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INTRODUCTION TO THE  
FOURTH EDITION

This book, like the first, second, and third editions before it, is 
for the working SQL programmer who wants to pick up some 
advanced programming tips and techniques. It assumes that 
the reader is an SQL programmer with a year or more of actual 
experience. This is not an introductory book, so let’s not have any 
gripes in the amazon.com reviews about that like we did with the 
prior editions.

The first edition was published 10 years ago, and became a 
minor classic among working SQL programmers. I have seen 
copies of this book on the desks of real programmers in real pro-
gramming shops almost everywhere I have been. The true com-
pliment are the Post-it® notes sticking out of the top. People 
really use it often enough to put stickies in it! Wow!

What Changed in Ten Years
Hierarchical and network databases still run vital legacy systems 
in major corporations. SQL people do not like to admit that IMS 
and traditional files are still out there in the Fortune 500. But SQL 
people can be proud of the gains SQL-based systems have made 
over the decades. We have all the new applications and all the 
important smaller databases.

OO programming is firmly in place, but may give ground to 
functional programming in the next decade. Object and object-
relational databases found niche markets, but never caught on 
with the mainstream.

XML is no longer a fad in 2010. Technically, it is syntax for 
describing and moving data from one platform to another, but 
its support tools allow searching and reformatting. There is an 
SQL/XML subcommittee in INCITS H2 (the current name of the 
original ANSI X3H2 Database Standards Committee) making sure 
they can work together.

Data warehousing is no longer an exotic luxury only for major 
corporations. Thanks to the declining prices of hardware and 
software, medium-sized companies now use the technology. 
Writing OLAP queries is different from OLTP queries and prob-
ably needs its own “Smarties” book now.

http://www.amazon.com


xxii  INTRODUCTION TO THE FOURTH EDITION

Open Source databases are doing quite well and are gaining 
more and more Standards conformance. The LAMP platform 
(Linux, Apache, MySQL, and Python/PHP) has most of the web 
sites. Ingres, Postgres, Firebird, and other products have the ANSI 
SQL-92 features, most of the SQL-99, and some of the SQL:2003 
features.

Columnar databases, parallelism, and Optimistic Concur rency 
are all showing up in commercial product instead of the labora-
tory. The SQL Standards have changed over time, but not always 
for the better. Parts of it have become more relational and set- 
oriented while other parts put in things that clearly are proce-
dural, deal with nonrelational data, and are based on file system 
models. To quote David McGoveran, “A committee never met a 
feature it did not like.” And he seems to be quite right.

But with all the turmoil the ANSI/ISO Standard SQL-92 was 
the common subset that will port across SQL products to do use-
ful work. In fact, years ago, the US government described the 
SQL-99 standard as “a standard in progress” and required SQL-92 
conformance for federal contracts.

We had the FIPS-127 conformance test suite in place during the 
development of SQL-92, so all the vendors could move in the same 
direction. Unfortunately, the Clinton administration canceled the 
program and conformance began to drift. Michael M. Gorman, 
President of Whitemarsh Information Systems Corporation and 
secretary of INCITS H2 for over 20 years, has a great essay on this 
and other political aspects of SQL’s history at Wiscorp.com that is 
worth reading.

Today, the SQL-99 standard is the one to use for portable code 
on the greatest number of platforms. But vendors are adding 
SQL:2003 features so rapidly, I do not feel that I have to stick to a 
minimal standard.

New in This Edition
In the second edition, I dropped some of the theory from the book 
and moved it to Data and Databases (ISBN 13:978-1558604322). 
I find no reason to add it back into this edition.

I have moved and greatly expanded techniques for trees and 
hierarchies into their own book (Trees and Hierarchies in SQL, 
ISBN 13:978-1558609204) because there was enough material to 
justify it. There is a short mention of some techniques here, but 
not to the detailed level in the other book.

I put programming tips for newbies into their own book (SQL 
Programming Style, ISBN 13:978-0120887972) because this book 

http://www.Wiscorp.com
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is an advanced programmer’s book and I assume that the reader 
is now writing real SQL, not some dialect or his or her native 
programming language in a thin disguise. I also assume that the 
reader can translate Standard SQL into his or her local dialect 
without much effort.

I have tried to provide comments with the solutions, to 
explain why they work. I hope this will help the reader see under-
lying principles that can be used in other situations.

A lot of people have contributed material, either directly or 
via Newsgroups and I cannot thank all of them. But I made a real 
effort to put names in the text next to the code. In case I missed 
anyone, I got material or ideas from Aaron Bertrand, Alejandro 
Mesa, Anith Sen, Craig Mullins (who has done the tech reads 
on several editions), Daniel A. Morgan, David Portas, David 
Cressey, Dawn M. Wolthuis, Don Burleson, Erland Sommarskog, 
Itzak Ben-Gan, John Gilson, Knut Stolze, Ken Henderson, Louis 
Davidson, Dan Guzman, Hugo Kornelis, Richard Romley, Serge 
Rielau, Steve Kass, Tom Moreau, Troels Arvin, Vadim Tropashko, 
Plamen Ratchev, Gert-Jan Strik, and probably a dozen others I am 
forgetting.

Corrections and Additions
Please send any corrections, additions, suggestions, improvements, 
or alternative solutions to me or to the publisher. Especially if you 
have a better way of doing something.

www.mkp.com

http://www.mkp.com
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1
DATABASES VERSUS FILE 
SYSTEMS

It ain’t so much the things we don’t know that get us in trouble. It’s 
the things we know that ain’t so.

Artemus Ward (William Graham Sumner), American Writer and  
Humorist, 1834–1867

Databases and RDBMS in particular are nothing like the file systems 
that came with COBOL, FORTRAN, C, BASIC, PL/I, Java, or any of 
the procedural and OO programming  languages. We used to say that 
SQL means “Scarcely Qualifies as a Language” because it has no I/O 
of its own. SQL depends on a host language to get and receive data 
to and from end users.

Programming languages are usually based on some underly-
ing model; if you understand the model, the language makes 
much more sense. For example, FORTRAN is based on algebra. 
This does not mean that FORTRAN is exactly like algebra. But 
if you know algebra, FORTRAN does not look all that strange to 
you. You can write an expression in an assignment statement or 
make a good guess as to the names of library functions you have 
never seen before.

Programmers are used to working with files in almost every 
other programming language. The design of files was derived 
from paper forms; they are very physical and very dependent 
on the host programming language. A COBOL file could not eas-
ily be read by a FORTRAN program and vice versa. In fact, it was 
hard to share files among programs written in the same program-
ming language!

The most primitive form of a file is a sequence of records 
that are ordered within the file and referenced by physical 
 position. You open a file then read a first record, followed by a 
series of next records until you come to the last record to raise 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00001-6
Copyright © 2011 by Elsevier Inc. All rights reserved.
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2  Chapter 1 DATABASES VERSUS FILE SYSTEMS

the  end-of-file condition. You navigate among these records 
and  perform actions one record at a time. The actions you take 
on one file have no effect on other files that are not in the same 
 program. Only programs can change files.

The model for SQL is data kept in sets, not in physical files. The 
“unit of work” in SQL is the whole schema, not individual tables.

Sets are those mathematical abstractions you studied in 
school. Sets are not ordered and the members of a set are all of the 
same type. When you do an operation on a set, the action hap-
pens “all at once” to the entire membership. That is, if I ask for the 
subset of odd numbers from the set of positive integers, I get all 
of them back as a single set. I do not build the set of odd numbers 
by sequentially inspecting one element at a time. I define odd 
numbers with a rule—“If the remainder is 1 when you divide the 
number by 2, it is odd”—that could test any integer and classify it. 
Parallel processing is one of many, many advantages of having a 
set-oriented model.

SQL is not a perfect set language any more than FORTRAN is 
a perfect algebraic language, as we will see. But when in doubt 
about something in SQL, ask yourself how you would specify it in 
terms of sets and you will probably get the right answer.

SQL is much like Gaul—it is divided into three parts, which 
are three sublanguages:
•	 DDL:	Data	Declaration	Language
•	 DML:	Data	Manipulation	Language
•	 DCL:	Data	Control	Language

The Data Declaration Language (DDL) is what defines the 
database content and maintains the integrity of that data. Data 
in files have no integrity constraints, default values, or relation-
ships; if one program scrabbles the data, then the next program 
is screwed. Talk to an older programmer about reading a COBOL 
file with a FORTRAN program and getting output instead of 
errors.

The more effort and care you put into the DDL, the better 
your RDBMS will work. The DDL works with the DML and the 
DCL; SQL is an integrated whole and not a bunch of discon-
nected parts.

The Data Manipulation Language (DML) is where most of 
my readers will earn a living doing queries, inserts, updates, and 
deletes. If you have normalized data and build a good schema, 
then your job is much easier and the results are good. Procedural 
code will compile the same way every time. SQL does not work that 
way. Each time a query or other statement is processed, the execu-
tion plan can change based on the current state of the database. As 
quoted by Plato in Cratylus, “Everything flows, nothing stands still.”
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The Data Control Language (DCL) is not a data security 
 language, it is an access control language. It does not encrypt the 
data; encryption is not in the SQL Standards, but vendors have 
such options. It is not generally stressed in most SQL books and I 
am not going to do much with it.

DCL deserves a small book unto itself. It is the neglected 
third leg on a three-legged stool. Maybe I will write such a book 
some day.

Now let’s look at fundamental concepts. If you already have a 
background in data processing with traditional file systems, the 
first things to unlearn are:
1. Database schemas are not file sets. Files do not have relation-

ships among themselves; everything is done in applications. 
SQL does not mention anything about the physical storage 
in the Standard, but files are based on physically contigu-
ous  storage. This started with punch cards, was mimicked in 
magnetic tapes, and then on early disk drives. I made this 
item first on my list because this is where all the problems 
start.

2. Tables are not files; they are parts of a schema. The schema is 
the unit of work. I cannot have tables with the same name in 
the same schema. A file system assigns a name to a file when 
it is mounted on a physical drive; a table has a name in the 
 database. A file has a physical existence, but a table can be 
 virtual (VIEW, CTE, query result, etc.).

3. Rows are not records. Records get meaning from the applica-
tion reading them. Records are sequential, so first, last, next, 
and prior make sense; rows have no physical ordering (ORDER 
BY is a clause in a CURSOR). Records have physical locators, 
such as pointers and record numbers. Rows have relational 
keys, which are based on uniqueness of a subset of attributes 
in a data model. The mechanism is not specified and it varies 
quite a bit from SQL to SQL.

4. Columns are not fields. Fields get meaning from the appli-
cation reading them, and they may have several meanings 
depending on the applications. Fields are sequential within a 
record and do not have data types, constraints, or defaults. This 
is active versus passive data! Columns are also NULL-able, a 
concept that does not exist in fields. Fields have to have physi-
cal existence, but columns can be computed or virtual. If you 
want to have a computed column value, you can have it in the 
application, not the file.
Another conceptual difference is that a file is usually data that 

deals with a whole business process. A file has to have enough 
data in itself to support applications for that one business  process. 
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Files tend to be “mixed” data, which can be described by the name 
of the business process, such as “The Payroll file” or something 
like that. Tables can be either entities or relationships within a 
business process. This means that the data held in one file is often 
put into several tables. Tables tend to be “pure” data that can be 
described by single words. The payroll would now have separate 
tables for timecards, employees, projects, and so forth.

1.1 Tables as Entities
An entity is a physical or conceptual “thing” that has meaning 
by itself. A person, a sale, or a product would be an example. In 
a relational database, an entity is defined by its attributes. Each 
occurrence of an entity is a single row in the table. Each attribute 
is a column in the row. The value of the attribute is a scalar. 

To remind users that tables are sets of entities, I like to use 
collective or plural nouns that describe the function of the enti-
ties within the system for the names of tables. Thus, “Employee” 
is a bad name because it is singular; “Employees” is a better 
name because it is plural; “Personnel” is best because it is col-
lective and does not summon up a mental picture of individual 
persons. This also follows the ISO 11179 Standards for metadata. 
I cover this in detail in my book, SQL Programming Style (ISBN 
978-0120887972).

If you have tables with exactly the same structure, then they 
are sets of the same kind of elements. But you should have only 
one set for each kind of data element! Files, on the other hand, 
were physically separate units of storage that could be alike—
each tape or disk file represents a step in the PROCEDURE, 
such as moving from raw data, to edited data, and finally to 
archived data. In SQL, this should be a status flag in a table.

1.2 Tables as Relationships
A relationship is shown in a table by columns that reference one 
or more entity tables.

Without the entities, the relationship has no meaning, but 
the relationship can have attributes of its own. For example, a 
show business contract might have an agent, an employer, and 
a  talent. The method of payment is an attribute of the contract 
itself, and not of any of the three parties. This means that a 
 column can have REFERENCES to other tables. Files and fields 
do not do that.
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1.3 Rows versus Records
Rows are not records. A record is defined in the application 
program that reads it; a row is defined in the database schema 
and not by a program at all. The name of the field is in the 
READ or INPUT statements of the application; a row is named 
in the database schema. Likewise, the PHYSICAL order of the 
field names in the READ statement is vital (READ a, b, c is not 
the same as READ c, a, b; but SELECT a, b, c is the same data as 
SELECT c, a, b).

All empty files look alike; they are a directory entry in 
the operating system with a name and a length of zero bytes 
of storage. Empty tables still have columns, constraints, secu-
rity privileges, and other structures, even though they have 
no rows.

This is in keeping with the set theoretical model, in which the 
empty set is a perfectly good set. The difference between SQL’s 
set model and standard mathematical set theory is that set the-
ory has only one empty set, but in SQL each table has a different 
structure, so they cannot be used in places where nonempty ver-
sions of themselves could not be used.

Another characteristic of rows in a table is that they are all 
alike in structure and they are all the “same kind of thing” in the 
model. In a file system, records can vary in size, data types, and 
structure by having flags in the data stream that tell the program 
reading the data how to interpret it. The most common exam-
ples are Pascal’s variant record, C’s struct syntax, and COBOL’s 
OCCURS clause.

The OCCURS keyword in COBOL and the VARIANT records in 
Pascal have a number that tells the program how many times a 
subrecord structure is to be repeated in the current record.

Unions in C are not variant records, but variant mappings for 
the same physical memory. For example:

union x {int ival; char j[4];} mystuff;

defines mystuff to be either an integer (which is 4 bytes on most 
C compilers, but this code is nonportable) or an array of 4 bytes, 
depending on whether you say mystuff.ival or mystuff.j[0];.

But even more than that, files often contained records that 
were summaries of subsets of the other records—so-called 
control break reports. There is no requirement that the records 
in a file be related in any way—they are literally a stream 
of binary data whose meaning is assigned by the program 
reading them.
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1.4 Columns versus Fields
A field within a record is defined by the application program that 
reads it. A column in a row in a table is defined by the database 
schema. The data types in a column are always scalar.

The order of the application program variables in the READ 
or INPUT statements is important because the values are read 
into the program variables in that order. In SQL, columns are ref-
erenced only by their names. Yes, there are shorthands like the 
SELECT * clause and INSERT INTO <table name> statements, 
which expand into a list of column names in the physical order in 
which the column names appear within their table declaration, 
but these are shorthands that resolve to named lists.

The use of NULLs in SQL is also unique to the language. 
Fields do not support a missing data marker as part of the field, 
record, or file itself. Nor do fields have constraints that can be 
added to them in the record, like the DEFAULT and CHECK() 
clauses in SQL.

Files are pretty passive creatures and will take whatever an 
application program throws at them without much objection. 
Files are also independent of each other simply because they are 
connected to one application program at a time and therefore 
have no idea what other files look like.

A database actively seeks to maintain the correctness of all its 
data. The methods used are triggers, constraints, and declarative 
referential integrity.

Declarative referential integrity (DRI) says, in effect, that data 
in one table has a particular relationship with data in a second 
(possibly the same) table. It is also possible to have the database 
change itself via referential actions associated with the DRI. For 
example, a business rule might be that we do not sell products 
that are not in inventory.

This rule would be enforced by a REFERENCES clause on the 
Orders table that references the Inventory table, and a referen-
tial action of ON DELETE CASCADE. Triggers are a more general 
way of doing much the same thing as DRI. A trigger is a block of 
procedural code that is executed before, after, or instead of an 
INSERT INTO or UPDATE statement. You can do anything with a 
trigger that you can do with DRI and more.

However, there are problems with TRIGGERs. Although there 
is a standard syntax for them since the SQL-92 standard, most 
vendors have not implemented it. What they have is very propri-
etary syntax instead. Second, a trigger cannot pass information to 
the optimizer like DRI. In the example in this section, I know that 
for every product number in the Orders table, I have that same 
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product number in the Inventory table. The optimizer can use 
that information in setting up EXISTS() predicates and JOINs in 
the queries. There is no reasonable way to parse procedural trig-
ger code to determine this relationship.

The CREATE ASSERTION statement in SQL-92 will allow the 
database to enforce conditions on the entire database as a whole. 
An ASSERTION is not like a CHECK() clause, but the difference is 
subtle. A CHECK() clause is executed when there are rows in the 
table to which it is attached.

If the table is empty then all CHECK() clauses are effectively 
TRUE. Thus, if we wanted to be sure that the Inventory table is 
never empty, and we wrote:

CREATE TABLE Inventory
( . . .
CONSTRAINT inventory_not_empty

CHECK ((SELECT COUNT(*) FROM Inventory) > 0),
. . . );

but it would not work. However, we could write:

CREATE ASSERTION Inventory_not_empty
CHECK ((SELECT COUNT(*) FROM Inventory) > 0);

and we would get the desired results. The assertion is checked at 
the schema level and not at the table level.

1.5 Schema Objects
A database is not just a bunch of tables, even though that is where 
most of the work is done. There are stored procedures, user-defined 
functions, and cursors that the users create. Then there are indexes 
and other access methods that the user cannot access directly.

This chapter is a very quick overview of some of the schema 
objects that a user can create. Standard SQL divides the database 
users into USER and ADMIN roles. These objects require ADMIN 
privileges to be created, altered, or dropped. Those with USER 
privileges can invoke them and access the results.

1.6 CREATE SCHEMA Statement
The CREATE SCHEMA statement defined in the standards brings 
an entire schema into existence all at once. In practice, each 
product has very different utility programs to allocate physical 
storage and define a schema. Much of the proprietary syntax is 
concerned with physical storage allocations.
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A schema must have a name and a default character set. 
Years ago, the default character set would have been ASCII or 
a local alphabet (8 bits) as defined in the ISO standards. Today, 
you are more likely to see Unicode (16 bits). There is an optional 
AUTHORIZATION clause that holds a <schema authorization 
identifier> for security. After that the schema is a list of schema 
elements:

<schema element> ::=
<domain definition> | <table definition> | <view definition>

| <grant statement> | <assertion definition>
| <character set definition>
| <collation definition> | <translation definition>

A schema is the skeleton of an SQL database; it defines the 
structures of the schema objects and the rules under which they 
operate. The data is the meat on that skeleton.

The only data structure in SQL is the table. Tables can be per-
sistent (base tables), used for working storage (temporary tables), 
or virtual (VIEWs, common table expressions and derived tables). 
The differences among these types are in implementation, not 
performance. One advantage of having only one data structure is 
that the results of all operations are also tables—you never have 
to convert structures, write special operators, or deal with any 
irregularity in the language.

The <grant statement> has to do with limiting access by users 
to only certain schema elements. The <assertion definition> is still 
not widely implemented yet, but it is like constraint that applies 
to the schema as a whole. Finally, the <character set  definition>, 
< collation definition>, and <translation definition> deal with 
the display of data. We are not really concerned with any of these 
schema objects; they are usually set in place by the database 
administrator (DBA) for the users and we mere programmers do 
not get to change them.

Conceptually, a table is a set of zero or more rows, and a row 
is a set of one or more columns. This hierarchy is important; 
actions apply at the schema, table, row, or column level. For 
example the DELETE FROM statement removes rows, not col-
umns, and leaves the base table in the schema. You cannot delete 
a column from a row.

Each column has a specific data type and constraints that 
make up an implementation of an abstract domain. The way a 
table is physically implemented does not matter, because you 
access it only with SQL. The database engine handles all the 
details for you and you never worry about the internals as you 
would with a physical file. In fact, almost no two SQL products 
use the same internal structures.
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There are two common conceptual errors made by program-
mers who are accustomed to file systems or PCs. The first is 
thinking that a table is a file; the second is thinking that a table 
is a spreadsheet. Tables do not behave like either one of these, 
and you will get surprises if you do not understand the basic 
concepts.

It is easy to imagine that a table is a file, a row is a record, and 
a column is a field. This is familiar and when data moves from 
SQL to the host language, it has to be converted into host lan-
guage data types and data structures to be displayed and used. 
The host languages have file systems built into them.

The big differences between working with a file system and 
working with SQL are in the way SQL fits into a host program. 
Using a file system, your programs must open and close files 
individually. In SQL, the whole schema is connected to or dis-
connected from the program as a single unit. The host program 
might not be authorized to see or manipulate all the tables 
and other schema objects, but that is established as part of the 
connection.

The program defines fields within a file, whereas SQL defines 
its columns in the schema. FORTRAN uses the FORMAT and 
READ statements to get data from a file. Likewise, a COBOL pro-
gram uses a Data Division to define the fields and a READ to 
fetch it. And so on for every 3GL’s programming; the concept is 
the same, though the syntax and options vary.

A file system lets you reference the same data by a differ-
ent name in each program. If a file’s layout changes, you must 
rewrite all the programs that use that file. When a file is empty, 
it looks exactly like all other empty files. When you try to read an 
empty file, the EOF (end of file) flag pops up and the program 
takes some action. Column names and data types in a table are 
defined within the database schema. Within reasonable limits, 
the tables can be changed without the knowledge of the host 
program.

The host program only worries about transferring the values 
to its own variables from the database. Remember the empty 
set from your high school math class? It is still a valid set. When 
a table is empty, it still has columns, but has zero rows. There 
is no EOF flag to signal an exception, because there is no final 
record.

Another major difference is that tables and columns can have 
constraints attached to them. A constraint is a rule that defines 
what must be true about the database after each transaction. In 
this sense, a database is more like a collection of objects than a 
traditional passive file system.
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A table is not a spreadsheet, even though they look very 
much alike when you view them on a screen or in a printout. In 
a spreadsheet you can access a row, a column, a cell, or a col-
lection of cells by navigating with a cursor. A table has no con-
cept of navigation. Cells in a spreadsheet can store instructions 
and not just data. There is no real difference between a row and 
column in a spreadsheet; you could flip them around completely 
and still get valid results. This is not true for an SQL table.

The only underlying commonality is that a spreadsheet is also 
a declarative programming language. It just happens to be a non-
linear language.
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2
TRANSACTIONS AND 
CONCURRENCY CONTROL

In the old days when we lived in caves and used mainframe com-
puters with batch file systems, transaction processing was easy. 
You batched up the transactions to be made against the master 
file into a transaction file. The transaction file was sorted, edited, 
and ready to go when you ran it against the master file from a 
tape drive. The output of this process became the new master file 
and the old master file and the transaction files were logged to 
magnetic tape in a huge closet in the basement of the company.

When disk drives, multiuser systems, and databases came 
along, things got complex and SQL made it more so. But merci-
fully the user does not have to see the details. Well, here is the 
first layer of the details.

2.1 Sessions
The concept of a user session involves the user first connecting 
to the database. This is like dialing a phone number, but with a 
password, to get to the database. The Standard SQL syntax for 
this statement is:

CONNECT TO <connection target>

<connection target> ::=
 <SQL-server name>
  [AS <connection name>]
  [USER <user name>]
| DEFAULT

However, you will find many differences in vendor SQL prod-
ucts and perhaps operating system level log on procedures that 
have to be followed.

Once the connection is established, the user has access to all 
the parts of the database to which he or she has been granted 
privileges. During this session, the user can execute zero or more 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00002-8
Copyright © 2011 by Elsevier Inc. All rights reserved.
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transactions. As one user inserts, updates, and deletes rows in the 
database, these changes are not made a permanent part of the 
database until that user issues a COMMIT WORK command for 
that transaction.

However, if the user does not want to make the changes per-
manent, then he or she can issue a ROLLBACK WORK command 
and the database stays as it was before the transaction.

2.2 Transactions and ACID
There is a handy mnemonic for the four characteristics we want 
in a transaction: the ACID properties. The initials represent four 
properties we must have in a transaction processing system:
•	 Atomicity
•	 Consistency
•	 Isolation
•	 Durability

2.2.1 Atomicity
Atomicity means that the whole transaction becomes persistent 
in the database or nothing in the transaction becomes persistent. 
The data becomes persistent in Standard SQL when a COMMIT 
statement is successfully executed. A ROLLBACK statement 
removes the transaction and restores the database to its prior 
(consistent) state before the transaction began.

The COMMIT or ROLLBACK statement can be explicitly 
executed by the user or by the database engine when it finds an 
error. Most SQL engines default to a ROLLBACK unless they are 
configured to do otherwise.

Atomicity means that if I were to try to insert one million rows 
into a table and one row of that million violated a referential con-
straint, then the whole set of one million rows would be rejected 
and the database would do an automatic ROLLBACK WORK.

Here is the trade-off. If you do one long transaction, then 
you are in danger of being screwed by just one tiny little error. 
However, if you do several short transactions in a session, other 
users can have access to the database between your transactions 
and they might change things, much to your surprise.

The SQL:2006 Standards have SAVEPOINTs with a chaining 
option. A SAVEPOINT is like a “bookmarker” in the transaction 
session. A transaction sets savepoints during its execution and 
lets the transaction perform a local rollback to the checkpoint. 
In our example, we might have been doing savepoints every 1000 
rows. When the 999,999-th row inserted has an error that would 
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have caused a ROLLBACK, the database engine removes only the 
work done after the last savepoint was set, and the transaction is 
restored to the state of uncommitted work (i.e., rows 1–999,000) 
that existed before the savepoint.

The syntax looks like this:

<savepoint statement> ::= SAVEPOINT <savepoint specifier>
<savepoint specifier> ::= <savepoint name>

There is an implementation-defined maximum number of 
savepoints per SQL transaction, and they can be nested inside 
each other. The level at which you are working is found with:

<savepoint level indication> ::=
NEW SAVEPOINT LEVEL | OLD SAVEPOINT LEVEL

You can get rid of a savepoint with:

<release savepoint statement> ::= RELEASE SAVEPOINT  
<savepoint specifier>

The commit statement persists the work done at this level, or 
all the work in the chain of savepoints.

<commit statement> ::= COMMIT [WORK] [AND [NO] CHAIN]

Likewise, you can rollback the work for the entire session, up 
the current chain or back to a specific savepoint.

<rollback statement> ::= ROLLBACK [WORK] [AND [NO] CHAIN] 
[<savepoint clause>]

<savepoint clause> ::= TO SAVEPOINT <savepoint specifier>

This is all I am going to say about this. You will need to look 
at your particular product to see if it has something like this. 
The usual alternatives are to break the work into chunks that are 
run as transaction with a hot program or to use an ETL tool that 
scrubs the data completely before loading it into the database.

2.2.2 Consistency
When the transaction starts, the database is in a consistent state 
and when it becomes persistent in the database, the database is 
in a consistent state. The phrase “consistent state” means that all 
of the data integrity constraints, relational integrity constraints, 
and any other constraints are true.

However, this does not mean that the database might go 
through an inconsistent state during the transaction. Standard 
SQL has the ability to declare a constraint to be DEFERRABLE or 
NOT DEFERRABLE for finer control of a transaction. But the rule 
is that all constraints have to be true at the end of session. This 
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can be tricky when the transaction has multiple statements or 
fires triggers that affect other tables.

2.2.3 Isolation
One transaction is isolated from all other transactions. Isolation is 
also called serializability because it means that transactions act as 
if they were executed in isolation from each other. One way to guar-
antee isolation is to use serial execution like we had in batch sys-
tems. In practice, this might not be a good idea, so the system has 
to decide how to interleave the transactions to get the same effect.

This actually becomes more complicated in practice because 
one transaction may or may not actually see the data inserted, 
updated, or deleted by another transaction. This will be dealt 
with in detail in the section on isolation levels.

2.2.4 Durability
The database is stored on a durable media, so that if the database 
program is destroyed, the database itself persists. Furthermore, 
the database can be restored to a consistent state when the data-
base system is restored. Log files and back-up procedure figure 
into this property, as well as disk writes done during processing.

This is all well and good if you have just one user accessing the 
database at a time. But one of the reasons you have a database 
system is that you also have multiple users who want to access it 
at the same time in their own sessions. This leads us to concur-
rency control.

2.3 Concurrency Control
Concurrency control is the part of transaction handling that deals 
with how multiple users access the shared database without run-
ning into each other—sort of like a traffic light system. One way 
to avoid any problems is to allow only one user in the database at 
a time. The only problem with that solution is that the other users 
are going to get slow response time. Can you seriously imagine 
doing that with a bank teller machine system or an airline reser-
vation system where tens of thousands of users are waiting to get 
into the system at the same time?

2.3.1 The Three Phenomena
If all you do is execute queries against the database, then the 
ACID properties hold. The trouble occurs when two or more 
transactions want to change the database at the same time. In 



 Chapter 2 TRANSACTIONS AND CONCURRENCY CONTROL  15

the SQL model, there are three ways that one transaction can 
affect another.
•	 P0	 (Dirty	Write):	Transaction	T1	 modifies	 a	 data	 item.	 Another	

transaction T2 then further modifies that data item before 
T1 performs a COMMIT or ROLLBACK. If T1 or T2 then performs 
a ROLLBACK, it is unclear what the correct data value should 
be. One reason why Dirty Writes are bad is that they can  violate 
database consistency. Assume there is a constraint between 
x and y (e.g., x 5 y), and T1 and T2 each maintain the consis-
tency of the constraint if run alone. However, the constraint can 
easily be violated if the two transactions write x and y in different 
orders, which can only happen if there are Dirty Writes.

•	 P1	 (Dirty	 read):	 Transaction	 T1	 modifies	 a	 row.	 Transaction	
T2 then reads that row before T1 performs a COMMIT WORK. 
If T1 then performs a ROLLBACK WORK, T2 will have read a 
row that was never committed, and so may be considered to 
have never existed.

•	 P2	(Nonrepeatable	read):	Transaction	T1	reads	a	row.	Transaction	
T2 then modifies or deletes that row and performs a  COMMIT 
WORK. If T1 then attempts to reread the row, it may receive the 
modified value or discover that the row has been deleted.

•	 P3	(Phantom):	Transaction	T1	reads	the	set	of	rows	N	that	satisfy	
some <search condition>. Transaction T2 then executes state-
ments that generate one or more rows that satisfy the <search 
condition> used by transaction T1. If transaction T1 then 
repeats the initial read with the same <search condition>, it 
obtains a different collection of rows.

•	 P4	(Lost	Update):	The	lost	update	anomaly	occurs	when	trans-
action T1 reads a data item and then T2 updates the data item 
(possibly based on a previous read), then T1 (based on its 
 earlier read value) updates the data item and COMMITs.
These phenomena are not always bad things. If the database 

is being used only for queries, without any changes being made 
during the workday, then none of these problems will occur. 
The database system will run much faster if you do not have to 
try to protect yourself from them. They are also acceptable when 
changes are being made under certain circumstances.

Imagine that I have a table of all the cars in the world. I want 
to execute a query to find the average age of drivers of red sport 
cars. This query will take some time to run and during that time, 
cars will be crashed, bought and sold, new cars will be built, and 
so forth. But I can accept a situation with the three phenomena 
because the average age will not change that much from the time 
I start the query to the time it finishes. Changes after the second 
decimal place really don’t matter.
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However, you don’t want any of these phenomena to occur in 
a database where the husband makes a deposit to a joint account 
and his wife makes a withdrawal. This leads us to the transaction 
isolation levels.

The	 original	 ANSI	 model	 included	 only	 P1,	 P2,	 and	 P3.	 The	
other definitions first appeared in Microsoft Research Technical 
Report: MSR-TR-95-51, “A Critique of ANSI SQL Isolation Levels,” 
by Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth 
O’Neil, and Patrick O’Neil (1995).

2.3.2 The Isolation Levels
In standard SQL, the user gets to set the isolation level of the 
transactions in his session. The isolation level avoids some of the 
phenomena we just talked about and gives other information to 
the database. The syntax for the <set transaction statement> is:

SET TRANSACTION < transaction mode list>

<transaction mode> ::=
  <isolation level>
| <transaction access mode>
| <diagnostics size>

<diagnostics size> ::= DIAGNOSTICS SIZE <number of conditions

<transaction access mode> ::= READ ONLY | READ WRITE

<isolation level> ::= ISOLATION LEVEL <level of isolation>

<level of isolation> ::=
  READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ
| SERIALIZABLE

The optional <diagnostics size> clause tells the database to set 
up a list for error messages of a given size. This is a Standard SQL 
feature, so you might not have it in your particular product. The 
reason is that a single statement can have several errors in it and the 
engine is supposed to find them all and report them in the diagnos-
tics area via a GET DIAGNOSTICS statement in the host program.

The <transaction access mode> explains itself. The READ 
ONLY option means that this is a query and lets the SQL engine 
know that it can relax a bit. The READ WRITE option lets the 
SQL engine know that rows might be changed, and that it has to 
watch out for the three phenomena.

The important clause, which is implemented in most current 
SQL products, is the <isolation level> clause. The isolation level 
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of a transaction defines the degree to which the operations of one 
transaction are affected by concurrent transactions. The isolation 
level of a transaction is SERIALIZABLE by default, but the user 
can explicitly set it in the <set transaction statement>.

The isolation levels each guarantee that each transaction will 
be executed completely or not at all, and that no updates will 
be lost. The SQL engine, when it detects the inability to guaran-
tee the serializability of two or more concurrent transactions or 
when it detects unrecoverable errors, may initiate a ROLLBACK 
WORK statement on its own.

Let’s take a look at a table of the isolation levels and the three 
phenomena (Table 2.1). A Yes means that the phenomena are 
possible under that isolation level.

The SERIALIZABLE isolation level is guaranteed to produce 
the same results, as the concurrent transactions would have had 
if they had been done in some serial order. A serial execution is 
one in which each transaction executes to completion before the 
next transaction begins. The users act as if they are standing in a 
line waiting to get complete access to the database.

A REPEATABLE READ isolation level is guaranteed to maintain 
the same image of the database to the user during his session.

A READ COMMITTED isolation level will let transactions in 
this session see rows that other transactions commit while this 
session is running.

A	 READ	 UNCOMMITTED	 isolation	 level	 will	 let	 transactions	
in this session see rows that other transactions create without 
necessarily committing while this session is running.

Regardless of the isolation level of the transaction, phenom-
ena	 P1,	 P2,	 and	 P3	 shall	 not	 occur	 during	 the	 implied	 reading	
of schema definitions performed on behalf of executing a state-
ment, the checking of integrity constraints, and the execution of 
referential actions associated with referential constraints. We do 
not want the schema itself changing on users.

Table 2.1 Isolation Levels and the Three Phenomena

Isolation Level P1 P2 P3

SERIALIZABLE No No No
REPEATABLE READ No No Yes
READ COMMITTED No Yes Yes
READ UNCOMMITTED Yes Yes Yes
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CURSOR STABILITY Isolation Level
The	 CURSOR	 STABILITY	 isolation	 level	 extends	 READ	
COMMITTED locking behavior for SQL cursors by adding a new 
read action for FETCH from a cursor and requiring that a lock be 
held on the current item of the cursor. The lock is held until the cur-
sor moves or is closed, possibly by a commit. Naturally, the fetch-
ing transaction can update the row, and in that case a write lock will 
be held on the row until the transaction COMMITs, even after the 
cursor	moves	on	with	a	subsequent	FETCH.	This	makes	CURSOR	
STABILITY stronger than READ COMMITTED and weaker than 
REPEATABLE READ.

CURSOR	 STABILITY	 is	 widely	 implemented	 by	 SQL	 sys-
tems to prevent lost updates for rows read via a cursor. READ 
COMMITTED,	in	some	systems,	is	actually	the	stronger	CURSOR	
STABILITY. The ANSI standard allows this.

The SQL standards do not say how you are to achieve these 
results. However, there are two basic classes of concurrency 
control methods—optimistic and pessimistic. Within those two 
classes, each vendor will have its own implementation.

2.4 Pessimistic Concurrency Control
Pessimistic concurrency control is based on the idea that trans-
actions are expected to conflict with each other, so we need to 
design a system to avoid the problems before they start.

All pessimistic concurrency control schemes use locks. A lock 
is a flag placed in the database that gives exclusive access to a 
schema object to one user. Imagine an airplane toilet door, with 
its “occupied” sign.

But again, you will find different kinds of locking schemes. For 
example, DB2 for z/OS has “latches” that are a little different from 
traditional locks. The important differences are the level of locking 
they use; setting those flags on and off costs time and resources. 
If you lock the whole database, then you have a serial batch pro-
cessing system, since only one transaction at a time is active. In 
practice you would do this only for system maintenance work 
on the whole database. If you lock at the table level, then perfor-
mance can suffer because users must wait for the most common 
tables to become available. However, there are transactions that 
do involve the whole table, and this will use only one flag.

If you lock the table at the row level, then other users can get 
to the rest of the table and you will have the best possible shared 
access. You will also have a huge number of flags to process and 
performance will suffer. This approach is generally not practical.
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Page locking is in between table and row locking. This 
approach puts a lock on subsets of rows within the table, which 
include the desired values. The name comes from the fact that 
this is usually implemented with pages of physical disk storage. 
Performance depends on the statistical distribution of data in 
physical storage, but it is generally a good compromise.

2.5  SNAPSHOT Isolation and Optimistic 
Concurrency

Optimistic concurrency control is based on the idea that transac-
tions are not very likely to conflict with each other, so we need to 
design a system to handle the problems as exceptions after they 
actually occur.

In Snapshot Isolation, each transaction reads data from a 
snapshot of the (committed) data as of the time the transaction 
started, called its Start_timestamp or “t-zero.” This time may be 
any time before the transaction’s first read. A transaction running 
in Snapshot Isolation is never blocked attempting a read because 
it is working on its private copy of the data. But this means that 
at any time, each data item might have multiple versions, created 
by active and committed transactions.

When the transaction T1 is ready to commit, it gets a Commit-
Timestamp, which is later than any existing start_timestamp or 
commit_timestamp. The transaction successfully COMMITs only if 
no other transaction T2 with a commit_timestamp in T1’s execution 
interval [start_timestamp, commit_timestamp] wrote data that 
T1 also wrote. Otherwise, T1 will ROLLBACK. This “first commit-
ter	wins”	strategy	prevents	lost	updates	(phenomenon	P4).	When	
T1 COMMITs, its changes become visible to all transactions 
whose start_timestamps are larger than T1’s commit-timestamp.

Snapshot isolation is nonserializable because a transaction’s 
reads come at one instant and the writes at another. We assume 
we have several transactions working on the same data and a 
constraint that (x 1 y) should be positive. Each transaction that 
writes a new value for x and y is expected to maintain the con-
straint. Although T1 and T2 both act properly in isolation, the 
constraint fails to hold when you put them together. The possible 
problems are:
•	 A5	(Data	Item	Constraint	Violation):	Suppose	constraint	C	is	a	

database constraint between two data items x and y in the data-
base. Here are two anomalies arising from constraint violation.

•	 A5A	 Read	 Skew:	 Suppose	 transaction	 T1	 reads	 x,	 and	 then	
a second transaction 2 updates x and y to new values and 
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COMMITs. If now T1 reads y, it may see an inconsistent state, 
and therefore produce an inconsistent state as output.

•	 A5B	Write	Skew:	Suppose	T1	reads	x	and	y,	which	are	consis-
tent with constraint C, and then a T2 reads x and y, writes x, 
and COMMITs. Then T1 writes y. If there were a constraint 
between x and y, it might be violated.
Fuzzy Reads (P2) is a degenerate form of Read Skew where 

x 5 y. More typically, a transaction reads two different but related 
items (e.g., referential integrity).

Write Skew (A5B) could arise from a constraint at a bank, 
where account balances are allowed to go negative as long as the 
sum of commonly held balances remains nonnegative, with an 
anomaly arising as in history H5.

Clearly neither A5A nor A5B could arise in histories where P2 
is precluded, since both A5A and A5B have T2 write a data item 
that previously has been read by an uncommitted T1. Thus, phe-
nomena A5A and A5B are useful only for distinguishing isolation 
levels below REPEATABLE READ in strength.

The ANSI SQL definition of REPEATABLE READ, in its 
strict interpretation, captures a degenerate form of row con-
straints, but misses the general concept. To be specific, Locking 
REPEATABLE READ of Table 2 provides protection from Row 
Constraint Violations, but the ANSI SQL definition of Table 1, for-
bidding anomalies A1 and A2, does not.

Returning now to Snapshot Isolation, it is surprisingly strong, 
even stronger than READ COMMITTED.

This approach predates databases by decades. It was imple-
mented manually in the central records department of compa-
nies when they started storing data on microfilm. You do not get 
the microfilm, but instead they make a timestamped photocopy 
for you. You take the copy to your desk, mark it up, and return 
it to the central records department. The Central Records clerk 
timestamps your updated document, photographs it, and adds it 
to the end of the roll of microfilm.

But what if user number two also went to the central records 
department and got a timestamped photocopy of the same docu-
ment? The Central Records clerk has to look at both timestamps 
and make a decision. If the first user attempts to put his updates 
into the database while the second user is still working on his 
copy, then the clerk has to either hold the first copy or wait for 
the second copy to show up or to return it to the first user. When 
both copies are in hand, the clerk stacks the copies on top of each 
other, holds them up to the light, and looks to see if there are any 
conflicts. If both updates can be made to the database, he or she 
does so. If there are conflicts, the clerk must either have rules for 
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resolving the problems or he or she has to reject both transac-
tions. This is a kind of row level locking, done after the fact.

2.6 Logical Concurrency Control
Logical concurrency control is based on the idea that the 
machine can analyze the predicates in the queue of waiting que-
ries and processes on a purely logical level and then determine 
which of the statements can be allowed to operate on the data-
base at the same time.

Clearly, all SELECT statements can operate at the same time 
since they do not change the data. After that, it is tricky to deter-
mine which statements conflict with the others. For example, 
one	 pair	 of	 UPDATE	 statements	 on	 two	 separate	 tables	 might	
be allowed only in a certain order because of PRIMARY KEY and 
FOREIGN	 KEY	 constraints.	 Another	 pair	 of	 UPDATE	 statements	
on the same tables might be disallowed because they modify the 
same rows and leave different final states in them.

However,	 a	 third	 pair	 of	 UPDATE	 statements	 on	 the	 same	
tables might be allowed because they modify different rows and 
have no conflicts with each other.

There is also the problem of having statements waiting in the 
queue to be executed too long. This is a version of livelock, which 
we discuss in the next section. The usual solution is to assign a 
priority number to each waiting transaction and then decrement 
that priority number when they have been waiting for a certain 
length of time. Eventually, every transaction will arrive at priority 
one and be able to go ahead of any other transaction.

This approach also allows you to enter transactions at a higher 
priority than the transactions in the queue. Although it is possi-
ble to create a livelock this way, it is not a problem and it lets you 
bump less important jobs in favor of more important jobs, such 
as printing payroll checks versus playing Solitaire.

2.7 Deadlock and Livelocks
It is possible for a user to fail to complete a transaction for rea-
sons other than the hardware failing. A deadlock is a situation 
where two or more users hold resources that the others need and 
neither party will surrender the objects to which they have locks. 
To make this more concrete, imagine user A and user B need 
Tables	X	and	Y.	User	A	gets	a	 lock	on	Table	X,	and	User	B	gets	a	
lock on Table Y. They both sit and wait for their missing resource 
to become available; it never happens. The common solution for 
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a deadlock is for the database administrator (DBA) to kill one or 
more of the sessions involved and rollback his or her work.

A livelock involves a user who is waiting for a resource, but 
never gets it because other users keep grabbing it before he or 
she gets a chance. None of the other users hold onto the resource 
permanently as in a deadlock, but as a group they never free it. 
To make this more concrete, imagine user A needs all of Table X. 
But Table X is always being updated by a hundred other users, so 
that user A cannot find a page without a lock on it. The user sits 
and waits for all the pages to become available; it never happens 
in time.

The database administrator can again kill one or more of the 
sessions involved and rollback his or her work. In some systems, 
the DBA can raise the priority of the livelocked session so that it 
can seize the resources as they become available.

None of this is trivial, and each database system will have its 
own version of transaction processing and concurrency control. 
This should not be of great concern to the applications program-
mer, but should be the responsibility of the database administra-
tor. But it is nice to know what happens under the covers.
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3
SCHEMA LEVEL OBJECTS

A database is not just a bunch of tables, even though that is 
where most of the work is done. There are stored procedures, 
user-defined functions, and cursors that the users create. Then 
there are indexes and other access methods that the user cannot 
access directly.

This chapter is a very quick overview of some of the schema 
objects that a user can create. Standard SQL divides the database 
users into USER and ADMIN roles. These objects require ADMIN 
privileges to be created, altered, or dropped. Those with USER 
privileges can invoke them and access the results.

3.1 CREATE SCHEMA Statement
There is a CREATE SCHEMA statement defined in the standards 
that brings an entire schema into existence all at once. In prac-
tice, each product has very different utility programs to allocate 
physical storage and define a schema. Much of the proprietary 
syntax is concerned with physical storage allocations.

A schema must have a name and a default character set, 
usually ASCII or a simple Latin alphabet as defined in the ISO 
Standards. There is an optional AUTHORIZATION clause that 
holds a <schema authorization identifier> for access control. 
After that the schema is a list of schema elements:

<schema element> ::=
<domain definition> | <table definition> | <view definition>

| <grant statement> | <assertion definition>
| <character set definition>
| <collation definition> | <translation definition>

A schema is the skeleton of an SQL database; it defines the 
structures of the schema objects and the rules under which they 
operate. The data is the meat on that skeleton.

The only data structure in SQL is the table. Tables can be 
 persistent (base tables), used for working storage (temporary 
tables), virtual (VIEWs, common table expressions, and derived 
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tables), or materialized as needed. The differences among these 
types are in implementation, not performance. One advantage of 
having only one data structure is that the results of all operations 
are also tables—you never have to convert structures, write spe-
cial operators, or deal with any irregularity in the language.

The <grant statement> has to do with limiting access by users 
to only certain schema elements. The <assertion  definition> is still 
not widely implemented yet, but it is like a constraint that applies 
to the schema as a whole. Finally, the <character set definition>, 
<collation definition>, and <translation  definition> deal with 
the display of data. We are not really concerned with any of these 
schema objects; they are usually set in place by the DBA (database 
administrator) for the users and we mere  programmers do not get 
to change them.

3.1.1 CREATE TABLE and CREATE VIEW Statements
Since tables and views are the basic unit of work in SQL, they 
have their own chapters.

3.2  CREATE PROCEDURE, CREATE FUNCTION, 
and CREATE TRIGGER

Procedural construct statements put modules of procedural code 
written in SQL/PSM or other languages into the database. They 
can be invoked as needed. These constructs get their own chapters.

3.3 CREATE DOMAIN Statement
The DOMAIN is a schema element in Standard SQL that allows you 
to declare an in-line macro that will allow you to put a commonly 
used column definition in one place in the schema. The syntax is:

<domain definition> ::=
CREATE DOMAIN <domain name> [AS] <data type>

[<default clause>]
[<domain constraint>. . .]
[<collate clause>]

<domain constraint> ::=
[<constraint name definition>]
<check constraint definition> [<constraint attributes>]

<alter domain statement> ::=
ALTER DOMAIN <domain name> <alter domain action>

<alter domain action> ::=
<set domain default clause>
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| <drop domain default clause>
| <add domain constraint definition>
| <drop domain constraint definition>

It is important to note that a DOMAIN has to be defined with 
a basic data type and not with other DOMAINs. Once declared, 
a DOMAIN can be used in place of a data type declaration on a 
column.

The CHECK() clause is where you can put the code for validat-
ing data items with check digits, ranges, lists, and other conditions. 
Here is a skeleton for US State codes:

CREATE DOMAIN StateCode AS CHAR(2)
DEFAULT '??'
CONSTRAINT valid_state_code
CHECK (VALUE IN ('AL', 'AK', 'AZ', . . .));

Since the DOMAIN is in one place, you do not have to worry 
about getting the correct data everywhere you define a column 
from this domain. If you did not have a DOMAIN clause, then 
you have to replicate the CHECK() clause in multiple tables in the 
database. The ALTER DOMAIN and DROP DOMAIN statements 
explain themselves.

3.4 CREATE SEQUENCE
Sequences are generators that produce a sequence of values each 
time they are invoked. You call on them like a function and get 
the next value in the sequence.

In my earlier books, I used the table “Sequence” for a set 
of integers from 1 to (n). Since it is now a reserved word, I have 
switched to “Series” in this book. The syntax looks like this:

CREATE SEQUENCE <seq name> AS <data type>
START WITH <value>
INCREMENT BY <value>
[MAXVALUE <value>]
[MINVALUE <value>]
[[NO] CYCLE];

To get a value from it, this expression is used wherever it is a 
legal data type.

NEXT VALUE FOR <seq name>

If a sequence needs to be reset, you use this statement to 
change the optional clauses or to restart the cycle.

ALTER SEQUENCE <seq name>
RESTART WITH <value>; -- begin over
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To remove the sequence, use the obvious statement:

DROP SEQUENCE <seq name>;

Even when this feature becomes widely available, it should 
be avoided. It is a nonrelational extension that behaves like 
a sequential file or procedural function rather than in a set-
oriented manner. You can currently find it in Oracle, DB2, 
Postgres, and Mimer products.

3.5 CREATE ASSERTION
In Standard SQL, the CREATE ASSERTION allows you to apply 
a constraint on the tables within a schema but not have the 
 constraint attached to any particular table. The syntax is:

<assertion definition> ::=
CREATE ASSERTION <constraint name> <assertion check>
[<constraint attributes>]

<assertion check> ::=
CHECK (<search condition>)

As you would expect, there is a DROP ASSERTION statement, 
but no ALTER ASSERTION statement. An assertion can do things 
that a CHECK() clause attached to a table cannot do, because it 
is outside of the tables involved. A CHECK() constraint is always 
TRUE if the table is empty.

For example, it is very hard to make a rule that the total num-
ber of employees in the company must be equal to the total 
number of employees in all the health plan tables.

CREATE ASSERTION Total_Health_Coverage
CHECK (SELECT COUNT(*) FROM Personnel) =

+ (SELECT COUNT(*) FROM HealthPlan_1)
+ (SELECT COUNT(*) FROM HealthPlan_2)
+ (SELECT COUNT(*) FROM HealthPlan_3);

Since the CREATE ASSERTION is global to the schema, table 
check constraint names are also global to the schema and not 
local to the table where they are declared.

3.5.1 Using VIEWs for Schema Level Constraints
Until you can get the CREATE ASSERTION, you have to use pro-
cedures and triggers to get the same effects. Consider a schema 
for a chain of stores that has three tables, thus:

CREATE TABLE Stores
(store_nbr INTEGER NOT NULL PRIMARY KEY,
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store_name CHAR(35) NOT NULL,
..);

CREATE TABLE Personnel
(emp_id CHAR(9) NOT NULL PRIMARY KEY,
last_name CHAR(15) NOT NULL,
first_name CHAR(15) NOT NULL,
..);

The first two explain themselves. The third table shows the rela-
tionship between stores and personnel, namely who is assigned to 
what job at which store and when this happened. Thus:

CREATE TABLE JobAssignments
(store_nbr INTEGER NOT NULL

REFERENCES Stores (store_nbr)
ON UPDATE CASCADE
ON DELETE CASCADE,

emp_id CHAR(9) NOT NULL PRIMARY KEY
REFERENCES Personnel(emp_id)
ON UPDATE CASCADE
ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
end_date TIMESTAMP,
CHECK (start_date <= end_date),
job_type INTEGER DEFAULT 0 NOT NULL -- unassigned = 0
CHECK (job_type BETWEEN 0 AND 99),

PRIMARY KEY (store_nbr, emp_id, start_date));

Let’s invent some job_type codes, such as 0 = 'unassigned', 
1 = 'stockboy', and so on, until we get to 99 = 'Store Manager', 
and we have a rule that each store has at most one manager. In 
Standard SQL you could write a constraint like this:

CREATE ASSERTION ManagerVerification
CHECK (1 <= ALL (SELECT COUNT(*)

FROM JobAssignments
WHERE job_type = 99
GROUP BY store_nbr));

This is actually a bit subtler than it looks. If you change the 
<= to =, then the stores must have exactly one manager if it has 
any employees at all.

But as we said, most SQL product still do not allow CHECK() 
constraints that apply to the table as a whole, nor do they sup-
port the scheme level CREATE ASSERTION statement.

So, how to do this? You might use a trigger, which will involve 
proprietary, procedural code. In spite of the SQL/PSM Standard, 
most vendors implement very different trigger models and use 
their proprietary 4GL language in the body of the trigger.
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We need a set of TRIGGERs that validates the state of the table 
after each INSERT and UPDATE operation. If we DELETE an 
employee, this will not create more than one manager per store. 
The skeleton for these triggers would be something like this.

CREATE TRIGGER CheckManagers
AFTER UPDATE ON JobAssignments -- same for INSERT
IF 1 <= ALL (SELECT COUNT(*)

FROM JobAssignments
WHERE job_type = 99
GROUP BY store_nbr)

THEN ROLLBACK;
ELSE COMMIT;
END IF;

But being a fanatic, I want a pure SQL solution that is declara-
tive within the limits of most current SQL products.

Let’s create two tables. This first table is a Personnel table for 
the store managers only and it is keyed on their employee iden-
tification numbers. Notice the use of DEFAULT and CHECK() on 
their job_type to assure that this is really a “managers only” table.

CREATE TABLE Job_99_Assignments
(store_nbr INTEGER NOT NULL PRIMARY KEY

REFERENCES Stores (store_nbr)
ON UPDATE CASCADE
ON DELETE CASCADE,

emp_id CHAR(9) NOT NULL
REFERENCES Personnel (emp_id)
ON UPDATE CASCADE
ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
end_date TIMESTAMP,
CHECK (start_date <= end_date),
job_type INTEGER DEFAULT 99 NOT NULL

CHECK (job_type = 99));

This second table is a Personnel table for employees who are 
not store manager and it is also keyed on employee identification 
numbers. Notice the use of DEFAULT for a starting position of 
unassigned and CHECK() on their job_type to assure that this is 
really a No managers allowed table.

CREATE TABLE Job_not99_Assignments
(store_nbr INTEGER NOT NULL

REFERENCES Stores (store_nbr)
ON UPDATE CASCADE
ON DELETE CASCADE,

emp_id CHAR(9) NOT NULL PRIMARY KEY
REFERENCES Personnel (emp_id)
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ON UPDATE CASCADE
ON DELETE CASCADE,

start_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
end_date TIMESTAMP,
CHECK (start_date <= end_date),
job_type INTEGER DEFAULT 0 NOT NULL

CHECK (job_type BETWEEN 0 AND 98) -- no 99 code
);

From these two tables, build this UNION-ed view of all the job 
assignments in the entire company and show that to users.

CREATE VIEW JobAssignments (store_nbr, emp_id, start_date, 
end_date, job_type)

AS
(SELECT store_nbr, emp_id, start_date, end_date, job_type

FROM Job_not99_Assignments
UNION ALL

SELECT store_nbr, emp_id, start_date, end_date, job_type
FROM Job_99_Assignments)

The key and job_type constraints in each table working 
together will guarantee at most one manager per store. The next 
step is to add INSTEAD OF triggers to the VIEW or write stored 
procedures, so that the users can insert, update, and delete from 
it easily. A simple stored procedure, without error handling or 
input validation, would be:

CREATE PROCEDURE InsertJobAssignments
(IN store_nbr INTEGER, IN new_emp_id CHAR(9), IN new_start_

date DATE, IN new_end_date DATE, IN new_job_type INTEGER)
LANGUAGE SQL
IF new_job_type <> 99
THEN INSERT INTO Job_not99_Assignments

VALUES (store_nbr, new_emp_id, new_start_date,  
new_end_date, new_job_type);

ELSE INSERT INTO Job_99_Assignments
VALUES (store_nbr, new_emp_id, new_start_date,  

new_end_date, new_job_type);
END IF;

Likewise, a procedure to terminate an employee:

CREATE PROCEDURE FireEmployee (IN new_emp_id CHAR(9))
LANGUAGE SQL
IF new_job_type <> 99
THEN DELETE FROM Job_not99_Assignments

WHERE emp_id = new_emp_id;
ELSE DELETE FROM Job_99_Assignments

WHERE emp_id = new_emp_id;
END IF;
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If a developer attempts to change the Job_Assignments VIEW 
directly with an INSERT, UPDATE, or DELETE, they will get an 
error message telling them that the VIEW is not updatable because 
it contains a UNION operation. That is a good thing in one way 
because we can force them to use only the stored procedures.

Again, this is an exercise in programming a solution within 
certain limits. The TRIGGER is probably going give better perfor-
mance than the VIEW.

3.5.2  Using PRIMARY KEYs and ASSERTIONs  
for Constraints

Let’s do another version of the “stores and personnel” problem 
given in a previous section.

CREATE TABLE JobAssignments
(emp_id CHAR(9) NOT NULL PRIMARY KEY -- nobody is in two Stores
REFERENCES Personnel (emp_id)
ON UPDATE CASCADE
ON DELETE CASCADE,

store_nbr INTEGER NOT NULL
REFERENCES Stores (store_nbr)
ON UPDATE CASCADE
ON DELETE CASCADE);

The key on the SSN will assure that nobody is at two stores 
and that a store can have many employees assigned to it. Ideally, 
you would want a constraint to check that each employee does 
have a branch assignment.

The first attempt is usually something like this:

CREATE ASSERTION Nobody_Unassigned
CHECK (NOT EXISTS

(SELECT *
FROM Personnel AS P

LEFT OUTER JOIN
JobAssignments AS J
ON P.emp_id = J.emp_id
WHERE J.emp_id IS NULL

AND P.emp_id
IN (SELECT emp_id FROM JobAssignments

UNION
SELECT emp_id FROM Personnel)));

However, that is overkill and does not prevent an employee 
from being at more than one store. There are probably indexes on 
the SSN values in both Personnel and JobAssignments, so getting a 
COUNT() function should be cheap. This assertion will also work.
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CREATE ASSERTION Everyone_assigned_one_store
CHECK ((SELECT COUNT(emp_id) FROM JobAssignments)

= (SELECT COUNT(emp_id) FROM Personnel));

This is a surprise to people at first because they expect to 
see a JOIN to do the one-to-one mapping between person-
nel and job assignments. But the PK-FK requirement provides 
that for you. Any unassigned employee will make the Personnel 
table bigger than the JobAssignments table, and an employee in 
JobAssignments must have a match in personnel. The good opti-
mizers extract things like that as predicates and use them, which 
is why we want Declarative Referential Integrity (DRI) instead of 
triggers and application side logic.

You will need to have a stored procedure that inserts into both 
tables as a single transaction. The updates and deletes will cas-
cade and clean up the job assignments.

Let’s change the specs a bit and allow employees to work at 
more than one store. If we want to have an employee in multiple 
Stores, we could change the keys on JobAssignments, thus.

CREATE TABLE JobAssignments
(emp_id CHAR(9) NOT NULL

REFERENCES Personnel (emp_id)
ON UPDATE CASCADE
ON DELETE CASCADE,

store_nbr INTEGER NOT NULL
REFERENCES Stores (store_nbr)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (emp_id, store_nbr));

Then use a COUNT(DISTINCT ..) in the assertion:

CREATE ASSERTION Everyone_assigned_at_least_once
CHECK ((SELECT COUNT(DISTINCT emp_id) FROM JobAssignments)
= (SELECT COUNT(emp_id) FROM Personnel));

You must be aware that the uniqueness constraints and asser-
tions work together; a change in one or both of them can also 
change this rule.

3.6 Character Set Related Constructs
There are several schema level constructs for handling characters. 
You can create a named set of characters for various languages 
or special purposes, define one or more collation sequences for 
them, and translate one set into another.
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Today, the Unicode Standards and vendor features are com-
monly used. Most of the characters actually used have Unicode 
names and collations defined already. For example, SQL text is 
written in Latin-1, as defined by ISO 8859-1. This is the set used 
for HTML, consisting of 191 characters from the Latin alphabet. 
This the most commonly used character set in the Americas, 
Western Europe, Oceania, Africa, and for standard romanizations 
of East-Asian languages.

Since 1991, the Unicode Consortium has been working with 
ISO and IEC to develop the Unicode Standard and ISO/IEC 10646: 
the Universal Character Set (UCS) in tandem. Unicode and ISO/
IEC 10646 currently assign about 100,000 characters to a code 
space consisting of over a million code points, and they define 
several standard encodings that are capable of representing every 
available code point. The standard encodings of Unicode and 
the UCS use sequences of one to four 8-bit code values (UTF-8), 
sequences of one or two 16-bit code values (UTF-16), or one 32-bit 
code value (UTF-32 or UCS-4). There is also an older encoding that 
uses one 16-bit code value (UCS-2), capable of representing one-
seventeenth of the available code points. Of these encoding forms, 
only UTF-8’s byte sequences are in a fixed order; the others are 
subject to platform-dependent byte ordering issues that may be 
addressed via special codes or indicated via out-of-band means.

3.6.1 CREATE CHARACTER SET
You will not find this syntax in many SQLs. The vendors will 
default to a system level character set based on the local language 
settings.

<character set definition> ::=
CREATE CHARACTER SET <character set name> [AS]
<character set source> [<collate clause>]

<character set source> ::=
GET <character set specification>

The <collate clause> usually is defaulted also, but you can 
use named collations.

3.6.2 CREATE COLLATION
<collation definition> ::=
CREATE COLLATION <collation name>

FOR <character set specification>
FROM <existing collation name> [<pad characteristic>]

<pad characteristic> ::= NO PAD | PAD SPACE
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The <pad characteristic> option has to do with how strings 
will be compared to each other. If the collation for the compari-
son has the NO PAD characteristic and the shorter value is equal 
to some prefix of the longer value, then the shorter value is con-
sidered less than the longer value. If the collation for the com-
parison has the PAD SPACE characteristic, for the purposes of 
the comparison, the shorter value is effectively extended to the 
length of the longer by concatenation of <space>s on the right. 
SQL normally pads a the shorter string with spaces on the end 
and then matches them, letter for letter, position by position.

3.6.3 CREATE TRANSLATION
This statement defines how one character set can be mapped 
into another character set. The important part is that it gives this 
mapping a name.

<transliteration definition> ::=
CREATE TRANSLATION <transliteration name>

FOR <source character set specification>
TO <target character set specification>

FROM <transliteration source>

<source character set specification> ::=
<character set specification>

<target character set specification> ::=
<character set specification>

<transliteration source> ::=
<existing transliteration name> | <transliteration routine>

<existing transliteration name> ::= <transliteration name>

<transliteration routine> ::= <specific routine designator>

Notice that I can use a simple mapping, which will behave 
much like a bunch of nested REPLACE() function calls, or use a 
routine that can do some computations. The reason that hav-
ing a name for these transliterations is that I can use them in 
the TRANSLATE() function instead of that bunch of nested 
REPLACE() function calls. The syntax is simple:

TRANSLATE (<character value expression> USING  
<transliteration name>)

DB2 and other implementations generalize TRANSLATE() to 
allow for target and replacement strings, so that you can do a lot 
of edit work in a single expression. We will get to that when we get 
to string functions.
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4
LOCATING DATA AND SPECIAL 
NUMBERS

SQL implementations come with proprietary features to help 
locate data in physical storage. Some of these features are taken 
from the hardware and some are independent of it. Sequential 
numbers, random numbers, and mathematical series with 
 special properties are the most popular.

4.1 Exposed Physical Locators
SQL is supposed to use keys. Keys are a logical concept that is 
divorced completely from physical storage. Unfortunately, bad 
SQL programmers will use proprietary features to get the hard-
ware to generate exposed physical locators. These numbers rep-
resent an event or location in the hardware and have nothing 
whatsoever to do with the logical model.

Do not confuse exposed physical locators with surrogate 
keys. In the words of Dr. Codd, “Database users may cause the 
system to generate or delete a surrogate, but they have no con-
trol over its value, nor is its value ever displayed to them …” 
(ACM TODS, pp 409–410). Think of how an index works in most 
SQL implementations.

4.1.1 ROWID and Physical Disk Addresses
Oracle has the ability to expose the physical address of a row 
on the hard drive as a special variable called ROWID. This is the 
fastest way to locate a row in a table since the read-write head is 
positioned to the row immediately. This exposure of the under-
lying physical storage at the logical level means that Oracle is 
committed to using contiguous storage for the rows of a table. 
This means that they cannot use hashing, distributed databases, 
dynamic bit vectors, or any of several newer techniques for VLDB 
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(very large databases). When the database is moved or reorga-
nized for any reason, the ROWID is changed.

4.1.2 IDENTITY Columns
An IDENTITY column provides a way for the SQL engine to auto-
matically generate a unique numeric value for each row that is 
added to the table. When creating a table where you know that 
you need to uniquely identify each row that will be added to the 
table, you can add an IDENTITY column to the table. To guaran-
tee a unique numeric value for each row that is added to a table, 
you should define a unique index on the IDENTITY column or 
declare it a primary key. Once created, you cannot alter the table 
description to include an IDENTITY column.

If rows are inserted into a table with explicit IDENTITY col-
umn values specified, the next internally generated value is 
not updated, and may conflict with existing values in the table. 
Duplicate values will generate an error message if the unique-
ness of the values in the IDENTITY column is being enforced by a 
PRIMARY KEY or a UNIQUE constraint. Here is the BNF:

<column name> INTEGER NOT NULL GENERATED [ALWAYS | BY DEFAULT]
AS IDENTITY (START WITH <start value>, INCREMENT BY 

<increment value>))

The first row entered has the value of <start value> placed 
in the column; every subsequent row added to the table has the 
associated value increased by <increment value>. An IDENTITY 
column defined as GENERATED ALWAYS is given values that are 
always generated by the SQL engine. Applications are not allowed 
to provide an explicit value. An IDENTITY column defined as 
GENERATED BY DEFAULT gives applications a way to  explicitly 
provide a value for the IDENTITY column. If the application 
does not provide a value, then the SQL engine will generate one. 
Since the application controls the value, the SQL engine can-
not guarantee the uniqueness of the value. The GENERATED BY 
DEFAULT clause is meant for use for data propagation where 
the intent is to copy the contents of an existing table, or for the 
unload and reloading of a table.

Although there are similarities between IDENTITY columns 
and sequences, there are also differences. An IDENTITY column 
has the following characteristics:
1. An IDENTITY column can be defined as part of a table only 

when the table is created. Once a table is created, you cannot 
add an IDENTITY column. (However, existing IDENTITY col-
umn characteristics may be altered.)
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2. A Sybase/Microsoft T-SOL column automatically generates 
values for a single table. When an IDENTITY column is defined 
as GENERATED ALWAYS, the values used are always generated 
by the database engine. Applications are not allowed to provide 
their own values during the modification of the contents of the 
table. An ANSI SEQUENCE is a free-standing object that can 
generate values for any use or table.
IDENTITY Columns are based on exposing part of the physi-

cal state of the machine during the insertion process, in violation 
of Dr. Codd’s rules for defining a relational database (i.e., Codd’s 
rule #8, Physical Data Independence). Error correction is almost 
impossible.

The early SQL products were built on existing file systems. The 
data was kept in physically contiguous disk pages, in physically 
contiguous rows, made up of physically contiguous columns—
in short, just like a deck of punch cards or a magnetic tape. Most 
of these auto-increment features are an attempt to regain the 
 physical sequence that SQL took out, so we can pretend that we 
have physically contiguous storage.

But physically contiguous storage is only one way of building 
a relational database and it is not always the best one. But aside 
from that, the whole idea of a relational database is that the user 
is not supposed to know how things are stored at all, much less 
write code that depends on the particular physical representa-
tion in a particular release of a particular product.

The exact method used varies from product to product. But 
the results of using them are all the same—their behavior is 
unpredictable and redundant. If you already have proper keys 
in the tables, these things are at best redundant. At one time, the 
argument was made that it was “cheaper” to join on simple inte-
gers than on longer columns, so let’s use IDENTITY for a key. This 
is simply not true with modern RDBMS products. In fact, many 
hashing algorithms work better with longer compound keys that 
make it easier to create a perfect hashing.

Another major disadvantage of auto-incremented numbers as 
keys is that they have no check digits, so there is no way to deter-
mine if they are valid or not (for a discussion of check digits, see 
Data & Databases, Joe Celko, ISBN 978-1-55860-432-2).

So, why do people use them? System-generated values are a 
fast and easy answer to the problem of obtaining a primary key. 
It requires no research and no real data modeling. Drug abuse 
is also a fast and easy answer to problems; I do not recommend 
either.

The Sybase/SQL Server family allows you to declare an exact 
numeric pseudo-column with the table property IDENTITY. 
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This is a count of the attempted physical insertions to the table. 
Notice the word “attempted”; failures or ROLLBACK will leave a 
gap in the numbering. This is totally relational but it is often used 
by incompetent or new SQL programmers to make the tables 
look like a sequential tape file that is accessed by a record posi-
tion number or to mimic a pointer in a nonrelational file system 
or network DBMS.

Let’s look at the logical problems in detail. First try to create 
a table with two columns and try to make them both IDENTITY 
columns. If you cannot declare more than one column to be of 
a certain data type, then that thing is not a data type at all, by 
definition. The SQL Server/Sybase family makes its IDENTITY 
 feature a table characteristic so you can have only one per table.

Next, create a table with one column and make it an 
IDENTITY column. Now try to insert, update, and delete different 
numbers from it. If you cannot insert, update, and delete rows 
from a table, then it is not a table by definition.

Finally create a simple table with one IDENTITY column and a 
few other columns. Use the statements:

BEGIN
INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');
INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');
INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');
END;

versus the logically equivalent statement:

INSERT INTO Foobar (a, b, c)
VALUES ('a1', 'b1', 'c1'), ('a2', 'b2', 'c2'), ('a3', 

'b3', 'c3');

or,

INSERT INTO Foobar (a, b, c)
SELECT x, y, z
 FROM Floob; -- assuming Floob has the three rows

to put a few rows into the table. Notice that the IDENTITY col-
umn sequentially numbered them in the order they were pre-
sented in the case of the first code block. If you delete a row, the 
gap in the sequence is not filled in and the sequence continues 
from the highest number that has ever been used in that column 
in that particular table.

The second and third statements are free to order the rows 
any way they wish. Since a query result is a table, and a table is 
a set that has no ordering, what should the IDENTITY numbers 
be? The entire, whole, completed set is presented to Foobar all at 
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once, not a row at a time. There are (n!) ways to number (n) rows. 
Which one did you pick? The answer has been to use whatever 
the physical order of the result set happened to be. That nonrela-
tional phrase, “physical order” again!

But it is actually worse than that. If the same query is exe-
cuted again, but with new statistics or after an index has been 
dropped or added, the new execution plan could bring the result 
set back in a different physical order. Can you explain from a 
logical model why the same rows in the second query get differ-
ent IDENTITY numbers? In the relational model, they should be 
treated the same if all the values of all the attributes are identical.

The following statement ought to leave the database the 
same. You are deleting and reinserting the same data in a single 
transaction.

BEGIN ATOMIC
DELETE FROM Foobar
WHERE identity_col = 41;
INSERT INTO Foobar VALUES (<<values of original row 41>>);
END;

But the IDENTITY will be changed. You can do the same sort 
of thing with an UPDATE that swaps the columns in two differ-
ent rows since the IDENTITY cannot be changed by the DML 
statements.

Think about trying to do replication on two databases that dif-
fer only by an index or by cache size or something that occasion-
ally gives them different execution plans for the same statements. 
Want to try to maintain or port such a system?

The CREATE SEQUENCE construct was discussed in Chapter 3. 
It came in with the SQL-2003 standard and it gets confused with 
IDENTITY. A sequence object has the following characteristics:
1. A SEQUENCE is a database object that is not tied to any one 

table.
2. A SEQUENCE generates sequential values that can be used in 

any SQL statement.
Since a sequence object can be used by any application, there 

are two expressions used to control the retrieval of the next value 
in the specified sequence and the value generated previous to 
the statement being executed. The PREVVAL expression returns 
the most recently generated value for the specified sequence for 
a previous statement within the current session. The NEXTVAL 
expression returns the next value for the specified sequence. The 
use of these expressions allows the same value to be used across 
several SQL statements within several tables.
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Although these are not all the characteristics of these two 
items, these characteristics will assist you in determining which 
to use depending on your database design and the applications 
using the database.

4.2 Generated Identifiers
There are several schemes for generating identifiers, which are 
unique across any database. The two most popular ones are 
GUID (Global Unique Identifier) from Microsoft and UUID 
(Universal Unique Identifier) from the Open Source community.

4.2.1 GUIDs
Global Unique Identifiers are unique exposed physical loca-
tors generated by a combination of UTC time and the network 
address of the device creating it. Microsoft says that they should 
be unique for about a century. According to Wikipedia (http://
en.wikipedia.org/wiki/GUID):

The algorithm used for generating new GUIDs has been widely 
criticized. At one point, the user’s network card MAC address was 
used as a base for several GUID digits, which meant that, e.g., a 
document could be tracked back to the computer that created it. 
After this was discovered, Microsoft changed the algorithm so that 
it no longer contains the MAC address. This privacy hole was used 
when locating the creator of the Melissa worm.

Besides the usual problems with exposed physical loca-
tors, each GUID requires 16 bytes of storage, whereas a simple 
INTEGER needs only 4 bytes on most machines.

Indexes and PRIMARY KEYs built on GUIDs may have worse 
performance than shorter key columns. Many newbies justify 
a GUID key on the grounds that it will improve performance. 
Besides being false, that level of performance is not a real prob-
lem in modern hardware. Hardware built on a 64-bit is becoming 
common, as are faster and faster disk drives.

The real problem is that GUIDs are difficult to interpret so it 
becomes difficult to work with them directly and trace them back 
to their source for validation. In fact, the GUID does not have 
any sorting sequence, so it is impossible to spot a missing value 
or use them to order results. All you can do is use a CHECK() 
with a regular expression for a string of 36 digits and the letters A 
through F separated by four dashes.

The GUID cannot participate in queries involving aggre-
gate functions; first you would have to cast it as a CHAR(36) 

http://en.wikipedia.org/wiki/GUID
http://en.wikipedia.org/wiki/GUID
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and use the string value. Your first thought might have been to 
make it into a longer INTEGER, but the two data types are not 
 compatible. Other features of this data type are very proprietary 
and will not port out of a Microsoft environment.

4.2.2 UUIDs
The UUID is standardized by the Open Software Foundation 
(OSF) as part of the Distributed Computing Environment (DCE). 
The intent of UUIDs is to enable distributed systems to uniquely 
identify information without significant central coordination.

UUIDs are documented as part of ISO/IEC 11578:1996, 
“Information technology—Open Systems Interconnection—
Remote Procedure Call (RPC),” and more recently in ITU-T 
Rec. X.667 | ISO/IEC 9834-8:2005. The IETF has published 
Proposed Standard RFC 4122 that is technically equivalent to 
ITU-T Rec. X.667 | ISO/IEC 9834-8.

There have been five versions of UUIDs; you can use a UUID 
to identify something with reasonable confidence that the iden-
tifier will never be unintentionally used by anyone for any-
thing else. A UUID is a 16-byte (128-bit) number that consists 
of 32 hexadecimal digits, displayed in five groups separated 
by hyphens, in the form 8-4-4-4-12, for a total of 36 characters 
(32 digits and four hyphens).

The first version of the generation scheme for UUIDs was to 
use the MAC address of the generating computer, nanosecond 
clock ticks, and a bit of math. This scheme reveals both the iden-
tity of the computer that generated the UUID and the time at 
which it did so.

The second version UUIDs are similar to version one UUIDs, 
with local POSIX UID or POSIX GID domain going into the formula.

The third version UUIDs use a scheme deriving a UUID 
via MD5 from a URL, a fully qualified domain name, an object 
identifier, and other data elements. MD5 (Message-Digest 
 algorithm 5) is a widely used cryptographic hash function with a 
128-bit hash value that became an Internet standard (RFC 1321). 
Starting in 2004, researchers found more and more problems 
with MD5. Today, the U.S. Department of Homeland Security 
said MD5 “should be considered cryptographically broken and 
unsuitable for further use,” and most U.S. government appli-
cations will be required to move to the SHA-2 family of hash 
 functions by 2010. Version 3 UUIDs are hexadecimal strings of 
the form xxxxxxxx-xxxx-3xxx-xxxx-xxxxxxxxxxxx.

The fourth version UUIDs use a scheme relying only on ran-
dom numbers. This algorithm sets the version number as well as 
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two reserved bits. All other bits are set using a random or pseudo-
random data source. Version 4 UUIDs have the form xxxxxxxx-
xxxx-4xxx-xxxx-xxxxxxxxxxxx, with hexadecimal digits x and 
hexadecimal digits 8, 9, A, or B for y.

The fifth version UUIDs use a scheme with SHA-1 hashing; 
otherwise it is the same idea as in version 3. RFC 4122 states that 
version 5 is preferred over version 3 name-based UUIDs. Note 
that the 160-bit SHA-1 hash is truncated to 128 bits to make the 
length work out.

To give you an idea about the odds of a duplicate value, you 
would need to generate one billion UUIDs every second for the 
next 100 years to get the probability of creating one duplicate 
close to 50%. The warning here is that we are assuming that the 
mechanisms for UUID generation are “playing fair” and do not 
have errors.

4.3 Sequence Generator Functions
COUNTER(*), NUMBER(*), IDENTITY, and the like are propri-
etary features that return a new incremented value each time 
this function is used in an expression. This is a way to generate 
unique identifiers. This can be either a function call or a column 
property, depending on the product. This is also a horrible, non-
standard, nonrelational proprietary extension that should be 
avoided whenever possible.

We will spend some time later on ways to get sequences and 
unique numbers inside Standard SQL without proprietary code 
or using exposed physical locators in the hardware.

4.3.1 Unique Value Generators
The most important property of any usable unique value genera-
tor is that it will never generate the same value twice. Sequential 
integers are the first approach vendors implemented in their 
product as a substitute for a proper key.

In essence, they are a piece of code inside SQL that looks at 
the last allocated value and adds one to get the next value. Let’s 
start from scratch and build our own version of such a procedure. 
First create a table called GeneratorValues with one row and two 
columns:

CREATE TABLE GeneratorValues
(lock CHAR(1) DEFAULT 'X' NOT NULL PRIMARY KEY -- only one row
   CHECK (lock = 'X'),
key_val INTEGER DEFAULT 1 NOT NULL -- positive numbers only
   CHECK (key_val > 0));
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-- let everyone use the table
GRANT SELECT, UPDATE(key_val)
ON TABLE GeneratorValues
TO PUBLIC;

Now it needs a function to get out a value and do the increment.

CREATE FUNCTION Generator()
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
-- SET ISOLATION = SERIALIZABLE;
UPDATE GeneratorValues
 SET key_val = key_val + 1;
RETURN (SELECT key_val FROM GeneratorValues);
COMMIT;
END;

This looks pretty good, but if there are multiple users, this code 
fragment is capable of allocating duplicate values to different 
users. It is important to isolate the execution of the code to one and 
only one user at a time by using SET ISOLATION 5 SERIALIZABLE. 
Various SQL products will have slightly different ways of achieving 
this effect based on their concurrency control methods.

More bad news is that in pessimistic locking systems, you can 
get serious performance problems because of lock contention 
when a transaction is in serial isolation. The users are put in a 
single queue for access to the Generator table.

If the application demands gap-free numbering, then we not 
only have to guarantee that no two sessions ever get the same 
value, we must also guarantee that no value is ever wasted. 
Therefore, the lock on the Generator table must be held until the 
key value is actually used and the entire transaction is commit-
ted. Exactly how to handle this is implementation defined, so I 
am not going to comment on it.

4.4 Preallocated Values
In the old days of paper forms, organizations had a forms control 
officer whose job was to create, issue, and track the forms. A gap 
in the sequential numbers on a check, bond, stock certificate, or 
whatever was a serious accounting problem. Paper forms usually 
were preprinted and issued in blocks of numbers as needed. You 
can imitate this procedure in a database with a little thought and 
a few simple stored procedures.

Broadly speaking, there were two types of allocation blocks. In 
one, the sequence is known. The most common example would 
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be a checkbook. Gaps in the sequence numbers are not allowed, 
and a destroyed or damaged check has to be explained with a 
“void” or other notation. The system needs to record which block 
went to which user, the date and time, and any other information 
relevant to the auditors.

CREATE TABLE FormsControl
(form_nbr CHAR(7) NOT NULL,
seq INTEGER NOT NULL CHECK(seq > 0),
PRIMARY KEY (form_nbr, seq),
recipient CHAR(25) DEFAULT CURRENT_USER NOT NULL,
issue_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
..);

The tables that use the form numbers need to have con-
straints verify that the numbers were issued and appear in the 
Forms Control table. The next sequence number is easy to cre-
ate, but you probably should restrict access to the base table with 
a stored procedure designed for one kind of form, along these 
lines.

CREATE FUNCTION NextFlobSeq()
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
INSERT INTO FormsControl (form_nbr, seq, ..
VALUES ('Flob-1/R',
   (SELECT MAX(seq)+1
FROM FormsControl
WHERE form_nbr = 'Flob-1/R'),
   ..);

You can also use views on the FormsControl table to limit user 
access. If you might be dealing with an empty set, then use this 
scalar expression:

(SELECT COALESCE(MAX(seq), 0)+1
  FROM FormsControl
 WHERE form_nbr = 'Flob-1/R'),

The COALESCE() will return a zero, thus assuring that the 
sequence starts with one.

4.5 Special Series
Numeric series have special properties that make them useful for 
identifiers, encryption, and so forth. In this section, we will look 
at a simple sequence, prime numbers, and random numbers.
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4.5.1 Series Table
This is a common SQL programming idiom, but different writers 
will use different table names. In previous editions of this book, 
I used “Sequence” before it became a reserved word in Standard 
SQL; I am switching over to “Series” in this edition. You will also 
see “Numbers” and similar names.

CREATE TABLE Series
(seq INTEGER NOT NULL PRIMARY KEY
 CHECK (seq > 0));

There are lots of ways of filling this table, but here is one I like:

INSERT INTO Series(seq)
WITH Digits(i)
AS (SELECT i
  FROM (VALUES (1), (2), (3), (4), (5), (6), (7), (8), 

(9), (0)) AS X(i))
SELECT (D3.i * 1000 + D2.i * 100 + D1.i * 10 + D0.i + 1) 

AS seq
  FROM Digits AS D0, Digits AS D1, Digits AS D2, Digits AS D3;

This template is easy to extend and the .. + 1 gets rid of 
the zero.

4.5.2 Prime Numbers
I was teaching SQL classes for YAPC-10 (“Yet Another PERL 
Conference” #10) at Carnegie Mellon University at the end of June 
2009. For the record, I have never used PERL and had to Google 
an overview before I went; it is a very different creature from SQL. 
One of my students asked if you could write an SQL statement to 
generate the prime numbers less than 1000 (or any other limit) 
that scales well. He was bothered by the lack of loops in SQL, and 
a Prime Number sieve is a common PERL programming exercise. 
You can Google it and see an animation (http://www.hbmeyer
.de/eratosiv.htm) and some PERL code at http://www.perlmonks
.org/?node_id=276103.

There are two useful facts from Number Theory:
1. The prime factors of a given number (n) cannot be greater than 

ceiling (n). Think about it; by definition (n * n)) 5 n, and 
by definition, ceiling (n) .5 floor (n), so integer rounding 
up will be safe. This says that if I look at (a * b 5 c), where (a , b), 
then I don’t have to look at (b * a 5 c), so I can start searching for 
prime factors with small values.

2. All primes are of the form (6 * n 6 1), but not all numbers of 
that form are primes. For example (n 5 1) gives us {5, 7} and 

http://www.hbmeyer.de/eratosiv.htm
http://www.hbmeyer.de/eratosiv.htm
http://www.perlmonks.org/?node_id=276103
http://www.perlmonks.org/?node_id=276103
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they are both primes. But for (n = 4) we get {23, 25} where 
(25 5 5 * 5). What this does is remove the multiples of 2 and 3 
from consideration.
Let’s get all of that into SQL statements. Let’s start with a table 

for the primes:

CREATE TABLE Primes
(p INTEGER NOT NULL PRIMARY KEY
 CHECK (p > 1));

Now, your puzzle is to fill the table up to some limit, say 
1000, just to keep it simple. Let’s assume we already have a table 
named Series with integers from 1 to (n) that we can use.

Method #1
For the first attempt, let’s load the Primes table with candidate 

numbers using math fact #2 from above.

INSERT INTO Primes (p)
(SELECT (6 * seq) + 1
 FROM Series
WHERE (6 * seq) + 1 <= 1000
UNION ALL
SELECT (6 * seq) - 1
 FROM Series
WHERE (6 * seq) + 1 <= 1000);

An improvement that gets rid of the UNION ALL uses a table 
constant:

INSERT INTO Primes (p)
SELECT (6 * seq) + S.switch
 FROM Series
     CROSS JOIN
     (SELECT switch
      FROM (VALUES (-1), (+1)))
     AS S(switch)
 WHERE (6 * seq) + 1 <= 1000;

Now we have too many rows in Primes and need to remove 
the nonprimes. Now math fact #1 can come into play; test the 
set of numbers less than the square root to see if there is a factor 
among them.

DELETE FROM Primes
WHERE EXISTS
 (SELECT *
   FROM Primes AS P1
  WHERE P1.p <= CEILING (SQRT (Primes.p))
    AND MOD (Primes.p, P1.p) = 0);
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Method #2
Another way to load the candidates into Primes is to have the 

first few known primes hardwired into a query. This is a gener-
alization of the math fact #2, which dealt with multiples of only 
2 and 3.

INSERT INTO Primes (p)
SELECT seq
  FROM Series
 WHERE 0 NOT IN (MOD(seq, 2), MOD(seq, 3), MOD(seq, 5), 

MOD(seq, 7), ..);

The idea is that if we can limit the candidate set for Primes, 
performance will improve. At the extreme, if the list of MOD (seq, 
<prime>) expressions goes to a value equal or higher than the 
upper limit we are looking at, we get the answer immediately.

This is a good trick; many SQL programmers think that an 
IN( ) list can only be constants. You might also want to look at 
how many values it can hold—it is larger than you think.

Method #3
Another candidate pruning trick is based on the math fact 

that integers with final digits {2, 4, 6, 8, 0} are even numbers; 
those with final digits {5, 0} are multiples of five. Let’s not look at 
them when we build a candidate table.

INSERT INTO Primes (p)
SELECT *
FROM (WITH Digits(i)
        AS (SELECT i

FROM (VALUES (1), (2), (3), (4), (5), (6), (7), (8), 
(9), (0)) AS X(i),

-- last digit CTE
Units(i)
AS (SELECT i
 FROM (VALUES (1), (3), (7), (9)) AS X(i)

SELECT (D3.i * 1000 + D2.i * 100 + D1.i * 10 + Units.i)
 FROM Units, Digits AS D1, Digits AS D2, Digits AS D3);

Method #4
Another approach is to generate all the nonprimes and 

remove them from the Series table.

INSERT INTO Primes (p)
SELECT *
FROM ((SELECT seq FROM Series WHERE seq <= 1000)
      EXCEPT
      (SELECT (F1.seq * F2.seq) AS composite_nbr
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         FROM Series AS F1, Series AS F2
         WHERE F1.seq BETWEEN 2 AND CEILING (SQRT (1000))
           AND F2.seq BETWEEN 2 AND CEILING (SQRT (1000))
           AND F1.seq <= F2.seq
           AND (F1.seq * F2.seq) <= 1000);

Obviously, the Series table in the left-hand clause could be any 
one of the trimmed candidate tables we previously constructed.

There are faster but more complicated algorithms, like the 
Sieve of Atkin and the various Wheel Sieves.

4.5.3 Random Order Values
In many applications, we do not want to issue the sequence 
numbers in sequence. This pattern can give information that we 
do not wish to expose. Instead we want to issue generated val-
ues in random order. Do not get mixed up; we want known val-
ues that are supplied in random order and not random numbers. 
Most random number generators can repeat values, which would 
defeat the purpose of this drill.

Although I usually avoid mentioning physical implementa-
tions, one of the advantages of random-order keys is to improve 
the performance of tree indexes. Tree structured indexes, such 
as a B-Tree, that have sequential insertions become unbalanced 
and have to be reorganized frequently. However, if the same set 
of keys is presented in a random order, the tree tends to stay bal-
anced and you get much better performance.

The generator shown here is an implementation of the addi-
tive congruential method of generating values in pseudo-random 
order, and is due to Roy Hann of Rational Commerce Limited, a 
CA-Ingres consulting firm. It is based on a shift-register and an 
XOR-gate, and it has its origins in cryptography. Although there 
are other ways to do this, this code is nice because:
1. The algorithm can be written in C or another low level language 

for speed. But math is fairly simple even in base 10.
2. The algorithm tends to generate successive values that are 

(usually) “far apart,” which is handy for improving the perfor-
mance of tree indexes. You will tend to put data on separate 
physical data pages in storage.

3. The algorithm does not cycle until it has generated every pos-
sible value, so we don’t have to worry about duplicates. Just 
count how many calls have been made to the generator.

4. The algorithm produces uniformly distributed values, which 
is a nice mathematical property to have. It also does not 
include zero.
Let’s walk through all the iterations of the 4-bit generator illus-

trated in Figure 4.1.
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Initially the shift register contains the value 0001. The two 
rightmost bits are XOR-ed together, giving 1, the result is fed into 
the leftmost bit position, and the previous register contents shift 
one bit right. The iterations of the register are shown in this table, 
with their base-10 values:

iteration 1: 0001 (1)
iteration 2: 1000 (8)
iteration 3: 0100 (4)
iteration 4: 0010 (2)
iteration 5: 1001 (9)
iteration 6: 1100 (12)
iteration 7: 0110 (6)
iteration 8: 1011 (11)
iteration 9: 0101 (5)
iteration 10: 1010 (10)
iteration 11: 1101 (13)
iteration 12: 1110 (14)
iteration 13: 1111 (15)
iteration 14: 0111 (7)
iteration 15: 0011 (3)
iteration 16: 0001 (1) wrap-around!

It might not be obvious that successive values are far apart 
when we are looking at a tiny 4-bit register. But it is clear that 
the values are generated in no obvious order, all possible values 
except 0 are eventually produced, and the termination condition 
is clear—the generator cycles back to 1.

Generalizing the algorithm to arbitrary binary word sizes, 
and therefore longer number sequences, is not as easy as you 
might think. Finding the “tap” positions where bits are extracted 
for feedback varies according to the word-size in an extremely 
nonobvious way. Choosing incorrect tap positions results in an 
incomplete and usually very short cycle that is unusable. If you 
want the details and tap positions for words of one to 100 bits, 
see E. J. Watson, “Primitive Polynomials (Mod 2),” Mathematics of 
Computation, v.16, 1962, pp. 368–369.

The following table shows the tap positions 8-, 16-, 31-, 32-, 
and 64-bit words. That should work with any computer  hardware 

Figure 4.1 Four Digit Additive Congruency Generator.

XOR
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you have. The 31-bit word is the one that is probably the most 
useful since it gives billions of numbers, uses only two tap posi-
tions to make the math easier, and matches most computer hard-
ware. The 32-bit version is not easy to implement on a 32-bit 
machine because it will usually generate an overflow error.

Word Length

8 = {0, 2, 3, 4}
16 = {0, 2, 3, 5}
31 = {0, 3}
32 = {0, 1, 2, 3, 5, 7}
64 = {0, 1, 3, 4}

Using the preceding table we can see that we need to tap bits 
0 and 3 to construct the 31-bit random-order generated value 
Generator (which is the one most people would want to use in 
practice):

UPDATE Generator31
 SET key_val =
   key_val/2 + MOD(MOD(key_val, 2) + MOD(key_val/8, 2),  

  2)*2^30;

Or, if you prefer the algorithm in C:

int Generator31 ()
{static int n = 1;
n = n >> 1 | ((n^n >> 3) & 1) << 30;
return n;
}

4.5.4 Other Series
Other series of numbers can be useful and I will take time on the 
Fibonacci numbers in Chapter 6 because they show up in many 
places and they are useful for encryption, check digits, and other 
things in computer science.

You will find that it is easier to download a table of values from 
the Internet these days than it is to compute them for yourself.
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5
BASE TABLES AND RELATED 
ELEMENTS

There was only one data structure in SQL; the table. Later stan-
dards and vendors added other structures, but they are almost 
never used and do not port. Tables have different flavors, but 
they all behave the same way. Conceptually, a table is a set of zero 
or more rows, and a row is a set of one or more columns. Each 
column has a specific data type and constraints that make up 
an implementation of an abstract domain for the values of the 
attribute modeled by the column. The way a table is physically 
implemented does not matter, because you access it only with 
SQL using a key. The database engine handles all the details for 
you and you never worry about the internals as you would with 
a physical file. In fact, almost no two SQL products use the same 
internal structures.

There are two common conceptual errors made by program-
mers who are accustomed to file systems. The first is thinking 
that a table is a file; the second is thinking that a table is a spread-
sheet. Tables do not behave like either one of these, and you will 
get surprises if you do not understand the basic concepts.

It is easy to imagine that a table is a file, a row is a record, and 
a column is a field. This is familiar and when data moves from 
SQL to the host language, it has to be converted into host lan-
guage data types and data structures to be displayed and used.

The big differences between working with a file system and 
working with SQL are in the way SQL fits into a host program. 
Using a file system, your programs must open and close files 
individually. In SQL, the whole schema is connected to or dis-
connected from the program as a single unit. The host program 
might not be authorized to see or manipulate all the tables 
and other schema objects, but that is established as part of the 
connection.

The program defines fields within a file, whereas SQL defines 
its columns in the schema. FORTRAN uses the FORMAT and READ 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00005-3
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statements to get data from a file. Likewise, a COBOL program uses 
a DATA DIVISION to define the fields and a READ to fetch it. And 
so on for every 3GL programming language, the concept is the 
same, though the syntax and options vary.

A file system lets you reference the same data by a different 
name in each program. If a file’s layout changes, you must rewrite 
all the programs that use that file. When a file is empty, it looks 
exactly like all other empty files. When you try to read an empty 
file, the EOF (end of file) flag pops up and the program takes 
some action. Column names and data types in a table are defined 
within the database schema; they are not local to each program 
like field names. Within reasonable limits, the tables can be 
changed without the knowledge of the host program.

The host program only worries about transferring the values 
to its own variables from the database. Remember the empty set 
from your high school math class? It is still a valid set. When a 
table is empty, it still has columns and the constraints on it are 
TRUE, but it has zero rows. There is no EOF flag to signal an excep-
tion, because there is no final record.

A constraint is a rule that defines what must be TRUE or UNKNOWN 
about the database after each transaction. Again, all constraints 
on an empty table are TRUE. In this sense, a database is more 
like an active, self-policing collection of objects than a traditional 
passive file system.

A table is not a spreadsheet, even though they look very 
much alike when you view them on a screen or in a printout. In 
a spreadsheet you can access a row, a column, a cell, or a collec-
tion of cells by navigating with a cursor. A table has no concept of 
navigation. Cells in a spreadsheet can store instructions and not 
just data. There is no real difference between a row and column 
in a spreadsheet; you could flip them around completely and still 
get valid results. This is not TRUE for an SQL table.

Tables are made up of rows. The rows have no ordering and are 
identified by a key (one or more columns whose values are unique 
in each row). There is no such thing as the first, last, or next row.

Rows are made up of columns. The columns have no order-
ing and are identified by a name that is unique in each row. 
The apparent exception is in places in some statements where 
a default list of row names is created by the engine in the order 
of the declaration of the table’s columns. This is just a nice 
shorthand.

Columns are made up of scalar values that must have a 
declared fixed data type. After that, the columns can have con-
straints, defaults, and other things that the SQL engine uses to 
assure that the data in them meets the business rules.
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5.1 CREATE TABLE Statement
The CREATE TABLE statement does all the hard work. The more 
constraints and effort you put into this statement, the faster and 
easier your SQL will be. The basic syntax looks like this, but there 
are actually more options we will discuss later.

CREATE TABLE <table name> (<table element list>)

<table element list> ::=
<table element> | <table element>, <table element list>

<table element> ::=
<column definition> | <table constraint definition>

The table definition includes data in the column definitions 
and rules for handling that data in the table constraint definitions. 
This means that a table acts more like an object (with its data and 
methods) than just a simple, passive file.

5.1.1 Column Constraints
Beginning SQL programmers often fail to take full advantage of 
the options available to them, and they pay for it with errors or 
extra work in their applications. A column is not like a simple 
passive field in a file system. It has more than just a data type 
associated with it. Here is the basic BNF syntax for it.

<column definition> ::=
 <column name> <data type>
  [<default clause>]
  [<column constraint>. . .]
  [<constraint attributes>]

<column constraint> ::= NOT NULL
| <check constraint definition>
| <unique specification>
| <references specification>
[<constraint attributes>]

The first important thing to notice here is that each column 
must have a data type, which it keeps unless you ALTER the table. 
The SQL standard offers many data types, because SQL must 
work with many different host languages. The data types fall into 
three major categories: numeric, character, and temporal data 
types. We will discuss the data types and their rules of opera-
tion in other sections; they are fairly obvious, so not knowing the 
details will not stop you from reading the examples that follow.

Column constraints are rules that are attached to a column; 
row constraints are attached to multiple columns in the same 
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row; table constraints apply to multiple rows, usually in the aggre-
gate. All the rows in the table are validated against them. File 
systems have nothing like this, since validation is done in the appli-
cation programs. They are also one of the most underused features 
of SQL, so you can look like a real wizard if you can  master them.

Constraints can be given a name and some attributes. The 
constraint name will be used by the SQL engine to alter it and to 
display an error message.

<constraint name definition> ::= CONSTRAINT <constraint name>
<constraint attributes> ::=
<constraint check time> [[NOT] DEFERRABLE]
  |[NOT] DEFERRABLE [<constraint check time>]
<constraint check time> ::= INITIALLY DEFERRED | INITIALLY 

IMMEDIATE

A deferrable constraint can be “turned off” during a transac-
tion. The initial state tells you whether to enforce it at the start of 
the transaction or wait until the end of the transaction before the 
COMMIT. Only certain combinations of these attributes make sense.
•	 If	INITIALLY DEFERRED is specified, then the constraint has to 

be DEFERRABLE.
•	 If	 INITIALLY IMMEDIATE is specified or implicit and neither 

DEFERRABLE nor NOT DEFERRABLE is specified, then NOT DEFERRABLE 
is implicit.
The transaction statement can then use this statement to set 

the constraints as needed.

<set constraints mode statement> ::=
SET CONSTRAINTS <constraint name list> {DEFERRED | IMMEDIATE}
<constraint name list>
::= ALL | <constraint name> [{<comma> <constraint  

name>}. . .]

This feature was new with Full SQL-92 and it is not widely 
implemented in the smaller SQL products. In effect, they use NOT 
DEFERRABLE INITIALLY IMMEDIATE on all the constraints.

5.1.2 DEFAULT Clause
The default clause is an underused feature, whose syntax is:

<default clause> ::=
[CONSTRAINT <constraint name>] DEFAULT <default option>

<default option> ::= <literal> | <system value> | NULL

<system value> ::= CURRENT_DATE | CURRENT_TIME |  
CURRENT_TIMESTAMP | SYSTEM_USER | SESSION_USER | 
CURRENT_USER
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The SQL:2003 Standard also added CURRENT_PATH and <implicitly 
typed value specification>. Do not worry about them; they are not 
very common.

Whenever the SQL engine does not have an explicit value to 
put into this column during an insertion statement, it will look 
for a DEFAULT clause and insert that value. The default option can 
be a literal value of the relevant data type, or current timestamp, 
current date, current user identifier, and so forth. If you do not 
provide a DEFAULT clause and the column is NULL-able, the system 
will provide a NULL as the default. If all that fails, you will get an 
error message about missing data.

This is a good way to make the database do a lot of work that 
you would otherwise have to code into all the application pro-
grams. The most common tricks are to use a zero in numeric col-
umns, a string to encode a missing value ('{{unknown}}') or an 
explicit default ('same address') in character columns, and the 
system timestamp to mark transactions.

5.1.3 NOT NULL Constraint
The most important column constraint is the NOT NULL, which 
forbids the use of NULLs in a column. It optionally follows the 
DEFAULT, if any, but most SQLs are more forgiving of the ordering 
these days. Use NOT NULL routinely, then remove it only when you 
have good reason. It will help you avoid the complications of NULL 
values when you make queries against the data. The other side of 
the coin is that you should provide a DEFAULT value to replace the 
NULL that would have been created.

The NULL is a special marker in SQL that belongs to all data 
types. SQL is the only language that has such a creature; if you 
can understand how it works, you will have a good grasp of SQL. 
It is not a value; it is a marker to hold a place where a value might 
go. But it has to be cast to a data type for physical storage.

A NULL means that we have a missing, unknown, miscel-
laneous, or inapplicable value in the data. It can mean many 
other things, but just consider those four for now. The prob-
lem is that, exactly which of the four possibilities the NULL indi-
cates depends on how it is used. To clarify this, imagine that I 
am looking at a carton of Easter eggs and I want to know their 
colors. If I see an empty hole, I have a missing egg, which I 
hope will be provided later. If I see a foil-wrapped egg, I have 
an unknown color value in my set. If I see a multicolored egg, 
I have a miscellaneous value in my set. If I see a cue ball, I have 
an inapplicable value in my set. The way you handle each situa-
tion is a little different.
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When you use NULLs in math calculations, they propagate 
in the results so that the answer is another NULL. When you use 
them in comparisons, they return a logical value of UNKNOWN and 
give SQL its strange three-valued logic. They can be sorted either 
always high or always low in the collation sequence with an 
optional NULLS [FIRST|LAST] subclause in the ORDER BY clause. If 
no subclauses are given, the vendor is free to set its own default 
ordering. They group together for some operations but not for 
others. In short, NULLs cause a lot of irregular features in SQL, 
which we will discuss later. Your best bet as a new SQL program-
mer is just to memorize the rules for NULLs until you have enough 
experience to see the pattern.

5.1.4 CHECK() Constraints
The check constraint tests the values in the table against a logi-
cal expression, which SQL calls a search condition, and rejects 
rows whose search condition returns FALSE. However, the con-
straint accepts rows when the search condition returns TRUE or 
UNKNOWN. This is not the same rule as the WHERE and ON clauses in 
queries and other data manipulation statements, which reject 
rows that test UNKNOWN. The reason for this “benefit-of-the-
doubt” feature is so that it will be easy to write constraints on 
NULL-able columns.

A check constraint can be a simple search condition such 
as CHECK (order_qty >= 0). These simple search conditions are 
probably the most common cases. The expressions look like the 
logical tests in virtually every procedural programming language. 
Because they look familiar, beginning SQL programmers do not 
use the full power of SQL. This is assuming they use constraints 
at all!

SQL has several shorthands that make the code much easier 
to read. For example, CHECK (rating BETWEEN 1 AND 10) replaces 
two simple comparisons. Likewise, CHECK (sex IN (0, 1, 2, 9)) 
replaces a chain of OR-ed comparisons with an enumerated list 
of expressions. Although it is optional, it is a really good idea to 
use a constraint name. Without it, most SQL products will create 
a huge, ugly, unreadable random string for the constraint name 
since they need to have one in the schema tables. If you provide 
your own, you can find the constraint easily when you want to 
drop or modify it. The name will also appear in the error mes-
sages when the constraint is violated.

For example, you can use a single check clause to enforce the 
rule that a firm does not hire anyone under 21 years of age for a 
job that requires a liquor-serving license by checking the birth 
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date and hire date. However, you cannot put the current system 
date into the CHECK(  ) clause logic for obvious reasons—it is 
always changing.

The real power of the CHECK() clause comes from writing 
complex expressions that verify relationships with other rows, 
with other tables, or with constants. Before Standard SQL, the 
CHECK() constraint could only reference columns in the table 
in which it was declared. In Standard SQL, the CHECK() con-
straint can reference any schema object; this is still not widely 
implemented.

As an example of how complex things can get consider a data-
base of movies. First, let’s enforce the rule that no country can 
export more than 10 titles.

CREATE TABLE Exported_Movies
(movie_title CHAR(25) NOT NULL,
country_code CHAR(2) NOT NULL, -- use ISO-3166 codes
sales_amt DECIMAL(12,2) NOT NULL,
PRIMARY KEY (movie_title, country_code),
CONSTRAINT National_Quota
CHECK (-- reference to same table

10 <= ALL (SELECT COUNT(movie_title)
FROM Exported_Movies AS E1

GROUP BY E1.country_code))
);

When doing a self-join, you must use the base table name 
and correlation names. Let’s make sure no movies from different 
countries have the same title.

CREATE TABLE ExportMovies
(movie_title CHAR(25) NOT NULL,
country_code CHAR(2) NOT NULL,
sales_amt DECIMAL(12,2) NOT NULL,
PRIMARY KEY (movie_title, country_code),
CONSTRAINT National_Quota
CHECK (NOT EXISTS -- self-join

(SELECT *
  FROM ExportMovies AS E1
 WHERE ExportMovies.movie_title = E1.movie_title

AND ExportMovies.country_code <> E1.country_code)
);

Here is way to enforce the rule that you cannot export a movie 
to its own country of origin:

CREATE TABLE ExportMovies
(movie_title CHAR(25) NOT NULL,
country_code CHAR(2) NOT NULL,
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sales_amt DECIMAL(12,2) NOT NULL,
PRIMARY KEY (movie_title, country_code),
CONSTRAINT Foreign_film
CHECK (NOT EXISTS  -- reference to second table
(SELECT *

FROM Movies AS M1
WHERE M1.movie_title = ExportMovies.movie_title
AND M1.country_of_origin = ExportMovies.

country_code)));

These table-level constraints often use a NOT EXISTS()  predicate. 
In spite of the fact that you can often do a lot of work in a single 
constraint, it is a better idea to write a lot of small constraints so 
that you know exactly what went wrong when one of them is 
violated.

Constraint names are global to the schema, and not local to 
the table where they appear. There are two reasons for this. If 
two different constraints in two different tables had the same 
name, you would not know which one was violated in an error 
message. The second reason is that there is schema level dec-
laration, the CREATE ASSERTION statement, which we will discuss 
shortly.

5.1.5 UNIQUE and PRIMARY KEY Constraints
The unique constraint says that no duplicate values are allowed 
in the column or columns involved.

<unique specification> ::= UNIQUE | PRIMARY KEY

File system programmers confuse the concept of a PRIMARY 
KEY with the record number they have in a sequential file. The 
record number is how they navigate in a file, moving a read/write 
head on a disk or magnetic tape within the file to each record. 
Obviously, a sequential file can have only one physical ordering. 
Since the first SQLs were built on top of existing file systems, the 
PRIMARY KEY syntax was designed to mimic the record number. 
Dr. Codd later realized this was a mistake, but by then it was part 
of SQL. There is no order in a table, so today the PRIMARY KEY in 
SQL has to do with defaults in referential actions, which we will 
 discuss later.

There are some subtle differences between UNIQUE and PRIMARY 
KEY. There can be only one PRIMARY KEY per table but many UNIQUE 
constraints in a table. A PRIMARY KEY is automatically declared to 
have a NOT NULL constraint on it, but a UNIQUE column can have 
NULLs in one or more rows unless you explicitly add a NOT NULL 
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constraint. Uniqueness is checked by throwing out the NULLs, 
then doing an equality test.

Adding the NOT NULL to UNIQUE columns whenever possible is 
a good idea, as it makes the column into a proper rela tional key.

There is also a multiple-column form of the <unique specifi-
cation>, which usually is written at the end of the column dec-
larations. It is a list of columns in parentheses after the proper 
keyword; it means that the combination of those columns is 
unique. For example, I might declare PRIMARY KEY (city, depart-
ment) or UNIQUE (city, department) so I can be sure that though 
I have offices in many cities and many identical departments in 
those offices, there is only one personnel department in Chicago.

Consider these variations on the same job assignment table:

CREATE TABLE Job_Assignments_1
(emp_name VARCHAR(10) NOT NULL,
city_name VARCHAR(15),
dept_name CHAR(5));

Even though it is valid SQL, Job_Assignments_1 has no 
key. That means that it is not a relational table. The Database 
Standards Committee debated requiring a PRIMARY KEY in the syn-
tax, but decided to allow this construction so that nonnormalized 
raw data could be handled inside the database.

CREATE TABLE Job_Assignments_2
(emp_name VARCHAR(10) NOT NULL PRIMARY KEY,
city_name VARCHAR(15) UNIQUE,
dept_name CHAR(5));

CREATE TABLE Job_Assignments_3
(emp_name VARCHAR(10) NOT NULL PRIMARY KEY,
city_name VARCHAR(15),
dept_name CHAR(5),
UNIQUE (city_name, dept_name));

CREATE TABLE Job_Assignments_4
(emp_name VARCHAR(10) NOT NULL,
city_name VARCHAR(15) NOT NULL,
dept_name CHAR(5) NOT NULL,
UNIQUE (emp_name, city_name, dept_name)); -- or use 

 PRIMARY KEY()

Assume the data is inserted in top-to-bottom order in each of 
the tables, as shown in Table 5.1.

Later in this book, we will discuss overlapping UNIQUE con-
straints, which can enforce complex table level rules.
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5.1.6 REFERENCES Clause
The <references specification> is the simplest version of a refer-
ential constraint definition, which can be quite tricky. For now, 
let us just consider the simplest case:

<references specification> ::=
[CONSTRAINT <constraint name>]
REFERENCES <referenced table and columns>
[MATCH <match type>]
[<referential triggered action> ]

<match type> ::= FULL | PARTIAL

This relates two tables together, so it is different from the 
other options we have discussed so far. The table where this 
appears is the referencing table and the table in the REFERENCES 
clause is the referenced table. They are usually different but they 
can be the same—a self-reference.

What this says is that the value in this column of the referenc-
ing table must appear somewhere in the referenced table’s col-
umn that is named in the constraint.

Furthermore, the referenced column(s) must be in a UNIQUE 
constraint. For example, you can set up a rule that the Orders 
table will have orders only for goods that appear in the Inventory 
table.

The optional MATCH FULL clause says that the two lists of col-
umns have to be all non-NULL and equal to each other, position 
for position and value for value. The optional MATCH PARTIAL 
clause says that the two lists of columns are equal to each 
other, position for position and value for value, in the non-NULL 
 columns and we will treat the NULLs as if they are equal. This 

emp_name city_name dept_name

'Jack' 'Chicago' 'Acct'  valid for 1, 2, 3, 4
'Jack' 'Chicago' 'Acct'  invalid for 1, 2, 3, 4 --PK violation
'Jill' 'Chicago' NULL  valid for 1, not 2 (Chicago), 3, not 4
'Hilary' NULL 'Acct'  valid for 1, 2, 3, not 4
'Walt' NULL NULL  valid for 1, 2, 3, not 4
'Fred' NULL NULL  valid for 1, 2, 3, not 4

Table 5.1 Constraint Enforcement with NULLs
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occurs in several places in SQL and has to do with grouping 
 versus equality.

If no reference columns are given, then the PRIMARY KEY col-
umn of the referenced table is assumed to be the target. This is 
one of those places where the PRIMARY KEY is important, but you 
can always play it safe and explicitly name a column. There is no 
rule to prevent several columns from referencing the same tar-
get column. For example, we might have a table of flight crews 
that has pilot and copilot columns that both reference a table of 
 certified pilots.

A circular reference is a relationship in which one table refer-
ences a second table, which optionally references a third, and so 
forth until the chain comes back to reference the first table. The 
old gag about “you cannot get a job until you have experience, 
and you cannot get experience until you have a job!” is the classic 
version of this.

Notice that the columns in a multicolumn FOREIGN KEY must 
match to a multicolumn PRIMARY KEY or UNIQUE constraint. The 
syntax is:

[CONSTRAINT <constraint name>]
FOREIGN KEY (<column list>)
REFERENCES <referenced table name> [(<reference column 

list>)]

The REFERENCES clause can have two subclauses that take 
actions when a database event changes the referenced table. The 
two database events are updates and deletes and the subclauses 
look like this:

<referential triggered action> ::=
 <update rule> [<delete rule>] | <delete rule> [<update 

rule>]

<update rule> ::= ON UPDATE <referential action>
<delete rule> ::= ON DELETE <referential action>

<referential action> ::= CASCADE | SET NULL | SET DEFAULT 
| NO ACTION

When the referenced table is changed, one of the referential 
actions is set in motion by the SQL engine.
1. The CASCADE option will change the values in the referencing 

table to the new value in the referenced table. This is a very 
common method of DDL programming that allows you to set 
up a single table as the trusted source for an identifier. This 
way the system can propagate changes automatically. This can 
save you thousands of lines of application code, improve query 
optimization, and prevent orphaned data.
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Modern SQL products regarded the schema as a whole. The 
referenced values appeared once in the referenced table, and the 
referencing tables obtain them by following system-maintained 
pointer chains or hash tables to that one occurrence in the 
schema. The results are much faster update cascades, a physi-
cally smaller database, faster joins, and faster aggregations.

2. The SET NULL option will change the values in the referencing 
table to a NULL. Obviously, the referencing column needs to be 
NULL-able.

3. The SET DEFAULT option will change the values in the referenc-
ing table to the default value of that column. Obviously, the 
referencing column needs to have some DEFAULT declared for 
it, but each referencing column can have its own default in its 
own table.

4. The NO ACTION option explains itself. Nothing is changed in the 
referencing table and an error message about reference viola-
tion will be raised. If a referential constraint does not specify 
any ON UPDATE or ON DELETE rule, or any update rule, then NO 
ACTION is implicit.

5.2 Nested UNIQUE Constraints
One of the basic tricks in SQL is representing a one-to-one or 
many-to-many relationship with a table that references the two 
(or more) entity tables involved by their primary keys. This third 
table has several popular names such as “junction table” or “join 
table,” taken from terms used in prerelational databases, but we 
know that it is a relationship. This type of table needs to have 
constraints on to assure that the relationships work properly.

For example, two tables:

CREATE TABLE Boys
(boy_name VARCHAR(30) NOT NULL PRIMARY KEY
. . .);

CREATE TABLE Girls
(girl_name VARCHAR(30) NOT NULL PRIMARY KEY,
. . .);

Yes, I know using names for a key is a bad practice, but it will 
make my examples easier to read. There are a lot of different rela-
tionships that we can make between these two tables. If you don’t 
believe me, just watch the Jerry Springer Show sometime. The 
simplest relationship table looks like this:

CREATE TABLE Couples
(boy_name VARCHAR(30) NOT NULL
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REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

girl_name VARCHAR(30) NOT NULL,
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE);

The Couples table allows us to insert rows like this:

('Joe Celko', 'Hilary Duff')
('Joe Celko', 'Lindsay Lohan')
('Tobey Maguire', 'Lindsay Lohan')
('Joe Celko', 'Hilary Duff')

Oops! I am shown twice with ‘Hilary Duff’ because the 
Couples table does not have its own key. This is an easy mistake 
to make, but fixing it is not an obvious thing.

CREATE TABLE Orgy
(boy_name VARCHAR(30) NOT NULL

REFERENCES Boys (boy_name)
ON DELETE CASCADE
ON UPDATE CASCADE,

girl_name VARCHAR(30) NOT NULL,
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); —compound key

The Orgy table gets rid of the duplicated rows and makes this 
a proper table. The primary key for the table is made up of two 
or more columns and is called a compound key. These are valid 
rows now.

('Joe Celko', 'Hilary Duff')
('Joe Celko', 'Lindsay Lohan')
('Tobey Maguire', 'Lindsay Lohan')

But the only restriction on the couples is that they appear only 
once. Every boy can be paired with every girl, much to the dismay 
of the Moral Majority. I think I want to make a rule that guys can 
have as many gals as they want, but the gals have to stick to one guy.

The way I do this is to use a NOT NULL UNIQUE constraint on the 
girl_name column, which makes it a key. It is a simple key since it 
is only one column, but it is also a nested key because it appears 
as a subset of the compound PRIMARY KEY.

CREATE TABLE Playboys
(boy_name VARCHAR(30) NOT NULL

REFERENCES Boys (boy_name)
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ON UPDATE CASCADE
ON DELETE CASCADE,

girl_name VARCHAR(30) NOT NULL UNIQUE, —nested key
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); —compound key

The Playboys is a proper table, without duplicates, but it also 
enforces the condition that I get to play around with one or more 
ladies, thus:

('Joe Celko', 'Hilary Duff')
('Joe Celko', 'Lindsay Lohan')

The ladies might want to go the other way and keep company 
with a series of men.

CREATE TABLE Playgirls
(boy_name VARCHAR(30) NOT NULL UNIQUE —nested key

REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

girl_name VARCHAR(30) NOT NULL,
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); —compound key

The Playgirls table would permit these rows from our origi nal set.

('Joe Celko', 'Lindsay Lohan')
('Tobey Maguire', 'Lindsay Lohan')

Think about all of these possible keys for a minute. The com-
pound PRIMARY KEY is now redundant and is called a “super key” 
in RDBMS terms. If each boy appears only once in the table or 
each girl appears only once in the table, then each (boy_name, 
girl_name) pair can appear only once. However, the redundancy 
can be useful in searching the table because it will probably cre-
ate extra indexes that give us a covering of both names. The query 
engine then can use just the index and not touch the base tables.

The Moral Majority is pretty upset about this Hollywood scan-
dal and would love for us to stop running around and settle down 
in nice stable couples.

CREATE TABLE Marriages
(boy_name VARCHAR(30) NOT NULL UNIQUE —nested key

REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,
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girl_name VARCHAR(30) NOT NULL UNIQUE —nested key
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY(boy_name, girl_name)); —redundant compound key!!

I leave same-sex marriages as an exercise for the reader.
The Couples table allows us to insert these rows from the orig-

inal set.

('Joe Celko', 'Hilary Duff')
('Tobey Maguire', 'Lindsay Lohan')

Many products make the assumption that the PRIMARY KEY is 
in some way special in the data model and will be the way that 
they should access the table most of the time. In fairness, mak-
ing special provision for the primary key is not a bad assumption 
because the REFERENCES clause uses the PRIMARY KEY of the refer-
enced table as the default.

Many new SQL programmers are not aware that a FOREIGN KEY 
constraint can also reference any UNIQUE constraint in the same 
table or in another table. The following nightmare code will give 
you an idea of the possibilities. The multiple column versions fol-
low the same syntax.

CREATE TABLE Foo
(foo_key INTEGER NOT NULL PRIMARY KEY,
. . .
self_ref INTEGER NOT NULL
REFERENCES Foo(fookey),
outside_ref_1 INTEGER NOT NULL

REFERENCES Bar(bar_key),
outside_ref_2 INTEGER NOT NULL
REFERENCES Bar(other_key),

. . .);

CREATE TABLE Bar
(bar_key INTEGER NOT NULL PRIMARY KEY,
other_key INTEGER NOT NULL UNIQUE,
. . .);

5.2.1 Overlapping Keys
But getting back to the nested keys, just how far can we go with 
them? My favorite example is a teacher’s schedule kept in a 
table like this (I am leaving off reference clauses and CHECK() 
constraints):

CREATE TABLE Class_Schedule
(teacher_name VARCHAR(15) NOT NULL,
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class_name CHAR(15) NOT NULL,
room_nbr INTEGER NOT NULL,
class_period INTEGER NOT NULL,
PRIMARY KEY (teacher_name, class_name, room_nbr, 

class_period));

That choice of a primary key is the most obvious one—use all 
the columns. Typical rows would look like this:

('Mr. Celko', 'Database 101', 222, 6)

The rules we want to enforce are:
1. A teacher is in only one room each class_period.
2. A teacher teaches only one class each class_period.
3. A room has only one class each class_period.
4. A room has only one teacher in it each class_period.

Stop reading and see what you come up with for an answer. 
Okay, now consider using one constraint for each rule in the 
list, thus:

CREATE TABLE Class_Schedule_1 —version one, WRONG!
(teacher_name VARCHAR(15) NOT NULL,
class_name CHAR(15) NOT NULL,
room_nbr INTEGER NOT NULL,
class_period INTEGER NOT NULL,
UNIQUE (teacher_name, room_nbr, class_period), —rule #1
UNIQUE (teacher_name, class_name, class_period), —rule #2
UNIQUE (class_name, room_nbr, class_period), —rule #3
UNIQUE (teacher_name, room_nbr, class_period), —rule #4
PRIMARY KEY (teacher_name, class_name, room_nbr, 

class_period));

We know that there are four ways to pick three things from a 
set of four things. Although column order is important in creating 
an index, we can ignore it for now and then worry about index 
tuning later.

I could drop the PRIMARY KEY as redundant if I have all four of 
these constraints in place. But what happens if I drop the PRIMARY 
KEY and then one of the constraints?

CREATE TABLE Class_Schedule_2 —still wrong
(teacher_name VARCHAR(15) NOT NULL,
class_name CHAR(15) NOT NULL,
room_nbr INTEGER NOT NULL,
class_period INTEGER NOT NULL,
UNIQUE (teacher_name, room_nbr, class_period), —rule #1
UNIQUE (teacher_name, class_name, class_period), —rule #2
UNIQUE (class_name, room_nbr, class_period)); —rule #3



 Chapter 5 BASE TABLES AND RELATED ELEMENTS  67

I can now insert these rows in the second version of the table:

('Mr. Celko', 'Database 101', 222, 6)
('Mr. Celko', 'Database 102', 223, 6)

This gives me a very tough sixth period teaching load since 
I have to be in two different rooms at the same time. Things 
can get even worse when another teacher is added to the 
schedule:

('Mr. Celko', 'Database 101', 222, 6)
('Mr. Celko', 'Database 102', 223, 6)
('Ms. Shields', 'Database 101', 223, 6)

Ms. Shields and I are both in room 223, trying to teach different 
classes at the same time. Matthew Burr looked at the constraints 
and the rules came up with this analysis.

CREATE TABLE Class_Schedule_3 —corrected version
(teacher_name VARCHAR(15) NOT NULL,
class_name CHAR(15) NOT NULL,
room_nbr INTEGER NOT NULL,
class_period INTEGER NOT NULL,
UNIQUE (teacher_name, class_period), —rules #1 and #2
UNIQUE (room_nbr, class_period)); —rules #3 and #4

If a teacher is in only one room each class_period, then 
given a class_period and a teacher I should be able to deter-
mine only one room; that is, room is functionally dependent 
upon the combination of teacher and class_period. Likewise, 
if a teacher teaches only one class each class_period, then class 
is functionally dependent upon the combination of teacher and 
class_period. The same thinking holds for the last two rules: class 
is functionally dependent upon the combination of room and 
class_period, and teacher is functionally dependent upon the 
combination of room and class_period.

With the constraints that were provided in the first version, 
you will find that the rules are not enforced. For example, I could 
enter the following rows:

('Mr. Celko', 'Database 101', 222, 6)
('Mr. Celko', 'Database 102', 223, 6)

These rows violate rule #1 and rule #2.
However, the unique constraints first provided in Class_

Schedule_2 do not capture this violation and will allow the rows 
to be entered.

The constraint,

UNIQUE (teacher_name, room_nbr, class_period)
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is checking the complete combination of teacher, room, and 
class_period, and since (‘Mr. Celko’, 222, 6) is different from 
(‘Mr. Celko’, 223, 6), the DDL does not find any problem with 
both rows being entered, even though that means that Mr. Celko 
is in more than one room during the same class_period.

UNIQUE (teacher_name, class_name, class_period)

does not catch its associated rule either since (‘Mr. Celko’, 
‘Database 101’, 6) is different from (‘Mr. Celko’, ‘Database 102’, 6), 
and so Mr. Celko is able to teach more than one class during the 
same class_period, thus violating rule #2. It seems that we’d also 
be able to add the following row:

('Ms. Shields', 'Database 103', 222, 6)

which violates rules #3 and #4.

5.2.2 Single versus Multiple-Column Uniqueness
Lionel Clarke proposed a puzzle on www.simple-talk.com in 
October 2007, which demonstrates how UNIQUE constraints work. 
You have to move as much of the data as you can from the source 
tables to the destination tables. There is one restriction though; 
you can use only one INSERT INTO statement.

CREATE TABLE Source
(a INTEGER NOT NULL,
b INTEGER NOT NULL,
 PRIMARY KEY (a, b));

INSERT INTO Source (a, b)
VALUES (1, 1), (1, 2), -- a=1 group
(2, 3), (2, 4), -- a=2 group
(5, 5), (5, 1), (5, 3), -- a=5 group
(7, 2), -- a=7 group
(9, 0), -- a=9 group
(11, 2); -- a=11 group

CREATE TABLE Destination
(a INTEGER NOT NULL UNIQUE,
b INTEGER NOT NULL UNIQUE,
FOREIGN KEY (a, b)
 REFERENCES Source(a, b));

Notice that there are several subsets of Source data that will 
fit into the Destination table. If I use (1, 1) then I cannot transfer 
(1, 2) because of the UNIQUE constraint on column a; this is looking 
at the data from the column a viewpoint. Likewise, if I use (5, 5) 
then I cannot transfer (5, 1) because of the UNIQUE constraint on 

http://www.simple-talk.com
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column b. I could have arranged the insertion statement to reflect 
a column b viewpoint:

INSERT INTO Source (b, a) –- flip the columns
VALUES (0, 9), -- b=0 group
(1, 1), (1, 5), -- b=1 group
(2, 1), (2, 7), (2, 11), -- b=2 group
(3, 2), (3, 5), -- b=3 group
(4, 2), -- b=4 group
(5, 5); -- b=5 group

With a little thought, you can see that you need to pick 
one pair from each group to get the largest subset. If you are 
a math major, this is an application of the Axiom of Choice for 
finite sets.

Here is a first attempt:

WITH X (a, b, pair_nbr)
AS
(SELECT a, b, ROW_NUMBER() OVER(ORDER BY a ASC, b DESC)
 FROM Source)

SELECT a, b, pair_nbr
 FROM X AS P1
WHERE NOT EXISTS
(SELECT *
FROM X AS P2

WHERE P2.pair_nbr < P1.pair_nbr
AND (P1.a = P2.a OR P1.b = P2.b));

This should give you one valid subset. The idea is to sort and 
number the rows, then look from the current position P1 at all the 
previous rows P2 to see if one that repeats a value of a or b exists. 
That means we reject the current row. This gives me Table 5.2.

Mike Good pointed out that this not my best effort. Another 
valid solution with five rows instead of four is shown in Table 5.3.

 

 a b  

1 2
2 4
5 5
9 0

Table 5.2  Valid Subset with UNIQUE  
Constraints, Version 1
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For other populations, my query does worse. Given any 
source data population we should be able to rerun the inser-
tion with data in which Source.a and Source.b are swapped, and 
still get the same number of Destination rows in the answer. My 
algorithm gets four rows for specified source population, but 
only three rows when the columns are swapped, which is a sure 
indication of a logical flaw. By changing the OVER (ORDER BY ..) 
 subclause directions and ordering you can get different answers, 
but there is no guarantee that one of them will be optimal.

Mike Good was right about that not being my best work. My goal 
was to get the first acceptable answer. When you do NP-complete 
problems in SQL, you usually get the entire set of candidate answers 
and the query runs like glue. Here is my “glue query”:

—create the original source data
CREATE TABLE Source
(pair_nbr INTEGER NOT NULL UNIQUE,
a INTEGER NOT NULL,
b INTEGER NOT NULL,
PRIMARY KEY (a, b));

INSERT INTO Source
VALUES (1, 1, 1), (2, 1, 2), (3, 2, 3), (4, 7, 2),
(5, 2, 4), (6, 5, 5), (7, 5, 1), (8, 5, 3), (9, 9, 0), 

(10, 11, 2);

—CTE to set up all subsets of the 10 sample pairs
WITH Flags (I)
AS (SELECT FROM VALUES ('t'), ('f')),

--CROSS JOIN from Hell to get all subsets and random 
 candidate id numbers

Subsets (subset_nbr, f01, f02, f03, f04, f05, f06, f07, 
f08, f09, f10)

 

 a b  

1 1
2 4
5 3
7 2

9 0

Table 5.3  Valid Subset with UNIQUE  
Constraints, Version 2
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AS
(SELECT ROW_NUMBER() OVER () AS subset_nbr,

F01.I, F02.I, F03.I, F04.I, F05.I,
F06.I, F07.I, F08.I, F09.I, F10.I

FROM Flags AS F01, Flags AS F02, Flags AS F03,
Flags AS F04, Flags AS F05, Flags AS F06,
Flags AS F07, Flags AS F08, Flags AS F09, Flags AS F10),

—filter out pairs FROM the permutations
Candidates(subset_nbr, a, b)
AS
(SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S
WHERE S.pair_nbr = 1 AND P.f01 = 't'

UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr = 2 AND P.f02 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr =3 AND P.f03 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr = 4 AND P.f04= 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr = 5 AND P.f05 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr = 6 AND P.f06 = ‘t’
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S

WHERE S.pair_nbr = 7 AND P.f07 = ‘t’
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S
WHERE S.pair_nbr = 8 AND P.f08 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S
WHERE S.pair_nbr = 9 AND P.f09 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b
FROM Subsets AS P, Source AS S
WHERE S.pair_nbr = 10 AND P.f10 = 't')
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SELECT subset_nbr, a, b -- return the winners
FROM Candidates AS C1

WHERE subset_nbr
IN (SELECT C2.subset_nbr -- find all perms that meet 

uniqueness criteria
FROM Candidates AS C2

GROUP BY C2.subset_nbr
HAVING COUNT(a) = COUNT(DISTINCT a)

AND COUNT(b) = COUNT(DISTINCT b)
-- AND COUNT(*) >= 5) —so you don’t go nuts looking at 

the output
ORDER BY subset_nbr, a, b;

The bad news!
1. This gives duplicate answers under different subset_nbrs. Yes, I 

could do a relational division and remove them, but that would 
really be messy to read.

