ToString();
}

You simply update a string with a time stamp, but instead of passing in the NorthwindContext
variable as the third parameter in the call below that is required to persist CRUD operations to the
server, you could pass in a custom structure that has properties to identify more detail such as the type
of operation, the name of the entity modified, etc., in order to provide a more robust status:

 NorthwindContext.BeginSaveChanges(ChangesSaved, NorthwindContext);

 9-4. Using Visual Studio 2010 WCF RIA Data Services Tooling
Problem
You need to create a Silverlight application that displays data from a database.

Solution
Take advantage of Microsoft WCF RIA Services and the Silverlight Business Application template to build
the foundation of a LOB application.

How It Works
In previous versions of Silverlight, you had to write a lot of custom code to access data in a Silverlight
application. With Silverlight 4 and WCF RIA Services, you can easily make data available to Silverlight in
a robust way with full support for XAML databinding, validation, and custom extensions to generated
code.

When you install the Silverlight 4 tools, it also installs WCF RIA Services, which includes all of the
functionality to make data easily accessible in Silverlight. WCF RIA Services includes support to
generate needed middle-tier classes that run on the web service. These classes access data from the
database and provide end points that the generated classes can access from a Silverlight application.

The first step is to create a data model that lives in the middle tier. You create data models using the
ADO.NET Entity Framework classes that can be consumed by WCF RIA Services.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

761

Once you have an ADO.NET Entity Framework data model available on the middle tier, you create
highly extensible Domain Services that provide end-points for Silverlight. The Domain Service class
provides services that make the Entities from the model available via a WCF end-point. This approach
provides a robust programming model in order to perform CRUD operations on the underlying database
tables. You can program against domain entities using LINQ to Objects. You can also add additional
methods to the Domain Services that implement business logic without breaking the model or the code
generation.

Connecting the endpoints to make the Entity classes available in Silverlight is very simple because
the WCF RIA Services framework automatically generates Silverlight client-side code to access the
Domain Service end-points for “linked” Silverlight applications. When you install WCF RIA Services, it
modifies the New Silverlight Application Wizard and the Silverlight project properties to include an
Enable WCF RIA Services checkbox. Enabling WCF RIA Services connects a Silverlight application to the
middle tier hosting the related Domain Services.

Once on the client, you can write code to instantiate a DomainContext, which keeps track of changes
as you access and updates Entities in Silverlight.

The Code
First, create a Silverlight application and check the Enable WCF RIA Services checkbox to establish

the WCF RIA Link. You can verify this by looking at the Silverlight tab in the project properties for Recipe
9-4 as shown in Figure 9-8.

Figure 9-8. Silverlight application properties with the WCF RIA Services link property highlighted

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

762

When the WCF RIA Services link is established, any domain services created in the TestWeb web
application are made available within the Silverlight project via the code-generation functionality built
into the WCF RIA Services framework. Figure 9-9 shows the Solution Explorer tool window for Recipe 9-4
with hidden files and folders displayed and all folders expanded.

Figure 9-9. Recipe 9-4 project contents

With hidden folders displayed, you see a folder named Generated_Code with a generated code file
named TestWeb.g.cs. This code file is brought in via WCF RIA Services code generation and is linked to
the TestWeb web project, which is also where the file gets its default name of TestWeb.g.cs. The contents
are auto-generated, not doing much more than establishing the WebContext, which makes web
application services such as authentication, authorization, etc. available in a Silverlight application

Now, shift gears to the middle tier and leave your Silverlight application ready to receive the
automatically generated client-side code. You will create an Entity Framework data model that contains
all of the available entities and then create a Domain Service to access it. First, create two folders named
DataModel and DomainService to hold the Entity Framework model and Domain Services, respectively.

Right-click on the data model folder and select Add New Item to bring up the project items dialog.
Click Data on the left to filter the project items available and select ADO.NET Entity Data Model. Name
it Northwind.edmx and click Add to bring up the Entity Data Model Wizard. Select Generate from
database and click Next. Click New Connection… to create a new database connect to the Northwind
database or select an existing connection if present. Note that the connection string is saved to the
Web.config file so you can edit this file as the project is moved between a development, test, and
production environment.

In the Choose your Database Objects page of the wizard, select all tables, and click Finish, accepting
the defaults. This results in the model shown in Figure 9-10.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

763

Figure 9-10. Recipe 9-4 data model

■ Note The ADO.NET Entity Framework is a very powerful object to relational modeling tool. For more
information on the ADO.NET Entity Framework, please go to msdn.microsoft.com/data/.

You are not going to customize the data model any further. Instead, create the Domain Service by
first compiling the project. Compiling the project makes the newly created data model available so that
the Add New Domain Service Class wizard can detect that it is available and thus create the service. The
newly created service makes the Person Entity available to the Silverlight application. Right-click on the
Domain Service folder, select Add | New Item…, and click on Web to filter the project templates so that
the Domain Service Class item template is visible. Give it a name of NorthwindSimpleDomainService and
click Add. This brings up the Add New Domain Service Class wizard as shown in Figure 9-11.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

764

Figure 9-11. Recipe 9-4 new domain service

Check all of the options available to generate a read-only OData endpoint, enable editing on all of
the available entities in WCF RIA Services, and generate associated classes for metadata. This results in
two additional class files and an updated Web.config file in the TestWeb project. The two new class files
are NorthwindDomainService.cs and NorthwindDomainService.metadata.cs in the DomainService
folder.

The NorthwindDomainService.cs file is the new domain service. It contains the methods shown in
Figure 9-12.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

765

Figure 9-12. NorthwindDomainService with collapsed methods

The generated code provides methods to get a list of the various entities as well as methods to
perform CRUD actions on entities. As the comments note in Figure 9-12, you can customize the
methods, add methods, etc., as needed to build your domain service. So, add a method called
GetCustomersByCity to return a list of Customers whose City starts with the passed in string:

public IQueryable<Customer> GetCustomersByCity(string value)
{
 var customerlist = from c in this.ObjectContext.Customers
 where c.City.StartsWith(value)
 select c;

 return customerlist;
}

The other generated class, NorthwindDomainService.metadata.cs, contains the metadata class for
the Person entity. Figure 9-13 shows the top portion of the class declaration.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

766

Figure 9-13. NorthwindDomainService with collapsed methods

For more detail on how to modify these files, such as how to add custom query methods to the
Domain Service and to add validation to the metadata class, see the previous recipe. For this recipe, you
now switch your focus to the client-side generated code in TestWeb.g.cs, located in the hidden folder of
the Generated_Code folder of the Silverlight project.

After establishing the WCF RIA Link between Recipe 9-4 and TestWeb, and then creating the
Adventure Works Domain Service, you build the project. The TestWeb.g.cs file in the Recipe 9-4
Silverlight project now has client-side code to allow access to your Northwind Data Model containing
the imported entities available in the Northwind Data Model.

You create a simple UI of a DataGrid and write some code to databind it to the client-side generated
code manually. You drag a DataGrid on to MainPage.xaml and name it CustomersDataGrid. In the
codebehind, add two using clauses to bring in the client-side generated code:

using TestWeb.DomainService;
using TestWeb.DataModel;

Next, modify the MainPage() constructor to manually call into the WCF RIA Services generated code.
Here is the code:

public MainPage()
{
 InitializeComponent();

 NorthwindDomainContext context = new NorthwindDomainContext();

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

767

 CustomersDataGrid.ItemsSource = context.Customers;
 context.Load<Customer>(context.GetCustomersQuery());
}

Create an instance of the domain context, databind the CustomersDataGrid to the Customers entity
collection, and then call Load on the NorthwindDomainContext, passing in the appropriate query resulting
in the customer data loading as shown in Figure 9-14.

Figure 9-14. Recipe 9-4 Final UI

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

768

9-5. Taking Advantage of the Business Application Template
Problem
You need a UI framework and development model as a base for building a LOB application.

Solution
Create a project using the Business Application Template and take advantage of WCF RIA Services.

How It Works
Prior to WCF RIA Services, you had to write a lot of custom code to build a robust LOB application in
Silverlight. With Silverlight 4 and WCF RIA Services, you can take advantage of powerful built-in
functionality to build a LOB application framework.

When you install WCF RIA Services, it adds a new project template called Silverlight Business
Application. The Silverlight Business Application template is built on top of the Silverlight 4 Navigation
Application template, which includes support for page navigation. The Business Application template
with page navigation facilitates creating a UI that implements different data forms or views on the data
with a basic menu system.

The Business Application template includes support for WCF RIA Services by default. The
application template also includes starter application services for user authentication and user profile
services.

The Code
Although you make some additions to the generated code that is highlighted in this recipe, there are no
code files other than the default code generated by the Silverlight Business Application project template.
We cover the generated code in detail for this recipe as a baseline for the recipes in the rest of this
chapter. Also, because the Silverlight Business Application template is based on the Silverlight
Navigation Application Project, which is covered in Recipe 6-10, we do not go into detail about the page
navigation and other functionality brought in by that application template.

The Silverlight Business Application template defines the WCF RIA Link between the Silverlight
application and the web application. When the WCF RIA Link is established, any domain services
created in the TestWeb web application are made available within the Silverlight project via the code-
generation functionality built into the WCF RIA Services framework. Figure 9-15 shows the Solution
Explorer tool window for Recipe 9-5, with the Silverlight application on the left and the Recipe 9.5.Web
project on the right.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

769

Figure 9-15. Silverlight Business template and Web site default files and folders

You see the typical project layout for the Silverlight Navigation template with the Assets and Views
folders along with App.xaml and MainPage.xaml. You also see the standard contents for a web project,
including the output from a linked Silverlight application. The Silverlight Business Application project
template adds a new folder named Services with two code files: AuthenticationService.cs and
UserRegistration.cs. These two code files contain starter-service functionality typical in a LOB
application for authentication, user profile information management, and user registration.

The AuthenticationService.cs file represents a simple domain service for authentication in an RIA
Services application. This item template includes two class instances based on classes provided by the
WCF RIA framework in the System.ServiceModel.DomainServices.Server.ApplicationService
namespace: AuthenticationBase implements a basic contract for authentication via a domain service.

As you can see, the Silverlight Business project includes quite a bit of code. We don’t go through it all
here because it is automatically generated code but we provide some highlights on extensibility.

Since the Business Application template leverages the ASP.NET services for authentication, profile,
and role management, you can customize that functionality to work just like you can in ASP.NET. For
example, you can customize authentication to use either Forms authentication or Windows
authentication.

In the Recipe 9-5 hidden folder Generated_Code, there is a file named
Ch09_LOBApplications.Recipe9_5.Web.g.cs, which represents the code generated by WCF RIA Services
for code in the web project marked with the attribute [EnableClientAccess]. When you open the
Ch09_LOBApplications.Recipe9_5.Web.g.cs to review its contents, you see the WebContext singleton. If
you take a look at this variable in IntelliSense, you see the list in Figure 9-16.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

770

Figure 9-16. WebContext methods and properties

Looking at the Authentication property, you can see that this is how you can access authentication-
related information on the current user as shown in Figure 9-17.

Figure 9-17. Authentication property methods and properties

The code Recipe9_5.WebContext.Current.User has methods and properties such as
IsAuthenticated, a Roles collection, and an IsInRole method to implement role-based authorization.
Again, if you are familiar with how this functionality works and is managed in ASP.NET, you are well
prepared for implementing it in Silverlight. If this functionality is new to you, we highly recommend
checking out the ASP.NET documentation.

The rest of the template is focused on implementing basic building block UI based on the Silverlight
Navigation Application template, which is discuss in Recipe 9-10.

9-6. Databinding in XAML
Problem
You prefer to databind controls without writing a large amount of code.

Solution
Take advantage of the Silverlight controls that enable codeless databinding in XAML such as the
DomainDataSource control.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

771

How It Works
Although the application services (such as authentication, registration, and profile support) that the
default Business Application template provides are very useful, WCF RIA Services are all about easily
providing data to a Silverlight application.

WCF RIA Services includes the DomainService class for the middle tier as covered in Recipe 9-2 and
9-3 so we will not repeat it. However, as quick background, we have an ADO.NET Entity Framework
model for the Northwind database as well as a Northwind Data Service.

In previous recipes, you performed all databinding in code. In this recipe, you leverage the
DomainDataSource XAML control for the presentation tier to manage data flow in the application.

The Code
The first thing you do is open the Recipe 9-6 properties dialog and enable the WCF RIA Services link for
the TestWeb project, save the project settings, and then recompile.

Drag a DomainDataSource control and a DataGrid on to the MainPage canvas. You want to display
customers from the Northwind database so you name them CustomersDomainDataSource and
CustomersDataGrid, respectively.

To connect the DomainDataSource to the Northwind Domain Service, you need to bring the
NorthwindDomainContext into MainPage.xaml. You do this by adding a namespace:

xmlns:NorthwindData="clr-namespace:TestWeb.DomainService"

Next, add a resource on to the page to make the NorthwindDomainContext available in XAML and
then configure your DomainDataSource and DataGrid as shown in Listing 9-3:

Listing 9-3. The Recipe 9-6 MainPage.Xaml File

<UserControl x:Class="Ch09_LOBApplications.Recipe9_6.MainPage"
 xmlns:dataControls=
 "clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Data"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 xmlns:riaControls=
 "clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.DomainServices"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:NorthwindData="clr-namespace:TestWeb.DomainService"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <UserControl.Resources>
 <NorthwindData:NorthwindDomainContext
 x:Key="NorthwindDomainContext" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

772

 <riaControls:DomainDataSource x:Name="CustomersDomainDataSource"
 DomainContext="{StaticResource NorthwindDomainContext}" AutoLoad="True"
 QueryName="GetCustomersQuery" />
 <sdk:DataGrid x:Name="CustomersDataGrid" ItemsSource=
 "{Binding Data, ElementName=CustomersDomainDataSource, Mode=TwoWay}" />
 </Grid>
</UserControl>

To configure the DomainDataSource, you set the DomainContext to the NorthwindDomainContext
StaticResource. Please note that it is easy to make a mistake and configure this to the DataContext
when configuring databinding. This is incorrect. In order to have the customer data load properly, you
browse the Ch09_LOBApplications.Recipe9_6.Web.g.cs code generated file to find the method
GetCustomersQuery and configure that on the QueryName property. You also tell the control to AutoLoad by
setting that property to True.

To configure the DataGrid, you databind its ItemSource property to the Data property on the
CustomersDomainDataSource object. Running the code results in Figure 9-18.

Figure 9-18. No-code XAML databinding in action

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

773

9-7. Navigating RIA LOB Data
Problem
You have a large amount of data in an application for end users to navigate.

Solution
Take advantage of paging, sorting, and filtering in Silverlight 4 to help end users navigate data.

How It Works
You take advantage of properties like DomainDataSource.PageSize as well as add additional controls like
the DataPager to implement paging. The DataPager is databound to the same DomainDataSource as the
DataGrid in order to enable paging.

In order to enable sorting and arranging the columns of data, configure the CanUserSourtColumns,
CanUserReorderColumns, and CanUserResizeColumns to true for the DataGrid object.

To configure Filtering, take advantage of the FilterDescriptor object on the DomainDataSource
control as demonstrated in the next section.

The Code
First, open the Recipe 9-7 properties dialog and enable the WCF RIA Link for the TestWeb project, save
the project settings, and then recompile. Then, copy the code from Recipe 9-6 where you databind via
XAML as your starting point for this recipe.

The first modification you make is to add PageSize=”5” to the Customer table DomainDataSource
control, which results in five records displayed in the Customer DataGrid. Next, add a DataPager to the
UI to allow record navigation. To enable the DataPager, you first need to set its Source Property to the
same value as what is configured for the DataGrid. You also set the PageSize=”5” in order to page
through the data five records at a time.

Unless databinding to a collection class that implements IPagedCollectionView, you must sort the
data. In most cases, you will databind to an IEnumerable collection, so configuring a SortDescriptor on
the DomainDataSource is required for the DataPager to function. You configure the Customer table data to
sort on the CustomerName field.

Configuring user-enabled sorting is very easy to do for the DataGrid; you simply set
CanUserSortColumns to True. You also set CanUserReorderColumns and CanUserResizeColumns to True to
add more UI flexibility.

The last feature that you want to add in this recipe is record filtering. Add a TextBlock to the top of
the UI to prompt users to enter a few letters to filter, and add a TextBox to enter the filter text. Next,
configure the DomainDataSource with a FilterDescriptor. You configure the FilterDescriptor to filter on
a PropertyPath of CompanyName data field with an Operator of “StartsWith.” You databind the Value field
on the FilterDescriptor to the Text property of the FilterTextBox element. If a user enters the letter “c”
in the FilterTextBox field, the data is automatically filtered down to just the CompanyNames that start with
c. Listing 9-4 has the XAML for Recipe 9-7.

Listing 9-4. The Recipe 9-7 MainPage.Xaml File

<UserControl x:Class="Ch09_LOBApplications.Recipe9_7.MainPage"
 xmlns:dataControls=

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

774

 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 xmlns:riaControls=
 "clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.DomainServices"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:NorthwindData="clr-namespace:TestWeb.DomainService"
 mc:Ignorable="d" d:DesignWidth="600"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
xmlns:toolkit="http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit"
d:DesignHeight="600”>
 <UserControl.Resources>
 <NorthwindData:NorthwindDomainContext x:Key="NorthwindDomainContext" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="34" />
 <RowDefinition Height="36" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <riaControls:DomainDataSource x:Name="CustomersDomainDataSource"
 DomainContext="{StaticResource NorthwindDomainContext}"
 AutoLoad="True" QueryName="GetCustomersQuery" Grid.RowSpan="4">
 <riaControls:DomainDataSource.SortDescriptors >
 <riaControls:SortDescriptor PropertyPath="CompanyName"
 Direction="Ascending"/>
 </riaControls:DomainDataSource.SortDescriptors>
 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor PropertyPath="CompanyName"
 Operator="StartsWith"
 Value="{Binding Text, ElementName=FilterTextBox}" />
 </riaControls:DomainDataSource.FilterDescriptors>
 </riaControls:DomainDataSource>
 <sdk:DataPager PageSize="5" Height="28"
 VerticalAlignment="Top" Grid.Row="1" Margin="0,3,0,0"
 Source="{Binding Data, ElementName=CustomersDomainDataSource, Mode=TwoWay}" />
 <sdk:DataGrid x:Name="CustomersDataGrid" Grid.Row="2"
 Height="134" VerticalAlignment="Top" CanUserSortColumns="True"
 CanUserReorderColumns="True" CanUserResizeColumns="True"
 ItemsSource="{Binding Data, ElementName=CustomersDomainDataSource, Mode=TwoWay}"
/>
 <TextBlock Height="29" Name="textBlock1" VerticalAlignment="Top"
 LineHeight="13.333" FontSize="13.333" HorizontalAlignment="Left"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

775

 Width="355" Margin="0,4,0,0"
 Text="Enter The First Few Letters of the Company Name:" />
 <TextBox x:Name="FilterTextBox" HorizontalAlignment="Right"
 Margin="0,4,8,1" TextWrapping="Wrap" Width="233"
d:LayoutOverrides="VerticalAlignment"/>
 </Grid>
</UserControl>

Figure 9-19 has the UI for Recipe 9-7.

Figure 9-19. Final UI for Recipe 9-7

9-8. Implementing CRUD Operations in RIA Services
Problem
You need to implement CRUD operations on LOB data that includes complicated business logic.

Solution
Take advantage of WCF RIA Services features to support CRUD operations in a customizable way.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

776

How It Works
You build on Recipe 9-7’s code, updating the layout a bit, adding a button, and adding the star of the
recipe: the DataForm control. This is a very powerful record details editing control that enables all CRUD
operations directly. It can be templated and customized from a UI perspective as well. For this recipe,
you introduce the control and focus on how to allow edits to happen on the client but control when edits
are sent to the server.

The Code
You start this recipe by opening the Recipe 9-8 properties dialog, enabling the WCF RIA Services link for
the TestWeb project, saving the project settings, and then recompiling. Then copy the code from Recipe
9-7 where you databind via XAML and add sorting and paging as your starting point for this recipe.

Adjust the root Layout Grid and position on the filtering TextBox for space to add a Button that
commits any edits to the server via WCF RIA Services. Next, add a DataForm control. The DataForm
control can bind to either a collection of records or a single record. In this example, you want the
DataForm to provide a details view of the selected record in the DataGrid.

To enable this, databind the DataForm.CurrentItem property to the DataGrid’s SelectedItem
property via Element databinding. Listing 9-5 has the XAML file code listing.

Listing 9-5. The Recipe 9-8 MainPage.Xaml File

<UserControl x:Class="Ch09_LOBApplications.Recipe9_8.MainPage"
 xmlns:dataControls=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 xmlns:riaControls=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.DomainServices"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:NorthwindData="clr-namespace:TestWeb.DomainService"
 mc:Ignorable="d"
 d:DesignHeight="600" d:DesignWidth="600"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 xmlns:dataFormToolkit=
 "clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.DataForm.Toolkit">
 <UserControl.Resources>
 <NorthwindData:NorthwindDomainContext x:Key="NorthwindDomainContext" />
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White" ShowGridLines="False">
 <Grid.RowDefinitions>
 <RowDefinition Height="34" />
 <RowDefinition Height="36" />
 <RowDefinition Height="160" />
 <RowDefinition Height="*" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

777

 </Grid.RowDefinitions>
 <riaControls:DomainDataSource x:Name="CustomersDomainDataSource"
 DomainContext="{StaticResource NorthwindDomainContext}"
 AutoLoad="True" QueryName="GetCustomersQuery" Grid.RowSpan="4">
 <riaControls:DomainDataSource.SortDescriptors >
 <riaControls:SortDescriptor PropertyPath="CompanyName"
 Direction="Ascending"/>
 </riaControls:DomainDataSource.SortDescriptors>
 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor PropertyPath="CompanyName"
 Operator="StartsWith"
 Value="{Binding Text, ElementName=FilterTextBox}" />
 </riaControls:DomainDataSource.FilterDescriptors>
 </riaControls:DomainDataSource>
 <sdk:DataPager PageSize="5" Height="28"
 VerticalAlignment="Top" Grid.Row="1" Margin="0,3,0,0"
 Source="{Binding Data, ElementName=CustomersDomainDataSource, Mode=TwoWay}" />
 <sdk:DataGrid x:Name="CustomersDataGrid" Grid.Row="2" Margin="2"
 Height="160" VerticalAlignment="Top" CanUserSortColumns="True"
 CanUserReorderColumns="True" CanUserResizeColumns="True"
 ItemsSource="{Binding Data,
 ElementName=CustomersDomainDataSource, Mode=TwoWay}" />
 <StackPanel Margin="0,4,7,0" Orientation="Horizontal" d:LayoutOverrides="Width">
 <TextBlock Height="29" x:Name="textBlock1" VerticalAlignment="Top"
 LineHeight="13.333" FontSize="13.333" HorizontalAlignment="Left"
 Width="355"
 Text="Enter The First Few Letters of the Company Name:"
TextAlignment="Center" />
 <TextBox x:Name="FilterTextBox" TextWrapping="Wrap" Width="73"
 Margin="0,2,0,4"/>
 <Button Content="Save To Server" Height="28" HorizontalAlignment="Left"
 Margin="30,0,0,0" x:Name="ButtonCommitToServer"
 VerticalAlignment="Top"
 Width="118" IsEnabled="True" Click="ButtonCommitToServer_Click" />
 </StackPanel>
 <toolkit:DataForm Margin="2" Grid.Row="3" x:Name="CustomerDataForm"
 CurrentItem="{Binding SelectedItem, ElementName=CustomersDataGrid,
 Mode=TwoWay}"
 AutoCommit="False" AutoEdit="False" Header="Customer Details" />
 </Grid>
</UserControl>

Initially, when you drop the DataForm control onto the Grid and databind it to the DataGrid, AutoEdit
defaults to True as does the AutoCommit property. Configure both AutoEdit and AutoCommit to false to

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

778

gain more control over how edits are processed. This also enables the additional button editing UI on
the DataForm control as shown in Figure 9-20.

Figure 9-20. Final UI for Recipe 9-8

Clicking the Edit button (the pencil) on the Customer Details DataForm control allows the user to
perform CRUD operations. You configure the control explicitly to display all of the buttons in the
constructor for MainPage after Initialization. The only other item to cover is the Save to Server button.
When you perform edits using the DataForm, they exist on the client in the form of changes to the object
representing each database record. Because you disabled AutoCommit, you need to manually send any
pending changes, as shown in Listing 9-6.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

779

Listing 9-6. Recipe 9-8 MainPage.Xaml.cs File

using System.Windows;
using System.Windows.Controls;

namespace Ch09_LOBApplications.Recipe9_8
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 CustomerDataForm.CommandButtonsVisibility =
 DataFormCommandButtonsVisibility.All;
 }

 private void ButtonCommitToServer_Click(object sender, RoutedEventArgs e)
 {
 if (CustomersDomainDataSource.HasChanges &&
 !CustomersDomainDataSource.IsBusy)
 CustomersDomainDataSource.SubmitChanges();
 }
 }
}

9-9. Data Validation through Data Annotation

Problem
You need to implement data validation within your Silverlight LOB application.

Solution
Take advantage of Data Annotations via attributes in Silverlight 4 to implement data validation.

How It Works
When you add a Domain Service to a web project, you have the option of generating a metadata class.
The metadata class is a partial class that allows developers to apply validation configuration without
having to worry about the classes getting regenerated automatically if the underlying model changes.

The data annotations sit in the System.ComponentModel.DataAnnotations namespace. There are
three categories of attributes in this namespace that can be applied to entities, validation attributes,
display attributes, and data modeling attributes. Table 9-1 has a list of the validation attributes that can
be applied to entities via the metadata class.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

780

 Table 9-1. Path Context Menu Suboptions

Submen Attribute Description

CustomValidationAttribute Allows the developer to identify a custom method in code to validate a
property. This is an alternative to creating a custom validation attribute.

DataTypeAttribute Has a related enumeration named DataType that has pre-configured data
types on it such as EmailAddress, Phone, etc.

EnumDataTypeAttribute Validates the value configured on a property to ensure it is part of the
identified enumeration type.

RegularExpressionAttribute Allows the developer to specify a regular expression for validation.

RequiredAttribute Identifies that the property is required.

StringLengthAttribute Specifies a minimum and maximum character length.

ValidationAttribute Abstract base class for validation attributes.

The two available extension points for developers are to create a custom validation attribute that
inherits from the ValidationAttribute base class or create a custom class method and designate that
method using the CustomValidationAttribute class.

The Code
For the code, you proceed as before by establishing the WCF RIA Link in the project properties (as in
Recipe 9-7 and 9-8). You also copy the UI code from Recipe 9-8 to have a working UI to start out. You
generated a metadata class for the Customers Domain Service in Recipe 9-4 so you will edit Customer
domain service metadata class.

The file NorthwindDomainService.metadata.cs contains the metadata classes for the
NorthwindDomain Service. If you search in that file, you will find an internal sealed class named
CustomerMetadata. You apply the [Required] attribute to a number of properties. You also apply the
[DataType(DataType.PhoneNumber)] attribute to the Fax and Phone fields. Listing 9-7 shows the code.

Listing 9-7. The Recipe 9-9 MainPage.Xaml File

internal sealed class CustomerMetadata
{
 // Metadata classes are not meant to be instantiated.
 private CustomerMetadata()
 {
 }

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

781

 [Required]
 public string Address { get; set; }

 [Required]
 public string City { get; set; }

 [Required]
 public string CompanyName { get; set; }

 [Required]
 public string ContactName { get; set; }

 [Required]
 public string ContactTitle { get; set; }

 [Required]
 public string Country { get; set; }

 public EntityCollection<CustomerDemographic> CustomerDemographics { get; set; }

 [Required]
 public string CustomerID { get; set; }

 [Required,DataType(DataType.PhoneNumber)]
 public string Fax { get; set; }

 public EntityCollection<Order> Orders { get; set; }

 [Required, DataType(DataType.PhoneNumber)]
 public string Phone { get; set; }

 public string PostalCode { get; set; }

 public string Region { get; set; }
}

Figure 9-21 shows the validation in action with the automatically generated error message at the
bottom.

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

782

Figure 9-21. Final UI for Recipe 9-9

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

783

9-10. Printing in a Silverlight LOB Application
Problem
You need to support printing in your Silverlight application.

Solution
Take advantage of the new printing support available in Silverlight 4.

How It Works
Users can leverage the browser printing capabilities to print Silverlight applications in Silverlight 3 but
there are many situations where LOB applications need to have customized printing. Silverlight 4
includes the new PrintDocument class to provide printing capabilities to Silverlight applications.

After you add a PrintDocument object to the application, you can call the Print() method in a Button
event handler. It is required that all dialog boxes in Silverlight must be user-initiated, otherwise a
SecurityException will occur.

To perform the print operation, you handle the PrintPage event for the PrintDocument object. In
the PrintPage event handler, set the PrintPageEventArgs.PageVisual property to the root UIElement that
you want to print. So, if you want to print a single object like a DataGrid, you can set it on the PageVisual
property. If you want to print a whole set of controls configured on a Grid, you set the PageVisual
property to the Grid and all of its child controls will be printed as well.

To print multiple pages, you can set the PrintPageEventArgs.HasMorePages to true and the
PrintPage event will fire again until HasMorePages is set to false. If you need to print a multi-page
document, you can handle the BeginPrint event where you can page the data in a multipage document
to the next page so that it is ready to be printed when PrintPage fires. You can perform post-printing
clean up as well as check for errors in the EndPrint event.

The Code
To add printing support, you add a using clause for the System.Windows.Printing namespace. Next,
declare an instance of the PrintDocument class and a few variables to keep track of current printing
(currentpagePrinting) page and the page (savedPageNum) you should reset to after printing.

You wire up the PrintPage event to your PrintDocument variable, which is where most of the action
happens. In the PrintPage event handler, you set the PageVisual value to the CustomersDataGrid. Next,
you have some logic to page through the data in order to print out all of the records. Listing 9-8 has the
code.

Listing 9-8. The Recipe 9-10 MainPage.Xaml.cs File

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Printing;

namespace Ch09_LOBApplications.Recipe9_10
{

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

784

 public partial class MainPage : UserControl
 {
 PrintDocument pd = new PrintDocument();
 int currentpagePrinting = 1;
 int savedPageNum = 0;

 public MainPage()
 {
 InitializeComponent();
 CustomerDataForm.CommandButtonsVisibility =
 DataFormCommandButtonsVisibility.All;

 pd = new PrintDocument();
 pd.PrintPage +=
 new EventHandler<PrintPageEventArgs>(pd_PrintPage);
 }

 void pd_PrintPage(object sender, PrintPageEventArgs e)
 {
 e.PageVisual = CustomersDataGrid;
 if (currentpagePrinting <= CustomerPager.PageCount)
 {
 e.HasMorePages = true;
 currentpagePrinting++;
 CustomerPager.PageIndex = currentpagePrinting;
 }
 else
 {
 e.HasMorePages = false;
 CustomerPager.PageIndex = savedPageNum;
 }
 CustomersDataGrid.UpdateLayout();
 }

 private void ButtonCommitToServer_Click(object sender,
 RoutedEventArgs e)
 {
 if (CustomersDomainDataSource.HasChanges &&
 !CustomersDomainDataSource.IsBusy)
 CustomersDomainDataSource.SubmitChanges();
 }

 private void PrintButton_Click(object sender, RoutedEventArgs e)
 {
 pd.Print("Customer List");

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

785

 currentpagePrinting = 1;
 savedPageNum = CustomerPager.PageIndex;
 CustomerPager.PageIndex = 1;
 CustomersDataGrid.UpdateLayout();
 }
 }
}

For more information on multi-page printing, go to the Multipage printing lab at

channel9.msdn.com/learn/courses/Silverlight4/SL4BusinessModule6/SL4LOB_06_Printing_the_Sched
ule/

CHAPTER 9 ■ BUILDING LOB APPLICATIONS

786

C H A P T E R 1 0

■ ■ ■

 787

Integrating Rich Media

If you are a developer or a digital content producer of any kind, you probably have already built or are
thinking of building applications that integrate video, audio, or other kinds of digital media with the
resulting end-user experience. The ability to integrate rich media into web applications is one of the
strongest and most publicized features of Silverlight, and it is the focus of the recipes in this chapter.

Silverlight supports playing Windows Media Video (WMV) version 7 through version 9, including the
Windows Media implementation of the Society of Motion Picture and Television Engineers (SMPTE) VC-
1 high-definition video standard, as well as H.264 encoded media contained in an MP4 container
structure, extending video format support to MP4 video as well as other MP4-derived containers such as
H.264 encoded QuickTime video.

Silverlight also supports MPEG Layer-3 (or MP3) audio and audio encoded in the Advanced Audio
Coding (AAC) format, but it is currently limited to the AAC LC variant for two-channel stereo sound only.

Silverlight supports playing both client-side and server-side playlists. Silverlight supports media
acquisition over the HTTP and HTTPS protocols. You can use the Microsoft Media Server (MMS) protocol,
Real Time Streaming Protocol (RTSP), or RTSP using TCP (RTSPT) for media access, but Silverlight falls
back to using HTTP when it encounters these protocol schemes. Silverlight also supports accessing media
through either progressive download or streaming mechanisms.

In this chapter, we discuss recipes that showcase the various media capabilities of Silverlight,
especially those of a type named MediaElement that is central to Silverlight-based media integration.
Along the way, you will build a video player that evolves incrementally over the recipes to highlight
specific features. Although we focus on media-related types, APIs, and techniques, we assume that you are
already familiar with the fundamentals of the programming model, XAML-based UI design, data binding,
control design, and networking. Consequently, in explaining the code in the recipes in this chapter, we
focus purely on the media-related aspects and rely on you to understand the aforementioned concepts
wherever they are used. If you have not covered these topics in this book or elsewhere, we advise you to
read Chapters 2, 3, 4, 5, and 7, which help you prepare for the recipes in this chapter.

10-1. Adding Video to a Page

Problem
You want to play some video on your page.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

788

Solution
Add a System.Windows.Controls.MediaElement to the page, and use a System.Windows.Media.VideoBrush to
render the video.

How It Works
At the heart of enabling rich media in Silverlight applications is an object called MediaElement from the
System.Windows.Controls namespace. MediaElement behaves like a datasource for rich media in your
application—you place a MediaElement in your XAML and connect your code to the media by specifying
an URI for the actual media source. The MediaElement then starts playing the media on your page.
MediaElement supports playing both video and audio in the formats mentioned in the chapter’s
introduction.

Using MediaElement
MediaElement implements various properties and events to allow fine-grained control of media playback.
Here are some examples:

• You can track and control the progress of play and respond to various stages of download and
buffering.

• You can set up various properties to control media playback, such as autoplay, volume, muting,
and stretching.

• You can respond to embedded timeline markers in the media to take custom actions.

We look at the MediaElement API in more details in the next recipe when we build a complete player.
This code snippet shows the MediaElement being used in XAML:

<MediaElement
 Source="http://localhost/SLBook/Ch10_RichMedia/Media/SuperSpeedway.wmv"
 AutoPlay="True" x:Name="medElem" Opacity="0.0"/>

The Source property points to the source of the media. In this case, the source is pointing directly to a

Windows Media Video file that is progressively downloaded over HTTP. The AutoPlay property
determines if the media starts playing immediately. When set to True for progressive download
scenarios, the media starts playing almost immediately. In the case of streamed video, the media starts
playing when a specified amount is buffered locally. When set to False, the MediaElement.Start() method
needs to be invoked to start playing the media. You learn more about progressive download and
streaming in later recipes.

VideoBrush
MediaElement renders video by default in a rectangular shape determined by the Height and the Width
properties of the MediaElement. However, you may need to implement more complex designs, such as
rendering video bounded by a shape like a Rectangle or a control like the Border. Silverlight defines a
type called VideoBrush that can be connected to a MediaElement instance and then used to fill a shape or a
control in the XAML with video.

This XAML snippet shows an example:

http://localhost/SLBook/Ch10_RichMedia/Media/SuperSpeedway.wmv

CHAPTER 10 ■ INTEGRATING RICH MEDIA

789

<Border CornerRadius="5,5,5,5" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" BorderBrush="Black" BorderThickness="3">
 <Border.Background>
 <VideoBrush SourceName="medElem" Stretch="Fill"/>
 </Border.Background>
</Border>

This snippet uses a Border to bound the video and uses the VideoBrush to render the video as the

Border’s background. The SourceName property of the VideoBrush points to the name of the MediaElement to
use, and the Stretch property determines how the video is stretched to fill the area being painted with the
VideoBrush.

Note that because the MediaElement renders the video itself, using a VideoBrush this way would
normally cause the video to be displayed twice on your UI. The traditional approach is to hide the
MediaElement’s default rendering and choose to use that of the VideoBrush. Because the VideoBrush can be
used any place where any other kind of brush can be used, this approach gives you more control over
where and how to display the video in the overall UI. We show how to hide the MediaElement later in the
recipe’s code.

If the Stretch property is set to None, the video is set to play, maintaining its original resolution and
aspect ratio. This means that, depending on the dimensions of the container control in which the
VideoBrush is rendering, the rendered video may be clipped. Figure 10-1 shows a 720p video clip playing
in a Border with Height set to 400, Width also set to 400, and the Stretch property value of the VideoBrush
set to None.

Figure 10-1. 720p video playing in 400 400 container with Stretch=None

As you can see, the video maintains its original resolution of 1280 720 and its original aspect ratio
of 16:9 as evident from the cropping.

If the Stretch property is set to Fill, the VideoBrush scales the video to fill the container exactly. The
height and width are scaled independently to exactly match the height and the width of the container.
This can cause the video to distort because the original aspect ratio is changed to fit the aspect ratio
determined by the dimensions of the container. Obviously, if the container dimensions match the video’s
aspect ratio, you will avoid this. Figure 10-2 shows the result of Stretch set to Fill for a 16:9 clip playing
inside a 400 400 Border. Note the obvious distortion in the video resulting from the scaling of 16:9 to 1:1.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

790

Figure 10-2. 16:9 clip playing in a 400 400 container with Stretch=Fill

When Stretch is set to Uniform, the video is scaled to fit completely along both of its dimensions
within the container, but the aspect ratio is preserved as well. Unless the dimensions of the container
result in an aspect ratio matching that of the video, the video does not completely fill the container along
one of the dimensions. Figure 10-3 shows an example. If you compare Figure 10-3 to Figure 10-1, you see
that in an attempt to maintain the aspect ratio, the video has expanded beyond the available height of the
container; the text visible in Figure 10-1 is no longer visible in 10-3.

Figure 10-3. 16:9 clip playing in a 400 400 container with Stretch=Uniform

The last available setting for Stretch is UniformToFill. When set, this causes the video to scale and
completely fill the container, while maintaining the original aspect ratio. The result is that the video gets
clipped along one of its dimensions, unless the container is exactly of the same aspect ratio.

Figure 10-4 shows an example.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

791

Figure 10-4. 16:9 clip playing in a 400 400 container with Stretch=UniformToFill

The Code
The code sample for this recipe plays a progressively downloaded 720p video clip. Listing 10-1 shows the
XAML.

Listing 10-1. XAML for a Page Playing a Media File

<UserControl x:Class="Recipe10_1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="225">
 <Grid x:Name="LayoutRoot" Background="White">
 <MediaElement
 Source="http://localhost/SLBook/Ch08_RichMedia/Media/Amazon_1080.wmv"
 AutoPlay="True" x:Name="medElem" Opacity="0.0"/>
 <Border HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" BorderBrush="Black" BorderThickness="3">
 <Border.Background>
 <VideoBrush SourceName="medElem" Stretch="Fill"/>
 </Border.Background>
 </Border>
 </Grid>
</UserControl>

The page has a Width of 400 and a Height of 225, providing an aspect ratio of 16:9. The Border

stretches to fill the entire page, and the VideoBrush’s Stretch property is set to Fill. This setup preserves
the original aspect ratio of the clip.

Note that in order to avoid the video being displayed twice, you set MediaElement.Opacity to 0, so that
you only see the video being rendered through the VideoBrush inside the Border.

Figure 10-5 shows the output.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://localhost/SLBook/Ch08_RichMedia/Media/Amazon_1080.wmv

CHAPTER 10 ■ INTEGRATING RICH MEDIA

792

Figure 10-5. Video playing on a page

10-2. Creating a Complete Video Player

Problem
You want to develop a video player with the following features:

• Standard play controls like play, pause, and stop

• Seek features like forward and rewind

• Volume control

• A video menu

• Multiple playing videos such as picture-in-picture

• Download and play progress notifications

Solution
Build a UI that provides elements to control these features and utilize the MediaElement API to implement
the necessary code for the UI function.

How It Works

The MediaElement type exposes a rich API that makes it easy to implement most of the listed features in a
fairly straightforward way. Let’s start by taking a look at parts of this API. We continue to cover this API
across some of the other recipes later in this chapter as well.

Acquiring Media
MediaElement can acquire media through both progressive download and streaming methods. All media
players have historically supported the download-and-play mechanism of playing media, where the
entire media is first downloaded to the client before play can be started. However, this is cumbersome

CHAPTER 10 ■ INTEGRATING RICH MEDIA

793

and time consuming, especially for large media files, because the user has to wait to start watching until
the download has completed.

With the advancement of storage file-format technologies in most of the modern media file formats,
including Windows Media, it is now possible for most types of media to be played almost
instantaneously. With this feature, called progressive download, a player starts playing the media as soon
as the first few seconds of the media are downloaded, while the download continues in the background.
Progressive download is carried over HTTP, and any modern web server, including Microsoft Internet
Information Services (IIS), can be used as a media server.

Streaming is another technique used to deliver media to a player. Streaming does not require
downloading the media file locally, and it is well suited for scenarios involving either live or on-demand
broadcasts to a large population of viewers.

This recipe uses progressive download as the media-acquisition technique for the code sample
shown later. We discuss streaming in Recipe 10-3.

To have a MediaElement progressively download and play media, you can point the Source property to
the HTTP location of the media in XAML, as shown in Recipe 10-1. You can obviously do this in code as
well, in scenarios where the URI is possibly only known to you at runtime.

Alternatively, you can use the MediaElement.SetSource() method in your code to specify the media to
be played. One overload of SetSource() accepts a System.IO.Stream, which is suited for the scenario
where you decide to acquire the media through some other mechanism rather than have the MediaElement
handle the download. When you acquire the media file, you can create a Stream around it (using a more
concrete type like System.IO.FileStream) and pass it to SetSource().

The second overload of SetSource() accepts an instance of the
System.Windows.Media.MediaStreamSource type. The MediaStreamSource type is actually a way to plug a
video container file format into Silverlight because the MediaElement does not come with a built-in
parser. Video container file formats and related specifications are complex topics; consequently, a
treatment of MediaStreamSource implementations is outside the scope of this book.

When the Source is set by either mechanism for progressive download scenarios, the MediaElement
immediately starts to download the media. The MediaElement.DownloadProgressChanged event is raised
repeatedly as the download progresses. The MediaElement.DownloadProgress property reports the
download progress as a percentage value (actually a double between 0 and 1 that you can convert to
percentage) that you can use to track and report the download progress in the DownloadProgressChanged
event handler.

Controlling Media Play
As the media downloads, the MediaElement starts to play the media as soon as the first few frames are
available, provided the MediaElement.AutoPlay property is set to True. If not, you have the option of using
MediaElement.Play() in your code to start play. MediaElement also exposes Pause() and Stop(), which you
can use to pause and stop a playing media stream. If a media-control function like Play() or Pause() is
issued before enough media is downloaded to start playing, the command is internally queued by
MediaElement and executed after playing starts.

MediaElement States
As the MediaElement goes through the various states of acquiring and playing media, the
MediaElement.CurrentState property of type MediaElementState reflects the current state of the media.
Table 10-1 lists some of the possible values and meanings.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

794

Table 10-1. Some of the MediaElementState Values and Their Meanings

Value Meaning

Closed This is the default state of a MediaElement into which no media has been loaded.

Opening This is the first state that occurs when the MediaElement tries to load a new media source.
For a valid source, the MediaElement state moves on to Buffering if MediaElement.AutoPlay
is set to True or to Stopped if it is not.

Buffering This is the state when the MediaElement is buffering content.

Playing This is the state when the MediaElement is playing media.

Paused This is the state when currently loaded media has been paused by invoking
MediaElement.Pause().

Stopped This state reflects stopped media and can be achieved by calling MediaElement.Stop() for
playing media. This is also the state at the beginning after the media is opened, when
MediaElement.AutoPlay is set to False, and at again when the media has reached its end
and the MediaElement.Source has not been changed.

MediaElement raises the CurrentStateChanged event every time a state change happens between the

states in Table 10-1. If you need to respond to any of these state changes, check the value of
MediaElement.CurrentState in a handler for this event and take appropriate action. MediaElement raises a
MediaOpened event after the media has been loaded successfully and is about to play; it raises MediaFailed
for a failure to load and play media; and it raises MediaEnded when the media has finished playing.

Seeking Within the Media
When the media has been opened and the MediaOpened event has been raised, the
MediaElement.NaturalDuration property of type System.Windows.Duration provides the total length of the
media in time. The time value is contained in the Duration.TimeSpan property. Note that in certain cases
like live streams, this value can be TimeSpan.Zero, because there is no way to know the duration of a live
stream. We cover this scenario in Recipe 10-3.

The MediaElement.Position property of type TimeSpan determines the position within the media at
any given time. Initially, this is set to TimeSpan.Zero. As the MediaElement plays the media, the
MediaElement.Position property is updated continuously to reflect the current position. You can set the
value of Position to any valid TimeSpan value between TimeSpan.Zero and
MediaElement.NaturalDuration.TimeSpan. This positions the MediaElement at that time point in the media
accordingly. To rewind, this value would need to be less than the current position, and vice versa for
forwarding the media.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

795

Volume
MediaElement.Volume provides the current volume as a double value between 0.0 and 1.0, with the default
setting being 0.5. You can set this property to any value in that range to control the volume. The IsMuted
property when set to true mutes the audio completely.

The Code
The code sample for this recipe builds a video player utilizing all the features discussed in the previous
section, as well as concepts around programming model fundamentals, controls, and networking
explored in earlier chapters in the book and mentioned in the introduction to this chapter. Figure 10-6
shows the full player user interface.

Figure 10-6. Full video player user interface

Installing the Sample Code
The sample for this recipe uses progressively downloaded media. To enable this approach, you need to
either install or have access to a web server like IIS. The code samples expect all the media to reside
under a virtual directory structure <servername>/SLBook/Media. We use a locally installed IIS server, and
consequently the <servername> is localhost. After you create the virtual directory structure, you can
acquire the media used in the samples as free downloads from www.microsoft.com/windows/
windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx. Note that we use the 1080p version of the
videos whenever available. The following media files are used in the samples:

http://www.microsoft.com/windows

CHAPTER 10 ■ INTEGRATING RICH MEDIA

796

• Amazon_1080.wmv

• AdrenalineRush.wmv

• Alexander_Trailer_1080p.wmv

• Amazing_Caves_1080.wmv

• Coral_Reef_Adventure_1080.wmv

• Discoverers_1080.wmv

The sample application acquires the list of available media through a Windows Communication
Foundation (WCF) service named MediaLocationProvider.svc, which reads this information from a file
named Locations.xml stored in its App_Data folder. We do not discuss the implementation of the
MediaLocationProvider WCF service in this chapter. MediaLocationProvider is implemented as a WCF
service using the WCF web programming model to return XML data, and we discuss this technique, as
well as how to consume it using a WebClient, in Chapter 7. We also encourage you to look at the sample
code to review MediaLocationProvider’s source.

Listing 10-2 shows a sample Locations.xml.

Listing 10-2. A Sample locations.xml

<?xml version="1.0" encoding="utf-8" ?>
<MediaLocations>
 <MediaLocation>
 <Description>Adrenaline Rush</Description>
 <Uri>http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush.wmv</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
 </ImageUri>
 </MediaLocation>
 <MediaLocation>
 <Description>Alexander</Description>
 <Uri>http://localhost/SLBook/Ch10_RichMedia/Media/Alexander_Trailer_1080p.wmv
 </Uri>
 <ImageUri>
 http://localhost/SLBook/Ch10_RichMedia/Media/Alexander_Trailer_1080p_Thumb.jpg
 </ImageUri>
 </MediaLocation>
</MediaLocations>

Each <MediaLocation> entry includes three children elements. The <Description> element provides a

short description for the media, the <Uri> element points to the actual download location for the media,
and the <ImageUri> element points to a JPEG image that represents a thumbnail of the video. You can
change the entries in this file to accommodate your own virtual directory structures, server locations,
and media files.

The Player Code
Listing 10-3 shows a type named MediaMenuData that maps to an instance of the MediaLocation
information shown in Listing 10-2.

http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush.wmv</Uri
http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
http://localhost/SLBook/Ch10_RichMedia/Media/Alexander_Trailer_1080p.wmv
http://localhost/SLBook/Ch10_RichMedia/Media/Alexander_Trailer_1080p_Thumb.jpg

CHAPTER 10 ■ INTEGRATING RICH MEDIA

797

Listing 10-3. MediaMenuData Type Declaration

using System;
using System.ComponentModel;

namespace Recipe10_2
{
 public class MediaMenuData : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 private object _Description;
 public object Description
 {
 get { return _Description; }
 set
 {
 _Description = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("Description"));
 }
 }
 private object _MediaPreview;
 public object MediaPreview
 {
 get { return _MediaPreview; }
 set
 {
 _MediaPreview = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("MediaPreview"));
 }
 }
 private Uri _MediaLocation;
 public Uri MediaLocation
 {
 get { return _MediaLocation; }
 set
 {
 _MediaLocation = value;

 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs("MediaLocation"));
 }
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

798

 }
 }
}

Let’s look at the player user interface next. Listing 10-4 shows the XAML.

Listing 10-4. XAML for the Player User Interface

<UserControl x:Class="Recipe10_2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 xmlns:local="clr-namespace:Recipe10_2"
 Width="920" Height="547"
 xmlns:Ch10_RichMedia_Recipe10_2="clr-namespace:Recipe10_2;assembly=Recipe10_2.PlrCntls">
 <UserControl.Resources>
 <!-- Data Template for displaying a media menu item-->
 <DataTemplate x:Key="dtMediaMenuItem">
 <Grid Height="140" Width="160" Margin="0,8,0,8">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.7*" />
 <RowDefinition Height="0.3*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.7*"/>
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <Image HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Stretch="Fill"
 Source="{Binding MediaPreview}" Grid.Row ="0"
 Grid.ColumnSpan="2"/>
 <TextBlock TextAlignment="Left" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Grid.Row="1"
 Text="{Binding Description}" Grid.Column="0"/>

 <Grid Grid.Row="1" Grid.Column="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.4*" />
 <RowDefinition Height="0.2*" />
 <RowDefinition Height="0.4*" />
 </Grid.RowDefinitions>
 <Button Grid.Row="0" x:Name="btnPlayFull" Click="PlayFull_Click"
 Tag="{Binding}" HorizontalAlignment="Center">
 <Button.Content>
 <Path Stretch="Fill" StrokeLineJoin="Round"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ INTEGRATING RICH MEDIA

799

 Stroke="#FF000000"
 Data="M 120,9.15527e-005L 149.937,
 9.15527e-005L 149.937,19.9361L 120,
 19.9361L 120,9.15527e-005 Z M 120,
 6.04175L 149.812,6.04175M 120,
 14.0417L 149.937,14.0417M 123.417,
 0.991364L 131.167,0.991364L 131.167,
 4.88376L 123.417,4.88376L 123.417,
 0.991364 Z M 135.125,1.00012L 142.875,
 1.00012L 142.875,4.89246L 135.125,
 4.89246L 135.125,1.00012 Z M 123.542,
 15.035L 131.292,15.035L 131.292,
 18.9274L 123.542,18.9274L 123.542,
 15.035 Z M 135.25,15.0438L 143,
 15.0438L 143,18.9362L 135.25,18.9362L 135.25,
 15.0438 Z "/>
 </Button.Content>
 </Button>
 <Button Grid.Row="2" x:Name="btnPlayPIP" Click="PlayPIP_Click"
 Tag="{Binding}" HorizontalAlignment="Center">
 <Button.Content>
 <Path Stretch="Fill" StrokeThickness="2"
 StrokeLineJoin="Round" Stroke="#FF000000"
 Data="M 120,39.8333L 149.917,
 39.8333L 149.917,59.9167L 120,
 59.9167L 120,39.8333 Z M 132.917,
 42.8333L 146.667,42.8333L 146.667,
 52.6667L 132.917,52.6667L 132.917,
 42.8333 Z "/>
 </Button.Content>
 </Button>
 </Grid>
 </Grid>
 </DataTemplate>

 <!--Control template for a media menu item -->
 <ControlTemplate x:Key="ctMediaMenuListBoxItem" TargetType="ListBoxItem">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected"/>
 <vsm:VisualState x:Name="SelectedUnfocused">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Selected">

CHAPTER 10 ■ INTEGRATING RICH MEDIA

800

 <Storyboard/>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualStateGroup.Transitions>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Unfocused"/>
 <vsm:VisualState x:Name="Focused"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="00:00:00.2000000"
 To="MouseOver"/>
 <vsm:VisualTransition From="MouseOver"
 GeneratedDuration="00:00:00.2000000"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrMouseOverIndicator"
 Storyboard.TargetProperty=
 "(Border.BorderBrush).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF126AB3"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrMouseOverIndicator"
 Storyboard.TargetProperty=
 "(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF7FDDE6"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>

 <vsm:VisualState x:Name="Normal"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border CornerRadius="2,2,2,2" BorderThickness="3,3,3,3"
 x:Name="brdrMouseOverIndicator"
 Background="#007FDDE6" BorderBrush="#00000000">
 <ContentPresenter/>
 </Border>

 </Grid>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

801

 </ControlTemplate>
 <Style x:Key="STYLE_MediaMenuListBoxItem" TargetType="ListBoxItem">
 <Setter Property="Template"
 Value="{StaticResource ctMediaMenuListBoxItem}"/>
 </Style>
 </UserControl.Resources>

 <!--Player UI -->
 <Grid x:Name="LayoutRoot"
 Background="#FFA2A2A2" Height="Auto" Width="Auto">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.752*"/>
 <RowDefinition Height="0.248*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*"/>
 <ColumnDefinition Width="0.8*"/>
 </Grid.ColumnDefinitions>
 <Grid Grid.Row="0" Grid.Column="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.05*" />
 <RowDefinition Height="0.9*" />
 <RowDefinition Height="0.05*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.05*"/>
 <ColumnDefinition Width="0.9*"/>
 <ColumnDefinition Width="0.05*"/>
 </Grid.ColumnDefinitions>
 <!--Main Display-->
 <Border x:Name="displayMain"
 VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1"
 HorizontalAlignment="Stretch" BorderThickness="5,5,5,5"
 BorderBrush="#FF000000" >

 <Border.Background>
 <VideoBrush SourceName="mediaelemMain" Stretch="Fill"
 x:Name="vidbrushMain" />
 </Border.Background>
 </Border>
 <!--Picture in Picture Display-->
 <Grid Grid.Column="1" Grid.Row="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.025*" />
 <RowDefinition Height="0.35*" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

802

 <RowDefinition Height="0.625*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.635*"/>
 <ColumnDefinition Width="0.35*"/>
 <ColumnDefinition Width="0.015*"/>
 </Grid.ColumnDefinitions>
 <Border Grid.Column="1" Grid.Row="1" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 MouseLeftButtonUp="displayPIP_MouseLeftButtonUp"
 x:Name="displayPIP" BorderThickness="2,2,2,2"
 BorderBrush="#FF000000" Visibility="Collapsed">
 <Border.Background>
 <VideoBrush SourceName="mediaelemPIP"
 Stretch="Fill" x:Name="vidbrushPIP"/>
 </Border.Background>
 </Border>
 <Grid HorizontalAlignment="Stretch" Margin="8,8,8,8"
 Grid.RowSpan="1" Grid.Column="1" Grid.Row="1"
 x:Name="buttonsPIP" Visibility="Collapsed" >
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.3*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.749*"/>
 <ColumnDefinition Width="0.176*"/>
 <ColumnDefinition Width="0.075*"/>
 </Grid.ColumnDefinitions>

 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="1"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnClosePIP" Click="btnClosePIP_Click">
 <Button.Content>
 <Path x:Name="Path" Stretch="Fill" StrokeThickness="2"
 StrokeLineJoin="Round" Stroke="#FF000000" Fill="#FFE91111"
 Data="M 110.5,75.7635L 113.209,
 72.9631L 133.396,92.4865L 130.687,95.2869L 110.5,
 75.7635 Z M 130.801,73.4961L 133.393,76.4048L 112.425,
 95.0872L 109.833,92.1785L 130.801,73.4961 Z "/>
 </Button.Content>
 </Button>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

803

 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="3"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnSwitchPIP" Click="btnSwitchPIP_Click">
 <Button.Content>
 <Path Stretch="Fill" StrokeThickness="2" StrokeLineJoin="Round"
 Stroke="#FF000000" Data="M 120,39.8333L 149.917,
 39.8333L 149.917,59.9167L 120,59.9167L 120,
 39.8333 Z M 132.917,42.8333L 146.667,42.8333L 146.667,
 52.6667L 132.917,52.6667L 132.917,42.8333 Z "/>
 </Button.Content>
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid Margin="2,2,2,2" VerticalAlignment="Stretch" Grid.Column="1"
 Grid.Row="1" HorizontalAlignment="Stretch">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*"/>
 <RowDefinition Height="0.5*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.75*"/>
 <ColumnDefinition Width="0.25*"/>
 </Grid.ColumnDefinitions>
 <!-- Slider to report and control media progress-->
 <Ch08_RichMedia_Recipe10_2:MediaSlider SourceName="mediaelemMain"
 VerticalAlignment="Top"
 IsEnabled="True"
 x:Name="mediaSlider" Grid.ColumnSpan="2"/>

 <!--Buttons to control media-->
 <Ch10_RichMedia_Recipe10_2:MediaButtonsPanel Grid.Row="1" Grid.Column="0"
 SourceName="mediaelemMain"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="150" Height="40"
 x:Name="mediaControl"/>
 <!--Slider to control volume-->
 <Slider x:Name="sliderVolumeControl" Margin="5,0,5,0" Maximum="1"
 Minimum="0" SmallChange="0.1"
 LargeChange="0.2" Value="0.5"
 MinWidth="50" Grid.Row="1"
 Grid.Column="1" ValueChanged="sliderVolumeControl_ValueChanged">
 </Slider>
 </Grid>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

804

 <!--Media element for main display-->
 <MediaElement Height="Auto" Margin="0,0,0,0"
 VerticalAlignment="Top" x:Name="mediaelemMain"
 HorizontalAlignment="Left" AutoPlay="True" Opacity="0"/>
 <!--Media element for Picture in Picture display-->
 <MediaElement Height="Auto" Margin="0,0,0,0" VerticalAlignment="Top"
 x:Name="mediaelemPIP" HorizontalAlignment="Left"
 AutoPlay="True" Opacity="0" IsMuted="True" />
 <!--Media Menu-->
 <ListBox Margin="0,0,-2,0" VerticalAlignment="Stretch"
 Grid.RowSpan="2" x:Name="lbxMediaMenu"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}" >
 </ListBox>
 </Grid>
</UserControl>

The ListBox named lbxMediaMenu lists all the media sources available to the player, using the

dtMediaMenuItem as the item template. lbxMediaMenu is bound to a collection of MediaMenuData, as shown
shortly in the codebehind for the player. dtMediaMenuItem contains an Image control bound to the
MediaMenuData.MediaPreview property, a TextBlock bound to the MediaMenuData.Description property, and
two buttons named btnPlayFull and btnPlayPIP, each with its Tag property bound to the complete
MediaMenuData instance.

The UI contains two MediaElement instances: mediaelemMain and mediaelemPIP. They play two media
streams simultaneously, one of which is in a smaller viewing area overlaid in a standard television
picture-in-picture style on the main display area. Both are set to AutoPlay, although mediaelemPIP is
muted by setting MediaElement.IsMuted to True, in order to avoid having multiple audio streams getting
jumbled together.

The primary display is a Border named displayMain, with its Background set to paint with a VideoBrush
named vidbrushMain with mediaelemMain as the source. The secondary picture-in-picture (PIP) display is
named displayPIP, painted with vidbrushPIP and sourced from mediaelemPIP. You also define two
additional buttons, named btnClosePIP and btnSwitchPIP—the former closes a PIP display, and the latter
switches the videos between the PIP display and the main display. You can use btnPlayFull to play the
corresponding media in the main display, although btnPlayPIP plays the media in the PIP window.

The UI also contains two custom controls named mediaSlider and mediaButtons of types MediaSlider
and MediaButtonsPanel: MediaSlider represents the slider control below the main display area and
encapsulates all the tracking and progress control functionality while MediaButtonsPanel encapsulates
the buttons below the media slider that represent play-control functions. We discuss these controls in
detail in later sections in this recipe. Lastly, the UI contains a Slider control named sliderVolumeControl
that is used to control the audio volume for the playing media.