2. This is probably going to scale better than you think. Richard 
Romley wrote an 81-way self-JOIN for a Sudoku solver that also 
returns all possible grids. It is quite fast, even with hundreds of 
solutions. This is much simpler.

CREATE TABLE Source
(a INTEGER NOT NULL,
b INTEGER NOT NULL,
PRIMARY KEY (a, b));

INSERT INTO Source
VALUES (1, 1), (1, 2),

(2, 3), (2, 4),
(5, 5), (5, 1), (5, 3),
(7, 2),
(9, 0),

(11, 2);

CREATE TABLE Destination
(a INTEGER NOT NULL UNIQUE,
b INTEGER NOT NULL UNIQUE,
FOREIGN KEY (a, b) REFERENCES Source(a, b));

Let’s try another approach. Generate all possible combina-
tions of pairs, then filter out the ones that fail criteria.

WITH X (a, b, pair_nbr) AS
(SELECT a, b, ROW_NUMBER () OVER (ORDER BY a ASC, b DESC)
FROM Part1Source)
SELECT a, b, pair_nbr
FROM X AS P1
WHERE NOT EXISTS
(SELECT *
 FROM X AS P2
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WHERE P2.pair_nbr < P1.pair_nbr
AND (P1.a = P2.a OR P1.b = P2.b));

This should give you one valid subset. The idea is to sort and 
number the rows, then look FROM the current position P1 at all the 
previous rows P2 to see if one that repeats a value of an OR b exists. 
That means we reject the current row. This gives me Table 5.4.

MikeGood said:

Celko, this not your best effort. Correct Part 1 answer has 5 dest 
rows for the specified Part1Source population. One valid solution is

1, 1
2, 4
5, 3
7, 2
9, 0

For other populations it does worse. I’ve been using the following 
alternate population to help find flaws. The answer should have 
four dest rows, but the algorithm you just posted finds only two.

1, 1
1, 2
2, 1
2, 2
2, 3
2, 4
3, 3
3, 4
4, 1

One valid solution is

1, 2
2, 3
3, 4
4, 1

 

 a b pair_nbr  

1 2 1
2 4 3
5 5 5
9 0

Table 5.4  Valid Subset with UNIQUE Constraints, 
with Pair Numbering



74  Chapter 5 BASE TABLES AND RELATED ELEMENTS

Finally, for any source data population we should be able to 
rerun test with data in source cols a and b swapped, and still 
get the same number of dest rows in the answer. Your algorithm 
gets four rows for specified source population, but only three rows 
when data in cols is swapped, which is a sure indication of a 
 logical flaw.

All that said, I cannot determine if you’re onto something here, 
fundamentally, OR not. Maybe with a little more work?

Celko said:

Oops! My error; this does not generate duplicates. Here are the 
answers for the original problem:

172 1 1
172 2 4
172 5 5
172 9 0
172 11 2
=========
186 1 1
186 2 4
186 5 5
186 7 2
186 9 0
=========
427 1 1
427 2 3
427 5 5
427 9 0
427 11 2
=========
441 1 1
441 2 3
441 5 5
441 7 2
441 9 0
=========
652 1 1
652 2 4
652 5 3
652 9 0
652 11 2
=========
666 1 1
666 2 4
666 5 3
666 7 2
666 9 0
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Mike Good was right about that not being my best work. My goal 
was to get the first acceptable answer. When you do NP-complete 
problems in SQL, you usually get the entire set of candidate 
answers and the query runs like glue. Here is my “glue query”:

—create the original source data
CREATE TABLE Source
(pair_nbr INTEGER NOT NULL UNIQUE,
a INTEGER NOT NULL,
b INTEGER NOT NULL,
PRIMARY KEY (a, b));

INSERT INTO Source
VALUES (1, 1, 1),(2, 1, 2), (3, 2, 3), (4, 7, 2),
(5, 2, 4), (6, 5, 5), (7, 5, 1),(8, 5, 3),(9, 9, 0),  

(10, 11, 2);

—CTE to set up all subsets of the ten sample pairs
WITH Flags (i)
AS (SELECT FROM VALUES ('t'), ('f')),

—CROSS JOIN FROM Hell to get all subsets and random 
 candidate id numbers

Subsets (subset_nbr, f01, f02, f03, f04, f05, f06, f07, 
f08, f09, f10)

AS
(SELECT ROW_NUMBER() OVER () AS subset_nbr,
F01.i, F02.i, F03.i, F04.i, F05.i,
F06.i, F07.i, F08.i, F09.i, F10.i
FROM Flags AS F01, Flags AS F02, Flags AS F03, Flags AS 

F04, Flags AS F05,
Flags AS F06, Flags AS F07, Flags AS F08, Flags AS F09, 

Flags AS F10),

—filter out pairs FROM the permutations
Candidates(subset_nbr, a, b)
AS (
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 1 AND P.f01 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 2 AND P.f02 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr =3 AND P.f03 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 4 AND P.f04= 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 5 AND P.f05 = 't'



76  Chapter 5 BASE TABLES AND RELATED ELEMENTS

UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 6 AND P.f06 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 7 AND P.f07 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 8 AND P.f08 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 9 AND P.f09 = 't'
UNION ALL
SELECT subset_nbr, S.a, S.b FROM Subsets AS P, Source AS S 

WHERE S.pair_nbr = 10 AND P.f10 = 't')

SELECT subset_nbr, a, b —return the winners
FROM Candidates AS C1
WHERE subset_nbr
IN (SELECT C2.subset_nbr —find all perms that meet 

 uniqueness criteria
FROM Candidates AS C2
GROUP BY C2.subset_nbr
HAVING COUNT(a) = COUNT(DISTINCT a)
AND COUNT(b) = COUNT(DISTINCT b)
-- AND COUNT(*) >= 5) —so you don't go nuts looking at the 

output
ORDER BY subset_nbr, a, b;

5.3 CREATE ASSERTION Constraints
In Standard SQL, the CREATE ASSERTION allows you to apply a con-
straint on the tables within a schema but not have the constraint 
attached to any particular table. The syntax is:

<assertion definition> ::=
 CREATE ASSERTION <constraint name> <assertion check>
 [<constraint attributes>]

<assertion check> ::= CHECK (<search condition>)

As you would expect, there is a DROP ASSERTION statement, 
but no ALTER statement. An assertion can do things that a 
CHECK() clause attached to a table cannot do, because it is out-
side of the tables involved. A CHECK() constraint is always TRUE if 
the table is empty.

For example, it is very hard to make a rule that the total 
 number of employees in the company must be equal to the total 
number of employees in all the health plan tables.
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CREATE ASSERTION Total_health_Coverage
CHECK (SELECT COUNT(*) FROM Personnel) =
    + (SELECT COUNT(*) FROM HealthPlan_1)
    + (SELECT COUNT(*) FROM HealthPlan_2)
    + (SELECT COUNT(*) FROM HealthPlan_3);

5.4 TEMPORARY Tables
In the Standard SQL model, a TEMPORARY table acts very much like 
a base table. Its structure is persistent in the schema, but it auto-
matically deletes its rows so the users do not have to bother. They 
can be GLOBAL TEMPORARY tables that are shared among the users. 
They can be LOCAL TEMPORARY tables whose data is available to one 
and only one user. These tables have the same user privileges 
model as a base table.

5.4.1 TEMPORARY TABLE Declarations
The idea is that the temporary table can be used with SQL/PSM 
code to hold intermediate results rather than requerying or recal-
culating them over and over. The syntax for creating a TEMPORARY 
TABLE is:

CREATE [GLOBAL | LOCAL] TEMP[ORARY] TABLE <table name>
(<table element list>)
ON COMMIT [PRESERVE | DELETE] ROWS;

This is just like the usual CREATE TABLE statement with the 
addition of two pieces of syntax. The <table element>s can be 
column declarations, constraints, or declarative referential integ-
rity clauses, just as if this were a base table. The differences come 
from the additional clauses.

The GLOBAL option in the TEMPORARY means that one copy of the 
table is available to all the modules of the application program in 
which it appears. The GLOBAL TEMPORARY TABLE generally is used to 
pass shared data between sessions.

The LOCAL option means that one copy of the table is avail-
able to each module of the application program in which the 
 temporary table appears. The LOCAL TEMPORARY TABLE is generally 
used as a “scratch table” within a single module. If more than one 
user accesses the same LOCAL TEMPORARY TABLE, they each get a 
copy of the table, initially empty, for their session or within the 
scope of the module that uses it.

If you have trouble imagining multiple tables in the schema 
with the same name (a violation of a basic rule of SQL about 
uniqueness of schema objects), then imagine a single table created 
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as declared, but with an extra phantom column that contains a 
user identifier. What the users are then seeing is an updatable VIEW 
on the LOCAL TEMPORARY TABLE, which shows them only the rows 
where this phantom column is equal to their user identifier, but 
not the phantom column itself. New rows are added to the LOCAL 
TEMPORARY TABLE with the DEFAULT of CURRENT USER.

The concept of modules in SQL is discussed in detail in 
Understanding SQL’s Stored Procedures by Jim Melton (Morgan-
Kaufmann, 1998, ISBN 1-55860-461-8), but you can think of them 
as programs, procedures, functions, subroutines, or blocks of 
code, depending on the procedural language that you use.

Since this is a table in the schema, you can get rid of it with a 
DROP TABLE <table name> statement and you can change it with 
the usual INSERT INTEGER O, DELETE FROM, and UPDATE statements. 
The differences are at the start and end of a session or module.

The ON COMMIT [PRESERVE | DELETE] ROWS clause describes the 
action taken when a COMMIT statement is executed successfully. The 
PRESERVE option means that the next time this table is used, the rows 
will still be there and will be deleted only at the end of the session. 
The DELETE option means that the rows will be deleted whenever a 
COMMIT statement is executed during the session. In both cases, the 
table will be cleared out at the end of the session or module.

5.5 Manipulating Tables
The three basic table statements in the SQL DDL are CREATE TABLE, 
DROP TABLE, and ALTER TABLE. They pretty much do what you would 
think they do from their names. We will explain them in detail 
shortly, but they bring a table into existence, remove a table, and 
change the structure of an existing table in the schema, respec-
tively. Here is a simple list of rules for creating and naming a table.
1. The table name must be unique in the schema, and the column 

names must be unique within a table. SQL can handle a table 
and a column with the same name, but it is a good practice to 
name tables differently from their columns. See items 4 and 6.

2. The names in SQL can consist of letters, underscores, and dig-
its, and vendors commonly allow other printing characters. 
However, it is a good idea to avoid using anything except  letters, 
underscores, and digits. Special characters are not  portable 
and will not sort the same way in different products.

3. Standard SQL allows you to use spaces, reserved words, and 
special characters in a name if you enclose them in double quo-
tation marks, but this should be avoided as much as possible.

4. The use of collective, class, or plural names for tables helps 
you think of them as sets. For example, do not name a table 
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“Employee” unless there really is only one of them; use 
something like “Employees,” or (better) “Personnel,” for the 
table name.

5. Use the same name for the same attribute everywhere in the 
schema. That is, do not name a column in one table “sex” and a 
column in another table “gender” when they refer to the same 
property. You should have a data dictionary that enforces this 
on the developers.

6. Use singular attribute names for columns and other scalar 
schema objects.
I have a separate book on SQL programming style that goes 

into more detail about this, so I will not mention it again.
A table must have at least one column. Though it is not 

required, it is also a good idea to place related columns in their 
conventional order in the table. By default, the columns will print 
out in the order in which they appear in the table. That is, put 
name, address, city, state, and ZIP code in that order, so that you 
can read them easily in a display.

The conventions in this book are that keywords are in upper-
case, table names are capitalized, and column names are in 
lowercase. I also use capital letter(s) followed by digit(s) for cor-
relation names (e.g., the table Personnel would have correlation 
names P0, P1, . . ., Pn), where the digit shows the occurrence.

5.5.1 DROP TABLE <table name>
The DROP TABLE statement removes a table from the database. 
This is not the same as making the table an empty table. When 
a schema object is dropped, it is gone forever. The syntax of the 
statement is:

<drop table statement> ::= DROP TABLE <table name> [<drop 
behavior>]

<drop behavior> ::= RESTRICT | CASCADE

The <drop behavior> clause has two options. If RESTRICT is 
specified, the table cannot be referenced in the query expression 
of any view or the search condition of any constraint. This is sup-
posed to prevent the unpleasant surprise of having other things 
fail because they depended on this particular table for their own 
definitions. If CASCADE is specified, then such referencing objects 
will also be dropped along with the table.

Either the particular SQL product would post an error mes-
sage, and in effect do a RESTRICT, or you would find out about any 
dependencies by having your database blow up when it ran into 
constructs that needed the missing table.
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The DROP keyword and <drop behavior> clause are also used in 
other statements that remove schema objects, such as DROP VIEW, 
DROP SCHEMA, DROP CONSTRAINT, and so forth.

This is usually a “DBA-only” statement that, for obvious 
 reasons, programmers are not usually allowed to use.

5.5.2 ALTER TABLE
The ALTER TABLE statement adds, removes, or changes columns 
and constraints within a table. This statement is in Standard SQL 
and it existed in most SQL products before it was standardized. 
It is still implemented in many different ways, so you should see 
your product for details. This is also a statement that your DBA 
will not want you to use without permission. The Standard SQL 
syntax looks like this:

ALTER TABLE <table name> <alter table action>

<alter table action> ::=
| DROP [COLUMN] <column name> <drop behavior>
| ADD [COLUMN] <column definition>
| ALTER [COLUMN] <column name> <alter column action>
| ADD <table constraint definition>
| DROP CONSTRAINT <constraint name> <drop behavior>

The DROP COLUMN clause removes the column from the table. 
Standard SQL gives you the option of setting the drop behavior, 
which most current products do not. The two options are RESTRICT 
and CASCADE. RESTRICT will not allow the column to disappear if 
it is referenced in another schema object. CASCADE will also delete 
any schema object that references the dropped column.

When this statement is available in your SQL product, 
I strongly advise that you first use the RESTRICT option to see if 
there are references before you use the CASCADE option.

As you would expect, the ADD COLUMN clause extends the existing 
table by putting another column on it. The new column must have 
a name that is unique within the table and follow the other rules 
for a valid column declaration. The location of the new  column is 
usually at the end of the list of the existing columns in the table.

The ALTER COLUMN clause can change a column and its defini-
tion. Exactly what is allowed will vary from product to product, 
but usually the data type can be changed to a  compatible data 
type (e.g., you can make a CHAR(n) column longer, but not shorter; 
change an INTEGER to a REAL; and so forth).

The ADD <table constraint definition> clause lets you put 
a constraint on a table. But be careful and find out if your SQL 
product will check the existing data to be sure that it can pass 
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the new constraint. It is possible in some older SQL products to 
leave bad data in the tables and then have to clean them out with 
 special routines to get to the actual physical storage.

The DROP CONSTRAINT clause requires that the constraint be 
given a name, so naming constraints is a good habit to get into. 
If the constraint to be dropped was given no name, you will have 
to find what name was assigned to it by the SQL engine in the 
schema information tables and use that name. The standard does 
not say how such names are to be constructed, only that they are 
unique within a schema. Actual products will usually pick a long 
random string of digits and preface it with some letters to make 
a valid name that is so absurd that no human being would think 
of it. A constraint name will also appear in warnings and error 
messages, making debugging much easier. The <drop behavior> 
option behaves as it did for the DROP COLUMN clause.

5.6 Avoiding Attribute Splitting
Attribute splitting takes many forms. It occurs when you have 
a single attribute, but put its values in more than one place in 
the schema. The most common form of attribute splitting is to 
create separate tables for each value. Another form of attribute 
splitting is to create separate rows in the same table for part of 
each value. These concepts are probably easier to show with 
examples.

5.6.1 Table Level Attribute Splitting
If I were to create a database with a table for male employees and 
separate table for female employees, you would immediately 
see that they should be one table with a column for a sex code. 
I would have split a table on sex. This is very obvious, but it can 
also be subtler.

Consider a subscription database that has both organiza-
tional and individual subscribers. There are two tables with the 
same structure and a third table that holds the split attribute, 
 subscription type.

CREATE TABLE OrgSubscriptions
(subscr_id INTEGER NOT NULL PRIMARY KEY

REFERENCES SubscriptionTypes(subscr_id),
org_name CHAR(35),
last_name CHAR(15),
first_name CHAR(15),
address1 CHAR(35) NOT NULL,
. . .);
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CREATE TABLE IndSubscriptions
(subscr_id INTEGER NOT NULL PRIMARY KEY

REFERENCES SubscriptionTypes(subscr_id),
org_name CHAR(35),
last_name CHAR(15),
first_name CHAR(15),
address1 CHAR(35) NOT NULL,
. . .);

CREATE TABLE SubscriptionTypes
(subscr_id INTEGER NOT NULL PRIMARY KEY,
subscr_type CHAR(1) DEFAULT 'I' NOT NULL

CHECK (subscr_type IN ('I', 'O'));

An organizational subscription can go to just a person (last_
name, first_name) or just the organization name (org_name) or 
both. If an individual subscription has no particular person, it is 
sent to an organization called ‘{Current Resident}’ instead.

The original specifications enforce a condition that subscr_id 
be universally unique in the schema.

The first step is to replace the three tables with one for all 
subscriptions and move the subscription type back into a col-
umn of its own, since it is an attribute of a subscription. Next, 
we need to add constraints to deal with the constraints on each 
subscription.

CREATE TABLE Subscriptions
(subscr_id INTEGER NOT NULL PRIMARY KEY

REFERENCES SubscriptionTypes(subscr_id),
org_name CHAR(35) DEFAULT '{Current Resident}',
last_name CHAR(15),
first_name CHAR(15),
subscr_type CHAR(1) DEFAULT 'I' NOT NULL

CHECK (subscr_type IN ('I', 'O'),

CONSTRAINT known_addressee
CHECK (COALESCE (org_name, first_name, last_name) IS NOT NULL);

CONSTRAINT junkmail
CHECK (CASE WHEN subscr_type = 'I'

AND org_name = '{Current Resident}'
THEN 1
WHEN subscr_type = 'O'

AND org_name = '{Current Resident}'
THEN 0 ELSE 1 END = 1),

address1 CHAR(35) NOT NULL,
..);

The known_addressee constraint says that we have to have a 
line with some addressee for this to be a valid subscription. The 
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junk mail constraint assures that anything not aimed at a known 
person is classified as an individual subscription.

5.6.2 Row Level Attribute Splitting
Consider this table, which directly models a sign-in/sign-out sheet.

CREATE TABLE RegisterBook
(emp_name CHAR(35) NOT NULL,
sign_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
sign_action CHAR (3) DEFAULT 'IN' NOT NULL
 CHECK (sign_action IN ('IN', 'OUT')),
PRIMARY KEY (emp_name, sign_time));

To answer any basic query, you need to use two rows in a self-
join to get the sign-in and sign-out pairs for each employee. The 
correction design would have been:

CREATE TABLE RegisterBook
(emp_name CHAR(35) NOT NULL,
sign_in_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
sign_out_time TIMESTAMP, -- null means current
PRIMARY KEY (emp_name, sign_in_time));

The single attribute, duration, has to be modeled as two col-
umns in Standard SQL, but it was split into rows identified by a 
code to tell which end of the duration each one represented. If 
this were longitude and latitude, you would immediately see the 
problem and put the two parts of the one attribute (geographical 
location) in the same row.

5.7 Modeling Class Hierarchies in DDL
The classic scenario in an OO model calls for a root class with all 
the common attributes and then specialized subclasses under it. 
As an example, let me use an example from David Portas, which I 
like better than my example in the third edition.

CREATE TABLE Products
(sku CHAR(17) NOT NULL PRIMARY KEY,
 product_type CHAR(2) NOT NULL
 CHECK (product_type IN ('B', 'C', 'D' /* Book, CD or DVD */)),
 product_title VARCHAR(50) NOT NULL,
 UNIQUE (sku, product_type));

CREATE TABLE Books
(sku CHAR(17) NOT NULL PRIMARY KEY,
 product_type CHAR(2) DEFAULT 'B' NOT NULL
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  CHECK (product_type ='B'),
 page_cnt INTEGER NOT NULL,
 FOREIGN KEY (sku, product_type)
  REFERENCES Products (sku, product_type)
  ON UPDATE CASCADE
  ON DELETE CASCADE);

CREATE TABLE CDs
(sku CHAR(17) NOT NULL PRIMARY KEY,
 product_type CHAR(2) DEFAULT 'C' NOT NULL
  CHECK (product_type ='C'),
 track_cnt INTEGER NOT NULL,
 FOREIGN KEY (sku, product_type)
  REFERENCES Products (sku, product_type
  ON UPDATE CASCADE
  ON DELETE CASCADE);

CREATE TABLE DVDs
(sku CHAR(17) NOT NULL PRIMARY KEY,
 product_type CHAR(2) DEFAULT 'D' NOT NULL
  CHECK (product_type ='D'),
 play_time INTERVAL HOUR TO SECOND NOT NULL,
 FOREIGN KEY (sku, product_type)
  REFERENCES Products (sku, product_type)
  ON UPDATE CASCADE
  ON DELETE CASCADE);

Notice the overlapping candidate keys. I then use a compound 
candidate key (sku, product_type) and a constraint in each sub-
class table to assure that the product_type is locked and agrees 
with the Vehicles table. Add some DRI actions and you are done.

I can continue to build a hierarchy like this. For example, if 
I had a Books table that broke down into paperbacks and hard-
backs, I could use a schema like this:

CREATE TABLE Books
(sku CHAR(17) NOT NULL PRIMARY KEY,
product_type CHAR(2) NOT NULL

CHECK(product_type IN ('PB', 'HB')),
UNIQUE (sku, product_type),
FOREIGN KEY (sku, product_type)
 REFERENCES Products (sku, product_type)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
..);

CREATE TABLE Paperbacks
(sku CHAR(17) NOT NULL PRIMARY KEY,
product_type CHAR(2) DEFAULT 'PB' NOT NULL

CHECK(product_type = 'PB'),
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UNIQUE (sku, product_type),
FOREIGN KEY (sku, product_type)
 REFERENCES Books(sku, product_type)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
..);

CREATE TABLE Hardbacks
(sku CHAR(17) NOT NULL PRIMARY KEY,
product_type CHAR(2) DEFAULT 'HB' NOT NULL

CHECK(product_type = 'HB'),
UNIQUE (sku, product_type),
FOREIGN KEY (sku, product_type)
 REFERENCES Books (sku, product_type)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
..);

The idea is to build a chain of identifiers and types in a 
UNIQUE() constraint that go up the tree when you use a REFERENCES 
constraint. Obviously, you can do variants of this trick to get 
 different class structures.

Now start hiding all this stuff in VIEWs immediately and add an 
INSTEAD OF trigger to those VIEWs.

5.8 Exposed Physical Locators
SQL is supposed to use keys. Keys are a logical concept that is 
divorced completely from physical storage. Unfortunately, bad 
SQL programmers will use proprietary features to get the hard-
ware to generate exposed physical locators. These numbers rep-
resent an event or location in the hardware and have nothing 
whatsoever to do with the logical model.

Do not confuse exposed physical locators with surrogate keys, 
indexes, hashing, and other physical access methods. In the words 
of Dr. Codd, “Database users may cause the system to generate or 
delete a surrogate, but they have no control over its value, nor is its 
value ever displayed to them . . .” (ACM TODS, pp. 409–410)—think 
of how an index works in most SQL implementations.

5.9 Auto-Incrementing Columns
Most SQLs have vendor extensions to create an auto- incrementing 
column or pseudo-column in their tables. These extensions are 
nonrelational, highly proprietary, and have major  disadvantages. 
They all are based on exposing part of the physical state of the 
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machine during the insertion process, in violation of Dr. Codd’s 
rules for defining a relational database (i.e., Codd’s rule #8, 
Physical Data Independence; see Chapter 2).

The early SQL products were built on existing file systems. The 
data was kept in physically contiguous disk pages, in physically 
contiguous rows, made up of physically contiguous columns. In 
short, just like a deck of punch cards or a magnetic tape. Most of 
these auto-increment features are an attempt to regain the physi-
cal sequence that SQL took out, so we can pretend that we have 
physically contiguous storage.

But physically contiguous storage is only one way of building 
a relational database and it is not always the best one. But aside 
from that, the whole idea of a relational database is that the user 
is not supposed to know how things are stored at all, much less 
write code that depends on the particular physical representa-
tion in a particular release of a particular product.

The exact method used varies from product to product. But 
the results of using them are all the same—their behavior is 
unpredictable and redundant. If you already have proper keys 
in the tables, these things are at best redundant. At one time, the 
argument was made that it was “cheaper” to join on simple inte-
gers than on longer columns. This is simply not true with modern 
RDBMS products.

Another major disadvantage of auto-incremented numbers as 
keys is that they have no check digits, so there is no way to deter-
mine if they are valid or not (for a discussion of check digits, see 
Data and Databases, Joe Celko, ISBN: 978-1-55860-432-2).

So, why do people use them? System-generated values are 
a fast and easy answer to the problem of obtaining a unique 
 primary key. It requires no research and no real data modeling. 
Drug abuse is also a fast and easy answer to problems; I do not 
recommend either.

The Sybase/SQL Server family allows you to declare an exact 
numeric pseudo-column with the table property IDENTITY, so 
let’s call it Microsoft IDENTITY to differentiate it from the ANSI 
Standard feature. Unfortunately, this is now a reserved word in 
SQL and has different meaning.

This is a count of the attempted physical insertions to the 
table. Notice the word “attempted”; failures or ROLLBACK will leave 
a gap in the numbering. This is totally unrelational but it is often 
used by new SQL Programmers to make the tables look like a 
sequential tape file that is accessed by a record  position number 
or to mimic a pointer in a file system or  network DBMS.

Let’s look at the logical problems in detail. First try to create 
a table with two columns and try to make them both IDENTITY 
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columns. If you cannot declare more than one column to be of 
a certain data type, then that thing is not a data type at all, by 
definition.

Next, create a table with one column and make it an IDENTITY 
column. Now try to insert, update, and delete different numbers 
from it. If you cannot insert, update, and delete rows from a table, 
then it is not a table by definition.

Finally create a simple table with one IDENTITY column and a 
few other columns. Use the statements:

CREATE TABLE Foobar –- not ANSI SQL!
(insertion_attempt_cnt INTEGER IDENTITY(1,1) NOT NULL,
a CHAR(2) NOT NULL,
b CHAR(2) NOT NULL,
c CHAR(2) NOT NULL);

BEGIN
INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');
INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');
INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');
END;

versus the logically equivalent statement:

INSERT INTO Foobar (a, b, c)
VALUES ('a1', 'b1', 'c1'), ('a2', 'b2', 'c2'), ('a3', 

'b3', 'c3');

or,

INSERT INTO Foobar (a, b, c)
SELECT x, y, z
 FROM Floob; —assuming Floob has the three rows

to put a few rows into the table. Notice that the Microsoft 
IDENTITY column sequentially numbered them in the order they 
were presented in the case of the first code block. If you delete 
a row, the gap in the sequence is not filled in and the sequence 
continues from the highest number that has ever been used in 
that column in that particular table.

The second and third statements are free to order the rows 
any way they wish. Since a query result is a table, and a table is 
a set that has no ordering, what should the Microsoft IDENTITY 
numbers be? The entire, whole, completed set is presented to 
Foobar all at once, not a row at a time. There are (n!) ways to 
number (n) rows. Which one did you pick? The answer has been 
to use whatever the physical order of the result set happened to 
be—that nonrelational phrase, “physical order” again!

But it is actually worse than that. If the same query is  executed 
again, but with new statistics or after an index has been dropped 
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or added, the new execution plan could bring the result set back 
in a different physical order. Can you explain from a  logical model 
why the same rows in the second query get  different Microsoft 
IDENTITY numbers? In the relational model, they should be treated 
the same if all the values of all the attributes are identical.

The following statement ought to leave the database the 
same. You are deleting and reinserting the same data in a single 
transaction.

BEGIN ATOMIC
DELETE FROM Foobar
WHERE id_col = 41;
INSERT INTO Foobar VALUES (<<values of original row 41>>);
END;

But the Microsoft IDENTITY will be changed. You can do the 
same sort of thing with an UPDATE that swaps the columns in two 
different rows since the Microsoft IDENTITY cannot be changed by 
the DML statements.

Think about trying to do replication on two databases that dif-
fer only by an index or by cache size or something that occasion-
ally gives them different execution plans for the same statements.

Want to try to maintain or port such a system?

5.9.1 ROWID and Physical Disk Addresses
Oracle has the ability to expose the physical address of a row 
on the hard drive as a special variable called ROWID. This is the 
 fastest way to locate a row in a table since the read-write head is 
 positioned to the row immediately. This exposure of the under-
lying physical storage at the logical level means that Oracle is 
committed to using contiguous storage for the rows of a table. 
This means that they cannot use hashing, distributed databases, 
dynamic bit vectors, or any of several newer techniques for VLDB 
(Very Large Databases). When the database is moved or reorga-
nized for any reason, the ROWID is changed.

5.9.2 IDENTITY Columns
An IDENTITY column provides a way for the SQL engine to auto-
matically generate a unique numeric value for each row that is 
added to the table. When creating a table where you know that 
you need to uniquely identify each row that will be added to the 
table, you can add an identity column to the table. To guarantee 
a unique numeric value for each row that is added to a table, you 
should define a unique index on the identity column or declare it 
a primary key.
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Restrictions
Once created, you cannot alter the table description to include 
an identity column.

If rows are inserted into a table with explicit identity column 
values specified, the next internally generated value is not updated, 
and may conflict with existing values in the table. Duplicate values 
will generate an error message if the uniqueness of the values in 
the identity column is being enforced by a primary key or a unique 
index that has been defined on the identity column.

It is the AS IDENTITY clause on the CREATE TABLE statement that 
allows for the specification of the identity column.

The following is an example of defining an identity column on 
the CREATE TABLE statement:

CREATE TABLE table
(<column name> INTEGER NOT NULL GENERATED [ALWAYS | BY 

DEFAULT]
     AS IDENTITY (START WITH <start value>, INCREMENT BY  

    <increment value>))

In this example the third column is the identity column. You 
can also specify the value used in the column to uniquely identify 
each row when added. Here the first row entered has the value 
of 100 placed in the column; every subsequent row added to the 
table has the associated value increased by five.

Some additional example uses of an identity column are 
an order number, an employee number, a stock number, or 
an  incident number. The values for an identity column can be 
 generated by an internal counter attached to the table.

An identity column defined as GENERATED ALWAYS is given val-
ues that are always generated by the SQL engine. Applications 
are not allowed to provide an explicit value. An identity column 
defined as GENERATED BY DEFAULT gives applications a way to 
explicitly provide a value for the identity column. If the applica-
tion does not provide a value, then the SQL engine will gener-
ate one. Since the application controls the value, the SQL engine 
cannot guarantee the uniqueness of the value. The GENERATED 
BY DEFAULT clause is meant for use for data propagation where 
the intent is to copy the contents of an existing table; or, for the 
unloading and reloading of a table.

5.9.3 Comparing IDENTITY Columns and Sequences
Although there are similarities between IDENTITY columns and 
sequences, there are also differences. The characteristics of each 
can be used when designing your database and applications.
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An identity column has the following characteristics:
•	 An	 identity	 column	 can	 be	 defined	 as	 part	 of	 a	 table	 only	

when the table is created. Once a table is created, you cannot 
alter it to add an identity column. (However, existing identity 
column characteristics may be altered. )

•	 An	identity	column	automatically	generates	values	for	a	single	
table.

•	 When	an	identity	column	is	defined	as	GENERATED ALWAYS, the 
values used are always generated by the database manager. 
Applications are not allowed to provide their own values dur-
ing the modification of the contents of the table.

5.10 Generated Identifiers
There are several schemes for generating Identifiers that are 
unique across any database. The two most popular ones are 
GUID (Global Unique Identifier) from Microsoft and UUID 
(Universal Unique Identifier) from the Open Source Foundation.

5.10.1 Industry Standard Unique Identifiers
Validation and Verification are two important concepts in 
any data element, but they are most important for identifiers. 
Validation means that the data element’s value can be seen to 
have the correct form. For example, I know that a United States 
ZIP code is five digits, no more no less. This lets me add a simple 
constraint to be sure the data have the correct regular express: 
“CONSTRAINT Valid_Zip_Code CHECK (zip_code SIMILAR TO 
[:DIGIT:]{5})” in the DDL.

Furthermore, I know that 99950 in Ketchikan, Alaska is the 
highest code issued and that 00501 in Holtsville, New York (U.S. 
Internal Revenue Service Center) is the lowest code issued. This 
lets me do a simple “CONSTRAINT Valid_Zip_Code_Range 
CHECK (zip_code BETWEEN ‘00501’ AND ‘99950’)” in my DDL. 
Other valuation methods include checking digits, which I dis-
cussed in my book, Data, Measurements and Standards in SQL 
(2009, ISBN 978-0123747228).

Verification is the ability to go to a trusted source and con-
firm that the identifier actually identifies a real data element. 
For example, the simple range check on ZIP code tells that 
00000 and 99999 are invalid codes, and I can find the sub-
ranges that tell me the state to which a ZIP belongs. But I need 
to go to the US Postal Service to discover 75003 has not been 
issued as of 2010.
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UUIDs, GUIDs, IDENTITY and other auto-incrementing 
features discussed in Chapter 4 are locally generated via a 
 formula or a counter. Their fixed format allows you to validate 
them in your own code. But there is no authority that can  verify 
them. You need to see if you can find an Industry Standard 
Identifier.

5.10.2 Department of Defense UIDs
Another related effort is the US Department of Defense (DoD) 
and NATO program of identifying all physical assets over $5000 
in value. This approach to asset identification and management 
is the UID (Universal Identifier). UID became mandatory in 2004, 
but was slow in implementation. The parts of bar codes, if they 
cost more than $5000, are mission-critical or spare/repair parts. 
These unique identifiers are stored in an enormous database 
called the UID Registry.

At a UID Forum event in San Diego in February 2007, the DoD 
announced that more than one million assets had been assigned 
a UII (unique item identifier) and stored in the UID Registry. 
The UID Registry will eventually contain more than 100 million 
entries.

The system builds on existing identification systems as well as 
having its own rules. Here is a quick list:
•	 UID	 Construct	 1,	 composed	 of	 Issuing	 Agency	 Code,	 an	

Enter prise Identifier, and a Serial Number unique within the 
Enterprise

•	 UID	 Construct	 2,	 composed	 of	 Issuing	 Agency	 Code,	 an	
Enterprise Identifier, a Part Number or Batch/Lot Code, and a 
Serial Number (unique within the Part Number)

•	 Vehicle	Identification	Number	(VIN)
•	 Global	Returnable	Asset	Identifier	(GRAI)
•	 Global	Individual	Asset	Identifier	(GIAI)
•	 Electronic	Serial	Number	(ESN),	typically	assigned	to	cell	phones

The assets that meet the criteria must be identified using the 
2D data matrix bar codes (they look like a small checkerboard). 
Complete UID marking of all legacy assets was to be completed 
by 2010. You can get details at http://www.acq.osd.mil/dpap/
pdi/uid/index.html.

5.10.3 Sequence Generator Functions
COUNTER(*), NUMBER(*), IDENTITY, and the like are propri-
etary features that return a new incremented value each time 
this function is used in an expression. This is a way to generate 

http://www.acq.osd.mil/dpap/pdi/uid/index.html
http://www.acq.osd.mil/dpap/pdi/uid/index.html
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unique identifiers. This can be either a function call or a column 
property, depending on the product. This is also a horrible, non-
standard, nonrelational proprietary extension that should be 
avoided whenever possible.

We will spend some time later on ways to get sequences and 
unique numbers inside Standard SQL without proprietary code 
or using exposed physical locators in the hardware.

5.10.4 Unique Value Generators
The most important property of any usable unique value genera-
tor is that it will never generate the same value twice. Sequential 
integers are the first approach vendors implemented in their 
product as a substitute for a proper key.

In essence, they are a piece of code inside SQL that looks at 
the last allocated value and adds one to get the next value. Let’s 
start from scratch and build our own version of such a procedure. 
First create a table called GeneratorValues with one row and two 
columns:

CREATE TABLE GeneratorValues
(lock CHAR(1) DEFAULT 'X' NOT NULL PRIMARY KEY -- only one row

CHECK (lock = 'X'),
keyval INTEGER DEFAULT 1 NOT NULL -- positive numbers only

CHECK (keyval > 0));

-- let everyone use the table
GRANT SELECT, UPDATE(keyval)
ON TABLE GeneratorValues
TO PUBLIC;

Now it needs a function to get out a value and do the increment:

CREATE FUNCTION Generator()
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
-- SET ISOLATION = SERIALIZABLE;
UPDATE GeneratorValues
 SET keyval = keyval + 1;
RETURN (SELECT keyval FROM GeneratorValues);
COMMIT;
END;

This looks pretty good, but if there are multiple users, this 
code fragment is capable of allocating duplicate values to dif-
ferent users. It is important to isolate the execution of the code 
to one and only one user at a time by using SET ISOLATION = 
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SERIALIZABLE. Various SQL products will have slightly different 
ways of achieving this effect based on their concurrency control 
methods.

More bad news is that in pessimistic locking systems, you can 
get serious performance problems because of lock contention 
when a transaction is in serial isolation. The users are put in a 
single queue for access to the Generator table.

If the application demands gap-free numbering, then we not 
only have to guarantee that no two sessions ever get the same 
value, we must also guarantee that no value is ever wasted. 
Therefore the lock on the Generator table must be held until the 
key value is actually used and the entire transaction is  committed. 
Exactly how to handle this is implementation defined, so I am not 
going to comment on it.

5.10.5 Verification Sources
Broadly speaking, an identifier can be verified by a single com-
pany that controls it, a local agent for the Standards group 
issuing the identifier, a consortium within the industry, or an 
appropriate national or international body. Here are some useful 
examples.

The Data Universal Numbering System (DUNS) is a numeric 
identifier controlled by Dun & Bradstreet (D&B) for a single busi-
ness entity. It has been in use since 1965. It started as part of their 
credit reporting and it is now a common international standard. 
It is NOT a national tax identifier. For example, DELL Computers 
requires all of its suppliers, consultants, etc., to bill by using the 
DUNS. The Office of Management and Budget (OMB) requires 
a DUNS for all grant applicants for new or renewal. The United 
Nations also uses it. There are about 160 million DUNS in use in 
the United States alone.

The DUNS number is a nine-digit random number written 
without punctuation. Until 2006, it had a MOD 10 check digit, 
but stopped this feature to increase the range of numbers. There 
is no charge for a DUNS number and you can apply for it online 
(http://www.dnb.com/us/duns_update/index.html), but it can 
take some time.  You can also request one and pay an investiga-
tion fee to get it is issued immediately.

The Digital Object Identifier (DOI) is a way to identify content 
objects on the internet. DOI codes are assigned to any entity for 
use on digital networks. They are used to provide current infor-
mation, including where they (or information about them) can 
be found on the Internet. Information about a digital object may 
change over time, including where to find it, but its DOI name 

http://www.dnb.com/us/duns_update/index.html
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will not change. The International DOI Foundation (http://
www.doi.org/), which is an open membership  consortium 
 including both commercial and non-commercial partners, is 
trying to become an ISO Standard. As of this writing, approxi-
mately 40 million DOI names have been assigned by DOI System 
Registration Agencies in the US, Australia, and Europe.

The International Standard Audiovisual Number (ISAN) 
is a standards identifier for audiovisual works, similar to the 
International Standard Book Number (ISBN) for books or 
the International Standard Serial Number (ISSN) for periodicals. 
The ISAN standard is covered by ISO standard 15706:2002 and 
ISO 15706-2.

The Global Trade Item Number (GTIN) actually refers to a 
family of bar codes on retail packaging.  For North American 
companies, the UPC is the most common member of the GTIN. 
The National Association of Food Chains (NAFC)  Parts 1 and 2 
of the Universal Grocery Products Identification Code (UGPIC) 
in 1970. The U.S. Supermarket Ad Hoc Committee on a Uniform 
Grocery Product Code was formed and in 1973 the Committee 
had define the UPC system. 

An International Securities Identification Number (ISIN) 
uniquely identifies a security according to ISO 6166. ISINs are 
issued for bonds, commercial paper, equities and warrants. 
The ISIN code is a 12-character alpha-numerical string. The 
ISIN identifies the security, not the exchange (if any) on which 
it trades; it is not a ticker symbol. Stock traded on several dif-
ferent stock exchanges worldwide (and therefore priced in dif-
ferent currencies) will have the same ISIN on each, though not 
the same ticker symbol. Stock markets are identified by another 
identifier, MIC (ISO 10383, “Codes for Exchanges and Market 
Identification”), a four letter code.

5.11 A Remark on Duplicate Rows
Both of Dr. Codd’s relational models do not allow duplicate rows 
and are based on a set theoretical model; SQL has always allowed 
duplicates rows and been based on a multiset or bag model.

When the question of duplicates came up in SQL com-
mittee, we decided to leave it in the standard. The example 
we used internally, and which Len Gallagher used in a reply 
 letter to Database Programming & Design magazine and 
David Beech used in a letter to Datamation, was a cash reg-
ister receipt with multiple occurrences of cans of cat food 
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on it. That is how this got to be the “cat food problem” in the 
literature.

The fundamental question is; what are you modeling in a 
table? Dr. Codd and Chris Date’s position is that a table is a col-
lection of facts. The other position is that a table can represent 
an entity, a class, or a relationship among entities. With that 
approach, a duplicate row means more than one occurrence of 
an entity. This leads to a more object-oriented view of data where 
I have to deal with different fundamental relationships among 
“duplicates,” such as:
 Identity: “Clark Kent is Superman!” We really have only one 

entity, but multiple expressions of it. These expression are not 
substitutable (Clark Kent does not fly until he changes into 
Superman).

 Equality: “Two plus two is four.” We really have only one entity 
with multiple expressions that are always substitutable.

 Equivalency: “You use only half as much Concentrated Sudso 
as your old detergent to get the same cleaning power!” We 
have two distinct entities, substitutable both ways under all 
conditions.

 Substitutability: “We are out of gin; would you like a vodka 
martini?” We have two distinct entities, whose replacement for 
each other is not always in both directions or under all con-
ditions. You might be willing to accept a glass of vodka when 
there is no wine, but you can not make a wine sauce with a cup 
of vodka.
Dr. Codd later added a “degree of duplication” operator to 

his model as a way of handling duplicates when he realized 
that there is information in duplication that has to be handled. 
The degree of duplication is not exactly a COUNT(*) or a quantity 
 column in the relation. It does not behave like a numeric column. 
For example, given table A and let dod mean the “degree of dupli-
cation” operator for each row,

A

x y
1 a
2 b
3 b
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when I do a projection on them, I eliminate duplicates rows in 
Codd’s model, but I can reconstruct the original table from the 
dod function:

A

y dod
a 1
b 2

See the difference? It is an operator, not a value.
Haskug said all of this; I try to only use duplicate rows for 

loading data into an SQL database from legacy sources. It is very 
frequent when you get data from the real world—like cash regis-
ter tapes.

Otherwise, I might leave duplicates in results because using a 
SELECT DISTINCT to remove them will: (1) cost too much sorting 
time and (2) force an ordering in the working table that results in 
a bad performance hit later.

Dr. Codd mentions this example in his book as “The 
Supermarket Checkout Problem” (The Relational Model for 
Database Management: Version 2, Addison-Wesley, 1990, Section 
23.02.5, pp. 378–379). He critiques the problem and credits it to 
David Beech in an article entitled “The Need for Duplicate Rows 
in Tables” (Datamation, January 1989).

5.12 Other Schema Objects
Let’s be picky about definitions. A database is the data that sits 
under the control of the database management system (DBMS). 
The DBMS has the schema, rules, and operators that apply to the 
database. The schema contains the definitions of the objects in 
the database. But we always just say “the database” as if it had no 
parts to it.

In the original SQL-89 language, the only data structure the 
user could access via SQL was the table, which could be per-
manent (base tables) or virtual (views). Standard SQL also 
allows the DBA to define other schema objects, but most of 
these new features are not yet available in SQL products, or the 
versions of them that are available are proprietary. Let’s take a 
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quick look at these new features, but without spending much 
time on their details.

5.12.1 Schema Tables
The usual way an SQL engine keeps the information it needs 
about the schema is to put it in SQL tables. No two vendors agree 
on how the schema tables should be named or structured. The 
Standard SQL standard defines a set of standard schema tables, 
which no one implements. Though I doubt that anyone will ever 
implement them, I do feel that vendors will generate schema 
information in those formats for data exchange.

Every SQL product will allow users to query the schema tables. 
User groups will have libraries of queries for getting useful infor-
mation out of the schema tables; you should take the time to get 
copies of them.

Standard SQL also includes tables for supporting temporal 
functions, collations, character sets, and so forth, but they might 
be implemented differently in your actual products.

5.13 Temporary Tables
Tables in Standard SQL can be defined as persistent base tables, local 
temporary tables, or global temporary tables. The complete syntax is:

<table definition> ::=
 CREATE [{GLOBAL | LOCAL} TEMPORARY] TABLE <table name>
  <table element list>
  [ON COMMIT {DELETE | PRESERVE} ROWS]

A local temporary table belongs to a single user. A global tem-
porary table is shared by more than one user. When a session 
using a temporary table is over and the work is COMMIT-ed, the 
table can be either emptied or saved for the next transaction in 
the user’s session. This is a way of giving the users working stor-
age without giving them CREATE TABLE (and therefore DROP TABLE 
and ALTER TABLE) privileges.

This has been a serious problem in SQL products for some 
time. When a programmer can create temporary tables on the 
fly, the design of his or her code quickly becomes a sequential 
file-processing program with all the temporary working tapes 
replaced by temporary working tables. Because the temporary 
tables are actual tables, they take up physical storage space. If a 
hundred users call the same procedure, it can allocate tables for 
a hundred copies of the same data and bring performance down 
to nothing.
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5.14 CREATE DOMAIN Statement
The DOMAIN is a new schema element in Standard SQL that allows 
you to declare an in-line macro that will allow you to put a com-
monly used column definition in one place in the schema. You 
should expect to see this feature in SQL products shortly, since it 
is easy to implement. The syntax is:

<domain definition> ::=
CREATE DOMAIN <domain name> [AS] <data type>
[<default clause>]
[<domain constraint>. . .]
[<collate clause>]

<domain constraint> ::=
 [<constraint name definition>]
 <check constraint definition> [<constraint attributes>]

<alter domain statement> ::=
 ALTER DOMAIN <domain name> <alter domain action>

<alter domain action> ::=
 <set domain default clause>

| <drop domain default clause>
| <add domain constraint definition>
| <drop domain constraint definition>

It is important to note that a DOMAIN has to be defined with a 
basic data type and not with other DOMAINs. Once declared, a DOMAIN 
can be used in place of a data type declaration on a column.

The CHECK() clause is where you can put the code for validat-
ing data items with check digits, ranges, lists, and other con-
ditions. Since the DOMAIN is in one place, you can make a good 
argument for writing:

CREATE DOMAIN StateCode AS CHAR(2)
DEFAULT '??'
CONSTRAINT valid_state_code
CHECK (VALUE IN ('AL', 'AK', 'AZ', . . .));

instead of:

CREATE DOMAIN StateCode AS CHAR(2)
DEFAULT '??'
CONSTRAINT valid_state_code
CHECK (VALUE IN (SELECT state FROM StateCodeTable));

The second method would have been better if you did not 
have a DOMAIN and had to replicate the CHECK() clause in multiple 
tables in the database. This would collect the values and their 
changes in one place instead of many.
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5.15 CREATE TRIGGER Statement
There is a feature in many versions of SQL, called a TRIGGER, that 
will execute a block of procedural code against the database 
when a table event occurs. You can think of a TRIGGER as a gener-
alization of the referential actions.

The procedural code is usually written in a proprietary lan-
guage, but some products let you attach programs in standard 
procedural languages. A TRIGGER could be used to automatically 
handle discontinued merchandise, for example, by creating a 
credit slip in place of the original order item data.

There is a standard for TRIGGERs using the SQL/PSM. The pro-
posal is fairly complicated and no product has implemented it 
completely. You should look at what your particular vendor has 
given you if you want to work with TRIGGERs.

The advantages of TRIGGERs over declarative referential integ-
rity is that you can do everything that declarative referential 
integrity can and almost anything else, too. The disadvantages 
are that the optimizer cannot get any data from the procedural 
code, the TRIGGERs take longer to execute, and they are not por-
table from product to product.

My advice would be to avoid TRIGGERs when you can use 
declarative referential integrity instead. If you do use them, check 
the code very carefully and keep it simple so that you will not 
hurt performance.

5.16 CREATE PROCEDURE Statement
The PROCEDURE is a schema object that allows you to declare and 
name a body of procedural code using the same proprietary 
language as the TRIGGERs or to invoke a host language library 
routine. The two major differences are that a PROCEDURE can 
accept and return parameters and it is invoked by a call from a 
user session.

Again, many SQL products have had their own versions of a 
procedure, so you should look at what your particular vendor has 
given you, check the code very carefully, and keep it simple so 
that you will not hurt performance.

The SQL/PSM (see Understanding SQL’s Stored Procedures, 
Jim Melton, ISBN 1-55860-461-8) for procedural code is an ISO 
Standard. Still, even with the move to the ISO Standard, existing 
implementations will still have their own proprietary syntax in 
many places.
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5.17 DECLARE CURSOR Statement
I will not spend much time with cursors in this book, but you 
should understand them at a high level since you will see them 
in actual code. In spite of a standard syntax, every product has a 
proprietary version of cursors. This is because cursors are a low-
level construct that works close to the physical implementation 
in the product.

A CURSOR is a way of converting an SQL result set into a 
sequential data structure that looks like a simple sequential file 
that can be handled by the procedural host language that con-
tains the very statement that executes and creates a structure 
that looks like a sequential file. In fact, the whole cursor process 
looks like an old-fashioned magnetic tape system!

You might have noticed that in SQL, the keyword CREATE builds 
persistent schema objects. The keyword DECLARE builds transient 
objects that disappear with the end of the session in which they were 
built. This is why you say DECLARE CURSOR and not CREATE CURSOR.

First, you allocate working storage in the host program with 
a BEGIN DECLARE . . . END DECLARE section. This sets up an area 
where SQL variables can be converted into host language data 
types and vice versa. NULLs are handled by declaring INDICATOR 
variables in the host language BEGIN DECLARE section, which are 
paired with the appropriate host variables. An INDICATOR is an 
exact numeric data type with a scale of zero—that is, some kind 
of integer in the host language.

DECLARE CURSOR Statement
The DECLARE CURSOR statement must appear next. The SQL-92 

syntax is fairly representative of actual products, but you must 
read your manual.

<declare cursor> ::=
DECLARE <cursor name> [INSENSITIVE] [SCROLL] CURSOR
FOR <cursor specification>

<cursor specification> ::=
<query expression> [<order by clause>]
[<updatability clause>]

<updatability clause> ::= FOR {READ ONLY | UPDATE [OF 
<column name list>]}

<order by clause> ::= ORDER BY <sort specification list>

<sort specification list> ::=
<sort specification> [{<comma> <sort specification>}. . .]

<sort specification> ::= <sort key> [<collate clause>]
 [<ordering specification>]
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<sort key> ::= <column name>
<ordering specification> ::= ASC | DESC

A few things need explaining. First of all, the ORDER BY clause is 
part of a cursor and not part of a SELECT statement. Because some 
SQL products such as SQL Server and Sybase allow the user to 
create implicit cursors, many newbies get this wrong. This is easy 
to implement in products that evolved from sequential file sys-
tems and still expose this architecture to the user in violation of 
Dr. Codd’s rules. Oracle is probably the worst offender as of this 
writing, but some of the “micro-SQLs” are just as bad.

If either INSENSITIVE, SCROLL, or ORDER BY is specified, or if the 
working table is a read-only, then an <updatability clause> of 
READ ONLY is implicit. Otherwise, an <updatability clause> of FOR 
UPDATE without a <column name list> is implicit.

OPEN Statement
The OPEN <cursor name> statement positions an imaginary 

read/write head before the first record in the cursor. FETCH state-
ments can then move this imaginary read/write head from record 
to record. When the read/write head moves past the last record, 
an exception is raised, like an EOF (end of file) flag in a magnetic 
tape file system.

Watch out for this model! In some file systems, the read/write 
head starts on the first and the EOF flag is set to TRUE when it reads 
the last record. Simply copying the algorithms from your proce-
dural code into SQL/PSM might not work.

FETCH Statement

<fetch statement> ::= FETCH [[<fetch orientation>]
FROM] <cursor name> INTO <fetch target list>

<fetch orientation> ::= NEXT | PRIOR | FIRST | LAST
| {ABSOLUTE | RELATIVE} <simple value specification>

The FETCH statement takes one row from the cursor, then con-
verts each SQL data type into a host-language data type and puts 
the result into the appropriate host variable. If the SQL value was 
a NULL, the INDICATOR is set to –1; if no indicator was specified, an 
exception condition is raised.

As you can see, the host program must be sure to check the 
INDICATORs, because otherwise the value of the parameter will be 
garbage. If the parameter is passed to the host language with-
out any problems, the INDICATOR is set to zero. If the value being 
passed to the host program is a non-NULL character string and 
it has an indicator, the indicator is set to the length of the SQL 
string and can be used to detect string overflows or to set the 
length of the parameter.
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The <fetch orientation> tells the read/write head which way 
to move. NEXT and PRIOR read one record forward or backward 
from the current position. FIRST and LAST put the read/write on 
the fist or last records, respectively. The ABSOLUTE fetch moves to 
a given record number. The RELATIVE fetch moves the read/write 
head forward or backward (n) records from the current position. 
Again, this is a straight imitation of a sequential file system.

CLOSE Statement
The CLOSE <cursor name> statement resets the cursor read/

write head to a position before the first row in the cursor. The 
cursor still exists, but must be reopened before it can be used. 
This is similar to the CLOSE FILE operations in FORTRAN or COBOL, 
but with an important difference! The cursor can be recomputed 
when it is reopened.

DEALLOCATE Statement
The DEALLOCATE CURSOR statement frees up the working storage 

in the host program. Think of it as dismounting a tape from the 
tape drive in a sequential file system.

5.17.1 How to Use a CURSOR
The best performance improvement technique for cursors inside 
the database is not to use them. SQL engines are designed for set 
processing and work better with sets of data than with individual 
rows. The times when using CURSOR is unavoidable usually deal 
with corrections to the database that were caused by an improper 
design, or when speed of a cursor is faster because of the physical 
implementation in the product. For example, redundant dupli-
cates can be taken out of a table that does not have a key with a 
cursor.

The old argument for cursors in the original Sybase SQL 
Server training course was this example. You own a book-
store and you want to change prices; all books $25 and over are 
reduced 10%, and all books under $25 are increased 15%.

BEGIN ATOMIC
UPDATE Books
SET price = price * 0.90

WHERE price >= $25.00;
UPDATE Books
SET price = price * 1.15

WHERE price < $25.00;
END;

Oops! Look at a book that was $25.00 ((25.00 * .90) *1.10) = 
$24.75. So you were told to cursor through the table, and change 
each row with a cursor.
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Today you write:

UPDATE Books
SET price

= CASE WHEN price < $25.00;
THEN price * 1.15
WHEN price >= $25.00
THEN price * 0.90
ELSE price END;

But Steve Kass pointed out that even back then, it was possi-
ble to avoid a cursor:

BEGIN ATOMIC
UPDATE Books
SET price = price * 1.80

WHERE price >= $25.00;
UPDATE Books
SET price = price * 1.15

WHERE price < $25.00;
UPDATE Books
SET price = price * 0.50

WHERE price >= $45.00;
END;

However, this code makes three passes through the Books 
table instead of just one. This could be worse than a cursor!

Limit the number of rows and columns in the cursor’s SELECT 
statement to only those required by the desired result set. This 
will avoid unnecessary fetching of data that in turn will require 
fewer server resources and increase cursor performance.

Use FOR READ ONLY instead of UPDATE cursors if possible. You 
will have to watch the transaction isolation level however.

Opening an INSENSITIVE cursor can cause its rows to be copied 
to a working table in many products or locked at the table level in 
others.

Do a CLOSE cursor as soon as you are finished with the result 
set. This will release any locks on the rows. Always remember to 
deallocate your cursors when you are finished.

Look for your product options. For example, SQL Server has 
FAST_FORWARD and FORWARD_ONLY cursor options when working with 
unidirectional, read-only result sets. Using FAST_FORWARD defines a 
FORWARD_ONLY, READ_ONLY cursor with a number of internal perfor-
mance optimizations.

Be careful with modifying large numbers of rows via a cursor 
loop that are contained within a transaction. Depending on the 
transaction isolation level, those rows may remain locked until 
the transaction is committed or rolled back, possibly causing 
resource contention on the server.
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In Standard SQL, there is an SQLSTATE code that tells you if 
the result set of a GROUP BY has members that excluded NULLs from 
their aggregate computations. This warning can be raised in the 
DECLARE CURSOR statement, the OPEN statement, or when the row 
representing such a grouping is FETCH-ed. Know how your prod-
uct handles this.

The truth is that the host languages have to use cursors 
because they are designed for sequential file systems.

5.17.2 Positioned UPDATE and DELETE Statements
Obviously, the cursor needs an explicit or implicit <updatability 
clause> of FOR UPDATE for this to work, and it has to be in the same 
module as the positioned statements. You get an exception when 
you try to change a READ ONLY cursor or if the cursor is not posi-
tioned on a record.

The clause CURRENT OF <cursor name> refers to the record that 
the imaginary read/write heads is on. This cursor record has to 
map back to one and only one row in the base table.

UPDATE Statement

<update statement: positioned>
 ::= UPDATE <table name>
SET <set clause list>

WHERE CURRENT OF <cursor name>

The cursor remains positioned on its current row, even if an 
exception condition is raised during the update attempt.

DELETE FROM Statement

<delete statement: positioned>
 ::= DELETE FROM <table name>

WHERE CURRENT OF <cursor name>

If, while the cursor is open, another DELETE FROM or UPDATE 
statement attempts to modify the current cursor record, then 
a cursor operation conflict warning is raised. The transaction 
isolation level then determines what happens. If the <delete 
statement: positioned> deleted the last cursor record, then 
the position of the cursor is after the last record; otherwise, the 
 position of the cursor is before the next cursor record.
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6
PROCEDURAL, 
SEMIPROCEDURAL, AND 
DECLARATIVE PROGRAMMING

This chapter is about programming and your mindset. SQL 
allows procedural code modules to be kept in the schema and 
will work inside procedural host languages. Avoid programming 
SQL as if it is a procedural file system language—SQL is a declara-
tive language and requires a different mindset.

6.1 Basics of Software Engineering
The basics of software engineering do not change in SQL. They 
are realized differently. Most of us (with the exceptions of those 
rare programmers who started in LISP, APL, FP, Haskell, or other 
exotic languages) learned a block structured programming lan-
guage that evolved from Algol-60. The same principles that apply 
to procedural code still apply to them.

In the late 1970s, we found that we could write better code 
(i.e., faster, provably correct, easier to maintain, etc.) in lan-
guages that had local scoping rules, and code modules with one 
entry and one exit point. We eliminated the GO TO statement and 
used a simple set of control structures. This was the structured 
 programming revolution.

6.2 Cohesion
Cohesion is how well a module does one and only one thing—
that it is logically coherent. The modules should have strong 
cohesion. You ought to name the module in the format 
“<verb><object>”, where the “<object>” is a specific logical unit 
in the data model and “<verb>” is a single clear action. There are 
several types of cohesion. We rank them, going from the worst 
form of cohesion to the best.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00006-5
Copyright © 2011 by Elsevier Inc. All rights reserved.
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1. Coincidental cohesion: Coincidental cohesion is when parts of 
a module are grouped arbitrarily. A Coincidental module is a 
train wreck of unrelated actions. It is a “Britney Spears, Squids, 
and Automobiles” module whose description would be a com-
pound or complex sentence. The best example of this in SQL is 
the OTLT (One True Lookup Table) design flaw. We will get to 
that later.

2. Logical cohesion: Logical cohesion is when parts of a module 
are grouped because they logically do the same thing, even if 
they are different by nature. In SQL the most common example 
is a general module that does an update, insert, or delete on 
any table—it works on Britney Spears, Squids, or Automobiles. 
Look for this to be implemented with dynamic SQL.

3. Temporal cohesion: Temporal cohesion is when parts of a 
module are grouped by when they are processed; for example, 
a module that does all the initialization for the whole system.

4. Procedural cohesion: Procedural cohesion is when parts of 
a module are grouped because they always follow a certain 
sequence of execution. For example, when a user logs onto the 
database, we check user privileges and log the sign-in.

5. Communicational cohesion: Communicational cohesion is 
when parts of a module are grouped because they operate on 
the same data element. Imagine a series of UPDATE statements 
that affect the same column in one procedure.

6. Sequential cohesion: Sequential cohesion is when parts of a 
module are grouped because the output from one part is the 
input to another part, like an assembly line. In SQL, look for the 
use of temporary tables as a replacement for scratch tapes in a 
magnetic tape file system.

7. Functional cohesion: Functional cohesion is when a module 
always does a single well-defined task, like a mathematical 
function. This is what we want in a module and it is the basis 
for functional programming languages.
You can look up the detailed definitions, if you missed them in 

your introductory classes.

6.3 Coupling
Coupling is how dependent modules are on each other. If mod-
ules have to be executed in a certain order, then they are strongly 
coupled. If they can be executed independently of each other 
and put together like Lego blocks, then they are loosely or weakly 
coupled. There are several kinds of coupling, which are ranked 
from worst to best.
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1. Content coupling: One module modifies or relies on the inter-
nal workings of another module.

2. Common coupling: Two modules share the same global data.
3. External coupling: Two modules share an externally imposed 

data format, communication protocol, or device interface.
4. Control coupling: One module controls the execution by pass-

ing flags. This is one of the reasons that BIT flags are not good 
SQL programming.

5. Stamp coupling (data-structured coupling): Modules share a 
composite data structure and use only part of it. This can be 
done with VIEWs in SQL.

6. Data coupling: Modules share simple data elements. Think 
about passing parameters; these are the only data that are 
shared.

7. Message coupling: This is the loosest type of coupling. Mod-
ules are not dependent on each other; instead they use a public 
interface to exchange parameterless messages. This is more of 
an OO approach, but you see it in triggers, exception handlers, 
and other SQL features.
This is covered briefly in a chapter on writing stored procedures 

in my book SQL Programming Style (ISBN 978-0120887972). In 
the meantime, you should read DeMarco, Yourdon, Constantine, 
Myers, or several other of the pioneers of software engineering.

This is far more basic than SQL programming. This is what 
you are supposed to know before you write any code in any 
language.

6.4 The Big Leap
Most programmers discover that it is too big a big leap from a 
procedural mindset to a declarative mindset, and so they do not 
quite make the transition all at once. Instead they evolve from a 
procedural paradigm to a variety of semiprocedural program-
ming styles.

This is just the way that we learn; a step at a time, not a leap 
of insight all at once. The first motion pictures, for example, 
were shot with a fixed position camera aimed at a stage. That 
is how people had seen stage plays for several thousand years. 
W. D. Griffith was to movies as Dr. Codd was to databases. Griffith 
made the first two-reeler in 1910; nobody had thought about 
more than one reel before that. Then in 1911 and 1912 he and 
his cameraman, Billy Bitzer, started moving the camera and lens 
while filming. He gave us new camera angles such as the close-up 
and soft focus.
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6.4.1 A Common Error
Newsgroups are great for finding bad examples. A poster had a 
skeleton table with integer columns a, b, c, and d and he wanted 
to know how to write a trigger to assure that d 5 (a 1 b 1 c). 
Ignoring that he had already decided on the method to use, there 
are actually several methods for solving this problem:
1. CREATE PROCEDURE: A procedural answer. This means that 

you put an UPDATE inside the body of a stored procedure and 
invoke it as needed. If you forget, then your table is wrong.

2. CREATE TRIGGER: A procedural answer. His original answer is 
an improvement over the stored procedure in that it is always 
current. Unfortunately, it is going to be firing every time there is 
an update event on the table, then doing physical disk access.

3. SELECT statement: A declarative answer. He can simply write 
a SELECT statement with a column “(a 1 b 1 c) AS d” so that 
column d is created only when a particular query needs it.

4. CREATE VIEW: A declarative answer. The VIEW will also create 
column d only when it is needed, but there is no way to forget 
to do it and it hides the computation from the users.

5. Computed Column: A declarative answer. A computed column 
is basically the same as a VIEW, but it is part of the base table 
that would have been used by the VIEW. In his case, this looked 
like the best option, but that is not always true.
But the real question is, why did he assume that a trigger 

was the answer? Because it would physically materialize the d 
value. In a file system there is no such thing as a “virtual field”; 
fields have physical existence. Any computed value would be in 
the host program in a local variable. A procedure might not be 
invoked and the data could get out of control. Another give-away 
was that the columns for the computation were in left-to-right 
order, just like fields in a record. This poster had not made even 
the first step out of his old mindset.

6.4.2 An Improvement
In February 2010, I came across an example, in a Newsgroup dis-
cussion, of programmers making the steps, but not the leap. The 
code details are not relevant to the point I’m making so I am going 
to gloss over them. The thread starts with a posting about a user-
defined function that is not working. His opening paragraph was:

I have the code below to take a set of INTEGER values and return a 
VARCHAR based on the combination of inputs. However, I’m get-
ting an error on line 6, which is the first line where the word CASE 
pops up. Plenty of CASE statements have passed through my hands 
before, so I’m lost as to why this one is wrong.
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What followed was a CASE expression with BETWEENs and 
ORs and CASE within CASE constructs. It took pairs of (x, y) 
and produced an answer from a set of three values, call them 
{‘a’, ‘b’, ‘c’}. Again, the coding details are not my point. The body 
of the function could just as well have been a complicated 
mathematical expression.

Two replies pointed out that CASE is an expression and not 
a statement in SQL. They also pointed out that he was return-
ing a VARCHAR(1) instead of a CHAR(1). The CASE expression 
can be confusing to anyone who has been initially trained 
with a procedural language that has IF-THEN-ELSE statement 
constructs.

His code looked like this skeleton: 

CREATE FUNCTION Find_Foobar (IN x INTEGER, IN y INTEGER)
RETURNS VARCHAR
WITH EXECUTE AS CALLER
AS
BEGIN
<< horrible CASE expression with x and y >>;
END;

The clean up and quick fix was: 

CREATE FUNCTION Find_Foobar (IN in_x INTEGER, 
IN in_y INTEGER)

RETURNS CHAR(1)
WITH EXECUTE AS CALLER
AS
BEGIN
RETURN (<< horrible CASE expression with x and y >>);
END;

Someone else then asked if he had considered precalculating 
the CASE expression results and populating a table with them. 
This was good advice, since the number of (x, y) pairs involved 
came to a few thousand cases. There is no point in dismissing 
this solution when the look-up table is as small as this one. Read-
only tables this size tend to be in main storage or cache, so they 
can be shared among many sessions, and you are not going to 
save much on memory by choosing a different method.

But the person who made this suggestion went on to add, “You 
can use the table with your user-defined function or you could 
use it without the user-defined function,” but he did not explain 
what the differences are. They are important. Putting the data in 
the read-only tables this size will tend to keep it in main storage 
or cache. If you are really that tight for primary and/or secondary 
storage that you cannot fit a ~5K row table in your hardware, buy 
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some chips and disks. They are so cheap today. Now the data can 
be shared among many sessions. The table and its indexes can be 
used by the optimizer. In SQL Server you can include the single 
column foobar in the index to get a covering index and perfor-
mance improvement.

But if you choose to lock the data inside the procedural 
code of a user-defined function, can it be shared? Do computa-
tions get repeated with each invocation? What about indexes? 
Ouch! A user-defined function pretty much locks things inside. 
Standard SQL/PSM has a [NOT] DETERMINISTIC option in its 
procedure declarations. This tells the compiler whether the pro-
cedure or function is always going to return the same answer for 
the same arguments.

[Note about Standard SQL terms: A parameter is the formal 
place holder in the parameter list of a procedure declaration 
and an argument is the value passed in the invocation of the 
procedure.]

A nondeterministic function has to be computed over and 
over again, every time the user-defined function is called; if the 
query optimizer does not know for certain whether a procedure 
or function is deterministic, it has to assume it is not and go 
the long route.

Here is the skeleton of what was posted.

-- Create table
CREATE TABLE Foobar
(x INTEGER NOT NULL,
y INTEGER NOT NULL,
foobar CHAR(1) NOT NULL,
PRIMARY KEY CLUSTERED (x, y));

-- Populate table with recursive CTEs and proprietary SQL 
Server syntax:

INSERT INTO Foobar (x, y, foobar)
WITH
X_CTE(x)
AS
(SELECT * FROM (VALUES (100))
UNION ALL
SELECT x + 1
FROM X_CTE
WHERE x < 300),

Y_CTE(y)
AS
(SELECT * FROM (VALUES (1))
UNION ALL
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SELECT y + 1
 FROM Y_CTE
WHERE y < 100)

SELECT x, y, << horrible CASE expression >> AS foobar
 FROM X_CTE
   CROSS JOIN
   Y_CTE;

This is a nice trick, but it is easy enough to rewrite this into 
portable Standard SQL, using a table of integers called Series 
(I used to call it Sequence, but that is now a reserved word in 
Standard SQL; if you have a better name, please tell me). This 
is the most common SQL auxiliary table; experienced SQL pro-
grammers create it and then a Calendar table at the start of 
almost all new projects.

INSERT INTO FooLookup (x, y, foobar)
SELECT X_CTE.x, Y_CTE.y, << horrible CASE expression >> AS 

foobar
FROM (SELECT seq
    FROM Series
   WHERE seq BETWEEN 100 AND 300) AS X_CTE(x)
  CROSS JOIN
  (SELECT seq
    FROM Series
   WHERE seq BETWEEN 1 AND 100) AS Y_CTE(y);

Recursion, a procedural tool, is expensive. But that is not my 
point. The first thought was to use a procedural tool and not a 
data driven approach to get that CROSS JOIN. See what I mean 
by a mindset? This is the semiprocedural guy going back to what 
he knows. He almost got to a declarative mindset.

Now let’s go on with the rest of the skeleton code for the 
function: 

CREATE FUNCTION Find_Foobar
(IN in_x INTEGER, IN in_y INTEGER)
RETURNS CHAR(1)
WITH EXECUTE AS CALLER
AS
BEGIN
RETURN
COALESCE
((SELECT foobar
  FROM Find_Foobar
 WHERE x = in_x
   AND y = in_y), 'A');
END;
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The reason for COALESCE() is that ‘A’ is a default value in the 
outer CASE expression, but also a valid result in various THEN 
and ELSE clauses inside inner CASE expressions. The scalar 
query will return a NULL if it cannot find an (x, y, foobar) row in 
the table. If we know that the query covers the entire (x, y) uni-
verse, then we did not need the COALESCE() and could have 
avoided a user-defined function completely.

Now, let’s think about declarative programming. In SQL that 
means constraints in the table declaration in the DDL. This skele-
ton has none except the PRIMARY KEY. Here is a problem that you 
find with magazine articles and newsgroup postings: It is so easy 
to skip over the constraints when you provide a skeleton table. 
You did not need them when you declared a file, did you? What 
we can forget is that the three SQL sublanguages (DDL, DML, and 
DCL) work together. In particular, the DDL constraints are used 
by the DML optimizer to provide a better execution strategy.

The << horrible CASE expression >> implied expectations 
for x and y. We were given lower limits (100 and 1), but the upper 
limits were open after a small range of (x, y) pairs. I think we 
can assume that the original poster expected the vast majority 
of cases (or all of them) to fall in that small range and wanted to 
handle anything else as an error. In the real world, there is usually 
what Jerry Weinberg called “reasonableness checking” in data. 
The principle is also known as Zipf’s Law or the “look for a horse 
and not a zebra” principle in medicine.

The simple first shot would be to assume we always know the 
limits and can simply use: 

CREATE TABLE FooLookup
(x INTEGER NOT NULL
  CHECK (x BETWEEN 100 AND 300),
y INTEGER NOT NULL
  CHECK (y BETWEEN 1 AND 100),
foobar CHAR(1) DEFAULT 'A' NOT NULL
  CHECK (foobar) IN ('A', 'B', 'C'),
PRIMARY KEY (x, y));

The DEFAULT ‘A’ subclause will take care of situations where 
we did not have an explicit value for foobar. This avoids the 
COALESCE(). But what if one of the parameters can be any-
thing? That is easy: drop the CHECK() and add a comment. What 
if one of the parameters is half open or has a huge but sparse 
space? That is, we know a lower (upper) limit, but not the match-
ing upper (lower) limit. Just use a simple comparison, such as 
CHECK (y .5 1), instead of a BETWEEN.

A common situation, which was done with nested CASE 
expression in the original, is that you know a range for a  parameter 
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and what the results are for the other parameter within that range. 
That might be easier to see with code. Here is a CASE expression 
for some of the possible (x, y) pairs: 

CASE
WHEN x BETWEEN 100 AND 200
THEN CASE
  WHEN y IN (2, 4, 6, 8) THEN 'B'
  WHEN y IN (1, 3, 5, 7, 9) THEN 'C'
  END

WHEN x BETWEEN 201 AND 300
THEN CASE
  WHEN y IN (2, 4, 6, 8, 99) THEN 'C'
  WHEN y IN (3, 5, 7, 9, 100) THEN 'B'
  END
ELSE 'A'
END

This is the DML version of a constraint. It lives only in the 
UPDATE, INSERT, or SELECT statement where it appears. What 
we really want are constraints in the DDL so that all statements, 
present and future, use it. The trick is to create the table with low 
and high values for each parameter range; a single value is shown 
with the low and high values equal to each other.

CREATE TABLE FooLookup
(low_x INTEGER NOT NULL,
high_x INTEGER NOT NULL,
 CHECK (low_x <= high_x),
low_y INTEGER NOT NULL,
high_y INTEGER NOT NULL,
 CHECK (low_y <= high_y),
foobar CHAR(1) NOT NULL
 CHECK (foobar) IN ('A', 'B', 'C'),
PRIMARY KEY (x, y));

CASE expression now becomes Table 6.1.
As a safety device, put the default ‘A’ in ranges outside the rest 

of the table. I used 29999 and 9999 for the least and greatest lim-
its, but you get the idea.

The query has to use BETWEENs on the high and low limits: 

SELECT F.foobar, ..
FROM FooLookup AS F, ..
WHERE my_x BETWEEN F.low_x AND F.high_x
 AND my_y BETWEEN F.low_y AND F.high_y
 AND ..;

Is this always going to be the best way to do something? Who 
knows. Test it.
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6.5 Rewriting Tricks
There is a big leap from a procedural mindset to a declarative one 
for most programmers. Most of them do not quite make that leap 
all at once, but make a gradual step-wise transition from proce-
dural to semiprocedural programming styles.

Procedural code can appear in procedures, but is this neces-
sarily always true? Procedures can be no more than a BEGIN-
END block with a sequence of SQL statements without any 
IF-THEN-ELSE or WHILE-DO loop logic in it. Is such a block 
procedural or declarative when all it has is one declarative state-
ment in it? I would say it was declarative. Is a block procedural 
or declarative when it has IF-THEN-ELSE or WHILE-DO loop 
 control logic? I would say procedural.

You can get rid of a lot of IF-THEN-ELSE control logic with 
CASE expressions. Before the CASE expression, there were 

low_x high_x low_y high_y foobar

100 200 2 2 ‘B’
100 200 6 6 ‘B’
100 200 8 8 ‘B’
100 200 1 1 ‘C’
100 200 3 3 ‘C’
100 200 5 5 ‘C’
100 200 7 7 ‘C’
100 200 9 9 ‘C’
201 300 2 2 ‘C’
201 300 4 4 ‘C’
201 300 6 6 ‘C’
201 300 8 8 ‘C’
201 300 99 99 ‘C’
201 300 3 3 ‘B’
201 300 5 5 ‘B’
201 300 7 7 ‘B’
201 300 9 9 ‘B’
201 300 100 00 ‘B’
301 9999 101 9999 ‘A’
29999 99 29999 0 ‘A’

Table 6.1  Function Look Up Table
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 unexpected pitfalls in trying to apply procedural logic to SQL. 
The classic example is an UPDATE statement that was part of 
Sybase/SQL Server classes for decades. You have a bookstore and 
want to change the prices of the books. Any book over $25 will be 
discounted by 10% (we will advertise that) and books under $25 
will be increased by 15% (we will not advertise that). The imme-
diate solution is to write this: 

BEGIN
UPDATE Books
 SET price = price * 1.10
WHERE price < 25.00;
UPDATE Books
 SET price = price * 0.85
WHERE price >= 25.00;
END;

But it does not work! Look at a book that sells for $24.95 cur-
rently. Its price jumps to $27.45 when the first UPDATE is done. 
But when we do the second UPDATE, the price goes down to 
$23.33. That is not what we meant to do. Flipping the updates 
does not help.

This was the classic argument for cursors. Hang in a loop 
and use an IF-THEN-ELSE statement to do the update of the 
current row in the cursor, just like a magnetic tape file. But this 
is not required today. We have the CASE expression, which is 
declarative.

UPDATE Books
 SET price
  = CASE
   WHEN price < 25.00
   THEN price * 1.10
   ELSE price * 0.85
   END;

Loops can be replaced with various constructs, most of which 
apply set-oriented operations to the table involved, instead of 
doing RBAR (pronounced “re-bar,” like the steel rods used in con-
crete construction; RBAR is an acronym for Row By Agonizing 
Row, coined by Jeff Moden). But another common change is to 
use the ROW_NUMBER() and other ordinal functions to replace a 
counting loop in procedural code.

6.5.1 Data Tables versus Generator Code
You will often see recursion being used to create a table of 
sequential numbers. This is the procedural mindset in action; it 
is better replaced with a declarative look-up table. But let’s take a 
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similar problem, the calculation of the Fibonacci series, and look 
at the procedural, semiprocedural, and declarative approaches to 
it. I’m not trying to suggest that this is a practical problem: If you 
really needed this data, then you’d download it into a table. The 
problem is to build a table of Fibonacci numbers with n and the 
n-th Fibonacci number. I do not want to talk about the Fibonacci 
series. No, that is a lie. I would love to write a whole book on it, 
but a lot of other people beat me to it (see the References section). 
Darn! The usual definition for the series is recursive: 

CREATE FUNCTION fib(IN n INTEGER)
RETURNS INTEGER
IF n = 0
THEN RETURN 0;
ELSE IF n = 1
 THEN RETURN 1;
 ELSE IF n > 1
  THEN RETURN (fib(n-2) + fib(n-1));
  END IF;
 END IF;
END IF;

6.5.2 Using Computation to Replace a Look-up
The most extreme example I can remember of using computa-
tion to replace a look-up was decades ago at Georgia Tech when 
we had CDC Cyber series computers. The hardware had the best 
floating point hardware and speed in its days. To give you an 
idea of what I mean, CDC had a COBOL compiler that converted 
COBOL picture data to floating point numbers, did the math, and 
converted back to COBOL picture formats. It outperformed the 
IBM machines on campus.

Rather than do table look-up in FORTRAN, one of our sales 
team members had just had a course on Chebyshev polynomi-
als and fitting data to curves, and had a software package to cre-
ate these polynomials. The formula was impossible for a human 
being to understand, but it was faster than reading a disk and the 
data had a pattern that worked well with polynomials. Do not do 
this on anything but a supercomputer. I will now avoid the issue 
of performance versus maintenance.

6.5.3 Fibonacci Series
This series is a good example of changing your mindset. There is 
a little debate about whether to start at (n 5 0) or at (n 5 1), but 
the idea is that fib(n) 5 (fib(n 2 2) 1 fib(n 2 1)), so the series is 
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0, 1, 1, 2, 3, 5, 8, etc. Here is a completely procedural loop to com-
pute a table of Fibonacci numbers: 

BEGIN
DECLARE a INTEGER;
DECLARE b INTEGER;
DECLARE fib INTEGER;
SET a = 0;
SET b = 1;
SET fib = 0;
WHILE fib < 1000
DO
 SET fib = a + b;
 SET a = b;
 SET b = fib;
 INSERT INTO Fibonacci VALUES (a);
END WHILE;
END;

But when the programmers discover recursive CTEs, they pro-
duce this code: 

WITH Fib(a, b) AS
(SELECT a, b FROM (VALUES (0, 1))
UNION ALL
SELECT b, a+b
  FROM Fib
 WHERE b < 100)
SELECT a FROM Fib;

This is still thinking like a programmer and not like a math-
ematician. These series often have what is called a closed form. 
That means the values can be computed without iteration or 
recursion. In the case of the Fibonacci series there is a simple 
formula that uses the constant phi (also known as the Golden 
ratio).

CREATE FUNCTION Fibonacci(IN n INTEGER)
RETURNS INTEGER
BEGIN DECLARE phi DECIMAL (35, 25);
  1. SET phi = 1.6180339887498948482045868

RETURN
ROUND (((POWER (phi, n)
   - POWER (1.0 - phi, n))
  / SQRT (5.0)), 0);
END;

You can get phi to one million decimal places at this web site: 
http://goldennumber.net/phi20000.htm.

http://goldennumber.net/phi20000.htm
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6.6 Functions for Predicates
One of the strangest examples of a semiprocedural mindset 
is among SQL Server programmers. They create UDFs (user-
defined functions) to use in constraints. Here is part of a posting 
for a puzzle to pack eggs from a basket into cartons that hold a 
dozen or fewer eggs.

CREATE TABLE Eggs
(basket_id INTEGER NOT NULL
REFERENCES Baskets(basket_id),
carton_id INTEGER NOT NULL
REFERENCES Cartons(carton_id));

CREATE FUNCTION CartonCount
(in_carton_id INTEGER) RETURNS INTEGER
RETURN
(SELECT COUNT(*) FROM Eggs
WHERE carton_id = in_carton_id);

ALTER TABLE Eggs
ADD CONSTRAINT carton_limit
CHECK (CartonCount(carton_id) BETWEEN 1 AND 12);

There was no key in the original Eggs table so the optimizer 
has nothing to use. The UDFs make the code more complex and 
proprietary. A declarative DDL might be: CREATE TABLE Eggs 
(basket_nbr INTEGER NOT NULL, carton_nbr INTEGER NOT NULL, 
PRIMARY KEY (basket_nbr, carton_nbr), egg_cnt INTEGER DEFAULT 
1 NOT NULL CONSTRAINT carton_limit CHECK (egg_cnt BETWEEN 1 
AND 12));

This assumes that the egg cartons use the basket number as 
part of the key, then have a carton number for the final part of the 
key. The predicate in the carton_limit constraint can be used by 
an optimizer.

http://msdn.microsoft.com/en-us/library/ms175521.asp
http://goldennumber.net/
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6.7 Procedural versus Logical Decomposition
SQL programmers not used to thinking in sets will misuse 
decomposition as their problem-solving method. It is a good 
heuristic; break the problem into disjoint subproblems, solve 
each special case and put them back together. But all too often, 
the consolidation is done with UNION ALL or a series of inser-
tions to a scratch table.

This is a procedural decomposition/consolidation and we 
want a logical one instead. Again, this is easier to explain with an 
example. Let’s start with a simple table of company offices.

CREATE TABLE Offices
(duns CHAR(9) NOT NULL
  CHECK (duns SIMILAR TO '[:DIGITS:]{9}'),
office_id INTEGER NOT NULL
  CHECK (office_id > 0),
PRIMARY KEY (duns, office_id)
office_type CHAR(1) DEFAULT 'N' NOT NULL
  CHECK (office_type IN ('C', 'N', ..)),
dba_name VARCHAR(15) NOT NULL
);

The DUNS is an industry standard identifier for companies 
and the office id is an integer that we made up for the various 
office locations in a company. The only office types we care about 
are corporate (‘C’) and noncorporate (‘N’), but there might be 
others. We want a query that will return rows that meet the fol-
lowing criteria:
1. We have only one office on file for the company and it is a non-

corporate office.
2. We have one or more offices on file for the company and at 

least one of them is a corporate office.
3. We have many offices on file for the company and none of 

them is a corporate office. We skip this company.
Given this sample data, I have marked the desired rows in 

Table 6.2.

6.7.1 Procedural Decomposition Solution
This is a rewrite of an answer from Tom Cooper that uses decom-
position into special cases for a solution.

SELECT O.duns,
   MAX(O.office_id) AS office_id,
   MAX(O.office_type) AS office_type,
   MAX(O.dba_name) AS dba_name
 FROM Offices AS O
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GROUP BY O.duns
HAVING COUNT(*) = 1
 AND MAX(O.office_type) = 'N'
UNION ALL
SELECT O1.duns, O1.office_id, O1.office_type, O1.dba_name
 FROM Offices AS O1
WHERE EXISTS
  (SELECT
    FROM Offices AS O2
    WHERE O1.duns = O2.duns
    GROUP BY O2.duns
   HAVING MAX(O2.office_type)
     <> MIN(O2.office_type);

The query has two parts. The first part, 

SELECT O.duns, MAX(O.office_id) AS office_id,
   MAX(O.office_type) AS office_type,
   MAX(O.dba_name) AS dba_name
 FROM Offices AS O
GROUP BY O.duns
HAVING COUNT(*) = 1
 AND MAX(O.office_type) = 'N'

gets the row for companies that meet criteria #1. The GROUP BY 
and HAVING COUNT(*) 5 1 clauses enforce the single row part 
of the criteria. Since we are grouping by duns, we can’t select the 
other columns directly; we have to do some dummy aggregate 
function; since there is only one row, MAX(office_id) is the same as 
office_id. The same logic applies to the office_type and dba_name 
columns.

So we have the rows for companies that have only one row. 
But we only want those rows that have (office_type = 'N'), so 

Duns office_id office_type dba_name

132345678 1302 ‘N’ ‘Fred’ 
132345678 1303 ‘N’ ‘Sam’ 
132345678 1306 ‘N’ ‘Mary’ 
132400000 304 ‘C’ ‘Bill’ b criteria #2
132400000 305 ‘N’ ‘Melvin’ b criteria #2
132456885 9907 ‘N’ ‘Ned’ b criteria #1
139824328 2001 ‘C’ ‘Irving’ 

Table 6.2  Offices & DBAs
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that is the other part of the HAVING clause. (AND MAX(O.office_
type) = 'N').

To that we UNION ALL the query for criteria #2: 

SELECT O1.duns, O1.office_id, O1.office_type, O1.dba_name
 FROM Offices AS O1
WHERE EXISTS (SELECT O2.duns
      FROM Offices AS O2
      WHERE O1.duns = O2.duns
      GROUP BY O2.duns
      HAVING MAX(O2.office_type) <> MIN(O2.office_type));

The second part gets all rows where the company has at least 
two rows in the table and those rows have different values in 
office_type (that is, the max value is not equal to the min value). 
Notice the user of the self-join here.

6.7.2 Logical Decomposition Solution
The most important part of this query is getting the DUNS for the 
qualified companies, since we can find everything else from that. 
The skeleton query is: 

SELECT O1.duns, O1.office_id, O1.office_type, O1.dba_name
 FROM Offices AS O1
WHERE O1.duns IN (<qualified duns>);

We are using a nested top-down approach instead of special 
cases at the same level of abstraction. The problem of finding the 
qualified DUNS is not split into two parts and then consolidated. 
It is also a smaller problem to solve. We know we are working 
with a grouping problem, so we can expect to use a GROUP BY or 
a PARTITION BY somewhere in the subproblems. Going with the 
GROUP BY, this skeleton becomes: 

<qualified duns> ::=
SELECT O2.duns
 FROM Offices AS O2
GROUP BY duns
HAVING (<criteria #1>)
  OR (<criteria #2>)

Let’s look at <criteria #1>. The count has to be one and then 
the office type has to be ‘N’; since we have only one row, we know 
that the minimum is the same as the maximum, so we can use 
either of them for the second part of criteria #1. The skeleton gets 
more flesh: 

<criteria #1> ::=
SELECT O2.duns
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 FROM Offices AS O2
GROUP BY duns
HAVING (COUNT(*) = 1 AND MIN(O2.office_type)= 'N')
  OR (<criteria #2>)

Let’s look at <criteria #2>. The count has to be greater than 
one, which is easy. The office type of ‘C’ is the minimum value 
in this domain and we want to have at least one of them. We use 
the MIN() in this case, but if the desired value was not the mini-
mum, we could have used MIN(CASE WHEN office_type = <target 
value> THEN 0 ELSE 1 END) to get the same effect. The skeleton 
gets enough flesh to walk: 

SELECT O1.duns, O1.office_id, O1.office_type, O1.dba_name
 FROM Offices AS O1
WHERE O1.duns
  IN (SELECT O2.duns
     FROM Offices AS O2
     GROUP BY duns
    HAVING (COUNT(*) = 1 AND MIN(O2.office_type)= 'N')
      OR (COUNT(*) > 1 AND MIN(O2.office_type)= 'C'));
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7
PROCEDURAL CONSTRUCTS

Although SQL is a declarative language, it does have procedural 
features: stored procedures, triggers, and cursors. Stored proce-
dures, or more properly, Persistent Stored Modules (SQL/PSM), 
give SQL its own 4GL programming language. Triggers are stored 
procedures attached to one table and controlled by database 
events such as inserts, updates, and deletes on it. Cursors convert 
a query, update, or delete statement into a sequential file struc-
ture that can be accessed one row at a time.

We will now discuss each one in more detail, but you will find 
that stored procedures are by far the most useful of the three. 
Triggers exist because the early SQL Standards did not have 
declarative referential integrity (DRI) actions. Later SQL products 
such as DB2 for z/OS supported declarative referential integrity 
(RI) long before they supported triggers. You should write only 
a few triggers in a schema, if any, and then only for functional-
ity that cannot be supported by DRI. Cursors exist because SQL 
has to interface to application programming languages that use a 
sequential file model of data. Today, there are other mechanisms 
for these interfaces and there is no need to use a cursor inside 
a properly designed schema. The few cursors that you will see 
today are embedded in COBOL programs.

7.1 CREATE PROCEDURE
The ANSI/ISO Standard 4GL programming language in SQL is 
the SQL/PSM (Persistent Stored Modules). The defining docu-
ment is ISO/IEC 9075-4:2003, Information technology—Database 
 languages—SQL—Part 4: Persistent Stored Modules (SQL/PSM).

However, many SQL products have had their own procedure 
languages, so you should look at what your particular vendor 
has given you. Oracle has a proprietary language called PL/SQL, 
which is very close to SQL/PSM. IBM now supports both PL/SQL 
and SQL/PSM.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00007-7
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00007-7
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T-SQL is the proprietary 4GL language with Microsoft and 
Sybase SQL Server. It is a simple one-pass compiler not intended 
for application development work. It has its roots in 16-bit UNIX 
C compilers that first implemented SQL Server.

Informix 4GL is the proprietary application language for 
Informix. It is based on Algol and is “under the hood” in many 
mainframe software packages.

The SQL/PSM was based on the ADA programming language, 
but looks a lot like other modern block structured program-
ming languages. Each module starts with a header that tells the 
SQL/PSM compiler as much as it can about the code; the body 
is a block and can be exited with a return statement. Blocks are 
nested inside each other.

The blocks declare local variables at the start of the block, 
has code in the middle, and error handlers at the end of the 
block. The local variables are the usual SQL data types, but 
schema objects cannot be created in the SQL/PSM. The control 
of flow structures are the usual nested blocks (BEGIN-END and 
BEGIN ATOMIC-END for transactions), selection of control flow 
(IF-THEN-ELSE, CASE), and iterations (WHILE, etc.) mixed with 
SQL statements.

The error handler is an interrupt-driven model. When an 
exception is raised, control jumps to the appropriate error han-
dler no matter where it happens in the block.

This book uses simple SQL/PSM for procedures, but does not 
attempt to teach the language. It needs a book of its own.

7.2 CREATE TRIGGER
A trigger is attached to a single base table. It is a procedure that 
is executed when a “database event” happens in the schema. The 
trigger event is either deletion, insertion, or replacement of a col-
lection of rows in the table.

The triggered action is specified to take place either immedi-
ately before the triggering event or immediately after it, accord-
ing to its specified trigger action time, BEFORE or AFTER. 
A trigger is either a delete trigger, an insert trigger, or an update 
trigger, according to its trigger event.

The event can be a direct statement like INSERT INTO, 
UPDATE, DELETE FROM, or MERGE. But referential actions like 
CASCADE, SET NULL, or SET DEFAULT can also fire a trigger. 
There is an option to prevent cascading, if you don’t want it.

A collection of rows being deleted, inserted, or replaced is 
known as a transition table. For a delete trigger there is just 
one transition table, known as the OLD transition table. For an 
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insert trigger there is just one transition table, known as a NEW 
 transition table. For an update trigger there is both an OLD tran-
sition table (the rows being replaced) and a NEW transition table 
(the replacement rows), these two tables having the same cardi-
nality. The conceptual model is that the OLD rows are removed 
as a set; the NEW rows are inserted as a set. You can give these 
 transition tables aliases in a special REFERENCING clause.

If this is an AFTER trigger, it is executed after the event that 
fired it.

If this is a BEFORE trigger, it is executed before the event 
that fired it. There is a special kind of BEFORE trigger called the 
INSTEAD OF trigger. This trigger is used with VIEWs. Since there 
is no single base table for the event to change, this trigger holds 
code that works on the base tables from which the VIEW is built. 
This lets you make the VIEW behave as if it were a base table 
when seen by the users. Here is a simple example, where we have 
a nonupdatable VIEW based on a JOIN on a table of countries 
and one of cities.

CREATE VIEW Geography (country_name, city_name)
AS
SELECT country_name, city_name
 FROM Countries, Cities
WHERE Countries.country_code = Cities.country_code;

This trigger will let you insert a new row into the two underly-
ing tables by accessing the Geography VIEW.

CREATE TRIGGER Add_New_Town
INSTEAD OF INSERT
ON Geography
REFERENCING NEW AS CP -- Current_Places
BEGIN
INSERT INTO Countries (country_name)
SELECT DISTINCT CP.country_name
 FROM CP
      LEFT OUTER JOIN
      Countries AS C
      ON CP.country_name = C.country_name
WHERE C.country_name IS NULL; -- Exclude countries already 

in the table

INSERT INTO Cities (city_name, country_code)
SELECT DISTINCT CP.city_name, Countries.country_code
FROM CP
     INNER JOIN
     Countries AS C
     ON CP.country_name = C.country_name
       LEFT OUTER JOIN
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       Cities
       ON CP.city_name = Cities.city_name
   WHERE Cities.city_name IS NULL; -- Exclude cities  

 already in the table
END;

A trigger can be at the row or statement level. For a statement 
level trigger, we perform an action on the table as a whole. For a 
row level trigger, only the rows involved in the action are affected.

Since I will not be discussing TRIGGERs in this book, let me 
give you an example so that you can see most of the syntax in a 
trigger declaration. When the quote_price column of a table of 
stock quotations is updated, the new quote should be copied, 
with a timestamp, to the QuoteHistory table. Also, the price_trend 
column of quotations should be updated to reflect whether the 
stock is: 
1. Rising in value
2. At a new high for the year
3. Dropping in value
4. At a new low for the year
5. Steady in value

CREATE TRIGGER statements that accomplish this are as 
follows.

CREATE TRIGGER Stock_Trends
NO CASCADE
BEFORE UPDATE OF quote_price -– column in base table
ON Quotations
REFERENCING NEW AS NQP -- New Quote Prices
     OLD AS OQP –- Old Quote Prices
FOR EACH ROW -– only look at changed rows
BEGIN ATOMIC
SET
NQP.price_trend
= CASE
  WHEN NQP.quote_price
      >= (SELECT MAX(quote_price)
          FROM QuoteHistory
         WHERE ticker_symbol = NQP.ticker_symbol
          AND EXTRACT (YEAR FROM quote_price_timestamp)
            = EXTRACT(YEAR FROM CURRENT DATE))
  THEN 'High'
  WHEN NQP.quote_price
     <= SELECT MIN(quote_price)
         FROM QuoteHistory
        WHERE ticker_symbol = NQP.ticker_symbol
         AND EXTRACT (YEAR FROM quote_price_timestamp)
            = EXTRACT(YEAR FROM CURRENT DATE))
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  THEN 'Low'
  WHEN NQP.quote_price > OQP.quote_price
  THEN 'Rising'
  WHEN NQP.quote_price < OQP.quote_price
  THEN 'Dropping'
  WHEN NQP.quote_price = OQP.quote_price
  THEN 'Steady' END;
END;

You should also have a TRIGGER to handle the quotation his-
tory table.

CREATE TRIGGER Record_History
AFTER UPDATE OF quote_price
ON Quotations
 REFERENCING NEW AS NQP –- New Quote Prices
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO QuoteHistory
VALUES (NQP.ticker_symbol, NQP.quote_price, CURRENT_TIMESTAMP);
END;

The advantage of TRIGGERs over declarative referential integ-
rity (DRI) is that you can do everything that DRI can and almost 
anything else, too. The disadvantages are that the optimizer can-
not get any data from the procedural code, the TRIGGERs take 
longer to execute, and they are not portable from product to 
product. They also force sequential execution, instead of allowing 
parallelism.

My advice would be to avoid TRIGGERs when you can use DRI 
instead. If you do use them, check the code very carefully and 
keep it simple so that you will not hurt performance.

7.3 CURSORs
I will not spend much time with cursors in this book, but you 
should understand them at a high level since you will see them 
in actual code. In spite of a standard syntax, every product has a 
proprietary version of cursors. This is because cursors are a low-
level construct that work close to the physical implementation in 
the product.

A CURSOR is a way of converting an SQL result set into a 
sequential data structure that looks like a simple sequential file 
that can be handled by the procedural host language, and con-
tains the very statement that executes and creates a structure 
that looks like a sequential file. In fact, the cursor model in SQL is 
based on an old-fashioned magnetic tape system!
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You might have noticed that in SQL, the keyword CREATE 
builds persistent schema objects. The keyword DECLARE builds 
transient objects that disappear with the end of the session in 
which they were built. This is why you say DECLARE CURSOR 
and not CREATE CURSOR.

First, you allocate working storage in the host program with 
a BEGIN DECLARE . . . END DECLARE section. This sets up an 
area where SQL variables can be converted into host language 
data types and vice versa. NULLs are handled by declaring 
INDICATOR variables in the host language BEGIN DECLARE sec-
tion, which are paired with the appropriate host variables. An 
INDICATOR is an exact numeric data type with a scale of zero—
that is, some kind of integer in the host language.

7.3.1 DECLARE CURSOR Statement
The DECLARE CURSOR statement must appear next. The SQL-92 
syntax is fairly representative of actual products, but you must read 
your manual.

<declare cursor> ::=
    DECLARE <cursor name> [INSENSITIVE] [SCROLL] CURSOR
      FOR <cursor specification>

<cursor specification> ::=
    <query expression> [<order by clause>]
      [<updatability clause>]

<updatability clause> ::= FOR {READ ONLY | UPDATE [OF 
<column name list>]}

<order by clause> ::= ORDER BY <sort specification list>

<sort specification list> ::=
    <sort specification> [{<comma> <sort specification>}. . .]

<sort specification> ::= <sort key> [<collate clause>]
 [<ordering specification>]

<sort key> ::= <column name>
<ordering specification> ::= ASC | DESC

A few things need explaining. First of all, the ORDER BY clause 
is part of a cursor and not part of a SELECT statement. Because 
some SQL products, such as SQL Server and Sybase, allow the 
user to create implicit cursors, many newbies get this wrong. This 
is easy to implement in products that evolved from sequential file 
systems and still expose this architecture to the user in violation 
of Dr. Codd’s rules. Oracle is probably the worst offender as of 
this writing, but some of the “micro-SQLs” are just as bad.
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If either INSENSITIVE, SCROLL, or ORDER BY is specified, or 
if the working table is a read-only, then an <updatability clause> 
of READ ONLY is implicit. Otherwise, an <updatability clause> of 
FOR UPDATE without a <column name list> is implicit.

7.3.2 The ORDER BY clause
Contrary to popular belief, the ORDER BY clause is not part of 
the SELECT statement; it is part of a CURSOR declaration. The 
reason that people think it is part of the SELECT statement is that 
the only way you can get to the result set of a query in a host lan-
guage is via a cursor. When a vendor tool builds a cursor under 
the covers for you, they usually allow you to include an ORDER 
BY clause on the query.

Most optimizers will look at the result set and see from the 
query if it is already in sorted order as a result of fetches done 
with an index, thus avoiding a redundant sorting operation. 
The bad news is that many programmers have written code that 
depended on the way that their particular release of a particu-
lar brand of SQL product presented the result. When an index is 
dropped or changed, when the database is upgraded to a new 
release or has to be ported to another product, this automatic 
ordering can disappear.

As part of a cursor, the ORDER BY clause has some proper-
ties that you probably did not know existed. Here is the Standard 
syntax.

<order by clause> ::=
   ORDER BY <sort specification list>

<sort specification list> ::=
   <sort specification> [{ <comma> <sort specification> }. . . ]

<sort specification> ::=
   <sort key> [<collate clause >] [<ordering specification>]

<sort key> ::= <column name> | <scalar expression>

<ordering specification> ::= [ASC | DESC] {NULLS FIRST | 
NULLS LAST}

The first things to note is that the sort keys are column names 
that must appear in the SELECT clause. The use of the positional 
number of a column is a depreciated feature in Standard SQL. 
Deprecation is a term in the standards world that means this 
feature will be removed from the next release of the standard, 
and therefore should not be used, so your old code needs to be 
updated.
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These are illegal sorts: 

 SELECT a, (b+c) AS d
   FROM Foobar
  ORDER BY a, b, c; -- illegal!!

The columns b and c simply do not exist in the result set of 
the cursor, so there is no way to sort on them. However, after the 
SQL-99 Standard you were allowed to use a computation in the 
ORDER BY.

SELECT a, b, c -- illegal!!
  FROM Foobar
 ORDER BY a, b, (b+c)

The correct way to do this is to put the function calls or 
expressions in the SELECT list, name that column, and use the 
name in the ORDER BY clause. This lets the user see on what val-
ues the sorting is done. Think about it—what good is a report or 
display when you have no idea how it was sorted?

Furthermore, the sorting columns pass information to 
 middle-tier machines that can resort the data before distributing 
it to other front-end clients.

The sort order is based on the collation sequence of the col-
umn to which it is attached. The collation can be defined in the 
schema on character columns, but in most SQL products today 
collation is either ASCII or Unicode. You can expect Unicode to 
become more popular.

The ORDER BY and NULLs
Whether a sort key value that is NULL is considered greater or 
less than a non-NULL value is implementation-defined. There 
are SQL products that do it either way; here is a quick list: 
1. PostgreSQL—Higher
2. DB2—Higher
3. MS SQL Server—Lower
4. MySQL—Lower
5. Oracle—Higher

The SQL-99 Standard added the optional {NULLS FIRST | 
NULLS LAST} subclause to the <ordering specification> that has 
been implemented in DB2 and Oracle, among others. There is a 
story here.

In March 1999, Chris Farrar brought up a question from one 
of their developers, which caused him to examine a part of the 
ANSI/ISO Standard that I thought I understood. Chris found some 
differences between the general understanding and the actual 
wording of the specification. The situation can be described as 
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follows: A table, Sortable, with two integer columns, a and b, 
 containing two rows that happen to be in this physical order:

Given the pseudo-query: 

SELECT alpha, beta
  FROM Sortable
 ORDER BY alpha, beta;

The first question is whether it is legal SQL for the cursor to 
produce the result sequence shown in Table 7.1.

The problem is that although the standard set up a rule to 
make the NULLs group together either before or after the known 
values, we never said that they have to act as if they were equal 
to each other. What is missing is a statement that when compar-
ing NULL to NULL, the result in the context of ORDER BY is that 
NULL is equal to NULL, just as it is in a GROUP BY. This was the 
intent of the committee, so the expected result should have been 
those shown in Table 7.2.

Sortable

alpha beta

NULL 8
NULL 4

Table 7.1 Cursor Result Sequence Version 1

alpha beta

NULL 8
NULL 4

Table 7.2 Cursor Result Sequence Version 2

alpha beta

NULL 4
NULL 8
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Phil Shaw, former IBM representative and one of the smartest 
and oldest members of the committee, dug up the section of the 
SQL-89 Standard that answered this problem. In SQL-89, the last 
General Rule of <comparison predicate> specified this:

Although “x 5 y” is unknown if both x and y are NULL values, in 
the context of GROUP BY, ORDER BY, and DISTINCT, a NULL 
value is identical to or is a duplicate of another NULL value.

This is the grouping versus equality issue that causes all NULLs 
to go into the same group, rather than each in its own group. 
Apply that rule, and then apply the rules for ORDER BY, the NULL 
values of column alpha of the two rows are equal, so you have to 
order the rows by the columns to the right in the ORDER BY.

The sort keys are applied from left to right and a column name 
can appear only once in the list. But there is no obligation on the part 
of SQL to use a stable (sequence preserving) sort. A stable sort on 
 cities, followed by a stable order on states, would result in a list with 
cities sorted within each state, and the states sorted. Although stabil-
ity is a nice property, the nonstable sorts are generally much faster.

You can use computed columns to get specialized sorting 
orders. For example, construct a table with a character column 
and an integer column. The goal is to order the results so that it 
first sorts the integer column descending, but then groups the 
related character column within the integers. This is much easier 
with an example: 

CREATE TABLE Fruit_Test
(fruit_name CHAR(10) NOT NULL,
taste_score INTEGER NOT NULL,
PRIMARY KEY (fruit_name, taste_score));

INSERT INTO Fruit_Test
VALUES ('Apples', 2), ('Apples', 1), ('Oranges', 5),
     ('Apples', 5), ('Banana', 2);

I’m looking to order the results as the following: 

('Apples', 5)
('Apples', 2)
('Apples', 1)
('Oranges', 5)
('Banana', 2)

In the preceding, the first pass of the sort would have pro-
duced this by sorting on the integer column: 

SELECT F1.fruit_name, F1.taste_score,
 FROM Fruit_Test AS F1
ORDER BY F1.taste_score DESC;
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One outcome might have been any of these: 

Result #1
('Apples', 5)
('Oranges', 5)
('Apples', 2)
('Banana', 2)
('Apples', 1)

Result #2
('Oranges', 5)
('Apples', 5)
('Apples', 2)
('Banana', 2)
('Apples', 1)

Result #3
('Oranges', 5)
('Apples', 5)
('Banana', 2)
('Apples', 2)
('Apples', 1)

Result #4
('Apples', 5)
('Oranges', 5)
('Banana', 2)
('Apples', 2)
('Apples', 1)

If you use: 

SELECT F1.fruit_name, F1.taste_score,
 FROM Fruit_Test AS F1
ORDER BY F1.taste_score DESC, F1.fruit_name ASC;

Result
('Apples', 5)
('Oranges', 5)
('Apples', 2)
('Banana', 2)
('Apples', 1)

But this is not what we wanted—the order within fruits has 
been destroyed. Likewise: 

SELECT F1.fruit_name, F1.taste_score
 FROM Fruit_Test AS F1
ORDER BY F1.fruit_name ASC, F1.taste_score DESC;

Results
('Apples', 5)
('Apples', 2)
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('Apples', 1)
('Banana', 2)
('Oranges', 5)

But this is still not what we wanted—the order within scores 
has been destroyed. We need a dummy column to preserve the 
ordering, thus: 

SELECT F1.fruit_name, F1.taste_score,
     (SELECT MAX(taste_score)
        FROM Fruit_Test AS F2
       WHERE F1.fruit_name = F2.fruit_name)
     AS taste_score_preserver
 FROM Fruit_Test AS F1
ORDER BY taste_score_preserver DESC,
       F1.fruit_name ASC, F1.taste_score DESC;

Cursors include an <updatability clause>, which tells you if 
the cursor is FOR READ ONLY or for UPDATE [OF <column name 
list>], but this clause in optional. If ORDER BY is specified or 
if the result table is a read-only table, then the <updatability 
clause> defaults to FOR READ ONLY.

The ORDER BY and CASE Expressions
SQL-99 allows you to use a function in an ORDER BY clause. 
Although it is now legal, it is still not a good programming prac-
tice. Users should see the fields that are used for the sort so they 
can use them to read and locate lines of data in reports. The sort-
ing values are usually on the left side of each line since we read 
left to right. The most portable method is to use a CASE expres-
sion, which takes an external parameter of the form: 

SELECT first_name, last_name, dept_name,
     CASE :flag
     WHEN 'f' THEN first_name
     WHEN 'l' THEN last_name
     WHEN 'd' THEN dept_name
     ELSE NULL END AS sort_col
 FROM Personnel
ORDER BY sort_col;

Obviously, the expression in the THEN clauses must be of the 
same data type or CAST into the same data type. Controlling the 
direction of the sort is a little trickier and requires two columns, 
one of which is always set to all NULLs.

SELECT last_name,
      CASE :flag
      WHEN 'la' THEN last_name ELSE NULL END AS sort_col1,
      CASE :flag
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     WHEN 'ld' THEN last_name ELSE NULL END AS sort_col2
 FROM Personnel
ORDER BY sort_col1, sort_col2 DESC;

You can get a bit fancy with this basic idea: 

SELECT . . .
     CASE :flag_1
        WHEN 'a' THEN CAST (a AS CHAR(n))
        WHEN 'b' THEN CAST (b AS CHAR(n))
        WHEN 'c' THEN CAST (c AS CHAR(n))
        ELSE NULL END AS sort_1,

     CASE :flag_2
        WHEN 'x' THEN CAST (x AS CHAR(n))
        WHEN 'y' THEN CAST (y AS CHAR(n))
        WHEN 'z' THEN CAST (z AS CHAR(n))
        ELSE NULL END AS sort_2,
            . . .
     CASE :flag_n
        WHEN 'n1' THEN CAST (n1 AS CHAR(n))
        WHEN 'n2' THEN CAST (n2 AS CHAR(n))
        WHEN 'n3' THEN CAST (n3 AS CHAR(n))
        ELSE NULL END AS sort_2,
 FROM MyTable
WHERE . . .
ORDER BY sort_1, sort_2, . . .;

If you have more than one sort column and only a limited set 
of combinations then use concatenation.

CASE :flag_1
     WHEN 'ab'
     THEN CAST(a AS CHAR(n)) ||' ' || CAST(b AS CHAR(n))
     WHEN 'ba'
     THEN CAST(b AS CHAR(n)) ||' ' || CAST(a AS CHAR(n))
     ELSE NULL END AS sort_1,

If you need ASC and DESC options, then use a combination of 
CASE and ORDER BY: 

CASE :flag_1
WHEN :flag_1 = 'a' AND :flag_1_ad = 'ASC'
THEN CAST (a AS CHAR(n))
WHEN :flag_1 = 'b' AND :flag_1_ad = 'ASC'
THEN CAST (b AS CHAR(n))
WHEN :flag_1 = 'c' AND :flag_1_ad = 'ASC'
THEN CAST (c AS CHAR(n))
ELSE NULL END AS sort_1_a,

CASE :flag_1
WHEN :flag_1 = 'a' AND :flag_1_ad = 'DESC'
THEN CAST (a AS CHAR(n))
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WHEN :flag_1 = 'b' AND :flag_1_ad = 'DESC'
THEN CAST (b AS CHAR(n))
WHEN :flag_1 = 'c' AND :flag_1_ad = 'DESC'
THEN CAST (c AS CHAR(n))
ELSE NULL END AS sort_1_d
..
ORDER BY sort_1_a ASC, sort_1_d DESC

I have shown explicit CAST(<exp> AS CHAR(n)), but if the data 
types of the THEN clause expressions were already the same, 
there would be no reason to force the conversions. You change 
the ELSE NULL clause to any constant of the appropriate data 
type, but it should be something useful to the reader. A neater 
way of doing this is to use one column for each sorting option.

SELECT MyTable.*,
    CASE WHEN :flag = 'a' THEN a ELSE NULL END AS sort1,
    CASE WHEN :flag = 'b' THEN b ELSE NULL END AS sort2,
    CASE WHEN :flag = 'c' THEN c ELSE NULL END AS sort3
  FROM Personnel
 WHERE . . .
 ORDER BY sort1, sort2, sort3;

This code is easy to read and you do not have worry about 
CAST() operations. The trade-off is a larger result set being sent 
to the cursor.

7.3.3 OPEN Statement
The OPEN <cursor name> statement positions an imaginary 
read/write head before the first record in the cursor. FETCH 
statements can then move this imaginary read/write head from 
record to record. When the read/write head moves past the last 
record, an exception is raised, like an EOF (end of file) flag in a 
magnetic tape file system.

Watch out for this model! In some file systems, the read/write 
head starts on the first and the EOF flag is set to TRUE when it 
reads the last record. Simply copying the algorithms from your 
procedural code into SQL/PSM might not work.

7.3.4 FETCH Statement
<fetch statement> ::= FETCH [[<fetch orientation>]
     FROM] <cursor name> INTO <fetch target list>

<fetch orientation> ::= NEXT | PRIOR | FIRST | LAST
     | {ABSOLUTE | RELATIVE} <simple value specification>

The FETCH statement takes one row from the cursor, then 
converts each SQL data type into a host-language data type and 
puts the result into the appropriate host variable. If the SQL value 
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was a NULL, the INDICATOR is set to –1; if no indicator was spec-
ified, an exception condition is raised.

As you can see, the host program must be sure to check the 
INDICATORs, because otherwise the value of the parameter will be 
garbage. If the parameter is passed to the host language without any 
problems, the INDICATOR is set to zero. If the value being passed to 
the host program is a non-NULL character string and it has an indi-
cator, the indicator is set to the length of the SQL string and can be 
used to detect string overflows or to set the length of the parameter.

The <fetch orientation> tells the read/write head which way 
to move. NEXT and PRIOR read one record forward or backward 
from the current position. FIRST and LAST put the read/write on 
the first or last records, respectively. The ABSOLUTE fetch moves 
to a given record number. The RELATIVE fetch moves the read/
write head forward or backward (n) records from the current posi-
tion. Again, this is a straight imitation of a sequential file system.

7.3.5 CLOSE Statement
The CLOSE <cursor name> statement resets the cursor read/
write head to a position before the first row in the cursor. The 
cursor still exists, but must be reopened before it can be used. 
This is similar to the CLOSE FILE operations in FORTRAN or 
COBOL, but with an important difference! The cursor can be 
recomputed when it is reopened.

7.3.6 DEALLOCATE Statement
The DEALLOCATE CURSOR statement frees the working storage 
in the host program. Think of it as dismounting a tape from the 
tape drive in a sequential file system.

7.3.7 How to Use a CURSOR
The best performance improvement technique for cursors inside 
the database is not to use them. SQL engines are designed for set 
processing and not with individual rows. The times when using a 
cursor is unavoidable usually deal with corrections to the data-
base that were caused by an improper design. In rare cases the 
speed of a cursor is faster because of the physical implementa-
tion in the product.

For example, redundant duplicate rows can be taken out 
of a table that does not have a key with a cursor. Since SQL 
is  set-oriented, a query tends to try to return the entire set 
of answers. If you are dealing with an NP-Complete problem 
(Traveling Salesman, huge combinatorial problems, etc.—things 
that run longer than you can afford to wait) then you are often 
happy to find the first “good enough for us” answer that comes 
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up. These are actually a job for procedural algorithms with back-
tracking and other techniques.

The old argument for cursors in the original Sybase SQL 
Server training course was this example, which we discussed in 
chapter 6. You own a bookstore and you want to change prices; 
all books $25 and over are reduced 10%, and all books under $25 
are increased 15%.

BEGIN ATOMIC
UPDATE Books
  SET price = price * 0.90
WHERE price >= $25.00;
UPDATE Books
  SET price = price * 1.15
WHERE price < $25.00;
END;

Oops! Look at a book that was $25.00 ((25.00 * .90) * 1.10) 5 
$24.75. So you were told to cursor through the table, and change 
each row with a cursor.

Today you write: 

UPDATE Books
  SET price
     = CASE WHEN price < $25.00;
     THEN price * 1.15
     WHEN price >= $25.00
     THEN price * 0.90
     ELSE price END;

But Steve Kass pointed out that even back then, it was possi-
ble to avoid a cursor: 

BEGIN ATOMIC
UPDATE Books
  SET price = price * 1.80
WHERE price >= $25.00;
UPDATE Books
  SET price = price * 1.15
WHERE price < $25.00;
UPDATE Books
  SET price = price * 0.50
WHERE price >= $45.00;
END;

However, this code makes three passes through the Books 
table instead of just one. This could be worse than a cursor!

Limit the number of rows and columns in the cursor’s SELECT 
statement to only those required in the desired result set. This 
will avoid unnecessary fetching of data that in turn will require 
fewer server resources and increase cursor performance.
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SQLSTATE Class Codes 

00 Success
01 Success with warning
02 No data found
03 and over Error or warning

Use FOR READ ONLY instead of UPDATE cursors if possible. 
You will have to watch the transaction isolation level however.

Opening an INSENSITIVE cursor can cause its rows to be cop-
ied to a working table in many products or locked at the table 
level in others.

Do a CLOSE cursor as soon as you are finished with the result 
set. This will release any locks on the rows. Always remember to 
deallocate your cursors when you are finished.

Look for your product options. For example, SQL Server has 
FAST_FORWARD and FORWARD_ONLY cursor options when 
working with unidirectional, read-only result sets. Using FAST_
FORWARD defines a FORWARD_ONLY, READ_ONLY cursor with 
a number of internal performance optimizations.

Be careful with modifying large numbers of rows via a cursor 
loop that are contained within a transaction. Depending on the 
transaction isolation level, those rows may remain locked until 
the transaction is committed or rolled back, possibly causing 
resource contention on the server.

In Standard SQL, there is an SQLSTATE code that tells you if 
the rows of a GROUP BY query have members that excluded 
NULLs from their aggregate computations. This warning can be 
raised in the DECLARE CURSOR statement, the OPEN statement, 
or when the row representing such a grouping is FETCH-ed. Its 
implementation is defined in the Standards, so know how your 
product handles this.

When an SQL statement executes, an error status code is 
automatically generated. This code represents success, failure, 
warning, or no data found. This error status code is stored in a 
built-in variable called SQLSTATE.

The SQLSTATE status code is a five-character string that can 
contain only digits and uppercase letters.

The first two characters of the SQLSTATE status code indicate 
a class. The last three characters of the SQLSTATE code indicate a 
subclass. The following tables show the structure of the SQLSTATE 
code. This example uses the value 08001, where 08 is the class 
code and 001 is the subclass code. The value 08001 represents the 
error unable to connect with the database environment.
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In particular,
 21000 5 a cardinality violation. You can execute a GET DIAG-

NOSTICS statement to obtain additional error information.
But the warnings that can be raised are: 

 01I09 5 Cardinalities of the projection list and of the INTO list 
are not equal

 01I06 5 Vendor extension to ANSI-compliant syntax
SQLSTATE Classes predefined by SQL92.

Class Condition

00 success completion
01 warning
02 no data
07 dynamic SQL error
08 connection exception
0A feature not supported
21 cardinality violation
22 data exception
23 integrity constraint violation
24 invalid cursor state
25 invalid transaction state
26 invalid SQL statement name
27 triggered data change violation
28 invalid authorization specification
2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist
2C invalid character set name
2D invalid transaction termination
2E invalid connection name
33 invalid SQL descriptor name
34 invalid cursor name
35 invalid condition number
37 dynamic SQL syntax error or access rule violation
3C ambiguous cursor name
3D invalid catalog name
3F invalid schema name
40 transaction rollback
42 syntax error or access rule violation
44 with check option violation
HZ  remote database access. The class code HZ is reserved for conditions 

defined in International Standard ISO/IEC DIS 9579-2, Remote 
Database Access.
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7.3.8 Positioned UPDATE and DELETE Statements
Obviously, the cursor needs an explicit or implicit <updatability 
clause> of FOR UPDATE for this to work and has to be in the same 
module as the positioned statements. You get an exception when 
you try to change a READ ONLY cursor or if the cursor is not posi-
tioned on a row.

The clause CURRENT OF <cursor name> refers to the row that 
the imaginary read/write heads is on. This cursor has to map 
back to one and only one row in the base table.

UPDATE Statement

<update statement: positioned>
 ::= UPDATE <table name>
SET <set clause list>
      WHERE CURRENT OF <cursor name>

The cursor remains positioned on its current row, even if an 
exception condition is raised during the update attempt.

DELETE FROM Statement

<delete statement: positioned>
 ::= DELETE FROM <table name>
      WHERE CURRENT OF <cursor name>

If, while the cursor is open, another DELETE FROM or 
UPDATE statement attempts to modify the current cursor record, 
then a cursor operation conflict warning is raised. The transac-
tion isolation level then determines what happens. If the <delete 
statement: positioned> deleted the last cursor record, then the 
position of the cursor is after the last record; otherwise, the posi-
tion of the cursor is before the next cursor record.

7.4 SEQUENCEs
The CREATE SEQUENCE declaration acts like a function that 
returns a different value each time it is invoked. The starting 
value, increment size, and upper and lower limits are part of 
the declaration. These can be pretty much any supported exact 
numeric values that make sense. The clause is whether to restart 
the process when the upper (or lower) limit is reached. For exam-
ple, to generate sequential part numbers, we could write: 

CREATE SEQUENCE part_num AS INTEGER
START WITH 1
INCREMENT BY 1
MAXVALUE 100000
MINVALUE 1
CYCLE;
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Other options are NO MAXVALUE, NO MINVALUE, and NO 
CYCLE for the last three parameters. ORDER or NO ORDER are 
options in the DB2 implementation. This tells you if the numbers 
have been generated in sequential order as requested or not; the 
default is NO ORDER.

This example will reuse numbers when 100,000 is reached. Yes, 
it is possible to get duplicate values if you exceed the cycle size.

To use a SEQUENCE, the syntax is either NEXT VALUE FOR 
<sequence name> or PREVIOUS VALUE FOR <sequence name> instead 
of a conventional function call. If NEXT VALUE is invoked in the 
same statement as the PREVIOUS VALUE, then regardless of their 
order in the statement, PREVIOUS VALUE returns the previous 
(i.e., unincremented) value and NEXT VALUE returns the next 
value. For example: 

INSERT INTO Orders (order_nbr, ..)
VALUES (NEXT VALUE FOR Order_Seq, ..);

The same basic declaration can be used in a table to describe 
the behavior of a column. Again, an example is easier to see than 
a long explanation.

CREATE TABLE Personnel
(emp_id INTEGER
  GENERATED [ALWAYS | BY DEFAULT] AS IDENTITY
  START WITH 100
  INCREMENT 1
  MINVALUE 100
  NO MAXVALUE
  NO CYCLE,
salary_amt DECIMAL(7,2),
..);

The GENERATED [ALWAYS | BY DEFAULT] AS IDENTITY 
parameter tells us if the column is always assigned a SEQUENCE 
number, or if we can override it with an explicit value and use the 
SEQUENCE number as the column’s default value.

A SEQUENCE is available globally, and this form of generated 
column is local to its table.

7.5 Generated Columns
Generated columns are also called computed or derived col-
umns. They are declared in a base table much like they would be 
in a VIEW. Each generated column is defined by a scalar expres-
sion. All column references in such expressions must be to col-
umns of the base table containing that generated column. Values 
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for generated columns are computed and assigned automatically 
every time a row is inserted. Again, an example is easier to see 
than an explanation.

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL,
salary_amt DECIMAL(7,2) NOT NULL,
bonus_amt DECIMAL(7,2) NOT NULL,
total_comp_amt GENERATED ALWAYS AS (salary_amt + bonus_amt),
hr_clerk_user_id GENERATED ALWAYS AS (CURRENT_USER));

Notice that you cannot use an expression as a generated 
default value.

7.6 Table Functions
Table functions return a table (one or more rows) based on a 
statement expressed in a specific language, such as SQL, C, or 
Java. You can use a table function anywhere a table could be 
used, but it takes zero or more input parameters. If the table 
function has no input parameters, you get the whole table back, 
as if it were a VIEW or base table.

A table function that uses an SQL statement to return its table 
is really a different syntax for simple VIEW. The real purpose of 
this construct is to get external data into SQL.

For example, the following syntax defines a table function that 
selects aggregated sales figures from the Sales table: 

CREATE FUNCTION SalesSummary
(fiscal_period INTEGER, store_id INTEGER)
RETURNS
TABLE (fiscal_period INTEGER,
store_id INTEGER,
sales_amt DECIMAL (7,2))
LANGUAGE SQL
READS SQL DATA
DETERMINISTIC
RETURN
(SELECT fiscal_period, store_id, SUM(sales)
 FROM Sales
GROUP BY fiscal_period, store_id);

This table function has two input parameters: fiscal_period 
and store_id. Since a function has only IN parameters, there are 
no INOUT and OUT options on the parameters.

SELECT T1.fiscal_period, T1.store_id, T1.sales_amt
 FROM Calendar AS C,
    Stores AS S,
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     TABLE (SalesSummary(C.fiscal_period, S.store_id)) AS T1
WHERE C.fiscal_period = T1.fiscal_period
  AND S.store_id = T1.store_id;

The Calendar and Stores tables are joined to each row that 
the table function returns, based on matching fiscal_period and 
store_id values. This is a correlated subquery with a different 
syntax.

This is not a good example of how to use this feature. You 
find that inexperienced SQL programmers will use functions 
rather than derived tables or VIEWs simply because the syntax 
looks more like their procedural language. All this does is make 
the code harder for experienced SQL programmers to read and 
maintain.

The real strengths of table functions are in calling programs 
in a procedural language. This can be done to transfer data from 
a non-SQL data source. If you have a large volume of external 
data, you should look at ETL tools instead, but this is handy for 
smaller volumes of data. The procedural language can also create 
data that SQL would have problems building. For example, sta-
tistical calculations involve floating point corrections that most 
SQL engines do not have. Likewise, SQL was not meant for string 
manipulations, GIS applications, and many other specialized 
applications that other languages were.
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8
AUXILIARY TABLES

Auxiliary tables are a way of building functions and look-up 
tables that would be difficult if not impossible to do with the lim-
ited computational power of SQL. What SQL is good at is work-
ing with tables. Auxiliary tables are not really a part of the data 
model, but serve as adjuncts to do queries via joins rather than 
computations.

They are usually very static and constructed from an out-
side data source. Thus they do not require the same constraint 
for safety; however since the optimizer can use the constraints 
for queries, you should include them. As a general statement, 
they need to have a primary key declared so that it will cre-
ate a fast access method for searching and joining the auxiliary 
table to other tables in the schema, not to protect the data from 
redundancy.

The most important auxiliary table is a Calendar because the 
Common Era calendar is too irregular for easy computations. 
Holidays fall on lunar and solar cycles; there are hundreds of fis-
cal calendars, and so forth. The discussion of Calendar tables will 
be given in the section on temporal queries. This section will look 
at various kinds of numeric auxiliary tables.

8.1 The Series Table
The Series table is a simple list of integers from 1 to (n) that is 
used in place of looping constructs in a procedural language. 
Rather than incrementing a counter value, we try to work in 
 parallel with a complete set of values.

I used to use the name “Sequence” for this table. Unfortunately, 
SEQUENCE is now a reserved word for a construct in Standard 
SQL that builds a sequence of numbers, but values are dispensed 
one at a time as if it were a function call, with local storage to 
retain the last used value and to maintain certain rules about the 
numbering. Other people use the name “Numbers” for the table, 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00008-9
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00008-9
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but it is more than some random collection of integers. This table 
has the general declaration: 

CREATE TABLE Series
(seq INTEGER NOT NULL PRIMARY KEY

CONSTRAINT non_negative_nbr
CHECK (seq > 0)

-- cardinal_name VARCHAR(25) NOT NULL,
-- ordinal_name VARCHAR(25) NOT NULL,
. . .
CONSTRAINT numbers_are_complete
CHECK ((SELECT COUNT(*) FROM Series) =

(SELECT MAX(seq) FROM Series));

with data like that shown in Table 8.1.
This table is a list of all the integers from 1 to some value (n). 

The ordinal and cardinal columns are simply examples of handy 
things that you might want to do with an integer, such as turn 
it into English words, which would be difficult in a procedural 
 language or with the limitations of SQL.

I have found that is it a bad idea to start with zero, though that 
seems more natural to computer programmers. The reason for 
omitting zero is that this auxiliary table is often used to provide 
row numbering by being CROSS JOIN-ed to another table, and 
the zero would throw off the one-to-one mapping.

8.1.1 Enumerating a List
Given a table in a data warehouse for a report that uses the 
monthly sales data shown as an attribute (the monthly amounts 
have to be NULL-able to hold missing values for the future), thus: 

CREATE TABLE AnnualSales1
(salesman CHAR(15) NOT NULL PRIMARY KEY,

Seq cardinal ordinal. . .

1 'one' 'first'
2 'two' 'second'
3 'three' 'third'
. . . . . . . . .
101 'One hundred and one' 'One hundred and first'
. . . . . . . . .

Table 8.1 List of Integers 
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jan DECIMAL(5,2),
feb DECIMAL(5,2),
mar DECIMAL(5,2),
apr DECIMAL(5,2),
may DECIMAL(5,2),
jun DECIMAL(5,2),
jul DECIMAL(5,2),
aug DECIMAL(5,2),
sep DECIMAL(5,2),
oct DECIMAL(5,2),
nov DECIMAL(5,2),
"dec" DECIMAL(5,2)); -- DEC is a reserved word

The goal is to “flatten” it out so that it looks like this: 

CREATE TABLE AnnualSales2
(salesman_name CHAR(15) NOT NULL PRIMARY KEY,
sales_month CHAR(3) NOT NULL

CONSTRAINT valid_month_code
CHECK (sales_month
IN ('Jan', 'Feb', 'Mar', 'Apr',

'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec'),

sales_amt DECIMAL(5,2) NOT NULL,
PRIMARY KEY(salesman, sales_month));

The trick is to build a VIEW of the original table with a number 
beside each month: 

CREATE VIEW NumberedSales
AS SELECT salesman,

 1 AS M01, jan,
 2 AS M02, feb,
 3 AS M03, mar,
 4 AS M04, apr,
 5 AS M05, may,
 6 AS M06, jun,
 7 AS M07, jul,
 8 AS M08, aug,
 9 AS M09, sep,
10 AS M10, oct,
11 AS M11, nov,
12 AS M12, "dec" -- reserved word

FROM AnnualSales1;

Now you can use the Series table or you can use a VALUES 
table constructor to build one. The flatten VIEW is: 

CREATE VIEW AnnualSales2 (salesman, sales_month, 
sales_amt)

AS SELECT S1.salesman_name,
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(CASE WHEN A.nbr = M01 THEN 'Jan'
WHEN A.nbr = M02 THEN 'Feb'
WHEN A.nbr = M03 THEN 'Mar'
WHEN A.nbr = M04 THEN 'Apr'
WHEN A.nbr = M05 THEN 'May'
WHEN A.nbr = M06 THEN 'Jun'
WHEN A.nbr = M07 THEN 'Jul'
WHEN A.nbr = M08 THEN 'Aug'
WHEN A.nbr = M09 THEN 'Sep'
WHEN A.nbr = M10 THEN 'Oct'
WHEN A.nbr = M11 THEN 'Nov'
WHEN A.nbr = M12 THEN 'Dec'
ELSE NULL END),

(CASE WHEN A.nbr = M01 THEN jan
WHEN A.nbr = M02 THEN feb
WHEN A.nbr = M03 THEN mar
WHEN A.nbr = M04 THEN apr
WHEN A.nbr = M05 THEN may
WHEN A.nbr = M06 THEN jun
WHEN A.nbr = M07 THEN jul
WHEN A.nbr = M08 THEN aug
WHEN A.nbr = M09 THEN sep
WHEN A.nbr = M10 THEN oct
WHEN A.nbr = M11 THEN nov
WHEN A.nbr = M12 THEN “dec” -- reserved word
ELSE NULL END)

FROM NumberedSales AS S1
CROSS JOIN
(SELECT seq FROM Series WHERE seq <= 12) AS 

A(month_nbr);

If your SQL product has derived tables, this can be written as a 
single VIEW query.

8.1.2 Mapping a Series into a Cycle
It is sometimes handy to map a sequence of numbers to a cycle. 
The general formula is: 

SELECT seq, MOD (((seq + (:n-1))/ :n), :n)
FROM Series;

As an example, consider the following problem in which 
we want to display an output with what is called “snaking” 
in a report. Each id has several descriptions and we want 
to see them in cycles of four (n 5 4); when a department has 
more than four job descriptions, we want to start a new row 
with an incremented position each subset of four or fewer job 
descriptions.
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CREATE TABLE Companies
(dept_nbr INTEGER NOT NULL,
job_nbr INTEGER NOT NULL, -- sequence within department
company_descr CHAR(6) NOT NULL,
PRIMARY KEY (dept_nbr, job_nbr));

INSERT INTO Companies
VALUES (1, 1, 'desc01'), (1, 2, 'desc02'), (1, 3, 

'desc03'),
(2, 1, 'desc04'), (2, 2, 'desc05'), (2, 3, 'desc06'),
(2, 4, 'desc07'), (2, 5, 'desc08'), (2, 6, 'desc09'),
(3, 1, 'desc10'), (3, 2, 'desc11'), (3, 3, 'desc12');

I am going to use a VIEW rather than a derived table to make 
the logic in the intermediate step easier to see.

CREATE VIEW Foo2 (dept_nbr, row_grp, d1, d2, d3, d4)
AS
SELECT dept_nbr, (MOD((job_nbr + 3)/4), 4),

MAX(CASE WHEN MOD(job_nbr, 4) = 1
THEN company_descr ELSE '  ' END) AS d1,

MAX(CASE WHEN MOD(job_nbr, 4) = 2
THEN company_descr ELSE '  ' END) AS d2,

MAX(CASE WHEN MOD(job_nbr, 4) = 3
THEN company_descr ELSE '  ' END) AS d3,

MAX(CASE WHEN MOD(job_nbr, 4) = 0
THEN company_descr ELSE '  ' END) AS d4

FROM Companies AS F1
GROUP BY dept_nbr, job_nbr;

SELECT dept_nbr, row_grp,
MAX(d1) AS d1, MAX(d2) AS d2, MAX(d3) AS d3, MAX(d4) AS d4

FROM Foo2
GROUP BY dept_nbr, row_grp
ORDER BY dept_nbr, row_grp;

This is a bad coding practice. Display is a function of the front 
end and should not be done in the database.

Results
dept_nbr row_grp d1 d2 d3 d4

1 1 desc1 desc2 desc3
2 1 desc4 desc5 desc6 desc7
2 2 desc8 desc9
3 1 desc10 desc11 desc12
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8.1.3 Replacing an Iterative Loop
Although is not recommended as a technique, and it will vary 
from SQL dialect to dialect, it is a good exercise in learning to 
think in sets. You are given a quoted string that is made up of 
integers separated by commas and your goal is to break each of 
integers out as a row in a table.

The obvious approach is to write procedural code that will 
loop over the input string and cut off all characters from the start 
up to, but not including, the first comma, cast the substring as an 
integer, and then iterate through the rest of the string.

CREATE PROCEDURE ParseList (IN inputstring VARCHAR(1000))
LANGUAGE SQL
BEGIN DECLARE i INTEGER;
SET i = 1; -- iteration control variable
-- add sentinel comma to end of input string
SET inputstring = TRIM (BOTH '' FROM inputstring || ', ');
WHILE i < CHAR_LENGTH(inputstring)
DO WHILE SUBSTRING(inputstring, i, 1) <> ', '
DO SET i = i + 1;
END WHILE;

SET outputstring = SUBSTRING(inputstring, 1, i-1);
INSERT INTO Outputs VALUES (CAST (outputstring AS 

INTEGER));
SET inputstring = SUBSTRING(inputstring, i+1);
END WHILE;
END;

Another way to do this is with a Series table and this strange-
looking query: 

CREATE PROCEDURE ParseList (IN inputstring VARCHAR(1000))
LANGUAGE SQL
INSERT INTO ParmList (parameter_position, param)
SELECT S1.i,

CAST (SUBSTRING ((', ' || inputstring ||', ')
FROM (S1.i + 1)
FOR (S2.i − S1.i − 1))

AS INTEGER)
FROM Series AS S1,

Series AS S2
WHERE SUBSTRING((', ' || inputstring ||', ') FROM S1.i 

FOR 1) = ', '
AND SUBSTRING((', ' || inputstring ||', ') FROM S2.i 

FOR 1) = ', '
AND S2.i
= (SELECT MIN(S3.i)

FROM Series AS S3
WHERE S1.i < S3.i
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AND SUBSTRING((', ' || inputstring ||', ')
FROM S3.i
FOR 1) = ', ')

AND S1.i < CHAR_LENGTH (inputstring+ 1)
AND S2.i < CHAR_LENGTH (inputstring+ 2);

The trick here is to concatenate commas on the left and right 
sides of the input string. To be honest, you would probably want 
to trim blanks and perhaps do other tests on the string, such as 
seeing that LOWER(:instring) = UPPER(:instring) to avoid alpha-
betic characters, and so forth. That edited result string would be 
kept in a local variable and used in the INSERT INTO statement.

The integer substrings are located between the i-th and 
((i+1)-th comma pairs. In effect, the Sequence table replaces 
the loop counter. The Series table has to have enough numbers 
to cover the entire string, but unless you really like to type a long 
parameter list, this should not be a problem. The last two predi-
cates are to avoid a Cartesian product with the Series table.

8.2 Lookup Auxiliary Tables
In the old days, when engineers used slide rulers, other people 
went to the back of their math and financial books to use printed 
tables of functions. Here you could find trigonometry, or com-
pound interest, or statistical functions. Today, you would more 
likely calculate the function because computing power is so 
cheap. Pocket calculators that sold for hundreds of dollars in the 
1960s are now on spikes next to chewing gum in the check-out 
line at office supply stores.

In the days of keypunch data entry, there would be loose-leaf 
notebooks of which encoding schemes to use sitting next to the 
incoming paper forms. Today, you will more likely see a WIMP 
(Windows, Icons, Menus, and Pulldowns or Pop-ups) interface.

Although the physical mechanisms have changed, the idea of 
building a table (in the nonrelational sense) is still valid. An aux-
iliary table holds a static or relatively static set of data. The users 
do not change the data. Updating one of these tables is a job for 
the database administrator or the data repository administrator, 
if your shop is that sophisticated. One of the problems with even 
a simple look-up table change is that the existing data often has 
to be changed to the new encoding scheme, and this required 
administrative privileges.

The primary key of an auxiliary table is never an identifier; an 
identifier is unique in the schema and refers to one entity any-
where it appears. These are values, not entities. Look-up tables that 
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work with values are not entities by definition. Monstrosities likes 
value_id and <something>_code_id are absurd on the face of them.

This is a short list of postfixes that can be used as the name 
of the key column in auxiliary tables. There is a more complete 
list of postfixes in my book, SQL Programming Style (2005, ISBN 
978-0-12-088797-2): 
•	 _nbr or num: Tag number; a string of digits that names something. 

Do	 not	 use	 _no	 since	 it	 looks	 like	 the	 Boolean	 yes/no	 value.	
I prefer nbr to num since it is used as a common abbreviation in 
several European languages.

•	 _name or nm: An alphabetic name that explains itself. It is also 
called a nominal scale.

•	 _code	 or	 _cd: A code is a standard maintained by a trusted 
source, usually outside of the enterprise. For example the ZIP 
code is maintained by the United States Postal Service. A code 
is well understood in its context, so you might not have to 
translate it for humans.

•	 _cat: Category, an encoding that has an external source that 
has very distinct groups of entities. There should be strong 
formal criteria for establishing the category. The classification 
of Kingdom in biology is an example.

•	 _class: An internal encoding that does not have an exter-
nal source that reflects a subclassification of the entity. There 
should be strong formal criteria for the classification. The 
classification of plants in biology is an example.

•	 _type: An encoding that has a common meaning both inter-
nally and externally. Types are usually less formal than a class 
and might overlap. For example a driver’s license might be 
motorcycle, automobile, taxi, truck, and so forth.
The differences among type, class, and category are an increasing 

strength of the algorithm for assigning the type, class, or category. A 
category is very distinct; you will not often have to guess if something 
is “animal, vegetable, or mineral” to put it in one of those categories.

A class is a set of things that have some commonality; you 
have rules for classifying an animal as a mammal or a reptile. You 
may have some cases where it is harder to apply the rules, such 
as the egg-laying mammal in Australia, but the exceptions tend to 
become their own classification—monotremes in this example.

A type is the weakest of the three, and it might call for a judg-
ment. For example, in some states a three-wheeled motorcycle 
is licensed as a motorcycle. In other states, it is licensed as an 
automobile. And in some states, it is licensed as an automobile 
only if it has a reverse gear.

The three terms are often mixed in actual usage. Stick with the 
industry standard, even if violates the definitions just given.
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•	 _status: An internal encoding that reflects a state of being that 
can	 be	 the	 result	 of	 many	 factors.	 For	 example,	 credit_status	
might be computed from several sources.

•	 _addr	or	_loc: An address or location for an entity. There can 
be a subtle difference between an address and location.

•	 _date or dt: Date, temporal dimension. It is the date of some-
thing—employment, birth, termination, and so forth; there is 
no such column name as just a date by itself.

8.2.1 Simple Translation Auxiliary Tables
The most common form of look-up has two columns, one for 
the value to be looked up and one for the translation of that 
value into something the user needs. A simple example would be 
the  two-letter ISO 3166 country codes in a table like this: 

CREATE TABLE CountryCodes
(country_code CHAR(2) NOT NULL PRIMARY KEY, -- iso-3166
country_name VARCHAR(20) NOT NULL);

You can add a unique constraint on the descriptive  column, 
but most programmers do not bother since these tables do not 
change much and when they do change, it is done with data pro-
vided by a trusted source. This makes OLTP database program-
mers a bit uneasy, but Data Warehouse database  programmers 
understand it.

8.2.2 Multiple Translation Auxiliary Tables
Although we want the encoding value to stay the same, we 
often need to have multiple translations. There can be a 
short description, a long description, or just a different one 
depending on who was looking at the data. For example, 
 consider displaying error messages in various languages in a 
single table: 

CREATE TABLE ErrorMessages
(err_msg_code CHAR(5) NOT NULL PRIMARY KEY,
english_err_msg CHAR(25) NOT NULL . . .
french_err_msg NCHAR(25) NOT NULL ..
. . .
esperanto NCHAR (25) NOT NULL);

Yes, this does require a structure change to add a new 
 language. However, since the data is static the convenience of hav-
ing all the related translations in one place is probably worth it. 
This inherently forces you to have all the languages for each error 
code, whereas a strict First Normal Form (1NF) table does not.
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Your first thought is that an application using this table would 
be full of code, like: 

SELECT CASE :my_language
WHEN 'English' THEN english_err
WHEN 'French' THEN french_err
. . . END AS err_msg

FROM ErrorMessages
WHERE err_msg_code = '42';

This is not usually the case. You have another table that finds 
the language preferences of the CURRENT_USER and presents a VIEW 
to him or her in the language he or she desires.

You don’t invent or add languages very often—though I do 
know of one product that was adding Klingon to its error mes-
sages. Seriously, it was for a demo at a trade show to show off the 
internationalization features. (“Unknown error 5 Die in igno-
rance!!” Sort of a user-surly interface instead of user-friendly.)

8.2.3 Multiple Parameter Auxiliary Tables
This type of auxiliary table has two or more parameters that it 
uses to seek a value. The classic example from college freshman 
statistics courses is the Student’s t-distribution for small  samples 
(Table 8.2). The value of (r) is the size of the sample minus one 
and the percentages are the confidence intervals. Loosely 
 speaking, the Student’s t-distribution is the best guess at the 
 population distribution that we can make without knowing the 
standard deviation with a certain level of confidence.

r 90% 95% 97.5% 99.5%

1 3.07766 6.31371 12.7062 63.65600
2 1.88562 2.91999 4.30265 9.92482
3 1.63774 2.35336 3.18243 5.84089
4 1.53321 2.13185 2.77644 4.60393
5 1.47588 2.01505 2.57058 4.03212
10 1.37218 1.81246 2.22814 3.16922
30 1.31042 1.69726 2.04227 2.74999
100 1.29007 1.66023 1.98397 2.62589

1.28156 1.64487 1.95999 2.57584

Table 8.2 Student’s T-Distribution 
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William Gosset created this statistic in 1908. His employer, 
Guinness Breweries, required him to publish under a pseud-
onym, so he chose “Student” and that name stuck.

8.2.4 Range Auxiliary Tables
In a range auxiliary table, there is one parameter, but it must fall 
inside a range of values. The most common example would be 
reporting periods or ranges. There is no rule that prevents these 
ranges from overlapping. For example, Swimsuit Season and 
BBQ Grill Sale might have a large number of days in common at 
a department store. However, it is usually a good idea not to have 
disjoint ranges.

CREATE TABLE ReportPeriods
(period_name CHAR(15) NOT NULL,
period_start_date DATE NOT NULL,
period_end_date DATE NOT NULL,
CHECK(period_start_date < period_end_date),
PRIMARY KEY (period_start_date, period_end_date));

The searching is done with a BETWEEN predicate. A NULL can be 
useful as a marker for an open-ended range. Consider a table for 
grades in a school. The CHECK() constraint is not needed because of 
the static nature of the data, but it gives the optimizer extra informa-
tion about the two columns and might help improve performance.

CREATE TABLE LetterGrades
(letter_grade CHAR(1) NOT NULL PRIMARY KEY,
low_score DECIMAL(6,3) NOT NULL,
high_score DECIMAL(6,3));

INSERT INTO LetterGrades
VALUES ('F',0.000, 60.000),
('D', 60.999, 70.000),
('C', 70.999, 80.000),
('B', 80.999, 90.000),
('A', 90.999, NULL);

If we had made the last range ('A', 90.999, 100.000), then 
a student who did extra work and got a total score over 100.000 
would not have gotten a grade. The alternatives are to use a 
dummy value, such as ('A', 90.999, 999.999) or to use a NULL 
and add the predicate.

SELECT ..
FROM ..
WHERE Exams.score
BETWEEN LetterGrades.low_score

AND COALESCE (LetterGrades.high_score, Exams.score);
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The choice of using a dummy value or a NULL will depend on 
the nature of the data.

8.2.5 Hierarchical Auxiliary Tables
In a hierarchical auxiliary table, there is one parameter, but it 
must fall inside one or more ranges of values and those ranges 
must be nested inside each other. We want to get an entire path 
of categories back as a result.

A common example would be the Dewey Decimal Classification 
system, which we might encode as: 

CREATE TABLE DeweyDecimalClassification
(category_name CHAR(35) NOT NULL,
low_ddc INTEGER NOT NULL

CHECK (low_ddc BETWEEN 000 AND 999),
high_ddc INTEGER NOT NULL

CHECK (high_ddc BETWEEN 000 AND 999),
CHECK (low_ddc <= high_ddc),
PRIMARY KEY (low_ddc, high_ddc));

INSERT INTO DeweyDecimalClassification
VALUES ('Natural Sciences & Mathematics', 500, 599),

('Mathematics', 510, 519),
('General Topics', 511, 511),
('Algebra & Number Theory', 512, 512),
..,
('Probabilities & Applied Mathematics', 519, 519);

Thus a search on 511 returns three rows in the look-up table. The 
leaf nodes of the hierarchy always have (low_ddc = high_ddc) and 
the relative nesting level can be determined by (high_ddc - low_
ddc) or by the range values themselves.

Again, you can have a constraint on the table that prevents 
overlapping ranges, but this is not usually placed on the table 
since it is checked when the table is loaded. However, the CHECK 
(low_ddc <= high_ddc) can pass along information to the opti-
mizer and the PRIMARY KEY (low_ddc, high_ddc) will create a 
 useful index for the joins.

8.2.6 One True Look-up Table
I think that Paul Keister was the first person to coin the phrase 
OTLT (One True Look-up Table) for a common SQL program-
ming technique that is popular with newbies. Later D. C. Peterson 
called it a MUCK (Massively Unified Code-Key) table. The tech-
nique crops up time and time again, but I’ll give him credit as the 
first guy to give it a name. Simply put, the idea is to have one table 
do all of the code look-ups in the schema. It usually looks like this: 
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CREATE TABLE MagicalUniversalLookups
(code_type CHAR(10) NOT NULL,
code_value VARCHAR(255) NOT NULL,
code_description VARCHAR(255) NOT NULL,
PRIMARY KEY (code_value, code_type));

So if we have Dewey Decimal Classification (library codes), 
ICD (International Classification of Diseases), and two-letter 
ISO 3166 country codes in the schema, we have them all in one 
honking big table.

Let’s start with the problems in the DDL and then look at the 
awful queries you have to write (or hide in VIEWs). So we need to 
go back to the original DDL and add a CHECK() constraint on the 
code_type column. (Otherwise, we might “invent” a new encoding 
system by typographical error.)

The Dewey Decimal and ICD codes are numeric, and the 
ISO 3166 is alphabetic. Oops, we need another CHECK constraint 
that will look at the code_type and make sure that the string is in 
the right format. Now the table looks something like this, if any-
one attempted to do it right, which is not usually the case: 

CREATE TABLE MagicalUniversalLookups
(code_type CHAR(10) NOT NULL

CHECK(code_type IN ('DDC', 'ICD', 'ISO3166', ..),
code_value VARCHAR(255) NOT NULL,

CHECK
(CASE WHEN code_type = 'DDC'

AND code_value
SIMILAR TO '[0-9][0-9][0-9].[0-9][0-9][0-9]'

THEN 1
WHEN code_type = 'ICD'

AND code_value
SIMILAR TO '[0-9][0-9][0-9].[0-9][0-9][0-9]'

THEN 1
WHEN code_type = 'ISO3166'

AND code_value
SIMILAR TO '[A-Z][A-Z]'

THEN 1 ELSE 0 END = 1),
code_description VARCHAR(255) NOT NULL,
PRIMARY KEY (code_value, code_type));

Since the typical application database can have dozens and 
dozens of codes in it, just keep extending this pattern for as long 
as required. Not very pretty is it? That is why most OTLT pro-
grammers do not bother with it and thus destroy data integrity.

The next thing you notice about this table is that the columns 
are pretty wide VARCHAR(n), or even worse, that they NVARCHAR(n). 
The size of the string is most often the largest one allowed in that 
particular SQL product.
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Since you have no idea what is going to be shoved into the 
table, there is no way to predict and design with a safe, reasonable 
maximum size. The size constraint has to be put into the WHEN 
clause of that second CHECK() constraint between code_type and 
code_value.

These large sizes tend to invite bad data. You give someone a 
VARCHAR(n) column, and you eventually get a string with a lot of 
white space and a small odd character sitting at the end of it. You 
give someone an NVARCHAR(255) column and eventually it will get 
a Buddhist sutra in Chinese Unicode. I am sure of this because 
I load the Heart Sutra when I get called to evaluate a database.

If you make an error in the code_type or code_description 
among codes with the same structure, it might not be detected. 
You can turn 500.000 from “Natural Sciences and Mathematics” 
in Dewey Decimal codes into “Coal Workers Pneumoconiosis” in 
ICD and vice versa. This can be really hard to find when one of 
the similarly structured schemes had unused codes in it.

Now let’s consider the problems with actually using the OTLT 
in the DML. It is always necessary to add the code_type as well as 
the value that you are trying to look up.

SELECT P1.ssn, P1.last_name, .., L1.code_description
FROM MagicalUniversalLookups AS L1, Personnel AS P1
WHERE L1.code_type = 'ICD'
AND L1.code_value = P1.icd
AND ..;

In this sample query, I need to know the code_type of the 
Personnel table sickness column and of every other encoded column 
in the table. If you got a code_type wrong, you can still get a result.

I also need to allow for some overhead for type conversions. 
It would be much more natural to use DECIMAL (6,3) for Dewey 
Decimal codes instead of VARCHAR(n), so that is probably how it 
appears in the Personnel table. But why not use CHAR(7) for the 
code? If I had a separate table for each encoding scheme, then 
I would have used a FOREIGN KEY and matched the data types in 
the referenced and referencing tables. There is no definitive guide 
for data type choices in the OTLT approach.

When I go to execute a query, I have to pull in the entire OTLT 
table, even if I only use one code. If one code is at the start of the 
physical storage, and another is at the end of physical storage, I can 
do a lot of paging. When I update the OTLT table, I have to lock out 
everyone until I am finished. It is like having to carry an encyclope-
dia set with you when all you needed is a magazine article.

I am going to venture a guess that this idea came from OO 
programmers who think of it as some kind of polymorphism 
done in SQL. They say to themselves that a table is a class, which 
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it is not, and therefore it ought to have polymorphic behaviors, 
which it does not.

Maybe there are good reasons for the data modeling princi-
ple that a well-designed table is a set of things of the same kind 
instead of a pile of unrelated items.

8.3 Auxiliary Function Tables
SQL is not a computational language like FORTRAN and the special-
ized math packages. It typically does not have the numerical anal-
ysis routines to compensate for floating point rounding errors, or 
algebraic reductions in the optimizer. But it is good at joins.

Most auxiliary look-up tables are for simple decoding, but they 
can be used for more complex functions. Let’s consider two financial 
calculations that you cannot do easily: the Net Present Value (NPV) 
and its related Internal Rate of Return (IRR). Let me stop and ask how 
would you program the NPV and IRR in SQL? The answer posted on 
most Newsgroups replies was to write a procedure directly from the 
equation in the vendor-specific 4GL language and then call it.

As a quick review, let’s start with the net present value (NPV) 
calculation. Imagine that you just won the lottery. You can get 
the money in a lump sum or have it in monthly payouts over 
20 years. What is the best deal? The lottery will pay you more total 
money over time than in a single payment. But if you can invest 
the single lump sum at a given interest rate yourself, you might 
do better. The Net Present Value tells you what a series of payouts 
is worth as a lump sum at a given interest rate.

To make this more concrete, let’s show a little code and data 
for your two investments options.

CREATE TABLE CashFlows
(project_id CHAR(15) NOT NULL,
time_period INTEGER NOT NULL,
CHECK (time_period > = 0),
payment_amt DECIMAL(12,4) NOT NULL,
PRIMARY KEY (project_id, time_period));

INSERT INTO CashFlows
VALUES ('Acme', 0, −1000.0000),('Acme', 1, 500.0000), 

('Acme', 2,400.0000),
('Acme', 3, 200.0000), ('Acme', 4, 200.0000),
('Beta', 0, −1000.0000), ('Beta', 1, 100.0000), 

('Beta', 2, 200.0000),
('Beta', 3, 200.0000), ('Beta', 4, 700.0000);

To begin, I invest $1,000 at the start of each project; the time 
period is zero and the amount is always negative. Every year I 
get a different amount back on my investment so that at the end 
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of the fourth year, I’ve received a total of $13,000 on the Acme 
 project less my initial $1,000 for a profit of $12,000. Likewise the 
Beta project returns $15,000 at the end.

Beta looks like a better investment. Let’s assume we can get 
10% return on an investment and that we put our cash flows into 
that investment. The net present value function in pseudo-code is: 

FOR t FROM 0 TO n
DO SUM(a[t]/ POWER(1.00 + r), t)))
END FOR;

where a[i] is the cash flow for time period (i), time period (t 5 0) 
is the initial investment (it is always negative), and r is the 
 interest rate.

When we run them through the equation, we find that Acme 
has an NPV of $71.9896 and Beta is worth 2$115.4293, so Acme 
is really the better project. We can get more out of the Acme cash 
flow than the Beta cash flow.

8.3.1 Inverse Functions with Auxiliary Tables
The Internal Rate of Return (IRR) depends on the NPV. It finds 
the interest rate at which your investment would break even if 
you invested back into the same project. Thus if you can get a 
better rate, this is a good investment.

Let’s build another table.

CREATE TABLE Rates
(rate DECIMAL(6,4) NOT NULL PRIMARY KEY);

Now let’s populate it with some values. One trick to fill the 
Rates table with values is to use a CROSS JOIN and keep values 
inside a reasonable range.

CREATE TABLE Digits(digit DECIMAL (6,4) PRIMARY KEY);
INSERT INTO Digits
VALUES (0.0000), (0.0001), (0.0002), (0.0003), (0.0004),
(0.0005), (0.0006), (0.0007), (0.0008), (0.0009);

INSERT INTO Rates (rate)
SELECT DISTINCT (D1.digit *1000) + (D2.digit *100) +  

(D3.digit *10) + D4.digit
FROM Digits AS D1, Digits AS D2, Digits AS D3, Digits 

AS D4
WHERE ((D1.digit *1000) + (D2.digit *100) + (D3.digit *10) 

+ D4.digit)
BETWEEN {{lower limit}} AND {{upper limit}}; 

-- pseudo-code
DROP TABLE Digits;
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We now have two choices. We can build a VIEW or CTE that uses 
the cash flow table, thus: 

CREATE VIEW NPV_by_Rate(project_id, rate, npv)
AS
SELECT CF.project_id, R1.rate,
SUM(amount / POWER((1.00 + R1.rate), time_period))
FROM CashFlows AS CF, Rates AS R1
GROUP BY R1.rate, CF.project_id;

or we can set the amount in the formula to 1 and store the multi-
plier	for	the	(rate,	time_period)	pair	in	another	table:	

INSERT INTO NPV_Mulipliers (time_period, rate, 
npv_multiplier)

SELECT S.seq, R1.rate,
SUM(1.00/(POWER((1.00 + R1.rate), seq)))
FROM Series AS S, Rates AS R1
WHERE S.seq <= {{ upper limit }} --pseudo-code
GROUP BY S.seq, R1.rate;

The Series table contains integers 1 to (n) and it is a standard 
auxiliary table used to avoid iteration.

Assuming we use the VIEW, the IRR is now the single query: 

SELECT 'Acme', rate AS irr, npv
FROM NPV_by_Rate
WHERE ABS(npv)
= (SELECT MIN(ABS(npv))

FROM NPV_by_Rate)
AND project_id = 'Acme';

In my sample data, I get an IRR of 13.99% at an NPV of 
20.04965 for the Acme project. Assume you have hundreds of 
projects to consider; would you rather write one query or hun-
dreds of procedure calls?

This web site has a set of slides that deal with the use of inter-
polation to find the IRR: www.yorku.ca/adms3530/Interpolation.
pdf. Using the method described on the web site, we can write 
the interpolation for the Acme example as: 

SELECT R1.rate + (R1.rate * (R1.npv/(R1.npv − R2.npv))) 
AS irr

FROM NPV_by_Rate AS R1, NPV_by_Rate AS R2
WHERE R1.project_id = 'Acme'
AND R2.project_id = 'Acme'
AND R1.rate = 0.1000
AND R2.rate = 0.2100
AND R1.npv > 0
AND R2.npv < 0;

http://www.yorku.ca/adms3530/Interpolation.pdf
http://www.yorku.ca/adms3530/Interpolation.pdf
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The important points are that the NPVs from R1 and R2 have to 
be on both sides of the zero point, so that you can do a linear inter-
polation between the two rates with which they are associated.

The trade-off is speed for accuracy. The IRR function is 
slightly concave and not linear; that means that if you graph it, 
the shape of the curve buckles toward the origin. Picking good 
(R1.rate, R2.rate) pairs is important, but if you want to round 
off to the nearest whole percentage, you probably have a larger 
range than you might think. The answer, 0.1399 from the original 
table look-up method, rounds to 14%, as do all the interpolations 
in Table 8.3.

The advantages of using an auxiliary function table are: 
1. All host programs will be using the same calculations.
2. The formula can be applied to hundreds or thousands of proj-

ects at one time instead doing one project, as you would with a 
spreadsheet or financial calculator.
Robert J. Hamilton (bobha@seanet.com) posted proprietary 

T-SQL functions for the NPV and IRR functions. The NPV func-
tion was straightforward, but he pointed out several problems 
with finding the IRR.

By definition IRR is the rate at which the NPV of the cash 
flows equals zero. When IRR is well behaved the graph of NPV 
as a function of rate is a curve that crosses the x-axis once and 
only once. When IRR is not well behaved, the graph crosses the 
x-axis many times, which means the IRR is either multivalued or 
is undefined.

At this point, we need to ask what the appropriate domain is 
for IRR. As it turns out NPV is defined for all possible rates, both 
positive and negative, except where NPV approaches an asymp-
tote at rate of 2100% and the power function blows up. What does 
a negative rate mean when calculating NPV? What does it mean to 
have a negative IRR? Well it depends on how you look at it.

RI R2 IRR

0.1000 0.2100 0.140135
0.1000 0.2000 0.143537
0.0999 0.2000 0.143457
0.0999 0.1999 0.143492
0.0800 0.1700 0.135658

Table 8.3 Interpolations 

mailto:bobha@seanet.com
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If you take a mathematical approach, a negative IRR is just 
another solution to the equation. If you take an economic approach, 
a negative IRR means you are losing money on the project. Perhaps 
if you live in a deflationary economy, then a negative cash flow 
might be profitable in terms of real money, but that is a very unusual 
situation and we can dismiss negative IRRs as unreasonable.

This means that a table look-up approach to the IRR has to 
have a very fine granularity and enough of a scope to cover a lot 
of situations for the general case. It also means that it is proba-
bly not the way to go. Expressing rates to 5 or 6 decimal places is 
common in home mortgage finance (i.e., APR 5.6725%), and this 
degree of precision using the set-based approach does not scale 
well. Moreover, this is exacerbated by the requirements of using 
IRR in hyperinflationary economies where solutions of 200%, 
300%, and higher are meaningful.

Here	 are	 Mr.	 Hamilton’s	 functions	 written	 in	 SQL/PSM;	 one	
uses a straight-line algorithm as you find in Excel and other 
spreadsheets, and a bounding box algorithm. The bounding box 
algorithm has better domain integrity but can inadvertently “skip 
over” a solution when widening its search.

CREATE TABLE CashFlows
(t INTEGER NOT NULL CHECK (t >= 0),
amount DECIMAL(12,4) NOT NULL);

CREATE TABLE Rates
(rate DECIMAL(7,5) NOT NULL);

CREATE TABLE Digits
(digit DECIMAL(6,4));
INSERT INTO Digits
VALUES (0.0000), (0.0001), (0.0002), (0.0003), (0.0004),
(0.0005), (0.0006), (0.0007), (0.0008), (0.0009);

INSERT INTO Rates
SELECT D1.digit * 1000 + D2.digit * 100 + D3.digit * 10 + 

D4.digit FROM Digits AS D1, Digits AS D2, Digits AS D3, 
Digits AS D4;

INSERT INTO Rates
SELECT rate-1 FROM Rates WHERE rate >= 0;

INSERT INTO Rates
SELECT rate-2 FROM Rates WHERE rate >= 0;

DROP TABLE Digits;

CREATE FUNCTION NPV (IN my_rate FLOAT)
RETURNS FLOAT
DETERMINISTIC
CONTAINS SQL
RETURN (CASE WHEN -- prevent divide by zero at rate = −100%
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ABS (1.0 + my_rate) >= 1.0e-5
THEN (SELECT SUM (amount * POWER ((1.0 + my_rate), −t))

FROM CashFlows)
ELSE NULL END);

CREATE FUNCTION irr_bb (IN guess FLOAT)
RETURNS FLOAT
DETERMINISTIC
CONTAINS SQL

BEGIN
DECLARE maxtry INTEGER;
DECLARE x1 FLOAT;
DECLARE x2 FLOAT;
DECLARE f1 FLOAT;
DECLARE f2 FLOAT;
DECLARE x FLOAT;
DECLARE dx FLOAT;
DECLARE x_mid FLOAT;
DECLARE f_mid FLOAT;

—initial bounding box around guess

SET x1 = guess − 0.005;
SET f1 = NPV (x1);
IF f1 IS NULL THEN RETURN (f1); END IF;

SET x2 = guess + 0.005;
SET f2 = NPV (x2);
IF f2 IS NULL THEN RETURN (f2); END IF;

—expand bounding box to include a solution

SET maxtry = 50;
WHILE maxtry > 0 -- try until solution is bounded

AND (SIGN(f1) * SIGN(f2)) <> −1
DO IF ABS (f1) < ABS (f2)
THEN -- move lower bound

SET x1 = x1 + 1.6 * (x1 − x2);
SET f1 = NPV (x1);
IF f1 IS NULL -- no irr
THEN RETURN (f1);
END IF;

ELSE -- move upper bound
SET x2 = x2 + 1.6 * (x2 − x1);
SET f2 = NPV (x2);
IF f2 IS NULL -- no irr
THEN RETURN (f2);
END IF;

END IF;
SET maxtry = maxtry − 1;
END WHILE;
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IF (SIGN(f1) * SIGN(f2)) <> −1
THEN RETURN (CAST (NULL AS FLOAT));
END IF;
END;

—now find solution with binary search

SET x = CASE WHEN f1 < 0
THEN x1
ELSE x2 END;

SET dx = CASE WHEN f1 < 0
THEN (x2 − x1)
ELSE (x1 − x2) END;

SET maxtry = 50;
WHILE maxtry > 0
DO SET dx = dx / 2.0; -- reduce steps by half
SET x_mid = x + dx;
SET f_mid = NPV (x_mid);
IF f_mid IS NULL -- no irr
THEN RETURN (f_mid);
ELSE IF ABS (f_mid) < 1.0e-5 -- epsilon for problem

THEN RETURN (x_mid); -- irr found
END IF;

END IF;
IF f_mid < 0
THEN SET x = x_mid;
END IF;
SET maxtry = maxtry − 1;

END WHILE;
RETURN (CAST (NULL AS FLOAT));
END;

If you prefer to compute the IRR as a straight line, you can use 
this function.

CREATE FUNCTION irr_sl (IN guess FLOAT)
RETURNS FLOAT
DETERMINISTIC
CONTAINS SQL
BEGIN
DECLARE maxtry INTEGER;
DECLARE x1 FLOAT; DECLARE x2 FLOAT;
DECLARE f1 FLOAT; DECLARE f2 FLOAT;

SET maxtry = 50; -- iterations
WHILE maxtry > 0
DO SET x1 = guess;
SET f1 = NPV (x1);
IF f1 IS NULL -- no irr
THEN RETURN (f1);
ELSE IF ABS (f1) < 1.0e-5 -- irr within epsilon range
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THEN RETURN (x1);
END IF;

END IF;

—try again with new guess using two-point formula

SET x2 = x1 + 1.0e-5;
SET f2 = NPV (x2);
IF f2 IS NULL -- no irr
THEN RETURN (f2);
END IF;
IF ABS (f2 − f1) < 1.0e-5
THEN RETURN (CAST (NULL AS FLOAT)); -- check for divide 

by zero
END IF;
SET guess = x1 − f1 * (x2 − x1)/ (f2 − f1);
SET maxtry = maxtry − 1;

END WHILE;
END;

—Test table, holds results of straight line algorithm

CREATE TABLE Test_StraightLine
(rate DECIMAL(7,5) NOT NULL,
npv FLOAT,
irr DECIMAL(7,5));

CREATE TABLE Test_BoundedBox
(rate DECIMAL(7,5) NOT NULL,
npv FLOAT,
irr DECIMAL(7,5));

—original scenario
—try t = 0 cashflow of: –391, irr undefined;
—try t = 0 cashflow of: –350, irr multivalued;
—0, irr single-valued (well-behaved)

DELETE FROM CashFlows
INSERT INTO CashFlows
VALUES (0, −350), (1, 100), (2, 100), (3, 100),  

(4, 100), (5, 100), (6, 100), (7, 100), (8, 100),  
(9, 100), (10, 100), (11, 100), (12, 100), (13, 100), 
(14, 100), (15, −1500);

—scenario 1a: single valued irr

DELETE FROM CashFlows
INSERT INTO CashFlows
VALUES (0, −800), (1, 100), (2, 100), (3, 100), (4, 100),
(5, 100), (6, 100), (7, 100), (8, 100), (9, 100),
(10, 100);
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—scenario 1b: single valued irr, signs reversed

DELETE FROM CashFlows;
INSERT INTO CashFlows
VALUES (0, 800), (1, −100), (2, −100), (3, −100), (4, −100),
(5, −100), (6, −100), (7, −100), (8, −100), (9, −100),
(10, −100);

—scenario 2: double valued irr

DELETE FROM CashFlows;
INSERT INTO CashFlows
VALUES (0, −300), (1, 100), (2, 100), (3, 100), (4, 100),
(5, 100), (6, 100),(7, 100), (8, 100), (9, 100),
(10, −690);

—scenario 3: double valued irr with solutions very close together

DELETE FROM CashFlows;
INSERT INTO CashFlows
VALUES (0, −310), (1, 100), (2, 100), (3, 100), (4, 100),
(5, 100), (6, 100), (7, 100), (8, 100), (9, 100),
(10, −690);

—scenario 4: undefined irr

DELETE FROM CashFlows;
INSERT INTO CashFlows
VALUES (0, −320), (1, 100), (2, 100), (3, 100), (4, 100),
(5, 100), (6, 100), (7, 100), (8, 100), (9, 100),
(10, −690);

—run the test

DELETE FROM Test_StraightLine;
INSERT INTO Test_StraightLine (rate, npv, irr)
SELECT rate, NPV (rate), irr_sl(rate)
FROM Rates;

DELETE FROM Test_BoundedBox ;
INSERT INTO Test_BoundedBox (rate, npv, irr)
SELECT rate, NPV (rate), irr_bb(rate)
FROM Rates;

—View results of the test

SELECT SL.rate, SL.npv AS npv_sl, SL.irr AS irr_sl,
BB.npv AS npv_bb,
BB.irr AS irr_bb

FROM Test_StraightLine AS SL, Test_BoundedBox
WHERE BB.rate = SL.rate;

A computational version of the IRR due to Richard Romley 
returns approximations that become more and more accurate as 
you feed estimates back into the formula.
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CREATE FUNCTION IRR(IN project_id CHAR(15), IN my_i 
DECIMAL(12,8))

RETURNS DECIMAL(12,8)
LANGUAGE SQL
DETERMINISTIC
RETURN (SELECT CASE WHEN ROUND(my_i, 4) = ROUND(T.i, 4)

THEN 100 * (my_I − 1)
ELSE IRR(project_id, T.i) END

FROM (SELECT SUM((amount * (time_period + 1))
/(POWER(my_i, time_period)))
/ SUM((amount * (time_period))
/(POWER(my_i, time_period + 1)))

FROM CashFlows WHERE project_id = my_project_id));

8.3.2 Interpolation with Auxiliary Function Tables
SQL is not a functional programming language, so you often have to 
depend on vendor extensions providing a good library or on being 
able to write the functions with the limited power in standard SQL.

However, SQL is good at handling tables and you can often set 
up auxiliary tables of the general form: 

CREATE TABLE SomeFunction
(parameter <data type> NOT NULL PRIMARY KEY,
result <data type> NOT NULL);

when the range of the function is relatively small. Thus, the 
pseudo-code expression: 

SELECT SomeFunction(T1.x), . . .
FROM TableOne AS T1

WHERE etc

is replaced by 

SELECT F1.result,
FROM TableOne AS T1, SomeFunction AS F1

WHERE T1.x = F1.parameter
AND etc

However, if the function has a large range, the SomeFunction 
table can become huge or completely impractical.

A technique that has fallen out of favor since the advent of 
cheap, fast computers is interpolation. It consists of using two 
known functional values, a and b, and their results in the func-
tion, f(a) and f(b), to find the result of a value, x, between them.

Linear interpolation is the easiest method and if the table has 
a high precision, it will work quite well for most applications. 
It is based on the idea that a straight line drawn between two 
function values f(a) and f(b) will approximate the function well 



 Chapter 8 AUXILIARY TABLES  169

enough that you can take a proportional increment of x relative 
to (a, b) and get a usable answer for f(x).

The algebra looks like this: 

f(x) 5 f(a) 1 (x 2 a)*((f(b) 2	f(a))/(b	2 a)) 

where (a ,5 x ,5 b) and x is not in the table. This can be trans-
lated into SQL like this, where x is: myparameter, F1 is related to 
the variable a, and F2 is related to the variable b: 

SELECT :myparameter AS my_input,
(F1.answer + (:myparameter − F1.param)
* ((F2.answer − F1.answer)
/ (CASE WHEN F1.param = F2.param

THEN 1.00
ELSE F2.param − F1.param END)))

AS answer
FROM SomeFunction AS F1, SomeFunction AS F2
WHERE F1.param   -- establish a and f(a)
= (SELECT MAX(param)

FROM SomeFunction
WHERE param  <=:myparameter)

AND F2.param   -- establish b and f(b)
= (SELECT MIN(param)

FROM SomeFunction
WHERE param >= :myparameter);

The CASE expression in the divisor is to avoid division by zero 
errors when f(x) is in the table.

The rules for interpolation methods are always expressible in 
four-function arithmetic, which is good for standard SQL. In the 
old days, the function tables gave an extra value with each param-
eter and result pair, called delta squared, which was based on finite 
differences. Delta squared was like a second derivative and could 
be used in a formula to improve the accuracy of the approximation.

This is not a book on numerical analysis, so you will have to 
go to a library to find details—or ask an old engineer.

8.4 Global Constants Tables
When you configure a system, you might want to have a way to set 
and keep constants in the schema. One method for doing this is to 
have a one-row table that can be set with default values at the start, 
and then updated only by someone with administrative privileges.

CREATE TABLE Constants
(lock CHAR(1) DEFAULT 'X'

NOT NULL PRIMARY KEY
CHECK (lock = 'X'),
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pi FLOAT DEFAULT 3.142592653 NOT NULL,
e FLOAT DEFAULT 2.71828182 NOT NULL,

phi FLOAT DEFAULT 1.6180339887 NOT NULL,
. . .);

To initialize the row, execute this statement.

INSERT INTO Constants VALUES DEFAULTS;

The lock column assures there is only one row and the default 
values load the initial values. These defaults can include the current 
user and current timestamp, as well as numeric and character values.

Another version of this idea that does not allow for any 
updates is a VIEW defined with a table constructor.

CREATE VIEW Constants (pi, e, phi, ..)
AS VALUES (3.141592653), (2.71828182), (1.6180339887), ..;

The next step is to put in a formula for the constants so that 
they will be computed on any platform to which this DDL is 
moved, using the local math library and hardware precision.

8.4.1 Preallocated Values
As we discussed in chapter 4, in the old days of paper forms, orga-
nizations had a forms control officer whose job was to created, 
issue, and track the forms. A gap in the sequential numbers on a 
check, bond, stock certificate, or whatever was a serious account-
ing problem. Paper forms were usually preprinted and issued in 
blocks of numbers as needed. You can imitate this procedure in a 
database with a little thought and a few simple stored procedures.

Broadly speaking, there were two types of allocation blocks. In 
one, the sequence is known. The most common example would 
be a checkbook. Gaps in the sequence numbers are not allowed, 
and a destroyed or damaged check has to be explained with a 
“void” or other notation. The system needs to record which block 
went to which user, the date and time, and any other information 
relevant to the auditors.

CREATE TABLE FormsControl
(form_nbr CHAR(7) NOT NULL,
seq INTEGER NOT NULL CHECK(seq > 0),
PRIMARY KEY (form_nbr, seq),
recipient CHAR(25) DEFAULT CURRENT_USER NOT NULL,
issue_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
..);

The tables that use the form numbers need to have con-
straints verify the numbers were issued and appear in the Forms 
Control table. The next sequence number is easy to create, but 
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you probably should restrict access to the base table with a stored 
procedure designed for one kind of form, along these lines.

CREATE FUNCTION NextFlobSeq()
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
INSERT INTO FormsControl (form_nbr, seq, ..
VALUES ('Flob-1/R',
(SELECT MAX(seq)+1

FROM FormsControl
WHERE form_nbr = 'Flob-1/R'),
..);

You can also use views on the FormsControl table to limit user 
access. If you might be dealing with an empty, then use this sca-
lar expression: 

(SELECT COALESCE(MAX(seq), 0)+1
FROM FormsControl
WHERE form_nbr = 'Flob-1/R'),

The COALESCE() will return a zero, thus assuring that the 
sequence starts with one.

8.4.2 Prime Numbers
We discussed methods for finding prime numbers in Chapter 4. 
We can use a flag in the Series table beside the Primes, based on 
the methods given there.

8.4.3 Fibonacci Numbers
Fibonacci numbers are defined recursively (as are many other 
mathematical series) so there is a temptation to use a recur-
sive CTE.

If you are not familiar with Fibonacci series, it is defined by 
the formula

F(0) 5 0
F(1) 5 1
F(2) 5 1
F(n) 5 F(n 2 1) 1 F(n 2 2)

In English, you start with a pair of numbers, (0,1), as the first 
two Fibonacci numbers, and after that any Fibonacci number 
(greater than 2) is the sum of the two previous numbers. That 
gives us 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and so on.
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This series occurs so often in nature and mathematical func-
tions that you will find whole books devoted to it.

We can solve this using a recursive CTE, thus: 

WWITH RECURSIVE Fibonacci(n, f, f1)
AS(
(VALUES CAST(1 AS BIGINT), CAST(0 AS BIGINT),  

CAST(1 AS BIGINT))
UNION ALL
SELECT(n + 1),(f + f1), f
FROM Fibonacci
WHERE n < 100) – or other limit for BIGINT

SELECT n, f AS f_nbr
FROM Fibonacci;

It looks nice and clever. But many such series have a closed 
form that is easy and faster than a recursive query; for example, 
the constant phi and the formula, 

ROUND (((POWER (phi, :n)− POWER (1.0 − phi, :n))/
SQRT (5.0)), 0);

where phi 5 FLOOR(POWER(1.61803398874989, n)/SQRT(5) +.5)
You can load the table in one update statement. You can use 

more decimal places for phi, if you want more numbers.

8.4.4 Random Order Values
In many applications, we do not want to issue the sequence 
numbers in sequence. This pattern can give information that we 
do not wish to expose. Instead we want to issue generated  values 
in random order. Do not get mixed up; we want known values 
that are supplied in random order and not random numbers. 
Most random number generators can repeat values, which would 
defeat the purpose of this drill.

Although I usually avoid mentioning physical implemen-
tations, one of the advantages of random-order keys is to 
improve the performance of tree indexes. Tree structured 
indexes, such as a B-Tree, that have sequential insertions 
become unbalanced and have to be reorganized frequently. 
However, if the same set of keys is presented in a random 
order, the tree tends to stay balanced and you get much better 
performance.

The generator shown here is an implementation of the 
additive congruential method of generating values in pseudo-
random order and is due to Roy Hann of Rational Com-
merce Limited, a CA-Ingres consulting firm. It is based on a 
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 shift-register and an XOR-gate, and it has its origins in cryptog-
raphy. Although there are other ways to do this, this code is nice 
because: 
1. The algorithm can be written in C or another low level language 

for speed. But math is fairly simple even in base 10.
2. The algorithm tends to generate successive values that 

are ( usually) “far apart,” which is handy for improving the 
 performance of tree indexes. You will tend to put data on 
 separate physical data pages in storage.

3. The algorithm does not cycle until it has generated every pos-
sible value, so we don’t have to worry about duplicates. Just 
count how many calls have been made to the generator.

4. The algorithm produces uniformly distributed values, which is a 
nice mathematical property to have. It also does not include zero.
Let’s walk through all the iterations of the 4-bit Generator 

illustrated in Figure 8.1.
Initially the shift register contains the value 0001. The two 

rightmost bits are XOR-ed together, giving 1, and the result is 
fed into the leftmost bit position and the previous register con-
tents shift one bit right. The iterations of the register are shown in 
Table 8.4., with their base-10 values.

It might not be obvious that successive values are far apart 
when we are looking at a tiny 4-bit register. But it is clear that 
the values are generated in no obvious order, all possible values 
except 0 are eventually produced, and the termination condition 
is clear—the Generator cycles back to 1.

Generalizing the algorithm to arbitrary binary word sizes, 
and therefore longer number sequences, is not as easy as you 
might think. Finding the “tap” positions where bits are extracted 
for feedback varies according to the word-size in an extremely 
nonobvious way. Choosing incorrect tap positions results in an 
incomplete and usually very short cycle that is unusable. If you 
want the details and tap positions for words of one to 100 bits, 
see E. J. Watson, “Primitive Polynomials (Mod 2),” Mathematics of 
Computation, v.16, 1962, pp.368–369.

Figure 8.1 4-bit Generator

XOR
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Table 8.5 shows the tap positions 8, 16, 31, 32, and 64-bit 
words. That should work with any computer hardware you 
have. The 31-bit word is the one that is probably the most use-
ful since it gives billions of numbers, uses only two tap posi-
tions to make the math easier, and matches most computer 
hardware. The 32-bit version is not easy to implement on a 
32-bit machine because it will usually generate an overflow 
error.

Using Table 8.5, we can see that we need to tap bits 
0 and 3 to construct the 31-bit random-order generated value 
Generator (which is the one most people would want to use in 
practice): 

UPDATE Generator31
SET keyval =
keyval/2 + MOD(MOD(keyval, 2) + MOD(keyval/8, 2), 

2)*2^30;

Or, if you prefer the algorithm in C: 

int Generator31 ()
{static int n = 1;
n = n >> 1 | ((n^n >> 3) & 1) << 30;
return n;
}

iteration 1: 0001 (1)
iteration 2: 1000 (8)
iteration 3: 0100 (4)
iteration 4: 0010 (2)
iteration 5: 1001 (9)
iteration 6: 1100 (12)
iteration 7: 0110 (6)
iteration 8: 1011 (11)
iteration 9: 0101 (5)
iteration 10: 1010 (10)
iteration 11: 1101 (13)
iteration 12: 1110 (14)
iteration 13: 1111 (15)
iteration 14: 0111 (7)
iteration 15: 0011 (3)
iteration 16: 0001 (1) wrap-around!

Table 8.4 Iterations with Base-10 Values 
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8.5  A Note on Converting Procedural 
Code to Tables

Sometimes an idea is easier to see with an example. In February 
2010, a newsgroup poster asked for help with a user-defined 
function they had written. What followed was a CASE expression 
with BETWEENs and ORs and CASE within CASE constructs. It took 
pairs of (x, y) and produced an answer from a set of three val-
ues, call them {‘A’, ‘B’, ‘C’}. Again, the coding details are not my 
point. The body of the function could have been a complicated 
mathematical expression. The quick fix was in the CASE expres-
sion syntax for his immediate problem. His code looked like this 
skeleton: 

CREATE FUNCTION FindFoobar (IN in_x INTEGER, IN in_y 
INTEGER)

RETURNS CHAR(1)
LANGUAGE SQL
DETERMINISTIC
BEGIN
<< horrible CASE expression with x and y >>;
END;

Now a second poster asked of the original posters if he had 
considered precalculating the CASE expression results and 
populating a table with them? This was a good piece of advice, 
since the number of (x, y) pairs involved came to a few thou-
sand cases. Worrying about minimizing storage when the look-
up table is this small is silly. Read-only tables this size tend 
to be in main storage or cache, so they can be shared among 
many sessions.

But the poster went on to say, “You can use the table with 
your function or you could use it without the function,” but he 

Word Length

8 = {0, 2, 3, 4}
16 = {0, 2, 3, 5}
31 = {0, 3}
32 = {0, 1, 2, 3, 5, 7}
64 = {0 1, 3, 4}

Table 8.5 Tap Positions 
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did not explain what the differences are. They are important. 
Putting the data in the read-only tables this size will tend to keep 
it in main storage or cache. If you are really that tight for primary 
and/or	secondary	storage	that	you	cannot	fit	a	~5K	row	table	 in	
your hardware, buy some chips and disks. It is cheap today. Now 
the data can be shared among many sessions. The table and its 
indexes can be used by the optimizer. In SQL Server you can 
include the single column Foobar in the index to get a covering 
index and performance improvement.

But when the data is locked inside the procedural code of 
a function, can it be shared or do computations get repeated 
with each invocation? What about indexes? Ouch! A function 
pretty	 much	 locks	 things	 inside.	 Standard	 SQL/PSM	 has	 a	[NOT] 
DETERMINISTIC option in its procedure declarations. This tells the 
compiler if the procedure or function is going to always return 
the same answer for the same arguments (note about Standard 
SQL terms: a parameter is the formal place holder in the parame-
ter list of a declaration and an argument is the value passed in the 
invocation of the procedure). A nondeterministic function has to 
be computed over and over; if you don’t know about a procedure 
or function, this is what you have to assume.

Here is the skeleton of what was posted.

—Create table

CREATE TABLE Foobar
(x INTEGER NOT NULL,
y INTEGER NOT NULL,
foobar CHAR(1) NOT NULL,
PRIMARY KEY (x, y));

—Populate table with data

INSERT INTO FooLookup (x, y, foobar)
SELECT X_CTE.x, Y_CTE.y, << horrible CASE expression >> AS 

foobar
FROM (SELECT seq

FROM Series
WHERE seq BETWEEN 100 AND 300) AS X_Range (x)
CROSS JOIN
(SELECT seq
FROM Series
WHERE seq BETWEEN 1 AND 100) AS Y_Range (y);

Now let’s go on with the rest of the skeleton code for the 
function: 

CREATE FUNCTION Find_Foobar
(IN in_x INTEGER, IN in_y INTEGER)
RETURNS CHAR(1)
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LANGUAGE SQL
DETERMINISTIC
BEGIN
RETURN
COALESCE
((SELECT foobar
FROM FooLookup
WHERE x = in_x
AND y = in_y), 'A');

END;

The reason for COALESCE() is that ‘A’ is a default value in the 
outer CASE expression, but also a valid result in various THEN and 
ELSE clauses inside inner CASE expressions. The scalar query will 
return a NULL if it cannot find an (x, y, foobar) row in the table. If 
we know that the query covers the entire (x, y) universe, then we 
did not need the COALESCE() and could have avoided a function 
completely.

Now, let’s think about declarative programming. In SQL that 
means constraints in the table declaration in the DDL. This skele-
ton has none except the PRIMARY KEY. Ouch! Here is a problem with 
magazine articles and newsgroup postings; you often skip over 
the constraints when you post a skeleton table. You did not need 
them when you declared a file, do you? What is forgotten is that 
the three SQL sublanguages (DDL, DML, and DCL) work together. 
In particular, the DDL constraints are used by the DML optimizer.

The << horrible CASE expression >> implied expectations 
for x and y. We were given lower limits (100 and 1), but the upper 
limits were open after a small range of (x, y) pairs. I think we 
can assume that the original poster expected the vast majority 
of cases (or all of them) to fall in that small range and wanted to 
handle anything else as an error. In the real world, there is usually 
what Jerry Weinberg called “reasonableness checking” in data. 
The principle is also known as Zipf’s Law or the “look for a horse 
and not a zebra” principle in medicine.

The simple first shot would be to assume we always know the 
limits and can simply use: 

CREATE TABLE FooLookup
(x INTEGER NOT NULL
CHECK (x BETWEEN 100 AND 300),
y INTEGER NOT NULL
CHECK (y BETWEEN 1 AND 100),
foobar CHAR(1)
DEFAULT 'A'
NOT NULL
CHECK (foobar) IN ('A', 'B', 'C'),
PRIMARY KEY (x, y));
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The DEFAULT ‘A’ subclause will take care of situations where 
we did not have an explicit value for foobar. This avoids the 
COALESCE(). But what if one of the parameters can be anything? 
That is easy; drop the CHECK() and add a comment. What if one of 
the parameters is half open or has a huge but sparse space? That 
is, we know a lower (upper) limit, but not the matching upper 
(lower) limit. Just use a simple comparison, such as CHECK (y >= 1), 
instead of a BETWEEN.

A common situation, which was done with nested CASE 
expression in the original, is that you know a range for a parame-
ter and what the results for the other parameter within that range 
are. That might be easier to see with code. Here is a CASE expres-
sion for some of the possible (x,y) pairs: 

CASE
WHEN x BETWEEN 100 AND 200
THEN CASE
WHEN y IN (2, 4, 6, 8) THEN 'B'
WHEN y IN (1, 3, 5, 7, 9) THEN 'C'
END

WHEN x BETWEEN 201 AND 300
THEN CASE
WHEN y IN (2, 4, 6, 8, 99) THEN 'C'
WHEN y IN (3, 5, 7, 9, 100) THEN 'B'
END

ELSE 'A'
END

This is the DML version of a constraint. It lives only in the 
INSERT, UPDATE, or SELECT statement where it appears. What 
we really want is constraints in the DDL so that all state-
ments, present and future, use it. The trick is to create the 
table with low and high values for each parameter range; a 
single value is shown with the low and high values equal to 
each other.

CREATE TABLE FooLookup
(low_x INTEGER NOT NULL,
high_x INTEGER NOT NULL,
CHECK (low_x <= high_x),

low_y INTEGER NOT NULL,
high_y INTEGER NOT NULL,
CHECK (low_y <= high_y),
foobar CHAR(1) NOT NULL
CHECK (foobar) IN ('A', 'B', 'C'),

PRIMARY KEY (x, y));

CASE expression now becomes Table 8.6.
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As a safety device, put the default ‘A’ in ranges outside the rest 
of the table. I used –9999 and 9999 for the least and greatest lim-
its, but you get the idea.

The query has to use BETWEENs on the high and low limits: 

SELECT F.foobar, ..
FROM FooLookup AS F, ..

WHERE my_x BETWEEN F.low_x AND F.high_x
AND my_y BETWEEN F.low_y AND F.high_y
AND ..;

Is this always going to be the best way to do something? Who 
knows? Test it.

low_x high_x low_y high_y foobar

100 200 2 2 'B'
100 200 6 6 'B'
100 200 8 8 'B'
100 200 1 1 'C'
100 200 3 3 'C'
100 200 5 5 'C'
100 200 7 7 'C'
100 200 9 9 'C'
201 300 2 2 'C'
201 300 4 4 'C'
201 300 6 6 'C'
201 300 8 8 'C'
201 300 99 99 'C'
201 300 3 3 'B'
201 300 5 5 'B'
201 300 7 7 'B'
201 300 9 9 'B'
201 300 100 100 'B'
301 9999 101 9999 'A'
−9999 99 −9999 0 'A'

Table 8.6 CASE Expression 
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9
NORMALIZATION

The Relational Model and the Normal Forms of the Relational 
Model were first defined by Dr. E. F. Codd (Codd 1970), then 
extended by other writers after him. He invented the term “nor-
malized relations” by borrowing from the political jargon of the 
day. A branch of mathematics called relations deals with map-
pings among sets defined by predicate calculus from formal 
logic. Just as in an algebraic equation, there are many forms of 
the same relational statement, but the “normal forms” of rela-
tions are certain formally defined desirable constructions. The 
goal of normal forms is to avoid certain data anomalies that can 
occur in unnormalized tables.

Data anomalies are easier to explain with an example, but 
first please be patient while I define some terms. A predicate is a 
statement of the form A(x), which means that x has the property 
A. For example, “John is from Indiana” is a predicate statement; 
here, “John” is the subject and “is from Indiana” is the predicate. 
A relation is a predicate with two or more subjects. “John and Bob 
are brothers” is an example of a relation. The common way of 
visualizing a set of relational statements is as a table, where the 
columns are attributes of the relation and each row is a specific 
relational statement.

When Dr. Codd defined the relational model, he gave 0 to 12 
rules for the visualization of the relation as a table:
0. Yes, there is a rule zero. For a system to qualify as a relational 

database management system, that system must use its rela-
tional facilities (exclusively) to manage the database. SQL is not 
so pure on this rule, since you can often do procedural things 
to the data. But after a few decades with SQL, I can say that with 
each release of the Standards and of actual SQL products, we 
get closer to this goal.

1. The Information Rule: This simply requires all information in 
the database to be represented in one and only one way, namely 
by scalar values in columns within rows of tables. SQL is good 
here, but columns are found by their names and not by their 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00009-0
Copyright © 2011 by Elsevier Inc. All rights reserved.
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 positions in a row in a strict RDBMS model. SQL allows the use 
of a * as shorthand for a list of column names, and makes default 
assumptions about the ordering of columns within a row.

2. The Guaranteed Access Rule: This rule is essentially a restate-
ment of the fundamental requirement for Keys. It states that 
every individual scalar value in the database must be logically 
addressable by specifying the name of the containing table, the 
name of the containing column, and a key value of the contain-
ing row. SQL follows this rule for tables that have a key, but SQL 
does not require a table to have a key at all.

3. Systematic Treatment of NULL Values: The DBMS is required to 
support a representation of missing information and inapplica-
ble information that is systematic, distinct from all regular values, 
and independent of data type. It is also implied that such rep-
resentations must be manipulated by the DBMS in a systematic 
way. SQL has a NULL that is used for both missing information and 
inapplicable information, rather than having two separate tokens 
as Dr. Codd wished in his second version of the Relational Model.

4. Active Online Catalog Based on the Relational Model: The sys-
tem is required to support an online, in-line, relational catalog 
that is accessible to authorized users by means of their regular 
query language. SQL does this.

5. The Comprehensive Data Sublanguage Rule: The system must 
support at least one relational language that (a) has a linear syn-
tax, (b) can be used both interactively and within application 
programs, and (c) supports data definition operations (including 
view definitions), data manipulation operations (update as well 
as retrieval), security and integrity constraints, and transaction 
management operations (begin, commit, and rollback).

SQL is pretty good on this point, since all of the operations Codd 
defined can be written in the Data Manipulation Language (DML).

6. The VIEW Updating Rule: All views that are theoretically updat-
able must be updatable by the system. SQL is weak here, and 
has elected to standardize on the safest case. View updatability 
is now known to be NP-complete and therefore impossible to 
enforce in general. INSTEAD OF triggers in SQL allow solutions 
for particular schemas.

7. High-Level Insert, Update, and Delete: The system must support 
set-at-a-time INSERT, UPDATE, and DELETE operators. SQL does this.

8. Physical Data Independence: This is self-explanatory; users 
are never aware of the physical implementation and deal 
only with a logical model. Any real product_name is going to 
have some physical dependence, but SQL is better than most 
 programming languages on this point. In particular, indexing 
and access methods are assigned to a physical DBA rather than 
a logical DBA and are kept away from the users.
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 9. Logical Data Independence: This is self-explanatory.  Logical 
data independence is the ability to modify the  conceptual 
schema without having to also modify the application 
 programs. SQL is quite good about this point if you write good, 
portable code.

10. Integrity Independence: Integrity constraints must be speci-
fied separately from application programs and stored in the 
catalog. It must be possible to change such constraints as and 
when appropriate without unnecessarily affecting existing 
applications. Standard SQL has this.

11. Distribution Independence: Existing applications should con-
tinue to operate successfully (a) when a distributed version of 
the DBMS is first introduced and (b) when existing distributed 
data is redistributed around the system.

12. The Nonsubversion Rule: If the system provides a low-level 
(record-at-a-time, bit level) interface, that interface cannot be 
used to subvert the system (e.g., bypassing a relational secu-
rity or integrity constraint). SQL is good about this one.

Codd also specified nine structural features, three integrity 
features, and 18 manipulative features, all of which are required 
as well. He later extended the list from 12 rules to 333 in the 
 second version of the relational model (The Relational Model for 
Database Management: Version 2, 1990, ISBN 978-0201141924). 
You can look them up for yourself.

Normal forms are an attempt to make sure that you do not 
destroy true data or create false data in your database. One of 
the ways of avoiding errors is to represent a fact only once in 
the database, since if a fact appears more than once, one of the 
instances of it is likely to be in error—a man with two wrist-
watches can never be sure what time it is. This is why we syn-
chronize clocks from an atomic clock, making them into VIEWs on 
one data source.

This process of table design is called normalization. It is 
not mysterious, but it can get complex. You can buy CASE 
(Computer Assisted Software Engineering) tools to help you do 
it, but you should know a bit about the theory before you use 
such a tool.

9.1  Functional and Multivalued 
Dependencies

A normal form is a way of classifying a table based on the func-
tional dependencies (FDs for short) in it. A functional depen-
dency means that if I know the value of one attribute, I can 
always determine the value of another. The notation used in 
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 relational theory is an arrow between the two attributes, for 
example A S B, which can be read in English as “A determines B.” 
If I know your employee number, I can determine your name; if I 
know a part number, I can determine the weight and color of the 
part; and so forth.

A multivalued dependency (MVD) means that if I know the 
value of one attribute, I can always determine the values of a set 
of another attribute. The notation used in relational theory is a 
double-headed arrow between the two attributes, for instance 
A I B, which can be read in English as “A determines many 
Bs.” If I know a teacher’s name, I can determine a list of her stu-
dents; if I know a part number, I can determine the part num-
bers of its components; and so forth.

9.2 First Normal Form (1NF)
Consider a requirement to maintain data about class schedules 
at a school. We are required to keep the course_name, class_ 
section, dept_name, time, room_nbr, professor, student,  student_
major, and student_grade. Suppose that we initially set up a 
Pascal file with records that look like this:

Classes = RECORD
course_name: ARRAY [1:7] OF CHAR;

class_section: CHAR;
time_period: INTEGER;

room_nbr: INTEGER;
room_size: INTEGER;
professor: ARRAY [1:25] OF CHAR;
dept_name: ARRAY [1:10] OF CHAR;
students: ARRAY [1:class_size]

OF RECORD
student_name ARRAY [1:25] OF CHAR;
student_major ARRAY [1:10] OF CHAR;
student_grade CHAR;
END;

END;

I picked Pascal because it is easy to read and the data type 
names look a bit like SQL. This table is not in the most basic 
normal form of relational databases. First Normal Form (1NF) 
means that the table has no repeating groups. That is, every 
column is a scalar value, not an array or a list or anything with 
its own structure. It also means that it has one and only one 
meaning; it can be hat size, or shoe size, but never both and 
never either.
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In SQL, it is impossible not to be in 1NF unless the vendor 
has added array or other extensions to the language. The Pascal 
RECORD could be “flattened out” in SQL and the field names 
changed to data element names to look like this:

CREATE TABLE Classes
(course_name CHAR(7) NOT NULL,
class_section CHAR(1) NOT NULL,
time_period INTEGER NOT NULL,
room_nbr INTEGER NOT NULL,
room_size INTEGER NOT NULL,
professor_name CHAR(25) NOT NULL,
dept_name CHAR(10) NOT NULL,
student_name CHAR (25) NOT NULL,
student_major CHAR(10) NOT NULL,
student_grade CHAR(1) NOT NULL);

This table is acceptable to SQL. In fact, we can locate a row 
in the table with a combination of (course_name, class_section, 
student_name), so we have a key. But what we are doing is hiding 
the Students record array, which has not changed its nature by 
being flattened.

There are problems.
If Professor ‘Jones’ of the math department dies, we delete all 

his rows from the Classes table. This also deletes the informa-
tion that all his students were taking a math class and maybe not 
all of them wanted to drop out of school just yet. I am deleting 
more than one fact from the database. This is called a deletion 
anomaly.

If student ‘Wilson’ decides to change one of his math classes, 
formerly taught by Professor ‘Jones,’ to English, we will show 
Professor ‘Jones’ as an instructor in both the math and the 
English departments. I could not change a simple fact by itself. 
This creates false information, and is called an update anomaly.

If the school decides to start a new department, which has no 
students yet, we cannot put in the data about the professor we 
just hired until we have classroom and student data to fill out a 
row. I cannot insert a simple fact by itself. This is called an inser-
tion anomaly.

There are more problems in this table, but you see the point. 
Yes, there are some ways to get around these problems with-
out changing the tables. We could permit NULLs in the table. We 
could write TRIGGERs to check the table for false data. These are 
tricks that will only get worse as the data and the relationships 
become more complex. The solution is to break the table up 
into other tables, each of which represents one relationship or 
 simple set of facts.
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9.2.1 Note on Repeated Groups
The definition of 1NF is that the table has no repeating groups and 
that all columns are scalar values. This means a column cannot 
have arrays, linked lists, tables within tables, or record structures, 
like those you find in other programming languages. This was very 
easy to avoid in Standard SQL, since the language had no support 
for them. This is no longer true after SQL-99, which introduces sev-
eral very nonrelational “features” and since several vendors added 
their own support for arrays, nested tables, and variant data types.

Aside from relational purity, there are good reasons to avoid 
these features. They are not widely implemented and the vendor-
specific extensions will not port. Furthermore, the optimizers 
cannot easily use them, so they degrade performance.

Old habits are hard to change, so new SQL programmers often 
try to force their old model of the world into Standard SQL in 
 several ways.

Repeating Columns
One way you “fake it” in SQL is to use a group of columns where 
all the members of the group have the same semantic value; that 
is, they represent the same attribute in the table. Consider the 
table of an employee and his children:

CREATE TABLE Employees
(emp_nbr INTEGER NOT NULL,
emp_name VARCHAR(30) NOT NULL,
. . .
child1 CHAR(30), birthday1 DATE, sex1 CHAR(1),
child2 CHAR(30), birthday2 DATE, sex2 CHAR(1),
child3 CHAR(30), birthday3 DATE, sex3 CHAR(1),
child4 CHAR(30), birthday4 DATE, sex4 CHAR(1));

This looks like the layouts of many existing file system records 
in COBOL and other 3GL languages. The birthday and sex infor-
mation for each child is part of a repeated group and therefore 
violates 1NF. This is faking a four-element array in SQL; the sub-
script just happens to be part of the column name!

Suppose I have a table with the quantity of a product_name 
sold in each month of a particular year, and I originally built the 
table to look like this:

CREATE TABLE Abnormal
(product_name CHAR(10) NOT NULL PRIMARY KEY,
 month_01 INTEGER, -- null means no data yet
 month_02 INTEGER,
   . . .
 month_12 INTEGER);
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and I wanted to flatten it out into a more normalized form, 
like this:

CREATE TABLE Normal
(product_name CHAR(10) NOT NULL,
 month_nbr INTEGER NOT NULL,
 product_qty INTEGER NOT NULL,
 PRIMARY KEY (product_name, month_nbr));

I can use the statement:

INSERT INTO Normal (product_name, month_nbr, product_qty)
SELECT product_name, 1, month_01
 FROM Abnormal
WHERE month_01 IS NOT NULL
UNION ALL
SELECT product_name, 2, month_02
 FROM Abnormal
WHERE month_02 IS NOT NULL
. . .

UNION ALL
SELECT product_name, 12, month_12
 FROM Abnormal
WHERE bin_12 IS NOT NULL;

Although a UNION ALL expression is usually slow, this has to be 
run only once to load the normalized table and then the original 
table can be dropped.

Parsing a List in a String
Another popular method is to use a string and fill it with a 
comma-separated list. The result is a lot of string handling proce-
dures to work around this kludge. Consider this example:

CREATE TABLE InputStrings
(key_col CHAR(10) NOT NULL PRIMARY KEY,
input_string VARCHAR(255) NOT NULL);

INSERT INTO InputStrings VALUES ('first', '12, 34, 567, 896');
INSERT INTO InputStrings VALUES ('second',  

'312, 534, 997, 896'); . . .

This will be the table that gets the outputs, in the form of the 
original key column and one parameter per row.

CREATE TABLE Parmlist
(key_col CHAR(5) NOT NULL PRIMARY KEY,
parm INTEGER NOT NULL);

It makes life easier if the lists in the input strings start and end 
with a comma. You will also need a table called Series, which is a 
set of integers from 1 to (n).
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SELECT key_col,
CAST (SUBSTRING (',' || I1.input_string || ',',  

MAX(S1.seq || 1),
(S2.seq - MAX(S1.seq || 1)))

AS INTEGER),
COUNT(S2.seq) AS place

 FROM InputStrings AS I1, Series AS S1, Series AS S2
WHERE SUBSTRING (',' || I1.input_string || ',', S1.seq, 1) 

= ','
AND SUBSTRING (',' || I1.input_string || ',', S2.seq, 1) 

= ','
  AND S1.seq < S2.seq
  AND S2.seq <= DATALENGTH(I1.input_string) + 1
GROUP BY I1.key_col, I1.input_string, S2.seq;

The S1 and S2 copies of Series are used to locate bracketing 
pairs of commas, and the entire set of substrings located between 
them is extracts and cast as integers in one nonprocedural step.

The trick is to be sure that the left-hand comma of the bracket-
ing pair is the closest one to the second comma. The place  column 
tells you the relative position of the value in the input string.

A very fast version of this trick is due to Ken Henderson. 
Instead of using a comma to separate the fields within the list, 
put each value into a fixed length substring and extract them by 
using a simple multiplication of the length by the desired array 
index number. This is a direct imitation of how many compilers 
handle arrays at the hardware level.

Having said all this, the right way would be to put the list into 
a single column in a table. This can be done in languages that 
allow you to pass array elements into SQL parameters, like this:

INSERT INTO Parmlist
VALUES (:a[1]), (:a[2]), (:a[3]), .., (:a[n]);

Or if you want to remove NULLs and duplicates,

INSERT INTO Parmlist
SELECT DISTINCT x
 FROM VALUES (:a[1]), (:a[2]), (:a[3]), .., (:a[n]) AS 

List(x)
WHERE x IS NOT NULL;

9.3 Second Normal Form (2NF)
A table is in Second Normal Form (2NF) if it is in 1NF and has no 
partial key dependencies. That is, if X and Y are columns and X is 
a key, then for any Z that is a proper subset of X, it cannot be the 
case that Z S Y. Informally, the table is in 1NF and it has a key 
that determines all nonkey attributes in the table.
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In the Pascal example, our users tell us that knowing the student 
and course_name is sufficient to determine the class_section (since 
students cannot sign up for more than one class_section of the 
same course_name) and the student_grade. This is the same as saying 
that (student_name, course_name) S (class_section, student_grade).

After more analysis, we also discover from our users that 
( student_name   S   student_major) — students have only one  student_
major. Since student is part of the (student_name, course_name) key, 
we have a partial key dependency! This leads us to the following 
decomposition:

CREATE TABLE Classes
(course_name CHAR(7) NOT NULL,
class_section CHAR(1) NOT NULL,
time_period INTEGER NOT NULL,
room_nbr INTEGER NOT NULL,
room_size INTEGER NOT NULL,
professor_name CHAR(25) NOT NULL,
PRIMARY KEY (course_name, class_section));

CREATE TABLE Enrollment
(student_name CHAR (25) NOT NULL,
course_name CHAR(7) NOT NULL,
class_section CHAR(1) NOT NULL,
student_grade CHAR(1) NOT NULL,
PRIMARY KEY (student_name, course_name));

CREATE TABLE Students
(student_name CHAR (25) NOT NULL PRIMARY KEY,
student_major CHAR(10) NOT NULL);

At this point, we are in 2NF. Every attribute depends on the 
entire key in its table. Now if a student changes majors, it can 
be done in one place. Furthermore, a student cannot sign up for 
 different sections of the same class, because we have changed the 
key of Enrollment. Unfortunately, we still have problems.

Notice that while room_size depends on the entire key of Classes, 
it also depends on room_nbr. If the room_nbr is changed for a course_
name and class_section, we may also have to change the room_size, 
and if the room_nbr is modified (we knock down a wall), we may have 
to change room_size in several rows in Classes for that room_nbr.

9.4 Third Normal Form (3NF)
Another normal form can address these problems. A table is in 
Third Normal Form (3NF) if it is in 2NF and for all X S Y, where 
X and Y are columns of a table, X is a key or Y is part of a candi-
date key. (A candidate key is a unique set of columns that identify 
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each row in a table; you cannot remove a column from the candi-
date key without destroying its uniqueness.) This implies that the 
table is in 2NF, since a partial key dependency is a type of tran-
sitive dependency. Informally, all the nonkey columns are deter-
mined by the key, the whole key, and nothing but the key.

The usual way that 3NF is explained is that there are no tran-
sitive dependencies, but this is not quite right. A transitive 
dependency is a situation where we have a table with columns 
(A, B, C) and (A S B) and (B S C), so we know that (A S C). 
In our case, the situation is that (course_name, class_section) S 
room_nbr and room_nbr S room_size. This is not a simple transitive 
dependency, since only part of a key is involved, but the principle 
still holds. To get our example into 3NF and fix the problem with 
the room_size column, we make the following decomposition:

CREATE TABLE Rooms
(room_nbr INTEGER NOT NULL PRIMARY KEY,
room_size INTEGER NOT NULL);

CREATE TABLE Classes
(course_name CHAR(7) NOT NULL,
class_section CHAR(1) NOT NULL,
PRIMARY KEY (course_name, class_section),
time_period INTEGER NOT NULL,
room_nbr INTEGER NOT NULL);

CREATE TABLE Enrollment
(student_name CHAR (25) NOT NULL,
course_name CHAR(7) NOT NULL,
PRIMARY KEY (student_name, course_name),
class_section CHAR(1) NOT NULL,
student_grade CHAR(1) NOT NULL);

CREATE TABLE Students
(student_name CHAR (25) NOT NULL PRIMARY KEY,
student_major CHAR(10) NOT NULL);

A common misunderstanding about relational theory is that 
3NF tables have no transitive dependencies. As indicated earlier, if 
X S Y, X does not have to be a key if   Y is part of a candidate key. We 
still have a transitive dependency in the example—(room_nbr, time_
period) S (course_name, class_section)—but since the right side 
of the dependency is a key, it is technically in 3NF. The unreason-
able behavior that this table structure still has is that several course_
names can be assigned to the same room_nbr at the same time.

Another form of transitive dependency is a computed  column. 
For example:

CREATE TABLE Stuff
(width INTEGER NOT NULL,
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length INTEGER NOT NULL,
height INTEGER NOT NULL,
volume INTEGER NOT NULL

CHECK (width * length * height = volume),
PRIMARY KEY (width, length, height));

The volume column is determined by the other three col-
umns, so any change to one of the three columns will require a 
change to the volume column.

As an aside, a better way to do this is with a computed column:

CREATE TABLE Stuff
(width INTEGER NOT NULL,
length INTEGER NOT NULL,
height INTEGER NOT NULL,
(width * length * height) AS volume)
PRIMARY KEY (width, length, height));

The CHECK() constraint will throw an error, while the com-
puted column will keep running.

9.5 Elementary Key Normal Form (EKNF)
Elementary Key Normal Form (EKNF) is a subtle enhancement on 
3NF. By definition, EKNF tables are also in 3NF. This happens when 
there is more than one unique composite key and they overlap. 
Such cases can cause redundant information in the overlapping 
column(s). For example, in the following table, let’s assume that a 
course code number is also a unique identifier for a given subject:

CREATE TABLE Enrollment
(student_idINTEGER NOT NULL,
course_code CHAR(6) NOT NULL,
course_name VARCHAR(15) NOT NULL,
PRIMARY KEY (student_id, course_name)
-- , UNIQUE (student_id, course_code) alternative key
);

Enrollment

student_id course_code course_name

1 'CS-100' 'ER Diagrams'
1 'CS-114' 'Database Design'
2 'CS-114' 'Database Design'
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This table, although it is in 3NF, violates EKNF. The primary 
key of the table is the combination of (student_id, course_name). 
However, we can also see an alternate key (student_id, course_
code) as well. This schema could result in update and deletion 
anomalies because values of both course_name and course_code 
tend to be repeated for a given subject.

The following schema is a decomposition of the previous table 
in order to satisfy EKNF:

CREATE TABLE Subjects
(course_code CHAR(6) NOT NULL PRIMARY KEY,
course_name VARCHAR(15) NOT NULL);

CREATE TABLE Enrollment
(student_id INTEGER NOT NULL,
course_code CHAR(6) NOT NULL,
PRIMARY KEY (student_id, course_code));

For reasons that will become obvious in the following class_
section, ensuring a table is in EKNF is usually skipped, as most 
designers will move directly on to Boyce-Codd Normal Form after 
ensuring that a schema is in 3NF. Thus, EKNF is included here 
only for reasons of historical accuracy and completeness.

9.6 Boyce-Codd Normal Form (BCNF)
A table is in BCNF when for all nontrivial FDs (X S A), X is a 
superkey for the whole schema. A superkey is a unique set of col-
umns that identify each row in a table, but you can remove some 
columns from it and it will still be a key. Informally, a superkey is 
carrying extra weight.

BCNF is the normal form that actually removes all transitive 
dependencies. A table is in BCNF if for all (X S Y), X is a key—period. 
We can go to this normal form just by adding another key with 
UNIQUE (room_nbr, time_period) constraint clause to the table 
Classes.

There are some other interesting and useful “higher” normal 
forms, but they are outside of the scope of this discussion. In our 
example, we have removed all the important anomalies with BCNF.

Third Normal Form was concerned with the relationship 
between key and nonkey columns. However, a column can often 
play both roles. Consider a table for computing each salesman’s 
bonus gifts that has for each salesman his base salary, the num-
ber of sales points he has won in a contest, and the bonus gift 
awarded for that combination of salary range and points. For 
example, we might give a fountain pen to a beginning salesman 
with a base pay rate somewhere between $15,000 and $20,000 
and 100 sales points, but give a car to a master salesman, whose 
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salary is between $30,000 and $60,000 and who has 200 points. 
The functional dependencies are, therefore,

(pay_step, points) S gift
gift S points

Let’s start with a table that has all the data in it and normalize it.

This schema is in 3NF, but it has problems. You cannot insert 
a new gift into our offerings and points unless we have a salary 
to go with it. If you remove any sales points, you lose information 
about the gifts and salaries (e.g., only people in the $30,000 range 
can win a car). And, finally, a change in the gifts for a particular 
point score would have to affect all the rows within the same pay 
step. This table needs to be broken apart into two tables:

Gifts

 salary_amt points gift  

15000 100 'Pencil'
17000 100 'Pen'
30000 200 'Car'
31000 200 'Car'
32000 200 'Car'

PayGifts

 Salary_amt gift  

15000 'Pencil'
17000 'Pen'
30000 'Car'
31000 'Car'
32000 'Car'

GiftsPoints

  gift points   

'Pencil' 100
'Pen' 100
'Car' 200
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9.7 Fourth Normal Form (4NF)
Fourth Normal Form (4NF) makes use of multivalued dependen-
cies. The problem it solves is that the table has too many of them. 
For example, consider a table of departments, their projects, and 
the parts they stock. The MVDs in the table would be:

dept_name S  S jobs

dept_name S  S parts

Assume that dept_name ‘d1’ works on jobs ‘j1’, and ‘j2’ with 
parts ‘p1’ and ‘p2’; that dept_name ‘d2’ works on jobs ‘j3’, ‘j4’, and 
‘j5’ with parts ‘p2’ and ‘p4’; and that dept_name ‘d3’ works on job 
‘j2’ only with parts ‘p5’ and ‘p6’. The table would look like this:

If you want to add a part to a dept_name, you must create more 
than one new row.

Likewise, to remove a part or a job from a row can destroy 
information. Updating a part or job name will also require mul-
tiple rows to be changed.

The solution is to split this table into two tables, one with 
(dept_name, jobs) in it and one with (dept_name, parts) in it. The 
definition of 4NF is that we have no more than one MVD in a 
table. If a table is in 4NF, it is also in BCNF.

9.8 Fifth Normal Form (5NF)
Fifth Normal Form (5NF), also called the Join-Projection Normal 
Form or the Projection-Join Normal Form, is based on the 
idea of a lossless JOIN or the lack of a join-projection anomaly. 
This problem occurs when you have an n-way relationship, 

 dept job part  

'd1' 'j1' 'p1'
'd1' 'j1' 'p2'
'd1' 'j2' 'p1'
'd1' 'j2' 'p2'
'd2' 'j3' 'p2'
'd2' 'j3' 'p4'
'd2' 'j4' 'p2'
'd2' 'j4' 'p4'
'd2' 'j5' 'p2'
'd2' 'j5' 'p4'
'd3' 'j2' 'p5'
'd3' 'j2' 'p6'
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where (n > 2). A quick check for 5NF is to see if the table is in 3NF 
and all the candidate keys are single columns.

As an example of the problems solved by 5NF, consider a table 
of mortgages that records the buyer_name, the seller_name, and 
the lender_name:

Mortgages

 buyer_name seller_name lender_name  

'Smith' 'Jones' 'National Bank'
'Smith' 'Wilson' 'Home Bank'
'Nelson' 'Jones' 'Home Bank'

This table is a three-way relationship, but because older 
CASE tools allow only binary relationships it might have to be 
expressed in an E-R diagram as three binary relationships, which 
would generate CREATE TABLE statements leading to these tables:

BuyersLenders

 buyer_name lender_name  

'Smith' 'National Bank'
'Smith' 'Home Bank'
'Nelson' 'Home Bank'

SellersLenders

 seller_name lender_name  

'Jones' 'National Bank'
'Wilson' 'Home Bank'
'Jones' 'Home Bank'

BuyersSellers

  buyer_name seller_name   

'Smith' 'Jones'
'Smith' 'Wilson'
'Nelson' 'Jones'
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The trouble is that when you try to assemble the original 
information by joining pairs of these three tables together, thus:

SELECT BS.buyer_name, SL.seller_name, BL.lender_name
   FROM BuyersLenders AS BL,

SellersLenders AS SL,
BuyersSellers AS BS

WHERE BL.buyer_name = BS.buyer_name
  AND BL.lender_name = SL.lender_name
  AND SL.seller_name = BS.seller_name;

you will recreate all the valid rows in the original table, such as 
(‘Smith’, ‘Jones’, ‘National Bank’), but there will also be false rows, 
such as (‘Smith’, ‘Jones’, ‘Home Bank’), which were not part of the 
original table. This is called a join-projection anomaly.

There are also strong JPNF and overstrong JPNF, which make 
use of JOIN dependencies (JD for short). Unfortunately, there is no 
systematic way to find a JPNF or 4NF schema, because the prob-
lem is known to be NP complete. This is a mathematical term 
that means as the number of elements in a problem increase, the 
effort to solve it increases so fast and requires so many resources 
that you cannot find a general answer.

As an aside, Third Normal Form is very popular with CASE 
tools and most of them can generate a schema where all the 
tables are in 3NF. They obtain the FDs from an E-R (entity- 
relationship) diagram or from a statistical analysis of the existing 
data, then put them together into tables and check for normal 
forms.

The bad news is that it is often possible to derive more 
than one 3NF schema from a set of FDs. Most of CASE tools 
that produce an E-R diagram will find only one of them, 
and go no further. However, if you use an ORM (Object Role 
Model) tool properly, the schema will be in 5NF. I suggest 
strongly that you read any of the books by Terry Halpin on this 
technique.

9.9 Domain-Key Normal Form (DKNF)
Ronald Fagin defined Domain/Key Normal Form (DKNF) in 
1981 as a schema having all the domain constraints and func-
tional dependencies enforced. There is not yet a general algo-
rithm that will always generate the DKNF solution given a set 
of constraints. We can, however, determine DKNF in many 
special cases and it is a good guide to writing DDL in the real 
world.
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Let’s back up a bit and look at the mathematical model under 
normalization. A functional dependency has axioms that can 
be used in normalization problems. These six axioms, known as 
Armstrong’s axioms, are as follows.
 Reflexive: X S X
 Augmentation: if X S Y then XZ S Y
 Union: if (X S Y and X S Z) then X S YZ
 Decomposition: if X S Y and Z a subset of Y, then X S Z
 Transitivity: if (X S Y and Y S Z) then X S Z
 Pseudo-transitivity: if (X S Y and YZ S W) then XZ S W

They make good sense if you just look at them, which is some-
thing we like in a set of axioms. In the real world, the FDs are the 
business rules we are trying to model.

In the normalization algorithm for 3NF (developed by P. A. 
Berstein, 1976) we use the axioms to get rid of redundant FDs. 
For example, if we are given:

A S B
A S C
B S C
DB S E
DAF S E

A S C is redundant because it can be derived from A S B 
and B S C with transitivity. Also DAF S E is redundant because 
it can be derived from DB S E and A S B with transitivity 
(which gives us DA S E) and augmentation (which then allows 
DAF S E). What we would like to find is the smallest set of 
FDs from which we can generate all the given rules. This is 
called a nonredundant cover. For the preceding FDs, one cover 
would be:

A S B
B S C
DB S E

Once we do this Berstein shows that we can just create a 
table for each of the FDs where A, B, and DB are the respec-
tive keys. We have taken it easy so far but now it’s time for a 
challenge.

As an example of a schema with multiple 3NF tables, here 
is a problem that was used in a demonstration by DBStar 
Corporation (now Evoke Software). The company used it as an 
example in a demonstration that comes with their CASE tool.

We are given an imaginary and simplified airline that has a 
database for scheduling flights and pilots. Most of the relation-
ships are obvious things. Flights have only one departure time 
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and one destination. They can get a different pilot and can be 
assigned to a different gate each day of the week. The functional 
dependencies for the database are:

  1. flight S destination
  2. flight S hour
  3. (day, flight) S gate
 4. (day, flight) S pilot
  5. (day, hour, pilot) S gate
 6. (day, hour, pilot) S flight
  7. (day, hour, pilot) S destination
 8. (day, hour, gate) S pilot
 9. (day, hour, gate) S flight
10. (day, hour, gate) S destination

A purist will look at this collection of FDs and can be both-
ered by the redundancies in this list. But in the real world, 
when you interview people, they do not speak to you in a min-
imal set of requirements. People repeat facts and see only the 
data in terms of their situation. In fact, they very often leave 
out relationships that they considered to be too obvious to 
mention.

Your problem is to find 3NF or stronger database schemas 
in these FDs. You have to be careful! You have to have all the 
 columns, obviously, but your answer could be in 3NF and still 
ignore some of the FDs. For example, this will not work:

CREATE TABLE PlannedSchedule
(flight, destination, hour, PRIMARY KEY (flight));

CREATE TABLE ActualSchedule
(day, flight, gate, pilot, PRIMARY KEY (day, flight));

If we apply the Union axiom to some of the FDs, we get:

(day, hour, gate) S (destination, flight, pilot)
(day, hour, pilot) S (destination, flight, gate)

This says that the user has required that if we are given a day, 
an hour, and a gate we should be able to determine a unique 
flight for that day, hour, and gate. We should also be able to deter-
mine a unique flight given a day, hour, and pilot.

Given the PlannedSchedule and ActualSchedule tables, you 
cannot produce views where either of the two constraints we just 
mentioned is enforced. If the query “What flight does pilot X have 
on day Y and hour Z?” gives you more than one answer, it violates 
the FDs and common sense. Here is an example of a schema that 
is allowable in this proposed schema, which is undesirable given 
our constraints:
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The constraints mean that we should be able to find a unique 
answer to each the following questions and not lose any informa-
tion when inserting and deleting data.
1. Which flight is leaving from gate 12A on Thursdays at 13:00 hrs? 

This looks fine until you realize that you don’t know about flight 
666, which was not required to have anything about its day 
or pilot in the ActualSchedule table. And likewise, I can add a 
flight to the ActualSchedule table that has no information in the 
PlannedSchedule table.

2. Which pilot is assigned to the flight that leaves gate 12A on 
Thursdays at 13:00 hrs? This has the same problem as before.

3. What is the destination of the flight in queries 1 and 2? This has 
the same problem as before.

4. What gate is John leaving from on Thursdays at 13:00 hrs?
5. Where is Tom flying to on Wednesdays at 17:00 hrs?
6. What flight is assigned to Tom on Wednesdays at 17:00 hrs?

It might help if we gave an example of how one of the FDs in 
the problem can be derived using the axioms of FD calculus, just 
like you would do a geometry proof:

Given:
1) (day, hour, gate) S pilot
2) (day, hour, pilot) S flight

PlannedSchedule

  flight hour destination   

118 17:00 Dallas
123 13:00 Omaha
155 17:00 Los Angeles
171 13:00 New York
666 13:00 Atlanta

ActualSchedule

   day flight pilot gate    

Wed 118 Tom 12A
Wed 155 Tom 13B
Wed 171 Tom 12A
Thu 123 John 12A
Thu 155 John 12A
Thu 171 John 13B
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prove that:
(day, hour, gate) S flight.

3) (day, hour) S (day, hour);   Reflexive
4) (day, hour, gate) S (day, hour); Augmentation on 3
5) (day, hour, gate) S (day, hour, pilot); Union 1 & 4
6) (day, hour, gate) S flight; Transitive 2 and 5
Q.E.D

The answer is to start by attempting to derive each of the 
functional dependencies from the rest of the set. What we get are 
several short proofs, each requiring different “given” functional 
dependencies in order to get to the derived FD.

Here is a list of each of the proofs used to derive the 10 frag-
mented FDs in the problem. With each derivation we include 
every derivation step and the legal FD calculus operation that 
allows me to make that step. An additional operation that we 
include here that was not included in the axioms we listed earlier 
is left reduction. Left reduction says that if XX S Y then X S Y. 
The reason it was not included is that this is actually a theorem 
and not one of the basic axioms (side problem: can you derive 
left reduction?).

Prove: (day, hour, pilot) S gate
a) day S day;     Reflexive
b) (day, hour, pilot) S day;  Augmentation (a)
c) (day, hour, pilot) S (day, flight); Union (6, b)
d) (day, hour, pilot) S gate;  Transitive (c, 3)
Q.E.D.

Prove: (day, hour, gate) S pilot
a) day S day;     Reflexive
b) day, hour, gate S day;  Augmentation (a)
c) day, hour, gate S (day, flight); Union (9, b)
d) day, hour, gate S pilot;  Transitive (c, 4)
Q.E.D.

Prove: (day, flight) S gate
a) (day, flight, pilot) S gate; Pseudotransitivity (2, 5)
b) (day, flight, day, flight) S gate; Pseudotransitivity (a, 4)
c) (day, flight) S gate;  Left reduction (b)
Q.E.D.

Prove: (day, flight) S pilot
a) (day, flight, gate) S pilot; Pseudotransitivity (2, 8)
b) (day, flight, day, flight) S pilot; Pseudotransitivity 

(a, 3)
c) (day, flight) S pilot;  Left reduction (b)
Q.E.D.

Prove: (day, hour, gate) S flight
a) (day, hour) S (day, hour);  Reflexivity
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b) (day, hour, gate) S (day, hour);  Augmentation (a)
c) (day, hour, gate) S (day, hour, pilot);  Union (b, 8)
d) (day, hour, gate) S flight;   Transitivity (c, 6)
Q.E.D.

Prove: (day, hour, pilot) S flight
a) (day, hour) S (day, hour); Reflexivity
b) (day, hour, pilot) S (day, hour); Augmentation (a)
c) (day, hour, pilot) S day, hour, gate; Union (b, 5)
d) (day, hour, pilot) S flight;   Transitivity (c, 9)
Q.E.D.

Prove: (day, hour, gate) S destination
a) (day, hour, gate) S destination; Transitivity (9, 1)
Q.E.D.

Prove: (day, hour, pilot) S destination
a) (day, hour, pilot) S destination;  Transitivity (6, 1)
Q.E.D.

Now that we’ve shown you how to derive eight of the 10 FDs 
from other FDs, you can try mixing and matching the FDs into 
sets so that each set meets the following criteria:
1. Each attribute must be represented on either the left or right 

side of at least one FD in the set.
2. If a given FD is included in the set then all the FDs needed to 

derive it cannot also be included.
3. If a given FD is excluded from the set then the FDs used to 

derive it must be included.
This produces a set of “nonredundant covers,” which can 

be found with trial, error, and common sense. For example, if 
we excluded (day, hour, gate) S flight we must then include 
(day, hour, gate) S pilot and vice versa+ because each are used 
in the other’s derivation. If you want to be sure your search was 
exhaustive, however, you may want to apply a more mechanical 
method, which is what the CASE tools do for you.

The algorithm for accomplishing this task is basically to gen-
erate all the combinations of sets of the FDs. (flight S desti-
nation) and (flight S hour) are excluded in the combination 
generation because they cannot be derived. This gives us (2^8) 
or 256 combinations of FDs. Each combination is then tested 
against the criteria.

Fortunately, a simple spreadsheet does all the tedious work. 
In this problem the criteria #1 eliminates only 15 sets. Then 
a criterion #2 eliminates 152 sets and a criterion #3 drops 
another 67. This leaves us with 22 possible covers, five of 
which are the answers we are looking for (we will explain the 
other 17 later).
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These five nonredundant covers are:

Set I:
flight S destination
flight S hour
(day, hour, gate) S flight
(day, hour, gate) S pilot
(day, hour, pilot) S gate

Set II:
flight S destination
flight S hour
(day, hour, gate) S pilot
(day, hour, pilot) S flight
(day, hour, pilot) S gate

Set III:
flight S destination
flight S hour
(day, flight) S gate
(day, flight) S pilot
(day, hour, gate) S flight

Set IV:
flight S destination
flight S hour
(day, flight) S gate
(day, hour, gate) S pilot
(day, hour, pilot) S flight

Set V:
flight S destination
flight S hour
(day, flight) S pilot
(day, hour, gate) S flight
(day, hour, pilot) S gate
(day, hour, pilot) S flight

At this point we perform unions on FDs with the same left-
hand side and make tables for each grouping with the left-hand 
side as a key. We can also eliminate symmetrical FDs (defined as 
X S Y and Y S X, and written with a two headed arrow, X 4 Y) by 
collapsing them into the same table.

These possible schemas are in at least 3NF. They are given in 
shorthand SQL DDL (Data Declaration Language) without data 
type declarations.

Solution 1:
CREATE TABLE R1 (flight, destination, hour,
PRIMARY KEY (flight));
CREATE TABLE R2 (day, hour, gate, flight, pilot,
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   PRIMARY KEY (day, hour, gate),
   UNIQUE (day, hour, pilot),
   UNIQUE (day, flight),
   UNIQUE (flight, hour));

Solution 2:
CREATE TABLE R1 (flight, destination, hour, PRIMARY KEY
(flight));
CREATE TABLE R2 (day, flight, gate, pilot,
   PRIMARY KEY (day, flight));
CREATE TABLE R3 (day, hour, gate, flight,
   PRIMARY KEY (day, hour, gate),
   UNIQUE (day, flight),
   UNIQUE (flights, hour));
CREATE TABLE R4 (day, hour, pilot, flight,
   PRIMARY KEY (day, hour, pilot));

Solution 3:
CREATE TABLE R1 (flight, destination, hour, flight
   PRIMARY KEY (flight));
CREATE TABLE R2 (day, flight, gate, PRIMARY KEY (day, 

flight));
CREATE TABLE R3 (day, hour, gate, pilot,
   PRIMARY KEY (day, hour, gate),
   UNIQUE (day, hour, pilot),
   UNIQUE (day, hour, gate));
CREATE TABLE R4 (day, hour, pilot, flight
   PRIMARY KEY (day, hour, pilot),
   UNIQUE(day, flight),
   UNIQUE (flight, hour));

Solution 4:
CREATE TABLE R1 (flight, destination, hour, PRIMARY KEY 

(flight));
CREATE TABLE R2 (day, flight, pilot, PRIMARY KEY (day, 

flight));
CREATE TABLE R3 (day, hour, gate, flight,
   PRIMARY KEY (day, hour, gate),
   UNIQUE (flight, hour));
CREATE TABLE R4 (day, hour, pilot, gate,
   PRIMARY KEY (day, hour, pilot));

Once you look at these solutions, they are a mess, but they are 
a 3NF mess! Is there a better answer? Here is one in BCNF and 
only two tables, proposed by Chris Date (Relational Database 
Writings, 1991–1994, ISBN 0-201-82459-0, p. 224).

CREATE TABLE DailySchedules (flight, destination, hour 
 PRIMARY KEY (flight));

CREATE TABLE PilotSchedules (day, flight, gate, pilot, 
 PRIMARY KEY (day, flight));
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This is a workable schema. But we could expand the con-
straints to give us better performance and more precise error 
messages, since schedules are not likely to change:

CREATE TABLE DailySchedules
(flight, hour, destination,
UNIQUE (flight, hour, destination),
UNIQUE (flight, hour),
UNIQUE (flight));

CREATE TABLE PilotSchedules
(day, flight, day, hour, gate, pilot,
UNIQUE (day, flight, gate),
UNIQUE (day, flight, pilot),
UNIQUE (day, flight),
FOREIGN KEY (flight, hour) REFERENCES R1(flight, hour));

9.10 Practical Hints for Normalization
CASE tools implement formal methods for doing normalization. 
In particular, E-R (Entity-Relationship) diagrams are very use-
ful for this. However, a few informal hints can help speed up the 
 process and give you a good start.

Broadly speaking, tables represent either entities, relation-
ships or they are auxiliary tables. This is why E-R diagrams work 
so well as a design tool. The auxiliary tables do not show up on 
the diagrams, since they are functions, translations, and look-ups 
that support a declarative computational model.

The tables that represent entities should have a simple, imme-
diate name suggested by their contents—a table named Students 
has student data in it, not student data and their bowling scores. 
It is also a good idea to use plural or collective nouns as the 
names of such tables to remind you that a table is a set of entities; 
the rows are the single instances of them.

Tables that represent one, many-to-one, or many relation-
ships should be named by their contents and should be as mini-
mal as possible. For example, Students are related to Classes by 
a third (relationship) table for their attendance. These tables 
might represent a pure relationship or they might contain attri-
butes that exist within the relationship, such as a student_grade 
for the class attended. Since the only way to get a student_grade is 
to attend the class, the relationship is going to have a compound 
key made up of references to the entity keys. We will probably 
name it ReportCards, Grades, or something similar. Avoid naming 
entities based on M:M relationships by combining the two table 
names; for example, Students_Courses is an easy but really bad 
name for the Enrollment entity.
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Avoid NULLs whenever possible. If a table has too many 
NULL-able columns, it is probably not normalized properly. Try 
to use a NULL only for a value that is missing now, but will be 
resolved later. Even better, put missing values into the encoding 
schemes for that column. I have a whole book on this topic, SQL 
Programming Style (2005, ISBN 978-0120887972), and mention it 
in other books.

As a gross generalization, normalized databases will tend 
to have a lot of tables with a small number of columns per 
table. Don’t panic when you see that happen. People who first 
worked with file systems (particularly on computers that used 
magnetic tape) tend to design one monster file for an applica-
tion and do all the work against its records. This made sense 
in the old days, since there was no reasonable way to JOIN a 
number of small files together without having the computer 
operator mount and dismount lots of different magnetic 
tapes. The habit of designing this way carried over to disk sys-
tems, since the procedural programming languages were still 
the same for the databases as they had been for the sequential 
file systems.

The same nonkey attribute in more than one table is proba-
bly a normalization problem. This is not a certainty, just a guide-
line. The key that determines that attribute should be in only one 
table, and therefore its attributes should be with it. The key attri-
butes will be referenced by related tables.

As a practical matter, you are apt to see the same attribute 
under different names and need to make the names uniform in 
the entire database. The columns date_of_birth, birthdate, birth-
day, and dob are very likely the same attribute of an employee. 
You now have the ISO 11179 for naming guidelines, as discussed 
in SQL Programming Style.

9.11 Key Types
The keys, logical and physical, for a table can be classified by 
their behavior and their source. Table 9.1 is a quick table of my 
classification system.

Now let’s define terms in detail.

9.11.1 Natural Keys
A natural key is a subset of attributes that occur in a table and 
act as a unique identifier. The user sees them. You can go to the 
external reality and verify them. An example is UPC codes on con-
sumer goods (read the package bar code), coordinates (get a GPS).
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Newbies worry about a natural compound key becoming very 
long. My answer is, so what? This is the twenty-first century and 
we have much better computers than we did in the 1950s when 
key size was a real physical issue. To replace a natural two- or 
three-integer compound key with a huge GUID that no human 
being or other system can possibly understand because they 
think it will be faster only cripples the system and makes it more 
error prone. I know how to verify the (longitude, latitude) pair of 
a location; how do you verify the GUID assigned to it?

A long key is not always a bad thing for performance. For 
example, if I use (city, state) as my key, I get a free index on just 
(city) in many systems. I can also add extra columns to the key 
to make it a superkey when such a superkey gives me a covering 
index (i.e., an index that contains all the columns required for a 
query, so that the base table does not have to be accessed at all).

9.11.2 Artificial Keys
An artificial key is an extra attribute added to the table that is 
seen by the user. It does not exist in the external reality, but can 
be verified for syntax or check digits inside itself. An example is 
the open codes in the UPC/EAN scheme that a user can assign to 
his or her own stuff. The check digits still work, but you have to 
verify them inside your own enterprise.

Experienced database designers tend toward keys they find 
in industry standard codes, such as UPC/EAN, VIN, GTIN, ISBN, 
and so on. They know that they need to verify the data against 
the reality they are modeling. A trusted external source is a good 
thing to have. I know why this VIN is associated with this car, but 
why is an auto-number value of 42 associated with this car? Try to 
verify the relationship in the reality you are modeling. It makes as 
much sense as locating a car by its parking space number.

 
 

Natural 
key

Artificial 
key

Exposed physical 
locator

Surrogate 
key 

Constructed from real 
attributes

Y N N Y

Verifiable in reality Y N N N
Verifiable in itself Y Y N N
Visible to the user Y Y Y N

Table 9.1 Classification System



 Chapter 9 NORMALIZATION  207

9.11.3 Exposed Physical Locators
An exposed physical locator is not based on attributes in the data 
model and is exposed to the user. There is no way to predict it or 
verify it. The system obtains a value through some physical process 
totally unrelated to the logical data model. The user cannot change 
them without destroying the relationships among the data elements.

Examples would be physical row locations encoded as a num-
ber, string, or proprietary data type. If hashing tables were acces-
sible in an SQL product, then they would qualify, but they are 
usually hidden from the user.

Many programmers object to putting auto-numbering fea-
tures into this category. To convert the number into a physical 
location requires a search rather than a hashing table look-up or 
positioning a read/writer head on a disk drive, but the concept is 
the same. The hardware gives you a way to go to a physical loca-
tion that has nothing to do with the logical data model, and that 
cannot be changed in the physical database, or verified externally.

Most of the time, exposed physical locators are used for faking 
a sequential file’s positional record number, so I can reference the 
physical storage location—a 1960s ISAM file in SQL. You lose all 
the advantages of an abstract data model, SQL set oriented pro-
gramming; carry extra data; and destroy the portability of code.

The early SQLs were based on preexisting file systems. The data 
was kept in physically contiguous disk pages, in physically contig-
uous rows, made up of physically contiguous columns—in short, 
just like a deck of punch cards or a magnetic tape. Most program-
mers still carry that mental model, which is why I keep ranting 
about file versus table, row versus record, and column versus field.

But physically contiguous storage is only one way of building 
a relational database and it is not the best one. The basic idea of 
a relational database is that user is not supposed to know how or 
where things are stored at all, much less write code that depends 
on the particular physical representation in a particular release of 
a particular product on particular hardware at a particular time. 
This is discussed in the section on IDENTITY columns.

Finally, an appeal to authority, with a quote from Dr. Codd: 
“Database users may cause the system to generate or delete a 
surrogate, but they have no control over its value, nor is its value 
ever displayed to them.”

This means that a surrogate ought to act like an index; created by 
the user, managed by the system, and NEVER seen by a user. That 
means never used in code, DRI, or anything else that a user writes.

Codd also wrote the following:

There are three difficulties in employing user-controlled keys as 
permanent surrogates for entities.
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1. The actual values of user-controlled keys are determined by 
 users and must therefore be subject to change by them (e.g., if 
two companies merge, the two employee databases might be 
combined with the result that some or all of the serial numbers 
might be changed).

2. Two relations may have user-controlled keys defined on  distinct 
domains (e.g., one uses social security numbers, while the other 
uses employee serial numbers) and yet the entities denoted are 
the same.

3. It may be necessary to carry information about an entity either 
before it has been assigned a user-controlled key value or after it 
has ceased to have one (e.g., an applicant for a job and a retiree).

These difficulties have the important consequence that an equi-
join on common key values may not yield the same result as a 
join on common entities. A solution—proposed in part [4] and 
more fully in [14]—is to introduce entity domains which contain 
system-assigned surrogates. Database users may cause the system 
to generate or delete a surrogate, but they have no control over its 
value, nor is its value ever displayed to them.

Codd, E., “Extending the Database Relational Model to Capture 
More Meaning,” ACM Transactions on Database Systems, 4(4), 
pp. 397–434, 1979.

9.12 Practical Hints for Denormalization
The subject of denormalization is a great way to get into religious 
wars. At one extreme, you will find relational purists who think 
that the idea of not carrying a database design to at least 5NF is 
a crime against nature. At the other extreme, you will find people 
who simply add and move columns all over the database with 
ALTER statements, never keeping the schema stable.

The reason given for denormalization is performance. A fully 
normalized database requires a lot of JOINs to construct common 
VIEWs of data from its components. JOINs used to be very costly 
in terms of time and computer resources, so “preconstructing” the 
JOIN in a denormalized table can save quite a bit. Today, we have 
better hardware and software. The VIEWs can be materialized and 
indexed if they are used frequently by the sessions. Today, only 
data warehouses should be denormalized, and never a produc-
tion OLTP system. The extra procedural code needed to maintain 
the data integrity of a denormalized schema is just not worth it.

Consider this actual problem, which appeared on CompuServe’s 
ORACLE forum some years ago. A pharmaceutical company has 
an inventory table and a price changes table that look like this. The 
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drugs are identified by their National Drug Code (NDC) from the 
US Food & Drug Administration.

CREATE TABLE Drugs
(ndc CHAR(11) NOT NULL PRIMARY KEY,
drug_name VARCHAR(30) NOT NULL,
drug_qty INTEGER NOT NULL

CONSTRAINT positive_quantity
CHECK(drug_qty >= 0),

. . .);

CREATE TABLE Prices
(ndc CHAR(11) NOT NULL,
start_date DATE NOT NULL,
end_date DATE NOT NULL

CONSTRAINT started_before_endded
CHECK(start_date <= end_date),

drug_price DECIMAL(8,2) NOT NULL,
PRIMARY KEY (drug_nbr, start_date));

Every order has to use the order date to find what the selling 
price was when the order was placed. The current price will have 
a value of “eternity” (a dummy date set so high that it will not be 
reached like ‘9999-12-31’ or a NULL). The (end_date + INTERVAL '1' 
DAY) of one price will be equal to the start_date of the next price 
for the same drug.

While this is normalized, performance was bad. Every report, 
invoice, or query will have a JOIN between Drugs and Prices. The 
trick might be to add more columns to the Drugs, like this:

CREATE TABLE Drugs
(ndc CHAR(11) PRIMARY KEY,
drug_name VARCHAR(30) NOT NULL,
drug_qty INTEGER NOT NULL

CONSTRAINT positive_quantity
CHECK(drug_qty >= 0),

current_start_date DATE NOT NULL,
current_end_date DATE NOT NULL,
CONSTRAINT current_start_before_ended
 CHECK(current_start_date <= current_end_date),
current_drug_price DECIMAL(8,2) NOT NULL,
prior_start_date DATE NOT NULL,
prior_end_date DATE NOT NULL,
CONSTRAINT prior_start_before_ended
 CHECK(prior_start_date <= prior_end_date),

AND (current_start_date = prior_end_date + INTERVAL 
'1' DAY

prior_drug_price DECIMAL(8,2) NOT NULL,
. . .);
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This covered over 95% of the orders in the actual company 
because very few orders have more than two price changes 
before they are taken out of stock. The odd exception was 
trapped by a procedural routine.

The other method is to add CHECK() constraints that will enforce 
the rules that were destroyed by denormalization. We will discuss 
this later, but the overhead for inserting, updating, and deleting 
to the table are huge. In fact, in many cases denormalized tables 
cannot be changed until a complete set of columns is built outside 
the table. Furthermore, although one set of queries is improved, all 
others are damaged.

Today, however, only data warehouses should be denormalized. 
JOINs are far cheaper than they were and the overhead of handling 
exceptions with procedural code is far greater than any extra data-
base overhead.

9.12.1 Row Sorting
On May 27, 2001, Fred Block posted a problem on the SQL Server 
Newsgroup. I will change the problem slightly, but the idea was 
that he had a table with five character string columns that had to 
be sorted alphabetically within each row. This “flattened table” is 
a very common denormalization, which might involve months of 
the year as columns, or other things that are acting as repeating 
groups in violation of 1NF.

Let’s declare the table to look like this and dive into the problem.

CREATE TABLE Foobar
(key_col INTEGER NOT NULL PRIMARY KEY,
c1 VARCHAR(20) NOT NULL,
c2 VARCHAR(20) NOT NULL,
c3 VARCHAR(20) NOT NULL,
c4 VARCHAR(20) NOT NULL,
c5 VARCHAR(20) NOT NULL);

This means that we want this condition to hold:

CHECK ((c1 <= c2) AND (c2 <= c3)
AND (c3 <= c4) AND (c4 <= c5))

Obviously, if he had added this constraint to the table in the first 
place, we would be fine. Of course, that would have pushed the prob-
lem to the front end and I would not have a topic for this section.

What was interesting was how everyone who read this 
Newsgroup posting immediately envisioned a stored procedure 
that would take the five values, sort them, and return them to their 
original row in the table. The only way to make this approach work 
for the whole table was to write an update cursor and loop through 
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all the rows of the table. Itzik Ben-Gan posted a simple procedure 
that loaded the values into a temporary table, then pulled them 
out in sorted order, starting with the minimum value, using a loop.

Another trick is the Bose-Nelson sort (“A Sorting Problem,” R. 
C. Bose and R. J. Nelson, Journal of the ACM, vol. 9, pp. 282–296), 
which I had written about in Dr. Dobb’s Journal back in 1985. This 
is a recursive procedure that takes an integer and then generates 
swap pairs for a vector of that size. A swap pair is a pair of position 
numbers from 1 to (n) in the vector that need to be exchanged if 
their contents are out of order. These swap pairs are also related 
to Sorting Networks in the literature (see The Art of Computer 
Programming, Donald Knuth, vol 3, ISBN 978-0201896855).

You are probably thinking that this method is a bit weak 
because the results are good only for sorting a fixed number of 
items. But a table only has a fixed number of columns, so that is 
not such a problem in denormalized SQL.

You can set up a sorting network that will sort five items 
(I was thinking of a Poker hand), with the minimal number of 
exchanges, nine swaps, like this:

Swap(c1, c2);
Swap(c4, c5);
Swap(c3, c5);
Swap(c3, c4);
Swap(c1, c4);
Swap(c1, c3);
Swap(c2, c5);
Swap(c2, c4);
Swap(c2, c3);

You might want to deal yourself a hand of five playing cards in 
one suit to see how it works. Put the cards face down in a line on the 
table and pick up the pairs, swapping them if required, then turn 
over the row to see that it is in sorted order when you are done.

In theory, the minimum number of swaps needed to sort (n) 
items is CEILING (log2 (n!)) and as (n) increases, this approaches 
O(n*log2(n)). The computer science majors will remember that 
Big O expression as the expected performance of the best sorting 
algorithms, such as Quicksort. The Bose-Nelson method is very 
good for small values of (n). If (n < 9) then it is perfect, actually. 
But as things get bigger, Bose-Nelson approaches O(n ^ 1.585). 
In English, this method is good for a fixed size list of 16 or fewer 
items and goes to hell after that.

You can write a version of the Bose-Nelson procedure that 
will output the SQL code for a given value of (n). The obvious 
direct way to do a Swap() is to write a chain of UPDATE statements. 
Remember that in SQL, the SET clause assignments happen in 
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parallel, so you can easily write a SET clause that exchanges the 
two items when they are out of order. Using the previous swap 
chain, we get this block of code:

BEGIN ATOMIC
-- Swap(c1, c2);
UPDATE Foobar
 SET c1 = c2, c2 = c1
WHERE c1 > c2;

-- Swap(c4, c5);
UPDATE Foobar
 SET c4 = c5, c5 = c4
WHERE c4 > c5;

-- Swap(c3, c5);
UPDATE Foobar
 SET c3 = c5, c5 = c3
WHERE c3 > c5;

-- Swap(c3, c4);
UPDATE Foobar
 SET c3 = c4, c4 = c3
WHERE c3 > c4;

-- Swap(c1, c4);
UPDATE Foobar
 SET c1 = c4, c4 = c1
WHERE c1 > c4;

-- Swap(c1, c3);
UPDATE Foobar
 SET c1 = c3, c3 = c1
WHERE c1 > c3;

-- Swap(c2, c5);
UPDATE Foobar
 SET c2 = c5, c5 = c2
WHERE c2 > c5;

-- Swap(c2, c4);
UPDATE Foobar
 SET c2 = c4, c4 = c2
WHERE c2 > c4;

-- Swap(c2, c3);
UPDATE Foobar
 SET c2 = c3, c3 = c2
WHERE c2 > c3;

END;

This is fully portable, standard SQL code and it can be machine 
generated. But that parallelism is useful. It is worthwhile to  combine 
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some of the UPDATE statements. But you have to be careful not to 
change the effective sequence of the swap operations.

If you look at the first two UPDATE statements, you can see that 
they do not overlap. This means you could roll them into one 
statement like this:

-- Swap(c1, c2) AND Swap(c4, c5);
UPDATE Foobar
 SET c1 = CASE WHEN c1 <= c2 THEN c1 ELSE c2 END,

c2 = CASE WHEN c1 <= c2 THEN c2 ELSE c1 END,
c4 = CASE WHEN c4 <= c5 THEN c4 ELSE c5 END,
c5 = CASE WHEN c4 <= c5 THEN c5 ELSE c4 END

WHERE c4 > c5 OR c1 > c2;

The advantage of doing this is that you have to execute only 
one UPDATE statement and not two. Updating a table, even on 
nonkey columns, usually locks the table and prevents other users 
from getting to the data. If you could roll the statements into one 
single UPDATE, you would have the best of all possible worlds, but I 
doubt that the code would be easy to read.

We can see this same pattern in the pair of statements.

Swap(c1, c3);
Swap(c2, c5);

But there are other patterns, so you can write general tem-
plates for them. Consider this one:

Swap(x, y);
Swap(x, z);

If you write out all possible triplets and apply these two opera-
tions on them, thus:

(x, y, z) => (x, y, z)
(x, z, y) => (x, z, y)
(y, x, z) => (x, y, z)
(y, z, x) => (x, z, y)
(z, x, y) => (x, y, z)
(z, y, x) => (x, y, z)

The result of this pattern is that x is the lowest of the three 
 values, and y and z either stay in the same relative position to each 
other or get sorted properly. Getting them properly sorted would 
have the advantage of saving exchanges later and also reducing the 
set of the subset being operated upon by each UPDATE statement. 
With a little thought, we can write this symmetric piece of code.

-- Swap(x, y) AND Swap(x, z);
UPDATE Foobar
 SET x = CASE WHEN x BETWEEN y AND z THEN y
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WHEN z BETWEEN y AND x THEN y
WHEN y BETWEEN z AND x THEN z
WHEN x BETWEEN z AND y THEN z
ELSE x END,

y = CASE WHEN x BETWEEN y AND z THEN x
WHEN x BETWEEN z AND y THEN x
WHEN z BETWEEN x AND y THEN z
WHEN z BETWEEN y AND x THEN z
ELSE y END,

z = CASE WHEN x BETWEEN z AND y THEN y
WHEN z BETWEEN x AND y THEN y
WHEN y BETWEEN z AND x THEN x
WHEN z BETWEEN y AND x THEN x
ELSE z END

WHERE x > z OR x > y;

While it is very tempting to write more and more of these pat-
tern templates, it might be more trouble than it is worth because 
of increased maintenance and readability.

Here is an SQL/PSM program for the Bose-Nelson sort, based 
on the version given in The C/C++ User’s Journal (February 1993 
issue, “Sorting Networks,” Frederick Hegeman). It assumes that 
you have a procedure called PRINT() for output to a text file. You 
can translate it into the programming language of your choice 
easily, as long as it supports recursion.

BEGIN
DECLARE i_mid INTEGER;
DECLARE j_mid INTEGER;
IF i2 = i1 AND j2 = j1
THEN CALL PRINT('swap (', i1, ', ', j1, ');');
ELSE IF i2 = i1+1 AND j2 = j1

THEN CALL PRINT('swap(', i1, ', ', j1, ');');
CALL PRINT('swap(', i2, ', ', j1, ');');

ELSE IF i2 = i1+1 AND j2 = j1+1
THEN CALL PRINT('swap (', i1, ', ', j2, ');');

CALL PRINT('swap (', i1, ', ', j1, ');');
ELSE SET i_mid = i1 + (i2-i1+1)/2 - 1;

IF MOD((i2-i1+1),2) = 0 AND i2-i1 <> j2 -j1
THEN SET j_mid = (j1 + j2-j1)/2 -1;
CALL BoseMerge(i1, i_mid, j1, j_mid);
CALL BoseMerge(ii_mid+1, i2, j_mid+1, j2);
CALL BoseMerge(ii_mid+1, i2, j1, j_mid);

END IF;
END IF;

END IF;
END IF;
END;
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10
NUMERIC DATA TYPES

SQL is not a computational language; the arithmetic capability 
of SQL is weaker than that of any other high-level programming 
language you have ever used. But there are some tricks that you 
need to know working with numbers in SQL and when passing 
them to a host program. Much of the arithmetic and the func-
tions are implementation-defined, so you should experiment 
with your particular product and make notes on the defaults, 
precision, and tools in the math library of your database.

This section deals with the arithmetic that you would use 
across a row instead of down a column; they are not quite 
the same.

10.1 Numeric Types
The SQL standard has a very wide range of numeric types. The 
idea is that any host language can find an SQL numeric type that 
matches one of its own.

You will also find some vendor extensions in the numeric data 
types, the most common of which is MONEY in the Sybase/SQL 
Server family. This is really a DECIMAL or NUMERIC data type, which 
also accepts and displays currency symbols in input and out-
put. This not only violates the principle of not formatting data, 
but SQL Server version has problems with its math. You may find 
vendors who allow leading zeroes, commas, decimal points, and 
other formatting in the database, but these “features” should not 
be used.

Numbers in SQL are classified as either exact or approxi-
mate. An exact numeric value has a precision, P, and a scale, S. 
The precision is a positive integer that determines the number of 
 significant digits in a particular radix. The standard says the radix 
can be either binary or decimal, so you need to know what your 
implementation does. The scale is a nonnegative integer that tells 
you how many radix places the number has.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00010-7
Copyright © 2011 by Elsevier Inc. All rights reserved.
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Today, there are not that many base-10 platforms so you 
probably have a binary machine. However, a number can have 
one of many binary representations—twos-complement, ones-
complement, high end or low end, and various word sizes. The 
proper mental model of numbers in SQL is not to worry about 
the “bits and bytes” level of the physical representation, but to 
think in abstract terms.

The data types NUMERIC, DECIMAL, INTEGER, BIGINT, and 
SMALLINT are exact numeric types. An integer has a scale of zero 
but the syntax simply uses the word INTEGER or the abbreviation 
INT, but hardcore SQL programmers do not use this abbreviation.

SMALLINT has a scale of zero, but the range of values it can hold 
are less than or equal to the range that INTEGER can hold in the 
implementation. Likewise, BIGINT has a scale of zero, but the 
range of values it can hold are greater than or equal to the range 
that INTEGER can hold in the implementation. BIGINT was added in 
 SQL-99, but had been common in products before then.

Your SQL may also have a TINYINT exact numeric type with a 
range of 0 to 255; it is not standard. For every numeric type, the 
least value is less than zero and the greatest value is greater than 
zero and should be replaced with

CREATE DOMAIN TinyInt
AS
SMALLINT CHECK (VALUE BETWEEN 0 AND 255);

DECIMAL(p,s) can also be written DEC(p,s), but it is not used 
by SQL programmers. For example, DECIMAL(8,2) could be used 
to hold the number 123456.78, which has eight significant digits 
and two decimal places.

The difference between NUMERIC and DECIMAL is subtle. NUMERIC 
specifies the exact precision and scale to be used. DECIMAL speci-
fies the exact scale, but the precision is implementation-defined 
to be equal to or greater than the specified value. That means 
DECIMAL can have some room for rounding and NUMERIC does not. 
Mainframe COBOL programmers can think of NUMERIC as a 
PICTURE numeric type, whereas DECIMAL is like a BCD. Personal-
computer programmers these days probably have not seen any-
thing like this.

An approximate numeric value consists of a mantissa and an 
exponent. The mantissa is a signed numeric value; the exponent 
is a signed integer that specifies the magnitude of the mantissa. 
An approximate numeric value has a precision. The precision is 
a positive integer that specifies the number of significant binary 
digits in the mantissa. The value of an approximate numeric 
value is the mantissa multiplied by 10 to the exponent. FLOAT(P), 
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REAL, and DOUBLE PRECISION are the approximate numeric types. 
There is a subtle difference between FLOAT(P), which has a binary 
precision equal to or greater than the value given, and REAL, 
which has an implementation-defined precision.

In the real world REAL and DOUBLE PRECISION are the IEEE 
Standard 754 for floating point numbers; FLOAT(P) is almost 
never used and will probably be deprecated in the Standards. 
IEEE math functions are built into processor chips so they will 
run faster than a software implementation. IEEE Standard 754 is 
binary and uses 32 bits for single precision and 64 bits for double 
precision, which is just right for personal computers and most 
Unix and Linux platforms.

The range for single precision numbers is approximately 
± 10^–44.85 to 10^38.53, and for double precision, approximately 
± 10^–323.3 to 10^308.3. However, there are some special values 
in the IEEE standard that are not part of SQL.

Zero cannot be directly represented in this format, so it is 
modeled as a special value denoted with an exponent field of 
zero and a fraction field of zero. The sign field can make this 
either –0 and 10, which are distinct values that compare as 
equal.

If the exponent is all zeroes, but the fraction is nonzero (else 
it would be interpreted as zero), then the value is a “denormal-
ized” number (same term we use for tables, different meaning), 
which is not assumed to have a leading 1 before the binary point. 
Thus, this represents a number (–s * 0.f * 2 – 126), where s is the 
sign bit and f is the fraction. For double precision, denormalized 
numbers are of the form (–s * 0.f * 2 –1022). You can interpret zero 
as a special type of denormalized number.

The two values “1infinity” and “–infinity” are denoted with 
an exponent of all ones and a fraction of all zeroes. The sign 
bit distinguishes between negative infinity and positive infin-
ity. Being able to denote infinity as a specific value is useful 
because it allows operations to continue past overflow situations. 
Operations with infinite values are well defined in IEEE floating 
point. We have nothing like it in SQL.

The value NaN (Not a Number) is used to represent a bit con-
figuration that does not represent number. NaNs are represented 
by a bit pattern with an exponent of all ones and a nonzero frac-
tion. There are two categories of NaN: QNaN (Quiet NaN) and 
SNaN (Signaling NaN).

A QNaN is a NaN with the most significant fraction bit set. 
QNaNs propagate freely through most arithmetic operations. 
These values pop out of an operation when the result is not 
mathematically defined, like division by zero.
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An SNaN is a NaN with the most significant fraction bit clear. 
It is used to signal an exception when used in operations. SNaNs 
can be handy to assign to uninitialized variables to trap prema-
ture usage.

Semantically, QNaNs denote indeterminate operations, 
whereas SNaNs denote invalid operations.

SQL has not accepted the IEEE model for mathematics for sev-
eral reasons. Much of the SQL standard allows implementation-
defined rounding, truncation, and precision so as to avoid limiting 
the language to particular hardware platforms. If the IEEE rules 
for math were allowed in SQL, then we need type conversion rules 
for infinite and a way to represent an infinite exact numeric value 
after the conversion. People have enough trouble with NULLs, so 
let’s not go there.

10.1.1 BIT, BYTE, and BOOLEAN Data Types
The ANSI Standards provide for BOOLEAN, BINARY, and BINARY 
VARYING data types and operations. Machine-level things like a bit 
or byte data type have no place in SQL and are almost never used. 
SQL has a three-valued logic and it does not naturally accom-
modate Boolean algebra. The value TRUE is greater than the value 
FALSE, and any comparison involving NULL or an UNKNOWN truth value 
will return an UNKNOWN result. But what does ((x 5 1) >5 (y 5 42)) 
mean conceptually? And aren’t there better ways to express the 
intent?