Listing 10-5 shows the codebehind for the player.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

805

Listing 10-5. Codebehind for the Complete Player

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Xml.Linq;

namespace Recipe10_2
{
 public partial class MainPage : UserControl
 {
 //change this if you install the services at a different location
 private const string MediaLocatorUri =
 "http://localhost:9191/MediaLocationProvider.svc/GetLocationList";

 private ObservableCollection<MediaMenuData> listMedia =
 new ObservableCollection<MediaMenuData>();

 private MediaElement MainVideo
 {
 get
 {
 return (vidbrushMain.SourceName == "mediaelemMain") ?
 mediaelemMain : mediaelemPIP;
 }
 }
 private MediaElement PIPVideo
 {
 get
 {
 return (vidbrushPIP.SourceName == "mediaelemMain") ?
 mediaelemMain : mediaelemPIP;
 }
 }

 public MainPage()
 {
 InitializeComponent();
 lbxMediaMenu.ItemsSource = listMedia;

http://localhost:9191/MediaLocationProvider.svc/GetLocationList

CHAPTER 10 ■ INTEGRATING RICH MEDIA

806

 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 PopulateMediaMenu();
 }

 private void PopulateMediaMenu()
 {
 WebClient wcMediaLocator = new WebClient();
 wcMediaLocator.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 delegate(object Sender, DownloadStringCompletedEventArgs e)
 {
 this.Dispatcher.BeginInvoke(new Action(delegate
 {
 XDocument xDoc = XDocument.Parse(e.Result);

 List<MediaMenuData> tempList =
 (from medloc in xDoc.Root.Elements()
 select new MediaMenuData
 {
 Description = medloc.Element("Description").Value,
 MediaLocation = new Uri(medloc.Element("Uri").Value),
 MediaPreview = medloc.Element("ImageUri").Value
 }).ToList();
 foreach (MediaMenuData medloc in tempList)
 listMedia.Add(medloc);
 }));
 });
 wcMediaLocator.DownloadStringAsync(new Uri(MediaLocatorUri));
 }

 private void PlayFull_Click(object sender, RoutedEventArgs e)
 {
 MainVideo.Source = ((sender as Button).Tag as MediaMenuData).MediaLocation;
 }

 private void PlayPIP_Click(object sender, RoutedEventArgs e)
 {
 PIPVideo.Source = ((sender as Button).Tag as MediaMenuData).MediaLocation;
 displayPIP.Visibility = Visibility.Visible;
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

807

 private void btnClosePIP_Click(object sender, RoutedEventArgs e)
 {
 PIPVideo.Stop();
 buttonsPIP.Visibility = displayPIP.Visibility = Visibility.Collapsed;
 }

 private void btnSwitchPIP_Click(object sender, RoutedEventArgs e)
 {
 if (vidbrushMain.SourceName == "mediaelemMain")
 {
 vidbrushMain.SourceName = "mediaelemPIP";
 vidbrushPIP.SourceName = "mediaelemMain";
 mediaSlider.SourceName = "mediaelemPIP";
 mediaButtons.SourceName = "mediaelemPIP";
 mediaelemMain.IsMuted = true;
 mediaelemPIP.IsMuted = false;
 }
 else
 {
 vidbrushMain.SourceName = "mediaelemMain";
 vidbrushPIP.SourceName = "mediaelemPIP";
 mediaSlider.SourceName = "mediaelemMain";
 mediaButtons.SourceName = "mediaelemMain";
 mediaelemMain.IsMuted = false;
 mediaelemPIP.IsMuted = true;
 }
 MainVideo.Volume = sliderVolumeControl.Value;
 }

 private void displayPIP_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 if (displayPIP.Visibility == Visibility.Visible)
 {
 buttonsPIP.Visibility =
 (buttonsPIP.Visibility == Visibility.Visible ?
 Visibility.Collapsed : Visibility.Visible);
 }
 }
 private void sliderVolumeControl_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {
 if (vidbrushMain != null)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

808

 {
 MainVideo.Volume = e.NewValue;
 }
 }
 }
}

The PopulateMediaMenu() method uses the WebClient to invoke the GetLocationList() operation on

the MediaLocationProvider service. The GetLocationList() operation returns the contents of the
Locations.xml file shown in Listing 10-2; and in the DownloadStringCompleted handler, you parse the XML
into a collection of MediaMenuData instances. You then bind the list to lbxMediaMenu, which results in the
menu interface shown in Figure 10-6.

The strategy of switching a video between the PIP display and the main display is to swap the
MediaElements between the respective VideoBrushes. Because of this, you also create two additional
properties named MainVideo and PIPVideo that wrap the access to the MediaElements from code. Within
these property getters, you always return the MediaElement associated with the vidbrushMain as MainVideo
and the one associated with vidbrushPIP as PIPVideo. This causes any media source or other property
settings on MainVideo to always affect the main display and those on PIPVideo to always affect the PIP
display.

In PlayFull_Click(), you set the source for MainVideo to the MediaLocation property on the
MediaMenuData bound to btnPlayFull.Tag. In PlayPIP_Click(), you perform a similar action using PIPVideo
and btnPlayPIP.Tag. Additionally, you make the PIP display visible from its original Collapsed state.

While the PIP display is playing media, the mouse left-button-up handler for the PIP display—
displayPIP_MouseLeftButtonUp()—displays the PIP control buttons. Figure 10-7 shows the PIP display with
the PIP control buttons visible; the top button closes the PIP window, and the bottom button switches the
media with the main display.

Figure 10-7. Picture-in-picture display with control buttons visible

In btnClosePIP_Click(), you stop the media by invoking Stop() on PIPVideo and hide the PIP display
and the related buttons. In btnSwitchPIP_Click(), you swap the SourceName properties of the respective
VideoBrushes to swap the playing media between the displays. You also swap the muted state to play the
audio from the main display (remember, the PIP display remains muted), and you swap the SourceName
properties on the MediaSlider and the MediaButtonsPanel control instances (which we discuss in the next
sections).

You handle the ValueChanged event of sliderVolumeControl, where you set the MainVideo.Volume
property to the current value reflected in sliderVolumeControl.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

809

So far, we have not discussed any of the play-control and tracking functionality that is exposed
through the MediaElement API. A player like this needs to utilize such functionality to be useful, and it
would typically contain several visual elements that enable that functionality. It is fairly common to
have one or more range-style controls to report various progressive activities like the download or the
playing of media, which may also aid in seeking through the media. Buttons to play, pause, stop, and so
forth are common as well.

You encapsulate some of this functionality inside the MediaSlider and MediaButtonsPanel controls
(discussed next) to create a clean separation between the player’s code shown in Listings 10-4 and 10-5
and these player-control functions. We hope that these controls are reusable enough that you will be able
to drop them into your own player projects and not have to make any major modifications. Finally,
because they are custom controls, you do not have to settle for our rather pedestrian design skills; you
can replace the look and feel of each control with a design that suits your needs while retaining all the
functionality.

For more information, you can refer to Chapter 5 where we discuss custom control development and
custom control templates in detail. In subsequent sections in this chapter, we assume that you are
familiar with those control development concepts.

The MediaSlider Custom Control
The MediaSlider custom control encapsulates progress tracking and some of the seeking functionality
associated with the player. The MediaSlider is implemented by extending the Slider control that is
packaged with the Silverlight framework libraries. You add visual elements to the default template for the
Slider control to define the same for MediaSlider. You also further extend the Slider type with custom
functionality.

Let’s look at the control template first. Note that because the templates for both this control and the
next one are defined in the same generic.xaml file, we only list the relevant portions of generic.xaml in
each section, not the entire file.

Listing 10-6 shows the control template for MediaSlider.

Listing 10-6. MediaSlider Control Template

<ControlTemplate TargetType="local:MediaSlider" x:Key="ctMediaSliderDefault">
 <Grid x:Name="Root">
 <Grid.Resources>
 <ControlTemplate x:Key="ctRepeatButton">
 <Grid x:Name="Root" Opacity="0" Background="Transparent"/>
 </ControlTemplate>
 </Grid.Resources>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="0"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver"/>
 <vsm:VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="(UIElement.Opacity)">

CHAPTER 10 ■ INTEGRATING RICH MEDIA

810

 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="0.5"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.33*" />
 <RowDefinition Height="0.34*" />
 <RowDefinition Height="0.33*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" VerticalAlignment="Top"
 HorizontalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Grid.Column="1"
 HorizontalAlignment="Right">
 <TextBlock Text="Downloaded" FontSize="12"
 Margin="0,0,4,0"/>
 <TextBlock x:Name="textDownloadPercent" FontSize="12"
 />
 </StackPanel>
 </Grid>
 <Grid x:Name="HorizontalTemplate" Grid.Row="1" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Rectangle Stroke="Black" StrokeThickness="0.5" Fill="#FFE6EFF7"
 Grid.Column="0" Grid.ColumnSpan="3" Height="14"
 Margin="5,0,5,0" />
 <Border Height="10" Margin="5,0,5,0" Grid.Column="0"
 Grid.ColumnSpan="3"
 x:Name="elemDownloadProgressIndicator"
 Background="#FF2185D8"
 HorizontalAlignment="Left" Width="0" />
 <Border Height="6" Margin="5,0,5,0" Grid.Column="0"
 Grid.ColumnSpan="3"
 x:Name="elemPlayProgressIndicator"
 Background="#FF1CE421"
 HorizontalAlignment="Left" Width="0" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

811

 <RepeatButton x:Name="HorizontalTrackLargeChangeDecreaseRepeatButton"
 Grid.Column="0"
 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />
 <Thumb x:Name="HorizontalThumb" Height="14" Width="11" Grid.Column="1"/>
 <RepeatButton x:Name="HorizontalTrackLargeChangeIncreaseRepeatButton"
 Grid.Column="2"
 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />
 </Grid>
 <Grid Grid.Row="2" VerticalAlignment="Bottom"
 HorizontalAlignment="Stretch">
 <StackPanel x:Name="TotalDuration" Orientation="Horizontal">
 <TextBlock x:Name="textPosition" FontSize="12"/>
 <TextBlock Text=" / " FontSize="12" Margin="3,0,3,0"/>
 <TextBlock x:Name="textDuration" FontSize="12" />
 </StackPanel>
 </Grid>
 </Grid>
 </Grid>
</ControlTemplate>

<Style TargetType="local:MediaSlider">
 <Setter Property="Template" Value="{StaticResource ctMediaSliderDefault}" />
</Style>

If you look at the default control template of the Slider control (one way to do so is to create a copy of

the control template in Expression Blend, as we did for the sample in Chapter 5), it is obvious from Listing
10-6 that you use that template as a starting point and make some modifications in creating a control
template named ctMediaSliderDefault.

The default Slider control template contains two visual representations: one for when the
Slider.Orientation property is set to Orientation.Horizontal and another for when it is set to
Orientation.Vertical. These parts are defined within two Grids named HorizontalTemplate and
VerticalTemplate. Because you always use the MediaSlider in horizontal orientation, in
ctMediaSliderDefault you leave out the VerticalTemplate portion. You can always add it back if you
intend to use this control oriented vertically as well. The definition of HorizontalTemplate gives you a
good idea of what the vertical counterpart should contain.

Within HorizontalTemplate is a Thumb control named Thumb. As we discuss later, you use the Thumb to
report progress by moving it along the slider as media plays. The user can also drag the Thumb along the
slider in either direction to seek within the media. Additionally, the two RepeatButton instances, named
HorizontalTrackLargeChangeDecreaseRepeatButton and
HorizontalTrackLargeChangeIncreaseRepeatButton, form the clickable areas on the slider on the two sides
of the Thumb. Clicking causes the Thumb to progress on either side. Because these are RepeatButtons,
holding the mouse left button down causes repeated click events to be raised at an interval defined by
the RepeatButton.Interval property; this property is set to the number of milliseconds by which you want
the click events to be separated. You also add two Border controls, named elemDownloadProgressIndicator
and elemPlayProgressIndicator, that progress along the MediaSlider background; the former reports

CHAPTER 10 ■ INTEGRATING RICH MEDIA

812

media download progress, and the latter reports play progress and trails the Thumb as it moves along the
MediaSlider.

Finally, you add a StackPanel named TotalDuration with two TextBlocks in it. The TextBlock named
textDuration is set to the total duration of the media after it starts playing, and the one named
textPosition reports the media’s current position as it plays.

To use the control template, you create a style with the target type set to the control’s type and the
Template property set to the control template. The style is shown at the end of Listing 10-6. In the
control’s code, you can see how the style is used. To learn more about control templating and custom
controls, refer to Chapter 5.

Listing 10-7 shows the code for the control.

Listing 10-7. MediaSlider Control Code

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;
using System.Windows.Threading;

namespace Recipe10_2
{
 public class MediaSlider : Slider
 {
 private MediaElement MediaSource;
 private FrameworkElement elemDownloadProgressIndicator;
 private FrameworkElement elemPlayProgressIndicator;
 private FrameworkElement Root;
 private TextBlock textPosition;
 private TextBlock textDuration;
 private TextBlock textDownloadPercent;
 private Thumb HorizontalThumb;
 private DispatcherTimer disptimerPlayProgressUpdate;

 //SourceName dependency property - used to attach
 //a Media element to this control
 public static DependencyProperty SourceNameProperty =
 DependencyProperty.Register("SourceName", typeof(string),
 typeof(MediaSlider),
 new PropertyMetadata(new PropertyChangedCallback(OnSourceNameChanged)));
 public string SourceName
 {
 get
 {
 return (string)GetValue(SourceNameProperty);
 }
 set

CHAPTER 10 ■ INTEGRATING RICH MEDIA

813

 {
 SetValue(SourceNameProperty, value);
 }
 }
 //SourceName change handler
 private static void OnSourceNameChanged(DependencyObject Source,
 DependencyPropertyChangedEventArgs e)
 {
 MediaSlider thisSlider = Source as MediaSlider;
 if (e.NewValue != null && e.NewValue != e.OldValue
 && thisSlider.Root != null)
 {
 thisSlider.MediaSource =
 thisSlider.Root.FindName(e.NewValue as string) as MediaElement;
 //reinitialize
 thisSlider.InitMediaElementConnections();
 }
 }

 public MediaSlider()
 : base()
 {
 this.DefaultStyleKey = typeof(MediaSlider);
 this.Maximum = 100;
 this.Minimum = 0;
 disptimerPlayProgressUpdate = new DispatcherTimer();
 disptimerPlayProgressUpdate.Interval = new TimeSpan(0, 0, 0, 0, 50);
 disptimerPlayProgressUpdate.Tick +=
 new EventHandler(PlayProgressUpdate_Tick);
 }
 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 elemDownloadProgressIndicator =
 GetTemplateChild("elemDownloadProgressIndicator") as FrameworkElement;
 elemPlayProgressIndicator =
 GetTemplateChild("elemPlayProgressIndicator") as FrameworkElement;
 HorizontalThumb = GetTemplateChild("HorizontalThumb") as Thumb;
 if (HorizontalThumb != null)
 {
 HorizontalThumb.DragStarted +=
 new DragStartedEventHandler(HorizontalThumb_DragStarted);
 HorizontalThumb.DragCompleted +=

CHAPTER 10 ■ INTEGRATING RICH MEDIA

814

 new DragCompletedEventHandler(HorizontalThumb_DragCompleted);
 }
 textPosition = GetTemplateChild("textPosition") as TextBlock;
 textDuration = GetTemplateChild("textDuration") as TextBlock;
 textDownloadPercent = GetTemplateChild("textDownloadPercent") as TextBlock;

 Root = Helper.FindRoot(this);
 MediaSource = Root.FindName(SourceName) as MediaElement;
 InitMediaElementConnections();
 }
 //Initialize by wiring up handlers
 private void InitMediaElementConnections()
 {
 if (MediaSource != null)
 {
 MediaSource.MediaOpened +=
 new RoutedEventHandler(MediaSource_MediaOpened);
 MediaSource.MediaEnded +=
 new RoutedEventHandler(MediaSource_MediaEnded);
 MediaSource.MediaFailed +=
 new EventHandler<ExceptionRoutedEventArgs>(MediaSource_MediaFailed);
 MediaSource.CurrentStateChanged +=
 new RoutedEventHandler(MediaSource_CurrentStateChanged);
 MediaSource.DownloadProgressChanged +=
 new RoutedEventHandler(MediaSource_DownloadProgressChanged);
 MediaSource_CurrentStateChanged(this, new RoutedEventArgs());
 }
 }

 //tick handler for progress timer
 void PlayProgressUpdate_Tick(object sender, EventArgs e)
 {
 this.Value =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)
 * (this.Maximum - this.Minimum);

 if (elemPlayProgressIndicator != null)
 {
 elemPlayProgressIndicator.Width =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)
 * ActualWidth;
 }
 if (textPosition != null)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

815

 textPosition.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.Position.Hours,
 MediaSource.Position.Minutes,
 MediaSource.Position.Seconds,
 MediaSource.Position.Milliseconds);
 }
 //plug into the thumb to pause play while it is being dragged
 void HorizontalThumb_DragStarted(object sender, DragStartedEventArgs e)
 {
 if (MediaSource != null && MediaSource.CurrentState ==
 MediaElementState.Playing)
 MediaSource.Pause();
 }
 void HorizontalThumb_DragCompleted(object sender, DragCompletedEventArgs e)
 {
 if (MediaSource != null)
 {
 MediaSource.Position = new TimeSpan(0,
 0, 0, 0,
 (int)(this.Value *
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds /
(this.Maximum - this.Minimum)));
 }
 MediaSource.Play();
 }

 //media element download progress changed
 private void MediaSource_DownloadProgressChanged(object sender,
 RoutedEventArgs e)
 {
 if (elemDownloadProgressIndicator != null)
 {
 elemDownloadProgressIndicator.Width =
 (MediaSource.DownloadProgress * this.ActualWidth);
 if (textDownloadPercent != null)
 textDownloadPercent.Text = string.Format("{0:##.##} %",
 MediaSource.DownloadProgress * 100);
 }
 }
 //state changes on the MediaElement
 private void MediaSource_CurrentStateChanged(object sender,
 RoutedEventArgs e)
 {
 switch (MediaSource.CurrentState)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

816

 {
 case MediaElementState.Playing:
 if (textDuration != null)
 textDuration.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.NaturalDuration.TimeSpan.Hours,
 MediaSource.NaturalDuration.TimeSpan.Minutes,
 MediaSource.NaturalDuration.TimeSpan.Seconds,
 MediaSource.NaturalDuration.TimeSpan.Milliseconds);
 if (disptimerPlayProgressUpdate.IsEnabled == false)
 disptimerPlayProgressUpdate.Start();
 break;
 case MediaElementState.Paused:
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 break;
 case MediaElementState.Stopped:
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 break;
 case MediaElementState.AcquiringLicense:
 case MediaElementState.Individualizing:
 case MediaElementState.Opening:
 case MediaElementState.Buffering:
 case MediaElementState.Closed:
 break;

 default:
 break;
 }
 }

 //media ended
 private void MediaSource_MediaEnded(object sender,
 RoutedEventArgs e)
 {
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 }

 //media failed
 private void MediaSource_MediaFailed(object sender, RoutedEventArgs e)
 {
 disptimerPlayProgressUpdate.Stop();
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

817

 void MediaSource_MediaOpened(object sender, RoutedEventArgs e)
 {
 //we do nothing here in this sample
 }
 }
}

Note in Listing 10-7 that the MediaSlider directly extends the Slider control type. In the constructor,

you set the control’s DefaultStyleKey property to the control type. This has the effect of associating the
control to the style defined at the end of Listing 10-6 and, consequently, applying the control template
referenced through that style to the control. You then initialize the Maximum and Minimum properties to
reflect a range from 0 to 100. You can change these defaults by setting a different range where you use
the MediaSlider in XAML. You also create and initialize a DispatcherTimer, whose purpose we discuss
later in this section.

The MediaSlider defines a dependency property named SourceName, very similar in purpose to the
VideoBrush. This property is set to the x:Name of the MediaElement; its intent is to look through the entire
XAML, starting at the root of the Page within which the MediaSlider is contained, to locate the
MediaElement.

The Helper.FindRoot() method shown in Listing 10-8 locates the XAML root. It recursively travels
upward in the XAML tree, starting at the MediaSlider, until no more parents are defined.

Listing 10-8. Code to Locate the Root of a XAML Document

using System.Windows;

namespace Recipe10_2
{
 public static class Helper
 {
 public static FrameworkElement FindRoot(FrameworkElement CurrentLevel)
 {
 FrameworkElement NextParent = null;
 if (CurrentLevel.Parent is FrameworkElement)
 NextParent = FindRoot(CurrentLevel.Parent as FrameworkElement);
 else
 NextParent = CurrentLevel;
 return NextParent;
 }
 }
}

In OnApplyTemplate() in Listing 10-7, you first acquire all the named template parts that you are

interested in. You then use FindRoot() to locate the page root and store it in MediaSlider.Root. Finally,
you use FindName() on the root to locate and store the MediaElement in MediaSlider.MediaSource. After the
MediaElement has been located, you invoke InitMediaElementConnections(), in which you add handlers to
relevant MediaElement events that you need to handle in the MediaSlider. In the OnSourceNameChanged()

CHAPTER 10 ■ INTEGRATING RICH MEDIA

818

property-change handler, you repeat this process for when the MediaSlider is pointed to some other
MediaElement during the course of use of the player.

If you refer back to Listing 10-4, note that the SourceName property of the MediaSlider is set to
mediaelemMain in the player’s XAML. However, if you also refer back to Listing 10-5 and look at the
btnSwitchPIP_Click() event handler, notice that when the user switches media from the PIP display to the
main display, you switch the MediaSlider.SourceName. This causes the MediaSlider to always reflect the
state for the MediaElement currently associated with the main display.

Note that the MediaElement_CurrentStateChanged() handler includes a case label for each permissible
state defined in the MediaElementState enumeration. Although you do not need to respond to each of
these state transitions to implement this sample, we include them in the code for informational purposes.
You can get rid of the fall-through case labels, should you choose to use this code directly.

The first step that a MediaElement performs when trying to load media is to validate and open the
media URI. This is signaled by raising the CurrentStateChanged event and by the
MediaElement.CurrentState transitioning to MediaElementState.Opening. After the media is successfully
opened, the MediaOpened event is raised. In the MediaOpened event handler, you have access to the media’s
duration through the MediaElement.NaturalDuration property. At this point, the MediaElement begins
acquiring the media and CurrentState moves to Buffering. In the case of progressively downloaded
media, as the media downloads, the MediaElement.DownloadProgressChanged event is raised continually as
the amount of media downloaded grows, and the resulting download percentage value increases. In the
handler named MediaSource_DownloadProgressChanged(), you set the Width of the Border element
elemDownloadProgressIndicator by the appropriate percentage of the ActualWidth to reflect download
progress. You also report the download percentage through textDownloadPercent. When enough media
has been downloaded for play to start, the MediaElement state transitions to Playing. This results in
raising the CurrentStateChanged event again. Figure 10-8 shows media still downloading while play has
just started.

Figure 10-8. MediaSlider visual state when media is playing while download continues

One of the challenges of the MediaElement state transitions is that the state change to Playing is
raised only once: right when the media is starting to play. Playing then continues without raising any
further notifications until a control event like Stop or Pause causes the MediaElement state to change
again. This is for several good reasons, not least of which is performance, because the MediaElement
may not perform optimally if it tries to keep raising granular events continuously while it is playing.

However, in order to report progress while the media is playing, you need a mechanism to notify the
code at regular intervals. This is where the DispatcherTimer named disptimerPlayProgressUpdate (which
is initialized in the constructor) plays its role. In handling the Playing state change in
MediaSource_CurrentStateChanged(), you start disptimerPlayProgressUpdate, which raises a tick event
every 50 milliseconds. We chose this value fairly randomly; you can either change it to a value that suits
your needs or make it a property on the control to allow you to set it. Note that in the same case block, you
format and set the value of textDuration to that in MediaSource.NaturalDuration to display the total
duration of the clip.

In the Tick handler for disptimerPlayProgressUpdate named PlayProgressUpdate_Tick(), you move
the Thumb by setting its Value to a proportion of the MediaSlider range, matching the ratio of the current
Position to the MediaSource.NaturalDuration. You also increase the Width of elemPlayProgressIndicator
by the same proportion to trail the Thumb to indicate play progress, and you set textPosition at the lower-
left corner of the slider to reflect the current Position value, as shown in Figure 10-8.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

819

If the MediaElement fails to load and play the media, if the media is stopped or paused, and after the
play ends, you can check disptimerPlayProgressUpdate to see if it is currently ticking (in other words,
whether the IsEnabled property is set to True), and stop it if it is.

You also need to enable seeking through the media using the Thumb. To do this, you attach handlers to
the Thumb.DragStarted and Thumb.DragCompleted events in OnApplyTemplate(). In the
HorizontalThumb_DragStarted() handler, you make sure the media is playing; and if it is, you pause it.
This prevents your code in the DispatcherTimer.Tick handler from trying to move the Thumb while the
user is dragging it. In HorizontalThumb_DragCompleted(), you set MediaSource.Position by transforming
the MediaSlider.Value property back to its corresponding time point in the media’s timeline. This causes
the media to seek to the newly set position. You then start playing the media again.

One last thing to note is that in InitMediaElementConnections(), you deliberately invoke the
MediaElement_CurrentStateChanged() handler. This is for cases where the SourceName changes but the new
MediaElement being attached is already playing—that is, someone switched the PIP video with the main
video. The MediaElement state change is not going to fire again, so calling the state-change handler once
deliberately causes the textDuration to be updated to reflect the change in video sources.

The MediaButtonsPanel Custom Control
The MediaButtonsPanel custom control encapsulates the following play-control functions: play, pause,
stop, forward, and rewind. Each function is tied to a Button in the control template. Listing 10-9 shows the
control template for MediaButtonsPanel.

Listing 10-9. Control Template for MediaButtonsPanel Custom Control

<ControlTemplate TargetType="local:MediaButtonsPanel"
 x:Key="ctMediaButtonsPanelDefault">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 </Grid.ColumnDefinitions>
 <RepeatButton Grid.Column="0" x:Name="btnRewind" Margin="0,0,1,0">
 <RepeatButton.Content>
 <Path x:Name="Rewind" Stretch="Fill" StrokeThickness="1"
 StrokeLineJoin="Round" Stroke="#FF000000" Fill="#FF000000"
 Data="M 69.8333,70.0833L 60.5833,
 63.2862L 60.5833,70.0833L 40,
 54.9583L 60.5833,39.8333L 60.5833,
 46.6304L 69.8333,39.8333L 69.8333,
 70.0833 Z "/>
 </RepeatButton.Content>
 </RepeatButton>
 <Button Grid.Column="1" x:Name="btnStop" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Stop" Fill="#FF000000" Stretch="Fill"

CHAPTER 10 ■ INTEGRATING RICH MEDIA

820

 StrokeThickness="0" Margin="5,5,5,5"
 Data="M0,0 L3,0 L3,30.249996 L0,30.249996 z"/>
 </Button.Content>
 </Button>
 <Button Grid.Column="2" x:Name="btnPlay" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Play" Stretch="Fill" StrokeThickness="0"
 Fill="#FF000000" Margin="5,5,5,5"
 Data="M 109.833,14.8944L 79.8333,
 -0.0445251L 79.8333,29.8333L 109.833,
 14.8944 Z "/>
 </Button.Content>
 </Button>
 <Button Grid.Column="3" x:Name="btnPause" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Pause" Stretch="Fill" StrokeThickness="0"
 Fill="#FF000000" Margin="5,5,5,5"
 Data="M 39.8333,0L 50.0833,0L 50.0833,29.8333L 39.8333,
 29.8333L 39.8333,0 Z M 59.8333,0L 69.8333,0L 69.8333,
 29.8333L 59.8333,29.8333L 59.8333,0 Z "/>
 </Button.Content>
 </Button>
 <RepeatButton Grid.Column="4" x:Name="btnForward" Margin="1,0,0,0">
 <RepeatButton.Content>
 <Path x:Name="Forward" Stretch="Fill" StrokeThickness="1"
 StrokeLineJoin="Round" Stroke="#FF000000"
 Fill="#FF000000"
 Data="M 1.27157e-006,39.8334L 9.25,
 46.6305L 9.25,39.8333L 29.8333,
 54.9583L 9.25,70.0833L 9.25,
 63.2863L 1.27157e-006,
 70.0833L 1.27157e-006,39.8334 Z "/>
 </RepeatButton.Content>
 </RepeatButton>
 </Grid>
</ControlTemplate>

<Style TargetType="local:MediaButtonsPanel">
 <Setter Property="Template"
 Value="{StaticResource ctMediaButtonsPanelDefault}"/>
</Style>

Note that although btnStop, btnPause, and btnPlay are Buttons, btnRewind and btnForward are

RepeatButtons, with their Delay property set to 75 and Interval property set to 125. This means that when
the user presses and holds down either btnRewind or btnForward, Click events are raised repeatedly at an

CHAPTER 10 ■ INTEGRATING RICH MEDIA

821

interval of 125 milliseconds, with a delay of 75 milliseconds before repeating starts. This gives the effect of
being able to continuously seek through the media either way by holding down these buttons.

Listing 10-10 shows the code for MediaButtonsPanel.

Listing 10-10. MediaButtonsPanel Control Code

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;

namespace Recipe10_2
{
 public class MediaButtonsPanel : Control
 {
 private MediaElement MediaSource;
 private FrameworkElement Root;
 private ButtonBase btnPlay, btnPause,
 btnStop, btnForward, btnRewind;

 public static DependencyProperty SourceNameProperty =
 DependencyProperty.Register("SourceName", typeof(string),
 typeof(MediaButtonsPanel),
 new PropertyMetadata(new PropertyChangedCallback(OnSourceNameChanged)));
 public string SourceName
 {
 get
 {
 return (string)GetValue(SourceNameProperty);
 }
 set
 {
 SetValue(SourceNameProperty, value);
 }
 }
 private static void OnSourceNameChanged(DependencyObject Source,
 DependencyPropertyChangedEventArgs e)
 {
 MediaButtonsPanel thisPanel = Source as MediaButtonsPanel;

 if (e.NewValue != e.OldValue && thisPanel.Root != null)
 thisPanel.MediaSource =
 thisPanel.Root.FindName(e.NewValue as string) as MediaElement;
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

822

 public MediaButtonsPanel()
 {
 this.DefaultStyleKey = typeof(MediaButtonsPanel);
 }

 public override void OnApplyTemplate()
 {

 btnPlay = GetTemplateChild("btnPlay") as ButtonBase;
 btnPause = GetTemplateChild("btnPause") as ButtonBase;
 btnStop = GetTemplateChild("btnStop") as ButtonBase;
 btnForward = GetTemplateChild("btnForward") as ButtonBase;
 btnRewind = GetTemplateChild("btnRewind") as ButtonBase;
 Root = Helper.FindRoot(this);
 MediaSource = Root.FindName(SourceName) as MediaElement;
 WireButtonEvents();
 }

 private void WireButtonEvents()
 {
 if (btnPlay != null)
 btnPlay.Click += new RoutedEventHandler(btnPlay_Click);
 if (btnPause != null)
 btnPause.Click += new RoutedEventHandler(btnPause_Click);
 if (btnStop != null)
 btnStop.Click += new RoutedEventHandler(btnStop_Click);

 if (btnForward != null)
 btnForward.Click += new RoutedEventHandler(btnForward_Click);
 if (btnRewind != null)
 btnRewind.Click += new RoutedEventHandler(btnRewind_Click);
 }

 void btnRewind_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null && MediaSource.Position > TimeSpan.Zero)
 {
 MediaSource.Pause();
 //5th of a second
 MediaSource.Position -= new TimeSpan(0, 0, 0, 0,200);
 MediaSource.Play();
 }
 }
 void btnForward_Click(object sender, RoutedEventArgs e)
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

823

 if (MediaSource != null &&
 MediaSource.Position <= MediaSource.NaturalDuration.TimeSpan)
 {
 MediaSource.Pause();
 MediaSource.Position += new TimeSpan(0, 0, 0, 0, 200);
 MediaSource.Play();
 }
 }
 void btnStop_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null)
 MediaSource.Stop();
 }
 void btnPause_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null &&
 MediaSource.CurrentState == MediaElementState.Playing)
 MediaSource.Pause();
 }
 void btnPlay_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null &&
 MediaSource.CurrentState != MediaElementState.Playing)
 MediaSource.Play();
 }
 }
}

The MediaButtonsPanel acquires the MediaElement to work on the same way the MediaSlider does—by

looking for the MediaElement with a name specified through the SourceName dependency property.
In OnApplyTemplate(), you attach handlers to the Click events of the buttons in the template. In

btnStop_Click(), btnPause_Click(), and btnPlay_Click(), you invoke the appropriate MediaElement
methods. In btnRewind_Click() and btnForward_Click(), you check for some boundary conditions to
ensure that the resulting position would be a valid time point within the media’s timeline, and then shift
the MediaElement.Position in the appropriate direction by 200 milliseconds for every click. The sample
hard-codes the value of 200, but you can easily make this a dependency property, giving you the ability to
control the amount of shift.

10-3. Adding Streaming Media Support

Problem
You need to play streaming video in a Silverlight-based player.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

824

Solution
Set up a media streaming infrastructure, set the MediaElement source to use appropriate URIs, and adapt
various UI elements on the player to reflect streaming media states.

How It Works
As noted in Recipe 10-2, MediaElement can play both progressively downloaded as well as streamed
media. You need a streaming media server, such as Windows Server with the Windows Media Services
add-on, to stream media. Streaming media servers deliver media actively to the player throughout the
duration of the media playing session, without requiring a download of the media file. A player playing
streamed media usually plays the bits as they are received, and no copying to the disk is performed.

You can use streaming to broadcast live events over the Internet. In this scenario, the live content is
passed from the recording source, such as a camera, directly to an encoder to convert it to the correct
digital format. The resulting stream is then received by the streaming media server and broadcast out.

Network Considerations
A streaming media player typically buffers a small amount of content, which allows it to stay slightly
ahead of the media stream. When a player starts playing a stream, an initial buffering is conducted
before the media can begin playing. In the case of congested networks, where the available network
bandwidth may vary over time during the playing session, a network stream may fall behind in
continuously supplying content to the player to maintain this read-ahead state. In this case, the player
may need to buffer again during the play-out in order to gather content to play.

Considering this, you should take the bit rate of the media into consideration when streaming media.
For example, if a piece of media is encoded at a rate of 30 frames per second for jitter-free playing, and
each frame of video is approximately 34 KB in size, then the player needs to receive the media at about
one MB per second. When the network between the user and the streaming endpoint frequently falls
below the required speed limit, you may see jitter in play-out when the required frame rate is not being
met; or the player may buffer more frequently than expected, resulting in a subpar viewing experience.

Such potential issues with available network bandwidth require that you pay special attention to the
settings applied to the video when it is being encoded for streaming, so that the resulting bit-rate
requirement of the encoded video is close to the actual network conditions in which it plays. It is common
to have multiple encodings done of the same video file at different resulting bit rates, and then have
different URIs point to these videos so that players can choose a bit rate suitable to the prevailing
network condition.

Silverlight also supports multiple bit rate (MBR) video files. MBR video files are essentially multiple
copies of the same video, each fully encoded at a constant bit rate packaged in a single file. When it
encounters MBR video, MediaElement chooses the appropriate bit rate suitable for the available
bandwidth. MBR files can also work with Silverlight in progressive download scenarios, and Silverlight
chooses the highest possible bit rate to play the downloaded video. Do not confuse MBR video with
variable bit rate (VBR) video. In VBR video, different parts of the same video stream are encoded at
different bit rates to achieve optimal compression of the video. VBR video is not suitable for streaming
because it is difficult to determine the network requirements of the video in a predictable fashion
throughout the playing session.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

825

A detailed discussion of concepts involved in video encoding and network infrastructure for video
streaming is beyond the scope of this book. Here are some excellent resources for a better understanding
of topics like video encoding and delivering video over IP networks:

• Compression for Great Digital Video: Power Tips, Techniques, and Common Sense, by Ben
Waggoner (CMP Books, 2002)

• Video Over IP: A Practical Guide to Technology and Applications, by Wes Simpson (Focal
Press, 2005)

Windows Media Services
Windows Media Services (WMS) is a streaming media server for Windows Media and is available freely
from Microsoft as an add-on to the Windows Server operating system. The samples in this chapter
relating to streaming use WMS to set up the streaming backend. We use WMS 2008, available on
Windows Server 2008, which offers the latest features in Windows Media streaming; but WMS is also
available on earlier versions of Windows Server.

Setting Up WMS 2008
After you have Windows Server 2008 installed on your server, you can download WMS 2008 at
www.microsoft.com/downloads/details.aspx?FamilyID=9ccf6312-723b-4577-be58-
7caab2e1c5b7&displaylang=en. You can find full instructions for installing WMS 2008 at
support.microsoft.com/kb/934518.

When you install WMS on a server that has a web server running and listening on port 80, WMS does
not enable the HTTP server control protocol during installation. After you have installed WMS 2008, you
need to enable this to let Silverlight work with WMS. To do so, open the Windows Media Services console
from Administrative Tools on your Start menu. Navigate to the HTTP server control protocol plug-in, as
shown in Figure 10-9.

http://www.microsoft.com/downloads/details.aspx?FamilyID=9ccf6312-723b-4577-be58-7caab2e1c5b7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9ccf6312-723b-4577-be58-7caab2e1c5b7&displaylang=en

CHAPTER 10 ■ INTEGRATING RICH MEDIA

826

Figure 10-9. WMS HTTP server control protocol plug-in

Double-click the protocol entry to bring up the properties sheet. Select Allow all IP addresses to use
this protocol, and then specify a custom port other than 80. Allowing all IP addresses lets the server
stream media on all available network interfaces, in case the machine has more than one installed
network interface. In Figure 10-10, we have selected port 43000.

Figure 10-10. WMS HTTP server control protocol properties

CHAPTER 10 ■ INTEGRATING RICH MEDIA

827

Right-click the HTTP server control protocol item to bring up its context menu and enable the
protocol.

Setting Up Publishing Points
Publishing points define the endpoints of a WMS 2008 installation to which a client connects to in order
to receive media. A publishing point can be defined to serve a media file stored on disk, a playlist that
defines an ordered collection of media files to be played in sequence, or media that is being acquired
real time from a capture device, such as encoder software connected to a camera. The publishing point
abstracts the actual source of the media and provides the client with a URL to which the client can connect
to start receiving media.

■ NNote We discuss playlists in more detail in Recipe 10-4. We do not discuss live streaming using a capture device
in this book. Typically, doing so requires more setup and some knowledge of encoding. To get good-quality live
streaming, you need to have high-grade network equipment and broadcast-quality cameras, and we do not assume

that you have access to those readily while you are reading the book. If you want to experiment with live streaming
from a camera, you can refer to Jit Ghosh’s blog entry at blogs.msdn.com/jitghosh/archive/2007/11/30/demo-
live-streams-in-silverlight.aspx where he discusses a basic setup using a commodity webcam and uses

Microsoft Expression Encoder and WMS 2008 to create a basic live streaming scenario with Silverlight as the client

front end.

Two kinds of publishing points are possible in WMS: broadcast and on-demand. Either kind can
serve media from any of the sources mentioned earlier. Also, multiple publishing points of each type can
be defined on a single installation of WMS.

An on-demand publishing point is most often used when you want the user to control the playback
and have the ability to pause, rewind, or forward content. Consequently, on-demand publishing points
are mostly used with prerecorded video content stored on disk or with playlists.

Broadcast publishing points create an experience similar to television programs in that the player
cannot control playback, and you cannot pause, rewind, or forward content. Also, while streaming from a
broadcast publishing point, the MediaElement does not have any information about the duration of the
media. These conditions are true even if the broadcast publishing point is being used to stream
prerecorded media stored on disk. Broadcast publishing points are mostly used to serve live streams
coming directly from encoders or other live sources, like remote servers.

The code sample later in this recipe uses one publishing point of each type, but both use disk files as
the source of media. Let’s look at creating these publishing points.

Right-click the Publishing Points note in the left pane of the WMS management console, and select
the Add Publishing Point (Advanced) menu option, as shown in Figure 10-11.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

828

Figure 10-11. Add Publishing Point context menu

Choosing that command opens the Add Publishing Point dialog shown in Figure 10-12. Select an on-
demand publishing point, provide a name, and select the folder containing the video files. You can also
select an individual file for a publishing point or create a playlist. We discuss playlists in greater detail in
the next recipe.

Create another publishing point, repeating the same steps, but this time choose a broadcast
publishing point, and assign it a different name from the on-demand publishing point. Figure 10-12
shows the choices for the on-demand and broadcast publishing points for this recipe.

Figure 10-12. Creating publishing points

After both publishing points are created, navigate to the Source tab for the broadcast publishing
point, and turn on looping by clicking the Loop Directory button, as shown in Figure 10-13. This causes
WMS to continuously play all content in the folder in a loop.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

829

Figure 10-13. Turn on looping for the broadcast publishing point.

Then, right-click the broadcast publishing point, and start the publishing point from the context
menu.

A detailed discussion of all aspects of WMS setup and operation is beyond the scope of this book. You
can refer to the WMS documentation online at technet.microsoft.com/en-us/library/cc753790.aspx for
a thorough exploration of streaming Windows Media and WMS.

The Code
This sample extends the player you built in Recipe 10-2 to support streaming media features.

The first step is to extend the MediaLocationProvider WCF service to add two more operations,
GetOnDemandStreamsList() and GetBroadcastStreamsList(), each of which performs exactly like
GetDownloadsList(), which was defined earlier, but returns different XML. GetOnDemandStreamsList()
returns the contents of a file named OnDemandStreams.xml. Listing 10-11 shows a portion of this file.

Listing 10-11. OnDemandStreams.xml

<?xml version="1.0" encoding="utf-8" ?>
<MediaLocations>
 <MediaLocation>
 <Description>Adrenaline Rush</Description>
 <Uri>mms://dc7600:43000/Media/AdrenalineRush.wmv</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
 </ImageUri>
 </MediaLocation>
 <MediaLocation>
 <Description>Alexander</Description>
 <Uri>mms://dc7600:43000/Media/Alexander_Trailer_1080p.wmv</Uri>
 <ImageUri>

mms://dc7600:43000/Media/AdrenalineRush.wmv</Uri
http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
mms://dc7600:43000/Media/Alexander_Trailer_1080p.wmv</Uri

CHAPTER 10 ■ INTEGRATING RICH MEDIA

830

 http://localhost/SLBook/Ch08_RichMedia/Media/Alexander_Trailer_1080p_Thumb.jpg
 </ImageUri>
 </MediaLocation>
 <!-- more streams here -->
</MediaLocations>

As you can see, the <Uri> element for each stream entry points to the media file at the on-demand

publishing point on the media server (which, in this sample, is running on a machine named dc7600 at
port 43000). Note that the server name and the port number need to be changed to match your
environment for the samples to work.

Also note the use of the mms (Microsoft Media Server) protocol identifier in the first <MediaLocation>
entry in Listing 10-11. mms is not an actual protocol but rather a rollover scheme. In Silverlight, the
MediaElement only operates over the HTTP protocol. So, whenever an mms protocol identifier is used, the
MediaElement automatically rolls over to using HTTP. An additional significance of the protocol identifier
is that whenever the MediaElement encounters the mms protocol identifier, it tries to stream the content
first. If that is not successful, it then tries a progressive download. If it encounters the HTTP protocol
identifier, it tries a progressive download first, followed by an attempt to stream. In both scenarios, you
are safe using either protocol identifier. You can find more information about MMS at
msdn.microsoft.com/en-us/library/cc239490(PROT.10).aspx.

Listing 10-12 shows the BroadcastStreams.xml that is returned by invoking the
GetBroadcastStreamsList() operation.

Listing 10-12. BroadcastStreams.xml

<?xml version="1.0" encoding="utf-8" ?>
<MediaLocations>
 <MediaLocation>
 <Description>Random Loop</Description>
 <Uri>http://dc7600:43000/LiveMedia</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
 </ImageUri>
 </MediaLocation>
</MediaLocations>

Note that the <Uri> element in this case points to the broadcast publishing point that you created

without specifying a media file. Recall that because this is a broadcast publishing point, the user has no
control over where to begin playing a specific stream and therefore cannot point to a specific file.
Because you marked the content to loop, the publishing point, once started, keeps looping the content
continuously, and the client joins the stream at the point where it currently is.

Again, we do not list the code for the service operations; we encourage you to refer to Chapter 7 for a
better understanding of how Silverlight interacts with WCF services. Check out the sample code for this
recipe for the operation implementations.

Changes to the Player
You add a couple more media menus to the player to display the choices for the on-demand and broadcast
streams that are returned through the service operations. Listing 10-13 shows the XAML for the player.

http://localhost/SLBook/Ch08_RichMedia/Media/Alexander_Trailer_1080p_Thumb.jpg
http://dc7600:43000/LiveMedia</Uri
http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg

CHAPTER 10 ■ INTEGRATING RICH MEDIA

831

Listing 10-13. XAML for the Streaming Player

<UserControl x:Class="Recipe10_3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 xmlns:local="clr-namespace:Recipe10_3"
 Width="920" Height="547"
 xmlns:Ch10_RichMedia_Recipe10_3="clr-namespace:Recipe10_3;assembly=
Recipe10_3.PlrCntls" >
 <UserControl.Resources>
 <DataTemplate x:Key="dtMediaMenuItem">
 <Grid Height="140" Width="160" Margin="0,8,0,8">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.7*" />
 <RowDefinition Height="0.3*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.7*"/>
 <ColumnDefinition Width="0.3*" />
 </Grid.ColumnDefinitions>
 <Image HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Stretch="Fill"
 Source="{Binding MediaPreview}" Grid.Row ="0"
 Grid.ColumnSpan="2"/>
 <TextBlock TextAlignment="Left" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Grid.Row="1"
 Text="{Binding Description}" Grid.Column="0"/>
 <Grid Grid.Row="1" Grid.Column="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.4*" />
 <RowDefinition Height="0.2*" />
 <RowDefinition Height="0.4*" />
 </Grid.RowDefinitions>
 <Button Grid.Row="0" x:Name="PlayFull" Click="PlayFull_Click"
 Tag="{Binding}" HorizontalAlignment="Center">
 <Button.Content>
 <Path Stretch="Fill" StrokeLineJoin="Round"
 Stroke="#FF000000"
 Data="M 120,9.15527e-005L 149.937,
 9.15527e-005L 149.937,19.9361L 120,
 19.9361L 120,9.15527e-005 Z M 120,
 6.04175L 149.812,6.04175M 120,
 14.0417L 149.937,14.0417M 123.417,

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ INTEGRATING RICH MEDIA

832

 0.991364L 131.167,0.991364L 131.167,
 4.88376L 123.417,4.88376L 123.417,
 0.991364 Z M 135.125,1.00012L 142.875,
 1.00012L 142.875,4.89246L 135.125,
 4.89246L 135.125,1.00012 Z M 123.542,
 15.035L 131.292,15.035L 131.292,
 18.9274L 123.542,18.9274L 123.542,
 15.035 Z M 135.25,15.0438L 143,
 15.0438L 143,18.9362L 135.25,18.9362L 135.25,
 15.0438 Z "/>
 </Button.Content>
 </Button>

 <Button Grid.Row="2" x:Name="PlayPIP" Click="PlayPIP_Click"
 Tag="{Binding}" HorizontalAlignment="Center">
 <Button.Content>
 <Path Stretch="Fill" StrokeThickness="2"
 StrokeLineJoin="Round" Stroke="#FF000000"
 Data="M 120,39.8333L 149.917,
 39.8333L 149.917,59.9167L 120,
 59.9167L 120,39.8333 Z M 132.917,
 42.8333L 146.667,42.8333L 146.667,
 52.6667L 132.917,52.6667L 132.917,
 42.8333 Z "/>
 </Button.Content>
 </Button>
 </Grid>
 </Grid>
 </DataTemplate>
 <ControlTemplate x:Key="ctMediaMenuListBoxItem" TargetType="ListBoxItem">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="SelectionStates">
 <vsm:VisualState x:Name="Unselected"/>
 <vsm:VisualState x:Name="SelectedUnfocused">
 <Storyboard/>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Selected">
 <Storyboard/>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualStateGroup.Transitions>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Unfocused"/>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

833

 <vsm:VisualState x:Name="Focused"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition
 GeneratedDuration="00:00:00.2000000" To="MouseOver"/>
 <vsm:VisualTransition From="MouseOver"
 GeneratedDuration="00:00:00.2000000"/>
 </vsm:VisualStateGroup.Transitions>

 <vsm:VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrMouseOverIndicator"
 Storyboard.TargetProperty="(Border.BorderBrush)
.(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF126AB3"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="brdrMouseOverIndicator"
 Storyboard.TargetProperty="(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF7FDDE6"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Normal"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border CornerRadius="2,2,2,2" BorderThickness="3,3,3,3"
 x:Name="brdrMouseOverIndicator"
 Background="#007FDDE6" BorderBrush="#00000000">
 <ContentPresenter/>
 </Border>
 </Grid>
 </ControlTemplate>
 <Style x:Key="STYLE_MediaMenuListBoxItem" TargetType="ListBoxItem">
 <Setter Property="Template"
 Value="{StaticResource ctMediaMenuListBoxItem}"/>
 </Style>

 <ControlTemplate x:Key="ctMenuSwitchButton" TargetType="RadioButton">
 <Grid>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

834

 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CheckStates">
 <vsm:VisualState x:Name="Unchecked"/>

 <vsm:VisualState x:Name="Checked">
 <Storyboard>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="border"
 Storyboard.TargetProperty="(Border.BorderBrush).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF000000"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="border"
 Storyboard.TargetProperty="(Border.Background).(SolidColorBrush.Color)">
 <SplineColorKeyFrame KeyTime="00:00:00" Value="#FF3CB1E8"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Indeterminate"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualState x:Name="Disabled"/>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver"/>
 <vsm:VisualState x:Name="Pressed"/>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="FocusStates">
 <vsm:VisualState x:Name="Focused"/>
 <vsm:VisualState x:Name="Unfocused"/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Border HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 CornerRadius="3,3,0,0" Margin="0,0,0,0"
 BorderThickness="2,2,2,0" BorderBrush="#FF000000"
 x:Name="border" Background="#003CB1E8">
 <TextBlock Text="{TemplateBinding Content}"
 TextWrapping="Wrap" TextAlignment="Center"
 FontSize="10" FontWeight="Normal"
 FontFamily="Portable User Interface"
 VerticalAlignment="Center"/>
 </Border>
 </Grid>
 </ControlTemplate>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

835

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot"
 Background="#FFA2A2A2" Height="Auto" Width="Auto">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.062*"/>
 <RowDefinition Height="0.689*"/>
 <RowDefinition Height="0.249*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*"/>
 <ColumnDefinition Width="0.8*"/>
 </Grid.ColumnDefinitions>
 <MediaElement Height="Auto" Margin="0,0,0,0"
 VerticalAlignment="Top" x:Name="mediaelemMain"
 BufferingTime="0:0:3"
 HorizontalAlignment="Left" AutoPlay="True" Opacity="0"/>
 <MediaElement Height="Auto" Margin="0,0,0,0" VerticalAlignment="Top"
 x:Name="mediaelemPIP" HorizontalAlignment="Left"
 AutoPlay="True" Opacity="0" IsMuted="True"
 BufferingTime="0:0:3"/>

 <Grid Grid.Row="0" Grid.Column="1" Grid.RowSpan="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.05*" />
 <RowDefinition Height="0.9*" />
 <RowDefinition Height="0.05*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.05*"/>
 <ColumnDefinition Width="0.9*"/>
 <ColumnDefinition Width="0.05*"/>
 </Grid.ColumnDefinitions>
 <Border x:Name="displayMain"
 VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1"
 HorizontalAlignment="Stretch" BorderThickness="5,5,5,5"
 BorderBrush="#FF000000" >
 <Border.Background>
 <VideoBrush SourceName="mediaelemMain" Stretch="Fill"
 x:Name="vidbrushMain" />
 </Border.Background>
 </Border>

 <Grid Grid.Column="1" Grid.Row="1">

CHAPTER 10 ■ INTEGRATING RICH MEDIA

836

 <Grid.RowDefinitions>
 <RowDefinition Height="0.025*" />
 <RowDefinition Height="0.35*" />
 <RowDefinition Height="0.625*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.635*"/>
 <ColumnDefinition Width="0.35*"/>
 <ColumnDefinition Width="0.015*"/>
 </Grid.ColumnDefinitions>
 <Border Grid.Column="1" Grid.Row="1" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 MouseLeftButtonUp="displayPIP_MouseLeftButtonUp"
 x:Name="displayPIP" BorderThickness="2,2,2,2"
 BorderBrush="#FF000000" Visibility="Collapsed">
 <Border.Background>
 <VideoBrush SourceName="mediaelemPIP"
 Stretch="Fill" x:Name="vidbrushPIP"/>
 </Border.Background>
 </Border>
 <Grid HorizontalAlignment="Stretch" Margin="8,8,8,8"
 Grid.RowSpan="1" Grid.Column="1" Grid.Row="1"
 x:Name="buttonsPIP" Visibility="Collapsed" >
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.3*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.749*"/>
 <ColumnDefinition Width="0.176*"/>
 <ColumnDefinition Width="0.075*"/>
 </Grid.ColumnDefinitions>
 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="1"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnClosePIP" Click="btnClosePIP_Click">

 <Button.Content>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

837

<Path x:Name="Path" Stretch="Fill" StrokeThickness="2"
 StrokeLineJoin="Round" Stroke="#FF000000" Fill="#FFE91111"
 Data="M 110.5,75.7635L 113.209,
 72.9631L 133.396,92.4865L 130.687,95.2869L 110.5,
 75.7635 Z M 130.801,73.4961L 133.393,76.4048L 112.425,
 95.0872L 109.833,92.1785L 130.801,73.4961 Z "/>
 </Button.Content>
 </Button>
 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="3"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnSwitchPIP" Click="btnSwitchPIP_Click">
 <Button.Content>
 <Path Stretch="Fill" StrokeThickness="2" StrokeLineJoin="Round"
 Stroke="#FF000000" Data="M 120,39.8333L 149.917,
 39.8333L 149.917,59.9167L 120,59.9167L 120,
 39.8333 Z M 132.917,42.8333L 146.667,42.8333L 146.667,
 52.6667L 132.917,52.6667L 132.917,42.8333 Z "/>
 </Button.Content>
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid Margin="2,2,2,2" VerticalAlignment="Stretch" Grid.Column="1"
 Grid.Row="2" HorizontalAlignment="Stretch">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*"/>
 <RowDefinition Height="0.5*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.75*"/>
 <ColumnDefinition Width="0.25*"/>
 </Grid.ColumnDefinitions>
 <Ch08_RichMedia_Recipe8_3:MediaSlider SourceName="mediaelemMain"
 VerticalAlignment="Top"
 IsEnabled="True"
 x:Name="mediaSlider" Grid.ColumnSpan="2"/>
 <Ch08_RichMedia_Recipe8_3:MediaButtonsPanel Grid.Row="1" Grid.Column="0"
 SourceName="mediaelemMain"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="150" Height="40"
 x:Name="mediaControl"/>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

838

<Slider x:Name="sliderVolumeControl" Margin="5,0,5,0" Maximum="1"
 Minimum="0" SmallChange="0.1"
 LargeChange="0.2" Value="0.5"
 MinWidth="50" Grid.Row="1"
 Grid.Column="1" ValueChanged="sliderVolumeControl_ValueChanged">
 </Slider>
 </Grid>
 <Grid Grid.RowSpan="3">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" MinHeight="41" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid Height="Auto" VerticalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.33*"/>
 <ColumnDefinition Width="0.34*"/>
 <ColumnDefinition Width="0.33*"/>
 </Grid.ColumnDefinitions>
 <RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="Download"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 GroupName="MediaMenuChoices"
 IsChecked="False" x:Name="rbtnDownloadsMenu"
 Checked="rbtnDownloadsMenu_Checked"/>
 <RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="On Demand" Grid.Column="1"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 GroupName="MediaMenuChoices"
 IsChecked="True" x:Name="rbtnOnDemandMenu"
 Checked="rbtnOnDemandMenu_Checked"/>
 <RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="Broadcast" Grid.Column="2"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"

CHAPTER 10 ■ INTEGRATING RICH MEDIA

839

 VerticalContentAlignment="Stretch"
 GroupName="MediaMenuChoices" x:Name="rbtnBroadcastMenu"
 Checked="rbtnBroadcastMenu_Checked"/>
 </Grid>

 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuDownloads"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Grid.RowSpan="1" Grid.Row="1" Background="#FF3CB1E8"
 Visibility="Collapsed"/>
 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuOnDemandStreams"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Grid.RowSpan="1" Grid.Row="1" Background="#FF3CB1E8"/>
 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuBroadcastStreams"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Visibility="Collapsed"
 Background="#FF3CB1E8" Grid.RowSpan="1" Grid.Row="1"/>
 </Grid>
 </Grid>
</UserControl>

You implement the two additional menus for on-demand and broadcast content by adding two

ListBoxes named lbxMediaMenuOnDemandStreams and lbxMediaMenuBroadcastStreams, as shown in Listing
10-13. You set lbxDownloadsMenu.Visibility and lbxBroadcastMenu.Visibility to Collapsed so that the
on-demand list shows up by default. You also add three RadioButton controls—rbtnDownloadsMenu,
rbtnOnDemandMenu, and rbtnBroadcastMenu—which switch between the ListBoxes. A custom template
named ctMenuSwitchButton is defined and applied to the RadioButtons to make them look more like tabs.
Also note the use of the BufferingTime property on the MediaElement. It specifies the minimum content
length (in time) that the MediaElement buffers at the start and every time it runs out of content to play.

Figure 10-14 shows the look of the new menu arrangement at startup.
The RadioButtons are also made to belong to the same group by setting a common value for the

GroupName property. This means that selecting one will deselect the others automatically. You see the
menu-switching in the player code shown in Listing 10-14.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

840

Figure 10-14. Streaming player menu at startup

Listing 10-14. Streaming Player Codebehind

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Xml.Linq;

namespace Recipe10_3
{
 public partial class MainPage : UserControl
 {
 private const string DownloadsListUri =
 "http://localhost:9292/MediaLocationProvider.svc/GetDownloadsList";
 private const string OnDemandStreamsListUri =
 "http://localhost:9292/MediaLocationProvider.svc/GetOnDemandStreamsList";

http://localhost:9292/MediaLocationProvider.svc/GetDownloadsList
http://localhost:9292/MediaLocationProvider.svc/GetOnDemandStreamsList

CHAPTER 10 ■ INTEGRATING RICH MEDIA

841

 private const string BroadcastStreamsListUri =
 "http://localhost:9292/MediaLocationProvider.svc/GetBroadcastStreamsList";
 private ObservableCollection<MediaMenuData> listDownloads =
 new ObservableCollection<MediaMenuData>();
 private ObservableCollection<MediaMenuData> listOnDemandStreams =
 new ObservableCollection<MediaMenuData>();
 private ObservableCollection<MediaMenuData> listBroadcastStreams =
 new ObservableCollection<MediaMenuData>();

 public MainPage()
 {
 InitializeComponent();
 lbxMediaMenuDownloads.ItemsSource = listDownloads;
 lbxMediaMenuOnDemandStreams.ItemsSource = listOnDemandStreams;
 lbxMediaMenuBroadcastStreams.ItemsSource = listBroadcastStreams;
 this.Loaded += new RoutedEventHandler(MainLoaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 PopulateMediaMenu();
 }
 private MediaElement MainVideo
 {
 get
 {
 return (vidbrushMain.SourceName == "mediaelemMain") ?
 mediaelemMain : mediaelemPIP;
 }
 }
 private MediaElement PIPVideo
 {
 get
 {
 return (vidbrushPIP.SourceName == "mediaelemMain") ?
 mediaelemMain : mediaelemPIP;
 }
 }

 private void PopulateMediaMenu()
 {
 WebClient wcDownloads = new WebClient();
 wcDownloads.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(ListDownloadCompleted);
 WebClient wcOnDemand = new WebClient();

http://localhost:9292/MediaLocationProvider.svc/GetBroadcastStreamsList

CHAPTER 10 ■ INTEGRATING RICH MEDIA

842

 wcOnDemand.DownloadStringCompleted+=
 new DownloadStringCompletedEventHandler(ListDownloadCompleted);
 WebClient wcBroadcast = new WebClient();
 wcBroadcast.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(ListDownloadCompleted);

 wcDownloads.DownloadStringAsync(new Uri(DownloadsListUri), listDownloads);
 wcOnDemand.DownloadStringAsync(
new Uri(OnDemandStreamsListUri), listOnDemandStreams);
 wcBroadcast.DownloadStringAsync(
new Uri(BroadcastStreamsListUri), listBroadcastStreams);
 }
 void ListDownloadCompleted(object sender, DownloadStringCompletedEventArgs e)
 {
 this.Dispatcher.BeginInvoke(new Action(delegate
 {
 XDocument xDoc = XDocument.Parse(e.Result);

 List<MediaMenuData> tempList =
 (from medloc in xDoc.Root.Elements()
 select new MediaMenuData
 {
 Description = medloc.Element("Description").Value,
 MediaLocation = new Uri(medloc.Element("Uri").Value),
 MediaPreview = medloc.Element("ImageUri").Value
 }).ToList();

 ObservableCollection<MediaMenuData> target =
(e.UserState as ObservableCollection<MediaMenuData>);
 foreach (MediaMenuData medloc in tempList)
 target.Add(medloc);
 }));
 }

 private void PlayFull_Click(object sender, RoutedEventArgs e)
 {
 MainVideo.Source = ((sender as Button).Tag as MediaMenuData).MediaLocation;
 }

 private void PlayPIP_Click(object sender, RoutedEventArgs e)
 {
 PIPVideo.Source = ((sender as Button).Tag as MediaMenuData).MediaLocation;
 displayPIP.Visibility = Visibility.Visible;
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

843

 private void btnClosePIP_Click(object sender, RoutedEventArgs e)
 {
 PIPVideo.Stop();
 buttonsPIP.Visibility = displayPIP.Visibility = Visibility.Collapsed;
 }

 private void btnSwitchPIP_Click(object sender, RoutedEventArgs e)
 {
 if (vidbrushMain.SourceName == "mediaelemMain")
 {
 vidbrushMain.SourceName = "mediaelemPIP";
 vidbrushPIP.SourceName = "mediaelemMain";
 mediaSlider.SourceName = "mediaelemPIP";
 mediaControl.SourceName = "mediaelemPIP";
 mediaelemMain.IsMuted = true;
 mediaelemPIP.IsMuted = false;
 }
 else
 {
 vidbrushMain.SourceName = "mediaelemMain";
 vidbrushPIP.SourceName = "mediaelemPIP";
 mediaSlider.SourceName = "mediaelemMain";
 mediaControl.SourceName = "mediaelemMain";
 mediaelemMain.IsMuted = false;
 mediaelemPIP.IsMuted = true;
 }
 MainVideo.Volume = sliderVolumeControl.Value;
 }

 private void displayPIP_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 if (displayPIP.Visibility == Visibility.Visible)
 {
 buttonsPIP.Visibility =
 (buttonsPIP.Visibility == Visibility.Visible ?
 Visibility.Collapsed : Visibility.Visible);
 }
 }
 private void sliderVolumeControl_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {

 if (vidbrushMain != null)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

844

 {
 MainVideo.Volume = e.NewValue;
 }
 }
 private void rbtnDownloadsMenu_Checked(object sender, RoutedEventArgs e)
 {
 if (lbxMediaMenuBroadcastStreams != null &&
 lbxMediaMenuDownloads != null &&
 lbxMediaMenuOnDemandStreams != null)
 {
 lbxMediaMenuBroadcastStreams.Visibility = Visibility.Collapsed;
 lbxMediaMenuOnDemandStreams.Visibility = Visibility.Collapsed;
 lbxMediaMenuDownloads.Visibility = Visibility.Visible;
 }
 }

 private void rbtnOnDemandMenu_Checked(object sender, RoutedEventArgs e)
 {
 if (lbxMediaMenuBroadcastStreams != null &&

 lbxMediaMenuDownloads != null &&
 lbxMediaMenuOnDemandStreams != null)
 {
 lbxMediaMenuBroadcastStreams.Visibility = Visibility.Collapsed;
 lbxMediaMenuOnDemandStreams.Visibility = Visibility.Visible;
 lbxMediaMenuDownloads.Visibility = Visibility.Collapsed;

 }
 }

 private void rbtnBroadcastMenu_Checked(object sender, RoutedEventArgs e)
 {

 if (lbxMediaMenuBroadcastStreams != null &&
 lbxMediaMenuDownloads != null &&
 lbxMediaMenuOnDemandStreams != null)
 {
 lbxMediaMenuBroadcastStreams.Visibility = Visibility.Visible;

 lbxMediaMenuOnDemandStreams.Visibility = Visibility.Collapsed;
 lbxMediaMenuDownloads.Visibility = Visibility.Collapsed;
 }
 }
 }
}

You change the PopulateMediaMenu() method to add calls to the GetOnDemandStreamsList() and

GetBroadcastStreamsList() service operations, and you bind the results to lbxMediaMenuOnDemandStreams

CHAPTER 10 ■ INTEGRATING RICH MEDIA

845

and lbxMediaMenuBroadcastStreams, respectively. Note that because the underlying schema for the XML
returned by all three operations is identical, you use the same handler for handling the
WebClient.DownloadStringAsyncCompleted event, and the same LINQ to XML–based parsing logic in it. You
pass in the appropriate collection bound to the ListBox that the returned XML would populate to get the
desired results.

You add Checked event handlers for the RadioButtons where we show only the corresponding ListBox
and hide the others, as shown in bold in Listing 10-14.

You also make some changes to the MediaSlider control. Most of the changes made to this control are
to accommodate the various constraints that playback of streaming media may impose in broadcast
streams, such as the inability to seek through the media. Listing 10-15 shows the modified XAML for the
MediaSlider control template.

Listing 10-15. XAML for the MediaSlider control

<ControlTemplate TargetType="local:MediaSlider" x:Key="ctMediaSliderDefault">
 <Grid x:Name="Root">
 <Grid.Resources>
 <ControlTemplate x:Key="ctRepeatButton">
 <Grid x:Name="Root" Opacity="0" Background="Transparent"/>
 </ControlTemplate>
 </Grid.Resources>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="0"/>
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver"/>
 <vsm:VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="0.5"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SeekStates">

 <vsm:VisualState x:Name="CannotSeek">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="HorizontalThumb"
 Storyboard.TargetProperty="Visibility">

 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

846

 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>

 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="CanSeek">
 <Storyboard>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="HorizontalThumb"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>

 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>

 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="ContentStates">
 <vsm:VisualState x:Name="Buffering">
 <Storyboard>

 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Duration="00:00:00.0010000"
 Storyboard.TargetName="BufferingProgress"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="100"/>
 </DoubleAnimationUsingKeyFrames>

 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="Playing">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

 Duration="00:00:00.0010000"
 Storyboard.TargetName="BufferingProgress"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="0"/>
 </DoubleAnimationUsingKeyFrames>

 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

847

 <vsm:VisualStateGroup x:Name="DurationStates">
 <vsm:VisualState x:Name="UnknownDuration">
 <Storyboard>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="TotalDuration"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>

 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="elemPlayProgressIndicator"

 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>

 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="KnownDuration">

 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="TotalDuration"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>

 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="elemPlayProgressIndicator"

 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>

 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

848

 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.33*" />
 <RowDefinition Height="0.34*" />
 <RowDefinition Height="0.33*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0" VerticalAlignment="Top" HorizontalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <StackPanel Orientation="Horizontal" Grid.Column="0"
 HorizontalAlignment="Left"
 x:Name="BufferingProgress" Opacity="0">
 <TextBlock Text="Buffering" FontSize="12"

 Margin="0,0,4,0"/>
 <TextBlock x:Name="textBufferingPercent" FontSize="12"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Column="2"
 HorizontalAlignment="Right"
 x:Name="DownloadProgress">
 <TextBlock Text="Downloaded" FontSize="12"
 Margin="0,0,4,0"/>
 <TextBlock x:Name="textDownloadPercent" FontSize="12"
 />
 </StackPanel>
 </Grid>
 <Grid x:Name="HorizontalTemplate" Grid.Row="1" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Rectangle Stroke="Black" StrokeThickness="0.5" Fill="#FFE6EFF7"
 Grid.Column="0" Grid.ColumnSpan="3" Height="14"
 Margin="5,0,5,0" />
 <Border Height="10" Margin="5,0,5,0" Grid.Column="0" Grid.ColumnSpan="3"
 x:Name="elemDownloadProgressIndicator" Background="#FF2185D8"
 HorizontalAlignment="Left" Width="0" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

849

 <Border Height="6" Margin="5,0,5,0" Grid.Column="0" Grid.ColumnSpan="3"
 x:Name="elemPlayProgressIndicator" Background="#FF1CE421"
 HorizontalAlignment="Left" Width="0" />

 <RepeatButton x:Name="HorizontalTrackLargeChangeDecreaseRepeatButton"
 Grid.Column="0"
 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />
 <Thumb x:Name="HorizontalThumb" Height="14" Width="11" Grid.Column="1"/>
 <RepeatButton x:Name="HorizontalTrackLargeChangeIncreaseRepeatButton"
 Grid.Column="2"
 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />
 </Grid>
 <Grid Grid.Row="2" VerticalAlignment="Bottom"
 HorizontalAlignment="Stretch">
 <StackPanel x:Name="TotalDuration" Orientation="Horizontal"
 Visibility="Collapsed">
 <TextBlock x:Name="textPosition" FontSize="12"/>
 <TextBlock Text=" / " FontSize="12" Margin="3,0,3,0"/>
 <TextBlock x:Name="textDuration" FontSize="12" />
 </StackPanel>
 </Grid>
 </Grid>
 </Grid>
</ControlTemplate>

<Style TargetType="local:MediaSlider">
 <Setter Property="Template" Value="{StaticResource ctMediaSliderDefault}"/>
</Style>

As you can see in Listing 10-15 (indicated in bold), a new TextBlock named textBufferingPercent

contained inside a StackPanel named BufferingProgress reports progress when streaming media is
buffering.

You also add several visual states to handle certain aspects of streaming media. The SeekStates state
group contains two states: CannotSeek, which hides the Thumb to indicate that the media cannot be
forwarded or rewound, and CanSeek, which makes the Thumb visible in cases where the media can be
forwarded or rewound. The DurationStates group contains KnownDuration, which makes the StackPanel
named TotalDuration and its children visible if the total duration of the media is available, and the
UnknownDuration state, which hides them when the duration is not known. The ContentStates group
contains the Buffering state, which makes the StackPanel named BufferingProgress visible, and the
Playing state, which hides the StackPanel. Last is the DownloadStates group, where the NoDownload state
hides the DownloadProgressIndicator and the StackPanel named DownloadProgress, whereas the
NeedsDownload state does the reverse.

Let’s look at the additions to the control code to see how these states are used (see Listing 10-16).

CHAPTER 10 ■ INTEGRATING RICH MEDIA

850

Listing 10-16. MediaSlider Code with the Changes for Streaming

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;
using System.Windows.Threading;

namespace Recipe10_3
{
 [TemplateVisualState(GroupName="SeekStates",Name="CanSeek")]
 [TemplateVisualState(GroupName = "SeekStates", Name = "CannotSeek")]
 [TemplateVisualState(GroupName = "ContentStates", Name = "Buffering")]

 [TemplateVisualState(GroupName = "ContentStates", Name = "Playing")]
 [TemplateVisualState(GroupName = "DurationStates", Name = "UnknownDuration")]
 [TemplateVisualState(GroupName = "DurationStates", Name = "KnownDuration")]
 public class MediaSlider : Slider
 {
 private MediaElement MediaSource;
 private FrameworkElement elemDownloadProgressIndicator;
 private FrameworkElement elemBufferingProgressIndicator;
 private FrameworkElement elemPlayProgressIndicator;
 private FrameworkElement Root;
 private TextBlock textPosition;
 private TextBlock textDuration;
 private TextBlock textDownloadPercent;
 private TextBlock textBufferingPercent;
 private Thumb HorizontalThumb;
 private DispatcherTimer disptimerPlayProgressUpdate;

 public static DependencyProperty SourceNameProperty =
 DependencyProperty.Register("SourceName", typeof(string),
 typeof(MediaSlider),
 new PropertyMetadata(new PropertyChangedCallback(OnSourceNameChanged)));
 public string SourceName
 {
 get
 {
 return (string)GetValue(SourceNameProperty);
 }

 set
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

851

 SetValue(SourceNameProperty, value);
 }
 }
 private static void OnSourceNameChanged(DependencyObject Source,
 DependencyPropertyChangedEventArgs e)
 {
 MediaSlider thisSlider = Source as MediaSlider;
 if (e.NewValue != null && e.NewValue != e.OldValue
 && thisSlider.Root != null)
 {
 thisSlider.MediaSource =
 thisSlider.Root.FindName(e.NewValue as string) as MediaElement;
 thisSlider.InitMediaElementConnections();
 }
 }

 public MediaSlider()
 : base()
 {
 this.DefaultStyleKey = typeof(MediaSlider);
 this.Maximum = 100;
 this.Minimum = 0;
 disptimerPlayProgressUpdate = new DispatcherTimer();
 disptimerPlayProgressUpdate.Interval = new TimeSpan(0, 0, 0, 0, 50);
 disptimerPlayProgressUpdate.Tick +=
 new EventHandler(PlayProgressUpdate_Tick);
 }
 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 elemDownloadProgressIndicator =
 GetTemplateChild("elemDownloadProgressIndicator") as FrameworkElement;
 elemBufferingProgressIndicator =
 GetTemplateChild("elemBufferingProgressIndicator") as FrameworkElement;
 elemPlayProgressIndicator =
 GetTemplateChild("elemPlayProgressIndicator") as FrameworkElement;
 HorizontalThumb = GetTemplateChild("HorizontalThumb") as Thumb;

 if (HorizontalThumb != null)
 {
 HorizontalThumb.DragStarted +=
 new DragStartedEventHandler(HorizontalThumb_DragStarted);
 HorizontalThumb.DragCompleted +=
 new DragCompletedEventHandler(HorizontalThumb_DragCompleted);

CHAPTER 10 ■ INTEGRATING RICH MEDIA

852

 }

 textPosition = GetTemplateChild("textPosition") as TextBlock;
 textDuration = GetTemplateChild("textDuration") as TextBlock;
 textDownloadPercent = GetTemplateChild("textDownloadPercent") as TextBlock;
 textBufferingPercent = GetTemplateChild("textBufferingPercent") as TextBlock;
 Root = Helper.FindRoot(this);
 MediaSource = Root.FindName(SourceName) as MediaElement;
 InitMediaElementConnections();
 }
 private void InitMediaElementConnections()
 {
 if (MediaSource != null)
 {
 MediaSource.MediaOpened += new RoutedEventHandler(MediaSource_MediaOpened);
 MediaSource.MediaEnded +=
 new RoutedEventHandler(MediaSource_MediaEnded);
 MediaSource.MediaFailed +=
 new EventHandler<ExceptionRoutedEventArgs>(MediaSource_MediaFailed);
 MediaSource.CurrentStateChanged +=
 new RoutedEventHandler(MediaSource_CurrentStateChanged);
 MediaSource.DownloadProgressChanged +=
 new RoutedEventHandler(MediaSource_DownloadProgressChanged);
 MediaSource.BufferingProgressChanged +=
 new RoutedEventHandler(MediaSource_BufferingProgressChanged);

 MediaSource_CurrentStateChanged(this, new RoutedEventArgs());
 }
 }

 void PlayProgressUpdate_Tick(object sender, EventArgs e)
 {
 if (MediaSource.NaturalDuration.TimeSpan == TimeSpan.Zero)
 return;

 this.Value =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)
 * (this.Maximum - this.Minimum);

 if (elemPlayProgressIndicator != null)
 {
 elemPlayProgressIndicator.Width =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

853

 * ActualWidth;
 }
 if (textPosition != null)
 textPosition.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.Position.Hours,
 MediaSource.Position.Minutes,
 MediaSource.Position.Seconds,
 MediaSource.Position.Milliseconds);
 }
 void HorizontalThumb_DragCompleted(object sender, DragCompletedEventArgs e)
 {
 if (MediaSource != null && MediaSource.CurrentState ==
 MediaElementState.Playing
 && MediaSource.NaturalDuration.TimeSpan != TimeSpan.Zero)
 {
 MediaSource.Position = new TimeSpan(0,
 0, 0, 0,
 (int)(this.Value *
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds / 100));
 }
 MediaSource.Play();
 }
 void HorizontalThumb_DragStarted(object sender, DragStartedEventArgs e)
 {
 if(MediaSource != null &&
 MediaSource.CurrentState == MediaElementState.Playing
 && MediaSource.CanPause)
 MediaSource.Pause();
 }

 private void MediaSource_DownloadProgressChanged(object sender,
 RoutedEventArgs e)
 {
 if (elemDownloadProgressIndicator != null)
 {
 elemDownloadProgressIndicator.Width =
 (MediaSource.DownloadProgress * this.ActualWidth);
 if (textDownloadPercent != null)
 textDownloadPercent.Text = string.Format("{0:##.##} %",
 MediaSource.DownloadProgress * 100);
 }
 }

 void MediaSource_BufferingProgressChanged(object sender, RoutedEventArgs e)
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

854

 if (elemDownloadProgressIndicator != null)
 {

 if (textBufferingPercent != null)
 textBufferingPercent.Text = string.Format("{0:##.##} %",
 MediaSource.BufferingProgress * 100);
 }
 }
 private void MediaSource_CurrentStateChanged(object sender, RoutedEventArgs e)
 {
 switch (MediaSource.CurrentState)
 {

 case MediaElementState.Opening:
 VisualStateManager.GoToState(this, "Normal", true);
 break;
 case MediaElementState.Playing:
 RefreshMediaStates();

 if (disptimerPlayProgressUpdate.IsEnabled == false)
 disptimerPlayProgressUpdate.Start();
 break;
 case MediaElementState.Paused:
 if(disptimerPlayProgressUpdate.IsEnabled)

 disptimerPlayProgressUpdate.Stop();
 break;
 case MediaElementState.Stopped:
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 break;

 case MediaElementState.Buffering:
 VisualStateManager.GoToState(this,"Buffering",true);
 break;
 default:
 break;
 }
 }
 void MediaSource_MediaOpened(object sender, RoutedEventArgs e)
 {
 RefreshMediaStates();
 }

 private void RefreshMediaStates()
 {
 VisualStateManager.GoToState(this,

CHAPTER 10 ■ INTEGRATING RICH MEDIA

855

 (MediaSource.CanSeek) ? "CanSeek" : "CannotSeek", true);
 VisualStateManager.GoToState(this,
 (MediaSource.NaturalDuration.TimeSpan != TimeSpan.Zero) ?

 "KnownDuration" : "UnknownDuration", true);
 VisualStateManager.GoToState(this,
 (MediaSource.DownloadProgress == 1.0) ?
 "NoDownload" : "NeedsDownload", true);
 if (textDuration != null &&

 MediaSource.NaturalDuration.TimeSpan != TimeSpan.Zero)
 textDuration.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.NaturalDuration.TimeSpan.Hours,
 MediaSource.NaturalDuration.TimeSpan.Minutes,
 MediaSource.NaturalDuration.TimeSpan.Seconds,

 MediaSource.NaturalDuration.TimeSpan.Milliseconds);
 }
 private void MediaSource_MediaEnded(object sender, RoutedEventArgs e)
 {
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 }
 private void MediaSource_MediaFailed(object sender, RoutedEventArgs e)
 {
 if(disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 }
 }
}

Most of the additions to the MediaSlider code (shown in bold in Listing 10-16) are to make sure you

reflect the correct visual state of the slider depending on the state of the media. After the media is opened
in MediaSource_Opened(), you invoke the RefreshMediaStates() method and check to see if the media is
seekable, using the value of the CanSeek property, and navigate to the appropriate state in the SeekStates
group. If the duration of the media is available, you navigate to the appropriate state in the
DurationStates group. You also check to see if MediaSource.DownloadProgress is already at 100 percent
(which is the case if the media is being streamed) and navigate to the appropriate state in the
DownloadStates group. Finally, you update the textDuration to reflect the duration of the media just
opened.

If you refer to the MediaSource_CurrentStateChanged() handler, note that when the media is
buffering, you navigate to the Buffering visual state. After the MediaElement starts playing the media, you
repeat a call to RefreshMediaStates(). This is to handle cases where the MediaSlider.SourceName gets
switched to a MediaElement (consider the PIP scenario again) that is already playing. Then you navigate to
the Playing visual state.

The only other addition here is a BufferingProgressChanged handler that updates
textBufferingPercent with the buffering progress. The next few figures show the effects of the various
visual state changes.

Figure 10-15 shows the MediaSlider while video is buffering.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

856

Figure 10-15. Buffering video

Figure 10-16 shows the MediaSlider while an on-demand video is playing. Note that although the
duration is displayed along with the play progress, there is no download progress indication because the
media is being streamed. Also note the presence of the Thumb, indicating that although the media is
streamed, seeking within it is enabled because of the combination of an on-demand publishing point
and disk-based media.

Figure 10-16. Playing an on-demand stream

Figure 10-17 shows the MediaSlider while a broadcast video is playing. Note that no play-progress or
duration information is displayed. Also note the absence of the Thumb, indicating that the broadcast media
does not support seeking.

Figure 10-17. Playing a broadcast stream

You make similar changes to the MediaButtonsPanel to reflect appropriate visual states. Listing 10-17
shows the XAML in bold.

Listing 10-17. XAML for MediaButtonsPanel Control

<ControlTemplate TargetType="local:MediaButtonsPanel"
 x:Key="ctMediaButtonsPanelDefault">
 <Grid>
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="0"/>
 </vsm:VisualStateGroup.Transitions>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

857

 <vsm:VisualState x:Name="Normal"/>
 <vsm:VisualState x:Name="MouseOver"/>
 <vsm:VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Root"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="0.5"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="SeekStates">

 <vsm:VisualState x:Name="CannotSeek">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="btnRewind"
 Storyboard.TargetProperty="IsEnabled">

 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <system:Boolean>false</system:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>

 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="btnForward"
 Storyboard.TargetProperty="IsEnabled">
 <DiscreteObjectKeyFrame KeyTime="0">

 <DiscreteObjectKeyFrame.Value>
 <system:Boolean>false</system:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>

 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="CanSeek">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames

 Storyboard.TargetName="btnRewind"
 Storyboard.TargetProperty="IsEnabled">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <system:Boolean>True</system:Boolean>

 </DiscreteObjectKeyFrame.Value>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

858

 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames

 Storyboard.TargetName="btnForward"
 Storyboard.TargetProperty="IsEnabled">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>True</Visibility>

 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>

 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name="PauseStates">
 <vsm:VisualState x:Name="CannotPause">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames

 Storyboard.TargetName="btnPause"
 Storyboard.TargetProperty="IsEnabled">
 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <system:Boolean>false</system:Boolean>

 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name="CanPause">

 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="btnPause"
 Storyboard.TargetProperty="IsEnabled">

 <DiscreteObjectKeyFrame KeyTime="0">
 <DiscreteObjectKeyFrame.Value>
 <system:Boolean>True</system:Boolean>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>

 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

859

 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 <ColumnDefinition Width="0.2*" />
 </Grid.ColumnDefinitions>
 <RepeatButton Grid.Column="0" x:Name="btnRewind" Margin="0,0,1,0">
 <RepeatButton.Content>
 <Path x:Name="Rewind" Stretch="Fill" StrokeThickness="1"
 StrokeLineJoin="Round" Stroke="#FF000000" Fill="#FF000000"
 Data="M 69.8333,70.0833L 60.5833,
 63.2862L 60.5833,70.0833L 40,
 54.9583L 60.5833,39.8333L 60.5833,
 46.6304L 69.8333,39.8333L 69.8333,
 70.0833 Z "/>
 </RepeatButton.Content>
 </RepeatButton>
 <Button Grid.Column="1" x:Name="btnStop" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Stop" Fill="#FF000000" Stretch="Fill"
 StrokeThickness="0" Margin="5,5,5,5"
 Data="M0,0 L3,0 L3,30.249996 L0,30.249996 z"/>
 </Button.Content>
 </Button>
 <Button Grid.Column="2" x:Name="btnPlay" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Play" Stretch="Fill" StrokeThickness="0"
 Fill="#FF000000" Margin="5,5,5,5"
 Data="M 109.833,14.8944L 79.8333,
 -0.0445251L 79.8333,29.8333L 109.833,
 14.8944 Z "/>
 </Button.Content>
 </Button>

 <Button Grid.Column="3" x:Name="btnPause" Margin="1,0,1,0">
 <Button.Content>
 <Path x:Name="Pause" Stretch="Fill" StrokeThickness="0"
 Fill="#FF000000" Margin="5,5,5,5"
 Data="M 39.8333,0L 50.0833,0L 50.0833,29.8333L 39.8333,
 29.8333L 39.8333,0 Z M 59.8333,0L 69.8333,0L 69.8333,

CHAPTER 10 ■ INTEGRATING RICH MEDIA

860

 29.8333L 59.8333,29.8333L 59.8333,0 Z "/>
 </Button.Content>
 </Button>
 <RepeatButton Grid.Column="4" x:Name="btnForward" Margin="1,0,0,0">
 <RepeatButton.Content>
 <Path x:Name="Forward" Stretch="Fill" StrokeThickness="1"
 StrokeLineJoin="Round" Stroke="#FF000000"
 Fill="#FF000000"
 Data="M 1.27157e-006,39.8334L 9.25,
 46.6305L 9.25,39.8333L 29.8333,
 54.9583L 9.25,70.0833L 9.25,
 63.2863L 1.27157e-006,
 70.0833L 1.27157e-006,39.8334 Z "/>
 </RepeatButton.Content>
 </RepeatButton>
 </Grid>
</ControlTemplate>

<Style TargetType="local:MediaButtonsPanel">
 <Setter Property="Template"
 Value="{StaticResource ctMediaButtonsPanelDefault}"/>
</Style>

You add the SeekStates group as before, containing the CanSeek and CannotSeek visual states. For the

CannotSeek state, you disable btnRewind and btnForward by setting the IsEnabled property on the buttons
to false; for the CanSeek state, you do the reverse. You also add two new visual states—CannotPause and
CanPause—in a state group named PauseStates, where you act on btnPause based on the value of the
MediaElement.CanPause property. The code to navigate to the states, designed in a similar way to the
MediaSlider, is shown in Listing 10-18 in bold.

Listing 10-18. MediaButtonsPanel Control Code

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;

namespace Recipe10_3
{

 [TemplateVisualState(GroupName = "SeekStates", Name = "CanSeek")]
 [TemplateVisualState(GroupName = "SeekStates", Name = "CannotSeek")]
 [TemplateVisualState(GroupName = "PauseStates", Name = "CanPause")]
 [TemplateVisualState(GroupName = "PauseStates", Name = "CannotPause")]
 public class MediaButtonsPanel : Control

CHAPTER 10 ■ INTEGRATING RICH MEDIA

861

 {

 private MediaElement MediaSource;
 private FrameworkElement Root;
 private ButtonBase btnPlay, btnPause, btnStop, btnForward, btnRewind;

 public static DependencyProperty SourceNameProperty =
 DependencyProperty.Register("SourceName", typeof(string),
 typeof(MediaButtonsPanel),
 new PropertyMetadata(new PropertyChangedCallback(OnSourceNameChanged)));
 public string SourceName
 {
 get
 {
 return (string)GetValue(SourceNameProperty);
 }
 set
 {
 SetValue(SourceNameProperty, value);
 }
 }
 private static void OnSourceNameChanged(DependencyObject Source,
 DependencyPropertyChangedEventArgs e)
 {
 MediaButtonsPanel thisPanel = Source as MediaButtonsPanel;

 if (e.NewValue != e.OldValue && thisPanel.Root != null)
 {
 thisPanel.MediaSource =
thisPanel.Root.FindName(e.NewValue as string) as MediaElement;
 thisPanel.InitMediaElementConnections();
 }
 }
 public MediaButtonsPanel()
 {
 this.DefaultStyleKey = typeof(MediaButtonsPanel);
 }
 public override void OnApplyTemplate()
 {

 btnPlay = GetTemplateChild("btnPlay") as ButtonBase;
 btnPause = GetTemplateChild("btnPause") as ButtonBase;
 btnStop = GetTemplateChild("btnStop") as ButtonBase;
 btnForward = GetTemplateChild("btnForward") as ButtonBase;
 btnRewind = GetTemplateChild("btnRewind") as ButtonBase;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

862

 Root = Helper.FindRoot(this);
 MediaSource = Root.FindName(SourceName) as MediaElement;
 InitMediaElementConnections();
 WireButtonEvents();
 }
 private void WireButtonEvents()
 {
 if (btnPlay != null)
 btnPlay.Click += new RoutedEventHandler(btnPlay_Click);
 if (btnPause != null)
 btnPause.Click += new RoutedEventHandler(btnPause_Click);
 if (btnStop != null)
 btnStop.Click += new RoutedEventHandler(btnStop_Click);
 if (btnForward != null)
 btnForward.Click += new RoutedEventHandler(btnForward_Click);
 if (btnRewind != null)
 btnRewind.Click += new RoutedEventHandler(btnRewind_Click);
 }

 void btnRewind_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null && MediaSource.Position > TimeSpan.Zero)
 {
 MediaSource.Pause();
 //5th of a second
 MediaSource.Position -= new TimeSpan(0, 0, 0, 0, 200);
 MediaSource.Play();
 }
 }
 void btnForward_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null && MediaSource.Position
 <= MediaSource.NaturalDuration.TimeSpan)

 {
 MediaSource.Pause();
 MediaSource.Position += new TimeSpan(0, 0, 0, 0, 200);
 MediaSource.Play();
 }
 }
 void btnStop_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null)
 MediaSource.Stop();
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

863

 void btnPause_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null &&
 MediaSource.CurrentState == MediaElementState.Playing)
 MediaSource.Pause();
 }
 void btnPlay_Click(object sender, RoutedEventArgs e)
 {
 if (MediaSource != null &&
 MediaSource.CurrentState != MediaElementState.Playing)
 MediaSource.Play();
 }

 private void InitMediaElementConnections()
 {
 if (MediaSource != null)
 {
 MediaSource.MediaOpened +=
 new RoutedEventHandler(MediaSource_MediaOpened);
 MediaSource.CurrentStateChanged +=
 new RoutedEventHandler(MediaSource_CurrentStateChanged);

 MediaSource_CurrentStateChanged(this, new RoutedEventArgs());
 }
 }
 private void MediaSource_CurrentStateChanged(object sender, RoutedEventArgs e)
 {
 switch (MediaSource.CurrentState)
 {
 case MediaElementState.Playing:

 VisualStateManager.GoToState(this,
 (MediaSource.CanSeek == false) ? "CannotSeek" : "CanSeek", true);
 VisualStateManager.GoToState(this,
 (MediaSource.CanPause == false) ? "CannotPause" : "CanPause", true);
 break;
 default:
 break;
 }
 }

 private void MediaSource_MediaOpened(object sender, RoutedEventArgs e)

 {
 VisualStateManager.GoToState(this,
 (MediaSource.CanSeek == false) ? "CannotSeek" : "CanSeek", true);

CHAPTER 10 ■ INTEGRATING RICH MEDIA

864

 VisualStateManager.GoToState(this,
 (MediaSource.CanPause == false) ? "CannotPause" : "CanPause", true);
 }
 }
}

Once again, you check for the MediaElement.CanSeek and MediaElement.CanPause properties to
navigate to the appropriate visual states, and you do it both in MediaOpened and when the Playing state is
reached in the CurrentStateChanged handler.

Figures 10-16 and 10-17 earlier in this recipe show you the resulting button states. In Figure 10-17,
where a broadcast stream is playing, and seeking or pausing is not possible, the corresponding buttons
are disabled.

10-4. Using Playlists to Package Media
Problem
You are looking for a way to combine a group of media files to be played as one unit in some ordered
fashion.

Solution
Create either a server-side or a client-side playlist, depending on your needs, and have the MediaElement
play the playlist.

How It Works
Playlists are a convenient way to group media sources to be played as one unit. When the MediaElement
plays a playlist, the user experience is seamless, and it seems as though a single source of media is
playing from start to end. You can use playlists to create a broadcast program–like experience where you
play a sequence of media in a certain order, with other media files (such as advertisements) interspersed
within specific parts of the program.

Silverlight supports two kinds of playlists: client-side playlists (CSPL) and server-side playlists
(SSPL). Both CSPL and SSPL are represented as XML documents with specific schemas, which means they
are textual and can easily be created using any text or XML editor.

Server-Side Playlists
An SSPL is not directly served to a player but is associated with a WMS publishing point (refer to Recipe
10-3 for more on WMS). Both broadcast and on-demand publishing points in WMS can specify an SSPL as
the source of media. Listing 10-19 shows a sample SSPL.

Listing 10-19. Sample Server-Side Playlist

 <?wsx version="1.0" encoding="utf-8"?>
<smil>
 <media src="D:\Media\Amazon_1080.wmv" begin="0s" dur="15s"/>
 <seq>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

865

 <media src="D:\Media\Coral_Reef_Adventure_1080.wmv" dur="20s"/>
 <media src="D:\Media\Discoverers_1080.wmv" begin="prev.begin+10s" dur="30s"/>
 <switch>
 <media src="D:\Media\AdrenalineRush.wmv" dur="15s"/>
 <media src="D:\Media\Alexander_Trailer_1080p.wmv" dur="15s"/>
 </switch>
 </seq>
 <media src="D:\Media\Discoverers_1080.wmv" begin="70s" dur="45s"/>
</smil>

The SSPL syntax is based on the Synchronized Multimedia Integration Language (SMIL) 2.0

specification. You can find more information about SMIL at the World Wide Web Consortium (W3C) web
site at www.w3.org/TR/SMIL2/. Every SSPL document is defined with a root element, <smil>. The <media>
element specifies a particular media source to be played. The dur attribute specifies a duration for the
media to play; it can be equal to or less than the total duration of the media. The begin attribute specifies
the time when the media starts to play relative to its parent time container. So, media specified in the last
entry in the previous listing starts playing as soon as 70 seconds have passed from the beginning of the
playlist. This happens even if it does not allow enough time for the previous entries to complete playing
their full duration. The second entry in the <seq> element starts playing 10 seconds after the previous
element in the same sequence starts playing, even if the previous one has not finished playing.

The <seq> element plays all media items it contains in order. The <switch> element provides a
series of alternative sources if one fails. In the sample, everything in the <seq> element plays in order; if
the first media source in the <switch> element succeeds in playing, the second one never plays.

The SSPL syntax is extensive and contains many attributes to control the behavior of the media.
Coverage of the full SSPL syntax is beyond the scope of this book, but you can refer to
msdn.microsoft.com/en-us/library/ms752512(VS.85).aspx for a complete reference of all SSPL elements
and attributes.

WMS includes an SSPL editor that you can invoke from within the WMS console to create or edit a
playlist. To associate an SSPL, select the publishing point, navigate to the Source property tab, and click
the View Playlist Editor button, as shown in Figure 10-18.

After the editor is opened, you can create the SSPL by adding the desired children nodes in the tree
pane at left and specifying the appropriate attribute values in the grid at right. The context menus for
each element type provide options for adding the various possible children elements. When you are
done, you can save the SSPL to a desired location. Figure 10-19 shows the Playlist Editor in action. You
can learn more about the editor at technet.microsoft.com/en-us/library/cc725750.aspx.

http://www.w3.org/TR/SMIL2

CHAPTER 10 ■ INTEGRATING RICH MEDIA

866

Figure 10-18. Opening the Playlist Editor

Figure 10-19. Using the Playlist Editor

Client-Side Playlists
CSPLs are defined as Windows Media metafiles that Windows Media Player can enumerate and play. A
CSPL, in spirit, is essentially just like an SSPL in that it, too, defines grouping of media sources to be
played together as one unit. However, the CSPL follows a different syntax from the SSPL. Also, a CSPL is
not associated with a streaming media service like WMS; it has no relation to streaming, other than the
fact that media sources inside a CSPL can point to streaming media sources. Listing 10-20 shows a sample
CSPL.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

867

Listing 10-20. Sample Client-Side Playlist

<asx version="3.0">
 <Title>SampleCSPL</Title>
 <Entry>
 <Duration value = "00:00:10" />
 <Title>Amazon_1080</Title>
 <Ref href = "mms://dc7600:43000/Media/Amazon_1080.wmv"/>
 </Entry>
 <Entry>
 <Title>AdrenalineRush</Title>
 <Ref href = "mms://dc7600:43000/Media/AdrenalineRush.wmv"/>
 </Entry>
 <Entry>
 <Duration value = "00:00:10" />
 <Title>Alexander_Trailer_1080p</Title>
 <Ref href = "mms://dc7600:43000/Media/Alexander_Trailer_1080p.wmv"/>
 </Entry>
 <Entry>
 <Duration value = "00:00:10" />
 <Title>Amazing_Caves_1080</Title>
 <Ref href = "mms://dc7600:43000/Media/Amazing_Caves_1080.wmv"/>
 </Entry>
</asx>

Every CSPL document is defined within an <asx> element. Each <Entry> element can contain a <Ref>

element pointing to the source of the media; in Listing 10-20, these elements all point back to the WMS
on-demand publishing point as defined in Recipe 10-3. You can also define a <Duration> element for
each <Entry> that specifies what duration the media source plays for before the next media source starts
playing, regardless of the total length of the media source. In Listing 10-20, the first entry plays for 10
seconds before making way for the second entry, which plays for its full length, and so on.

Full coverage of CSPL syntax is also beyond the scope of this book, but you can find complete
coverage in the Windows Media Metafile reference at msdn.microsoft.com/en-us/library/
dd564670(VS.85).aspx.

It is important to note that Silverlight does not support some of the SSPL and CSPL elements and
attributes. Refer to msdn.microsoft.com/en-us/library/cc189080(VS.95).aspx to find out more about the
unsupported features.

The Code
This code sample adds an SSPL and a CSPL to the mix of media that you then play through the player
developed in Recipes 10-2 and 10-3.

Figure 10-20 shows the new items added to the menus that enable you to test the features.

mms://dc7600:43000/Media/Amazon_1080.wmv
mms://dc7600:43000/Media/AdrenalineRush.wmv
mms://dc7600:43000/Media/Alexander_Trailer_1080p.wmv
mms://dc7600:43000/Media/Amazing_Caves_1080.wmv

CHAPTER 10 ■ INTEGRATING RICH MEDIA

868

Figure 10-20. Items added to the On Demand (left) and Broadcast (right) menus

To play the SSPL, you create two new publishing points named SSPLBroadcast of type broadcast and
SSPLOnDemand of type on-demand in the WMS installation. You then associate the SSPL document shown
in Listing 10-19 with each of these publishing points. The SSPL document is named SampleSSPL.wsx and is
included with the sample code. You create two publishing points in order to observe the behavior of the
MediaElement while playing an SSPL using the two different publishing point types. You then modify the
OnDemandStreams.xml file and the BroadcastStreams.xml file to include an entry to the two respective
publishing points. Recall from the earlier recipes that these files are used by the MediaLocationProvider
WCF service to provide the content of the menus in the player.

To play the CSPL, you add one more entry to the OnDemandStreams.xml that has the <Uri> element
pointing to the SampleCSPL.asx file, as shown in Listing 10-20.

Listing 10-21 shows all the entries in the two files.

Listing 10-21. New Entries in BroadcastStreams.xml and OnDemandStreams.xml

<!--BroadcastStreams.xml entry-->
<MediaLocation>
 <Description>SSPL Broadcast</Description>
 <Uri>mms://dc7600:43000/SSPLBroadcast</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg
 </ImageUri>
</MediaLocation>

<!--OnDemandStreams.xml entries-->

mms://dc7600:43000/SSPLBroadcast</Uri
http://localhost/SLBook/Ch10_RichMedia/Media/AdrenalineRush_Thumb.jpg

CHAPTER 10 ■ INTEGRATING RICH MEDIA

869

<MediaLocation>
 <Description>SSPL On Demand</Description>
 <Uri>mms://dc7600:43000/SSPLOnDemand</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch08_RichMedia/Media/AdrenalineRush_Thumb.jpg
 </ImageUri>
</MediaLocation>
<MediaLocation>
 <Description>CSPL</Description>
 <Uri>http://localhost:9393/SampleCSPL.ASX</Uri>
 <ImageUri>
 http://localhost/SLBook/Ch08_RichMedia/Media/Amazon_1080_Thumb.jpg
 </ImageUri>
</MediaLocation>

These entries cause three new menu items to appear in the player menus: two in the On Demand

menu (SSPL On Demand and CSPL) and one in the Broadcast menu (SSPL Broadcast). This is shown in
Figure 10-20.

If you play SSPL On Demand, the seek Buttons are disabled and the Thumb is missing. This is because
the MediaElement does not allow seeking (MediaElement.CanSeek is false) even when the SSPL is being
served through an on-demand publishing point. This, as you may recall, is different from your
experience in Recipe 10-3 when you played individual media files through an on-demand publishing
point. However, the Pause button is enabled, because a playing SSPL can be paused as long as it is being
served through an on-demand publishing point (MediaElement.CanPause is set to true).

You can also observe the timing behavior specified through the dur and begin attributes in Listing 10-
19 by following the progress and duration counters displayed along with the slider. Note that although
the timing behavior forces certain media sources to stop and make way for the next element before they
play their entire duration, the MediaElement.NaturalDuration always reports the total duration of each
media source as it is loaded in the course of playing the SSPL.

Also note that as the SSPL is played by the MediaElement, state transitions are reported for certain
states for each media source. The MediaElement.Opened event is raised every time the SSPL moves to a
new source. The MediaElement.CurrentStateChanged event is also raised when the source is buffering or
starts playing. This allows the player code from Recipe 10-3 to update various media information such as
duration, as well as track play progress and buffering progress for every source change within the SSPL.
The MediaElement.Ended event, however, is raised only once: when the entire SSPL is finished playing.

When you play the SSPL Broadcast menu item, you see the same broadcast publishing point
experience as in Recipe 10-3—that is, seeking and pausing are disabled, and no duration information is
exposed.

Finally, when you play the CSPL item, seeking is available, and the Thumb and the seek Buttons are
usable. Also notice the effect of the <Duration> elements. While playing a CSPL entry with a duration set
to a time different from the total duration of the referenced media source, the MediaElement reports the
duration value from the CSPL rather than the actual total duration. So, for the first element in Listing 10-
20, the duration reported is 10 seconds, even though the actual duration of the media source is a little
over a minute.

mms://dc7600:43000/SSPLOnDemand</Uri
http://localhost/SLBook/Ch08_RichMedia/Media/AdrenalineRush_Thumb.jpg
http://localhost:9393/SampleCSPL.ASX</Uri
http://localhost/SLBook/Ch08_RichMedia/Media/Amazon_1080_Thumb.jpg

CHAPTER 10 ■ INTEGRATING RICH MEDIA

870

10-5. Using Markers to Display Timed Content

Problem
You want to display some timed content, such as a closed caption, subtitles, or a commercial, at certain
points while your media is playing.

Solution
Add markers to the video either through pre-encoding or at runtime, and respond to MediaElement events
to display your content when markers are reached.

How It Works
A marker is a piece of metadata associated with a specific time point in a media’s timeline. A Windows
media file may contain many such markers, and this collection of markers is stored along with the actual
media inside the file. While the media is playing, a player like the MediaElement can raise notification
events every time a marker is reached, and you can respond to these events in your code to perform a
timed task corresponding to that marker’s time point.

Markers are useful in many scenarios. Captions or advertisements specific to the content’s current
context may be displayed at specific time points. You might devise a chapter system by introducing a
marker at the beginning of the chapters and allowing the user to seek to the time point defined by the
marker to simulate chapter navigation. Markers can also be used to overlay near real-time data, such as
a game commentary, over live content.

You can introduce markers into the media either by encoding them using an encoder like Expression
Encoder or programmatically at the start of play, provided the playing environment supports such a
feature. Let’s look at these options.

Encoding Markers Using Expression Encoder 3
Full coverage of Expression Encoder 3 is beyond the scope of the book, and we encourage you to
download the trial version and try the different features. You can download a trial version from
www.microsoft.com/expression/try-it/default.aspx?filter=encoder3.After you import a media file into
Expression Encoder, you can navigate to the Metadata tab to add markers to the content. To add a marker,
move the thumb along the media timeline to the time point where you want to add the marker, and then
click the Add button in the Markers pane. Doing so adds a marker with its Time property set to the time
point you selected using the Thumb and its Value property set to a blank string. You can provide a
meaningful text value to the marker in the Value property if you decide to have application logic
dependent on it, as shown later in the sample. When you have added all the markers you need, the
Markers pane looks something like Figure 10-21.

http://www.microsoft.com/expression/try-it/default.aspx?filter=encoder3.After

CHAPTER 10 ■ INTEGRATING RICH MEDIA

871

Figure 10-21. Expression Encoder Markers pane with markers added

Note that the Key Frame check box is checked by default for each marker. This causes the generation
of a keyframe the time point for each marker, resulting in a much faster seek to that marker if needed.
You can uncheck the Key Frame check box for any markers for which you do not want to generate
keyframes. Checking the Thumbnail check box causes Expression Encoder to generate a thumbnail of the
video frame at the marker, which may come in handy in scenarios like a chaptering system.

If the media is already encoded to a profile of your choice, you can set the Video encoding profile in
the Encode tab to Source, as shown in Figure 10-22. This causes Expression Encoder to add the markers to
the media when you click the Encode button, without going through a full encode again, and makes the
process a lot faster. A profile is a set of predetermined values around the various parameters you can
control on the media during the encoding process.

Figure 10-22. Expression Encoder video profile set to match the source profile

MediaElement and Markers
When you use a Windows Media file containing markers as a source to a MediaElement, the MediaElement
reads all the markers in the file and stores them in the MediaElement.Markers collection, which is of type
System.Windows.Media.TimelineMarkerCollection. You can access this collection after the media has been
successfully opened in the MediaOpened event handler and afterward.

Each marker is represented by an instance of the System.Windows.Media.TimelineMarker class. The
TimelineMarker.Time property is of type TimeSpan and represents the marker’s time point. The
TimelineMarker.Text property contains the marker’s optional text value, which can be user defined. In
the case of markers encoded in the video, if you recall the Expression Encoder example in the previous

CHAPTER 10 ■ INTEGRATING RICH MEDIA

872

section, this property reflects the values entered in the Value column in the Markers pane. The
TimelineMarker.Type property can also be any user-defined string and can be used to categorize markers
into sets corresponding to a specific usage.

After the media starts playing, as each marker’s time point is reached, the MediaElement raises the
MarkerReached event. In the handler for the event, the Marker property on
System.Windows.Media.TimelineMarkerRoutedEventArgs provides access to the TimelineMarker instance
that causes the MediaElement to raise the event.

In addition to markers introduced in the media during encoding, you can add markers to media at
runtime. You achieve this by creating and initializing new instances of the TimelineMarker type and
adding them to the MediaElement.Markers collection before the media starts playing. These markers are
temporary and are not stored in the media, but are discarded after a new media file is loaded into the
MediaElement. Apart from that, their behavior is identical to markers contained in the media file, and the
MarkerReached event is raised for both kinds the same way.

The Code
The code sample for this recipe shows the use of markers encoded into the media file as well as
temporary markers added on the client. You enable two scenarios in this sample: a captioning system
and overlaid commercials. In the former scenario, animated and context-specific text captions are
overlaid on the video at specific time points; for this, you use file-encoded markers. In the latter scenario,
a small commercial-like video is overlaid on the main video at regular intervals; for this, you use client-
created markers.

You implement all this in the player you have been developing in the previous few recipes.
Figure 10-23 shows both scenarios at work in the player. The caption is the white text near the upper-

right corner of the display, and the small Silverlight logo is actually a small video playing near the
lower-right corner.

Let’s look at the captioning system first. The captions are implemented as independent snippets of
XAML defined in an XML file named Captions.xml, keyed by a specific marker value.
Listing 10-22 shows an abridged Captions.xml file.

Figure 10-23. Overlaid caption and Silverlight commercial

CHAPTER 10 ■ INTEGRATING RICH MEDIA

873

Listing 10-22. Captions.xml sample

<?xml version="1.0" encoding="utf-8" ?>
<Medias>
 <Media
 Id="http://localhost/SLBook/Ch010RichMedia/Media/Amazon_1080_WithMarkers.wmv">
 <Marker Value="FirstMarker">
 <![CDATA[
 <Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Height="Auto"
 HorizontalAlignment="Stretch" Margin="0,0,0,0"
 VerticalAlignment="Stretch" Width="Auto"
 Grid.Column="1" Grid.Row="1" x:Name="overlay">

 <Canvas.Resources>
 <Storyboard x:Name="STBD_AnimateCaption">
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="1"/>
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="1"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock"
 Storyboard.TargetProperty="(Canvas.Left)">
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock"
 Storyboard.TargetProperty="(Canvas.Top)">
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </Canvas.Resources>
 <TextBlock x:Name="textBlock"
 Opacity="0" FontFamily="Portable User Interface" FontSize="24"

http://localhost/SLBook/Ch010RichMedia/Media/Amazon_1080_WithMarkers.wmv
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ INTEGRATING RICH MEDIA

874

 FontWeight="Bold" Foreground="#FFFFFDFD" Text="Beautiful Sunset"
 TextAlignment="Right" TextWrapping="Wrap" HorizontalAlignment="Left"
 VerticalAlignment="Top"/>
 </Canvas>]]>
 </Marker>
 <Marker Value="SecondMarker">
 <![CDATA[<Canvas Height="Auto"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 HorizontalAlignment="Stretch" Margin="0,0,0,0"
 VerticalAlignment="Stretch" Width="Auto"
 Grid.Column="1" Grid.Row="1" x:Name="overlay">

 <Canvas.Resources>
 <Storyboard x:Name="STBD_AnimateCaption">
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="1"/>
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="1"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock"
 Storyboard.TargetProperty="(Canvas.Left)">
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="375"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="textBlock" S
 Storyboard.TargetProperty="(Canvas.Top)">
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:04" Value="35"/>
 <SplineDoubleKeyFrame KeyTime="00:00:05" Value="0"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </Canvas.Resources>
 <TextBlock x:Name="textBlock" Opacity="0"
 FontFamily="Portable User Interface" FontSize="24"
 FontWeight="Bold" Foreground="#FFFFFDFD" Text="Is that a leopard ?"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ INTEGRATING RICH MEDIA

875

 TextAlignment="Right" TextWrapping="Wrap" HorizontalAlignment="Left"
 VerticalAlignment="Top"/>
</Canvas>]]>
 </Marker>
 </Media>
</Medias>

The root element <Medias> is expected to have multiple <Media> elements, each uniquely identified

by its Id attribute set to the media URI. Each <Media> element in turn can have many <Marker> elements
with a Value attribute set to the marker value, and a CDATA section containing the XAML snippet to be
used for that marker. Note that you stipulate that each XAML snippet has at least one Storyboard defined,
named STBD_AnimateCaption; you use it later in the code. Also note that the TextBlock at the end of the
XAML snippet has the caption text set on the Text property.

■ NNote Several industry standards are defined for including captions and subtitles in digital media for both
television and broadband delivery mechanisms. You can look at the Synchronized Multimedia Integration Language
(SMIL) specification at www.w3.org/TR/SMIL2/or the Synchronized Accessible Media Interchange (SAMI)
specification at msdn.microsoft.com/en-us/library/dd562301(VS.85).aspx. The schema outlined here is not

aligned with an industry standard by any means. If this mechanism works for you as is, we are happy that you have
benefited. However, if your goal is to create a production-ready captioning system, we also encourage you to look at
some of the industry standards and possibly combine them with the knowledge gained here to achieve your goals

with Silverlight.

You also encode the media file (in the sample Amazon_1080.wmv file) with markers placed at
appropriate time points, with their Value properties set to match the Value attributes of the <Marker>
elements in the Captions.xml file (we discussed the Expression Encoder–based encoding process briefly
in the previous section). To have this file available to the player to play, you place the encoded file for
progressive download in the same location as the other progressively downloaded media files from
Recipe 10-2 and add a new entry to the Downloads.xml file. To see how this works, refer back to Recipe 10-
2.

You define a new operation named GetCaptionsForMedia() on the MediaLocationProvider WCF
service that you have been using since Recipe 10-2. GetCaptionsForMedia() accepts the Media URI and
returns the complete XML for the corresponding <Media> element. You also use a UriTemplate in the
operation contract to map the operation to the format <service address>/Captions?MediaId={MediaUri},
where MediaUri is the URI of the media you are trying to download and play.

We do not list GetCaptionsForMedia(), and you are encouraged to look at Chapter 7 for more about
WCF services and the sample code for the implementation.

The player XAML from the previous recipes undergoes a few minor changes. We list the player XAML
in Listing 10-23, but we left out the Resources section for brevity and because there are no changes to it.

http://www.w3.org/TR/SMIL2/or

CHAPTER 10 ■ INTEGRATING RICH MEDIA

876

Listing 10-23. Modified XAML for the Marker-Enabled Player

<UserControl x:Class="Recipe10_5.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
 xmlns:local="clr-namespace:Recipe10_5"
 Width="920" Height="547"
 xmlns:Ch10_RichMedia_Recipe10_4=
"clr-namespace:Recipe10_5;assembly=Recipe10_5.PlrCntls"
 >
 <!-- Resources section deliberately left out -->

 <Grid x:Name="LayoutRoot"
 Background="#FFA2A2A2" Height="Auto" Width="Auto">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.062*"/>
 <RowDefinition Height="0.649*"/>
 <RowDefinition Height="0*"/>
 <RowDefinition Height="0.289*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.2*"/>
 <ColumnDefinition Width="0.8*"/>
 </Grid.ColumnDefinitions>
 <MediaElement Height="Auto" Margin="0,0,0,0"
 VerticalAlignment="Top" x:Name="mediaelemMain"
 BufferingTime="0:0:3"
 HorizontalAlignment="Left" AutoPlay="True" Opacity="0"/>
 <MediaElement Height="Auto" Margin="0,0,0,0" VerticalAlignment="Top"
 x:Name="mediaelemPIP" HorizontalAlignment="Left"
 AutoPlay="True" Opacity="0" IsMuted="True"
 BufferingTime="0:0:3"/>
 <Grid Grid.Row="0" Grid.Column="1" Grid.RowSpan="2" Margin="0,0,0,1">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.018*" />
 <RowDefinition Height="0.961*" />
 <RowDefinition Height="0.021*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.05*"/>
 <ColumnDefinition Width="0.9*"/>
 <ColumnDefinition Width="0.05*"/>
 </Grid.ColumnDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ INTEGRATING RICH MEDIA

877

 <Border x:Name="displayMain"
 VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1"
 HorizontalAlignment="Stretch" BorderThickness="5,5,5,5"
 BorderBrush="#FF000000" Margin="0,0,0,0" >
 <Border.Background>
 <VideoBrush SourceName="mediaelemMain" Stretch="Fill"
 x:Name="vidbrushMain" />
 </Border.Background>
 <Grid HorizontalAlignment="Right" MaxHeight="135" MaxWidth="240"
 Grid.Column="1" Grid.Row="1" Opacity="0.5"
 x:Name="adContainer" VerticalAlignment="Bottom">
 </Grid>
 </Border>
 <Grid VerticalAlignment="Stretch" Grid.Column="1" Grid.Row="1"

 HorizontalAlignment="Stretch" x:Name="CaptionContainer"
 Margin="0,0,0,0" />
 <Grid Grid.Column="1" Grid.Row="1" Margin="0,0,0,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.025*" />
 <RowDefinition Height="0.35*" />
 <RowDefinition Height="0.625*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.635*"/>
 <ColumnDefinition Width="0.35*"/>
 <ColumnDefinition Width="0.015*"/>
 </Grid.ColumnDefinitions>
 <Border Grid.Column="1" Grid.Row="1" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 MouseLeftButtonUp="displayPIP_MouseLeftButtonUp"
 x:Name="displayPIP" BorderThickness="2,2,2,2"
 BorderBrush="#FF000000" Visibility="Collapsed">
 <Border.Background>
 <VideoBrush SourceName="mediaelemPIP"
 Stretch="Fill" x:Name="vidbrushPIP"/>
 </Border.Background>
 </Border>
 <Grid HorizontalAlignment="Stretch" Margin="8,8,8,8"
 Grid.RowSpan="1" Grid.Column="1" Grid.Row="1"
 x:Name="buttonsPIP" Visibility="Collapsed" >
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.1*"/>

CHAPTER 10 ■ INTEGRATING RICH MEDIA

878

 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.3*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.749*"/>
 <ColumnDefinition Width="0.176*"/>
 <ColumnDefinition Width="0.075*"/>
 </Grid.ColumnDefinitions>
 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="1"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnClosePIP" Click="btnClosePIP_Click">
 <Path x:Name="Path" Stretch="Fill" StrokeThickness="2"
StrokeLineJoin="Round" Stroke="#FF000000" Fill="#FFE91111"
Data="M 110.5,75.7635L 113.209,
 72.9631L 133.396,92.4865L 130.687,95.2869L 110.5,
 75.7635 Z M 130.801,73.4961L 133.393,76.4048L 112.425,
 95.0872L 109.833,92.1785L 130.801,73.4961 Z "/>
 </Button>
 <Button Margin="0,0,0,0" Grid.RowSpan="1" Grid.Row="3"
 Grid.ColumnSpan="1" Grid.Column="1"
 x:Name="btnSwitchPIP" Click="btnSwitchPIP_Click">
 <Path Stretch="Fill" StrokeThickness="2" StrokeLineJoin="Round"
Stroke="#FF000000" Data="M 120,39.8333L 149.917,
 39.8333L 149.917,59.9167L 120,59.9167L 120,
 39.8333 Z M 132.917,42.8333L 146.667,42.8333L 146.667,
 52.6667L 132.917,52.6667L 132.917,42.8333 Z "/>
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid Margin="2,-1,2,0" VerticalAlignment="Stretch" Grid.Column="1"
 Grid.Row="2" HorizontalAlignment="Stretch" Grid.RowSpan="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.341*"/>
 <RowDefinition Height="0.341*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.75*"/>
 <ColumnDefinition Width="0.25*"/>
 </Grid.ColumnDefinitions>
 <Ch08_RichMedia_Recipe8_4:MediaSlider SourceName="mediaelemMain"
 VerticalAlignment="Stretch"
 IsEnabled="True"
 x:Name="mediaSlider" Grid.ColumnSpan="2"
 Margin="0,0,0,0" Grid.Row="0" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

879

 <Ch08_RichMedia_Recipe8_4:MediaButtonsPanel Grid.Row="2" Grid.Column="0"
 SourceName="mediaelemMain"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="150" Height="40"
 x:Name="mediaControl"/>
 <Slider x:Name="sliderVolumeControl" Margin="5,12,5,0" Maximum="1"
 Minimum="0" SmallChange="0.1"
 LargeChange="0.2" Value="0.5"
 MinWidth="50" Grid.Row="2"
 Grid.Column="1" ValueChanged="sliderVolumeControl_ValueChanged"/>
 </Grid>
 <Grid Grid.RowSpan="4">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" MinHeight="41" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid Height="Auto" VerticalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.33*"/>
 <ColumnDefinition Width="0.34*"/>
 <ColumnDefinition Width="0.33*"/>
 </Grid.ColumnDefinitions>

<RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="Download"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 GroupName="MediaMenuChoices"
 IsChecked="True" x:Name="rbtnDownloadsMenu"
 Checked="rbtnDownloadsMenu_Checked"/>
 <RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="On Demand" Grid.Column="1"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 GroupName="MediaMenuChoices"
 IsChecked="False" x:Name="rbtnOnDemandMenu"
 Checked="rbtnOnDemandMenu_Checked"/>
 <RadioButton HorizontalAlignment="Stretch" VerticalAlignment="Stretch"
 Content="Broadcast" Grid.Column="2"
 Template="{StaticResource ctMenuSwitchButton}"
 HorizontalContentAlignment="Stretch"

CHAPTER 10 ■ INTEGRATING RICH MEDIA

880

 VerticalContentAlignment="Stretch" IsChecked="False"
 GroupName="MediaMenuChoices" x:Name="rbtnBroadcastMenu"
 Checked="rbtnBroadcastMenu_Checked"/>
 </Grid>
 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuDownloads"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Grid.RowSpan="1" Grid.Row="1" Background="#FF3CB1E8"/>
 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuOnDemandStreams"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Grid.RowSpan="1" Grid.Row="1" Background="#FF3CB1E8"
 Visibility="Collapsed"/>

 <ListBox Margin="0,0,0,0" VerticalAlignment="Stretch"
 x:Name="lbxMediaMenuBroadcastStreams"
 ItemTemplate="{StaticResource dtMediaMenuItem}"
 ItemContainerStyle="{StaticResource STYLE_MediaMenuListBoxItem}"
 Visibility="Collapsed"
 Background="#FF3CB1E8" Grid.RowSpan="1" Grid.Row="1"/>
 </Grid>
 </Grid>
</UserControl>

The only change in the XAML that pertains to the captioning system is the addition of a Grid named

CaptionContainer, overlaid on top of the Border that serves as the main display; this change is shown in
bold in Listing 10-23.

Listing 10-24 shows the modifications to the player’s codebehind. Again, because major portions of
the player’s code do not change from previous recipes, we have left out some of the unchanged portions.
You are encouraged to look at the previous recipe for the full player listing.

Listing 10-24. Modifications to the Player Code for Marker Support

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Markup;
using System.Windows.Media;
using System.Windows.Media.Animation;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

881

using System.Windows.Threading;
using System.Xml.Linq;

namespace Recipe10_5
{
 public partial class MainPage : UserControl
 {
 private const string DownloadsListUri =
 "http://localhost:9494/MediaLocationProvider.svc/GetDownloadsList";
 private const string OnDemandStreamsListUri =
 "http://localhost:9494/MediaLocationProvider.svc/GetOnDemandStreamsList";
 private const string BroadcastStreamsListUri =
 "http://localhost:9494/MediaLocationProvider.svc/GetBroadcastStreamsList";
 private const string CaptionsListUri =
 "http://localhost:9494/MediaLocationProvider.svc/Captions?MediaId={0}";
 private const string CommercialsListUri =
 "http://localhost:9494/MediaLocationProvider.svc/Commercial?Marker={0}";

 private Dictionary<string, string> dictCaptions = null;

 DispatcherTimer timerAdManager = null;

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 PopulateMediaMenu();

 //handle marker reached for the main display
 MainVideo.MarkerReached +=
 new System.Windows.Media.TimelineMarkerRoutedEventHandler
(MainVideo_MarkerReached);
 //handle both media_opened events
 MainVideo.MediaOpened += new RoutedEventHandler(MainVideo_MediaOpened);
 PIPVideo.MediaOpened += new RoutedEventHandler(PIPVideo_MediaOpened);
 //set up a timer to manage commercials
 timerAdManager = new DispatcherTimer();
 timerAdManager.Interval = new TimeSpan(0, 0, 15);
 timerAdManager.Tick += new EventHandler(delegate(object timer, EventArgs args)
 {
 //clear
 if (adContainer.Children.Count > 0)
 adContainer.Children.Clear();
 //stop timer
 if ((timer as DispatcherTimer).IsEnabled)
 (timer as DispatcherTimer).Stop();
 });

http://localhost:9494/MediaLocationProvider.svc/GetDownloadsList
http://localhost:9494/MediaLocationProvider.svc/GetOnDemandStreamsList
http://localhost:9494/MediaLocationProvider.svc/GetBroadcastStreamsList
http://localhost:9494/MediaLocationProvider.svc/Captions?MediaId=
http://localhost:9494/MediaLocationProvider.svc/Commercial?Marker=

CHAPTER 10 ■ INTEGRATING RICH MEDIA

882

 }

 void PIPVideo_MediaOpened(object sender, RoutedEventArgs e)
 {
 //we will never display commercials in the PIP,
 //but it might get switched with the main - hence this
 AttachClientMarkers(PIPVideo);
 }

 void MainVideo_MediaOpened(object sender, RoutedEventArgs e)
 {
 //attach the client markers for commercials demo
 AttachClientMarkers(MainVideo);
 }

 private void AttachClientMarkers(MediaElement medElem)
 {
 TimeSpan ts = TimeSpan.Zero;
 if (medElem.NaturalDuration.TimeSpan != TimeSpan.Zero)
 {
 int Ctr = 0;
 while (ts <= medElem.NaturalDuration.TimeSpan)
 {
 //Text = unique name, Time 5,40, 75, ...
 medElem.Markers.Add(new TimelineMarker
 {
 Text = "ClientMarker" + (++Ctr).ToString(),
 Time = ts + new TimeSpan(0, 0, 5),
 Type = "SLMovie"
 });
 ts += new TimeSpan(0, 0, 30);
 }
 }
 }

 void MainVideo_MarkerReached(object sender,
 System.Windows.Media.TimelineMarkerRoutedEventArgs e)
 {
 //Captions markers coming from encoded video
 if (dictCaptions != null && dictCaptions.Count > 0
 && dictCaptions.ContainsKey(e.Marker.Text))
 {
 //clear if we got here before the previous animation completed
 if (CaptionContainer.Children.Count > 0)
 CaptionContainer.Children.Clear();

CHAPTER 10 ■ INTEGRATING RICH MEDIA

883

 // get the caption XAML
 FrameworkElement fe = XamlReader.Load(dictCaptions[e.Marker.Text])
 as FrameworkElement;
 //add
 CaptionContainer.Children.Add(fe);
 //get the animation
 Storyboard stbd = fe.Resources["STBD_AnimateCaption"] as Storyboard;
 stbd.Completed +=
 new EventHandler(delegate(object anim, EventArgs args)
 {
 //clear on animation completion
 if (CaptionContainer.Children.Count > 0)
 CaptionContainer.Children.Clear();
 });

 //run animation
 stbd.Begin();
 }
 //commercial marker
 else if (e.Marker.Type == "SLMovie")
 {
 WebClient wcCommercial = new WebClient();
 wcCommercial.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 delegate(object wc, DownloadStringCompletedEventArgs args)
 {
 if (args.Result == null || args.Result == string.Empty) return;
 if (adContainer.Children.Count > 0)
 adContainer.Children.Clear();
 //parse
 XDocument xDoc = XDocument.Parse(args.Result);
 //add
 adContainer.Children.Add(XamlReader.Load((
 (XCData)xDoc.Root.DescendantNodes().ToList()[0]).Value)
 as FrameworkElement);
 //start timer
 timerAdManager.Start();

 });
 //get commercial for this marker type
 wcCommercial.DownloadStringAsync(
 new Uri(string.Format(CommercialsListUri, e.Marker.Type)));
 }
 }
 private void PlayFull_Click(object sender, RoutedEventArgs e)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

884

 {
 //get the animations
 Uri mediaUri = ((sender as Button).Tag as MediaMenuData).MediaLocation;
 WebClient wcAnimations = new WebClient();
 wcAnimations.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 wcAnimations_DownloadStringCompleted);
 //pass in the mediaelement and the source URI
 wcAnimations.DownloadStringAsync(
 new Uri(string.Format(CaptionsListUri, mediaUri.AbsoluteUri)),
 new object[] { MainVideo, mediaUri });

 }

 void wcAnimations_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 if (e.Result != null && e.Result != string.Empty)
 {
 //parse
 XDocument xDoc = XDocument.Parse(e.Result);
 //get each animation
 var AnimationUnits = from marker in xDoc.Root.Elements()
 select new
 {
 key = marker.Attribute("Value").Value,
 XamlFragment = ((XCData)marker.DescendantNodes().
 ToList()[0]).Value
 };

 dictCaptions = new Dictionary<string, string>();
 //store in dictionary
 foreach (var marker in AnimationUnits)
 dictCaptions.Add(marker.key, marker.XamlFragment);
 }
 //start playing the media
 ((e.UserState as object[])[0] as MediaElement).Source =
 ((e.UserState as object[])[1] as Uri);
 }

 // REST OF THE CODE OMITTED FOR BREVITY -
 //PLEASE LOOK AT RECIPE 10-4 FOR FULL LISTING
 }
}

CHAPTER 10 ■ INTEGRATING RICH MEDIA

885

Whenever a user tries to play a media file, you use a WebClient to invoke the GetCaptionsForMedia()

WCF service operation. In the DownloadStringCompleted handler, you check to see if any caption
definitions were returned. If there is a valid return from the operation, you perform a LINQ query on the
returned XML to extract a collection of the marker values and corresponding XAML fragments. You then
save each XAML entry representing a caption into a Dictionary named dictCaptions, keyed with the
marker value for later access. After this is done, you start playing the media by setting
MediaElement.Source.