SQL is a high-level language; it is abstract and defined with-
out regard to PHYSICAL implementation. This basic principle of 
data modeling is called data abstraction. Bits and bytes are the 
lowest units of hardware-specific, physical implementation you 
can get. Are you on a high-end or low-end machine? Does the 
machine have 8, 16, 32, 64, or 128 bit words? Twos complement 
or ones complement math? Hey, the SQL Standards allow deci-
mal machines, so bits do not have to exist at all!

What about NULLs in this data type? To be an SQL data type, you 
have to have NULLs, so what is a NULL bit? By definition, a bit is in one 
of two states, on or off, and has no NULL. If your vendor adds NULLs 
to bits, how are the bit-wise operations defined? Oh what a tangled 
web we weave when first we mix logical and physical models.

What about the host languages? Did you know that 11, 10, 
20, and 21 are all used for BOOLEANs, but not consistently? In 
C#, Boolean values are 0/1 for FALSE/TRUE, whereas VB.NET has 
Boolean values of 0/–1 for FALSE/TRUE and they are proprietary lan-
guages from the same vendor. That means all the host languages— 
present, future, and not-yet-defined—can be different.
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For standard programming languages C and COBOL, BOOLEAN 
values are mapped to integer variables in the host language. For 
standard programming languages Ada, Fortran, Pascal, and PL/I, 
BOOLEAN variables are directly supported. All data types in SQL 
have to be NULLable, so the SQL Standard requires that a NULL 
Boolean is UNKNOWN; unfortunately, this makes the behavior of the 
data type inconsistent. The rule for NULLs has always been that 
they propagate. Consider the expressions:

(1 = 1) OR NULL yields NULL which is UNKNOWN
(1 = 1) OR UNKNOWN yields TRUE
(1 = 1) AND UNKNOWN yields UNKNOWN
(1 = 1) AND NULL yields NULL which is UNKNOWN

Using assembly language style bit flags has its own problems.
There are usually two situations for using bits in practice. 

Either the bits are individual attributes or they are used as a vec-
tor to represent a single attribute. In the case of a single attribute, 
the encoding is limited to two values, which do not port to host 
languages or other SQLs, cannot be easily understood by an end 
user, and cannot be expanded.

In the second case what some newbies do, who are still think-
ing in terms of second- and third-generation programming lan-
guages or even punch cards, is build a vector for a series of yes/
no status codes, failing to see the status vector as a single attri-
bute. Did you ever play the children’s game “20 Questions” when 
you were young?

Imagine you have six components for a loan approval, so 
you allocate bits in your second-generation model of the world. 
You have 64 possible vectors, but only five of them are valid 
(i.e., you cannot be rejected for bankruptcy and still have good 
credit). For your data integrity, you can:
1. Ignore the problem. This is actually what most newbies do. 

I have spent three decades cleaning up bad SQL and I see it all 
the time.

2. Write elaborate CHECK() constraints with user-defined functions 
or proprietary bit-level library functions that cannot port and 
that run like cold glue.
Now we add a seventh condition to the vector—which end 

does it go on? Why? How did you get it in the right place on all the 
possible hardware that it will ever use? Did all the code that refer-
ences a bit in a word by its position do it right after the change?

You need to sit down and think about how to design an encod-
ing of the data that is high level, general enough to expand, 
abstract, and portable. For example, is that loan approval a hier-
archical code? Concatenation code? Vector code? Did you provide 
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codes for unknown, missing, and N/A values? It is not easy to 
design such things!

BINARY and BINARY VARYING data types were meant to provide a 
standard term for storing data in various formats that are not part 
of the SQL data types, such as images, video, audio, and so forth.

10.2 Numeric Type Conversion
There are a few surprises in converting from one numeric type 
to another. The SQL standard left it up to the implementation to 
answer a lot of basic questions, so the programmer has to know 
his or her package.

10.2.1 Rounding and Truncating
When an exact or approximate numeric value is assigned to an 
exact numeric column, it may not fit. SQL says that the database 
engine will use an approximation that preserves leading signifi-
cant digits of the original number after rounding or truncating. 
The choice of whether to truncate or round is implementation-
defined, however. This can lead to some surprises when you have 
to shift data among SQL implementations, or storage values from 
a host language program into an SQL table. It is probably a good 
idea to create the columns with more decimal places than you 
think you need.

Truncation is defined as truncation toward zero; this means 
that 1.5 would truncate to 1, and 21.5 would truncate to 21. This 
is not true for all programming languages; everyone agrees on 
truncation toward zero for the positive numbers, but you will find 
that negative numbers may truncate away from zero (i.e., 21.5 
would truncate to 22).

SQL is also indecisive about rounding, leaving the implemen-
tation free to determine its method. There are two major types of 
rounding in programming, the scientific method and the com-
mercial method.

The scientific method looks at the digit to be removed. If this 
digit is 0, 1, 2, 3, or 4, you drop it and leave the higher-order digit 
to its left unchanged. If the digit is 5, 6, 7, 8, or 9, you drop it and 
increment the digit to its left. This method works with a small 
set of numbers and was popular with FORTRAN programmers 
because it is what engineers use.

The commercial method looks at the digit to be removed. 
If this digit is 0, 1, 2, 3, or 4, you drop it and leave the digit to its left 
unchanged. If the digit is 6, 7, 8, or 9, you drop it and increment 
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the digit to its left. However, when the digit is 5, you want to have a 
rule that will round up about half the time.

One rule is to look at the digit to the left: If it is odd, then leave 
it unchanged; if it is even, increment it. There are other versions 
of the decision rule, but they all try to make the rounding error as 
small as possible. This method works with a large set of numbers 
and is popular with bankers because it reduces the total round-
ing error in the system.

Another convention is to round to the nearest even number, 
so that both 1.5 and 2.5 round to 2, and 3.5 and 4.5 both round 
to 4. This rule keeps commercial rounding symmetric. The fol-
lowing expression uses the MOD() function to determine if you 
have an even number or not.

ROUND (CAST (amount - .0005 AS DECIMAL (14,4)) -
 (CAST (MOD (CAST (amount * 100.0 + .99 AS INTEGER), 2) AS
DECIMAL (14,4))/1000.0), 2);

In commercial transactions, you carry money amounts to 
four or more decimal places, but round them to two decimal 
places for display. This is a GAAP (Generally Accepted Accounting 
Practice) in the United States for US dollars and a law in the 
European Union for working with euros.

Here is your first programming exercise for the notes you are 
making on your SQL.
 Generate a table of 5000 random numbers, both positive and 

negative, with four or more decimal places. Round the test data 
to two decimal places and total them using both methods.

 Notice the difference and save those results. Now load those 
same numbers into a table in your SQL, like this:

CREATE TABLE RoundTest
(original DECIMAL(10,4) NOT NULL,
 rounded DECIMAL(10,2) NOT NULL);

-- insert the test data
INSERT INTO RoundTest (original)
VALUES (2134.5678. 0.00),
 etc.

UPDATE RoundTest SET rounded = original;

-- write a program to use both rounding methods
-- compare those results to this query

SELECT SUM(original), SUM(rounded)
  FROM RoundTest;

Compare these results to those from the other two tests. 
Now you know what your particular SQL is doing. Or if you got 
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a third answer, there might be other things going on, which 
we will deal with in Chapter 29 on aggregate functions. We will 
postpone discussion here, but the order of the rows in a SUM() 
function can make a difference in accumulated floating-point 
rounding error.

Scientific software has special routines to correct such round-
ing problems, but most SQL databases do not. Floating math is 
rare in commercial applications and most commercial comput-
ers do not have floating point processors.

10.2.2 CAST() Function
Standard SQL defined the general CAST(<cast operand> AS <data 
type>) function for all data type conversions. The <cast operand> 
can be either a <column name>, a <value expression>, or a NULL.

For numeric-to-numeric conversion, you can do anything 
you wish, but you have to watch for the rounding errors. The 
comparison predicates can hide automatic type conversions, so 
be careful. SQL implementations might have formatting options 
in their conversion functions that are not part of the standard. 
These functions either use a picture string, like COBOL or some 
 versions of BASIC, or return their results in a format set in an 
environment variable. This is very implementation-dependent. 
It also violates the principle of a tiered architecture that format-
ting is done in the front end and not the database.

10.3 Four Function Arithmetic
SQL was originally weaker than a pocket calculator. Today, the 
Standards include most of the basic math functions. The dyadic 
arithmetic operators 1, 2, *, and / stand for addition, subtrac-
tion, multiplication, and division, respectively. The multipli-
cation and division operators are of equal precedence and are 
performed before the dyadic plus and minus operators.

In algebra and in some programming languages, the prece-
dence of arithmetic operators is more restricted. They use the 
“My Dear Aunt Sally” rule; that is, multiplication is done before 
division, which is done before addition, which is done before 
subtraction. This can lead to subtle errors.

For example, consider (largenum + largenum − largenum), 
where largenum is the maximum value that can be represented 
in its numeric data type. If you group the expression from left 
to right, you get ((largenum + largenum) − largenum) = overflow 
error! However, if you group the expression from right to left, 
you get (largenum + (largenum − largenum)) = largenum.
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Because of these differences, an expression that worked one 
way in the host language may get different results in SQL and vice 
versa. SQL could reorder the expressions to optimize them, but 
in practice, you will find that many implementations will simply 
parse the expressions from left to right. The best way to be safe 
is always to make extensive use of parentheses in complicated 
expressions, whether they are in the host language or in your SQL.

The monadic plus and minus signs are allowed and you can 
string as many of them in front of a numeric value of variables as 
you like. The bad news about this decision is that SQL also uses 
Ada-style comments, which put the text of a comment line between 
a double dash and a newline character. This means that the parser 
has to figure out whether “--” is two minus signs or the start of a 
comment. Standard SQL also support C-style comment brackets 
(i.e., /* comment text */). Such brackets can be used in interna-
tional data transmission standards that do not recognize a newline 
in a transmission, so the double-dash convention will not work.

If both operands are exact numeric, the data type of the result 
is exact numeric, as you would expect. Likewise, an approximate 
numeric in a calculation will cast the results to approximate 
numeric. The kicker is in how the results are assigned in precision 
and scale.

Let S1 and S2 be the scale of the first and second operands, 
respectively. The precision of the result of addition and sub-
traction is implementation-defined, and the scale is the maxi-
mum of S1 and S2. The precision of the result of multiplication is 
implementation-defined, and the scale is (S1 1 S2). The precision 
and scale of the result of division are implementation-defined, 
and so are some decisions about rounding or truncating results.

The ANSI X3H2 INCITS (nee ANSI X3H2) Database Standards 
Committee debated about requiring precision and scales in the 
standard in the early days of SQL and finally gave up. This means 
I can start losing high-order digits, especially with a division 
operation, where it is perfectly legal to make all results single-
digit integers.

Nobody does anything that stupid in practice. In the real 
world, some vendors allow you to adjust the number of decimal 
places as a system parameter, some default to a known number 
of decimal places, and some display as many decimal places as 
they can so that you can round off to what you want. You will 
simply have to learn what your implementation does by experi-
menting with it.

The ANSI/ISO Standards now require the following basic math 
functions. There are other functions that produce numeric results; 
they are involved with aggregations and table-level operations.
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1. MOD (<numeric dividend expression>, <numeric divisor expres-
sion>) 5 modulus function

2. ABS(<numeric expression>) 5 absolute value function
3. LN (<numeric expression>) 5 natural logarithm function
4. EXP (<numeric expression>) 5 exponential function
5. POWER (<numeric expression>, <numeric power expression>) = 

expression to a power
6. SQRT (<numeric expression>) = square root
7. FLOOR (<numeric expression>) = greatest integer value less than 

or equal to the argument
8. {CEIL | CEILING} (<numeric expression>) = least integer value 

greater than or equal to the argument
Precision and scale are implementation-defined for these 

functions, of course, but they tend to follow the same design 
decisions as the arithmetic did. The reason is obvious: They are 
using the same library routines under the covers as the math 
package in the database engine.

10.4 Arithmetic and NULLs
NULLs are probably one of the most formidable database concepts 
for the beginner. This book has a detailed study of how NULLs 
work in SQL, but this section is concerned with how they act in 
arithmetic expressions.

The NULL in SQL is only one way of handling missing values. The 
usual description of NULLs is that they represent currently unknown 
values that might be replaced later with real values when we know 
something. Missing values actually cover a lot of territory. The 
Interim Report 75-02-08 to the ANSI X3 (SPARC Study Group 1975) 
showed 14 different kinds of incomplete data that could appear as 
the result of operations or as attribute values. They included such 
things as arithmetic underflow and overflow, division by zero, 
string truncation, raising zero to the zero-th power, and other 
computational errors, as well as missing or unknown values.

The NULL is a global creature, not belonging to any particular 
data type, but able to replace any of their values. This makes arith-
metic a bit easier to define. You have to specifically forbid NULLs in 
a column by declaring the column with a NOT NULL constraint. But 
in Standard SQL you can use the CAST function to declare a spe-
cific data type for a NULL, such as CAST (NULL AS INTEGER). One rea-
son for this convention is completeness; another is to let you pass 
information about how to create a column to the database engine.

The basic rule for math with NULLs is that they propagate. An 
arithmetic operation with a NULL will return a NULL. That makes 
sense; if a NULL is a missing value, then you cannot determine the 
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results of a calculation with it. However, the expression (NULL / 0) 
looks strange to people. The first thought is that a division by zero 
should return an error; if NULL is a true missing value to be deter-
mined later, there is no value to which it can resolve and make 
that expression valid. However, SQL propagates the NULL, while a 
non-NULL divided by zero will cause a runtime error.

10.5 Converting Values to and from NULL
Since host languages do not support NULLs, the programmer can 
elect either to replace them with another value that is expressible 
in the host language or to use INDICATOR variables to signal the 
host program to take special actions for them.

An indicator parameter is an integer host parameter that is 
specified immediately following another host parameter. When 
the first host parameter gets a NULL, the indicator is set to a nega-
tive value. Indicators also show positive numbers to show string 
data truncation occurred during a transfer between a host pro-
gram and SQL. A zero means there were no problems with the 
conversion.

10.5.1 NULLIF() Function
Standard SQL specifies two functions, NULLIF() and the related 
COALESCE(), that can be used to replace expressions with NULL and 
vice versa. They are part of the CASE expression family.

The NULLIF(V1, V2) function has two parameters. It is equiva-
lent to the following CASE expression:

NULLIF(V1, V2) := CASE
         WHEN (V1 = V2)
         THEN NULL
         ELSE V1 END;

That is, when the first parameter is equal to the second, the 
function returns a NULL; otherwise, it returns the first parame-
ter’s value. The properties of this function allow you to use it for 
many purposes. The important properties are these:
1. NULLIF(x, x) will return NULL for all values of x. This includes 

NULL, since (NULL = NULL) is UNKNOWN, not TRUE.
2. NULLIF(0, (x − x)) will convert all non-NULLs of x into NULL. But 

it will convert x NULL into x zero, since (NULL − NULL) is NULL, and 
the equality test will fail.

3. NULLIF(1, (x − x + 1)) will convert all non-NULLs of x into NULL. 
But it will convert a NULL into a 1. This can be generalized for all 
numeric data types and values.
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10.5.2 COALESCE() Function
The COALESCE(<value expression>, ..., <value expression>) 
function scans the list of <value expression>s from left to right, 
determines the highest data type in the list, and returns the first 
non-NULL in the list, casting it to the highest data type. If all the 
<value expression>s are NULL, the result is NULL.

The most common use of this function in math expressions is 
in a SELECT list where there are columns that have to be added, but 
one can be a NULL. For example, to create a report of the total pay 
for each employee, you might write this query:

SELECT emp_nbr, emp_name, (salary_amt + commission_amt) 
AS pay_tot

 FROM Personnel;

But salesmen may work on commission_amt only or on a mix of 
salary_amt and commission_amt. The office staff is on salary_amt 
only. This means an employee could have NULLs in his salary_amt 
or commission_amt column, which would propagate in the addi-
tion and produce a NULL result. A better solution would be:

SELECT emp_nbr, emp_name
        (COALESCE(salary_amt, 0.00) + COALESCE(commission_amt, 0.00))
        AS paycheck_amt
 FROM Personnel;

A more elaborate use for this function is with aggregate func-
tions. Consider a table of customers’ purchases with a category 
code and the amount of each purchase. You are to construct a 
query that will have one row, with one column for each category 
and one column for the grand total of all customer purchases. 
The table is declared like this:

CREATE TABLE Customers
(cust_nbr INTEGER NOT NULL,
 purchase_nbr INTEGER NOT NULL,
 cust_category CHAR(1)
    CONSTRAINT proper_category
    CHECK (cust_category IN ('A', 'B', 'C'),
purchase_amt DECIMAL(8, 2) NOT NULL,
. . . PRIMARY KEY (cust_nbr, purchase_nbr));

As an example of the use of COALESCE(), create a table of pay-
ments made for each month of a single year. (Yes, this could be 
done with a column for the months, but bear with me.)

CREATE TABLE Payments
(cust_nbr INTEGER NOT NULL,
 jan DECIMAL(8,2),
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 feb DECIMAL(8,2),
 mar DECIMAL(8,2),
 apr DECIMAL(8,2),
 may DECIMAL(8,2),
 jun DECIMAL(8,2),
 jul DECIMAL(8,2),
 aug DECIMAL(8,2),
 sep DECIMAL(8,2),
 oct DECIMAL(8,2),
 nov DECIMAL(8,2),
 "dec" DECIMAL(8,2), -- DEC is a reserved word
 PRIMARY KEY cust_nbr);

The problem is to write a query that returns the customer 
and the amount of the last payment he made. Unpaid months 
are shown with a NULL in them. We could use a COALESCE function 
like this:

SELECT cust_nbr,
    COALESCE ("dec", nov, oct, sep,
       aug, jul, jun, may, apr, mar, feb, jan)
  FROM Customers;

Of course this query is a bit incomplete, since it does not tell 
you in what month this last payment was made. This can be done 
with the rather ugly-looking expression that will turn a month’s 
non-NULL payment into a character string with the name of the 
month. The general case for a column called “mon”, which holds 
the number of a month within the year, is NULLIF (COALESCE 
(NULLIF (0, mon-mon), 'Month'), 0) where ‘Month’ is replaced 
by the string for the actual name of the particular month. A list 
of these statements in month order in a COALESCE will give us the 
name of the last month with a payment. The way this expression 
works is worth working out in detail.

Case 1: mon is a numeric value

NULLIF(COALESCE(NULLIF(0, mon - mon), 'Month'), 0)
NULLIF(COALESCE(NULLIF(0, 0), 'Month'), 0)
NULLIF(COALESCE(NULL, 'Month'), 0)
NULLIF('Month', 0)
('Month')

Case 2: mon is NULL

NULLIF(COALESCE(NULLIF(0, mon-mon), 'Month'), 0)
NULLIF(COALESCE(NULLIF(0, NULL-NULL), 'Month'), 0)
NULLIF(COALESCE(NULLIF(0, NULL), 'Month'), 0)
NULLIF(COALESCE(0, 'Month'), 0)
NULLIF(0, 0)
(NULL)
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You can do a lot of work by nesting SQL functions. LISP pro-
grammers are used to thinking this way, but most procedural 
programmers are not. It just takes a little practice and time.

10.6 Mathematical Functions
The SQL:2003 Standard extended the original four-function math 
to include a small library of functions. Most of them have been in 
actual products for decades.

SQL is not a computational language, so it should not have a 
math function library like, say, FORTRAN, nor a string function 
library like ICON. Geographical information is not part of the 
language but might be an extension.

10.6.1 Number Theory Operators
MOD(n, m) is the function that performs modulo or remainder 
arithmetic. If either n or m is NULL, then the result is NULL. If m 
is zero, then we get a division by zero exception. Otherwise, the 
result is the unique nonnegative exact numeric value r with scale 
zero such that:
1. r has the same sign as n.
2. The absolute value of r is less than the absolute value of m.
3. n 5 m * k 1 r for some exact numeric value k with scale zero.

This is tricky when the values of n and m are not cardinals (i.e., 
positive, nonzero integers). Experiment and find out how your pack-
age handles negative numbers and decimal places. In particular, 
many other procedural languages have slightly different definitions. 
If you are foolish enough to use “features” that allow other program-
ming languages to be embedded in the DDL, then you cannot have 
consistent data. This was a major issue for Pascal, among others.

In September 1996, Len Gallagher proposed an amendment 
for the MOD function in SQL3. Originally, the working draft defined 
MOD(n, m) only for positive values of both m and n, and leaves the 
result to be implementation-dependent when either m or n is 
negative.

Negative values of n have no required mathematical meaning, 
and many implementations of MOD either don’t define it at all, 
or give some result that is the easiest to calculate on a given hard-
ware platform.

However, negative values for m do have a very nice mathe-
matical interpretation that we wanted to see preserved in the 
SQL definition of MOD(). Let’s propose the following:
1. If n is positive, then the result is the unique nonnegative exact 

numeric quantity r with scale zero such that r is less than 
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m and n 5 (m * k) 1 r for some exact numeric quantity k with 
scale zero.

2. Otherwise, the result is an implementation-defined exact 
numeric quantity r with scale zero, which satisfies the 
requirements that r is strictly between m and (–m), and 
that n 5 (m * k) 1 r for some exact numeric quantity k with 
scale zero, and a completion condition is raised: Warning— 
implementation-defined result.
This definition guarantees that the MOD() function, for a given 

positive value of n, will be a homomorphism under addition from 
the mathematical group of all integers, under integer addition, to the 
modular group of integers {0, 1..., m-1} under modular addition. 
This mapping then preserves the following group properties:
1. The additive identity is preserved: MOD(0, m) = 0
2. Additive inverse is preserved in the modular group defined by 

MOD(−MOD(n, m), m) = m − MOD(n, m):

MOD(−n, m) = − MOD(n, m)

3. The addition property is preserved where “{{ circled plus sign }}” 
is modular addition defined by MOD((MOD(m, m) + MOD(n, m)), m)

MOD((m + n), m) = MOD(m, m) {{circled plus sign}} MOD(n,m)

4. Subtraction is preserved under modular subtraction, which 
is defined as MOD((MOD(m, m) {{ circled minus sign }} 
MOD(n, m)), m)

MOD (m − n, m) = MOD (m, m) {{circled minus sign}} MOD(n, m)

From this definition, we would get the following:

MOD(12, 5) = 2
MOD(-12, 5) = 3

There are some applications where the “best” result to 
MOD(–12, 5) might be “–2” or “–3” rather than “3”; and that is 
probably why various implementations of the MOD function dif-
fer. But the advantages of being able to rely on the preceding 
mathematical properties outweigh any other considerations. If 
a user knows what the SQL result will be, then it is easy to mod-
ify the expressions of a particular application to get the desired 
application result. Table 10.1 is a chart of the differences in SQL 
implementations.

Type A:
 Oracle 7.0 and Oracle 8.0

Type B:
 DataFlex - ODBC:
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 SQL Server 6.5, SP2
 SQLBase Version 6.1 PTF level 4
 Xbase

Type C:
 DB2/400, V3r2:
 DB2/6000 V2.01.1
 Sybase SQL Anywhere 5.5
 Sybase System 11

 ABS(n) 5 Returns the absolute value of n. If (n) is NULL, then the 
result is NULL.

 SIGN(n) 5 Returns 21 if n is negative, 0 if n is zero, and 11 if n 
is positive. If (n) is NULL, then the result is NULL. This function 
is the “signum” in mathematical terminology.

10.6.2 Exponential Functions
 POWER(x, n) = Raise the number x to the n-th power. If either 

parameter is NULL, then the result is NULL. If x is zero and n is 
negative, then an exception condition is raised: data exception — 
invalid. A nonnegative number to the zero power is always one, 
and if VE is positive, then the result is zero.

 SQRT(x) 5 Return the square root of x. It is defined as a short-
hand for POWER (x, 0.5).

 LN(x) 5 Natural logarithm of x. If x is zero or negative, then an 
exception condition is raised: data exception — invalid argu-
ment for natural logarithm.

Table 10.1 SQL Implementation Differences

test m n Type A Type B Type C Proposal

a 12 5 2 2 2 2
b −12 5 −2 −2 −2 3
c −12 −5 −2 −2 (−2,3) (2,−3)
d −12 −5 2 2 2 −2
e NULL 5 NULL NULL NULL NULL
f NULL NULL NULL NULL NULL NULL
g 12 NULL NULL NULL NULL NULL
h 12 0 12 NULL error 12
i −12 0 −12 NULL error −12
j 0 5 0 0 0 0
k 0 −5 0 0 0 0
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 EXP(x) 5 Returns the constant e (~ 2.71828182845904523536 .. ) 
to the x power; the inverse of a natural logarithm. If x is NULL then 
the result is NULL. If the result is not representable in the declared 
type of the result, then an exception is raised.

10.6.3 Scaling Functions
 FLOOR(x) 5 The largest integer less than or equal to x. If x is NULL 

then the result is NULL.
 CEILING(x) 5 The smallest integer greater than or equal to x. If 

x is NULL then the result is NULL.
Although not part of the Standards, these are very common 

in actual products. They can be written with multiplication and 
division, which would be subject to the local truncation and 
rounding rules of their product.
 ROUND(x, p) 5 Round the number x to p decimal places. If either 

parameter is NULL, the result is NULL.
 TRUNCATE(x, p) 5 Truncate the number x to p decimal places. 

If either parameter is NULL, the result is NULL.
The following two functions are in MySQL, Oracle, Mimer, 

and SQL-2003, but are often mimicked with CASE expressions in 
actual code.
 LEAST (<expression list>) 5 The expressions have to be of the 

same data type. This function returns the lowest value, whether 
numeric, temporal, or character.

 GREATEST(<expression list>) 5 As the preceding, but it returns 
the highest value.

10.6.4 Converting Numbers to Words
A common function in report writers converts numbers into 
words so that they can be used to print checks, legal documents, 
and other reports. This is not a common function in SQL prod-
ucts, nor is it part of the standards.

A method for converting numbers into words using only 
standard SQL by Stu Bloom follows. This was posted on January 
2,2002, on the SQL Server Programming newsgroup. First, create 
a table:

CREATE TABLE NbrWords
(number INTEGER PRIMARY KEY,
  word VARCHAR(30) NOT NULL);

Then populate it with the literal strings of NbrWords from 0 
to 999. Assuming that your range is 1 2 999,999,999 use the fol-
lowing query. It should be obvious how to extend it for larger 
 numbers and fractional parts.
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CASE WHEN :num < 1000
  THEN (SELECT word FROM NbrWords
      WHERE number = :num)
  WHEN :num < 1000000
  THEN (SELECT word FROM NbrWords
      WHERE number = :num / 1000)
     || ' thousand '
     || (SELECT word FROM NbrWords
        WHERE MOD (number = :num, 1000))
  WHEN :num < 1000000000
  THEN (SELECT word FROM NbrWords
      WHERE number = :num / 1000000)
     || ' million '
     || (SELECT word FROM NbrWords
      WHERE number = MOD((:num / 1000), 1000))
     || CASE WHEN MOD((:num / 1000), 1000) > 0
          THEN ' thousand '
          ELSE '' END
     || (SELECT word FROM NbrWords
       WHERE number = MOD(:num, 1000))
END;

Whether 2500 is “twenty-five hundred” or “two thousand, five 
hundred” is a matter of taste and not science. This can be done 
with a shorter list of words and a different query, but this is prob-
ably the best compromise between code and the size of the table.

10.7 Unique Value Generators
The most important property of any usable unique value genera-
tor is that it will never generate the same value twice. Sequential 
integers are the first approach vendors implemented in their 
products as a substitute for a proper key.

In essence, they are a piece of code inside SQL that looks at the 
last allocated value and adds one to get the next value. Let’s start 
from scratch and build our own version of such a procedure. First 
create a table called GeneratorValues with one row and two columns:

CREATE TABLE GeneratorValues
(lock CHAR(1) DEFAULT 'X' NOT NULL PRIMARY KEY -- only one row
   CHECK (lock = 'X'),
keyval INTEGER DEFAULT 1 NOT NULL -- positive numbers only
  CHECK (keyval > 0));

 -- let everyone use the table
GRANT SELECT, UPDATE(keyval)
ON TABLE GeneratorValues
TO PUBLIC;
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Now it needs a function to get out a value and do the increment.

CREATE FUNCTION Generator()
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
 -- SET ISOLATION = SERIALIZABLE;
UPDATE GeneratorValues
  SET keyval = keyval + 1;
RETURN (SELECT keyval FROM GeneratorValues);
COMMIT;
END;

This looks pretty good, but if there are multiple users, this 
code fragment is capable of allocating duplicate values to differ-
ent users. It is important to isolate the execution of the code to one 
and only one user at a time by using SET ISOLATION = SERIALIZABLE. 
Various SQL products will have slightly different ways of achieving 
this effect based on their concurrency control methods.

More bad news is that in pessimistic locking systems, you can 
get serious performance problems because of lock contention 
when a transaction is in serial isolation. The users are queued for 
access to the Generator table.

If the application demands gap-free numbering, then we not 
only have to guarantee that no two sessions ever get the same 
value, we must also guarantee that no value is ever wasted. 
Therefore, the lock on the Generator table must be held until the 
key value is actually used and the entire transaction is commit-
ted. Exactly how this is handled is implementation-defined, so 
I am not going to comment on it.

10.7.1 Sequences with Gaps
Very often an application does not really need a gap-free number 
sequence. If the purpose of the generated value is only to provide 
a unique identifier, then there is no reason to insist on a gap-free 
numbering sequence (in fact, there may be excellent reasons 
to insist that values be nonsequential—more about that later). 
Similarly, if the generated value is only a sort key, there is no rea-
son to insist that the sequence be gap-free, only that it be strictly 
increasing.

Once this requirement is eliminated we can design the appli-
cation to allocate a generated value and then immediately COMMIT, 
before beginning the “real” transaction. If the “real” transac-
tion is subsequently rolled back or never even begun, and the 
 generated value is wasted, we don’t care. Because the COMMIT is 
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done  immediately the lock on the Generator table is held only 
long enough to process the update and log the transaction. But 
we can still do even better than this.

10.7.2 Preallocated Values
In the old days of paper forms, the company had a forms control 
officer whose job was to track the forms. A gap in the sequential 
numbers on a check, bond, stock certificate, or whatever was 
a serious accounting problem. Paper forms were usually pre-
printed and issued in blocks of numbers as needed. You can imi-
tate this procedure in a database with a little thought and a few 
simple stored procedures.

Broadly speaking, there were two types of allocation blocks. In 
one, the sequence is known. The most common example would 
be a checkbook. Gaps in the sequence numbers are not allowed, 
and a destroyed or damaged check has to be explained with a 
“void” or other notation. The system needs to record which block 
went to which user, the date and time, and any other information 
relevant to the auditors.

CREATE TABLE FormsControl
(form_nbr CHAR(7) NOT NULL,
     seq INTEGER NOT NULL CHECK(seq > 0),
     PRIMARY KEY (form_nbr, seq),
     recipient CHAR(25) DEFAULT CURRENT_USER NOT NULL,
     issue_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
     ..
);

The tables that use the form numbers need to have con-
straints that verify the numbers were issued and appear in the 
Forms Control table. The next sequence number is easy to create, 
but you probably should restrict access to the base table with a 
stored procedure designed for one kind of form, along these lines:

CREATE FUNCTION NextFlobSeq( )
RETURNS INTEGER
LANGUAGE SQL
BEGIN
INSERT INTO FormsControl (form_nbr, seq, ..
VALUES ('Flob-1/R',
     (SELECT MAX(seq)+1
        FROM FormsControl
       WHERE form_nbr = 'Flob-1/R'),
       .. );
 ..
END;
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You can also use views on the FormsControl table to limit user 
access. If you might be dealing with an empty, then use this 
 scalar expression:

(SELECT COALESCE(MAX(seq), 0) + 1
   FROM FormsControl
  WHERE form_nbr = 'Flob-1/R'),

The COALESCE()will return a zero, thus assuring that the 
sequence starts with one.

10.8 IP Addresses
Internet Protocol version 6 (IPv6) replaces Internet Protocol 
 version 4 (IPv4), which was made up of four integers each in the 
range 0 to 255, separated by dots. The problem is that we will run 
out of IP space by 2010 or 2011 at the latest. Version 6 requires 
eight sets of four hexadecimal digits separated by colons.

Although technically a numeric data type, IP addresses are 
stored as binary and displayed with digital strings. IPv6 was 
defined in December 1998 by the Internet Engineering Task Force 
(IETF) with the publication of an Internet standard specification, 
RFC 2460. There was no version 5; it was an experimental flow-
oriented streaming protocol (Internet Stream Protocol) intended 
to support video and audio.

The new standard uses a 128-bit address, whereas IPv4 uses 
only 32 bits. There are a lot of details and new things in the stan-
dards, but they aren’t relevant to this discussion; this is only 
about data representation.

10.8.1 CHAR(39) Storage
You could keep the IP address as a CHAR (39) that is (8 * 4  digits 1 
7 colons) and an easy regular expression in the DDL. The main 
advantage is that this is human-readable and binary is not. But 
it is legal to drop leading zeroes in each group for readability. 
Although that is a good goal, it makes comparisons a bit harder.

10.8.2 Binary Storage
Most current hardware supports 64 bit integers, but not 
128 bits. Thankfully, the IPv6 standard uses a host identifier 
portion of 64 bits to facilitate an automatic mechanism for 
forming the host identifier from Link Layer media addressing 
information (MAC address). It is possible to use two BIGINTs for 
the data.
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10.8.3 Separate SMALLINTs
The IP address is displayed as groups that each have meaning in 
the system, so we can model an IP address in separate columns. 
Notice that the IP address is still an atomic data element, but it is 
being modeled as scalar values. Check that you have such a data 
type in your product; if not, you can define it as:

CREATE DOMAIN SmallInt
AS INTEGER DEFAULT 0 CHECK (VALUE BETWEEN 0 AND 65535);

Then use that data type to declare a nonscalar atomic data 
element, thus:

ip1 SMALLINT NOT NULL,
ip2 SMALLINT NOT NULL,
 ..
ip8 SMALLINT NOT NULL

The trick here is to index the octets in reverse order, since the 
final grouping is the most selective.
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11
TEMPORAL DATA TYPES

Clifford Simak wrote a science fiction novel entitled, Time Is the 
Simplest Thing, in 1977. He was wrong. And the problems did not 
start with the Y2K problems we had in 2000, either. The calen-
dar is irregular and the only ISO Standard unit of time is the sec-
ond; years, months, weeks, hours, minutes, and so forth are not 
part of the SI system, but are mentioned in the ISO standards as 
conventions.

SQL-92 added temporal data to the language, acknowledging 
what was already in most SQL products by that time. The prob-
lem is that each vendor made a trade-off internally. We will get 
into SQL code later, but it is better to start with foundations.

11.1 Notes on Calendar Standards
Leap years did not exist in the Roman or Egyptian solar calendars 
prior to the year 708 AUC (ab urbe condita, Latin for “from the 
founding of the City [Rome]”).

Unfortunately, the solar year is not an even number of days; 
there are 365.2422 days in a year and the fraction adds up over 
time. The civil and religious solar calendars had drifted with 
respect to the solar year by approximately one day every four 
years. For example, the Egyptian calendar drifted completely 
around approximately every 1,461 years. As a result, it was use-
less for agriculture, so the Egyptians relied on the stars to predict 
the flooding of the Nile. Sosigenes of Alexandria knew that the 
calendar had drifted completely around more than twice since it 
was first introduced.

To realign the calendar with the seasons, Julius Caesar 
decreed that the year 708 (that is the year 46 BCE to us) would 
have 445 days. Caesar, on the advice of Sosigenes, also intro-
duced leap years (known as bissextile years) at this time. Many 
Romans simply referred to 708 AUC as the “year of confusion” 
and thus began the Julian calendar, which became the standard 
for the world from that point forward.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00011-9
Copyright © 2011 by Elsevier Inc. All rights reserved.
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The Julian calendar had a leap year day every four years and 
was reasonably accurate in the short or medium range, but it 
drifted by approximately three days every 400 years. This is a 
result of the 0.0022 fraction of a day adding up.

It had gotten 10 days out of step with the seasons by 1582. 
(A calendar without a leap year would have drifted completely 
around slightly more than once between 708 AUC and 2335 
AUC—that is, 1582 CE to us.) The Summer Solstice, so impor-
tant to planting crops, had no relationship to June 21. Scientists 
finally convinced Pope Gregory to realign the calendar by drop-
ping almost two weeks from the month of October in 1582 CE. 
The years 800 CE and 1200 CE were leap years anywhere in the 
Christian world. But whether 1600 CE was a leap year depended 
on where you lived. European countries did not move to the 
new calendar at the same time or follow the same pattern of 
adoption.

Note: The abbreviations AD (Anno Domini, Latin for “in the year of Our 
Lord”) and BC (Before Christ) have been replaced by CE for “Common 
Era” and BCE for “Before Common Era” in ISO Standard to avoid 
religious references.

The calendar corrections had economic and social ramifica-
tions. In Great Britain and its colonies, September 2, 1752 was 
followed by September 14, 1752. The calendar reform bill of 
1751 was entitled, “An Act for Regulating the Commencement of 
the Year and For Correcting the Calendar Now in Use.” The bill 
included provisions to adjust the amount of money owed or col-
lected from rents, leases, mortgages, and similar legal arrange-
ments, so that rents and so forth were prorated by the number of 
actual elapsed days in the time period affected by the calendar 
change. Nobody had to pay the full monthly rate for the short 
month of September in 1752 and nobody had to pay the full yearly 
rate for the short year.

The serious, widespread, and persistent rioting was not due 
to the commercial problems that resulted, but to the common 
belief that each person’s days were “numbered” and that every-
one was preordained to be born and die at a divinely ordained 
time that no human agency could alter in any way.

Thus the removal of 11 days from the month of September 
shortened the lives of everyone on Earth by 11 days. And there 
was also the matter of the missing 83 days due to the change 
of the New Year’s Day from March 25 to January 1, which was 
believed to have a similar effect.
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If you think this behavior is insane, consider the number of 
people today who get upset about the yearly one-hour clock 
adjustments for Daylight Saving Time.

To complicate matters, the beginning of the year also varied 
from country to country. Great Britain preferred to begin the year 
on March 25, whereas other countries began at Easter, December 
25, or perhaps March 1 and January 1—all important details for 
historians to keep in mind.

In Great Britain and its colonies, the calendar year 1750 began 
on March 25 and ended on March 25—that is, the day after 
March 24, 1750 was March 25, 1751. The leap year day was added 
to the end of the last full month in the year, which was then 
February. The extra leap year day comes at the end of February, 
since this part of the calendar structure was not changed.

In Latin, septem means seventh, from which we derived 
September. Likewise, octem means eighth, novem means ninth, 
and decem means tenth. Thus, September should be the seventh 
month, October should be the eighth, November should be the 
ninth, and December should be the tenth.

So, how come September is the ninth month? September was 
the seventh month until 1752 when the New Year was changed 
from March 25 to January 1.

Until fairly recently, nobody agreed on the proper display for-
mat for dates. Every nation seems to have its own commercial 
conventions. Most of us know that Americans put the month 
before the day and the British do the reverse, but do you know any 
other national conventions? National date formats may be con-
fusing when used in an international environment. When it was 
12/16/95 in Boston, it was 16/12/95 in London, 16.12.95 in Berlin 
and 95-12-16 in Stockholm. Then there are conventions within 
industries within each country that complicate matters further.

Faced with all the possibilities, software vendors came up 
with various general ways of formatting dates for display. The 
usual ones are some mixtures of a two- or four-digit year, a three- 
letter or two-digit month, and a two-digit day within the month. 
Slashes, dashes, or spaces can separate the three fields.

At one time, NATO tried to use Roman numerals for the 
month to avoid language problems among treaty members. The 
United States Army did a study and found that the four-digit year, 
three-letter month and two-digit day format was the least likely 
to be missorted, misread, or miswritten by English speakers. That 
is also the reason for “24-hour” or “military” time.

Today, you want to set up a program to convert your data to 
conform to ISO 8601 “Data Elements and Interchange Formats – 
Information Interchange – Representation of Dates and Times” as 
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a corporate standard and EDIFACT for EDI messages. This is the 
yyyy-mm-dd format that is part of Standard SQL and will become 
part of other standard programming languages as they add 
 temporal data types.

The full ISO 8601 timestamp can be either a local time or UTC 
time. UTC is the code for Universal Coordinated Time, which 
replaced the older GMT, which was the code for Greenwich Mean 
Time, which is still improperly used in popular media.

In 1970 the Coordinated Universal Time system was devised 
by an international advisory group of technical experts within 
the International Telecommunication Union (ITU). The ITU 
felt it was best to designate a single abbreviation for use in all 
languages in order to minimize confusion. The two alternative 
original abbreviation proposals for the Universal Coordinated 
Time were CUT (English: Coordinated Universal Time) and TUC 
(French: Temps Universel Coordinne). UTC was selected both as 
a compromise between the French and English proposals and 
because the C at the end looks more like an index in UT0, UT1, 
UT2, and a mathematical-style notation is always the most 
 international approach.

Universal Coordinated Time is not quite the same thing as 
astronomical time. The Earth wobbles a bit and the UTC had 
to be adjusted to the solar year with a leap second added or 
removed once a year to keep them in synch. As of this writing, 
UTC will be based on an atomic clock without a leap second 
adjustment.

Another problem in the United States is that besides  having 
four time zones, we also have “lawful time” to worry about. This 
is the technical term for time required by law for commerce. 
Usually, this means whether or not you use Daylight Saving Time 
(DST) and how it is defined locally.

The need for UTC time in the database and lawful time for 
display and input has not been generally handled yet. EDI and 
replicated databases must use UTC time to compare time-
stamps. A date without a time zone is ambiguous in a dis-
tributed system. A transaction created DATE ‘1995-12-17’ in 
London may be younger than a transaction created DATE ‘1995-
12-16’ in Boston. With a time zone, both are adjusted to UTC 
internally.

11.2 SQL Temporal Data Types
SQL-86 and SQL-89 have no notion of time. SQL-92 added 
datetime and interval data types. Although Standard SQL sup-
ports time-varying data through the temporal data types, the 
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language really has no notion of a time-varying table. SQL also 
has no  concept of current or sequenced constraints, queries, 
 modifications or views, nor of the critical distinction between 
valid time (modeling the behavior of the enterprise in reality) and 
transaction time (capturing the evolution of the stored data).

SQL only supports what are called nonsequenced opera-
tions. Standard SQL has a very complete description of its tem-
poral data types. There are rules for converting from numeric 
and character strings into these data types and there is a schema 
table for global time-zone information that is used to make sure 
that temporal data types are synchronized. It is so complete and 
elaborate that smaller SQLs have not implemented it yet. As an 
international standard, Standard SQL has to handle time for the 
whole world, and most of us work with only local time. If you 
have ever tried to figure out the time in a foreign city to place a 
telephone call, you have some idea of what is involved.

The common terms and conventions related to time are also 
confusing. We talk about “an hour” and use the term to mean 
a particular point within the cycle of a day (“The train arrives 
at 13:00 hrs”) or to mean an interval of time not connected to 
another unit of measurement (“The train takes three hours to get 
there”). The number of days in a month is not uniform; the num-
ber of days in a year is not uniform; weeks are not easily related 
to months; and so on.

Standard SQL has two basic kinds of temporal data types. The 
datetimes (DATE, TIME, and TIMESTAMP) represent points in the time 
line, and the interval data types and INTERVALs (DAY, HOUR, MINUTE, 
and SECOND with decimal fraction) are durations of time. Standard 
SQL also has a full set of operators for these data types. But you 
will still find vendor-specific syntax in most existing SQL imple-
mentations today.

11.2.1 Internal Representations
The syntax and power of date, timestamp, and time features vary 
so much from product to product that it is impossible to give 
anything but general advice. This chapter will assume that you 
have simple date arithmetic in your SQL, but you might find that 
some library functions would let you do a better job than what 
you see here. Please continue to check your manuals until the 
Standard SQL standards are implemented.

As a general statement, there are two ways of representing 
temporal data internally. The UNIX representation is based on 
keeping a single binary string of 64 or more bits that counts the 
computer clock ticks from a base starting date and time. The 
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other representation I will call the COBOL method, since it uses 
separate fields for the year, month, day, hours, minutes, and 
 seconds. These fields can be characters, BCD, or other another 
internal format.

The UNIX method is very good for calculations, but the 
engine must convert from the external ISO 8601 format to the 
internal format and vice versa. The COBOL format is the oppo-
site; good for display purposes, but weaker on calculations.

11.2.2 Display Format Standards
The ANSI date formats are described in ANSI X3.30. Their 
 formats include the ISO standard, but add a four-digit year, fol-
lowed by the two-digit month (01–12), followed by the two-digit 
day within month (01–31). This option is called the calendar 
date format. Standard SQL uses this all-numeric yyyy-mm-dd 
hh:mm:ss[ss..] format to conform to ISO 8601, which had to 
avoid language-dependent abbreviations.

Many programs still use a year-in-century date format of 
some kind. This was supposed to save space in the old days 
when that sort of thing mattered (i.e., when punch cards had 
only 80 columns). Programmers assumed that they would not 
need to tell the difference between the years 1900 and 2000 
because they were too far apart. Old COBOL programs that did 
date arithmetic on these formats returned erroneous negative 
results. If COBOL had a DATE data type, instead of making the 
programmers write their own routines, this would not have hap-
pened. Relational database users and some 4GL programmers 
can gloat over this, since they have DATE data types built into 
their languages.

11.2.3 Handling Timestamps
TIMESTAMP(n) is defined as a timestamp to (n) decimal places 
(e.g., TIMESTAMP(9) is nanosecond precision), where the preci-
sion is hardware-dependent. The FIPS-127 standard requires at 
least five decimal places after the second and modern products 
 typically go to seven decimal places.

TIMESTAMPs usually serve two purposes. They can be used as a 
true timestamp to mark an event connected to the row in which 
they appear. Or they can be used as a sequential number for 
building a unique key that is not temporal in nature. Some DB2 
programs use the microseconds component of a timestamp and 
invert the numbers to create a “random” number for keys; of 
course, this method of generation does not preclude  duplicates 
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being generated, but it is a quick and dirty way to  create a 
 somewhat random number. It helps to use such a method when 
using the timestamp itself would generate data “hot spots” in 
the table space. For example, the date and time when a pay-
ment is made on an account are important and a true timestamp 
is required for legal reasons. The account number just has to be 
different from all other account numbers, so we need a unique 
number, and TIMESTAMP is a quick way of getting one.

Remember that a TIMESTAMP will read the system clock once 
and use that same time on all the items involved in a transaction. 
It does not matter if the actual time it took to complete the trans-
action was days; a transaction in SQL is done as a whole unit or 
is not done at all. This is not usually a problem for small trans-
actions, but it can be in large batched ones where very complex 
updates have to be done.

TIMESTAMP as a source of unique identifiers is fine in most 
 single-user systems, since all transactions are serialized and of 
short enough duration that the clock will change between trans-
actions; peripherals are slower than CPUs. But in a client/server 
system, two transactions can occur at the same time on differ-
ent local workstations. Using the local client machine clock can 
 create duplicates and adds the problem of coordinating all the 
clients. The coordination problem has two parts:
1. How do you get the clocks to start at the same time? I do not 

mean just the technical problem of synchronizing multiple 
machines to the microsecond but also the one or two clients 
who forgot about Daylight Saving Time.

2. How do you make sure the clocks stay the same? Using the 
server clock to send a timestamp back to the client increases 
network traffic yet does not always solve the problem.
The modern solution is to use the NIST time signal to set and 

synchronize all clocks, not just those in computers. Official US 
government time, as provided by NIST and USNO (United States 
Naval Observatory), is available on the Internet at http://www.
time.gov. NIST also offers an Internet Time Service (ITS) and an 
Automated Computer Time Service (ACTS) that allow setting of 
computer and other clocks through the Internet or over standard 
commercial telephone lines. Free software for using these ser-
vices on several types of popular computers can be downloaded 
there. The NIST web site at http://tf.nist.gov has information on 
time and frequency standards and research.

Many operating systems that represent the system time as 
a long binary string based on a count of machine cycles since 
a starting date. One trick is to pull off the least significant digits 
of this number and use them as a key. But this will not work as 

http://www.time.gov
http://www.time.gov
http://tf.nist.gov
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transaction volume increases. Adding more decimal places to 
the timestamp is not a solution either. The real problem lies in 
statistics.

Open a telephone book (white pages) at random. Mark the 
last two digits of any 13 consecutive numbers, which will give you 
a sample of numbers between 00 and 99, which we will assume is 
uniformly distributed. What are the odds that you will have a pair 
of identical numbers? It is not 1 in 100, as you might first think. 
Start with one number and add a second number to the set; the 
odds that the second number does not match the first are 99/100. 
Add a third number to the set; the odds that it matches neither 
the first nor the second number are 98/100. Continue this line of 
reasoning and compute (0.99 * 0.98 * … * 0.88) 5 0.4427 as the 
odds of not finding a pair. Therefore, the odds that you will find 
a pair are 0.5572, a bit better than even. By the time you get to 20 
numbers, the odds of a match are about 87%; at 30 numbers, the 
odds exceed a 99% probability of one match. You might want to 
carry out this model for finding a pair in three-digit numbers and 
see when you pass the 50% mark.

A good key generator needs to eliminate (or at least minimize) 
identical keys and give a statistical distribution that is fairly uni-
form to avoid excessive index reorganization problems. Most key-
generator algorithms that use the system clock depend on one 
or more “near key” values, such as employee name, to create a 
unique identifier.

The mathematics of such algorithms is much like that of a 
hashing algorithm. Hashing algorithms also try to obtain a uni-
form distribution of unique values. The difference is that a hash-
ing algorithm must ensure that a hash result is both unique (after 
collision resolution) and repeatable, so that it can find the stored 
data. A key generator needs only to ensure that the resulting key 
is unique in the database, which is why it can use the system 
clock and a hashing algorithm cannot.

You can often use a random-number generator in the host 
language to create pseudo-random numbers to insert into the 
database for these purposes. Most pseudo-random number gen-
erators will start with an initial value, called a seed, then use it 
to create a sequence of numbers. Each call will return the next 
value in the sequence to the calling program. The sequence will 
have some of the statistical properties of a real random sequence, 
but the same seed will produce the same sequence each time, 
which is why the numbers are called pseudo-random numbers. 
This also means that if the sequence ever repeats a number, it 
will begin to cycle. (This is not usually a problem, since the size 
of the cycle can be hundreds of thousands or even millions of 
numbers.)
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11.2.4 Handling Times
Older, smaller databases live and work in one time zone. If you 
have a database that covers more than one time zone, you might 
consider storing time in UTC and adding a numeric column to 
hold the local time-zone offset. The time zones start at UTC, 
which has an offset of zero. This is how the system-level time-
zone table in Standard SQL is defined. There are also ISO standard 
three-letter codes for the time zones of the world, such as EST, for 
Eastern Standard Time, in the United States. The offset is usually a 
positive or negative number of hours, but there are still a few odd 
zones that differ by 15 minutes from the expected pattern.

Now you have to factor in Daylight Saving Time on top of 
that to get what is call “lawful time,” which it is the basis for legal 
agreements. The US government uses Daylight Saving Time (DST) 
on federal lands inside of states that do not use DST. If the hard-
ware clock in the computer in which the database resides is the 
source of the timestamps, you can get a mix of gaps and duplicate 
times over a year. This is why Standard SQL uses UTC internally.

You should use a 24-hour time format, which is less prone to 
errors than 12-hour (AM/PM) time, since it is less likely to be mis-
read or miswritten. This format can be manually sorted more eas-
ily and is less prone to computational errors. Americans use the 
ISO Standard colon as a field separator between hours,  minutes, 
and seconds; Europeans still use a period in some countries. 
This is not a problem for them, since they also use a comma for a 
 decimal point. Most databases give you these display options.

One of the major problems with time is that there are three 
kinds: fixed events (“He arrives at 13:00 hrs”), durations (“The 
trip takes three hours”), and intervals (“The train leaves at 
10:00 hrs and arrives at 13:00 hrs”), which are all interrelated. 
SQL-92 introduced an INTERVAL data type. An INTERVAL is a 
unit of duration of time rather than a fixed point in time; its units 
are years, months, days, hours, minutes, and seconds.

There are two classes of intervals. One class, called year-month 
intervals, has an express or implied precision that includes no 
fields other than YEAR and MONTH, though it is not necessary to 
use both. The other class, called day-time intervals, has an express 
or implied interval precision that can include any fields other 
than YEAR or MONTH—that is, DAY, HOUR, MINUTE, and SECOND (with 
 decimal places).

11.2.5 Time Zones and DST
The British Railroads were the first agency to get legally estab-
lished time zones in the 1880s. Canada, then the United States 
followed, thanks to the work of a Canadian civil and railway 
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 engineer, Sandford Fleming. He was instrumental in convening 
the 1884 International Prime Meridian Conference in Washington, 
which gave us the current system of international standard time. 
Standard time in time zones became law in the United States with 
the Standard Time Act of 1918. The Department of Transportation 
has had responsibility for the time laws since 1966. Time zone 
boundaries have changed greatly since their original introduc-
tion, and changes still occasionally occur.

Daylight Saving Time has been used in the United States and 
in many European countries since World War I. It was introduced 
as a war time measure to save energy and it outlasted both World 
Wars. Those conventions have also changed over the years. You 
simply need to find out what the current situation is and make 
changes to your database’s schema information tables.

On top of all this, there are a few places on Earth that have 
time zone offsets that are not in whole hours. This is why 
Stanford SQL has syntax for time zone in hours and minutes. 
Hopefully, this will disappear with nondecimal currencies and 
nonmetric units of measurement in my lifetime.

Time zones with fractional hour displacements are shown here:
 http://www.timeanddate.com/worldclock/city.html?n55
 http://www.timeanddate.com/worldclock/city.html?n554
 http://www.timeanddate.com/worldclock/city.html?n5176
 http://www.timeanddate.com/worldclock/city.html?n5246
but the strange ones are:
 http://www.timeanddate.com/worldclock/city.html?n55
 http://www.timeanddate.com/worldclock/city.html?n563

The TIMEZONE_HOUR value can be between −14 and 14, but 
when the value of TIMEZONE_HOUR is either –14 or 14, the value of 
TIMEZONE_MINUTE is restricted to be 00 (zeros). Likewise, TIMEZONE_
MINUTE values are between −59 and 59.

The declaration of a time zone has to be on a TIME or TIMESTAMP 
column, with this syntax:

[WITH | WITHOUT] TIME ZONE

for example:

CREATE TABLE Foobar
(start_date TIME WITH TIME ZONE NOT NULL,
end_time TIMESTAMP WITHOUT TIME ZONE);

11.3 INTERVAL Data Types
INTERVAL data types are either year–month interval or a day–time 
interval. They can be either single words, such as DAY or HOUR, 
or a range such as HOUR TO SECOND. This is why strings are used 

http://www.timeanddate.com/worldclock/city.html?n=5
http://www.timeanddate.com/worldclock/city.html?n=54
http://www.timeanddate.com/worldclock/city.html?n=176
http://www.timeanddate.com/worldclock/city.html?n=246
http://www.timeanddate.com/worldclock/city.html?n=5
http://www.timeanddate.com/worldclock/city.html?n=63
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rather than integers—you have to put in punctuation to separate 
the fields. Table 11.1 gives you a quick list of the keywords for the 
INTERVAL data types. Here are the formal BNF definitions.

<interval literal> ::=
INTERVAL [+ | −] <interval string> <interval qualifier>

<interval string> ::=
 <date value string>
  | <time value string> [<time zone interval string>]
  | <timestamp string>

<interval qualifier> ::=

<interval string> ::= [+ | − ] { <year-month literal>  
| <day-time literal> }

<year-month literal> ::= <years value> [<minus sign> 
<months value>]

| <months value>

<day-time literal> ::= <day-time interval> | <time interval>

<day-time interval> ::=
<days value> [<space> <hours value> [<colon> <minutes value> 
[<colon> <seconds value>]]]

<time interval> ::=
<hours value> [<colon> <minutes value> [<colon> 

<seconds value>]]
| <minutes value> [<colon> <seconds value>]  

| <seconds value>

<years value> ::= <datetime value>

<months value> ::= <datetime value>

<days value> ::= <datetime value>

<hours value> ::= <datetime value>

<minutes value> ::= <datetime value>

<seconds value> ::= <seconds integer value>  
[<period> [<seconds fraction>]]

<seconds integer value> ::= <unsigned integer>

<seconds fraction> ::= <unsigned integer>

<datetime value> ::= <unsigned integer>

The <interval qualifier> describes the precision of the inter-
val data type. A value described by an interval data type descrip-
tor is always signed.

Values in interval fields other than SECOND are integers and 
have precision 2 when not the first field. SECOND, however, can be 
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defined to have an <interval fractional seconds precision> that 
indicates the number of decimal digits in the seconds value. When 
not the first field, SECOND has a precision of two places before the 
decimal point. Fields comprising an item of type interval are also 
constrained by the definition of the Common Era calendar.

YEAR, MONTH, and YEAR TO MONTH intervals are comparable only 
with other year-month intervals. If two year–month  intervals 
have different interval precisions, they are, for the purpose of 
any operations between them, effectively converted to the same 
precision by appending new <primary datetime field>s to either 
the most significant end of one interval, the least significant end 
of one  interval, or both. New least significant <primary datetime 
field>s are assigned a value of 0 (zero). When it is necessary to 
add new most significant datetime fields, the associated value 
is effectively converted to the new precision in a manner obey-
ing the natural rules for dates and times associated with the 
Common Era calendar.

DAY, HOUR, MINUTE, SECOND, DAY TO HOUR, DAY TO MINUTE, DAY 
TO SECOND, HOUR TO MINUTE, HOUR TO SECOND, and MINUTE TO SECOND 
intervals are comparable only with other day–time intervals. If two 
day–time intervals have different interval precisions, they are, for 
the purpose of any operations between them, effectively converted 
to the same precision by appending new  <primary datetime field>s 
to either the most significant end of one interval or the least sig-
nificant end of one interval, or both. New least significant <primary 
datetime field>s are assigned a value of 0 (zero). When it is neces-
sary to add new most significant datetime fields, the associated 
value is effectively converted to the new precision in a manner 
obeying the natural rules for dates and times associated with the 
Common Era calendar.

Interval Field and Description Keyword

Years, constrained by implementation leading field precision YEAR
Months within years constrained to 0–11 MONTH
Days, constrained by implementation leading field precision DAY
Hours within days, constrained to 0–23 HOUR
Minutes within hours, constrained to 0–59 MINUTE
Seconds within minutes, constrained to 0–59.999. SECOND

Table 11.1 ANSI/ISO Standard Interval Data Types
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In Standard SQL, the interval values are given by strings and 
not by integers or decimals. However, you can write things like 
this, assuming it makes sense, to an integer out of them:

CAST (CAST (<string expression> AS INTERVAL <interval 
type>) AS <exact numeric data type>)

Within an <interval literal> that contains a <year-month 
 literal>, the <interval qualifier> shall not specify DAY, HOUR, 
MINUTE, or SECOND. Within the definition of an <interval literal> that 
contains a <day-time literal>, the <interval qualifier> shall not 
specify YEAR or MONTH. Within the definition of a <datetime literal>, 
the value of the <time zone interval> shall be in the range 212:59 
to 114:00. Informally, this says that you need to use sensible values.

11.4 Temporal Arithmetic
Almost every SQL implementation has a DATE data type, but the 
functions available for them vary quite a bit. The most common 
ones are a constructor that builds a date from integers or strings; 
extractors to pull out the month, day, or year; and some display 
options to format output.

You can assume that your SQL implementation has simple 
date arithmetic functions, although with different syntax from 
product to product, such as
1. A date plus or minus a number of days yields a new date.
2. A date minus a second date yields an integer number of days 

between the dates.
Table 11.2 displays the valid combinations of <datetime> and 

<interval> data types in the Standard SQL standard.
There are other rules, which deal with time zones and the rela-

tive precision of the two operands, that are intuitively obvious.

 

<datetime> − <datetime> = <interval>
<datetime> + <interval> = <datetime>
<interval> (* or/) <numeric> = <interval>
<interval> + <datetime> = <datetime>
<interval> + <interval> = <interval>
<numeric> * <interval> = <interval>

Table 11.2 Valid <datetime> and 
<interval> Combinations
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There is the Standard CURRENT_DATE function that returns the 
current date from the system clock. However, you will still find ven-
dor dialect named for the function, such as TODAY, SYSDATE, Now(), 
and getdate(). There may also be a function to return the day of the 
week from a date, which is sometimes called DOW() or WEEKDAY(). 
Standard SQL provides for CURRENT_DATE, CURRENT_TIME [(<time 
precision>)], and CURRENT_TIMESTAMP [(<timestamp precision>)] 
functions, which are self-explanatory.

11.5 The Nature of Temporal Data Models
Richard T. Snodgrass at the University of Arizona is the world’s 
leading expert on temporal databases. His out-of-print book, 
Devel oping Time-Oriented Database Applications in SQL (ISBN 10 
1-55860-436-7) is available at the university web site as a 
PDF file (http://www.cs.arizona.edu/~rts/tdbbook.pdf). He also 
wrote a series of articles in Database Programming and Design 
 (volume 11, issues 6–10) in 1998, which are readable for the 
 working programmer.

Currently, the Morgan-Kaufmann database series has a book 
on this topic in the series, How to Design, Update and Query 
Temporal Data, by Tom Johnston and Randall Weis (ISBN 
978-0-12-375041-9).

I am not going to try to summarize two excellent books on a 
complex topic in a general SQL book.

Temporal data is pervasive. It has been estimated that one 
of every 50 lines of database application code involves a date or 
time value. Data warehouses are by definition time-varying: Ralph 
Kimball states that every data warehouse has a time dimension. 
Often the time-oriented nature of the data is what lends it value.

11.5.1 Modeling Durations
Time is a continuum, which means that there is an infinite num-
ber of points between any two points. The particular model that 
we use in ISO Standards is a half-open interval, which includes 
the starting point but goes up to the ending point in time, but 
does not include it. This is usually shown as a line with a closed 
dot at the start and an open dot on the other end. For most com-
mercial purposes, a granularity of a day is fine.

Let me use a history table for price changes. A price has duration 
and we can model it with a pair of dates. In particular, we can use a 
NULL for the current status. Here is a skeleton price  history table.

CREATE TABLE PriceHistory
(upc CHAR(13) NOT NULL -- industry standard

http://www.cs.arizona.edu/~rts/tdbbook.pdf
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 REFERENCES Inventory(upc),
price_prev_date DATE NOT NULL,
price_start_date DATE DEFAULT CURRENT_DATE NOT NULL,
price_end_date DATE, -- null means current price
 CHECK(price_start_date < price_end_date),
 CHECK (price_start_date = price_prev_date + INTERVAL '1' 

DAY), -- prevents gaps
PRIMARY KEY (upc, price_start_date),
item_price DECIMAL (12,2) NOT NULL
 CHECK (item_price > 0.00),
etc.);

You use a BETWEEN predicate to get the appropriate price. You 
can enforce the “one null per item” with a trigger but technically 
this should work in full Standard SQL:

CHECK (COUNT(*) OVER (PARTITION BY upc)
  = COUNT(price_end_date) OVER (PARTITION BY upc) +1)

SELECT ..
 FROM PriceHistory AS H, Orders AS O
WHERE O.sales_date BETWEEN H.price_start_date
    AND COALESCE (price_end_date, CURRENT_DATE);

It is also a good idea to have a VIEW with the current data:

CREATE VIEW CurrentPrices (..)
AS
SELECT ..
 FROM PriceHistory
WHERE price_end_date IS NULL;

Now your only problem is to write a stored procedure that will 
update the table and insert a new row. You can do this with a sin-
gle MERGE statement, or with a short block of SQL/PSM code:

CREATE PROCEDURE UpdateItemPrice
(IN in_upc CHAR(13), IN new_item_price DECIMAL (12,4))
LANGUAGE SQL
BEGIN ATOMIC
UPDATE PriceHistory
  SET price_end_date = CURRENT_DATE
WHERE upc = in_upc;
INSERT INTO PriceHistory (upc, price_prev_date, price_

start_date, price_end_date, item_price)
VALUES (in_upc, CURRENT_DATE, CURRENT_DATE + INTERVAL '1' 

DAY, NULL, new_item_price);
END;

This will make the price change go into effect tomorrow.
There is a common kludge to repair a failure to design a 

 history table properly that you can put in a VIEW if you are not able 
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to set things right. Assume that every day we take a short inven-
tory and put it in a journal. The journal is a clipboard paper form 
that has one line per item per day, perhaps with gaps in the data. 
We want to get this into the proper format, namely periods shown 
with a (start_date, end_date) pair for durations where each item 
had the same quantity on hand. This is due to Alejandro Mesa.

CREATE TABLE InventoryJournal
(journal_date DATETIME NOT NULL,
item_id CHAR(2) NOT NULL,
 PRIMARY KEY (journal_date, item_id),
onhand_qty INTEGER NOT NULL);

WITH ItemGroups
AS
(SELECT journal_date, item_id, onhand_qty,
   ROW_NUMBER() OVER(ORDER BY item_id, journal_date,  

  onhand_qty)
   - ROW_NUMBER() OVER(PARTITION BY item_id, onhand_qty
         ORDER BY journal_date) AS item_grp_nbr
  FROM Journal),

QtyByDateRanges
AS
(SELECT MIN(journal_date) AS start_date,
    MAX(journal_date) AS end_date,
    item_id, onhand_qty
  FROM ItemGroups
 GROUP BY item_id, onhand_qty, item_grp_nbr)

SELECT start_date, end_date, item_id, onhand_qty
 FROM QtyByDateRanges;

This might be easier to see with some data and intermediate steps:

INSERT INTO InventoryJournal
VALUES('2015-01-01', 'AA', 100),('2015-01-01', 'BB', 200),
   ('2015-01-02', 'AA', 100),('2015-01-02', 'BB', 200),
   ('2015-01-03', 'AA', 100),('2015-01-03', 'BB', 300);

start_date      end_date item_id   onhand_qty
==========================================
'2015-01-01'  '2015-01-03'       'AA'100
'2015-01-01'  '2015-01-02'       'BB'1200
'2015-01-03'  '2015-01-03'       'BB'1300

11.5.2 Relationships among Durations
These (start_time, end_time) pairs can have several relationships, 
which are easy to see if you draw time lines. Let’s assume we have 
T1 and T2 pairs.
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T1 and T2 do not overlap (Figure 11.1) means that the two 
durations do not share any points in time, or in code: ((T1.start_
time < T2.end_time) OR (T1.start_time > T2.end_time)).

T1 occurs during T2 (Figure 11.2) means that ((T2.start_time 
<= T1.start_time) AND (T1.end_time <= T2.end_time)).

Two durations abut (Figure 11.3) when (T1.end_time = 
T2.start_time) and they can often be concatenated into a single 
(T1.start_time, T2.end_time) pair.

T1 overlaps T2 (Figure 11.4) can be found with the OVERLAPS 
predicate. That is defined in detail in another chapter. It is a good 
exercise to write it for yourself.

If you need these relationships frequently, it might be worth 
considering writing functions to make code easier to write and 
read. The general format would be <function name> (IN start_
time_1 DATE, IN end_time_1 DATE, IN start_time_2 DATE, IN 
end_time_2 DATE).

Figure 11.1
T1 and T2 Do Not Overlap

T1

T2

Figure 11.2
T1 Occurs during T2

T1 T2

Figure 11.3
Two Durations Abut

T1

T2

Figure 11.4
T1 Overlaps T2

T1

T2
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12
CHARACTER DATA TYPES

SQL-89 defined a CHARACTER(n) or CHAR(n) data type, which repre-
sents a fixed-length string of (n) printable characters, where (n) is 
always greater than zero. Some implementations allow the string to 
contain control characters, but this is not the usual case. The allow-
able characters were usually drawn from ASCII or Unicode charac-
ter sets and most often uses those collation sequences for sorting.

SQL-92 added the VARYING CHARACTER(n) or VARCHAR(n), which was 
already present in many implementations. A VARCHAR(n) represents 
a string that varies in length from 1 to (n) printable characters. This 
is important; SQL does not allow a string column of zero length, but 
you may find vendors who do, so that you can store an empty string.

SQL-92 also added NATIONAL CHARACTER(n) and NATIONAL VARYING 
CHARACTER(n) data types (or NCHAR(n) and NVARCHAR(n), respectively), 
which are made up of printable characters drawn from ISO-defined 
UNICODE character sets. The literal values use the syntax N'<string>' 
in these data types.

SQL-92 also allows the database administrator to define col-
lation sequences and do other things with the character sets. 
A Consortium (http://www.unicode.org/) maintains the Unicode 
standards and makes them available in book form (Unicode 
Standard Version 5.2, ISBN 978-1-936213-00-9 or at http://www
.unicode.org/versions/Unicode5.2.0/).

When the Standards got to SQL:2006, we had added a lot 
of things to handle Unicode and XML data, but kept the basic 
string manipulations pretty simple compared to what vendors 
have. I am not going to deal with the Unicode and XML data in 
any detail because most working SQL programmers are using 
ASCII or a national character set exclusively in their databases.

12.1 Problems with SQL Strings
Different programming languages handle strings differently. You 
simply have to do some unlearning when you get to SQL. Here 
are the major problem areas for programmers.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00012-0
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://www.unicode.org/
http://www.unicode.org/versions/Unicode5.2.0/
http://www.unicode.org/versions/Unicode5.2.0/
http://dx.doi.org/10.1016/B978-0-12-382022-8.00012-0
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In SQL, character strings are printable characters enclosed in 
single quotation marks. Many older SQL implementations and 
several programming languages use double quotation marks or 
make it an option so that the single quotation mark can be used 
as an apostrophe. SQL uses two apostrophes together to repre-
sent a single apostrophe in a string literal. Double quote marks 
have a special meaning in SQL; they allow you to create a name 
that would otherwise be illegal.

Character sets fall into three categories: those defined by 
national or international standards, those provided by imple-
mentations, and those defined by applications. All character sets, 
however defined, always contain the <space> character by default. 
Character sets defined by applications can be defined to “reside” 
in any schema chosen by the application. Character sets defined 
by standards or by implementations reside in the Information 
Schema (named INFORMATION_SCHEMA) in each catalog, as do col-
lations defined by standards and collations and form-of-use 
conversions defined by implementations. There is a default col-
lating sequence for each character repertoire, but additional 
collating sequences can be defined for any character repertoire. 
This can be important in languages that have more than one 
collating sequence in use. For example, in German dictionaries, 
“öf” would come before “of,” but in German telephone it is the 
opposite ordering. It is a good idea to look at http://userguide.
icu-project.org/collation for a guide to the current Unicode rules.

12.1.1 Problems of String Equality
No two languages agree on how to compare character strings as 
equal unless they are identical in length and match position for 
position, exactly character for character.

The first problem is whether uppercase and lowercase ver-
sions of a letter compare as equal to each other. Only Latin, 
Greek, Cyrillic, and Arabic have cases; the first three have 
upper- and lowercases, and Arabic is a connected script that 
has initial, middle, terminal, and stand-alone forms of its let-
ters. Most programming languages, including SQL, ignore 
case in the program text, but not always in the data. Some SQL 
implementations allow the DBA to set uppercase and lowercase 
matching as a system configuration parameter.

The Standard SQL has two functions that change the case of a 
string:
•	 LOWER(<string expression>) shifts all letters in the parameter 

string to corresponding lowercase letters.
•	 UPPER(<string expression>) shifts all letters in the string to 

uppercase.
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Most implementations have had these functions (perhaps 
with different names) as vendor library functions.

Equality between strings of unequal length is calculated 
by first padding out the shorter string with blanks on the right-
hand side until the strings are of the same length. Then they are 
matched, position for position, for identical values. If one posi-
tion fails to match, the equality fails.

In contrast, the Xbase languages (FoxPro, dBase, and so on) 
truncate the longer string to the length of the shorter string and 
then match them position for position. Other programming 
 languages ignore upper- and lowercase differences.

12.1.2 Problems of String Ordering
SQL-89 was silent on the collating sequence to be used. In  practice, 
almost all SQL implementations used either ASCII or Unicode, 
which are both Roman I character sets in ISO  terminology. 
A few implementations have a Dictionary or Library order option 
(uppercase and lowercase letters mixed together in alphabetic 
order: A, a, B, b, C, c, …), and many vendors offer a national- 
language option that is based on the appropriate ISO standard.

National language options can be very complicated. The Nordic 
languages all share a common ISO character set, but they do not 
sort the same letters in the same position. German was sorted 
differently in Germany and in Austria. Spain decided to quit sort-
ing ch and ll as if they were single characters. You really need 
to look at the ISO Unicode implementation for your particular 
product.

The Standard SQL allows the DBA to define a collating 
sequence that is used for comparisons. The feature is becoming 
more common as we become more globalized, but you have to 
see what the vendor of your SQL product actually supports.

12.1.3 Problems of String Grouping
Because the SQL equality test has to pad out the shorter of the two 
strings with spaces, you may find doing a GROUP BY on a VARCHAR(n) 
has unpredictable results:

CREATE TABLE Foobar (x VARCHAR(5) NOT NULL);
INSERT INTO Foobar VALUES ('a'), ('a '), ('a '), ('a ');

Now, execute the query:

SELECT x, CHAR_LENGTH(x)
FROM Foobar
GROUP BY x;
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The value for CHAR_LENGTH(x) will vary for different  products. 
The most common answers are 1, 4, and 5 in this example.  
A length of 1 is returned because it is the length of the shortest 
string or because it is the length of the first string physically in 
the table. A length of 4 is returned because it is the length of the 
longest string in the table. A length of 5 is returned because it is 
the greatest possible length of a string in the table.

You might want to add a constraint that makes sure to trim 
the trailing blanks to avoid problems.

12.2 Standard String Functions
SQL-92 defines a set of string functions that appear in most 
 products, but with vendor-specific syntax. You will probably find 
that products will continue to support their own syntax, but will 
also add the Standard SQL syntax in new releases. Let’s look at 
the basic operations.

String concatenation is shown with the || operator, taken from 
PL/I. However, you can also find the plus sign being overloaded 
in the Sybase/SQL Server family and some products using a func-
tion call like CONCAT(s1, s2) instead.

The SUBSTRING(<string> FROM <start> FOR <length>) func-
tion uses three arguments: the source string, the starting position 
of the substring, and the length of the substring to be extracted. 
Truncation occurs when the implied starting and ending positions 
are not both within the given string. The SQL:2006 Standard extends 
this to binary strings and allows you to define the length of sub-
strings in bits. Don’t worry about it until you have a special situation.

DB2 and other products have a LEFT and a RIGHT function. The 
LEFT function returns a string consisting of the specified number 
of leftmost characters of the string expression, and RIGHT, well, 
that is kind of obvious.

The fold functions are a pair of functions for converting all the 
lowercase characters in a given string to uppercase, UPPER(string>), 
or all the uppercase ones to lowercase LOWER(<string>).

The TRIM([[<trim specification>] [<trim character>] FROM] 
<trim source>) produces a result string that is the source string 
with an unwanted character removed. The <trim source> is the 
original character value expression. The <trim specification> 
is either LEADING or TRAILING or BOTH and the <trim character> is 
the single character that is to be removed. If you don’t provide a 
<trim character>, then space is assumed. Most products still do 
not have the <trim character> option and work with only space.
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The TRIM() function removes the leading and/or trailing 
occurrences of a character from a string. The default character if 
one is not given is a space. The SQL-92 version is a very general 
function, but you will find that most SQL implementations have 
a version that works only with spaces. Many early SQLs had two 
functions: LTRIM for left-most (leading) blanks and RTRIM for right-
most (trailing) blanks.

A character translation is a function for changing each char-
acter of a given string according to some many-to-one or one-to-
one mapping between two not necessarily distinct character sets.

The syntax TRANSLATE(<string expression> USING <transla-
tion>) assumes that a special schema object, called a translation, 
has already been created to hold the rules for doing all this.

CHAR_LENGTH(<string>), also written CHARACTER_LENGTH(<string>), 
determines the length of a given character string, as an integer, 
in characters. In most current products, this function is usually 
expressed as LENGTH() and the next two functions do not exist at 
all; they assume that the database will only hold ASCII or Unicode 
characters.

BIT_LENGTH(<string>) determines the length of a given charac-
ter string, as an integer, in bits.

OCTET_LENGTH(<string>) determines the length of a given char-
acter string, as an integer, in octets. Octets are units of 8 bits that 
are used by the one and two (Unicode) octet characters sets. This 
is the same as TRUNCATE (BIT_LENGTH (<string>)/8).

The POSITION(<search string> IN <source string>) determines 
the first position, if any, at which the <search string> occurs within 
the <source string>. If the <search string> is of length zero, then 
it occurs at position 1 for any value of the <source string>. If the 
<search string> does not occur in the <source string>, zero is 
returned. You will also see LOCATE() in DB2 and CHAR_INDEX() in SQL 
Server.

12.3 Common Vendor Extensions
The original SQL-89 Standard did not define any functions for 
CHAR(n) data types. The Standard SQL added the basic functions 
that have been common to implementations for years. However, 
there are other common or useful functions and it is worth know-
ing how to implement them outside of SQL.

Many vendors also have functions that will format dates 
for display by converting the internal format to a text string. 
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A  vendor whose SQL is tied to a 4GL is much more likely to have 
these extensions simply because the 4GL can use them.

These functions generally use either a COBOL-style picture 
parameter or a globally set default format. Some of this conver-
sion work is done with the CAST() function in Standard SQL, but 
since SQL does not have any output statements, such things will 
be vendor extensions for some time to come.

Vendor extensions are varied, but there are some that are worth 
mentioning. The names will be different in different products, but 
the functionality will be the same.
 SPACE(n) produces a string of (n) spaces for (n > 0).
 LPAD(n) and RPAD(n) pad a string on the left and right side with 

spaces.
 REPLICATE (<string expression>, n) produces a string of (n) 

repetitions of the <string expression>. DB2 calls this one 
REPEAT() and you will see other local names for it.

 REPLACE (<target string>, <old string>, <new string>) 
replaces the occurrences of the <old string> with the <new 
string> in the <target string>.
As an aside, here’s a nice trick to reduce several contiguous 

spaces in a string to a single space to format text:

CREATE FUNCTION BigSqueeze
(IN original_str VARCHAR(100000))
RETURNS VARCHAR(100000)
DETERMINISTIC
READS SQL DATA
BEGIN
DECLARE marker_char CHAR(1);
SET marker_char = '$'; -- this never appears in string

RETURN
(CASE WHEN POSITION (SPACE(2) IN original_str) = 0
  THEN TRIM(BOTH SPACE(1) FROM original_str)
  ELSE REPLACE (

  REPLACE (
  REPLACE (TRIM(BOTH SPACE(1) FROM original_str),

  SPACE(2), SPACE(1)|| marker_char),
  marker_char || SPACE(1), SPACE(0)),
  marker_char, SPACE(0)) -- remove marker

  END);
END;

The SPACE(n) function returns a string of (n) blanks; this is 
easier to read and write than constant strings. If the input string 
has no multiple spaces inside it, then just trim off the leading and 
trailing blanks; this is faster than extra code to check for them.

If we do have multiple spaces inside the string, then do the 
trim and use three nested REPLACE() calls. Pairs of <space><space> 
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become <space><marker>, then <marker><space> pairs become an 
empty string.

The marker has to be a character that does not appear in the 
original string, so it could set as a constant rather than a local 
value.

REVERSE(<string expression>) reverses the order of the char-
acters in a string to make it easier to search.

FLIP(<string expression>, <pivot>) will locate the pivot 
character in the string, then concatenate all the letters to the 
left of the pivot onto the end of the string and finally erase the 
pivot character. This is used to change the order of names from 
“military format” to “civilian format”; for example, FLIP('smith, 
John',',') yields John Smith. This function can be written with 
the standard string functions, however.

NUMTOWORDS(<numeric expression>) will write out the numeric 
value as a set of English words to be used on checks or other 
 documents that require both numeric and text versions of the 
same value.

12.3.1 Phonetic Matching
People’s names are a problem for designers of databases. Names 
are variable-length, can have strange spellings, and are not 
unique. American names have a diversity of ethnic origins, which 
give us names pronounced the same way but spelled differently 
and vice versa.

Ignoring this diversity of names, errors in reading or hear-
ing a name lead to mutations. Anyone who gets junk mail is 
aware of this; I get mail addressed to “Selco,” “Selko,” “Celco,” 
as well as “Celko,” which are phonetic errors, and also some 
that result from typing errors, such as “Cellro,” “Chelco,” and 
“Chelko” in my mail stack. Such errors result in the mailing of 
multiple  copies of the same item to the same address. To solve 
this  problem, we need phonetic algorithms that can find similar 
sounding names.

Soundex Functions
The Soundex family of algorithms is named after the original 
algorithm. A Soundex algorithm takes a person’s name as input 
and produces a character string that identifies a set of names that 
are (roughly) phonetically alike.

SQL products often have a Soundex algorithm in their library 
functions. It is also possible to compute a Soundex in SQL, using 
string functions and the CASE expression in the Standard SQL. 
Names that sound alike do not always have the same Soundex 
code. For example, “Lee” and “Leigh” are pronounced alike, but 
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have different Soundex codes because the silent g in “Leigh” is 
given a code.

Names that sound alike but start with a different first letter 
will always have a different Soundex; for example, “Carr” and 
“Karr” will be separate codes.

Finally, Soundex is based on English pronunciation so 
European and Asian names may not encode correctly. Just looking 
at French surnames like “Beaux” with a silent x and “Beau” with-
out it, we will create two different Soundex codes.

Sometimes names that don’t sound alike have the same Soundex 
code. Consider the relatively common names “Powers,” “Pierce,” 
“Price,” “Perez,” and “Park,” which all have the same Soundex code. 
Yet “Power,” a common way to spell Powers 100 years ago, has a dif-
ferent Soundex code.

The Original Soundex
Margaret O’Dell and Robert C. Russell patented the original 
Soundex algorithm in 1918. The method is based on the phonetic 
classification of sounds by how they are made.

In case you wanted to know, the six groups are bilabial, labio-
dental, dental, alveolar, velar, and glottal. The algorithm is fairly 
straightforward to code and requires no backtracking or multiple 
passes over the input word. This should not be too surprising, 
since it was in use before computers and had to be done by hand 
by clerks. Here is the algorithm:
1.0 Capitalize all letters in the word. Pad the word with rightmost 

blanks as needed during each procedure step.
2.0 Retain the first letter of the word.
3.0 Drop all occurrences of the following letters after the first 

position: A, E, H, I, O, U, W, Y.
4.0 Change letters from the following sets into the corresponding 

digits given:

1 = B, F, P, V
2 = C, G, J, K, Q, S, X, Z
3 = D, T
4 = L
5 = M, N
6 = R

5.0 Retain only one occurrence of consecutive duplicate digits 
from the string that resulted after step 4.0.

6.0 Pad the string that resulted from step 5.0 with trailing zeros 
and return only the first four positions, which will be of the 
form <uppercase letter><digit><digit><digit>.
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An alternative version of the algorithm, due to Russell, 
changes the letters in step 3.0 to 9s, retaining them. Then step 5.0 
is replaced by two steps:
5.1 which removes redundant duplicates as before, followed by
5.2 which removes all 9s and closes up the spaces.

This allows pairs of duplicate digits to appear in the result 
string. This version has more granularity and will work better for 
a larger sample of names.

The problem with the Soundex is that it was a manual operation 
used by the Census Bureau long before computers. The algorithm 
used was not always applied uniformly from place to place. Surname 
prefixes, such as “La,” “De,” von,” or “van” are generally dropped 
from the last name for Soundex, but not always.

If you are searching for surnames such as “DiCaprio” or 
“LaBianca,” you should try the Soundex for both with and with-
out the prefix. Likewise leading syllables like “Mc,” “Mac,” and “O” 
were also dropped.

Then there was a question about dropping H and W along 
with the vowels. The United States Census Soundex did it both 
ways, so a name like “Ashcraft” could be converted to “Ascrft” 
in the first pass, and finally Soundexed to “A261,” as it is in the 
1920 New York Census. The Soundex code for the 1880, 1900, and 
1910 censuses followed both rules. In this case Ashcraft would 
be A226 in some places. The reliability of Soundex is 95.99% with 
 selectivity factor of 0.213% for a name inquiry.

This version is easy to translate into various dialects. The 
WHILE loop would be better done with a REPEAT loop, but not all 
products have that construct. The TRANSLATEs could be one state-
ment but this is easier to read. Likewise, the REPLACE functions 
could be nested.

CREATE FUNCTION Soundex(IN in_name VARCHAR(50))
RETURNS CHAR(4)
DETERMINISTIC
LANGUAGE SQL
BEGIN ATOMIC
DECLARE header_char CHAR(1);
DECLARE prior_name_size INTEGER;

— split the name into a head and a tail

SET header_char = UPPER (SUBSTRING (in_name FROM 1 FOR 1));
SET in_name = UPPER (SUBSTRING (in_name FROM 2 FOR 

CHAR_LENGTH(in_name)));

— clean out vowels

SET in_name = TRANSLATE (in_name, '      ', 'AEHIOUWY');
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—clean out spaces and add zeros

SET in_name = REPLACE (in_name, ' ', ") || '0000';

—consonant changes

SET in_name = TRANSLATE(in_name, '1111', 'BFPV');
SET in_name = TRANSLATE(in_name, '22222222', 'CGJKQSXZ');
SET in_name = TRANSLATE(in_name, '33', 'DT');
SET in_name = TRANSLATE(in_name, '4', 'L');
SET in_name = TRANSLATE(in_name, '55', 'MN');
SET in_name = TRANSLATE(in_name, '6', 'R');

—loop to clean out duplicate digits

WHILE 1 = 1
DO
 SET prior_name_size = CHAR_LENGTH (in_name);
 SET in_name = REPLACE(in_name, '11', '1');
 SET in_name = REPLACE(in_name, '22', '2');
 SET in_name = REPLACE(in_name, '33', '3');
 SET in_name = REPLACE(in_name, '44', '4');
 SET in_name = REPLACE(in_name, '55', '5');
 SET in_name = REPLACE(in_name, '66', '6');

—no size change means no more duplicate digits, time to output 
the answer

 IF prior_name_size = CHAR_LENGTH(in_name)
 THEN RETURN header_char || SUBSTRING (in_name FROM 1 FOR 3);
 END IF;
END WHILE;
END;

Metaphone
Metaphone is another improved Soundex that first appeared in 
Computer Language magazine (Philips, 1990). A Pascal version 
written by Terry Smithwick (Smithwick, 1991), based on the original 
C version by Lawrence Philips, is reproduced with permission here:

FUNCTION Metaphone (p: STRING): STRING;
CONST
VowelSet = ['A', 'E', 'I', 'O', 'U'];
FrontVSet = ['E', 'I', 'Y'];
VarSonSet = ['C', 'S', 'T', 'G'];
 { variable sound - modified by following 'h' }
FUNCTION SubStr (A : STRING;
Start, Len : INTEGER) : STRING;
BEGIN
SubStr := Copy (A, Start, Len);
END;
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FUNCTION Metaphone (p: STRING): STRING;
VAR
 i, l, n: BYTE;
 silent, new: BOOLEAN;
 last, this, next, nnext: CHAR;
 m, d: STRING;
BEGIN {Metaphone}
IF (p = ")
THEN BEGIN
 Metaphone:= ";
 EXIT;
 END;
{Remove leading spaces}
FOR i:= 1 TO Length (p)
DO p[i]:= UpCase (p[i]);
{Assume all alphas}
{initial preparation of string}
d:= SubStr (p, 1, 2);
IF d IN ('KN', 'GN', 'PN', 'AE', 'WR')
THEN p:= SubStr (p, 2, Length (p) − 1);
IF (p[1] = 'X')
THEN p:= 's' + SubStr (p, 2, Length (p) − 1);
IF (d = 'WH')
THEN p:= 'W' + SubStr (p, 2, Length (p) − 1);
{Set up for Case statement}
l:= Length (p);
m:= ";
  {Initialize the main variable}
new:= TRUE;
  {this variable only used next 10 lines!!!}
n:= 1;
  {Position counter}
WHILE ((Length (m) < 6) AND (n <> l))
DO BEGIN { Set up the 'pointers' for this loop-around}
 IF (n > 1)
 THEN last:= p[n−1]
 ELSE last:= #0;
 { use a nul terminated string}
 this:= p[n];
 IF (n < l)
 THEN next:= p[n+1]
 ELSE next:= #0;
 IF ((n+1) < l)
 THEN nnext:= p[n+2]
 ELSE nnext:= #0;
 new:= (this = 'C') AND (n > 1) AND (last = 'C');
 {'CC' inside word}
 IF (new)
 THEN BEGIN
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   IF ((this IN VowelSet) AND (n = 1))
   THEN m:= this;
 CASE this OF
 'B': IF NOT ((n = l) AND (last = 'M'))
   THEN m:= m + 'B';
 {-mb is silent}
'C': BEGIN {-sce, i, y = silent}
 IF NOT ((last = 's') AND (next IN FrontVSet))
 THEN BEGIN
   IF (next = 'i') AND (nnext = 'A')
   THEN m:= m + 'X'{ -cia- }
   ELSE IF (next IN FrontVSet)
    THEN m:= m + 's' { -ce, i, y = 's' }
    ELSE IF (next = 'H') AND (last = 's')
      THEN m:= m + 'K' { -sch- = 'K' }
      ELSE IF (next = 'H')
        THEN IF (n = 1) AND ((n+2) < = l)
          AND NOT (nnext IN VowelSet)
          THEN m:= m + 'K'
          ELSE m:= m + 'X';
  END {Else silent}
 END;
{Case C}
'D': IF (next = 'G') AND (nnext IN FrontVSet)
  THEN m:= m + 'J'
  ELSE m:= m + 'T';
'G': BEGIN
 silent:= (next = 'H') AND (nnext IN VowelSet);

 IF (n > 1) AND (((n+1) = l) OR ((next = 'n') AND
  (nnext = 'E') AND (p[n+3] = 'D') AND ((n+3) = l))
{Terminal -gned}
 AND (last = 'i') AND (next = 'n'))
 THEN silent:= TRUE;
{if not start and near -end or -gned.)}
 IF (n > 1) AND (last = 'D'gnuw) AND (next IN FrontVSet)
 THEN {-dge, i, y}
 silent:= TRUE;
 IF NOT silent
 THEN IF (next IN FrontVSet)
  THEN m:= m + 'J'
  ELSE m:= m + 'K';
 END;
'H': IF NOT ((n = l) OR (last IN VarSonSet)) AND (next IN
VowelSet)
  THEN m:= m + 'H';
 {else silent (vowel follows)}
'F', 'J', 'L', 'M', 'N', 'R': m:= m + this;
'K': IF (last <> 'C')
  THEN m:= m + 'K';
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'P': IF (next = 'H')
   THEN BEGIN
    m:= m + 'F';
    INC (n);

    END {Skip the 'H'}
   ELSE m:= m + 'P';
'Q': m:= m + 'K';
's': IF (next = 'H')
   OR ((n > 1) AND (next = 'i') AND (nnext IN ['O', 'A']))
 THEN m:= m + 'X'
 ELSE m:= m + 's';
'T': IF (n = 1) AND (next = 'H') AND (nnext = 'O')
 THEN m:= m + 'T' { Initial Tho- }
 ELSE IF (n > 1) AND (next = 'i') AND (nnext IN ['O', 'A'])
  THEN m:= m + 'X'
  ELSE IF (next = 'H')
   THEN m:= m + '0'
   ELSE IF NOT ((next = 'C') AND (nnext = 'H'))
    THEN m:= m + 'T';
{-tch = silent}
'V': m:= m + 'F';
'W', 'Y': IF (next IN VowelSet)
  THEN m:= m + this;
 {else silent}
'X': m:= m + 'KS';
'Z': m:= m + 's';
END;
{Case}
INC (n);
END; {While}
END; {Metaphone}
Metaphone:= m
END;

NYSIIS Algorithm
The New York State Identification and Intelligence System 
(NYSIIS) algorithm is more reliable and selective than Soundex, 
especially for grouped phonetic sounds. It does not perform well 
with ‘Y’ groups because ‘Y’ is not translated. NYSIIS yields an 
alphabetic string key that is filled or rounded to 10 characters.

(1) Translate first characters of name:
  MAC => MCC
  KN => NN
  K => C
  PH => FF
  PF => FF
  SCH => SSS
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(2) Translate last characters of name:
  EE => Y
  IE => Y
  DT,RT,RD,NT,ND => D
(3) The first character of key = first character of name.
(4) Translate remaining characters by following rules,
   scanning one character at a time
  a. EV => AF else A,E,I,O,U => A
  b. Q => G Z => S M => N
  c. KN => N else K => C
  d. SCH => SSS PH => FF
  e. H => If previous or next character is a consonant  

  use the previous character.
  f. W => If previous character is a vowel, use the  

   previous character.
  Add the current character to result if the current  

   character is to equal to the last key character.
(5) If last character is S, remove it
(6) If last characters are AY, replace them with Y
(7) If last character is A, remove it

The stated reliability of NYSIIS is 98.72% with a selectivity fac-
tor of 0.164% for a name inquiry. This was taken from Robert L. 
Taft, “Name Search Techniques,” New York State Identification 
and Intelligence System.

12.4 Cutter Tables
Another encoding scheme for names has been used for libraries 
for over 100 years. The catalog number of a book often needs to 
reduce an author’s name to a simple fixed-length code. Although 
the results of a Cutter table look much like those of a Soundex, 
their goal is different. They attempt to preserve the original 
alphabetical order of the names in the encodings.

But the librarian cannot just attach the author’s name to the 
classification code. Names are not the same length, nor are they 
unique within their first letters. For example, “Smith, John A.” 
and “Smith, John B.” are not unique until the last letter.

What librarians have done about this problem is to use Cutter 
tables. These tables map authors’ full names into letter-and-digit 
codes. There are several versions of the Cutter tables. The older 
tables tended to use a mix of letters (both upper- and lowercase) 
followed by digits. The three-figure single letter is followed by 
three digits. For example, using that table:

 "Adams, J" becomes "A214"
 "Adams, M" becomes "A215"
 "Arnold" becomes "A752"
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 "Dana" becomes "D168"
 "Sherman" becomes "S553"
 "Scanlon" becomes "S283"

The distribution of these numbers is based on the actual dis-
tribution of names of authors in English-speaking countries. You 
simply scan down the table until you find the place where your 
name would fall and use that code.

Cutter tables have two important properties. They preserve 
the alphabetical ordering of the original name list, which means 
that you can do a rough sort on them. The second property is that 
each grouping tends to be of approximately the same size as the 
set of names gets larger. These properties can be handy for build-
ing indexes in a database.

If you would like copies of the Cutter tables, you can find 
some of them on the Internet. Princeton University Library has 
posted their rules for names, locations, regions, and other things 
(http://infoshare1.princeton.edu/katmandu/class/cutter.html).

You can also get hardcopies from this publisher:
 Hargrave House
 7312 Firethorn
 Littleton, CO 80125
 Web site: http://www.cuttertables.com

12.5 Nested Replacement
Another trick with REPLACE() is to nest it. Most implementations 
can go to 32 levels deep, so you can write things like:

REPLACE(
 REPLACE(
  ..
   REPLACE(foobar, 'Z', 'z'),
  ..
 'B', 'b'),
'A', 'a')

This is obviously a bad way to implement LOWER(), but you can 
use it to remove dashes, commas, embedded blanks, and other 
punctuation in a string. The advantage is that function calls avoid 
loops and recursion, so they should run quite fast.   

http://infoshare1.princeton.edu/katmandu/class/cutter.html
http://www.cuttertables.com
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13
NULLs: MISSING DATA IN SQL

A discussion of how to handle missing data enters a sensitive 
area in relational database circles. Dr. E. F. Codd, creator of the 
relational model, favored two types of missing-value tokens in 
his book on the second version of the relational model, one for 
“unknown” (the eye color of a man wearing sunglasses) and one 
for “not applicable” (the eye color of an automobile). Chris Date, 
leading author on relational databases, advocates not using any 
general-purpose tokens for missing values at all. Standard SQL 
uses one token, based on Dr. Codd’s original relational model.

Perhaps Dr. Codd was right—again. In Standard SQL, adding 
ROLLUP and CUBE created a need for a function to test NULLs to see if 
they were, in fact, “real NULLs” (i.e., present in the data and there-
fore assumed to model a missing value) or “created NULLs” (i.e., 
created as place holders for summary rows in the result set).

In their book, A Guide to Sysbase and SQL Server (ISBN 
978-0201557107, 1992), David McGoveran and C. J. Date said, “It 
is this writer’s opinion that NULLs, at least as currently defined and 
implemented in SQL, are far more trouble than they are worth 
and should be avoided; they display very strange and inconsis-
tent behavior and can be a rich source of error and confusion.” 
(Please note that these comments and criticisms apply to any 
system that supports SQL-style NULLs, not just to SQL Server 
specifically.)

SQL takes the middle ground and has a single general- purpose 
NULL for missing values. Rules for NULLs, in particular statements, 
appear in the appropriate sections of this book. This section will 
discuss NULLs and missing values in general.

People have trouble with things that “are not there” in some 
sense. There is no concept of zero in Egyptian, Mayan, Chinese, 
Roman numerals, and virtually all other traditional numeral sys-
tems. It was centuries before Hindu-Arabic numerals became 
popular in Europe. In fact, many early Renaissance account-
ing firms advertised that they did not use the fancy, newfangled 
notation and kept records in well-understood Roman numerals 
instead.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00013-2
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00013-2
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Many of the conceptual problems with zero arose from not 
knowing the difference between ordinal and cardinal numbers. 
Ordinal numbers measure position (an ordering); cardinal num-
bers measure quantity or magnitude. The argument against the 
zero was this: If there is no quantity or magnitude there, how can 
you count or measure it? What does it mean to multiply or divide 
a number by zero? There was considerable linguistic confusion 
over words that deal with the lack of something.

There is a Greek paradox that goes like this:
1. No cat has 12 tails.
2. A cat has one more tail than no cat.
3. Therefore, a cat has 13 tails.

Likewise, it was a long time before the idea of an empty set 
found its way into mathematics. The argument was that if there 
are no elements, how could you have a set of them? Is the empty 
set a subset of itself? Is the empty set a subset of all other sets? Is 
there only one universal empty set or one empty set for each type 
of set?

Computer science now has its own problem with missing 
data. The Interim Report 75-02-08 to the ANSI X3 (SPARC Study 
Group 1975) had 14 different kinds of incomplete data that could 
appear as the result of queries or as attribute values. These types 
included overflows, underflows, errors, and other problems in 
trying to represent the real world within the limits of a computer.

Instead of discussing the theory for the different models and 
approaches to missing data, I would rather explain why and 
how to use NULLs in SQL. In the rest of this book, I will be urg-
ing you not to use them, which may seem contradictory, but it is 
not. Think of a NULL as a drug; use it properly and it works for 
you, but abuse it and it can ruin everything. Your best policy is to 
avoid them when you can and use them properly when you must.

13.1 Empty and Missing Tables
An empty table or view is a different concept from a missing 
table. An empty table is one that is defined with columns and 
constraints, but that has zero rows in it. This can happen when a 
table or view is created for the first time, or when all the rows are 
deleted from the table. It is a perfectly good table. By definition, 
all of its constraints are TRUE.

A missing table has been removed from the database schema 
with a DROP TABLE statement, or it never existed at all (you prob-
ably typed the name wrong). A missing view is a bit different. It 
can be absent because of a DROP VIEW statement or a  typing 
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error, too. But it can also be absent because a table or view from 
which it was built has been removed. This means that the view 
cannot be constructed at run time and the database reports a 
failure. If you used CASCADE behavior when you dropped a 
table, the view would also be gone; but more on that later.

The behavior of an empty TABLE or VIEW will vary with the way 
it is used. Look at sections of this book that deal with predicates 
that use a subquery. In general, an empty table can be treated 
either as a NULL or as an empty set, depending on context.

13.2 Missing Values in Columns
The usual description of NULLs is that they represent currently 
unknown values that may be replaced later with real values when 
we know something. Actually, the NULL covers a lot more territory, 
since it is the only way of showing any missing values. Going back 
to basics for a minute, we can define a row in a database as an 
entity, which has one or more attributes (columns), each of which 
is drawn from some domain. Let us use the notation E(A) 5 V to 
represent the idea that an entity, E, has an attribute, A, which has 
a value, V. For example, I could write “John(hair) 5 black” to say 
that John has black hair.

SQL’s general-purpose NULLs do not quite fit this model. If you 
have defined a domain for hair color and one for car color, then 
a hair color should not be comparable to a car color, because 
they are drawn from two different domains. You would need to 
make their domains comparable with an implicit or explicit cast-
ing function. This is done in Standard SQL, which has a CREATE 
DOMAIN statement, but most implementations still do not have 
this feature yet. Trying to find out which employees drive cars 
that match their hair is a bit weird outside of Los Angeles, but 
in the case of NULLs, do we have a hit when a bald-headed man 
walks to work? Are no hair and no car somehow equal in color? 
In SQL-89 and higher, we would get an UNKNOWN result, rather than 
an error, if we compared these two NULLs directly. The domain-
specific NULLs are conceptually different from the general NULL 
because we know what kind of thing is UNKNOWN. This could be 
shown in our notation as E(A) 5 NULL to mean that we know the 
entity, we know the attribute, but we do not know the value.

Another flavor of NULL is “Not Applicable,” shown as N/A 
on forms and spreadsheets and called “I-marks” by Dr. E. F. 
Codd in his second version of the Relational Model. To pick an 
example near to my heart, a bald man’s hair-color attribute is a 
missing-value NULL drawn from the hair-color domain, but his 
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 feather-color attribute is a “Not Applicable” NULL. The attribute 
itself is missing, not just the value. This missing-attribute NULL 
could be written as E(NULL) 5 NULL in the formula notation.

How could an attribute not belonging to an entity show up in 
a table? Consolidate medical records and put everyone together 
for statistical purposes. You should not find any male pregnancies 
in the result table (let us just ignore strange medical advances at 
http://www.malepregnancy.com/). The programmer has a choice 
as to how to handle pregnancies. He or she can have a column 
in the consolidated table for “number of pregnancies” and put a 
zero or a NULL in the rows where sex_code 5 1 (‘male’ in the ISO 
Standards) and then add some CHECK() clauses to make sure that 
this integrity rule is enforced.

The other way is to have a column for “medical condi-
tion” and one for “number of occurrences” beside it. Another 
CHECK() clause would make sure male pregnancies do not 
appear. But what happens when the sex is known to be a per-
son rather than a lawful entity like a corporation, and all we 
have is a name like ‘Alex Morgan’, who could be either sex? Can 
we use the presence of one or more pregnancies to determine 
that Alex is a woman? What if Alex is a woman who never had 
children? The case where we have NULL(A) 5 V is a bit strange. 
It means that we do not know the entity, but we are looking for 
a known attribute, A, which has a value of V. This is like ask-
ing “What things are colored red?,” which is a perfectly good, 
though insanely vague, question that is very hard to ask in an 
SQL database.

If you want to try writing such a query in SQL, you have to 
get to the system tables to get the table and column names, then 
JOIN them to the rows in the tables and come back with the 
PRIMARY KEY of that row.

For completeness, we could play with all eight possible com-
binations of known and unknown values in the basic E(A) 5 V 
formula. But such combinations are of little use or meaning. 
The “total ignorance” NULL, shown as NULL(NULL) 5 NULL, 
means that we have no information about the entity, 
even about its existence, its attributes, or their values. But 
NULL(NULL) 5 V would mean that we know a value, but not 
the entity or the attribute. This is like the running joke from 
Douglas Adam’s Hitchhiker’s Guide to the Galaxy, in which the 
answer to the question, “What is the meaning of life, the uni-
verse, and everything?” is 42. (I found that interesting since 
I also teach a domino game named Forty-two, which is played 
in Texas.)

http://www.malepregnancy.com/
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13.3 Context and Missing Values
Create a domain called Tricolor that is limited to the values ‘Red’, 
‘White’, and ‘Blue’ and a column in a table drawn from that domain 
with a UNIQUE constraint on it. If my table has a ‘Red’ and two NULL 
values in that column, I have some information about the two NULLs. 
I know they will be either (‘White’, ‘Blue’) or (‘Blue’, ‘White’) when 
their rows are resolved. This is what Chris Date calls a “distinguished 
NULL,” which means we have some information in it.

If my table has a ‘Red’, a ‘White’, and a NULL value in that col-
umn, can I change the last NULL to ‘Blue’ because it can only be 
‘Blue’ under the rule? Or do I have to wait until I see an actual 
value for that row? There is no clear way to handle this situation. 
Multiple values cannot be put in a column, nor can the database 
automatically change values as part of the column declaration.

This idea can be carried farther with marked NULL values. For 
example, we are given a table of hotel rooms that has columns 
for check-in date and check-out date. We know the check-in date 
for each visitor, but we do not know his or her check-out dates. 
Instead we know relationships among the NULLs. We can put them 
into groups—Mr. and Mrs. X will check out on the same day, 
members of tour group Y will check out on the same day, and so 
forth. We can also add conditions on them: Nobody checks out 
before his check-in date, tour group Y will leave after Jan 7, 2015, 
and so forth. Such rules can be put into SQL database schemas, 
but it is very hard to do. The usual method is to use procedural 
code in a host language to handle such things.

Another context is statistical and probabilistic. Using my 
previous example of “Alex Morgan” as an ambiguous sex_code, 
I can take the birth date and make a guess. In the 1940–1950 
time period, Alex was almost exclusively a male first name; in the 
1990–2000 time period, Alex was more than half female. This gets 
into fuzzy logic and probabilistic data; I do not want to deal with 
it in this book.

David McGoveran has proposed that each column that can 
have missing data should be paired with a column that encodes 
the reason for the absence of a value (McGoveran 1993, 1994a,b,c). 
The cost is a bit of extra logic, but the extra column makes it 
easy to write queries that include or exclude values based on 
the semantics of the situation.

You might want to look at solutions statisticians have used for 
missing data. In many kinds of computations, the missing values 
are replaced by an average, median, or other value constructed 
from the data set.
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13.4 Comparing NULLs
A NULL cannot be compared to another NULL (equal, not equal, 
less than, greater than, and so forth all return UNKNOWN). This is 
where we get SQL’s three-valued logic instead of two-valued 
logic. Most programmers do not easily think in three values. 
But think about it for a minute. Imagine that you are looking at 
brown paper bags and are asked to compare them without see-
ing inside of either of them. What can you say about the predi-
cate, “Bag A has more tuna fish than Bag B”—TRUE or FALSE? You 
cannot say one way or the other, so you use a third logical value, 
UNKNOWN.

If I execute “SELECT * FROM SomeTable WHERE SomeColumn = 2;” 
and then execute “SELECT * FROM SomeTable WHERE SomeColumn <> 
2;” I expect to see all the rows of SomeTable between these two 
queries in a world of two valued logic. However, I also need to 
execute “SELECT * FROM SomeTable WHERE SomeColumn IS NULL;” 
to do that. The IS [NOT] NULL predicate will return only TRUE or 
FALSE.

A special predicate was introduced in the SQL:2003 Standard 
with the syntax,

<expression 1> IS DISTINCT FROM <expression 2>

which is logically equivalent to:

(<expression 1> = <expression 2> OR (<expression 1>IS NULL 
AND <expression 2> IS NULL))

Likewise the infixed comparison operator,

<expression 1> IS NOT DISTINCT FROM <expression 2>
NOT (<expression 1> IS DISTINCT FROM <expression 2>)

is equivalent to:

(<expression 1> <> <expression 2>
OR (<expression 1>IS NULL AND <expression 2> IS NOT NULL)
OR (<expression 1>IS NOT NULL AND <expression 2> IS NULL))

Besides being simpler and lending itself to better opti-
mization, the IS [NOT] DISTINCT FROM operator gives you tra-
ditional two valued-logic. It is based on another concept in 
SQL—the difference between equality and grouping. Grouping, 
the equivalence relation used in the GROUP BY clause and other 
places in the language, treats all NULLs as one equivalence 
class.
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13.5 NULLs and Logic
George Boole developed two-valued logic and attached his 
name to Boolean algebra forever (An Investigation of the Laws 
of Thought, ISBN 978-0486600284). This is not the only possible 
logi cal system. Do a Google search on “Multivalued logics” and 
you will come up with lots of material. SQL’s search conditions 
look a lot like a proposal from Jan Łukasiewicz, the inventor of 
Polish Notation, for a three-valued logic.

Two-valued logic is the one that works best with a binary 
(two-state) computer and with a lot of mathematics. But SQL has 
three-valued logic: TRUE, FALSE, and UNKNOWN. The UNKNOWN value 
results from using NULLs in comparisons and other predicates, but 
UNKNOWN is a logical value and not the same as a NULL, which is a 
data value marker. That is why you have to say (x IS [NOT] NULL) 
in SQL and not use (x 5 NULL) instead.

Table 13.1 contains the three logical operators that come with 
SQL.

All other predicates in SQL resolve themselves to chains 
of these three operators. But that resolution is not immedi-
ately clear in all cases, since it is done at runtime in the case of 
predicates that use subqueries.

NOT
TRUE FALSE
UNKNOWN UNKNOWN
FALSE TRUE

AND TRUE UNKNOWN FALSE
TRUE TRUE UNKNOWN FALSE
UNKNOWN UNKNOWN UNKNOWN FALSE
FALSE FALSE FALSE FALSE

OR TRUE UNKNOWN FALSE
TRUE TRUE TRUE TRUE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE UNKNOWN FALSE

Table 13.1 SQL’s Three Operators
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If you are into mathematical logic, then you noticed that we 
have no implication operator. In fact, it is not possible to map 
2-Valued Logic implication into SQL’s 3-Valued Logic. Therefore, 
we have no inference rules. David McGoveran pointed out 
that this means we have no inference rules in SQL, so it is not a 
predicate logic. That is why we say “search condition” and not 
“predicate” in the formal definition of SQL.

Implication is usually shown with a two-tailed arrow and a 
two-valued truth table, as in Table 13.2.

This is traditionally read as “a true premise (a) cannot imply a 
false conclusion (b)” but it does not work as well when you try to 
map it into 3-Valued Logic. We can write the usual implication as 
¬(a .¬b) in 2-Valued Logic, which is the English phrase I just gave 
in symbols, and we get the truth table in Table 13.3.

But implication (“Smisteru rule”) can also be written (¬a 

.

b) 
in 2-Valued Logic and we get the truth table in Table 13.4 when 
we map it to 3-Valued Logic:

a ⇒ b TRUE FALSE
TRUE TRUE FALSE
FALSE TRUE TRUE

a imp b TRUE UNKNOWN FALSE
TRUE TRUE FALSE FALSE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE TRUE TRUE

a imp b TRUE UNKNOWN FALSE
TRUE TRUE UNKNOWN FALSE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE TRUE TRUE

Table 13.2 Implication (Traditional 2-Valued Logic)

Table 13.3 Implication (3-Valued, Version 1)

Table 13.4 Implication (3-Valued, Version 2)
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Oops! When the premise is UNKNOWN in the first version of impli-
cation, we get this expansion:

¬(UNKNOWN  ¬ FALSE)
¬(UNKNOWN  TRUE)
¬(TRUE)
(FALSE)

but with the second implication we get:

(UNKNOWN  ¬FALSE)
(UNKNOWN  TRUE)
(TRUE)

If you are not into mathematical logic, then ignore the last 
paragraphs and keep thinking that a search condition is a 
predicate. And learn the differences in the DDL and DML logic 
rules.

13.5.1 NULLs in Subquery Predicates
People forget that a subquery often hides a comparison with a 
NULL. Consider these two tables:

CREATE TABLE Table1 (col1 INTEGER);
INSERT INTO Table1 (col1) VALUES (1), (2);

CREATE TABLE Table2 (col1 INTEGER);
INSERT INTO Table2 (col1) VALUES (1), (2), (3), (4), (5);

Notice that the columns are NULL-able. Execute this query:

SELECT col1
FROM Table2
WHERE col1 NOT IN (SELECT col1 FROM Table1);

Result
col1
======
3
4
5

Now insert a NULL and reexecute the same query:

INSERT INTO Table1 (col1) VALUES (NULL);
SELECT col1
FROM Table2
WHERE col1 NOT IN (SELECT col1 FROM Table1);
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The result will be empty. This is counter intuitive, but correct. 
The NOT IN predicate is defined as:

SELECT col1
FROM Table2
WHERE NOT (col1 IN (SELECT col1 FROM Table1));

The IN predicate is defined as:

SELECT col1
FROM Table2
WHERE NOT (col1 = ANY (SELECT col1 FROM Table1));

which becomes:

SELECT col1
FROM Table2
WHERE NOT ((col1 = 1)
 OR (col1 = 2)
 OR (col1 = 3)
 OR (col1 = 4)
 OR (col1 = 5)
 OR (col1 = NULL));

The last expression is always UNKNOWN, so applying DeMorgan’s 
laws the query is really:

SELECT col1
FROM Table2
WHERE ((col1 <> 1)
  AND (col1 <> 2)
  AND (col1 <> 3)
  AND (col1 <> 4)
  AND (col1 <> 5)
  AND UNKNOWN);

Look at the truth tables and you will see this always reduces to 
UNKNOWN and an UNKNOWN is always rejected in a search condition in 
a WHERE clause.

13.5.2 Logical Value Predicate
Standard SQL solved some of the 3-Valued Logic (3VL) problems 
by adding a new predicate of the form:

<search condition> IS [NOT] TRUE | FALSE | UNKNOWN

which will let you map any combination of 3VL to two values. For 
example, ((credit_score < 750) OR (eye_color = 'Blue')) IS 
NOT FALSE will return TRUE if (credit_score IS NULL) or (eye_color 
IS NULL) and the remaining condition does not matter.

This is not widely implemented yet.



 Chapter 13 NULLs: MISSING DATA IN SQL  281

13.6 Math and NULLs
NULLs propagate when they appear in arithmetic expressions (1, 
2, *, / ) and return NULL results. NULL propagation is so strong that 
even NULL/0 returns a NULL. See Chapter 10, Numeric Data Types, 
for more details.

13.7 Functions and NULLs
All standard computational functions propagate NULLs; that means 
a NULL argument gives NULL result of the appropriate data type. 
Most vendors propagate NULLs in the functions they offer as exten-
sions of the standard ones required in SQL. For example, the cosine 
of a NULL will be NULL. There are two functions that convert NULLs 
into values.
1. NULLIF (V1, V2) returns a NULL when the first parameter equals 

the second parameter. The function is equivalent to the follow-
ing case specification:

CASE WHEN (V1 = V2)
  THEN NULL
ELSE V1 END

2. COALESCE (V1, V2, V3, ..., Vn) processes the list from left to 
right and returns the first parameter that is not NULL. If all the 
values are NULL, it returns a NULL.

13.8 NULLs and Host Languages
This book does not discuss using SQL statements embedded in 
any particular host language. You will need to pick up a book for 
your particular language. However, you should know how NULLs 
are handled when they have to be passed to a host program. No 
standard host language for which an embedding is defined sup-
ports NULLs, which is another good reason to avoid using NULLs in 
your database schema.

Roughly speaking, the programmer mixes SQL statements 
bracketed by EXEC SQL and a language-specific terminator (the 
semicolon in Pascal and C, END-EXEC in COBOL, and so on) into 
the host program. This mixed-language program is run through 
an SQL preprocessor that converts the SQL into procedure calls 
the host language can compile; then the host program is com-
piled in the usual way.

There is an EXEC SQL BEGIN DECLARE SECTION, EXEC SQL END 
DECLARE SECTION pair that brackets declarations for the host param-
eter variables that will get values from the database via CURSORs. 
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This is the “neutral territory” where the host and the database 
pass information. SQL knows that it is dealing with a host variable 
because these have a colon prefix added to them when they appear 
in an SQL statement. A CURSOR is an SQL query statement that exe-
cutes and creates a structure that looks like a sequential file. The 
records in the CURSOR are returned, one at a time, to the host pro-
gram in the BEGIN DECLARE section with the FETCH statement. This 
avoids the impedance mismatch between record processing in the 
host language and SQL’s set orientation.

NULLs are handled by declaring INDICATOR variables in the host 
language BEGIN DECLARE section, which are paired with the host 
variables. An INDICATOR is an exact numeric data type with a scale 
of zero—that is, some kind of integer in the host language.

The FETCH statement takes one row from the cursor, then con-
verts each SQL data type into a host-language data type and puts 
that result into the appropriate host variable. If the SQL value was 
a NULL, the INDICATOR is set to minus one; if no indicator was spec-
ified, an exception condition is raised. As you can see, the host 
program must be sure to check the INDICATORs, because otherwise 
the value of the parameter will be garbage. If the parameter is 
passed to the host language without any problems, the INDICATOR 
is set to zero. If the value being passed to the host program is a 
non-NULL character string and it has an indicator, the indicator 
is set to the length of the SQL string and can be used to detect 
string overflows or to set the length of the parameter.

Other SQL interfaces such as ODBC, JDBC, and so on have 
similar mechanisms for telling the host program about NULLs 
even though they might not use cursors.

13.9 Design Advice for NULLs
If you’re that concerned with NULLs, than use the ISNULL function, 
that’s what it’s there for.

Jay, 2009-12-20 in a posting on the Microsoft SQL Server Programming 
Newsgroup

I wish this quotation was a fake. First of all, Jay did not know 
that MS SQL Server has had COALESCE() for years, so he was writ-
ing SQL in a hillbilly dialect with the proprietary ISNULL() syn-
tax. And then the content of the sentence is just wrong. Yet, I fear 
that he is not alone. A competent SQL programmer has a simple 
process for handling NULLs in his DDL.

First, declare all your base tables with NOT NULL constraints 
on all columns and then justify using NULLs in them. NULLs still 
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confuse people who do not know SQL and NULLs are expensive. 
NULLs are usually implemented with an extra bit somewhere in 
the row where the column appears, rather than in the column 
itself. They adversely affect storage requirements, indexing, and 
searching.

NULLs are not permitted in PRIMARY KEY columns. Think about 
what a PRIMARY KEY that was NULL (or even partially NULL) would 
mean. A NULL in a key means that the data model does not know 
what makes the entities in that table unique from each other. That 
in turn says that the RDBMS cannot decide whether the PRIMARY 
KEY does or does not duplicate a key that is already in the table.

NULLs should be avoided in FOREIGN KEYs. SQL allows this “ben-
efit of the doubt” relationship, but it can cause a loss of infor-
mation in queries that involve joins. For example, given a part 
number code in Inventory that is referenced as a FOREIGN KEY 
by an Orders table, you will have problems getting a listing of 
the parts that have a NULL. This is a mandatory relationship; you 
cannot order a part that does not exist.

An example of an optional foreign key is a relationship 
between a Personnel table, a Jobs table, and a Job_Assignments 
table. The new hire has all of his personnel information and we 
have a bunch of open jobs, but we have not assigned him a job 
yet. We might want to show his job as a NULL in Job_Assignments.

NULLs should not be allowed in encoding schemes that are 
known to be complete. For example, employees are people and 
people are either male or female. On the other hand, if you are 
recording the sex of lawful persons (humans, corporations, and 
other legal entities), you need the ISO sex codes, which use 0 5 
unknown, 1 5 male, 2 5 female, and 9 5 legal persons, such as 
corporations.

The use of all zeros and all nines for Unknown and N/A is 
quite common in numeric encoding schemes. This convention 
is a leftover from the old punch card days, when a missing value 
was left as a field of blanks that could be punched into the card 
later. FORTRAN read blanks in numeric fields as zeroes.

Likewise, a field of all nines would sort to the end of the 
file and it was easy to hold down the 9 key when the keypunch 
machine was in numeric shift.

However, you have to use NULLs in date columns when a 
DEFAULT date does not make sense. For example, if you do not 
know someone’s birth date, a default date does not make sense; 
if a warranty has no expiration date, then a NULL can act as an 
“eternity” symbol. Unfortunately, you often know relative times, 
but it is difficult to express them in a database. For example, a 
pay raise occurs some time after you have been hired, not before. 
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A convict serving on death row should expect a release date 
resolved by an event: his termination by execution or by natu-
ral causes. This leads to extra columns to hold the status and to 
control the transition constraints.

There is a proprietary extension to date values in MySQL. 
If you know the year but not the month, you may enter 
‘1949-00-00’. If you know the year and month but not the day, you 
may enter ‘1949-09-00’. You cannot reliably use date arithmetic 
on these values, but they do help in some instances, such as sort-
ing people’s birth dates or calculating their (approximate) age. 

For people’s names, you are probably better off using a spe-
cial dummy string for unknown values rather than the general 
NULL. In particular, you can build a list of 'John Doe #1', 'John 
Doe #2', and so forth to differentiate them; and you cannot do 
that with a NULL. Quantities have to use a NULL in some cases. 
There is a difference between an unknown quantity and a zero 
quantity; it is the difference between an empty gas tank and not 
having a car at all. Using negative numbers to represent missing 
quantities does not work because it makes accurate calculations 
too complex.

When the host programming languages had no DATE data 
type, this could have been handled with a character string of 
‘9999-99-99’ for ‘eternity’ or ‘the end of time’; it is actually the last 
date in the ISO 9601 Standard. When 4GL products with a DATE 
data type came onto the market, programmers usually inserted 
the maximum possible date for ‘eternity’. But again, this will show 
up in calculations and in summary statistics. The best trick was 
to use two columns, one for the date and one for a flag. But this 
made for fairly complex code in the 4GL.

13.9.1  Avoiding NULLs from the Host Programs
You can avoid putting NULLs into the database from the host pro-
grams with some programming discipline.
1. Initialization in the host program: Initialize all the data ele-

ments and displays on the input screen of a client program 
before inserting data into the database. Exactly how you can 
make sure that all the programs use the same default values is 
another problem.

2. Automatic defaults: The database is the final authority on the 
default values.

3. Deducing values: Infer the missing data from the given values. 
For example, patients reporting a pregnancy are female; 
patients reporting prostate cancer are male. This technique 
can also be used to limit choices to valid values for the user.
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4. Tracking missing data: Data is tagged as missing, unknown, in 
error, out of date, or whatever other condition makes it miss-
ing. This will involve a companion column with special codes. 
Most commercial applications do not need this, but a data 
quality audit could use this kind of detail.

5. Determining impact of missing data on programming and 
reporting: Numeric columns with NULLs are a problem 
because queries using aggregate functions can provide mis-
leading results. Aggregate functions drop out the NULLs before 
doing the math and the programmer has to trap the SQLSTATE 
01003 for this to make corrections. It is a Warning and will not 
create a ROLLBACK.

6. Preventing missing data: Use batch process to scan and vali-
date data elements before it goes into the database. In the early 
2000s, there was a sudden concern for data quality when CEOs 
started going to jail for failing audits. This has led to a niche in 
the software trade for data quality tools.

7. The data types and their NULL-ability constraints have to be 
consistent across databases (e.g., the chart of account should 
be defined the same way in both the desktop spreadsheets and 
enterprise level databases).

13.10 A Note on Multiple NULL Values
In a discussion on CompuServe in 1996 July, Carl C. Federl came 
up with an interesting idea for multiple missing value tokens in a 
database.

If you program in embedded SQL, you are used to having to 
work with an INDICATOR column. This is used to pass information 
to the host program, mostly about the NULL or NOT NULL status of 
the SQL column in the database. What the host program does 
with the information is up to the programmer. So why not extend 
this concept a bit and provide an indicator column? Let’s work 
out a simple example.

CREATE TABLE Bob
(keycol INTEGER NOT NULL PRIMARY KEY,
valcol INTEGER NOT NULL,
multi_indicator INTEGER NOT NULL
CHECK (multi_indicator IN (0, -- Known value

1, -- Not applicable value
2, -- Missing value
3 -- Approximate value));

Let’s set up the rules: When all values are known, we do a regu-
lar total. If a value is “not applicable,” then the whole total is “not 
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applicable.” If we have no “not applicable” values, then “missing 
value” dominates the total; if we have no “not applicable” and 
no “missing” values, then we give a warning about approximate 
values. The general form of the queries will be:

SELECT SUM (valcol),
 (CASE WHEN NOT EXISTS (SELECT multi_indicator
     FROM Bob
    WHERE multi_indicator > 0)
 THEN 0
 WHEN EXISTS (SELECT *
  FROM Bob
  WHERE multi_indicator = 1)
 THEN 1
 WHEN EXISTS (SELECT *
  FROM Bob
  WHERE multi_indicator = 2)
 THEN 2
 WHEN EXISTS (SELECT *
  FROM Bob
  WHERE multi_indicator = 3)
 THEN 3
 ELSE NULL END) AS totals_multi_indicator
FROM Bob;

Why would I muck with the valcol total at all? The status is 
over in the multi_indicator column, just like it was in the original 
table. Here is an exercise for you:
1. Make up a set of rules for multiple missing values and write a 

query for the SUM(), AVG(), MAX(), MIN(), and COUNT() functions.
2. Set degrees of approximation (±5, ±10, etc.) in the multi_ 

indicator. Assume the valcol is always in the middle. Make the 
multi_indicator handle the fuzziness of the situation.

CREATE TABLE MultiNull
(groupcol INTEGER NOT NULL,
keycol INTEGER NOT NULL,
valcol INTEGER NOT NULL CHECK (valcol >= 0),
valcol_null INTEGER NOT NULL DEFAULT 0,
CHECK(valcol_null IN
(0, -- Known Value
1, -- Not applicable
2, -- Missing but applicable
3, -- Approximate within 1%
4, -- Approximate within 5%
5, -- Approximate within 25%
6, -- Approximate over 25% range)),
PRIMARY KEY (groupcol, keycol),
CHECK (valcol = 0 OR valcol_null NOT IN (1,2));
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CREATE VIEW Group_MultiNull
(groupcol, valcol_sum, valcol_avg, valcol_max, valcol_min,
row_cnt, notnull_cnt, na_cnt, missing_cnt, approximate_cnt,
appr_1_cnt, approx_5_cnt, approx_25_cnt, approx_big_cnt)
AS
SELECT groupcol, SUM(valcol), AVG(valcol), MAX(valcol),
 MIN(valcol), COUNT(*),
 SUM (CASE WHEN valcol_null = 0 THEN 1 ELSE 0 END)
  AS notnull_cnt,
 SUM (CASE WHEN valcol_null = 1 THEN 1 ELSE 0 END)
  AS na_cnt,
 SUM (CASE WHEN valcol_null = 2 THEN 1 ELSE 0 END)
  AS missing_cnt,
 SUM (CASE WHEN valcol_null IN (3, 4, 5, 6) THEN 1 ELSE 0 

END)
  AS approximate_cnt,
 SUM (CASE WHEN valcol_null = 3 THEN 1 ELSE 0 END)
  AS appr_1_cnt,
 SUM (CASE WHEN valcol_null = 4 THEN 1 ELSE 0 END)
  AS approx_5_cnt,
 SUM (CASE WHEN valcol_null = 5 THEN 1 ELSE 0 END)
  AS approx_25_cnt,
 SUM (CASE WHEN valcol_null = 6 THEN 1 ELSE 0 END)
  AS approx_big_cnt
FROM MultiNull
GROUP BY groupcol;

SELECT groupcol, valcol_sum, valcol_avg, valcol_max, 
valcol_min,

 (CASE WHEN row_cnt = notnull_cnt
  THEN 'All are known'
  ELSE 'Not all are known' END) AS warning_message,
     row_cnt, notnull_cnt, na_cnt, missing_cnt, 

 approximate_cnt,
    appr_1_cnt, approx_5_cnt, approx_25_cnt, approx_big_cnt
FROM Group_MultiNull;

Although this is a bit complex for the typical application, it 
is not a bad idea for a “staging area” database that attempts to 
scrub the data before it goes to a data warehouse.
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14
MULTIPLE COLUMN DATA 
ELEMENTS

The concept of a data element being atomic or scalar is usu-
ally taken to mean that it is represented with a single column in 
a table. This is not always true. A data element is atomic when 
it cannot be decomposed into independent, meaningful parts. 
Doing so would result in attribute splitting, a very serious design 
flaw we discussed in other parts of this book.

Consider an (x, y) coordinate system. A single x or y value 
identifies a continuum of points, while the pair has to be taken 
together to give you a single location on the plane. It would be 
inconvenient to put both coordinates into one column, so we 
model them in two columns. This is notation and not the abstract 
data element.

14.1 Distance Functions
Since geographical data is important, you might find it handy to 
locate places by their longitude and latitude, then calculate the 
distances between two points on the globe. This is not a standard 
function in most SQL products, but it is handy to know.

Assume that we have the values Latitude1, Longitude1, 
Latitude2, and Longitude2, which locate the two points, and that 
they are in radians, and we have trig functions.

To convert decimal degrees to radians, multiply the number of 
degrees by pi/180 5 0.017453293 radians/degree, where pi is approx-
imately 3.14159265358979. If you can get more decimals, do it.

CREATE FUNCTION Distance
(IN latitude1 FLOAT, IN longitude1 FLOAT,
IN latitude2 FLOAT, IN longitude2 FLOAT)
RETURNS FLOAT
LANGUAGE SQL
DETERMINISTIC
BEGIN

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00014-4
Copyright © 2011 by Elsevier Inc. All rights reserved.
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 DECLARE r FLOAT;
 DECLARE lat FLOAT;
 DECLARE lon FLOAT;
 DECLARE a FLOAT;
 DECLARE c FLOAT;
 SET r = 6367.00 * 0.6214;

— calculate the Deltas …

 SET lon = longitude2 − longitude1;
 SET lat = latitude2 − latitude1;

—Intermediate values …

 SET a = SIN(lat / 2) + COS(latitude1)
     * COS(latitude2) * SIN(lon / 2);

—Intermediate result c is the great circle distance in radians …

 SET c = 2 * ARCSIN(LEAST(1.00, SQRT(a)));

—Multiply the radians by the radius to get the distance

 RETURN (r * c);
END;

LEAST() function protects against possible round off errors 
that could sabotage computation of the ARCSIN() if the two 
points are very nearly antipodal. It exists as a vendor extension in 
Oracle and MySQL, but can be written with a CASE expression in 
Standard SQL.