As the media plays and markers are reached, you handle the MarkerReached event, using the
MainVideo_MarkerReached() event handler. Let’s look at the if block of the if-else statement in the
handler. If the TimelineMarker being reached has a Text property value that corresponds to a key in
dictCaptions, you first clear the CaptionContainer. You then load the XAML fragment using
XamlReader.Load(). You can find more about XamlReader in Chapter 2. When the XAML is loaded, you cast
it to a FrameworkElement and add it to CaptionContainer. Using the FrameworkElement base type allows you
to use any FrameworkElement derivative in the XAML fragment, and not just a Canvas as it was defined in
the XAML fragment. You then acquire the Storyboard named STBD_AnimateCaption from the
FrameworkElement.Resources collection and start it. In the Storyboard.Completed handler, you clear the
CaptionContainer after the animation completes.

■ NNote The clearing of the CaptionContainer at the beginning of the if block is for cases where a marker may be

reached even before the animation for the previous one has completed.

Also note that the XAML fragments loaded using XamlReader.Load() are evaluated by the XAML
parser for validity. Because they are not evaluated in the context of a containing XAML document, they
need to be valid on their own. Consequently, if you are cutting and pasting from a containing document,
be sure to add the necessary namespace declarations to the top-level element in the fragment to make it
independently valid and thus avoid loading exceptions.

Now, let’s look at the second part of this sample. For the simulated commercials, you create a
similarly structured data file named Commercials.xml. Listing 10-25 shows a sample.

Listing 10-25. Commercials.xml Sample

<?xml version="1.0" encoding="utf-8" ?>
<Commercials>
 <Marker Type="SLMovie">
 <![CDATA[<Grid
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <MediaElement x:Name="medElem" Opacity="0.0" AutoPlay="true"
 Source="mms://localhost/SLBook/Ch010RichMedia/Media/sl.wmv"
 HorizontalAlignment="Left" VerticalAlignment="Top" />
 <Border>
 <Border.Background>
 <VideoBrush Stretch="Fill" SourceName="medElem"/>
 </Border.Background>
 </Border>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
mms://localhost/SLBook/Ch010RichMedia/Media/sl.wmv

CHAPTER 10 ■ INTEGRATING RICH MEDIA

886

 </Grid>]]>
 </Marker>
</Commercials>

Each commercial is tied to a marker type (derived from the TimelineMarker.Type property discussed

earlier). Within each <Marker> element, you again have an XAML snippet defining the commercial. The
previous sample includes another MediaElement in the snippet that points to a small Silverlight logo
animation captured in a Windows media file. The sl.wmv file used here is a part of the Expression Encoder
installation and can be found in the StockContent folder under the Expression Encoder installation root.
But you can replace this with any .wmv file or, for that matter, any other XAML snippet.

You also define another WCF service operation named GetCommercial() and apply another
UriTemplate to use the Uri format <serviceaddress>/Commercial?Marker={MarkerType}. GetCommercial()
accepts a marker type string and returns the XML for the matching <Marker> element. Again, we
encourage you to look at the sample code for the service operation details.

Refer back to Listing 10-23, and notice one more addition to the player XAML: another Grid named
adContainer, this time contained in the Border serving as the main display. You set adContainer at opacity
0.5 and align it with the lower-right corner of the containing Border.

Referring back to the code in Listing 10-24, notice that you attach handlers to the MediaOpened event
for both the PIP and the main MediaElements in the Page_Loaded() handler. In both those handlers, you
invoke AttachClientMarkers() to attach a set of client-side markers to the media right after it opens.
Although you always display the commercial in the main display only, you attach the markers to both,
because in previous recipes you enabled the user to switch media elements between displays using the
PIP feature.

In AttachClientMarkers(), you look at the total duration of the media file; create a new
TimelineMarker at 30-second intervals, starting the first one at 5 seconds into the media; and add each to
the MediaElement.Markers collection. You set the TimelineMarker.Type property to the string “SLMovie”,
which matches the entry in Listing 10-25. Note that you use a counter to generate a unique Text property
for each TimelineMarker—the MediaElement requires that client markers have unique Text values.
Whenever a piece of media starts playing, the MarkerReached event is raised for each client-side
TimelineMarker as well.

Next, let’s look at the else block of the MainVideo_MarkerReached() method, which is where you handle
the client-side markers. After you verify that the TimelineMarker.Type property value matches the string
“SLMovie”, you use another WebClient to invoke the GetCaption() service operation. You parse the
returned XAML into a FrameworkElement and add it to the adContainer Grid. Using the XAML fragment
from the sample in Listing 10-25, this causes the MediaElement named medElem to download and play the
sl.wmv file within the bounds of adContainer. You also start a DispatcherTimer named timerAdManager right
after you add the XAML fragment. You have already created timerAdManager intervals in the
Page_Loaded() handler and initialized timerAdManager to tick at 15-second intervals. In the Tick event
handler for timerAdManager, you clear the adContainer and stop the timer, thus causing the commercial to
play for its entire duration or 15 seconds, whichever comes first.

10-6. Displaying and Seeking Using SMPTE Timecodes

Problem
You want to display the time elapsed in the SMPTE timecode format when a video is playing. You also
want the user to be able to specify a time in the SMPTE timecode format and have the video seek to that
time point.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

887

Solution
Use the TimeCode class and the SmpteFrameRate enumeration available as a part of the Expression Encoder
templates to enable timecode handling in your code.

How It Works
Digital video is a collection of frames, where each frame is essentially a discrete bitmap. Video players
achieve the illusion of a smoothly moving image by displaying these frames sequentially at a certain
speed.

Frame Rate
The speed at which frames are displayed is typically measured in the number of frames displayed per
second (fps) and is commonly known as the frame rate of a video.

Several different frame rates are used for video around the world. Some of the more common ones
are as follows:

• 24 fps: Typically used for movie making

• 25 fps: Used in the PAL Television standards in large parts of Europe and Latin America

• 29.97 fps: Used in the NTSC Television standards in North America

• 30 fps: Used in the HDTV standard

Timecodes
A common way to refer to a specific time point in a video is to use a combination of standard time units
and frame count. This mechanism has been formalized by the SMPTE and is commonly referred to as an
SMPTE timecode or more formally as the SMPTE 12M specification.

An SMPTE timecode is a way to label each frame in a video with time information for that frame.
Using the SMPTE timecode standard, each frame is labeled using the hh:mm:ss:ff format, where ff is the
frame number for that frame within the second immediately following the time specified by the hh:mm:ss
portion of the timecode.

As an example, consider a video that has been recorded at a frame rate of 25 fps—that is, in the video,
a unique frame occurs every 40 milliseconds. The two-thousand-twelfth frame in that video is labeled
00:01:20:12. If you calculate backward, you see that 1 minute and 20 seconds (80 seconds) yields 2,000
frames at 25 fps, and hence 00:01:20:12 denotes the two-thousand-twelfth frame in the video.

Timecodes are typically imprinted into the source video at the time of recording. Consequently, if
you are using the source material as is, you may expect the timecodes to be contiguous. However, this is
not always the case. Often, video can be edited such that segments of video from different source
materials, or disjoint segments from the same source material, are stitched together to form another
video. In certain cases, the editor may choose to retain the original SMPTE timecodes from the sources
into the resulting video, in which case the resulting video ends up with disjoint ranges of SMPTE
timecodes.

We touch on some very basic information about timecoding here. For a somewhat detailed treatment
of SMPTE timecodes, you can refer to en.wikipedia.org/wiki/SMPTE_timecode. For the detailed 12M
timecode specifications, visit the SMPTE at www.smpte.org.

http://www.smpte.org

CHAPTER 10 ■ INTEGRATING RICH MEDIA

888

Timecodes and Silverlight
The SMPTE timecoding mechanism is very helpful for performing frame-accurate operations on a video,
such as seeking to a specific frame within the video or being able to edit the video to the accuracy of
specific frames. Consequently, you may need to both display and act on SMPTE timecodes in your
Silverlight application.

Calculating the timecode is relatively easy as long as you know the frame rate of the video. If the
video clip you are dealing with does not come with any preexisting timecode ranges, you can calculate
the timecode at any time point by converting the fractional seconds in the MediaElement.Position
property into a number of frames based on the frame rate, and then attaching that to the end of a string
that contains the whole number of hours, minutes, and seconds at that time point formatted in the
timecode format, as discussed in the previous section. In this case, the timecode is extrapolated from the
absolute time within the video.

On the other hand, if the video clip is associated with a range of timecodes, you can perform the same
extrapolation and then offset the resulting hh:mm:ss:ff value with the starting timecode for the range in
which that timecode falls.

But you do not have to do this on your own. If you install the Microsoft Expression Encoder tool, it
installs a suite of Silverlight player templates that you can use from within Encoder to automatically
generate Silverlight players for the video you encode. These templates can typically be found in the
<expression encoder install folder>/Templates folder. Using your favorite search mechanism, search
for two files named Timecode.cs and SmpteFrameRate.cs within the Templates folder. Multiple instances of
each result from the search, because these classes are included with each template. Copy one instance of
each class into your project, and you are ready to deal with SMPTE timecodes on the client.

Before we look at these classes, it is important to note that Silverlight has no built-in mechanism to
extract the frame rate of the video your application is handling. Given that the frame rate is required to
extrapolate the timecodes, you must devise an alternative mechanism to supply the frame rate of the
video to the Silverlight code. Most enterprise content and asset-management systems have a mechanism
to extract the frame rate of videos that are stored, and they store that information externally as part of the
associated metadata. One option is to build a web service so that the frame rate can be sent to the client
for the video concerned.

The SmpteFrameRate.cs file contains an enumeration named SmpteFrameRate that captures all the
well-known frame-rate values as distinct members of the enumeration.

The TimeCode.cs file contains a class called TimeCode that can handle the lion’s share of the work when
it comes to translating from absolute time values to SMPTE timecodes and vice versa, as well as parsing
timecodes, accessing different parts of the timecode, validating frame rates, and much more. Discussing
the entire API exposed by the TimeCode type is not our intent, but we encourage you to take a good look at it.

For the purpose of building a sample, we look at four methods on the TimeCode class. The
TimeCode.ParseFramerate() static method accepts a frame rate as a double value and returns one of the
SmpteFrameRate enumerated values, including SmpteFrameRate.Unknown, if the frame rate is not one of the
recognizable frame rates listed in the enumeration. You use a TimeCode constructor that accepts a
formatted timecode string and a SmpteFrameRate enumerated value to construct a TimeCode instance. You
also use the TimeCode.FromTicks() static method, which accepts time measured in CPU ticks and a
SmpteFrameRate enumerated value and returns a TimeCode instance. Last, you use the
TimeCode.ValidateSmpte12MTimeCode() static method, which accepts a string value and validates it to
ensure that it is in the correct timecode format.

The Code
The code sample in this chapter extends the player you built in Recipe 10-2 to include SMPTE timecode
support. The extended player displays the SMPTE timecode as the video plays and lets the user seek to
any portion of the video by typing in a valid timecode.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

889

Figure 10-24. Video Player with SMPTE timecode support

Figure 10-24 shows the player interface with the SMPTE timecode displayed in a TextBox above the
slider in white over a black background. The user can pause the video and then type a valid timecode in
the same TextBox to seek to that timecode within the video.

Because you extend the code from Recipe 10-2, we only highlight the changes here. Please refer back
to Recipe 10-2 for more details about the rest of the player. Listing 10-26 shows the control template for
the Recipe10_6.MediaSlider control that is used to display the slider on the player.

Listing 10-26. Control Template for MediaSlider control

<ControlTemplate TargetType="local:MediaSlider"
 x:Key="ctMediaSliderDefault">
 <Grid x:Name="Root">
 <Grid.Resources>
 <ControlTemplate x:Key="ctRepeatButton">
 <Grid x:Name="Root"
 Opacity="0"
 Background="Transparent" />
 </ControlTemplate>
 </Grid.Resources>

 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name="CommonStates">
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition GeneratedDuration="0" />
 </vsm:VisualStateGroup.Transitions>
 <vsm:VisualState x:Name="Normal" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

890

 <vsm:VisualState x:Name="MouseOver" />
 <vsm:VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="Root"
 Storyboard.TargetProperty="(UIElement.Opacity)">
 <SplineDoubleKeyFrame KeyTime="00:00:00"
 Value="0.5" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.33*" />
 <RowDefinition Height="0.34*" />
 <RowDefinition Height="0.33*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="0"
 VerticalAlignment="Top"
 HorizontalAlignment="Stretch">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBox x:Name="tbxSMPTETimeCode"
 Background="Black"
 Foreground="White"
 Text="{Binding SMPTETimeCode,

 RelativeSource={RelativeSource TemplatedParent},
 Mode=TwoWay, ValidatesOnExceptions=true, NotifyOnValidationError=true}"
 BorderBrush="Blue"
 BorderThickness="2"
 Grid.Column="0"

 HorizontalAlignment="Left"
 Margin="0,0,0,3"
 FontSize="12" />
 <StackPanel Orientation="Horizontal"
 Grid.Column="1"
 HorizontalAlignment="Right">
 <TextBlock Text="Downloaded"
 FontSize="12"
 Margin="0,0,4,0" />

CHAPTER 10 ■ INTEGRATING RICH MEDIA

891

 <TextBlock x:Name="textDownloadPercent"
 FontSize="12" />
 </StackPanel>
 </Grid>
 <Grid x:Name="HorizontalTemplate"
 Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Rectangle Stroke="Black"
 StrokeThickness="0.5"
 Fill="#FFE6EFF7"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 Height="14"
 Margin="5,0,5,0" />
 <Border Height="10"
 Margin="5,0,5,0"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 x:Name="elemDownloadProgressIndicator"
 Background="#FF2185D8"
 HorizontalAlignment="Left"
 Width="0" />
 <Border Height="6"
 Margin="5,0,5,0"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 x:Name="elemPlayProgressIndicator"
 Background="#FF1CE421"
 HorizontalAlignment="Left"
 Width="0" />
 <RepeatButton x:Name="HorizontalTrackLargeChangeDecreaseRepeatButton"
 Grid.Column="0"
 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />

 <Thumb x:Name="HorizontalThumb"
 Height="14"
 Width="11"
 Grid.Column="1" />
 <RepeatButton x:Name="HorizontalTrackLargeChangeIncreaseRepeatButton"
 Grid.Column="2"

CHAPTER 10 ■ INTEGRATING RICH MEDIA

892

 Template="{StaticResource ctRepeatButton}"
 IsTabStop="False" />
 </Grid>
 <Grid Grid.Row="2"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Stretch">
 <StackPanel x:Name="TotalDuration"
 Orientation="Horizontal">
 <TextBlock x:Name="textPosition"
 FontSize="12" />
 <TextBlock Text=" / "
 FontSize="12"
 Margin="3,0,3,0" />
 <TextBlock x:Name="textDuration"
 FontSize="12" />
 </StackPanel>
 </Grid>
 </Grid>
 </Grid>
</ControlTemplate>

The only change in the code in Listing 10-26 is the addition of a TextBox named tbxSMPTETimeCode

that is used to display the timecode as well let the user edit it to navigate to a specific timecode within the
video. As you can see, the Text property on tbxSMPTETimeCode is bound in a TwoWay mode to a property
named SMPTETimeCode on the MediaSlider control. Also note that tbxSMPTETimeCode is enabled for data-
binding validation. For more about binding validation, refer to the recipes in Chapter 4. Listing 10-27
shows the code for the MediaSlider control.

Listing 10-27. Code for the MediaSlider control

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;
using System.Windows.Threading;
using System.ComponentModel;

namespace Recipe10_6
{
 public class MediaSlider : Slider, INotifyPropertyChanged
 {
 private MediaElement MediaSource;
 private FrameworkElement elemDownloadProgressIndicator;
 private FrameworkElement elemPlayProgressIndicator;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

893

 private FrameworkElement Root;
 private TextBlock textPosition;
 private TextBlock textDuration;
 private TextBlock textDownloadPercent;
 private Thumb HorizontalThumb;
 private DispatcherTimer disptimerPlayProgressUpdate;

 //SourceName dependency property - used to attach
 //a Media element to this control
 public static DependencyProperty SourceNameProperty =
 DependencyProperty.Register("SourceName", typeof(string),
 typeof(MediaSlider),
 new PropertyMetadata(new PropertyChangedCallback(OnSourceNameChanged)));
 public string SourceName
 {
 get
 {
 return (string)GetValue(SourceNameProperty);
 }
 set
 {
 SetValue(SourceNameProperty, value);
 }
 }
 //SourceName change handler
 private static void OnSourceNameChanged(DependencyObject Source,
 DependencyPropertyChangedEventArgs e)
 {
 MediaSlider thisSlider = Source as MediaSlider;
 if (e.NewValue != null && e.NewValue != e.OldValue
 && thisSlider.Root != null)
 {
 thisSlider.MediaSource =
 thisSlider.Root.FindName(e.NewValue as string) as MediaElement;
 //reinitialize
 thisSlider.InitMediaElementConnections();
 }
 }

 private double _FrameRate = 24;

 public double FrameRate
 {
 get
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

894

 return _FrameRate;
 }

 set
 {
 if (TimeCode.ParseFrameRate(value) == SmpteFrameRate.Unknown)
 throw new Exception("Unknown Framerate");
 if (value != _FrameRate)

 {
 _FrameRate = value;
 if (disptimerPlayProgressUpdate.IsEnabled)
 {
 disptimerPlayProgressUpdate.Stop();

 disptimerPlayProgressUpdate.Interval =
 TimeSpan.FromSeconds(1 / FrameRate);
 disptimerPlayProgressUpdate.Start();
 }
 else

 disptimerPlayProgressUpdate.Interval =
 TimeSpan.FromSeconds(1 / FrameRate);

 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("FrameRate"));

 }

 }
 }

 private string _SMPTETimeCode = "00:00:00:00";

 public string SMPTETimeCode
 {
 get
 {
 return _SMPTETimeCode;

 }

 set
 {
 if (TimeCode.ValidateSmpte12MTimeCode(value) == false)

 {
 throw new
 Exception("Invalid time code. Time code format must be hh:mm:ss:ff");

CHAPTER 10 ■ INTEGRATING RICH MEDIA

895

 }
 if (value != _SMPTETimeCode)
 {

 _SMPTETimeCode = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("SMPTETimeCode"));
 }

 }
 }

 public MediaSlider()
 : base()
 {
 this.DefaultStyleKey = typeof(MediaSlider);
 this.Maximum = 100;
 this.Minimum = 0;
 disptimerPlayProgressUpdate = new DispatcherTimer();

 disptimerPlayProgressUpdate.Interval = TimeSpan.FromSeconds(1 / FrameRate);
 disptimerPlayProgressUpdate.Tick +=
 new EventHandler(PlayProgressUpdate_Tick);
 }
 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 elemDownloadProgressIndicator =
 GetTemplateChild("elemDownloadProgressIndicator") as FrameworkElement;
 elemPlayProgressIndicator =
 GetTemplateChild("elemPlayProgressIndicator") as FrameworkElement;
 HorizontalThumb = GetTemplateChild("HorizontalThumb") as Thumb;
 if (HorizontalThumb != null)
 {
 HorizontalThumb.DragStarted +=
 new DragStartedEventHandler(HorizontalThumb_DragStarted);
 HorizontalThumb.DragCompleted +=
 new DragCompletedEventHandler(HorizontalThumb_DragCompleted);
 }
 textPosition = GetTemplateChild("textPosition") as TextBlock;
 textDuration = GetTemplateChild("textDuration") as TextBlock;
 textDownloadPercent = GetTemplateChild("textDownloadPercent") as TextBlock;

 this.PropertyChanged +=
 new PropertyChangedEventHandler(MediaSlider_PropertyChanged);

CHAPTER 10 ■ INTEGRATING RICH MEDIA

896

 Root = Helper.FindRoot(this);
 MediaSource = Root.FindName(SourceName) as MediaElement;
 InitMediaElementConnections();
 }

 void MediaSlider_PropertyChanged(object sender, PropertyChangedEventArgs e)

 {
 if (e.PropertyName == "SMPTETimeCode" &&
 MediaSource.CurrentState == MediaElementState.Paused)
 {
 MediaSource.Position = TimeSpan.FromSeconds(

 new TimeCode(SMPTETimeCode,
 TimeCode.ParseFrameRate(FrameRate)).Duration);
 this.Value =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)

 * (this.Maximum - this.Minimum);
 }
 }
 //Initialize by wiring up handlers
 private void InitMediaElementConnections()
 {
 if (MediaSource != null)
 {
 MediaSource.MediaOpened +=
 new RoutedEventHandler(MediaSource_MediaOpened);
 MediaSource.MediaEnded +=
 new RoutedEventHandler(MediaSource_MediaEnded);
 MediaSource.MediaFailed +=
 new EventHandler<ExceptionRoutedEventArgs>(MediaSource_MediaFailed);
 MediaSource.CurrentStateChanged +=
 new RoutedEventHandler(MediaSource_CurrentStateChanged);
 MediaSource.DownloadProgressChanged +=
 new RoutedEventHandler(MediaSource_DownloadProgressChanged);

 MediaSource_CurrentStateChanged(this, new RoutedEventArgs());
 }
 }

 //tick handler for progress timer
 void PlayProgressUpdate_Tick(object sender, EventArgs e)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

897

 {
 this.Value =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)
 * (this.Maximum - this.Minimum);

 if (elemPlayProgressIndicator != null)
 {
 elemPlayProgressIndicator.Width =
 (MediaSource.Position.TotalMilliseconds /
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds)
 * ActualWidth;
 }
 if (textPosition != null)
 textPosition.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.Position.Hours,
 MediaSource.Position.Minutes,
 MediaSource.Position.Seconds,
 MediaSource.Position.Milliseconds);

 SMPTETimeCode = TimeCode.FromTicks(MediaSource.Position.Ticks,

 TimeCode.ParseFrameRate(FrameRate)).ToString();

 }
 //plug into the thumb to pause play while it is being dragged
 void HorizontalThumb_DragStarted(object sender, DragStartedEventArgs e)
 {
 if (MediaSource != null && MediaSource.CurrentState ==
 MediaElementState.Playing)
 MediaSource.Pause();
 }
 void HorizontalThumb_DragCompleted(object sender, DragCompletedEventArgs e)
 {
 if (MediaSource != null)
 {
 MediaSource.Position = new TimeSpan(0,
 0, 0, 0,
 (int)(this.Value *
 MediaSource.NaturalDuration.TimeSpan.TotalMilliseconds /
 (this.Maximum - this.Minimum)));
 }
 MediaSource.Play();
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

898

 //media element download progress changed
 private void MediaSource_DownloadProgressChanged(object sender,
 RoutedEventArgs e)
 {
 if (elemDownloadProgressIndicator != null)
 {
 elemDownloadProgressIndicator.Width =
 (MediaSource.DownloadProgress * this.ActualWidth);
 if (textDownloadPercent != null)
 textDownloadPercent.Text = string.Format("{0:##.##} %",
 MediaSource.DownloadProgress * 100);
 }
 }
 //state changes on the MediaElement
 private void MediaSource_CurrentStateChanged(object sender,
 RoutedEventArgs e)
 {
 switch (MediaSource.CurrentState)
 {
 case MediaElementState.Playing:
 if (textDuration != null)
 textDuration.Text = string.Format("{0:00}:{1:00}:{2:00}:{3:000}",
 MediaSource.NaturalDuration.TimeSpan.Hours,
 MediaSource.NaturalDuration.TimeSpan.Minutes,
 MediaSource.NaturalDuration.TimeSpan.Seconds,
 MediaSource.NaturalDuration.TimeSpan.Milliseconds);
 if (disptimerPlayProgressUpdate.IsEnabled == false)
 disptimerPlayProgressUpdate.Start();
 break;
 case MediaElementState.Paused:
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 break;
 case MediaElementState.Stopped:
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 break;

 case MediaElementState.AcquiringLicense:
 case MediaElementState.Individualizing:
 case MediaElementState.Opening:
 case MediaElementState.Buffering:
 case MediaElementState.Closed:
 break;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

899

 default:
 break;
 }
 }

 //media ended
 private void MediaSource_MediaEnded(object sender,
 RoutedEventArgs e)
 {
 if (disptimerPlayProgressUpdate.IsEnabled)
 disptimerPlayProgressUpdate.Stop();
 }

 //media failed
 private void MediaSource_MediaFailed(object sender, RoutedEventArgs e)
 {
 disptimerPlayProgressUpdate.Stop();
 }

 void MediaSource_MediaOpened(object sender, RoutedEventArgs e)
 {
 //we do nothing here in this sample
 }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
 }
}

As you can see in Listing 10-27, you add two properties, FrameRate and SMPTETimeCode, to the

MediaSlider control. Both properties are enabled for change notification.
The FrameRate property defaults to 24. In the property setter for the FrameRate property, you use

TimeCode.ParseFrameRate() to check whether the FrameRate is one of the known frame rates and throw an
exception if not. As we mentioned earlier in this recipe, Silverlight has no built-in mechanism to extract
frame rates. So, in the sample, this always defaults to 24. However, if you devise another mechanism to
acquire the frame rate of the video (maybe from a content-management back end that can supply the
frame rate through a web service), you can set this property to some other value.

The SMPTETimeCode property defaults to a string representing the timecode at the start of the video. It is
bound to tbxSMPTETimeCode in the XAML to display the timecode. Because that binding is TwoWay, it can also
accept user edits. In the property setter, you validate any user input to make sure it is in the valid timecode
format using the TimeCode.ValidateSmpte12MTimeCode() static method. If the format is invalid, you raise an
exception, which is then displayed as a validation error using the binding validation mechanism.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

900

Recall from Recipe 10-2 that the sample uses a DispatcherTimer named PlayProgressUpdate to raise
DispatcherTime.Tick events at regular intervals while the video is playing. PlayProgressUpdate_Tick()
handles the Tick event and changes Slider.Value to cause the slider thumb to move. You now set the
PlayProgressUpdate.Interval property to the duration of a single frame, so that the Tick even fires at
each frame interval. You do this once initially in the MediaSlider constructor as well as in the property
setter of the FrameRate property.

In the PlayProgressUpdate_Tick() handler method, you update the SMPTETimeCode property to the
current timecode using the TimeCode.FromTicks() static function; this function accepts the current
MediaElement.Position as CPU ticks and the current frame rate, and returns a TimeCode instance. You
convert this to a string before you set the property. Because SMPTETimeCode is bound to tbxSMPTETimeCode,
this updates the UI with the timecode as the video plays.

You also handle the PropertyChanged event of the MediaSlider control. Because the SMPTETimeCode
property is TwoWay bound to tbxSMPTETimeCode, the PropertyChanged event on the control is fired when the
user edits the value in tbxSMPTETimeCode, causing a change in value to MediaSlider.SMPTETimeCode. In the
MediaSlider_PropertyChanged() handler, you ensure that you are handling the correct property change.
You also make sure the media is currently paused. You then set the position of the media to the user-
supplied timecode. To do so, you construct a new TimeCode instance, using a constructor that accepts a
string-formatted timecode value that you get from MediaSlider.SMPTETimeCode, and the current frame
rate parsed into a SmpteFrameRate enumerated value. When you have the new TimeCode instance, you
construct a TimeSpan from the TimeCode.Duration property, which reflects the total number of whole and
fractional seconds in that timecode, and use that to set the current position of the media.

10-7. Building a Managed Decoder for Silverlight
Problem
You want to use Silverlight to play a media file whose storage format and/or encoding scheme is not
supported by Silverlight directly.

Solution
Use the managed decoder extensibility mechanism in Silverlight to create a custom MediaStreamSource
that can parse and decode the custom media file format.

How It Works
The internal structure of a digital media file can be broadly broken up into two parts: metadata and
essence.

Metadata is information about the media contained in the file. For example, for a video file,
metadata may include information like the aspect ratio of the video, the frame rate, the bit rate, the
duration, the author, copyright information, and so on. For an audio file, it may include the bit rate, the
artist, album information, and such.

The essence is the actual media content, which is also stored inside the container file. Because in
most cases an unchanged digital representation of video and audio content is very large, a compression
process is used to reduce the size of the essence before it is stored it in the container.

The process of compressing the media to reduce its size and packaging it into a container file along
with the correct metadata is generally referred to as encoding. The process of parsing the container file
to extract the metadata elements and then decompressing the essence to enable play out is called

CHAPTER 10 ■ INTEGRATING RICH MEDIA

901

decoding. Typically, the ability to encode/decode a specific metadata structure and compression format is
packaged together in a single piece of software commonly known as a codec.

Silverlight, Containers, and Codecs
Silverlight supports the Microsoft Advanced Systems Format (ASF) and the MP4 File Format (also known
as the MPEG-4 File Format version 2) file container structures. Windows Media Video (.wmv) and Windows
Media Audio (.wma) files follow the ASF file container structures and can be consumed by Silverlight, and
so can MP4 and QuickTime (.mov) files that are common variants of the MP4 container structure.

Silverlight supports decoding essence that is encoded using the Windows Media VC-1 or H.264 (or its
equivalents in MPEG-4 part 10 and the MPEG-4 Advanced Video Codec) compression standards.
Silverlight also supports decompressing Windows Media Audio as well as the AAC encoded audio streams
for up to two-channel stereo.

With this support out of the box, Silverlight can play a wide gamut of media file types. However,
occasionally you may come across a scenario where Silverlight does not support the file-container
structure or the compression standard used (or both). This recipe deals with an extensibility mechanism
built into Silverlight that allows you to implement the file-parsing and/or decompression mechanism
yourself for formats that are not supported by Silverlight out of the box.

The default behavior of the Silverlight MediaElement type is such that you point MediaElement.Source
to the URL of a media stream or file; that is all you need to do to prepare the MediaElement to begin
consuming the media. As long as the container structure (Windows Media ASF or MP4) and the codec (VC-
1 or H.264) are supported natively, MediaElement parses the container file and decodes the media
automatically. MediaElement also exposes two overloads of a method named SetSource(), one of which
accepts a Stream. If you have direct access to the media stream, you can use this overload of SetSource() to
achieve the same effect as setting MediaElement.Source property .

This recipe uses the second overload of the MediaElement.SetSource() method, which accepts an
instance of type System.Windows.Media.MediaStreamSource. The MediaStreamSource type is the
extensibility mechanism that lets you build your own managed decoder and plug it into the Silverlight
media pipeline. We look at the MediaStreamSource API in more details in the next section.

It is important to note that authoring parsers for media file containers or decompression logic for
various compression schemes is a specialized task; a lot of care and very skillful engineering are
required to produce something that meets the bar for performance and quality. Not doing it properly can
result in low-performing and, in some cases, faulty processing of media. Our goal in this recipe is not to
make you an expert in doing either task, but rather to familiarize you with the API for the related
extensibility mechanism in Silverlight. If you take advantage of this facility to integrate a natively
unsupported media format into your Silverlight code, we advise you to research the compression and
container structure specifications for that format rigorously and apply best-of-breed engineering
resources to building the parsing and the decompression logic.

MediaStreamSource
System.Windows.Media.MediaStreamSource is an abstract class that expresses the interaction between the
MediaElement and a managed decoder in an abstract API. It lets you create your own concrete type by
inheriting from MediaStreamSource and providing implementations for the abstract API to inject custom
media decoding logic into the Silverlight media pipeline. When you call MediaElement.SetSource() and
pass in an instance of your concrete MediaStreamSource implementation, MediaElement interacts with
your code to consume the media.

The MediaStreamSource API is designed to be asynchronous so as to not block the UI thread on calls
coming in through the MediaElement. As a result, every abstract method that you implement in your
inherited class has a Report<methodname>Completed() method defined in the MediaStreamSource base class.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

902

The goal is to return from the implementation of your method as quickly as possible to stop holding up
the UI, and then, when you are ready with the results of the requested operation, to call the
Report<methodname>Completed() method to signal the completion of the operation to the MediaElement.
This allows you to spin up asynchronous operations on separate threads from within your
MediaStreamSource-derived class and process long-running operations in a nonblocking fashion.

As an example, consider the MediaStreamSource.OpenMediaAsync() method. The following snippet
shows a possible skeletal implementation:

protected override void OpenMediaAsync()
{
 //spin up a thread to process
 Thread thdOpen = new Thread(new ThreadStart(() =>
 {
 //process the request - may take some time
 //when done
 ReportOpenMediaCompleted(..,..);
 }));
 thdOpen.Start();
 //return to MediaElement right away - no blocking
 return;

}

You create a thread and start it, and then return from the call right away. But in the thread’s

processing logic, after you are ready with the results of the operation, you call
ReportOpenMediaCompleted() to signal back to the MediaElement that you are finished.

This is an important point to keep in mind. No hard-and-fast rule dictates what has to be done
asynchronously and what does not. In the previous snippet, you might have done all the processing in the
call in a blocking fashion and then signaled completion before you returned, broken up the processing
between the blocking call and the separate thread in some fashion, or done it entirely in an
asynchronous fashion as the snippet shows in this case. You make that decision based on the scenario for
which you are implementing the MediaStreamSource. For instance, if your implementation of an
operation involves a network download of content, it is best done in an asynchronous fashion; if it
involves reading information locally from the disk, an asynchronous operation may be overkill. The API
is designed to let you do everything asynchronously—use your best judgment to decide the course to take
on a case-by-case basis.

The MediaStreamSource API covers the following basic interactions driven by the MediaElement:
opening and initializing media, acquiring media samples to play, seeking within the media, switching
media streams when there are multiple streams (such as video and audio), diagnostics, and cleanup. Let’s
look at some of these interactions and the related API.

Initializing the Media Stream
When you pass in an instance of your MediaStreamSource-derived class into MediaElement.SetSource()
method, the MediaElement invokes your implementation of the MediaStreamSource.OpenMediaAsync()
function. The OpenMediaAsync() function implementation is your opportunity to initialize your media and
make it ready for consumption, as well as to pass metadata information about your media to the
MediaElement so that it can prepare itself for consuming the media. The logic you implement varies from

CHAPTER 10 ■ INTEGRATING RICH MEDIA

903

implementation to implementation, depending on how your media is accessed, how the container format
is parsed, and how you extract or otherwise obtain metadata information about the media.

However you choose to implement that functionality, note that logically the media initialization is
complete only after your code calls MediaStreamSource.ReportOpenMediaCompleted(). As we noted while
discussing the asynchronous nature of the MediaStreamSource API, you can return from OpenMediaAsync()
and then call ReportOpenMediaCompleted() asynchronously from elsewhere in your MediaStreamSource
implementation, or you can call it synchronously from your OpenMediaAsync() implementation.

It is worth looking at the information that is expected to be passed in as parameters to
ReportOpenMediaCompleted(). These parameters are the mechanism through which you need to pass
metadata about the media from your MediaStreamSource implementation to the MediaElement. The
method signature for ReportOpenMediaCompleted() is as follows:

void ReportOpenMediaCompleted(
 IDictionary<MediaSourceAttributesKeys, string> mediaSourceAttributes,
 IEnumerable<MediaStreamDescription> availableMediaStreams);

The first parameter is a dictionary of attributes for the overall media source that you are exposing to

the MediaElement and appropriate values for each of these attributes. If you look at the
System.Windows.Media.MediaSourceAttributesKeys enumeration, you find the following enumerated
values:

• MediaSourceAttributesKeys.CanSeek: Use this as a key in the mediaSourceAttributes
parameter to pass in either the string “true” or the string “false” depending on whether you
allow seeking through the media in your MediaStreamSource implementation.

• MediaSourceAttributesKeys.Duration: Use this to pass in the total duration of the media. Note
that the duration is specified as ticks formatted as a string, where one tick is a unit of time
measured as 100 nanoseconds.

• MediaSourceAttributesKeys.DRMHeader: This consists of digital rights management (DRM)
header information for right-protected content.

The second parameter, availableMediaStreams, is a collection of
System.Windows.Media.MediaStreamDescription instances. Note that your media source may contain more
than one media stream. For example, a media file that represents a video clip may include one video
stream along with one or more audio streams, with each audio stream representing an audio track for the
video in a different language. For each of these streams that you want the MediaElement to play, you must
describe the stream using an instance of the MediaStreamDescription added to the availableMediaStreams
parameter to ReportOpenMediaCompleted(). The MediaStreamDescription type is shown here:

public class MediaStreamDescription
{

 // Methods
 public MediaStreamDescription(MediaStreamType type,
 IDictionary<MediaStreamAttributeKeys, string> mediaStreamAttributes);

 // Properties
 public IDictionary<MediaStreamAttributeKeys, string> MediaAttributes { get; }
 public int StreamId { get; }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

904

 public MediaStreamType Type { get; }
}

As you can see, the first parameter to the MediaStreamDescription constructor describes the type of

stream you are describing and is of type System.Windows.Media.MediaStreamType, which has the following
values: Video, Audio, and Script. The second parameter is a dictionary of attributes applicable to the
stream you are describing and the corresponding values formatted as strings. The
MediaStreamAttributeKeys enumeration has the following values:

• MediaStreamAttributeKeys.CodecPrivateData: What you pass in here depends on the codec you
expect Silverlight to use to decode your samples. For the CodecPrivateData values for the
various codecs that come out of box with Silverlight (such as VC-1 and AAC), refer to the
Silverlight documentation. On the other hand, if you are handling the decoding of the samples
yourself in your MediaStreamSource code, or if the samples are not compressed, you can safely
ignore this attribute.

• MediaStreamAttributeKeys.VideoFourCC: This is the four-character code for video stream types
that Silverlight expects, should you choose to use one of the Silverlight-supplied codecs to
decode the video, or if you are passing uncompressed samples to Silverlight. Some common
examples of FourCC codes acceptable to Silverlight are RGBA for uncompressed video that is
color coded using the 32-bit four-channel (Red, Green, Blue, Alpha) scheme, YV12 for
uncompressed YCrCb-coded video, WVC1 for VC-1–encoded video, and H264 for H.264-
encoded video. For a full list of the supported VideoFourCC codes, refer to the Silverlight
documentation.

• MediaStreamAttributeKeys.Width: This is the original Width of a frame of the video.

• MediaStreamAttributeKeys.Height: This is the original Height of a frame of the video.

Note that the last three of these attributes are applicable only when you are describing a video
stream. Also note that the MediaStreamDescription.StreamId property exposes a zero-based identifier for
your stream. The MediaElement expects the video stream (if you are exposing video and not just audio) to
be at index 0 and the audio streams to be arranged starting at index 1 after that. In the MediaStreamSource
implementation, you must be aware of this convention and add the MediaStreamDescription for your
video first. You can then add the audio tracks in the order in which you want them to be made available
when a developer accesses a specific audio stream using the MediaElement.AudioStreamIndex property.

Sampling
In digital media processing, you can think of a sample as a discrete collection of bytes at any specific time
point along the timeline over which the media plays. If you think of digital video as a collection of
discrete frames, a sample for that video stream at a time point is the bitmap that represents the frame at
that time point.

When you are finished passing all the necessary metadata attributes, the MediaElement begins
playing your media. The process of playing your media involves the MediaElement asking for samples of
the media from your MediaStreamSource-derived class through the GetSampleAsync() method. The
MediaElement passes the stream for which it is requesting samples using a parameter of the
MediaStreamType enumerated type to the GetSampleAsync() method. Consequently, if you receive
MediaStreamType.Video, the MediaElement is expecting the next sample for the video stream;
MediaStreamType.Audio indicates that you need to return the next sample in the audio stream.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

905

As before, the API supports asynchronous completion. The sample request from the MediaElement can
be completed by calling MediaStreamSource.ReportGetSampleCompleted(), either synchronously before
returning from GetSampleAsync() or from somewhere else in your MediaStreamSource code in an
asynchronous fashion.

MediaStreamSource.ReportGetSampleCompleted() accepts one parameter of type MediaStreamSample.
The following snippet shows the constructor for the MediaStreamSample type:

public MediaStreamSample(MediaStreamDescription mediaStreamDescription,
 Stream stream, long offset, long count, long timestamp,
 IDictionary<MediaSampleAttributeKeys, string> attributes);

As you can see, the first parameter is of type MediaStreamDescription. This parameter must match the

MediaStreamDescription you constructed and returned in ReportOpenMediaCompleted() for the stream
concerned. It does not have to be the same instance (it could be), but the MediaStreamDescription.Type
property and the MediaStreamDescription.MediaAttributes collection property need to return the same
values as were reported by you when the media was initialized. The parameter named stream of type
Stream points to the actual data stream for the media you are sampling, the offset parameter indicates
the byte offset in that stream where the MediaElement should begin reading the sample, the count
parameter indicates the byte length of the sample, and the timestamp parameter is an optional timestamp
for the sample in ticks.

The last parameter, attributes, is a dictionary of string-formatted attribute values for the specific
sample, keyed by the values in the System.Windows.Media.MediaSampleAttributeKeys enumerated type.
The MediaSampleAttributeKeys enumerated type has the following values defined:

• MediaSampleAttributeKeys.KeyFrameFlag: If the sample you are returning represents a
keyframe, then this can be set to true.

• MediaSampleAttributeKeys.DRMInitializationVector: This is the set of values required to
decrypt a DRM-encrypted sample.

• MediaSampleAttributeKeys.FrameWidth: This is the width in pixels of the frame the sample
represents. It applies to video samples only.

• MediaSampleAttributeKeys.FrameHeight: This is the height in pixels of the frame the sample
represents. This applies to video samples only.

Based on the length of time it takes your code to extract and return the next sample, you may or may
not choose to report progress. MediaStreamSource.ReportGetSampleProgress() lets you report the progress
of your sample extraction effort to the MediaElement. The only parameter to ReportGetSampleProgress() is
a double named bufferingProgress, which represents the percentage of the work done. This is ultimately
exposed by the MediaElement.BufferingProgress property that you can display in the UI.

Stream Switching
Note that the MediaElement.AudioStreamIndex property lets you write code that switches the index among
multiple audio tracks (if present). The MediaStreamSource.SwitchMediaStreamAsync() method allows you
to respond to this in your MediaStreamSource. When a stream is switched in the MediaElement, it calls your
implementation of SwitchMediaStreamAsync(), passing in the MediaStreamDescription instance
corresponding to the stream to which the switch was made. This gives you an opportunity to perform any
kind of initialization/preparation work that may be required before the next sampling request for this
stream comes through. As usual, you can use ReportSwitchMediaStreamCompleted() to asynchronously (or

CHAPTER 10 ■ INTEGRATING RICH MEDIA

906

synchronously) notify the MediaElement when you are ready with the switch by passing the
MediaStreamDescription of the stream you switched to.

Seeking
If your MediaStreamSource implementation can support seeking within the media source you are
handling, you may have indicated this by passing a string value of “true” keyed with
MediaSourceAttributesKeys.CanSeek, as discussed earlier. In those cases, the MediaElement calls your
implementation of the MediaStreamSource.SeekAsync() method, passing in a single parameter named
seekToTime that contains the time point to which the user desires to seek, defined in ticks.

When your MediaStreamSource has positioned the media source at the requested time point, it can
report completion by calling MediaStreamSource.ReportSeekCompleted(), passing in the same time value.
This causes the MediaElement to resume sampling.

The Code
As we have mentioned, the purpose of this recipe and the sample code is not to make you an expert in
authoring codecs but to make you familiar with the related MediaStreamSource extensibility mechanism in
Silverlight. Keeping that in mind, the sample we discuss here may seem trivial from a decoder complexity
perspective. But if you possess the codec-authoring skill set, we hope this recipe offers you some help in
using that knowledge to build Silverlight managed decoders.

Armed with what you have learned so far, let’s look at building a relatively simple sample. The
sample for this recipe has two parts. In the first part, you build a simple Silverlight component that
records screenshots of a Silverlight application at a specific frame rate. The component uses the
System.Windows.Media.Imaging.WriteableBitmap class to record the screenshots by capturing the root
visual in the application’s visual tree, and it saves the bitmaps to a file on disk. For more information
about WriteableBitmap, refer to Chapter 3.

In the second part, you build a custom MediaStreamSource that reads this file and plays your recording
as a video through a MediaElement. In an effort to keep the sample simple, we do not tackle audio streams
in this sample—the result is a silent movie of the recorded screen shots.

The Recorder
The recorder component is implemented as a class named ScreenRecorder in a project named
ScreenRecorderLib, as shown in Listing 10-28.

Listing 10-28. Code for the ScreenRecorder Class

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.IO;
using System.Linq;
using System.Runtime.Serialization;
using System.Threading;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Imaging;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

907

using System.Windows.Threading;

namespace Recipe10_7
{
 public class ScreenRecorder
 {
 private DispatcherTimer snapshotTimer = new DispatcherTimer();
 List<WriteableBitmap> Buffer1 = new List<WriteableBitmap>();
 List<WriteableBitmap> Buffer2 = new List<WriteableBitmap>();
 List<WriteableBitmap> CurrentBuffer = null;
 List<WriteableBitmap> FlushBuffer = null;
 private long TotalFrameCounter = 0;
 private long FlushCounter = 0;
 private double RenderHeight;
 private double RenderWidth;
 private object WriterLock = new Object();
 private MediaInfo Info = new MediaInfo();
 private Transform BitmapTransform = null;
 private int FrameRate = default(int);

 private Stream _TempFile = null;

 public Stream TempFile
 {
 get { return _TempFile; }
 set { _TempFile = value; }
 }

 private UIElement _RecordingRoot = default(UIElement);
 public UIElement RecordingRoot
 {
 get
 {
 if (_RecordingRoot == null)
 _RecordingRoot = Application.Current.RootVisual;
 return _RecordingRoot;
 }

 set
 {
 _RecordingRoot = value;
 }
 }

 private double _FrameHeight = 180;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

908

 public double FrameHeight
 {
 get
 {
 return _FrameHeight;
 }

 set
 {
 _FrameHeight = value;
 }
 }

 private double _FrameWidth = 320;
 public double FrameWidth
 {
 get
 {
 return _FrameWidth;
 }

 set
 {
 _FrameWidth = value;
 }
 }

 public ScreenRecorder(int FrameRate)
 {
 this.FrameRate = FrameRate;
 snapshotTimer.Interval = new TimeSpan(1000*10000/FrameRate);
 snapshotTimer.Tick += new EventHandler(snapshotTimer_Tick);
 }

 public void Start()
 {
 CurrentBuffer = Buffer1;
 snapshotTimer.Start();

 if (TempFile != null)
 {
 byte[] MediaInfoSizePlaceHolder = BitConverter.GetBytes(Int32.MaxValue);
 TempFile.Write(MediaInfoSizePlaceHolder, 0,
 MediaInfoSizePlaceHolder.Length);
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

909

 }

 public void Stop()
 {
 if (snapshotTimer != null && snapshotTimer.IsEnabled) snapshotTimer.Stop();
 if (TempFile != null)
 {
 lock (WriterLock)
 {
 TempFile.Flush();

 MediaInfo Info = new MediaInfo { FrameCount = TotalFrameCounter,
 FrameHeight = this.FrameHeight, FrameWidth = this.FrameWidth,
 FrameRate = this.FrameRate };
 DataContractSerializer ser =
 new DataContractSerializer(typeof(MediaInfo));
 MemoryStream ms = new MemoryStream();
 ser.WriteObject(ms, Info);
 ms.Flush();
 Byte[] Buff = ms.GetBuffer();
 TempFile.Write(Buff, 0, Buff.Length);
 TempFile.Seek(0L, SeekOrigin.Begin);
 Byte[] BuffLength = BitConverter.GetBytes(Buff.Length);
 TempFile.Write(BuffLength, 0, BuffLength.Length);
 TempFile.Close();
 }
 }
 }

 void snapshotTimer_Tick(object sender, EventArgs e)
 {

 if (FlushCounter + 1 > FrameRate && Monitor.TryEnter(WriterLock))
 {
 TotalFrameCounter += FlushCounter;
 FlipBackBuffer();
 Monitor.Exit(WriterLock);
 }
 else
 FlushCounter++;

 if (RenderHeight == 0 || RenderWidth == 0)
 {
 RenderWidth = (int)RecordingRoot.RenderSize.Width;
 RenderHeight = (int)RecordingRoot.RenderSize.Height;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

910

 if (RenderHeight != 0 && RenderWidth != 0)
 BitmapTransform = new ScaleTransform() { CenterX = 0, CenterY = 0,
 ScaleY = FrameHeight / RenderHeight,
 ScaleX = FrameWidth / RenderWidth };
 }

 if (RenderHeight != 0 && RenderWidth != 0)
 {
 WriteableBitmap capture =
 new WriteableBitmap(RecordingRoot, BitmapTransform);
 CurrentBuffer.Add(capture);
 }
 }

 private void FlipBackBuffer()
 {

 CurrentBuffer = (CurrentBuffer == Buffer1) ? Buffer2 : Buffer1;
 FlushBuffer = (FlushBuffer == Buffer1) ? Buffer2 : Buffer1;
 CurrentBuffer.Clear();
 FlushCounter = 0;
 if (TempFile != null)
 {
 BackgroundWorker bwFlusher = new BackgroundWorker();
 bwFlusher.DoWork += new DoWorkEventHandler(bwFlusher_DoWork);
 bwFlusher.RunWorkerAsync(FlushBuffer);
 }
 return;
 }

 void bwFlusher_DoWork(object sender, DoWorkEventArgs e)
 {
 lock (WriterLock)
 {
 List<WriteableBitmap> Buffer = e.Argument as List<WriteableBitmap>;
 byte[] Flattened = null;
 int PixelCount = (int)FrameHeight * (int)FrameWidth;
 for (int i = 0; i < Buffer.Count; i++)
 {
 Flattened = Buffer[i].Pixels.
 SelectMany((p) => BitConverter.GetBytes(p)).ToArray();
 TempFile.Write(Flattened, 0, Flattened.Length);
 }
 TempFile.Flush();
 Buffer.Clear();

CHAPTER 10 ■ INTEGRATING RICH MEDIA

911

 }
 }
 }

 public class MediaInfo
 {
 public int FrameRate { get; set; }
 public double FrameHeight { get; set; }
 public double FrameWidth { get; set; }
 public long FrameCount { get; set; }
 }

}

The RecordingRoot property indicates the UIElement that is being recorded, and FrameHeight and

FrameWidth indicate the Height and Width of each frame you want to record; the latter two are set to 180
and 320 by default. You expect the application using the Recorder to pass in an open stream through the
TempFile property, to which the frames and related metadata are recorded; it can also optionally set the
desired FrameHeight and FrameWidth before invoking the ScreenRecorder.Start() method.

In the ScreenRecorder constructor in Listing 10-28, you pass in a parameter named FrameRate that is the
time interval in ticks at which individual frames are to be recorded. You then initialize a DispatcherTimer
instance named snapshotTimer to raise its Tick event at the interval set by the FrameRate parameter.

Also note the class named MediaInfo at the end of the listing. This class captures necessary metadata
like the frame rate, the width and height of individual frames, and the total number of frames recorded. A
serialized instance of this class is stored in the recorded file for later use in the MediaStreamSource.

The ScreenRecorder class uses two memory buffers to manage the act of capturing screenshots and
writing the screenshot data to the application supplied stream. These buffers are represented as two
List<WriteableBitmap> typed variables named Buffer1 and Buffer2, respectively. The assumption is that
writing the buffered bitmaps down to the stream may be a long-running process due to various IO
bottlenecks, and you do not want to block the UI thread—thus, the process of recording while saving the
screenshots to the disk-based file. As a result, the ScreenRecorder implementation attempts to perform
the stream IO asynchronously while the application continues to use the recorder to keep recording
bitmaps at the specified interval. The two-buffer arrangement helps in this process, because you can use
one buffer to keep the recording going while the other buffer is emptied into the stream. You see how this
works out as we dig further into the code in Listing 10-28.

The process of recording starts when the application using the ScreenRecorder instance calls the
Start() method. You set the CurrentBuffer variable to Buffer1 and start the timer. You also write a 10-
byte array named MediaInfoSizePlaceHolder in the code, at the beginning of the stream. The content of
the byte array is long enough to hold a 32-bit integer and is set to System.Int32.MaxValue initially. But
the content is not import, because it is overwritten later—the purpose of this byte array is the important
thing to understand.

When the ScreenRecorder.Start() is called, you do not yet know all the metadata that is serialized
into the file in the form an instance of the MediaInfo class, because you can only know the total frame
count at the end of the recording process. As a result, that data is written at the tail end of the file, after all
the screenshots have been saved and the recording has ended. However, as you see later, you must read
and deserialize that information in the MediaStreamSource before you can begin processing the file for
media consumption. To aid in that process, you need to know the size of that metadata block up front. The

CHAPTER 10 ■ INTEGRATING RICH MEDIA

912

10-byte array you just wrote saves space at the beginning of the file where you write the size of the
metadata block when you save it, measured as an integral number of bytes.

To understand this better, look at a diagram of the file layout shown in Figure 10-25.

Figure 10-25. Layout of the file in which the screen recordings are stored

Now, let’s look at what happens when the timer begins raising its Tick events at the specified
intervals. In the handler method snapshotTimer_Tick() in Listing 10-28, you first check the value of a
variable named FlushCounter, which helps you define an interval at which you save the snapshots in the
current buffer to disk. In the current implementation, that point is when you have recorded 1 second of
content—that is, when the value of FlushCounter equals that of ScreenRecorder.FrameRate.

If FlushCounter is less than FrameRate (you do not have enough data buffered to write to disk yet), you
increment FlushCounter by 1 and take the next snapshot. To ensure that the snapshot is taken at the
specified FrameHeight and FrameWidth, you must make sure you appropriately shrink or stretch the
snapshot to match those dimensions, no matter what the height and width of the RecordingRoot UIElement
are. You do that by creating a ScaleTransform, where the scale is set to match the ratio of the original
dimensions of the RecordingRoot to the specified dimensions through the FrameHeight and FrameWidth
properties. The ScaleTransform is stored in a field named BitmapTransform for subsequent use. You then
create and store the WriteableBitmap snapshot of the RecordingRoot, with the ScaleTransform applied to it,
into the CurrentBuffer buffer.

If FlushCounter has a value greater than or equal to FrameRate, you first attempt to start the process of
saving the current buffer to disk. Because you are dependent on a timer to fire this logic at regular
intervals, you must be extra careful here and ensure that you never cause two overlapping attempts to
write data to the disk at the same time. To prevent that from happening, you try to acquire a lock before
you attempt the disk write, and you proceed only if you can acquire the lock. If you cannot acquire the
lock, you take the snapshot as usual. If you do acquire the lock, you accumulate the number of frames
snapped between the last save and this one in a variable named TotalFrameCounter and then invoke the
FlipBackBuffer() method.

Inside FlipBackBuffer(), you switch the buffer values (Buffer1 and Buffer2) between the buffer
variables CurrentBuffer and FlushBuffer, such that the buffer you were using prior to this point to take
snapshots is now pointed to by FlushBuffer. You also reset CurrentBuffer and FlushCounter.

Depending on the value of FrameRate and how large the snapshots are, the process of writing to disk
can take some time. So, you use the BackgroundWorker class to delegate the work of writing the buffer to
disk to a background thread. After delegation, the FlipBackBuffer() method returns immediately to the
UI thread, and you take more snapshots as described earlier.

The actual work of saving to disk is done in the BackgroundWorker.DoWork event handler,
bwFlusher_DoWork(). Here, you flatten each WriteableBitmap in the FlushBuffer to a byte array, join them
to make one contiguous but larger byte array, and write the whole thing to the application-supplied
stream available through the TempFile property. After it is written, this buffer is cleared. Note that
because you are on a background thread, to prevent concurrent access, you take the same lock as
described earlier before you attempt the write.

The consuming application explicitly stops the recording process by invoking the
ScreenRecorder.Stop() method. In stopping the recording process, you first stop the timer. You then
create a new instance of the MediaInfo type and set the FrameCount, FrameWidth, FrameHeight, and
FrameRate properties accordingly. You finally serialize the MediaInfo instance, convert it to a byte array,
and write it out to the tail end of the file. You also write the size of the byte array to the placeholder you

CHAPTER 10 ■ INTEGRATING RICH MEDIA

913

saved at the beginning of the file. At this point, the recording session is complete, and you have a file with
a custom video format and metadata ready for you to consume.

Before you see how to consume this file, let’s take a quick look at how the ScreenRecorder component
is used from an application. This sample borrows the code for Recipe 4-7 and extends it to use the
ScreenRecorder. Because most of the code is similar to that in Recipe 4-7, we only highlight the additions
to support recording. This code is found in a project named ScreenRecordingSource in the associated code
sample.

The only change you make to the XAML for the application is to add a CheckBox named cbxRecord. You
handle the Checked and Unchecked events of cbxRecord in the codebehind to start and stop the recording,
respectively. After the CheckBox is checked and recording starts, you can interact with the UI any way you
wish to generate the custom video file. Make sure you spend at least a minute or so between the
beginning and end of recording to generate content you can use to test the MediaStreamSource. Listing
10-29 shows the Checked and Unchecked event handlers in the codebehind for the MainPage in the
application.

Listing 10-29. Starting and Stopping Recording from an Application Using the ScreenRecorder Class

cbxRecord.Checked += new RoutedEventHandler((s, e) =>
{
 SaveFileDialog sfd = new SaveFileDialog();
 bool? Ret = sfd.ShowDialog();
 if (Ret != null && Ret.Value == true)
 {
 Recorder.TempFile = sfd.OpenFile();
 Recorder.Start();
 }
});

cbxRecord.Unchecked += new RoutedEventHandler((s, e) =>
{
 Recorder.Stop();
});

In handling the Checked event, you first create and show a SaveFileDialog instance to allow the user

to pick a file to save the recording to. (SaveFileDialog is covered in more detail in Chapter 2.) You then
open the file and set the Recorder.TempFile property to the file stream, assuming that Recorder is an
instance of the ScreenRecorder type that you created earlier in the MainPage codebehind. Finally, you
begin recording by invoking the Recorder.Start() method. In the Unchecked event handler, you invoke
Recorder.Stop(). Figure 10-26 shows the application UI with the Record check box checked.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

914

Figure 10-26. Application user interface with Record turned on

The Custom MediaStreamSource
Now that you have seen how to create the custom video file, let’s look at the MediaStreamSource
implementation. Listing 10-30 shows the code for the implementation in a class named
BitmapToVideoMediaStreamSource in a project named BitmapToVideoMSS.

Listing 10-30. Custom MediaStreamSource Implementation

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.Serialization;
using System.Windows.Media;
using System.Threading;

namespace Recipe10_7
{

CHAPTER 10 ■ INTEGRATING RICH MEDIA

915

 public class BitmapToVideoMediaStreamSource : MediaStreamSource
 {
 public Stream MediaStream { get; set; }
 internal MediaInfo mediaInfo { get; set; }

 Dictionary<MediaStreamAttributeKeys, string> mediaStreamAttributes =
 new Dictionary<MediaStreamAttributeKeys, string>();

 Dictionary<MediaSourceAttributesKeys, string> mediaSourceAttributes =
 new Dictionary<MediaSourceAttributesKeys, string>();

 List<MediaStreamDescription> mediaStreamDescriptions = new
 List<MediaStreamDescription>();

 Dictionary<MediaSampleAttributeKeys, string> mediaSampleAttributes =
 new Dictionary<MediaSampleAttributeKeys, string>();

 private long lastFrame = 0;
 private long FrameSize = 0;
 private double FrameDuration = 0;
 private int HdrSizeByteLength = BitConverter.GetBytes(Int32.MaxValue).Length;
 private int HdrByteLength = 0;

 private BitmapToVideoMediaStreamSource()
 {
 }

 public BitmapToVideoMediaStreamSource(Stream media)
 {
 this.MediaStream = media;
 ParseMediaStream(MediaStream);
 }

 private void ParseMediaStream(Stream MediaStream)
 {
 //read the size of the MediaInfo header information
 MediaStream.Seek(0L, SeekOrigin.Begin);

 Byte[] HdrSizeBuff = new Byte[HdrSizeByteLength];
 MediaStream.Read(HdrSizeBuff, 0, HdrSizeByteLength);
 HdrByteLength = BitConverter.ToInt32(HdrSizeBuff, 0);
 Byte[] MediaInfoBuff = new Byte[HdrByteLength];

 MediaStream.Seek(MediaStream.Length - HdrByteLength, SeekOrigin.Begin);

CHAPTER 10 ■ INTEGRATING RICH MEDIA

916

 MediaStream.Read(MediaInfoBuff, 0, HdrByteLength);
 byte[] TrimmedBuff = MediaInfoBuff.Reverse().SkipWhile((b) =>
 Convert.ToInt32(b) == 0).Reverse().ToArray();
 MemoryStream ms = new MemoryStream(TrimmedBuff);
 DataContractSerializer ser = new DataContractSerializer(typeof(MediaInfo));
 mediaInfo = ser.ReadObject(ms) as MediaInfo;
 }

 protected override void CloseMedia()
 {
 MediaStream.Close();
 }

 protected override void GetDiagnosticAsync(MediaStreamSourceDiagnosticKind
 diagnosticKind)
 {

 }

 protected override void GetSampleAsync(MediaStreamType mediaStreamType)
 {
 if (lastFrame > mediaInfo.FrameCount)
 {
 MediaStreamDescription msd =
 new MediaStreamDescription(MediaStreamType.Video, mediaStreamAttributes);
 MediaStreamSample mediaSample =
 new MediaStreamSample(msd, null, 0, 0, 0, mediaSampleAttributes);
 }
 else
 {
 MediaStreamDescription msd =
 new MediaStreamDescription(MediaStreamType.Video, mediaStreamAttributes);
 MediaStreamSample mediaSample =
 new MediaStreamSample(msd, MediaStream, (lastFrame * FrameSize) +
 HdrSizeByteLength, FrameSize,
 (long)(lastFrame * FrameDuration), mediaSampleAttributes);
 lastFrame++;
 ReportGetSampleCompleted(mediaSample);
 }

 }

 protected override void OpenMediaAsync()
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

917

 lastFrame = 0;
 FrameSize = (long)(mediaInfo.FrameHeight * mediaInfo.FrameWidth * 4);
 FrameDuration = TimeSpan.FromMilliseconds(1000 / mediaInfo.FrameRate).Ticks;

 mediaSourceAttributes.Add(MediaSourceAttributesKeys.CanSeek, true.ToString());
 mediaSourceAttributes.Add(MediaSourceAttributesKeys.Duration,
 ((long)(mediaInfo.FrameCount * FrameDuration)).ToString());
 mediaStreamAttributes.Add(MediaStreamAttributeKeys.Height,
 mediaInfo.FrameHeight.ToString());
 mediaStreamAttributes.Add(MediaStreamAttributeKeys.Width,
 mediaInfo.FrameWidth.ToString());
 mediaStreamAttributes.Add(MediaStreamAttributeKeys.CodecPrivateData, "");
 mediaStreamAttributes.Add(MediaStreamAttributeKeys.VideoFourCC, "RGBA");

 mediaStreamDescriptions.Add(new MediaStreamDescription(MediaStreamType.Video,
 mediaStreamAttributes));

 mediaSampleAttributes.Add(MediaSampleAttributeKeys.FrameHeight,
 mediaInfo.FrameHeight.ToString());
 mediaSampleAttributes.Add(MediaSampleAttributeKeys.FrameWidth,
 mediaInfo.FrameWidth.ToString());

 MediaStream.Seek(HdrSizeByteLength, SeekOrigin.Begin);
 ReportOpenMediaCompleted(mediaSourceAttributes, mediaStreamDescriptions);

 }

 protected override void SeekAsync(long seekToTime)
 {
 //find the corresponding frame
 lastFrame = (long)(mediaInfo.FrameRate *
 TimeSpan.FromTicks(seekToTime).TotalSeconds) + HdrSizeByteLength;
 this.ReportSeekCompleted(seekToTime);
 }

 protected override void SwitchMediaStreamAsync(MediaStreamDescription
 mediaStreamDescription)
 {

 }

 }

}

CHAPTER 10 ■ INTEGRATING RICH MEDIA

918

The first thing to note in Listing 10-30 is that you prevent the use of the default constructor for the

derived class by marking it private; instead, you create a constructor that accepts a Stream. This Stream
represents an open stream to the video file that this MediaStreamSource implementation is supposed to
parse and decode, and the expectation is that the consuming application passes that in when constructing
the MediaStreamSource for the first time. You then save the Stream in a member variable for future access
and also invoke the ParseMediaStream() method to parse the metadata.

Recall from Figure 10-25 that the video file format includes the size of the metadata block at the
beginning of the file and the actual metadata block at the end of the file, with the recorded frames in
between. In ParseMediaStream(), you first read the length of the metadata block. You then seek into the file
to position the file pointer at the beginning of the metadata block and read the number of bytes from the
tail end of the file as specified by the size information you just retrieved. You trim the byte array for any
null byte entries at the tail and then deserialize it into an instance of the MediaInfo class at the end of
Listing 10-28. You now have the metadata handy.

Next, the MediaElement invokes the OpenMediaAsync() method, which is where you initialize the media
and return the necessary metadata to prime the MediaElement for play. You begin by calculating the frame
size in bytes. To do so, you multiply the FrameHeight and the FrameWidth from the MediaInfo metadata
instance to get the number of pixels; then, you multiply the product further by 4, because each pixel is a 4-
byte structure with 1 byte for the Red, Blue, and Green color channels and the last byte for the alpha or
transparency channel. You store the frame size in the FrameSize variable. You also calculate the duration of
a frame in ticks from MediaInfo.FrameRate and store the result in the FrameDuration variable. The lastFrame
variable keeps track of the last frame consumed by the MediaElement and is initialize to 0. Then, you
populate the various metadata structures that you need to return to the MediaElement.

You have declared the mediaSourceAttributes variable of type
Dictionary<MediaSourceattributesKeys,string> to be the container for the media source metadata. You
populate this by setting MediaSourceAttributesKeys.CanSeek to True to enable seeking and setting
MediaSourceAttributesKeys.Duration to the total duration of the clip; you derive that value from the product
of FrameCount and FrameDuration.

You also populate the mediaStreamAttributes variable of type Dictionary
<MediaStreamAttributeKeys,string>. You include MediaStreamAttributeKeys.Height and
MediaStreamAttributeKeys.Width and set them to the FrameHeight and FrameWidth, respectively. You also set
MediaStreamAttributeKeys.CodecPrivateData to a blank string and MediaStreamAttributeKeys.VideoFourCC
to RGBA. The four-character code indicates to the MediaElement that the frames are RGBA-style bitmaps and
do not need any further decoding—hence the blank string value for CodecPrivateData. You then add a new
MediaStreamDescription instance to the variable mediaStreamDescriptions, with the stream type set to
MediaStreamType.Video and the attributes set to the just-initialized mediaStreamAttributes.

Note that you have only one media stream description entry, because you have only one stream: the
video. If you had additional streams, such as audio and script streams, you would have to add a description
entry and related attributes for each of those streams.

You also initialize the mediaSampleAttributes dictionary to set the FrameHeight and FrameWidth
respectively, although you do not need this variable until later. Finally, you complete this method by calling
ReportOpenMediaCompleted() and passing in the media source attributes and media stream descriptions.
Note that you call this method synchronously; but as discussed earlier, if the initialization process lasts
longer than this process takes, you can easily return from OpenMediaAsync sooner and complete this task on
a background thread.

At this point, the MediaElement begins calling GetSampleAsync() repeatedly to get samples to play.
GetSampleAsync() receives the MediaStreamType for the stream for which samples are being requested as a
parameter.

You first check to see if you are at the end of the file by comparing the lastFrame variable with
MediaInfo.FrameCount. If frames remain to be sampled (lastFrame is currently not greater than
MediaInfo.FrameCount), you attempt to create a new instance of the MediaStreamSample class to represent the
sample. The following snippet shows the MediaStreamSample constructor:

CHAPTER 10 ■ INTEGRATING RICH MEDIA

919

public MediaStreamSample(MediaStreamDescription mediaStreamDescription,
 Stream stream, long offset, long count, long timestamp,
 IDictionary<MediaSampleAttributeKeys, string> attributes)

The MediaStreamSample constructor accepts a MediaStreamDescription instance as its first parameter.

Recall that in the implementation of OpenMediaAsync(), you returned instances of
MediaStreamDescription to the MediaElement for each stream you handled. The MediaStreamDescription
instance that you supply to the MediaStreamSample constructor here must match the stream description
values used earlier for the same stream. As you can see in Listing 10-30, you use the same
MediaStreamType and stream attributes dictionary in constructing this MediaStreamDescription instance
that you used previously in OpenMediaAsync.

For the second parameter, stream, you pass in the actual media stream. The third parameter, offset,
is the byte offset into the stream where the MediaElement can begin reading this frame. As you can in
Listing 10-30, you derive this as the product of lastFrame and FrameSize: the total byte size of all the
frames that have been read so far, further offset by the header size used to store the metadata block size at
the beginning of the file.

The fourth parameter, count, is the number of bytes to be read to extract the frame—that is, the value
of the FrameSize variable. The fifth parameter is an optional timestamp that you can associate with the
sample; you pass in the starting point of this frame in time ticks calculated as the product of the frames
read so far in lastFrame and FrameDuration. The sixth and last parameter is the mediaSampleAttributes
dictionary that you prepopulated in the OpenMediaAsync() method while initializing the media. You then
increment lastFrame and call ReportGetSampleCompleted, passing in the newly constructed
MediaStreamSample instance. If you have read all the available frames, you return a MediaStreamSample
with the Stream set to null, causing the MediaElement to stop sampling and signaling the end of media.

You also support seeking through an implementation of the MediaStreamSource.SeekAsync() method.
SeekAsync() receives the time to which the user wants to seek as a parameter, with the value measured in
ticks. In SeekAsync(), you set the lastFrame variable to the frame at that time point (offset again by the
header block size) and let the MediaElement resume sampling.

The last part of this sample is a Silverlight player application in a project named
RecordedContentPlayout that uses the custom MediaStreamSource to play recorded content. Listing 10-31
shows the XAML for the application’s MainPage.

Listing 10-31. XAML for the Player Application’s MainPage

<UserControl x:Class="Recipe10_7.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 Height="850"
 Width="500">
 <Grid x:Name="LayoutRoot"
 Margin="0,0,0,18">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 10 ■ INTEGRATING RICH MEDIA

920

 <Border BorderBrush="Black" Grid.Row="0"
 BorderThickness="2"
 Height="650"
 Width="400">
 <MediaElement x:Name="me"
 BufferingTime="00:00:00"
 AutoPlay="False"
 Stretch="Fill" />
 </Border>
 <StackPanel Orientation="Horizontal"
 Grid.Row="2">
 <Button x:Name="btnPlay"
 Content="Play"
 Click="btnPlay_Click"
 Height="35"
 Width="50"
 Margin="108,8,0,11"
 HorizontalAlignment="Left" />
 <Button x:Name="btnPause"
 Content="Pause"
 Click="btnPause_Click"
 Height="35"
 Width="50"
 HorizontalAlignment="Right"
 Margin="0,8,125,11" />
 </StackPanel>
 <Slider x:Name="sliderSeek"
 Margin="24,8,21,0"
 Grid.Row="1"
 VerticalAlignment="Top"
 Maximum="100"
 ValueChanged="sliderSeek_ValueChanged" />
 </Grid>
</UserControl>

The XAML in Listing 10-31 creates a simple page with one MediaElement, a Slider control for

showing progress and seeking, and two buttons named Play and Pause. Listing 10-32 shows the
codebehind for the page.

Listing 10-32. Codebehind for Player Using Custom MediaStreamSource

using System;
using System.IO;
using System.Linq;
using System.Windows;
using System.Windows.Controls;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

921

using System.Windows.Controls.Primitives;
using System.Windows.Media;
using System.Windows.Threading;

namespace Recipe10_7
{

 public partial class MainPage : UserControl
 {

 private DispatcherTimer sliderTimer = new DispatcherTimer();
 private Thumb SliderThumb = null;
 public MainPage()
 {
 InitializeComponent();

 me.MediaFailed += new EventHandler<ExceptionRoutedEventArgs>(me_MediaFailed);
 me.MediaOpened += new RoutedEventHandler(me_MediaOpened);
 me.CurrentStateChanged += new RoutedEventHandler(me_CurrentStateChanged);
 sliderTimer.Interval = TimeSpan.FromMilliseconds(100);
 sliderTimer.Tick += new EventHandler(sliderTimer_Tick);

 }

 private void HandleSliderThumbDrag()
 {
 if (SliderThumb == null)
 {
 SliderThumb = VisualTreeHelper.FindElementsInHostCoordinates(
 sliderSeek.TransformToVisual(Application.Current.RootVisual).
 TransformBounds(new Rect(0, 0, sliderSeek.ActualWidth,
 sliderSeek.ActualHeight)),
 sliderSeek).Where((uie) => uie is Thumb).FirstOrDefault() as Thumb;

 SliderThumb.DragStarted += new DragStartedEventHandler((s, args) =>
 {
 if (me.CurrentState == MediaElementState.Playing)
 {
 me.Pause();
 }
 });
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

922

 }
 void me_CurrentStateChanged(object sender, RoutedEventArgs e)
 {
 switch (me.CurrentState)
 {
 case MediaElementState.Playing:
 sliderTimer.Start();
 break;
 default:
 sliderTimer.Stop();
 break;

 }
 }

 void me_MediaOpened(object sender, RoutedEventArgs e)
 {
 HandleSliderThumbDrag();
 me.Play();
 }

 void sliderTimer_Tick(object sender, EventArgs e)
 {
 sliderSeek.Value = me.Position.TotalMilliseconds * 100
 / me.NaturalDuration.TimeSpan.TotalMilliseconds;
 }

 void me_MediaFailed(object sender, ExceptionRoutedEventArgs e)
 {
 System.Diagnostics.Debug.WriteLine("{0} - {1}",e.ErrorException.Message,
 e.ErrorException.StackTrace);
 }

 private void btnPlay_Click(object sender, RoutedEventArgs e)
 {
 if (me.CurrentState == MediaElementState.Paused)
 me.Play();
 else
 {
 OpenFileDialog ofd = new OpenFileDialog() { Multiselect = false };
 if (ofd.ShowDialog() == true)
 {
 FileStream filestream = ofd.File.OpenRead();

CHAPTER 10 ■ INTEGRATING RICH MEDIA

923

 BitmapToVideoMediaStreamSource mss =
 new BitmapToVideoMediaStreamSource(filestream);
 me.SetSource(mss);
 }
 }

 }
 private void sliderSeek_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {
 if (me.CurrentState == MediaElementState.Paused)
 {
 me.Position = TimeSpan.FromTicks((long)e.NewValue *
 me.NaturalDuration.TimeSpan.Ticks / 100);
 }
 }

 private void btnPause_Click(object sender, RoutedEventArgs e)
 {
 me.Pause();
 }
 }
}

The code in Listing 10-32 is very similar to players built in earlier samples in this chapter. The only

difference is the way you initialize the MediaElement. In the Click handler method named
btnPlay_Click() for the Button btnPlay, you use the OpenFileDialog type to ask the user the name of a
disk-based file to be played. Keep in mind that this must be a file that has been recorded using the
Recorder component discussed previously. After the file is opened, you create a new instance of the
BitmapToVideoMediaStreamSource type, passing in the stream. Then, you invoke SetSource() on the
MediaElement, passing in the custom MediaStreamSource instance. Figure 10-27 shows the player playing a
recording using the custom MediaStreamSource.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

924

Figure 10-27. Player using BitmaptoVideoMediaStreamSource

10-8. Using a WebCam

Problem
You want to use a webcam and microphone in your application to capture audio and video.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

925

Solution
You can use the VideoCaptureDevice and AudioCaptureDevice types in Silverlight 4 to connect your
application to an existing webcam and microphone on your computer and use the VideoBrush to display
the captured video.

How It Works

Webcam and Microphone as devices
Silverlight 4 adds support for integrating a webcam connected to your machine into your application.
Silverlight represents a connected webcam using an instance of the
System.Windows.Media.VideoCaptureDevice type. It similarly represents a connected microphone using
the AudioCaptureDevice type in the same namespace. Each of these types inherits the base class
CaptureDevice meant to represent a generic capture device on your system.

To get a list of the available video and audio capture devices on your system, you can use the
CaptureDeviceConfiguration class. The CaptureDeviceConfiguration.GetDefaultVideoDevice() and
GetDefaultAudioDevice() static methods return the default video and audio capture devices as designated
in your system, while the GetAvailableVideoCaptureDevices() and GetAvailableAudioCaptureDevices()
static methods return collections of all the video and audio capture devices on the system.

Both the VideoCaptureDevice and the AudioCaptureDevice expose two properties named FriendlyName
and IsDefaultDevice respectively—the former providing a string name for the device and the later
returning a boolean value indicating if the device is the default device on the system.

Video and Audio Format Choices
Each capture device on the system may support more than one format of capture where formats may
differ in properties like resolution, frame rate, sampling rate etc. The VideoFormat type exposes several
properties that provide information about a specific supported video format. The list below explains the
properties:

• FramesPerSecond – Frame rate at which the device captures video

• PixelFormat – A value of the PixelFormatType enumeration indicating the pixel structure.
Current allowable values are PixelFormatType.Unknown indicating an unknown pixel structure
and PixelFormatType.Format32bppArgb indicating a 32-bit-sized pixel, with each of the 8 bits
storing the alpha, red, green and blue color channel values for the pixel.

• PixelHeight – Height of a frame in pixels

• PixelWidth – Width of a frame in pixels

• Stride – The bitmap stride of the frame bitmap

The VideoCaptureDevice.DesiredFormat property exposes the default VideoFormat for the device,
while the VideoCaptureDevice.SupportedFormats collection reports all the video formats supported by the
device.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

926

In the same vein, the AudioFormat type represents an audio format and exposes the following
properties:

• BitsPerSample – The size of a single audio sample in bits

• Channels – The number of channels in the captured audio

• SamplesPerSecond – The sampling rate

• WaveFormat – A value from the WaveFormatType enumeration type. The currently supported
value is limited to WaveFormatType.Pcm for PCM audio.

You can use the AudioCaptureDevice.DefaultFormat and AudioCaptureDevice.SupportedFormats to get
the default format and the list of all supported formats for the device respectively.

Starting Device Capture
Before you can start using the capture devices on your system, your application needs to explicitly
request access to capture devices on your system using the
CaptureDeviceConfiguration.RequestDeviceAccess() method. This method can only be called in a code
path originating from user-initiated code (such as a button click) and displays an opt-in dialog seeking
permission from the user to allow device access, and it returns true if the user grants device access.

Note that you need to call this method only once in a specific session of your application. You can
check the CaptureDeviceConfiguration.AllowDeviceAccess property to see if you have already called this
method before in your application and were granted access.

Once your application has been granted access, you can use the CaptureSource type to control your
capture. To do this you create a new CaptureSource instance, set the VideoCaptureDevice and
AudioCaptureDevice properties on the CaptureSource type to the respective devices you have selected to
use, and then call CaptureSource.Start().

The simplest approach to displaying the video being captured is to use a VideoBrush. The
VideoBrush.SetSource() method now has an overload that accepts a CaptureSource instance. You can use
the VideoBrush associated with the CaptureSource to fill in any shape, such as setting the Background
property on a Border element to display the captured video. The VideoBrush, however, does not process
the captured audio in any way.

■ NNote There are other approaches to processing the captured video and audio, and we will examine them in later

recipes.

To stop your capture, you can invoke CaptureSource.Stop(), and you can attach a handler to the
CaptureSource.CaptureFailed event to handle any capture failures. The CaptureSource.CaptureState
allows you to examine the state of the capture process; the possible values are Stopped, Started and Failed
defined in the CaptureState enumerated type.

Capturing a still image
Once the capture has been started, you can invoke CaptureSource.CaptureImageAsync() to initiate a still
image capture. You will need to handle CaptureSource.CaptueImageCompleted event to get access to the

CHAPTER 10 ■ INTEGRATING RICH MEDIA

927

captured still image. The CaptureImageCompletedEventArgs.Result property is of type WriteableBitmap
and gives you direct access to the captured still image.

The Code
The code sample in this recipe is primarily aimed at illustrating the API discussed in the previous section.
Figure 10-28 below shows the application user interface.

Figure 10-28. Application user interface

The dropdowns list the video and audio capture devices on your system. The button marked with a
camcorder symbol allows you to toggle between capturing video and stopping an ongoing capture using
the selected devices. If no devices are selected, the default devices for the system are used. The rightmost
button marked with a camera symbol captures a still image from the capture device on each click, which is
displayed right beside the video capture display area in a vertical list as shown in Figure 10-28. Lastly,
the information button right beside each dropdown displays the supported formats on the device and
their properties.

The XAML for this application is fairly simple, and we do not list it completely here for brevity.
Listing 10-33 shows the code for the Loaded handler of the page.

Listing 10-33. Loaded handler for the MainPage

//collection to hold all the still images
ObservableCollection<WriteableBitmap> obscollSnapsTaken =
 new ObservableCollection<WriteableBitmap>();

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 //populate the video device combobox with all available

CHAPTER 10 ■ INTEGRATING RICH MEDIA

928

 //video capture devices
 cbxVideoDevices.ItemsSource =
 new ObservableCollection<VideoCaptureDevice>(
 CaptureDeviceConfiguration.GetAvailableVideoCaptureDevices());
 //populate the audio device combobox with all available
 //video capture devices
 cbxAudioDevices.ItemsSource =
 new ObservableCollection<AudioCaptureDevice>(
 CaptureDeviceConfiguration.GetAvailableAudioCaptureDevices());
 //set the itemscontrol for still images to a blank collection
 itmctrlSnappedPics.ItemsSource = obscollSnapsTaken;
}

As shown in Listing 10-33, you acquire the available video and audio capture devices using the

appropriate static methods on the CaptureDeviceConfiguration type and use the returned collections to
set the respective comboboxes in the user interface. Listing 10-34 shows the XAML for the data template
that are used to bind the data to the comboboxes.

Listing 10-34. Data Template for the capture device comboboxes

<DataTemplate x:Key="dtDeviceComboItem">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding FriendlyName}"/>
 <Image
 Source="{Binding IsDefaultDevice,
 Converter={StaticResource REF_DefaultDeviceIndicatorConverter}}"
 Width="16" Height="16" Margin="3" Grid.Column="1"/>
 </Grid>
</DataTemplate>

You display the FriendlyName property on the CaptureDevice class (base class for all capture devices)

and also display an image beside the name if the device is the default device for its category. The
converter is used to supply either an image or a null value to the image control depending on the value
of the IsDefaultDevice property.

Listing 10-35 shows the code behind for the Click event on the button that starts video capture.

Listing 10-35. Click event handler for btnStartCamera

//currently attached CaptureSource
CaptureSource currentCaptureSource = null;

private void btnStartCamera_Click(object sender, RoutedEventArgs e)
{

CHAPTER 10 ■ INTEGRATING RICH MEDIA

929

 //if the capture source is not null and there is an ongoing capture
 //lets stop it
 if (currentCaptureSource != null &&
 currentCaptureSource.State == CaptureState.Started)
 currentCaptureSource.Stop();

 //initialize new capture source
 //set VideoCaptureDevice with the user selected one or the default
 //if none selected. Do the same with the AudioCaptureDevice
 currentCaptureSource = new CaptureSource()
 {
 VideoCaptureDevice = cbxVideoDevices.SelectedItem == null ?
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice() :
 cbxVideoDevices.SelectedItem as VideoCaptureDevice,
 AudioCaptureDevice = cbxAudioDevices.SelectedItem == null ?
 CaptureDeviceConfiguration.GetDefaultAudioCaptureDevice() :
 cbxAudioDevices.SelectedItem as AudioCaptureDevice
 };

 //if device access has been successfully requested before
 //of if not , and this device access request is unsuccessful as well
 //return
 if (!CaptureDeviceConfiguration.AllowedDeviceAccess &&
 CaptureDeviceConfiguration.RequestDeviceAccess() == false)
 return;

 //access granted - start capture
 currentCaptureSource.Start();
 //create a VideoBrush
 VideoBrush captureBrush = new VideoBrush()
 {
 Stretch = Stretch.Fill
 };
 //set the videobrush to use the CaptureSource
 captureBrush.SetSource(currentCaptureSource);
 //paint a border background with the videobrush
 brdrOutput.Background = captureBrush;
 //handle the CaptureImageCompleted for still images
 currentCaptureSource.CaptureImageCompleted +=
 new EventHandler<CaptureImageCompletedEventArgs>((s, args) =>
 {
 //add the image taken (WriteableBitmap) to the host collection
 obscollSnapsTaken.Add(args.Result);
 });
}

CHAPTER 10 ■ INTEGRATING RICH MEDIA

930

You check to see if there is an ongoing capture, and if so, stop it. You then create a new CaptureSource

instance and initialize the VideoCaptureSource and the AudioCaptureSource property with the currently
selected devices in the user interface or the respective default devices in those categories if no selections
are currently made.

You then check to see if access has been granted in this application session already, and if not,
request access to use the capture devices. Once the user opts in, you start the capture calling
CaptureSource.Start().

To display the captured video, you create a VideoBrush, with its source set to the CaptureSource, and
use the VideoBrush as the Background property of a Border element in the user interface.

Finally, you attach a handler to the CaptureImageCompleted event on the CaptureSource to handle still
image capture and store each WriteableBitmap in a collection that was previously bound to an
ItemsControl. Listing 10-36 shows the code to capture a still image.

Listing 10-36. Capture a still image

private void btnSnapPic_Click(object sender, RoutedEventArgs e)
{
 //capture a still image
 currentCaptureSource.CaptureImageAsync();
}

Listing 10-37 shows the code to display the supported video formats for the selected video capture

device.

Listing 10-37. Listing supported video formats

private void btnVideoDeviceProperties_Click(object sender, RoutedEventArgs e)
{
 //use either the selected video capture device or the default one if none
 //is selected
 VideoCaptureDevice Device = cbxVideoDevices.SelectedItem == null ?
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice()
 : cbxVideoDevices.SelectedItem as VideoCaptureDevice;
 //create a child window with a title
 ChildWindow cwDeviceProperties = new ChildWindow()
 {
 Title =
 string.Format("Properties - {0}",
 Device.FriendlyName) , Height=300, Width=400
 };
 //set the child window content to a content control
 //bind the content control to the list of supported formats
 //set the content template to the data template for displaying
 //video formats
 cwDeviceProperties.Content = new ContentControl()
 {
 Content = Device.SupportedFormats,

CHAPTER 10 ■ INTEGRATING RICH MEDIA

931

 ContentTemplate = this.Resources["dtVideoDeviceProperty"] as DataTemplate
 };
 //show the child window
 cwDeviceProperties.Show();
}

You start by picking either the selected video capture device or the default one. You then create a

ChildWindow instance with its Title property set to displaying the FriendlyName for the device. You set the
content of the ChildWindow instance to a ContentControl instance, with the ContentControl.Content set to
the collection of supported video formats by the device. You also set the ContentControl.ContentTemplate
to a DataTemplate used to display the supported formats, and then show the ChildWindow instance. Listing
10-38 shows the DataTemplate used to display the supported video format collection.

Listing 10-38. DataTemplate to display the collection of supported video formats

<DataTemplate x:Key="dtVideoDeviceProperty">
 <DataControls:DataGrid AutoGenerateColumns="True"
 ItemsSource="{Binding}"
 HorizontalAlignment="Stretch"/>
</DataTemplate>

You simply use a DataGrid with auto generated columns to bind to the collection of VideoFormat

objects. Figure 10-29 shows the video formats listed.

Figure 10-29. Supported video formats for a specific device

CHAPTER 10 ■ INTEGRATING RICH MEDIA

932

10-9. Processing Raw WebCam Output
Problem
You want to capture and process the raw video and audio sample from a webcam.

Solution
You can attach and audio and a video sink to the webcam to gain access to the raw samples.

How It Works
There could be a number of reasons why you may want to get access to the raw audio and video samples
produced by a webcam. Some application scenarios include:

• Recording – An application that needs to record a webcam session into some sort of media
file format that can be replayed later

• Audio/Video Communication – An application such as an instant messaging client that
enables remote audio/video communication, where the captured samples from a webcam
needs to be transferred over the network to be viewed remotely.

Silverlight 4 allows you to capture raw webcam audio/video samples using two types in the
System.Windows.Media namespace—namely VideoSink and AudioSink.

VideoSink and AudioSink
VideoSink and AudioSink are both abstract classes that expose APIs representing the lifecycle of a capture
session. To capture raw samples, you will need to implement concrete types of your own that extend
VideoSink and AudioSink and then use the CaptureSource type to connect them to the webcam output. Let’s
take a look at the VideoSink and the AudioSink APIs first.

The VideoSink type exposes four methods of interest— namely OnCaptureStarted(),
OnCaptureStopped(), OnFormatChanged() and OnSample(). Each of these is an abstract method, and you will
need to provide concrete implementations of these in your VideoSink derived class. Once your VideoSink
derived instance is connected properly, your implementations of these methods get called at various
phases of the webcam capture session.

VideoSink.OnCaptureStarted() and VideoSink.OnCaptureStopped() are called respectively when the
video capture session starts and stops. VideoSink.OnFormatChanged() is called when the selected video
format is applied. You can author your application to allow the user to select from the list of supported
video formats for the webcam and apply the selected format to the VideoCaptureDevice through its
DesiredFormat property. For more details on enumerating the supported formats and applying a format
selection, please refer to Recipe 10-8. The only parameter passed into the OnFormatChanged() method is
of type VideoFormat and represents the currently applied video format. Finally, VideoSink.OnSample() is
called once the capture session starts generating samples. The sample timestamp and duration are
respectively passed in as the first two parameters to OnSample(); both are measured in ticks (100
nanosecond unit) and represented as long values. The last parameter is a byte array and represents the
actual video sample data.

The AudioSink API is identical and exposes similar methods with similar functionality.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

933

Both VideoSink and AudioSink types also expose a single property named CaptureSource of type
CaptureSource. Once you create instances of your VideoSink and AudioSink derived types, you can set the
CaptureSource property on each of the sink instances to a CaptureSource instance that has been
initialized with the appropriate capture device instances. At this point, once you start the capture, the
VideoSink and AudioSink lifecycle APIs discussed before are called into by the runtime, giving your code
the opportunity to collect and process raw samples.

The Code
The code sample for this recipe demonstrates how to use VideoSink and AudioSink derived classes to
capture samples. It also demonstrates how to create a custom MediaStreamSource that can process the
captured audio and video samples and play them out through a MediaElement.

The XAML for the application is fairly simple, and for brevity we do not list it here. We encourage
you to look at the accompanying sample code for more details. The primary portions application UI are a
MediaElement that is driven by the custom MSS to play the captured raw samples and a Border that uses a
background VideoBrush connected to the CaptureSource directly to enable a side-by-side view of the
captured video stream. It also includes a Button that is used to start and stop the capture.

Figure 10-30 shows a screen shot of the application in action.

Figure 10-30. Raw Audio/Video Sample Processing

Let’s start by taking a look at the implementation of the sink classes. Listing 10-39 shows the custom
sink implementations.

Listing 10-39. Custom AudioSink and VideoSink implementations

namespace Recipe10_9
{
 public class WebCamVideoSink : VideoSink
 {
 //events to be raised in response to various capture lifecycle phases
 internal event EventHandler CaptureStarted;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

934

 internal event EventHandler CaptureStopped;
 internal event EventHandler<VideoFormatChangedEventArgs> FormatChanged;
 internal event EventHandler<VideoSampleEventArgs> SampleGenerated;

 protected override void OnCaptureStarted()
 {
 if (CaptureStarted != null) CaptureStarted(this, EventArgs.Empty);
 }

 protected override void OnCaptureStopped()
 {
 if (CaptureStopped != null) CaptureStopped(this, EventArgs.Empty);
 }

 protected override void OnFormatChange(VideoFormat videoFormat)
 {
 if (FormatChanged != null)
 FormatChanged(this,
 new VideoFormatChangedEventArgs() { Format = videoFormat });
 }

 protected override void OnSample(long sampleTimeInHundredNanoseconds,
 long frameDurationInHundredNanoseconds, byte[] sampleData)
 {
 if (SampleGenerated != null)
 SampleGenerated(this,
 new VideoSampleEventArgs()
 {
 Sample = new VideoSample()
 {
 SampleTime = sampleTimeInHundredNanoseconds,
 FrameDuration = frameDurationInHundredNanoseconds,
 SampleData = sampleData
 }
 });
 }
 }

 public class WebCamAudioSink : AudioSink
 {
 internal event EventHandler CaptureStarted;
 internal event EventHandler CaptureStopped;
 internal event EventHandler<AudioFormatChangedEventArgs> FormatChanged;
 internal event EventHandler<AudioSampleEventArgs> SampleGenerated;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

935

 protected override void OnCaptureStarted()
 {
 if (CaptureStarted != null) CaptureStarted(this, EventArgs.Empty);
 }

 protected override void OnCaptureStopped()
 {
 if (CaptureStopped != null) CaptureStopped(this, EventArgs.Empty);
 }

 protected override void OnFormatChange(AudioFormat audioFormat)
 {
 if (FormatChanged != null)
 FormatChanged(this,
 new AudioFormatChangedEventArgs() { Format = audioFormat });
 }

 protected override void OnSamples(long sampleTimeInHundredNanoseconds,
 long sampleDurationInHundredNanoseconds, byte[] sampleData)
 {
 if (SampleGenerated != null)
 SampleGenerated(this,
 new AudioSampleEventArgs()
 {
 Sample = new AudioSample()
 {
 SampleTime = sampleTimeInHundredNanoseconds,
 SampleDuration = sampleDurationInHundredNanoseconds,
 SampleData = sampleData
 }
 });
 }
 }

 public class VideoSample
 {
 public long SampleTime { get; set; }
 public long FrameDuration { get; set; }
 public byte[] SampleData { get; set; }
 }

 public class AudioSample
 {
 public long SampleTime { get; set; }
 public long SampleDuration { get; set; }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

936

 public byte[] SampleData { get; set; }
 }

 public class VideoFormatChangedEventArgs : EventArgs
 {
 public VideoFormat Format { get; set; }
 }
 public class AudioFormatChangedEventArgs : EventArgs
 {
 public AudioFormat Format { get; set; }
 }

 public class VideoSampleEventArgs : EventArgs
 {
 public VideoSample Sample { get; set; }
 }

 public class AudioSampleEventArgs : EventArgs
 {
 public AudioSample Sample { get; set; }
 }
}

As you can see from the listing above, both the sink implementations are fairly simple. You

implement each of the abstract methods from the base AudioSink and VideoSink classes, and raise
appropriate events from those implements to signal to other parts of the application that a specific part of
the capture session has occurred. In the OnFormatChanged() implementation, you also include the final
selected audio or video format in the event argument in raising the FormatChanged event. In the
OnSampleGenerated() implementation, you include the sample information as an instance of the
VideoSample or the AudioSample class in the event argument for the SampleGenerated event. The creation
of the sinks is handled by the MainPage, but let’s first look at how the samples are processed. As discussed
earlier, we will demonstrate this through a custom MediaStreamSource that processes these samples to
display the results of the capture side by side with a direct VideoBrush-driven display. Listing 10-40 shows
the custom MSS implementation.

Listing 10-40. Custom MediaStreamSource handling raw sample from sinks

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.IO;
using System.Linq;
using System.Threading;
using System.Windows.Controls;
using System.Windows.Media;

namespace Recipe10_9

CHAPTER 10 ■ INTEGRATING RICH MEDIA

937

{
 public class WebCamMSS : MediaStreamSource
 {

 WebCamVideoSink vsink = null;
 WebCamAudioSink asink = null;

 private Dictionary<MediaSourceAttributesKeys, string> mediaSourceAttributes =
 new Dictionary<MediaSourceAttributesKeys, string>();
 private List<MediaStreamDescription> availableMediaStreams =
 new List<MediaStreamDescription>();
 private Dictionary<MediaSampleAttributeKeys, string> videoSampleAttributes =
 new Dictionary<MediaSampleAttributeKeys, string>();

 bool VideoFormatSelected = false;
 bool AudioFormatSelected = false;

 Queue<VideoSample> VideoSampleBuffer = new Queue<VideoSample>();
 Queue<AudioSample> AudioSampleBuffer = new Queue<AudioSample>();
 object VideoBufferCritSec = new object();
 object AudioBufferCritSec = new object();
 internal ManualResetEvent AudioSampleRequest = new ManualResetEvent(false);
 internal ManualResetEvent VideoSampleRequest = new ManualResetEvent(false);
 internal AutoResetEvent AudioSampleArrived = new AutoResetEvent(false);
 internal AutoResetEvent VideoSampleArrived = new AutoResetEvent(false);

 private MediaElement meTarget = null;

 private CaptureSource _WebCamSource = default(CaptureSource);
 public CaptureSource WebCamSource
 {
 get
 {
 return _WebCamSource;
 }

 set
 {
 if (value != _WebCamSource)
 {
 _WebCamSource = value;
 //attach the sinks to the capture source
 vsink.CaptureSource = _WebCamSource;
 asink.CaptureSource = _WebCamSource;

CHAPTER 10 ■ INTEGRATING RICH MEDIA

938

 }
 }
 }

 public WebCamMSS(MediaElement target, WebCamVideoSink vSink,
 WebCamAudioSink aSink)
 {

 meTarget = target;
 vsink = vSink;
 asink = aSink;

 //handle the various sink events
 vsink.FormatChanged +=
 new EventHandler<VideoFormatChangedEventArgs>(VideoSink_FormatChanged);
 vsink.SampleGenerated +=
 new EventHandler<VideoSampleEventArgs>(VideoSink_SampleGenerated);
 asink.FormatChanged +=
 new EventHandler<AudioFormatChangedEventArgs>(AudioSink_FormatChanged);
 asink.SampleGenerated +=
 new EventHandler<AudioSampleEventArgs>(AudioSink_SampleGenerated);

 //cannot seek and duration is infinite
 mediaSourceAttributes.Add(MediaSourceAttributesKeys.CanSeek,
 false.ToString());
 mediaSourceAttributes.Add(MediaSourceAttributesKeys.Duration,
 TimeSpan.MaxValue.Ticks.ToString());

 //create the background workers to handle incoming samples
 BackgroundWorker VideoSampleDispatch = new BackgroundWorker();
 BackgroundWorker AudioSampleDispatch = new BackgroundWorker();

 VideoSampleDispatch.DoWork +=
 new DoWorkEventHandler(VideoSampleDispatch_DoWork);
 AudioSampleDispatch.DoWork +=
 new DoWorkEventHandler(AudioSampleDispatch_DoWork);
 //run the background workers
 VideoSampleDispatch.RunWorkerAsync(this);
 AudioSampleDispatch.RunWorkerAsync(this);
 }

 void AudioSink_FormatChanged(object sender, AudioFormatChangedEventArgs e)
 {
 //switch context to the thread the MSS was created on (UI thread)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

939

 meTarget.Dispatcher.BeginInvoke(new Action(() =>
 {
 if (_WebCamSource.AudioCaptureDevice != null)
 {
 //set the audio capture device format
 _WebCamSource.AudioCaptureDevice.DesiredFormat = e.Format;
 //create WaveFormatEx instance and populate from format information
 WaveFormatEx wfex = new WaveFormatEx()
 {
 //bits per sample
 BitsPerSample = (ushort)e.Format.BitsPerSample,
 //always PCM
 FormatTag = WaveFormatEx.WAVE_FORMAT_PCM,
 //channel count
 Channels = (ushort)e.Format.Channels,
 //samples per sec
 SamplesPerSecond = (uint)e.Format.SamplesPerSecond
 };
 //add WaveFormatEx as codec private data
 availableMediaStreams.Add(
 new MediaStreamDescription(MediaStreamType.Audio,
 new Dictionary<MediaStreamAttributeKeys, string>()
 {
 {MediaStreamAttributeKeys.CodecPrivateData,
 wfex.ToCodecDataString()}
 }));
 //set flag to indicate audio format processing is done
 AudioFormatSelected = true;
 }

 if (VideoFormatSelected && AudioFormatSelected)
 {
 //if both formats have been processed,
 //attach the MSS to the MediaElement
 meTarget.SetSource(this);
 }
 }
));
 }

 void VideoSink_FormatChanged(object sender, VideoFormatChangedEventArgs e)
 {
 //switch context to the thread the MSS was created on (UI thread)
 meTarget.Dispatcher.BeginInvoke(new Action(() =>
 {

CHAPTER 10 ■ INTEGRATING RICH MEDIA

940

 if (_WebCamSource.VideoCaptureDevice != null)
 {
 //set the video capture device format
 _WebCamSource.VideoCaptureDevice.DesiredFormat = e.Format;
 //add stream attributes
 availableMediaStreams.Add(
 new MediaStreamDescription(MediaStreamType.Video,
 new Dictionary<MediaStreamAttributeKeys, string>()
 {
 //FourCC code - we are processing 32 bit RGBA saqmples
 {MediaStreamAttributeKeys.VideoFourCC,"RGBA"},
 //frame height
 {MediaStreamAttributeKeys.Height,e.Format.PixelHeight.ToString()},
 //frame width
 {MediaStreamAttributeKeys.Width,e.Format.PixelWidth.ToString()},
 //not need for codec private data - RGBA is uncompressed
 {MediaStreamAttributeKeys.CodecPrivateData,String.Empty}
 }
)
);
 //add sample attributes - frame height and frame width
 videoSampleAttributes.Add(MediaSampleAttributeKeys.FrameHeight,
 e.Format.PixelHeight.ToString());
 videoSampleAttributes.Add(MediaSampleAttributeKeys.FrameWidth,
 e.Format.PixelWidth.ToString());
 //set format selection flag
 VideoFormatSelected = true;
 }

 //if both formats are set
 if (VideoFormatSelected && AudioFormatSelected)
 {
 //attach MSS to ME
 meTarget.SetSource(this);
 }
 }));
 }

 void VideoSink_SampleGenerated(object sender, VideoSampleEventArgs e)
 {
 lock (VideoBufferCritSec)
 {
 //enque the audio sample
 VideoSampleBuffer.Enqueue(e.Sample);
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

941

 //signal sample arrival
 this.VideoSampleArrived.Set();
 }
 void AudioSink_SampleGenerated(object sender, AudioSampleEventArgs e)
 {
 lock (AudioBufferCritSec)
 {
 //enque the audio sample
 AudioSampleBuffer.Enqueue(e.Sample);
 }
 //signal sample arrival
 this.AudioSampleArrived.Set();
 }

 protected override void GetSampleAsync(MediaStreamType mediaStreamType)
 {
 if (mediaStreamType == MediaStreamType.Audio)
 {
 //signal audio sample request to sample processing loop
 AudioSampleRequest.Set();
 }
 else if (mediaStreamType == MediaStreamType.Video)
 {
 //signal video sample request to sample processing loop
 VideoSampleRequest.Set();
 }
 }

 void AudioSampleDispatch_DoWork(object sender, DoWorkEventArgs e)
 {
 //keep running
 while (true)
 {
 //wait for sample request
 this.AudioSampleRequest.WaitOne();
 //request arrived - is there a sample to dispatch ?
 if (this.AudioSampleBuffer.Count > 0)
 {
 AudioSample audSample = null;
 lock (this.AudioBufferCritSec)
 {
 //dequeue sample
 audSample = this.AudioSampleBuffer.Dequeue();
 }
 //flatten sample and report sample

CHAPTER 10 ■ INTEGRATING RICH MEDIA

942

 MemoryStream msAud = new MemoryStream(audSample.SampleData);
 ReportGetSampleCompleted(
 new MediaStreamSample(availableMediaStreams.
 Where((msd) => msd.Type == MediaStreamType.Audio).First(),
 msAud, 0, audSample.SampleData.Length,
 audSample.SampleTime, new Dictionary<MediaSampleAttributeKeys,
 string>()));
 //reset wait handle
 this.AudioSampleRequest.Reset();
 }
 else
 {
 //wait for sample arrival
 this.AudioSampleArrived.WaitOne();
 }

 }
 }

 void VideoSampleDispatch_DoWork(object sender, DoWorkEventArgs e)
 {
 //keep running
 while (true)
 {
 this.VideoSampleRequest.WaitOne();
 //request arrived - is there a sample to dispatch ?
 if (this.VideoSampleBuffer.Count > 0)
 {
 VideoSample vidSample = null;
 lock (this.VideoBufferCritSec)
 {
 //dequeue sample
 vidSample = this.VideoSampleBuffer.Dequeue();
 }

 //flatten sample and report sample
 MemoryStream msVid = new MemoryStream(vidSample.SampleData);
 ReportGetSampleCompleted(
 new MediaStreamSample(availableMediaStreams.
 Where((msd) => msd.Type == MediaStreamType.Video).First(),
 msVid, 0, vidSample.SampleData.Length, vidSample.SampleTime,
 vidSample.FrameDuration, videoSampleAttributes));
 //reset wait handle
 this.VideoSampleRequest.Reset();
 }

CHAPTER 10 ■ INTEGRATING RICH MEDIA

943

 else
 {
 //wait for sample arrival
 this.VideoSampleArrived.WaitOne();
 }

 }
 }
 protected override void CloseMedia()
 {
 return;
 }

 protected override void GetDiagnosticAsync(
 MediaStreamSourceDiagnosticKind diagnosticKind)
 {
 return;
 }

 protected override void OpenMediaAsync()
 {
 ReportOpenMediaCompleted(mediaSourceAttributes, availableMediaStreams);
 }

 protected override void SeekAsync(long seekToTime)
 {
 ReportSeekCompleted(0);
 }

 protected override void SwitchMediaStreamAsync(
 MediaStreamDescription mediaStreamDescription)
 {
 return;
 }
 }
}

For the basics on custom MediaStreamSource authoring, please refer to recipe 10-7. We will cover only

the parts that are pertinent to this recipe.
As you can see in Listing 10-40, you construct the MSS by passing in the MediaElement that this MSS

will be attached to, as well as instances of the audio and video sinks that you will use to collect samples
for the MSS. You attach handlers to the SampleGenerated and the FormatChanged events raised by the
custom sinks. You then set the MediaSourceAttributesKeys.CanSeek key to false and the
MediaSourceAttributesKeys.Duration key to a TimeSpan.MaxValue to indicate that the video stream cannot
support seeking and does not have a finite duration, respectively.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

944

Samples are dispatched to the MSS by the sinks through the SampleGenerated event. Depending on
the frame rate of the video, samples can be generated really fast; for example, if video is being captured
at 24 frames per second, that would amount to the SampleGenerated event be raised 24 times every
second. To keep the main UI thread from getting bogged down in processing the samples, you decide to
perform sample processing on background threads. The BackgroundWorker class is a convenient way to
leverage the CLR thread pool to automatically offload processing to background threads from the thread
pool, without having to do explicit thread management in your code. In the last part of the constructor,
you create two instances of the BackgroundWorker classes named AudioSampleDispatch and
VideoSampleDispatch for audio sample processing and video sample processing, respectively; attach
handlers to the DoWork event of the BackgroundWorker instances; and then run each worker. We will visit
the background processing of samples later in the recipe.

You also expose a property named WebCamSource of type CaptureSource from the MSS. This property
gets set by the codebehind once the CaptureSource and the MSS instance has been created and initialized;
in the property setter, you connect the sinks to the CaptureSource instance.

Before you can start processing samples, you need to respond to the video and audio format
selections and initialize some additional aspects of the MSS. If you look at the AudioSink_FormatChanged()
handler method in Listing 10-40, you will note that you first set the AudioCaptureDevice.DesiredFormat to
the selected audio format. You then create a new instance of the WaveFormatEx class and initialize its
various members with information from the audio format data. The WaveFormatEx data structure is used to
represent information that is required by the audio codec to successfully process waveform audio (of
which PCM audio is one type). To learn more about the WaveFormatEx data structure, you can refer to
msdn.microsoft.com/en-us/library/dd757720(VS.85).aspx. We have created a managed version of the
type, and you can find it in the accompanying sample code. Once initialized, you use a string
representation of the WaveFormatEx data as value to the MediaStreamAttributeKeys.CodecPrivateData key
and add as a part of the MediaStreamDescription for the audio stream.

You use the selected video format in a similar fashion to set up the MSS for video processing. In the
VideoSink_FormatChanged() event handler, you add the MediaStreamDescription for
MediaStreamType.Video, setting the FourCC code to RGBA, the MediaStreamAttributeKeys.Height and
MediaStreamAttributeKeys.Width to VideoFormat.PixelHeight and VideoFormat.PixelWidth from the
selected video format, and the CodecPrivateData to an empty string since you do not need to initialize a
codec to process RGBA frames. You also set height and width keys for each individual sample to the same
corresponding values from the selected video format.

Once both the audio and video formats are used to initialize the MSS, you attach the MSS to the
MediaElement, using the SetSource() method on the MediaElement.

Since the actual processing of the samples is done in background threads, you need a way to pass on
the samples to the background thread as they are generated. In the VideoSink_SampleGenerated() and
the AudioSink_SampleGenerated() event handlers in Listing 10-40, you will note two instances of the
Queue type, namely VideoSampleBuffer and AudioSampleBuffer, to store the samples as they are
generated. You protect the code with a critical section, since the SampleGenerated events are raised on
their own threads separate from the UI thread on which the MSS was created. Once you store the samples,
you signal the sample processing threads of sample arrival by setting an appropriate AutoResetEvent
instance.

 You also need to inform the background sample processing threads when a request for a sample
arrives from the MediaElement. In the implementation of the GetSampleAsync() method of the MSS, you set
a ManualResetevent instance named AudioSampleRequest to signal the request of an audio sample and a
different ManualResetEvent instance named VideoSampleRequest to signal the same for video.

So what happens when a sample arrives from the sinks or gets requested by the MediaElement? To
understand, let’s take a look at the VideoSampleDispatch_DoWork() method that defines the processing for
the BackgroundWorker named VideoSampleDispatch discussed earlier. You start with an infinite loop, which
keeps running as long as the MSS instance is valid. Inside the loop, you start by blocking on the
ManualResetEvent named VideoSampleRequest; recall that this gets signaled when a sample request
arrives from the MediaElement. Once you receive a request, you check the VideoSampleBuffer queue to see

CHAPTER 10 ■ INTEGRATING RICH MEDIA

945

if there is an available sample; if so, you extract it and use the ReportGetSampleCompleted() method on the
MSS to asynchronously report the sample back to the MediaElement (for more details on this, please refer
back to recipe 10-7). On the other hand, if there are no samples in the sample buffer, you block on the
AutoResetEvent named VideoSampleArrived waiting for a sample to arrive from the video sink. Recall
from earlier that this gets signaled when the sink enqueues a sample into the buffer.

If you look at the AudioSampleDispatch_DoWork() method you will notice an identical loop for sample
processing.

The rest of the MSS method implementations do not serve any meaningful purpose for this sample
application, so we do not discuss them here.

So now that you have seen how the sinks and the MediaStreamSource are implemented, let’s look at
how they are tied together. Listing 10-41 shows the code behind for the MainPage where it happens.

Listing 10-41. MainPage code behind

public partial class MainPage : UserControl
{
 VideoBrush vidbrush = new VideoBrush();
 CaptureSource webcamCapture = new CaptureSource();
 WebCamMSS mss = null;
 WebCamVideoSink vSink = new WebCamVideoSink();
 WebCamAudioSink aSink = new WebCamAudioSink();

 public MainPage()
 {
 InitializeComponent();

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {

 webcamCapture.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
 webcamCapture.AudioCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultAudioCaptureDevice();
 mss = new WebCamMSS(meWebCamOut,vSink, aSink);
 mss.WebCamSource = webcamCapture;

 vidbrush.SetSource(webcamCapture);
 webcamDirectCapture.Background = vidbrush;

 vSink.FormatChanged +=
 new EventHandler<VideoFormatChangedEventArgs>(vSink_FormatChanged);

 }
 private void BtnCaptureStartStop_Click(object sender, RoutedEventArgs e)

CHAPTER 10 ■ INTEGRATING RICH MEDIA

946

 {
 if (webcamCapture.State == CaptureState.Stopped)
 {

 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 webcamCapture.Start();
 }
 else if (webcamCapture.State == CaptureState.Started)
 webcamCapture.Stop();
 }

 void vSink_FormatChanged(object sender, VideoFormatChangedEventArgs e)
 {
 this.Dispatcher.BeginInvoke(new Action(() =>
 {
 //correct for negative stride
 if (e.Format.Stride < 0)
 {
 brdrMediaElement.Projection = new PlaneProjection()
 {
 CenterOfRotationX = 0.5,
 RotationX = 180
 };
 }
 }));
 }
}

On the Loaded event handler of the MainPage, you initialize our CaptureSource named webcamCapture
with the default video and audio capture devices on the system, create and initialize the custom
MediaStreamSource, and also use webcamCapture in a VideoBrush to paint a Border object named
webcamDirectCapture that shows the direct video capture results side by side with the MSS processed
video.

In BtnCaptureStartStop_Click(), you either request access and start the capture or stop the capture
based on the current state of the CaptureSource.

Lastly, you handle the FormatChanged event of the VideoSink here as well. If you look at the
vSink_FormatChanged() event handler method, you will see that you apply a PlaneProjection to turn the
MediaElement by 180 degrees around the X-axis if the VideoFormat.Stride value is negative. The stride of
a bitmap is dependent on the order in which the pixels in a bitmap are stored. When a bitmap is stored
with the pixels going from top to bottom, it has a negative stride and will appear to be vertically flipped.
This is what you correct using the PlaneProjection. Figure 10-31 shows the result if the above mentioned
stride correction was not made on the MediaElement on the left.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

947

Figure 10-31. MediaElement without stride correction applied.

CHAPTER 10 ■ INTEGRATING RICH MEDIA

948

C H A P T E R 1 1

■ ■ ■

949

Integrating Microsoft
IIS Smooth Streaming

With HTTP being the most ubiquitous protocol on the Internet, the benefit of being able to deliver
video streams over HTTP with a high degree of reliability and quality is very important to the future of
glitch-free, high-definition video streaming.

The reality, however, is that network bandwidth fluctuates over time. Also, the processing capacity
of a client computing device can vary over time, too, depending on the CPU load due to the various
programs running on it. These factors can cause degradation of the quality of the viewing experience
if a video stutters or freezes while the player is waiting to buffer enough data to show the next set of
video frames or waiting for the CPU cycles needed to decode those frames. An approach called
adaptive streaming addresses this problem by adapting the bitrate to prevailing resource constraints.

In the adaptive streaming approach, the same media is encoded in small sized chunks at multiple
bitrates and is delivered over a specialized streaming server. The video player on the client computer
constantly monitors network conditions, CPU load, and other resource utilization metrics on the client
computer, and uses that information to calculate the most appropriate bitrate that it can decode and
render efficiently given the current conditions. The player requests chunks of video encoded at that
currently appropriate bit rate, and the streaming server responds with content from the video sources
encoded at that bit rate. As a result, when resource conditions degrade, the player can continue
displaying the video without any significant disruptions—and with only a slight degradation in
overall resolution—until an improvement or further degradation in conditions causes a different bit
rate to be requested.

This kind of continuous collaboration between the player and the server requires a special
implementation of processing logic on both the streaming server and the client runtime in the player.
Internet Information Server (IIS) Smooth Streaming is the server-side implementation of adaptive
streaming over HTTP from Microsoft. The client-side implementation is provided as an extension to
Microsoft Silverlight called the IIS Smooth Streaming Player Development Kit, which lets applications
consume content being streamed over IIS Smooth Streaming. It also provides a rich API that offers
programmatic access to various aspects of the Smooth Streaming logic.

This chapter will primarily focus on recipes that allow you to build rich Silverlight experiences for
IIS Smooth Streaming leveraging the Smooth Streaming PDK. Specifically, we will cover:

• Using the PDK to consume a smooth stream

• The client-side data model of streams and tracks

• Consuming additional data streams such as closed captions and animations

• Merging external data streams with an existing presentation

• Scheduling external clips such as advertisements within a presentation

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

950

• Variable Playback rates

• Composite manifests that lend to robust editing scenarios

Since this book focuses on Silverlight, we do not cover the server side architecture and
implementation of Smooth Streaming in any great detail here. We show you how to set up a basic
Smooth Streaming environment in the first recipe, and then discuss specific aspects in the rest of the
recipes. For more details on Smooth Streaming itself, please review the library of articles available at

www.iis.net/expand/SmoothStreaming

and at

www.iis.net/expand/LiveSmoothStreaming

Note that this chapter is based on the beta 2 version of the IIS Smooth Streaming Player

Development Kit, and APIs discussed here may be subject to change when the PDK finally releases.

■ NNote Examples in this chapter use media downloaded from www.microsoft.com/windows/windowsmedia/

musicandvideo/hdvideo/contentshowcase.aspx and then encoded into the Smooth Streaming format.

11-1. Setting up Smooth Streaming

Problem
You need to set up a Smooth Streaming server environment and encode media to be delivered over
Smooth Streaming.

Solution
You will need IIS 7, the IIS Media Services package, and Expression Encoder version 3 or 4.

How It Works

IIS Media Services
You will need a machine running IIS7. Windows Server 2008, Windows 7 and Windows Vista all
support II7, but for production grade deployment, you want a Windows Server 2008 based
environment. You can install IIS Media Services version 3 using the Microsoft Web Platform Installer
from

www.iis.net/media

http://www.iis.net/expand/SmoothStreaming
http://www.iis.net/expand/LiveSmoothStreaming
http://www.microsoft.com/windows/windowsmedia
http://www.iis.net/media

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

951

Expression Encoder

Both versions 3 and 4 of Expression Encoder support encoding media for Smooth Streaming for

on-demand viewing. Support for software-based encoding for live smooth streaming is available in
Expression Encoder version 4 only. We use Expression Encoder v4 for the rest of this chapter.

Once you install and run Expression Encoder v4, you will see the screen in Figure 11-1 when the
application starts up.

Figure 11-1. Expression Encoder v4 start screen

To encode a media file for smooth streaming, select the transcoding option. Once you are in the
workspace window, import (Ctrl+I) the source media file that you want to transcode to the Smooth
Streaming format. Expand the Encoding for Silverlight option in the Presets window, expand IIS
Smooth Streaming, select the encoding profile you want to target, and click the Apply button. Figure
11-2 shows a screenshot with a video file named AdrenalineRush.wmv selected as the source file, and
VC-1 IIS Smooth Streaming – 720p CBR selected as the target encoding profile.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

952

Figure 11-2. Selecting a target profile in Expression Encoder v4

If you navigate to the Encode tab and expand the pane titled Video, you will also see that a range of
bitrates has been selected for encoding, each defined in its own tab. You can remove some of the
bitrate settings if you do not need them by selecting the specific bitrate tab and clicking the little
garbage can symbol on right-bottom corner of the Video pane. Alternatively, if you need additional
bitrates, you can define them by clicking the bitrate tab marked +. Figure 11-3 shows the Encode tab
with the bitrates expanded and the 2.1 mbps bitrate selected.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

953

Figure 11-3. Video bitrate selection for smooth streaming

If you navigate over to the Output tab, you can specify the folder where you want to put the output
files. Once you do that, you can start encoding by clicking the Encode button or Ctrl+E. Figure 11-4
shows the output files for an encoding session done for four bitrates—2.1 mbps, 1.4 mbps, 991 kbps, and
688 kbps respectively.

Figure 11-4. Output files in four bitrates

Each of the files with an .ismv extension contains the video encoded at a specific bit rate. For
example, the AdrenalineRush_688.ismv contains the video encoded at a bit rate of 688 kbps, while
AdrenalineRush_2056.ismv contains the video encoded at 2.1 mbps.

For each bit rate, the video content is broken into fragments of 2 seconds each, and the .ismv files
store these fragments in a file format called Protected Interoperable File Format (PIFF). Note that you
can have additional audio tracks (or just audio, if the presentation is audio only) encoded in similar
files that have an .isma extension.

The AdrenalineRush.ism file is a server manifest, which is structured in the Synchronized
Multimedia Integration Language (SMIL) format and contains a mapping of quality levels and bit rates

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

954

to the .ismv and .isma files. This mapping in the server manifest is used by the server to access the
right disk files to create the next fragment of content encoded at the right bit rate, before responding to
a client side request.

The server manifest also contains a mapping to a client manifest file (identified by the extension
.ismc). In this case, it is AdrenalineRush.ismc. The client manifest contains all the information that a
Silverlight client will need to access the various media and data streams, as well as metadata about
those streams, such as quality levels, available bit rates, timing information, codec initialization data,
and so on. The client-side logic will use this metadata to sample and decode the fragments and request
bit rate switches based on prevailing local conditions.

Setting Up IIS7
To serve smooth streaming content through IIS7, all you need to do is create a virtual directory
pointing to the folder that contains your .ism, .ismc and .ismv files. Once you have a virtual directory
created, navigate to the Features View of the virtual directory in the IIS Management Console and you
will see a Media Services section with a Smooth Streaming Presentations option (see Figure 11-5).

Figure 11-5. IIS Management Console showing Smooth Streaming Presentation Management

Selecting this view shows you a list of all the smooth streaming presentations (all the .ism unique
files in the folder), and further specific presentation allows you to manage certain aspects, such as

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

955

removing bitrates that you do not need, adding titles to streams, etc. Figure 11-6 shows a screenshot of
a specific smooth streaming presentation being managed.

Figure 11-6. Managing a smooth streaming presentation

The Silverlight Client/Smooth Streaming Server Data Exchange
At runtime, the presentation begins with the client requesting the client manifest from the server.
Once the client receives the manifest, it checks to see what bit rates are available and requests
fragments of content starting at the lowest available bit rate. The server responds by preparing and
sending the fragments by reading the data from the disk file encoded at that bit rate (utilizing the
mapping in the server manifest). The content then gets displayed on the client.

The client gradually requests higher bit rates as allowed by the resource-monitoring logic and
eventually reaches the highest allowable bit rate as determined by the prevailing resource conditions.
This interchange continues until the client’s monitoring logic senses a change in resource conditions
resulting in a different lower desired bit rate. Subsequent client requests are for media encoded at the
new bit rate and the server again responds accordingly. This goes on until the presentation completes
or is stopped. Figure 11-7 shows a sequence diagram outlining the exchange.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

956

Figure 11-7. Interchange sequence between Smooth Streaming Client and Server

Testing the Smooth Streaming Presentation
We will discuss building players using the IIS Smooth Streaming PDK in later recipes in this chapter,
but an easy way to quickly get a player to test your smooth stream is to utilize the player generation
feature in Expression Encoder.