Scott Coleman pointed out that the calculation of distance 
between two points using standard spherical geometry can 
be inaccurate for short distances (10 miles or less) because the 
sine function of very small angles approaches zero. The haver-
sine approach (http://en.wikipedia.org/wiki/Haversine_formula) 
turns this around, so it is very accurate at small distances but 
has larger errors (about 10 miles) for points on opposite sides of 
the earth.

CREATE FUNCTION HaversineDistance
   (rlat1 FLOAT, rlon1 FLOAT, rlat2 FLOAT, rlon2 FLOAT)
RETURNS FLOAT
LANGUAGE SQL
DETERMINISTIC
BEGIN

—parameters are in radians

DECLARE c FLOAT;
SET c = POWER(SIN((rlat2 − rlat1) / 2.0)), 2)
 + COS(rlat1) * COS(rlat2) * POWER (SIN((rlon2 − rlon1) / 

2.0), 2);

http://en.wikipedia.org/wiki/Haversine_formula
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RETURN (3956.088331329 * (2.0 * ATN2(SQRT(c), 
SQRT(1.0 − c))));

END;

Notice there is an assumption of trig functions in your SQL. If 
you need to convert from degrees, use:

SET DegToRad = CAST (180.0 / PI AS DOUBLE PRECISION)

And use it as a divisor. The atan2(x, y) function is used to con-
vert from Cartesian(x, y) to polar (theta, radius) coordinates.

14.2 Storing an IPv4 Address in SQL
Although not exactly a data type, IP addresses are being used as 
unique identifiers for people or companies. If you need to verify 
them, you can send an e-mail or ping them. There are three pop-
ular ways to store an IP address: a string, an integer, and a set of 
four octets.

In a test conducted in SQL Server, all three methods required 
about the same amount of time, work, and I/O to return data as 
a string. The latter two have some additional computations, but 
the overhead was not enough to affect performance very much.

The conclusion was that the octet model with four TINYINT 
columns had three advantages: simpler programming, indexes 
on individual octets, and human readability. But you should 
look at what happens in your own environment. TINYINT is a one 
bit integer data type found in SQL Server and other products; 
SMALLINT is the closest to it in Standard SQL.

14.2.1 A Single VARCHAR(15) Column
The most obvious way to store IP addresses in a VARCHAR(15) col-
umn, like this ‘63.246.173.210’, with a CHECK() constraint that uses 
a SIMILAR TO predicate to be sure that it has the “dots and digits” 
in the right positions. You have to decide the meaning of leading 
zeros in an octet and trim them to do string comparisons.

The good points are that programming is reasonably sim-
ple and it is immediately human-readable. The bad points are 
that this has a higher storage costs and it needs pattern match-
ing string functions in searches. It also is harder to pass to some 
host programs that expect to see the octets to make their IP 
connections.

To convert the string into octets, you need to use a string pro-
cedure. You can write one based on the code given for parsing a 
comma-separated string into individual integers.
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14.2.2 One INTEGER Column
This has the lowest storage requirements of all the methods and 
it keeps the address in one column. Searching and indexing are 
also minimal.

The bad side is more that programming; it is much more com-
plex and you need to write user functions to break it apart into 
octets. It is also not very human-readable. Given an INTEGER value 
like 2130706433, can you tell me it represents ‘127.0.0.1’ on sight?

CREATE FUNCTION IPIntegerToString (IN ip INTEGER)
RETURNS VARCHAR(15)
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE o1 INTEGER;
DECLARE o2 INTEGER;
DECLARE o3 INTEGER;
DECLARE o4 INTEGER;

IF ABS(ip) > 2147483647
THEN RETURN '255.255.255.255';
END IF;

SET o1 = ip / 16777216;
IF o1 = 0
THEN SET o1 = 255;
   SET ip = ip + 16777216;
ELSE IF o1 < 0
   THEN IF MOD(ip, 16777216) = 0
 THEN SET o1 = o1 + 256;
 ELSE SET o1 = o1 + 255;
    IF o1 = 128
    THEN SET ip = ip + 2147483648;
    ELSE SET ip = ip + (16777216 * (256 − o1));
    END IF;
 END IF;
   ELSE SET ip = ip − (16777216 * o1);
   END IF;
END IF;

SET ip = MOD(ip, 16777216);
SET o2 = ip / 65536;
SET ip = MOD(ip, 65536);
SET o3 = ip / 256;
SET ip = MOD(ip, 256);
SET o4 = ip;

— return the string

RETURN
CAST(o1 AS VARCHAR(3)) || '.' ||
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CAST(o2 AS VARCHAR(3)) || '.' ||
CAST(o3 AS VARCHAR(3)) || '.' ||
CAST(o4 AS VARCHAR(3));
END;

14.2.3 Four SMALLINT Columns
The good points are that this has a lower storage cost than 
VARCHAR(15), searching is easy and relatively fast, and you can 
index on each octet of the address. If you have an SQL with a 
TINYINT (usually one byte) data type, then you can save even 
more space.

The bad point is that programming is slightly more complex.

CREATE TABLE FourColumnIP
(octet1 SMALLINT NOT NULL
    CHECK (octet1 BETWEEN 0 AND 255),
octet2 SMALLINT NOT NULL
    CHECK (octet2 BETWEEN 0 AND 255),
octet3 SMALLINT NOT NULL
    CHECK (octet3 BETWEEN 0 AND 255),
octet4 SMALLINT NOT NULL
    CHECK (octet4 BETWEEN 0 AND 255),
..);

You will need a view for display, but that is straightforward.

CREATE VIEW DisplayIP (IP_address_display)
AS
SELECT (CAST(octet1 AS VARCHAR(3))||'.'||
   CAST(octet2 AS VARCHAR(3))||'.'||
   CAST(octet3 AS VARCHAR(3))||'.'||
   CAST(octet4 AS VARCHAR(3))
FROM FourColumnIP;

14.3 Storing an IPv6 Address in SQL
The original designers of TCP/IP defined an IP address as a 32-bit 
number. The Internet Assigned Numbers Authority (IANA) man-
ages the IP address space allocations globally. IANA works in 
cooperation with five Regional Internet Registries (RIRs) to allo-
cate IP address blocks to Local Internet Registries (Internet ser-
vice providers) and other entities.

The IP version 6 addresses are huge compared to IPv4 and 
are not likely to run out anytime soon. The problem is that it is 
a redesign of the Internet Protocol and not a simple extension. 
The address size was increased from 32 to 128 bits (16 bytes). The 
new design is so large that that subnet routing prefixes are easy 
to construct without any kludges. Large blocks can be assigned 



294  Chapter 14 MULTIPLE COLUMN DATA ELEMENTS

for efficient routing. Windows Vista, Apple Computer’s Mac OS 
X, Linux distributions, and most other operating systems include 
native support for the IPv6 protocol.

14.3.1 A Single CHAR(32) Column
The most obvious way to store IPv6 addresses is in a CHAR(32) col-
umn without the colons or a CHAR(40) column with colons. The 
hexadecimal display format is a simple fixed format. The letters 
for 10 (a) through 15 (d) are usually done in lowercase to avoid 
confusion with digits. Use a CHECK() constraint that uses a SIMILAR 
TO predicate to be sure that it has the “colons and digits” in the 
right positions.

ipv6 CHAR(40) NOT NULL
 CHECK (ipv6 SIMILAR TO '([0-9a-d]:){7}[0-9a-d]')

Since the string is fixed length, it is easy to slice it up into 
substrings. The trick with searching for the substrings is to use 
underscores in a LIKE predicate instead of an ampersand wild-
card or a regular expression. The simple LIKE predicate will match 
character for character rather than create a finite automaton 
under the covers.

14.4 Currency and Other Unit Conversions
Currency has to be expressed in both an amount and a unit of 
currency. The ISO 4217 currency code gives you a standard way 
of identifying the unit. Today, only Mauritania and Madagascar 
have nondecimal currencies. The value of the main unit is so low 
that the subunit is too small to be of any practical use and coins 
of the subunit are no longer used.

You will need to talk to the accounting department about 
the number of decimal places to use in computations. The rules 
for euros are established by the European Union and those for 
dollars are part of the GAAP (Generally Accepted Accounting 
Practices).

CREATE TABLE InternationalMoney
( ..
currency_code CHAR(3) NOT NULL,
currency_amt DECIMAL (12,4) NOT NULL,
..);

This mixed table is not easy to work with, so it is best to cre-
ate VIEWs with a single currency for each group of users. This will 
entail maintaining an exchange rate table to use in the VIEWs.



 Chapter 14 MULTIPLE COLUMN DATA ELEMENTS  295

CREATE VIEW EuroMoney (.. euro_amt, ..)
AS
SELECT .. (M1.currency_amt * E1.conversion_factor), ..
 FROM InternationalMoney AS M1,
    ExchangeRate AS E1
WHERE E1.to_currency_code = 'EUR'
  AND E1.from_currency_code = M1.curency_code;

But there is a gimmick. There are specific rules about preci-
sion and rounding that are mandatory in currency conversion to, 
from, and through the euro. Conversion between two national 
currencies must be “triangulated”; this means that you first con-
vert currency #1 to euros, then convert the euros to currency #2. 
Six-figure conversion rates are mandatory, but you should check 
the status of “Article 235 Regulation” to be sure that nothing has 
changed since this writing.

14.5 Social Security Numbers
The closest thing the United States has to a Universal identifica-
tion number is the Social Security Number (SSN). You are sup-
posed to validate the SSN when you hire a new employee, but 
a lot of programmers have no idea how to do it. I am not going 
to go into the privacy issues, recent laws, or anything to do with 
legal aspects. This is a column for working programmers and all 
we care about is how to use these numbers in our code.

The SSN is composed of three parts, all digits and separated 
by dashes in the format “XXX-XX-XXXX.” These parts are called 
the Area, Group, and Serial. For the most part (there are a few 
exceptions), the Area is determined by where the individual 
applied for the Social Security Number (before 1972) or resided 
at the time of application (after 1972). Table 14.1 shows the Area 
numbers used in the United States and its possessions.

If an Area number is shown more than once it means that cer-
tain numbers have been transferred from one State to another, or 
that an Area has been divided for use among certain geographic 
locations. The actual assignment is done based on the ZIP code 
given on the application. You can blame population shifts for 
this. You do not have to have a SSN to work in the United States. 
Since 1996, the IRS issued over eight million tax payer identifica-
tion numbers to foreign workers without an SSN. In 2004 alone 
there were 900,000 such numbers issued.

The Group portion of the Social Security Number has no 
meaning other than to determine whether or not a number has 
been assigned. There was an urban myth that the ethnicity of 
the card holder was coded in the Group number and I have no 
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Table 14.1 Area Numbers Used in the United States 
and Its Possessions

000-000 Invalid code
001-003 New Hampshire
004-007 Maine
008-009 Vermont
010-034 Massachusetts
035-039 Rhode Island
040-049 Connecticut
050-134 New York
135-158 New Jersey
159-211 Pennsylvania
212-220 Maryland
221-222 Delaware
223-231 Virginia
691-699 
232-236 West Virginia
232 North Carolina
237-246
681-690
247-251 South Carolina
654-658
252-260 Georgia
667-675
261-267 Florida
589-595
766-772
268-302 Ohio
303-317 Indiana
318-361 Illinois
362-386 Michigan
387-399 Wisconsin
400-407 Kentucky
408-415 Tennessee
756-763
416-424 Alabama
425-428 Mississippi
587-588
752-755  allocated, but not 

issued yet
429-432 Arkansas

676-679
433-439 Louisiana
659-665
440-448 Oklahoma
449-467 Texas
627-645
468-477 Minnesota
478-485 Iowa
486-500 Missouri
501-502 North Dakota
503-504 South Dakota
505-508 Nebraska
509-515 Kansas
516-517 Montana
518-519 Idaho
520 Wyoming
521-524 Colorado
650-653
525,585 New Mexico
648-649
526-527 Arizona
600-601
764-765
528-529 Utah
646-647
530 Nevada
680
531-539 Washington
540-544 Oregon
545-573 California
602-626
574 Alaska
575-576 Hawaii
750-751
577-579 District of Columbia
580 Virgin Islands
580-584 Puerto Rico
596-599
586 Guam
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586 American Samoa
586  Philippine Islands
666  permanently unassigned
700-728  Railroad Board – 

discontinued in 1963

729-733  Enumeration at 
Entry*

734-899  unassigned, for 
future use

900-999  Invalid code**

*No SSNs with an Area number above 728 have been assigned in the 700 series, except for 729 through 733 and 764 through 772.

** Although 900–999 are not valid Area numbers, they were used for program purposes when state aid to the aged, blind, and disabled was 
converted to a federal program administered by the Social Security Administration. You might also see this range of Area numbers used 
to construct student id numbers for foreign students in the days when schools used SSN as the student id number.

idea how that one got started. The Social Security Administration 
publishes a list of the highest group assigned for each Area once 
a month. You can download this data at http://www.ssa.gov/
employer/highgroup.txt.

The only validation check on SSN is the way the Group num-
bers are issued. The first numbers issued are the odd numbers 
from 1 through 9, followed by the even numbers from 10 through 
98, within each Area number. After all numbers in Group 98 of a 
particular area have been issued, then even Groups 2 through 8 
are issued, followed by odd Groups 11 through 99.

For example, if the highest group assigned for area XXX is 
72, then we know that the number XXX-04-XXXX is an invalid 
Group number because even Groups under 9 have not yet been 
assigned.

Fifty or 60 years ago, wallets came with fake Social Security 
cards already in them to make them look good when they were 
on display—much like the photos of a family in a dime store pic-
ture frame that looks better than your real family. Many people 
simply used these fake cards. The numbers look valid, but the IRS 
and other government agencies have a list of them.

The Serial portion of the Social Security Number has no 
meaning. The Serial number ranges from 0001 to 9999, but it is 
not assigned in strictly numerical order. The Serial number 0000 
is never assigned.

There are commercial firms and nonprofit web sites that will 
verify SSNs for living and deceased persons. They usually tell you 
if the person holding that number is alive or dead, along with the 
year and place of issue. Some of these sites are set up by govern-
ment agencies or universities to help employers, hospitals, or 
other concerned parties validate SSNs. The commercial sites can 
do bulk validations from files that you submit to them, at a cost 
of about one cent per SSN.

http://www.ssa.gov/employer/highgroup.txt
http://www.ssa.gov/employer/highgroup.txt
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Here is a small sample to get you started. I am not recom-
mending one source over another in this listing.

http://www.veris-ssn.com
http://www.searchbug.com/peoplefinder/ssn.aspx
http://privacy.cs.cmu.edu/dataprivacy/projects/ssnwatch/
http://info.dhhs.state.nc.us/olm/manuals/dma/eis/man/

Eis1103.htm
http://www.comserv-inc.com/products/ssndtect.htm

14.6 Rational Numbers
A rational number is defined as a fraction (a/b) where a and b are 
both integers. Likewise, an irrational number cannot be defined 
that way. The classic example of an irrational number is the 
square root of two. Technical, a binary computer can only rep-
resent a subset of the rational numbers. But for some purposes, 
it is handy to actually model them as (numerator, denominator) 
pairs. For example, Vadim Tropashko uses rational numbers in 
the nested interval model for hierarchies in SQL (see my book, 
Trees and Hierarchies in SQL for Smarties, Morgan-Kaufmann, 
2004; ISBN 978-1-55860-920-4). This means that you need a set 
of user-defined functions to do basic four-function math and to 
reduce the fractions.

Elementary school students, when questioned what the sum 
of 1/2 and 1/4 is will add the denominators and numerators like 
this: 1/2 1 1/4 5 (1 1 1)/(2 1 4) 5 2/6 5 1/3. This operation is 
called the mediant, and it returns the simplest number between 
the two fractions, if we use smallness of denominator as a mea-
sure of simplicity. Indeed, the average of 1/4 and 1/2 has denomi-
nator 8 and the mediant has 3.

http://www.veris-ssn.com
http://www.searchbug.com/peoplefinder/ssn.aspx
http://privacy.cs.cmu.edu/dataprivacy/projects/ssnwatch/
http://info.dhhs.state.nc.us/olm/manuals/dma/eis/man/Eis1103.htm
http://info.dhhs.state.nc.us/olm/manuals/dma/eis/man/Eis1103.htm
http://www.comserv-inc.com/products/ssndtect.htm
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15
TABLE OPERATIONS

There are only four things you can do with a set of rows in an SQL 
table: insert them into a table, delete them from a table, update 
the values in their columns, or query them. The unit of work is a 
set of whole rows inside a base table.

When you worked with file systems, access was one record 
at a time, then one field within a record. Since you had repeated 
groups and other forms of variant records, you could change the 
structure of each record in the file.

The mental mode in SQL is that you grab a subset, as a unit, 
all at once in a base table and insert, update, or delete, as a unit, 
all at once. Imagine that you have enough computer power that 
you can allocate one processor to every row in a table. When you 
blow your whistle, all the processors do their work in parallel.

15.1 DELETE FROM Statement
The DELETE FROM statement in SQL removes zero or more rows of 
one table. Interactive SQL tools will tell the user how many rows 
were affected by an update operation and Standard SQL requires 
the database engine to raise a completion condition of “no data” 
if there were zero rows. There are two forms of DELETE FROM in 
SQL: positioned and searched. The positioned deletion is done 
with cursors; the searched deletion uses a WHERE clause like the 
search condition in a SELECT statement.

15.1.1 The DELETE FROM Clause
The syntax for a searched deletion statement is:

<delete statement: searched> ::=
DELETE FROM <target table> [[AS] <correlation name>]
[WHERE <search condition>]

The DELETE FROM clause simply gives the name of the updat-
able table or view to be changed. Notice that a correlation name 
is allowed in the DELETE FROM clause, as of the SQL:2003 Standard. 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00015-6
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00015-6
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The SQL model for an alias table name has always been that the 
engine effectively creates a new table with that new name and 
populates it with rows identical to the base table or updatable 
view from which it was built. If you had a correlation name, you 
would be deleting from this system-created temporary table and 
it would vanish at the end of the statement. The base table would 
never have been touched.

The new model is that an updatable VIEW is constructed. This 
leads to some problems when the same data is used as a VIEW and 
a base table at the same time.

For this discussion, we will assume the user doing the dele-
tion has applicable DELETE privileges for the table. The positioned 
deletion removes the row in the base table that is the source of 
the current cursor row. The syntax is:

<delete statement: positioned> ::=
DELETE FROM <target table> [[AS] <correlation name>]
WHERE CURRENT OF <cursor name>

Cursors in SQL are generally more expensive than nonproc-
edural code and, in spite of the existence of standards, they 
vary widely in current implementations. If you have a properly 
designed table with a key, you should be able to avoid them in a 
DELETE FROM statement.

15.1.2 The WHERE Clause
The most important thing to remember about the WHERE clause 
is that it is optional. If there is no WHERE clause, all rows in the 
table are deleted. The table structure still exists, but there are no 
rows.

Most, but not all, interactive SQL tools will give you a warn-
ing when you are about to do this, and will ask for confirma-
tion. Unless you wanted to clear out the table, immediately do 
a ROLLBACK to restore the table; if you COMMIT or have set the tool 
to automatically commit the work, then the data is pretty much 
gone. The DBA will have to do something to save you. And don’t 
feel bad about doing it at least once while you are learning SQL.

Because we wish to remove a subset of rows all at once, we 
cannot simply scan the table one row at a time and remove each 
qualifying row as it is encountered; we need to have the whole sub-
set all at once. The way most SQL implementations do a deletion 
is with two passes on the table. The first pass marks all the candi-
date rows that meet the WHERE clause condition. This is also when 
most products check to see if the deletion will  violate any con-
straints. The most common violations involve  trying to remove a 
value that is referenced by a foreign key (“Hey, we still have orders 
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for those Pink Lawn Flamingos; you cannot drop them from inven-
tory yet!”). But other constraints in CREATE ASSERTION statements, 
CHECK() constraints, or TRIGGERs can also cause a ROLLBACK.

After the subset is validated, the second pass removes it, either 
immediately or by marking them so that a housekeeping routine 
can later reclaim the storage space. Then any further housekeep-
ing, such as updating indexes, is done last.

The important point is that while the rows are being marked, 
the entire table is still available for the WHERE condition to use. 
In many, if not most cases, this two-pass method does not make 
any difference in the results. The WHERE clause is usually a 
fairly simple predicate that references constants or relationships 
among the columns of a row. For example, we could clear out 
some Personnel with this deletion:

DELETE FROM Personnel
WHERE iq <= 100; -- constant in simple predicate

or,

DELETE FROM Personnel
WHERE hat_size = iq; -- uses columns in the same row

A good optimizer could recognize that these predicates do 
not depend on the table as a whole, and would use a single scan 
for them. The two passes make a difference when the table refer-
ences itself. Let’s fire employees whose IQs are below average for 
their departments.

DELETE FROM Personnel
WHERE iq < (SELECT AVG(P1.iq)

FROM Personnel AS P1 -- must have correlation name
WHERE Personnel.dept_nbr = P1.dept_nbr);

We have the following data:

Personnel

emp_nbr dept_nbr iq

'Able' 'Acct' 101
'Baker' 'Acct' 105
'Charles' 'Acct' 106
'Henry' 'Mkt' 101
'Celko' 'Mkt' 170
'Popkin' 'HR' 120
..
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If this were done one row at a time, we would first go to 
Accounting and find the average IQ, (101 1 105 1 106)/3.0 5 104, 
and fire Able. Then we would move sequentially down the table, 
and again find the average IQ, (105 1 106)/2.0 5 105.5 and fire 
Baker. Only Charles would escape the downsizing.

Now sort the table a little differently, so that the rows are vis-
ited in reverse alphabetic order. We first read Charles’s IQ and 
compute the average for Accounting (101 1 105 1 106)/3.0 5 104, 
and retain Charles. Then we would move sequentially down the 
table, with the average IQ unchanged, so we also retain Baker. 
Able, however, is downsized when that row comes up.

It might be worth noting that early versions of DB2 would 
delete rows in the sequential order in which they appear in 
physical storage. Sybase’s SQL Anywhere (nee WATCOM SQL) 
had an optional ORDER BY clause that sorted the table, then did a 
sequential deletion on the table. This feature was used to force 
a sequential deletion in cases where order does not matter, thus 
optimizing the statement by saving a second pass over the table. 
But it also can give the desired results in situations where you 
would otherwise have to use a cursor and a host language.

Anders Altberg, Johannes Becher, and I tested different ver-
sions of a DELETE statement whose goal was to remove all but one 
row of a group. The column dup_cnt is a count of the duplicates 
of that row in the original table. The three statements tested were:

D1:
DELETE FROM Test
 WHERE EXISTS (SELECT *

 FROM Test AS T1
WHERE T1.dup_id = Test.dup_id
 AND T1.dup_cnt < dup_cnt)

D2:
DELETE FROM Test
 WHERE dup_cnt > (SELECT MIN(T1.dup_cnt)

 FROM Test AS T1
WHERE T1.dup_id = Test.dup_id);

D3:
BEGIN ATOMIC
INSERT INTO WorkingTable(dup_id, min_dup_cnt)
SELECT dup_id, MIN(dup_cnt)
  FROM Test
 GROUP BY dup_id;
DELETE FROM Test
 WHERE dup_cnt > (SELECT min_dup_cnt

 FROM WorkingTable
WHERE Working.dup_id = Test.dup_id);

END;
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Their relative execution speeds in one SQL desktop product 
were:

D1: 3.20 seconds
D2: 31.22 seconds
D3: 0.17 seconds

Without seeing the execution plans, I would guess that state-
ment D1 went to an index for the EXISTS() test and returned 
TRUE on the first item it found. On the other hand D2 scanned 
each subset in the partitioning of Test by dup_id to find the 
MIN() over and over. Finally, the D3 version simply does a JOIN 
on simple scalar columns. With Standard SQL, you could write 
D3 as:

D3-2:
DELETE FROM Test
 WHERE dup_cnt >
 (SELECT min_dup_cnt
 FROM (SELECT dup_id, MIN(dup_cnt)

   FROM Test
  GROUP BY dup_id)

  AS WorkingTable(dup_id, min_dup_cnt)
 WHERE Working.dup_id = Test.dup_id);

Having said all this, the faster way to remove redundant dupli-
cates is most often with a CURSOR that does a full table scan.

15.1.3 Deleting Based on Data in a Second Table
The WHERE clause can be as complex as you wish. This means 
you can have subqueries that use other tables. For example, to 
remove customers who have paid their bills from the Deadbeats 
table, you can use a correlated EXISTS predicate, thus:

DELETE FROM Deadbeats
WHERE EXISTS (SELECT *
        FROM Payments AS P1
       WHERE Deadbeats.cust_nbr = P1.cust_nbr
        AND P1.paid_amt > = Deadbeats.due_amt);

The scope rules from SELECT statements also apply to the WHERE 
clause of a DELETE FROM statement, but it is a good idea to qualify 
all the column names.

15.1.4 Deleting within the Same Table
SQL allows a DELETE FROM statement to use columns, constants, 
and aggregate functions drawn from the table itself. For example, 
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it is perfectly all right to remove everyone who is below average in 
a class with this statement:

DELETE FROM Students
 WHERE grade < (SELECT AVG(grade) FROM Students);

But the DELETE FROM clause does not allow for correlation 
names on the table in the DELETE FROM clause, so not all WHERE 
clauses that could be written as part of a SELECT statement will 
work in a DELETE FROM statement. For example, a self-join on the 
working table in a subquery is impossible.

DELETE FROM Personnel AS B1 --correlation name is INVALID SQL
 WHERE Personnel.boss_nbr = B1.emp_nbr
  AND Personnel.salary > B1.salary);

There are ways to work around this. One trick is to build 
a VIEW of the table and use the VIEW instead of a correla-
tion name. Consider the problem of finding all employees who 
are now earning more than their boss and deleting them. The 
employee table being used has a column for the employee’s iden-
tification number, emp_nbr, and another column for the boss’s 
employee identification number, boss_nbr.

CREATE VIEW Bosses
AS SELECT emp_nbr, salary FROM Personnel;

DELETE FROM Personnel
WHERE EXISTS (SELECT *

FROM Bosses AS B1
WHERE Personnel.boss_nbr = B1.emp_nbr
 AND Personnel.salary > B1.salary);

Simply using the Personnel table in the subquery will not 
work. We need an outer reference in the WHERE clause to the 
Personnel table in the subquery, and we cannot get that if the 
Personnel table were in the subquery. Such views should be as 
small as possible so that the SQL engine can materialize them in 
main storage.

Redundant Duplicates in a Table
Redundant duplicates are unneeded copies of a row in a table. 
You most often get them because you did not put a UNIQUE 
constraint on the table and then you inserted the same data 
twice. Removing the extra copies from a table in SQL is much 
harder than you would think. In fact, if the rows are exact dupli-
cates, you cannot do it with a simple DELETE FROM statement. 
Removing redundant duplicates involves saving one of them 
while deleting the other(s). But if SQL has no way to tell them 
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apart, it will delete all rows that were qualified by the WHERE 
clause. Another problem is that the deletion of a row from 
a base table can trigger  referential actions, which can have 
unwanted side effects.

For example, if there is a referential integrity constraint that 
says a deletion in Table1 will cascade and delete matching rows 
in Table2, removing redundant duplicates from T1 can leave me 
with no matching rows in T2. Yet I still have a referential integrity 
rule that says there must be at least one match in T2 for the single 
row I preserved in T1. SQL allows constraints to be deferrable or 
nondeferrable, so you might be able to suspend the referential 
actions that the transaction below would cause:

BEGIN
INSERT INTO WorkingTable --use DISTINCT to kill  

duplicates
SELECT DISTINCT * FROM MessedUpTable;

DELETE FROM MessedUpTable; --clean out messed-up table
INSERT INTO MessedUpTable --put working table into it
SELECT * FROM WorkingTable;

DROP TABLE WorkingTable; --get rid of working table
END;

Redundant Duplicates Removal with ROWID
Leonard C. Medel came up with several interesting ways to delete 
redundant duplicate rows from a table in an Oracle database.

Let’s assume that we have a table:

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL,
name CHAR(30) NOT NULL,
..);

The classic Oracle “delete dups” solution is the statement:

DELETE FROM Personnel
WHERE ROWID < (SELECT MAX(P1.ROWID)

FROM Personnel AS P1
WHERE P1.dup_id = Personnel.dup_id
 AND P1.name = Personnel.name);
 AND ..);

The column, or more properly pseudo-column, ROWID is 
based on the physical location of a row in storage. It can change 
after a user session but not during the session. It is the fastest 
possible physical access method into an Oracle table because it 
goes directly to the physical disk address of the data. It is also a 
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complete violation of Dr. Codd’s rules that require that the physi-
cal representation of the data be hidden from the users.

Doing a quick test on a 100,000 row table, Mr. Medel achieved 
about a tenfold improvement with these two alternatives. In 
English, the first alternative is find the highest ROWID for each 
group of one or more duplicate rows, and then delete every row, 
except the one with highest ROWID.

DELETE FROM Personnel
WHERE ROWID
IN (SELECT P2.ROWID

FROM Personnel AS P2,
(SELECT P3.dup_id, P3.name, ..

MAX(P3.ROWID) AS max_rowid
FROM Personnel AS P3
GROUP BY P3.dup_id, P3.name, ..)

AS P4
WHERE P2.ROWID <> P4.max_rowid
 AND P2.dup_id = P4.dup_id
 AND P2.name = P4.name);

Notice that the GROUP BY clause needs all the columns in the 
table.

The second approach is to notice that the set of all rows in 
the table minus the set of rows we want to keep defines the set of 
rows to delete. This gives us the following statement:

DELETE FROM Personnel
WHERE ROWID

IN (SELECT P2.ROWID
FROM Personnel AS P2
EXCEPT
SELECT MAX(P3.ROWID)
 FROM Personnel AS P3
 GROUP BY P3.dup_id, P3.name, ..);

The reason that both of these approaches are faster than the 
short classic version is that they avoid a correlated subquery 
expression in the WHERE clause.

A modern version uses the ROW_NUMBER() functions to get an 
equivalent of the Oracle ROWID in an updatable VIEW: 

CREATE VIEW OrderedPersonnel
AS
SELECT *, ROW_NUMBER() OVER (PARTITION BY <<all columns>>) 

AS r
 FROM Personnel;

DELETE FROM OrderedPersonnel
WHERE r > 1;
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15.1.5  Deleting in Multiple Tables without DRI Actions
There is no way to directly delete rows from more than one table 
in a single DELETE FROM statement. There are three approaches 
to removing related rows from multiple tables. One is to use a 
 temporary table of the deletion values; another is to use referen-
tial integrity actions; the third is to use INSTEAD OF triggers on a 
view or base table. For the purposes of this section, let us assume 
that we have a database with an Orders table and an Inventory 
table. Our business rule is that when something is out of stock, 
we delete it from all the orders.

Assume that no referential integrity constraints have been 
declared at all. First create a temporary table of the products to 
be deleted based on your search criteria, then use that table in a 
correlated subquery to remove rows from each table involved.

CREATE MODULE Foobar
CREATE LOCAL TEMPORARY TABLE Discontinue
(part_nbr INTEGER NOT NULL UNIQUE)
ON COMMIT DELETE ROWS;
..
PROCEDURE CleanInventory(..)
BEGIN ATOMIC
INSERT INTO Discontinue
SELECT DISTINCT part_nbr --pick out the items to be removed
 FROM ..
WHERE .. ;--using whatever criteria you require
DELETE FROM Orders
WHERE part_nbr IN (SELECT part_nbr FROM Discontinue);
DELETE FROM Inventory
WHERE part_nbr IN (SELECT part_nbr FROM Discontinue);
COMMIT WORK;
END;
..
END MODULE;

In the Standard SQL model, the temporary table is persistent 
in the schema, but its content is not. TEMPORARY tables are always 
empty at the start of a session and they always appear to belong 
to only the user of the session. The GLOBAL option means that each 
application gets one copy of the table for all the modules, whereas 
LOCAL would limit the scope to the module in which it is declared.

15.2 INSERT INTO Statement
The INSERT INTO statement is the only way to get new data into a 
base table. In practice, there are always other tools for loading large 
amounts of data into a table, but they are very vendor dependent.
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15.2.1 INSERT INTO Clause
The syntax for INSERT INTO is:

<insert statement> ::= INSERT INTO <insertion target> 
<insert columns and source>

<insertion target> ::= <table name>

Notice that the target is a table name and not an alias.

<insert columns and source> ::=
<from subquery> | <from constructor> | <from default>

<from subquery> ::=
[<left paren> <insert column list> <right paren>]
[<override clause>] <query expression>

<from constructor> ::=
[<left paren> <insert column list> <right paren>]
[<override clause>]
<contextually typed table value constructor>

<override clause> ::=
OVERRIDING USER VALUE | OVERRIDING SYSTEM VALUE

<from default> ::= DEFAULT VALUES

<insert column list> ::= <column name list>

The two basic forms of an INSERT INTO are a table constant 
(usually a single row) insertion and a query insertion. The table 
constant insertion is done with a VALUES() clause. The list of insert 
values usually consists of constants or explicit NULLs, but in the-
ory they could be almost any expression, including scalar SELECT 
subqueries.

The DEFAULT VALUES clause is a shorthand for VALUES (DEFAULT, 
DEFAULT,.., DEFAULT), so it is just shorthand for a particular sin-
gle row insertion.

The tabular constant insertion is a simple tool, mostly used 
in interactive sessions to put in small amounts of data. A query 
insertion executes the query and produces a working table, which 
is inserted into the target table all at once. In both cases, the 
optional list of columns in the target table has to be union-com-
patible with the columns in the query or with the values in the 
VALUES clause. Any column not in the list will be assigned NULL or 
its explicit DEFAULT value.

The <override clause> is part of SQL:2006 and needs a little 
explanation, even though it is not widely available. It has to do 
with how the insertion will handle an IDENTITY column whose 
values are generated by default. It is actually a more complicated 
mess that I do not wish to discuss.
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15.2.2 The Nature of Inserts
In theory, an insert using a query will place the rows from the 
query in the target table all at once. The set-oriented nature of an 
insertion means that a statement like

INSERT INTO SomeTable (somekey, transaction_time)
SELECT millions, CURRENT_TIMESTAMP
FROM HugeTable;

will have one value for transaction_time in all the rows of the 
result, no matter how long it takes to load them into SomeTable. 
Keeping things straight requires a lot of checking behind the 
scenes. The insertion can fail if just one row violates a constraint 
on the target table. The usual physical implementation is to put 
the rows into the target table, but to mark the work as uncommit-
ted until the whole transaction has been validated. Once the sys-
tem knows that the insertion is to be committed, it must rebuild 
all the indexes. Rebuilding indexes will lock out other users and 
might require sorting the table if the table had a clustered index. 
If you have had experience with a file system, your first thought 
might be to drop the indexes, insert the new data, sort the table, 
and re-index it. The utility programs for index creation can actu-
ally benefit from having a known ordering. Unfortunately, this 
trick does not always work in SQL. The indexes maintain the 
uniqueness and referential integrity constraints and cannot be 
easily dropped and restored. Files stand independently of each 
other; tables are part of a whole database.

15.2.3 Bulk Load and Unload Utilities
All versions of SQL have a language extension or utility pro-
gram that will let you read data from an external file directly into 
a table. There is no standard for this tool, so they are all differ-
ent. Most of these utilities require the name of the file and the 
format in which it is written. The simpler versions of the  utility 
just read the file and put it into a single target table. At the other 
extreme, Oracle uses a miniature language that can do simple 
editing as each record is read. If you use a simpler tool, it is a 
good idea to build a working table in which you stage the data 
for cleanup before loading it into the actual target table. You can 
apply edit routines, look for duplicates, and put the bad data 
into another working table for inspection. Some of these utili-
ties will also build the table if it does not already exist. This, of 
course, requires the metadata for the table definition, which is 
usually stored with the data as a result of a previous bulk unload 
(or export).
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The corresponding output utility, which converts a table into 
a file, usually offers a choice of format options; any computations 
and selection can be done in SQL. Some of these programs will 
accept a SELECT statement or a VIEW; some will only convert a base 
table. Most tools now have an option to output INSERT INTO state-
ments along with the appropriate CREATE TABLE and CREATE INDEX 
statements.

15.3 The UPDATE Statement
The function of the UPDATE statement in SQL is to change the val-
ues in zero or more columns of zero or more rows of one table. 
SQL implementations will tell you how many rows were affected 
by an update operation or as a minimum return the SQLSTATE 
value for zero rows affected. There are two forms of UPDATE state-
ments: positioned and searched. The positioned UPDATE is done 
with cursors; the searched UPDATE uses a WHERE that resembles the 
search condition in a SELECT statement.

Cursors allow the updating of the CURRENT OF <cursor name> 
row; that is covered in the chapter on CURSORs.

15.3.1 The UPDATE Clause
The syntax for a searched update statement is

<update statement> :: =
 UPDATE <table name> [[AS] <correlation name>]
 SET <set clause list>

 [WHERE <search condition>]

<set clause list> :: =
 <set clause> [{, <set clause>}..]

<set clause> :: = <object column> = <update source>

<update source> :: = <value expression> | NULL | DEFAULT

<object column> :: = <column name>

The UPDATE clause simply gives the name of the base table or 
updatable view to be changed. Originally, no correlation name 
is allowed in the UPDATE clause. The SQL model for an alias table 
name was that the engine effectively creates a new table with 
that new name and populates it with rows identical to the base 
table or updatable view from which it was built. If you had a cor-
relation name, you would be deleting from this system-created 
temporary table and it would vanish at the end of the statement. 
The base table would never have been touched. Having said this, 
the SQL:2003 Standard allows for a correlation name and the 
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fiction is that an updatable VIEW is created on the base table or 
original view.

The SET clause is a list of columns to be changed or made; the 
WHERE clause tells the statement which rows to use. For this dis-
cussion, we will assume the user doing the update has applicable 
UPDATE privileges for each <object column>.

Standard SQL:2003 allows a row constructor in the SET clause. 
The syntax looks like this.

UPDATE Foobar
 SET (a, b, c) = (1, 2, 3)
WHERE x < 12;

This is shorthand for the usual syntax, where the row con-
structor values are matched position for position with the SET 
clause column list.

15.3.2 The WHERE Clause
As mentioned, the most important thing to remember about 
the WHERE clause is that it is optional. If there is no WHERE clause, 
all rows in the table are changed. This is a common error; if you 
make it, immediately execute a ROLLBACK statement or call the 
Database Administrator for help.

All rows that test TRUE for the <search condition> are marked 
as a subset and not as individual rows. It is also possible that 
this subset will be empty. This subset is used to construct a new 
set of rows that will be inserted into the table when the subset 
is deleted from the table. Note that the empty subset is a valid 
update that will fire declarative referential actions and triggers.

15.3.3 The SET Clause
Each assignment in the <set clause list> is executed in parallel 
and each SET clause changes all the qualified rows at once. Or at 
least that is the theoretical model. In practice, implementations 
will first mark all the qualified rows in the table in one pass, using 
the WHERE clause. If there were no problems, then the SQL engine 
makes a copy of each marked row in working storage. Each SET 
clause is executed based on the old row image and the results are 
put in the new row image. Finally, the old rows are deleted and 
the new rows are inserted. If an error occurs during all this, then 
the system does a ROLLBACK, the table is left unchanged, and the 
errors are reported. This parallelism is not like what you find in a 
traditional third-generation programming language, so it may be 
hard to learn.
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For example, this statement is illegal:

UPDATE MyTable
SET a = b, a = c;

In a traditional programming language, the second SET clause 
would take effect as the statement is executed left to right. In 
SQL, this leads to the error of trying to put two values, b and c, in 
column a.

This feature lets you write a statement that will swap the val-
ues in two columns, thus:

UPDATE MyTable
SET a = b, b = a;

This is not the same thing as:

BEGIN ATOMIC
UPDATE MyTable
SET a = b;
UPDATE MyTable
SET b = a;
END;

In the first UPDATE, columns a and b will swap values in each 
row. In the second pair of UPDATEs, column a will get all the val-
ues of column b in each row. In the second UPDATE of the pair, a, 
which now has the same value as the original value of b, will be 
written back into column b—no change at all. There are some 
limits as to what the value expression can be. The same column 
cannot appear more than once in a <set clause list>—which 
makes sense, given the parallel nature of the statement. Since 
both go into effect at the same time, you would not know which 
SET clause to use.

15.3.4 Updating with a Second Table
The right way to do this today is to use the MERGE statement. But 
you will see old code that uses some of these tricks.

Most updating is done with simple expressions of the form SET 
<column name> = <constant value>, because UPDATEs are done via 
data entry programs. It is also possible to have the <column name> 
on both sides of the equal sign! This will not change any values in 
the table, but can be used as a way to trigger referential actions 
that have an ON UPDATE condition. However, the <set clause list> 
does not have to contain only simple expressions. It is possible 
to use one table to post summary data to another. The scope of 
the <table name> is the entire <update statement>, so it can be 
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 referenced in the WHERE clause. This is easier to explain with an 
example. Assume we have the following tables:

CREATE TABLE Customers
(cust_nbr INTEGER NOT NULL PRIMARY KEY,
acct_amt DECIMAL(8,2) NOT NULL);

CREATE TABLE Payments
(trans_nbr INTEGER NOT NULL PRIMARY KEY,
cust_nbr INTEGER NOT NULL,
trans_amt DECIMAL(8,2) NOT NULL);

The problem is to post all the payment amounts to the bal-
ance in the Customers table, overwriting the old balance. Such a 
posting is usually a batch operation, so a searched UPDATE state-
ment seems the logical approach.

UPDATE Customers
 SET acct_amt

= acct_amt
- (SELECT SUM(amt)

FROM Payments AS P1
WHERE Customers.cust_nbr = P1.cust_nbr)

WHERE EXISTS
(SELECT *

FROM Payments AS P2
WHERE Customers.cust_nbr = P2.cust_nbr);

When there is no payment, the scalar query will return an 
empty set. The SUM() of an empty set is always NULL. One of 
the most common programming errors made when using this 
trick is to write a query that may return more than one row. 
If you did not think about it, you might have written the last 
example as:

UPDATE Customers
 SET acct_amt

= acct_amt
- (SELECT payment_amt

FROM Payments AS P1
WHERE Customers.cust_nbr = P1.cust_nbr)

WHERE EXISTS
(SELECT *

FROM Payments AS P2
WHERE Customers.cust_nbr = P2.cust_nbr);

But consider the case where a customer has made more than 
one payment and we have both of them in the Payments table; 
the whole transaction will fail. The UPDATE statement should 
return an error message about cardinality violations and ROLLBACK 
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the entire UPDATE statement. In the first example, however, we 
know that we will get a scalar result because there is only one 
SUM(amt).

Here is a way to update only the nonambiguous rows in a 
table from another table.

WITH NP(gtin, price, new_price, cardinality_cnt)
AS
(SELECT X.*
 FROM (SELECT P.gtin, P.price, N.price,

COUNT(*)OVER(PARTITION BY P.gtin)
FROM PriceList AS P,

NewPriceList AS N
WHERE P.gtin = N.gtin)

AS X (gtin, price, new_price, cardinality_cnt)
 WHERE X.cardinality_cnt = 1),

UPDATE PriceList
 SET price

= (SELECT NP.new_price
FROM NP

WHERE PriceList.gtin = NP.gtin)
WHERE EXISTS

(SELECT *
FROM NP
WHERE PriceList.gtin = NP.gtin);

The second common programming error that is made with 
this kind of UPDATE is to use an aggregate function that does not 
return zero when it is applied to an empty table, such as the 
AVG(). Suppose we wanted to post the average payment amount 
made by the Customers; we could not just replace SUM() with 
AVG() and acct_amt with average balance in the previous UPDATE. 
Instead, we would have to add a WHERE clause to the UPDATE that 
gives us only those customers who made a payment, thus:

UPDATE Customers
 SET payment = (SELECT AVG(P1.amt)

FROM Payments AS P1
WHERE Customers.cust_nbr = P1.cust_nbr)

WHERE EXISTS (SELECT *
FROM Payments AS P1

WHERE Customers.cust_nbr = P1.cust_nbr);

You can use the WHERE clause to avoid NULLs in cases where a 
NULL would propagate in a calculation.

Another solution is to use a COALESCE() function to take care 
of the empty subquery result problem. The general form of this 
statement is:
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UPDATE T1
 SET c1 = COALESCE ((SELECT c1

FROM T2
WHERE T1.keycol = T2.keycol), T1.c1),

c2 = COALESCE ((SELECT c2
FROM T2
WHERE T1.keycol = T2.keycol), T1.c2),

..
WHERE .. ;

This will also leave the unmatched rows alone, but it will do 
a table scan on T1. Jeremy Rickard improved this by putting the 
COALESCE() inside the subquery SELECT list. This assumes that you 
have row constructors in your SQL product. For example:

UPDATE T2
 SET (c1, c2, ..)

= (SELECT COALESCE (T1.c1, T2.c1),
COALESCE (T1.c2, T2.c2),
..

FROM T1
WHERE T1.keycol = T2.keycol)

 WHERE .. ;

15.3.5 Using the CASE Expression in UPDATEs
The CASE expression is very handy for updating a table. The first 
trick is to realize that you can write SET a = a to do nothing. The 
statement given earlier can be rewritten as:

UPDATE Customers
 SET payment

= CASE WHEN EXISTS
(SELECT *
 FROM Payments AS P1
 WHERE Customers.cust_nbr = P1.cust_nbr)

THEN (SELECT AVG(P1.amt)
 FROM Payments AS P1
 WHERE Customers.cust_nbr = P1.cust_nbr)

ELSE payment END; -- do nothing

This statement will scan the entire table since there is no WHERE 
clause. That might be a bad thing in this example—I would guess 
that only a small number of customers make a payment on any 
given day. But very often you were going to do table scans any-
way and this version can be faster.

But the real advantage of the CASE expression is the ability 
to combine several UPDATE statements into one statement. The 
execution time will be greatly improved and will save you a lot 
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of procedural code or really ugly SQL. Consider this example. We 
have an inventory of books and we want to (1) reduce the books 
priced $25.00 and over by 10% and (2) increase the price of the 
books under $25.00 by 15% to make up the difference. The imme-
diate thought is to write:

BEGIN ATOMIC -- wrong!
UPDATE Books
 SET price = price * 0.90
 WHERE price > = 25.00;
UPDATE Books
 SET price = price * 1.15
 WHERE price < 25.00;
END;

But this does not work. Consider a book priced at $25.00; it 
goes through the first UPDATE and it is repriced at $22.50; it then 
goes through the second UPDATE and is repriced at $25.88, which 
is not what we wanted. Flipping the two statements will pro-
duce the desired results for this book, but given a book priced at 
$24.95, we will get $28.69 and then $25.82 as a final price.

UPDATE Books
 SET price = CASE WHEN price < 25.00

THEN price = price * 1.15
ELSE price = price * 0.90 END;

This is not only faster, but it is correct. However, you have to 
be careful and be sure that you did not really want a series of 
functions applied to the same columns in a particular order. If 
that is the case, then you need to try to make each  assignment 
expression within the SET clause stand by itself as a  complete 
function instead of one step in a process. Consider this example:

BEGIN ATOMIC
UPDATE Foobar
 SET a = x
WHERE r = 1;
UPDATE Foobar
 SET b = y
WHERE s = 2;
UPDATE Foobar
 SET c = z
WHERE t = 3;
UPDATE Foobar
 SET c = z + 1
WHERE t = 4;
END;
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This can be replaced by:

UPDATE Foobar
 SET a = CASE WHEN r = 1 THEN x ELSE a END,

b = CASE WHEN s = 2 THEN y ELSE b END,
c = CASE WHEN t = 3 THEN z

        WHEN t = 4 THEN z + 1
     ELSE c END

WHERE r = 1
  OR s = 2
  OR t IN (3, 4);

The WHERE clause is optional, but might improve performance 
if the index is right and the candidate set is small. Notice that 
this approach is driven by the destination of the UPDATE—the 
columns appear only once in the SET clause. The traditional 
approach is driven by the source of the changes—you first make 
updates from one data source, then the next, and so forth. Think 
about how you would do this with a set of magnetic tapes applied 
against a master file.

15.4  A Note on Flaws in a Common  
Vendor Extension

Although I do not like to spend much time discussing nonstan-
dard SQL-like languages, the T-SQL language from Sybase and 
Microsoft has a horrible flaw in it that users need to be warned 
about. Several of the “power users” have wanted to deprecate it 
and teach people to use the MERGE statement.

They have a proprietary syntax that allows a FROM clause in the 
UPDATE statement. If the base table being updated is represented 
more than once in the FROM clause, then its rows can be operated 
on multiple times, in a total violation of relational principles. The 
correct answer is that when you try to put more than one value 
into a column, you get a cardinality violation and the UPDATE fails. 
Here is a quick example:

CREATE TABLE T1 (x INTEGER NOT NULL);
INSERT INTO T1 VALUES (1), (2), (3), (4);

CREATE TABLE T2 (x INTEGER NOT NULL);
INSERT INTO T2 VALUES (1), (1), (1), (1);

Now try to update T1 by doubling all the rows that have a 
match in T2. The FROM clause in the original Sybase version gave 
you a CROSS JOIN.
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UPDATE T1
 SET T1.x = 2 * T1.x
 FROM T2
 WHERE T1.x = T2.x;

T1
x

====
16
2
3
4

This is a very simple example, as you can see, but you get the 
idea. Some of this problem has been fixed in the current version 
of Sybase, but the syntax is still not standard or portable.

The Microsoft version solved the cardinality problem by sim-
ply grabbing one of the values based on the current physical 
arrangement of the rows in the table. This is a simple example 
from Adam Machanic:

CREATE TABLE Foo
(col_a CHAR(1) NOT NULL,
col_b INTEGER NOT NULL);

INSERT INTO Foo VALUES ('A', 0), ('B', 0), ('C', 0);

CREATE TABLE Bar
(col_a CHAR(1) NOT NULL,
col_b INTEGER NOT NULL);

INSERT INTO Bar
VALUES ('A', 1), ('A', 2), ('B', 1), ('C', 1);

You run this proprietary UPDATE with a FROM clause:

UPDATE Foo
 SET Foo.col_b = Bar.col_b
 FROM Foo INNER JOIN Bar
ON Foo.col_a = Bar.col_a;

The result of the UPDATE cannot be determined. The value of 
the column will depend upon either order of insertion, (if there 
are no clustered indexes present), or on order of clustering (but 
only if the cluster is not fragmented).

A trick due to Alex Kuznetsov is to use a COUNT() to be sure 
there is no cardinality violation.

UPDATE Foo
  SET Foo.col_b = Bar.col_b
  FROM Foo, Bar
WHERE Foo.col_a = Bar.col_a
  AND (SELECT COUNT(*)
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 FROM Bar
 WHERE Foo.col_a = Bar.col_a) = 1;

15.5 MERGE Statement
SQL-99 added a single statement to mimic a common magnetic 
tape file system “merge and insert” procedure, but in a relational 
way. This is also called an “upsert” in the literature. The simplest 
business logic, in a pseudo-code, is like this:

FOR EACH row IN the Transactions table
DO IF working row NOT IN Master table
 THEN INSERT working row INTO the Master table;
 ELSE UPDATE Master table

SET Master table columns to the Transactions table values
WHERE they meet a matching criteria;

 END IF;
END FOR;

In the 1950s, we would sort the transaction tape(s) and Master 
tape on the same key, read each one looking for a match, then 
perform whatever logic is needed. In its simplest form, the MERGE 
statement looks like this:

MERGE INTO <table name> [AS [<correlation name>]]
USING <table reference> ON <search condition>
{WHEN [NOT] MATCHED [AND <search condition>]
THEN <modification operation>} ..
[ELSE IGNORE];

You will notice that use of a correlation name in the MERGE 
INTO clause is in complete violation of the principle that a cor-
relation name effectively creates a temporary table. There are 
several other places where SQL:2003 destroyed the original SQL 
language model, but you do not have to write irregular syntax in 
all cases.

After a row is MATCHED (or not) to the target table, you can add 
more <search condition>s in the WHEN clauses in the Standards. 
Some of the lesser SQLs do not allow extra <search condition>s, 
so be careful. You can often work around this limitation with logic 
in the ON, WHERE clauses, and CASE expressions.

The <modification operation> clause can include insertion, 
update, or delete operations that follow the same rules as those 
single statements. This can hide complex programming logic in 
a single statement. But the NOT MATCHED indicates the operation to 
be performed on the rows where the ON search condition is FALSE 
or UNKNOWN. Only INSERT or a signal-statement to raise an excep-
tion can be specified after THEN.
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Let’s assume that that we have a table of Personnel salary 
changes at the branch office in a table called PersonnelChanges. 
Here is a MERGE statement, which will take the contents of the 
PersonnelChanges table and merge them with the Personnel 
table. Both of them use the emp_nbr as the key. Here is a typical, 
but very simple use of MERGE INTO.

MERGE INTO Personnel
USING (SELECT emp_nbr, salary, bonus, comm

FROM PersonnelChanges) AS C
 ON Personnel.emp_nbr = C.emp_nbr
WHEN MATCHED
THEN UPDATE

SET (Personnel.salary, Personnel.bonus, Personnel.comm)
= (C.salary, C.bonus, C.comm)

WHEN NOT MATCHED
THEN INSERT

(Personnel.emp_nbr, Personnel.salary, Personnel.bonus, 
Personnel.comm)

VALUES (C.emp_nbr, C.salary, C.bonus, C.comm);

If you think about it for a minute, if there is a match, then all 
you can do is UPDATE the row. If there is no match, then all you can 
do is INSERT the new row.

Consider a fancier version of the second clause, and an 
employee type that determines the compensation pattern:

WHEN MATCHED AND c.emp_type = 'sales'
THEN UPDATE

SET (Personnel.salary, Personnel.bonus, Personnel.comm)
= (C.salary, C.bonus, C.comm)

WHEN MATCHED AND c.emp_type = 'executive'
THEN UPDATE

SET (Personnel.salary, Personnel.bonus, Personnel.comm)
= (C.salary, C.bonus, 0.00)

WHEN MATCHED AND c.emp_type = 'office'
THEN UPDATE

SET (Personnel.salary, Personnel.bonus, Personnel.comm)
= (C.salary, 0.00, 0.00)

There are proprietary versions of this statement in particu-
lar; look for the term “upsert” in the literature. These statements 
are most often used for adding data to a data warehouse in their 
product.

Your first thought might be that MERGE is a shorthand for this 
code skeleton:

BEGIN ATOMIC
UPDATE T1
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 SET (a, b, c, ..
= (SELECT a, b, c, ..

FROM T2
WHERE T1.somekey = T2.somekey),

WHERE EXISTS
(SELECT *
FROM T2
WHERE T1.somekey = T2.somekey);

INSERT INTO T1
SELECT *
FROM T2
WHERE NOT EXISTS
(SELECT *
FROM T2
WHERE T1.somekey = T2.somekey);

END;

But there are some subtle differences. The MERGE is a single 
statement so it can be optimized as a whole. The two separate 
UPDATE and INSERT statements can be optimized as a single state-
ment, and will probably be executed in the order written.

The WHEN [NOT] MATCHED clauses with additional search con-
ditions can be executed in parallel or rearranged based on new 
statistics.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>





323

16
COMPARISON OR THETA 
OPERATORS

Dr. Codd introduced the term “theta operators” in his early papers, 
for what a programmer would have called a comparison predi-
cate operator. The large number of data types in SQL makes 
doing comparisons a little harder than in other programming lan-
guages. Values of one data type have to be promoted to values of 
the other data type before the comparison can be done. SQL is a 
strongly typed language, which means a lot of type castings are 
not possible—you cannot turn Christmas into a number and find 
its square root.

The comparison operators are overloaded and will work for 
<numeric>, <character>, and <datetime> data types. The symbols 
and meanings for comparison operators are shown in Table 16.1.

You will also see !5 or ¬5 for “not equal to” in some older 
SQL implementations. These symbols are borrowed from the 
C and PL/I programming languages, respectively, and have never 
been part of Standard SQL. It is a bad habit to use them since it 
destroys portability of your code and makes it harder to read.

The comparison operators will return a logical value of TRUE, 
FALSE or UNKNOWN. The values TRUE and FALSE follow the usual rules 
and UNKNOWN is always returned when one or both of the operands 
is a NULL. Please pay attention to the new IS [NOT] DISTINCT FROM 
operator and look at functions that work with NULLs.

16.1 Converting Data Types
Numeric data types are all mutually comparable and mutually 
assignable. If an assignment would result in a loss of the most 
significant digits, an exception condition is raised. If least signifi-
cant digits are lost, the implementation defines what rounding 
or truncating occurs and does not report an exception condi-
tion. Most often, one value is converted to the same data type as 
the other and then the comparison is done in the usual way. The 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00016-8
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 chosen data type is the “higher” of the two, using the following 
ordering: SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC, REAL, 
FLOAT, DOUBLEPRECISION.

Floating-point hardware will often affect comparisons for 
REAL, FLOAT, and DOUBLEPRECISION numbers. There is no good way 
to avoid this, since it is not always reasonable to use DECIMAL or 
NUMERIC in their place. A host language will probably use the same 
floating-point hardware, so at least any errors will be consistent 
across the application.

CHARACTER and CHARACTER VARYING data types are comparable 
if and only if they are taken from the same character repertoire. 
That means that ASCII characters cannot be compared to graph-
ics characters, English cannot be compared to Arabic, and so 
on. In most implementations this is not a problem, because the 
 database has only one repertoire.

The comparison takes the shorter of the two strings and pads 
it with spaces. The strings are compared position by position 
from left to right, using the collating sequence for the  repertoire—
ASCII or EBCDIC in most cases.

Temporal (or <datetime>, as they are called in the standard) 
data types are mutually assignable only if the source and target 
of the assignment have the same <datetime> fields. That is, you 
cannot compare a date and a time. The CAST() operator can do 
explicit type conversions before you do a comparison.

Table 16.2 contains valid combinations of source (rows in the 
table) and target (columns) data types in Standard SQL. Y (“yes”) 
means that the combination is syntactically valid without restric-
tion; M (“maybe”) indicates that the combination is valid subject 

Table 16.1 Symbols and Meanings for 
Comparison Operators

OPERATOR NUMERIC CHARACTER DATETIME

< less than collates before earlier than
= equal to collates equal to same time as
> greater than collates after later than
<= at most collates before or equal no earlier than
<> not equal not the same as not the same time as
>= at least collates after or equal no later than
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to other syntax rules; and N (“no”) indicates that the combination 
is not valid.

16.1.1 Date Display Formats
SQL is silent about formatting data for display, as it should be. 
Dates have many different national formats and you will find 
many vendor extensions that allow the user to format temporal 
data into strings and to input dates in various display formats. 
Only a subset of the ISO 8601 formats are used in Standard SQL 
for temporal data. SQL has only the yyyy-mm-dd for dates, and 
24-hour or “military” time.

16.1.2 Other Display Formats
Character and exact numeric data types are usually displayed as 
you would expect. Approximate numeric data might be shown 
in decimal or exponential formats. This is implementation-
defined. However, the Standard defines an approximate numeric 
literal as:

<approximate numeric literal>::= <mantissa> E <exponent>
<mantissa>::= <exact numeric literal>
<exponent>::= <signed integer>

Table 16.2 Valid Combinations of Source and 
Target Data Types in Standard SQL

 EN AN VC FC VB FB D T TS YM DT

EN Y Y Y Y N N N N N N M
AN Y Y Y Y N N N N N N N
C Y Y M M Y Y Y Y Y Y Y
B N N Y Y Y Y N N N N N
D N N Y Y N N Y N Y N N
T N N Y Y N N N Y Y N N
TS N N Y Y N N Y Y Y N N
YM M N Y Y N N N N N Y N
DT M N Y Y N N N N N N Y

EN = Exact Numeric; AN = Approximate Numeric; C = Character (Fixed- or Variable-length); FC = Fixed-length Character; 
VC = Variable-length Character; B = Bit String (Fixed- or Variable-length); FB = Fixed-length Bit String; VB = Variable-length Bit String;  
D = Date; T = Time; TS = Timestamp; YM = Year–Month Interval; DT = Day–Time Interval
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But some host languages do not require a <mantissa> and 
some allow a lowercase ‘e’ for the separator. SQL requires a 
 leading zero where other languages might not.

16.2 Row Comparisons in SQL
Standard SQL generalized the theta operators so they would 
work on row expressions and not just on scalars. This is not a 
popular  feature yet, but it is very handy for situations where 
a key is made from more than one column, and so forth. This 
makes SQL more orthogonal and it has an intuitive feel to it. Take 
three row constants:

A = (10, 20, 30, 40);

B = (10, NULL, 30, 40);

C = (10, NULL, 30, 100);

It seems reasonable to define a row comparison as valid 
only when the data types of each corresponding column in the 
rows are union-compatible. If not, the operation is an error and 
should report a warning. It also seems reasonable to define the 
results of the comparison to the AND-ed results of each cor-
responding  column using the same operator. That is, (A 5 B) 
becomes:

((10, 20, 30, 40) = (10, NULL, 30, 40));

which becomes:

((10 = 10) AND (20 = NULL) AND (30 = 30) AND (40 = 40))

which becomes:

(TRUE AND UNKNOWN AND TRUE AND TRUE);

which becomes:

(UNKNOWN);

This seems to be reasonable and conforms to the idea that a 
NULL is a missing value that we expect to resolve at a future date, 
so we cannot draw a conclusion about this comparison just yet. 
Now consider the comparison (A 5 C), which becomes:

((10, 20, 30, 40) = (10, NULL, 30, 100));

which becomes:

((10 = 10) AND (20 = NULL) AND (30 = 30) AND (40 = 100));
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which becomes:

(TRUE AND UNKNOWN AND TRUE AND FALSE);

which becomes:

(FALSE);

There is no way to pick a value for column 2 of row C such that 
the UNKNOWN result will change to TRUE because the fourth column 
is always FALSE. This leaves you with a situation that is not very 
intuitive. The first case can resolve to TRUE or FALSE, but the second 
case can only go to FALSE.

Standard SQL decided that the theta operators would work as 
shown in the following rules. The expression RX <comp op> RY is 
shorthand for a row RX compared to a row RY; likewise, RXi means 
the i-th column in the row RX. The results are still TRUE, FALSE, or 
UNKNOWN, if there is no error in type matching. The rules favor solid 
tests for TRUE or FALSE, using UNKNOWN as a last resort.

The idea of these rules is that as you read the rows from left to 
right, the values in one row are always greater than or less than 
those in the other row after some column. This is how it would 
work if you were alphabetizing words.

The rules are:
 1. RX = RY is TRUE if and only if RXi = RYi for all i.
 2. RX <> RY is TRUE if and only if RXi <> RYi for some i.
 3. RX < RY is TRUE if and only if RXi = RYi for all i < n and RXn < RYn 

for some n.
 4. RX > RY is TRUE if and only if RXi = RYi for all i < n and RXn > RYn 

for some n.
 5. RX <= RY is TRUE if and only if Rx = Ry or Rx < Ry.
 6. RX >= RY is TRUE if and only if Rx = Ry or Rx > Ry.
 7. RX = RY is FALSE if and only if RX <> RY is TRUE.
 8. RX <> RY is FALSE if and only if RX = RY is TRUE.
 9. RX < RY is FALSE if and only if RX >= RY is TRUE.
10. RX > RY is FALSE if and only if RX <= RY is TRUE.
11. RX <= RY is FALSE if and only if RX > RY is TRUE.
12. RX >= RY is FALSE if and only if RX < RY is TRUE.
13. RX <comp op> RY is UNKNOWN if and only if RX <comp op> RY is  neither 

TRUE nor FALSE.
The negations are defined so that the NOT operator will still 

have its usual properties. Notice that a NULL in a row will give an 
UNKNOWN result in a comparison. Consider this expression:

(a, b, c) < (x, y, z)

which becomes

((a < x)
OR ((a = x) AND (b < y))
OR ((a = x) AND (b = y) AND (c < z)))
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The standard allows a single-row expression of any sort, 
including a single-row subquery, on either side of a comparison. 
Likewise, the BETWEEN predicate can use row expressions in any 
position in Standard SQL.

16.3  IS [NOT] DISTINCT FROM Operator
The SQL 2003 Standards added a verbose but useful theta opera-
tor. SQL has two kinds of comparisons, or equivalence classes: 
equality and grouping.

Equality treats NULLs as incomparable and gets us into the 
three-valued logic that returns {TRUE, FALSE, UNKNOWN}.

Grouping treats NULLs as equal values and gets us into the 
usual two-valued logic that returns {TRUE, FALSE}. This is why a 
GROUP BY puts all the NULLs in one group and you get that behavior 
in other places.

The theta operators we have discussed so far are based on 
the equality model, so if you wanted a comparison that grouped 
NULLs you had to write elaborate CASE expressions. Now you can 
do it in one infix operator for either rows or scalars.

  <expression 1> IS NOT DISTINCT FROM <expression 2>

is logically equivalent to

  (<expression 1> IS NOT NULL
   AND <expression 2> IS NOT NULL
   AND <expression 1> = <expression 2>)
  OR (<expression 1> IS NULL AND <expression 2> IS NULL)

The following usual pattern for adding NOT into SQL constructs,

  <expression 1> IS DISTINCT FROM <expression 2>

is a shorthand for

  NOT (<expression 1> IS NOT DISTINCT FROM <expression 2>)

This double negative was because the IS NOT DISTINCT FROM was 
defined first.

You will see an attempt to get this functionality with search 
conditions like:

COALESCE (x, <absurd value>) = COALESCE (y, <absurd value>)

The idea is that when x and y are both NULL, the absurd values 
will test equal and return TRUE. Some optimizers look for this con-
struct and generate better code. However, it is always safer to use 
the proper constructs in the language.
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17
VALUED PREDICATES

Valued predicates is my term for a set of related unary Boolean 
predicates that return TRUE or FALSE based on a property of their 
argument.

17.1 IS NULL
<null predicate> ::= <row value constructor> IS [NOT] NULL

It is the only way to test to see if an expression is NULL or 
not, and it has been in SQL-86 and all later versions of the stan-
dard. The SQL-92 Standard extended it to accept <row value 
 constructor> instead of a single column or scalar expression.

This extended version will start showing up in implemen-
tations when other row expressions are allowed. If all the 
values in the row R are the NULL value, then R IS NULL is TRUE; 
 otherwise, it is FALSE. If none of the values in R are NULL value, 
R IS NOT NULL is TRUE; otherwise, it is FALSE. The case where 
the row is a mix of NULL and non-NULL values is defined by 
Table 17.1, where Degree means the number of columns in the 
row expression.

Note that R IS NOT NULL has the same result as NOT R IS NULL 
if and only if R is of degree one. This is a break in the usual pat-
tern of predicates with a NOT option in them. Here are some 
examples:

(1, 2, 3) IS NULL = FALSE
(1, NULL, 3) IS NULL = FALSE
(1, NULL, 3) IS NOT NULL = FALSE
(NULL, NULL, NULL) IS NULL = TRUE
(NULL, NULL, NULL) IS NOT NULL = FALSE
NOT (1, 2, 3) IS NULL = TRUE
NOT (1, NULL, 3) IS NULL = TRUE
NOT (1, NULL, 3) IS NOT NULL = TRUE
NOT (NULL, NULL, NULL) IS NULL = FALSE
NOT (NULL, NULL, NULL) IS NOT NULL = TRUE

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00017-X
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00017-X
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17.1.1 Sources of NULLs
It is important to remember where NULLs can occur. They are 
more than just a possible value in a column. Aggregate functions 
on empty sets, OUTER JOINs, arithmetic expressions with NULLs, 
and so forth all return NULLs. These constructs often show up as 
columns in VIEWs.

17.2  IS [NOT]{TRUE | FALSE | 
UNKNOWN} Predicate

This predicate tests a condition that has the truth-value TRUE, 
FALSE, or UNKNOWN, and returns TRUE or FALSE. The syntax is:

<Boolean test> ::=
<Boolean primary> [IS [NOT] <truth value>]

<truth value> ::= TRUE | FALSE | UNKNOWN

<Boolean primary> ::=
<predicate> | <left paren> <search condition> <right paren>

As you would expect, the expression IS NOT <logical value> is 
the same as NOT (x IS <logical value>), so the predicate can be 
defined by Table 17.2.

If you are familiar with some of Chris Date’s writings, his 
MAYBE(x) predicate is not the same as the ANSI (x) IS NOT FALSE 
predicate, but it is equivalent to the (x) IS UNKNOWN predicate. 

Degree 
of R

R IS 
NULL

R IS NOT 
NULL

NOT (R IS 
NULL)

NOT (R IS NOT
NULL)

Degree = 1
NULL
Not NULL

 
TRUE
FALSE

 
FALSE
TRUE

 
FALSE
TRUE

 
TRUE
FALSE

Degree > 1
All NULLs
Some NULLs
No NULLs

 
TRUE
FALSE
FALSE

 
FALSE
FALSE
TRUE

 
FALSE
TRUE
TRUE

 
TRUE
TRUE
FALSE

Table 17.1 Cases Where a Row Is a Mix of NULL and 
Non-NULL Values 
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Date’s predicate excludes the case where all conditions in the 
predicate are TRUE.

Date points out that it is difficult to ask a conditional ques-
tion in English. To borrow one of Chris Date’s examples (Date 
1990), consider the problem of finding employees who might 
be programmers born before January 18, 1975 with a salary less 
than $50,000. The statement of the problem is a bit unclear as 
to what the “might be” covers—just being a programmer, or all 
three conditions. Let’s assume that we want some doubt on any 
of the three conditions. With this predicate, the answer is fairly 
easy to write:

SELECT *
 FROM Personnel
WHERE (job_title = 'Programmer'

AND birth_date < DATE '1975-01-18')
AND (salary_amt < 50000.00) IS UNKNOWN;

could be expanded in the old SQLs as:

SELECT *
 FROM Personnel
WHERE (job_title = 'Programmer'

AND birth_date < CAST (1975-01-18' AS DATE)
AND salary_amt < 50000.00.00)

OR (job_title IS NULL
AND birth_date < CAST (1975-01-18' AS DATE)
AND salary_amt < 50000.00.00)

OR (job_title = 'Programmer'
AND birth_date IS NULL
AND salary_amt < 50000.00.00)

OR (job_title = 'Programmer'
AND birth_date < CAST (1975-01-18’ AS DATE)
AND salary_amt IS NULL)

IS <logical 
value> TRUE FALSE UNKNOWN 

TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
UNKNOWN FALSE FALSE TRUE

Table 17.2 Defining the Predicate,  
TRUE, FALSE, or UNKNOWN
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OR (job_title IS NULL
AND birth_date IS NULL
AND salary_amt < 50000.00.00)

OR (job_title IS NULL
AND birth_date < CAST (1975-01-18' AS DATE)
AND salary_amt IS NULL)

OR (job_title = 'Programmer'
AND birth_date IS NULL
AND salary_amt IS NULL)

OR (job_title IS NULL
AND birth_date IS NULL
AND salary_amt IS NULL);

The problem is that every possible combination of NULLs 
and non-NULLs has to be tested. Since there are three predicates 
involved, this gives us (3^2) 5 8 combinations to check out. 
The IS NOT UNKNOWN predicate does not have to bother with the 
 combinations, only the final logical value.

17.3 IS [NOT] NORMALIZED Predicate
<string> IS [NOT] NORMALIZED determines if a Unicode string is 
one of the four normal forms (D, C, KD, and KC). The use of the 
words “normal form” here are not the same as in a relational 
context. In the Unicode model, a single character can be built 
from several other characters. Accent marks can be put on basic 
Latin letters. Certain combinations of letters can be displayed 
as ligatures (‘ae’ becomes ‘æ’). Some languages, such as Hangul 
(Korean) and Vietnamese, build glyphs from concatenating sym-
bols in two dimensions. Some languages have special forms 
of one letter that are determined by context, such as the termi-
nal lowercase sigma in Greek or accented ‘u’ in Czech. In short, 
 writing is more complex than putting one letter after another.

The Unicode standard defines the order of such constructions 
in their normal forms. You can still produce the same results with 
different orderings and sometimes with different combinations 
of symbols. But it is very handy when you are searching such text 
to know that it is normalized rather than trying to parse each 
glyph on the fly. You can find details about normalization and 
links to free software at www.unicode.org.

http://www.unicode.org
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18
CASE EXPRESSIONS

The CASE expression is probably the most useful addition in 
 SQL-92. This is a quick overview of how to use the expression, but 
you will find other tricks spread throughout the book.
•	 The	 reason	 it	 is	 so	 important	 is	 that	 it	 works	 with	 any	 data	

type.
•	 It	allows	the	programmer	to	avoid	procedural	code	by	replac-

ing IF-THEN-ELSE control flow with CASE expression inside the 
query. This helps the optimizer.

•	 It	makes	SQL	statements	equivalent	to	primitive		recursive	func-
tions. Only a math major cares about this, but it is important.
You can look up what that means in a book on the theory of 

computation, but it is a nice mathematical property that guaran-
tees certain kinds of problems can be solved.

18.1 The CASE Expression
It	 allows	 the	 programmer	 to	 pick	 a	 value	 based	 on	 a	 logical	
expression	 in	 his	 code.	 ANSI	 stole	 the	 idea	 and	 the	 syntax	 from	
the now-defunct ADA programming language (ADA was born 
in 1987 with a US Department of Defense mandate and died in 
1997 when the mandate was removed. Technically, there is a 2005 
Standard). Here is the syntax for a <case specification>:

<case specification> ::= <simple case> | <searched case>

<simple case> ::=
CASE <case operand>
<simple when clause>. . .
[<else clause>]
END

<searched case> ::=
CASE
<searched when clause>. . .
[<else clause>]
END

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00018-1
Copyright	©	2011	by	Elsevier	Inc.	All	rights	reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00018-1
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<simple when clause> ::= WHEN <when operand> THEN <result>

<searched when clause> ::= WHEN <search condition> THEN 
<result>

<else clause> ::= ELSE <result>

<case operand> ::= <value expression>

<when operand> ::= <value expression>

<result> ::= <result expression> | NULL

<result expression> ::= <value expression>

The searched CASE expression is probably the most used 
version of the expression. First the expression is given a data 
type by seeing what the highest data type in its THEN clauses is. 
The WHEN … THEN … clauses are executed in left-to-right order. The 
first WHEN clause that tests TRUE returns the value given in its THEN 
clause.

And, yes, you can nest CASE	 expressions	 inside	 each	 other.	 If	
no explicit ELSE clause is given for the CASE expression, then the 
database will insert an implicit ELSE NULL clause before the END 
keyword.	 If	 you	 wish	 to	 return	 a	NULL from a THEN, however, you 
should use a CAST (NULL AS <data type>) expression to establish 
the data type for the compiler.

—this works

CASE WHEN 1 = 1
THEN NULL
ELSE CAST(NULL AS INTEGER) END

—this works

CASE WHEN 1 = 1
THEN CAST(NULL AS INTEGER)
ELSE NULL END

—this does not work; no <result> to establish a data type

CASE WHEN 1 = 1
THEN NULL
ELSE NULL END

—might or might not work in your SQL

CAST (CASE WHEN 1 = 1
THEN NULL
ELSE NULL END AS INTEGER)

I	 recommend	 always	 writing	 an	 explicit	 ELSE clause, so that 
you	can	change	it	 later	when	you	find	a	value	to	return.	I	would	
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also recommend that you explicitly cast a NULL in the CASE 
 expression THEN clauses to the desired data type.

If	 the	 THEN clauses have results of different data types, the 
compiler will find the most general one and CAST() the  others 
to it. But again, actual implementations might have slightly 
 different ideas about how and when this casting should be done.

The <simple case expression> is defined as a searched CASE 
expression in which all the WHEN clauses are made into equality 
comparisons against the <case operand>. For example,

CASE iso_sex_code
WHEN 0 THEN 'Unknown'
WHEN 1 THEN 'Male'
WHEN 2 THEN 'Female'
WHEN 9 THEN 'N/A'
ELSE NULL END

could also be written as:

CASE
WHEN iso_sex_code = 0 THEN 'Unknown'
WHEN iso_sex_code = 1 THEN 'Male'
WHEN iso_sex_code = 2 THEN 'Female'
WHEN iso_sex_code = 9 THEN 'N/A'
ELSE NULL END

There is a gimmick in this definition, however. The expression,

CASE foo
WHEN 1 THEN 'bar'
WHEN NULL THEN 'no bar'
END

becomes

CASE WHEN foo = 1 THEN 'bar'
WHEN foo = NULL THEN 'no_bar' -- problem!
ELSE NULL END

The "WHEN foo = NULL" clause is always UNKNOWN. This defini-
tion can get really weird with a random number generator in 
the expression. Let’s assume that RANDOM() uses a seed value and 
returns a uniformly distributed random floating point number 
between 0.0000 and 0.99 .. 9 whenever it is called.

This expression will spend most of its time in the ELSE clause 
instead of returning a number word between one and five.

SET pick_one = CASE CAST((5.0 * RANDOM()) + 1 AS INTEGER)
      WHEN 1 THEN 'one'
      WHEN 2 THEN 'two'
      WHEN 3 THEN 'three'
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      WHEN 4 THEN 'four'
      WHEN 5 THEN 'five'
      ELSE 'This should not happen' END;

The expansion will reproduce the CAST() expression for each 
WHEN clause and the RANDOM() function will be reevaluated each 
time. You need to be sure that it is evaluated only once.

BEGIN
DECLARE pick_a_number INTEGER;
SET pick_a_number = CAST((5.0 * RANDOM()) + 1 AS INTEGER);
SET pick_one = CASE pick_a_number

WHEN 1 THEN 'one'
WHEN 2 THEN 'two'
WHEN 3 THEN 'three'
WHEN 4 THEN 'four'
WHEN 5 THEN 'five'
ELSE 'This should not happen' END;

END;

The variable pick_a_number is also expanded in the WHEN clause, 
but because it is not a function call, it is not evaluated over and over.

18.1.1 The COALESCE() and NULLIF() Functions
The SQL-92 Standard defines other functions in terms of the CASE 
expression, which makes the language a bit more compact and 
easier to implement. For example, the COALESCE() function can be 
defined for one or two expressions by

1. COALESCE (<value exp #1>) is equivalent to (<value exp #1>)
2. COALESCE (<value exp #1>, <value exp #2>) is equivalent to

CASE WHEN <value exp #1> IS NOT NULL
THEN <value exp #1>
ELSE <value exp #2> END

then we can recursively define it for (n) expressions, where 
(n .5 3), in the list by

COALESCE (<value exp #1>, <value exp #2>, .., n), 

as equivalent to:

CASE WHEN <value exp #1> IS NOT NULL
THEN <value exp #1>
ELSE COALESCE (<value exp #2>, .., n)

END

Likewise, NULLIF (<value exp #1>, <value exp #2>) is equivalent to:

  CASE WHEN <value exp #1> = <value exp #2>
    THEN NULL
    ELSE <value exp #1> END
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18.1.2 CASE Expressions with GROUP BY
A CASE expression is very useful with a GROUP BY query. For exam-
ple, to determine how many employees of each sex_code by 
department you have in your personnel table you can write:

SELECT dept_nbr,
 SUM(CASE WHEN sex_code = 1 THEN 1 ELSE 0) AS males,
 SUM(CASE WHEN sex_code = 2 THEN 1 ELSE 0) AS females

 FROM Personnel
GROUP BY dept_nbr;

or

SELECT dept_nbr,
 COUNT(CASE WHEN sex_code = 1 THEN 1 ELSE NULL) AS males,
 COUNT(CASE WHEN sex_code = 2' THEN 1 ELSE NULL) AS females

 FROM Personnel
GROUP BY dept_nbr;

I	am	not	sure	if	there	is	any	general	rule	as	to	which	form	will	
run faster. Aggregate functions remove NULLs before they perform 
their operations, so the order of execution might be different in 
the ELSE 0 and the ELSE NULL versions.

The previous example shows the CASE expression inside the 
aggregate function; it is possible to put aggregate functions inside 
a CASE expression. For example, assume you are given a table of 
employee’s skills:

CREATE TABLE PersonnelSkills
(emp_id CHAR(11) NOT NULL,
skill_code CHAR(11) NOT NULL,
primary_skill_flg CHAR(1) NOT NULL

CONSTRAINT primary_skill_given
CHECK (primary_skill_flg IN ('Y', 'N'),

PRIMARY KEY (emp_id, skill_code));

Each	employee	has	a	row	in	the	table	 for	each	of	his	skills.	 If	
the employee has multiple skills they will have multiple rows in 
the table and the primary skill indicator will be a ‘Y’ for the main 
skill.	If	the	employee	has	only	one	skill	(which	means	one	row	in	
the table), the value of primary_skill_flg is indeterminate. The 
problem is to list each employee once along with:
1. His or her only skill if he or she has only one row in the 

table; or
2. His or her primary skill if he or she has multiple rows in the 

table.

SELECT emp_id,
CASE WHEN COUNT(*) = 1
THEN MAX(skill_code)
ELSE MAX(CASE WHEN primary_skill_flg = 'Y'
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THEN skill_code END)
ELSE NULL END)

END AS main_skill
 FROM PersonnelSkills
GROUP BY emp_id;

This solution looks at first like a violation of the rule in SQL 
that prohibits nested aggregate functions, but if you look closely, 
it is not. The outermost CASE expression resolves to an aggregate 
function, namely MAX(). The ELSE clause simply has to return an 
expression inside its MAX() that can be resolved to a single value.

18.1.3  CASE, CHECK() Clauses and Logical 
Implication

Complicated logical predicates can be put into a CASE expression 
that returns either ‘T’(TRUE) or ‘F’(FALSE).

CONSTRAINT implication_example
CHECK (CASE WHEN dept_nbr = 'D1'

THEN CASE WHEN salary < 44000.00
THEN 'T' ELSE 'F' END

ELSE 'T' END = 'T')

This is a logical implication operator we mentioned briefly in 
the chapter on NULLs	and	3-Valued	Logic.	 It	 is	usually	written	as	
an arrow with two stems (1) and its definition is usually stated 
as “a true premise cannot imply a false conclusion” or as “if a 
then b” in English.

In	 English,	 this	 condition	 says	 “if	 an	 employee	 is	 in	 depart-
ment ‘D1’, then his salary is less than $44,000.00,” which is not 
the same as saying (dept_nbr = 'D1' AND salary < 44000.00) 
in	 the	 constraint.	 In	 standard	 Boolean	 logic,	 there	 is	 a	 simple	
transformation called the “Smisteru rule,” after the engineer who 
 discovered it, which says that (a 1 b) is equivalent to (¬a

.

 b).
But in SQL, the rule is that a CHECK() constraint succeeds 

when the answer is TRUE or UNKNOWN whereas an ON or WHERE clause 
fails when the answer is FALSE or UNKNOWN. This leads to all kinds 
of problems with implication in 3-Valued Logic with two sets of 
rules—one for DDL and one for DML!

Let’s try the Smisteru transform first:

CREATE TABLE Foobar_DDL_1
(a CHAR(1) CHECK (a IN ('T', 'F')),
b CHAR(1) CHECK (b IN ('T', 'F')),
CONSTRAINT implication_example
CHECK (NOT (A = 'T') OR (B = 'T')));
INSERT INTO Foobar_DDL_1
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VALUES ('T', 'T’),
('T', 'F'), -- fails
('T', NULL),
('F', 'T'),
('F', 'F'),
('F', NULL),
(NULL, 'T'),
(NULL, 'F'),
(NULL, NULL);

SELECT * FROM Foobar_DDL_1;

Results

a  b
===========
T  T
T  NULL
F  T
F  F
F  NULL
NULL T
NULL F
NULL NULL

Now my original version:

CREATE TABLE Foobar_DDL
(a CHAR(1) CHECK (a IN ('T', 'F')),
b CHAR(1) CHECK (b IN ('T', 'F')),
CONSTRAINT implication_example_2
CHECK(CASE WHEN A = 'T'

THEN CASE WHEN B = 'T'
THEN 1 ELSE 0 END

ELSE 1 END = 1));

INSERT INTO Foobar_DDL
VALUES ('T', 'T')

('T', 'F'), -- fails
('T', NULL),
('F', 'T'), ('F', 'F'), ('F', NULL),
(NULL, 'T'), (NULL, 'F'), (NULL, NULL);

SELECT * FROM Foobar_DDL;

Results

a  b
===========
T  T
F  T
F  F
F  NULL
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NULL T
NULL F
NULL NULL

Both agree that a TRUE premise cannot lead to a FALSE con-
clusion, but Smisteru allows ('T', NULL). Not quite the same 
 implication operators!

Let’s now look at the query side of the house:

CREATE TABLE Foobar_DML
(a CHAR(1) CHECK (a IN ('T', 'F')),
b CHAR(1) CHECK (b IN ('T', 'F')));

INSERT INTO Foobar_DML
VALUES ('T', 'T'),

('T', 'F'),
('T', NULL),
('F', 'T'),
('F', 'F'),
('F', NULL),
(NULL, 'T'),
(NULL, 'F'),
(NULL, NULL);

Using the Smisteru rule as the search condition:

SELECT * FROM Foobar_DML WHERE (NOT (A ='T') OR (B = 'T'));

Results

a  b
==========
T  T
F  T
F  F
F  NULL
NULL T

Using the original predicate:

SELECT * FROM Foobar_DML
WHERE CASE WHEN A = 'T'

THEN CASE WHEN B = 'T'
THEN 1 ELSE 0 END

ELSE 1 END = 1;

Results

a  b
==========
T  T
F  T
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F  F
F  NULL
NULL T
NULL F
NULL NULL

This	is	why	I	used	the	CASE expression; it works the same way 
in both the DDL and DML.

18.2 Subquery Expressions and Constants
Subquery expressions are SELECT statements inside of parenthe-
ses. Well, there is more to it than that.

The four flavors of subquery expressions are tabular, colum-
nar, row, and scalar subquery expressions. As you might guess 
from the names, the tabular or table subquery returns a table as a 
result, so it has to appear any place that a table is used in SQL-92, 
which usually means it is in the FROM clause.

The columnar subquery returns a table with a single column 
in it. This was the important one in the original SQL-86 and 
SQL-89 standards because the IN, <comp op> ALL, and <comp op> 
{ANY|SOME} predicates were based on the ability of the language to 
convert the single column into a list of comparisons connected 
by ANDs or ORs.

The	 row	 subquery	 returns	 a	 single	 row.	 It	 can	 be	 used	 any-
where a row can be used. This sort of query is the basis for the 
singleton SELECT	 statement	 used	 in	 the	 embedded	 SQL.	 It	 is	
not used too much right now, but with the extension of theta 
operators to handle row comparisons, it might become more 
popular.

The	 scalar	 subquery	 returns	 a	 single	 scalar	 value.	 It	 can	 be	
used anywhere a scalar value can be used, which usually means 
it is in the SELECT or WHERE	clauses.	If	a	scalar	subquery	returns	an	
empty result, it is converted to a NULL.	If	a	scalar	subquery	returns	
more than one row, you get a cardinality violation.

I	will	make	the	general	statement	now	that	the	performance	of	
scalar subqueries depends a lot on the architecture of the hard-
ware upon which your SQL is implemented. A massively parallel 
machine can allocate a processor to each scalar subquery and get 
drastic performance improvement.

A table constant of any shape can be constructed using the 
VALUES() expression. New SQL programmers think that this is only 
an option in the INSERT INTO statement. However, Standard SQL 
allows you to use it to build a row as a comma-separated list of 
scalar expressions, and then build a table as a comma-separated 
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list	 of	 those	 row	 constructors.	 Consider	 this	 look-up	 table	 of	 ZIP	
code ranges by state:

CREATE VIEW ZIP_Codes (state_code, low_zip, high_zip)
AS VALUES ('AK', 99500, 99998),
     . . .
     ('GA', 30000, 30399),
     . . .
     ('WY', 82000, 83100);

This table cannot be changed without dropping the VIEW and 
rebuilding	it.	It	has	no	named	base	table.

18.3 Rozenshtein Characteristic Functions
A characteristic function converts a logical expression into a one 
if it is TRUE and to a zero if it is FALSE. This is what we have been 
doing with some of the CASE expressions shown here, but not 
under that name. The literature uses a lowercase delta (d) or an 
uppercase Chi (x)	as	 the	symbol	 for	 this	operator.	Programmers	
first	 saw	 this	 in	 Ken	 Iverson’s	 APL	 programming	 language	 and	
then later in Donald Knuth’s books on programming theory.

The name comes from the fact that it is used to define a set by 
giving a rule for membership in the set.

David Rozenshtein found ways of implementing characteristic 
functions with algebraic expression on numeric columns in the 
Sybase T-SQL language (see Optimizing Transact SQL, SQL Forum 
Press,	 1995,	 ISBN	 10:	 0-9649812-0-3)	 before	 they	 had	 a	 CASE	
expression	in	their	product.	Without	going	into	the	details,	I	will	
borrow Dr. Rozenshtein’s notation and give the major formulas 
for putting converted numeric comparisons into a computed 
characteristic function:

(a = b) becomes (1 - ABS(SIGN(a - b)))
(a <> b) becomes (ABS(SIGN(a - b)))
(a < b) becomes (1 - SIGN(1 + SIGN(a - b)))
(a <= b) becomes (SIGN(1 - SIGN(a - b)))
(a > b) becomes (1 - SIGN(1 - SIGN(a - b)))
(a >= b) becomes (SIGN(1 + SIGN(a - b)))

The basic logical operators can also be put into computed 
characteristic	 functions.	 If	 we	 ignore	 NULLs and use standard 
Boolean logic, we can write these expressions,

NOT (a) becomes (1 – a)
(a AND b) becomes SIGN(a * b)
(a OR b) becomes SIGN(a + b)
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If	you	remember	George	Boole’s	original	notation	for	Boolean	
Algebra, this will look very familiar. But be aware that if a or b 
is a NULL, then the results will be a NULL and not a one or zero— 
something that Mr. Boole never thought about.

Character strings can be handled with the POSITION function, if 
you are careful:

(a = s) becomes POSITION (a IN s)
(a <> s) becomes SIGN (1 – POSITION (a IN s))

His book gives more tricks, but many of them depend on 
Sybase’s T-SQL functions and they are not portable. Another 
problem is that the code can become very hard to read and what 
is happening is not obvious to the next programmer to read 
the code.

Use the CASE expression instead, since the optimizers will do 
an	equal	or	better	job.	I	told	you	about	this	technique	so	you	can	
replace legacy code.
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19
LIKE AND SIMILAR TO 
PREDICATES

The LIKE predicate is a simple string pattern-matching test with 
the syntax:

<like predicate> ::=
 <match value> [NOT] LIKE <pattern>
  [ESCAPE <escape character>]

<match value> ::= <character value expression>
<pattern> ::= <character value expression>
<escape character> ::= <character value expression>

The expression M NOT LIKE P is equivalent to NOT (M LIKE P), 
which follows the usual syntax pattern in SQL. There are two 
wildcards allowed in the <pattern> string. They are the ‘%’ and 
‘_’ characters. The ‘_’ character represents a single arbitrary  
character; the ‘%’ character represents an arbitrary substring, pos-
sibly of length zero. Notice that there is no way to represent zero 
or one arbitrary character. This is not the case in many text-search 
languages, and can lead to problems or very complex predicates.

Any other character in the <pattern> represents that charac-
ter itself. This means that SQL patterns are case-sensitive, but 
many vendors allow you to set case sensitivity on or off at the 
database system level.

The <escape character> is used in the <pattern> to specify 
that the character that follows it is to be interpreted as a literal 
rather than a wildcard. This means that the escape character 
is followed by the escape character itself, an ‘_’, or a ‘%’. Old C 
programmers are used to this convention, where the language 
defines the escape character as ‘\’, so this is a good choice for 
SQL programmers too.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00019-3
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00019-3
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19.1 Tricks with Patterns
The ‘_’ character tests much faster than the ‘%’ character. The 
reason is obvious: the parser that compares a string to the pat-
tern needs only one operation to match an underscore before it 
can move to the next character, but has to do some look-ahead 
parsing to resolve a percentage sign. The wildcards can be 
inserted in the middle or beginning of a pattern. Thus, ‘B%K’ will 
match ‘BOOK’, ‘BLOCK’, and ‘BK’, but it will not match ‘BLOCKS’.

The parser would scan each letter and classify it as a wildcard 
match or an exact match. In the case of ‘BLOCKS’, the initial ‘B’ 
would be an exact match and the parser would continue; ‘L’, ‘O’, 
and ‘C’ have to be wildcard matches, since they don’t appear in 
the pattern string; ‘K’ cannot be classified until we read the last 
letter. The last letter is ‘S’, so the match fails.

For example, given a column declared to be seven characters 
long, and a LIKE predicate looking for names that start with ‘Mac’, 
you would usually write:

SELECT *
 FROM People
WHERE last_name LIKE 'Mac%';

but this might actually run faster:

SELECT *
 FROM People
WHERE last_name LIKE 'Mac_'
OR last_name LIKE 'Mac__'
OR last_name LIKE 'Mac___ '
OR last_name LIKE 'Mac____';

The trailing blanks are also characters that can be matched 
exactly.

Putting a ‘%’ at the front of a pattern is very time-consuming.  
The reason is simple; SQL products that use tree-structured 
indexes build them from left to right, so the index cannot be used 
by the optimizer and the table must be scanned. For example, 
you might try to find all names that end in ‘son’ with the query

SELECT *
 FROM People
WHERE last_name LIKE '%son';

The use of underscores instead will make a real difference in 
most SQL implementations for this query, because most of them 
always parse from left to right.
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SELECT *
 FROM People
WHERE last_name LIKE '_son'
OR last_name LIKE '__son '
OR last_name LIKE '___son '
OR last_name LIKE '____son';

Remember that the ‘_’ character requires a matching character 
and the ‘%’ character does not. Thus, the query

SELECT *
 FROM People
WHERE last_name LIKE 'John_%';

and the query

SELECT *
 FROM People
WHERE last_name LIKE 'John%';

are subtly different. Both will match to ‘Johnson’ and ‘Johns’, but 
the first will not accept ‘John’ as a match. This is how you get a 
“one-or-more-characters” pattern match in SQL.

Remember that the <pattern> as well as the <match value> 
can be constructed with concatenation operators, SUBSTRING(), 
and other string functions. For example, let’s find people whose 
first names are part of their last names with the query

SELECT *
 FROM People
WHERE last_name LIKE '%' || first_name || '%';

which will show us people like ‘John Johnson’, ‘Anders Andersen’, 
and ‘Bob McBoblin’. This query will also run very slowly. However, 
this is case sensitive and would not work for names such as ‘Jon 
Anjon’, so you might want to modify the statement to:

SELECT *
 FROM People
WHERE UPPER (last_name) LIKE '%' || UPPER(first_name) || '%';

19.2  Results with NULL Values and Empty 
Strings

As you would expect, a NULL in the predicate returns an UNKNOWN 
result. The NULL can be the escape character, pattern, or match 
value.
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If M and P are both character strings of length zero, M LIKE P 
defaults to TRUE. If one or both are longer than zero characters, 
you use the regular rules to test the predicate.

19.3 LIKE Is Not Equality
A very important point that is often missed is that two strings can 
be equal but not LIKE in SQL. The test of equality first pads the 
shorter of the two strings with rightmost blanks, then matches 
the characters in each, one for one. Thus ‘Smith’ and ‘Smith   ’ 
(with three trailing blanks) are equal. However, the LIKE predicate 
does no padding, so ‘Smith’ LIKE ‘Smith   ’ tests FALSE because 
there is nothing to match to the blanks.

A good trick to get around these problems is to use the TRIM() 
function to remove unwanted blanks from the strings within 
either or both of the two arguments.

19.4  Avoiding the LIKE Predicate with 
a Join

Beginners often want to write something similar to “<string> IN 
LIKE (<pattern list>)” rather than a string of OR-ed LIKE predi-
cates. That syntax is illegal, but you can get the same results with 
a table of patterns and a join.

CREATE TABLE Patterns
(template VARCHAR(10) NOT NULL PRIMARY KEY);

INSERT INTO Patterns
VALUES ('Celko%'),

('Chelko%'),
('Cilko%'),
('Selko%),
('Silko%');

SELECT A1.last_name
FROM Patterns AS P1, Authors AS A1

WHERE A1.last_name LIKE P1.template;

This idea can be generalized to find strings that differ from a 
pattern by one position and without actually using a LIKE predi-
cate. First, assume that we have a table of sequential numbers 
and these following tables with sample data.
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— the match patterns

CREATE TABLE MatchList (pattern CHAR(9) NOT NULL PRIMARY KEY);
INSERT INTO MatchList
VALUES ('_========'), ('=_======='), ('==_======'),
('===_====='), ('====_===='), ('=====_==='),
('======_=='), ('=======_='), ('========_');

— the strings to be matched or near-matched

CREATE TABLE Target (nbr CHAR(9) NOT NULL PRIMARY KEY);
INSERT INTO Target VALUES ('123456089'), ('543434344');

— the strings to be searched for those matches

CREATE TABLE Source (nbr CHAR(9) NOT NULL PRIMARY KEY);
INSERT INTO Source
VALUES ('123456089'), ('123056789'), ('123456780'),
  ('123456789'), ('023456789'), ('023456780');

We are using an equal sign in the match patterns as a signal to 
replace it with the appropriate character in the source string and 
see if they match, but to skip over the underscore.

SELECT DISTINCT TR1.nbr
 FROM Series AS SE1, Source AS SR1,

MatchList AS ML1, Target AS TR1
WHERE NOT EXISTS
(SELECT *

FROM Series AS SE1, Source AS SR2,
MatchList AS ML2, Target AS TR2

WHERE SUBSTRING (ML2.pattern FROM seq FOR 1) = '='
AND SUBSTRING (SR2.nbr FROM seq FOR 1)

<> SUBSTRING (TR2.nbr FROM seq FOR 1)
AND SR2.nbr = SR1.nbr
AND TR2.nbr = TR1.nbr
AND ML2.pattern = ML1.pattern
AND SE1.seq BETWEEN 1 AND (CHARLENGTH (TR2.nbr) -1));

This code is due to Jonathan Blitz. Today, you might want to 
consider a Regular expression, but this is still quite simple and 
will use the LIKE parser rather than a full-blown SIMILAR TO.

19.5 CASE Expressions and LIKE Search 
Conditions

The CASE expression in Standard SQL lets the programmer use the 
LIKE predicate in some interesting ways. The simplest example is 
counting the number of times a particular string appears inside 
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another string. Assume that text_col is CHAR(25) and we want the 
count of a particular string, ‘term’, within it.

SELECT text_col,
CASE
WHEN text_col LIKE '%term%term%term%term%term%term%'
THEN 6
WHEN text_col LIKE '%term%term%term%term%term%'
THEN 5
WHEN text_col LIKE '%term%term%term%term%'
THEN 4
WHEN text_col LIKE '%term%term%term%'
THEN 3
WHEN text_col LIKE '%term%term%'
THEN 2
WHEN text_col LIKE '%term%'
THEN 1
ELSE 0 END AS term_tally

 FROM Foobar
WHERE text_col LIKE '%term%';

This depends on the fact that a CASE expression executes 
the WHEN clauses in order of their appearance. We know that the 
most substring can appear is six times because of the length of 
text_col.

Another use of the CASE is to adjust the pattern within the LIKE 
predicate.

name LIKE CASE
WHEN language = 'English'
THEN 'Red%'
WHEN language = 'French'
THEN 'Rouge%'
ELSE 'R%' END

19.6 SIMILAR TO Predicates
As you can see, the LIKE predicate is pretty weak, especially if you 
have used a version of grep(), a utility program from the UNIX 
operating system. The name is short for “general regular expres-
sion parser” and before you ask, a regular expression is a class of 
formal languages. If you are a computer science major, you have 
seen them; otherwise, don’t worry about it. The bad news is that 
there are several versions of grep() in the UNIX community, such 
as egrep(), fgrep(), xgrep(), and a dozen or so others.
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| Alternation (either of two alternatives)
* Repetition of the previous item zero or more times
+ Repetition of the previous item one or more times
{<low value> [, <high value>]} Repeat the construct at least <low.value> times and no more 

than <high value> times
() May be used to group items into a single unit
[…] A bracket expression specifies a match to any of the characters 

inside the brackets

 

[:ALPHA:] Match any alphabetic character, regardless of case.
[:UPPER:] Match any uppercase alphabetic character
[:LOWER:] Match any lowercase alphabetic character
[:DIGIT:] Match any numeric digit
[:ALNUM:] Match any numeric digit or alphabetic character

The SQL-99 standard added a regular expression predicate 
of the form [<string expression> SIMILAR TO <pattern> ESCAPE 
<character>], which is based on the POSIX version of grep() 
found in ISO/IEC 9945.

The special symbols in a pattern are shown in Table 19.1.
Table 19.2 contains abbreviations for lists of commonly used 

character subsets, taken from POSIX.
Some examples are as follows.

1. The letters ‘foo’ or ‘bar’ followed by any string:

Foobar SIMILAR TO '(foo|bar)%' 

2. The ‘SER #’ followed by one or more digits:

serial_nbr SIMILAR TO ' SER #[:DIGIT:]+'
serial_nbr SIMILAR TO ' SER [:DIGIT:]+'

Table 19.1 Special Pattern Symbols

Table 19.2 Abbreviations of Commonly 
Used Character Subsets
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You should still read your product manual for details, but 
most grep() functions accept other special symbols for more 
general searching that the SIMILAR TO predicate. And they do not 
have rules about propagating NULLs. The basic tokens are given in 
Table 19.3.

Regular expressions have a lot of nice properties, especially for 
validating strings. You can find web sites with regular expressions 
for such things as URLs, VIN, and other standard encoding schemes.

19.7 Tricks with Strings
This is a list of miscellaneous tricks that you might not think 
about when using strings.

19.7.1 String Character Content
A weird way of providing an edit mask for a varying character col-
umn to see if it has only digits in it was proposed by Ken Sheridan 
on the ACCESS forum of CompuServe in October 1999. If the first 
character is not a zero, then you can check that the VARCHAR(n) 
string is all digits with:

CAST (LOG10 (CAST (test_column AS INTEGER) AS INTEGER) = n

If the first (n) characters are not all digits then it will not 
return (n). If they are all digits, but the (n+1) character is also a digit 
it will return (n+1), and so forth. If there are nondigit characters in 
the string, then the innermost CAST() function will fail to convert the 
test_column into a number. If you do have to worry about leading 
zeros or blanks then concatenate ‘1’ to the front of the string.

Another trick is to think in terms of whole strings and not in 
a “character at a time” mind set. So how can I tell if a string is 
all alphabetic, partly alphabetic, or completely nonalphabetic 

. Any character (same as the SQL underscore)
^ Start of line (not used in an SQL string)
$ End of line (not used in an SQL string)
\ The next character is a literal and not a special symbol; this is called an ESCAPE 

in SQL and the expression can have an optional ESCAPE clause on the end
[^] Match anything but the characters inside the brackets, after the caret

Table 19.3 Basic Tokens
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 without scanning each character? The answer from the folks at 
Ocelot software is surprisingly easy:

CREATE TABLE Foobar
(no_alpha VARCHAR(6) NOT NULL

CHECK (UPPER(no_alpha) = LOWER(no_alpha)),
some_alpha VARCHAR(6) NOT NULL

CHECK (UPPER(some_alpha) <> LOWER(some_alpha)),
all_alpha VARCHAR(6) NOT NULL

CHECK (UPPER(all_alpha) <> LOWER(all_alpha)
AND LOWER (all_alpha)
BETWEEN 'aaaaaa' AND 'zzzzzz'),

. . .);

Letters have different upper- and lowercase values, but other 
characters do not. This lets us edit a column for no alphabetic char-
acters, some alphabetic characters, and all alphabetic characters.

19.7.2 Searching versus Declaring a String
You need to be very accurate when you declare a string column 
in your DDL, but thanks to doing that, you can slack off a bit 
when you search on those columns in your DML. For example, 
most credit card numbers are made up of four groups of four 
 digits, and each group has some validation rule, thus:

CREATE TABLE CreditCards
(card_nbr CHAR(17) NOT NULL PRIMARY KEY
CONSTRAINT valid_card_nbr_format
 CHECK (card_nbr SIMILAR TO

'[:DIGIT:]{4}-[:DIGIT:]{4}-[:DIGIT:]{4}-[:DIGIT:]{4}'
CONSTRAINT valid_bank_nbr
 CHECK (SUBSTRING (card_nbr FROM 1 FOR 4)

IN ('2349', '2345', ..),
..);

Since we are sure that the credit card number is stored cor-
rectly, we can search for it with a simple LIKE predicate. For 
example to find all the cards that contain 1234 in the third group, 
you can use this:

SELECT card_nbr
 FROM CreditCards
WHERE card_nbr LIKE '____-____-1234-____';

or even,

SELECT card_nbr
 FROM CreditCards
WHERE card_nbr LIKE '__________1234_____';
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The SIMILAR TO predicate will build an internal finite state 
machine to parse the pattern, and the underscores in the LIKE 
can be optimized so that it can run in parallel down the whole 
column.

19.7.3 Creating an Index on a String
Many string encoding techniques have the same prefix because 
we read from left to right and tend to put the codes for the largest 
category to the left. For example, the first group of digits in the 
credit card numbers is the issuing bank. The syntax might look 
like this:

CREATE INDEX acct_searching
ON CreditCards

WITH REVERSE(card_nbr); -- not Standard SQL

If your SQL has the ability to define a function in an index, you 
can reverse or rearrange the string to give faster access. This is 
very vendor dependent, but often the query must explicitly use 
the same function as the index.

An alternative is to store the rearranged value in the base table 
and show the actual value in a view. When the view is invoked, 
the rearranged value will be used for the query without the users 
knowing it.
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20
BETWEEN AND OVERLAPS 
PREDICATES

The BETWEEN and OVERLAPS predicates both offer a shorthand way 
of showing that one value lies within a range defined by two 
other values. BETWEEN works with scalar range limits of all types; 
the OVERLAPS predicate looks at two time periods (defined either 
by start and end points or by a starting time and an INTERVAL) to 
see if they overlap in time.

20.1 The BETWEEN Predicate
The BETWEEN predicate is a feature of SQL that is used enough 
to deserve special attention. It is also just tricky enough to fool 
beginning programmers.

<between predicate>
 ::= <row value predicand> <between predicate part 2>

<between predicate part 2> ::=
[NOT] BETWEEN [ASYMMETRIC | SYMMETRIC]
<row value predicand> AND <row value predicand>

If neither SYMMETRIC nor ASYMMETRIC is specified, then 
ASYMMETRIC is implicit. This is the original definition of the short
hand that only worked with single valued predicands. This is 
most likely what you will see in your product.

ASYMMETRIC is the original version of BETWEEN; the first para
meter is the ordered lower limit and the second parameter is 
the ordered upper limit. ASYMMETRIC is a version of BETWEEN that 
was implemented in Microsoft “semiSQL” ACCESS language 
that allowed the upper and lower limited to flip. ANSI X3H2 
approved this change for ONE meeting that Microsoft attended 
and X3H2 reversed itself the next. Microsoft went home and did 
it wrong.

Let x, y, and z be the first, second, and third row value predi
cands, respectively, so we can start defining this predicate.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00020-X
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00020-X
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1. x NOT BETWEEN SYMMETRIC y AND z
means
NOT (x BETWEEN SYMMETRIC y AND z)

No surprises here, since that is how SQL has handled optional 
NOT in all constructs.

2. X BETWEEN SYMMETRIC y AND z
means
((x BETWEEN ASYMMETRIC y AND z)
OR (x BETWEEN ASYMMETRIC z AND y))

There is a historical note about the early days of ANSI X3H2. 
We voted to make this the definition of “x BETWEEN y AND z” at one 
meeting. This was revoked at the next committee meeting, but 
Microsoft had gone ahead and changed it in their ACCESS data
base product. They failed to read the follow up papers.

3. x NOT BETWEEN ASYMMETRIC y AND z
means
NOT (x BETWEEN ASYMMETRIC y AND z)

No surprises here, since that is how SQL has handled optional 
NOT in all constructs.

4. x BETWEEN ASYMMETRIC y AND z
means
x >= y AND x <= z

Please note that the endpoints are included in this definition. 
This predicate works with any data types that can be compared. 
Most programmers miss this fact and use it only for numeric 
values. It can be used for character strings and temporal data 
as well. The <row value> predicands can be expressions or con
stants, but again, programmers tend to use just constants or 
column names.

Many optimizers will take special steps for the BETWEEN because 
SQL implementations often use B+ and other tree indexes that 
have ranges in their nodes. It is easier for optimizers to produce 
an efficient (<column name> BETWEEN :var1 AND :var2) than it is to 
optimize (:var BETWEEN <column name 1> AND <column name 2>) 
where :var is either a host variable or a literal because of indexing.

It is also more humanreadable than its definition and shows 
a higher level of abstraction.

20.1.1 Results with NULL Values
The results of this predicate with NULLs for the <row value 
predicand>s follow directly from the definition. If both <row 
value predicand>s are NULL, the result is UNKNOWN for any value of
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<value expression>. If one <row value predicand> is NULL, but 
not both of them, the result is determined by the value of the 
first <row value predicand> and its comparison with the remain
ing nonNULL term. If the first <row value predicand> is NULL, the 
results are UNKNOWN for any values of <row value predicand>s.

20.1.2 Results with Empty Sets
Notice that if first second <row value predicand> is less than the 
third <row value predicand>, the ASYMMETRIC expression will always 
be FALSE unless the value is NULL; then it is UNKNOWN. That is a bit 
confusing, since there is no value to which <value expression> 
could resolve itself that would produce a TRUE result. But this fol
lows directly from expanding the definition.

x BETWEEN ASYMMETRIC 12 AND 15 -- depends on the value of x
x BETWEEN ASYMMETRIC 15 AND 12 -- always FALSE
x BETWEEN ASYMMETRIC NULL AND 15 -- always UNKNOWN
NULL BETWEEN ASYMMETRIC 12 AND 15 -- always UNKNOWN
x BETWEEN ASYMMETRIC 12 AND NULL -- always UNKNOWN
x BETWEEN ASYMMETRIC x AND x -- always TRUE

x BETWEEN SYMMETRIC 12 AND 15 -- depends on the value of x
x BETWEEN SYMMETRIC 15 AND 12 -- depends on the value of x
x BETWEEN SYMMETRIC NULL AND 15 -- always UNKNOWN
NULL BETWEEN SYMMETRIC 12 AND 15 -- always UNKNOWN
x BETWEEN SYMMETRIC 12 AND NULL -- always UNKNOWN
x BETWEEN SYMMETRIC x AND x -- always TRUE

20.1.3 Programming Tips
The BETWEEN range includes the endpoints, so you have to be care
ful. For example, changing a percent range on a test into a letter 
grade:

Grades

 low_score high_score grade  

90 100 'A'
80 90 'B'
70 80 'C'
60 70 'D'
00 60 'F'
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will not work when a student gets a grade on the borderlines  
(90, 80, 70, or 60). One way to solve the problem is to change the 
table by adding 1 to the low scores. Of course, the student who 
got 90.1 will argue that he should have gotten an ‘A’ and not a ‘B’. 
If you add 0.01 to the low scores, the student who got 90.001 will 
argue that he should have gotten an ‘A’ and not a ‘B’ and so forth. 
This is a problem with a continuous variable. A better solution 
might be to change the predicate to (score BETWEEN low_score 
AND high_score) AND (score > low_score) or simply to ((low_score 
< score) AND (score <= high_score)). Neither approach will be 
much different in this example, since few values will fall on the 
borders between grades and this table is very, very small.

As a sidebar, you might want to look up an introductory book to 
Fuzzy Logic (Fuzzy Thinking: The New Science of Fuzzy Logic, Bart 
Kosko, ISBN: 9780006547136). In that model, an entity can have a 
degree of membership in a set rather than being strictly in or out of 
the set. There are some experimental databases that use Fuzzy Logic.

However, some indexing schemes might make the BETWEEN 
predicate the better choice for larger tables of this sort. They 
will keep index values in trees whose nodes hold a range of val
ues (look up a description of the B tree family in a computer sci
ence book). An optimizer can compare the range of values in the 
BETWEEN predicate to the range of values in the index nodes as a 
single action. If the BETWEEN predicate were presented as two com
parisons, it might execute them as separate actions against the 
database, which would be slower.

20.2 OVERLAPS Predicate
The OVERLAPS predicate is a feature still not available in most SQL 
implementations because it requires more of the Standard SQL 
temporal data features than most implementations have. Many 
programmers have been “faking” the functionality of the INTERVAL 
data type with the existing date and time features of their products.

20.2.1 Time Periods and OVERLAPS Predicate
Temporal data types and functions are the most irregular fea
tures in SQL products. By the time the ANSI/ISO Standards were 
written, each dialect had its own dialect. But let’s start with the 
concept of an INTERVAL, which is a measure of temporal duration, 
expressed in units such as days, hours, minutes, and so forth. 
This is how you add or subtract days to or from a date, hours and 
minutes to or from a time, and so forth. A time period is defined 
as having start and stop points in time.
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The OVERLAPS predicate compares two time periods. These 
time periods are defined as row values with two columns. The 
first column (the starting time) of the pair is always a <datetime> 
data type and the second column (the termination time) is a 
<datetime> data type that can be used to compute a <datetime> 
value. If the starting and termination times are the same, this is 
an instantaneous event.

The BNF for this predicate is:

<overlaps predicate>
 ::= <overlaps predicate part 1> <overlaps predicate part 2>
<overlaps predicate part 1> ::= <row value predicand 1>
<overlaps predicate part 2> ::= OVERLAPS <row value  

predicand 2>
<row value predicand 1> ::= <row value predicand>
<row value predicand 2> ::= <row value predicand>

The result of the <overlaps predicate> is formally defined as 
the result of the following expression:

(S1 > S2 AND NOT (S1 >= T2 AND T1 >= T2))
OR (S2 > S1 AND NOT (S2 >= T1 AND T2 >= T1))
OR (S1 = S2 AND (T1 <> T2 OR T1 = T2))

where S1 and S2 are the starting times of the two time periods 
and T1 and T2 are their termination times.

The rules for the OVERLAPS predicate should be intuitive, but 
they are not. The principles that we wanted in the Standard were 
the following.
1. A time period includes its starting point, but does not include 

its end point. The reason for this model is that it follows the 
ISO convention that there is no 24:00 hrs today; it is 00:00 hrs 
tomorrow. Halfopen durations have closure properties that 
are useful. The concatenation of two halfopen durations is an 
halfopen duration.

2. If the time periods are not instantaneous, they overlap when 
they share a common time period.

3. If the first term of the predicate is an INTERVAL and the second 
term is an instantaneous event (a <datetime> data type), they 
overlap when the second term is in the time period (but is not 
the end point of the time period).

4. If the first and second terms are both instantaneous events, 
they overlap only when they are equal.

5. If the starting time is NULL and the finishing time is a known 
<datetime> value, the finishing time becomes the starting time 
and we have an event. If the starting time is NULL and the finish
ing time is an INTERVAL value, then both the finishing and start
ing times are NULL.
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Please consider how your intuition reacts to these results, 
when the granularity is at the YEAR-MONTH-DAY level. Remember 
that a day begins at 00:00 hrs.
(today, today) OVERLAPS (today, today) is TRUE
(today, tomorrow) OVERLAPS (today, today) is TRUE
(today, tomorrow) OVERLAPS (tomorrow, tomorrow) is FALSE
(yesterday, today) OVERLAPS (today, tomorrow) is FALSE

This is still not very intuitive, so let’s draw pictures. Consider a 
table of hotel guests with the days of their stays and a table of spe
cial events being held at the hotel. The tables might look like this:

CREATE TABLE Guests
(guest_name CHARACTER(30) NOT NULL PRIMARY KEY,
arrival_date DATE NOT NULL,
departure_date DATE NOT NULL,
. . .);

Guests
guest_name arrival_date departure_date
===================================================
'Dorothy Gale' '2015-02-01' '2015-11-01'
'Indiana Jones' '2015-02-01' '2015-02-01'
'Don Quixote' '2015-01-01' '2015-10-01'
'James T. Kirk' '2015-02-01' '2015-02-28'
'Santa Claus' '2015-12-01' '2015-12-25'

CREATE TABLE Celebrations
(celeb_name CHARACTER(30) PRIMARY KEY,
 celeb_start_date DATE NOT NULL,
 celeb_end_date DATE NOT NULL,
 . . .);

Celebrations
celeb_name celeb_start_date celeb_end_date
=====================================================
'Apple Month' '2015-02-01' '2015-02-28'
'Christmas Season' '2015-12-01' '2015-12-25'
'Garlic Festival' '2015-01-15' '2015-02-15'
'National Pear Week' '2015-01-01' '2015-01-07'
'New Year's Day' '2015-01-01' '2015-01-01'
'St. Fred's Day' '2015-02-24' '2015-02-24'
'Year of the Prune' '2015-01-01' '2015-12-31'

The BETWEEN operator will work just fine with single dates 
that fall between the starting and finishing dates of these cel
ebrations, but please remember that the BETWEEN predicate will 
include the endpoint of an interval and that the OVERLAPS predi
cate will not. To find out if a particular date occurs during an 
event, you can simply write queries like
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SELECT guest_name, celeb_name
 FROM Guests, Celebrations
WHERE arrival_date BETWEEN celeb_start_date AND 

celeb_end_date
  AND arrival_date <> celeb_end_date;

which will find the guests who arrived at the hotel during each 
event. The final predicate can be kept, if you want to conform 
to the ANSI convention, or dropped if that makes more sense 
in your situation. From now on, we will keep both endpoints to 
make the queries easier to read.

SELECT guest_name, celeb_name
 FROM Guests, Celebrations
WHERE arrival_date BETWEEN celeb_start_date AND 

celeb_end_date;

Results
guest_name celeb_name
=========================================
'Dorothy Gale' 'Apple Month'
'Dorothy Gale' 'Garlic Festival'
'Dorothy Gale' 'Year of the Prune'
'Indiana Jones' 'Apple Month'
'Indiana Jones' 'Garlic Festival'
'Indiana Jones' 'Year of the Prune'
'Don Quixote' 'National Pear Week'
'Don Quixote' 'New Year's Day'
'Don Quixote' 'Year of the Prune'
'James T. Kirk' 'Apple Month'
'James T. Kirk' 'Garlic Festival'
'James T. Kirk' 'Year of the Prune'
'Santa Claus' 'Christmas Season'
'Santa Claus' 'Year of the Prune'

The obvious question is which guests were at the hotel during 
each event. A common programming error when trying to find 
out if two intervals overlap is to write the query with the BETWEEN 
predicate, thus:

SELECT guest_name, celeb_name
 FROM Guests, Celebrations
WHERE arrival_date BETWEEN celeb_start_date AND 

celeb_end_date
  OR departure_date BETWEEN celeb_start_date AND 

celeb_end_date;

This is wrong, because it does not cover the case where the 
event began and finished during the guest’s visit. Seeing this 
error, the programmer will sit down and draw a timeline diagram 
of all four possible overlapping cases, as shown in Figure 20.1.
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So the programmer adds more predicates, thus:

SELECT guest_name, celeb_name
 FROM Guests, Celebrations
WHERE arrival_date BETWEEN celeb_start_date AND 

celeb_end_date
  OR departure_date BETWEEN celeb_start_date AND 

celeb_end_date
  OR celeb_start_date BETWEEN arrival_date AND 

departure_date
  OR celeb_end_date BETWEEN arrival_date AND 

departure_date;

A thoughtful programmer will notice that the last predicate 
is not needed and might drop it, but either way, this is a cor
rect query. But it is not the best answer. In the case of the over
lapping intervals, there are two cases where a guest’s stay at the 
hotel and an event do not both fall within the same time frame: 
Either the guest checked out before the event started or the event 
ended before the guest arrived. If you want to do the logic, that 
is what the first predicate will work out to be when you also add 
the conditions that arrival_date <= departure_date and celeb_
start_date <= celeb_end_date. But it is easier to see in a timeline 
diagram, as Figure 20.2 shows.

Both cases can be represented in one SQL statement as

SELECT guest_name, celeb_name
 FROM Guests, Celebrations
WHERE NOT ((departure_date < celeb_start_date) OR 

(arrival_date > celeb_end_date));

Figure 20.1 Timeline Diagram of All Possible Overlapping Cases
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VIEW GuestsEvents
guest_name celeb_name
======================================
'Dorothy Gale' 'Apple Month'
'Dorothy Gale' 'Garlic Festival'
'Dorothy Gale' 'St. Fred's Day'
'Dorothy Gale' 'Year of the Prune'
'Indiana Jones' 'Apple Month'
'Indiana Jones' 'Garlic Festival'
'Indiana Jones' 'Year of the Prune'
'Don Quixote' 'Apple Month'
'Don Quixote' 'Garlic Festival'
'Don Quixote' 'National Pear Week'
'Don Quixote' 'New Year's Day'
'Don Quixote' 'St. Fred's Day'
'Don Quixote' 'Year of the Prune'
'James T. Kirk' 'Apple Month'
'James T. Kirk' 'Garlic Festival'
'James T. Kirk' 'St. Fred's Day'
'James T. Kirk' 'Year of the Prune'
'Santa Claus' 'Christmas Season'
'Santa Claus' 'Year of the Prune'

This VIEW is handy for other queries. The reason for using 
the NOT in the WHERE clause is so that you can add or remove it to 
reverse the sense of the query. For example, to find out how many 
celebrations each guest could have seen, you would write

CREATE VIEW GuestCelebrations (guest_name, celeb_name)
AS SELECT guest_name, celeb_name

FROM Guests, Celebrations
WHERE NOT ((departure_date < celeb_start_date) OR 

(arrival_date > celeb_end_date));

SELECT guest_name, COUNT(*) AS celebcount
 FROM GuestCelebrations
GROUP BY guest_name;

Figure 20.2 Timeline Diagram
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Results
guest_name celebcount
============================
'Dorothy Gale' 4
'Indiana Jones' 3
'Don Quixote' 6
'James T. Kirk' 4
'Santa Claus' 2

and then to find out how many guests were at the hotel during 
each celebration, you would write

SELECT celeb_name, COUNT(*) AS guest_cnt
 FROM GuestCelebrations
GROUP BY celeb_name;

Result
celeb_name guest_cnt
================================
'Apple Month' 4
'Christmas Season' 1
'Garlic Festival' 4
'National Pear Week' 1
'New Year's Day' 1
'St. Fred's Day' 3
'Year of the Prune' 5

This last query is only part of the story. What the hotel man
agement really wants to know is how many room nights were 
sold for a celebration. A little algebra tells you that the length of 
an event is (celeb_end_date - celeb_start_date + INTERVAL '1' 
DAY) and that the length of a guest’s stay is (Guest.departure_date 
- Guest.arrival_date + INTERVAL '1' DAY). Let’s do one of those 
timeline charts again, in Figure 20.3.

What we want is the part of the Guests interval that is inside 
the Celebrations interval.

Guests 1 and 2 spent only part of their time at the celebra
tion; Guest 3 spent all of his time at the celebration and Guest 4 
stayed even longer than the celebration. That interval is defined 
by the two points (CASE WHEN arrival_date > celeb_start_date 

Figure 20.3 Timeline Diagram
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THEN arrival_date ELSE celeb_start_date END) and (CASE WHEN 
departure_date < celeb_end_date THEN departure_date ELSE 
celeb_end_date END).

Instead, you can use the aggregate functions in SQL to build a 
VIEW on a VIEW, like this:

CREATE VIEW Working (guest_name, celeb_name, entry_date, 
exit_date)

AS
SELECT GE.guest_name, GE.celeb_name, celeb_start_date, 

celeb_end_date
 FROM GuestCelebrations AS GE, Celebrations AS E1
WHERE E1.celeb_name = GE.celeb_name
UNION
SELECT GE.guest_name, GE.celeb_name, arrival_date, 

departure_date
 FROM GuestCelebrations AS GE, Guests AS G1
WHERE G1.guest_name = GE.guest_name;

VIEW Working
guest_name celeb_name entry_date exit_date
==================================================================
'Dorothy Gale' 'Apple Month' '2015-02-01' '2015-02-28'
'Dorothy Gale' 'Apple Month' '2015-02-01' '2015-11-01'
'Dorothy Gale' 'Garlic Festival' '2015-02-01' '2015-11-01'
'Dorothy Gale' 'Garlic Festival' '2015-01-15' '2015-02-15'
'Dorothy Gale' 'St. Fred's Day' '2015-02-01' '2015-11-01'
'Dorothy Gale' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'Dorothy Gale' 'Year of the Prune' '2015-02-01' '2015-11-01'
'Dorothy Gale' 'Year of the Prune' '2015-01-01' '2015-12-31'
'Indiana Jones' 'Apple Month' '2015-02-01' '2015-02-01'
'Indiana Jones' 'Apple Month' '2015-02-01' '2015-02-28'
'Indiana Jones' 'Garlic Festival' '2015-02-01' '2015-02-01'
'Indiana Jones' 'Garlic Festival' '2015-01-15' '2015-02-15'
'Indiana Jones' 'Year of the Prune' '2015-02-01' '2015-02-01'
'Indiana Jones' 'Year of the Prune' '2015-01-01' '2015-12-31'
'Don Quixote' 'Apple Month' '2015-02-01' '2015-02-28'
'Don Quixote' 'Apple Month' '2015-01-01' '2015-10-01'
'Don Quixote' 'Garlic Festival' '2015-01-01' '2015-10-01'
'Don Quixote' 'Garlic Festival' '2015-01-15' '2015-02-15'
'Don Quixote' 'National Pear Week' '2015-01-01' '2015-01-07'
'Don Quixote' 'National Pear Week' '2015-01-01' '2015-10-01'
'Don Quixote' 'New Year's Day' '2015-01-01' '2015-01-01'
'Don Quixote' 'New Year's Day' '2015-01-01' '2015-10-01'
'Don Quixote' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'Don Quixote' 'St. Fred's Day' '2015-01-01' '2015-10-01'
'Don Quixote' 'Year of the Prune' '2015-01-01' '2015-12-31'
'Don Quixote' 'Year of the Prune' '2015-01-01' '2015-10-01'
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'James T. Kirk' 'Apple Month' '2015-02-01' '2015-02-28'
'James T. Kirk' 'Garlic Festival' '2015-02-01' '2015-02-28'
'James T. Kirk' 'Garlic Festival' '2015-01-15' '2015-02-15'
'James T. Kirk' 'St.Fred's Day' '2015-02-01' '2015-02-28'
'James T. Kirk' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'James T. Kirk' 'Year of the Prune' '2015-02-01' '2015-02-28'
'James T. Kirk' 'Year of the Prune' '2015-01-01' '2015-12-31'
'Santa Claus' 'Christmas Season' '2015-12-01' '2015-12-25'
'Santa Claus' 'Year of the Prune' '2015-12-01' '2015-12-25'
'Santa Claus' 'Year of the Prune' '2015-01-01' '2015-12-31'

This will put the earliest and latest points in both intervals into 
one column. Now we can construct a VIEW like this:

CREATE VIEW Attendees (guest_name, celeb_name, entry_date, 
exit_date)

AS
SELECT guest_name, celeb_name, MAX(entry_date), 

MIN(exit_date)
 FROM Working
GROUP BY guest_name, celeb_name;

VIEW Attendees
guest_name celeb_name entry_date exit_date
==================================================================
'Dorothy Gale' 'Apple Month' '2015-02-01' '2015-02-28'
'Dorothy Gale' 'Garlic Festival' '2015-02-01' '2015-02-15'
'Dorothy Gale' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'Dorothy Gale' 'Year of the Prune' '2015-02-01' '2015-11-01'
'Indiana Jones' 'Apple Month' '2015-02-01' '2015-02-01'
'Indiana Jones' 'Garlic Festival' '2015-02-01' '2015-02-01'
'Indiana Jones' 'Year of the Prune' '2015-02-01' '2015-02-01'
'Don Quixote' 'Apple Month' '2015-02-01' '2015-02-28'
'Don Quixote' 'Garlic Festival' '2015-01-15' '2015-02-15'
'Don Quixote' 'National Pear Week' '2015-01-01' '2015-01-07'
'Don Quixote' 'New Year's Day' '2015-01-01' '2015-01-01'
'Don Quixote' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'Don Quixote' 'Year of the Prune' '2015-01-01' '2015-10-01'
'James T. Kirk' 'Apple Month' '2015-02-01' '2015-02-28'
'James T. Kirk' 'Garlic Festival' '2015-02-01' '2015-02-15'
'James T. Kirk' 'St. Fred's Day' '2015-02-24' '2015-02-24'
'James T. Kirk' 'Year of the Prune' '2015-02-01' '2015-02-28'
'Santa Claus' 'Christmas Season' '2015-12-01' '2015-12-25'
'Santa Claus'  'Year of the Prune'   '2015-12-01' '2015-12-25'

The Attendees VIEW can be used to compute the total num
ber of room days for each celebration. Assume that the differ
ence of two dates will return an integer that is the number of days 
between them:
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SELECT celeb_name,
SUM(exit_date - entry_date + INTERVAL '1' DAY)
AS room_days

 FROM Attendees
GROUP BY celeb_name;

Result
celeb_name room_days
================================
'Apple Month' 85
'Christmas Season' 25
'Garlic Festival' 63
'National Pear Week' 7
'New Year's Day' 1
'St. Fred's Day' 3
'Year of the Prune' 602

If you would like to get a count of the room days sold in the 
month of January, you could use this query, which avoids a 
BETWEEN or OVERLAPS predicate completely.

SELECT SUM(CASE WHEN depart > DATE '2015-01-31'
THEN DATE '2015-01-31'
ELSE depart END

- CASE WHEN arrival_date < DATE '2015-01-01'
THEN DATE '2015-01-01'
ELSE arrival_date END + INTERVAL '1' DAY)

AS room_days
 FROM Guests
WHERE depart > DATE '2015-01-01'
  AND arrival_date <= DATE '2015-01-31';
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21
THE [NOT] IN() PREDICATE

The IN() predicate is one of the “abbreviations” that is allowed in 
SQL. It can be expanded into the usual AND, OR, and NOT logi-
cal operators, but it is easier to see the intent of the programmer 
with this syntax. New SQL programmers stick to the more famil-
iar “nonabbreviated” logic for two reasons: (1) it looks like their 
procedural language and (2) they think the optimizer will do 
 better with nonabbreviated logic. This is not true at all.