Before you start encoding your media, navigate to the Template tab in Expression Encoder v4. On
the template dropdown, you will see a list of Silverlight player templates that are supplied with
Expression Encoder. Select the one you want, and start your encode. If you do not see the Template tab,
you can use the Window menu option (ALT+W) to add the Template tab to your view. Figure 11-8 shows
the Template tab.

Figure 11-8. Silverlight player template selection in Expression Encoder 4

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

957

Once the encode is completed, you will find a Default.html file in the same virtual directory as
your smooth streaming content along with a few Silverlight XAP files containing the player binaries.
Navigating to the Default.html page will start the player with your smooth streaming content being
played. The sample smooth streaming player also allows you to monitor the bitrate adaptive behavior
by clicking on the Show Graphs button on the player. Figure 11-9 shows the sample player with the
bitrate monitor turned on.

Figure 11-9. Sample Smooth Streaming Player generated using Expression Encoder with the Show
Graphs option turned on

The Code
There are no code samples for this recipe.

11-2. Using the SmoothStreamingMediaElement

Problem
You want to play a Smooth Streaming presentation in Silverlight.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

958

Solution
Use the SmoothStreamingMediaElement in the IIS Smooth Streaming Player Development Kit.

How It Works
You can download the IIS Smooth Streaming Player Development Kit from

www.microsoft.com/downloads/details.aspx?FamilyID=2b1ce605-3b99-49ad-8a26
-1250f2acbbf6&displaylang=en

The IIS Smooth Streaming Player Development Kit
The Smooth Streaming PDK consists of a single assembly named
Microsoft.Web.Media.SmoothStreaming.dll. At the heart of the PDK is a type named
SmoothStreamingMediaElement in the Microsoft.Web.Media.SmoothStreaming namespace. (For brevity,
we will refer to this type as the SSME in the rest of this chapter.) Note that this assembly needs to be
manually referenced in your projects from within Visual Studio by browsing to physical location of the
assembly.

The SSME, for the most part, exposes an API that is a superset of the Silverlight MediaElement API.
Using the SSME in your code is similar to the way you would use a regular MediaElement. Listing 11-1
shows some XAML that uses the SSME.

Listing 11-1. SmoothStreamingMediaElement XAML usage

<smooth:SmoothStreamingMediaElement x:Name="ssme"
 Height="450"
 Width="800"
 SmoothStreamingSource=
 "http://localhost/media/smooth/fighterpilot/fighterpilot.ism/manifest"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" AutoPlay="False">

The SmoothStreamingSource property points the SSME to a valid Smooth Streaming presentation. In

general, the SSME API is a superset of the MediaElement API, with this property being one of the few
differences. SSME exposes the Source property just like MediaElement does, but SSME also exposes the
SmoothStreamingSource property to attach to smooth streams. If you are authoring players that need the
ability to consume both smooth streams as well as the other formats traditionally supported by
MediaElement, you can safely use SSME, but you will most likely need to author some code to
appropriately set the right property to attach to the media source.

Also note the URL to the smooth streaming presentation. Smooth Streaming URLs are of the
format http://<virtual-directory-address>/<server -manifest-file-name>/manifest.

The Code
The code sample in this recipe forms the beginning of a player that will gradually evolve over the next
set of recipes to include other features of smooth streaming. Figure 11-10 shows the player as
developed in this recipe.

http://www.microsoft.com/downloads/details.aspx?FamilyID=2b1ce605-3b99-49ad-8a26%ED%AF%80%ED%B0%81
http://localhost/media/smooth/fighterpilot/fighterpilot.ism/manifest

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

959

Figure 11-10. Smooth Streaming Player using the SSME

The sample is divided into two assemblies (SSPlayer and SSPlayerControls). SSPlayerControls
includes three controls (PlayerUI, Scrubber, and ButtonsPanel). PlayerUI encapsulates all the smooth
streaming functionality and contains the SSME instance in its XAML. Scrubber defines the scrubber
bar, and ButtonsPanel contains the various buttons used in the player.

The MainPage in SSPlayer includes an instance of the PlayerUI control, as shown in Listing 11-2.

Listing 11-2. MainPage XAML

<UserControl x:Class="Recipe11_2.MainPage"
 xmlns:SSPlayerControls=
 "clr-namespace:Recipe11_2;assembly=Recipe11_2.SSPlayerControls"
 ...
 >

 <Grid x:Name="LayoutRoot" ”>
 ...
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <TextBox x:Name="tbxUrl" Margin="3"
 HorizontalContentAlignment="Stretch" Width="300"/>
 <Button Content="Load" x:Name="btnLoad" Click="btnLoad_Click"
 Margin="5,0,0,0" />
 </StackPanel>
 <SSPlayerControls:PlayerUI Grid.Row="1" x:Name="playerUI"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

960

 </Grid>
</UserControl>

The MainPage also contains a TextBox named tbxUrl where the user types in the URL of a valid

smooth streaming presentation and a Button named btnLoad which loads the presentation when
clicked. Listing 11-3 shows the Click event handler for btnLoad.

Listing 11-3. Click handler for btnLoad

private void btnLoad_Click(object sender, RoutedEventArgs e)
{
 playerUI.SmoothSource = tbxUrl.Text;
}

Note that you set the SmoothSource property of the PlayerUI control to the URL types in tbxUrl

when btnLoad is clicked.
As mentioned, the PlayerUI control contains the SSME. Listing 11-4 shows the relevant parts of the

XAML in bold for the PlayerUI control template.

Listing 11-4. PlayerUI Control Template

<Style TargetType="local:PlayerUI">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="local:PlayerUI">
 <Grid x:Name="LayoutRoot" ...>
 ...
 <Border...>
 <Grid x:Name="MediaElementContainer" ...>
 <smooth:SmoothStreamingMediaElement x:Name="ssme"
 Height="450"

 Width="800"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" AutoPlay="False" >
 </smooth:SmoothStreamingMediaElement>
 </Grid>
 </Border>
 <Border ...>
 <Grid>
 ...

 <local:ButtonsPanel x:Name="buttonsPanel"
 DataContext="{Binding
 RelativeSource={RelativeSource TemplatedParent},
 Mode=OneWay, Path=DataContext}" />
 </Grid>
 </Border>

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

961

 <local:Scrubber VerticalAlignment="Center"
 Grid.Row="2" Width="600"
 HorizontalAlignment="Center"

 SmallChange="1000"
 LargeChange="10000"
 Margin="0,5,0,5"
 x:Name="scrubber"
 DataContext="{Binding

 RelativeSource={RelativeSource TemplatedParent},
 Mode=OneWay, Path=DataContext}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

As you can see, the PlayerUI control contains an instance of the SSME named ssme, an instance of

the Scrubber control, and an instance of the ButtonsPanel named buttonsPanel. Listing 11-5 shows the
PlayerUI control code with relevant parts in bold.

Listing 11-5. PlayerUI control code

namespace Recipe11_2
{

 public class PlayerUI : Control, INotifyPropertyChanged
 {
 Scrubber scrubber = null;
 ButtonsPanel buttonsPanel = null;
 Grid MediaElementContainer = null;
 internal SmoothStreamingMediaElement ssme = null;

 public string SmoothSource
 {

 get { return (string)GetValue(SmoothSourceProperty); }
 set { SetValue(SmoothSourceProperty, value); }
 }
 public static readonly DependencyProperty SmoothSourceProperty =
 DependencyProperty.Register("SmoothSource", typeof(string),

 typeof(PlayerUI), new PropertyMetadata(null,
 new PropertyChangedCallback(OnSmoothSourceChanged)));

 //Change handler for dependency property SmoothSourceProperty

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

962

 private static void OnSmoothSourceChanged(DependencyObject Src,
 DependencyPropertyChangedEventArgs Args)
 {

 PlayerUI thisObj = Src as PlayerUI;
 //act on the change...
 if (thisObj.ssme != null &&
 Uri.IsWellFormedUriString(Args.NewValue as string, UriKind.Absolute))
 {

 thisObj.SetMediaSource(Args.NewValue as string, thisObj.ssme);
 }
 }

 private void SetMediaSource(string MediaSourceUri,

 SmoothStreamingMediaElement ssme)
 {

 if (MediaSourceUri.Contains(".ism") || MediaSourceUri.Contains(".csm"))
 ssme.SmoothStreamingSource = new Uri(MediaSourceUri);

 else
 ssme.Source = new Uri(MediaSourceUri);
 }

 public PlayerUI()
 {
 base.DefaultStyleKey = typeof(PlayerUI);
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();
 ssme = GetTemplateChild("ssme") as SmoothStreamingMediaElement;
 scrubber = GetTemplateChild("scrubber") as Scrubber;
 buttonsPanel = GetTemplateChild("buttonsPanel") as ButtonsPanel;
 MediaElementContainer = GetTemplateChild("MediaElementContainer") as Grid;
 if (scrubber != null && ssme != null)
 scrubber.Viewer = ssme;
 if (buttonsPanel != null && ssme != null)
 buttonsPanel.Viewer = ssme;

 if (ssme != null)
 ssme.ConfigPath = "config.xml";
 }

 #region INotifyPropertyChanged Members

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

963

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
 }
}

In the PropertyChangedCallback handler named OnSmoothSourceChanged(), of the dependency

property SmoothSourceProperty, you check to make sure that an SSME instance has been defined and
that the URL is indeed a well formed URI. You then call the SetMediaSource() method where you check
to see if the Uri contains the strings “.ism” or “.csm” to indicate that it is a URL to a smooth streaming
presentation. If so, you set the SmoothStreamingSource property on the SSME instance to the URI.
Alternatively, you set the Source property to the URI. We will discuss the .csm extension in later
recipes.

Also note the setting of the ConfigPath property on the SSME to a config.xml file in the
OnApplyTemplate() method. The SSME allows you to configure a variety of settings related to its
behavior and the various settings that it applies when monitoring the local resource metrics, network
behavior etc. The SSME applies a default configuration, but you can override it by supplying a config
file of your own in the above way. You can supply the config file by including it simply as content in
your project.

We do not list a full config file here; you are encouraged to look at the config file supplied with the
sample code, as well as IIS Smooth Streaming documentation at

 msdn.microsoft.com/en-us/library/ee230811.aspx

for more details. The primary reason to supply a custom config file is to change the seek behavior
of the SSME. Since smooth streams are delivered in 2 second chunks of video and audio, the default
seek behavior of the SSME is to jump 2 seconds at a time. To get a more granular seek behavior, add an
attribute named ForceAccurateSeeks set to true to the BufferingEngineSettings element in the SSME
config file. To note the difference in seek behavior, you can try the scrubber in the player with and
without that attribute added.

11-3. Adding Metadata Streams
Problem
You want to add additional metadata like captions and animations to your smooth streaming
presentation.

Solution
Add the additional data as additional streams to the smooth streaming client manifest and use the
SSME API to extract and display them in the player.

How It Works
There are two approaches to adding metadata to a smooth streaming presentation—you can mix the
metadata stream as an additional data stream alongside the actual media while encoding, or you can
add the metadata streams to the client manifest. The former approach either relies on encoder-specific

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

964

utilities or the use of something like the Smooth Streaming Format SDK—both of which are outside the
scope of this chapter. You will take the later approach, but to understand how it works, you need to
better understand the streams and tracks related to the API exposed by the SSME.

Streams and Tracks
The Smooth Streaming client manifest contains rich metadata about the presentation and it can be
useful to have programmatic access to that metadata inside your player application. SSME exposes
parts of this metadata through a well-defined API in an arrangement of streams and tracks within each
stream. Listing 11-6 shows an excerpt from a client manifest file named FighterPilot.ismc.

Listing 11-6. Client Manifest excerpt

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0" Duration="1456860000">
 <StreamIndex Type="video" Chunks="73" QualityLevels="4" MaxWidth="992"
 MaxHeight="560" DisplayWidth="992" DisplayHeight="560"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel Index="0" Bitrate="2056000" FourCC="WVC1" MaxWidth="992"
 MaxHeight="560"
 CodecPrivateData=
 "250000010FD37E1EF1178A1EF845E8049081BEBE7D7CC00000010E5A67F840" />

 <!-- ADDITIONAL QUALITY LEVELS REMOVED FOR BREVITY -->

 <QualityLevel Index="3" Bitrate="688000" FourCC="WVC1" MaxWidth="448"
 MaxHeight="252"
 CodecPrivateData=
 "250000010FCB540DF07D8A0DF81F6804908114FED3FBC00000010E5A67F840" />
 <c n="0" d="20020000" />
 <c n="1" d="20020000" />
 <c n="2" d="20020000" />

 <!--ADDITIONAL VIDEO CHUNK METADATA REMOVED FOR BREVITY-->

 <c n="71" d="20020000" />
 <c n="72" d="15010001" />
 </StreamIndex>
 <StreamIndex Type="audio" Index="0" FourCC="WMAP" Chunks="73"
 QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel Bitrate="64000" SamplingRate="44100" Channels="2"
 BitsPerSample="16" PacketSize="2973" AudioTag="354"
 CodecPrivateData="1000030000000000000000000000E00042C0" />
 <c n="0" d="21246187" />
 <c n="1" d="19620819" />
 <c n="2" d="22755556" />

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

965

 <!--ADDITIONAL AUDIO CHUNK METADATA REMOVED FOR BREVITY-->

 <c n="71" d="19504762" />
 <c n="72" d="14900906" />
 </StreamIndex>
</SmoothStreamingMedia>

A stream represents the overall metadata for tracks of a specific type—video, audio, text,

advertisements, and so on. The stream also acts as a container for multiple tracks of the same
underlying type. In Listing 11-6, each StreamIndex entry represents a stream. There can be multiple
streams in the presentation, as depicted by the multiple StreamIndex entries. There can also be
multiple streams of the same type. In such cases, the stream name can be used to disambiguate
between multiple occurrences of the same type.

The StreamInfo type represents the stream in your Silverlight code. Once SSME downloads the
client manifest, it raises the SmoothStreamingMediaElement.ManifestReady event. At this point, the
SmoothStreamingMediaElement.AvailableStreams collection property contains a StreamInfo instance for
each StreamIndex entry in the client manifest.

For a given video stream in the client manifest, the video track is broken into many fragments of
2-second durations. Each c element in the manifest represents metadata for the fragment; the n
attribute signifies an ordinal for the chunk (i.e. the order in which chunks are played); and the d
attribute specifies the length of the chunk in ticks. In this case, the fragments in the track are
contiguous and define the entire duration of the video track without any breaks in between. In other
words, the stream is not sparse.

A track is a timed sequence of fragments of content of a specific type—video, audio, or text. Each
track is represented using an instance of a TrackInfo type, and all the tracks in a stream are made
available through the StreamInfo.AvailableTracks collection property.

Each track in a client manifest is uniquely identified via a QualityLevel. A QualityLevel is identified
by the associated bit rate and is exposed through the TrackInfo.Bitrate property. For example, a video
stream in a client manifest may have several QualityLevels, each with a unique bit rate. Each represents
a unique track of the same video content, encoded at the bit rate specified by the QualityLevel.

Note that for the audio and video streams depicted in Listing 11-6, the actual data (i.e. the encoded
video and audio bitstreams) are not contained in the manifest itself but in the .ismv (or .isma) files.
The client manifest, however, does allow you to add streams where the data representing each
fragment for the tracks in the stream are contained in the manifest itself. To do this, you need to set
the ManifestOutput attribute to TRUE in the StreamIndex entry, as shown in Listing 11-7.

Listing 11-7. Track fragment data contained in the manifest itself

<StreamIndex Type="text" Name="ClosedCaptions" Subtype="CAPT"
 TimeScale="10000000" ParentStreamIndex="video"
 ManifestOutput="TRUE" QualityLevels="1" Chunks="6"
 Url=
"QualityLevels({bitrate},{CustomAttributes})/
Fragments(ClosedCaptions={start time})">
 <QualityLevel Index="0" Bitrate="1000" CodecPrivateData="" FourCC=""/>
 <c n="0" t="100000000">
 <f>PENhcHRpb24gSWQ9IntERTkwRkFDRC1CQzAxLTQzZjItQTRFQy02QTAxQTQ5QkFGQk
 J9IiAKICAgICAgICBBY3Rp</f>

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

966

 </c>
 <c n="1" t="150000000">
 <f>PENhcHRpb24gSWQ9IntERTkwRkFDRC1CQzAxLTQzZjItQTRFQy02QTAxQTQ5QkFGQk
 J9IiAKICAgI</f>
 </c>
</StreamIndex>

For the text stream shown in Listing 11-7, the track includes only two fragments, each with

individual timing information (the t attribute on the c element). Further, the ParentStreamIndex
attribute is set to “video”, parenting the closed caption stream with the video stream. This causes the
closed caption stream to align with the timing information from the video stream. The closed caption
stream starts and ends exactly with its parent video stream; the first caption is displayed 10 seconds
into the video stream, while the second is displayed 15 seconds into the video. A stream in which the
timeline is based on a parent stream and the fragments are non-contiguous is called a sparse stream.

Note the nested content within the f elements—each represents caption item data to be displayed
at the time specified by the containing chunk. The client manifest specification requires that the data
be represented as a base64 encoded string version of the original data item.

When the above manifest entry is parsed by the SSME, the TrackInfo.TrackData collection property
contains a list of TimelineEvent instances, one for each f element corresponding to the track. For each
TimelineEvent entry, TimelineEvent.EventTime represents the time point in the sequence and the
TimelineEvent.EventData provides the base64 encoded text string. TrackInfo also exposes Bitrate,
CustomAttributes, Index, Name, and ParentStream properties. In the code sample, you will see how to
combine the above concepts to add textual metadata to your smooth streaming presentation.

The Code
The code sample for this recipe has two parts. The first part shows you an example of injecting textual
metadata and content into the client manifest, and the second part shows you how to use that data
during playback.

Injecting the Metadata and Content
In a production media workflow, there can be many different ways to inject such content into the
manifest during or after encoding, and the data could be coming from several different sources like
ad-serving platforms and caption generators. But for this example, you are going to use a simple XML
data file as the data source, use some LINQ over XML queries to manufacture the text streams, and
insert them into an existing client manifest. The sample code can be found in the 11.3 Manifest
Injector project, with the LINQ To XML query in the InsertContent() method in the Programs.cs file. To
use the injector, run 11.3 ManifestInjector.exe from the command line, and supply the path of the
client manifest file as the first command line parameter and the path for the included Content.xml file
as the second parameter.

The structure of the data source does not need to be complex. We do not list the full data source file
here, but you are encouraged to look at the Content.xml file in the 11.3 ManifestInjector project for the
full data file. The data file begins with a Tracks element, which contains two ContentTrack elements.
Each ContentTrack entry will ultimately result in one distinct text stream in the client manifest. The
first ContentTrack element is for the captions:

<ContentTrack Name="ClosedCaptions" Subtype="CAPT">

The second is for animations:

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

967

<ContentTrack Name="Animations" Subtype="DATA">

Each ContentTrack contains multiple Event elements, with the time attributes specifying the time

points on the video’s timeline when these text events need to occur. The Event elements, in turn,
contain the actual caption events defined in XML or the XAML for the animation as CDATA sections. The
code in Listing 11-8 shows an example.

Listing 11-8. Defined events in the XML data source

<Event time="00:00:10">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="ADD">
 Test Caption 1
 </Caption>]]>
</Event>
<Event time="00:00:15">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="REMOVE"/>]]>
</Event>

Note that for each added closed caption event, there is a corresponding event that indicates the

time point when the previously added caption needs to be removed. The Caption element contained
within the CDATA section for a closed caption event defines an Action attribute with a value of ADD or
REMOVE to indicate appropriate action.

At this point, you use a simple LINQ over XML query that transforms the XML data into appropriate
entries for a client manifest and inserts them into an existing client manifest file. You can find an
example in the code download for this recipe, in a method named InsertContent() in the Programs.cs
file. Since the LINQ code is not very pertinent to the Smooth Streaming topic, we skip it.

■ NNote This mechanism or the data source format described above is not prescriptive and nor is it a part of the
Smooth Streaming platform or SDKs by any means. You are encouraged to investigate the best way to do this kind

of injection in your environment. You can define whatever structure suits the needs of your application, as long as
you transform it to the format required by the client manifest specification, which includes encoding the text

content to a base64 format.

Once the transformation is executed, the resulting client manifest file will contain the text
streams as shown in Listing 11-9.

Listing 11-9. Client manifest excerpt with text content streams

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0" Duration="1456860000">
 <StreamIndex Type="video" Chunks="73" QualityLevels="8"
 MaxWidth="1280" MaxHeight="720" DisplayWidth="1280" DisplayHeight="720"

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

968

 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 ...
 </StreamIndex>
 <StreamIndex Type="audio" Index="0" FourCC="WMAP" Chunks="73"
 QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 ...
 </StreamIndex>
 <StreamIndex Type="text" Name="ClosedCaptions" Subtype="CAPT"
 TimeScale="10000000" ParentStreamIndex="video"
 ManifestOutput="TRUE" QualityLevels="1" Chunks="6"
 Url="QualityLevels({bitrate},{CustomAttributes})
 /Fragments(ClosedCaptions={start time})">
 <QualityLevel Index="0" Bitrate="1000" CodecPrivateData="" FourCC="" />
 <c n="0" t="100000000">
 <f>
 PENhcHRpb24gSWQ9IntERTkwRkFDRC1CQzAxLTQzZjItQTRFQy02QTAxQTQ5QkFGQkJ9
 IiAKICAgICAgICBBY3Rpb249IkFERCI+CiAgICAgICAgVGVzdCBDYXB0aW9uIDEKICAg
 ICAgPC9DYXB0aW9uPg==
 </f>
 </c>
 <c n="1" t="150000000">
 <f>
 PENhcHRpb24gSWQ9IntERTkwRkFDRC1CQzAxLTQzZjItQTRFQy02QTAxQTQ5QkFGQkJ9I
 iAKICAgICAgICBBY3Rpb249IlJFTU9WRSIvPg==
 </f>
 </c>
 ...
 </StreamIndex>
 <StreamIndex Type="text" Name="Animations" Subtype="DATA"
 TimeScale="10000000" ParentStreamIndex="video"
 ManifestOutput="TRUE" Chunks="2" QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(Animations={start time})">
 <QualityLevel Index="0" Bitrate="1000" CodecPrivateData="" FourCC="" />
 <c t="120000000">
 <f>
 +CgkJCQkJPEdyYWRpZW50U3RvcCBDb2xvcj0iUmVkIiBPZmZzZXQ9IjEiLz4KCQkJCQ
 k8R3JhZGllbnRTdG9wIENvbG9yPSIjRkY4Nzg2ODYiIE9mZnNldD0iMC40OTIiLz4KC
 QkJCTwvTGluZWFyR3JhZGllbnRCcnVzaD4KCQkJPC9FbGxpcHNlLkZpbGw+CgkJPC9Fb
 GxpcHNlPgoJPC9HcmlkPgogICAgICA8L1NjZW5lQW5pbWF0aW9uPg==
 </f>
 </c>
 ...
 </StreamIndex>
</SmoothStreamingMedia>

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

969

The video and audio streams already existed in the client manifest shown above, and you added

the two text streams following that, named ClosedCaptions and Animations, respectively. Note that each
stream uses the video stream as its parent and sets ManifestOutput to TRUE as outlined in the previous
section. The former is because the text streams are sparse in nature, and parenting them to the video
stream ensures correct timing of each text content entry (the c elements) along the video stream’s
timeline. The latter is to ensure that the SSME reads the actual data (the base64 encoded strings within
the f elements) from the manifest itself.

Using Metadata at Playback
The SSME exposes the additional text streams as StreamInfo instances in the AvailableStreams
property, with each StreamInfo containing the track data as a TrackInfo instance. The
TrackInfo.TrackData collection property will contain as many instances of the TimelineEvent type as
there are text events in each text track. The TimelineEvent.EventData property exposes a byte array
representing the string content (decoded from its base64 encoded format), and the
TimelineEvent.EventTime property exposes the time point where this event needs to occur.

When you start playing the presentation, as these events are reached, the SSME raises the
TimelineEventReached event. Listing 11-10 shows a sample of handling the closed caption and
animation tracks that were added to the client manifest, as discussed in the previous section.

Listing 11-10. Using the TimelineEventReached event to handle text streams

//handle TimelineEventReached
ssme.TimelineEventReached += new EventHandler<TimelineEventArgs>((s, e) =>
{
 //if closed caption event
 if (e.Track.ParentStream.Name.ToLower() == "closedcaptions" &&
 e.Track.ParentStream.Subtype.ToLower() == "capt")
 {
 //base64 decode the content and load the XML fragment
 XElement xElem = XElement.Parse(Encoding.UTF8.GetString(e.Event.EventData,
 0, e.Event.EventData.Length));

 //if we are adding a caption
 if (xElem.Attribute("Action") != null &&
 xElem.Attribute("Action").Value == "ADD")
 {
 //remove the text block if it exists
 UIElement captionTextBlock = MediaElementContainer.Children.
 Where((uie) => uie is FrameworkElement &&
 (uie as FrameworkElement).Name == (xElem.Attribute("Id").Value)).
 FirstOrDefault() as UIElement;
 if (captionTextBlock != null)
 MediaElementContainer.Children.Remove(captionTextBlock);

 //add a TextBlock

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

970

 MediaElementContainer.Children.Add(new TextBlock()
 {
 Name = xElem.Attribute("Id").Value,
 Text = xElem.Value,
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Bottom,
 Margin = new Thickness(0, 0, 0, 20),
 Foreground = new SolidColorBrush(Colors.White),
 FontSize = 22
 });
 }
 //if we are removing a caption
 else if (xElem.Attribute("Action") != null &&
 xElem.Attribute("Action").Value == "REMOVE")
 {
 //remove the TextBlock
 MediaElementContainer.Children.Remove(MediaElementContainer.Children.
 Where((uie) => uie is FrameworkElement &&
 (uie as FrameworkElement).Name == (xElem.Attribute("Id").Value)).
 FirstOrDefault() as UIElement);
 }
 }
 //if animation event
 else if (e.Track.ParentStream.Name.ToLower() == "animations" &&
 e.Track.ParentStream.Subtype.ToLower() == "data")
 {
 //base64 decode the content and load the XML fragment
 XElement xElem = XElement.Parse(Encoding.UTF8.GetString(e.Event.EventData,
 0, e.Event.EventData.Length));

 //if we are adding the animation
 if (xElem.Attribute("Action") != null &&
 xElem.Attribute("Action").Value == "ADD")
 {
 //remove the Grid if it exists
 Grid AnimationContainer = MediaElementContainer.Children.
 Where((uie) => uie is FrameworkElement && (uie as FrameworkElement).
 Name == (xElem.Attribute("Id").Value)).
 FirstOrDefault() as Grid;
 if (AnimationContainer != null)
 MediaElementContainer.Children.Remove(AnimationContainer);

 //add the animation to a grid overlay
 AnimationContainer = XamlReader.Load(xElem.Element(
 XName.Get("Grid",

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

971

 "http://schemas.microsoft.com/winfx/2006/xaml/presentation")).
 ToString(SaveOptions.DisableFormatting)) as Grid;
 AnimationContainer.Name = xElem.Attribute("Id").Value;
 MediaElementContainer.Children.Add(AnimationContainer);

 //load the animation
 Storyboard anim = AnimationContainer.Resources["SceneAnimation"] as
 Storyboard;

 //handle animation completion
 anim.Completed += new EventHandler((animSender, animargs) =>
 {
 //if animation is completed, remove it
 MediaElementContainer.Children.Remove(MediaElementContainer.Children.
 Where((uie) => uie is FrameworkElement && (uie as FrameworkElement).
 Name == (xElem.Attribute("Id").Value)).
 FirstOrDefault() as UIElement);
 });

 //start the animation
 anim.Begin();
 }

 }
}
);

As each TimelineEvent is handled, you either insert a TextBlock into the UI to display a caption or

load the animation XAML string to start the animation. Note that since the text content is base64
encoded, it is decoded to its original state. Also note that the code checks the Action attribute on the
Caption element to decide whether it is adding a caption to the UI or removing an existing caption. For
animation events, you can rely on an animation’s own completion handler to remove it from the UI.

Figure 11-11 shows a screen shot of a caption being displayed and an ellipse being animated
overlaid on a playing video.

http://schemas.microsoft.com/winfx/2006/xaml/presentation

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

972

Figure 11-11. Caption and animation overlay using text content streams

While this approach works well, there is one consideration you should make before utilizing this
technique. The current release of SSME handles TimlineEvents at 2-second boundaries. To understand
this better, let’s say you had a closed caption timed at the 15.5 second time point along the video
timeline. SSME would raise the TimelineEventReached event for this closed caption at the closest
previous time point that is a multiple of 2—in other words, at approximately 14 seconds.

If your scenario demands greater accuracy and you cannot position your content chunks close to
2-second boundaries, then using the TimelineEventReached to handle the content tracks may not be the
right way. You can, however, use the TimelineMarker class (as used in the standard MediaElement type) to
add markers to your timeline that can raise the MarkerReached event at any granularity you need. For
more on the TimelineMarker type, please refer to Recipe 10-5. Listing 11-11 shows the outline of a
method called AddAndHandleMarkers() that adds TimelineMarkers for each content event and responds
to them in the MarkerReached event handler.

Listing 11-11. Handling TimelineEvent using TimelineMarker

private void AddAndHandleMarkers()
{
 //get the Caption stream
 StreamInfo CCStream = ssme.AvailableStreams.Where((si) =>
 si.Name.ToLower() == "closedcaptions" &&
 si.Subtype.ToLower() == "capt").FirstOrDefault();

 //get the animation stream

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

973

 StreamInfo AnimStream = ssme.AvailableStreams.Where((si) =>
 si.Name.ToLower() == "animations" &&
 si.Subtype == "data").FirstOrDefault();

 //enumerate each TimelineEvent and add corresponding markers
 foreach (TimelineEvent te in CCStream.AvailableTracks[0].TrackData)
 {
 TimelineMarker tm = new TimelineMarker()
 { Text = Encoding.UTF8.GetString(te.EventData, 0, te.EventData.Length),
 Time = te.EventTime, Type = "CC" };
 ssme.Markers.Add(tm);
 }
 foreach (TimelineEvent te in AnimStream.AvailableTracks[0].TrackData)
 {
 TimelineMarker tm = new TimelineMarker() {
 Text = Encoding.UTF8.GetString(te.EventData, 0, te.EventData.Length),
 Time = te.EventTime, Type = "ANIM" };
 ssme.Markers.Add(tm);
 }

 //handle the markers when reached
 ssme.MarkerReached += new TimelineMarkerRoutedEventHandler((s, e) =>
 {
 XElement xElem = XElement.Parse(e.Marker.Text);

 //if closed caption event
 if (e.Marker.Type == "CC")
 {
 //REST OF THE CODE SIMILAR TO LISTING 11-10
 }
 //if animation event
 else if (e.Marker.Type == "ANIM")
 {
 //REST OF THE CODE SIMILAR TO LISTING 11-10
 }
 }
 });
}

To gain access to the animation and caption streams, query the AvailableStreams property on the

SSME with the appropriate filter. Then, enumerate through the TimelineEvent instances for each
stream and add a TimelineMarker instance with the actual event text stored in the TimelineMarker.Text
property for each TimelineEvent instance to the SSME. Lastly, attach a handler to the MarkerReached
event and extract the Text property from the TimelineMarker. The rest of the processing is identical to
the one shown in Listing 11-10.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

974

11-4. Merging Data from External Manifests

Problem
You want to merge metadata defined in external manifests into one single presentation.

Solution
You can use the manifest merging capabilities of the SSME to achieve this.

How It Works
In the previous recipe, you saw an example of injecting additional metadata (in that case, one of
captions and animation overlays) into the client manifest for a smooth streaming presentation. That
approach works well when you have access to the client manifest file. In cases when you do not have
the necessary permissions to make modifications to the client manifest, you will need an alternative
mechanism to achieve the same result. Additionally, there may be scenarios where the additional
content or metadata that you want to add to the client manifest are conditionally dependent on other
factors such as the user’s locale, thus requiring closed captions in different languages. Adding the data
for all the possible conditions, especially the temporal ones, would make the client manifest more
time-consuming to transfer, load, and parse.

The SSME solves this problem by allowing you to merge additional manifest files at runtime on
the client to the original client manifest, thus giving you the ability to bring in additional data streams
and act upon them without having to modify the original client manifest on the server.

The SSME API raises an event named ManifestMerge during its initialization cycle, which you will
use to perform any merging of external manifests into the primary client manifest.

The first step to merging a external manifest is to parse it to ensure validity of format and data,
and the ParseExternalManifest() method on the SSME does exactly that. It accepts a URI to the external
manifest as its first parameter and attempts to download and parse the manifest from the stated URI. It
then returns the parsed manifest as an object through the third parameter to the function. The second
parameter accepts a timeout value in milliseconds, which can be used to unblock the
ParseExternalManifest() call in case the manifest download or parsing takes too long.

The SSME also exposes a MergeExternalManifest() method, the only parameter which can accept a
parsed external manifest returned from the ParseExternalManifest() call and merge it with the
original client manifest data.

Note that calls to ParseExternalManifest() and MergeExternalManifest() are only valid when
called in the handler for the ManifestMerge event. Calls to these methods elsewhere will raise an
InvalidOperationException. Also note that you can call these methods multiple times to merge multiple
external manifests, if you so need.

As far as the structure of an external manifest goes, it needs to be identical to a regular client
manifest: a top-level SmoothStreamingMedia element with appropriate StreamIndex child elements to
represent your data.

Keep in mind that external manifests need to have an extension that has an associated MIME type
registered with the Web server from which they are available. Using a common extension such as .XML
is a good idea, since the content is XML is anyway. If the external manifest files are served from the
same Web server that is acting as your Smooth Streaming server, then you should refrain from using
the .ismc extension as the IIS Media Services handler prevents .ismc files from being accessed directly
and ParseExternalManifest will fail to download the external manifest.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

975

The Code
The code sample for this solution extends the sample from Recipe 11-3. In this sample, you have
decided to keep your caption content and related metadata in separate external manifests.
Additionally, you have decided to create multiple such external manifests, one for each locale you want
to support, and merge the appropriate external manifest at runtime depending on the locale that the
player is running in.

Creating the External Manifests
You once again use a similar approach as shown in Recipe 11-3, but instead of injecting additional
StreamIndex entries into the client manifest, your LINQ to XML query actually creates separate
external manifest files. The 11.4 ManifestInjector project contains the LINQ query in the
CreateExternalManifests() method in Programs.cs file. To create the external manifests, you can run
11.4 ManifestInjector.exe, passing in the path to the client manifest as the first parameter and the path
to the included data file named MultiManifestContent.xml as the second parameter.

11-12 shows portions from the data source file.

Listing 11-12. Portion from the data source file MultiManifestContent.xml

<Manifests>
 <Manifest RelativePath="en-US\CC.xml">
 <ContentTrack Name="ClosedCaptions" Subtype="CAPT" >
 <Event time="00:00:10">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="ADD">
 Test Caption 1
 </Caption>]]>
 </Event>
 <Event time="00:00:15">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="REMOVE"/>]]>
 </Event>
 ...
 </ContentTrack>
 </Manifest>
 <Manifest RelativePath="fr-FR\CC.xml">
 <ContentTrack Name="ClosedCaptions" Subtype="CAPT">
 <Event time="00:00:10">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="ADD">
 Test de légende 1
 </Caption>]]>
 </Event>
 <Event time="00:00:15">
 <![CDATA[<Caption Id="{DE90FACD-BC01-43f2-A4EC-6A01A49BAFBB}"
 Action="REMOVE"/>]]>

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

976

 </Event>
 ...
 </ContentTrack>
 </Manifest>
</Manifests>

Each Manifest entry defines a single external manifest with the RelativePath attribute specifying

the path to the external manifest file relative to the folder where the client manifest resides. As you
can see, there are multiple Manifest entries, one for each locale you intend to support through your
external manifests, with each of them containing the caption data in the appropriate language.

Once it is processed, two external manifests are created in two separate subfolders, under the
folder containing the client manifest, named “en-US” and “fr-FR” corresponding to the English-
United States and French-France locales. Each external manifest file is named CC.xml in your case, as
specified in the data source file.

Merging the Manifests at Runtime
Listing 11-13 shows the code used to merge the external manifests.

Listing 11-13. ManifestMerge event handler

ssme.ManifestMerge +=
 new SmoothStreamingMediaElement.ManifestMergeHandler((sender) =>
 {
 object ParsedExternalManifest = null;

 //URI of the right external manifest based on current locale
 //for example expands to
 string UriString = string.Format(
 "http://localhost/SmoothStreaming/Media/FighterPilot/{0}/CC.xml",
 CultureInfo.CurrentCulture.Name);

 //parse the external manifest - time out in 3 secs
 ssme.ParseExternalManifest(new Uri(UriString), 3000, out ParsedExternalManifest);

 //merge the external manifest
 ssme.MergeExternalManifest(ParsedExternalManifest);
 });

The code to parse and merge manifests has to execute in the ManifestMerge event handler, as

shown in the above listing. Since your external manifests are stored in folders named after the locale,
you first form the target URI string for the external manifests, using the current culture in use on the
client machine. Then, call ParseExternalManifest(), using a timeout value of 3 seconds. Once the
parsed manifest is returned using the ParsedExternalManifest() out parameter, you use that to invoke
the MergeExternalManifest() method to do the final merge.

The display of the captions using either the TimelineEvent instances directly or using markers
remains the same as outline in Recipe 11-3. Figure 11-12 shows the results of the caption display with
US English and French locale settings on the client.

http://localhost/SmoothStreaming/Media/FighterPilot

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

977

Figure 11-12. Locale specific captions using merged manifests

11-5. Scheduling Additional Clips

Problem
You want to schedule playback of additional video clips interspersed with portions of smooth
streaming presentation.

Solution
You can use the clip scheduling facility provided by the SSME to achieve this.

How It Works
You may face the need to insert additional video clips into a presentation at specific time points.
Advertisement videos, breaking news, or filler clips in a presentation are just a few examples of this
scenario. The problem can be viewed in two parts: first, acquiring the necessary content data and
determining where in the timeline to insert it; and second, actually scheduling and playing the clips.

The first problem can be tackled in the same way as outlined in the previous recipes in this
chapter: by injecting some metadata in a text track in the client manifest describing information such
as the clip’s URI and the timing information of when to start displaying the clip.

To handle the second part of the problem, the SSME exposes some clip scheduling APIs. The
ClipInformation type is used to encapsulate information about a clip that you want to schedule; the
ClipInformation.ClipUrl property can be set to the address of the clip media; the Duration property
specifies the duration which you want the clip to play for (can be less than the total duration of the clip
itself); the IsSmoothStreamingSource bool property indicates if the clip itself is a smooth stream; and the
ClickThroughUrl represents a web address that you want to navigate to in response to the viewer
clicking on the clip.

To schedule a clip, you need to create a new instance of ClipInformation, populate the property
values, and pass the instance to the ScheduleClip() method on the SSME as its first parameter. Below is
the signature of the ScheduleClip() method:

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

978

public ClipContext ScheduleClip(ClipInformation clipInfo,
 TimeSpan startTime, bool pauseTimeline, object userData)

The startTime parameter accepts the time when the clip is scheduled to start, and the

pauseTimeline parameter accepts a bool indicating whether the original presentation timeline should
be paused during the clip playback (causing the Position property on the SSME to freeze while the clip
is playing). The last parameter userData accepts any additional data as an object, and ScheduleClip
returns an instance of the ClipContext type. You will see the use of the return value and the last
parameter in a little bit.

If you have multiple clips to schedule, you can enumerate through all your clip data and use the
above approach to schedule them at specific time points within your overall presentation. Sometimes,
however, clips need to be scheduled in a sequence where start timing information is only applied to
the first clip in a sequence and subsequent clips are chained so that all the scheduled clips play out in
one continuous sequence. The ScheduleClip() method facilitates this feature as well through an
overload whose signature is shown below:

public ClipContext ScheduleClip(ClipInformation clipInfo,
 ClipContext clipToAppendTo, bool pauseTimeline, object userData)

Recall the ClipContext value returned when you call the previously shown overload of

ScheduleClip(). You can subsequently call the second overload of ScheduleClip() for all the other clips
to be scheduled, passing in the ClipContext instance returned from the previous call as the
clipToAppendto parameter. This causes the clips to be chained together to play out sequentially. The
ClipContext.Data property passes in any data passed in through the userData property in the previous
call, as well as the ClipInformation property contains the previously scheduled clip.

Lastly, there is an overload of ScheduleClip() that accepts neither a ClipContext nor a start time,
in which case the clip gets scheduled to play back immediately.

There are also several events of interest raised by the SSME around clip playback. The ClipError
event is raised if there is an error in playing a clip, while the ClipStateChanged reports a change of
state for a specific clip. The ClipContext.CurrentClipState gives you the clip’s current state defined as
one of the values in the MediaElementState enumeration.

The ClipClickThrough event is raised when the viewer clicks on a clip while viewing it. If click-
through destination was intended for this clip,
ClipEventArgs.ClipContext.ClipInformation.ClickThroughUrl exposes it, and you can use a technique
of your choice (like interacting with the browser to open a pop-up window) to open up the Web
resource targeted by the click-through URL.

The ClipProgressUpdate event can be handled to track the progress of the clip.
ClipPlaybackEventArgs.Progress is of the enumeration type ClipProgress, which represents the clip's
progress in quartiles. The ClipProgressUpdate event is only raised at the start and end of the clip and
at time points denoting 25, 50, and 75 percent of the clip’s duration. Note that the
ClipContext.HasQuartileEvents boolean property indicates if the quartile events will be raised for a
clip. In certain cases, like when the duration of a clip is not known, quartile progress events may not
be raised.

The Code
The code sample shows how to use schedule clips both in the chaining fashion as well as with each clip
being scheduled independently. To provide the clip metadata to your application, you continue to use
the same approach of injecting the clip metadata as a text stream into your client manifest. Listing 11-
14 shows a portion of the data source file used to define the clip metadata.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

979

Listing 11-14. Clip metadata data source

<ContentTrack Name="AdClips" Subtype="DATA">
 <Event time="00:00:04">
 <![CDATA[<Clip Id="{89F92331-8501-41ac-B78A-F83F6DD4CB40}"
 Uri="http://localhost/SmoothStreaming/Media/Robotica/Robotica_1080.ism/manifest"
 ClickThruUri="http://msdn.microsoft.com/en-us/robotics/default.aspx"
 Duration="00:00:20" />]]>
 </Event>
 <Event time="00:00:10">
 <![CDATA[<Clip Id="{3E5169F0-A08A-4c31-BBAD-5ED51C2BAD21}"
 Uri="http://localhost/ProgDownload/Amazon_1080.wmv"
 ClickThruUri="http://en.wikipedia.org/wiki/Amazon_Rainforest"
 Duration="00:00:25"/>]]>
 </Event>
</ContentTrack>

For each clip to be scheduled, there is a URI for the content, a URI for a Web page that the user can

navigate to as a click through on the clip, and the playback duration for the clip. The time attribute on
the Event element specifies where in the timeline the clip is scheduled.

You can transform this data and add the corresponding text stream into the client manifest, using
the same approach of a LINQ to XML query as outlined in Recipe 11-3. As before, the text stream is
exposed to the code as a StreamInfo instance. You can then use the clip scheduling API on the SSME to
utilize this information to schedule these clips. Listing 11-15 shows a method that schedules clips based
on this information.

Listing 11-15. Scheduling clips at absolute time points

private void ScheduleClips()
{
 //get the clip data stream
 StreamInfo siAdClips = ssme.AvailableStreams.
 Where(si => si.Name.ToLower() == "adclips").FirstOrDefault();

 //if we have tracks
 if (siAdClips != null && siAdClips.AvailableTracks.Count > 0)
 {
 //for each event in that track
 foreach (TimelineEvent te in siAdClips.AvailableTracks[0].TrackData)
 {
 //parse the inner XML fragment
 XElement xeClipData = XElement.Parse(
 Encoding.UTF8.GetString(te.EventData, 0, te.EventData.Length));

 //schedule the clip
 ssme.ScheduleClip(
 new ClipInformation

http://localhost/SmoothStreaming/Media/Robotica/Robotica_1080.ism/manifest
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://localhost/ProgDownload/Amazon_1080.wmv
http://en.wikipedia.org/wiki/Amazon_Rainforest

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

980

 {
 ClickThroughUrl =
 new Uri(xeClipData.Attribute("ClickThruUri").Value),
 ClipUrl =
 new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ism"),
 Duration =
 TimeSpan.Parse(xeClipData.Attribute("Duration").Value)
 },
 te.EventTime,
 true, //pause the timeline
 null);
 }
 }
}

Listing 11-16 shows the same clip metadata being used, but this time to schedule the clips in a

chained fashion using the ClipContent value to pass information from one schedule addition to the
next one.

Listing 11-16. Chained clip scheduling using ClipContext

private void ScheduleClips()
{
 StreamInfo siAdClips = ssme.AvailableStreams.
 Where(si => si.Name.ToLower() == "adclips").
 FirstOrDefault();

 //if we have tracks
 if (siAdClips != null && siAdClips.AvailableTracks.Count > 0)
 {
 ClipContext clipCtx = null;
 foreach (TimelineEvent te in siAdClips.AvailableTracks[0].TrackData)
 {
 XElement xeClipData = XElement.Parse(
 Encoding.UTF8.GetString(te.EventData, 0,te.EventData.Length));

 //if this is the first clip to be scheduled
 if (clipCtx == null)
 {
 clipCtx = ssme.ScheduleClip(
 new ClipInformation
 {
 ClickThroughUrl =
 new Uri(xeClipData.Attribute("ClickThruUri").Value),

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

981

 ClipUrl =
 new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ISM"),
 Duration =
 TimeSpan.Parse(xeClipData.Attribute("Duration").Value)
 },
 te.EventTime, //pass in the start time for the clip
 true,
 null);
 }
 else //subsequent clips
 {
 clipCtx = ssme.ScheduleClip(
 new ClipInformation
 {
 ClickThroughUrl =
 new Uri(xeClipData.Attribute("ClickThruUri").Value),
 ClipUrl =
 new Uri(xeClipData.Attribute("Uri").Value),
 IsSmoothStreamingSource =
 xeClipData.Attribute("Uri").Value.ToUpper().Contains("ISM"),
 Duration = TimeSpan.Parse(xeClipData.Attribute("Duration").Value)
 },
 //pass in the clip context for the previous scheduled clip to chain
 clipCtx,
 true,
 null);
 }
 }
 }
}

You only use an absolute time to schedule the first clip when there is no ClipContext (in other

words, the clipCtx variable is null). Each subsequent call to ScheduleClip() accepts the ClipContext
instance returned from the previous call to ScheduleClip() instead of a scheduled start time for a clip,
and this schedules the clip to start right after the previously scheduled clip (represented by the passed-
in ClipContext).

11-6. Varying Playback Speeds

Problem
You want to rewind, fast forward, or play a smooth streaming presentation at different speeds.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

982

Solution
Use the variable playback rate feature on the SSME to control the speed of rewind, fast forward, or
playback.

How It Works
Variable playback speed involves playing back the frames at a frame rate which is some multiple of the
normal frame rate of the video. If you are displaying a video stream that has a normal frame rate of 24
frames per second, a 2x playback would be playing the video in forward direction at 48 frames per
second, while a -2x playback would be playing the video backwards at the same rate. So, effectively the
first option is a fast forward, while the latter is a rewind.

The SSME supports playing content at varying speeds and direction. The
SmoothStreamingMediaElement.SupportedPlaybackRates property returns a list of supported playback
speeds as double values, where 1.0 denotes the default playback speed. In the current public beta, this
list contains the additional values of 0.5, 4.0, 8.0, -4.0 and -8.0. The positive values enable playback at
half, 4x, and 8x speeds, and the negative values enable reverse play (rewind) at 4x and 8x speeds.

The SmoothStreamingMediaElement.SetPlaybackRate() method can be called to set the playback
speed at any point during playback. SetPlaybackRate() accepts the desired playback speed as its only
parameter.

Note that controlling playback speed only works for Smooth Streaming content, so if you are using
SSME to play content that is being progressively downloaded or streamed using some other technique,
SetPlaybackRate() will raise an exception.

■ NNote While a lot of players try to simulate variable playback speeds or actions like rewind and fast forward
using the seek feature, that is not the right approach. If you are using seek (the Silverlight equivalent of which

would be changing the Position property value on the MediaElement or the SSME), you are essentially skipping
frames of content, as opposed to displaying the frames at a faster rate. Furthermore, there is no way to

approximate a slower-than-normal playback rate using a seek-based approximation mechanism.

The Code
Due to the simplicity of this API, involving a single method call to change the playback rate, we do not
supply a full code sample.

11-7. Combining Streams Using Composite Manifests

Problem
You want to combine sections from multiple smooth streaming presentations into one single
presentation.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

983

Solution
You can use the composite manifest feature of the SSME to achive this.

How It Works
You may encounter the need to combine portions from multiple Smooth Streaming presentations into
a single composite presentation. You might have done this by using a rough-cut editor to specify mark-
in and mark-out time points in a master source to produce a clips, and then had several such clips from
different master sources play in a linear fashion as a single presentation.

The composite manifest feature of SSME allows you accomplish this by creating a separate
manifest document that contains clip segments, where each clip segment defines a portion of a
complete presentation bounded by begin and end time points of the clip. The biggest benefit of using
this approach is the ability to create different edits on existing presentations without the need to
transcode the source material.

A composite manifest always ends with the extension .csm. To consume such a manifest, you
simply set the SmoothStreamingSource property to a valid URL pointing to a composite manifest file:

ssme.SmoothStreamingSource = new
Uri("http://localhost/SmoothStreaming/Media/MyCompositeSample.csm");

Listing 11-17 shows an excerpt from a composite manifest. (The entire file is included in the

sample code download for this recipe.)

Listing 11-17. Sample composite manifest

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0" Duration="269000000">
 <Clip
 Url=
 "http://localhost/SmoothStreaming/Media/Amazing_Caves_1080.ism/manifest"
 ClipBegin="81000000" ClipEnd="250000000">
 <StreamIndex Type="video" Chunks="9" QualityLevels="3"
 MaxWidth="992" MaxHeight="560"
 DisplayWidth="992" DisplayHeight="560"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 <QualityLevel Index="0" Bitrate="2056000" FourCC="WVC1"
 MaxWidth="992" MaxHeight="560"
 CodecPrivateData=
 "250000010FD37E1EF1178A1EF845E8049081BEBE7D7CC00000010E5A67F840"/>
 <QualityLevel Index="1" Bitrate="1427000" FourCC="WVC1"
 MaxWidth="768" MaxHeight="432"
 CodecPrivateData=
 "250000010FCB6C17F0D78A17F835E8049081AB8BD718400000010E5A67F840"/>
 <QualityLevel Index="2" Bitrate="991000" FourCC="WVC1"
 MaxWidth="592" MaxHeight="332"
 CodecPrivateData=
 "250000010FCB5E1270A58A127829680490811E3DF8F8400000010E5A67F840"/>
 <c t="80130000" />

http://localhost/SmoothStreaming/Media/MyCompositeSample.csm
http://localhost/SmoothStreaming/Media/Amazing_Caves_1080.ism/manifest

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

984

 <c t="100150000" />
 <c t="120170000" />
 <c t="140190000" />
 <c t="160210000" />
 <c t="180230000" />
 <c t="200250000" />
 <c t="220270000" />
 <c t="240290000" d="20020000" />
 </StreamIndex>
 <StreamIndex Type="audio" Index="0" FourCC="WMAP"
 Chunks="10" QualityLevels="1"
 Url="QualityLevels({bitrate})/Fragments(audio={start time})">
 <QualityLevel Bitrate="64000" SamplingRate="44100"
 Channels="2" BitsPerSample="16" PacketSize="2973"
 AudioTag="354"
 CodecPrivateData="1000030000000000000000000000E00042C0" />
 <c t="63506576" />
 <c t="81734240" />
 <c t="102632199" />
 <c t="121672562" />
 <c t="142106122" />
 <c t="162075283" />
 <c t="181580045" />
 <c t="202478004" />
 <c t="222447165" />
 <c t="241313378" d="20143311" />
 </StreamIndex>
 </Clip>
 <Clip
 Url=
 "http://localhost/SmoothStreaming/Media/Coral_Reef_Adventure_1080.ism/manifest"
 ClipBegin="102000000" ClipEnd="202000000">
 <StreamIndex Type="video" Chunks="6" QualityLevels="3"
 MaxWidth="992" MaxHeight="560"
 DisplayWidth="992" DisplayHeight="560"
 Url="QualityLevels({bitrate})/Fragments(video={start time})">
 ...
 </Clip>
</SmoothStreamingMedia>

The composite manifest shown in Listing 11-16 contains two Clip elements, each defining a clip

(also called an edit) from an existing Smooth Streaming presentation. The Url attribute points to an
existing Smooth Streaming presentation, and the ClipBegin and ClipEnd attributes contain the
beginning and ending time values that provide the bounds to the clip. The Duration attribute on the top
level SmoothStreamingMedia element needs to be the exact sum of the durations of each clip in the

http://localhost/SmoothStreaming/Media/Coral_Reef_Adventure_1080.ism/manifest

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

985

manifest. You can sum the difference of the ClipEnd and ClipBegin values of each Clip entry to get the
total manifest duration.

Each Clip element contains the video and the audio StreamIndex and their child QualityLevel
entries, mirroring the client manifest (.ismc) files of the source presentations. The chunk metadata (c)
entries for each StreamIndex entry, however, can be limited to only those chunks that are required to
satisfy the ClipBegin and ClipEnd boundaries. In other words, the ClipBegin value needs to be greater
than or equal to the start time (t attribute) value of the first c entry for the stream, and the ClipEnd
value needs to be less than or equal to the sum of the start time and the duration (d attribute) values of
the last c entry for that stream.

Note that in your client manifest, chunks may be defined in an indexed (n attribute) fashion with
durations specified. However, for the composite manifest, the chunks need to be defined using their
start times (which can be easily calculated by summing the durations of the preceding chunks). Also
note that the Chunks attribute on each StreamIndex entry needs to reflect the number of chunks in the
clip, but all the other attributes mirrors the entries in the source client manifest.

■ NNote Creating composite manifests by hand is an onerous task at best. The best way to build a composite
presentation is to use some sort of rough cutting tool (or build one yourself) that allows the user to visually provide

the mark-in and mark-out points of each constituent smooth streaming client manifest making up the composite.
A full treatment of how to build such a tool is beyond the scope of this book, but with smooth streaming getting the

attention that it is now, you can expect to see major rough cut editors supporting this scenario very soon.

The Code
We include a working composite manifest as a part of the sample code download. You just need to
provide the constituent smooth streams, and you should be able to test the composite using the player
built in Recipe 11-2 by supplying the URL to the composite manifest as opposed to a client manifest in
the textbox shown in Figure 11-10.