The IN() syntax is very natural and was borrowed and gener-
alized from the Pascal language. It takes a value on the left side 
and sees if it is in a list of comparable values on the right side. 
Standard SQL allows value expressions in the list or for you to use 
a query to construct the list. The syntax is:

<in predicate> ::=
<row value predicand> = [NOT] IN <in predicate value>

<in predicate value> ::= <table subquery> | <left paren> 
<in value list> <right paren>

<in value list> ::= <row value expression> [{<comma> 
<row value expression>}..]

The expression

<row value constructor> NOT IN <in predicate value>

means

NOT (<row value constructor> IN <in predicate value>)

This pattern for the use of the keyword NOT is found in most of 
the other SQL predicates.

The SQL:2006 Standards say that if the <in value list> con-
sists of a single <row value expression>, then that <row value 
expression> shall not be a <scalar subquery>. This syntax rule 
resolves an ambiguity in which <in predicate value> might 
be interpreted either as a <table subquery> or as a <scalar 
 subquery>. This means that:

(<in predicate value>)

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00021-1
Copyright © 2011 by Elsevier Inc. All rights reserved.
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is equivalent to the <table value constructor>:

(VALUES <in predicate value>)

Using DB2 version 9.7, the following will not work:

SELECT *
 FROM Foobar
WHERE (x, y) IN (( 'x1', y1));

It returns an error SQL0104N. An unexpected token “,” was 
found following “, y) in ((‘x1’”. Expected tokens may include: “1”. 
SQLSTATE=42601. However, this does work:

SELECT *
 FROM Foobar
WHERE (x, y) IN (VALUES ('x1', 1));

The <row value constructor> IN <in predicate value> has 
the same effect as <row value constructor> = ANY <in  predicate 
value> by definition. Most optimizers will recognize this and 
 execute the same code for both. This means that if the <in 
 predicate value> is empty, such as one you would get from a 
subquery that returns no rows, the results will be equivalent to 
(<row value constructor> = (NULL, .., NULL)), which is always 
evaluated to UNKNOWN. Likewise, if the <in predicate value> is an 
explicit list of NULLs, the results will be UNKNOWN. However, please 
remember that there is a difference between an empty table and 
a table with rows of all NULLs.

IN() predicates with a subquery and can sometimes be con-
verted into EXISTS predicates, but there are some problems and dif-
ferences in the predicates. The conversion to an EXISTS predicate 
might be a good way to improve performance, but it will not be 
as easy to read as the original IN() predicate. An EXISTS predicate 
can use indexes to find (or fail to find) a single value that confirms 
(or denies) the predicate, whereas the IN() predicate often has to 
build the results of the subquery in a working table. Know your 
SQL product.

21.1 Optimizing the IN() Predicate
Many database engines have no statistics about the relative fre-
quency of the values in a list of constants, so they will scan that 
list in the order in which they appear. People like to order lists 
alphabetically or in numeric order, but it might be better to order 
the list from most frequently occurring values to least frequent. 
It is also pointless to have duplicate values in the  constant list, 
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since the predicate will return TRUE if it matches the first  duplicate 
it finds and never get to the second occurrence. Likewise, if 
the predicate is FALSE for that value, it wastes computer time to 
 traverse a needlessly long list.

Many SQL engines perform an IN() predicate with a subquery 
by building the result set of the subquery first as a temporary 
working table, then scanning that result table from left to right. 
This can be expensive in many cases; for example, in a query to 
find employees in a city with a major sports team (we want them 
to get tickets for us), we could write:

SELECT emp_name
 FROM Personnel AS P
WHERE P.city_name
   IN (SELECT S.city_name
       FROM SportTeams AS S);

assuming that city names are unique. But let us further assume 
that our personnel are located in (n) cities and the sports teams 
are in (m) cities, where (m) is much greater than (n). If the 
matching cities appear near the front of the list generated by 
the subquery expression, it will perform much faster than if they 
appear at the end of the list. In the case of a subquery expression 
you have no control over how the subquery is presented back in 
the containing query.

However, you can order the expressions in a list in the most 
likely to occur order, such as

SELECT emp_name
 FROM Personnel
WHERE city_name
   IN ('New York', 'Chicago', 'Atlanta', .., 'Austin');

Standard SQL allows row expression comparisons, so if you 
have a Standard SQL implementation with separate columns for 
the city and state, you could write:

SELECT *
 FROM Personnel
WHERE (city_name, state_code)
   IN (SELECT city_name, state_code
       FROM SportTeams);

Today, all major versions of SQL remove duplicates in the 
result table of the subquery, so you do not have to use an 
explicit SELECT DISTINCT in the subquery. You might see this in 
legacy code.

The major SQL products also kick in optimizations where the 
list gets to a certain size. This can lead to weird behavior from 
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a human viewpoint; a list of (n) values below the threshold (k) 
items takes longer to search a list with (n .5 k) items.

Some of the tricks are:
1. Construct a working table with an index.
2. Construct a working table with a hidden column of the fre-

quency of each value and sort on it. The initial frequency values 
can come from the statistics on the left-side table.

3. Organize the list as a heap in an array. A heap is an array such 
that for each element in position (n) in the list, the (n 1 1) ele-
ment is lower and the (2n 1 1) element is greater. It is a quick 
way to do a binary search.
Another trick is to replace the IN() predicate with a JOIN oper-

ation. For example, you have a table of restaurant telephone 
numbers and a guidebook and you want to pick out the four-star 
places, so you write this query:

SELECT R.restaurant_name, R.phone_nbr
 FROM Restaurants AS R
WHERE E.restaurant_name
  IN (SELECT Q.restaurant_name
       FROM QualityGuide AS Q
      WHERE Q.michelin_stars = 4);

If there is an index on QualityGuide.michelin_stars, the SQL 
engine will probably build a temporary table of the four-star 
places and pass it on to the outer query. The outer query will then 
handle it as if it were a list of constants.

However, this is not the sort of column that you would nor-
mally index. Without an index on Michelin stars, the engine will 
simply do a sequential search of the QualityGuide table. This 
query can be replaced with a JOIN query, thus:

SELECT R.restaurant_name, R.phone_nbr
 FROM Restaurants AS R, QualityGuide AS Q
WHERE michelin_stars = 4
  AND R.restaurant_name = Q.restaurant_name;

This query should run faster, since restaurant_name is a key for 
both tables and will be indexed to ensure uniqueness. However, 
this can return duplicate rows in the result table that you can 
handle with a SELECT DISTINCT. Consider a more budget-minded 
query, where we want places with a meal under $10 and the menu 
guidebook lists all the meals. The query looks about the same:

SELECT R.restaurant_name, R.phone_nbr
 FROM Restaurants AS R
WHERE R.restaurant_name
  IN (SELECT M.restaurant_name
       FROM MenuGuide AS M
      WHERE M.meal_price <= 10.00);
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and you would expect to be able to replace it with

SELECT R.restaurant_name, R.phone_nbr
 FROM Restaurants AS R, MenuGuide AS M
WHERE M.meal_price <= 10.00
  AND R.restaurant_name = M.restaurant_name;

Every item in Murphy’s Two-Dollar Hash House will get a line 
in the results of the JOIN-ed version, however. This can be fixed by 
changing SELECT restaurant_name, phone_nbr to SELECT DISTINCT 
restaurant_name, phone_nbr, but it will cost more time to remove 
the duplicates. There is no good general advice, except to experi-
ment with your particular product.

The NOT IN() predicate is probably better replaced with a NOT 
EXISTS predicate. Using the restaurant example again, our friend 
John has a list of eateries and we want to see those that are not in 
the guidebook. The natural formation of the query is:

SELECT J.*
 FROM JohnsBook AS J
WHERE J.restaurant_name
  NOT IN (SELECT Q.restaurant_name
       FROM QualityGuide AS Q);

But you can write the same query with a NOT EXISTS predicate 
and it will probably run faster:

SELECT J.*
 FROM JohnsBook AS J
WHERE NOT EXISTS
 (SELECT *
   FROM QualityGuide AS Q
   WHERE Q.restaurant_name = J.restaurant_name);

The reason the second version will probably run faster is that 
it can test for existence using the indexes on both tables. The 
NOT IN() version has to test all the values in the subquery table 
for inequality. Many SQL implementations will construct a tem-
porary table from the IN() predicate subquery if it has a WHERE 
clause, but the temporary table will not have any indexes. The 
temporary table can also have duplicates and a random order-
ing of its rows, so that the SQL engine has to do a full-table scan.

21.2 Replacing ORs with the IN() Predicate
A simple trick that beginning SQL programmers often miss is that 
an IN() predicate can often replace a set of OR-ed predicates. For 
example:

SELECT *
 FROM QualityControlReport
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WHERE test_1 = 'passed'
 OR test_2 = 'passed'
 OR test_3 = 'passed'
 OR test_4 = 'passed';

can be rewritten as:

SELECT *
 FROM QualityControlReport
WHERE 'passed' IN (test_1, test_2, test_3, test_4);

The reason this is hard to see is that programmers get 
used to thinking of either a subquery or a simple list of con-
stants; they miss the fact that the IN() predicate list can be a 
list of expressions. The optimizer would have handled each 
of the original predicates separately in the WHERE clause, but it 
has to handle the IN() predicate as a single item, which can 
change the order of evaluation. This might or might not be 
faster than the list of OR-ed predicates for a particular query. 
This formulation might cause the predicate to become non-
indexable, you should check the indexability rules of your 
 particular DBMS.

21.3 NULLs and the IN() Predicate
NULLs make some special problems in a NOT IN() predicate with a 
subquery. Consider these two tables:

CREATE TABLE Table1 (x INTEGER);
INSERT INTO Table1 VALUES (1), (2), (3), (4);

CREATE TABLE Table2 (x INTEGER);
INSERT INTO Table2 VALUES (1), (NULL), (2);

Now execute the query:

SELECT *
FROM Table1
WHERE x NOT IN (SELECT x FROM Table2)

Let’s work it out step by painful step:
1. Do the subquery:

SELECT *
  FROM Table1
 WHERE x NOT IN (1, NULL, 2);

2. Convert the NOT IN() to its definition:

SELECT *
  FROM Table1
 WHERE NOT (x IN (1, NULL, 2));
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3. Expand IN() predicate:

SELECT *
  FROM Table1
 WHERE NOT ((x = 1) OR (x = NULL) OR (x = 2));

4. Apply DeMorgan’s law:

SELECT *
  FROM Table1
 WHERE ((x <> 1) AND (x <> NULL) AND (x <> 2));

5. Constant logical expression:

SELECT *
  FROM Table1
 WHERE ((x <> 1) AND UNKNOWN AND (x <> 2));

6. Reduction of OR to constant:

SELECT *
 FROM Table1
WHERE UNKNOWN;

7. Results are always empty.
Now try this with another set of tables:

CREATE TABLE Table3 (x INTEGER);
INSERT INTO Table3 VALUES (1), (2), (NULL), (4);

CREATE TABLE Table4 (x INTEGER);
INSERT INTO Table3 VALUES (1), (3), (2);

Let’s work out the same query step by painful step again.
1. Do the subquery:

SELECT *
  FROM Table3
 WHERE x NOT IN (1, 3, 2);

2. Convert the NOT IN() to Boolean expression:

SELECT *
  FROM Table3
 WHERE NOT (x IN (1, 3, 2));

3. Expand IN() predicate:

SELECT *
  FROM Table3
 WHERE NOT ((x = 1) OR (x = 3) OR (x = 2));

4. DeMorgan’s law:

SELECT *
  FROM Table3
 WHERE ((x <> 1) AND (x <> 3) AND (x <> 2));
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5. Computed result set; I will show it as a UNION with substitutions:

SELECT *
  FROM Table3
 WHERE ((1 <> 1) AND (1 <> 3) AND (1 <> 2)) -- FALSE
UNION ALL
SELECT *
  FROM Table3
 WHERE ((2 <> 1) AND (2 <> 3) AND (2 <> 2)) -- FALSE
UNION ALL
SELECT * FROM Table3
 WHERE ((CAST(NULL AS INTEGER) <> 1)
    AND (CAST(NULL AS INTEGER) <> 3)
    AND (CAST(NULL AS INTEGER) <> 2)) -- UNKNOWN
UNION ALL
SELECT *
  FROM Table3
 WHERE ((4 <> 1) AND (4 <> 3) AND (4 <> 2)); -- TRUE

6. Result is one row = (4).

21.4  IN() Predicate and Referential 
Constraints

One of the most popular uses for the IN() predicate is in a CHECK() 
clause on a table. The usual form is a list of values that are legal 
for a column, such as

CREATE TABLE Addresses
(addressee_name CHAR(25) NOT NULL PRIMARY KEY,
 street_loc CHAR(25) NOT NULL,
 city_name CHAR(20) NOT NULL,
 state_code CHAR(2) NOT NULL
      CONSTRAINT valid_state_code
      CHECK (state_code IN ('AL', 'AK', ..)),
 ..);

This method works fine with a short list of values, but it has 
problems with a longer list. Please note that “short” and “long” 
are very relative as storage gets bigger, cheaper, and faster.

It might be important to arrange the values in the order that 
they are most likely to match to the two-letter state_code to 
speed up the search. Even though DML could have optimiza-
tions, the DDL might not! You also have to remember that DML 
and DDL treat NULLs differently. An UNKNOWN is treated as TRUE in 
the DDL and as FALSE in the DML.
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In Standard SQL a constraint can reference other tables, so 
you could write the same constraint as:

CREATE TABLE Addresses
(addressee_name CHAR(25) NOT NULL PRIMARY KEY,
 street_loc CHAR(25) NOT NULL,
 city_name CHAR(20) NOT NULL,
 state_code CHAR(2) NOT NULL,
 CONSTRAINT valid_state_code
 CHECK (state_code
   IN (SELECT state_code
       FROM ZipCodes AS Z

       WHERE Z.state_code = Addresses.state_code)),
 );

The advantage of this is that you can change the ZipCodes 
table and thereby change the effect of the constraint on the 
Addresses table. This is fine for adding more data in the outer ref-
erence (i.e., Puerto Rico joins the Union and gets the code ‘QB’), 
but it has a bad effect when you try to delete data in the outer 
reference (i.e., California secedes from the Union and every row 
with ‘CA’ for a state code is now invalid, or Texas splits into five 
new states with new ZIP codes and state codes).

As a rule of thumb, use the IN(<list>) predicate in a CHECK() 
constraint when the list is short, static, and unique to one table. 
When the list is long, dynamic, or global to many tables then put 
the IN(<select statement>) predicate in a CHECK() constraint on 
the domain.

Use a REFERENCES clause to a look-up table when the list is 
long and dynamic, or when several other schema objects (VIEWs, 
stored procedures, etc.) reference the values. A separate table can 
have an index and that makes a big difference in searching and 
doing joins.

21.5 IN() Predicate and Scalar Queries
As mentioned before, the list of an IN() predicate can be any sca-
lar expression. This includes scalar subqueries, but most people 
do not seem to know that this is possible. For example, given 
tables that model warehouses, trucking centers, and so forth, we 
can find out whether we have a product, identified by its UPC 
code, somewhere in the enterprise.

SELECT P.upc
 FROM Picklist AS P
WHERE P.upc
  IN ((SELECT upc FROM Warehouse AS W WHERE W.upc = P.upc),
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   (SELECT upc FROM Stores AS S WHERE S.upc = P.upc),
   (SELECT upc FROM Garbage AS G WHERE G.upc = P.upc));

The empty result sets will become NULLs in the list. The alter-
native to this is usually a chain of OUTER JOINs or an OR-ed list of 
EXISTS() predicates.

This is a strange construction at the time I am writing this 
chapter and might not work very well. But check it out when you 
are reading this book. The trend in SQL is toward parallel query 
processing so each of the scalar expressions could be done at the 
same time.

A more useful version is in stored procedures with a long 
parameter list of related values. The simplest version is to use a 
list of constants like this:

SELECT *
 FROM Parameter_List
WHERE Parameter_List.i
   IN (SELECT X.i
       FROM (VALUES (1), (2), (3)) AS X(i));

This can be generalized to row constructors:

SELECT Parameter_List.*
 FROM Parameter_List
WHERE (Parameter_List.i, Parameter_List.j)
   IN (SELECT X.i, X.j
       FROM (VALUES (1, 'a'), (2, 'b'), (3, 'c'))
      AS X(i, j));

But the real power comes from taking an input list of param-
eters and converting it into a table with the VALUES() construct. 
For example, given a variable list of GTIN (Global Trade Item 
Number) item identifiers, you can construct a procedure to 
return a result based on that list. If not, all parameters are given 
in the CALL and then NULLs will be passed instead.

CREATE PROCEDURE Foobar
(IN in_gtin_1 CHAR(15), .. IN in_gtin_n CHAR(15))
LANGUAGE SQL
SQL DATA
..

BEGIN
..

SELECT << something here >>
 FROM Products AS P
WHERE gtin
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   IN (SELECT Picklist.item
       FROM (VALUES (in_gtin_1),
             .., (in_gtin_n)) AS Picklist(item)
       WHERE Picklist.item IS NOT NULL);
..
END;

Alternatively, the VALUES() list elements can be expressions 
such as COALESCE (in_gtin_n, ‘123456789012345’) or anything that 
returns an appropriate scalar value.
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22
EXISTS() PREDICATE

The EXISTS predicate is very natural. It is a test for a nonempty set 
(read: table). If there are any rows in its subquery, it is TRUE; oth-
erwise, it is FALSE. This predicate does not give an UNKNOWN result. 
The syntax is:

<exists predicate> ::= [NOT] EXISTS <table subquery>

It is worth mentioning that a <table subquery> is always inside 
parentheses to avoid problems in the grammar during parsing.

In SQL-89, the rules stated that the subquery had to have a 
SELECT clause with one column or an asterisk (*). If the SELECT * 
option was used, the database engine would (in theory) pick one 
column and use it. This fiction was needed because SQL-89 defined 
subqueries as having only one column. Things are better today.

Some early SQL implementations would work better with 
EXISTS(SELECT <column> ..), EXISTS(SELECT <constant> ..), 
or EXISTS(SELECT * ..) versions of the predicate. Today, there 
is no difference in the three forms in any SQL I know. The 
EXISTS(SELECT * ..) is now the preferred form since it shows that 
we are working at the table level, without regard to columns.

Indexes are very useful for EXISTS() predicates because they 
can be searched while the base table is left completely alone. For 
example, we want to find all the employees who were born on the 
same day as any famous person. The query could be

SELECT P.emp_name AS famous_person_birth_date_guy
  FROM Personnel AS P
 WHERE EXISTS
  (SELECT *
    FROM Celebrities AS C
    WHERE P.birth_date = C.birth_date);

If the table Celebrities has an index on its birth_date column, 
the optimizer will get the current employee’s birth_date P.birth_
date and look up that value in the index. If the value is in the 
index, the predicate is TRUE and we do not need to look at the 
Celebrities table at all.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00022-3


382  Chapter 22 EXISTS() PREDICATE

If it is not in the index, the predicate is FALSE and there is still 
no need to look at the Celebrities table. This should be fast, since 
indexes are smaller than their tables and are structured for very 
fast searching.

However, if Celebrities has no index on its birth_date column, 
the query may have to look at every row to see if there is a birth_
date that matches the current employee’s birth_date. There are 
some tricks that a good optimizer can use to speed things up in 
this situation.

22.1 EXISTS and NULLs
A NULL might not be a value, but it does exist in SQL. This is often 
a problem for a new SQL programmer who is having trouble with 
the concept of NULLs and how they behave.

Think of them as being like a brown paper bag—you know 
that something is inside because you lifted it up and felt a weight, 
but you do not know exactly what that something is. If you felt 
an empty bag, you know to stop looking. For example, we want 
to find all the Personnel who were not born on the same day as 
a famous person. This can be answered with the negation of the 
original query, like this:

SELECT P.emp_name AS famous_birth_date_person
 FROM Personnel AS P
WHERE NOT EXISTS
  (SELECT *
    FROM Celebrities AS C
    WHERE P.birth_date = C.birth_date);

But assume that among the Celebrities, we have a movie star 
who will not admit her age, shown in the row ('Gloria Glamor', 
NULL). A new SQL programmer might expect that Ms. Glamor 
would not match to anyone, since we do not know her birth_date 
yet. Actually, she will match to everyone, since there is a chance 
that they may match when some tabloid newspaper finally gets 
a copy of her birth certificate. But work out the subquery in the 
usual way to convince yourself:

..
WHERE NOT EXISTS
  (SELECT *
    FROM Celebrities
    WHERE P.birth_date = NULL);

becomes
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..
WHERE NOT EXISTS
  (SELECT *
    FROM Celebrities
    WHERE UNKNOWN);

which then becomes

..
WHERE TRUE;

and you will see that the predicate tests to UNKNOWN because of 
the NULL comparison, and therefore fails whenever we look at 
Ms. Glamor.

Another problem with NULLs is found when you attempt to 
convert IN predicates to EXISTS predicates. Using our example 
of matching our Personnel to famous people, the query can be 
rewritten as:

SELECT P.emp_name AS famous_birth_date_person
 FROM Personnel AS P
WHERE P.birth_date
  NOT IN
  (SELECT C.birth_date
    FROM Celebrities AS C);

However, consider a more complex version of the same query, 
where the celebrity has to have been born in New York City. The 
IN predicate would be:

SELECT P.emp_name, 'was born on a day without a famous New 
Yorker!'

 FROM Personnel AS P
WHERE P.birth_date
  NOT IN
  (SELECT C.birth_date
    FROM Celebrities AS C
    WHERE C.birth_city_name = 'New York');

and you would think that the EXISTS version would be:

SELECT P.emp_name, 'was born on a day without a famous New 
Yorker!'

 FROM Personnel AS P
WHERE NOT EXISTS
  (SELECT *
   FROM Celebrities AS C
   WHERE C.birth_city_name = 'New York'
    AND C.birth_date = P.birth_date);

Assume that Gloria Glamor is our only New Yorker and we still 
do not know her birth_date. The subquery will be empty for every 
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employee in the NOT EXISTS predicate version, because her NULL 
birth_date will not test equal to the known employee birthdays.

That means that the NOT EXISTS predicate will return TRUE and 
we will get every employee to match to Ms. Glamor. But now look 
at the IN predicate version, which will have a single NULL in the 
subquery result. This predicate will be equivalent to (Personnel.
birth_date = NULL), which is always UNKNOWN, and we will get no 
Personnel back.

Likewise, you cannot, in general, transform the quantified 
comparison predicates into EXISTS predicates, because of the 
possibility of NULL values. Remember that x <> ALL <subquery> 
is shorthand for x NOT IN <subquery> and x = ANY <subquery> is 
shorthand for x IN <subquery>, and it will not surprise you.

In general, the EXISTS predicates will run faster than the IN 
predicates. The problem is in deciding whether to build the query 
or the subquery first; the optimal approach depends on the size 
and distribution of values in each, and that cannot usually be 
known until runtime.

22.2 EXISTS and INNER JOINs
The [NOT] EXISTS predicate is almost always used with a corre-
lated subquery. Very often the subquery can be “flattened” into 
a JOIN, which will often run faster than the original query. Our 
sample query can be converted into:

SELECT P.emp_name AS famous_birth_date_person
 FROM Personnel AS P, Celebrities AS C
WHERE P.birth_date = C.birth_date;

The advantage of the JOIN version is that it allows us to show 
columns from both tables. We should make the query more infor-
mative by rewriting the query:

SELECT P.emp_name, C.emp_name
 FROM Personnel AS P, Celebrities AS C
WHERE P.birth_date = C.birth_date;

This new query could be written with an EXISTS() predicate, 
but that is a waste of resources.

SELECT P.emp_name, 'has the same birth_date as ', 
C.emp_name

 FROM Personnel AS P, Celebrities AS C
WHERE EXISTS
  (SELECT *
    FROM Celebrities AS C2
    WHERE P.birth_date = C2.birth_date
    AND C.emp_name = C2.emp_name);
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22.3 NOT EXISTS and OUTER JOINs
The NOT EXISTS version of this predicate is almost always used with 
a correlated subquery. Very often the subquery can be “flattened” 
into an OUTER JOIN, which will often run faster than the original 
query. Our other sample query was:

SELECT P.emp_name AS Non_famous_New_Yorker_birth_date
 FROM Personnel AS P
WHERE NOT EXISTS
  (SELECT *
    FROM Celebrities AS C
    WHERE C.birth_city_name = 'New York'
     AND C.birth_date = P.birth_date);

which we can replace with:

SELECT P.emp_name AS famous_New_Yorker_birth_date
 FROM Personnel AS P
     LEFT OUTER JOIN
     Celebrities AS C
     ON C.birth_city_name = 'New York'
      AND C.birth_date = E2.birth_date
WHERE C.emp_name IS NULL;

This is assuming that we know each and every celebrity name 
in the Celebrities table. If the column in the WHERE clause could 
have NULLs in its base table, then we could not prune out the gen-
erated NULLs. The test for NULL should always be on (a column of) 
the primary key, which cannot be NULL. Relating this back to the 
example, how could a celebrity be a celebrity with an unknown 
name?  Even The Unknown Comic had a name (“The Unknown 
Comic”).

22.4 EXISTS() and Quantifiers
Formal logic makes use of quantifiers that can be applied to 
propositions. The two forms are “For all x, P(x)” and “For some 
x, P(x)”. If you want to look up formulas in a textbook, the tra-
ditional symbol for the universal quantifier is , an inverted 
letter A, and the symbol for the existential quantifier is , a 
rotated letter E.

The big question over 100 years ago was that of existential 
import in formal logic. Everyone agreed that saying “All men are 
mortal” implies that “No men are not mortal,” but does it also 
imply that “Some men are mortal”—that we have to have at least 
one man who is mortal?
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Existential import lost the battle and the modern convention 
is that “All men are mortal” has the same meaning as “There are 
no men who are immortal,” but does not imply that any men 
exist at all. This is the convention followed in the design of SQL. 
Consider the statement “Some salesmen are liars” and the way 
we would write it with the EXISTS() predicate in SQL:

..
EXISTS(SELECT *
    FROM Personnel AS P, Liars AS L
    WHERE P.job = 'Salesman'
     AND P.emp_name = L.emp_name);

If we are more cynical about salesmen, we might want to for-
mulate the predicate, “All salesmen are liars” with the EXISTS 
predicate in SQL, using the transform rule just discussed:

..
NOT EXISTS(SELECT *
     FROM Personnel AS P
     WHERE P.job = 'Salesman'
      AND P.emp_name
       NOT IN
       (SELECT L.emp_name
         FROM Liars AS L));

which, informally, says, “There are no salesmen who are not liars” 
in English. In this case, the IN predicate can be changed into 
a JOIN, which should improve performance and be a bit easier 
to read.

22.5 EXISTS() and Referential Constraints
Standard SQL was designed so that the declarative referen-
tial constraints could be expressed as EXISTS() predicates in a 
CHECK() clause. For example:

CREATE TABLE Addresses
(addressee_name CHAR(25) NOT NULL PRIMARY KEY,
 street_addr CHAR(25) NOT NULL,
 city_name CHAR(20) NOT NULL,
 state_code CHAR(2) NOT NULL
   REFERENCES ZipCodes(state_code),
..);

could be written as:

CREATE TABLE Addresses
(addressee_name CHAR(25) NOT NULL PRIMARY KEY,
street_addr CHAR(25) NOT NULL,
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city_name CHAR(20) NOT NULL,
state_code CHAR(2) NOT NULL,
CONSTRAINT valid_state_code
 CHECK (EXISTS(SELECT *
        FROM ZipCodes AS Z1
         WHERE Z1.state_code = Addresses.state_code)),
..);

There is no advantage to this expression for the  
Database Administrator, since you cannot attach referential 
actions with the CHECK() constraint. However, an SQL database 
can use the same mechanisms in the SQL compiler for both 
constructions.

22.6 EXISTS and Three-Valued Logic
This example is due to an article by Lee Fesperman at FirstSQL 
(http://www.firstsql.com/) using Chris Date’s “Suppliers_Parts” 
table with three rows. FirstSQL is a product based on the two 
NULLs Codd proposed in his Second Relational Model. It asks 
questions about the three-valued logic and whether an UNKNOWN 
exists in the same sense as a known value.

CREATE TABLE Suppliers_Parts
(sup_nbr CHAR(2) NOT NULL PRIMARY KEY,
part_nbr CHAR(2) NOT NULL,
onhand_qty INTEGER CHECK (onhand_qty > 0));

sup_nbr part_nbr onhand_qty
=============================
'S1'    'P'      NULL
'S2'    'P'      200
'S3'    'P'      1000

The row ('S1', 'P', NULL) means that supplier ‘S1’ supplies 
part ‘P’ but we do not know what quantity he has. The query we 
wish to answer is, “Find suppliers of part ‘P’, but not with a quan-
tity of 1000 on hand”; the correct answer is ‘S2’ based on an on-
hand quantity of 200 units. All suppliers in the table supply ‘P’, 
and we disqualify ‘S3’, who has a quantity of 1000 units, but we 
do not know what quantity ‘S1’ has. The only supplier we select 
for certain is ‘S2’.

An SQL query to retrieve this result would be:

SELECT SPX.sup_nbr
 FROM SupplierParts AS SPX
WHERE px.part_nbr = 'P'
  AND 1000

http://www.firstsql.com/
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     NOT IN (SELECT SPY.onhand_qty
          FROM SupplierParts AS SPY
          WHERE SPY.sup_nbr = SPX.sup_nbr
           AND SPY.part_nbr = 'P');

According to Standard SQL, this query should return only ‘S2’, 
but when we transform the query into what looks like an equiva-
lent version, using NOT EXISTS instead, we obtain:

SELECT SPX.sup_nbr
 FROM SupplierParts AS SPX
WHERE SPX.part_nbr = 'P'
  AND NOT EXISTS
   (SELECT *
     FROM SupplierParts AS SPY
     WHERE SPY.sup_nbr = SPX.sup_nbr
      AND SPY.part_nbr = 'P'
      AND SPY.onhand_qty = 1000);

which will return (‘S1’, ‘S2’). You can argue that this is the wrong 
answer because we do not definitely know whether or not ‘S1’ 
supplies ‘P’ in quantity 1000 or less or more. The EXISTS() predi-
cate will return TRUE or FALSE, even in situations where a subquery 
predicate returns an UNKNOWN (i.e., NULL = 1000).

The solution is to modify the predicate that deals with the 
quantity in the subquery to explicitly say that you do or not want 
to give the “benefit of the doubt” to the NULL. You have several 
alternatives:
1. (SPY.onhand_qty = 1000) IS NOT FALSE

This uses the valued predicates in Standard SQL for testing 
logical values. Frankly, this is confusing to read and worse to 
maintain.

2. (SPY.onhand_qty = 1000 OR SPY.onhand_qty IS NULL)
This uses another test predicate, but the optimizer can prob-
ably use any index on the "onhand_qty" column.

3. (COALESCE(SPY.onhand_qty, 1000) = 1000)
This is portable and easy to maintain. The only disadvan-
tage is that some SQL products might not be able to use 
an index on the "onhand_qty" column because it is in an 
expression.
The real problem is that the query was formed with a double 

negative in the form of a NOT EXISTS and an implicit IS NOT FALSE 
condition. The problem stems from the fact that the EXISTS() 
predicate is one of the few two-value predicates in SQL and that 
(NOT (NOT UNKNOWN)) = UNKNOWN.
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23
QUANTIFIED SUBQUERY 
PREDICATES

A quantifier is a logical operator that states the quantity of 
objects for which a statement is TRUE. This is a logical quantity, 
not a numeric measurement or count; it relates a statement to 
the whole set of possible objects. In everyday life, you see state-
ments like, “There is only one mouthwash that stops dinosaur 
breath,” “All doctors drive Mercedes,” “Some people got rich 
investing in cattle futures,” or “Nobody eats Grandmother’s fruit-
cake,” which are quantified.

The first statement, about the mouthwash, is a uniqueness 
quantifier. If there were two or more products that could save us 
from dinosaur breath, it would be FALSE. The second statement 
has what is called a universal quantifier, since it deals with all 
doctors—find one exception and the statement is FALSE. If you 
can find anyone who has eaten Grandmother’s fruitcake, the 
third statement is FALSE. The last statement has an existential 
quantifier, since it asserts that one or more people exist who got 
rich on cattle futures—find one example, such as Hillary Clinton, 
and the statement is TRUE.

SQL has forms of these quantifiers that are not quite like those 
in formal logic. They are based on extending the use of compari-
son predicates to allow result sets to be quantified and they use 
SQL’s three-valued logic, so they do not return just TRUE or FALSE. 
They can be expressed as ANDs, ORs, and NOTs built from the rows 
in the subquery they use.

23.1 Scalar Subquery Comparisons
Standard SQL allows both scalar and row comparisons, but 
most queries use only scalar expressions. If a subquery returns a  
single-row, single-column result table, it is treated as a scalar 
value in Standard SQL in virtually any place a scalar could appear. 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00023-5
Copyright © 2011 by Elsevier Inc. All rights reserved.
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For example, to find out if we have any teachers who are more 
than one year older than the students, I could write:

SELECT T1.teacher_name
 FROM Teachers AS T1
WHERE T1.birth_date
  >(SELECT MAX(S1.birth_date) - INTERVAL '365' DAY
     FROM Students AS S1);

In this case, the scalar subquery will be run only once and 
reduced to a constant value by the optimizer before scanning the 
Teachers table.

A correlated subquery is more complex, because it will have to 
be executed for each value from the containing query. For exam-
ple, to find which suppliers have sent us fewer than 100 parts, we 
would use this query. Notice how the SUM(onhand_qty) has to be 
computed for each supplier number, sup_nbr.

SELECT sup_nbr, sup_name
 FROM Suppliers
WHERE 100 > (SELECT SUM(onhand_qty)

 FROM Shipments
 WHERE Shipments.sup_nbr = Suppliers.sup_nbr);

If a scalar subquery returns a NULL, we have rules for handling 
comparison with NULLs. But what if it returns an empty result—a 
supplier that has not shipped us anything? In Standard SQL, the 
empty result table is converted to a NULL of the appropriate data type.

In Standard SQL, you can place scalar or row subqueries on 
either side of a comparison predicate as long as they return com-
parable results. But you must be aware of the rules for row com-
parisons. For example, the following query will find the product 
manager who has more of his product at the stores than in the 
warehouse:

SELECT manager_name, product_nbr
 FROM Stores AS S1
WHERE (SELECT SUM(onhand_qty)
       FROM Warehouses AS W1
        WHERE S1.product_nbr = W1.product_nbr)
      < (SELECT SUM(shelf_qty)
         FROM RetailStores AS R1
          WHERE S1.product_nbr = R1.product_nbr);

Here is a programming tip: The main problem with writing 
these queries is getting a result with more than one row in it. You 
can guarantee uniqueness in several ways. An aggregate function 
on an ungrouped table will always be a single value. A JOIN with 
the containing query based on a key will always be a single value.
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23.2 Quantifiers and Missing Data
The quantified predicates are used with subquery expressions 
to compare a single value to those of the subquery, and take the 
general form <value expression> <comp op> <quantifier> <sub-
query>. The predicate <value expression> <comp op> [ANY|SOME] 
<table expression> is equivalent to taking each row, s, (assume 
that they are numbered from 1 to n) of <table expression> and 
testing <value expression> <comp op> s with ORs between the 
expanded expressions:

((<value expression> <comp op> s1)
OR (<value expression> <comp op> s2)
 ..

OR (<value expression> <comp op> sn))

When you get a single TRUE result, the whole predicate is TRUE.
As long as <table expression> has cardinality greater than zero 

and one non-NULL value, you will get a result of TRUE or FALSE. The 
keyword SOME is the same as ANY, and the choice is just a matter 
of style and readability. Likewise, <value expression> <comp op> 
ALL <table expression> takes each row, s, of <table expression> 
and tests <value expression> <comp op> s with ANDs between the 
expanded expressions:

((<value expression> <comp op> s1)
AND (<value expression> <comp op> s2)
 ..

AND (<value expression> <comp op> sn))

When you get a single FALSE result, the whole predicate is 
FALSE. As long as <table expression> has cardinality greater than 
zero and all non-NULL values, you will get a result of TRUE or FALSE.

That sounds reasonable so far. Now let EmptyTable be an 
empty table (no rows, cardinality zero) and NullTable be a table 
with only NULLs in its rows and a cardinality greater than zero. 
The rules for SQL say that <value expression> <comp op> ALL 
NullTable always returns UNKNOWN, and likewise <value expres-
sion> <comp op> ANY NullTable always returns UNKNOWN. This 
makes sense, because every row comparison test in the expan-
sion would return UNKNOWN, so the series of OR and AND operators 
would behave in the usual way.

However, <value expression> <comp op> ALL EmptyTable always 
returns TRUE and <value expression> <comp op> ANY EmptyTable 
always returns FALSE. Most people have no trouble seeing why 
the ANY predicate works that way; you cannot find a match, so the 
result is FALSE. But most people have lots of trouble seeing why the 
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ALL predicate is TRUE. This convention is called existential import, 
and I have just discussed it in the chapter about the EXISTS predi-
cate. It was a big debate at the start of modern logic that boiled 
down to deciding if the statement, “All x are y” implies that “Some 
x exists” by definition. The modern convention is that it does not.

If I were to walk into a bar and announce that I can beat any 
pink elephant in the bar, that would be a true statement. The fact 
that there are no pink elephants in the bar merely shows that the 
problem is reduced to the minimum case. If this seems unnatu-
ral, then convert the ALL and ANY predicates into EXISTS predicates 
and look at the way that this rule preserves the formal mathemat-
ical properties that:
1. (x)P(x) = (x)P(x)
2. (x)P(x) = (x)P(x)

The Table1.x <comp op> ALL (SELECT y FROM Table2 WHERE 
<search condition>) predicate converts to:

.. NOT EXISTS
  (SELECT *
   FROM Table1, Table2
  WHERE Table1.x <comp op> Table2.y
    AND NOT <search condition>)..

The Table1.x <comp op> ANY (SELECT y FROM Table2 WHERE 
<search condition>) predicate converts to:

.. EXISTS
  (SELECT *
   FROM Table1, Table2
  WHERE Table1.x <comp op> Table2.y
   AND <search condition>) ..

Of the two quantified predicates, the <comp op> ALL predicate 
is used more. The ANY predicate is more easily replaced and more 
naturally written with an EXISTS() predicate or an IN() predicate. 
In fact, the Standard defines the IN() predicate as shorthand for 
= ANY and the NOT IN() predicate as shorthand for <> ANY, which 
is how most people would construct them in English.

The <comp op> ALL predicate is probably the more useful of 
the two, since it cannot be written in terms of an IN() predi-
cate. The trick with it is to make sure that its subquery defines 
the set of values in which you are interested. For example, to 
find the authors whose books all sell for $49.95 or more, you 
could write:

SELECT *
 FROM Authors AS A1
WHERE 49.95
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 <= ALL (SELECT book_price
         FROM Books AS B1
          WHERE A1.author_name = B1.author_name);

The best way to think of this is to reverse the usual English 
sentence, “Show me all x that are y” in your mind so that it says “y 
is the value of all x” instead.

23.3  The ALL Predicate and Extrema 
Functions

It is counter intuitive at first that these two predicates are not the 
same in SQL:

  x >= (SELECT MAX(y) FROM Table1)
  x >= ALL (SELECT y FROM Table1)

but you have to remember the rules for the extrema functions—
they drop out all the NULLs before returning the greater or least 
values. The ALL predicate does not drop NULLs, so you can get 
them in the results.

However, if you know that there are no NULLs in a column or 
are willing to drop the NULLS yourself, then you can use the ALL 
predicate to construct single queries to do work that would oth-
erwise be done by two queries. For example, given the table of 
products and store manager we used earlier in this chapter, to 
find which manager handles the largest number of products, you 
would first construct a CTE and use it twice:

WITH TotalProducts (manager_name, product_tally)
AS
(SELECT manager_name, COUNT(*)
  FROM Stores
 GROUP BY manager_name)
SELECT manager_name
 FROM TotalProducts
WHERE product_tally
      = (SELECT MAX(product_tally)
         FROM TotalProducts);

But Alex Dorfman found a single query solution instead:

SELECT manager_name, COUNT(*)
 FROM Stores
GROUP BY manager_name
HAVING COUNT(*) + 1
 > ALL (SELECT DISTINCT COUNT(*)
          FROM Stores
         GROUP BY manager_name);
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The use of the SELECT DISTINCT in the subquery is to guarantee 
that we do not get duplicate rows when two managers handle the 
same number of products. You can also add a .. WHERE dept IS 
NOT NULL clause to the subquery to get the effect of a true MAX() 
aggregate function.

23.4 The UNIQUE Predicate
The UNIQUE predicate is a test for the absence of redundant dupli-
cate rows in a subquery. The UNIQUE keyword is also used as a 
table or column constraint. This predicate is used to define the 
constraint. The syntax for this predicate is:

<unique predicate> ::= UNIQUE <table subquery>

If any two rows in the subquery are equal to each other, the 
predicate is FALSE. However, the definition in the standard is 
worded in the negative, so that NULLs get the benefit of the doubt. 
The query can be written as an EXISTS predicate that counts rows, 
thus:

EXISTS (SELECT <column list>
  FROM <subquery>
 WHERE (<column list>) IS NOT NULL
 GROUP BY <column list>
 HAVING COUNT(*) > 1);

An empty subquery is always TRUE, since you cannot find two 
rows, and therefore duplicates do not exist. This makes sense on 
the face of it.

NULLs are easier to explain with an example, say a table with 
only two rows, ('a', 'b') and ('a', NULL). The first columns of 
each row are non-NULL and are equal to each other, so we have a 
match so far. The second column in the second row is NULL and 
cannot compare to anything, so we skip the second column pair, 
and go with what we have, and the test is TRUE. This is giving the 
NULLs the benefit of the doubt, since the NULL in the second row 
could become ‘b’ some day and give us a duplicate row.

Now consider the case where the subquery has two rows, 
('a', NULL) and ('a', NULL). The predicate is still TRUE, because 
the NULLs do not test equal or unequal to each other—not 
because we are making NULLs equal to each other.

As you can see, it is a good idea to avoid NULLs in UNIQUE 
constraints.

The UNIQUE column constraint is implemented in most 
SQL products with a CREATE UNIQUE INDEX <index name> ON 
<table>(<column list>) statement hidden under the covers. 
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Standard SQL does not have indexes or any physical data access 
methods defined, but a vendor consortium agreed on this basic 
syntax.

Another way to do check uniqueness is to use hashing. When 
you get a hash clash (also known as a hash collision), then you 
look to see if the values are identical or not. A lot of research 
work is being done with Perfect and Minimal Perfect Hashing for 
databases. This technique is much faster than indexing for large 
databases since it requires only one hash probe instead of several 
index tree traversals.

23.5 The DISTINCT Predicate
This is a test of whether two row values are distinct from each 
other. The simple expression was discussed with the simple 
comparison operators. This is a logical extension to rows, just 
as we need with the simple comparison operators. The BNF is 
defined as:

<distinct predicate> ::=
<row value predicand 1>
IS [NOT] DISTINCT FROM <row value predicand 2>

Following the usual pattern,

<row value predicand 1> IS NOT DISTINCT FROM <row value 
predicand 2>

means

NOT (<row value predicand 1> IS DISTINCT FROM <row value 
predicand 2>)

The two <row value predicand>s have to be of the same 
degree, and the columns in the same ordinal position have to 
match on data types so that equality testing is possible.

The distinct predicate is TRUE if all the columns are DISTINCT 
FROM the corresponding column in the other predicand; other-
wise, it is FALSE. There is no UNKNOWN result.

If two <row value predicand>s are not distinct, then they are 
said to be duplicates. If a number of <row value predicand>s are 
all duplicates of each other, then all except one are said to be 
redundant duplicates.
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24
THE SIMPLE SELECT 
STATEMENT

The good news about SQL is that the programmer only needs 
to learn the SELECT statement to do almost all his work! The bad 
news is that the statement can have so many nested clauses that 
it looks like a Victorian novel! The SELECT statement is used to 
query the database. It combines one or more tables, can do some 
calculations, and finally puts the results into a result table that 
can be passed on to the host language.

I have not spent much time on simple one-table SELECT state-
ments you see in introductory books. I am assuming that you are 
experienced SQL programmers and got enough of those queries 
when you were learning SQL.

But it is worth going back to those basics and thinking about the 
conceptual model used in SQL. The simple query is the foundation 
of more and more complex queries.

24.1 SELECT Statement Execution Order
There is an effective order to the execution of the clauses of an 
SQL SELECT statement that does not seem to be covered in most 
beginning SQL books. It explains why some things work in SQL 
and others do not.

24.2 One-Level SELECT Statement
The simplest possible SELECT statement is just SELECT * FROM 
Sometable;, which returns the entire table as it stands. You 
can actually write this as TABLE Sometable in Standard SQL, but 
nobody seems to use that syntax. Though the syntax rules say 
that all you need are the SELECT and FROM clauses, in practice there 
is almost always a WHERE clause.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00024-7
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Let’s look at the basic SELECT statement in detail. The syntax 
for the statement is:

[WITH <common table expression list>]
SELECT [ALL | DISTINCT] <scalar expression list>
  FROM <table expression>
[WHERE <search condition>]
[GROUP BY <grouping column list>]
[HAVING <group condition>];

The order of execution is effectively as follows. This does not 
mean that an SQL compiler must do things exactly in this order, 
just that the final results have to be the same.
1. Materialize the [WITH <common table expression list>] so that 

the body of the query can use it. The SQL engine does not have 
to actually do this, and more often than not, it will expand the 
text of the CTE as in-line code. The table expressions come into 
existence in the order they are written, so you can reference 
a prior expression in the current list member. I am going to 
ignore this feature for now and stick with the basics.

2. Execute the FROM <table expression> clause and construct 
the working result table defined in that clause. This work-
ing table will exist only in the scope of the SELECT statement. 
The FROM can have all sorts of other table expressions, but the 
point is that they eventually return a single working table as 
a result. We will get into the details of those expressions later, 
with particular attention to the JOIN operators, derived tables, 
CTEs, and correlated subqueries.

The fiction is that a simple list of table names or expres-
sions yield an implicit CROSS JOIN. No product actually uses a 
CROSS JOIN to construct the intermediate table—the working 
table would get too large, too fast. For example, a 1000-row 
table and another 1000-row table would CROSS JOIN to get a 
1,000,000-row working table. This is just the conceptual model 
we use to describe behavior.

3. If there is a WHERE clause, the search condition in it is applied 
to each row of the FROM clause result table. The rows that test 
TRUE are retained; the rows that test FALSE or UNKNOWN are deleted 
from the working table.

This table is different from other tables in that each col-
umn retains the table name from which it was derived. Thus 
if table A and table B both have a column named x, there will 
be a column A.x and a column B.x in the results of the FROM 
clause. This is why it is a good practice to use fully qualified 
column names. Or to rename columns with an AS operator.

The WHERE clause is where the action is. The predicate can 
be simple search conditions or quite complex and have nested  
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subqueries. The syntax of a subquery is a SELECT statement, 
which is inside parentheses—failure to use parentheses is a 
common error for new SQL programmers. Subqueries are 
where the original SQL got the name “Structured English Query 
Language”—the ability to nest SELECT statements was the 
“structured” part. We will deal with those in another section.

The simplest WHERE clauses are made up of two kinds of 
search conditions. There are search arguments, called SARGs in 
the literature, that filter out rows from one table in the working 
table. They usually have a simple comparison predicate, func-
tion call, or reference other columns in the same table. The 
second kind of search conditions are join predicates. These 
involve predicates with a reference to two or more tables.

4. If there is a GROUP BY clause, it is executed next. It uses the FROM 
and WHERE clause working table and breaks these rows into 
groups where the columns in the <grouping column list> all 
have the same value. Grouping is not quite like equality. NULLs 
are treated as if they were all equal to each other, and form their 
own group. Each group is then reduced to a single row in a new 
result table that replaces the old one.

Only four things make sense as group characteristics: the 
columns that define the groups, the aggregate functions that 
summarize group characteristics, function calls and constants, 
and expressions built from those three things.

Originally, each row in the grouped table represented 
information about its group; it was at one higher level of 
aggregation. Today, Standard SQL allows constructs that cre-
ate rows that represent aggregation at multiple levels. There 
are ways to get the same result by using UNIONs and table 
expressions, which we will discuss later.

5. If there is a HAVING clause, it is applied to each of the grouped 
rows in the current working table. The rows that test TRUE are 
retained; the groups that test FALSE or UNKNOWN are deleted. If 
there is no GROUP BY clause, the HAVING clause treats the whole 
table as a single group. It is not true that there must be a GROUP 
BY clause.

Aggregate functions used in the HAVING clause usually 
appear in the SELECT clause, but that is not part of the stan-
dard. Nor does the SELECT clause have to include all the group-
ing columns.

6. Finally, the SELECT clause is applied to the result table. If 
a column does not appear in the <expression list> of the 
SELECT clause, it is dropped from the final results. Expressions 
can be constants or column names, or they can be calcula-
tions made from constants, columns, functions, and scalar 
subqueries.
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If the SELECT clause has the DISTINCT option, redundant 
duplicate rows are deleted from the final result table. The 
phrase “redundant duplicate” means that one copy of the row 
is retained. If the SELECT clause has the explicit ALL option or is 
missing the [ALL | DISTINCT] option, then all duplicate rows 
are preserved in the final results table. Frankly, although it is 
legal syntax, nobody really uses the SELECT ALL option. Finally, 
the results are returned.
This means that the scalar subqueries, function calls, and 

expressions in the SELECT are done after all the other clauses are 
done. The AS operator can give names to expressions in the SELECT 
list. These new data element names come into existence all at 
once, but after the WHERE clause, GROUP BY clause, and HAVING clause 
have been executed; you cannot use them in the SELECT list or the 
WHERE clause for that reason. SQL does not work “from left to right” 
as they would in a sequential file/procedural language model. In 
those languages, these two statements produce different results:

READ (a, b, c) FROM File_X;
READ (c, a, b) FROM File_X;

whereas these two statements return the same data, in different 
orders:

SELECT a, b, c FROM Table_X;
SELECT c, a, b FROM Table_X;

Think about what a confused mess this statement is in the SQL 
model.

SELECT f(c2) AS c1, f(c1) AS c2 FROM Foobar;

That is why such nonsense is illegal syntax.
Let us carry an example out in painful detail, with a two-table 

join.

SELECT S.sex_code, COUNT(*), AVG(S.age),
(MAX(S.age) − MIN(S.age)) AS age_range

  FROM Students AS S, Gradebook AS G
WHERE grade = 'A'
    AND S.stud_nbr = G.stud_nbr
GROUP BY S.sex_code
HAVING COUNT(*) > 3;

The two starting tables look like this:

CREATE TABLE Students
(stud_nbr INTEGER NOT NULL PRIMARY KEY,
stud_name CHAR(50) NOT NULL,
sex_code INTEGER NOT NULL
 CHECK (sex_code IN (0, 1, 2)), --iso code
stud_age INTEGER NOT NULL); -- bad design; compute from 

birth date
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Students
stud_nbr stud_name sex_code stud_age
======================================
1 'smith' 1 16
2 'smyth' 2 17
3 'smoot' 2 16
4 'Adams' 2 17
5 'Jones' 1 16
6 'Celko' 1 17
7 'Vennor' 2 16
8 'Murray' 1 18

CREATE TABLE Gradebook
(stud_nbr INTEGER NOT NULL PRIMARY KEY  

REFERENCES Students(stud_nbr)
  ON DELETE CASCADE
  ON UPDATE CASCADE,
grade CHAR(1) NOT NULL
 CHECK (grade IN ('A', 'B', 'C', 'D', 'F'));

Gradebook
stud_nbr grade
===============
1 'A'
2 'B'
3 'C'
4 'D'
5 'A'
6 'A'
7 'A'
8  'A'

The CROSS JOIN in the FROM clause looks like this:

                   Students              Gradebook
stud_nbr stud_name sex_code stud_age | stud_nbr grade

1 'smith' 1 16 | 1 'A'
1 'smith' 1 16 | 2 'B'
1 'smith' 1 16 | 3 'C'
1 'smith' 1 16 | 4 'D'
1 'smith' 1 16 | 5 'A'
1 'smith' 1 16 | 6 'A'
1 'smith' 1 16 | 7 'A'
1 'smith' 1 16 | 8 'A'

CROSS JOIN Working Table

(Continued)
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                   Students              Gradebook
stud_nbr stud_name sex_code stud_age | stud_nbr grade

2 'smyth' 2 17 | 1 'A'

2 'smyth' 2 17 | 2 'B'

2 'smyth' 2 17 | 3 'C'

2 'smyth' 2 17 | 4 'D'

2 'smyth' 2 17 | 5 'A'

2 'smyth' 2 17 | 6 'A'

2 'smyth' 2 17 | 7 'A'

2 'smyth' 2 17 | 8 'A'

3 'smoot' 2 16 | 1 'A'

3 'smoot' 2 16 | 2 'B'

3 'smoot' 2 16 | 3 'C'

3 'smoot' 2 16 | 4 'D'

3 'smoot' 2 16 | 5 'A'

3 'smoot' 2 16 | 6 'A'

3 'smoot' 2 16 | 7 'A'

3 'smoot' 2 16 | 8 'A'

4 'Adams' 2 17 | 1 'A'

4 'Adams' 2 17 | 2 'B'

4 'Adams' 2 17 | 3 'C'

4 'Adams' 2 17 | 4 'D'

4 'Adams' 2 17 | 5 'A'

4 'Adams' 2 17 | 6 'A'

4 'Adams' 2 17 | 7 'A'

4 'Adams' 2 17 | 8 'A'

5 'Jones' 1 16 | 1 'A'

5 'Jones' 1 16 | 2 'B'

5 'Jones' 1 16 | 3 'C'

5 'Jones' 1 16 | 4 'D'

5 'Jones' 1 16 | 5 'A'

5 'Jones' 1 16 | 6 'A'

5 'Jones' 1 16 | 7 'A'

5 'Jones' 1 16 | 8 'A'

6 'Celko' 1 17 | 1 'A'

6 'Celko' 1 17 | 2 'B'

6 'Celko' 1 17 | 3 'C'

6 'Celko' 1 17 | 4 'D'

6 'Celko' 1 17 | 5 'A'

6 'Celko' 1 17 | 6 'A'
6 'Celko' 1 17 | 7 'A'
6 'Celko' 1 17 | 8 'A'

(Continued)
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7 'Vennor' 2 16 | 1 'A'
7 'Vennor' 2 16 | 2 'B'
7 'Vennor' 2 16 | 3 'C'
7 'Vennor' 2 16 | 4 'D'
7 'Vennor' 2 16 | 5 'A'
7 'Vennor' 2 16 | 6 'A'
7 'Vennor' 2 16 | 7 'A'
7 'Vennor' 2 16 | 8 'A'
8 'Murray' 1 18 | 1 'A'
8 'Murray' 1 18 | 2 'B'
8 'Murray' 1 18 | 3 'C'
8 'Murray' 1 18 | 4 'D'
8 'Murray' 1 18 | 5 'A'
8 'Murray' 1 18 | 6 'A'
8 'Murray' 1 18 | 7 'A'
8 'Murray' 1 18 | 8 'A'

There are two search conditions in the WHERE. The first predi-
cate grade = ‘A’ needs only the Students table, so it is a SARG. In 
fact, an optimizer in a real SQL engine would have removed those 
rows in the Students table that failed the test before doing the 
CROSS JOIN. The second predicate is S.stud_nbr = G.stud_nbr, 
which requires both tables and the constructed row from the two 
table; a join condition. Now remove the rows that do not meet 
the conditions. After the WHERE clause, the result table looks like 
this:

Cross Join after WHERE Clause 

Students Gradebook

stud_nbr stud_name sex_code stud_age | stud_nbr grade

1 'smith' 1 16 | 1 'A'

5 'Jones' 1 16 | 5 'A'
6 'Celko' 1 17 | 6 'A'
7 'Vennor' 2 16 | 7 'A'
8 'Murray' 1 18 | 8 'A'

                   Students              Gradebook
stud_nbr stud_name sex_code stud_age | stud_nbr grade
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We have a GROUP BY clause that will group the working table by 
sex_code, thus:

and the aggregate functions in the SELECT clause are computed 
for each group:

Aggregate Functions

sex_code COUNT(*) AVG(stud_age)
(MAX(stud_age)—MIN(stud_age))  

AS age_range

2 1 16.00 (16 − 16) = 0

1 4 16.75 (18 − 16) = 2

The HAVING clause is applied to each group, the SELECT state-
ment is applied last, and we get the final results:

HAVING Clause and SELECT Clause

sex_code  COUNT(*)   AVG(stud_age)     age_range

1 4 16.75 2

GROUP BY sex_code

Students Gradebook

stud_nbr stud_name sex_code stud_age | stud_nbr grade

1 'smith' 1 16 | 1 'A' sex_code = 1

5 'Jones' 1 16 | 5 'A'
6 'Celko' 1 17 | 6 'A'
8 'Murray' 1 18 | 8 'A'
7 'Vennor' 2 16 | 7 'A' sex_code = 2
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Obviously, no real implementation actually produces these 
intermediate tables; that would be insanely expensive. They are 
just a model of how a statement works. The FROM clause can have 
JOINs and other operators that create working tables in more 
complex ways, but the same steps are followed in this order in 
a nested fashion. That means subqueries in the WHERE clause are 
parsed and expanded the same way as a simple query.

The simple SELECT is also the easiest to optimize. Simple 
SELECT statements should do most of the work in a well-designed, 
normalized schema.
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25
ADVANCED SELECT 
STATEMENTS

In the previous chapter, we took a look at the basic SELECT 
 statement. Now we need to look at other ways to nest subqueries 
and build the working table in the FROM clause with other syntax.

25.1 Correlated Subqueries
One of the classics of software engineering is a short paper by 
the late Edsger Dijkstra entitled “Go To Statement Considered 
Harmful” (Communications of the ACM, Vol. 11, No. 3, March 
1968, pp. 147–148). In this paper he argued for dropping the GOTO 
statement from programming languages in favor of what we now 
called Structured Programming.

One of his observations was that programs that used only 
BEGIN-END blocks, WHILE loops, and IF-THEN-ELSE statements were 
easier to read and maintain. Programs that jumped around via 
GOTO statements were harder to follow because the execution path 
could have arrived at a statement label from anywhere in the 
code. Algol, the first of the blocked structured programming lan-
guages, had all of those control structures but still kept the GOTO—
it was considered a fundamental part of programming! Before 
Dijkstra, nobody had really understood the power of limiting the 
scope of variables and control structures in procedural code. The 
basic idea of a scope is that a block of code can reference only 
variables that are declared in the block. Failing to find a local vari-
able, the containing blocks are then inspected from the inside out.

We have the same concept in SQL queries. A correlated sub-
query is a subquery that references columns in the tables of its 
containing query. The general structure might look like:

SELECT T1.x, T1.y, T1.z
 FROM TableOne AS T1
WHERE T1.x
  = (SELECT T2.x, T2.y, T2.z
     FROM TableTwo AS T2

http://dx.doi.org/10.1016/B978-0-12-382022-8.00025-9
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     WHERE T2.y
      = (SELECT foobar
          FROM TableThree AS T3
         WHERE T3.x = T1.x
          AND T3.y = T2.y
          AND T3.z = 42));

Look at the innermost query. The predicate (T3.z 5 42) is 
local to this query. The predicate (T3.y 5 T2.y) works because 
this query is in the scope of the query with T2 in the FROM clause. 
Likewise, The predicate (T3.x 5 T1.x) works because this query 
is in the scope of the query with T1 in the FROM clause. If I had 
not qualified the table names in the innermost WHERE clause, the 
predicate (T3.x 5 x) would refer to the most local x, which gives 
us (T3.x 5 T3.x), which is always TRUE or UNKNOWN. That is absurd.

But a predicate like (T3.z 5 floob) might reference table T1, 
T2, or T3, depending on which one has the nearest column floob; 
which table would be determined by working outward. This is 
why it is important to qualify column names.

The tables can reference the same table under a different cor-
relation name. Consider a query to find all the students who are 
younger than the oldest student of their gender:

SELECT S1.stud_nbr, S1.stud_name, S1.sex_code, S1.stud_age
 FROM Students AS S1
WHERE stud_age
  < (SELECT MAX(stud_age)
      FROM Students AS S2
     WHERE S1.sex_code = S2.sex_code);

1. Let’s work it out in detail. The fiction in SQL is that we create local 
tables S1 and S2, which happen to have the same data and struc-
ture as the Students table. A copy of the Students table is made 
for each correlation name, S1 and S2. Obviously, this is not how it 
is implemented in a real SQL compiler. Following the same steps 
we used in simple SELECT Statements, expand the outer query.

stud_nbr stud_name sex_code stud_age

1 'Smith' 1 16
2 'Smyth' 2 17
3 'Smoot' 2 16
4 'Adams' 2 17
5 'Jones' 1 16
6 'Celko' 1 17
7 'Vennor' 2 16
8 'Murray' 1 18
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2. When you get to the WHERE clause, and find the innermost 
query, you will see that you need to get data from the contain-
ing query. The model of execution says that each outer row has 
the subquery executed on it in parallel with the other rows. 
Assume we are working on student (1, ‘Smith’), who is male. 
The query in effect becomes:

SELECT 1, 'Smith', 1, 16
 FROM Students AS S1
WHERE 16 < (SELECT MAX(stud_age)
      FROM Students AS S2
     WHERE 1 = S2.sex_code);

As an aside, the search conditions (1 = S2.sex_code) and 
(S2.sex_code = 1) are equivalent. The choice is largely a mat-
ter of the programmer’s culture; do you read from left to right 
or right to left?

3. The subquery can now be calculated for male students; the 
 maximum stud_age is 18. When we expand this out for all the 
other rows, this will give us the effect of this set of parallel queries.

SELECT 1, 'Smith', 1, 16 FROM Students AS S1 WHERE 16 < 18;
SELECT 2, 'Smyth', 2, 17 FROM Students AS S1 WHERE 17 < 17;
SELECT 3, 'Smoot', 2, 16 FROM Students AS S1 WHERE 16 < 17;
SELECT 4, 'Adams', 2, 17 FROM Students AS S1 WHERE 17 < 17;
SELECT 5, 'Jones', 1, 16 FROM Students AS S1 WHERE 16 < 18;
SELECT 6, 'Celko', 1, 17 FROM Students AS S1 WHERE 17 < 18;
SELECT 7, 'Vennor', 2, 16 FROM Students AS S1 WHERE 16 < 17;
SELECT 8, 'Murray', 1, 18 FROM Students AS S1 WHERE 18 < 18;

4. These same steps have been done for each row in the contain-
ing query. The model is that all the subqueries are resolved 
at once. With cheaper and cheaper parallel hardware, this 
might be true some day, but no implementation really does it 
that way currently. The usual approach in real SQL compilers 
is to build procedural loops in the database engine that scan 
through both tables. What table is in what loop is decided by 
the optimizer. The final results are:

stud_nbr stud_name sex_code stud_age

1 'Smith' 1 16
3 'Smoot' 2 16
5 'Jones' 1 16
6 'Celko' 1 17
7 'Vennor' 2 16



410  Chapter 25 ADVANCED SELECT STATEMENTS

Again, no real product works this way, but it has to produce 
the same results as this process.

There is no limit to the depth of nesting of correlated subque-
ries in theory. In practice, it is probably a good heuristic to keep 
the nesting under five levels. This is a number that shows up in 
human psychology as a limit on how many things we can han-
dle mentally. The classic study is George Miller’s “The Magical 
Number Five Plus or Minus Two: Some Limits on Our Capacity 
for Processing Information” (The Psychological Review, 1956).

These examples used scalar subqueries, but you can also use 
correlated subqueries that return a collection of tables. For exam-
ple, to find all of Professor Celko’s students, we might use this 
query:

SELECT S1.stud_nbr, S1.stud_name, S1.sex_code, S1.stud_age
 FROM Students AS S1
WHERE S1.stud_nbr
  IN (SELECT T.stud_nbr
      FROM Teachers AS T1
     WHERE S1.stud_nbr = T1.stud_nbr
      AND T1.teacher_name = 'Celko');

Another problem is that many SQL programmers do not fully 
understand the rules for scope of derived table names. If an 
infixed join is given a derived table name, then all the table names 
inside it are hidden from containing expressions. For example,  
this will fail:

SELECT a, b, c -- wrong!
FROM (Foo
  INNER JOIN
  Bar
  ON Foo.y >= Bar.x) AS Foobar (x, y)
   INNER JOIN
   Flub
   ON Foo.y <= Flub.z;

because the table name Foo is not available to the second 
INNER JOIN. However, the following will work because Foobar is 
exposed:

SELECT a, b, c
FROM (Foo
  INNER JOIN
  Bar
  ON Foo.y >= Bar.x) AS Foobar (x, y)
   INNER JOIN
   Flub
   ON Foobar.y <= Flub.z;
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If you start nesting lots of derived table expressions you can 
force an order of execution in the query. It is not a generally a 
good idea to try to outguess the optimizer, so watch overscoping 
your nested queries.

So far I have shown fully qualified column names. It is a good 
programming practice, but it is not required. Assume that Foo and 
Bar both have a column named w. These statements will produce  
an ambiguous name error:

SELECT a, b, c
FROM Foo
  INNER JOIN
  Bar ON y >= x
  INNER JOIN
  Flub ON y <= w;

SELECT a, b, c
FROM Foo, Bar, Flub
WHERE y BETWEEN x AND w

But this statement will work from inside the parentheses first, 
and then does the outermost INNER JOIN last.

SELECT a, b, c
FROM Foo
  INNER JOIN
  (Bar
    INNER JOIN
    Flub ON y <= w)
  ON y >= x;

If Bar did not have a column named w, the parser would go to 
the next containing expression, find Foo.w, and use it.

25.2 Infixed INNER JOINs
SQL-92 added new syntax for JOINs using infixed operators in 
the FROM clause. The JOIN operators are quite general and flexible, 
allowing you to do things in a single statement that you could not 
do in the older notation. The basic syntax is

<joined table> ::=
 <cross join> | <qualified join> | (<joined table>)

<cross join> ::= <table reference> CROSS JOIN 
<table reference>

<qualified join> ::=
  <table reference> [NATURAL] [<join type>] JOIN
     <table reference> [<join specification>]

<join specification> ::= <join condition> | <named columns join>
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<join condition> ::= ON <search condition>

<named columns join> ::= USING (<join column list>)

<join type> ::= INNER | <outer join type> [OUTER] | UNION

<outer join type> ::= LEFT | RIGHT | FULL

<join column list> ::= <column name list>

<table reference> ::=
  <table name> [[AS] <correlation name>[(<derived column 

list>)]]
     | <derived table>
            [AS] <correlation name> [(<derived  

    column list>)]
     | <joined table>

<derived table> ::= <table subquery>

<column name list> ::=
  <column name> [{<comma> <column name>}..]

An INNER JOIN is done by forming the CROSS JOIN and then 
removing the rows that do not meet the JOIN search conditions 
given in the ON clause, just like we did with the original FROM.. 
WHERE syntax. The ON clause can be as elaborate as you want to 
make it, as long as it refers to tables and columns within its 
scope. If a <qualified join> is used without a <join type>, INNER 
is implicit. But it is good documentation to spell out all the JOIN 
operators.

However, in the real world, most INNER JOINs are done using 
equality tests on columns with the same names in different 
tables, rather than on elaborate search conditions. Equi-JOINs 
are so common that Standard SQL has two shorthand ways 
of specifying them. The USING (c1, c2, .., cn) clause takes the 
column names in the list and replaces them with the clause 
ON ((T1.c1, T1.c2, .., T1.cn) = (T2.c1, T2.c2, .., T2.cn)). 
Likewise, the NATURAL option is shorthand for a USING() clause 
that is a list of all the column names that are common to both 
tables. If NATURAL is specified, a JOIN specification cannot be 
given; it is already there.

A strong warning: Do not use NATURAL JOIN in production 
code. Any change to the column names or addition of new col-
umns will change the join at runtime. This is also why you 
do not use SELECT * in production code. But the NATURAL JOIN 
is more dangerous. As Daniel Morgan pointed out, a NATURAL 
JOIN between two tables with a vague generic column name 
like  “comments” for unrelated data elements can give you a 
 meaningless join containing megabytes of text.
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The same sort of warning applies to the USING clause. 
Neither of these options is widely implemented or used. If you 
find out that product_id, product_nbr and upc were all used for 
the same data element in your schema, you should do a global 
change to make sure that one data element has one and only 
one name.

There is a myth among ACCESS programmers that the ON clause 
can contain only JOIN conditions and the WHERE can contain only 
search conditions. This is not true, and the difference in the posi-
tion of the search conditions is not important. The product gen-
erated code in that format because this was the execution plan 
used by the simple compiler.

Having said this, separating the conditions this way can have 
some advantages for documentation. It becomes easy to remove 
the WHERE clause and have a candidate for a VIEW. But there are 
trade-offs.

25.3 OUTER JOINs
OUTER JOINs used to be done with proprietary vendor syntax. 
Today, the use of the Standard OUTER JOIN is universal. An OUTER 
JOIN is a JOIN that preserves all the rows in one or both tables, 
even when they do not have matching rows in the second table. 
The unmatched columns in the unpreserved table are filled 
with NULLs to complete the join and return rows with the right 
structure.

Let’s take a real-world situation. I have a table of orders and 
a table of suppliers that I wish to JOIN for a report to tell us how 
much business we did with each supplier. With a traditional 
inner join, the query would be this:

SELECT S.sup_id, S.sup_name, O.order_nbr, O.order_amt
 FROM Suppliers AS S, Orders AS O
WHERE S.sup_id = O.sup_id;

or with the infixed syntax:

SELECT S.sup_id, S.sup_name, O.order_nbr, O.order_amt
 FROM Suppliers AS S –- preserved table
     INNER JOIN
     Orders AS O
     ON S.sup_id = O.sup_id;

Some supplier totals include credits for returned merchan-
dise, and our total business with them works out to zero  dollars. 
Other suppliers never got an order from us at all, so we did zero 
dollars’ worth of business with them, too. But the first case will 
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show up in the query result and be passed on to the report, 
whereas the second case will disappear in the INNER JOIN. 
Having zero liters of beer in my glass and not having a glass at all 
are very different situations.

If we had used an OUTER JOIN, preserving the Suppliers table, 
we would have all the suppliers in the results. When a supplier 
with no orders was found in the Orders table, the order_nbr 
and order_amt columns would be given a NULL value in the 
result row.

SELECT S.sup_id, S.sup_name, O.order_nbr, O.order_amt
FROM Suppliers AS S

OUTER LEFT JOIN
Orders AS O
ON S.sup_id = O.sup_id;

25.3.1 A Bit of History
Before the SQL-99 Standard, there was no Standard OUTER JOIN 
syntax, so you had to construct it by hand with a messy UNION in 
products like very early versions of DB2 from IBM like this:

SELECT sup_id, sup_name, order_amt -- regular INNER JOIN
 FROM Suppliers, Orders
WHERE Suppliers.sup_id = Orders.sup_id
UNION ALL
SELECT sup_id, sup_name, CAST(NULL AS INTEGER) --  

preserved rows
 FROM Suppliers
WHERE NOT EXISTS
  (SELECT *
    FROM Orders
   WHERE Suppliers.sup_id = Orders.sup_id);

You have to use a NULL with the correct data type to make the 
UNION work, hence the CAST() functions. Some products are smart 
enough that just NULL by itself will be given the correct data type, 
but this is portable and safer.

The other alternative is to insert a constant of some sort 
to give a more meaningful result. This is easy in the case of 
a CHARACTER column, where a message like '{{NONE}}' can be 
quickly understood. It is much harder in the case of a numeric 
column, where we could have a balance with a supplier that is 
positive, zero, or negative because of returns and credits. There 
really is a difference between a vendor that we did not use and a 
vendor whose returns and credits canceled out its orders.
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In the second edition of this book, I described the proprie-
tary OUTER JOIN extensions in detail. Today, they are gone and 
replaced by the Standard syntax. The vendor extensions were 
all different in syntax or semantics or both. Since they are 
mercifully gone, I am not going to tell you about them in this 
edition.

The name LEFT OUTER JOIN comes from the fact that the 
 preserved table is on the left side of the operator. Likewise, a 
RIGHT OUTER JOIN would have the preserved table on the right-
hand side, and the FULL OUTER JOIN preserves both tables.

Here is how OUTER JOINs work in Standard SQL. Assume you 
are given:

and the OUTER JOIN expression:

Table1
LEFT OUTER JOIN
Table2
ON Table1.a = Table2.a  > JOIN condition
 AND Table2.c = 't';  > single table condition

We call Table1 the “preserved table” and Table2 the “unpre-
served table” in the query. What I am going to give you is a little 
different, but equivalent to the ANSI/ISO standards.
1. We build the CROSS JOIN of the two tables. Scan each row in the 

result set.
2. If the predicate tests TRUE for that row, then you keep it. You also 

remove all rows derived from it from the CROSS JOIN.
3. If the predicate tests FALSE or UNKNOWN for that row, then keep 

the columns from the preserved table, convert all the columns 
from the unpreserved table to NULLs, and remove the duplicates. 
So let us execute this by hand:

Let > = passed the first predicate
Let d = passed the second predicate

Table1 Table2
 a b a c  

1 w 1 r
2 x 2 s
3 y 3 t
4 z
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Table1 LEFT OUTER JOIN Table2
a b a  c

3 y 3 t > only TRUE row

1 w NULL NULL Sets of duplicates
1 w NULL NULL
1 w NULL NULL

2 x NULL NULL
2 x NULL NULL
2 x NULL NULL

3 y NULL  NULL > derived from the TRUE set - Remove
3 y NULL NULL

4 z NULL NULL
4 z NULL NULL
4 z NULL NULL

The final results:

 Table1 LEFT OUTER JOIN Table2  
a b a c

1 w NULL NULL
2 x NULL NULL
3 y 3 t
4 z NULL NULL

 Table1 CROSS JOIN Table2  
a b a c

1 w 1 r >

1 w 2 s
1 w 3 t d

2 x 1 r
2 x 2 s >

2 x 3 t d

3 y 1 r
3 y 2 s
3 y 3 t > d the TRUE set
4 z 1 r
4 z 2 s
4 z 3 t d
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The basic rule is that every row in the preserved table is repre-
sented in the results in at least one result row.

Consider the two famous Chris Date tables from his “Suppliers 
and Parts” database used in his textbooks.

If you write the OUTER JOIN with only the join predicate in the 
ON clause, like this:

SELECT Suppliers.sup_id, SupParts.part_nbr, SupParts.
part_qty

 FROM Suppliers
   LEFT OUTER JOIN
   SupParts
   ON Suppliers.sup_id = SupParts.sup_id
WHERE part_qty < 200;

you get:

sup_id part_nbr part_qty

'S1' 'P1' 100
'S2' 'P1' 100

But if we put the search predicate in the ON clause, we get this 
result.

SELECT Suppliers.sup_id, SupParts.part_nbr, SupParts.
part_qty

 FROM Suppliers
   LEFT OUTER JOIN
   SupParts
   ON Suppliers.sup_id = SupParts.sup_id
    AND part_qty < 200;

Suppliers SupParts
sup_id sup_id part_nbr part_qty

S1 S1 P1 100
S2 S1 P2 250
S3 S2 P1 100

S2 P2 250
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sup_id part_nbr part_qty

'S1' 'P1' 100
'S2' 'P1' 100
'S3' NULL NULL

Another problem was that you could not show the same table 
as preserved and unpreserved in the proprietary syntax options, 
but it is easy in Standard SQL. For example to find the students 
who have taken Math 101 and might have taken Math 102:

SELECT C1.stud_nbr, C1.math_course, C2.math_course
 FROM (SELECT stud_nbr, math_course, math_course
     FROM Courses
    WHERE math_course = 'Math 101') AS C1
   LEFT OUTER JOIN
   (SELECT stud_nbr, math_course, math_course
     FROM Courses
    WHERE math_course = 'Math 102') AS C2
   ON C1.stud_nbr = C2.stud_nbr;

A third problem is that the order of execution matters with a 
chain of OUTER JOINs. That is to say, ((T1 OUTER JOIN T2) OUTER 
JOIN T3) does not produce the same results as (T1 OUTER JOIN 
(T2 OUTER JOIN T3)).

25.3.2 NULLs and OUTER JOINs
The NULLs that are generated by the OUTER  JOIN can occur in 
columns derived from source table columns that have been 
declared to be NOT NULL. Even if you tried to avoid all the prob-
lems with NULLs by making every column in every table of your 
schema NOT NULL, they could still occur in OUTER JOIN and OLAP 

T1 T2
a x b x

1 'r' 7 'r'
2 'v' 8 's'
3 NULL 9 NULL

You get:
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function results. However, a table can have NULLs and still be used 
in an OUTER JOIN. Consider different JOINs on the following two 
tables, which have NULLs in the common column.

A natural INNER JOIN on column x can only match those values 
that are equal to each other. But NULLs do not match to anything, 
even to other NULLs. Thus, there is one row in the result, on the 
value ‘r’ in column x in both tables.

T1 INNER JOIN T2 ON T1.x = T2.x

a  T1.x b T2.x
======================
1  'r' 7 'r'

Now do a LEFT OUTER JOIN on the tables, which will preserve table 
T1, and you get

T1 LEFT OUTER JOIN T2 ON T1.x = T2.x

a  T1.x b T2.x
==========================
1  'r' 7 'r'
2  'v' NULL NULL
3  NULL NULL NULL

Again, there are no surprises. The original INNER JOIN row is 
still in the results. The other two rows of T1 that were not in the 
equi-JOIN do show up in the results, and the columns derived 
from table T2 are filled with NULLs. The RIGHT OUTER JOIN would 
also behave the same way. The problems start with the FULL OUTER 
JOIN, which looks like this:

T1 FULL OUTER JOIN T2 ON (T1.x = T2.x)

a  T1.x b T2.x
========================= 
1  'r' 7 'r'
2  'v' NULL NULL
3  NULL  NULL NULL
NULL  NULL 8 's'
NULL  NULL 9 NULL

The way this result is constructed is worth explaining in 
detail.

First do an INNER JOIN on T1 and T2, using the ON clause condi-
tion, and put those rows (if any) in the results. Then all rows in 
T1 that could not be joined are padded out with NULLs in the col-
umns derived from T2 and inserted into the results. Finally, take 
the rows in T2 that could not be joined, pad them out with NULLs, 
and insert them into the results. The bad news is that the original 
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tables cannot be reconstructed from an OUTER JOIN. Look at the 
results of the FULL OUTER JOIN, which we will call R1, and SELECT 
the first columns from it:

SELECT T1.a, T1.x FROM R1

a  x
===========
1  'r'
2  'v'
3  NULL
NULL NULL
NULL NULL

The created NULLs remain and could not be differentiated 
from the original NULLs. But you cannot throw out those duplicate 
rows, because they may be in the original table T1. There is now a 
function, GROUPING (<column name>), used with the CUBE, ROLLUP, 
and GROUPING SET() options, that returns a 1 for original NULLs or 
data and 0 for created NULLs. Your vendor may allow this function 
to be used with the OUTER JOINs.

25.3.3 NATURAL versus Searched OUTER JOINs
It is worth mentioning in passing that Standard SQL has a NATURAL 
LEFT OUTER JOIN, but it is not implemented in most versions of SQL.

A NATURAL JOIN has only one copy of the common column 
pairs in its result. The searched OUTER JOIN has both of the origi-
nal columns, with their table-qualified names. The NATURAL JOIN 
has to have a correlation name for the result table to identify the 
shared columns. We can build a NATURAL LEFT OUTER JOIN by using 
the COALESCE() function to combine the common column pairs 
into a single column and put the results into a VIEW where the col-
umns can be properly named, thus:

CREATE VIEW NLOJ12 (x, a, b)
AS SELECT COALESCE(T1.x, T2.x), T1.a, T2.b
 FROM T1 LEFT OUTER JOIN T2
   ON T1.x = T2.x;

NLOJ12

x  a b
=================
'r' 1 7
'v' 2 NULL
NULL 3 NULL

Unlike the NATURAL JOINs, the searched OUTER JOIN does not 
have to use a simple one-column equality as the JOIN search 
 condition. The search condition can have several search condi-
tions, use other comparisons, and so forth. For example,
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T1 LEFT OUTER JOIN T2 ON (T1.x < T2.x)

a  T1.x b T2.x
==========================
1  'r' 8 's'
2  'v' NULL  NULL
3  NULL NULL NULL

as compared to:

T1 LEFT OUTER JOIN T2 ON (T1.x > T2.x)

a  T1.x b T2.x
==========================
1  'r' NULL NULL
2  'v' 7 'r'
2  'v' 8 's'
3  NULL NULL NULL

25.3.4 Self OUTER JOINs
There is no rule that forbids an OUTER JOIN on the same table. 
In fact, this kind of self-join is a good trick for “flattening” a nor-
malized table into a horizontal report. To illustrate the method, 
start with a skeleton table defined as:

CREATE TABLE Credits
(student_nbr INTEGER NOT NULL,
course_name CHAR(8) NOT NULL,
PRIMARY KEY (student_nbr, course_name));

This table represents student ids and a course name for each 
class they have taken. However, our rules say that students can-
not get credit for ‘CS-102’ until they have taken the prerequisite 
‘CS-101’ course; they cannot get credit for ‘CS-103’ until they 
have taken the prerequisite ‘CS-102’ course; and so forth. Let’s 
first load the table with some sample values.

Notice that student #1 has both courses, student #2 has only 
the first of the series, and student #3 jumped ahead of sequence 

Credits
student_nbr course_name

1 'CS-101'
1 'CS-102'
2 'CS-101'
3 'CS-102'
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and therefore cannot get credit for his ‘CS-102’ course until he 
goes back and takes ‘CS-101’ as a prerequisite.

What we want is basically a histogram (bar chart) for each 
student, showing how far he or she has gone in his or her degree 
program. Assume that we are only looking at two courses; the 
result of the desired query might look like this (NULL is used to 
represent a missing value):

(1, 'CS-101', 'CS-102')
(2, 'CS-101', NULL)

Clearly, this will need a self-JOIN, since the last two columns 
come from the same table, Credits. You have to give correlation 
names to both uses of the Credits table in the OUTER JOIN operator 
when you construct a self OUTER JOIN, just as you would with any 
other SELF-JOIN, thus:

SELECT student_nbr, C1.course_name, C2.course_name
 FROM Credits AS C1
   LEFT OUTER JOIN
   Credits AS C2
   ON C1.stud_nbr_nbr = C2.stud_nbr_nbr
    AND C1.course_name = 'CS-101'
    AND C2.course_name = 'CS-102';

25.3.5 Two or More OUTER JOINs
Some relational purists feel that every operator should have an 
inverse, and therefore they do not like the OUTER JOIN. Others 
feel that the created NULLs are fundamentally different from 
the explicit NULLs in a base table and should have a special 
token. SQL uses its general-purpose NULLs and leaves things at 
that. Getting away from theory, you will also find that vendors  
have often done strange things with the ways their products 
work.

A major problem is that OUTER JOIN operators do not have the 
same properties as INNER JOIN operators. The order in which FULL 
OUTER JOINs are executed will change the results (a mathemati-
cian would say that they are not associative). To show some of 
the problems that can come up when you have more than two 
tables, let us use three very simple two-column tables. Notice 
that some of the column values match and some do not match, 
but the three tables have all possible pairs of column names  
in them.

CREATE TABLE T1 (a INTEGER NOT NULL, b INTEGER NOT NULL);
INSERT INTO T1 VALUES (1, 2);
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CREATE TABLE T2 (a INTEGER NOT NULL, c INTEGER NOT NULL);
INSERT INTO T2 VALUES (1, 3);

CREATE TABLE T3 (b INTEGER NOT NULL, c INTEGER NOT NULL);
INSERT INTO T3 VALUES (2, 100);

Now let’s try some of the possible orderings of the three tables 
in a chain of LEFT OUTER JOINS. The problem is that a table can 
be preserved or unpreserved in the immediate JOIN and in the 
 opposite state in the containing JOIN.

SELECT T1.a, T1.b, T3.c
 FROM ((T1 NATURAL LEFT OUTER JOIN T2)
   NATURAL LEFT OUTER JOIN T3);

Result

a  b c
==========
1  2 NULL

SELECT T1.a, T1.b, T3.c
 FROM ((T1 NATURAL LEFT OUTER JOIN T3)
   NATURAL LEFT OUTER JOIN T2);

Result

a  b c
=========
1  2 100

SELECT T1.a, T1.b, T3.c
 FROM ((T1 NATURAL LEFT OUTER JOIN T3)
   NATURAL LEFT OUTER JOIN T2);

Result

a   b c
=================
NULL NULL NULL

Even worse, the choice of column in the SELECT list can 
change the output. Instead of displaying T3.c, use T2.c and you 
will get:

SELECT T1.a, T1.b, T2.c
 FROM ((T2 NATURAL LEFT OUTER JOIN T3)
   NATURAL LEFT OUTER JOIN T1);

Result

a  b c
==============
NULL NULL 3

The compiler should give you error messages about ambigu-
ous column names.
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25.3.6 OUTER JOINs and Aggregate Functions
At the start of this chapter, we had a table of orders and a table of 
suppliers, which were to be used to build a report to tell us how 
much business we did with each supplier. The query that will do 
this is:

SELECT Suppliers.sup_id, sup_name, SUM(order_amt)
 FROM Suppliers
   LEFT OUTER JOIN
   Orders
   ON Suppliers.sup_id = Orders.sup_id
GROUP BY sup_id, sup_name;

Some suppliers’ totals include credits for returned mer-
chandise, such that our total business with them worked out 
to zero dollars. Each supplier with which we did no business 
will have a NULL in its order_amt column in the OUTER JOIN. The 
usual rules for aggregate functions with NULL arguments apply, 
so these suppliers will also show a zero total amount. It is also 
possible to use a function inside an aggregate function, so you 
could write SUM(COALESCE(T1.x, T2.x)) for the common column 
pairs.

If you need to tell the difference between a true sum of 
zero and the result of a NULL in an OUTER JOIN, use the MIN() or 
MAX() function on the questionable column. These functions 
both return a NULL result for a NULL input, so an expression 
inside the MAX() function could be used to print the message 
MAX(COALESCE(order_amt, 'No Orders')), for example.

Likewise, these functions could be used in a HAVING clause, but 
that would defeat the purpose of an OUTER JOIN.

25.3.7 FULL OUTER JOIN
The FULL OUTER JOIN is a mix of the LEFT and RIGHT OUTER JOINs, 
with preserved rows constructed from both tables. The state-
ment takes two tables and puts them in one result table. Again, 
this is easier to explain with an example than with a formal 
definition.

T1  T2

a  x b x
=================
1  'r' 7 'r'
2  'v' 8 's'
3  NULL 9 NULL
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T1 FULL OUTER JOIN T2 ON (T1.x = T2.x)

a  T1.x b T2.x
===============================================
1  'r' 7 'r' > T1 INNER JOIN T2
2  'v' NULL NULL > preserved from T1
3  NULL NULL NULL > preserved from T1
NULL  NULL 8 's' > preserved from T2
NULL  NULL 9 NULL > preserved from T2

25.4 UNION JOIN Operators
There is also a UNION JOIN in Standard SQL that returns the results 
of a FULL OUTER JOIN without the rows that were in the INNER JOIN 
of the two tables. No SQL product has implemented it as of 2009 
and nobody seems to want it. But it is part of the SAS statistical 
system (www.sas.com) in their the PROC SQL options.

T1 UNION JOIN T2 ON (T1.x = T2.x)

a  T1.x b T2.x
====================================================
2  'v' NULL  NULL > preserved from T1
3  NULL NULL  NULL > preserved from T1
NULL NULL 8 's' > preserved from T2
NULL NULL 9 NULL > preserved from T2

As an example of this, you might want to combine the medical 
records of male and female patients into one table with this query.

SELECT *
 FROM (SELECT 'male', prostate FROM Males)
   OUTER UNION
  (SELECT 'female', pregnancy FROM Females);

to get a result table like this:

Result
male prostate female pregnancy

'male' 'no' NULL NULL
'male' 'no' NULL NULL
'male' 'yes' NULL NULL
'male' 'yes' NULL NULL
NULL NULL 'female' 'no'
NULL NULL 'female' 'no'
NULL NULL 'female' 'yes'
NULL NULL 'female' 'yes'

http://www.sas.com
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Frédéric Brouard came up with a nice trick for writing a 
similar join. That is, a join on one table, say a basic table of 
student data, with either a table of data particular to domes-
tic students or another table of data particular to foreign stu-
dents, based on the value of a parameter. This differs from a 
true UNION JOIN in that it has to have a “root” table to use for 
the outer JOINs.

CREATE TABLE Students
(student_nbr INTEGER NOT NULL PRIMARY KEY,
student_type CHAR(1) NOT NULL DEFAULT 'D'
   CHECK (student_type IN ('D', 2, ..))
..);

CREATE TABLE DomesticStudents
(student_nbr INTEGER NOT NULL PRIMARY KEY,
   REFERENCES Students(student_nbr),
..);

CREATE TABLE ForeignStudents
(student_nbr INTEGER NOT NULL PRIMARY KEY,
   REFERENCES Students(student_nbr),
..);

SELECT Students.*, DomesticStudents.*, ForeignStudents.*
 FROM Students
   LEFT OUTER JOIN
   DomesticStudents
   ON CASE Students.stud_type
      WHEN 'D' THEN 1 ELSE NULL END

    = 1
    LEFT OUTER JOIN
    ForeignStudents
    ON CASE Student.stud_type WHEN 2 THEN 1 ELSE NULL END

     = 1;

25.5 Scalar SELECT Expressions
A SELECT expression that returns a single row with a single value 
can be used where a scalar expression can be used. If the result 
of the scalar query is empty, it is converted to a NULL. This will 
sometimes, but not always, let you write an OUTER JOIN as a query 
within the SELECT clause; thus, this query will work only if each 
supplier has one or zero orders:

SELECT sup_id, sup_name, order_nbr,
   (SELECT order_amt
     FROM Orders
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     WHERE Suppliers.sup_id = Orders.sup_id)
    AS order_amt
 FROM Suppliers;

However, I could write:

SELECT sup_id, sup_name,
   (SELECT COUNT(*)
     FROM Orders
    WHERE Suppliers.sup_id = Orders.sup_id)
 FROM Suppliers;

instead of writing:

SELECT sup_id, sup_name, COUNT(*)
 FROM Suppliers
   LEFT OUTER JOIN
   Orders
   ON Suppliers.sup_id = Orders.sup_id
GROUP BY sup_id, sup_name;

25.6 Old versus New JOIN Syntax
The infixed OUTER JOIN syntax was meant to replace several dif-
ferent vendor options that all had different syntax and seman-
tics. It was absolutely needed. The INNER JOIN and OUTER JOIN 
 operators are universal now. They are binary operators, and 
programmers are used to binary operators—add, subtract, mul-
tiply, and divide are all binary operators. E-R diagrams use lines 
between tables to show a relational schema.

But this leads to a linear approach to problem solving that 
might not be such a good thing in SQL. Consider this statement, 
which would have been written in the traditional syntax as:

SELECT a, b, c
FROM Foo, Bar, Flub
WHERE Foo.y BETWEEN Bar.x AND Flub.z;

With the infixed syntax, I can write this same statement in any of 
several ways. For example:

SELECT a, b, c
FROM (Foo
  INNER JOIN
  Bar
  ON Foo.y >= Bar.x)
    INNER JOIN
    Flub
    ON Foo.y <= Flub.z;
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or:

SELECT a, b, c
FROM Foo
  INNER JOIN
  (Bar

    INNER JOIN
    Flub
    ON Foo.y <= Flub.z)
  ON Foo.y >= Bar.x;

I leave it to you to find all the permutations, with or with-
out the parentheses. None of them will show you the 3-ary 
relationship.

Humans tend to see things that are close together as a unit or 
as having a relationship. It is a law of visual psychology and type-
setting called the Law of Proximity. The extra reserved words in 
the infixed notation tend to work against proximity; you have to 
look in many places to find the parts of a.

The infixed notation invites a programmer to add one table at a 
time to the chain of JOINs. First I built and tested the Foo-Bar join 
and when I was happy with the results, I added Flub. Step-wise 
program refinement was one of the mantras of structured pro-
gramming. But this is a procedural approach to programing and we 
want to use a declarative approach. Instead of having a sequence of 
steps, we want to see a description of the final result as a whole.

But look at the code; can you see that there is a BETWEEN rela-
tionship among the three tables? It is not easy, is it? In effect, you 
see only pairs of tables and not the whole problem. SQL is an “all-
at-once” set-oriented language, not a “step-wise” language. This 
is much like the conceptual difference between addition with a 
simple binary + operator and the generalized n-ary summation 
operator with a S.

Am I against infixed JOINs? No, but it is a bit more complicated 
than it first appears, and if there are some OUTER JOINs in the 
mix, things can be very complicated. Just be careful with the new 
toys, kids.

25.7 Constrained JOINs
We can relate two tables together based on quantities in each of 
them. These problems take the form of pairing items in one set 
with items in another. The extra restriction is that the set of pairs 
has constraints at the level of the result that a row-by-row join 
does not. Here the values are identifiers and cannot be repeated 
in the results.
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Let us assume we have two tables, X and Y. Some possible 
 situations are:
1. A row in X matches one and only one row in Y. There can be one 

matching function that applies to one set, or each set can have 
its own matching function

An example of one matching function is an optimization 
with constraints. For example, you are filling an egg carton 
with a set of colored eggs given rules about how the colors can 
be arranged. A lot of logic puzzles use this model.

The classic example of two matching functions is the Stable 
Marriages problem, where the men rank the women they want 
to marry and the women rank the men they want to marry.

2. A row in X matches one or more rows in Y: knapsack or bin 
packing problems, where one bin holds one or more items and 
we try to optimize the arrangement.

In all cases, there can be a unique answer or several 
answers or no valid answer at all. Let’s give some examples 
and code for them.

25.7.1 Inventory and Orders
The simplest example is filling customer orders from the invento-
ries that we have at various stores. To make life easier, assume that 
we have only one product, process orders in increasing customer_
id order (this could be temporal order as well), and draw from 
store inventory by increasing store_id (this could be nearest store).

CREATE TABLE Inventory
(store_id INTEGER NOT NULL PRIMARY KEY,
item_qty INTEGER NOT NULL CHECK (item_qty >= 0));

INSERT INTO Inventory (store_id, item_qty)
VALUES (10, 2), (20, 3), (30, 2);

CREATE TABLE Orders
(customer_id CHAR(5) NOT NULL PRIMARY KEY,
item_qty INTEGER NOT NULL CHECK (item_qty > 0));

INSERT INTO Orders (customer_id, item_qty)
VALUES ('Bill', 4), ('Fred', 2);

What we want to do is fill Bill’s order for four units by taking 
two units from store #1, and two units from store #2. Next we pro-
cess Fred’s order with the one unit left in store #1 and one unit 
from store #3.

SELECT I.store_id, O.customer_id,
  (CASE WHEN O.end_running_qty <= I.end_running_qty
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    THEN O.end_running_qty
    ELSE I.end_running_qty END
 - CASE WHEN O.start_running_qty >= I.start_running_qty
     THEN O.start_running_qty
     ELSE I.start_running_qty END)
 AS items_consumed_tally
FROM (SELECT I1.store_id,
     SUM(I2.item_qty) - I1.item_qty,
     SUM(I2.item_qty)
    FROM Inventory AS I1, Inventory AS I2
    WHERE I2.store_id <= I1.store_id
    GROUP BY I1.store_id, I1.item_qty)
  AS I (store_id, start_running_qty, end_running_qty)
  INNER JOIN
   (SELECT O1.customer_id,
       SUM(O2.item_qty) - O1.item_qty,
       SUM(O2.item_qty) AS end_running_qty
     FROM Orders AS O1, Orders AS O2
     WHERE O2.customer_id <= O1.customer_id
    GROUP BY O1.customer_id, O1.item_qty)
    AS O (store_id, start_running_qty, end_running_qty)
    ON O.start_running_qty < I.end_running_qty
     AND O.end_running_qty > I.start_running_qty;

This can also be done with ordinal functions.

25.7.2 Stable Marriages
This is a classic programming problem from procedural language 
classes. The set up is fairly simple; you have a set of potential 
husbands and an equal-sized set of potential wives. We want to 
pair them up into stable marriages.

What is a stable marriage? In 25 words or less, it is a mar-
riage in which neither partner can do better. You have a set of  
n men and a set of n women. All the men have a preference scale 
for all the women, which ranks them from 1 to n without gaps 
or ties. The women have the same ranking system for the men. 
The goal is to pair off the men and women into n marriages such 
that there is no pair in your final arrangement where Mr. X and 
Ms. Y are matched to each other when they both would rather be 
matched to someone else.

For example, let’s assume the husbands are (‘Joe Celko’, ‘Brad 
Pitt’) and the wives are (‘Jackie Celko’, ‘Angelina Jolie”). If Jackie 
got matched to Mr. Pitt, she would be quite happy. And I would 
enjoy Ms. Jolie’s company. However, Mr. Pitt and Ms. Jolie can 
both do better than us. Once they are paired up they will stay that 
way, leaving Jackie and I still wed.
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The classic Stable Marriage algorithms usually are based on 
backtracking. These algorithms try a combination of couples, and 
then attempt to fix any unhappy matches. When the algorithm 
hits on a situation where nobody can improve their situation, 
they stop and give an answer.

Two important things to know about this problem: (1) there is 
always a solution and (2) there is often more than one solution. 
Remember that a stable marriage is not always a happy marriage. 
In fact, in this problem, although there is always at least one 
arrangement of stable marriages in any set, you most often find 
many different pairings that produce a set of stable marriages. 
Each set of marriages will tend to maximize either the happiness 
of the men or the women.

CREATE TABLE Husbands
(man CHAR(2) NOT NULL,
woman CHAR(2) NOT NULL,
PRIMARY KEY (man, woman),
ranking INTEGER NOT NULL);

CREATE TABLE Wives
(woman CHAR(2) NOT NULL,
man CHAR(2) NOT NULL,
PRIMARY KEY (woman, man),
ranking INTEGER NOT NULL);

CREATE TABLE Wife_Perms
(perm INTEGER NOT NULL PRIMARY KEY,
wife_name CHAR(2) NOT NULL);

—The men’s preferences

INSERT INTO Husbands -- husband #1
VALUES ('h1', 'w1', 5), ('h1', 'w2', 2),
('h1', 'w3', 6), ('h1', 'w4', 8),
('h1', 'w5', 4), ('h1', 'w6', 3),
('h1', 'w7', 1), ('h1', 'w8', 7);

INSERT INTO Husbands -- husband #2
VALUES ('h2', 'w1', 6), ('h2', 'w2', 3),
('h2', 'w3', 2), ('h2', 'w4', 1),
('h2', 'w5', 8), ('h2', 'w6', 4),
('h2', 'w7', 7), ('h2', 'w8', 5);

INSERT INTO Husbands -- husband #3
VALUES ('h3', 'w1', 4), ('h3', 'w2', 2),
('h3', 'w3', 1), ('h3', 'w4', 3),
('h3', 'w5', 6), ('h3', 'w6', 8),
('h3', 'w7', 7), ('h3', 'w8', 5);
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INSERT INTO Husbands -- husband #4
VALUES ('h4', 'w1', 8), ('h4', 'w2', 4),
('h4', 'w3', 1), ('h4', 'w4', 3),
('h4', 'w5', 5), ('h4', 'w6', 6),
('h4', 'w7', 7), ('h4', 'w8', 2);

INSERT INTO Husbands -- husband #5
VALUES ('h5', 'w1', 6), ('h5', 'w2', 8),
('h5', 'w3', 2), ('h5', 'w4', 3),
('h5', 'w5', 4), ('h5', 'w6', 5),
('h5', 'w7', 7), ('h5', 'w8', 1);

INSERT INTO Husbands -- husband #6
VALUES ('h6', 'w1', 7), ('h6', 'w2', 4),
('h6', 'w3', 6), ('h6', 'w4', 5),
('h6', 'w5', 3), ('h6', 'w6', 8),
('h6', 'w7', 2), ('h6', 'w8', 1);

INSERT INTO Husbands -- husband #7
VALUES ('h7', 'w1', 5), ('h7', 'w2', 1),
('h7', 'w3', 4), ('h7', 'w4', 2),
('h7', 'w5', 7), ('h7', 'w6', 3),
('h7', 'w7', 6), ('h7', 'w8', 8);

INSERT INTO Husbands -- husband #8
VALUES ('h8', 'w1', 2), ('h8', 'w2', 4),
('h8', 'w3', 7), ('h8', 'w4', 3),
('h8', 'w5', 6), ('h8', 'w6', 1),
('h8', 'w7', 5), ('h8', 'w8', 8);

—The women’s preferences

INSERT INTO Wives -- wife #1
VALUES ('w1', 'h1', 6), ('w1', 'h2', 3),
('w1', 'h3', 7), ('w1', 'h4', 1),
('w1', 'h5', 4), ('w1', 'h6', 2),
('w1', 'h7', 8), ('w1', 'h8', 5);

INSERT INTO Wives -- wife #2
VALUES ('w2', 'h1', 4), ('w2', 'h2', 8),
('w2', 'h3', 3), ('w2', 'h4', 7),
('w2', 'h5', 2), ('w2', 'h6', 5),
('w2', 'h7', 6), ('w2', 'h8', 1);

INSERT INTO Wives -- wife #3
VALUES ('w3', 'h1', 3), ('w3', 'h2', 4),
('w3', 'h3', 5), ('w3', 'h4', 6),
('w3', 'h5', 8), ('w3', 'h6', 1),
('w3', 'h7', 7), ('w3', 'h8', 2);

INSERT INTO Wives -- wife #4
VALUES ('w4', 'h1', 8), ('w4', 'h2', 2),
('w4', 'h3', 1), ('w4', 'h4', 3),
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('w4', 'h5', 7), ('w4', 'h6', 5),
('w4', 'h7', 4), ('w4', 'h8', 6);

INSERT INTO Wives -- wife #5
VALUES ('w5', 'h1', 3), ('w5', 'h2', 7),
('w5', 'h3', 2), ('w5', 'h4', 4),
('w5', 'h5', 5), ('w5', 'h6', 1),
('w5', 'h7', 6), ('w5', 'h8', 8);

INSERT INTO Wives -- wife #6
VALUES ('w6', 'h1', 2), ('w6', 'h2', 1),
('w6', 'h3', 3), ('w6', 'h4', 6),
('w6', 'h5', 8), ('w6', 'h6', 7),
('w6', 'h7', 5), ('w6', 'h8', 4);

INSERT INTO Wives -- wife #7
VALUES ('w7', 'h1', 6), ('w7', 'h2', 4),
('w7', 'h3', 1), ('w7', 'h4', 5),
('w7', 'h5', 2), ('w7', 'h6', 8),
('w7', 'h7', 3), ('w7', 'h8', 7);

INSERT INTO Wives -- wife #8
VALUES ('w8', 'h1', 8), ('w8', 'h2', 2),
('w8', 'h3', 7), ('w8', 'h4', 4),
('w8', 'h5', 5), ('w8', 'h6', 6),
('w8', 'h7', 1), ('w8', 'h8', 3);

—This auxiliary table helps us create all permutations of the 
wives.

INSERT INTO Wife_Perms
VALUES (1, 'w1'), (2, 'w2'), (4, 'w3'), (8, 'w4'),

(16, 'w5'), (32, 'w6'), (64, 'w7'), (128, 'w8');

The query builds all permutation of wives and then filters 
them for blocking pairs in an elaborate NOT EXISTS() predicate.

SELECT A.wife_name AS h1, B.wife_name AS h2,
   C.wife_name AS h3, D.wife_name AS h4,
   E.wife_name AS h5, F.wife_name AS h6,
   G.wife_name AS h7, H.wife_name AS h8
 FROM Wife_Perms AS A, Wife_Perms AS B,
   Wife_Perms AS C, Wife_Perms AS D,
   Wife_Perms AS E, Wife_Perms AS F,
   Wife_Perms AS G, Wife_Perms AS H
WHERE A.perm + B.perm + C.perm + D.perm
   + E.perm + F.perm + G.perm + H.perm = 255
 AND NOT EXISTS
  (SELECT *
     FROM Husbands AS W, Husbands AS X, Wives AS Y,  

  Wives AS Z
    WHERE W.man = X.man
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     AND W.ranking > X.ranking
     AND X.woman = Y.woman
     AND Y.woman = Z.woman
     AND Y.ranking > Z.ranking
     AND Z.man = W.man
     AND W.man||W.woman
      IN ('h1'||A.wife_name, 'h2'||B.wife_name,
        'h3'||C.wife_name, 'h4'||D.wife_name,
        'h5'||E.wife_name, 'h6'||F.wife_name,
         h7'||G.wife_name, 'h8'||H.wife_name)
     AND Y.man||Y.woman
      IN ('h1'||A.wife_name, 'h2'||B.wife_name,
        'h3'||C.wife_name, 'h4'||D.wife_name,
        'h5'||E.wife_name, 'h6'||F.wife_name,
        'h7'||G.wife_name, 'h8'|| H.wife_name))

The results look like this:

h1 h2 h3 h4 h5 h6 h7 h8

w3 w6 w4 w8 w1 w5 w7 w2
w3 w6 w4 w1 w7 w5 w8 w2

w6 w4 w3 w8 w1 w5 w7 w2

w6 w3 w4 w8 w1 w5 w7 w2

w6 w4 w3 w1 w7 w5 w8 w2

w6 w3 w4 w1 w7 w5 w8 w2

w2 w4 w3 w8 w1 w5 w7 w6

w2 w4 w3 w1 w7 w5 w8 w6

w7 w4 w3 w8 w1 w5 w2 w6

25.7.3 Ball and Box Packing
This example was taken from the BeyondRelational web site SQL 
Challenge #22 in January 2010. We have some boxes and balls; 
our job is to put the balls into those boxes. But wait a second! 
The balls should be filled into the boxes based on some rules and 
preferences configured by the user. Here are the rules.
1. A box can have only one ball.
2. A ball can be placed only in one box.
3. The number of balls and number of boxes will always be the same.
4. All boxes should be filled and all balls should be used.



 Chapter 25 ADVANCED SELECT STATEMENTS  435

5. There will be a configuration table where the preferences of the 
user will be stored. The preference setting should be followed 
when putting a ball into a box.

6. In addition to this, there will be a configuration table where the 
preferences of the user will be stored. The preference setting 
should be followed when putting a ball into a box.

CREATE TABLE Boxes
(box_nbr INTEGER NOT NULL PRIMARY KEY,
box_name VARCHAR(20) NOT NULL);

INSERT INTO Boxes (box_nbr, box_name)
VALUES (1, 'Box 1'), (2, 'Box 2'), (3, 'Box 3'),

(4, 'Box 4'), (5, 'Box 5'), (6, 'Box 6');

CREATE TABLE Balls
(ball_nbr INTEGER NOT NULL PRIMARY KEY,
ball_name VARCHAR(20) NOT NULL);

INSERT INTO Balls (ball_name)
VALUES (1, 'Ball 1'), (2, 'Ball 2'), (3, 'Ball 3'),

(4, 'Ball 4'), (5, 'Ball 5'), (6, 'Ball 6');

CREATE TABLE Preferences
(box_nbr INTEGER NOT NULL
   REFERENCES Boxes (box_nbr),
ball_nbr INTEGER NOT NULL
   REFERENCES Balls (ball_nbr),
PRIMARY KEY (box_nbr, ball_nbr));

INSERT INTO Preferences (box_nbr, ball_nbr)
VALUES (1, 1),

(2, 1), (2, 3),
(3, 2), (3, 3),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 4), (5, 5),
(6, 5);

Results

 box_name ball_name  

'Box 1' 'Ball 1'

'Box 2' 'Ball 3'
'Box 3' 'Ball 2'
'Box 4' 'Ball 6'
'Box 5' 'Ball 4'
'Box 6' 'Ball 5'
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This answer is done in parts to expose the logic via CTEs. The 
BallsInBoxes CTE gives us all the possible arrangements of six 
balls in six boxes. This is passed to the PreferredBallsInBoxes CTE 
to apply the preference rules, but allow duplicate balls if two or 
more boxes want them. Finally, the main query makes sure that 
we keep only the rows with unique balls.

The use of the IN() predicates to assure that the row has no 
duplicate columns is easy to extend to any number of items, but 
a bit bulky to read. But it is remarkably fast in the SQL engines 
where we tested it.

WITH
BallsInBoxes (bx1, bx2, bx3, bx4, bx5, bx6)
AS
(SELECT B1.ball_nbr, B2.ball_nbr, B3.ball_nbr,

B4.ball_nbr, B5.ball_nbr, B6.ball_nbr
  FROM Balls AS B1, Balls AS B2, Balls AS B3,

Balls AS B4, Balls AS B5, Balls AS B6
WHERE B1.ball_nbr NOT IN (B2.ball_nbr, B3.ball_nbr, 

B4.ball_nbr, B5.ball_nbr, B6.ball_nbr)
   AND B2.ball_nbr NOT IN (B3.ball_nbr, B4.ball_nbr,  

 B5.ball_nbr, B6.ball_nbr)
   AND B3.ball_nbr NOT IN (B4.ball_nbr, B5.ball_nbr,  

 B6.ball_nbr)
   AND B4.ball_nbr NOT IN (B5.ball_nbr, B6.ball_nbr)
   AND B5.ball_nbr NOT IN (B6.ball_nbr)),

PreferredBallsInBoxes (bx1, bx2, bx3, bx4, bx5, bx6)
AS
(SELECT bx1, bx2, bx3, bx4, bx5, bx6
  FROM BallsInBoxes AS BB
 WHERE BB.bx1

IN (SELECT ball_nbr
 FROM Preferences AS P
WHERE box_nbr = 1)

  AND BB.bx2
IN (SELECT ball_nbr

 FROM Preferences AS P
WHERE box_nbr = 2)

  AND BB.bx3
IN (SELECT ball_nbr

 FROM Preferences AS P
WHERE box_nbr = 3)

  AND BB.bx4
IN (SELECT ball_nbr

 FROM Preferences AS P
WHERE box_nbr = 4)

  AND BB.bx5
IN (SELECT ball_nbr

 FROM Preferences AS P
WHERE box_nbr = 5)
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  AND BB.bx6
IN (SELECT ball_nbr

 FROM Preferences AS P
WHERE box_nbr = 6))

SELECT bx1, bx2, bx3, bx4, bx5, bx6
 FROM PreferredBallsInBoxes AS PBB1
WHERE PBB1.bx NOT IN (PBB2.bx, PBB3.bx, PBB4.bx, PBB5.bx, 

PBB6.bx)
  AND PBB2.bx NOT IN (PBB3.bx, PBB4.bx, PBB5.bx, PBB6.bx)
  AND PBB3.bx NOT IN (PBB4.bx, PBB5.bx, PBB6.bx)
  AND PBB4.bx NOT IN (PBB5.bx, PBB6.bx)
  AND PBB5.bx NOT IN (PBB6.bx);

25.8 Dr. Codd’s T-Join
In the Second Version of the Relational Model (1990), Dr. E. F. Codd 
introduced a set of new theta operators, called T-operators, which 
were based on the idea of a best-fit or approximate equality. 
The algorithm for the operators is easier to understand with an  
example modified from Dr. Codd.

The problem is to assign the classes to the available class-
rooms. We want (class_size < room_size) to be true after the 
assignments are made. This will allow us a few empty seats in 
each room for late students. We can do this in one of two ways. 
The first way is to sort the tables in ascending order by class-
room size and the number of students in a class. We start with the 
 following tables:

CREATE TABLE Rooms
(room_nbr CHAR(2) PRIMARY KEY,
room_size INTEGER NOT NULL);

CREATE TABLE Classes
(class_nbr CHAR(2) PRIMARY KEY,
class_size INTEGER NOT NULL);

These tables have the following rows in them:

Classes

 class_nbr class_size  

'c1' 80
'c2' 70
'c3' 65
‘c4’ 55

(Continued)
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Classes Rooms

class_nbr class_size room_nbr room_size

'c6' 40 'r5' 30
'c5' 50 'r2' 40

'c4' 55 'r3' 50

'c3' 65 'r7' 55

'c2' 70 'r6' 65

'c1' 80 'r1' 70

'r4' 85

Rooms
 room_nbr room_size  

'r1' 70
'r2' 40
'r3' 50
'r4' 85
'r5' 30
'r6' 65
'r7' 55

The goal of the T-JOIN problem is to assign a class that is 
smaller than the classroom given it (class_size < room_size). 
Dr. Codd gives two approaches to the problem, ascending order 
algorithm and descending order algorithm.
1. Ascending Order Algorithm

Sort both tables into ascending order. Reading from the top of 
the Rooms table, match each class with the first room that will fit.

Classes

 class_nbr class_size  

‘c5’ 50
‘c6’ 40
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Results

   class_nbr         class_size         room_nbr          room_size  

'c2' 70 'r4' 85
'c3' 65 'r1' 70
'c4' 55 'r6' 65
'c5' 50 'r7' 55
'c6' 40 'r3' 50

This gives us:

Classes Rooms

class_nbr class_size room_nbr room_size

'c1' 80 'r4' 85
'c2' 70 'r1' 70
'c3' 65 'r6' 65
'c4' 55 'r7' 55
'c5' 50 'r3' 50
'c6' 40 'r2' 40

'r5' 30

Results

class_nbr class_size room_nbr room_size

'c1' 80 'r4' 85
'c3' 65 'r1' 70
'c4' 55 'r6' 65
'c5' 50 'r7' 55
'c6' 40 'r3' 50

2. Descending Order Algorithm
Sort both tables into descending order. Reading from the 

top of the Classes table, match each class with the first room 
that will fit.
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Notice that the answers are different! Dr. Codd has never given 
a definition in relational algebra of the T-Join, so I proposed that 
we need one. Informally, for each class, we want the smallest 
room that will hold it, while maintaining the T-JOIN condition. 
Or for each room, we want the largest class that will fill it, while 
maintaining the T-JOIN condition. These can be two different 
things, so you must decide which table is the driver. But either 
way, I am advocating a “best fit” over Codd’s “first fit” approach.

Other theta conditions can be used in place of the “less than” 
shown here. If “less than or equal” is used, all the classes are 
assigned to a room in this case, but not in all cases. This is left to 
you as an exercise.

The first attempts in Standard SQL are versions grouped by 
queries. They can, however, produce some rows that would be 
left out of the answers Dr. Codd was expecting. The first JOIN can 
be written as:

SELECT class_nbr, class_size, MIN(room_size)
 FROM Rooms, Classes
WHERE Classes.class_size < Rooms.room_size
GROUP BY class_nbr, class_size;

This will give a result table with the desired room sizes, but 
not the room numbers. You cannot put the other columns in the 
SELECT list, since it would conflict with the GROUP BY clause. But 
also note that the classroom with 85 seats (‘r4’) is used twice, 
once by class ‘c1’ and then by class ‘c2’:

Your best bet after this is to use the query in an EXISTS clause:

SELECT *
 FROM Rooms, Classes
WHERE EXISTS (SELECT class_nbr, class_size, MIN(room_size)

    FROM Rooms, Classes
    WHERE Classes.class_size < Rooms.room_size
    GROUP BY class_nbr, class_size);

Results

class_nbr class_size MIN(room_size)

c1 80 85 > room r4
c2 70 85 > room r4
c3 65 70
c4 55 65
c5 50 55
c6 40 50
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However, some versions of SQL will not allow a grouped sub-
query and others will balk at an aggregate function in an EXISTS 
predicate. The only way I have found to rectify this was to save 
the results to a temporary table, then JOIN it back to the Cartesian 
product of Rooms and Classes. Putting the columns for Rooms into 
the SELECT list of the same query schema can do the second T-JOIN:

SELECT room_nbr, room_size, MAX(class_size)
 FROM Rooms, Classes
WHERE Classes.class_size < Rooms.room_size
GROUP BY room_nbr, room_size;

This time, the results are the same as those Dr. Codd got with 
his procedural algorithm:

If you do a little arithmetic on the data, you find that we have 
360 students and 395 seats, six classes and seven rooms. This 
solution uses the fewest rooms, but note that the 70 students in 
class ‘c2’ are left out completely. Room ‘r2’ is left over, but it has 
only 40 seats.

As it works out, the best fit of rooms to classes is given by chang-
ing the matching rule to “less than or equal.” This will leave the 
smallest room empty and pack the other rooms to capacity, thus:

SELECT class_nbr, class_size, MIN(room_size)
 FROM Rooms, Classes
WHERE Classes.class_size <= Rooms.room_size
GROUP BY class_nbr, class_size;

25.8.1 Stobbs Solution
Christopher Stobbs came up with this query when I posted this 
problem as a puzzle at the SQL Server Central web site in 2010. 
Starting from the innermost query, rank each class according 
to size with each room where the class can fit, keeping only the 

Results
room_nbr room_size MAX(class_size)

'r4' 85 80
'r1' 70 65
'r6' 65 55
'r7' 55 50
'r3' 50 40
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best fit. Go out one level and rank the position of the room’s size 
for each class (removes duplicate class allocation), and include 
only the top ranked for each class. We now have a result when we 
outer join back to the classes.

SELECT C1.class_nbr, C1.class_size, Subset.room_nbr,  
Subset.room_size

 FROM Classes AS C1
LEFT OUTER JOIN
(SELECT *
FROM (SELECT C.*, R.*,

ROW_NUMBER()
OVER (PARTITION BY Class_Size

ORDER BY first_rank) AS second_rank
FROM (SELECT C.*, R.*,

ROW_NUMBER()
OVER (PARTITION BY room_nbr

ORDER BY class_size DESC) AS first_rank
  FROM Classes AS C2, Rooms AS R
  WHERE R.room_size >= C2.class_size
  )AS Class_Ranks

      WHERE first_rank = 1
  )AS Room_Ranks
  WHERE second_rank = 1) AS Subset
  ON C1.class_nbr = Subset.class_nbr;

25.8.2 Pierre’s Solution
Another answer came from pierre-702284, who posted a simi-
lar answer that can handle duplicate values by using the DENSE_
RANK() function and some math to get a fit for classes and rooms.

SELECT C.class_nbr, C.class_size, room_nbr, room_size
 FROM Classes AS C

LEFT OUTER JOIN
(SELECT class_nbr, room_nbr, room_size,

ROW_NUMBER()
OVER (PARTITION BY class_nbr

ORDER BY room_alloc_pref)
AS class_alloc_pref

FROM (SELECT class_nbr, room_nbr, room_size,
ROW_NUMBER()
OVER (PARTITION BY room_alloc_order

ORDER BY class_alloc_order)
AS room_alloc_pref

FROM (SELECT class_nbr, room_nbr, room_size,
DENSE_RANK()
OVER (ORDER BY class_size DESC)
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AS class_size_order,
DENSE_RANK()
OVER (ORDER BY class_size DESC, class_nbr)
AS class_alloc_order,
DENSE_RANK() OVER (ORDER BY room_size DESC)
AS room_size_order,
DENSE_RANK() OVER (ORDER BY room_size DESC, 

room_nbr)
AS room_alloc_order

FROM Rooms, Classes
WHERE room_size >= class_size;
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26
VIRTUAL TABLES: VIEWs, 
DERIVED TABLES, CTEs, 
AND MQTs

VIEWs, derived tables, and CTEs (Common Table Expression) are 
ways of putting a query into a named schema object. By that, I 
mean these things hold the query text rather than the results 
of the query. They are executed as needed and then we see the 
results.

A VIEW is also called a virtual table, to distinguish it from tem-
porary and base tables. The definition of a VIEW in Standard SQL 
requires that it act as if an actual physical table is created when 
its name is invoked. Whether or not the database system actu-
ally materializes the results or uses other mechanisms to get the 
same effect is implementation defined. The definition of a VIEW 
is kept in the schema tables to be invoked by name wherever a 
table could be used. If the VIEW is updatable, then additional rules 
apply.

The SQL Standard separates administrative (ADMIN) privileges 
from user (USER) privileges. Table creation is administrative and 
query execution is a user privilege, so users cannot create their 
own VIEWs or TEMPORARY TABLEs without having Administrative 
privileges granted to them. However, a user can create a CTE, 
which is a local, temporary virtual table.

26.1 VIEWs in Queries
The Standard SQL syntax for the VIEW definition is:

CREATE VIEW <table name> [(<view column list>)]
AS <query expression>
[WITH [<levels clause>] CHECK OPTION]

<levels clause>::= CASCADED | LOCAL

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00026-0
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00026-0
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The <levels clause> option in the WITH CHECK OPTION did not 
exist in SQL-89 and it is still not widely implemented. Section 
26.5 will discuss this clause in detail. This clause has no effect 
on queries, but only on UPDATE, INSERT INTO, and DELETE FROM 
statements.

A VIEW is different from a TEMPORARY TABLE, derived table, and 
base table. You cannot put constraints on a VIEW, as you can with 
base and TEMPORARY tables. A VIEW has no existence in the database 
until it is invoked, whereas a TEMPORARY TABLE is persistent. A derived 
table exists only in the query in which it is created.

The name of the VIEW must be unique within the database 
schema, like a table name. The VIEW definition cannot reference 
itself, since it does not exist yet. Nor can the definition reference 
only other VIEWs; the nesting of VIEWs must eventually resolve to 
underlying base tables. This only makes sense; if no base tables 
were involved, what would you be viewing?

26.2 Updatable and Read-Only VIEWs
Unlike base tables, VIEWs are either updatable or read-only, but 
not both. INSERT, UPDATE, and DELETE operations are allowed on 
updatable VIEWs and base tables, subject to any other constraints. 
INSERT, UPDATE, and DELETE are not allowed on read-only VIEWs, 
but you can change their base tables, as you would expect.

An updatable VIEW is one that can have each of its rows associ-
ated with exactly one row in an underlying base table. When the 
VIEW is changed, the changes pass through the VIEW to that under-
lying base table unambiguously. Updatable VIEWs in Standard 
SQL are defined only for queries that meet these criteria:
1. They are built on only one table
2. They have no GROUP BY clause
3. They have no HAVING clause
4. They have no aggregate functions
5. They have no calculated columns
6. They have no UNION, INTERSECT, or EXCEPT
7. They have no SELECT DISTINCT clause
8. Any columns excluded from the VIEW must be NULL-able or have 

a DEFAULT in the base table, so that a whole row can be con-
structed for insertion.
By implication, the VIEW must also contain a key of the table. 

In short, we are absolutely sure that each row in the VIEW maps 
back to one and only one row in the base table.

Some updating is handled by the CASCADE option in the ref-
erential integrity constraints on the base tables, not by the VIEW 
declaration.
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The definition of updatability in Standard SQL is actually 
pretty limited, but very safe. The database system could look at 
information it has in the referential integrity constraints to widen 
the set of allowed updatable VIEWs. You will find that some imple-
mentations are now doing just that, but it is not common yet. 
The SQL standard definition of an updatable VIEW is actually a 
subset of the possible updatable VIEWs, and a very small subset at 
that. The major advantage of this definition is that it is based on 
syntax and not semantics. For example, these VIEWs are logically 
identical:

CREATE VIEW Foo1 -- updatable, has a key!
AS SELECT *
  FROM Foobar

  WHERE x IN (1,2);

CREATE VIEW Foo2 -- not updateable!
AS SELECT *
  FROM Foobar

  WHERE x = 1
 UNION ALL
 SELECT *
  FROM Foobar

  WHERE x = 2;

But Foo1 is updateable and Foo2 is not. Although I know of 
no formal proof, I suspect that determining if a complex query 
resolves to an updatable query for allowed sets of data values 
possible in the table is an NP-complete problem.

Without going into details, here is a list of types of queries 
that can yield updatable VIEWs, as taken from “VIEW Update Is 
Practical” (Goodman, 1990):

1. Projection from a single table (Standard SQL)
2. Restriction/projection from a single table (Standard SQL)
3. UNION VIEWs
4. Set Difference Views
5. One-to-One Joins
6. One-to-One Outer Joins
7. One-to-Many Joins
8. One-to-Many Outer Joins
9. Many-to-Many Joins

10. Translated and Coded columns
The CREATE TRIGGER mechanism for tables specifies an action 

to be performed BEFORE, AFTER, or INSTEAD OF a regular INSERT, 
UPDATE, or DELETE to that table. It is possible for a user to write 
INSTEAD OF triggers on VIEWs, which catch the changes and route 
them to the base tables that make up the VIEW. The database 
designer has complete control over the way VIEWs are handled.
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26.3 Types of VIEWs
The type of SELECT statement and its purpose can classify VIEWs. 
The strong advantage of a VIEW is that it will produce the correct 
results when it is invoked, based on the current data. Trying to  
do the same sort of things with temporary tables or computed 
columns within a table can be subject to errors and slower to 
read from disk.

26.3.1 Single-Table Projection and Restriction
In practice, many VIEWs are projections or restrictions on a single 
base table. This is a common method for obtaining security con-
trol by removing rows or columns that a particular group of users  
is not allowed to see. These VIEWs are usually implemented as 
in-line macro expansion, since the optimizer can easily fold their 
code into the final query plan.

26.3.2 Calculated Columns
One common use for a VIEW is to provide summary data across 
a row. For example, given a table with measurements in metric 
units, we can construct a VIEW that hides the calculations to con-
vert them into English units.

It is important to be sure that you have no problems with NULL 
values when constructing a calculated column. For example, 
given a Personnel table with columns for both salary and com-
mission, you might construct this VIEW:

CREATE VIEW Payroll (emp_nbr, paycheck_amt)
AS
SELECT emp_nbr, (salary + COALESCE(commission), 0.00)
 FROM Personnel;

Office workers do not get commissions, so the value of their 
commission column will be NULL, so we use the COALESCE() func-
tion to change the NULLs to zeros.

26.3.3 Translated Columns
Another common use of a VIEW is to translate codes into text or 
other codes by doing table lookups. This is a special case of a 
joined VIEW based on a FOREIGN KEY relationship between two 
tables. For example, an order table might use a part number that 
we wish to display with a part name on an order entry screen. 
This is done with a JOIN between the order table and the inven-
tory table, thus:
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CREATE VIEW Screen (part_nbr, part_name, . . .)
AS SELECT Orders.part_nbr, Inventory.part_name, . . .
  FROM Inventory, Orders

  WHERE Inventory.part_nbr = Orders.part_nbr;

Sometimes the original code is kept and sometimes it is 
dropped from the VIEW. As a general rule, it is a better idea to keep 
both values even though they are redundant. The redundancy 
can be used as a check for users, as well as a hook for nested joins 
in either of the codes.

The idea of JOIN VIEWs to translate codes can be expanded to 
show more than just one translated column. The result is often a 
“star” query with one table in the center, joined by FOREIGN KEY 
relations to many other tables to produce a result that is more 
readable than the original central table.

Missing values are a problem. If there is no translation for a 
given code, no row appears in the VIEW, or if an OUTER JOIN was 
used, a NULL will appear. The programmer should establish a 
referential integrity constraint to CASCADE changes between the 
tables to prevent loss of data.

26.3.4 Grouped VIEWs
A grouped VIEW is based on a query with a GROUP BY clause. Since 
each of the groups may have more than one row in the base from 
which it was built, these are necessarily read-only VIEWs. Such 
VIEWs usually have one or more aggregate functions and they are 
used for reporting purposes. They are also handy for working 
around weaknesses in SQL. Consider a VIEW that shows the largest 
sale in each state. The query is straightforward:

CREATE VIEW BigSales (state, sales_amt_total)
AS SELECT state_code, MAX(sales_amt)
  FROM Sales

  GROUP BY state_code;

SQL does not require that the grouping column(s) appear in 
the select clause, but it is a good idea in this case.

These VIEWs are also useful for “flattening out” one-to-many 
relationships. For example, consider a Personnel table, keyed 
on the employee number (emp_nbr), and a table of depen-
dents, keyed on a combination of the employee number for each 
dependent’s parent (emp_nbr) and the dependent’s own serial 
number (dep_id). The goal is to produce a report of the employ-
ees by name with the number of dependents each has.

CREATE VIEW DepTally1 (emp_nbr, dependent_cnt)
AS SELECT emp_nbr, COUNT(*)
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  FROM Dependents
  GROUP BY emp_nbr;

The report is then simply an OUTER JOIN between this VIEW and 
the Personnel table.

The OUTER JOIN is needed to account for employees without 
dependents with a NULL value, like this:

SELECT emp_name, dependent_cnt
FROM Personnel AS P1
  LEFT OUTER JOIN
  DepTally1 AS D1
  ON P1.emp_nbr = D1.emp_nbr;

26.3.5 UNION-ed VIEWs
Until recently, a VIEW based on a UNION or UNION ALL operation 
was read-only because there is no way to map a change onto just 
one row in one of the base tables. The UNION operator will remove 
duplicate rows from the results. Both the UNION and UNION ALL oper-
ators hide which table the rows came from. Such VIEWs must use a 
<view column list>, because the columns in a UNION [ALL] have no 
names of their own. In theory, a UNION of two disjoint tables, nei-
ther of which has duplicate rows in itself, should be updatable.

Using the problem given in Section 26.3.4 on grouped VIEWs, 
this could also be done with a UNION query that would assign a 
count of zero to employees without dependents, thus:

CREATE VIEW DepTally2 (emp_nbr, dependent_cnt)
AS (SELECT emp_nbr, COUNT(*)
  FROM Dependents

  GROUP BY emp_nbr)
 UNION
(SELECT emp_nbr, 0
  FROM Personnel AS P2

  WHERE NOT EXISTS (SELECT *
        FROM Dependents AS D2
        WHERE D2.emp_nbr = P2.emp_nbr));

The report is now a simple INNER JOIN between this VIEW and the 
Personnel table. The zero value, instead of a NULL value, will account 
for employees without dependents. The report query looks like this:

SELECT empart_name, dependent_cnt
 FROM Personnel, DepTally2
WHERE DepTally2.emp_nbr = Personnel.emp_nbr;

Recent releases of some of the major databases, such as 
Oracle and DB2, support inserts, updates, and deletes from such 
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views. Under the covers, each partition is a separate table, with 
a rule for its contents. One of the most common partitioning is 
temporal, so each partition might be based on a date range. The 
goal is to improve query performance by allowing parallel access 
to each partition member.

The trade-off is a heavy overhead under the covers with the 
UNION-ed VIEW partitioning, however. For example, DB2 attempts 
to insert any given row into each of the tables underlying the UNION 
ALL view. It then counts how many tables accepted the row. It has to 
process the entire view, one table at a time, and collect the results.
1. If exactly one table accepts the row, the insert is accepted.
2. If no table accepts the row, a “no target” error is raised.
3. If more than one table accepts the row, then an “ambiguous 

target” error is raised.
The use of INSTEAD OF triggers gives the user the effect of a 

single table, but there can still be surprises. Think about three 
tables; A, B, and C. Table C is disjoint from the other two. Tables 
A and B overlap. So I can always insert into C and may or may not 
be able to insert into A and B if I hit overlapping rows.

Going back to my Y2K consulting days, I ran into a version of 
such a partition by calendar periods. Their Table C was set up on 
Fiscal quarters and got leap year wrong because one of the fiscal 
quarters ended on the last day of February.

Another approach somewhat like this is to declare explicit 
partitioning rules in the DDL with a proprietary syntax. The 
system will handle the housekeeping and the user sees only one 
table. In the Oracle model, the goal is to put parts of the logi-
cal table to different physical tablespaces. Using standard data 
types, the Oracle syntax looks like this:

CREATE TABLE Sales
(invoice_nbr INTEGER NOT NULL PRIMARY KEY,
sale_year INTEGER NOT NULL,
sale_month INTEGER NOT NULL,
sale_day INTEGER NOT NULL)
PARTITION BY RANGE (sale_year, sale_month, sale_day)
(PARTITION sales_q1 VALUES LESS THAN (1994, 04, 01) 

TABLESPACE tsa,
PARTITION sales_q2 VALUES LESS THAN (1994, 07, 01) 

TABLESPACE tsb,
PARTITION sales_q3 VALUES LESS THAN (1994, 10, 01) 

TABLESPACE tsc,
PARTITION sales q4 VALUES LESS THAN (1995, 01, 01) 

TABLESPACE tsd);

Again, this will depend on your product, since this has to do 
with the physical database and not the logical model.
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26.3.6 JOINs in VIEWs
A VIEW whose query expression is a joined table is not usually 
updatable even in theory.

One of the major purposes of a joined view is to “flatten out” 
a one-to-many or many-to-many relationship. Such relationships 
cannot map one row in the VIEW back to one row in the underlying 
tables on the “many” side of the JOIN. Anything said about a JOIN 
query could be said about a joined view, so they will not be dealt 
with here, but in a chapter devoted to a full discussion of joins.

26.3.7 Nested VIEWs
A point that is often missed, even by experienced SQL program-
mers, is that a VIEW can be built on other VIEWs. The only restric-
tions are that circular references within the query expressions 
of the VIEWs are illegal and that a VIEW must ultimately be built 
on base tables. One problem with nested VIEWs is that different 
updatable VIEWs can reference the same base table at the same 
time. If these VIEWs then appear in another VIEW, it becomes hard 
to determine what has happened when the highest-level VIEW is 
changed. As an example, consider a table with two keys:

CREATE TABLE Canada
(english INTEGER NOT NULL UNIQUE,
french INTEGER NOT NULL UNIQUE,
eng_word CHAR(30),
fren_word CHAR(30));

INSERT INTO Canada
VALUES (1, 2, 'muffins', 'croissants'),
   (2, 1, 'bait', 'escargots');

CREATE VIEW EnglishWords
AS SELECT english, eng_word
 FROM Canada

 WHERE eng_word IS NOT NULL;

CREATE VIEW FrenchWords
AS SELECT french, fren_word
 FROM Canada

 WHERE fren_word IS NOT NULL);

We have now tried the escargots and decided that we wish to 
change our opinion of them:

UPDATE EnglishWords
 SET eng_word = 'appetizer'
WHERE english = 2;

Our French user has just tried haggis and decided to insert a 
new row for his experience:
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UPDATE FrenchWords
 SET fren_word = 'Le swill'
WHERE french = 3;

The row that is created is (NULL, 3, NULL, 'Le swill'), since 
there is no way for VIEW FrenchWords to get to the VIEW English-
Words columns. Likewise, the English VIEW user can construct a 
row to record his translation, (3, NULL, 'Haggis', NULL). But nei-
ther of them can consolidate the two rows into a meaningful piece 
of data.

To delete a row is also to destroy data; the French-speaker who 
drops ‘croissants’ from the table also drops ‘muffins’ from VIEW 
EnglishWords.

26.4  How VIEWs Are Handled in 
the Database Engine

Standard SQL requires a system schema table with the text of 
the VIEW declarations in it. What would be handy, but is not eas-
ily done in all SQL implementations, is to trace the VIEWs down 
to their base tables by printing out a tree diagram of the nested 
structure. You should check your user library and see if it has 
such a utility program (for example, FINDVIEW in the old SPARC 
library for SQL/DS). There are several ways to handle VIEWs, and 
systems will often use a mixture of them. The major categories of 
algorithms are materialization and in-line text expansion.

26.4.1 View Column List
The <view column list> is optional; when it is not given, the VIEW 
will inherit the column names from the query. The number of col-
umn names in the <view column list> has to be the same as the 
degree of the query expression. If any two columns in the query 
have the same column name, you must have a <view column 
list> to resolve the ambiguity. The same column name cannot be 
specified more than once in the <view column list>.

26.4.2 VIEW Materialization
Materialization means that whenever you use the name of the 
VIEW, the database engine finds its definition in the schema 
information tables and creates a working table with the name 
that has the appropriate column names with the appropriate 
data types. Finally, this new table is filled with the results of the 
SELECT statement in the body of the VIEW definition.
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The decision to materialize a VIEW as an actual physical table is 
implementation-defined in Standard SQL, but the VIEW must act 
as if it were a table when accessed for a query. If the VIEW is not 
updatable, this approach automatically protects the base tables 
from any improper changes and is guaranteed to be correct.  
It uses existing internal procedures in the database engine (create 
table, insert from query), so this is easy for the database to do.

The downside of this approach is that it is not very fast for 
large VIEWs, uses extra storage space, cannot take advantage of 
indexes already existing on the base tables, usually cannot create 
indexes on the new table, and cannot be optimized as easily as 
other approaches. However, materialization is the best approach 
for certain VIEWs. A VIEW whose construction has a hidden sort 
is usually materialized. Queries with SELECT DISTINCT, UNION, 
GROUP BY, and HAVING clauses are usually implemented by sorting 
to remove duplicate rows or to build groups. As each row of the 
VIEW is built, it has to be saved to compare it to the other rows, so 
it makes sense to materialize it.

Some products also give you the option of controlling the 
materializations yourself. The vendor terms vary. A “snapshot” 
means materializing a table that also includes a time stamp. 
A “result set” is a materialized table that is passed to a front-
end application program for display. Check your particular 
product.

26.4.3 In-Line Text Expansion
Another approach is to store the text of the CREATE VIEW state-
ment and work it into the parse tree of the SELECT, INSERT, 
UPDATE, or DELETE statements that use it. This allows the optimizer 
to blend the VIEW definition into the final query plan. For exam-
ple, you can create a VIEW based on a particular department, thus:

CREATE VIEW SalesDept (dept_name, city_name, . . .)
AS SELECT 'Sales', city_name, . . .
  FROM Departments
 WHERE dept_name = 'Sales';

and then use it as a query, thus:

SELECT *
 FROM SalesDept
WHERE city_name = 'New York';

The parser expands the VIEW into text (or an intermediate 
tokenized form) within the FROM clause. The query would become, 
in effect,
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SELECT *
 FROM (SELECT 'Sales', city_name, . . .
    FROM Departments
    WHERE dept_name = 'Sales')
   AS SalesDept (dept_name, city_name, . . .)
WHERE city_name = 'New York';

and the query optimizer would then “flatten it out” into

SELECT *
 FROM Departments
WHERE (dept_name = 'sales')
  AND (city_name = 'New York');

Though this sounds like a nice approach, it had problems 
in early systems where the in-line expansion does not result 
in proper SQL. An earlier version of DB2 was one such system. 
To illustrate the problem, imagine that you are given a DB2 
table that has a long identification number and some figures in 
each row. The long identification number is like those 40-digit 
monsters they give you on a utility bill—they are unique only 
in the first few characters, but the utility company prints the 
whole thing out anyway. Your task is to create a report that is 
grouped according to the first six characters of the long identi-
fication number. The immediate naive query uses the substring 
operator:

SELECT SUBSTRING(long_id FROM 1 TO 6), SUM(amt1), 
SUM(amt2), . . .

 FROM TableA
GROUP BY id;

This does not work; it is incorrect SQL, since the SELECT and 
GROUP BY lists do not agree. Other common attempts include 
GROUP BY SUBSTRING(long_id FROM 1 TO 6), which will fail because 
you cannot use a function, and GROUP BY 1, which will fail 
because you can use a column position only in a UNION statement 
(column position is now deprecated in Standard SQL) and in the 
ORDER BY in some products.

The GROUP BY has to have a list of simple column names drawn 
from the tables of the FROM clause. The next attempt is to build a 
VIEW:

CREATE VIEW BadTry (short_id, amt1, amt2, . . .)
AS SELECT SUBSTRING(long_id FROM 1 TO 6), amt1, amt2, . . .
  FROM TableA;

and then do a grouped select on it. This is correct SQL, but it 
does not work in the old DB2. The compiler apparently tried to 
insert the VIEW into the FROM clause, as we have seen, but when it 
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expands it out, the results are the same as those of the incorrect 
first query attempt with a function call in the GROUP BY clause. 
The trick was to force DB2 to materialize the VIEW so that you can 
name the column constructed with the SUBSTRING() function. 
Anything that causes a sort will do this—the SELECT DISTINCT, 
UNION, GROUP BY, and HAVING clauses, for example.

Since we know that the short identification number is a key, 
we can use this VIEW:

CREATE VIEW Shorty (short_id, amt1, amt2, . . .)
AS SELECT DISTINCT SUBSTRING(long_id FROM 1 TO 6), amt1, 

amt2, . . .
  FROM TableA;

Then the report query is:

SELECT short_id, SUM(amt1), SUM(amt2), . . .
 FROM Shorty
GROUP BY short_id;

This works fine in DB2. I am indebted to Susan Vombrack of 
Loral Aerospace for this example. Incidentally, this can be written 
in Standard SQL as

SELECT *
FROM (SELECT SUBSTRING(long_id FROM 1 TO 6) AS short_id,
     SUM(amt1), SUM(amt2), . . .
    FROM TableA
   GROUP BY long_id)
GROUP BY short_id;

The name on the substring result column in the subquery 
expression makes it recognizable to the parser.

26.4.4 Pointer Structures
Finally, the system can handle VIEWs with special data structures 
for the VIEW. This is usually an array of pointers into a base table 
constructed from the VIEW definition. This is a good way to han-
dle updatable VIEWs in Standard SQL, since the target row in the 
base table is at the end of a pointer chain in the VIEW structure. 
Access will be as fast as possible.

The pointer structure approach cannot easily use existing 
indexes on the base tables. But the pointer structure can be imple-
mented as an index with restrictions. Furthermore, multitable VIEWs 
can be constructed as pointer structures that allow direct access  
to the related rows in the table involved in the JOIN. This is very 
product-dependent, so you cannot make any general assumptions.
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26.4.5 Indexing and Views
Note that VIEWs cannot have their own indexes. However, 
VIEWs can inherit the indexing on their base tables in some 
implementations. Like tables, VIEWs have no inherent ordering, 
but a programmer who knows his particular SQL implementa-
tion will often write code that takes advantage of the quirks of 
that product. In particular, some implementations allow you to 
use an ORDER BY clause in a VIEW (they are allowed only on cursors 
in standard SQL). This will force a sort and could materialize the 
VIEW as a working table. When the SQL engine has to do a sequen-
tial read of the entire table, the sort might help or hinder a par-
ticular query. There is no way to predict the results.

26.5 WITH CHECK OPTION Clause
If WITH CHECK OPTION is specified, the viewed table has to be 
updatable. This is actually a fast way to check how your particular 
SQL implementation handles updatable VIEWs. Try to create a ver-
sion of the VIEW in question using the WITH CHECK OPTION and see 
if your product will allow you to create it. The WITH CHECK OPTION 
is part of the SQL-89 standard, which was extended in Standard 
SQL by adding an optional <levels clause>. CASCADED is implicit 
if an explicit LEVEL clause is not given. Consider a VIEW defined as

CREATE VIEW V1
AS SELECT *
  FROM Foobar
 WHERE col1 = 'A';

and now UPDATE it with

UPDATE V1 SET col1 = 'B';

The UPDATE will take place without any trouble, but the rows 
that were previously seen now disappear when we use V1 again. 
They no longer meet the WHERE clause condition! Likewise, an 
INSERT INTO statement with VALUES (col1 = ‘B’) would insert just 
fine, but its rows would never be seen again in this VIEW. VIEWs 
created this way will always have all the rows that meet the crite-
ria and that can be handy. For example, you can set up a VIEW of 
rows with a status code of ‘to be done’, work on them, and change 
a status code to ‘finished’, and they will disappear from your 
view. The important point is that the WHERE clause condition was 
checked only at the time when the VIEW was invoked.

The WITH CHECK OPTION makes the system check the WHERE 
clause condition upon insertion or UPDATE. If the new or changed 
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row fails the test, the change is rejected and the VIEW remains the 
same. Thus, the previous UPDATE statement would get an error 
message and you could not change certain columns in certain 
ways. For example, consider a VIEW of salaries under $30,000 
defined with a WITH CHECK OPTION to prevent anyone from giving a 
raise above that ceiling.

The WITH CHECK OPTION clause does not work like a CHECK 
constraint.

CREATE TABLE Foobar (col_a INTEGER);

CREATE VIEW TestView (col_a)
AS
SELECT col_a FROM Foobar WHERE col_a > 0
WITH CHECK OPTION;

INSERT INTO TestView VALUES (NULL); -- This fails!

CREATE TABLE Foobar_2 (col_a INTEGER CHECK (col_a > 0));
INSERT INTO Foobar_2(col_a)
VALUES (NULL); -- This succeeds!

The WITH CHECK OPTION must be TRUE whereas the CHECK con-
straint can be either TRUE or UNKNOWN. Once more, you need to 
watch out for NULLs.

Standard SQL has introduced an optional <levels clause>, which 
can be either CASCADED or LOCAL. If no <levels clause> is given, a 
<levels clause> of CASCADED is implicit. The idea of a CASCADED check 
is that the system checks all the underlying levels that built the VIEW, 
as well as the WHERE clause condition in the VIEW itself. If anything 
causes a row to disappear from the VIEW, the UPDATE is rejected. The 
idea of a WITH LOCAL check option is that only the local WHERE clause 
is checked. The underlying VIEWs or tables from which this VIEW is 
built might also be affected, but we do not test for those effects. 
Consider two VIEWs built on each other from the salary table:

CREATE VIEW Lowpay
AS SELECT *
  FROM Personnel
 WHERE salary <= 250;

CREATE VIEW Mediumpay
AS SELECT *
  FROM Lowpay
 WHERE salary >= 100;

If neither VIEW has a WITH CHECK OPTION, the effect of updating 
Mediumpay by increasing every salary by $1000 will be passed 
without any check to Lowpay. Lowpay will pass the changes 
to the underlying Personnel table. The next time Mediumpay 
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is used, Lowpay will be rebuilt in its own right and Mediumpay 
rebuilt from it, and all the employees will disappear from 
Mediumpay.

If only Mediumpay has a WITH CASCADED CHECK OPTION on it, 
the UPDATE will fail. Mediumpay has no problem with such a 
large salary, but it would cause a row in Lowpay to disappear, so 
Mediumpay will reject it. However, if only Mediumpay has a WITH 
LOCAL CHECK OPTION on it, the UPDATE will succeed. Mediumpay has 
no problem with such a large salary, so it passes the change along 
to Lowpay. Lowpay, in turn, passes the change to the Personnel 
table and the UPDATE occurs. If both VIEWs have a WITH CASCADED 
CHECK OPTION, the effect is a set of conditions, all of which have 
to be met. The Personnel table can accept UPDATEs or INSERTs only 
where the salary is between $100 and $250.

This can become very complex. Consider an example from an 
ANSI X3H2 paper by Nelson Mattos of IBM (Celko, 1993). Let us 
build a five-layer set of VIEWs, using xx and yy as place holders for 
CASCADED or LOCAL, on a base table T1 with columns c1, c2, c3, c4, 
and c5, all set to a value of 10, thus:

CREATE VIEW V1 AS SELECT * FROM T1 WHERE (c1 > 5);

CREATE VIEW V2 AS SELECT * FROM V1 WHERE (c2 > 5)
   WITH xx CHECK OPTION;

CREATE VIEW V3 AS SELECT * FROM V2 WHERE (c3 > 5);

CREATE VIEW V4 AS SELECT * FROM V3 WHERE (c4 > 5)
   WITH yy CHECK OPTION;

CREATE VIEW V5 AS SELECT * FROM V4 WHERE (c5 > 5);

When we set each one of the columns to zero, we get different 
results, which can be shown in this chart, where ‘S’ means suc-
cess and ‘F’ means failure:

xx/yy c1 c2 c3 c4 c5

cascade/cascade F F F F S
local/cascade F F F F S
local/local S F S F S
cascade/local F F S F S

To understand the chart, look at the last line. If xx = CASCADED 
and yy = LOCAL, updating column c1 to zero via V5 will fail, 
whereas updating c5 will succeed. Remember that a successful 
UPDATE means the row(s) disappear from V5.
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Follow the action for UPDATE V5 SET c1 = 0; VIEW V5 has 
no with check options, so the changed rows are immediately  
sent to V4 without any testing. VIEW V4 does have a WITH LOCAL 
CHECK OPTION, but column c1 is not involved, so V4 passes the rows 
to V3. VIEW V3 has no with check options, so the changed rows are 
immediately sent to V2. VIEW V2 does have a WITH CASCADED CHECK 
OPTION, so V2 passes the rows to V1 and awaits results. VIEW V1 
is built on the original base table and has the condition c1 > 5, 
which is violated by this UPDATE. VIEW V1 then rejects the UPDATE 
to the base table, so the rows remain in V5 when it is rebuilt. 
Now the action for

UPDATE V5 SET c3 = 0;

VIEW V5 has no with check options, so the changed rows 
are immediately sent to V4, as before. VIEW V4 does have a WITH 
LOCAL CHECK OPTION, but column c3 is not involved, so V4 passes 
the rows to V3 without awaiting the results. VIEW V3 is involved 
with column c3 and has no with check options, so the rows can 
be changed and passed down to V2 and V1, where they UPDATE 
the base table. The rows are not seen again when V5 is invoked, 
because they will fail to get past VIEW V3. The real problem comes 
with UPDATE statements that change more than one column at a 
time. For example,

 UPDATE V5 SET c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0;

will fail for all possible combinations of <levels clause>s in the 
example schema.

Standard SQL defines the idea of a set of conditions that are 
inherited by the levels of nesting. In our sample schema, these 
implied tests would be added to each VIEW definition:

local/local
V1 = none
V2 = (c2 > 5)
V3 = (c2 > 5)
V4 = (c2 > 5) AND (c4 > 5)
V5 = (c2 > 5) AND (c4 > 5)

cascade/cascade
V1 = none
V2 = (c1 > 5) AND (c2 > 5)
V3 = (c1 > 5) AND (c2 > 5)
V4 = (c1 > 5) AND (c2 > 5) AND (c3 > 5) AND (c4 > 5)
V5 = (c1 > 5) AND (c2 > 5) AND (c3 > 5) AND (c4 > 5)

local/cascade
V1 = none
V2 = (c2 > 5)
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V3 = (c2 > 5)
V4 = (c1 > 5) AND (c2 > 5) AND (c4 > 5)
V5 = (c1 > 5) AND (c2 > 5) AND (c4 > 5)

cascade/local
V1 = none
V2 = (c1 > 5) AND (c2 > 5)
V3 = (c1 > 5) AND (c2 > 5)
V4 = (c1 > 5) AND (c2 > 5) AND (c4 > 5)
V5 = (c1 > 5) AND (c2 > 5) AND (c4 > 5)

26.5.1  WITH CHECK OPTION as 
CHECK() clause

Lothar Flatz, an instructor for Oracle Software Switzerland made 
the observation that although Oracle cannot put subqueries into 
CHECK() constraints, and triggers would not be possible because 
of the mutating table problem, you can use a VIEW that has a WITH 
CHECK OPTION to enforce subquery constraints.

For example, consider a hotel registry that needs to have a 
rule that you cannot add a guest to a room that another is or will 
be occupying. Instead of writing the constraint directly, like this:

CREATE TABLE Hotel
(room_nbr INTEGER NOT NULL,
arrival_date DATE NOT NULL,
departure_date DATE NOT NULL,
guest_name CHAR(30) NOT NULL,
CONSTRAINT schedule_right
CHECK (H1.arrival_date <= H1.departure_date),
CONSTRAINT no_overlaps
CHECK (NOT EXISTS
   (SELECT *
     FROM Hotel AS H1, Hotel AS H2
    WHERE H1.room_nbr = H2.room_nbr
     AND H2.arrival_date < H1.arrival_date
     AND H1.arrival_date < H2.departure_date)));

The schedule_right constraint is fine, since it has no subquery, 
but many products will choke on the no_overlaps constraint. 
Leaving the no_overlaps constraint off the table, we can construct 
a VIEW on all the rows and columns of the Hotel base table and 
add a WHERE clause that will be enforced by the WITH CHECK OPTION.

CREATE VIEW Hotel_V (room_nbr, arrival_date, departure_date, 
guest_name)

AS SELECT H1.room_nbr, H1.arrival_date, H1.departure_date, 
H1.guest_name
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  FROM Hotel AS H1
  WHERE NOT EXISTS
   (SELECT *
     FROM Hotel AS H2

     WHERE H1.room_nbr = H2.room_nbr
    AND H2.arrival_date < H1.arrival_date

     AND H1.arrival_date < H2.departure_date)
   AND H1.arrival_date <= H1.departure_date
 WITH CHECK OPTION;

For example,

INSERT INTO Hotel_V
VALUES (1, '2006-01-01', '2006-01-03', 'Ron Coe');
COMMIT;
INSERT INTO Hotel_V
VALUES (1, '2006-01-03', '2006-01-05', 'John Doe');

will give a WITH CHECK OPTION clause violation on the second 
INSERT INTO statement, as we wanted.

26.6 Dropping VIEWs
VIEWs, like tables, can be dropped from the schema. The Standard 
SQL syntax for the statement is:

DROP VIEW <table name> <drop behavior>

<drop behavior>:: = [CASCADE | RESTRICT]

The <drop behavior> clause did not exist in SQL-86, so vendors 
had different behaviors in their implementation. The usual way 
of storing VIEWs was in a schema-level table with the VIEW name, 
the text of the VIEW, and other information. When you dropped 
a VIEW, the engine usually removed the appropriate row from 
the schema tables. You found out about dependencies when 
you tried to use VIEWs built on other VIEWs that no longer existed. 
Likewise, dropping a base table could cause the same problem 
when the VIEW was accessed.

The CASCADE option will find all other VIEWs that use the dropped 
VIEW and remove them also. If RESTRICT is specified, the VIEW can-
not be dropped if there is anything that is dependent on it. This 
implies a structure for the schema tables that is different from just 
a simple single table.

The bad news is that some older products will let you drop the 
table(s) from which the view is built, but not drop the view itself.

CREATE TABLE Foobar (col_a INTEGER);
CREATE VIEW TestView
AS SELECT col_a
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  FROM Foobar;

DROP TABLE Foobar; -- drop the base table

Unless you also cascaded the DROP TABLE statement, the text of 
the view definition was still in the system. Thus, when you reuse 
the table and column names, they are resolved at runtime with 
the view definition.

CREATE TABLE Foobar
(foo_key CHAR(5) NOT NULL PRIMARY KEY,
col_a REAL NOT NULL);
INSERT INTO Foobar VALUES ('Celko', 3.14159);

This is a potential security flaw and a violation of the SQL 
Standard, but be aware that it exists. Notice that the data type of 
TestView.col_a changed from INTEGER to REAL along with the new 
version of the table.

26.7  Hints on Using VIEWs versus 
TEMPORARY TABLEs

Sometimes this decision is very easy for a programmer. In the 
Standard SQL model, the user cannot create either a VIEW or a 
TEMPORARY TABLE. The creation of any schema object belongs to 
the database administrator, so the user has to use what he or she 
is given. However, you should know how to use each structure 
and which one is best for which situation.

26.7.1 Using VIEWs
Do not nest VIEWs too deeply; the overhead of building several 
levels eats up execution time and the extra storage for materi-
alized VIEWs can be expensive. Complex nesting is also hard to 
maintain. One way to figure out what VIEWs you should have is 
to inspect the existing queries for repeated subqueries or expres-
sions. These are good candidates for VIEWs.

One of the major uses of VIEWs is security. The DBA can choose 
to hide certain columns from certain classes of users through a 
combination of security authorizations and VIEWs. Standard SQL 
has provisions for restricting access to tables at the column level, 
but most implementations do not have that feature yet.

Another security trick is to add a column to a table that has a 
special user or security-level identifier in it. The VIEW hides this 
column and gives the user only what he or she is supposed to see. 
One possible problem is that a user could try to change something 
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in the VIEW that violates other table constraints; when his attempt 
returns an error message, he has gotten some information about 
the security system that we might like to have hidden from him.

The best way to approach VIEWs is to think of how a user 
wants to see the database and then give him a set of VIEWs that 
make it look as if the database had been designed just for his 
applications.

26.7.2 Using TEMPORARY TABLEs
The GLOBAL TEMPORARY TABLE can be used to pass data among 
users, which is something that a VIEW cannot do. The LOCAL 
TEMPORARY TABLE has two major advantages. The user can load it 
with the results of a complex, time-consuming query once and 
use that result set over and over in his session, greatly improv-
ing performance. This also prevents the system from locking out 
other users from the base tables from which the complex query 
was built.

Dr. Codd discussed the idea of a snapshot, which is an image 
of a table at a particular moment in time. But it is important to 
know just what that moment was. You can use a temporary table 
to hold such a snapshot by adding a column with the DEFAULT of 
the CURRENT TIMESTAMP.

The Standard SQL model of temporary tables I have just 
described is not yet common in most implementations. In fact, 
many SQL products do not have the concept of a temporary table 
at all, whereas other products allow the users to create temporary 
tables on the fly. Such tables might last only for their session and 
are visible only to their creator. These tables may or may not have 
indexes, constraints, VIEWs, referential integrity, or much of any-
thing else declared on them; they are a pure “scratch table” for 
the user. Some products allow a user to create a global temporary 
table that can be accessed by other users. But, again, this is not 
the ANSI/ISO model.

26.7.3 Flattening a Table with a VIEW
Given a table with the monthly sales data shown as an attribute 
(the monthly amounts have to be NULL-able to hold missing val-
ues for the future) like this:

CREATE TABLE AnnualSales1
(salesman CHAR(15) NOT NULL PRIMARY KEY,
jan DECIMAL(5,2),
feb DECIMAL(5,2),
mar DECIMAL(5,2),



 Chapter 26 VIRTUAL TABLES: VIEWs, DERIVED TABLES, CTEs, AND MQTs  465

apr DECIMAL(5,2),
may DECIMAL(5,2),
jun DECIMAL(5,2),
jul DECIMAL(5,2),
aug DECIMAL(5,2),
sep DECIMAL(5,2),
oct DECIMAL(5,2),
nov DECIMAL(5,2),
"dec" DECIMAL(5,2) -- reserved word!
);

The goal is to “flatten” it out so that it looks like this:

CREATE TABLE AnnualSales2
(salesman CHAR(15) NOT NULL PRIMARY KEY,
month_name CHAR(3) NOT NULL
   CONSTRAINT valid_month_abbrev
   CHECK (month_name IN ('Jan', 'Feb', 'Mar', 'Apr',
        'May', 'Jun', 'Jul', 'Aug',
        'Sep', 'Oct', 'Nov', 'Dec')),
sales_amount DECIMAL(5,2) NOT NULL,
PRIMARY KEY(salesman, month_name));

The trick is to build a VIEW of the original table with a number 
beside each month:

CREATE VIEW NumberedSales
AS SELECT salesman,
    1 AS M01, jan,
    2 AS M02, feb,
    3 AS M03, mar,
    4 AS M04, apr,
    5 AS M05, may,
    6 AS M06, jun,
    7 AS M07, jul,
    8 AS M08, aug,
    9 AS M09, sep,
   10 AS M10, oct,
   11 AS M11, nov,
   12 AS M12, "dec"
 FROM AnnualSales1;

Now you can use the auxiliary table of sequential numbers or 
you can use a VALUES table constructor to build one. The flattened 
VIEW is:

CREATE VIEW AnnualSales2 (salesman, month, sales_amt)
AS SELECT S1.salesman,
  (CASE WHEN A.nbr = M01 THEN 'Jan'
     WHEN A.nbr = M02 THEN 'Feb'
     WHEN A.nbr = M03 THEN 'Mar'
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     WHEN A.nbr = M04 THEN 'Apr'
     WHEN A.nbr = M05 THEN 'May'
     WHEN A.nbr = M06 THEN 'Jun'
     WHEN A.nbr = M07 THEN 'Jul'
     WHEN A.nbr = M08 THEN 'Aug'
     WHEN A.nbr = M09 THEN 'Sep'
     WHEN A.nbr = M10 THEN 'Oct'
     WHEN A.nbr = M11 THEN 'Nov'
     WHEN A.nbr = M12 THEN 'Dec'
    ELSE NULL END),
   (CASE WHEN A.nbr = M01 THEN jan
     WHEN A.nbr = M02 THEN feb
     WHEN A.nbr = M03 THEN mar
     WHEN A.nbr = M04 THEN apr
     WHEN A.nbr = M05 THEN may
     WHEN A.nbr = M06 THEN jun
     WHEN A.nbr = M07 THEN jul
     WHEN A.nbr = M08 THEN aug
     WHEN A.nbr = M09 THEN sep
     WHEN A.nbr = M10 THEN oct
     WHEN A.nbr = M11 THEN nov
     WHEN A.nbr = M12 THEN "dec"
    ELSE NULL END)
FROM AnnualSales AS S1
   CROSS JOIN
   (VALUES (1), (2), (3), (4), (5), (6),
      (7), (8), (9), (10), (11), (12)) AS A(nbr);

If your SQL product has derived tables, this can be written as a 
single VIEW query.

This technique lets you convert an attribute into a value, 
which is highly nonrelational, but very handy for a report. The 
advantage of using a VIEW over using a temporary table to hold 
the crosstabs query given in another chapter is that the VIEW 
will change automatically when the underlying base table is 
changed.

26.8 Using Derived Tables
A user can build a derived table inside a query. It exists only in 
the scope of the statement that creates it. The AS operator allows 
us to give names to the derived table and its columns. The syn-
tax is very simple, but the scoping rules often confuse new 
users.

(<query expression>) [[AS] <table name> [(<column list>)]]
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26.8.1 Derived Tables in the FROM Clause
Most of the parts of the syntax are optional as you see, but it is 
a very good idea to use them. Treat it the same way you would a 
base table; give it and its columns meaningful names, so you can 
reference the derived table without ambiguity.

The tricky part is in the scoping rules for the subquery  
expressions. Consider this set of expressions:

SELECT * -- wrong
 FROM (Foo
   LEFT OUTER JOIN
   Bar
   ON Foo.x = Bar.x)
     INNER JOIN
     Floob
     ON Floob.y = x;

Foo, Bar, and Floob are exposed to the outermost query, so x 
is an ambiguous column name that might belong to Foo or Bar. 
Change this slightly.

SELECT * -- still wrong
 FROM (Foo AS F1
   LEFT OUTER JOIN
   Bar AS B1
   ON F1.x = B1.x)
     INNER JOIN Floob
     ON Floob.y = Foo.x;

The aliases F1 and B1 hide the base tables from the outermost 
query, so Foo.x is not an exposed column name. One solution is 
to create an alias for the whole query expression and rename the 
ambiguous columns.

SELECT *
FROM ((SELECT x FROM Foo)

  LEFT OUTER JOIN
  (SELECT x FROM Bar)
  ON Foo.x = Bar.x)
  AS Foobar(x1, x2)
   INNER JOIN Floob
   ON Floob.y = x1;

The outermost query sees only Foobar and cannot reference 
either Foo or Bar.

The order of execution of the infixed JOIN operators is from 
left to right. It does not make any difference with INNER JOINs and 
CROSS JOINs, but it is very important when you have OUTER JOINs. 
I strongly recommend that you qualify all the column names.
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26.8.2  Derived Tables with a VALUES 
Constructor

SQL-99 freed the VALUES constructor from the INSERT INTO 
statement and allows it to build tables. You can see an example 
of this in Section 26.7.3 for a single-column table. This con-
struct is now generalized to construct rows in a table, such as

VALUES ('John', 7), ('Mark', 8), ('Fred', 10), ('Sam', 7)

However, such a table cannot have constraints, not does it 
have a name until you add an AS clause. Think of it as a “table 
constant” rather than as a proper table that can be modified, have 
constraints, and so forth. Obviously, all the rows must be union 
compatible, but the system will pick the default data types. One 
way around this is to explicitly cast the columns to the desired 
data types. Doing this for one row is usually enough to force the 
other rows to follow that pattern.

VALUES ('pi', CAST (3.14159265358979323846264338327950
         AS DOUBLE PRECISION))

The columns can contain any scalar expression:

(VALUES ((SELECT MAX(x) FROM Foo), 42),
        ((SELECT MAX(y) FROM Bar), (12+2)),
          (12, 3))
AS Weird (a, b)

To use this construct you need to add some other things 
around it to make it into a derived table, thus:

SELECT <local name>.*
 FROM (VALUES (..), (..), ..)
   AS <local_name>(<column name list>)

26.9 Common Table Expressions
The WITH clause was added in SQL-99 and the goal was to allow 
you to factor out common table expressions rather than repeat-
ing the same code over and over as derived tables.

26.9.1 Simple Common Table Expressions
The simple common table expressions are a list of one or more 
derived tables that appear in front of a SELECT statement. These 
derived tables are created in the order in which they are declared. 
This means that one CTE element can reference only prior CTE 
elements. The basic syntax is:
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<cte element>::=
<table name> [(<column list>)]
AS <subquery expression>

<cte list>::= <cte element> |<cte list>, <cte element>

<cte select statement>::= WITH <cte list> <select statement>;

As a simple example, consider a report that tells us the 
item(s) that had the highest sales volume, measured in dollars. 
First, build a query in the WITH clause to total each item by its 
UPC code. Then using this, find which item has the highest total 
sales.

WITH ItemSummary (upc, item_price_tot)
AS
(SELECT upc, SUM(item_price)
  FROM OrderDetails
 GROUP BY upc)
-- main query
SELECT P1.upc, P1.item_price_tot
FROM ItemSummary AS P1

WHERE P1.item_price_tot
  = (SELECT MAX(P1.item_price_tot)
    FROM ItemSummary AS P2);

Without this feature, the ItemSummary query either would 
have been repeated in two places or put into a VIEW. A program-
mer without ADMIN privileges cannot create a view, so this is his or 
her best option. Although not so bad in this case, imagine if we 
had a complex expression to replicate.

26.10 Recursive Common Table Expressions
There is also a recursive option. A recursive definition of a set has 
two parts. The fixed point or invariant is where things start. Then 
more elements are added to the set, step by step, by applying a 
rule to the previous step results. The syntax for this construct 
includes a UNION [ALL]:

<cte select statement>::=
WITH RECURSIVE <fixed point cte element>
UNION [ALL]
<step cte element>
<select statement>;

The classic example that procedural programmers get in their 
textbooks is the Factorial function, (n!) which is defined by:
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CREATE FUNCTION Fact (IN n INTEGER)
RETURNS INTEGER
IF n IN (0,1)
THEN RETURN 1;
ELSE RETURN (n * Fact(n−1));
END IF;

This is a simple recursive function, which could have been 
done with iteration. This kind of recursion is called linear recur-
sion in the SQL Standards and it is the easiest one. This is not 
the only kind of recursion. If you want to have some fun, write 
the Ackermann function in your favorite procedural language. 
It looks very simple, but it isn’t.

CREATE FUNCTION Ack (IN m INTEGER, IN n INTEGER)
RETURNS INTEGER
BEGIN
IF m = 0
THEN RETURN (n+1);
END IF;
IF m > 0 AND n = 0
THEN RETURN Ack(m−1, 1);
END IF;
IF m > 0 AND n > 0
THEN RETURN Ack(m−1, Ack(m, n−1));
END IF;
END;

When (m = 0), it is a simple increment function. When (m = 1), 
it is addition done with recursive calls to incrementation. As m 
increases, it then becomes multiplication, exponentiation, hyper-
exponentiation, and worse. Each level invokes the prior level until 
everything is done with an increment. The result and the depth of 
recursion both grow fast; Ack(4,2) is an integer of 19,729 decimal 
digits.

26.10.1 Simple Incrementation
The Recursive CTE is most often used to replace a loop. For 
example to build a look-up table of some function, f(i), will look 
like this:

WITH RECURSIVE Increment (i, function_value)
AS
(SELECT i, j
  FROM (VALUES (1, f(1))))
UNION
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SELECT (i+1), f(i+1)
 FROM Increment
WHERE (i+1) <= 1000)
SELECT i, function_value FROM Increment;

This is not a good idea, but it is popular and you need to know 
the skeleton. You will be better off using SEQUENCE, or ROW_NUMBER() 
instead.

26.10.2 Simple Tree Traversal
Let’s make a simple adjacency list model of a bill of materials and 
parse it recursively.

CREATE TABLE BillOfMaterials
(part_name VARCHAR(20) NOT NULL PRIMARY KEY,
assembly_nbr INTEGER, – null is the final assembly
subassembly_nbr INTEGER NOT NULL);

The assembly_nbr for the finished product row is set to 
NULL to show that it is not part of another assembly. The follow-
ing recursive SQL using a common table expression will do the 
trick (note that we have named our common table expression 
“Explosion”):

WITH RECURSIVE Explosion (assembly_nbr, subassembly_nbr, 
part_name)

AS
(SELECT BOM.assembly_nbr, BOM.subassembly_nbr, BOM.part_ 

name
  FROM BillOfMaterials AS BOM
 WHERE BOM.subassembly_nbr = 12 -- traversal starting point
UNION
SELECT Child.assembly_nbr, Child.subassembly_nbr, Child.

part_name
 FROM Explosion AS Parent, BillOfMaterials AS Child
WHERE Parent.subassembly_nbr = Child.assembly_nbr)
-- main select statement
SELECT assembly_nbr, subassembly_nbr, part_name
FROM Explosion;

This will find all the parts that make up subassembly #12. It 
begins by pulling a starting set from the BillOfMaterials table, 
then doing a UNION with itself. The original BillOfMaterials table is 
now hidden inside the expression. Standard SQL requires the use 
of the keyword RECURSION to signal the compiler to keep running 
until no more rows are added to the Explosion table. The main 
SELECT statement can now use Explosion like any other table.
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26.11 Materialized Query Tables
Materialized query tables (MQTs), which are known by the 
names snapshot tables, automatic summary tables, or materi-
alized views, precompute the results of a query and keep them 
in the materialized query table. The database engine can use 
these results instead of recomputing them for user queries. The 
idea is that this is faster than recomputing the same query over  
and over.

There will be some product differences, but the table is cre-
ated with a modified CREATE TABLE statement that includes the 
query that refreshes the data. Since these are base tables, they can 
usually be modified with INSERT, UPDATE, and DELETE statements.

However, there are some restrictions on the queries that can 
be used to build them. It is a good idea to use references to col-
umns and simple functions.

Here is an example of DB2 syntax. The defining query finds 
payroll data about employees whose job title is ‘Designer’.

CREATE TABLE Designers
AS
(SELECT D.dept_name, P.first_name, P.last_name,
     P.salary_amt, P.commission_amt, P.bonus_amt, P.job_title
 FROM Departments AS D, Personnel AS PE
WHERE D.dept_nbr = P.emp_dept_nbr)
DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

I can now use this table:

SELECT D.dept_name, D.location, D.first_name, D.last_name,
 (D.salary_amt + D.commission_amt + D.bonus_amt) AS 

compensation_tot
 FROM Designers AD D
WHERE D.job_title = 'Designer';

The extra clauses tell us the following.
1. DATA INITIALLY IMMEDIATE: We load that table when it is initially 

invoked.
2. REFRESH DEFERRED: The table is not refreshed automatically. 

Other vendors may refresh data using a clock or database event.
3. ENABLE QUERY OPTIMIZATION: Signal the optimizer to use it when 

it will help. This is very proprietary.
4. MAINTAINED BY USER: The user will refresh the data with the com-

mand “REFRESH TABLE <table name>;”.
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27
PARTITIONING DATA IN QUERIES

This section is concerned with how to break the data in SQL into 
meaningful subsets that can then be presented to the user or 
passed along for further reduction.

27.1 Coverings and Partitions
We need to define some basic set operations. A covering is a col-
lection of subsets, drawn from a set, whose union is the original 
set. A partition is a covering whose subsets do not intersect each 
other. Cutting up a pizza is a partitioning; smothering it in two 
layers of pepperoni slices is a covering.

Partitions are the basis for most reports. The property that 
makes partitions useful for reports is aggregation: the whole is 
the sum of its parts. For example, a company budget is broken 
into divisions, divisions are broken into departments, and so 
forth. Each division budget is the sum of its department’s bud-
gets, and the sum of the division budgets is the total for the whole 
company again. We would not be sure what to do if a department 
belonged to two different divisions because that would be a cov-
ering and not a partition.

27.1.1 Partitioning by Ranges
A common problem in data processing is classifying things by 
the way they fall into a range on a numeric or alphabetic scale. 
The best approach to translating a code into a value when ranges 
are involved is to set up a table with the high and the low values 
for each translated value in it. This was covered in the section on 
auxiliary tables in more detail, but here is a quick review.

Any missing values will easily be detected and the table can be 
validated for completeness. For example, we could create a table of 
ZIP code ranges and two-character state abbreviation codes like this:

CREATE TABLE ZipCodes
(state_code CHAR(2) NOT NULL PRIMARY KEY,

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00027-2
Copyright © 2011 by Elsevier Inc. All rights reserved.
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low_zip CHAR(5) NOT NULL UNIQUE,
high_zip CHAR(5) NOT NULL UNIQUE,
CONSTRAINT zip_order_okay CHECK(low_zip < high_zip),
. . . );

Here is a query that looks up the city name and state code 
from the ZIP code in the AddressBook table to complete a mail-
ing label with a simple JOIN that looks like this:

SELECT A1.name, A1.street, SZ.city, SZ.state_code, A1.zip
 FROM ZipCodes AS SZ, AddressBook AS A1
WHERE A1.zip BETWEEN SZ.low_zip AND SZ.high_zip;

You need to be careful with this predicate. If one of the three 
columns involved has a NULL in it, the BETWEEN predicate becomes 
UNKNOWN and will not be recognized by the WHERE clause. If you 
design the table of range values with the high value in one row 
equal to or greater than the low value in another row, both of those 
rows will be returned when the test value falls on the overlap.

27.1.2 Single-Column Range Tables
If you know that you have a partitioning in the range value tables, 
you can write a query in SQL that will let you use a table with only 
the high value and the translation code. The grading system table 
would have ((100, ‘A’), (89, ‘B’), (79, ‘C’), (69, ‘D’), and (59, ‘F’)) as 
its rows. Likewise, a table of the state code and the highest ZIP 
code in that state could do the same job as the BETWEEN predicate 
in the previous query.

CREATE TABLE StateZip2
(high_zip CHAR(5) NOT NULL,
state CHAR(2) NOT NULL,
PRIMARY KEY (high_zip, state));

We want to write a query to give us the greatest lower bound 
or least upper bound on those values. The greatest lower bound 
(glb) operator finds the largest number in one column that is less 
than or equal to the target value in the other column. The least 
upper bound (lub) operator finds the smallest number greater 
than or equal to the target number. Unfortunately, this is not a 
good trade-off, because the subquery is fairly complex and slow. 
The “high and low” columns are a better solution in most cases. 
Here is a second version of the AddressBook query, using only the 
high_zip column from the StateZip2 table:

SELECT name, street, city, state, zip
 FROM StateZip2, AddressBook
WHERE state =
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(SELECT state
  FROM StateZip2
WHERE high_zip =
  (SELECT MIN(high_zip)
     FROM StateZip2
   WHERE Address.zip <= StateZip2.high_zip));

If you want to allow for multiple-row matches by not requiring 
that the look-up table have unique values, the equality subquery 
predicate should be converted to an IN() predicate.

27.1.3 Partition by Functions
It is also possible to use a function that will partition the table 
into subsets that share a particular property. Consider the cases 
where you have to add a column with the function result to the 
table because the function is too complex to be reasonably writ-
ten in SQL.

One common example of this technique is the Soundex func-
tion, where it is not a vendor extension; the Soundex family 
assigns codes to names that are phonetically alike. The complex 
calculations in engineering and scientific databases that involve 
functions that SQL does not have are another example of this 
technique.

SQL was never meant to be a computational language. 
However, many vendors allow a query to access functions in the 
libraries of other programming languages. You must know what 
the cost in execution time for your product is before doing this. 
One version of SQL uses a threaded-code approach to carry 
parameters over to the other language’s libraries and return the 
results on each row—the execution time is horrible. Some ver-
sions of SQL can compile and link another language’s library into 
the SQL.

Although this is a generalization, the safest technique is to 
unload the parameter values to a file in a standard format that can 
be read by the other language. Then use that file in a program to 
find the function results and create INSERT INTO statements that will 
load a table in the database with the parameters and the results. 
You can then use this working table to load the result  column in the 
original table.

27.1.4 Partition by Sequences
We are looking for patterns over a history that has a sequential 
ordering to it. This ordering could be temporal or via a sequence 
numbering. For example, given a payment history we want 
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to break it into groupings of behavior, say whether or not the 
 payments were on time or late.

CREATE TABLE PaymentHistory
(payment_nbr INTEGER NOT NULL PRIMARY KEY,
paid_on_time CHAR(1) DEFAULT 'Y' NOT NULL

CHECK(paid_on_time IN ('Y', 'N')));

INSERT INTO PaymentHistory
VALUES (1006, 'Y'),

(1005, 'Y'),
(1004, 'N'),
(1003, 'Y'),
(1002, 'Y'),
(1001, 'Y'),
(1000, 'N');

The results we want assign a grouping number to each run of 
on-time/late payments, thus:

 grp payment_nbr paid_on_time

1 1006 'Y'
1 1005 'Y'
2 1004 'N'
3 1003 'Y'
3 1002 'Y'
3 1001 'Y'
4 1000 'N'

Here is a solution from Hugo Kornelis that depends on the 
payments always being numbered consecutively.

SELECT (SELECT COUNT(*)
FROM PaymentHistory AS H2,

PaymentHistory AS H3
WHERE H3.payment_nbr = H2.payment_nbr + 1
AND H3.paid_on_time <> H2.paid_on_time
AND H2.payment_nbr >= H1.payment_nbr) + 1 AS grp,

 payment_nbr, paid_on_time
FROM PaymentHistory AS H1;

This is very useful when looking for patterns in a history. 
A more complex version of the same problem would involve 
more than two categories. Consider a table with a sequential 
numbering and a list of products that have been received.

What we want is the average quality score value for a sequen-
tial grouping of the same Product. For example, I need an average 
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of Entries 1, 2, and 3 because this is the first grouping of the same 
product type, but I do not want that average to include entry #8, 
which is also Product A, but in a different “group.”

CREATE TABLE ProductTests
(batch_nbr INTEGER NOT NULL PRIMARY KEY,
prod_code CHAR(1) NOT NULL,
prod_quality DECIMAL(8.4) NOT NULL);

INSERT INTO ProductTests (batch_nbr, prod_code, 
prod_quality)

VALUES (1, 'A', 80),
(2, 'A', 70),
(3, 'A', 80),
(4, 'B', 60),
(5, 'B', 90),
(6, 'C', 80),
(7, 'D', 80),
(8, 'A', 50),
(9, 'C', 70);

The query then becomes:

SELECT X.prod_code, MIN(X.batch_nbr) AS start_batch_nbr, 
end_batch_nbr,
AVG(B4.prod_quality) AS avg_prod_quality

 FROM (SELECT B1.prod_code, B1.batch_nbr,
MAX(B2.batch_nbr) AS end_batch_nbr

FROM ProductTests AS B1, ProductTests AS B2
WHERE B1.batch_nbr <= B2.batch_nbr
AND B1.prod_code = B2.prod_code
AND B1.prod_code
= ALL (SELECT prod_code

FROM ProductTests AS B3
WHERE B3.batch_nbr BETWEEN B1.batch_nbr

AND B2.batch_nbr)
GROUP BY B1.prod_code, B1.batch_nbr) AS X
INNER JOIN
ProductTests AS B4 -- join to get the quality measurements
ON B4.batch_nbr BETWEEN X.batch_nbr AND X.end_batch_nbr

 GROUP BY X.prod_code, X.end_batch_nbr;

Results
prod_code start_batch_nbr end_batch_nbr avg_prod_quality
==========================================================
'A' 1 3 76.6666
'B' 4 5 75.0000
'C' 6 6 80.0000
'D' 7 7 80.0000
'A' 8 8 50.0000
'C' 9 9 70.0000
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27.1.5 Partition with Windows
Tim Miller had a similar problem. Given a table of transactions, 
he wanted a single row to summarize each report period.

CREATE TABLE Transactions
(report_period INTEGER NOT NULL,
trans_nbr INTEGER NOT NULL PRIMARY KEY,
trans_qty INTEGER NOT NULL);

Plamen Ratchev gave this method:

SELECT report_period, SUM(trans_qty) AS trans_qty_tot,
MAX(CASE WHEN rk1 = 1 THEN trans_nbr END) AS 

start_trans_nbr,
MAX(CASE WHEN rk2 = 1 THEN trans_nbr END) AS 

end_trans_nbr,
 FROM (SELECT report_period, trans_qty, trans_nbr,

ROW_NUMBER() OVER(ORDER BY trans_nbr ASC) AS rk1,
ROW_NUMBER() OVER(ORDER BY trans_nbr DESC) AS rk2

FROM Transactions) AS T
GROUP BY report_period;

But you can extend the idea of windowed functions and use 
them.

SELECT report_period,
SUM(trans_qty) OVER (PARTITION BY report_period)
AS trans_qty_tot,
MAX(trans_nbr) OVER (PARTITION BY report_period)
AS start_trans_nbr,
MIN(trans_nbr) OVER (PARTITION BY report_period)
AS end_trans_nbr

 FROM Transactions;

This should be easy to optimize because the PARTITION BY sub-
clauses are identical in all three summary values.

27.2 Relational Division
Relational division is one of the eight basic operations in 
Codd’s relational algebra. The idea is that a divisor table is used 
to partition a dividend table and produce a quotient or results 
table. The quotient table is made up of those values of one col-
umn for which a second column had all of the values in the 
divisor.

This is easier to explain with an example. We have a table of 
pilots and the planes they can fly (dividend); we have a table of 
planes in the hangar (divisor); we want the names of the pilots 
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who can fly every plane (quotient) in the hangar. To get this 
result, we divide the PilotSkills table by the planes in the hangar.

CREATE TABLE PilotSkills
(pilot CHAR(15) NOT NULL,
plane CHAR(15) NOT NULL,
PRIMARY KEY (pilot, plane));

PilotSkills
pilot plane
=========================
'Celko' 'Piper Cub'
'Higgins' 'B-52 Bomber'
'Higgins' 'F-14 Fighter'
'Higgins' 'Piper Cub'
'Jones' 'B-52 Bomber'
'Jones' 'F-14 Fighter'
'smith' 'B-1 Bomber'
'smith' 'B-52 Bomber'
'smith' 'F-14 Fighter'
'Wilson' 'B-1 Bomber'
'Wilson' 'B-52 Bomber'
'Wilson' 'F-14 Fighter'
'Wilson' 'F-17 Fighter'

CREATE TABLE Hangar
(plane CHAR(15) NOT NULL PRIMARY KEY);

Hangar
plane
=============
'B-1 Bomber'
'B-52 Bomber'
'F-14 Fighter'

PilotSkills DIVIDED BY Hangar
pilot
=============================
'smith'
'Wilson'

In this example, Smith and Wilson are the two pilots who can 
fly everything in the hangar. Notice that Higgins and Celko know 
how to fly a Piper Cub, but we don’t have one right now. In Codd’s 
original definition of relational division, having more rows than 
are called for is not a problem.

The important characteristic of a relational division is that the 
CROSS JOIN of the divisor and the quotient produces a valid subset 
of rows from the dividend. This is where the name comes from, 
since the CROSS JOIN acts like a multiplication operator.
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27.2.1 Division with a Remainder
There are two kinds of relational division. Division with a remain-
der allows the dividend table to have more values than the divi-
sor, which was Dr. Codd’s original definition. For example, if a 
pilot can fly more planes than just those we have in the hangar, 
this is fine with us. The query can be written as:

SELECT DISTINCT pilot
 FROM PilotSkills AS PS1
WHERE NOT EXISTS

(SELECT *
  FROM Hangar
 WHERE NOT EXISTS
 (SELECT *

 FROM PilotSkills AS PS2
 WHERE (PS1.pilot = PS2.pilot)
  AND (PS2.plane = Hangar.plane)));

The quickest way to explain what is happening in this query 
is to imagine a World War II movie where a cocky pilot has just 
walked into the hangar, looked over the fleet, and announced, 
“There ain’t no plane in this hangar that I can’t fly!” We want 
to find the pilots for whom there does not exist a plane in 
the hangar for which they have no skills. The use of the NOT 
EXISTS() predicates is for speed. Most SQL implementations 
will look up a value in an index rather than scan the whole 
table.

This query for relational division was made popular by Chris 
Date in his textbooks, but it is neither the only method nor 
always the fastest. Another version of the division can be written 
so as to avoid three levels of nesting. Although it is not original 
with me, I have made it popular in my books.

SELECT PS1.pilot
  FROM PilotSkills AS PS1, Hangar AS H1
 WHERE PS1.plane = H1.plane
 GROUP BY PS1.pilot
HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM 

Hangar);

There is a serious difference in the two methods. Burn 
down the hangar, so that the divisor is empty. Because of the 
NOT EXISTS() predicates in Date’s query, all pilots are returned 
from a division by an empty set. Because of the COUNT() func-
tions in my query, no pilots are returned from a division by an 
empty set.

In the sixth edition of his book, Introduction to Database 
Systems (Addison-Wesley, 1995, ISBN 0-191-82458-2), Chris Date 
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defined another operator (DIVIDEBY … PER), which produces the 
same results as my query, but with more complexity.

27.2.2 Exact Division
The second kind of relational division is exact relational division. 
The dividend table must match exactly to the values of the divi-
sor without any extra values.

SELECT PS1.pilot
 FROM PilotSkills AS PS1

LEFT OUTER JOIN
Hangar AS H1
ON PS1.plane = H1.plane

GROUP BY PS1.pilot
HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM 

Hangar)
  AND COUNT(H1.plane) = (SELECT COUNT(plane) FROM Hangar);

This says that a pilot must have the same number of cer-
tificates as there are planes in the hangar, and these certificates 
all match to a plane in the hangar, not to something else. The 
“something else” is shown by a created NULL from the LEFT OUTER 
JOIN.

Please do not make the mistake of trying to reduce the HAVING 
clause with a little algebra to:

HAVING COUNT(PS1.plane) = COUNT(H1.plane)

because it does not work; it will tell you that the hangar has (n) 
planes in it and the pilot is certified for (n) planes, but not that 
those two sets of planes are equal to each other.

27.2.3 Note on Performance
The nested EXISTS() predicates version of relational division 
was made popular by Chris Date’s textbooks, and the author is 
associated with popularizing the COUNT(*) version of relational 
division. The Winter 1996 edition of DB2 On-Line Magazine 
(http://www.db2mag.com/96011ar:htm) had an article entitled 
“Powerful SQL: Beyond the Basics,” by Sheryl Larsen, which 
gave the results of testing both methods. Her conclusion for DB2 
was that the nested EXISTS() version is better when the quotient 
has less than 25% of the dividend table’s rows and the COUNT(*) 
 version is better when the quotient is more than 25% of the 
 dividend table.

On the other hand, Matthew W. Spaulding at SnapOn Tools 
reported his test on SQL Server 2000 with the opposite results. 

http://www.db2mag.com/96011ar:htm
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He had a table with two million rows for the dividend and around 
1000 rows in the divisor, yielding a quotient of around 1000 rows 
as well. The COUNT method completed in well under one second, 
where as the nested NOT EXISTS query took roughly five seconds 
to run.

The moral of the story is to test both methods on your particu-
lar product.

27.2.4 Todd’s Division
A relational division operator proposed by Stephen Todd is 
defined on two tables with common columns that are joined 
together, dropping the JOIN column and retaining only those 
non-JOIN columns that meet a criterion.

We are given a table, JobParts(job_nbr, part_nbr), and 
another table, SupParts(sup_nbr, part_nbr), of suppliers and 
the parts that they provide. We want to get the supplier-and-
job pairs such that supplier sn supplies all the parts needed 
for job jn. This is not quite the same thing as getting the 
 supplier-and-job pairs such that job jn requires all the parts pro-
vided by supplier sn.

You want to divide the JobParts table by the SupParts table. A 
rule of thumb: The remainder comes from the dividend, but all 
values in the divisor are present.

JobParts SupParts Result = JobSups

job pno sno pno job sno

'j1' 'p1' 's1' 'p1' 'j1' 's1'
'j1' 'p2' 's1' 'p2' 'j1' 's2'
'j2' 'p2' 's1' 'p3' 'j2' 's1'
'j2' 'p4' 's1' 'p4' 'j2' 's4'
'j2' 'p5' 's1' 'p5' 'j3' 's1'
'j3' 'p2' 's1' 'p6' 'j3' 's2'

's2' 'p1' 'j3' 's3'
's2' 'p2' 'j3' 's4'
's3' 'p2'
's4' 'p2'
's4' 'p4'
's4' 'p5'
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Pierre Mullin submitted the following query to carry out the 
Todd division:

SELECT DISTINCT JP1.job, SP1.supplier
 FROM JobParts AS JP1, SupParts AS SP1
WHERE NOT EXISTS

(SELECT *
FROM JobParts AS JP2
WHERE JP2.job = JP1.job
AND JP2.part
NOT IN (SELECT SP2.part

FROM SupParts AS SP2
WHERE SP2.supplier = SP1.supplier));

This is really a modification of the query for Codd's division, 
extended to use a JOIN on both tables in the outermost SELECT 
statement. The IN predicate for the second subquery can be 
replaced with a NOT EXISTS predicate; it might run a bit faster, 
depending on the optimizer.

Another related query is finding the pairs of suppliers who 
sell the same parts. In this data, that would be the pairs (s1, p2), 
(s3, p1), (s4, p1), (s5, p1):

SELECT S1.sup, S2.sup
 FROM SupParts AS S1, SupParts AS S2
WHERE S1.sup < S2.sup -- different suppliers
  AND S1.part = S2.part -- same parts
GROUP BY S1.sup, S2.sup
HAVING COUNT(*) = (SELECT COUNT (*) -- same count of parts

FROM SupParts AS S3
WHERE S3.sup = S1.sup)

  AND COUNT(*) = (SELECT COUNT (*)
FROM SupParts AS S4
WHERE S4.sup = S2.sup);

This can be modified into Todd’s division easily by adding the 
restriction that the parts must also belong to a common job.

Steve Kass came up with a specialized version that depends 
on using a numeric code. Assume we have a table that tells us 
which players are on which teams:

CREATE TABLE TeamAssignments
(player_id INTEGER NOT NULL

REFERENCES Players(player_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

team_id CHAR(5) NOT NULL
REFERENCES Teams(team_id)
ON DELETE CASCADE
ON UPDATE CASCADE,

PRIMARY KEY (player_id, team_id));



484  Chapter 27 PARTITIONING DATA IN QUERIES

To get pairs of Players on the same team:

SELECT P1.player_id, P2.player_id
 FROM Players AS P1, Players AS P2
WHERE P1.player_id < P2.player_id
GROUP BY P1.player_id, P2.player_id
HAVING P1.player_id + P2.player_id

= ALL (SELECT SUM(P3.player_id)
FROM TeamAssignments AS P3
WHERE P3.player_id IN (P1.player_id, P2.player_id)
GROUP BY P3.team_id);

27.2.5 Division with JOINs
Standard SQL has several JOIN operators that can be used to per-
form a relational division. To find the pilots who can fly the same 
planes as Higgins use this query:

SELECT SP1.Pilot
 FROM (((SELECT plane FROM Hangar) AS H1

INNER JOIN
(SELECT pilot, plane FROM PilotSkills) AS SP1
ON H1.plane = SP1.plane)

INNER JOIN (SELECT *
FROM PilotSkills
WHERE pilot = 'Higgins') AS H2

ON H2.plane = H1.plane)
GROUP BY Pilot
HAVING COUNT(*) >= (SELECT COUNT(*)

FROM PilotSkills
WHERE pilot = 'Higgins');

The first JOIN finds all the planes in the hangar for which we have 
a pilot. The next JOIN takes that set and finds which of those match 
up with (SELECT * FROM PilotSkills WHERE pilot = 'Higgins') 
skills. The GROUP BY clause will then see that the intersection we have 
formed with the joins has at least as many elements as Higgins has 
planes. The GROUP BY also means that the SELECT DISTINCT can be 
replaced with a simple SELECT. If the theta operator in the GROUP BY 
clause is changed from  to , the query finds an exact division. 
If the theta operator in the GROUP BY clause is changed from  to 
 or , the query finds those pilots whose skills are a superset or a 
strict superset of the planes that Higgins flies.

It might be a good idea to put the divisor into a VIEW for read-
ability in this query and as a clue to the optimizer to calculate it 
once. Some products will execute this form of the division query 
faster than the nested subquery version, because they will use the 
PRIMARY KEY information to precompute the joins between tables.
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27.2.6 Division with Set Operators
The Standard SQL set difference operator, EXCEPT, can be used to 
write a very compact version of Dr. Codd’s relational division. The 
EXCEPT operator removes the divisor set from the dividend set. If the 
result is empty, we have a match; if there is anything left over, it has 
failed. Using the pilots-and-hangar-tables example, we would write:

SELECT DISTINCT Pilot
 FROM PilotSkills AS P1
WHERE (SELECT plane FROM Hangar

EXCEPT
SELECT plane
FROM PilotSkills AS P2
WHERE P1.pilot = P2.pilot) IS NULL;

Again, informally, you can imagine that we got a skill list 
from each pilot, walked over to the hangar, and crossed off each 
plane he could fly. If we marked off all the planes in the hangar, 
we would keep this guy. Another trick is that an empty subquery 
expression returns a NULL, which is how we can test for an empty 
set. The WHERE clause could just as well have used a NOT EXISTS() 
predicate instead of the IS NULL predicate.

27.3 Romley’s Division
This somewhat complicated relational division is due to 
Richard Romley at Salomon Smith Barney. The original prob-
lem deals with two tables. The first table has a list of managers 
and the projects they can manage. The second table has a list of 
Personnel, their departments, and the project to which they are 
assigned. Each employee is assigned to one and only one depart-
ment and each employee works on one and only one project at a 
time. But a department can have several different projects at the 
same time, so a single project can span several departments.

CREATE TABLE MgrProjects
(mgr_name CHAR(10) NOT NULL,
project_id CHAR(2) NOT NULL,
PRIMARY KEY(mgr_name, project_id));

INSERT INTO Mgr_Project
VALUES ('M1', 'P1'), ('M1', 'P3'),

('M2', 'P2'), ('M2', 'P3'),
('M3', 'P2'),
('M4', 'P1'), ('M4', 'P2'), ('M4', 'P3');

CREATE TABLE Personnel
(emp_id CHAR(10) NOT NULL,
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dept CHAR(2) NOT NULL,
project_id CHAR(2) NOT NULL,
UNIQUE (emp_id, project_id),
UNIQUE (emp_id, dept),
PRIMARY KEY (emp_id, dept, project_id));

-- load department #1 data
INSERT INTO Personnel
VALUES ('Al', 'D1', 'P1'),

('Bob', 'D1', 'P1'),
('Carl', 'D1', 'P1'),
('Don', 'D1', 'P2'),
('Ed', 'D1', 'P2'),
('Frank', 'D1', 'P2'),
('George', 'D1', 'P2');

-- load department #2 data
INSERT INTO Personnel
VALUES ('Harry', 'D2', 'P2'),

('Jack', 'D2', 'P2'),
('Larry', 'D2', 'P2'),
('Mike', 'D2', 'P2'),
('Nat', 'D2', 'P2');

-- load department #3 data
INSERT INTO Personnel
VALUES ('Oscar', 'D3', 'P2'),

('Pat', 'D3', 'P2'),
('Rich', 'D3', 'P3');

The problem is to generate a report showing for each man-
ager of each department whether he or she is qualified to manage 
none, some, or all the projects being worked on within the depart-
ment. To find who can manage some, but not all, of the projects, 
use a version of relational division.

SELECT M1.mgr_name, P1.dept_name
 FROM MgrProjects AS M1

CROSS JOIN
Personnel AS P1

WHERE M1.project_id = P1.project_id
GROUP BY M1.mgr_name, P1.dept_name
HAVING COUNT(*) <> (SELECT COUNT(emp_id)

FROM Personnel AS P2
WHERE P2.dept_name = P1.dept_name);

The query is simply a relational division with a <> instead of 
an  in the HAVING clause. Richard came back with a modification 
of my answer that uses a characteristic function inside a single 
aggregate function.
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SELECT DISTINCT M1.mgr_name, P1.dept_name
 FROM (MgrProjects AS M1

INNER JOIN
Personnel AS P1
ON M1.project_id = P1.project_id)
INNER JOIN
Personnel AS P2
ON P1.dept_name = P2.dept_name

GROUP BY M1.mgr_name, P1.dept_name, P2.project_id
HAVING MAX (CASE WHEN M1.project_id = P2.project_id

THEN 1 ELSE 0 END) = 0;

This query uses a characteristic function whereas my origi-
nal version compares a count of Personnel under each manager 
to a count of Personnel under each project_id. The use of “GROUP 
BY M1.mgr_name, P1.dept_name, P2.project_id” with the “SELECT 
DISTINCT M1.mgr_name, P1.dept_name” is really the tricky part in this 
new query. What we have is a three-dimensional space with the 
(x, y, z) axis representing (mgr_name, dept_name, project_id), and 
then we reduce it to two dimensions (mgr_name, dept) by seeing if 
Personnel on shared project_ids cover the department or not.

That observation lead to the next changes. We can build a 
table that shows each combination of manager, department, 
and the level of authority they have over the projects they have 
in common. That is the derived table T1 in the following query; 
(authority  1) means the manager is not on the project and 
(authority  2) means that he or she is on the project_id:

SELECT T1.mgr_name, T1.dept_name,
CASE SUM(T1.authority)
WHEN 1 THEN 'None'
WHEN 2 THEN 'All'
WHEN 3 THEN 'some'
ELSE NULL END AS power

FROM (SELECT DISTINCT M1.mgr_name, P1.dept_name,
MAX (CASE WHEN M1.project_id = P1.project_id

THEN 2 ELSE 1 END) AS authority
 FROM MgrProjects AS M1

CROSS JOIN
Personnel AS P1

GROUP BY m.mgr_name, P1.dept_name, P1.project_id) AS T1
GROUP BY T1.mgr_name, T1.dept_name;

Another version, using the airplane hangar example:

SELECT PS1.pilot,
CASE WHEN COUNT(PS1.plane) > (SELECT COUNT(plane) FROM 

Hanger)
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AND COUNT(H1.plane) = (SELECT COUNT(plane)FROM 
Hanger)

THEN 'more than all'
WHEN COUNT(PS1.plane) = (SELECT COUNT(plane) FROM 

Hanger)
AND COUNT(H1.plane) = (SELECT COUNT(plane) FROM  

Hanger)
THEN 'exactly all '
WHEN MIN(H1.plane) IS NULL
THEN 'none '
ELSE 'some ' END AS skill_level

 FROM PilotSkills AS PS1
LEFT OUTER JOIN
Hanger AS H1
ON PS1.plane = H1.plane

 GROUP BY PS1.pilot;

We can now sum the authority numbers for all the projects 
within a department to determine the power this manager has 
over the department as a whole. If he or she had a total of one, 
the manager has no authority over personnel on any project in 
the department. If he or she had a total of two, the manager has 
power over all personnel on all projects in the department. If 
he or she had a total of three, the manager has both a 1 and a 2 
authority total on some projects within the department. Here is 
the final answer.

Results

 mgr_name dept power  

M1 D1 Some
M1 D2 None
M1 D3 Some
M2 D1 Some
M2 D2 All
M2 D3 All
M3 D1 Some
M3 D2 All
M3 D3 Some
M4 D1 All
M4 D2 All
M4 D3 All
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27.4 Boolean Expressions in an RDBMS
Given the usual “hangar and pilots” schema, we want to create and 
store queries that involve Boolean expressions, such as “Find the 
pilots who can fly a Piper Cub and also an F-14 or F-17 Fighter.” 
The trick is to put the expression into the disjunctive canoni-
cal form. In English that means a bunch of AND-ed predicates that 
are then OR-ed together, like this. Any Boolean function can be 
expressed this way. This form is canonical when each Boolean vari-
able appears exactly once in each term. When all variables are not 
required to appear in every term, the form is called a disjunctive 
normal form. The algorithm to convert any Boolean expression 
into disjunctive canonical form is a bit complicated, but can be 
found in a good book on circuit design. Our simple example would 
convert to this predicate.

('Piper Cub' AND 'F-14 Fighter') OR ('Piper Cub' AND 'F-17 
Fighter')

which we load into this table:

CREATE TABLE BooleanExpressions
(and_grp INTEGER NOT NULL,
skill CHAR(10) NOT NULL,
PRIMARY KEY (and_grp, skill));

INSERT INTO BooleanExpressions
VALUES (1, 'Piper Cub'), (1, 'F-14 Fighter'),

(2, 'Piper Cub'), (2, 'F-17 Fighter');

Assume we have a table of job candidates:

CREATE TABLE Candidates
(candidate_name CHAR(15) NOT NULL,
skill CHAR(10) NOT NULL,
PRIMARY KEY (candidate_name, skill));

INSERT INTO Candidates
VALUES ('John', 'Piper Cub'), --winner

('John', 'B-52 Bomber'),
('Mary', 'Piper Cub'), --winner
('Mary', 'F-17 Fighter'),
('Larry', 'F-14 Fighter'), --winner
('Larry', 'F-17 Fighter'),
('Moe', 'F-14 Fighter'), --winner
('Moe', 'F-17 Fighter'),
('Moe', 'Piper Cub'),
('Celko', 'Piper Cub'), -- loser
('Celko', 'Blimp'),
('smith', 'Kite'), -- loser
('smith', 'Blimp');
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The query is simple now:

SELECT DISTINCT C1.candidate_name
 FROM Candidates AS C1, BooleanExpressions AS Q1
WHERE C1.skill = Q1.skill
GROUP BY Q1.and_grp, C1.candidate_name
HAVING COUNT(C1.skill)

= (SELECT COUNT(*)
  FROM BooleanExpressions AS Q2
WHERE Q1.and_grp = Q2.and_grp);

You can retain the COUNT() information to rank candidates. For 
example, Moe meets both qualifications, but other candidates 
meet only one of the two.

27.5 FIFO and LIFO Subsets
This will be easier to explain with an example for the readers who 
have not worked with an Inventory system before. Imagine that we 
have a warehouse of one product to which we add stock once a day 
with the following data:

CREATE TABLE InventoryReceipts
(receipt_nbr INTEGER PRIMARY KEY,
purchase_date DATETIME NOT NULL,
qty_on_hand INTEGER NOT NULL
  CHECK (qty_on_hand >= 0),
unit_price DECIMAL (12,4) NOT NULL); 

The business now sells 100 units on 2006-01-05. How do 
you calculate the value of the stock sold? There is not one right 
answer, but here are some options:
1. Use the current replacement cost, which is $10.00 per unit as 

of January 5, 2006. That would mean the sale costs us $1000.00 
because of a recent price break.

InventoryReceipts

receipt_nbr purchase_date qty_on_hand unit_price

1 '2015-01-01' 15 10.00
2 '2015-01-02' 25 12.00
3 '2015-01-03' 40 13.00
4 '2015-01-04' 35 12.00
5 '2015-01-05' 45 10.00
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2. Use the current average price per unit. We have a total of 160 units, 
for which we paid a total of $1840.00, and that gives us an average 
cost of $11.50 per unit, or $1150.00 in total inventory costs.

3. LIFO, stands for Last In, First Out. We start by looking at the 
most recent purchases and work backward through time.

2006-01-05 45 * $10.00 = $450.00 and 45 units
2006-01-04 35 * $12.00 = $420.00 and 80 units
2006-01-03 20 * $13.00 = $260.00 and 100 with 20 units left 

over for a total of $1130.00 in inventory cost.
4. FIFO, stands for First In, First Out. We start by looking at the 

earliest purchases and work forward through time.
2006-01-01 15 * $10.00 = $150.00 and 15 units
2006-01-02 25 * $12.00 = $300.00 and 40 units
2006-01-03 40 * $13.00 = $520.00 and 80 units
2006-01-04 20 * $12.00 = $240.00 with 15 units left over 

for a total of $1210.00 in inventory costs.
The first two scenarios are trivial to program. The LIFO 

and FIFO are more interesting because they involve looking at 
matching the order against blocks of inventory in a particular 
order. Consider this view:

CREATE VIEW LIFO (stock_date, unit_price, tot_qty_on_hand, 
tot_cost)

AS
SELECT R1.purchase_date, R1.unit_price, SUM(R2.qty_ 

on_hand), SUM(R2.qty_on_hand *
R2.unit_price)
FROM InventoryReceipts AS R1,

InventoryReceipts AS R2
WHERE R2.purchase_date >= R1.purchase_date
GROUP BY R1.purchase_date, R1.unit_price;

A row in this view tells us the total quantity on hand, the total 
cost of the goods in inventory, and what we were paying for items 
on each date. The quantity on hand is a running total. We can get 
the LIFO cost with this query.

SELECT (tot_cost − ((tot_qty_on_hand -:order_qty_on_hand) 
* unit_price)) AS cost

FROM LIFO AS L1
WHERE stock_date
= (SELECT MAX(stock_date)

FROM LIFO AS L2
WHERE tot_qty_on_hand >=:order_qty_on_hand);

This is straight algebra and a little logic. Find the most recent 
date that we had enough (or more) quantity on hand to meet the 
order. If by dumb blind luck, there is a day when the quantity on 
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hand exactly matched the order, return the total cost as the answer. 
If the order was for more than we have in stock, then return 
 nothing. If we go back to a day when we had more in stock than the 
order was for, then look at the unit price on that day, multiply by 
the overage, and subtract it.

Alternatively, you can use a derived table and a CASE expression. 
The CASE expression computes the cost of units that have a run-
ning total quantity less than the:order_qty_on_hand and then does 
algebra on the final block of inventory that would put the running 
total over the limit. The outer query does a sum on these blocks.

SELECT SUM(R3.v) AS cost
 FROM (SELECT R1.unit_price

* CASE WHEN SUM(R2.qty_on_hand) <=:order_qty_on_hand
THEN R1.qty_on_hand
ELSE:order_qty_on_hand
− (SUM(R2.qty_on_hand) − R1.qty_on_hand) END

FROM InventoryReceipts AS R1,
InventoryReceipts AS R2

WHERE R1.purchase_date <= R2.purchase_date
GROUP BY R1.purchase_date, R1.qty_on_hand, R1.unit_price
HAVING (SUM(R2.qty_on_hand) − R1.qty_on_hand) 

<=:order_qty_on_hand)
    AS R3(v);

FIFO can be done with a similar VIEW or derived table.

CREATE VIEW FIFO (stock_date, unit_price, tot_qty_on_hand, 
tot_cost)

AS
SELECT R1.purchase_date, R1.unit_price,

SUM(R2.qty_on_hand), SUM(R2.qty_on_hand *
R2.unit_price)
FROM InventoryReceipts AS R1,

InventoryReceipts AS R2
WHERE R2.purchase_date <= R1.purchase_date
GROUP BY R1.purchase_date, R1.unit_price;

with the corresponding query:

SELECT (tot_cost − ((tot_qty_on_hand −:order_qty_on_hand) 
* unit_price)) AS cost

 FROM FIFO AS F1
WHERE stock_date

= (SELECT MIN (stock_date)
    FROM FIFO AS F2
   WHERE tot_qty_on_hand >= :order_qty_on_hand);
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28
GROUPING OPERATIONS

I am separating the partitions and grouping operations based 
on the idea that a group has group properties that we are trying 
to find, so we get a single row back for each group. A partition 
is simply a way of subsetting the original table, so we get a table 
back as a result.

28.1 GROUP BY Clause
The GROUP BY clause is based on simple partitions. A partition of a 
set divides the set into subsets such that (1) the union of the sub-
sets returns the original set and (2) the intersection of the subsets 
is empty. Think of it as cutting up a pizza pie—each piece of pep-
peroni belongs to one and only one slice of pizza. When you get 
to the section on SQL-99 OLAP extensions, you will see “variation 
on a theme” in the ROLLUP and CUBE operators, but this is where it 
all starts.

The GROUP BY clause takes the result of the FROM and WHERE 
clauses, then puts the rows into groups defined as having the 
same values for the columns listed in the GROUP BY clause. Each 
group is reduced to a single row in the result table. This result 
table is called a grouped table, and all operations are now defined 
on groups rather than on the original rows.

By convention, the NULLs are treated as one group. The order 
of the grouping columns in the GROUP BY clause does not matter, 
but since all or some of the column names have to appear in the 
SELECT list, you should probably use the same order in both lists 
for readability.

Please note the SELECT column names might be a subset of the 
GROUP BY clause column names, but never the other way around. 
Let us construct a sample table called “Villes” to explain in detail 
how this works. The table is declared as:

CREATE TABLE Villes
(state_code CHAR(2) NOT NULL, -- usps codes
 city_name CHAR(25) NOT NULL,
 PRIMARY KEY (city_name, state_code));

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00028-4
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00028-4
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and we populate it with the names of cities that end in ‘-ville’ in 
each state. The first problem is to find a count of the number of 
such cities by state_code. The immediate naive query might be:

SELECT state_code, city_name, COUNT(*)
 FROM Villes
GROUP BY state_code;

The groups for Tennessee would have the rows (‘TN’, 
‘Nashville’) and (‘TN’, ‘Knoxville’). The first position in the result 
is the grouping column, which has to be constant within the 
group. The third column in the SELECT clause is the COUNT(*) for 
the group, which is clearly two. The city_name column is a prob-
lem. Since the table is grouped by states, there can be at most 
50 groups, one for each state_code. The COUNT(*) is clearly a sin-
gle value and it applies to the group as a whole. But what pos-
sible single value could I output for a city_name in each group? 
Should I pick a typical city_name and use it? If all the cities have 
the same name, should I use that name, and otherwise output 
a NULL? The worst possible choice would be to output both rows 
with the COUNT(*) of 2, since each row would imply that there are 
two cities named Nashville and two cities named Knoxville in 
Tennessee.

Each row represents a single group, so anything in it must be a 
characteristic of the group, not of a single row in the group. This 
is why there is a rule that the SELECT list must be made up only of 
grouping columns with optional aggregate function expressions.

28.1.1 NULLs and Groups
SQL puts the NULLs into a single group, as if they were all equal. 
The other option, which was used in some of the first SQL imple-
mentations before the standard, was to put each NULL into a 
group by itself. That is not an unreasonable choice. But to make 
a meaningful choice between the two options, you would have to 
know the semantics of the data you are trying to model. SQL is a 
language based on syntax, not semantics.

For example, if a NULL is being used for a missing diagnosis 
in a medical record, you know that each patient will probably 
have a different disease when the NULLs are resolved. Putting 
the NULLs in one group would make sense if you wanted to con-
sider unprocessed diagnosis reports as one group in a sum-
mary. Putting each NULL in its own group would make sense if 
you wanted to consider each unprocessed diagnosis report as 
an action item for treatment of the relevant class of diseases. 
Another example was a traffic ticket database that used NULL for 
a missing auto tag. Obviously, there is more than one car without 
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a tag in the database. The general scheme for getting separate 
groups for each NULL is straightforward:

SELECT x, ..
 FROM Table1
WHERE x IS NOT NULL
GROUP BY x
UNION ALL
SELECT x, ..
 FROM Table1
WHERE x IS NULL;

There will also be cases, such as the traffic tickets, where you 
can use another GROUP BY clause to form groups where the prin-
cipal grouping columns are NULL. For example, the VIN (Vehicle 
Identification Number) is taken when the car is missing a tag, 
and it would provide a grouping column.

28.2 GROUP BY and HAVING
One of the biggest problems in working with the GROUP BY clause 
is understanding how the WHERE and HAVING clauses work with it. 
Consider the query to find all departments with fewer than five 
programmers:

SELECT dept_nbr
 FROM Personnel
WHERE job_title = 'Programmer'
GROUP BY dept_nbr
HAVING COUNT(*) < 5;

The result of this query does not have a row for any depart-
ments with no programmers. The order of execution of the 
clauses does WHERE first, so those employees whose jobs are not 
equal to ‘Programmer’ are never passed to the GROUP BY clause. 
You have missed data that you might want to trap.

The next query will also pick up those departments that have 
no programmers, because the COUNT(DISTINCT x) function will 
return a zero for an empty set.

SELECT DISTINCT dept_nbr
 FROM Personnel AS P1
WHERE 5 > (SELECT COUNT(DISTINCT P2.emp_nbr)

FROM Personnel AS P2
WHERE P1.dept_nbr = P2. dept_nbr
AND P2.job_title = 'Programmer');

If there is no GROUP BY clause, the HAVING clause will treat the 
entire table as a single group. Many early implementations of 
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SQL required that the HAVING clause belong to a GROUP BY clause, 
so you might see old code written under that assumption.

Since the HAVING clause applies only to the rows of a grouped 
table, it can reference only the grouping columns and aggregate 
functions that apply to the group. That is why this query would 
fail:

SELECT dept_nbr -- Invalid Query!
 FROM Personnel
GROUP BY dept_nbr
HAVING COUNT(*)< 5
  AND job_title = 'Programmer';

When the HAVING clause is executed, job is not in the grouped 
table as a column—it is a property of a row, not of a group. 
Likewise, this query would fail for much the same reason:

SELECT dept_nbr -- Invalid Query!
 FROM Personnel
WHERE COUNT(*)< 5
  AND job_title = 'Programmer'
GROUP BY dept_nbr;

The COUNT(*) does not exist until after the departmental 
groups are formed.

28.2.1 Group Characteristics and HAVING Clause
You can use the aggregate functions and the HAVING clause to 
determine certain characteristics of the groups formed by the 
GROUP BY clause. For example, given a simple grouped table with 
three columns like this:

SELECT col1, col2
 FROM Foobar
GROUP BY col1, col2
HAVING .. ;

you can determine the following properties of the groups with 
these HAVING clauses:
 HAVING COUNT (DISTINCT col_x) = COUNT (col_x)—col_x has all 

distinct values
 HAVING COUNT(*) = COUNT(col_x);—There are no NULLs in the 

column
 HAVING MIN(col_x - <const>) = -MAX(col_x - <const>)—col_x 

deviates above and below const by the same amount
 HAVING MIN(col_x) * MAX(col_x) < 0—Either MIN or MAX is nega-

tive, not both
 HAVING MIN(col_x) * MAX(col_x) > 0— col_x is either all positive 

or all negative
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 HAVING MIN(SIGN(col_x)) = MAX(SIGN(col_x))—col_x is all 
 positive, all negative, or all zero

 HAVING MIN(ABS(col_x)) = 0;—col_x has at least one zero
 HAVING MIN(ABS(col_x)) = MIN(col_x)—col_x >= 0 (although 

the where clause can handle this, too)
 HAVING MIN(col_x) = –MAX(col_x)—col_x deviates above and 

below zero by the same amount
 HAVING MIN(col_x) * MAX(col_x) = 0—Either one or both of MIN 

or MAX is zero
 HAVING MIN(col_x) < MAX(col_x)—col_x has more than one 

value (may be faster than count (*) > 1)
 HAVING MIN(col_x) = MAX(col_x)—col_x has one value or NULLs --
 HAVING (MAX(seq) - MIN(seq)+1) = COUNT(seq)—The sequential 

numbers in seq have no gaps
Tom Moreau contributed most of these suggestions.

Let me remind you again, that if there is no GROUP BY clause, 
the HAVING clause will treat the entire table as a single group. This 
means that if you wish to apply one of the tests just given to the 
whole table, you will need to use a constant in the SELECT list.

This will be easier to see with an example. You are given a table 
with a column of unique sequential numbers that start at 1. When 
you go to insert a new row, you must use a sequence number that 
is not currently in the column—that is, fill the gaps. If there are 
no gaps, then and only then can you use the next highest integer 
in the sequence.

CREATE TABLE Batting_Lineup
(batting_seq INTEGER NOT NULL PRIMARY KEY

CHECK (seq > 0),
player_name CHAR(5) NOT NULL);

INSERT INTO Batting_Lineup
VALUES (1, 'Tom'), (2, 'Dick'), (4, 'Harry'), (5, 'Moe');

How do I find if I have any gaps?

EXISTS (SELECT 'gap'
FROM Batting_Lineup

HAVING COUNT(*) = MAX(batting_seq))

You could not use SELECT batting_seq because the column val-
ues will not be identical within the single group made from the 
table, so the subquery fails with a cardinality violation. Likewise, 
SELECT * fails because the asterisk is converted into a column 
name picked by the SQL engine. Here is the insertion statement:

INSERT INTO Batting_Lineup (batting_seq, junk)
VALUES (CASE WHEN EXISTS -- no gaps

(SELECT 'no gaps'
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FROM Batting_Lineup
HAVING COUNT(*) = MAX(batting_seq))

THEN (SELECT MAX(batting_seq) FROM Batting_Lineup) + 1
ELSE (SELECT MIN(batting_seq) -- gaps

FROM Batting_Lineup
WHERE (batting_seq - 1)

NOT IN (SELECT batting_seq FROM Batting_Lineup)
AND batting_seq > 0) – 1 END,

'Celko');

The ELSE clause has to handle a special situation when 1 is 
in the batting_seq column, so that it does not return an ille-
gal zero. The only tricky part is waiting for the entire scalar sub-
query expression to compute before subtracting one; writing 
MIN(batting_seq –1) or MIN(batting_seq) –1 in the SELECT list 
could disable the use of indexes in many SQL products.

28.3 Multiple Aggregation Levels
The rule in SQL is that you cannot nest aggregate functions, 
such as:

SELECT depart_name, MIN(COUNT(stapler_nbr)) -- illegal 
syntax!

  FROM Companies
 GROUP BY depart_name;

The usual intent of this is to get multiple levels of aggregation; 
this example probably wanted the smallest count of staplers within 
each department. But this makes no sense because a department 
(i.e., group) can have only one count, one minimum, one maxi-
mum, one average, and so forth for any expression. The nature of 
descriptive statistics is that they reduce a group characteristic to a 
scalar value.

28.3.1  Grouped VIEWs for Multiple Aggregation 
Levels

Business reports usually are based on a hierarchy of nested lev-
els of aggregation. This type of report is so common that there are 
tools that perform only this sort of task. For example, sales are 
grouped under the salesmen who made them, then salesman’s 
departments are grouped into districts, districts are grouped into 
regions, and so on until we have summary information at the 
company level. Each level is a partition of the level above it. The 
summary information can be constructed from the level immedi-
ately beneath it in the hierarchy.
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SQL now has CUBE and ROLLUP options we will discuss later 
which replace these coding tricks. Frankly, using a report writer 
will be faster and more powerful than writing SQL code to do 
the job.

One trick is to use VIEWs with GROUP BY clauses to build the 
reporting levels. Using a Sales report example, the following 
UNION-ed query will get a report for each level, from the lowest, 
most detailed level (salesman), through districts and regions, to 
the highest level (the company).

SELECT region_nbr, district_nbr, salesman, SUM(sales_amt)
 FROM Sales
GROUP BY region_nbr, district_nbr, salesman
UNION
SELECT region_nbr, district_nbr, '{SALESMEN}', 

SUM(sales_amt)
 FROM Sales
GROUP BY region_nbr, district_nbr
UNION
SELECT region_nbr, '{OFFICE}', '{SALESMEN}', 

SUM(sales_amt)
 FROM Sales
GROUP BY region_nbr
UNION
SELECT '{REGION}', '{OFFICE}', '{SALESMEN}', 

SUM(sales_amt)
 FROM Sales;

The constant strings inside the curly brackets will sort below 
any alphabetic strings in ASCII, and thus will appear on the end 
of each grouping in the hierarchy. After having shown you this 
trick, I need to point out its flaws.

28.3.2  Subquery Expressions for Multiple 
Aggregation Levels

The Standard SQL permits you to use a table subquery in a FROM 
clause and a scalar subquery anywhere that you would use an 
expression. This lets us do some multilevel aggregation in a single 
query. For example, to find how each salesman did in his sales 
district_nbr, you can write:

SELECT salesman, region_nbr, district_nbr, SUM(sales_amt) 
AS salesman_tot,

(SELECT SUM(sales_amt)
FROM Sales AS S1
WHERE S1.region_nbr = S2.region_nbr
AND S1.district_nbr = S2.district_nbr)
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AS district_nbr_tot
 FROM Sales AS S2
GROUP BY salesman, region_nbr, district_nbr, 

district_nbr_tot;

This query will work because the subquery is a constant for 
each group. The subquery could also be used in an expression 
to give the percentage of the district_nbr total each salesman 
contributed.

A trickier query is to find aggregates of aggregates—something 
like the average of the total sales of the districts for each region_nbr. 
Beginning SQL programmers would try to write queries like this:

SELECT region_nbr, AVG(SUM(sales_amt)) AS region_nbr_average 
-- Invalid SQL

 FROM Sales
GROUP BY district_nbr, region_nbr;

and the parser would gag on AVG(SUM(sales_amt)) and return an 
error message about nesting aggregate functions. Standard SQL 
will let you get the desired effect with a little more work. You 
need a subquery that will compute the sum of the sales for each 
district_nbr within a region_nbr.

This table then needs to be averaged for each region_nbr, thus:

SELECT T1.region_nbr, AVG(T1.district_nbr_total) AS 
region_nbr_average

  FROM (SELECT region_nbr, district_nbr, SUM(sales_amt)
FROM Sales

GROUP BY region_nbr, district_nbr) AS T1 (region_nbr, 
district_nbr, district_nbr_total)

GROUP BY T1.region_nbr;

The best guess would be that the subquery would be con-
structed once as a materialized table, then used by the SELECT 
statement in the usual way. Do not think that Standard SQL 
would let you write:

SELECT region_nbr,
AVG(SELECT SUM(sales_amt) -- Invalid SQL

FROM Sales AS S1
WHERE S1.region_nbr = S2.region_nbr
GROUP BY district_nbr) AS region_nbr_average

 FROM Sales AS S2
GROUP BY region_nbr;

The parameter for an aggregate function still cannot be 
another aggregate function or a subquery. The reason for this 
prohibition is that though this particular subquery is scalar, other 
subqueries might have multiple rows and/or multiple columns 
and not be able to return a single value.
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28.3.3  CASE Expressions for Multiple Aggregation 
Levels

Another trick is to replace the nesting of aggregate functions 
with expressions that return a characteristic of a subset of the 
group. Given a table with movie names and a numeric rating 
assigned to them by our reviewers, for each movie we might 
want to know:
1. What was the worst rating and how many times did it occur?
2. What was the best rating and how many times did it occur?
This can be done with this query:

SELECT movie_name,
MIN(rating) AS worst_rating,
COUNT(CASE WHEN NOT EXISTS

(SELECT *
FROM Reviews AS R2
WHERE R2.movie_name = R1.movie_name
AND R2.rating < R1.rating)

THEN 1 ELSE NULL END) AS worst_tally,
MAX(rating) AS best_rating,
COUNT(CASE WHEN NOT EXISTS

(SELECT *
  FROM Reviews AS R3
WHERE R3.movie_name = R1.movie_name
AND R3.rating > R1.rating)

THEN 1 ELSE NULL END) AS best_tally
 FROM Reviews AS R1
GROUP BY movie_name;

The subquery expression in each of the NOT EXISTS() predi-
cates is building a subset within each movie’s reviews such that 
they are the highest (or lowest). This subset of identical values is 
then counted in the outermost query. This avoids using a nested 
aggregate function.

28.4 Grouping on Computed Columns
SQL-99 allows queries that are grouped on the result of a com-
puted column. For example, to do a report by months on sales, 
you can write:

SELECT EXTRACT(MONTH FROM sale_date) AS rpt_month, 
SUM(sales_amt)

 FROM Sales
GROUP BY rpt_month;

This is a departure from the SQL processing model in previ-
ous standards that allowed only column names. In the original 
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model, the SELECT statement computes the expressions in the 
SELECT clause last, so the computed columns do not exist until 
after the grouping is done, so there should be no way to group on 
them.

However, you can fake it in older versions of SQL by using a 
subquery expression in the FROM clause to build a working table 
with the computation in it:

SELECT salesmonth, SUM(sales_amt)
 FROM (SELECT EXTRACT(MONTH FROM sale_date) AS salesmonth,

sales_amt
FROM Sales)

GROUP BY salesmonth;

or by using a correlated subquery expression in the SELECT clause:

SELECT DISTINCT EXTRACT(MONTH FROM S1.sale_date),
(SELECT SUM(S2.sales_amt)
FROM Sales AS S2

WHERE EXTRACT(MONTH FROM S2.sale_date)
= EXTRACT(MONTH FROM S1.sale_date))

FROM Sales AS S1;

The first version will probably run faster, since it does not 
have as many computations in it.

28.5 Grouping into Pairs
The idea is easier to show than to say. You are given a table of 
people and want to generate a list that has pairs of men and 
women for a dinner party.

CREATE TABLE People
(person_name VARCHAR(15) NOT NULL,
sex_code INTEGER DEFAULT 1 NOT NULL -- iso sex_code codes

CHECK (sex_code IN (1, 2));

INSERT INTO People
VALUES ('Bob', 1), ('Ed', 1), ('Joe', 1), ('Dave', 1);

INSERT INTO People
VALUES ('Sue', 2), ('Joan', 2), ('Kate', 2),

('Mary', 2), ('Petra', 2), ('Nancy', 2);

Here’s a solution from Steve Kass:

SELECT A.person_name, A.sex_code, COUNT(*) AS rank
 FROM People AS A, People AS B
WHERE B.person_name <= A.person_name
  AND B.sex_code = A.sex_code
GROUP BY A.person_name, A.sex_code;
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For each name, COUNT(*) is the alphabetical “rank” of the 
name in the table, counting only names of the same sex_code. 
The join makes this happen, because COUNT(*) counts the num-
ber of rows in the table with the same sex_code as name and that 
comes before or equal to name in alphabetical order. Then the 
results are ordered by this “rank” value first, then by sex_code to 
order the names with matching rank.

Although on the right track, the single fact of a dinner cou-
ple is split across two rows. You cannot look at one row and 
answer the question, “Do you have a date?” with this query 
result. But the basic idea is good and you can get your pairs on 
one line:

SELECT M1.person_name AS male, F1.person_name AS female, 
COALESCE (M1.rank, F1.rank)

 FROM (SELECT P1.person_name, COUNT(P2.person_name)
FROM People AS P1, People AS P2

WHERE P2.person_name <= P1.person_name
AND P1.sex_code = 1
AND P2.sex_code = 1

GROUP BY P1.person_name) AS M1(person_name, rank)
FULL OUTER JOIN
(SELECT P1.person_name, COUNT(P2.person_name)
FROM People AS P1, People AS P2

WHERE P2.person_name <= P1.person_name
AND P1.sex_code = 2
AND P2.sex_code = 2

GROUP BY P1.person_name) AS F1(person_name, rank)
ON M1.rank = F1.rank;

I assume that alphabetical ordering of the two subsets makes 
the pairs for matching. This query ought to handle the case 
where there is an unlike number of males and females by pad-
ding with NULLs. It also returns proper pairings without the use of 
an ORDER BY, thus avoiding an actual or hidden CURSOR.

A more modern version of this query is:

SELECT M1.person_name AS male, F1.person_name AS female, 
COALESCE (M1.rank, F1.rank)

 FROM (SELECT P1.person_name,
ROW_NUMBER() OVER(ORDER BY P1.person_name) AS rank

FROM People AS P1
WHERE P1.sex_code = 1)

FULL OUTER JOIN
(SELECT P2.person_name,

ROW_NUMBER() OVER(ORDER BY P2.person_name) AS rank
FROM People AS P2
WHERE P1.sex_code = 2)

ON M1.rank = F1.rank;
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28.6 Sorting and GROUP BY
Though it is not required by the standard, most implementations 
will automatically sort the results of a grouped query. Internally, 
the groups were built by first sorting the table on the grouping 
columns, then aggregating them. The NULL group can sort either 
high or low, depending on the vendor.

An ORDER BY clause whose columns are not in the same order 
as those in the GROUP BY clause can be expensive to execute if the 
optimizer does not ignore the extra sort request. It is also possi-
ble to sort a grouped table on an aggregate or calculated column. 
For example, to show the Sales regions in order of total sales, you 
would write:

SELECT region_nbr, district_nbr,
SUM(sales_amt) AS district_sales_amt

 FROM Sales
GROUP BY region_nbr, district_nbr;

Since it is possible that two or more regions could have the 
same Sales volume, it is always a good idea to sort by the region_
nbr column, then by the district_nbr column. The extra sorting 
is cheap to execute and requires no extra storage. It is very likely 
that your SQL implementation is using a nonstable sort.

A stable sort preserves the original order of the rows with 
equal valued sort keys. For example, I am given a deck of play-
ing cards to sort by rank and suit. If I first sort by rank, assuming 
aces high, I would get a deck with all the deuces, followed by all 
the treys, and so forth until I got to the aces. Within each of these 
groups, the suits could be in any order.

If I then sorted the deck on the suits of the cards, I would get 
(assuming bridge sorting order) deuces of clubs, diamonds, 
hearts, and finally spades, as the highest rank, followed by treys of 
clubs, diamonds, hearts, and spades, and so forth up to the aces.

If the second sort were a nonstable sort, it could destroy the 
ordering of the suits. A second sort that was a stable sort would 
keep the ordering in the suits.

Stable sorts are almost always slower than nonstable sorts, 
so nonstable sorts are preferred by most database systems. 
However, a smart optimizer can see an existing order in the inter-
mediate working table and replace the usual nonstable sort with 
a stable sort, thereby avoiding extra work. The optimizer can also 
use clustered indexes and other sources of preexisting ordering in 
the data.

However, you should never depend on the default order-
ing of a particular SQL product, since this will not be portable. 
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If ordering is important, use an ORDER BY clause with all the 
desired columns explicitly given in it. In Standard SQL, you will 
have to use an AS clause on each of the aggregate functions to 
give it a name that can be used in the ORDER BY clause.

A common vendor extension was to permit an integer specify-
ing the ordinal position of the expression in the SELECT clause in 
an ORDER BY. The problem with this is that a change to the SELECT 
clause can trash the results. This has been dropped from most 
products today.
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29
SIMPLE AGGREGATE FUNCTIONS

The simple aggregate functions are the ones that came with 
SQL from the beginning. Every product will have them. They are 
 usually fast because optimizers and index structures often store 
this data for their own use.

Simple aggregate functions first construct a column of 
 values as defined by the parameter. The parameter is usually 
a single column name, but it can be an expression with  scalar 
 functions and calculations. Pretty much the only things that 
 cannot be used as parameters are other aggregate functions (e.g., 
SUM(AVG(x)) is illegal) and a subquery (e.g., AVG(SELECT col1 FROM 
SomeTable WHERE ...) is illegal). A subquery could return more 
than one value, so it would not fit into a column and an aggregate 
function would have to try to build a column within a column.

Once the working column is constructed, all the NULLs are 
removed and the function performs its operation. As you learn 
the definitions I am about to give, stress the words known values 
to remind yourself that the NULLs have been dropped.

There are two options, ALL and DISTINCT, that are shown as 
keywords inside the parameter list. The keyword ALL is optional 
and is never really used in practice. It says that all the rows in the 
working column are retained for the final calculation. The key-
word DISTINCT is not optional in these functions. It removes all 
redundant duplicate values from the working column before the 
final calculation. Let’s look at the particulars of each aggregate 
function. They fall into three categories:
1. Mathematical operations: The average (or arithmetic mean) 

and the sum (or arithmetic total). These work for all numeric 
data types.

2. The extrema functions: Minimum and maximum for all data 
types.

3. The counting functions: This is just the simple tally of the rows 
in the working table. The table cardinality is really a different 
animal that happens to look like the count function.
Let’s go into details.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00029-6
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00029-6
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29.1 COUNT() Functions
There are two forms of the COUNT() function, cardinality and 
expression counting.

COUNT(*) returns the number of rows in a table (called the car-
dinality of the table in relational terms); it is the only standard 
aggregate function that uses an asterisk as a parameter. This 
function is very useful and usually will run quite fast, since it 
can use system information about the table size. Remember that 
NULL values are also counted, because this function deals with 
entire rows and not column values. There is no such thing as a 
NULL row—a row exists or it does not without regard to contents.

An empty table has a COUNT(*) of zero, which makes sense. 
However, all the other aggregate functions we will discuss in this 
section will return an empty set as the result; they are given an 
empty set as input—ab nilo, ex nilo in Latin. Although it is too 
late to change SQL, we would have been better off with syntax 
that uses a table expression in a parameter for cardinality, much 
like the EXISTS() predicate.

You would think that using the COUNT(*) would be easy, but there 
are a lot of subtle tricks to it. Think of a database of the presidencies 
of the United States, with columns for the first name, middle initial(s), 
and last name of each US president who held that office, along with 
his political party and his term(s) in office. It might look like this:

CREATE TABLE Parties
(party_code CHAR(2) NOT NULL PRIMARY KEY,
party_name VARCHAR(25) NOT NULL);

INSERT INTO Parties
VALUES ('D', 'Democratic'),
  ('DR', 'Democratic Republican'),
  ('R', 'Republican'),
  ('F', 'Federalist'),
  ('W', 'Whig'),
  ('L', 'Libertarian');

CREATE TABLE Presidencies
(first_name CHAR(11) NOT NULL,
initial VARCHAR(4) DEFAULT ' ' NOT NULL, -- one space
last_name CHAR(11) NOT NULL,
party_code CHAR(2) NOT NULL
  REFERENCES Parties(party_code)
start_term_year INTEGER NOT NULL UNIQUE
   CHECK (start_term_year > 1789),
end_term_year INTEGER); -- null means current
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Presidencies
first_name  initial  last_name  party  start_term_year  end_term_year
==============================================================================
'George'  "  'Washington'  'F'  1789  1797
'John'  "  'Adams'  'F'  1797  1801
'Thomas'  "  'Jefferson'  'DR'  1801  1809
'James'  "  'Madison'  'DR'  1809  1817
'James'  "  'Monroe'  'DR'  1817  1825
'John'  "  'Adams'  'DR'  1825  1829
'Andrew'  "  'Jackson'  'D'  1829  1837
'Martin'  "  'Van Buren'  'D'  1837  1841
'William'  'H.'  'Harrison'  'W'  1841  1841
'John'  "  'Tyler'  'W'  1841  1845
'James'  'K.'  'Polk'  'D'  1845  1849
'Zachary'  "  'Taylor'  'W'  1849  1850
'Millard'  "  'Fillmore'  'W'  1850  1853
'Franklin'  "  'Pierce'  'D'  1853  1857
'James'  "  'Buchanan'  'D'  1857  1861
'Abraham'  "  'Lincoln'  'R'  1861  1865
'Andrew'  "  'Johnson'  'R'  1865  1869
'Ulysses'  'S.'  'Grant'  'R'  1869  1877
'Rutherford'  'B.'  'Hayes'  'R'  1877  1881
'James'  'A.'  'Garfield'  'R'  1881  1881
'Chester'  'A.'  'Arthur'  'R'  1881  1885
'Grover'  "  'Cleveland'  'D'  1885  1889
'Benjamin'  "  'Harrison'  'R'  1889  1893
'Grover'  "  'Cleveland'  'D'  1893  1897
'William'  "  'McKinley'  'R'  1897  1901
'Theodore'  "  'Roosevelt'  'R'  1901  1909
'William'  'H.'  'Taft'  'R'  1909  1913
'Woodrow'  "  'Wilson'  'D'  1913  1921
'Warren'  'G.'  'Harding'  'R'  1921  1923
'Calvin'  "  'Coolidge'  'R'  1923  1929
'Herbert'  'C.'  'Hoover'  'R'  1929  1933
'Franklin'  'D.'  'Roosevelt'  'D'  1933  1945
'Harry'  'S.'  'Truman'  'D'  1945  1953
'Dwight'  'D.'  'Eisenhower'  'R'  1953  1961
'John'  'F.'  'Kennedy'  'D'  1961  1963
'Lyndon'  'B.'  'Johnson'  'D'  1963  1969
'Richard'  'M.'  'Nixon'  'R'  1969  1974
'Gerald'  'R.'  'Ford'  'R'  1974  1977
'James'  'E.'  'Carter'  'D'  1977  1981
'Ronald'  'W.'  'Reagan'  'R'  1981  1989
'George'  'H.W.'  'Bush'  'R'  1989  1993
'William'  'J.'  'Clinton'  'D'  1993  2001
'George'  'W.'  'Bush'  'R'  2001  2009
'Obama'  'H.'  'Barack'  'D'  2009  NULL
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Your Civics teacher has just asked you to tell her how many 
people have been President of the United States. So you write the 
query as SELECT COUNT(*) FROM Presidencies; and get the wrong 
answer. For those of you who have been out of high school too 
long, more than one Adams, more than one John, more than one 
Bush, and more than one Roosevelt have served as president. 
Many people have had more than one term in office, and Grover 
Cleveland served two discontinuous terms. In short, this data-
base is not a simple one-row, one-person system. What you really 
wanted was not COUNT(*), but something that is able to look at 
unique combinations of multiple columns. You cannot do this in 
one column, so you need to construct an expression that is unique. 
The point is that you need to be very sure that the expression you 
are using as a parameter is really what you wanted to count.

The COUNT([ALL] <value expression>) returns the number 
of members in the <value expression> set. The NULLs have been 
thrown away before the counting took place and an empty 
set returns zero. The best way to read this is “Count the num-
ber of known values in this expression,” with stress on the word 
known. In this example you might use COUNT(first_name || ' ' || 
 initial || ' ' || last_name); if this was for display, you might 
also want to clean out the extra spaces.

The COUNT(DISTINCT <value expression>) returns the num-
ber of unique members in the <value expression> set. The NULLs 
have been thrown away before the counting took place and then 
all redundant duplicates are removed (i.e., we keep one copy). 
Again, an empty set returns a zero, just as with the other counting 
functions. Applying this function to a key or a unique column is 
the same as using the COUNT(*) function and the optimizer should 
be smart enough to spot it.

Notice that the use of the keywords ALL and DISTINCT follows 
the same pattern here as they did in the [ALL | DISTINCT] options 
in the SELECT clause of the query expressions. This is a common 
pattern in SQL.

29.1.1 Optimizing Aggregates with DISTINCT
This trick is due to Itzik Ben-Gan, and it may or may not help 
you depending on your optimizer. Assume you have to optimize 
 queries that use both regular aggregates and ones with DISTINCT.

SELECT cust_id, COUNT(*) AS order_cnt,
   COUNT(DISTINCT order_date) AS order_day_cnt,
   SUM(order_amt) AS order_amt_tot
FROM Sales
GROUP BY cust_id;
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The query groups the data by cust_id, and returns for each 
customer the total count of orders, distinct count of order dates 
(number of days with order activity), and total amount due from 
the customer. Some optimizers will do separate scans for the 
nondistinct aggregates and the distinct aggregates.

You can achieve the same task with a query that requires only 
one scan of the data. We use a CTE that groups the data by both 
customer id and order date, and then use it at a higher level of 
aggregation. Here’s the complete solution:

WITH CustomerDailySales (cust_id, order_date, daily_order_
cnt, order_amt_tot)

AS
(SELECT cust_id, order_date, COUNT(*), SUM(order_amt)
   FROM Sales
   GROUP BY cust_id, order_date)

SELECT cust_id,
   SUM(daily_order_cnt) AS daily_order_cnt,
   COUNT(order_date) AS order_day_distinct_cnt,
   SUM(order_amt) AS order_amt_tot
   FROM CustomerDailySales
GROUP BY cust_id;

This time, the optimizer scans the base table once, groups the 
data first to calculate aggregates based on (cust_id, order_date), 
and then aggregates on just the cust_id.

29.2 SUM() Function
This function works only with numeric values. You should also 
consult your particular product’s manuals to find out the preci-
sion of the results for exact and approximate numeric data types. 
This is implementation-defined in the SQL Standards.

SUM([ALL] <value expression>) returns the numeric total of all 
known values. The NULLs are removed before the summation took 
place. An empty set returns an empty result set and not a zero. If 
there are other columns in the SELECT list, then that empty set will 
be converted into a NULL.

SUM(DISTINCT <value expression>) returns the numeric total of 
all known, unique values. The NULLs and all redundant duplicates 
have been removed before the summation took place. An empty 
set returns an empty result set and not a zero.

That last rule is hard for people to see. If there are other 
 columns in the SELECT list, then that empty result set will be 
converted into a NULL. This is true for the rest of the Standard 
 aggregate functions.
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-- no rows
SELECT SUM(x)
  FROM EmptyTable;

--one row with (0, NULL) in it
SELECT COUNT(*), SUM(x)
  FROM EmptyTable;

The summation of a set of numbers looks as if it should be 
easy, but it is not. Make two tables with the same set of posi-
tive and negative approximate numeric values, but put one in 
random order and have the other sorted by absolute value. The 
sorted table will give more accurate results. The reason is  simple; 
positive and negative values of the same magnitude will be 
added together and will get a chance to cancel each other out. 
There is also less chance of an overflow or underflow error during 
calculations. Most PC SQL implementations and a lot of main-
frame implementations do not bother with this trick, because it 
would require a sort for every SUM() statement and would take a 
long time.

Whenever an exact or approximate numeric value is assigned 
to exact numeric, it may not fit into the storage allowed for it. 
SQL says that the database engine will use an approximation 
that preserves leading significant digits of the original number 
after rounding or truncating. The choice of whether to truncate 
or round is implementation-defined, however. This can lead to 
some surprises when you have to shift data among SQL imple-
mentations, or storage values from a host language program into 
an SQL table. It is probably a good idea to create the columns 
with one more decimal place than you think you need.

Truncation is defined as truncation toward zero; this means 
that 1.5 would truncate to 1, and 21.5 would truncate to 21. 
This is not true for all programming languages; everyone agrees 
on truncation toward zero for the positive numbers, but you will 
find that negative numbers may truncate away from zero (e.g., 
21.5 would truncate to –2). SQL is also wishy-washy on round-
ing, leaving the implementation free to determine its method. 
There are two major types of rounding, the scientific method and 
the commercial method, which are discussed in Section 3.2.1 of 
Chapter 3.

29.3 AVG() Function
AVG([ALL] <value expression>) returns the average of the values 
in the value expression set. An empty set returns an empty result 
set. A set of all NULLs will become an empty set. Remember that 
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in general AVG(x) is not the same as (SUM(x)/COUNT(*)); the SUM(x) 
function has thrown away the NULLs, but the COUNT(*) has not.

Likewise, AVG(DISTINCT <value expression>) returns the aver-
age of the distinct known values in the <value expression> set. 
Applying this function to a key or a unique column is the same as 
the using AVG(<value expression>) function.

Remember that in general AVG(DISTINCT x) is not the same as 
AVG(x) or (SUM(DISTINCT x)/COUNT(*)). The SUM(DISTINCT x) func-
tion has thrown away the duplicate values and NULLs, but the 
COUNT(*) has not. An empty set returns an empty result set.

The SQL engine is probably using the same code for the total-
ing in the AVG() that it used in the SUM() function. This leads to 
the same problems with rounding and truncation, so you should 
experiment a little with your particular product to find out what 
happens.

But even more troublesome than those problems is the prob-
lem with the average itself, because it does not really measure 
central tendency and can be very misleading. Consider the fol-
lowing chart, from Darrell Huff’s superlative little book, How to 
Lie with Statistics (Huff, 1954; ISBN 978-0393310726). The Sample 
Company has 25 employees, earning the following salaries:

Number of Employees Salary Statistic
12 $2,000 Mode, Minimum
1 $3,000 Median
4 $3,700
3 $5,000
1 $5,700 Average
2 $10,000
1 $15,000
1 $45,000 Maximum

The average salary_amt (or, more properly, the arithme-
tic mean) is $5700. When the boss is trying to look good to the 
unions, he uses this figure. When the unions are trying to look 
impoverished, they use the mode, which is the most frequently 
occurring value, to show that the exploited workers are making 
$2000 (which is also the minimum salary_amt in this case).

A better measure in this case is the median, which will be dis-
cussed later; that is, the employee with just as many cases above 
him as below him. That gives us $3000. The rule for calculating the 
median is that if there is no actual entity with that value, you fake it.
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Samples

sample_id fish_name found_cnt
1 'Seabass' 14

1 'Minnow' 18

2 'Seabass' 19

Most people take an average of the two values on either side of 
where the median would be; others jump to the higher or lower 
value. The mode also has a problem because not every distribution 
of values has one mode. Imagine a country in which there are as 
many very poor people as there are very rich people and nobody in 
between. This would be a bimodal distribution. If there were sharp 
classes of incomes, that would be a multimodal distribution.

Some SQL products have median and mode aggregate func-
tions as extensions, but they are not part of the SQL Standard. We 
will discuss how to write them in pure SQL in detail.

29.3.1 Averages with Empty Groups
Sometimes you need to count an empty set as part of the popu-
lation when computing an average. This is easier to explain with 
an example that was posted on CompuServe. A fish and game 
warden is sampling different bodies of water for fish populations. 
Each sample falls into one or more groups (muddy bottoms, clear 
water, still water, and so on) and she is trying to find the average 
of something that is not there. This is neither quite as strange as it 
first sounds, nor quite as simple, either. She is collecting sample 
data on fish in a table like this:

CREATE TABLE Samples
(sample_id INTEGER NOT NULL,
fish_name CHAR(20) NOT NULL,
found_cnt INTEGER NOT NULL,
PRIMARY KEY (sample_id, fish_name));

The samples are then aggregated into sample groups. A single 
sample might fall into more than one group.

CREATE TABLE SampleGroups
(group_id INTEGER NOT NULL,
sample_id INTEGER NOT NULL,
PRIMARY KEY (group_id, sample_id);

Assume some of the data looks like this:
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Sample Groups

group_id sample_id
1 1

1 2

2 2

She needs to get the average number of each species of fish 
in the sample groups. For example, using sample group 1 as 
shown, which has samples 1 and 2, we could use the parameters : 
my_fish_name 5‘Minnow’ and :my_group 5 1 to find the aver-
age number of minnows in sample group 1, thus:

SELECT fish_name, AVG(found_cnt)
  FROM Samples
WHERE sample_id
  IN (SELECT sample_id
     FROM SampleGroups
   WHERE group_id = :my_group)
 AND fish_name = :my_fish_name
GROUP BY fish_name;

But this query will give us an average of 18 minnows, which is 
wrong. There were no minnows for sample_id 5 2, so the average 
is ((18 1 0)/2) 5 9. The other way is to do several steps to get the 
correct answer—first use a SELECT statement to get the number of 
samples involved, then another SELECT to get the sum, and then 
manually calculate the average.

The obvious answer is to enter a count of zero for each ani-
mal under each sample_id, instead of letting it be missing, so 
you can use the original query. You can create the missing rows 
with:

INSERT INTO Samples
SELECT M1.sample_id, M2.fish_name, 0
  FROM Samples AS M1, Samples AS M2
WHERE NOT EXISTS
   (SELECT *
    FROM Samples AS M3
      WHERE M1.sample_id = M3.sample_id
  AND M2.fish_name = M3.fish_name);

Unfortunately, it turns out that we have over 10,000 different 
species of fish and thousands of samples. This trick will fill up 
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more disk space than we have on the machine. The best trick is to 
use this statement:

SELECT fish_name, SUM(found_cnt)/
 (SELECT COUNT(sample_id)
  FROM SampleGroups
  WHERE group_id = :my_group)
  FROM Samples 
WHERE fish_name = :my_fish_name
GROUP BY fish_name;

This query is using the rule that the average is the sum of val-
ues divided by the count of the set. Another way to do this would 
be to use an OUTER JOIN and preserve all the group ids, but that 
would create NULLs for the fish that are not in some of the sample 
groups and you would have to handle the NULLs as zero.

29.3.2 Averages across Columns
The sum of several columns can be done with the COALESCE() 
function to effectively remove the NULLs by replacing them with 
zeroes like this:

SELECT (COALESCE(c1, 0.0)
  + COALESCE(c2, 0.0)
  + COALESCE(c3, 0.0)) AS c_total
  FROM Foobar;

Likewise, the minimum and maximum values of several col-
umns can be done with a CASE expression, or the GREATEST() and 
LEAST() functions if you have that vendor extension.

Taking an average across several columns is easy if none of the 
columns are NULL. You simply add the values and divide by the 
number of columns. However, getting rid of NULLs is a bit harder. 
The first trick is to count the NULLs:

SELECT (COALESCE(c1-c1, 1)
    + COALESCE(c2-c2, 1)
    + COALESCE(c3-c3, 1)) AS null_cnt
  FROM Foobar;

The trick is to watch out for a row with all NULLs in it. This 
could lead to a division by zero error.

SELECT CASE WHEN COALESCE(c1, c2, c3) IS NULL
 THEN NULL
 ELSE (COALESCE(c1, 0.0)
     + COALESCE(c2, 0.0)
     + COALESCE(c3, 0.0))
     / (3 − (COALESCE(c1-c1, 1)
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             + COALESCE(c2-c2, 1)
              + COALESCE(c3-c3, 1))
   END AS horizontal_avg
FROM Foobar;

29.4 Extrema Functions
The MIN() and MAX() functions are known as extrema functions 
in mathematics. They assume that the elements of the set have 
an ordering, so that it makes sense to select a first or last element 
based on its value. SQL provides two simple extrema functions, 
and you can write queries to generalize these to (n) elements.

29.4.1 Simple Extrema Functions
MAX([ALL | DISTINCT] <value expression>) returns the greatest 
known value in the <value expression> set. This function will also 
work on character and temporal values, as well as numeric val-
ues. An empty set returns an empty result set. Technically, you 
can write MAX(DISTINCT <value expression>), but it is the same 
as MAX(ALL <value expression>) or MAX(<value expression>); this 
form exists only for completeness and nobody ever uses it.

MIN([ALL | DISTINCT] <value expression>) returns the small-
est known value in the <value expression> set. This function will 
also work on character and temporal values, as well as numeric 
values. An empty set returns a NULL. Likewise, MIN(DISTINCT 
<value expression>) and MIN (ALL <value expression>) exist, but 
are defined only for completeness and nobody ever uses them.

The MAX() for a set of numeric values is the largest. The MAX() 
for a set of temporal data types is the one closest to ‘9999-12-31’, 
which is the final data in the ISO 8601 Standard. The MAX() for a 
set of character strings is the last one in the ascending sort order. 
Likewise, the MIN() for a set of numeric values is the smallest. The 
MIN() for a set of temporal data types is furthest from ‘9999-12-
31’, which is the final data in the ISO 8601 Standard. The MIN() 
for a set of character strings is the first one in the ascending sort 
order, but you have to know the collation used.

People have a hard time understanding the MAX() and MIN() 
aggregate functions when they are applied to temporal data 
types. They seem to expect the MAX() to return the date closest to 
the current date. Likewise, if the set has no dates before the cur-
rent date, they seem to expect the MIN() function to return the 
date closest to the current date. Human psychology wants to use 
the current time as an origin point for temporal reasoning.
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Consider the predicate billing_date < (CURRENT_DATE − 
INTERVAL '90' DAY) as an example. Most people have to stop 
and figure out that this is looking for billings that are over 90 
days past due. This same thing happens with MIN() and MAX() 
functions.

SQL also has funny rules about comparing VARCHAR strings, 
which can cause problems. When two strings are compared 
for equality, the shortest one is right-padded with blanks; then 
they are compared position for position. Thus, the strings 
‘John’ and ‘John’ are equal. You will have to check your imple-
mentation of SQL to see which string is returned as the MAX() 
and which as the MIN(), or whether there is any pattern to it 
at all.

Another consideration is the collation used on columns. A col-
umn is sorted in an order defined by its collation; the same data 
element in different tables can have different local collations and 
therefore different extremas. Mixed collations like this are a sign 
of bad schema design.

There are some tricks with extrema functions in subqueries 
that differ from product to product. For example, to find the cur-
rent employee status in a table of Salary Histories, the obvious 
query is:

SELECT emp_status, ..
  FROM SalaryHistory AS S0
WHERE S0.change_date
  = (SELECT MAX(S1.change_date)
     FROM SalaryHistory AS S1
     WHERE S0.emp_id = S1.emp_id);

But you can also write the query as:

SELECT emp_status, ..
  FROM SalaryHistory AS S0
WHERE NOT EXISTS
  (SELECT *
     FROM SalaryHistory AS S1
   WHERE S0.emp_id = S1.emp_id
      AND S0.change_date < S1.change_date);

The correlated subquery with a MAX() will be implemented 
by going to the subquery and building a working table, which is 
grouped by emp_id. Then for each group, you will keep track of 
the maximum and save it for the final result.

However, the NOT EXISTS version will find the first row that 
meets the criteria and when found, it will return TRUE. Therefore, 
the NOT EXISTS () predicate might run faster.
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29.4.2 Generalized Extrema Functions
This is known as the Top (or Bottom) (n) values problems and 
it originally appeared in EXPLAIN magazine; it was submit-
ted by Jim Wankowski of Hawthorne, CA (Wankowski). You are 
given a table of Personnel and their salaries. Write a single SQL 
query that will display the three highest salaries from that table. 
It is easy to find the maximum salary_amt with the simple query 
SELECT MAX(salary_amt) FROM Personnel;, but SQL does not have 
a maximum function that will return a group of high values from 
a column. The trouble with this query is that the specification is 
bad for several reasons.
1. How do we define best salary_amt in terms of an ordering? Is 

it base pay or does it include commissions? For the rest of this 
section, assume that we are using a simple table with a column 
that has the salary_amt for each employee.

2. What if we have three or fewer Personnel in the company? Do 
we report all the Personnel we do have? Or do we return a NULL, 
empty result set, or error message? This is the equivalent of 
calling the contest for lack of entries.

3. How do we handle two employees who tied? Include them all 
and allow the result set to be bigger than three? Pick an arbi-
trary subset and exclude someone? Or do we return a NULL, 
empty result set or error message?
To make these problem more explicit, consider this table:

Able, Bill, and Charles are the three highest paid Personnel, 
but $1000.00, $900.00, and $800.00 are the three highest salaries. 
The highest salaries belong to Able, Bill, Charles, and Delta—a set 
with four elements.

Personnel

emp_id salary_amt

'Able' 1000.00

'Bill' 900.00

'Charles' 900.00

'Delta' 800.00

'Eddy' 700.00

'Fred' 700.00

'George' 700.00
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The way that most new SQL programmers do this in other 
SQL products is produce a result with an ORDER BY clause, then 
read the first so many rows from that cursor result. In Standard 
SQL, cursors have an ORDER BY clause but no way to return a fixed 
number of rows. However, most SQL products have propriety 
syntax to clip the result set at exactly some number of rows. Oh, 
yes, did I mention that the whole table has to be sorted and that 
this can take some time if the table is large?

The best algorithm for this problem is the Partition algorithm 
by C. A. R. Hoare. This is the procedure in QuickSort that splits 
a set of values into three partitions—those greater than a pivot 
value, those less than the pivot, and those values equal to the 
pivot. The expected runtime is only (2*n) operations.

In practice, it is a good idea to start with a pivot at or near 
the k-th position you seek, because real data tends to have some 
ordering already in it. If the file is already in sorted order, this trick 
will return an answer in one pass. Here is the algorithm in Pascal.

CONST
 list_length = { some large number };
 ...
TYPE
 LIST = ARRAY [1..list_length] OF REAL;
 ...
PROCEDURE FindTopK (Kth INTEGER, records : LIST);
VAR pivot, left, right, start, finish: INTEGER;
BEGIN
start := 1;
finish := list_length;
WHILE start < finish
DO BEGIN
 pivot := records[Kth];
 left := start;
 right := finish;
 REPEAT
   WHILE (records[left] > pivot) DO left := left + 1;
   WHILE (records[right] < pivot) DO right := right − 1;
 IF (left >= right)
 THEN BEGIN { swap right and left elements }
     Swap (records[left], records[right]);
     left := left + 1;
     right := right − 1;
     END;
  UNTIL (left < right);
  IF (right < Kth) THEN start := left;
  IF (left > Kth) THEN finish := right;
  END;
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{ the first k numbers are in positions 1 through kth, in no 
particular order except that the kth highest number is 
in position kth }

END.

The original articles in EXPLAIN magazine gave several solu-
tions (Murchison; Wankowski).

One solution involved UNION operations on nested subqueries. 
The first result table was the maximum for the whole table, the 
second result table was the maximum for the table entries less 
than the first maximum, and so forth. The pattern is extensible. It 
looked like this:

SELECT MAX(salary_amt)
 FROM Personnel
UNION
SELECT MAX(salary_amt)
 FROM Personnel
WHERE salary_amt < (SELECT MAX(salary_amt)
        FROM Personnel)
UNION
SELECT MAX(salary_amt)
 FROM Personnel
WHERE salary_amt < (SELECT MAX(salary_amt)
       FROM Personnel
    WHERE salary_amt
     < (SELECT MAX(salary_amt) FROM Personnel));

This answer can give you a pretty serious performance prob-
lem because of the subquery nesting and the UNION operations. 
Every UNION will trigger a sort to remove duplicate rows from the 
results, since salary_amt is not a UNIQUE column.

A special case of the use of the scalar subquery with the 
MAX() function is finding the last two values in a set to look for a 
change. This is most often done with date values for time series 
work. For example, to get the last two reviews for an employee:

SELECT :search_name, MAX(P1.review_date), P2.review_date
  FROM Personnel AS P1, Personnel AS P2
 WHERE P1.review_date < P2.review_date
  AND P1.emp_id = :search_name
  AND P2.review_date
   = (SELECT MAX(review_date) FROM Personnel)
 GROUP BY P2.review_date;

The scalar subquery is not correlated, so it should run pretty 
fast and be executed only once.

An improvement on the UNION approach is to find the third 
highest salary_amt with a subquery, then return all the records 
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with salaries that were equal or higher. This will handle ties; it 
looked like this:

SELECT DISTINCT salary_amt
  FROM Personnel
WHERE salary_amt
  >= (SELECT MAX(salary_amt)
      FROM Personnel
   WHERE salary_amt
      < (SELECT MAX(salary_amt)
         FROM Personnel
       WHERE salary_amt
         < (SELECT MAX(salary_amt)
            FROM Personnel)));

I am getting ahead of myself, but these days we have win-
dowed queries that might perform better than any of these 
answers. But they might not; as usual, test alternate queries for 
yourself.

SELECT DISTINCT X.salary_amt
 FROM (SELECT salary_amt,
   DENSE_RANK()
   OVER (ORDER BY salary_amt DESC)
 FROM Personnel) AS X(salary_amt, sal_rank)
WHERE X.sal_rank <= 3;

Another answer is to use correlation names and return a 
single-row result table. This pattern is more easily extensible to 
larger groups; it will also present the results in sorted order with-
out requiring the use of an ORDER BY clause. The disadvantage of 
this answer is that it will return a single row and not a column 
result. That might make it unusable for joining to other queries. It 
looked like this:

SELECT MAX(P1.salary_amt), MAX(P2.salary_amt), MAX(P3.
salary_amt)

  FROM Personnel AS P1, Personnel AS P2, Personnel AS P3
WHERE P1.salary_amt > P2.salary_amt
 AND P2.salary_amt > P3.salary_amt;

This approach will return the three highest salaries, assuming 
that you have at least three candidates. If not, you will be safer 
with this:

SELECT MAX(P1.salary_amt), MAX(P2.salary_amt), MAX(P3.
salary_amt)

  FROM Personnel AS P1
   LEFT OUTER JOIN
   Personnel AS P2
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   ON P1.salary_amt > P2.salary_amt
  LEFT OUTER JOIN
  Personnel AS P3
  ON P2.salary_amt > P3.salary_amt;

This will give NULLs if there are fewer than three salary 
amounts that qualify. This will run in Standard SQL-2003.