CHAPTER 11 ■ INTEGRATING MICROSOFT IIS SMOOTH STREAMING

986

987

Index
■ ■ ■

■ Symbols and Numerics
.NET, XML resolver in, 66
.NET Framework for Silverlight, 35
3-D effects

adding to UI elements, 191–198
3-D graphics

perspective 3-D graphics, 4
3-D matrixes, 192
3-D transformations

dynamic, 197–198
static, 192–197

■ A
About view

Navigation Application template, 548
absolute positioning, 122, 123
AcceptIncoming method, 667
access

enabling cross-domain access, 676–680
file system access, 733

actions
TargetedTriggerAction<T> class, 487, 491
TriggerAction<T> class, 487

Actions property, TriggerActionCollection, 487
adaptive streaming, 949
Add New Item dialog, 399
Add Publishing Point context menu, 828
Add Service Reference dialog, 579

accessing RESTful data using OData, 747
Add Silverlight Application dialog, 20, 21
Address class

binding using DataTemplate, 257
providing defaults for bound data, 328
receiving change notifications for bound data,

265
validating input for bound data, 302

AddressFamily enumeration, 644
AddToOrder_Details method, 760

ADO.NET Entity Framework
databinding in XAML, 771
using WCF RIA Data Services tooling, 760

Advanced Audio Coding (AAC), 4
Advanced property options menu, 40
Advanced Systems Format (ASF), 901
AdventureWorks OLTP database

WCF service as data source for recipes, 334
AdventureWorks WCF service

building PagedProductsGrid control, 407
controlling scroll behavior in ScrollViewer,

455, 463
customizing default ListBoxItem UI, 355, 362

affine transformation, 170
AJAX Library, Microsoft, 517, 521
AllowDeviceAccess method, 926
AnchorElement

positioning pop-ups, 364, 365
Angle property

RotateTransform, 176
transform classes, 171

animations
see also graphics
animating transforms, 175
animating UI elements with keyframes,

164–169
bouncing ball example, 165–167
creating cartoon scene, 175–179
creating dynamic UIs with, 157–164
dependency properties, 402
DoubleAnimation object, 157
firing, 158
improving with custom easing functions,

209–216
keyframe animations, 158
MouseEnter/MouseLeave animations, 159
multi-animation storyboard, 167, 168, 169
performance, graphic animations, 205–208
PointAnimation, 160
Silverlight 3 enhancements, 4

■ INDEX

988

using metadata at playback, 972, 973
using with objects, 157–164

animations, Expression Blend, 28–30
keyframes, 28–29
reverting to original, 29

annotation
data validation through data annotation,

779–782
APIs

Sockets API, 644–646
App object

objects when creating Silverlight application,
558

app.jsx/app.py/app.rb files, 97
App.xaml file, 15, 17

codebehind in dynamic language application,
97

App.xaml.cs file, 15, 17
App_Startup event, 17
Appication.UnhandledException event, 71
application data

binding to UI, 247–255
application design, prototype, 243–245
application development, business

Silverlight 4 enhancements, 6
application interactivity

reusing with behaviors, 231–233
Application Lifecycle Management (ALM)

accessing source control, 32
application project files, 15
Application project template, 12
application projects, creating, 13–14
application services, creating, 99–105
application themes, 4
Application class

CheckAndDownloadUpdateAsync method,
705

CheckAndDownloadUpdateCompleted event,
705, 706

Install method, 703
InstallState property, 703, 704
IsRunningOutOfBrowser property, 704
MainWindow property, 722
RootVisual property, 564
StartUp event handler, 704

Application_Exit event, 17
Application_UnhandledException method, 17
ApplicationInitParams property, 100
ApplicationInstallStateChanged event, 704
ApplicationLifetimeObjects collection, 100
applications

adding/accessing controls/classes, 37–47
building out-of-browser application, 699–722
controlling application window, 722–730

exchanging data between, 680–698
hosting HTML in, 541–544
objects when creating, 558
printing in Silverlight LOB application,

783–785
Arabic
using right-to-left text, 241–243

ArcSegment object, 146, 147
args parameter, HtmlPage.Window.Invoke

method, 534
Arguments property, AutomationEventArgs, 732
Arrange method, UIElement, 414

WrapPanel implementation, 420
Arrange pass, 123
ArrangeOverride method

creating custom layout container, 413, 414
WrapPanel implementation, 420

art, importing from Expression Design, 112–115
Artboard, Expression Blend, 26
ASF (Advanced Systems Format), 901
ASP.NET MVC Web Project type, 14
ASP.NET Silverlight control, 49
ASP.NET Web Application Project type, 14
ASP.NET Web Site project type, 14
aspect ratio, video, 789–790
AspNetCompatibilityRequirementsAttribute, 593
ASPX page

loading XAML dynamically at runtime, 48–53
TestWeb web project, 19

Assembly class
GetManifestResourceNames method, 91
GetManifestResourceStream method, 91

Asset Library, Expression Blend, 27
Assets folder, Navigation Application template,

547, 549
Assets tab, Expression Blend, 27, 231
AssociatedObject property, 486, 487
asx element, client-side playlists, 867
Async method, 581
asynchronous invocation, 601
AsyncResult handlers, 601
Attach to Process dialog box, 559, 560
AttachClientMarkers method, 886
attached properties, 126
attributes

CategoryAttribute, 479–480
DataAnnotations namespace, 779
DescriptionAttribute, 480
EditorBrowsableAttribute, 481
property attributes, controls, 479–481
Window class, 722–724

audio
processing raw webcam output, 932–947
using webcam and microphone, 924–931

■ INDEX

989

audio formats, 926
Silverlight support for, 787

AudioCaptureDevice type, 925
DefaultFormat property, 926, 944
SupportedFormats property, 926

AudioCaptureSource property, 930
AudioFormat type, 926
AudioSampleDispatch class, 944
AudioSampleDispatch_DoWork method, 945
AudioSink class, 932, 933
AudioSink_FormatChanged handler, 944
AudioSink_SampleGenerated handler, 944
AudioStreamIndex property, 904, 905
AuthenticationService.cs file, 769
AutomationEventArgs class

Arguments property, 732
AutomationFactory class

GetObject method, 732
CreateObject method, 731, 732
GetEvent method, 732

AutoPlay property, 788, 793
AutoReverse property, 157
autoUpgrade parameter

hosting Silverlight on all platforms, 497
AvailableStreams property

adding metadata streams, 965
using metadata at playback, 969, 973

AvailableTracks property, 965

■ B
BackEase function, 209
background parameter

hosting Silverlight on all platforms, 497
Background property

Border control, 152, 387, 390
InkPresenter, 186
ListBox, 92
template bindings, 341

background threads
executing work with updates, 71–81
updating UI from, 81–85

backgroundColor property, 526
BackgroundWorker class, 72

Cancel property, 72
CancellationPending property, 72
deadlocks, 72
DoWork event, 72
executing work on background threads with

updates, 72, 73
processing raw webcam output, 944
ProgressChanged event, 72
updating UI from background thread, 82

WorkerReportsProgress property, 72
WorkerSupportsCancellation property, 72

BandedSwirlEffect class, 219, 220
SwirlStrength property, 221

BasedOn attribute, style inheritance, 335
BasicHttpBinding class, 582
BeginGetRequestStream method, 601

POX-style message exchange, 612
BeginGetResponse method, 601

POX-style message exchange, 612
BeginInvoke function

asynchronous invocation, 601
BeginSaveChanges method, 759
BeginTime property, 157, 159
Behavior class

AssociatedObject property, 486, 487
OnAttached method, 486, 487
OnDetaching method, 486, 487

Behavior<T> type, 486
MediaElement object, 488

behaviors, 231
applying, 232–233
control behavior in Expression Blend, 479–483
enhancing design experience with, 486–494
reusing application interactivity with, 231–233

Bezier curve, 147
animating UI elements with keyframes, 165
bouncing ball animation, 165, 166

BezierSegment object, 146, 147
binding, 247

see also data binding
application data to UI, 247–255
associating data source, 248–249
controlling updates, 316–326
converting values during, 280–292
databinding in XAML, 770–772
properties and elements, 293–300
RelativeSource, 428–429
TemplateBinding, 428–429
using DataTemplate, 255–262
validation error, 315

binding expressions, 248
Binding markup extension, 247, 248

StringFormat property, 192
Binding property, DataGridBoundColumn, 392
binding validation, customizing UI, 463–478
Binding class

ElementName property, 293
NotifyOnValidationError property, 302
RelativeSource property, 293, 294
StringFormat property, 328
UpdateSourceTrigger property, 316
ValidatesOnExceptions property, 301

■ INDEX

990

BindingBase class
FallbackValue property, 327
TargetNullValue property, 327

BindingExpression class
UpdateSource method, 316–326

BindingMode property, 255
Mode property values, 276
receiving change notifications for bound data,

263
bindings

creating/setting in code, 254
template bindings, 341, 342

BindingValidationError event
getting error information, 302
validating input for bound data, 301–316

Bing Maps Silverlight Control, 5, 11
bit rates

adaptive streaming, 949
multiple bit rate (MBR) video files, 824
QualityLevel, tracks, 965
streaming media, 824
video bitrate selection for smooth streaming,

953
Bitmap API, 4
bitmap caching, 4, 205–208
BitmapImage class

dynamically creating bitmaps, 198
SetSource method, 93

bitmaps
dynamically creating, 198–205
WriteableBitmap class, 198–205

BitmapSource class, 198
Bitrate property, TrackInfo, 965
BitsPerSample property, AudioFormat, 926
Blend see Expression Blend
BlurEffect pixel shader, 218
Body property, MessageWrapper, 665
BoolToVisibilityConverter class

implementing value conversion, 281
Border control, 152

applying border to textbox, 152–154
Background property, 152, 387, 390
CornerRadius property, 152
managing embedded resources, 91

Border elements
customizing default ListBoxItem UI, 359

borders
applying to elements, 152–157

BottomBorder element
customizing default ListBoxItem UI, 359, 360

BounceEase function, 209
bouncing ball animation, 165–167
bound data

providing defaults for, 326–331

receiving change notifications for, 263–280
validating input for, 301–316

Broadcast method, ServerConnectionManager,
673

broadcast publishing points, 827, 829
playing SSPL, 868

broadcast stream, playing, 856
BroadcastStreams.xml, 830

playing SSPL, 868, 869
browser controls

implementing full-screen UI, 506–512
browser history journal, interacting with, 546
browser integration

calling JavaScript method from managed
code, 515–523

calling managed code methods from
JavaScript, 523–530

embedding Silverlight in IE8 Web Slice,
571–576

embedding Silverlight within Windows gadget,
555–571

exchanging data between multiple plug-ins,
532–537

hosting HTML in Silverlight application,
541–544

hosting Silverlight on all platforms, 495–498
implementing full-screen UI, 506–512
layering HTML over Silverlight plug-in,

538–541
Navigation Framework, 546–554
painting Silverlight element with HTML,

544–546
setting focus for keyboard input, 500–504

browser journaling integration
Navigation Application template, 548

Browser namespace classes, 516
browser support, 5
BrowserInformation class, 516
brush editor

Expression Blend, 116, 119
options for radial gradients, 117

Brush Transform tool, 119, 120
brushes

gradient brushes, 118
GradientBrush, 115
ImageBrush, 120, 121
SolidColorBrush, 115
TextBox control, 117, 118
VideoBrush, 121

Brushes section, properties window, 115, 116
More Options button, 116
TextBox control, 118

btnOpenCustomFile_Click event, 204
btnSaveCustomFile_Click event, 204

■ INDEX

991

Buffering state, ContentStates, 849
Buffering value, MediaElementState, 794
buffering video, 855
BufferingProgress property, MediaElement, 905
BufferingProgressChanged handler, 855
BufferingTime property, MediaElement, 839
built-in easing functions, 209
business application development, 6, 36
Business Application project template, 13
Business Application Template, 768–770
Button server control, ASP.NET, 528
Button_Click event, 45
ButtonImportFile_Click event, 204
ButtonReadXML_Click event, 67
buttons

customizing appearance of controls, 336–338
MediaButtonsPanel control, 819–823

ButtonsPanel control, SSPlayerControls, 959

■ C
CacheMode property, UIElement, 206
caching, browser

POX-style message exchange, 607
callback methods

RetrieveXmlCompleted method, 83
Cancel property, BackgroundWorker, 72
CancelAsync method, 619
CancelCellEdit method, DataGridBoundColumn,

392, 393, 395
CancellationPending property,

BackgroundWorker, 72
Cancelled property

accessing resources over HTTP, 619
CannotPause state

supporting streaming media, 860
CannotSeek state, 849, 860
CanPause property, MediaElement, 860, 864
CanPause state, 860
CanSeek property, MediaElement, 864
CanSeek state, 849, 860
CanSeek value

MediaSourceAttributesKeys enumeration, 903
Canvas control/container, 123, 125–127

Left/Top properties, 125
captions

GetCaptionsForMedia method, 875
industry standards for, 875
using markers to display timed content, 872
using metadata at playback, 972, 973

Captions.xml file, 872
CaptureDevice class, 925

FriendlyName property, 928

CaptureDeviceConfiguration class, 925
AllowDeviceAccess method, 926
GetAvailableAudioCaptureDevices method,

925
GetAvailableVideoCaptureDevices method,

925
GetDefaultAudioDevice method, 925
GetDefaultVideoDevice method, 925
RequestDeviceAccess method, 926

CaptureFailed event, 926
CaptureImageAsync method, 926
CaptureImageCompleted event, 926, 930
CaptureSource property, VideoSink, 933
CaptureSource type, 926

AudioCaptureSource property, 930
CaptueImageCompleted event, 926
CaptureFailed event, 926
CaptureImageAsync method, 926
Start method, 926, 930
Stop method, 926
VideoCaptureSource property, 930

cartoons
creating animated scene, 175–179

CategoryAttribute, 479–480
CellEditingTemplate property, 385, 387, 392
CellTemplate property, 379, 385, 387, 392
chained clip scheduling using ClipContext, 980
change notifications

for collection types, 264–265
for noncollection types, 263–264
receiving, for bound data, 263–280

ChangesSaved method, NorthwindContext, 760
Channels property, AudioFormat, 926
chat server, 666
ChatBroker.exe, 646
ChatEndNotification type, 665
CheckAndDownloadUpdateAsync method, 705
CheckAndDownloadUpdateCompleted event,

705, 706
CheckAndDownloadUpdatedCompletedEventArg

s class
UpdateAvailable property, 705

Checked event, ScreenRecorder, 913
Checked state

replacing RadioButton default control
template, 353

child controls
creating custom layout container, 412–425

Child property, Popup, 363, 365
Children collection, Panel, 413
Children property, MenuItemData

displaying information in pop-ups, 370
Chiron.exe tool, 96, 98
Chunks attribute, StreamIndex element, 985

■ INDEX

992

CircleEase function, 209
circles, 132
Class attribute, UserControl, XAML, 400
Class Library project template, 12
classes, adding/accessing, 37–47
client manifest

injecting textual metadata and content into,
966–969

client, Silverlight
using sockets to communicate over TCP, 647

clientaccesspolicy.xml
HTTP resource access, 678
sockets-based access, 679

ClientConnectionManager class
Join method, 665
MessageBody property, 654
ParentPage property, 656
Participants property, 654
ShowChatView method, 656
ShowLoginView method, 656
ShowParticipantsView method, 656
using sockets to communicate over TCP, 654,

656–666
clients

selecting local file on, 61–65
storing data on, 54–61

client-side playlists see CSPL
clip metadata data source, 979
Clip property, Image, 145, 146
Clip property, UIElement, 138, 140, 147
ClipBegin/ClipEnd attributes

combining streams using composite
manifests, 984, 985

clipboard, accessing, 238–241
Clipboard class methods, 238
ClipClickThrough event, 978
ClipContext class, 978, 980
ClipError event, 978
ClipInformation type, 977
clipping paths, 138
ClipProgressUpdate event, 978
clips, scheduling additional, 977–981
ClipUrl property, 977
Closed value, MediaElementState, 794
cloud shape, combining ellipses into, 133, 134
clr-namespace

adding controls/classes, 37
code sections

format of recipes in this book, 1
code-behind files, 15
CodecPrivateData value

MediaStreamAttributeKeys enumeration, 904
codecs, 901

code-generation functionality
Business Application Template, 768
using WCF RIA Data Services tooling, 762

collection types, change notification for, 264–265
CollectionChanged event, 264
Collection<T> type, 271
Color column, DataGrid, 390
Color property, Product, 385, 387
Color type, animation of, 157
ColorAnimationUsingKeyFrames class, 164
ColorList property, Product, 390
ColorNameToBrushConverter class, 391
colors

creating consistent UI, 86
working in Blend, 115–122

column types
creating custom, for DataGrid, 391–398

ColumnDefinitions collections, Grid, 124, 129
columns, Grid control

star (*) sizing, 124
COM interoperability, 731–733

handling COM event, 732
instantiating COM object, 731
Windows Image Acquisition (WIA), 734–737

Combine menu, Expression Blend, 134
combining shapes, 135
Divide option, 135, 136
Exclude Overlap option, 135, 136, 137
Intersect option, 135, 136
Subtract option, 135, 136
Unite option, 134, 135, 136

COMIndexedPropertyToList method, 737
commercial-like video

using markers to display timed content, 872
Commercials.xml file, 885
communications

enabling cross-domain access, 676–680
processing raw webcam output, 932
using sockets over TCP, 643–675

Company class, 249, 252
Completed event

invoking service operations, 581
composite manifests

combining streams using, 982–985
composite user control, creating, 398–412
ConfigPath property, SSME, 963
ConfigSettings Dictionary object, 101
ConfigurationSettingsService.cs file, 101
ConnectAsync method, sockets, 644, 645
Connection_Completed method, 665
ConnectionDisconnectionNotification type, 665
ConnectionListener class

AcceptIncoming method, 667
Run method, 667

■ INDEX

993

using sockets to communicate over TCP,
666–667

ConnectionReply message, 665
ConnectionRequestSend_Completed method,

665
containers, 901

Border control, 152
building UI with nested containers, 130
Canvas, 123, 125–127
creating custom layout container, 412–425
Grid, 123, 124–125, 128–131
ScrollViewer, 149–151
StackPanel, 123–124, 127–128

ContainsText method, Clipboard, 238
content

providing scrollable content for layouts,
149–151

Content dependency property, 342
content model, 342–344

ContentPresenter control, 343
template bindings, 344

Content property
ContentControl, 428
ContentPresenter, 344, 359
defining custom visual state, 445
NotificationWindow, 744

Content.xml file, 966
ContentControl class, 342

ContentTemplate property, 257
creating pop-up content, 365
custom controls, 428
customizing default ListBoxItem UI, 354
DataTemplate in, 261
ProgressBar implementation, 431

ContentFocused state, 353
ContentFrame_Navigated event, 554
ContentPresenter control, 343

Content property, 344
ContentTemplate property, 344
customizing default ListBoxItem UI, 359
ProgressBar implementation, 431
replacing RadioButton default control

template, 353
ContentStates group

supporting streaming media, 849
ContentTemplate property, 342

ContentControl class
accessing resources over HTTP, 635
creating pop-up content, 365
custom controls, 428
using DataTemplate, 257

ContentPresenter control, 344, 359
defining custom visual state in custom

control, 445

ContentTrack elements, 966
Context menu

suboptions, Path objects, 138
context menus

customizing right-click context menu,
233–238

control handles, 142
changing curves, 143
drawing with Pen tool, 142

control skinning, 4
control template, 338–348

content model, 342–344
default, 338
Expression Blend designing, 339–341
MediaButtonsPanel control, 819–820
MediaSlider control, 809–811
replacing RadioButton default, 348–354
setting, 338
States editor, Expression Blend, 344
syntax, 338
template bindings, 341–342
visual state, 344–348

controls
adding/accessing, 37–47
applying custom templates to DataGrid cells,

385–391
applying rounded corners to, 152
ASP.NET Silverlight control, 49
automatic layout and resizing, 130
behavior in Expression Blend, 479–483
Border control, 152
building PagedProductsGrid control, 403–412
Canvas control, 123, 125–127
content model, 342–344
control template, 338–348
controlling scroll behavior in ScrollViewer,

454–463
creating composite user control, 398–412
creating custom column types for DataGrid,

391–398
creating custom controls, 425–441
creating custom layout container, 412–425
custom controls, 426–428
customizing appearance of, 334–338
customizing binding validation UI, 463–478
customizing default ListBoxItem UI, 354–363
data binding, 40
defining custom visual state in custom

control, 442–453
dependency properties, 402–403
designer-unsafe code, 481
displaying information in pop-ups, 363–374
displaying row details in DataGrid, 375–384
distribution and reuse, 411

■ INDEX

994

enhancing design experience with behaviors
and triggers, 486–494

Grid control, 123, 124–125, 128–131
GridSplitter control, 125
InkPresenter control, 184–191
installing services and controls, 10–11
Left and Top properties, 122
locating at runtime, 37
making custom control available in XAML, 44
overview, 333
property attributes, 479–481
property settings in style definitions, 335
replacing default UI of, 338–354
sample data, 482
ScrollViewer control, 149–151
separation of, 123
setting focus for keyboard input, 500–504
setting Width/Height properties on, 129, 130
Silverlight 3 enhancements, 4
Silverlight 4 enhancements, 6
StackPanel control, 123–124, 127–128
Style dependency property, 335
styles, 334
types of, 398
user controls, 399–400
visual state, 344–348
WCF service as data source for recipes, 334

Controls namespace, 111
ControlTemplate element, 338
conversion

implementing value conversion, 281–282
Convert method

applying custom templates to DataGrid cells,
391

implementing value conversion, 281, 282, 291
Convert to Path option, 140

Path objects, 138
ConvertBack method

applying custom templates to DataGrid cells,
391

implementing value conversion, 281, 282, 291
Converter property, bindings, 282
ConverterParameter property, bindings, 289
ConvertFrom method

creating custom column types for DataGrid,
397

CoordSpaceSource parameter, 370
copying using clipboard, 238–241
CornerRadius property, Border, 152
corners

applying rounded corners to controls, 152
Create Brush Resource dialog, 89
Create Data Binding dialog, 40, 41
Create data source button, Expression Blend, 222

Create method
HttpWebRequest, 601
WIADeviceManager, 737

Create sample data button, Expression Blend,
222, 225

CreateDirectory method, 56
CreateExternalManifests method, 975
CreateFile method, 56
CreateFromXaml method, 48, 49
CreateObject method, AutomationFactory, 731,

732
cross-application data exchange, 680–698
cross-domain access, enabling, 676–680
cross-domain policy, 646
cross-thread invocations, 72
CRUD operations

RIA Services, 775–778
WCF Data Services, 756–760

CSPL (client-side playlists), 866–867
playing CSPL, 868, 869
Silverlight support for, 787
using playlists to package media, 864

CSS styles, 498
CubicEase function, 209
CultureInfo parameter, 397
CurrentClipState property, 978
CurrentItem property, DataForm, 776
CurrentNote property, MainPage, 712, 721
CurrentOrientation property, 425
CurrentState property, MediaElement, 793, 794
CurrentStateChanged event, 491, 794, 869
CurrentStateChanged handler

MediaElement, 818, 819
MediaSource, 818

CurrentValue property, 433
curves

changing with control handles, 143
creating with Line tool, 141

custom controls, 398, 426–428
control behavior in Expression Blend, 479
creating, 425–441
defining custom visual state in, 442–453
defining user interface, 426
designer-unsafe code, 481
generic.xaml file, 426

ProgressBar, 429
custom easing functions, 209–216
custom layout container, creating, 412–425
custom visual state

defining in custom control, 442–453
CustomImageSource type, 422, 423
CustomValidationAttribute, 780
cutting using clipboard, 238–241

■ INDEX

995

■ D
d: namespace reference, 43, 225
data

accessing RESTful data using OData, 746–749
binding application data to UI, 247–255
exchanging between multiple plug-ins,

532–537
exchanging between Silverlight applications,

680–698
persisting data on client, 54–61
pushing data, 533
requesting data, 533

data access enhancements, 745–746
Data Annotations

data validation through, 779–782
data binding, 247–331

see also binding
associating data source, 248–249
binding application data to UI, 247–255
Binding markup extension, 247
binding properties and elements, 293–300
binding using DataTemplate, 255–262
controlling updates, 316–326
controls, 40
converting values during, 280–292
Create Data Binding dialog, 40, 41
creating/setting bindings in code, 254
dependency properties, 402
providing defaults for bound data, 326–331

fallback values, 327
null value replacement, 327
string formatting, 328

receiving change notifications for bound data,
263–280

SetBinding method, 247
validating input for bound data, 301–316

Data Binding option
Advanced property options menu, 40

data classes
binding application data to UI, 249
binding using DataTemplate, 257
receiving change notifications for bound data,

265
data contracts

building out of browser application, 707
for WCF web services, 620
WCF web services, 584

data entry UI
build on ObservableCollection, 271

data initialization
binding using DataTemplate, 258

Data panel, Expression Blend, 221–223
Data property, ClipContext, 978

Data property, Path objects, 140
default to Path Mini-Language, 147
taking geometry as property to draw, 138

data sources
associating, 248–249
clip metadata data source, 979
Define New Object Data Source dialog, 41
using Company class as, 252
WCF service as, for recipes, 334

data support, 5
Data tab, Expression Blend, 27
data templates, binding using, 259
data types

displaying information in pop-ups, 366
DataAnnotations namespace, 779
Database Objects page, Entity Data Model

Wizard, 762
databases

displaying data from, 760–767
making available via REST and OData,

750–756
databinding in XAML, 770–772
DataBindListBox method, 83
data-bound page, 254
DataContext property

associating data source, 248
binding data to UI, 253
ListBox, 44
RadioButton, 343
UserControl, 710

DataContractAttribute, 588
DataContractJsonSerializer type

accessing resources over HTTP, 642
exchanging JSON messages with HTTP

endpoint, 613, 614, 617, 618
using sockets to communicate over TCP, 649

DataForm control, 5
CurrentItem property, 776
implementing CRUD operations in RIA

Services, 776–778
DataGrid control

applying custom templates to cells, 385–391
building PagedProductsGrid control, 407
Color column, 390
creating custom column types for, 391–398
displaying row details in, 375–384
exchanging data between Silverlight

applications, 683
ItemsSource property, 384
RowDetailsTemplate property, 375–384
RowDetailsVisibilityMode property, 375, 379
Silverlight 4 enhancements, 6

DataGrid_SelectionChanged event, 553
DataGridBoundColumn class, 391–398

■ INDEX

996

Binding property, 392
CancelCellEdit method, 392, 393
GenerateEditingElement method, 392
GenerateElement method, 392
PrepareCellForEdit method, 392, 393

DataGridCheckBoxColumn type, 385, 391
DataGridColumn types, 385
DataGridDateColumn class, 395, 396, 397
DataGridDateTimeConverter class, 396
DataGridRow class

DetailsVisibility property, 375
DataGridTemplateColumn type, 379, 385, 387,

392
DataGridTextColumn type, 385, 391
DataItemChanged event, 412
DataItemSelectionChanged event, 410
DataMemberAttribute, 588
DataPager control, 773
DataServiceCollection class, 746

implementing CRUD operations in WCF Data
Services, 756–760

LoadCompleted event, 748
DataServiceContext class, 757
datasource collection

adding property to, 223
Data panel, Expression Blend, 222

DataTemplate, 255, 259
binding data to UI, 253
binding using DataTemplate, 255–262
declaring, 255–257
in ContentControl, 261
in ListBox, 262
nesting, 261
using, 257

DataTypeAttribute, 780
DatePicker control, 395, 396
deadlocks, 72
debug mode, Visual Studio, 315
debugging, 559
decoding

building managed decoder, 900–924
media files, 900

Deep Zoom Composer tool, 10
default values

providing defaults for bound data, 326–331
replacing default UI of controls, 338–354

DefaultFormat property, AudioCaptureDevice,
926, 944

DefaultStyleKey property
custom controls, 427
MediaSlider, 817
ProgressBar implementation, 431, 433

Define New Object Data Source dialog, 41, 229
Define New Sample Data dialog, 223

DELETE verb
configuring WCF for non-SOAP endpoints, 602

denial of service (DOS) attacks, 676
dependency properties, 126, 248, 402–403

animations, 402
attached properties, 126
data binding, 402
designer-unsafe code, 482
naming, 403
PropertyMetadata parameter, 403
resource referencing, 402
static 3-D transformations, 193
styles, 402

dependency property system services, 111
locating controls at runtime, 37

DependencyObject class, 111
asynchronous invocation, 601
GetValue method, 403
locating controls at runtime, 37
SetValue method, 403

DependencyProperty class
dependency properties, 402
MaximumProperty property, 402
Register method, 403

Description element
installing sample code for video player, 796

Description property, MediaMenuData, 804
DescriptionAttribute, 480
DeserializeMessage method, 649, 665
DeserializeProductDetails method, 618
DeserializeProductHeaders method, 612, 617
design

enhancing design experience with behaviors
and triggers, 486–494

prototype application design, 243–245
Design see Expression Design
design environment, Silverlight 4

developer/designer workflow, 21–25
setting up, 9–10

designer surface (Artboard), Expression Blend, 26
DesignerProperties class

IsInDesignTool property, 481, 482
designers, using assets created by, 112
design-time data in Expression Blend, 221–231
DesiredFormat property, VideoCaptureDevice,

925
DesiredSize property, 419
desktop

building out-of-browser application, 699–722
details mode, Expression Blend, 222
DetailsVisibility property, DataGridRow, 375
developer tools, 7
developers, sharing assets with, 112
development environment

■ INDEX

997

developer/designer workflow, 21–25
setting up, 9–10

DeviceManager class, 734
DeviceInfos property, 737
RegisterEvent method, 737
UnregisterEvent method, 737

digital images, WIA, 734–737
digital media

processing, 904–905
Silverlight support for, 787

Digital Rights Management (DRM), 4
Direct Selection tool

building UI with nested containers, 130
curving Path object, 140
drawing with Path object, 139

directories
CreateDirectory method, 56

DirectX SDK, 217
dirty flags, 599, 600
discrete interpolation, 165
Dispatcher class

asynchronous invocation, 601
Invoke method, 612
updating UI from background thread, 81, 82,

83
DisplayDateEnd property, DatePicker, 396, 397
DisplayDateStart property, DataGridDateColumn,

397
DisplayDateStart property, DatePicker, 396
Divide option, Expression Blend, 135, 136
docked view, gadgets, 556, 557
DockedUndocked.js file, 562
DockedUndockedView.html file, 557, 560, 562,

563
DockedUndockedView.js file, 563
DockedView.xaml file, 558, 562
DockGadget method

GadgetApp.xaml.cs file, 567
docking, Windows Forms, 122
dockStateChanged event, 563
Document Outline view, Visual Studio 2010, 9
document.getElementById method, 49, 515
document-level datasource collection, 222
Domain Service, 779
DomainContext class, 761
DomainDataSource control

databinding in XAML, 770–772
navigating RIA LOB data, 773
PageSize property, 773

domains
enabling cross-domain access, 676–680

DomainService class, 746
databinding in XAML, 771
using WCF RIA Data Services tooling, 761

donuts
combining ellipses using Subtract, 136

DoReceive function, JavaScript
exchanging data between multiple plug-ins,

533
Double type, animation of, 157
DoubleAnimation object, 157, 158, 160
DoubleAnimationUsingKeyFrames class, 164
downloading, 793
DownloadPhoto method, 441
DownloadProgress property

MediaElement, 793
MediaSource, 855

DownloadProgressChanged event
accessing resources over HTTP, 642
MediaElement, 793, 818
MediaSource, 818

DownloadStates group, 849, 855
DownloadStringAsync method, 618, 619, 642, 643
DownloadStringAsyncCompleted event, 845
DownloadStringCompleted handler, 885
DoWork event, BackgroundWorker, 72, 74
DoWork method

AudioSampleDispatch, 945
VideoSampleDispatch, 944

DoWorkerEventArgs class
Result property, 72

DragCompleted event, Thumb, 819
DragMove method, Window, 724, 730
DragResize method, Window, 724, 730
DragStarted event, Thumb, 819
drawing objects in Expression Blend, 131–149

drawing with geometries, 138–139, 144–149
drawing with Path objects, 137–138, 139–144
drawing with shapes, 132–137

DRMHeader value, MediaSourceAttributesKeys
enumeration, 903

DRMInitializationVector value,
MediaSampleAttributeKeys
enumeration, 905

drop shadows
adding pixel shader visual effects, 216

DropShadowEffect pixel shader, 218
Duration attribute, SmoothStreamingMedia

element, 984
Duration element, CSPL, 867, 869
Duration property

ClipInformation, 977
DoubleAnimation, 157

Duration value, MediaSourceAttributesKeys
enumeration, 903

Duration.TimeSpan property, 794
DurationStates group, 849, 855
dynamic 3-D transformations, 197–198

■ INDEX

998

Dynamic Language Runtime SDK for Silverlight,
96, 97

dynamic user interfaces
creating with animation, 157–164

dynamically creating bitmaps, 198–205

■ E
easing

bouncing ball animation, 165
easing functions

BackEase, 209
BounceEase, 209
built-in, 209
CircleEase, 209
CubicEase, 209
ElasticEase, 209
ExponentialEase, 209
improving animations with, 209–216
PowerEase, 209
QuadraticEase, 209
QuarticEase, 209
QuinticEase, 210
SineEase, 210

EasingFunction tab, Expression Blend, 210
EasingFunctionBase class, 209
Edit Sample Values dialog, 227
EditorBrowsableAttribute, 481
Effect property, UIElement, 217
effects

adding 3-D effects to UI elements, 191–198
adding pixel shader visual effects, 216–221
sample pixel-shader effects, 217

ElasticEase function, 209
ElementName property, bindings, 293
elements

applying border to, 152–157
binding properties and, 293–300
controlling scroll behavior, 454–463
painting with HTML, 544–546

ellipses
combining into cloud, 133, 134
combining using Subtract, 136
combining using Unite, 134, 135
drawing with shapes, 132

embedded resources, managing, 91–95
Employee class, 249

binding using DataTemplate, 257
providing defaults for bound data, 328
receiving change notifications for bound data,

265
validating input for bound data, 302

EmployeeCollection class, 265

Enable running application out of browser
setting, 19

Enable WCF RIA Services checkbox, 761
enableCacheVisualation parameter, 206
EnableClientAccess attribute, 746
enableFramerateCounter parameter, 497
enableGPUAcceleration parameter, 207
enableHtmlAccess parameter

calling JavaScript method from managed
code, 515

calling managed code methods from
JavaScript, 524, 525

embedding Silverlight within Windows gadget,
567

hosting Silverlight on all platforms, 497
encoding

markers using Expression Encoder, 870–871
media files, 900

Ended event, MediaElement, 869
EndGetRequestStream method, 601
EndGetResponse method, 601, 612
EnterSound behavior, 233
Entity classes, 761
Entity Data Model Wizard, 762
Entry element, CSPL, 867
EnumDataTypeAttribute, 780
Environment class

GetFolderPath method, 733
error handling, JavaScript, 498
Error property, SendCompletedEventArgs, 683
ErrorContent property, ValidationError, 468
errors

binding validation error, 315
displaying binding validation errors, 463
getting error information, 301
getting validation error summary, 302
onSilverlightError function, 496
vaidation error notification, 301
validation error tooltip, 464–468

ErrorStyle property, ValidationSummary, 469,
473, 478

essence, media files, 900
event handling

keyboard events, 180–184
setting focus for keyboard input, 500–504

EventData property, TimelineEvent, 966, 969
events

adding in Visual Studio 2010, 30
App_Startup, 17
Application_Exit, 17
BindingValidationError, 301
CollectionChanged, 264
ContentFrame_Navigated, 554
DataGrid_SelectionChanged, 553

■ INDEX

999

dockStateChanged, 563
DoWork event, 72
handling COM event, 732
IApplicationLifetimeAware interface, 100
loadGadget, 563
LoadingRowDetails, 375
managing embedded resources, 93
PropertyChanged, 263
RoutedEvents, 159
RowDetailsVisibilityChanged, 375
UnloadingRowDetails, 375

EventTime property, TimelineEvent, 966, 969
Exception property, ValidationError, 468
exceptions

catching within background thread, 72
managing unhandled exceptions, 70–71

exchanging data between Silverlight applications,
680–698

Exclude Overlap option, Expression Blend, 135,
136, 137

Exited/Exiting events, IApplicationLifetimeAware,
100

Expander control
defining custom visual state in custom

control, 443–453
ExponentialEase function, 209
Export dialog box, Expression Design, 114
Expression Blend

Assets tab, 231
brush editor, 116, 119
Combine menu, 134
combining shapes, 133
control behavior in, 479–483
Data panel, 221–223
Define New Object Data Source dialog, 229
Define New Sample Data dialog, 223
description, 112
designer-unsafe code, 481
designing control template, 339–341
design-time data in, 221–231
drawing objects in, 131–149
drawing with geometries, 138–139, 144–149
drawing with Path objects, 137–138, 139–144
drawing with shapes, 132–137
EasingFunction tab, 210
Edit Sample Values dialog, 227
enhancing design experience with behaviors

and triggers, 486–494
Expression Design exporting to, 113, 114
Group Into option, 136, 141
Line tool, 137
Make Control option, 136
Pen tool, 137
Pencil tool, 137

sizing objects, 122
States editor, control template, 344
template bindings, 342
visual editing tools, 116
visual state, controls, 345
working with colors and gradients in, 115–122
working with design-time data, 223

Expression Blend 4, 7, 10, 22, 25–32
animations, 28–30
Asset Library, 27
Assets tab, 27
behaviors, 232
creating resource dictionary, 106–107
Data tab, 27
designer surface (Artboard), 26
features, 26
grid lines, 26
importing files, 114
importing from Adobe Photoshop or

Illustrator, 23
LayoutRoot control, 27
managing XAML resources, 88
navigating, 26
opening Silverlight application in, 24
Projects tab, 27, 28
Properties window, 26
prototype application design, 244
Resources tab, 88, 89
Resources window, 27
Search text box, 27
Sketchflow, 24
storyboards, 27, 28
switching tabs, 26
time line recording mode, 28
using with graphic primitives, 111
Visual State Manager, 27
XAML visual tree, 27
zoom in/out, 26

Expression Design, 112
Export dialog box, 114
exporting to Expression Blend, 113, 114
importing art from, 112–115

Expression Design 4
importing files, 114

Expression Encoder
displaying/seeking using SMPTE timecodes,

887
encoding markers using, 870–871
selecting target profile in, 952
setting up smooth streaming, 950, 951
testing smooth streaming presentation,

956–957
timecodes, 888

Expression Gallery, 5

■ INDEX

1000

Expression Studio 4, 112
expressions

binding expressions, 248
Extensible Application Markup Language see

XAML
external manifests

creating, 975
merging manifests at runtime, 976
merging metadata from, 974–977

■ F
fallback values

providing defaults for bound data, 326, 327
FallbackValue property, 327
file system access, 733
FileDialogFileInfo class

OpenRead/OpenText methods, 63
FileIndex property, 62
files

application project files, 15
code-behind files, 15
CreateFile method, 56
Open File dialog, 62
OpenFileDialog class, 61
saving anywhere on system, 108–110
selecting local file on client, 61–65

Fill property
rendering geometry, 144
replacing RadioButton default control

template, 353
visual state, controls, 348

Filter property, OpenFileDialog, 61
FilterDescriptor class

navigating RIA LOB data, 773
FilterIndex property, 61
filtering data

navigating RIA LOB data, 773
FindElementsInHostCoordinates method, 454,

455, 463
FindName method, FrameworkElement

loading XAML dynamically at runtime, 48, 49
loading XAML for user controls, 401
locating controls at runtime, 37, 38

FindName method, Root, 817
FindRoot method, Helper, 817
Firefox

running Silverlight application, 2
FlipBackBuffer method, ScreenRecorder, 912
FlowDirection property, FrameworkElement

using right-to-left text, 242
flyout view, gadgets, 556, 557
FlyoutView.html file, 557, 560
FlyoutView.xaml file, 558, 567

focus, setting for keyboard input, 500–504
Focused state, 353, 360
font rendering, 4
Foreground property, ListBox, 92
Form class, 122
FormatChanged event

processing raw webcam output, 943
formats, video and audio, 925
formatting strings, data binding, 328
Frame class, 548

JournalOwnership property, 548
UriMapper object, 550

frame rate, 887, 888
varying playback speeds, 982

FrameHeight property, 911
FrameHeight value, 905
FrameRate property

MediaSlider, 899
ScreenRecorder, 911, 912

frames, video, 887
FramesPerSecond property, 925
FrameWidth property, 911
FrameWidth value, 905
FrameworkElement class, 111

child items, 413
creating and initializing pop-up, 363
custom controls, 428
FindName method, 37, 38, 401
FlowDirection property, 242
GetBindingExpression method, 317
getting error information, 302
locating controls at runtime, 37
SetBinding method, 247, 254, 392
Style dependency property, 335

frameworks
Navigation Framework, 546–554

FriendlyName property, CaptureDevice, 928
From property, DoubleAnimation, 157
FromTicks method, TimeCode, 888, 900
full-screen mode, Silverlight, 506–512
FullScreenChanged event, 507, 509, 511

■ G
gadget development model, 558
gadget JavaScript API, 562
gadget views, 557
Gadget.xml file, 570, 571
GadgetApp.xaml.cs file, 564

DockGadget method, 567
embedding Silverlight within Windows gadget,

564

■ INDEX

1001

gadgets
creating Windows Sidebar gadget, 555
embedding Silverlight within, 555–571
installing Silverlight recipes gadget, 559
loadGadget event, 563
LoadGadgetSettings method, 568, 569
options dialog box, 555
packaging, 558
SaveGadgetSettings method, 568, 569
Silverlight 4, 568
Silverlight gadget web project layout, 556
SilverlightRecipesGadget project, 555
testing, 559
Windows 7, 555

GenerateEditingElement method, 392, 395, 396,
397

GenerateElement method, 392, 395
generic.xaml file, custom controls, 426

Expander control, 445
ProgressBar implementation, 429

geometries, Expression Blend
drawing with, 138–139, 144–149
rendering, 138

with Path object, 144
GeometryGroup element, 145
GET verb, 601, 602
GetAvailableAudioCaptureDevices method, 925
GetAvailableVideoCaptureDevices method, 925
GetBindingExpression method, 317
GetBroadcastStreamsList method, 829, 844
GetCaptionsForMedia method, 875, 885
GetChild method, VisualTreeHelper, 454
GetColor method, 517
GetCommercial method, 886
GetCurrentResizeEdge method, 729
GetData method, 362, 384
GetDefaultAudioDevice method, 925
GetDefaultVideoDevice method, 925
getElementById method, document

calling JavaScript method from managed
code, 515

calling managed code methods from
JavaScript, 525

loading XAML dynamically at runtime, 49, 50
GetEvent method

handling COM event, 732
GetFolderPath method, 733
GetImageNames method, 642
GetIsNetworkAvailable method, 705
GetLocationList method, 808
GetManifestResourceNames method

managing embedded resources, 91, 93
using WrapPanel, 423

GetManifestResourceStream method
displaying information in pop-ups, 367
managing embedded resources, 91
using WrapPanel, 423

GetObject method
instantiating COM object, 732

GetOnDemandStreamsList method, 829, 844
GetParent method, VisualTreeHelper, 454
GetPhotoFileNames method, 642
GetPhotoMetadata method, 643
GetPhotos method, 441
GetProductDetail method

configuring WCF to use JSON, 616
consuming WCF service, 584
POX-style message exchange, 607

GetProductHeaders method, 593, 599
configuring WCF to use JSON, 616
POX-style message exchange, 603, 607

GetProductHeadersCompleted event, 599
GetProductPage method, 407
GetProductsAsync method, 384
GetProductsCountAsync service, 410
GetResourceStream method, 642
GetResponseStream method, 601, 612
GetSampleAsync method, 904, 918

processing raw webcam output, 944
GetStylusPoints method, 186
GetTemplateChild method, 427
GetText method, Clipboard, 238
GetUserStoreForApplication method, 56
GetValue method, DependencyObject, 403
Global Offset X/Y values, 197, 198
GoToState method, 442, 443
GPU acceleration, 205, 206, 207

Out-of-Browser Settings dialog, 701
gradient brushes, 118
GradientBrush object, 115
gradients, Blend, 115–122

brush editor options for radial gradients, 117
modifying with brush transform, 119

graphic animations, performance, 205–208
graphics

see also animations; visual effects
drawing objects in Expression Blend, 131–149
perspective 3-D graphics, 4
transforming objects, 169–174
using animations with objects, 157–164
vector graphic primitives, 132

Grid control, 123, 124–125, 128–131
applying rounded corners to, 152
automatic layout and resizing, 130
building PagedProductsGrid control, 403–412
ColumnDefinitions collections, 124, 129
Height property, 124

■ INDEX

1002

layout container, 413
loading XAML dynamically at runtime, 49
RowDefinitions collections, 124, 129
SelectionIndicator, 359
Width property, 124

grid lines, Expression Blend, 26
GridSplitter control, 125
Group Into option, Expression Blend, 136, 141

■ H
H.264 video support, 4
Handled value, KeyEventArgs, 180, 181
handwriting recognition, 184, 185
Hard Rock Café web site, 10
hardware acceleration, 205–208
HasMessage method, 673
HasMorePages property, 783
HasQuartileEvents property, 978
Header property, 469, 478
HeaderContent property, 445
HeaderContentTemplate property, 445
HeaderTemplate property, 469
Height property

Grid, 124
setting on controls, 129, 130
star (*) sizing, 124

Height value, MediaStreamAttributeKeys
enumeration, 904

Helper class
FindRoot method, 817

HierarchicalDataTemplate class, 712
HLSL (High Level Shading Language), 217
HomeExpenseGraph application

exchanging data between applications, 685,
694

HomeExpenseWorksheet application
exchanging data between applications, 683,

691
Horizontal orientation, WrapPanel, 419
HorizontalOffset property, Popup, 364
HorizontalScrollBarVisibility property, 150
HorizontalTemplate

MediaSlider control, 811
Thumb control, 811

Host Silverlight application in new Web site
option, 14

hosting HTML in Silverlight application, 541–544
hosting Silverlight on all platforms, 495–498
How It Works sections

format of recipes in this book, 1
HTML

hosting in Silverlight application, 541–544
layering over Silverlight plug-in, 538, 541

painting Silverlight element with, 544–546
HTML Bridge

calling JavaScript method from managed
code, 515, 516

calling managed code methods from
JavaScript, 524

exchanging data between multiple plug-ins,
532

gadget development model, 558
HTML test page

source code for, 498
TestWeb web project, 19

HtmlDocument class, 516, 515
HtmlElement class, 516, 516
HtmlPage class, 516, 515, 516

Invoke method, 532, 533, 534
HtmlUtility class, 516
HtmlWindow class, 516
HTTP (Hypertext Transfer Protocol)

accessing resources over, 618–643
configuring WCF for non-SOAP endpoints, 602
cross-domain access, 676, 677
exchanging JSON messages with HTTP

endpoint, 613–618
exchanging XML messages over, 600–612
using JSON serialization over, 613–618
WebClient and HTTP endpoints, 619
WMS HTTP server control protocol plug-in,

826
HTTP resource access

clientaccesspolicy.xml, 678
HttpWebRequest type

Create method, 601
exchanging JSON messages with HTTP

endpoint, 613
exchanging POX messages over HTTP, 600,

602
GET/POST verbs, 601
Method property, 601
updating UI from background thread, 83
using in Silverlight, 601–602

HttpWebResponse type
exchanging JSON messages with HTTP

endpoint, 613
exchanging POX messages over HTTP, 600,

602
using in Silverlight, 601–602

HyperlinkButton objects, 549

■ I
IApplicationLifetimeAware interface, 100, 101
IApplicationService interface, 100, 101
ID property, Spending class, 691

■ INDEX

1003

IEasingFunction interface, 209
iframe, TestWeb project, 19
IIS Management Console, 954
IIS Media Services package, 950–954
IIS Smooth Streaming see smooth streaming
IIS Smooth Streaming Player Development Kit,

958
IIS7, setting up, 954–955
image brush, applying to objects, 120
Image control

applying rounded corners to, 152
Clip property, 145, 146
managing embedded resources, 91

ImageBrush class, 120, 121
ImageData type, 441
images

BitmapImage class, 198
capturing still image, 926, 930
dynamically creating bitmaps, 198–205
saving to disk, 743
Windows Image Acquisition, 734–737

ImagesCollection type, 422
ImageSources collection, 642
ImageUri element, 796
ImageUri property, 367
importing art from Expression Design, 112–115
IncreaseQuotaTo method, 56
InError property, Employee, 307, 312, 315
inheritance, styles, 335
InitData function, 410
initialization parameters

creating application services, 104
exchanging data between multiple plug-ins,

533
InitializeComponent method

App.xaml.cs file, 17
loading XAML for user controls, 400

InitMediaElementConnections method, 817, 819
initParams parameter, 497, 560
ink, working with, 184–191
InkPresenter control, 184–191

Background property, 186
INotifyCollectionChanged interface, 264–265, 271
INotifyPropertyChanged interface, 263–264, 271
in-place editing, Expression Blend, 89
input validation, bound data, 301–316
input, keyboard

handling, 180–184
setting focus for, 500–504

InsertContent method, 966
Install method, Application, 703
installation and update control, 36
Installation options dialog, 703
InstallState property, Application, 703, 704

IntelliSense
attached properties, 126

interactive user experiences, 7
interactivity, application

reusing with behaviors, 231–233
Internet applications

Silverlight 3 enhancements, 4
Internet Explorer 8

embedding Silverlight in IE8 Web Slice,
571–576

interoperability, COM, 731–733
interpolation options, 165
Intersect option, Expression Blend, 135, 136
Interval property, RepeatButton

MediaSlider control, 811
InvalidateMeasure, WrapPanel, 420
InvalidFocused state, 467
InvalidUnfocused state, 467
InventoryLevelBrush property, 363
InventoryLevelMessage propertyUI, 363
invocation, asynchronous, 601
Invoke method

exchanging data between multiple plug-ins,
532, 533, 534

POX-style message exchange, 612
triggers, 487

InvokedFromHtmlButtonClick method, 527
IronPython/IronRuby

creating Silverlight using, 95–99
IsBusy property

accessing resources over HTTP, 619, 642
IsDefaultDevice property, 928
IsFullScreen property, 506–512
IsInDesignTool property, 481, 482
IsMouseOnMoveZone method, 730
IsMuted property, MediaElement, 795
isolated storage, 54–61
IsolatedStorage file system, XmlReader class, 66
IsolatedStorage namespace, 55
IsolatedStorageException class, 55
IsolatedStorageFile class, 55, 56
IsolatedStorageFileStream class, 55, 56
IsolatedStorageSettings class, 55, 56
IsOpen property, menus, 370
IsRunningOutOfBrowser property, 704
IsSmoothStreamingSource property, 977
ItemContainerStyle property, ListBox

accessing resources over HTTP, 635
customizing default ListBoxItem UI, 354–363
managing embedded resources, 92

ItemDetails view, 552
Navigation Application template, 553

ItemIndex parameter, pop-ups, 370
ItemRemoved value, MessageType, 687

■ INDEX

1004

Items property, WIADevice, 742
ItemsControl class

custom controls, 428
ItemTemplate property, 257
using WrapPanel, 421

ItemSource property
accessing RESTful data using OData, 748
binding data to UI, 253
databinding in XAML, 772
ListBox, 39, 40

ItemsPanel control, 407
ItemsPanelTemplate, 422, 423
ItemsSource property

applying custom templates to DataGrid cells,
390

building out of browser application, 710
customizing default ListBoxItem UI, 354, 362
displaying row details in DataGrid, 384

ItemTemplate property
accessing resources over HTTP, 635
building out of browser application, 712
binding data to UI, 253
customizing default ListBoxItem UI, 354
using DataTemplate, 257

IValueConverter interface
converting values during data binding,

280–292
implementing value conversion, 281–282

■ J
JavaScript

calling method from managed code, 515–523
calling managed code methods from, 523–530
CreateFromXaml method, 48
debugging, 559
DockedUndocked.js file, 562
DoReceive function, 533
gadget JavaScript API, 562
loading XAML dynamically at runtime, 48–53
loadSettingsView function, 570
naming methods, 533
onSilverlightError function, 496
OnWebRequestCompleted method, 522
RequestData function, 533
SettingsView.js file, 569
Shared.js file, 562
Silverlight.js file, 562
source code for HTML test page, 498
WebRequest class, 522

Join method, ClientConnectionManager, 665
JournalOwnership property, Frame, 548

JScript
creating Silverlight using Managed JScript,

95–99
JSON (JavaScript Object Notation), 613

configuring WCF to use, 614
exchanging messages with HTTP endpoint,

613–618
serialization and deserialization, 616
service contract modified for, 615
using serialization over HTTP, 613–618
using sockets to communicate over TCP, 647

■ K
key codes, platform, 180
Key Frame check box, 871
Key property, XAML, 44

declaring DataTemplate, 256
managing XAML resources, 87

Key value, KeyEventArgs, 180
Keyboard class

Modifiers property, 181
keyboard input

handling, 180–184
RadioactiveBall game, 181–184
security, 181
setting focus for, 500–504

KeyDown event, 180–184
KeyEventArgs object, 180, 181
keyframe animations, 158
KeyFrameFlag value, 905
keyframes

animating UI elements with, 164–169
animations, Expression Blend, 28–29
bouncing ball animation, 165–167

KeyFrames collection, 164
KeySpline Bezier curve, 165, 166
KeySpline property, 165
KeyUp event, 180–184
KnownDuration state, 849
KnownTypeAttributes, MessageWrapper, 649

■ L
layering HTML over Silverlight plug-in, 538–541
layout controls

automatic layout and resizing, 130
Canvas control, 123, 125–127
creating custom layout container, 412–425
Grid control, 123, 124–125, 128–131
GridSplitter control, 125
Margin property, 123, 124
Padding property, 123, 124
positioning UI elements, 122–131

■ INDEX

1005

setting Width/Height properties, 129, 130
StackPanel control, 123–124, 127–128

layout system, 122, 123
separation of controls, 123
star (*) sizing, 124, 125

LayoutRoot control, 400
binding data to UI, 253
displaying information in pop-ups, 370, 374
dynamically creating bitmaps, 198
Expression Blend, 27

LayoutRootBorder object, 517
layouts

providing scrollable content for, 149–151
LayoutUpdated event, ScrollViewer, 463
Left property

Canvas, 125
controls, 122

Line tool, 140–141
creating curves with, 141
Expression Blend, 137

linear interpolation, 165
LinearGradientBrush class

managing XAML resources, 87
line-of-business applications see LOB

applications
LINQ

accessing XML data, 65–70
LINQ to XML

parsing XML data, 66, 69–70
XDocument class, 66

Linux
running Silverlight 4 on, 33

list mode, Expression Blend, 222
ListBox control

accessing controls/classes, 39
applying custom templates to DataGrid cells,

390
Background property, 92
binding data to UI, 253
controlling scroll behavior in ScrollViewer,

455, 458
customizing default ListBoxItem UI, 354–363
DataContext property, 44
DataTemplate in, 262
Foreground property, 92
ItemContainerStyle property, 92, 354
ItemSource property, 39, 40
ItemsSource property, 354, 390
ItemTemplate property, 354
managing embedded resources, 91, 92
retrieving XML data, 67
using ProgressBar, 434, 437
using WrapPanel, 421, 423

ListBoxItem control
customizing default UI, 354–363

ListBoxPanelOrientation type, 425
Listen method

LocalMessageReceiver class, 681
Socket class, 667

Load method
loading XAML dynamically at runtime, 48, 53
using markers to display timed content, 885
XamlReader, 48, 53, 885
XDocument, 66

LoadAsync method, 748
LoadCompleted event

accessing RESTful data using OData, 748
hosting HTML in Silverlight application, 542
painting Silverlight element with HTML, 545

LoadComponent method, 401
Loaded event, triggers, 158, 159
loadGadget event, 563
LoadGadgetSettings method, 568, 569
LoadingRowDetails event, 375, 384
loadSettingsView function, 570
LoadThumbnails method, 642
LOB (line-of-business) applications, 22

accessing RESTful data using OData, 746–749
Business Application Template, 768–770
data access enhancements, 745–746
data validation through data annotation,

779–782
databinding in XAML, 770–772
implementing CRUD operations

in RIA Services, 775–778
in WCF Data Services, 756–760

navigating RIA LOB data, 773–775
printing in, 783–785
Silverlight enhancements, 5, 745
using WCF Data Services tooling, 750–756
using WCF RIA Data Services tooling, 760–767

local connection feature
exchanging data between applications,

680–698
locally installed applications

building out-of-browser application, 700
updating, 705–706

LocalMessageReceiver class, 683, 694, 698
Listen method, 681
receiver registration, 680

LocalMessageSender class, 682, 683, 694, 698
SendAsync method, 682, 694
SendCompleted event, 682

LocalNoteManagerClient class, 712, 721
local: namespace prefix, 249
locations.xml

installing sample code for video player, 796

■ INDEX

1006

■ M
M11/M12/M21/M22 values, MatrixTransform,

171
Mac, running Silverlight 4 on, 33
MainPage class, 721

CurrentNote property, 712, 721
NetworkOn property, 712, 721
NotesByDate property, 721
RefreshNotesView method, 721
SSPlayer assembly, 959

MainPage.xaml file, 15, 17, 18
linking to MainPage.xaml.cs file, 18
source code for HTML test page, 498

MainPage.xaml.cs file, 15, 17
animations, Expression Blend, 29
linking to, 18
source code for HTML test page, 498

MainPage_Loaded event, 101, 104
MainPage_Loaded event handler, 747
MainVideo property, 808
MainVideo_MarkerReached event handler, 885
MainWindow property, 722
Make Clipping Path option, 138
Make Compound Path option, 138
Make Control option, Expression Blend, 136
Make Into UserControl dialog, 136, 137
Manage method, ServerConnectionManager, 673
managed code

calling JavaScript method from, 515–523
calling methods from JavaScript, 523–530
loading XAML dynamically at runtime, 48,

53–54
managed decoder, building, 900–924
Managed Extensibility Framework (MEF), 6
Managed JScript

creating Silverlight using, 95–99
manifest file, Silverlight tab, 19
ManifestMerge event, SSME, 974, 976
ManifestOutput attribute, 965
ManifestReady event, 965
manifests

combining streams using composite
manifests, 982–985

creating external manifests, 975
injecting textual metadata and content into

client manifest, 966–969
merging at runtime, 976
merging metadata from external manifests,

974–977
tracking fragment data contained in, 965

ManualResetEvent class, 72
processing raw webcam output, 944

Margin dimension
controlling scroll behavior, 463

Margin property, 123, 124
MarkerReached event, 872, 885
markers, 870

encoding, 870–871
MediaElement and, 871–872
displaying timed content, 870–886

markup extensions
Binding markup extension, 192, 247, 248
managing XAML resources, 86

Masked textbox, 6
Matrix3D class, 192
Matrix3DProjection class, 192
matrixes, 3-D, 192
MatrixTransform class, 170–174
maxFramerate parameter, 497
MaximumProperty property, 402
MBR (multiple bit rate) video files, 824
mc: namespace reference, 43
Measure method, UIElement, 414, 419
Measure pass, 123
MeasureOverride method, 413, 419
media

acquiring, 792–793
adding support for streaming video, 823–864
adding video to pages, 787–792
building custom MediaStreamSource, 914–924
building recorder component, 906–914
client-side playlists (CSPL), 866–867
controlling media play, 793
displaying/seeking using SMPTE timecodes,

886–900
sampling, 904–905
seeking within, 794, 906
Silverlight support for, 787
SSPL (server-side playlists), 864–866
states of acquiring and playing media, 793–794
stream switching, 905
using markers to display timed content,

870–886
using playlists to package, 864–869

media element, SSPL, 865
using markers to display timed content, 875

media files
building managed decoder, 900–924
decoding, 900
encoding, 900
essence, 900
markers, 870
MediaElement and markers, 871–872
metadata, 900
structure of, 900
types supported by Silverlight, 901

■ INDEX

1007

using markers to display timed content,
872–886

using playlists to package media, 864–869
Media Services package, IIS, 950–954
media stream, initializing, 902–904
media support, 4
MediaAttributes property, 905
MediaButtonsPanel control, 804, 819–823

code changes for streaming, 860
OnApplyTemplate method, 823
template for, 819–820
XAML for, 856

MediaElement class, 788
acquiring media, 792–793
adding support for streaming video, 823–864
adding video to pages, 787–792
Behavior<T> type, 488
creating video player, 792–823
default behavior of type,901
events

CurrentStateChanged, 491, 794, 818, 819,
869

DownloadProgressChanged, 793, 818
Ended, 869
MarkerReached, 872
Opened, 869

markers and MediaElement, 871–872
methods

Pause, 793
Play, 793
PopulateMediaMenu, 844
SetSource, 793, 901, 902, 923, 944
Stop, 793

progressive download, 793
properties

AudioStreamIndex, 904, 905
AutoPlay, 788, 793
BufferingProgress, 905
BufferingTime, 839
CanPause, 860, 864
CanSeek, 864
CurrentState, 793, 794
DownloadProgress, 793
IsMuted, 795
NaturalDuration, 794, 818
Position, 794, 888
Source, 793, 788
Volume, 795

sampling, 904
setting opacity to zero, 121
states of acquiring and playing media, 793–794
switching video between PIP and main

display, 808

using markers to display timed content,
870–886

using playlists to package media, 864–869
MediaElementState values, 794
MediaInfo class, 911
MediaLocation element, 796
MediaLocationProvider WCF service, 829
MediaLocationProvider.svc, 796
MediaMenuData type

creating video player, 796
Description property, 804
MediaPreview property, 804

MediaOpened event, 886
MediaPreview property, 804
MediaSampleAttributeKeys enumeration, 905
MediaSlider control, 804, 809–819

buffering video, 855
code changes for streaming, 849
DefaultStyleKey property, 817
FrameRate property, 899
HorizontalTemplate, 811
OnApplyTemplate method, 817
playing broadcast stream, 856
playing on-demand stream, 856
PropertyChanged event, 900
SMPTETimeCode property, 899, 900
SourceName property, 817, 818, 855
template for, 809–811
Value property, 819
VerticalTemplate, 811
video player with SMPTE timecode support,

889, 892
XAML for, 845

MediaSource.DownloadProgress, 855
MediaSource.NaturalDuration, 818
MediaSource.Position, 819
MediaSource_CurrentStateChanged handler, 818,

855
MediaSource_DownloadProgressChanged

handler, 818
MediaSource_Opened handler, 855
MediaSourceAttributesKeys enumeration, 903,

918
MediaStreamAttributeKeys enumeration, 904, 918
MediaStreamDescription class, 903, 904

MediaAttributes property, 905
StreamId property, 904
Type property, 905

MediaStreamSource class, 901–902
building, 906, 914–924
building managed decoder, 900–924
GetSampleAsync method, 904, 918, 944
OpenMediaAsync method, 902, 918
ParseMediaStream method, 918

■ INDEX

1008

Report<methodname>Completed method,
902

ReportGetSampleCompleted method, 905, 945
ReportGetSampleProgress method, 905
ReportOpenMediaCompleted method, 902,

903, 918
ReportSeekCompleted method, 906
SeekAsync method, 906, 919
seeking within media, 906
SwitchMediaStreamAsync method, 905

memory buffers
ScreenRecorder class, 911

MenuItemData class
displaying information in pop-ups, 366, 370,

374
MenuItemImage property, 367
menus

displaying information in pop-ups, 367, 370
merged resource dictionary, 105, 106
MergedDictionaries collection

managing XAML resources, 87
MergeExternalManifest method, SSME, 974, 976
Message class, 687
Message property

exchanging data between applications, 681,
683

ValidationSummary, 469
MessageBody property

using sockets to communicate over TCP, 654
MessageHeader property, 469
MessageReceived event, 698
MessageReceivedEventArgs class, 683

Message property, 681
Response property, 682

messages, receiving, 681
messages, sending, 682
MessageSentEventArgs class, 683
MessageType.ItemRemoved value, 687
MessageWrapper type, 649

Body property, 665
DeserializeMessage method, 665
SerializeMessage method, 666

metadata
clip metadata data source, 979
injecting textual metadata and content into

client manifest, 966–969
markers, 870
merging from external manifests, 974–977
structure of media files, 900
using at playback, 969–973

metadata class
data validation through data annotation, 779

metadata streams
adding, smooth streaming, 963–973

Metadata.svc file, 622
MetadataUpload.aspx file, 622, 643
Method property, HttpWebRequest, 601
microphone, 925

using, 924–931
Microsoft Advanced Systems Format (ASF), 901
Microsoft AJAX Library, 517, 521
Microsoft Developer Network (MSDN)

Premium subscriber, 10
minRuntimeVersion parameter, 497
mms (Microsoft Media Server) protocol identifier,

830
Mode property, data binding, 263, 276
Modifiers property, Keyboard, 181
Moonlight plug-in (Linux), 34
Moonlight project, 1
motion blur, 216
MouseEnter/MouseLeave animations, 159
MouseLeftButtonDown event, 185, 186
MouseLeftButtonUp event, 185, 187
MouseMove event, 185, 186, 292
MouseOver state, control template

customizing default ListBoxItem UI, 360
replacing RadioButton default control

template, 353
visual state, controls, 345, 348

MouseRightButtonDown event, 236
MouseRightButtonUp event, 236
MouseRightDown event, 234
MouseRightUp event, 234
MP4 File Format, 901
MPEG-4 File Format version 2, 901
multi-animation storyboard, 167, 168, 169
MultiManifestContent.xml file, 975
multiple bit rate (MBR) video files, 824
Multiselect property, OpenFileDialog, 62

■ N
Name property, XAML, 38
namescopes, XAML, 38
namespace import IntelliSense window

Visual Studio 2010, 39
namespace references, 43
namespaces

controls, 333
d: namespace prefix, 225
local: namespace prefix, 249
Silverlight, 36
Silverlight 2, 2

NaturalDuration property, MediaElement, 794,
818

Navigate method, WebBrowser, 542
NavigateToString method, WebBrowser, 542

■ INDEX

1009

NavigateUri property, HyperlinkButton, 549
navigating RIA LOB data, 773–775
Navigation Application template, 13, 192, 546–554,

769
About view, 548
browser journaling integration, 548
creating new application with, 546
initial application UI at runtime, 547
initial project layout, 547
pass parameters/state between navigation

Page objects, 554
programmatically navigating between pages,

552
Navigation Framework, 546–554
Navigation namespace, 548
NavigationService.Navigate method, 553
NeedsDownload state, 849
nested containers, building UI with, 130
.NET, XML resolver in, 66
.NET Framework for Silverlight, 35
network availability API, 700
network programming stack, 577

POX-style message exchange, 607
NetworkAddressChanged event, 705, 721
networking

detecting network availability, 705
enabling cross-domain access, 676–680
streaming video, 824
using sockets to communicate over TCP,

643–675
NetworkOn property, MainPage, 712, 721
New Silverlight Application dialog, 13, 14
nodes, adding to existing Path, 143
NoDownload state, 849
noncollection types, change notification for,

263–264
Normal state

customizing default ListBoxItem UI, 359
replacing RadioButton default control

template, 353
visual state, controls, 348

Northwind Data Service
databinding in XAML, 771
implementing CRUD operations in WCF Data

Services, 757
using WCF Data Services tooling, 750

NorthwindContext class
AddToOrder_Details method, 760
BeginSaveChanges method, 759
ChangesSaved method, 760
UpdateObject method, 759

NotesByDate property, MainPage, 721
NoteTaker application

building out of browser application, 706–722

controlling application window, 725
notifications

see also change notifications
taskbar notification, 743
vaidation error notification, 301

NotificationWindow type, 744
NotifyCollectionChangedAction enumeration, 271
NotifyCollectionChangedEventArgs type, 264, 271
NotifyOnValidationError property, 302, 312
null value replacement

providing defaults for bound data, 326, 327
TargetNullValue property, bindings, 327

■ O
Object class, 111
object positioning, Windows Forms, 122
object tag

calling JavaScript method from managed code,
515

hosting Silverlight on all platforms, 496, 497,
498

TestWeb web project, 19
ObjectAnimationUsingKeyFrames class, 164
objects

sizing, 122
transforming, 169–174
using animations with, 157–164

Objects and Timeline window, 165, 166, 168
ObservableCollection<T> type, 271, 302
OData

accessing RESTful data using, 746–749
using WCF Data Services tooling, 750–756

offline mode, 700
OffsetX/OffsetY values, MatrixTransform, 171
OnApplyTemplate method

custom controls, 427, 428
defining custom visual state in custom

control, 445
designer-unsafe code, 482
ProgressBar implementation, 433

OnApplyTemplate method
MediaButtonsPanel, 823
MediaSlider, 817

OnAttached method, Behavior, 486, 487
OnCaptureStarted method, VideoSink, 932
OnCaptureStopped method, VideoSink, 932
on-demand publishing points, 827

playing SSPL, 868
on-demand stream, playing, 856
OnDemandStreams.xml, 829, 868

playing CSPL, 868, 869
playing SSPL, 868, 869

■ INDEX

1010

OnDetaching method, Behavior, 486, 487
onError event, 497
OneTime value, BindingMode, 276
OneWay value, BindingMode, 276
OnFormatChanged method, VideoSink, 932, 936
onLoad event handler

calling managed code methods from
JavaScript, 526

setting focus for keyboard input, 500–504
OnLoad method

loading XAML dynamically at runtime, 49
onLoad parameter, 497
OnProdHdrUpdReqStreamAcquired method, 6,

617
OnProductDetailUpdateRequestStreamAcquired

method, 618
OnProductHeadersReceived method, 612
onResize event

hosting Silverlight on all platforms, 497
implementing full-screen UI, 510

OnSample method, VideoSink, 932, 936
onSilverlightError function, JavaScript, 496, 498
onSilverlightLoad event, 49, 50, 501
onSilverlightLoaded event, 525
OnWebRequestCompleted method, 522
OOB see out-of-browser applications
Opacity property

using animations with objects, 158, 159
OpacityMask, 117
Open File dialog, 62
Opened event, MediaElement, 869
OpenFileDialog class, 61

FileIndex property, 62
Filter property, 61
FilterIndex property, 61
Multiselect property, 62
ShowDialog method, 61, 62

Opening value, MediaElementState, 794
OpenMediaAsync method, 902, 918
OpenRead method, FileDialogFileInfo, 63
OpenReadAsync method, 619, 642
OpenReadCompleted event, WebClient, 104, 642
OpenText method, FileDialogFileInfo, 63
OpenWriteAsync method, 619, 643
OperationContractAttribute, 584
options dialog box, gadgets, 555
Organization class, 38, 39, 41
Orientation property

MediaSlider control, 811
StackPanel, 123, 128
WrapPanel, 419, 420, 424

OrientationPropertyChangedCallback method,
420

OrientationToTransformConverter type, 431

out-of-browser applications
building, 699–722
COM interoperability and file system access,

730–744
controlling application window, 722–730
IsRunningOutOfBrowser property, 704
saving files anywhere on system, 109
updating locally installed applications,

705–706
out-of-browser experience, 19
Out-of-Browser Settings dialog, 700, 701

controlling application window, 723
selecting OOB icons, 702
Shortcut name field, 701
Use GPU Acceleration check box, 701

out-of-browser support
Silverlight 3 enhancements, 6
Silverlight 4 enhancements, 8

■ P
Padding property, 123, 124
Page class

Navigation Application template, 548
passing parameters/state, 554
Title property, 548

page load
setting focus for keyboard input, 500–504

Page UserControl object, 558
PagedProductsGrid control

adding user controls, 399
building, 403–412

pages see web pages
PageSize property

navigating RIA LOB data, 773
PageVisual property

printing in LOB application, 783
paging

navigating RIA LOB data, 773
Paint.NET

embedding Silverlight within Windows gadget,
562

Panel class, 122
Children collection, 413
containers inheriting from, 123
creating custom layout container, 412–425

param tags
calling JavaScript method from managed code,

515
hosting Silverlight on all platforms, 497

parameters
initialization parameters, 533
initParams parameter, 560

ParentCollection property, 698

■ INDEX

1011

ParentMenuItem parameter, 370
ParentPage property, 656
ParentStreamIndex attribute, 966
Parse method, XDocument, 642
ParseExternalManifest method, SSME, 974, 976
ParseFramerate method, 888, 899
ParseMediaStream method, 918
Participant class

HasMessage method, 673
ProcessMessage method, 673
ReceiveMessage method, 673
SendMessage method, 673
Startup method, 673
using sockets to communicate over TCP,

667–673
Participants collection, ConnectionReply

message, 665
Participants property, ClientConnectionManager,

654
pasting using clipboard, 238–241
Path Context menu suboptions, 780
Path Mini-Language, 140, 141, 147
Path objects

adding nodes to, 143
closing into enclosed shape, 143
combining basic shapes, 132
combining ellipses into cloud, 133, 134
combining ellipses using Subtract, 136
Context menu suboptions, 138
Convert to Path option, 138, 140
curving, 140
Data attribute, 138
Data property, 135, 138, 139, 147
drawing with, Expression Blend, 137–138,

139–144
GeometryGroup element, 145
Group Into option, 141
Line tool, 140–141
Make Clipping Path option, 138
Make Compound Path option, 138
making shapes by closing, 137
Pen tool, 141–143
Pencil tool, 143–144
Release Clipping Path option, 138
Release Compound Path option, 138
rendering geometry with, 144
taking geometry as property to draw, 138

Path property, bindings, 293
PathGeometry object, 146
Pause method, MediaElement, 793
Paused value, MediaElementState, 794
PauseStates group, 860
Pen tool, 137, 141–143
Pencil tool, 137, 143–144

performance
graphic animations and video streaming,

205–208
persistence

storing data on client, 54–61
perspective 3-D graphics, 4
perspective transforms

adding 3-D effects to UI elements, 191–198
PhoneNum property, 330
PhotoDownload.svc, 622
photo-management application UI, 620
PhotoMetadata data-contract type, 629
PhotoUpload.aspx, 623
PIP (picture-in-picture) display, 804, 808
PIPVideo property, 808
Pixel Shader effects, 4
Pixel Shader Effects library, 219
pixel shaders

adding visual effects, 216–221
BlurEffect, 218
DropShadowEffect, 218
sample pixel-shader effects, 217

PixelFormat/PixelHeight properties,
VideoFormat, 925

Pixels property, WritableBitmap, 204
PixelShaderConstantCallback method, 219
PixelWidth property, VideoFormat, 925
PlaneProjection class, 192, 298
platform key codes, 180
Play method, MediaElement, 793
playback speeds

varying, smooth streaming, 981–982
playback, using metadata at, 969–973
PlayerUI control, 960, 961

SmoothSource property, 960
SSPlayerControls, 959

PlayFull_Click method, 808
Playing state, ContentStates, 849
Playing value, MediaElementState, 794
Playlist editor, SSPL, 865, 866
playlists

client-side (CSPL), 866–867
server-side (SSPL), 864–866
using to package media, 864–869

PlayPIP_Click method, 808
PlayProgressUpdate_Tick handler, 900
PlaySoundAction behavior, 232
plug-ins

exchanging data between multiple, 532–537
initialization parameters, 533
layering HTML over, 538–541
naming JavaScript methods, 533

Point property, animation, 160
Point type, animation of, 157

■ INDEX

1012

PointAnimation class, 160
PointAnimationUsingKeyFrames class, 164
PolicyServer class, 673–675
PopulateMediaMenu method, 808, 844
Popup control, 234, 235
Popup element, 363–374
Popup type, 363

Child property, 363, 365
creating and initializing, 363
creating pop-up content, 365
HorizontalOffset property, 364
positioning pop-ups, 363–365
VerticalOffset property, 364

pop-ups, displaying information in, 363–374
port requirements, 646
Position property, MediaElement, 794, 888
positioning, absolute, 122, 123
POST verb, 601, 602
PowerEase function, 209
POX messages, 600

configuring WCF for non-SOAP endpoints, 602
exchanging XML messages over HTTP,

600–612
service contract for, 602
service implementation for, 603

PrepareCellForEdit method,
DataGridBoundColumn, 392, 393, 395

presentation framework, 35
presentation framework namespace, 38
Print method, PrintDocument, 783
PrintDocument class, 783
PrintPage event, 783
PrintPageEventArgs class

HasMorePages property, 783
PageVisual property, 783

Problem sections
format of recipes in this book, 1

ProcessMessage method, Participant, 665, 673
Product class

Color property, 385, 387
ColorList property, 390

ProductDetail class
consuming WCF service, 584
data contracts for WCF services, 588
exchanging JSON messages with HTTP

endpoint, 613
ProductDetailsGrid, 597
ProductHeader type, 588
ProductHeaderDataGrid, 597
ProductHeaderDataGrid_SelectionChanged

method, 599
ProductManager class, 588
products

building PagedProductsGrid control, 403–412

UI consuming products data from WCF
service, 593

ProductsData grid, 458
ProductsGrid.ItemSource property, 748
profile, video, 871
ProgressBar control

accessing resources over HTTP, 634, 642
creating custom control, 429–434
designer-related attribution, 483
using, 434–441

ProgressChanged event, BackgroundWorker, 72,
74

progressive download, 793
project templates, 12

Application project template, 12
Business Application project template, 13
Class Library project template, 12
Navigation Application project template, 13,

546–554
Unit Test Application, 13
WCF RIA Services Class Library, 13

projection classes
Matrix3DProjection class, 192
PlaneProjection class, 192

Projection property, UIElement, 191
projects

application project files, 15
initial layout, 14
managing resources in, 105–108
Silverlight tab, 18
TestWeb web project, 19
understanding structure of Silverlight

solution, 11–21
Projects tab, Expression Blend, 27, 28
properties

Advanced property options menu, 40
attached properties, 126
binding elements and, 293–300
customizing appearance of controls, 334–338
dependency properties, 126, 248, 402–403
property settings in style definitions, 335
source properties, 248
sourcePropertyPath attribute, 248
Style dependency property, 335
target properties, 248
targetPropertyName attribute, 248

Properties window, Expression Blend, 26
Brushes section, 115, 116

property attributes, controls, 479–481
CategoryAttribute, 479–480
DescriptionAttribute, 480
EditorBrowsableAttribute, 481

property grid, Visual Studio 2010, 7
property updates, controlling, 316–326

■ INDEX

1013

PropertyChanged event
building out of browser application, 721
change notification for noncollection types,

263
exchanging data between Silverlight

applications, 698
video player with SMPTE timecode support,

900
PropertyChangedEventArgs type, 263
PropertyMetadata parameter, 403
Protected Interoperable File Format (PIFF), 953
prototype application design, 243–245
proxies

displaying generated proxy files, 580
generated service proxy, 581

proxy classes
consuming WCF service, 579

publishing points, 827–829
Add Publishing Point context menu, 828
broadcast publishing points, 827
creating, 828
on-demand publishing points, 827
playing SSPL, 868
server-side playlists (SSPL), 864

pushing data
exchanging data between multiple plug-ins,

533
PUT verb, 602
Python

creating Silverlight using IronPython, 95–99

■ Q
QuadraticEase function, 209
QualityLevel, tracks, 965
QuarticEase function, 209
QuinticEase function, 210

■ R
RadioactiveBall game, 181–184
RadioButton control

DataContext property, 343
replacing default control template of, 348–354
template bindings, 341

ReadFormData_Click event, 57
reading remote streams, 619
ReadObject method, 614, 617
Receive_Completed handler, 665
ReceiveAsync method, sockets, 645
ReceiveData function, 533
ReceiveMessage method, 665, 673
receiver registration, 680–681
ReceiverDomain property, 683
ReceiverName property, 683

ReceiverNameScope enumeration, 681
recipes

format of recipes in this book, 1
Record Keyframe button, animations, 29
recording

building recorder component, 906–914
processing raw webcam output, 932

RecordingRoot property, 911
RecordsPerPage property, 412
Rectangle objects

Convert to Path option, 140
creating circle with, 132
drawing with shapes, 132
sizing, 122
StackPanel control, 127

Rectangle_MouseMove handler, 292
ReduceScaleTransform, 510
Ref element, CSPL, 867
RefreshMediaStates method, 855
RefreshNotesView method, 721
Register method, DependencyProperty, 403
RegisterEvent method, DeviceManager, 737
RegisterScriptableObject method, 523, 525
RegisterShell method, WindowManager, 729
RegularExpressionAttribute, 780
RelativeSource binding, 428–429
RelativeSource property

binding properties and elements, 293, 294
TemplatedParent value, 428

Release Clipping Path option, 138
Release Compound Path option, 138
remote domain, 676
remote streams, 619
RemoteEndPoint property, sockets, 645
rendering capability, 4
rendering geometries, 138, 144
RenderTransform property, 431, 434
RepeatButton.Interval property, 811
ReportErrorToDom function, 71
ReportGetSampleCompleted method, 905, 945
ReportGetSampleProgress method, 905
ReportOpenMediaCompleted method, 903, 905,

918
ReportProgress method, DoWork event, 72
ReportSeekCompleted method, 906
ReportSwitchMediaStreamCompleted method,

906
Report<methodname>Completed method

MediaStreamSource class, 902
Representational State Transfer see REST
RequestData function, JavaScript, 533
RequestDeviceAccess method, 926
RequestFormat property

configuring WCF to use JSON, 614, 616

■ INDEX

1014

requesting data
exchanging data between multiple plug-ins,

533
RequestProductHeaders method, 612
request-response

exchanging data between Silverlight
applications, 683

RequiredAttribute, 780
resizing controls, 130
resolvers, XML in .NET, 66
resource dictionary

creating, Expression Blend, 106–107
managing XAML resources, 87

resource keys, 106
resource referencing

dependency properties, 402
ResourceDictionary objects

generic.xaml file, custom controls, 426
managing resources in large projects, 105
managing XAML resources, 86, 87
styles, 334

resources
accessing over HTTP, 618–643
defining, in order of dependency, 87
managing embedded resources, 91–95
managing in large projects, 105–108
managing XAML resources, 86–91
merged resource dictionary, 105, 106

Resources member, 86
Resources tab, Expression Blend, 88, 89
Resources window, Expression Blend, 27
Response property

MessageReceivedEventArgs, 682, 683
MessageSentEventArgs, 683
SendCompletedEventArgs, 683

ResponseFormat property
configuring WCF to use JSON, 614, 616

REST (Representational State Transfer), 578
accessing RESTful data using OData, 746–749
using WCF Data Services tooling, 750–756

RESTful services, 578
REST-styled services, 578

configuring WCF for non-SOAP endpoints, 602
Result property, DoWorkerEventArgs, 72
RetrieveXmlCompleted method, 83
RIA (Rich Internet Applications), 773–775
RIA Services

implementing CRUD operations in, 775–778
using WCF RIA Data Services tooling, 760–767
WCF RIA Services, 746

rich user experiences, 36
RichTextbox control, 6
right-click context menu

customizing, 233–238

right-to-left text, using, 241, 243
rings

combining ellipses using Subtract, 136
Root.FindName method, 817
RootVisual property, Application, 564
RotateTransform class, 170

Angle property, 176
applying multiple effects with, 171
creating animation, 175, 176
double properties to simplify use of, 171

rotation, applying, 192
RotationX/RotationY/RotationZ properties

dynamic 3-D transformations, 197, 198
PlaneProjection type, 298
static 3-D transformations, 193

RotatorDemoControl
binding properties and elements, 295–300
Xangle/Yangle/Zangle properties, 300

rounded corners, controls, 152
RoutedEvents, 159
RowDefinitions collections, Grid, 124, 129
RowDetailsTemplate property, DataGrid, 375–384
RowDetailsVisibilityChanged event, 375
RowDetailsVisibilityMode property, DataGrid,

375, 379
rows

displaying row details in DataGrid, 375–384
rows, Grid control

star (*) sizing, 124
Ruby

creating Silverlight using IronRuby, 95–99
Run method, ConnectionListener, 667
runtime plug-in control, 36
RunWorkerCompleted event, BackgroundWorker,

74

■ S
SAMI (Synchronized Accessible Media

Interchange), 875
SampleGenerated event, 943, 944
SamplesPerSecond property, AudioFormat, 926
sampling

digital media processing, 904–905
sandboxed application enhancements, 36
SaveFileDialog object, 109, 204
SaveFormData_Click event, 57
SaveGadgetSettings method, 568, 569
saving files anywhere on system, 108–110
ScaleTransform class, 170, 171

implementing full-screen UI, 507, 508, 509
ScaleX/ScaleY properties, transform classes, 171
ScheduleClip method, 977, 978, 981

■ INDEX

1015

scope
style scoping, 335

ScreenRecorder class
building recorder component, 906–914
Checked event, 913
FlipBackBuffer method, 912
FrameHeight property, 911
FrameRate property, 911, 912
FrameWidth property, 911
memory buffers, 911
RecordingRoot property, 911
Start method, 911, 913
Stop method, 912, 913
TempFile property, 911, 912, 913

ScriptableMember attribute
calling managed code methods from

JavaScript, 523–530
ScriptableMethodAttribute, 532
ScriptableType attribute, 524
scriptKey parameter, 525
scrollable content

providing for layouts, 149–151
ScrollBar.ValueChanged events, 454
ScrollViewer control/container, 149–151

controlling scroll behavior in, 454–463
Scrubber control, SSPlayerControls, 959
search engine optimization (SEO), 5
Search text box, Expression Blend, 27
SeekAsync method, MediaStreamSource, 906, 919
seeking within media, 794, 906

using SMPTE timecodes, 886–900
SeekStates group

supporting streaming media, 849, 855, 860
SelectedItemChanged event, 721
SelectedUnfocused state, 360
Selection tool

building UI with nested containers, 130
SelectionChanged event, 279

accessing resources over HTTP, 642
SelectionIndicator, Grid, 359, 360
Send method, ServerConnectionManager, 673
SendAsync method

LocalMessageSender, 682, 694
sockets, 645, 666

SendCompleted event, LocalMessageSender, 682
SendCompletedEventArgs class

Error property, 683
Response property, 683

sender parameter, keyboard events, 180
SenderDomain property,

MessageReceivedEventArgs, 683
SendMessage method, Participant, 673
seq element, SSPL, 865

serialization
using JSON serialization over HTTP, 613–618

SerializeMessage method, 649, 666
server.bat command, 98
ServerConnectionManager class, 666, 667–673

Broadcast method, 673
Manage method, 673
Send method, 673

server-side playlists see SSPL
service contracts

building out of browser application, 707
for WCF web services, 620
modified for JSON, 615
POX-style message exchange, 602
WCF web services, 583

service implementation
POX-style message exchange, 603

service operations, invoking, 581–582
Service Reference Settings dialog, 580
ServiceContractAttribute, 584
service-oriented architecture (SOA), 577
services, 577

see also web services
consuming WCF service, 579–600
creating application services, 99–105
installing services and controls, 10–11
invoking service operations, 581–582

SetBinding method, FrameworkElement, 247,
254, 392

SetBookXMLData method, 522
SetBuffer method, sockets, 645
SetCacheability method, 607
SetMediaSource method, 963
SetMouseCursor method, 729
SetPhotoMetadata method, 623, 643
SetPlaybackRate method, 982
SetSource method

BitmapImage, 93
custom MediaStreamSource, 923
initializing media stream, 902
MediaElement, 793, 901
processing raw webcam output, 944
VideoBrush, 926

SetSource property, WebBrowserBrush, 544
SetStyleAttribute method, 526
SetSubMenuPosition method, 370
Setter element, 335
SetText method, Clipboard, 238
settings view, gadgets, 556, 557
SettingsView control, 568
SettingsView.html file, 557, 560

loadSettingsView function, 570
SettingsView.js file, 569
SettingsView.xaml file, 558, 568

■ INDEX

1016

SettingsView.xaml.cs file, 568
SetTopMenuPosition method, 370
SetValue method, DependencyObject, 403
shaders, 4

adding pixel shader visual effects, 216–221
shapes, drawing with, Expression Blend, 132–137
Shapes namespace, 111
Shared.js file, 562
Shortcut name field, Out-of-Browser Settings

dialog, 701
Show method, NotificationWindow, 744
ShowChatView method, 656, 665
ShowDialog method, 61, 62, 63
ShowLoginView method, 656
ShowParticipantsView method, 656, 665
Silverlight, 35

Applications tab, 20, 21
ASP.NET Silverlight control, 49
browser plug-in parameters, 498
Business Application template, 13, 768–770
Class Library template, 12
controls overview, 333
creating Silverlight using

Ruby/Python/JScript, 95–99
Dynamic Language Runtime SDK, 96, 97
gadget web project layout, 556
hosting on all platforms, 495–498
installation and update control, 2, 36
introduction to, 1–3
managing unhandled exceptions, 70–71
namespaces, 36
Navigation Application template see

Navigation Application template
.NET Framework for, 35
network programming stack, 577
platform, 35, 36
presentation framework, 35
running in browser, 48
runtime plug-in control, 36
sharing assets with developers, 112
Toolkit, 11
transforms, 170
Unit Test Application template, 13
Visual Studio 2010 and, 8–9

Silverlight 2, 2
Silverlight 3 enhancements, 3–6, 36
Silverlight 4

accessing source control, 32–33
browser control, 496
data access enhancements, 745–746
description, 495
embedding Silverlight in IE8 Web Slice,

571–576
gadgets, 568

hosting Silverlight on all platforms, 495–498
initial project layout, 14
installing services and controls, 10–11
layout system, 122, 123
project templates, 12
running on Linux, 33
running on Mac, 33
setting up development/design environment,

9–10
SettingsView control, 568
understanding structure of Silverlight

solution, 11–21
using layout features of, 111

Silverlight 4 enhancements, 6–8, 36
business application development, 6, 36
developer tools, 7
interactive user experiences, 7
Managed Extensibility Framework (MEF), 6
out-of-browser support, 8
rich user experiences, 36
sandboxed application enhancements, 36
tooling support, 36
trusted applications, 36

Silverlight Application template, 12
Silverlight applications

building out-of-browser application, 699–722
controlling application window, 722–730
creating projects, 13–14
customizing installation, 703–705
detecting network availability, 705
developer/designer workflow, 21–25
exchanging data between, 680–698
installing application, 702–703
mechanics of, 35, 36
preparing for local installation, 700–702
printing in Silverlight LOB application,

783–785
selecting local file on client, 61–65
updating locally installed applications,

705–706
Silverlight client

using sockets to communicate over TCP, 647
Silverlight tab, project settings, 18, 19
Silverlight.js file, 556, 562
SilverlightRecipesGadget project, 555
SineEase function, 210
sinks, audio and video

AudioSink class, 932
processing raw webcam output, 932–947
VideoSink class, 932

site of origin, 676
SketchFlow, 24

prototype application design, 243–245
SkewTransform class, 170

■ INDEX

1017

applying multiple effects with, 171
applying SkewTransform, 120
double properties to simplify use of, 171

skinning controls, 4
SkipCount parameter, GetProductPage method,

408
slices

embedding Silverlight in IE8 Web Slice,
571–576

Slider control
MediaSlider control, 809–819
Orientation property, 811

SMIL (Synchronized Multimedia Integration
Language), 875

setting up smooth streaming, 953
server-side playlists, 865

smooth streaming, 4
adding metadata streams, 963–973
client/server data exchange, 955
combining streams using composite

manifests, 982–985
IIS Media Services package, 950–954
IIS Smooth Streaming Player Development

Kit, 958
merging metadata from external manifests,

974–977
more details on, 950
presentation management, 954–955
scheduling additional video clips, 977–981
setting up, 950–957
setting up IIS7, 954–955
SmoothStreamingMediaElement, 957–963
testing presentation, 956–957
varying playback speeds, 981–982
video bitrate selection for, 953

Smooth Streaming client manifest, 964
SmoothSource property, PlayerUI, 960
SmoothStreamingMedia element

Duration attribute, 984
SmoothStreamingMediaElement type, 957–963

adding metadata streams, 963–973
AvailableStreams property, 965
combining streams using composite

manifests, 982–985
ConfigPath property, 963
ManifestReady event, 965
MergeExternalManifest method, 974, 976
merging metadata from external manifests,

974–977
ParseExternalManifest method, 974, 976
scheduling additional video clips, 977–981
SetPlaybackRate method, 982
SmoothStreamingSource property, 958, 963,

983

SupportedPlaybackRates property, 982
using metadata at playback, 969
varying playback speeds, 981–982

SMPTE timecodes, 887, 888
displaying and seeking using, 886–900
video player with, 889

SmpteFrameRate enumeration, 887
SmpteFrameRate.cs file, 888
SMPTETimeCode property, 899, 900
SOA (service-oriented architecture), 577
Socket type

communicating over TCP, 643
Listen method, 667
SendAsync method, 666

SocketError property, 645, 665
sockets

communicating over TCP, 643–675
Sockets API, 644–646
sockets-based communication

clientaccesspolicy.xml, 679
cross-domain access, 677, 678

SolidColorBrush object, 115
Solution Explorer, 14
Solution sections

format of recipes in this book, 1
solutions, understanding structure of, 11–21
sorting columns of data

navigating RIA LOB data, 773
source code for HTML test page, 498
source control, accessing, 32–33
source parameter, 497
source properties, 248
Source property

binding, 248
MediaElement, 788, 793
WebBrowser, 542

Source value, KeyEventArgs, 180
SourceName property

MediaSlider, 817, 818, 855
VideoBrush, 121, 789

sourcePropertyPath attribute, 248
sources

associating data source, 248–249
special effects

pixel shader adding, 216–221
Spending class

exchanging data between applications, 687
ID property, 691
implementing value conversion, 282
ParentCollection property, 698

SpendingCollection class, 282, 687
SpendingToBarWidthConverter class, 282, 286,

289, 291

■ INDEX

1018

SpendingToPercentageStringConverter class, 282,
286, 289, 291

splashScreenSource parameter, 498
splined interpolation, 165
SQL Server 2008 Express, 624
SSME see SmoothStreamingMediaElement type
SSPL (server-side playlists), 864–866

playing SSPL, 868, 869
Silverlight support for, 787
using playlists to package media, 864

SSPlayer assembly, 959
SSPlayerControls assembly, 959
StackPanel control/container, 123–124, 127–128

automatic layout and resizing, 130
building PagedProductsGrid control, 407
creating custom layout container, 413
Orientation property, 123, 128
Rectangle elements, 127
Resources attribute, 90

star (*) sizing, Grid, 124, 125
Start method

CaptureSource, 926, 930
ScreenRecorder, 911, 913

Started/Starting events,
IApplicationLifetimeAware, 100

StartService method, IApplicationService, 100
StartUp event handler, Application, 704
Startup method, Participant, 673
state

visual state, controls, 344–348
States editor, Expression Blend, 344
static 3-D transformations, 192–197
StaticResource markup extension, 249

accessing styles in XAML, 334
managing XAML resources, 86

StatusEllipse_MouseLeftButtonDown event, 75
Stop method

CaptureSource, 926
MediaElement, 793
ScreenRecorder, 912, 913

Stopped value, MediaElementState, 794
StopService method, IApplicationService, 100
storing data on client, 54–61
Storyboard class methods, 158
Storyboard element, 157

TargetName attribute, 157
TargetProperty attribute, 157
visual state, controls, 344

storyboards
bouncing ball animation, 168
creating cartoon scene, 175
Expression Blend, 27, 28
multi-animation, 167, 168, 169

stream switching, 905

StreamId property, MediaStreamDescription, 904
StreamInfo type, 965
streaming, 793

see also smooth streaming
adaptive streaming, 949
Silverlight 3 enhancements, 4
SmoothStreamingMediaElement, 957–963
using capture device, 827
video player supporting, 830–864

streaming video
see also smooth streaming
adding support for, 823–864
buffering video, 855
MediaButtonsPanel control, 856, 860
MediaSlider control, 845, 849
multiple bit rate video files, 824
network considerations, 824
performance, 205–208
playing broadcast stream, 856
playing on-demand stream, 856
publishing points, 827–829
Windows Media Services (WMS), 825–827

streams
adding metadata streams, 964, 965
remote streams, 619

Stretch property, VideoBrush, 789–790
Stride property, VideoFormat, 925, 946
string formatting, 326, 328
StringFormat property, Binding, 192, 328
StringLengthAttribute, 780
Stroke property

OuterRing element, 348, 353
Path objects, 144

strokes, working with Ink, 185
Style dependency property, 335
style scoping, 335
styles

creating consistent UI, 86
customizing appearance of controls, 334–338
defined, 334
dependency properties, 402
inheritance, 335
managing embedded resources, 92
property settings in style definitions, 335
replacing default UI of controls, 338

stylus, working with Ink, 185
StylusDevice.GetStylusPoints method, 186
SubMenu pop-up, 370
SubMenuArrow property, pop-ups, 367
subtitles, industry standards for, 875
Subtract option, Expression Blend, 135, 136
SupportedFormats property

AudioCaptureDevice, 926
VideoCaptureDevice, 925

■ INDEX

1019

SupportedPlaybackRates property, 982
SwirlStrength property, 221
switch element, SSPL, 865
switching tabs, Expression Blend, 26
SwitchMediaStreamAsync method, 905
Synchronized Accessible Media Interchange

(SAMI), 875
Synchronized Multimedia Integration Language

(SMIL), 875
SynchronizeOfflineStore method, 721

■ T
tablet computer, using stylus on, 185
TakeCount parameter, GetProductPage method,

408
target properties, 248
TargetChanged method, 488
TargetedTriggerAction<T> type, 487, 491

TargetChanged method, 488
TargetName attribute, Storyboard, 157
TargetNullValue property, BindingBase, 327
TargetProperty attribute, Storyboard, 157, 159
targetPropertyName attribute, 248
TargetType attribute, ControlTemplate, 338
TargetType property, styles, 334
taskbar notification, 743
TCP (Transmission Control Protocol)

communicating over sockets, 643–675
TCP sockets

cross-domain access, 677, 678
Team Foundation Server (TFS), 10, 25

accessing source control, 32, 33
TempFile property, ScreenRecorder, 911, 912, 913
template bindings

content model, 344
control template, 341–342

Template property, controls
custom controls, 427
Expression Blend designing control template,

340
replacing default UI of controls, 338
setting control template, 338

TemplateBinding, 428–429, 431
TemplatedParent control, 294
TemplatedParent value, RelativeSource property,

428
TemplatePartAttribute, 428, 433
templates

applying to DataGrid cells, 385–391
binding using DataTemplate, 255–262
Business Application Template, 768–770
control template, 338–348
creating consistent UI, 86

Navigation Application template, 192
replacing default UI of controls, 338–354
Silverlight 4 projects, 12, 13

TemplateVisualStateAttribute type, 442, 443
TestWeb web project, 19
text

using right-to-left text, 241–243
text animation, 4
Text property, TimelineMarker, 871
TextBlock control

applying rounded corners to, 152
exchanging data between multiple plug-ins,

534
positioned using attached properties, 126

TextBox control
applying border to textbox, 152–154
applying rounded corners to, 152
brushes available for, 117, 118
exchanging data between multiple plug-ins,

534
The Code sections

format of recipes in this book, 1
themes, 5
Thread class, 72
Threading namespace, 82
ThreadPool class, 72
threads

cross-thread invocations, 72
executing work on background worker threads

with updates, 71–81
updating UI from background thread, 81–85

Thumb control
DragCompleted event, 819
DragStarted event, 819
HorizontalTemplate, 811

Thumbnail check box
encoding markers using Expression Encoder,

871
time line recording mode, Expression Blend, 28
Time property, TimelineMarker, 871
TimeCode class, 887

FromTicks method, 888, 900
ParseFramerate method, 888, 899
ValidateSmpte12MTimeCode method, 888,

899
TimeCode.cs file, 888
timecodes, SMPTE, 887–888

displaying and seeking using, 886–900
SMPTETimeCode property, 899, 900
video player with, 889

timed content
encoding markers, 870–871
MediaElement and markers, 871–872
using markers to display, 870–886

■ INDEX

1020

timeline, media, 870
TimelineEvent class

EventData property, 969
EventTime property, 969
properties, 966

TimelineEvent events, 971, 972
TimelineEventReached event, SSME, 969, 972
TimelineMarker class, 871, 972

Text property, 871
Time property, 871
Type property, 872, 886

TimeSpan property, Duration, 794
Title property, Page, 548
To property, DoubleAnimation, 157
tooling support, 36
tooltips

validation error tooltip, 464–468
ValidationTooltipTemplate, 467–468, 469–472

Top property
Canvas, 125
controls, 122

TopMenu pop-up, 370
Topmost property, Window, 722
TotalDownloadCounter type, 441
TrackData property, TrackInfo, 966, 969
TrackInfo type

adding metadata streams, 965
Bitrate property, 965
TrackData property, 966, 969

tracks, streams, 964, 965
transform classes, 170

applying multiple effects with, 171
double properties to simplify use of, 171
MatrixTransform class, 170–174
RotateTransform class, 170
ScaleTransform class, 170
SkewTransform class, 170
TransformGroup class, 170
TranslateTransform class, 170

transformations
dynamic 3-D, 197–198
static 3-D, 192–197

TransformGroup class, 170, 171
transforming objects, 169–174
transforms

affine transformation, 170
animating transforms, 175
Brush Transform tool, 119
perspective transforms, 191–198
Silverlight, 170

TransformToVisual method, UIElement, 365, 463
TranslateTransform class, 170, 171
TreeNodeData class, 710, 712
TreeView control, 707, 710

Trigger.Invoke method, 487
TriggerAction<T> type, 487
TriggerBase<T> class, 487
Triggers

enhancing design experience with, 486–494
firing animations, 158
Loaded event, 158, 159
TargetedTriggerAction<T> class, 487, 491

trusted applications, 36
two-way bindings

controlling updates, 316–326
validation error notification, 301
validating input for bound data, 301

TwoWay value, BindingMode, 276, 387
type conversion

implementing value conversion, 292
type converters

managing XAML resources, 86
Type property

MediaStreamDescription, 905
TimelineMarker, 872, 886

TypeConverter class, 396, 397
TypeConverterAttribute, 397

■ U
UI (user interface)

application user interface, WIA, 737–742
binding application data to, 247–255
binding data to, 253
binding using DataTemplate, 255–262
building out of browser application, 708
building with nested containers, 130
consuming products data from WCF service,

593
creating consistent UI, 86
creating dynamic UIs with animation, 157–164
creating in Expression Blend, 25–32
creating video player, 792–823
custom control defining, 426
customizing binding validation for, 463–478
customizing default ListBoxItem UI, 354–363
data entry UI build on ObservableCollection,

271
design-time data in Expression Blend, 221–231
displaying information in pop-ups, 363–374
implementing full-screen UI, 506–512
initial application UI at runtime, 547
Navigation Application template, 547
replacing default UI of controls, 338–354
resizing, 506
updating from background thread, 81–85

UI elements
adding 3-D effects to, 191–198

■ INDEX

1021

animating with keyframes, 164–169
containers for, 123
positioning, 122–131

Canvas control, 123, 125–127
Grid control, 124–125, 128–131
StackPanel control, 123–124, 127–128

reusing application interactivity across,
231–233

setting Width/Height properties on controls,
129, 130

transforming objects, 169–174
UIElement class, 111

Arrange method, 414
CacheMode property, 206
Clip property, 138, 147
Effect property, 217
loading XAML dynamically at runtime, 48
locating controls at runtime, 37
Measure method, 414
Projection property, 191
taking geometry as property to draw, 138
TransformToVisual method, 365

undocked view, gadgets, 556, 557
UndockedView instance, 564, 567
UndockedView.xaml file, 558, 563
Unfocused state, 353
unhandled exceptions, managing, 70–71
UnhandledException event, 71
Unit Test Application template, 13
Unite option, Combine menu

combining Ellipses using Unite, 134
Expression Blend, 135, 136

UnknownDuration state, 849
UnloadingRowDetails event, 375
UnregisterEvent method, 737
UpdateAvailable property, 705
UpdateObject method, 759
UpdateProductDetail method, 584, 607
UpdateProductHeaders method, 593

POX-style message exchange, 603, 607, 612
updates

controlling, 316–326
executing work on background worker threads

with, 71–81
installation and update control, 36
updating UI from background thread, 81–85

UpdateSource method, BindingExpression,
316–326

UpdateSourceTrigger attribute, 316–326
UpdateSourceTrigger property, Binding, 316
UploadStringAsync method, 618, 619, 643
Uri element, 796, 830
UriMapper object, 550, 551, 553

URLs
XmlUrlResolver class, 66

user controls, 398, 399–400
building PagedProductsGrid control, 403–412
creating composite user control, 398–412
dependency properties, 402–403
distribution and reuse, 411
loading XAML for, 400

user experiences, 7
user interface see UI
UserControl class, 548

embedding Silverlight within Windows gadget,
563

managing XAML resources, 90
objects when creating Silverlight application,

558
UserControl element

adding controls/classes, 37, 38
creating composite user control, 398–412
embedding Silverlight within Windows gadget,

562
Make Into UserControl dialog, 136, 137
making custom class available in XAML, 44

UserRegistration.cs file, 769

■ V
ValidateSmpte12MTimeCode method, 888, 899
ValidatesOnExceptions attribute, 312
ValidatesOnExceptions property, Binding, 301
validation

binding validation error, 315
customizing binding validation UI, 463–478
data validation through data annotation,

779–782
getting validation error summary, 302
vaidation error notification, 301
validating input for bound data, 301–316

validation error tooltip, 464–468
ValidationAttribute, 780
ValidationError type, 468
ValidationErrorElement, 466
ValidationErrorEventArgs type, 302
ValidationSummary control, 468–469, 473–478

customizing binding validation UI, 464
ErrorStyle property, 469, 473, 478
getting validation error summary, 302
Header property, 469, 478
HeaderTemplate property, 469
Message property, 469
MessageHeader property, 469
validating input for bound data, 312

ValidationTooltipTemplate control
applying to TextBox, 472–473

■ INDEX

1022

customizing binding validation UI, 464,
467–468, 469–472

value conversion, implementing, 281–282
value converters

applying custom templates to DataGrid cells,
391

Value property, MediaSlider, 819
ValueChanged events, ScrollBar, 454, 463
values

converting during data binding, 280–292
VBR (variable bit rate) video, 824
vector graphic primitives, 132
VerticalOffset property, Popup, 364
VerticalScrollBarVisibility property, 150
VerticalTemplate, 811
video

adding support for streaming, 823–864
adding to pages, 787–792
aspect ratio, 789–790
bitrate selection for smooth streaming, 953
building custom MediaStreamSource, 914–924
creating video player, 792–823
displaying and seeking using SMPTE

timecodes, 886–900
displaying elapsed time in, 886–900
frames/frame rate, 887
processing raw webcam output, 932–947
sampling, 904–905
scheduling additional clips, smooth

streaming, 977–981
seeking specific time point in, 886–900
stream switching, 905
timecodes, 887–888
using markers to display timed content,

870–886
using webcam, 924–931
variable bit rate (VBR) video, 824

video formats, 925
listing supported formats, 930, 931
Silverlight support for, 787

video player
acquiring media, 792–793
controlling media play, 793
creating, 792–823

installing sample code, 795–796
MediaButtonsPanel control, 819–823
MediaSlider control, 809–819
player code, 796–809

seeking within media, 794
states of acquiring and playing media, 793–794
supporting streaming media, 830–864
with SMPTE timecode support, 889
XAML for streaming player, 830

video streaming see streaming video

VideoBrush class, 121, 788–791
adding video to pages, 788
SetSource method, 926
SourceName attribute, 121
SourceName property, 789
Stretch property, 789–790
switching video between PIP and main

display, 808
VideoCaptureDevice type, 925
VideoCaptureSource property, 930
VideoFormat type, 925

processing raw webcam output, 946
VideoFourCC value

MediaStreamAttributeKeys enumeration, 904
VideoSampleDispatch class, 944
VideoSampleDispatch_DoWork method, 944
VideoSink class

CaptureSource property, 933
implementation, 933
OnCaptureStarted method, 932
OnCaptureStopped method, 932
OnFormatChanged method, 932, 936
OnSample method, 932, 936
processing raw webcam output, 932

VideoSink_FormatChanged handler, 944
VideoSink_SampleGenerated handler, 944
Visibility property, controls, 280
visual editing tools, Expression Blend, 116
visual effects

see also graphics
pixel shader adding, 216–221
transforming objects, 169–174

Visual State Manager (VSM), 344, 348
Expression Blend, 27

visual state, controls, 344–348
defining in custom control, 442–453

Visual Studio
debug mode, 315

Visual Studio 2008
Add Service Reference dialog, 579
Attach to Process dialog box, 559, 560
generated service proxy, 581
Service Reference Settings dialog, 580

Visual Studio 2010
adding events in, 30
Document Outline view, 9
namespace import IntelliSense window, 39
obtaining Silverlight Tools for, 10
property grid, 7
Silverlight and, 8–9
using WCF Data Services tooling, 750–756
using WCF RIA Data Services tooling, 760–767

VisualState element, 348
VisualStateGroup element, 348

■ INDEX

1023

VisualStateManager class
GoToState method, 442, 443
implementing full-screen UI, 507

VisualTransition element, 348
VisualTreeHelper class, 454

controlling scroll behavior in ScrollViewer, 454
FindElementsInHostCoordinates method,

454, 455, 463
GetChild/GetParent methods, 454

Volume property, MediaElement, 795
vsm:VisualState element, 348
vsm:VisualStateGroup element, 348
vsm:VisualTransition element, 348

■ W
watermarks

dynamically creating bitmaps, 199
WaveFormat property, 926
WaveFormatEx class, 944
WCF (Windows Communication Foundation)

configuring for non-SOAP endpoints, 602
configuring to use JSON, 614
consuming WCF service, 579–600

WCF Data Services, 746
implementing CRUD operations in, 756–760
tooling, 750–756

WCF RIA Services, 5, 11, 746, 760
Business Application Template, 768–770
Class Library project template, 13
databinding in XAML, 771
Enable WCF RIA Services checkbox, 761
implementing CRUD operations in, 775–778
navigating RIA LOB data, 773
using WCF RIA Data Services tooling, 760–767

WCF service, 334
adding references to invoke, 579
building out of browser application, 707, 712
configuration in Web.config, 582
configuring, 582–583
consuming, 579–600
data contracts for, 584
in sample code, 578
installing sample code for video player, 796
invoking service operations, 581–582
service and data contracts for, 620
service contract for, 583
UI consuming products data from, 593
working with Ink, 184

web pages
adding video to, 787–792
setting focus for keyboard input, 500–504

web services
see also services
accessing resources over HTTP, 618–643
configuring WCF web services for Silverlight,

582–583
consuming WCF service, 579–600
exchanging XML messages over HTTP,

600–612
invoking service operations, 581–582
overview, 577
using JSON serialization over HTTP, 613–618

web sites, for downloading
Moonlight plug-in (Linux), 34

Web Slices
adding Web Slice button and dialog, 573
embedding Silverlight in IE8 Web Slice,

571–576
Web.config

WCF service configuration in, 582
WebBrowser control

hosting HTML in Silverlight application,
541–544

LoadCompleted event, 542, 545
Navigate method, 542
NavigateToString method, 542
painting Silverlight element with HTML,

544–546
running within browser, 539
Source property, 542

WebBrowserBrush class
painting Silverlight element with HTML,

544–546
SetSource property, 544

webcam, 925
processing raw webcam output, 932–947
using, 924–931

WebCamSource property, 944
WebClient API

accessing resources over HTTP, 618–643
WebClient and HTTP endpoints, 619

WebClient type
accessing resources over HTTP, 619
DownloadStringAsyncCompleted event, 845
OpenReadCompleted event, 104
using ProgressBar, 434

WebGetAttribute type, 602, 614, 616
WebHttpBinding class, 602
WebInvokeAttribute type, 602, 614, 616
WebRequest class, JavaScript, 522

updating UI from background thread, 82
WebResponse class

GetResponseStream method, 601
WIA (Windows Image Acquisition), 734–737

application user interface, 737–742

■ INDEX

1024

DeviceManager, 734
saving images to disk, 743

WIADevice.Items property, 742
WIADeviceManager class, 734

application user interface, WIA, 741
Create method, 737
DeviceInfos property, 737

WIAEventID type, 741
Width property, Grid, 124

setting on controls, 129, 130
star (*) sizing, 124

Width value, MediaStreamAttributeKeys
enumeration, 904

window attributes, Window class, 722–724
Window class

attributes, 722–724
controlling application window, 722–730
DragMove method, 724, 730
DragResize method, 724, 730
Topmost property, 722

windowless mode, 540
windowless parameter, 497, 539
WindowManager class

controlling application window, 725
RegisterShell method, 729

Windows
controlling application window, 722–730
resizing and moving windows, 724
sizing objects, 122

Windows 7
gadgets, 555

Windows Communication Foundation web
service see WCF service

Windows Forms
docking, 122
object positioning in applications, 122

Windows Image Acquisition see WIA
Windows Media Audio (.wma) files, 901
Windows media files see media files
Windows Media Metafile reference, 867
Windows Media Services (WMS), 825–827
Windows Media Video (.wmv) files, 901
Windows Presentation Foundation (WPF)

layout system, 122
Pixel Shader effects, 4

Windows Sidebar gadget
creating, 555
embedding within, 555–571

Windows.Controls namespace, 111
Windows.Shapes namespace, 111
WindowSettings property, 723
WindowState property, 722
WindowStyle property, 722, 724

WMS (Windows Media Services), 825–827
HTTP server control protocol plug-in, 826
publishing points, 827–829
server-side playlists, 864

WorkerReportsProgress property, 72
WorkerSupportsCancellation property, 72
WPF Futures CodePlex project, 217
WrapPanel class

controlling scroll behavior, 455
creating custom layout container, 414–420
using, 420–425

WrappedImage type, 629, 642
WriteableBitmap class, 198–205

building recorder component, 906, 911, 912
constructors, 198
Pixels property, 204

WriteObject method
exchanging JSON messages with HTTP

endpoint, 614, 617
writing remote streams, 619

■ X
x: prefix

mapping XAML namespace to, 38
x:Class attribute, UserControl, XAML, 400
x:Key attribute, ControlTemplate, 338
x:Key property, 44

declaring DataTemplate, 256
managing XAML resources, 87

x:Name property, XAML
defining custom visual state in custom

control, 442
locating controls at runtime, 38, 49

XAML (Extensible Application Markup Language)
accessing styles in, 334
adding/accessing controls/classes, 37–47
Binding markup extension, 248
binding properties and elements, 293–300
Brush Transform tool, 119
CreateFromXaml method, 48
creating, 114
databinding in, 770–772
description, 112
InitializeComponent() processing markup, 17
loading dynamically at runtime, 48–54
loading for user controls, 400
locating controls at runtime, 38
locating root of document, 817
making custom control available in, 44
markup extensions, 248
managing resources, 86–91
namescopes, 38

■ INDEX

1025

XAML visual tree, Expression Blend, 27
XamlReader object

Load method, 48, 53, 885
loading XAML dynamically at runtime, 48

Xangle property, RotatorDemoControl, 300
XAP file

creating Silverlight application projects, 14
examining contents of, 14
reducing XAP size, 19
XmlXapResolver class, 66, 67

Xap file name, Silverlight tab, 19
X-axis

applying rotation, 192
increasing values in, 197

XDocument class
LINQ to XML, 66
Load method, 66
Parse method, 642

XML (Extensible Markup Language)
exchanging messages over HTTP, 600–612
Gadget.xml file, 570, 571

XML data
accessing, 65–70
parsing with LINQ to XML, 69–70
parsing with XmlReader, 66–67
parsing XML data, 66
retrieving using XmlResolver, 66

XML resolver in .NET, 66
XmlDocument type, 603
xmlns attribute, UserControl, 37
xmlns namespace import statement, 44

XmlReader class, 66
accessing XML data, 65–70
IsolatedStorage file system, 66
parsing XML data, 66–67

XmlReaderSettings class, 66
XmlResolver class, 66
XmlSerializerFormatAttribute, 603
XmlUrlResolver class, 66
XmlXapResolver class, 66, 67

■ Y
Yangle property, RotatorDemoControl, 300
Y-axis

applying rotation, 192
increasing values in, 197

■ Z
Zangle property, RotatorDemoControl, 300
Z-axis

applying rotation, 192
increasing values in, 197

z-index
layering HTML over Silverlight plug-in, 539,

540
ZipCode property

providing defaults for bound data, 330
zoom in/out, Expression Blend, 26

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Authors

	A Quick Tour of Silverlight 4 Development
	Getting Up to Speed with Silverlight
	Silverlight 3 Highlights
	Major Media Enhancements
	Enhanced User Experience Rendering Capabilities
	Rich Internet Applications and Line-of-Business Enhancements
	WCF RIA Services Data Support Improvements
	Browser Support
	Out-of-Browser Capabilities
	Silverlight 4
	Business Application Development
	Developer Tools
	Interactive User Experiences
	Out-of-Browser Programming Model
	Silverlight and Visual Studio 2010

	1-1. Setting Up the Silverlight 4 Environment
	Problem
	Solution
	How It Works

	1-2. Installing Additional Silverlight-Related Services and Controls
	Problem
	Solution
	How It Works

	1-3. Understanding the Structure of a Silverlight Solution
	Problem
	Solution
	How It Works
	The Code

	1-4. Understanding the Developer/Designer Workflow
	Problem
	Solution
	How It Works
	The Tools
	The Process

	1-5. Understanding the Basics of Expression Blend 4
	Problem
	Solution
	How It Works
	The Code

	1-6. Accessing Source Control
	Problem
	Solution
	How It Works

	1-7. Running Silverlight 4 on a Mac
	Problem
	Solution
	How It Works

	1-8. Running Silverlight on Linux
	Problem
	Solution
	How It Works

	Application Design and Programming Model
	The Mechanics of Silverlight Applications
	2-1. Leverage and Locate Controls and Classes
	Problem
	Solution
	How It Works
	Add a Custom Control
	Find a Control

	2-2. Dynamically Loading XAML
	Problem
	Solution
	How It Works
	The Code

	2-3. Persisting Data on the Client
	Problem
	Solution
	How It Works
	The Code

	2-4. Opening a Local File from a Silverlight Application
	Problem
	Solution
	How It Works
	The Code

	2-5. Accessing XML Data
	Problem
	Solution
	How It Works
	The Code

	2-6. Managing Unhandled Exceptions
	Problem
	Solution
	How It Works

	2-7. Executing Work on a Background Thread with Updates
	Problem
	Solution
	How It Works
	The Code

	2-8. Updating the UI from a Background Thread
	Problem
	Solution
	How It Works
	The Code

	2-9. Managing XAML Resources
	Problem
	Solution
	How It Works
	The Code

	2-10. Managing Embedded Resources
	Problem
	Solution
	How It Works
	The Code

	2-11. Creating Silverlight Using Ruby, Python, or JScript
	Problem
	Solution
	How It Works
	The Code

	2-12. Creating Application Services
	Problem
	Solution
	How It Works
	The Code

	2-13.
	Problem
	Solution
	How It Works
	The Code

	2-14. Save a File Anywhere on the User’s System
	Problem
	Solution
	How It Works
	The Code

	Developing User Experiences
	3-1. Importing Art from Expression Design
	Problem
	Solution
	How It Works

	3-2. Working with Color and Gradients in Blend
	Problem
	Solution
	How It Works
	The Code

	3-3. Positioning UI Elements
	Problem
	Solution
	How It Works
	Canvas
	Grid
	The Code
	Code for Canvas
	Code for StackPanel
	Code for the Grid

	3-4. Drawing with Shapes, Paths, and Geometries
	Problem
	Solution
	How It Works
	Drawing with Shapes
	Drawing with Path Objects
	Drawing with Geometries
	The Code
	Drawing with Paths
	Drawing with Geometries

	3-5. Providing Scrollable Content
	Problem
	Solution
	How It Works
	The Code

	3-6. Applying a Border to Elements
	Problem
	Solution
	How It Works
	The Code

	3-7. Using Simple Animations with Objects
	Problem
	Solution
	How It Works
	The Code

	3-8. Animating UI Elements with Keyframes
	Problem
	Solution
	How It Works
	The Code

	3-9. Transforming an Object
	Problem
	Solution
	How It Works
	The Code

	3-10. Creating a Simple Cartoon Scene
	Problem
	Solution
	How It Works
	The Code

	3-11. Handling Keyboard Input
	Problem
	Solution
	How It Works
	The Code

	3-12. Working with Ink
	Problem
	Solution
	How It Works
	The Code

	3-13. Adding 3-D Effects to UI Elements
	Problem
	Solution
	How It Works
	The Code

	3-14. Dynamically Creating Bitmaps
	Problem
	Solution
	How It Works
	The Code

	3-15. Improving Graphic Animation and Video Performance
	Problem
	Solution
	How It Works
	The Code

	3-16. Improve Animation with Custom Easing Functions
	Problem
	Solution
	How It Works
	The Code

	3-17. Adding Pixel Shader Visual Effects
	Problem
	Solution
	How It Works
	The Code

	3-18. Create and Work with Design-Time Data in Expression Blend
	Problem
	Solution
	How It Works
	The Code

	3-19. Reuse Application Interactivity with Behaviors
	Problem
	Solution
	How It Works
	The Code

	3-20. Customizing the Right-Click Context Menu
	Problem
	How it Works
	The Code

	3-21. Accessing the Clipboard
	Problem
	How it Works
	The Code

	3-22. Using Right-to-Left Text
	Problem
	How it Works
	The Code

	3-23. Prototype Application Design
	Problem
	Solution
	How It Works
	The Code

	Data Binding
	4-1. Binding Application Data to the UI
	Problem
	Solution
	How It Works
	Binding Expression
	Dependency Properties
	Associating the Data Source
	The Code

	4-2. Binding Using a DataTemplate
	Problem
	Solution
	How It Works
	Declaring a DataTemplate
	Using a DataTemplate
	The Code

	4-3. Receiving Change Notifications for Bound Data
	Problem
	Solution
	How It Works
	Change Notification for Noncollection Types
	Change Notification for Collection Types
	The Code

	4-4. Converting Values During Data Binding
	Problem
	Solution
	How It Works
	Implementing Value Conversion
	The Code

	4-5. Binding Across Elements
	Problem
	Solution
	How It Works
	Binding to Another Element
	Binding to Self
	Binding to the TemplatedParent
	The Code

	4-6. Validating Input for Bound Data
	Problem
	Solution
	How It Works
	Validation Error Notification
	Getting Error Information
	Getting a Validation Error Summary
	The Code

	4-7. Controlling Updates
	Problem
	Solution
	How It Works
	The Code

	4-8. Providing reasonable defaults for bound data
	Problem
	Solution
	How It Works
	Null Value Replacement
	Fallback value
	String Formatting
	The Code

	Controls
	A Word About the Samples
	5-1. Customizing a Control’s Basic Appearance
	Problem
	Solution
	How It Works
	The Code

	5-2. Replacing the Default UI of a Control
	Problem
	Solution
	How It Works
	The Code

	5-3. Customizing the Default ListBoxItem UI
	Problem
	Solution
	How It Works
	The Code

	5-4. Displaying Information in a Pop-up
	Problem
	Solution
	How It Works
	The Code

	5-5. Displaying Row Details in a DataGrid
	Problem
	Solution
	How It Works
	The Code

	5-6. Applying Custom Templates to a DataGrid Cell
	Problem
	Solution
	How It Works
	The Code

	5-7. Creating Custom Column Types for a DataGrid
	Problem
	Solution
	How It Works
	The Code

	5-8. Creating a Composite User Control
	Problem
	Solution
	How It Works
	The Code

	5-9. Creating a Custom Layout Container
	Problem
	Solution
	How It Works
	The Code

	5-10. Creating a Custom Control
	Problem
	Solution
	How It Works
	The Code

	5-11. Defining a Custom Visual State
	Problem
	Solution
	How It Works
	The Code

	5-12. Controlling ScrollViewer Scroll Behavior
	Problem
	Solution
	How It Works
	The Code

	5-13. Customizing the Binding Validation User Interface
	Problem
	Solution
	How It Works
	The Code

	5-14. Control Behavior in Expression Blend
	Problem
	Solution
	How It Works
	The Code

	5.15 Enhancing the Design Experience with Behaviors and Triggers
	Problem
	Solution
	How It Works
	The Code

	Browser Integration
	6-1. Host Silverlight on Any Technology
	Problem
	Solution
	How It Works
	The Code

	6-2. Setting Focus for Keyboard Input
	Problem
	Solution
	How It Works
	The Code

	6-3. Implementing a Full-Screen UI
	Problem
	Solution
	How It Works
	The Code

	6-4. Calling a JavaScript Method from Managed Code
	Problem
	Solution
	How It Works
	The Code

	6-5. Calling a Managed Code Method from JavaScript
	Problem
	Solution
	How It Works
	The Code

	6-6. Exchanging Data Among Multiple Plug-ins
	Problem
	Solution
	How It Works
	The Code

	6-7. Layering HTML over the Silverlight Plug-in
	Problem
	Solution
	How It Works
	The Code

	6-8. Hosting HTML in a Silverlight Application
	Problem
	Solution
	How It Works
	The Code

	6-9. Painting a Silverlight Element with HTML
	Problem
	Solution
	How It Works
	The Code

	6-10. Taking Advantage of the Navigation Framework
	Problem
	Solution
	How It Works
	The Code

	6-11. Embedding Silverlight within a Windows Gadget
	Problem
	Solution
	How It Works
	The Code

	6-12. Embedding Silverlight in an Internet Explorer 8 Web Slice
	Problem
	Solution
	How It Works
	The Code

	Networking and Web Service Integration
	A Quick Word about the Samples
	7-1. Consuming a WCF Service
	Problem
	Solution
	How It Works
	Invoking a Service Operation
	Configuring a WCF Service for Silverlight
	The Code

	7-2. Exchanging XML Messages over HTTP
	Problem
	Solution
	How It Works
	Using HttpWebRequest/HttpWebResponse in Silverlight
	Configuring WCF to Use Non-SOAP Endpoints
	The Code

	7-3. Using JSON Serialization over HTTP
	Problem
	Solution
	How It Works
	JSON
	Using the DataContractJsonSerializer Type
	Configuring WCF to Use JSON
	The Code

	7-4. Accessing Resources over HTTP
	Problem
	Solution
	How It Works
	Downloading/Uploading Resources
	Reading/Writing Remote Streams
	WebClient and HTTP Endpoints
	Canceling Long-Running Operations
	The Code

	7-5. Using Sockets to Communicate over TCP
	Problem
	Solution
	How It Works
	The Sockets API in Silverlight
	Cross-Domain Policy and Port Requirements
	The Code
	Running the Sample Code
	The Client
	The Chat Server
	The Policy Server

	7-6. Enabling Cross-Domain Access
	Problem
	Solution
	How It Works
	The Code

	7-7. Exchanging Data between Silverlight Applications
	Problem
	Solution
	How It Works
	Receiver Registration
	Receiving Messages
	Sending Messages
	Request-Response
	The Code

	Building Out Of Browser Silverlight Applications
	8-1. Building a Silverlight application to run outside the browser
	Problem
	Solution
	How It Works Preparing the Application
	Installing the Application
	Customizing the Installation Flow
	Sensing Network Availability
	Updating Locally Installed Applications
	The Code

	8-2. Controlling the Application Window
	Problem
	Solution
	How It Works Window Attributes
	Resizing and moving a Window
	The Code

	8-3. Using COM Interoperability and File System Access
	Problem
	Solution
	How It Works COM Interoperability
	Instantiating a COM object
	Handling a COM event
	File System Access
	The Code
	Windows Image Acquisition
	The Application Code
	Saving Images to the disk
	Taskbar Notification

	Building LOB Applications
	Silverlight LOB Enhancements
	Data Access Enhancements
	WCF Data Services
	WCF RIA Services

	9-1. Accessing RESTful Data using OData
	Problem
	Solution
	How It Works
	The Code

	9-2. Using Visual Studio 2010 WCF Data Services Tooling
	Problem
	Solution
	How It Works
	The Code

	9-3. Implementing CRUD Operations in WCF Data Services
	Problem
	Solution
	How It Works
	The Code

	9-4. Using Visual Studio 2010 WCF RIA Data Services Tooling
	Problem
	Solution
	How It Works
	The Code

	9-5. Taking Advantage of the Business Application Template
	Problem
	Solution
	How It Works
	The Code

	9-6. Databinding in XAML
	Problem
	Solution
	How It Works
	The Code

	9-7. Navigating RIA LOB Data
	Problem
	Solution
	How It Works
	The Code

	9-8. Implementing CRUD Operations in RIA Services
	Problem
	Solution
	How It Works
	The Code

	9-9. Data Validation through Data Annotation
	Problem
	Solution
	How It Works
	The Code

	9-10. Printing in a Silverlight LOB Application
	Problem
	Solution
	How It Works
	The Code

	Integrating Rich Media
	10-1. Adding Video to a Page
	Problem
	Solution
	How It Works
	Using MediaElement
	VideoBrush
	The Code

	10-2. Creating a Complete Video Player
	Problem
	Solution
	How It Works
	Acquiring Media
	Controlling Media Play
	MediaElement States
	Seeking Within the Media
	Volume
	The Code
	Installing the Sample Code
	The Player Code
	The MediaSlider Custom Control
	The MediaButtonsPanel Custom Control

	10-3. Adding Streaming Media Support
	Problem
	Solution
	How It Works
	Network Considerations
	Windows Media Services
	Setting Up WMS 2008
	Setting Up Publishing Points
	The Code
	Changes to the Player

	10-4. Using Playlists to Package Media
	Problem
	Solution
	How It Works
	Server-Side Playlists
	Client-Side Playlists
	The Code

	10-5. Using Markers to Display Timed Content
	Problem
	Solution
	How It Works
	Encoding Markers Using Expression Encoder 3
	MediaElement and Markers
	The Code

	10-6. Displaying and Seeking Using SMPTE Timecodes
	Problem
	Solution
	How It Works
	Frame Rate
	Timecodes
	Timecodes and Silverlight
	The Code

	10-7. Building a Managed Decoder for Silverlight
	Problem
	Solution
	How It Works
	Silverlight, Containers, and Codecs
	MediaStreamSource
	Initializing the Media Stream
	Sampling
	Stream Switching
	Seeking
	The Code
	The Recorder
	The Custom MediaStreamSource

	10-8. Using a WebCam
	Problem
	Solution
	How It Works Webcam and Microphone as devices
	Video and Audio Format Choices
	Starting Device Capture
	Capturing a still image
	The Code

	10-9. Processing Raw WebCam Output
	Problem
	Solution
	How It Works
	VideoSink and AudioSink
	The Code

	Integrating Microsoft IIS Smooth Streaming
	11-1. Setting up Smooth Streaming
	Problem
	Solution
	How It Works IIS Media Services
	Setting Up IIS7
	The Silverlight Client/Smooth Streaming Server Data Exchange
	Testing the Smooth Streaming Presentation
	The Code

	11-2. Using the SmoothStreamingMediaElement
	Problem
	Solution
	How It Works
	The IIS Smooth Streaming Player Development Kit
	The Code

	11-3. Adding Metadata Streams
	Problem
	Solution
	How It Works
	Streams and Tracks
	The Code
	Injecting the Metadata and Content
	Using Metadata at Playback

	11-4. Merging Data from External Manifests
	Problem
	Solution
	How It Works
	The Code
	Creating the External Manifests
	Merging the Manifests at Runtime

	11-5. Scheduling Additional Clips
	Problem
	Solution
	How It Works
	The Code

	11-6. Varying Playback Speeds
	Problem
	Solution
	How It Works
	The Code

	11-7. Combining Streams Using Composite Manifests
	Problem
	Solution
	How It Works
	The Code

	Index
	¦ ¦ ¦ ¦ Symbols and Numerics
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	¦ G
	¦ H
	¦ I
	¦ K
	¦ J
	¦ L
	¦ M
	¦ N
	¦ O
	¦ P
	¦ Q
	¦
	R
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	¦ X
	¦ Y
	¦ Z