The worst way to do this is with scalar subquery expressions 
in the SELECT list. The query becomes:

SELECT (SELECT MAX (salary_amt)
  FROM Personnel) AS s1,
 (SELECT MAX (salary_amt)
      FROM Personnel
  WHERE salary_amt NOT IN (s1)) AS s2,
  (SELECT MAX (salary_amt)
    FROM Personnel
  WHERE salary_amt NOT IN (s1, s2)) AS s3,
  ...
  (SELECT MAX (salary_amt)
   FROM Personnel
  WHERE salary_amt NOT IN (s1, s2, ... s[n-1])) AS sn,
FROM Dummy;

where the table Dummy is anything, even an empty table.
Here is another version that will produce the ties on separate 

lines with the names of the personnel who made the cut. This 
answer is due to Pierre Boutquin.

SELECT P1.emp_id, P1.salary_amt
 FROM Personnel AS P1, Personnel AS P2
  WHERE P1.salary_amt >= P2.salary_amt
 GROUP BY P1.emp_id, P1.salary_amt
HAVING (SELECT COUNT(*) FROM Personnel) − COUNT(*) + 1 <= :n;

The idea is to use a little algebra. If we want to find (n of k) 
things, then the rejected subset of the set is of size (k-n). Using 
the sample data we would get this result.

Results

emp_id  salary_amt
'Able' 1000.00

'Bill' 900.00

'Charles' 900.00
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If we add a new employee at $900, we would also get him, but 
not a new employee at $800 or less. In many ways this is the most 
satisfying answer.

Here are two more versions of the solution:

SELECT P1.emp_id, P1.salary_amt
 FROM Personnel AS P1, Personnel AS P2
   GROUP BY P1.emp_id, P1.salary_amt
HAVING COUNT(CASE WHEN P1.salary_amt < P2.salary_amt
      THEN 1
      ELSE NULL END) + 1 <= :n;

SELECT P1.emp_id, P1.salary_amt
 FROM Personnel AS P1
 LEFT OUTER JOIN
 Personnel AS P2
 ON P1.salary_amt < P2.salary_amt
 GROUP BY P1.emp_id, P1.salary_amt
HAVING COUNT(P2.salary_amt) + 1 <= :n;

The subquery is unnecessary and can be eliminated with 
either of the previous solutions.

As an aside, if you were awake during your college set theory 
course, you will remember that John von Neumann’s definition 
of ordinal numbers is based on nested sets. You can get a lot of 
ideas for self-joins from set theory theorems. John von Neumann 
was one of the greatest mathematicians of the last century and 
the inventor of the modern stored program computer and Game 
Theory. Know your nerd heritage!

It should be obvious that any number can replace three in 
the query. A subtle point is that the predicate P1.salary_amt <= 
P2.salary_amt will include the boundary value and so implies that 
if we have three or fewer Personnel, then we still have a result. If 
you want to call off the competition for lack of a quorum, then 
change the predicate to P1.salary_amt < P2.salary_amt instead.

Another way to express the query would be:

SELECT Elements.emp_id, Elements.salary_amt
 FROM Personnel AS Elements
  WHERE (SELECT COUNT(*)
      FROM Personnel AS Boundary
    WHERE Elements.salary_amt < Boundary.salary_amt) < 3;

Likewise, the COUNT(*) and comparisons in the scalar sub-
query expression can be changed to give slightly different results. 
You might want to test each version to see which one runs faster 
on your particular SQL product.
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What if I want to allow ties? Then just change COUNT() to a 
COUNT(DISTINCT) function the HAVING clause, thus:

SELECT Elements.name, Elements.salary_amt
 FROM Personnel AS Elements, Personnel AS Boundary
  WHERE Elements.salary_amt <= Boundary.salary_amt
  GROUP BY Elements.name, Elements.salary_amt
HAVING COUNT(DISTINCT Boundary.salary_amt) <= 3;

This says that I want to count the values of salary_amt, not 
the salespersons, so that if two or more of the crew hit the same 
total, I will include them in the report as tied for a particular posi-
tion. This also means that the results can be more than three 
rows because I can have ties. As you can see, it is easy to get a 
subtle change in the results with just a few simple changes to the 
predicates.

Notice that you can change the comparisons from <= to < and 
the COUNT(*) to COUNT(DISTINCT P2.salary_amt) to change the 
specification.

Ken Henderson came up with another version that uses 
derived tables and scalar subquery expressions in SQL.

SELECT P2.salary_amt
 FROM (SELECT (SELECT COUNT(DISTINCT P1.salary_amt)
      FROM Personnel AS P1
       WHERE P3.salary_amt >= P1.salary_amt) AS ranking,
    P3.salary_amt
      FROM Personnel AS P3) AS P2
  WHERE P2.ranking <= 3;

You can get other aggregate functions by using this query 
with the IN predicate. Assume that I have SalaryHistory table 
from which I wish to determine the average pay for the three 
most recent pay changes of each employee. I am going to fur-
ther assume that if you had three or fewer old salaries, you 
would still want to average the 1, 2, or 3 values you have on 
record.

SELECT S0.emp_id, AVG(S0.last_salary_amt)
 FROM SalaryHistory AS S0
  WHERE S0.change_date
   IN (SELECT P1.change_date
       FROM SalaryHistory AS P1, SalaryHistory AS P2
  WHERE P1.change_date <= P2.change_date
  GROUP BY P1.change_date
  HAVING COUNT(*) <= 3)
 GROUP BY S0.emp_id;
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29.4.3 Multiple Criteria Extrema Functions
Since the generalized extrema functions are based on sorting the 
data, it stands to reason that you could further generalize them 
to use multiple columns in a table. This can be done by changing 
the WHERE search condition. For example, to locate the top (n) tall 
and heavy employees for the basketball team, we could write:

SELECT P1.emp_id
  FROM Personnel AS P1, Personnel AS P2
WHERE P2.height >= P1.height -- major sort term
 OR (P2.height = P1.height -- next sort term
   AND P2.weight >= P1.weight)
GROUP BY P1.emp_id
HAVING COUNT(*) <= :n;

Procedural programmers will recognize this predicate because 
it is what they used to write to do a sort on more than one field in 
a file system. Now it becomes very important to look at the predi-
cates at each level of nesting to be sure that you have the right 
theta operator. The ordering of the predicates is also  critical—
there is a difference in ordering by height within weight or by 
weight within height.

One improvement would be to use row comparisons:

SELECT P1.emp_id
  FROM Personnel AS P1, Personnel AS P2
WHERE (P2.height, P2.weight) <= (P1.height, P1.weight)
GROUP BY P1.emp_id
HAVING COUNT(*) <= 4;

The down side of this approach is that you cannot easily mix 
ascending and descending comparisons in the same compari-
son predicate. The trick is to make numeric columns negative to 
reverse the sense of the theta operator.

Before you attempt it, here is the scalar subquery version of 
the multiple extrema problems:

SELECT
  (SELECT MAX(P0.height)
    FROM Personnel AS P0
  WHERE P0.weight = (SELECT MAX(weight)
          FROM Personnel AS P1)) AS s1,
  (SELECT MAX(P0.height)
    FROM Personnel AS P0
  WHERE height NOT IN (s1)
     AND P0.weight = (SELECT MAX(weight)
          FROM Personnel AS P1
         WHERE height NOT IN (s1))) AS s2,
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  (SELECT MAX(P0.height)
    FROM Personnel AS P0
   WHERE height NOT IN (s1, s2)
  AND P0.weight = (SELECT MAX(weight)
           FROM Personnel AS P1
         WHERE height NOT IN (s1, s2))) AS s3
FROM Dummy;

Again, multiple criteria and their ordering would be expressed 
as multiple levels of subquery nesting. This picks the tallest peo-
ple and decides ties with the greatest weight within that subset 
of personnel. Even though this looks awful and is hard to read, it 
does run fairly fast because the predicates are repeated and can 
be factored out by the optimizer.

Another form of multiple criteria is finding the generalized 
extrema functions within groupings; for example, find the top 
three salaries in each department. Adding the grouping con-
straints to the subquery expressions gives us an answer.

SELECT dept_nbr, salary_amt
  FROM Personnel AS P1
WHERE (SELECT COUNT(*)
 FROM Personnel AS P2
 WHERE P2.dept_nbr = P1.dept_nbr
  AND P2.salary_amt < P1.salary_amt) < :n;

or

SELECT P2.dept_nbr, MIN(P1.salary_amt)
  FROM Personnel AS P1, Personnel AS P2
WHERE P1.dept_nbr = P2.dept_nbr
 AND P1.salary_amt >= P2.salary_amt
GROUP BY P2.dept_nbr, P2.salary_amt
HAVING COUNT(DISTINCT P1.salary_amt) <= 3;

29.4.4 GREATEST() and LEAST() Functions
Oracle has a proprietary pair of functions that return greatest and 
least values, respectively—a sort of “horizontal” MAX() and MIN(). 
The syntax is GREATEST (<list of values>) and LEAST (<list of 
values>). Awkwardly enough, DB2 allows MIN and MAX as syn-
onyms for LEAST and GREATEST

If you have NULLs, then you have to decide if they sort high or 
low, if they are excluded, or if you propagate the NULL; you can 
define this function several ways.

If you don’t have NULLs in the data:

CASE WHEN col1 > col2
 THEN col1 ELSE col2 END
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If you want the highest non-NULL value:

CASE WHEN col1 > col2
  THEN col1 ELSE COALESCE(col2, col1) END

If you want to return NULL where one of the cols is NULL:

CASE WHEN col1 > col2 OR col1 IS NULL
  THEN col1 ELSE col2 END

But for the rest of this section, let’s assume (a < b) and NULL is high:

GREATEST (a, b) = b
GREATEST (a, NULL) = NULL
GREATEST (NULL, b) = NULL
GREATEST (NULL, NULL) = NULL

which we can write as:

GREATEST(x, y) ::= CASE WHEN (COALESCE (x, y) > COALESCE 
(y, x))

      THEN x
      ELSE y END

The rules for LEAST() are:

LEAST (a, b) = a
LEAST (a, NULL) = a
LEAST (NULL, b) = b
LEAST (NULL, NULL) = NULL

which is written:

LEAST(x, y) ::= CASE WHEN (COALESCE (x, y) <= COALESCE  
(y, x))

        THEN COALESCE (x, y)
        ELSE COALESCE (y, x) END

This can be done in Standard SQL, but takes a little bit of 
work. Let’s assume that we have a table that holds the scores for 
each player in a series of five games, and we want to get his best 
score from all five games.

CREATE TABLE Games
(player CHAR(10) NOT NULL PRIMARY KEY,
score_1 INTEGER NOT NULL DEFAULT 0,
score_2 INTEGER NOT NULL DEFAULT 0,
score_3 INTEGER NOT NULL DEFAULT 0,
score_4 INTEGER NOT NULL DEFAULT 0,
score_5 INTEGER NOT NULL DEFAULT 0);

We want to find the GREATEST (score_1, score_2, score_3, 
score_4, score_5).



  Chapter 29 SIMPLE AGGREGATE FUNCTIONS  529

SELECT player, MAX(CASE X.seq_nbr
       WHEN 1 THEN score_1
       WHEN 2 THEN score_2
       WHEN 3 THEN score_3
       WHEN 4 THEN score_4
       WHEN 5 THEN score_5
       ELSE NULL END) AS best_score
 FROM Games
   CROSS JOIN
   (VALUES (1), (2), (3), (4), (5)) AS X(seq_nbr)
GROUP BY player;

Another approach is to use a pure CASE expression:

CASE
WHEN score_1 <= score_2 AND score_1 <= score_3
   AND score_1 <= score_4 AND score_1 <= score_5
THEN score_1
WHEN score_2 <= score_3 AND score_2 <= score_4
   AND score_2 <= score_5
THEN score_2
WHEN score_3 <= score_4 AND score_3 <= score_5
THEN score_3
WHEN score_4 <= score_5
THEN score_4
ELSE score_5
END

A final trick is to use a bit of algebra. You can define

GREATEST(a, b) ::= (a + b + ABS(a − b)) / 2
LEAST(a, b) ::= (a + b − ABS(a − b)) / 2

Then iterate on it as a recurrence relation on numeric val-
ues. For example, for three items, you can use GREATEST (a, 
GREATEST(b, c)), which expands out to:

((a + b) + ABS(a − b)
   + 2 * c + ABS((a + b) + ABS(a − b)
   - 2 * c))/4

You need to watch for possible overflow errors if the numbers 
are large and NULLs propagate in the math functions. Here is the 
answer for five scores.

(score_1 + score_2 + 2*score_3 + 4*score_4 + 8*score_5
+ ABS(score_1 − score_2) + ABS((score_1 + score_2)  

+ ABS(score_1 − score_2) − 2*score_3)
+ ABS(score_1 + score_2 + 2*score_3 − 4*score_4 + ABS(score_1 

− score_2) + ABS((score_1 + score_2 − 2*score_3) + 
ABS(score_1 − score_2)))
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+ ABS(score_1 + score_2 + 2*score_3 + 4*score_4 − 8*score_5
+ ABS(score_1 − score_2) + ABS((score_1 + score_2) + 

ABS(score_1 − score_2) − 2*score_3)
+ ABS(score_1 + score_2 + 2*score_3 − 4*score_4 + ABS(score_1 

− score_2) + ABS((score_1 + score_2 − 2*score_3) + 
ABS(score_1 − score_2))) )) / 16

29.5 The LIST() Aggregate Function
The LIST([DISTINCT] <string expression>) is part of Sybase’s 
SQL Anywhere (formerly WATCOM SQL). It is the only aggre-
gate function to work on character strings. It takes a column of 
strings, removes the NULLs, and merges them into a single result 
string having commas between each of the original strings. The 
DISTINCT option removes duplicates as well as NULLs before con-
catenating the strings together. This function is a generalized 
version of concatenation, just as SUM() is a generalized version of 
addition.

MySQL 4.1 extended this function into the GROUP_CONCAT() 
function, which does the same thing, but adds options for ORDER 
BY and SEPARATOR

This is handy when you use SQL to write SQL queries. As one 
simple example, you can apply it against the schema tables and 
obtain the names of all the columns in a table, then use that list 
to expand a SELECT * into the current column list.

29.5.1 LIST Aggregate with Recursive CTE
The first thing you will need to do is to add a column to give a 
sequence number to order each item to be put in the list. This 
can be done with a ROW_NUMBER()function, but let’s assume the 
table already has such a column:

CREATE TABLE Make_String
(list_seq INTEGER NOT NULL PRIMARY KEY,
cat_string VARCHAR(10) NOT NULL);

INSERT INTO Make_String
VALUES (1, 'abc'), (2, 'bcd'), (3, 'cde'), (4, 'def'),
    (5, 'efg'), (6, 'fgh'), (7, 'ghi');

The desired result is:

'abc, bcd, cde, def, efg, fgh, ghi'

This can be done with a recursive CTE:

WITH RECURSIVE
String_Tail(list_seq, cat_string)
AS
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(SELECT list_seq, cat_string
 FROM Make_String
  WHERE list_seq > 1),

String_Head(list, max_list_seq)
AS
(SELECT cat_string, 1
 FROM String_Head
UNION ALL
SELECT String_Head.cat_string || ', ' || String_Tail.

cat_string,
   String_Head.max_list_seq + 1
  FROM String_Tail, String_Head
WHERE String_Tail.list_seq = String_Head.max_list_seq + 1)

SELECT cat_list
  FROM String_Head
WHERE max_list_seq
   = (SELECT MAX(list_seq)
   FROM Make_String);

The interesting side effect is that you get all the left-to-right 
concatenations.

29.5.2 The LIST() Function by Crosstabs
Carl Federl used this to get a similar result:

CREATE TABLE Crosstabs
(seq_nbr INTEGER NOT NULL PRIMARY KEY,
seq_nbr_1 INTEGER NOT NULL,
seq_nbr_2 INTEGER NOT NULL,
seq_nbr_3 INTEGER NOT NULL,
seq_nbr_4 INTEGER NOT NULL,
seq_nbr_5 INTEGER NOT NULL);

INSERT INTO Crosstabs
VALUES (1, 1, 0, 0, 0, 0),
 (2, 0, 1, 0, 0, 0),
 (3, 0, 0, 1, 0, 0),
 (4, 0, 0, 0, 1, 0),
 (5, 0, 0, 0, 0, 1);

SELECT Clothes.id,
 TRIM (MAX(SUBSTRING(item_name FROM 1 FOR seq_nbr_1 * 10))
|| ' ' || MAX(SUBSTRING(item_name FROM 1 FOR  

seq_nbr_2 * 10))
|| ' ' || MAX(SUBSTRING(item_name FROM 1 FOR  

seq_nbr_3 * 10))
|| ' ' || MAX(SUBSTRING(item_name FROM 1 FOR  

seq_nbr_4 * 10))
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|| ' ' || MAX(SUBSTRING(item_name FROM 1 FOR  
seq_nbr_5 * 10)))

  FROM Clothes, Crosstabs
WHERE Clothes.seq_nbr = Crosstabs.seq_nbr
 AND Clothes.worn_flag = 'Y'
GROUP BY Clothes.id;

29.6 The PRD() Aggregate Function
Bob McGowan sent me a message on CompuServe asking for 
help with a problem. His client, a financial institution, tracks 
investment performance with a table something like this:

CREATE TABLE Performance
(portfolio_id CHAR(7) NOT NULL,
execute_date DATE NOT NULL,
rate_of_return DECIMAL(13,7) NOT NULL);

In order to calculate a rate of return over a date range, you use 
the formula:

(1 + rate_of_return [day_1])
* (1 + rate_of_return [day_2])
* (1 + rate_of_return [day_3])
* (1 + rate_of_return [day_4])
...
* (1 + rate_of_return [day_N])

How would you construct a query that would return one 
row for each portfolio’s return over the date range? What Mr. 
McGowan really wants is an aggregate function in the SELECT 
clause to return a columnar product, like the SUM() returns a 
columnar total.

If you were a math major, you would write these functions 
as capital Sigma (<uppercase sigma>) for summation and capi-
tal Pi for product (<uppercase pi>). If such an aggregate func-
tion existed in SQL, the syntax for it would look something like:

PRD ([DISTINCT] <expression>)

Although I am not sure that there is any use for the DISTINCT 
option, the new aggregate function would let us write his prob-
lem simply as:

SELECT portfolio_id, PRD(1.00 + rate_of_return)
  FROM Performance
WHERE execute_date BETWEEN start_date AND end_date
GROUP BY portfolio_id;



  Chapter 29 SIMPLE AGGREGATE FUNCTIONS  533

29.6.1 PRD() Function by Expressions
There is a trick for doing this, but you need a second table that 
looks like this for a period of five days:

CREATE TABLE BigPi
(execute_date DATE NOT NULL,
day_1 INTEGER NOT NULL,
day_2 INTEGER NOT NULL,
day_3 INTEGER NOT NULL,
day_4 INTEGER NOT NULL,
day_5 INTEGER NOT NULL);

Let’s assume we wanted to look at January 6 to 10, so we need 
to update the execute_date column to that range, thus:

INSERT INTO BigPi
VALUES ('2006-01-06', 1, 0, 0, 0, 0),
 ('2006-01-07', 0, 1, 0, 0, 0),
 ('2006-01-08', 0, 0, 1, 0, 0),
 ('2006-01-09', 0, 0, 0, 1, 0),
 ('2006-01-10', 0, 0, 0, 0, 1);

The idea is that there is a one in the column when BigPi. 
execute_date is equal to the n-th date in the range and zero oth-
erwise. The query for this problem is:

SELECT portfolio_id,
 (SUM((1.00 + P1.rate_of_return) * M1.day_1) *
 SUM((1.00 + P1.rate_of_return) * M1.day_2) *
 SUM((1.00 + P1.rate_of_return) * M1.day_3) *
 SUM((1.00 + P1.rate_of_return) * M1.day_4) *
 SUM((1.00 + P1.rate_of_return) * M1.day_5)) AS product
 FROM Performance AS P1, BigPi AS M1
WHERE M1.execute_date = P1.execute_date
  AND P1.execute_date BETWEEN '2006-01-06' AND '2006-01-10'
GROUP BY portfolio_id;

If anyone is missing a rate_of_return entry on a date in that 
range, their product will be zero. That might be fine, but if you 
needed to get a NULL when you have missing data, then replace 
each SUM() expression with a CASE expression like this:

CASE WHEN SUM((1.00 + P1.rate_of_return) * M1.day_N) = 0.00
   THEN CAST (NULL AS DECIMAL(6, 4))
   ELSE SUM((1.00 + P1.rate_of_return) * M1.day_N)
END

or if your SQL has the full SQL set of expressions, with this version:

COALESCE (SUM((1.00 + P1.rate_of_return) * M1.day_N), 0.00)
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29.6.2 The PRD() Aggregate Function by Logarithms
Roy Harvey, another SQL guru who answered questions on 
CompuServe, found a different solution. If you are old enough to 
have used a slide rule or if you had a good high school math class, 
you know that you can multiply numbers by adding their loga-
rithms and then taking the exponential of the sum. The nice part 
of this solution is that you can also use the DISTINCT option in the 
SUM() function.

But there are a lot of warnings about this approach. The 
Standard allows only natural logarithms shown as LN(), but 
you will see LOG10() for the logarithm base 10 and perhaps 
LOG(<parameter>, <base>) for a general logarithm function. Since 
the logarithm of zero or less is undefined, the Standard requires 
an exception to be raised. But some older SQL might return a 
zero or a NULL. Likewise, the Standard also defines the exponen-
tial function as EXP() as its inverse.

The expression for the product of a column from logarithm 
and exponential functions is:

SELECT ((EXP (SUM (LN (CASE WHEN nbr = 0.00
     THEN CAST (NULL AS FLOAT)
     ELSE ABS(nbr) END))))
 * (CASE WHEN MIN (ABS (nbr)) = 0.00
   THEN 0.00
   ELSE 1.00 END)
 * (CASE WHEN MOD (SUM (CASE WHEN SIGN(nbr) = −1
     THEN 1
     ELSE 0 END), 2) = 1
  THEN −1.00
  ELSE 1.00 END) AS big_pi
FROM NumberTable;

The nice part of this is that you can also use the SUM (DISTINCT 
<expression>) option to get the equivalent of PRD (DISTINCT 
<expression>).

You should watch the data type of the column involved and 
use either integer 0 and 1 or decimal 0.00 and 1.00 as is appro-
priate in the CASE statements. It is worth studying the three CASE 
expressions that make up the terms of the Prod calculation.

The first CASE expression is to insure that all zeros and nega-
tive numbers are converted to a nonnegative or NULL for the SUM() 
function, just in case your SQL raises an exception.

The second CASE expression will return zero as the answer 
if there was a zero in the nbr column of any selected row. The 
MIN(ABS(nbr)) is a handy trick for detecting the existence of a zero 



  Chapter 29 SIMPLE AGGREGATE FUNCTIONS  535

in a list of both positive and negative numbers with an aggregate 
function.

The third CASE expression will return minus one if there was an 
odd number of negative numbers in the nbr column. The inner-
most CASE expression uses a SIGN() function, which returns 11 
for a positive number, 21 for a negative number, and 0 for a zero. 
The SUM() counts the 21 results then the MOD() functions deter-
mines if the count was odd or even.

I present this version of the query first, because this is how I 
developed the answer. We can do a much better job with a little 
algebra and logic:

SELECT CASE MIN (SIGN (nbr))
 WHEN 1 THEN EXP (SUM (LN (nbr))) -- all positive numbers
 WHEN 0 THEN 0.00 -- some zeros
 WHEN −1 -- some negative numbers
 THEN (EXP (SUM (LN (ABS(nbr))))
   * (CASE WHEN
       MOD (SUM (ABS (SIGN(nbr)−1/ 2)), 2) = 1
       THEN −1.00 ELSE 1.00 END))
 ELSE CAST (NULL AS FLOAT) END AS big_pi
FROM NumberTable;

The idea is that there are three special cases—all positive 
numbers, one or more zeros, and some negative numbers in the 
set. You can find out what your situation is with a quick test on 
the SIGN() of the minimum value in the set.

Within the case where you have negative numbers, there are 
two subcases: (1) an even number of negatives or (2) an odd 
number of negatives. You then need to apply some high school 
algebra to determine the sign of the final result.

Itzak Ben-Gan had problems implementing this in an older 
version of SQL Server, which are worth passing along in case 
your SQL product also has them. The query as written returns a 
domain error in SQL Server, even though it should not had the 
result expressions in the CASE expression been evaluated after 
the conditional flow had performed a short circuit evaluation. 
Examining the execution plan of the previous query, it looks like 
the optimizer evaluates all the possible result expressions in a 
step prior to handling the flow of the CASE expression.

This means that in the expression after WHEN 1 ... the LN() 
function is also invoked in an intermediate phase for zeros and 
negative numbers, and in the expression after WHEN −1 … the 
LN(ABS()) is also invoked in an intermediate phase for zeroes. 
This explains the domain error.
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To handle this, I had to use the ABS() and NULLIF() functions in 
the positive numbers when CLAUSE, and the NULLIF() function in 
the negative numbers when CLAUSE:

 . . . 
 WHEN 1 THEN EXP(SUM(LN(ABS(NULLIF(result, 0.00)))))
and
 . . . 
 WHEN −1
 THEN EXP(SUM(LN(ABS(NULLIF(result, 0.00)))))
   * CASE . . . 

If you are sure that you will have only positive values in the 
column being computed, then you can use

PRD(<exp>) = EXP(SUM(LN (<exp>)))

As an aside, the book Bypasses: A Simple Approach to 
Complexity (Z. A. Melzak, Wiley-Interscience, 1983, ISBN 0-471-
86854-X), is a short mathematical book on the general principle 
of conjugacy. This is the method of using a transform and its 
inverse to reduce the complexity of a calculation.

29.7 Bitwise Aggregate Functions
This is not a recommended practice, since it will destroy First 
Normal Form (1NF) by overloading a column with a vector whose 
components have individual meanings. But it is common enough 
that I have to mention it. Instead of giving each attribute in the 
data model its own column, bad programmers will assign a 
meaning to each bit in the binary representation of an INTEGER or 
SMALLINT.

This leads to a huge problem with the hardware being ones-
complement or twos-complement math, and how NULLs are han-
dled. Microsoft SQL Server at one time implemented a BIT data 
type that was a true bit type that took only the values {0, 1} just 
like assembly languages. Later, it was made into a numeric data 
type that was NULL-able.

Some products will actually expose the physical model for 
the data types and have proprietary bit-wise BIT_AND and BIT_OR 
operators. Most products do not implement bit-wise aggregate 
Boolean operators, however. But I feel like a furniture maker who 
is telling you what are the best rocks with which to drive screws 
into wood.

To reiterate, an aggregate function must:
1. Drop all the NULLs.
2. Drop all redundant duplicates if DISTINCT is in the param eter 

list.
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3. Retain all redundant duplicates if ALL or no other keyword is in 
the parameter list.

4. Perform the required calculation on the remaining values in 
the expression.

5. Return a NULL result for an empty set or for a set of all NULLs 
(which would be empty after application of (1)).
Notice that rules (2) and (3) do not matter with bitwise opera-

tors, since (a BIT_OR a) 5 a and (a BIT_AND a) 5 a.

29.7.1 Bitwise OR Aggregate Functions
Let’s create a simple table that holds the columns of bits as an 
integer. The CHECK() constraint prevents negative numbers and 
bit strings of different lengths.

CREATE Table Foobar
(bits INTEGER -- nullable for testing
   CHECK(bits BETWEEN 0 AND 15));

What we want is a bit-wise OR on the bits column.

SELECT MAX (CASE WHEN MOD (bits/1, 2) = 1
       AND bits IS NOT NULL
     THEN 1 ELSE 0 END)
 + MAX (CASE WHEN MOD (bits/2, 2) = 1
         AND bits IS NOT NULL
      THEN 2 ELSE 0 END)
 + MAX (CASE WHEN MOD (bits/4, 2) = 1
         AND bits IS NOT NULL
     THEN 4 ELSE 0 END)
 + MAX (CASE WHEN MOD (bits/8, 2) = 1
         AND bits IS NOT NULL
     THEN 8 ELSE 0 END)
FROM Foobar;

The bits/1 is redundant, but I used it to show the pattern for 
the construction of this expression. The hope is that a good opti-
mizer will use a CASE expression inside the MAX() function. This 
immediately tells the optimizer that the set of possible answers is 
limited (in these expressions, limited to {0, 2^n}) so that once any 
row has returned the highest possible value, the evaluation can 
stop. The bad news with this expression is that a NULL in the bits 
column will return 0000. This can be corrected by adding

SIGN(MAX(bits)) * (<bitwise OR expression>)

If Foobar is all zeros, then the SIGN() function will return a 
zero and an optimizer can spot this short-cut evaluation. If the 
table is empty or the bits column is all NULLs, the SIGN() will get 
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a NULL from MAX(bits) and propagate it. If bits are declared NOT 
NULL, then do not use this factor.

29.7.2 Bitwise AND Aggregate Function
This code is obvious from the previous discussion. The MAX() now 
becomes a MIN(), since a single zero can set a bit in the aggre-
gate to zero. The trick with the SIGN() function stays the same as 
before.

SELECT SIGN(MAX(bits)) *
 MIN (CASE WHEN MOD (bits/1, 2) = 1
       AND bits IS NOT NULL
    THEN 1 ELSE 0 END)
 + MIN (CASE WHEN MOD (bits/2, 2) = 1
         AND bits IS NOT NULL
    THEN 2 ELSE 0 END)
 + MIN (CASE WHEN MOD (bits/4, 2) = 1
         AND bits IS NOT NULL
    THEN 4 ELSE 0 END)
 + MIN (CASE WHEN MOD (bits/8, 2) = 1
        AND bits IS NOT NULL
    THEN 8 ELSE 0 END)
FROM Foobar;
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30
ADVANCED GROUPING, 
WINDOWED AGGREGATION,  
AND OLAP IN SQL

Most SQL programmers work with OLTP (Online Transaction 
Processing) databases and have had no exposure to Online 
Analytic Processing (OLAP) and data warehousing. OLAP is con
cerned with summarizing and reporting data, so the schema 
designs and common operations are very different from the usual 
SQL queries.

As a gross generalization, everything you knew in OLTP is 
reversed in a data warehouse.
1. OLTP changes data in short, frequent transactions. A data 

warehouse is bulk loaded with static data on a schedule. The 
data remains constant once it is in place.

2. OLTP databases want to store only the data needed to do its 
current work. A data warehouse wants all the historical data it 
can hold. In 2008, Teradata Corporation announced it had five 
customers running data warehouses larger than a petabyte. 
The “Petabyte Power Players” club included eBay, with 5 peta
bytes of data; WalMart Stores, which has 2.5 petabytes; Bank 
of America, which is storing 1.5 petabytes; Dell, which has a 1 
petabyte data warehouse; and an unnamed bank. The defini
tion of a petabyte is 2^50 5 1,125,899,906,842,624 bytes 5 1024 
terabytes, or roughly 10^15 bytes.

3. OLTP queries tend to be for simple facts. Data warehouse que
ries tend to be aggregate relationships that are more complex. 
For example, an OLTP query might ask, “How much choco
late did Joe Celko buy?” whereas a data warehouse might ask, 
“What is the correlation between chocolate purchases, geo
graphic location, and wearing tweed?”

4. OLTP wants to run as fast as possible. A data warehouse is more 
concerned with the accuracy of computations and it is willing 
to wait to get an answer to a complex query.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00030-2
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00030-2
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5. Properly designed OLTP databases are normalized. A data 
warehouse is usually a Star or Snowflake Schema, which is 
highly denormalized. The Star Schema is due to Ralph Kimball; 
you can get more details about it in his books and articles.

30.1 Star Schema
The Star Schema is a violation of basic normalization rules. 
There is a large central fact table. This table contains all the facts 
about an event that you wish to report on, such as sales, in one 
place. In an OLTP, the inventory would be in one table, the sales 
in another table, customers in a third table, and so forth. In the 
data warehouse, they are all in one huge table.

The dimensions of the values in the fact table are in smaller 
tables that allow you to pick a scale or unit of measurement on 
that dimension in the fact table. For example, the time dimen
sion for the Sales fact table might be grouped by year, month 
within year, week within month. Then a weight dimension could 
give you pounds, kilograms, or stock packaging sizes. A category 
dimension might classify the stock by department. And so forth. 
This lets me ask for my fact aggregated in any granularity of units 
I wish, and perhaps dropping some of the dimensions.

Until recent changes in SQL, OLAP queries had to be 
done with special OLAPcentric languages, such as Microsoft’s 
Multidi mensional Expressions (MDX). Be assured that the power 
of OLAP is not found in the wizards or GUIs presented in the ven
dor demos. The wizards and GUI are often the glitter that lures 
the uninformed.

Many aspects of OLAP are already integrated with the rela
tional database engine itself. This blending of technology blurs 
the distinction between an RDBMS and OLAP data management 
technology, effectively challenging the passive role often rel
egated to relational databases with regard to dimensional data. 
The more your RDBMS can address the needs of both traditional 
relational data and dimensional data, then you can reduce the 
cost of OLAPonly technology and get more out of your invest
ment in RDBMS technology, skills, and resources. But don’t con
fuse what SQL can do for you with reporting tools or the power of 
a statistical package, either.

30.2 GROUPING Operators
OLAP functions add the ROLLUP and CUBE extensions to the 
GROUP BY clause. The ROLLUP and CUBE are often referred to as 
supergroups. They can be written in older Standard SQL using 
GROUP BY and UNION operators.
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As expected, NULLs form their own group just as before. 
However, we now have a GROUPING(<column reference>) func
tion, which checks for NULLs that are the results of aggregation 
over that <column reference> during the execution of a grouped 
query containing CUBE, ROLLUP, or GROUPING SET, returns one if they 
were created by the query, and returns a zero otherwise.

SQL:2003 added a multicolumn version that constructs a 
binary number from the ones and zeros of the columns in the list 
in an implementationdefined exact numeric data type. Here is a 
recursive definition:

GROUPING (<column ref 1>, ..., <column ref n-1>,  <column 
ref n>)

is equivalent to:

(2 *(<column ref 1>, ..., <column ref n-1>) + GROUPING 
(<column ref n>))

30.2.1 GROUP BY GROUPING SET
The GROUPING SET(<column list>) is shorthand in SQL99 for a 
series of UNIONed queries that are common in reports. For exam
ple, to find the total:

SELECT dept_name, CAST(NULL AS CHAR(10)) AS job_title, 
COUNT(*)

  FROM Personnel
GROUP BY dept_name
UNION ALL
SELECT CAST(NULL AS CHAR(8)) AS dept_name, job_title, 

COUNT(*)
    FROM Personnel
GROUP BY job_title;

It can be rewritten like this:

SELECT dept_name, job_title, COUNT(*)
    FROM Personnel
GROUP BY GROUPING SET (dept_name, job_title);

There is a problem with all the OLAP grouping functions. They 
will generate NULLs for each dimension at the subtotal levels. How 
do you tell the difference between a real NULL and a generated NULL? 
This is a job for the GROUPING() function, which returns 0 for NULLs in 
the original data and 1 for generated NULLs that indicate a subtotal.

SELECT CASE GROUPING(dept_name)
   WHEN 1 THEN 'department total'
   ELSE dept_name END AS dept_name,
   CASE GROUPING(job_title)
   WHEN 1 THEN 'job total'
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   ELSE job_title_name END AS job_title
FROM Personnel
GROUP BY GROUPING SETS (dept_name, job_title);

The grouping set concept can be used to define other OLAP 
groupings.

30.2.2 ROLLUP
A ROLLUP group is an extension to the GROUP BY clause in SQL99 
that produces a result set that contains subtotal rows in addi
tion to the ‘regular’ grouped rows. Subtotal rows are super
aggregate rows that contain further aggregates whose values 
are derived by applying the same column functions that were 
used to obtain the grouped rows. A ROLLUP grouping is a series of 
groupingsets.

GROUP BY ROLLUP (a, b, c)

is equivalent to:

GROUP BY GROUPING SETS
(a, b, c)
(a, b)
(a)
()

Notice that the (n) elements of the ROLLUP translates to (n 1 1) 
grouping set. Another point to remember is that the order in which 
the groupingexpression is specified is significant for ROLLUP.

The ROLLUP is basically the classic totals and subtotals report 
presented as an SQL table.

30.2.3 CUBES
The CUBE supergroup is the other SQL99 extension to the 
GROUP BY clause that produces a result set that contains all the 
subtotal rows of a ROLLUP aggregation and, in addition, con
tains ‘crosstabulation’ rows. Crosstabulation rows are addi
tional ‘superaggregate’ rows. They are, as the name implies, 
summaries across columns if the data were represented as a 
spreadsheet. Like ROLLUP, a CUBE group can also be thought of as 
a series of groupingsets. In the case of a CUBE, all permutations 
of the cubed groupingexpression are computed along with the 
grand total. Therefore, the n elements of a CUBE translate to 2n 
groupingsets.

GROUP BY CUBE (a, b, c)
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is equivalent to:

GROUP BY GROUPING SETS
(a, b, c) (a, b) (a, c) (b, c) (a) (b) (c) ()

Notice that the three elements of the CUBE translate to eight 
grouping sets. Unlike ROLLUP, the order of specification of ele
ments doesn’t matter for CUBE:
 CUBE (julian_day, sales_person) is the same as CUBE (sales_ 

person, julian_day).
CUBE is an extension of the ROLLUP function. The CUBE function 

not only provides the column summaries we saw in ROLLUP but 
also calculates the row summaries and grand totals for the vari
ous dimensions.

30.2.4 OLAP Examples of SQL
The following example illustrates advanced OLAP function used 
in combination with traditional SQL. In this example, we want to 
perform a ROLLUP function of sales by region and city.

SELECT B.region_nbr, S.city_id, SUM(S.sales_amt) AS 
total_sales

  FROM SalesFacts AS S, MarketLookup AS M
WHERE EXTRACT (YEAR FROM trans_date) = 2011
 AND S.city_id = B.city_id
 AND B.region_nbr = 6
GROUP BY ROLLUP(B.region_nbr, S.city_id);

The resultant set is reduced by explicitly querying region 6 
and the year 1999. A sample result of the SQL follows. The result 
shows ROLLUP of two groupings (region, city) returning three 
totals, including region, city, and grand total.

Yearly Sales by City and Region

region_nbr city_id total_sales

6 1 81655   > city within region total
6 2 131512
6 3 58384
... ... ...
6 30 1733
6 31 5058
6 NULL 1190902 > region six total
NULL NULL 1190902 > grand total
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30.3 The Window Clause
The window clause is also called the OVER() clause informally. 
The idea is that the table is first broken into partitions with the 
PARTITION BY subclause. The partitions are then sorted by the 
ORDER BY clause. An imaginary cursor sits on the current row 
where the windowed function is invoked. A subset of the rows 
in the current partition is defined by the number of rows before 
and after the current row; if there is a <window frame exclusion> 
option then certain rows are removed from the subset. Finally, 
the subset is passed to an aggregate or ordinal function to return 
a scalar value. The window functions are functions and follow 
the rules of any function, but with a different syntax. The window 
part can be either a <window name> or a <window specification>. 
The <window specification> gives the details of the window in the 
OVER() clause and this is how most programmers use it. However, 
you can define a window and give it a name, then use the name 
in the OVER() clauses of several statements.

The window works the same way, regardless of the syntax 
used. The BNF is:

<window function>::= <window function type> OVER <window 
name or specification>

<window function type>::=
 <rank function type> | ROW_NUMBER ()| <aggregate 

function>

<rank function type>::= RANK() | DENSE_RANK() | PERCENT_
RANK() | CUME_DIST()

<window name or specification>::= <window name> | <in-line 
window specification>

<in-line window specification>::= <window specification>

The window clause has three subclauses: partitioning, order
ing, and aggregation grouping or window frame.

30.3.1 PARTITION BY Subclause
A set of column names specifies the partitioning, which is 
applied to the rows that the preceding FROM, WHERE, GROUP BY, and 
HAVING clauses produced. If no partitioning is specified, the entire 
set of rows composes a single partition and the aggregate func
tion applies to the whole set each time. Though the partitioning 
looks a bit like a GROUP BY, it is not the same thing. A GROUP BY col
lapses the rows in a partition into a single row. The partitioning 
within a window, though, simply organizes the rows into groups 
without collapsing them.
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30.3.2 ORDER BY Subclause
The ordering within the window clause is like the ORDER BY clause 
in a CURSOR. It includes a list of sort keys and indicates whether 
they should be sorted ascending or descending. The important 
thing to understand is that ordering is applied within each parti
tion. The other subclauses are optional, but don’t make any sense 
without an ORDER BY and/or PARTITION BY in the function.

<sort specification list>::= <sort specification> [{,<sort 
specification>}...]

<sort specification>::= <sort key> [<ordering specification>] 
[<null ordering>]

<sort key>::= <value expression>

<ordering specification>::= ASC | DESC

<null ordering>::= NULLS FIRST | NULLS LAST

It is worth mentioning that the rules for an ORDER BY subclause 
have changed to be more general than they were in earlier SQL 
Standards.
1. A sort can now be a <value expression> and is not limited to a 

simple column in the select list. However, it is still a good idea 
to use only column names so that you can see the sorting order 
in the result set

2. <sort specification> specifies the sort direction for the cor
responding sort key. If DESC is not specified in the ith <sort 
 specification>, then the sort direction for Ki is ascending and 
the applicable <comp op> is the <less than operator>. Other
wise, the sort direction for Ki is descending and the applicable 
<comp op> is the <greater than operator>.

3. If <null ordering> is not specified, then an implementation
defined <null ordering> is implicit. This was a big issue in ear
lier SQL Standards because vendors handled NULLs differently. 
NULLs are considered equal to each other.

4. If one value is NULL and the second value is not NULL, then
•	 If	 NULLS FIRST is specified or implied, then first value 

<comp op> second value is considered to be TRUE.
•	 If	 NULLS LAST is specified or implied, then first value 

<comp op> second value is considered to be FALSE.
•	 If	 first	 value	 and	 second	 value	 are	 not	NULL and the result 

of “first value <comp op> second value” is UNKNOWN, then the 
relative ordering of first value and second value is imple
mentation dependent.

5. Two rows that are not distinct with respect to the <sort 
specification>s are said to be peers of each other. The relative 
ordering of peers is implementation dependent.
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30.3.3 Window Frame Subclause
The tricky one is the window frame. Here is the BNF, but you 
really need to see code for it to make sense.

<window frame clause>::= <window frame units> <window 
frame extent>

[<window frame exclusion>]

<window frame units>::= ROWS | RANGE

RANGE works with a single sort key of numeric, datetime, or 
interval data type. It is for data that is a little fuzzy on the edges, 
if you will. If ROWS is specified, then sort list is made of exact 
numeric with scale zero.

<window frame extent>::= <window frame start> | <window 
frame between>

<window frame start>::=
UNBOUNDED PRECEDING | <window frame preceding> | CURRENT ROW

<window frame preceding>::= <unsigned value specification> 
PRECEDING

If the window starts at UNBOUNDED PRECEDING, then the lower 
bound is always the first row of the partition; likewise, CURRENT 
ROW explains itself. The <window frame preceding> is an actual 
count of preceding rows.

<window frame bound>::= <window frame start> | UNBOUNDED 
FOLLOWING | <window frame following>

<window frame following>::= <unsigned value specification> 
FOLLOWING

If the window starts at UNBOUNDED FOLLOWING, then the lower 
bound is always the last row of the partition; likewise, CURRENT 
ROW explains itself. The <window frame following> is an actual 
count of following rows.

<window frame between>::=
BETWEEN <window frame bound 1> AND <window frame bound 2>

<window frame bound 1>::= <window frame bound>

<window frame bound 2>::= <window frame bound>

The current row and its window frame have to stay inside the 
partition, so the following and preceding limits can effectively 
change at either end of the frame.

<window frame exclusion>::= EXCLUDE CURRENT ROW | EXCLUDE 
GROUP

| EXCLUDE TIES | EXCLUDE NO OTHERS
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The <window frame exclusion> is not used much or widely 
implemented. It is also hard to explain. The term “peer” refers to 
duplicate values.
1. EXCLUDE CURRENT ROW removes the current row from the window.
2. EXCLUDE GROUP removes the current row and any peers of the 

current row.
3. EXCLUDE TIES removed any rows other than the current row that 

are peers of the current row.
4. EXCLUDE NO OTHERS makes sure that no additional rows are 

removed.

30.4 Windowed Aggregate Functions
The regular aggregate functions can take a window clause.

<aggregate function>
OVER([PARTITION BY <column list>]
   [ORDER BY <sort column list>]
    [<window frame>])

<aggregate function>::=
     MIN([DISTINCT | ALL] <value exp>) | MAX([DISTINCT | 

  ALL] <value exp>)
| SUM([DISTINCT | ALL] <value exp>) | AVG([DISTINCT | ALL] 

<value exp>)
| COUNT([DISTINCT | ALL] [<value exp> | *])

There are no great surprises here. The window that is con
structed acts as if it were a group to which the aggregate function 
is applied.

30.5 Ordinal Functions
The ordinal functions use the window clause but must have an 
ORDER BY subclause to make sense. They return an ordering of the 
row within its partition or window frame relative to the rest of the 
rows in the partition. They have no parameters.

30.5.1 Row Numbering
ROW_NUMBER() uniquely identifies rows with a sequential num
ber based on the position of the row within the window defined 
by an ordering clause (if one is specified), starting with 1 for 
the first row and continuing sequentially to the last row in the 
window. If an ordering clause, ORDER BY, isn’t specified in the 
window, the row numbers are assigned to the rows in arbitrary 
order.
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30.5.2 RANK() and DENSE_RANK()
RANK() assigns a sequential rank of a row within a window. The 
RANK() of a row is defined as one plus the number of rows that 
strictly precede the row. Rows that are not distinct within the 
ordering of the window are assigned equal ranks. If two or more 
rows are not distinct with respect to the ordering, then there will 
be one or more gaps in the sequential rank numbering. That is, 
the results of RANK() may have gaps in the numbers resulting 
from duplicate values.

DENSE_RANK() also assigns a sequential rank to a row in a win
dow. However, a row’s DENSE_RANK() is one plus the number of 
rows preceding it that are distinct with respect to the ordering. 
Therefore, there will be no gaps in the sequential rank number
ing, with ties being assigned the same rank.

30.5.3 PERCENT_RANK() and CUME_DIST
These were added in the SQL:2003 Standard and are defined in 
terms of earlier constructs. Let <approximate numeric type>1 be 
an approximate numeric type with implementationdefined 
 precision. PERCENT_RANK() OVER <window specification> is equiva
lent to:

CASE
WHEN COUNT(*)
  OVER(<window specification>
    RANGE BETWEEN UNBOUNDED PRECEDING
        AND UNBOUNDED FOLLOWING) = 1
THEN CAST (0 AS <approximate numeric type>)
ELSE (CAST (RANK ()

  OVER(<window specification>) AS <approximate numeric  
  type>1) - 1)

  / (COUNT (*)
     OVER(<window specification>1
       RANGE BETWEEN UNBOUNDED PRECEDING
           AND UNBOUNDED FOLLOWING) - 1)
END

Likewise, the cumulative distribution is defined with an 
<approximate numeric type> with implementationdefined preci
sion. CUME_DIST() OVER <window specification> is equivalent to:

(CAST (COUNT (*)
    OVER(<window specification>

 RANGE UNBOUNDED PRECEDING) AS <approximate numeric type>)
   / COUNT(*)
     OVER(<window specification>1
       RANGE BETWEEN UNBOUNDED PRECEDING
           AND UNBOUNDED FOLLOWING))
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You can also go back and define the other windows in terms 
of each other, but it is only a curiosity and has no practical value.

RANK() OVER <window specification> is equivalent to:

(COUNT (*) OVER(<window specification> RANGE UNBOUNDED 
PRECEDING)

 -COUNT (*) OVER(<window specification> RANGE CURRENT ROW) + 1)

DENSE_RANK() OVER(<window specification>) is equivalent to:

COUNT (DISTINCT ROW (<value exp 1>, ...,<value exp n>))
OVER(<window specification> RANGE UNBOUNDED PRECEDING)

where <value exp i> is a sort key in the table.

ROW_NUMBER() OVER WNS is equivalent to:

COUNT (*)
OVER(<window specification> ROWS UNBOUNDED PRECEDING)

30.5.4 Some Examples
The <aggregation grouping> defines a set of rows upon which the 
aggregate function operates for each row in the partition. Thus, 
in our example, for each month, you specify the set including it 
and the two preceding rows.

SELECT SH.region_nbr, SH.sales_month, SH.sales_amt,
   AVG(SH.sales_amt)
   OVER(PARTITION BY SH.region_nbr
     ORDER BY SH.sales_month ASC
     ROWS 2 PRECEDING)
   AS moving_average,
   SUM(SH.sales_amt)
   OVER(PARTITION BY SH.region_nbr
     ORDER BY SH.sales_month ASC
     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
   AS moving_total
  FROM SalesHistory AS SH;

Here, AVG(SH.sales_amt) OVER(PARTITION BY...) is the first OLAP 
function. The construct inside the OVER() clause defines the win
dow of data to which the aggregate function, AVG() in this example, 
is applied.

The window clause defines a partitioned set of rows to which 
the aggregate function is applied. The window clause says to take 
SalesHistory table and then apply the following operations to it:
1. Partition SalesHistory by region
2. Order the data by month within each region.
3. Group each row with the two preceding rows in the same region.
4. Compute the windowed average on each grouping.
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The database engine is not required to perform the steps in 
the order described here, but has to produce the same result set 
as if they had been carried out.

The second windowed function is a cumulative total to date 
for each region. It is a very column q 5 query pattern.

There are two main types of aggregation groups: physical 
and logical. In physical grouping, you count a specified number 
of rows that are before or after the current row. The SalesHistory 
example used physical grouping. In logical grouping, you include 
all the data in a certain interval, defined in terms of a quantity 
that can be added to, or subtracted from, the current sort key. For 
instance, you create the same group whether you define it as the 
current month’s row plus:
1. The two preceding rows as defined by the ORDER clause.
2. Any row containing a month no less than two months earlier.

Physical grouping works well for contiguous data and pro
grammers who think in terms of sequential files. Physical group
ing works for a larger variety of data types than logical grouping, 
because it does not require operations on values.

Logical grouping works better for data that has gaps or irreg
ularities in the ordering and for programmers who think in SQL 
predicates. Logical grouping works only if you can do arithmetic 
on the values (such as numeric quantities and dates).

You will find another query pattern used with these functions. 
The function invocations need to get names to be referenced, so 
they are put into a derived table, which is encased in a containing 
query

SELECT X.*
 FROM (SELECT <window function 1> AS W1,
      <window function 2> AS W2,
      ..
      <window function n> AS Wn
    FROM ..
   [WHERE ..]
  )AS X
[WHERE..]
[GROUP BY ..];

Using the SELECT * in the containing query is a handy way to 
save repeating a select clause list over and over.

30.6 Vendor Extensions
You will find that vendors have added their own proprietary 
 windowed functions to their products. Although there is no good 
way to predict what they will do, there are two sets of common 
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extensions. As a programming exercise, I suggest you try to write 
them in Standard SQL windowed functions so you can translate 
dialect SQL if you need to do so.

30.6.1 LEAD and LAG Functions
LEAD and LAG functions are nonstandard shorthands you will 
find in Oracle and other SQL products. Rather than compute an 
aggregate value, they jump ahead or behind the current row and 
use that value in an expression. They take three arguments and 
an OVER() clause. The general syntax is:

[LEAD | LAG] (<expr>, <offset>, <default>) OVER(<window 
specification>)

1. <expr> is the expression to compute from the leading or lag
ging row. <offset> is the position of the leading or lagging row 
relative to the current row; it has to be a positive integer that 
defaults to one.

2. <default> is the value to return if the <offset> points to a row 
outside the partition range.
Here is a simple example:

SELECT dept_nbr, emp_id, sal_amt,
  LEAD(sal, 1, 0)
   OVER(PARTITION BY dept_nbr
       ORDER BY sal DESC NULLS LAST)AS lead_sal_amt,
  LAG (sal, 1, 0)
   OVER(PARTITION BY dept_nbr
       ORDER BY sal DESC NULLS LAST) AS lag_sal_amt
FROM Personnel

dept_nbr emp_id sal_amt lead_sal_amt lag_sal_amt

10 7839 5000.00 2450.00 0.00
10 7782 2450.00 1300.00 5000.00 > example

 emp_id in dept 10
10 7934 1300.00 0.00 2450.00
20 7788 3000.00 3000.00 0.00
20 7902 3000.00 2975.00 3000.00
20 7566 2975.00 1100.00 3000.00
20 7876 1100.00 800.00 2975.00
20 7369 800.00 0.00 1100.00
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Look at employee 7782, whose current salary is $2450.00. 
Looking at the salaries, we see that the first salary greater than 
his is $5000.00 and the first salary less than his is $1300.00. Look 
at employee 7934, whose current salary of $1300.00 puts him at 
the bottom of the company pay scale; his lead_salary_amt is 
defaulted to zero.

30.6.2 FIRST and LAST Functions
FIRST and LAST functions are nonstandard shorthands you will 
find in SQL products in various forms. Rather than compute 
an aggregate value, they sort a partition on one set of columns, 
then return an expression from the first or last row of that sort. 
The expression usually has nothing to do with the sorting col
umns. This is a bit like the joke about the British SargentMajor 
ordering the troops to line up alphabetically by height. The gen
eral syntax is:

[FIRST | LAST](<expr>) OVER(<window specification>)

Using the imaginary Personnel table again:

SELECT emp_id, dept_nbr, hire_date,
  FIRST(hire_date)
   OVER(PARTITION BY dept_nbr
       ORDER BY emp_id)
  AS first_hire_by_dept
  FROM Personnel;

The results get the hire date for the employee who has the 
lowest employee id in each department.

emp_id dept_nbr hire_date first_hire_by_dept

7369 20 '2011-01-01' '2011-01-01' > first emp_id in dept 20
7566 20 '2011-01-02' '2011-01-01'
7902 20 '2011-01-02' '2011-01-01'
7788 20 '2011-01-04' '2011-01-01'
7876 20 '2011-01-07' '2011-01-01' > last emp_id in dept 20
7499 30 '2011-01-27' '2011-01-27' > first emp_id in dept 30
7521 30 '2011-01-09' '2011-01-27'
7844 30 '2011-01-17' '2011-01-27'
7654 30 '2011-01-18' '2011-01-27'
7900 30 '2011-01-20' '2011-01-27' > last emp_id in dept 30



 Chapter 30 ADVANCED GROUPING, WINDOWED AGGREGATION, AND OLAP IN SQL  553

If we had used LAST() instead, the two chosen rows would 
have been:
(7876, 20, ‘20110107’, ‘20110101’)
(7900, 30, ‘20110120’, ‘20110127’)

The Oracle extensions FIRST_VALUE and LAST_VALUE are even 
stranger. They allow other ordinal and aggregate functions to 
be applied to the retrieved values. If you want to use them, 
I suggest that you look at productspecific references and 
examples.

You can do these with Standard SQL and a little work. The 
skeleton follows.

WITH FirstLastQuery
AS
(SELECT emp_id, dept_nbr,  ROW_NUMBER()
      OVER(PARTITION BY dept_nbr
        ORDER BY emp_id ASC) AS asc_order,
   ROW_NUMBER()
      OVER(PARTITION BY dept_nbr
        ORDER BY emp_id DESC) AS desc_order
 FROM Personnel)

SELECT A.emp_id, A.dept_nbr, OA.hire_date AS first_value,
   OD.hire_date AS last_value
  FROM FirstLastQuery AS A, FirstLastQuery AS OA, 

FirstLastQuery AS OD
WHERE OD.desc_order = 1
 AND OA.asc_order = 1;

30.7 A Bit of History
IBM and Oracle jointly proposed these extensions in early 1999 
and thanks to ANSI’s uncommonly rapid (and praiseworthy) 
actions, they are part of the SQL99 Standard. IBM implemented 
portions of the specifications in DB2 UDB 6.2, which was com
mercially available in some forms as early as mid1999. Oracle 8i 
version 2 and DB2 UDB 7.1, both released in late 1999, contain 
beefedup implementations.

Other vendors contributed, including database tool ven
dors Brio, MicroStrategy, and Cognos and database vendor 
Informix, among others. A team lead by Dr. Hamid Pirahesh 
of IBM’s Almaden Research Laboratory played a particularly 
important role. After his team had researched the subject for 
about a year and had come up with an approach to extend 
SQL in this area, he called Oracle. The companies then learned 
that each had independently done some significant work. With  



554  Chapter 30 ADVANCED GROUPING, WINDOWED AGGREGATION, AND OLAP IN SQL

Andy Witkowski playing a pivotal role at Oracle, the two com
panies hammered out a joint standards proposal in about two 
months. Red Brick was actually the first product to implement 
this functionality before the standard, but in a less complete 
form. You can find details in the ANSI document, “Introduction 
to OLAP Functions,” by Fred Zemke, Krishna Kulkarni, Andy 
Witkowski, and Bob Lyle.



555

31
DESCRIPTIVE STATISTICS IN SQL

SQL is not a statistical programming language. However, there 
are some tricks that will let you do simple descriptive statistics. 
Many vendors also include other descriptive statistics besides the 
required ones. Other sections of this book give portable queries 
for computing some of the more common statistics. Before using 
any of these queries, you should check to see if they already exist 
in your SQL product. Built-in functions will run far faster than 
these queries, so you should use them if portability is not vital. 
The most common extensions are the median, the mode, the 
standard deviation, N-tiles, and the variance.

If you need to do a detailed statistical analysis, then you can 
extract data with SQL and pass it along to a statistical program-
ming language, such as SAS or SPSS. However, you can build a lot 
of standard descriptive statistics using what you do have.

31.1 The Mode
The mode is the most frequently occurring value in a set. If there 
are two such values in a set, statisticians call it a bimodal distri-
bution; three such values make it trimodal; and so forth.

Most SQL implementations do not have a mode function, 
since it is easy to calculate. This version is from Shepard Towindo 
and it will handle multiple modes.

SELECT salary_amt, COUNT(*) AS salary_mode
 FROM Personnel
GROUP BY salary_amt
HAVING COUNT(*)
  >= ALL (SELECT COUNT(*)
      FROM Personnel
      GROUP BY salary_amt);

Here is a version that uses the window clause:

WITH
Freq (salary_amt, salary_amt_cnt)
AS

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00031-4
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00031-4
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(SELECT salary_amt,
    COUNT(*) OVER(PARTITION BY salary_amt)
  FROM Personnel)
SELECT F1. salary_amt
 FROM Freq AS F1
WHERE F1.salary_amt_cnt
  = (SELECT MAX (salary_amt_cnt)
     FROM Freq AS F2);

The mode is a weak descriptive statistic, because it can be 
changed by small amounts of additional data. For example, if 
we have 100,000 cases where the value of the part_color variable 
is ‘red’ and 99,999 cases where the value is ‘green’, the mode is 
‘red’. But when two more ‘green’s are added to the set, the mode 
switches to ‘green’. A better idea is to allow for some variation, (k), 
in the values. In general the best way to compute (k) is probably 
as a percentage of the total number of occurrences. Of course, 
knowledge of the actual situation could change this.

SELECT AVG(salary_amt) AS mode
   FROM Personnel
GROUP BY salary_amt
HAVING COUNT(*)
 >= ALL (SELECT COUNT(*) * 0.95 –- or other percentages
      FROM Personnel
      GROUP BY salary_amt);

31.2 The AVG() Function
The simple mean is built into SQL as the AVG() aggregate func-
tion. One problem is that SQL likes to maintain the data types, 
so if x is an INTEGER, you may get an integer result. But even if 
you get decimal places, each product will have a default that 
you might not like. You can avoid this by writing AVG(1.0 * x) or 
AVG(CAST (x AS FLOAT)) or AVG(CAST (x AS DECIMAL (s, p))) to be 
safe. This is implementation-defined, so check your product first.

Newbies tend to forget that the built-in aggregate functions 
drop the rows with NULLs before doing the computations. This 
means that (SUM(x)/COUNT(*)) is not the same as AVG(x). Consider 
(x * 1.0)/COUNT(*) versus AVG(COALESCE(x * 1.0, 0.0)) as  versions 
of the mean that handle NULLs differently.

Sample and population means are slightly different. A sample 
needs to use frequencies to adjust the estimate of the mean. The 
formula SUM(x * 1.0 * abs_perc/100.0) AS mean_p needs the VIEW 
we had at the start of this section.

The name mean_p is to remind us that it is a population mean 
and not the simple AVG() of the sample data in the table.
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31.3 The Median
The median is defined as the value for which there are just as 
many cases with a value below it as above it. If such a value exists 
in the data set, this value is called the statistical median by some 
authors. If no such value exists in the data set, the usual method 
is to divide the data set into two halves of equal size such that all 
values in one half are lower than any value in the other half. The 
median is then the average of the highest value in the lower half 
and the lowest value in the upper half, and is called the finan-
cial median by some authors. The financial median is the most 
common term used for this median, so we will stick to it. Let 
us use Date’s famous Parts table, from several of his textbooks 
(Date, 1983, 1995a), which has a column for the weight of parts in 
it, like this:

First sort the table by weights and find the three rows in the 
lower half of the table. The greatest value in the lower half is 12; 
this is called the lower or left median value. The smallest value in 
the upper half is 14; this is called the upper or right median. Their 
average, and therefore the median, is 13. If the table had an odd 
number of rows, we would have looked at only one row after the 
sorting.

The median is a better measure of central tendency than the 
average, but it is also harder to calculate without sorting. This is 
a disadvantage of SQL as compared with procedural  languages. 
This might be the reason that the median is not a common 
 vendor extension in SQL implementations. However, the variance 
and standard deviation are quite common, probably because 
they are much easier to calculate since they require no sorting, 
but they are less useful to commercial users.

Parts
part_nbr part_name part_color part_wgt city_name

'p1' 'Nut' 'Red' '12' 'London' 
'p2' 'Bolt' 'Green' '17' 'Paris'
'p3' 'Cam' 'Blue' '12' 'Paris'
'p4' 'Screw' 'Red' '14' 'London'
'p5' 'Cam'  'Blue' '12' 'Paris'
'p6' 'Cog' 'Red' '19' 'London'
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31.3.1 The Median as a Programming Problem
In the early 1990s, there were two popular database magazines, 
DBMS and Database Programming & Design. I wrote a regular 
column in Database Programming & Design and then moved over 
to DBMS. Chris Date got my old slot and then both magazines 
were bought out by the same publisher and eventually merged 
into Intelligent Enterprise magazine. During that period, Chris 
Date and I did “dueling banjoes” with RDBMS and SQL topics. 
One of the topics that suddenly became hot was writing a query 
for the median, with the then-current SQL Standard.

Date proposed two different solutions for the median (Date, 
1992a; Celko and Date, 1993). His first solution was based on the 
fact that if you duplicate every row in a table, the median will stay 
the same. The duplication will guarantee that you always work 
with a table that has an even number of rows. The first  version 
that appeared in his column was wrong and drew some mail 
from me and from others who had different solutions. Here is a 
corrected version of his first solution:

CREATE VIEW Temp1
AS SELECT part_wgt FROM Parts
 UNION ALL
 SELECT part_wgt FROM Parts;

CREATE VIEW Temp2
AS SELECT part_wgt
 FROM Temp1
    WHERE (SELECT COUNT(*) FROM Parts)
  <= (SELECT COUNT(*)
   FROM Temp1 AS T1
     WHERE T1.part_wgt >= Temp1.part_wgt)
 AND (SELECT COUNT(*) FROM Parts)
  <= (SELECT COUNT(*)
   FROM Temp1 AS T2
   WHERE T2.part_wgt <= Temp1.part_wgt);

SELECT AVG(DISTINCT part_wgt) AS median
FROM Temp2;

Today, you would use CTEs and not VIEWs.
This involves the construction of a doubled table of values, 

which can be expensive in terms of both time and storage space. 
The use of AVG(DISTINCT x) is important because leaving it out 
would return the simple average instead of the median. Consider 
the set of weights (12, 17, 17, 14, 12, 19). The doubled table, 
Temp1, is then (12, 12, 12, 12, 14, 14, 17, 17, 17, 17, 19, 19). But 
because of the duplicated values, Temp2 becomes (14, 14, 17, 17, 
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17, 17), not just (14, 17). The simple average is (96 / 6.0) 5 16; it 
should be (31/2.0) 5 15.5 instead.

31.3.2 Celko’s First Median
A slight modification of Date’s solution will avoid the use of a 
doubled table, but it depends on a CEILING() function, which was 
common but not yet standard in the 1990s.

SELECT MIN(part_wgt) -- smallest value in upper half
FROM Parts
WHERE part_wgt
 IN (SELECT P1.part_wgt
     FROM Parts AS P1, Parts AS P2
     WHERE P2.part_wgt >= P1.part_wgt
     GROUP BY P1.part_wgt
      HAVING COUNT(*)
     <= (SELECT CEILING(COUNT(*) / 2.0)
        FROM Parts))
UNION
SELECT MAX(part_wgt) -- largest value in lower half
FROM Parts
WHERE part_wgt
  IN (SELECT P1.part_wgt
      FROM Parts AS P1, Parts AS P2
        WHERE P2.part_wgt <= P1.part_wgt
      HAVING COUNT(*)
       <= SELECT CEILING(COUNT(*) / 2.0)
          FROM Parts));

or using the same idea and a CASE expression:

SELECT AVG(DISTINCT CAST(part_wgt AS FLOAT)) AS median
 FROM (SELECT MAX(part_wgt)
    FROM Parts AS B1
      WHERE (SELECT COUNT(*) + 1
        FROM Parts
       WHERE part_wgt < B1.part_wgt)
       <= (SELECT CEILING (COUNT(*)/2.0)
           FROM Parts)
    UNION ALL
    SELECT MAX(part_wgt)
     FROM Parts AS B
     WHERE (SELECT COUNT(*) + 1
        FROM Parts
        WHERE part_wgt < B.part_wgt)
       <= CASE (SELECT MOD (COUNT(*), 2)
            FROM Parts)
        WHEN 0



560  Chapter 31 DESCRIPTIVE STATISTICS IN SQL

        THEN (SELECT CEILING (COUNT(*)/2.0) + 1
           FROM Parts)
        ELSE (SELECT CEILING (COUNT(*)/2.0)
           FROM Parts)
        END) AS Medians(part_wgt);

The CEILING() function is to be sure that if there is an odd 
number of rows in Parts, the two halves will overlap on that value. 
Again, truncation and rounding in division are implementation-
defined, so you will need to experiment with your product.

31.3.3 Date’s Second Median
Date’s second solution (Date, 1995b) was based on Celko’s median, 
folded into one query:

SELECT AVG(DISTINCT Parts.part_wgt) AS median
   FROM Parts
WHERE Parts.part_wgt
   IN (SELECT MIN(part_wgt)
       FROM Parts
         WHERE Parts.part_wgt
          IN (SELECT P2.part_wgt
             FROM Parts AS P1, Parts AS P2
             WHERE P2.part_wgt <= P1.part_wgt
             GROUP BY P2.part_wgt
           HAVING COUNT(*)
              <= (SELECT CEILING(COUNT(*) / 2.0)
                 FROM Parts))
     UNION
     SELECT MAX(part_wgt)
      FROM Parts
        WHERE Parts.part_wgt
         IN (SELECT P2.part_wgt
             FROM Parts AS P1, Parts AS P2
           WHERE P2.part_wgt >= P1.part_wgt
           GROUP BY P2.part_wgt
             HAVING COUNT(*)
             <= (SELECT CEILING(COUNT(*) / 2.0)
                 FROM Parts)));

Date mentions that this solution will return a NULL for an empty 
table and that it assumes there are no NULLs in the column. If there 
are NULLs, the WHERE clauses should be modified to remove them.

31.3.4 Murchison’s Median
Rory Murchison of the Ætna Institute had a solution that modi-
fies Date’s first method by concatenating the key to each value to 
make sure that every value is seen as a unique entity. Selecting 
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the middle values is then a special case of finding the n-th item in 
the table.

SELECT AVG(part_wgt)
   FROM Parts AS P1
WHERE EXISTS
   (SELECT COUNT(*)
     FROM Parts AS P2
       WHERE CAST(part_wgt AS CHAR(5)) || P2.part_nbr
         >= CAST(part_wgt AS CHAR(5)) || P1.part_nbr
    HAVING COUNT(*) = (SELECT FLOOR(COUNT(*) / 2.0)
             FROM Parts)
      OR COUNT(*) = (SELECT CEILING((COUNT(*) / 2.0)
             FROM Parts));

This method depends on being able to have a HAVING clause 
without a GROUP BY, which is part of the ANSI/ISO Standard but 
often missed by new programmers.

Another handy trick if you do not have FLOOR() and CEILING() 
functions is to use (COUNT(*) + 1) / 2.0 and COUNT(*) / 2.0 + 1 
to handle the odd-and-even-elements problem. Just to work it 
out, consider the case where the COUNT(*) returns 8 for an answer: 
(8 1 1) / 2.0 5 (9 / 2.0) 5 4.5 and (8 / 2.0) 1 1 5 4 1 1 5 5.

The 4.5 will round to 4 in DB2 and other SQL implementa-
tions. The case where the COUNT(*) returns 9 would work like this: 
(9 1 1) / 2.0 5 (10 / 2.0) 5 5 and (9 / 2.0) 1 1 5 4.5 1 1 5 5.5, 
which will likewise round to 5 in DB2.

31.3.5 Celko’s Second Median
This is another method for finding the median that uses a work-
ing table with the values and a tally of their occurrences from the 
original table. This working table should be quite a bit smaller 
than the original table, and very fast to construct if there is 
an index on the target column. The Parts table will serve as an 
example, thus:

-- construct Working table of occurrences by part_wgt
CREATE TABLE Working
(part_wgt REAL NOT NULL,
occurence_cnt INTEGER NOT NULL);

INSERT INTO Working (part_wgt, occurrence_cnt)
SELECT part_wgt, COUNT(*)
   FROM Parts
GROUP BY part_wgt;

Now that we have this table, we want to use it to construct a 
summary table that has the number of occurrences of each part’s 
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weight and the total number of data elements before and after we 
add them to the working table.

-- construct table of cumulative tallies
CREATE TABLE Summary
(part_wgt REAL NOT NULL,
occurence_cnt INTEGER NOT NULL, -- number of occurrences
pre_tally INTEGER NOT NULL, -- cumulative tally before
 post_tally INTEGER NOT NULL);

-- Cumulative tally after
INSERT INTO Summary
SELECT S2.part_wgt, S2.occurence_cnt, SUM(S1.occurence_cnt) 

- S2.occurence_cnt,
    SUM(S1.occurence_cnt)
FROM Working AS S1, Working AS S2
WHERE S1.part_wgt <= S2.part_wgt
GROUP BY S2.part_wgt, S2.occurence_cnt;

Let (n / 2.0) be the middle position in the table. There are two 
mutually exclusive situations. In the first case, the median lies in 
a position between the pre_tally and post_tally of one part_wgt 
value. In the second case, the median lies on the pre_tally of one 
row and the post_tally of another. The middle position can be 
calculated by the scalar subquery (SELECT MAX(post_tally) / 2.0 
FROM Summary).

SELECT AVG(S3.part_wgt) AS median
   FROM Summary AS S3
WHERE (S3.post_tally > (SELECT MAX(post_tally) / 2.0 FROM 

Summary)
    AND S3.pre_tally < (SELECT MAX(post_tally) / 2.0 FROM 

Summary))
    OR S3.pre_tally = (SELECT MAX(post_tally) / 2.0 FROM 

Summary)
    OR S3.post_tally = (SELECT MAX(post_tally) / 2.0 FROM 

Summary);

The first predicate, with the AND operator, handles the case 
where the median falls inside one part_wgt value; the other 
two predicates handle the case where the median is between 
two weights. A BETWEEN predicate will not work in this query.

These tables can be used to compute percentiles, deciles, and 
quartiles simply by changing the scalar subquery. For example, 
to find the highest tenth (first dectile), the subquery would be 
(SELECT 9 * MAX(post_tally) / 10 FROM Summary); to find the high-
est two-tenths, (SELECT 8 * MAX(post_tally) / 10 FROM Summary); 
and in general to find the highest n-tenths, (SELECT (10 - n) * 
MAX(post_tally) / 10 FROM Summary).



 Chapter 31 DESCRIPTIVE STATISTICS IN SQL  563

31.3.6 Vaughan’s Median with VIEWs
Philip Vaughan of San Jose, CA, proposed a simple median tech-
nique based on all of these methods. It derives a VIEW with unique 
weights and number of occurrences and then a VIEW of the 
 middle set of weights.

CREATE VIEW ValueSet(part_wgt, occurence_cnt)
AS SELECT part_wgt, COUNT(*)
  FROM Parts
 GROUP BY part_wgt;

The MiddleValues VIEW is used to get the median by taking 
an average. The clever part of this code is the way that it handles 
empty result sets in the outermost WHERE clause that result from 
having only one value for all weights in the table. Empty sets sum 
to NULL because there is no element to map the index

CREATE VIEW MiddleValues(part_wgt)
AS SELECT part_wgt
 FROM ValueSet AS VS1
   WHERE (SELECT SUM(VS2.occurence_cnt)/2.0 + 0.25
     FROM ValueSet AS VS2) >
    (SELECT SUM(VS2.occurence_cnt)
     FROM ValueSet AS VS2
     WHERE VS1.part_wgt <= VS2.part_wgt) - VS1.occurence_cnt
   AND (SELECT SUM(VS2.occurence_cnt)/2.0 + 0.25
    FROM ValueSet AS VS2) >
   (SELECT SUM(VS2.occurence_cnt)
    FROM ValueSet AS VS2
   WHERE VS1.part_wgt >= VS2.part_wgt) - VS1.occurence_cnt;

SELECT AVG(part_wgt) AS median FROM MiddleValues;

31.3.7 Median with Characteristic Function
Anatoly Abramovich, Yelena Alexandrova, and Eugene Birger pre-
sented a series of articles in SQL Forum magazine on computing 
the median (SQL Forum, 1993, 1994). They define a characteristic 
function, which they call delta, using the SIGN() function. The delta 
or characteristic function accepts a Boolean expression as an argu-
ment and returns one if it is TRUE and zero if it is FALSE or UNKNOWN. 
We can construct the delta function easily with a CASE expression.

The authors also distinguish between the statistical median, 
whose value must be a member of the set, and the financial 
median, whose value is the average of the middle two members 
of the set. A statistical median exists when there is an odd num-
ber of items in the set. If there is an even number of items, you 
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must decide if you want to use the highest value in the lower half 
(the left or lower median) or the lowest value in the upper half 
(the right or upper median).

The left statistical median of a unique column can be found 
with this query, if you will assume that we have a column called 
bin that represents the storage location of a part.

SELECT P1.bin
   FROM Parts AS P1, Parts AS P2
GROUP BY P1.bin
HAVING SUM(CASE WHEN (P2.bin <= P1.bin) THEN 1 ELSE 0 END)
  = (COUNT(*) / 2.0);

Changing the direction of the comparison in the HAVING clause 
will allow you to pick the right statistical median if a central ele-
ment does not exist in the set. You will also notice something else 
about the median of a set of unique values: It is usually meaning-
less. What does the median bin number mean, anyway? A good 
rule of thumb is that if it does not make sense as an average, it 
does not make sense as a median.

The statistical median of a column with duplicate values can 
be found with a query based on the same ideas, but you have to 
adjust the HAVING clause to allow for overlap; thus, the left statisti-
cal median is found by:

SELECT P1.part_wgt
   FROM Parts AS P1, Parts AS P2
GROUP BY P1.part_wgt
HAVING SUM(CASE WHEN P2.part_wgt <= P1.part_wgt
      THEN 1 ELSE 0 END)
    >= (COUNT(*) / 2.0)
 AND SUM(CASE WHEN P2.part_wgt >= P1.part_wgt
      THEN 1 ELSE 0 END)
    >= (COUNT(*) / 2.0);

If Parts contains an even number of entries with the 
(COUNT(*)/ 2) entry not repeated, this query may return FLOOR
(AVG(DISTINCT part_wgt)), as happens when SQL Server com-
putes an average of integers. This can be fixed by changing the 
inner SELECT to:

SELECT (P1.part_wgt * 1.0) AS part_wgt

Notice that here the left and right medians can be the same, 
so there is no need to pick one over the other in many of the situ-
ations where you have an even number of items. Switching the 
comparison operators in the two CASE expressions will give you 
the right statistical median.

I would recommend using a combination of the right and left 
statistical medians to return a set of values about the center of 
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the data, and then averaging them. Using a derived table, we can 
write the query as:

SELECT AVG(DISTINCT 1.0 * part_wgt)
FROM (SELECT P1.part_wgt
   FROM Parts AS P1, Parts AS P2
   GROUP BY P1.part_wgt
     HAVING SUM(CASE WHEN P2.part_wgt <= P1.part_wgt
            THEN 1 ELSE 0 END)
       >= (COUNT(*) / 2.0)
      AND SUM(CASE WHEN P2.part_wgt >= P1.part_wgt
          THEN 1 ELSE 0 END)
       >= (COUNT(*)/2.0));

and we can gain some additional control over the calculations.
This version will use one copy of the left and right median to 

compute the statistical median. However, by simply changing the 
AVG(DISTINCT part_wgt) to AVG(part_wgt), the median will favor 
the direction with the most occurrences. This might be easier to 
see with an example. Assume that we have weights (13, 13, 13, 14) 
in the Parts table. A pure statistical median would be (13 1 14) / 
2.0 5 13.5; however, weighting it would give (13 1 13 1 13 1 
14) / 4.0 5 13.25, a number that is more representative of central 
tendency.

Another version of the financial median, which uses the CASE 
expression in both of its forms, is:

SELECT CASE MOD(COUNT(*), 2)
  WHEN 0   -- even sized table
   THEN (P1.part_wgt + MIN(CASE WHEN P2.part_wgt > P1.part_wgt
                    THEN P2.part_wgt
                    ELSE NULL END)))/2.0
  ELSE P2.part_wgt -- odd sized table
  END AS median
 FROM Parts AS P1, Parts AS P2
GROUP BY P1.part_wgt
HAVING COUNT(CASE WHEN P1.part_wgt >= P2.part_wgt
       THEN 1 ELSE NULL END)
  = (COUNT(*) + 1) / 2;

This answer is due to the late Ken Henderson. The only 
instance in which this is correct is when Parts has an odd num-
ber of entries and the middle (COUNT(*) / 2 + 1) entry is not 
repeated in the data.

Another approach to avoid derived tables is:

SELECT CASE
  WHEN MOD (COUNT(*), 2) = 0
   AND SUM(CASE
      WHEN P2.part_wgt > P1.part_wgt
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      THEN 1 ELSE 0 END)
     = (COUNT(*) / 2)
  THEN (P1.part_wgt
      + MIN(CASE
         WHEN P2.part_wgt > P1.part_wgt
         THEN P2.part_wgt
         ELSE NULL END)
    ) / 2.0
  ELSE P1.part_wgt
  END AS median
   FROM Parts AS P1, Parts AS P2
GROUP BY P1.part_wgt
HAVING SUM(CASE
       WHEN P2.part_wgt <= P1.part_wgt
       THEN 1 ELSE 0 END)
  >= ((COUNT(*) + 1) / 2)
   AND SUM(CASE
       WHEN P2.part_wgt >= P1.part_wgt
       THEN 1 ELSE 0 END)
    >= (COUNT(*)/2 + 1);

This is due to Michael Sheehan, who also made some correc-
tions to other versions of the Median. He felt that this was not 
very pretty, but it explicitly captures the only scenario in which 
an average is actually necessary.

31.3.8 Celko’s Third Median
Another approach involves looking at a picture of a line of sorted 
values and seeing where the median would fall. Every value 
in column part_wgt of the table partitions the table into three 
 sections, the values that are less than part_wgt, equal to part_wgt, 
or greater than part_wgt. We can get a profile of each value with a 
tabular subquery expression.

Now the question is how to define a median in terms of the 
partitions. Clearly, the definition of a median means that if 
(lesser 5 greater) then part_wgt is the median.

If there are more greater values than half the size of the table, 
then part_wgt cannot be a median. Likewise, if there are more 
elements in the lesser values than half the size of the table, then 
part_wgt cannot be a median.

If (lesser 1 equal) 5 greater, then part_wgt is a left-hand 
median. Likewise, if (greater 1 equal) 5 lesser, then part_wgt is 
a right-hand median. However, if part_wgt is the median, then 
both lesser and greater have to have tallies less than half the size 
of the table. That translates into the following SQL.

SELECT AVG(DISTINCT part_wgt)
FROM (SELECT P1.part_nbr, P1.part_wgt,
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   SUM(CASE WHEN P2.part_wgt < P1.part_wgt
     THEN 1 ELSE 0 END),
   SUM(CASE WHEN P2.part_wgt = P1.part_wgt
     THEN 1 ELSE 0 END),
   SUM(CASE WHEN P2.part_wgt > P1.part_wgt
     THEN 1 ELSE 0 END)
  FROM Parts AS P1, Parts AS P2
  GROUP BY P1.part_nbr, P1.part_wgt)
      AS Partitions (part_nbr, part_wgt, lesser, equal, greater)
WHERE lesser = greater
 OR (lesser <= (SELECT COUNT(*) FROM Parts)/2.0
  AND greater <= (SELECT COUNT(*) FROM Parts)/2.0);

The reason for not expanding the VIEW in the FROM clause into 
a tabular subquery expression is that the table can be used for 
other partitions of the table, such as quintiles.

It is also worth noting that you can use either AVG(DISTINCT 
i) or AVG(i) in the SELECT clause. The AVG(DISTINCT i) will return 
the usual median when there are two values. This happens when 
you have an even number of rows and a partition in the middle, 
such as (1, 2, 2, 3, 3, 3), which has (2, 3) in the middle, which 
gives us 2.5 for the median. The AVG(i) will return the weighted 
median instead. This happens when you also factor in the num-
ber of times the two values are in the middle of a table with an 
even number of rows. The table with (1, 2, 2, 3, 3, 3) would return 
(2, 2, 3, 3, 3) in the middle, which gives us 2.6 for the weighted 
median. The weighted median is a more accurate description of 
the data.

I sent this first attempt to Richard Romley, who invented the 
method of first working with groups when designing a query. It 
made it quite a bit simpler, but let me take you through the steps 
so you can see the reasoning.

Look at the WHERE clause. It could use some algebra and since 
it deals only with aggregate functions and scalar subqueries, you 
could move it into a HAVING clause. Moving things from the WHERE 
clause into the HAVING clause in a grouped query is important for 
performance, but it is not always possible.

But first let’s do some algebra on the expression in the WHERE 
clause.

lesser <= (SELECT COUNT(*) FROM Parts)/2.0

Since we already have lesser, equal, and greater for every row 
in the derived table Partitions, and since the sum of lesser, equal, 
and greater must always be exactly equal to the total number of 
rows in the Parts table, we can replace the scalar subquery with 
this expression:

lesser <= (lesser + equal + greater)/2.0
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But this is the same as:

2.0 * lesser <= lesser + equal + greater

which becomes:

2.0 * lesser - lesser <= equal + greater

which becomes:

lesser <= equal + greater

So the query becomes:

SELECT AVG(DISTINCT part_wgt)
   FROM (SELECT P1.part_nbr, P1.part_wgt,
        SUM(CASE WHEN P2.part_wgt < P1.part_wgt
          THEN 1 ELSE 0 END),
        SUM(CASE WHEN P2.part_wgt = P1.part_wgt
          THEN 1 ELSE 0 END),
        SUM(CASE WHEN P2.part_wgt > P1.part_wgt
          THEN 1 ELSE 0 END)
      FROM Parts AS P1, Parts AS P2
     GROUP BY P1.part_nbr, P1.part_wgt)
      AS Partitions (part_nbr, part_wgt, lesser, equal, greater)
WHERE lesser = greater
 OR (lesser <= equal + greater
   AND greater <= equal + lesser);

Still looking at the WHERE clause, we can rewrite it with 
DeMorgan’s law.

WHERE lesser = greater
   OR (equal >= lesser - greater
   AND equal >= greater - lesser)

which is the same as:

WHERE lesser = greater
   OR equal >= ABS(lesser - greater)

But if the first condition was true (lesser 5 greater), the sec-
ond must necessarily also be true (i.e., equal >5 0), so the first 
clause is redundant and can be eliminated completely.

WHERE equal >= ABS(lesser - greater)

So much for algebra. Instead of a WHERE clause operating on 
the columns of the derived table, why not perform the same test 
as a HAVING clause on the inner query that derives Partitions? This 
eliminates all but one column from the derived table, it will run 
lots faster, and it simplifies the query down to this:

SELECT AVG(DISTINCT part_wgt)
   FROM (SELECT P1.part_wgt
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   FROM Parts AS P1, Parts AS P2
   GROUP BY P1.part_nbr, P1.part_wgt
     HAVING SUM(CASE WHEN P2.part_wgt = P1.part_wgt
           THEN 1 ELSE 0 END)
       >= ABS(SUM(CASE WHEN P2.part_wgt < P1.part_wgt
             THEN 1
             WHEN P2.part_wgt > P1.part_wgt
             THEN -1
             ELSE 0 END)))
  AS Partitions;

If you prefer to use functions instead of a CASE expression, 
then use this version of the query:

SELECT AVG(DISTINCT part_wgt)
   FROM (SELECT P1.part_wgt
    FROM Parts AS P1, Parts AS P2
    GROUP BY P1.part_nbr, P1.part_wgt
      HAVING SUM(ABS(1 - SIGN(P1.part_wgt - P2.part_wgt))
      >= ABS(SUM(SIGN (P1.part_wgt - P2.part_wgt)))
  AS Partitions;

31.3.9 Ken Henderson’s Median
In many SQL products, the fastest way to find the median is to 
use a cursor and just go to the middle of the sorted table. Ken 
Henderson published a version of this with a cursor that can be 
translated in SQL/PSM. Assume that table Foobar has a column 
named “x” for which we wish to find the median.

BEGIN
DECLARE idx INTEGER;
DECLARE median DECIMAL(20, 5);
DECLARE median2 DECIMAL(20, 5);

DECLARE Median_Cursor CURSOR FOR
SELECT x
 FROM Foobar
   ORDER BY x
FOR READ ONLY;

SET idx
   = CASE
  WHEN MOD((SELECT COUNT(*) FROM Foobar), 2) = 0
  THEN (SELECT COUNT(*) FROM Foobar)/2
  ELSE ((SELECT COUNT(*) FROM Foobar)/2) + 1 END;

OPEN Median_Cursor;
FETCH ABSOLUTE idx FROM Median_Cursor INTO median;
IF MOD(idx, 2) = 0
THEN FETCH Median_Cursor INTO median2;
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    SET median = (median + median2)/2;
END IF;
CLOSE Median_Cursor;
END;

If the distribution is symmetrical and has only a single peek, 
then the mode, median, and mean are the same value. If not, 
then the distribution is somehow skewed. If (mode < median 
< mean) then the distribution is skewed to the right. If (mode > 
median > mean) then the distribution is skewed to the left.

31.3.10 OLAP Medians
The new OLAP functions allow you to replace COUNT() functions 
with row numberings.

WITH SortedData (x, hi, lo)

AS SELECT AVG(x) AS median FROM (SELECT x, ROW_NUMBER() 
OVER(ORDER BY x, key_col ASC), ROW_NUMBER() OVER(ORDER 
BY x, key_col DESC) FROM RawData) WHERE hi IN (lo, lo+1, 
lo-1);

or a slight modification:

SELECT AVG(x)
   FROM (SELECT x,
      ROW_NUMBER() OVER(ORDER BY x, key_col DESC) AS a,
      ROW_NUMBER() OVER(ORDER BY x, key_col) AS b
    FROM Foo) AS d
WHERE (b - a) BETWEEN -1 AND 1;, key_col

This might be slower than you would like, since the CTE might 
do two sorts to get the “hi” and “lo” values. At the time of this 
writing, these are new to SQL products, so not as much work has 
gone into them. A smarter optimizer would map the i-th element 
of a sorted list of (n) items in ASC order to the (n-i11)-th element 
for DESC.

Another OLAP simple median by Peso uses a little more math.

SELECT AVG(x)
   FROM (SELECT x,
        2 * ROW_NUMBER() OVER(ORDER BY x)
         - COUNT(*) OVER() AS y
    FROM RawData)
WHERE y BETWEEN 0 AND 2;

This can be modified a bit to get the weighted median:

-- Weighted Median by Peso
SELECT SUM(y) / SUM(t)
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   FROM (SELECT SUM(x) OVER(PARTITION BY x) AS y,
      2 * ROW_NUMBER() OVER(ORDER BY x)
       - COUNT(*) OVER() AS z,
      COUNT(*) OVER(PARTITION BY x) AS t
    FROM RawData)
WHERE z BETWEEN 0 AND 2;

This is probably the best solution in this section, but I kept the 
older ones here to demonstrate the thought process when you 
have limited tools.

Adam Machanic pointed out a problem with my first attempt 
at using ROW_NUMBER() for the median. Let’s set up a scratch table 
with repeated values:

DECLARE Foo TABLE (x INTEGER NOT NULL);
INSERT INTO Foo
VALUES (1), (2), (2), (3), (3), (3);

The most common approach to calculate the median value I 
have seen is:

SELECT AVG(x)
   FROM (SELECT x,
        ROW_NUMBER() OVER(ORDER BY x DESC) AS a,
        ROW_NUMBER() OVER(ORDER BY x ASC) AS b
   FROM Foo) AS Med
WHERE (b - a) BETWEEN -1 AND 1;

Too bad this does not work. Let’s look at the rows in derived 
table Med:

As you can see, the difference calculated by (a – b) suddenly 
doesn’t match! The problem is that the two called to ROW_NUMBER() 

X a b (a – b)

1 6 1 5
2 4 2 2

2 5 3 2
3 1 4 –3
3 2 5 –3
3 3 6 –3
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The assumption comes from the idea that the ascending and 
descending ROW_NUMBER() values could be computed at the same 
time using the formula:

ROW_NUMBER() OVER(ORDER BY x ASC)
= (COUNT(*) - ROW_NUMBER() OVER(ORDER BY x DESC) + 1)

This is a nice optimizer trick, but it is not required. This is 
why we need to add a key to the ORDER BY list to assure that the 
ascending list is the physical reverse order of the descending list.

31.4 Variance and Standard Deviation
The standard deviation is a measure of how far away from the 
average the values in a normally distributed population are. It is 
hard to calculate in SQL, because it involves a square root and 
standard SQL has only the basic four arithmetic operators.

Many vendors will allow you to use other math functions, 
but in all fairness, most SQL databases are in commercial appli-
cations and have little or no need for engineering or statistical 
calculations. The usual trick is to load the raw data into an appro-
priate host language, such as FORTRAN, and do the work there.

The variance is defined as the standard deviation squared, so 
we can avoid taking a square root and keep the calculations in 
pure SQL. The queries look like this:

CREATE TABLE Samples (x REAL NOT NULL);
INSERT INTO Samples (x)
VALUES (64.0), (48.0), (55.0), (68.0), (72.0),
   (59.0), (57.0), (61.0), (63.0), (60.0),
   (60.0), (43.0), (67.0), (70.0), (65.0),
   (55.0), (56.0), (64.0), (61.0), (60.0);

X a b (a – b)

1 6 1 5
2 5 2 3

2 4 3 1 > candidate row x=2
3 3 4 –1 > candidate row x=3
3 2 5 –3
3 1 6 –3

are separate function calls. The duplicate rows can be in any 
order. There is an assumption that we would get:
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SELECT ((COUNT(*) * SUM(x * x)) - (SUM(x) * SUM(x)))
   /(COUNT(*) * (COUNT(*)-1)) AS variance
FROM Samples;

If you want to check this on your own SQL product, the cor-
rect answer is 48.9894 ... or just 49 depending how you handle 
rounding. If your SQL product has a standard deviation operator, 
use it instead.

31.5 Average Deviation
If you have a version of SQL with an absolute value function, 
ABS(), you can also compute the average deviation following this 
pattern, thus:

BEGIN
SELECT AVG(x) INTO :in_average FROM Samples;
SELECT SUM(ABS(x - :in_average)) / COUNT(x) AS AverDeviation
   FROM Samples;
END;

This is a measure of how much data values drift away from the 
average, without any consideration of the direction of the drift.

31.6 Cumulative Statistics
A cumulative or running statistic looks at each data value and 
how it is related to the whole data set. The most common exam-
ples involve changes in an aggregate value over time or on some 
other well-ordered dimension. A bank balance, which changes 
with each deposit or withdrawal, is a running total over time.

In earlier versions of SQL, you needed to use temporary tables 
and self-joins. They are complicated and ugly, so I will jump right 
to the modern syntax. The most natural example for most people 
is a bank statement with a running balance.

SELECT acct_nbr, trans_date,
   SUM(B1.trans_amt)
      OVER(PARTITION BY acct_nbr
          ORDER BY trans_date, trans_type,
      ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
  AS acct_balance
FROM BankAccounts;

If we showed the withdrawals before the deposits on that 
day, the balance could fall below zero, which might trigger some 
actions we do not want. The rule in banking is that deposits are 
credited before withdrawals on the same day. We could replace 
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the transaction date with a timestamp to show all deposits with 
a time before all withdrawals to fool the query. This is a really bad 
design decision. You are combining a transaction type into a tem-
poral value and you are destroying a true fact or creating a false 
one in the database. Use another column, such as:

trans_type CHAR(1) DEFAULT 'W' NOT NULL
    CHECK (trans_type IN ('D', 'W'))

But remember that not all situations have a clearly defined 
policy like this.

31.6.1 Running Differences
Another kind of statistic, related to running totals, is running dif-
ferences. In this case, we have the actual amount of something at 
various points in time and we want to compute the change since 
the last reading. Here is a quick scenario: We have a clipboard 
and a paper form on which we record the quantities of a chemi-
cal in a tank at different points in time from a gauge. We need to 
report the time, the gauge reading, and the difference between 
each reading and the preceding one. Here is some sample result 
data, showing the calculation we need:

tank_nbr reading_time tank_qty tank_diff

'50A' '2015-02-01 07:30' 300 NULL > starting data
'50A' '2015-02-01 07:35' 500 200

'50A' '2015-02-01 07:45' 1200 700
'50A' '2015-02-01 07:50' 800 –400
'50A' '2015-02-01 08:00' NULL NULL
'50A' '2015-02-01 09:00' 1300 500
'51A' '2015-02-01 07:20' 6000 NULL > starting data
'51A' '2015-02-01 07:22' 8000 2000
'51A' '2015-02-01 09:30' NULL NULL
'51A' '2015-02-01 00:45' 5000 –3000
'51A' '2015-02-01 01:00' 2500 –2500

The NULL values mean that we missed taking a reading. The 
trick is a correlated subquery expression that computes the dif-
ference between the quantity in the current row and the quantity 
in the row with the largest known time value that is less than the 
time in the current row on the same date and on the same tank.
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SELECT tank_nbr, reading_time,
   (tank_qty
    - (SELECT tank_qty
        FROM Deliveries AS D1
        WHERE D1.tank_nbr = D0.tank_nbr -- same tank
           AND D1.reading_time
            = (SELECT MAX (D2.reading_time) -- most recent
               FROM Deliveries AS D2
             WHERE D2.tank_nbr = D0.tank_nbr -- same tank
               AND D2.reading_time < D0.reading_time)))
          AS tank_diff
FROM Deliveries AS D0;

or with the window clause:

SELECT tank_nbr, reading_time, tank_qty,
   (tank_qty
    - MAX(tank_qty)
      OVER(PARTITION BY tank_nbr
          ORDER BY reading_time DESC
        ROWS 1 PRECEDING))
   AS tank_diff
FROM Deliveries;

31.6.2 Cumulative Percentages
Cumulative percentages are a bit more complex than running 
totals or differences. They show what percentage of the whole 
set of data values the current subset of data values is. Again, this 
is easier to show with an example than to say in words. You are 
given a table of the sales made by your sales force, which looks 
like this:

CREATE TABLE Sales
(salesman_id CHAR(10)NOT NULL,
client_name CHAR(10) NOT NULL,
sales_amt DECIMAL (9,2) NOT NULL,
PRIMARY KEY (salesman_id, client_name));

The problem is to show each salesman, his client, the 
amount of that sale, what percentage of his total sales volume 
that one sale represents, and the cumulative percentage of his 
total sales we have reached at that point. We will sort the clients 
from the largest amount to the smallest. This problem is based 
on a salesman’s report originally written for a small commercial 
printing company. The idea was to show the salesmen where 
their business was coming from and to persuade them to give 
up their smaller accounts (defined as the lower 20%) to new 
salesmen. The report let the salesman run his finger down the 
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page and see which customers represented the top 80% of his 
income.

We can use derived tables to build layers of aggregation in the 
same query.

SELECT S0.salesman_id, S0.client_name, S0.sales_amt,
   ((S0.sales_amt * 100)/ ST.salesman_id_total)
   AS percent_of_total,
   (SUM(S1.sales_amt)
    /((S0.sales_amt * 100)/ ST.salesman_id_total))
   AS cum_percent
FROM Sales AS S0
   INNER JOIN
   Sales AS S1
   ON (S0.salesman_id, S0.client_name)
    <= (S1.salesman_id, S1.client_name)
   INNER JOIN
   (SELECT S2.salesman_id, SUM(S1.sales_amt)
     FROM Sales AS S2
    GROUP BY S2.salesman_id)
   AS ST(salesman_id, salesman_id_total)
   ON S0.salesman_id = ST.salesman_id
GROUP BY S0.salesman_id, S0.client_name, S0.sales_amt;

However, if your SQL allows subqueries in the SELECT clause 
but not in the FROM clause, you can fake it with this query:

SELECT S0.salesman_id, S0.client_name, S0.sales_amt
 (S0.sales_amt * 100.00/ (SELECT SUM(S1.sales_amt)
         FROM Sales AS S1
         WHERE S0.salesman_id = S1.salesman_id))
 AS percentage_of_total,
 (SELECT SUM(S3.sales_amt)
   FROM Sales AS S3
   WHERE S0.salesman_id = S3.salesman_id
     AND (S3.sales_amt > S0.sales_amt
      OR (S3.sales_amt = S0.sales_amt
       AND S3.client_name >= S0.client_name))) * 100.00
 / (SELECT SUM(S2.sales_amt)
    FROM Sales AS S2
       WHERE S0.salesman_id = S2.salesman_id) AS cum_percent
FROM Sales AS S0;

These queries will probably run like glue. However, we have 
some new window functions in the SQL:2003 Standard. They 
are called the distribution functions and they compute a relative 
rank of a row R within its window partition as an approximate 
numeric ratio between zero and one. There are two variants, 
PERCENT_RANK and CUME_DIST.
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PERCENT_RANK is defined as (<rank of current row> –1)/
(<count of rows in the partition>– 1). It is defined as:

CASE
WHEN COUNT(*)
 OVER(<partition and order clauses>
   RANGE BETWEEN UNBOUNDED PRECEDING
       AND UNBOUNDED FOLLOWING) = 1
THEN CAST (0 AS <approximate numeric type>)
ELSE (CAST (RANK ()
     OVER(<partition and order clauses>)
   AS <approximate numeric type>) - 1)
  /(COUNT (*)
    OVER(<partition and order clauses>
      RANGE BETWEEN UNBOUNDED PRECEDING
          AND UNBOUNDED FOLLOWING) - 1)
END

The choice for <approximate numeric type> and its precision 
are implementation-defined.

CUME_DIST is defined as (<count of preceding rows> / <count 
of rows in the partition>). Again, it can be written:

(CAST (COUNT (*)
   OVER(<partition and order clauses>
     RANGE UNBOUNDED PRECEDING)
  AS <approximate numeric type>)
/ COUNT(*)
    OVER(<partition and order clauses>
       RANGE BETWEEN UNBOUNDED PRECEDING
        AND UNBOUNDED FOLLOWING))

The <approximate numeric type> and <partition and order 
clauses> are the same actual text in each case when you expand 
them.

31.6.3 Ordinal Functions
How do you rank your salesmen given a SalesReport table that 
looks like this?

CREATE TABLE SalesReport
(salesman_id CHAR(20) NOT NULL PRIMARY KEY
 REFERENCES Salesforce(salesman_id),
sales_tot DECIMAL (8,2) NOT NULL);

This statistic is called a ranking. A ranking is shown as inte-
gers that represent the ordinal values (first, second, third, and 
so on) of the elements of a set based on one of the values. In 
this case, sales personnel are ranked by their total sales within a 
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territory_nbr. The one with the highest total sales is in first place, 
the next highest is in second place, and so forth.

The hard question is how to handle ties. The rule is that if two 
salespersons have the same value, they have the same ranking 
and there are no gaps in the rankings. This is the nature of ordinal 
numbers—there cannot be a third place without a first and a sec-
ond place.

Today we have RANK() and DENSE_RANK() ordinal functions, but 
this was not always the case. A query that will do this for us is:

SELECT S1.salesman_id, S1.sales_tot,
   (SELECT COUNT(DISTINCT sales_tot)
     FROM SalesReport AS S2
       WHERE S2.sales_tot >= S1.sales_tot) AS rank
FROM SalesReport AS S1;

You might also remember that is really a version of the gen-
eralized extrema functions we already discussed. Another way to 
write this query is thus:

SELECT S1.salesman_id, MAX(S1.sales_tot),
   SUM (CASE
     WHEN (S1.sales_tot || S1.name)
      <= (S2.sales_tot || S2.name)
     THEN 1 ELSE 0 END) AS rank
 FROM SalesReport AS S2, SalesReport AS S2
WHERE S1.salesman_id <> S2.salesman_id
GROUP BY S1.salesman_id, S1.territory_nbr;

This query uses the MAX() function on the nongrouping col-
umns in the SalesReport to display them so that the aggregation 
will work. It is worth looking at the four possible variations on 
this basic query to see what each change does to the result set.

Version 1: COUNT(DISTINCT) and >= yields a ranking.

SELECT S1.salesman_id, S1.sales_tot,
 (SELECT COUNT(DISTINCT sales_tot)
    FROM SalesReport AS S2
     WHERE S2.sales_tot >= S1.sales_tot) AS rank
FROM SalesReport AS S1;

salesman_id sales_tot rank

'Wilson' 990.00 1
'Smith' 950.00 2

'Richards' 800.00 3



 Chapter 31 DESCRIPTIVE STATISTICS IN SQL  579

Version 2: COUNT(DISTINCT) and > yields a ranking, but it starts 
at zero.

SELECT S1.salesman_id, S1.sales_tot,
  (SELECT COUNT(DISTINCT sales_tot)
    FROM SalesReport AS S2
    WHERE S2.sales_tot > S1.sales_tot) AS rank
 FROM SalesReport AS S1;

salesman_id sales_tot rank

'Wilson' 990.00 0
'Smith' 950.00 1

'Richard' 800.00 2
'Quinn' 700.00 3
'Parker' 345.00 4
'Jones' 345.00 4
'Hubbard' 345.00 4
'Date' 200.00 5
'Codd' 200.00 5
'Blake' 100.00 6

salesman_id sales_tot rank

'Quinn' 700.00 4
'Parker' 345.00 5
'Jones' 345.00 5
'Hubbard' 345.00 5
'Date' 200.00 6
'Codd' 200.00 6
'Blake' 100.00 7

Version 3: COUNT(ALL) and >= yields a standing that starts at 
one.

SELECT S1.salesman_id, S1.sales_tot,
   (SELECT COUNT(sales_tot)
     FROM SalesReport AS S2
     WHERE S2.sales_tot >= S1.sales_tot) AS standing
 FROM SalesReport AS S1;
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Version 4: COUNT(ALL) and > yields a standing that starts at zero.

SELECT S1.salesman_id, S1.sales_tot,
   (SELECT COUNT(sales_tot)
     FROM SalesReport AS S2
     WHERE S2.sales_tot > S1.sales_tot) AS standing
 FROM SalesReport AS S1;

salesman_id sales_tot standing

'Wilson' 990.00 1
'Smith' 950.00 2

'Richard' 800.00 3
'Quinn' 700.00 4
'Parker' 345.00 7
'Jones' 345.00 7
'Hubbard' 345.00 7
'Date' 200.00 9
'Codd' 200.00 9
'Blake' 100.00 10

Another system used in some British schools and horse racing 
will also leave gaps in the numbers, but in a different direction. For 
example given this set of marks:

salesman_id sales_tot standing

'Wilson' 990.00 0
'Smith' 950.00 1

'Richard' 800.00 2
'Quinn' 700.00 3
'Parker' 345.00 4
'Jones' 345.00 4
'Hubbard' 345.00 4
'Date' 200.00 7
'Codd' 200.00 7
'Blake' 100.00 9
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Both students with 90 were second because only one person 
had a higher mark. The student with 70 was fourth because there 
were three people ahead of him. With our data that would be:

SELECT S1.salesman_id, S1.sales_tot,
   (SELECT COUNT(S2. sales_tot)
     FROM SalesReport AS S2
       WHERE S2.sales_tot > S1.sales_tot) + 1
     AS british
 FROM SalesReport AS S1;

salesman_id sales_tot british

'Wilson' 990.00 1
'Smith' 950.00 2
'Richard' 800.00 3
'Quinn' 700.00 4
'Parker' 345.00 5
'Jones' 345.00 5
'Hubbard' 345.00 5
'Date' 200.00 8
'Codd' 200.00 8
'Blake' 100.00 10

Marks class_standing

100 1
90 2
90 2
70 4

As an aside for the mathematicians among the readers, 
I always use the heuristics that it helps solve an SQL problem 
to think in terms of sets. What we are looking for in these rank-
ing queries is how to assign an ordinal number to a subset of 
the SalesReport table. This subset is the rows with an equal or 
higher sales volume than the salesman at whom we are looking. 
Or in other words, one copy of the SalesReport table provides the 
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 elements of the subsets and the other copy provides the boundary 
of the subsets. This count is really a sequence of nested subsets.

If you happen to have had a good set theory course, you 
would remember John von Neumann’s definition of the n-th 
ordinal number; it is the set of all ordinal numbers less than the 
n-th number.

31.6.4 Quintiles and Related Statistics
Once you have the ranking, it is fairly easy to classify the data set 
into percentiles, quintiles, or dectiles. These are courser versions 
of a ranking that use subsets of roughly equal size. A quintile is 
one fifth of the population, a dectile is one tenth of the popula-
tion, and a percentile is one one-hundredth of the population. 
I will present quintiles here, since whatever we do for them can 
be generalized to other partitionings. This statistic is popular 
with schools, so I will use the SAT scores for a mythical group of 
students for my example.

SELECT T1.student_id, T1.score, T1.rank,
  CASE WHEN T1.rank <= 0.2 * T2.population_size THEN 1
    WHEN T1.rank <= 0.4 * T2.population_size THEN 2
    WHEN T1.rank <= 0.6 * T2.population_size THEN 3
    WHEN T1.rank <= 0.8 * T2.population_size THEN 4
    ELSE 5 END AS quintile
FROM (SELECT S1.student_id, S1.score,
     (SELECT COUNT(*)
       FROM SAT_Scores AS S2
         WHERE S2.score >= S1.score)
    FROM SAT_Scores AS S1) AS T1(student_id, score, rank)
   CROSS JOIN
   SELECT COUNT(*) FROM SAT_Scores)
    AS T2(population_size);

The idea is straightforward; compute the rank for each 
element, then put it into a bucket whose size is determined by 
the population size. There are the same problems with ties that 
we had with rankings and what to do when the population is 
skewed.

You may or may not find vendor extensions for this, so be 
careful.

31.7 Cross Tabulations
A cross tabulation, or crosstabs for short, is a common statistical 
report. It can be done in IBM’s QMF tool, using the ACROSS sum-
mary option, and in many other SQL-based reporting packages. 
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SPSS, SAS, and other statistical packages have library procedures 
or language constructs for crosstabs. Many spreadsheets can load 
the results of SQL queries and perform a crosstabs within the 
spreadsheet.

If you can use a reporting package on the server in a client/
server system instead of the following method, do so. It will run 
faster and in less space than the method discussed here.

However, if you have to use the reporting package on the cli-
ent side, the extra time required to transfer data will make these 
methods on the server side much faster.

Having said all this, Standard SQL has CUBE and ROLLUP options 
in the GROUP BY, which does all this for you. The following pro-
gramming tricks are mostly of historical interest.

A one-way crosstabs “flattens out” a table to display it in a 
report format. Assume that we have a table of sales by product and 
the dates the sales were made. We want to print out a report of the 
sales of products by years for a full decade. The solution is to create 
a table and populate it to look like an identity matrix (all elements 
on the diagonal are 1, all others zero) with a rightmost column of 
all ones to give a row total, then JOIN the Sales table to it.

CREATE TABLE Sales
(product_name CHAR(15) NOT NULL,
product_price DECIMAL(5,2) NOT NULL,
order_qty INTEGER NOT NULL,
sales_year INTEGER NOT NULL);

CREATE TABLE Crosstabs
(sales_year INTEGER NOT NULL,
year1 INTEGER NOT NULL,
year2 INTEGER NOT NULL,
year3 INTEGER NOT NULL,
year4 INTEGER NOT NULL,
year5 INTEGER NOT NULL,
row_total INTEGER NOT NULL);

The table would be populated as follows:

sales_year year1 year2 year3 year4 year5 row_total

1990 1 0 0 0 0 1
1991 0 1 0 0 0 1
1992 0 0 1 0 0 1
1993 0 0 0 1 0 1
1994 0 0 0 0 1 1
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The query to produce the report table is:

SELECT S1.product_name,
  SUM(S1.order_qty * S1.product_price * C1.year1),
  SUM(S1.order_qty * S1.product_price * C1.year2),
  SUM(S1.order_qty * S1.product_price * C1.year3),
  SUM(S1.order_qty * S1.product_price * C1.year4),
  SUM(S1.order_qty * S1.product_price * C1.year5),
  SUM(S1.order_qty * S1.product_price * C1.row_total)
   FROM Sales AS S1, Crosstabs AS C1
WHERE S1.year = C1.year
GROUP BY S1.product_name;

Obviously, SUM(S1.product_price * S1.order_qty) is the total 
dollar amount of each product in each year. The yearN column 
will be either a one or a zero. If it is a zero, the total dollar amount 
in the SUM() is zero; if it is a one, the total dollar amount in the 
SUM() is unchanged.

This solution lets you adjust the time frame being shown in 
the report by replacing the values in the year column to whatever 
consecutive years you wish. A two-way crosstabs takes two vari-
ables and produces a spreadsheet with all values of one variable 
on the rows and all values of the other represented by the col-
umns. Each cell in the table holds the COUNT of entities that have 
those values for the two variables. NULLs will not fit into a cross-
tabs very well, unless you decide to make them a group of their 
own or to remove them.

There are also totals for each column and each row and a 
grand total. Crosstabs of (n) variables are defined by build-
ing an n-dimensional spreadsheet. But you cannot easily print 
(n) dimensions on two-dimensional paper. The usual trick is to 
 display the results as a two-dimensional grid with one or both 
axes as a tree structure. The way the values are nested on the axis 
is usually under program control; thus, “race within sex” shows 
sex broken down by race, whereas “sex within race” shows race 
broken down by sex.

Assume that we have a table, Personnel (emp_nbr, sex, race, 
job_nbr, salary_amt_amt), keyed on employee number, with no 
NULLs in any columns. We wish to write a crosstabs of employees 
by sex and race, which would look like this:

asian black cauc hisp Other totals

Male 3 2 12 5 5 27
Female 1 10 20 2 9 42
TOTAL 4 12 32 7 14 69
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The first thought is to use a GROUP BY and write a simple query, 
thus:

SELECT sex, race, COUNT(*)
  FROM Personnel
GROUP BY sex, race;

This approach works fine for two variables and would pro-
duce a table that could be sent to a report writer program to give 
a final version. But where are your column and row totals? This 
means you also need to write these two queries:

SELECT race, COUNT(*) FROM Personnel GROUP BY race;
SELECT sex, COUNT(*) FROM Personnel GROUP BY sex;

However, what I wanted was a table with a row for males and 
a row for females, with columns for each of the racial groups, just 
as I drew it.

But let us assume that we want to get this information broken 
down within a third variable, say job code. I want to see the job_
nbr and the total by sex and race within each job code. Our query 
set starts to get bigger and bigger. A crosstabs can also include 
other summary data, such as total or average salary_amt within 
each cell of the table.

31.7.1 Crosstabs by Cross Join
A solution proposed by John M. Baird of Datapoint, in San 
Antonio, Texas, involves creating a matrix table for each variable 
in the crosstabs, thus:

SexMatrix

Sex Male Female

'M' 1 0
'F' 0 1

RaceMatrix

Race asian black cauc hisp other
Asian 1 0 0 0 0

Black 0 1 0 0 0

(Continued)
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The query then constructs the cells by using a CROSS JOIN 
(Cartesian product) and summation for each one, thus:

SELECT job_nbr,
   SUM(asian * male) AS AsianMale,
   SUM(asian * female) AS AsianFemale,
   SUM(black * male) AS BlackMale,
   SUM(black * female) AS BlackFemale,
   SUM(cauc * male) AS CaucMale,
   SUM(cauc * female) AS CaucFemale,
   SUM(hisp * male) AS HispMale,
   SUM(hisp * female) AS HispFemale,
   SUM(other * male) AS OtherMale,
   SUM(other * female) AS OtherFemale
 FROM Personnel, SexMatrix, RaceMatrix
   WHERE RaceMatrix.race = Personnel.race
    AND SexMatrix.sex = Personnel.sex
   GROUP BY job_nbr;

Numeric summary data can be obtained from this table. For 
example, the total salary_amt for each cell can be computed by 
SUM(<race> * <sex> * salary_amt) AS <cell name> in place of 
what we have here.

31.7.2 Crosstabs by OUTER JOINs
Another method, due to Jim Panttaja, uses a series of temporary 
tables or VIEWs and then combines them with OUTER JOINs.

CREATE VIEW Guys (race, maletally)
AS SELECT race, COUNT(*)
  FROM Personnel
  WHERE sex = 'M'
  GROUP BY race;

Correspondingly, you could have written:

CREATE VIEW Dolls (race, femaletally)
AS
SELECT race, COUNT(*)
 FROM Personnel

Race asian black cauc hisp other

Cauc 0 0 1 0 0
Hisp 0 0 0 1 0

Other 0 0 0 0 1
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 WHERE sex = 'F'
 GROUP BY race;

But they can be combined for a crosstabs, without column 
and row totals, like this:

SELECT Guys.race, maletally, femaletally
 FROM Guys
   LEFT OUTER JOIN
   Dolls
   ON Guys.race = Dolls.race;

The idea is to build a starting column in the crosstabs, then 
progressively add columns to it. You use the LEFT OUTER JOIN to 
avoid missing-data problems.

31.7.3 Crosstabs by Subquery
Another method takes advantage of the orthogonality of corre-
lated subqueries in SQL-92. Think about what each row or col-
umn in the crosstabs wants.

SELECT DISTINCT race,
   (SELECT COUNT(*)
     FROM Personnel AS P1
       WHERE P0.race = P1.race
        AND sex = 'M') AS MaleTally,
   (SELECT COUNT(*)
     FROM Personnel AS P2
       WHERE P0.race = P2.race
         AND sex = 'F') AS FemaleTally
   FROM Personnel AS P0;

An advantage of this approach is that you can attach another 
 column to get the row tally by adding:

(SELECT COUNT(*)
    FROM Personnel AS P3
   WHERE P0.race = P3.race) AS RaceTally

Likewise, to get the column tallies, union the previous query with:

SELECT 'Summary',
   (SELECT COUNT(*)
     FROM Personnel
       WHERE sex = 'M') AS GrandMaleTally,
   (SELECT COUNT(*)
     FROM Personnel
       WHERE sex = 'F') AS GrandFemaleTally,
   (SELECT COUNT(*)
     FROM Personnel) AS GrandTally
 FROM Personnel;



588  Chapter 31 DESCRIPTIVE STATISTICS IN SQL

31.7.4 Crosstabs by CASE Expression
Probably the best method is to use the CASE expression. If 
you need to get the final row of the traditional crosstabs, you 
can add:

SELECT sex,
  SUM(CASE race WHEN 'cauc' THEN 1 ELSE 0 END) AS cauc,
  SUM(CASE race WHEN 'black' THEN 1 ELSE 0 END) AS black,
  SUM(CASE race WHEN 'asian' THEN 1 ELSE 0 END) AS asian,
  SUM(CASE race WHEN 'hisp' THEN 1 ELSE 0 END) AS latino,
  SUM(CASE race WHEN 'other' THEN 1 ELSE 0 END) AS other,
  COUNT(*) AS row_total
   FROM Personnel
GROUP BY sex
UNION ALL
SELECT ' ',
  SUM(CASE race WHEN 'cauc' THEN 1 ELSE 0 END),
  SUM(CASE race WHEN 'black' THEN 1 ELSE 0 END),
  SUM(CASE race WHEN 'asian' THEN 1 ELSE 0 END),
  SUM(CASE race WHEN 'hisp' THEN 1 ELSE 0 END),
  SUM(CASE race WHEN 'other' THEN 1 ELSE 0 END),
  COUNT(*) AS column_total
   FROM Personnel;

31.8 Harmonic Mean and Geometric Mean
The Harmonic mean is defined as the reciprocal of the arithme-
tic mean of the reciprocals of the values of a set. It is appropri-
ate when dealing with rates and prices. Of limited use, it is found 
mostly in averaging rates.

SELECT COUNT(*)/SUM(1.0/x) AS harmonic_mean
   FROM Foobar;

The geometric mean is the exponential of the mean of the logs  
of the data items. You can also express it as the n-th root of the 
 product of the (n) data items. This second form is more subject to 
rounding errors than the first. The geometric mean is sometimes a 
better measure of central tendency than the simple arithmetic mean 
when you are analyzing change-over-time.

SELECT EXP (AVG (LOG (nbr))) AS geometric_mean
 FROM NumberTable;

If you have negative numbers this will blow up because 
the logarithm is not defined for values less than or equal to 
zero.
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31.9  Multivariable Descriptive Statistics 
in SQL

More and more SQL products are adding more complicated 
descriptive statistics to their aggregate function library. For 
example, Ingres comes with a very nice set of such tools.

Many of the single-column aggregate functions for which 
we just gave code are built-in functions. If you have that advan-
tage, then use them. They will have corrections for floating point 
rounding errors and be more accurate.

Descriptive statistics are not all single-column computations. 
You often want to know relationships among several variables 
for prediction and description. Let’s pick one of these statistics, 
which is representative of this class of functions, and see what 
problems we have writing our own aggregate function for it.

31.9.1 Covariance
The covariance is defined as a measure of the extent to which two 
variables move together. Financial analysts use it to determine 
the degree to which return on two securities is related over time. 
A high covariance indicates similar movements. This code is due 
to Steve Kass:

CREATE TABLE Samples
(sample_nbr INTEGER NOT NULL PRIMARY KEY,
x FLOAT NOT NULL,
y FLOAT NOT NULL);

INSERT INTO Samples
VALUES (1, 3, 9), (2, 2, 7), (3, 4, 12), (4, 5, 15),  

(5, 6, 17);

SELECT sample_nbr, x, y,
   ((1.0/n) * SUM((x – xbar) * (y - ybar))) AS covariance
 FROM Samples
   CROSS JOIN
   (SELECT COUNT(*), AVG(x), AVG(y) FROM Samples)
   AS A (n, xbar, ybar)
GROUP BY n;

31.9.2 Pearson’s r
One of the most useful statistics is Pearson’s r, or the linear cor-
relation coefficient. It measures the strength of the linear associa-
tion between two variables. In English, given a set of observations 
(x1, y1), (x2, y2), ..., (xn, yn), I want to know, when one variable 
goes up or down, how well does the other variable follow it?
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The correlation coefficient always takes a value between 
11 and –1. Positive one means that they match to each exactly. 
Negative one means that increasing values in one variable cor-
respond to decreasing values in the other variable. A correlation 
value close to zero indicates no association between the vari-
ables. In the real world, you will not see positive or negative ones 
very often—this would mean that you are looking at a natural law 
and not a statistical relationship. The values in-between are much 
more realistic, with 0.70 or greater being a strong correlation.

The formula translates into SQL in a straightforward manner.

CREATE TABLE Samples
(sample_name CHAR(3) NOT NULL PRIMARY KEY,
x REAL, y REAL);
INSERT INTO Samples
VALUES ('a', 1.0, 2.0), ('b', 2.0, 5.0), ('c', 3.0, 6.0);

-- r= 0.9608

SELECT (SUM(x - AVG(x)) * (y - AVG(y)))
   / SQRT(SUM((x - AVG(x))^2) * SUM((y - AVG(y))^2))
   AS pearson_r
FROM Samples;

where SQRT() is the square root function, which is quite common 
in SQL today and ^2 is the square of the number. Some products 
use POWER(x, n) instead of the exponent notation, or you can use 
repeated multiplication.

31.9.3 NULLs in Multivariable Descriptive Statistics
If (x, y) 5 (NULL, NULL) then the query will drop the pair in the 
aggregate functions, as per the usual rules of SQL. But what is 
the correct (or reasonable) behavior if (x, y) has one and only one 
NULL in the pair? We can make several arguments.
1. Drop the pairs that contain any NULLs. That is quick and easy 

with a WHERE x IS NOT NULL AND y IS NOT NULL clause added to 
the query. The argument is that if you do not know one or both 
values, how can you know what their relationship is?

2. Convert (x, NULL) to (x, AVG(y)) and (NULL, y) to (AVG(x), y). 
The idea is to “smooth out” the missing values with a reason-
able replacement that is based on the whole set from which 
known values were drawn. There might be better replacement 
values in a particular situation, but that idea would still hold.

3. I can argue for replacing (NULL, NULL) with (a, a) for some 
value to say that the NULLs are in the same grouping. This kind 
of “pseudo-equality” is the basis for putting NULLs into one 
group in a GROUP BY operation. I am not sure what the correct 
practice for the (x, NULL) and (y, NULL) pairs are.
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4. First calculate a linear regression with the known pairs, say y = 
(a + b * x), and then fill in the expected values. If you forgot 
your high school algebra, that would be y[i] = a + b * x[i] for 
the pair (x[i], NULL), and x[i] = (y - a) / b.

5. In Standard SQL, you get an SQLSTATE warning code to show 
that an aggregate function has dropped NULLs before doing the 
computations. I could catch that message and use it to report 
to the user about the missing data.
I can also use COUNT(*) and COUNT(x + y) to determine how 

much data is missing. I think we would all agree that if I have a 
small subset of non-NULL pairs, then my correlation is less reliable 
than if I obtained it from a large subset of non-NULL pairs.

There is no right answer to this question. You will need to 
know the nature of your data to make a good decision.

31.10 Statistical Functions in SQL:2006
Although these exist in the SQL:2006 Standards, they are not 
widely implemented. Someone decided to implement most of 
the statistical functions from a freshman statistics course and got 
it approved. They have an “SQL twist” to them so they can handle 
NULLs and search conditions.

I am not going to try to teach a freshman “statistics in a 
SQL:2006” course; if you don’t know these terms, get a book.

31.10.1  Variance, Standard Deviation, and 
Descriptive Stats

Frankly, I do not like these extensions and I hope they do not 
catch on. From a philosophical viewpoint, these are things 
that reduce data to information and SQL is a data integrity and 
retrieval language and is not supposed to do this. From a practi-
cal viewpoint, SQL is a data integrity and retrieval language that 
does not do math with the precision and accuracy that a statisti-
cal language does.

Given a table with an independent variable expression, X, and 
a dependent variable expression, Y, we have predefined calcula-
tions based on the usual definitions.

Let N be the cardinality of a target table, let SUMX be the sum of 
the column of values of <independent variable expression>, let 
SUMY be the sum of the column of values of <dependent variable 
expression>, let SUMX2 be the sum of the squares of values in the 
<independent variable expression> column, let SUMY2 be the sum 
of the squares of values in the <dependent variable expression> 
column, and let SUMXY be the sum of the row-wise products of the 
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value in the <independent variable expression> column times the 
value in the <dependent variable expression> column.
 STDDEV_POP = Population Standard Deviation. This is equivalent 

to SQRT(VAR_POP(X)).
 STDDEV_SAMP 5 Sample Standard Deviation.
 VAR_POP 5 Population Variance. This equivalent to 

SQRT(VAR_SAMP(X)).
 VAR_SAMP 5 Sample Variance.
 COVAR_POP 5 Covariance of the population.
 COVAR_SAMP 5 Covariance of the sample. If N is one, then the 

result is the NULL value, otherwise, the result is (SUMXY-SUMX * 
SUMY/N)/(N-1).

31.10.2 Correlation
 CORR 5 Pearson’s r correlation. If N * SUMX2 = SUMX * SUMX, then 

the result is the NULL value. If N * SUMY2 = SUMY * SUMY, then 
the result is the NULL value. Otherwise, the result is SQRT(POWER(N 
* SUMXY-SUMX * SUMY,2) / ((N * SUMX2-SUMX * SUMX) * (N * 
SUMY2-SUMY * SUMY))).

 REGR_SLOPE =
 REGR_INTERCEPT =
 REGR_COUNT = the result is N. If N is zero, then the result is the 

NULL value.
REGR_R2 5 If N * SUMX2 = SUMX * SUMX, then the result is the 

NULL value. If N * SUMY2 equals SUMY * SUMY, then the result is one. 
Otherwise, the result is POWER(N * SUMXY-SUMX * SUMY,2) / ((N * 
SUMX2-SUMX * SUMX) * (N * SUMY2-SUMY * SUMY)). If the exponent 
of the approximate mathematical result of the operation is not 
within the implementation-defined exponent range for the result 
data type, then the result is the NULL value.

Here is a list of shorthands.

 REGR_AVGX = SUMX/N
 REGR_AVGY = SUMY/N
 REGR_SXX = (SUMX2-SUMX * SUMX/N)
 REGR_SYY = (SUMY2-SUMY * SUMY/N)
 REGR_SXY = (SUMXY-SUMX * SUMY/N)

31.10.3 Distribution Functions
These are extensions to the usual ordinal functions, like ROW_
NUMBER(), RANK(), and DENSE_RANK(). The distribution functions 
compute a relative rank of a row R within the window partition 
of R defined by a window, expressed as an approximate numeric 
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ratio between 0.0 and 1.0. There are two variants, indicated by the 
keywords PERCENT_RANK and CUME_DIST.

If PERCENT_RANK() is specified, then the relative rank of a row R 
is defined as (RK–1)/(NR–1), where RK is defined to be the RANK of R 
and NR is defined to be the number of rows in the window parti-
tion of R.

If CUME_DIST() is specified, then the relative rank of a row R is 
defined as NP/NR, where NP is defined to be the number of rows 
preceding or peer with R in the window ordering of the window 
partition of R, and NR is defined to be the number of rows in the 
window partition of R.
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32
SUBSEQUENCES, REGIONS, 
RUNS, GAPS, AND ISLANDS

We have already talked about the GROUP BY clause in queries. The 
groups in a GROUP BY do not depend on any orderings. But you will 
often want to make other groupings that depend on an ordering 
of some kind. Examples of this sort of data would be ticket num-
bers, time series data taken at fixed intervals, and the like, which 
can have missing data or subsequences that are of interest. These 
things are easier to explain with examples. Consider a skeleton 
table with a sequential key and seven rows.

CREATE TABLE List
(list_seq INTEGER NOT NULL PRIMARY KEY,
list_val INTEGER NOT NULL UNIQUE);

INSERT INTO List
VALUES (1, 99), (2, 10), (3, 11), (4, 12), (5, 13), 

(6, 14), (7, 0);

A subsequence in the list_val column can be increasing, 
decreasing, monotonic, or not. Let’s look at rows where the val-
ues are increasing uniformly by steps of one. You can find sub-
sequences of size three that follow the rule—(10, 11, 12), (11, 12, 
13), and (12, 13, 14)—but the longest subsequence is (10, 11, 12, 
13, 14), and it is of size five.

A run is like a sequence, but the numbers do not have to be 
consecutive, just increasing (or decreasing) and in sequence. For 
example, given the run {(1, 1), (2, 2), (3, 12), (4, 15), (5, 23)}, you 
can find subruns of size three: (1, 2, 12), (2, 12, 15), and (12, 15, 23).

A region is contiguous and all the values are the same. For 
example, {(1, 1), (2, 0), (3, 0), (4, 0), (5, 25)} has a region of zeros 
that is three items long.

In procedural languages, you would simply sort the data and scan 
it. In SQL, you used to have to define everything in terms of sets and 
fancy joins to get an ordering if it was not in the data. Today, we have 
ROW_NUMBER()  to get us a sequence number for ordering the data.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00032-6
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00032-6
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32.1 Finding Subregions of Size (n)
This example is adapted from SQL and Its Applications (Lorie and 
Daudenarde, 1991). You are given a table of theater seats, defined by:

CREATE TABLE Theater
(seat_nbr INTEGER NOT NULL PRIMARY KEY,-- sequencing 

number
occupancy_status CHAR(1) DEFAULT 'A' NOT NULL-- values
    CONSTRAINT valid_occupancy_status
    CHECK (occupancy_status IN ('A', 'S'));

where an occupancy_status code of ‘A’ means available and ‘S’ 
means sold. Your problem is to write a query that will return the 
subregions of (n) consecutive seats still available. Assume that 
consecutive seat numbers means that the seats are also consec-
utive for a moment, ignoring rows of seating where seat_nbr(n) 
and seat_nbr((n) 1 1) might be on different physical theater 
rows. For (n) 5 3, we can write a self-JOIN query, thus:

SELECT T1.seat_nbr, T2.seat_nbr, T3.seat_nbr
 FROM Theater AT T1, Theater AT T2, Theater AT T3
WHERE T1.occupancy_status = 'A'
  AND T2.occupancy_status = 'A'
  AND T3.occupancy_status = 'A'
  AND T2.seat_nbr = T1.seat_nbr + 1
  AND T3.seat_nbr = T2.seat_nbr + 1;

The trouble with this answer is that it works only for (n 5 3) 
and nothing else. This pattern can be extended for any (n), but 
what we really want is a generalized query where we can use (n) 
as a parameter to the query.

The solution given by Lorie and Daudenarde starts with a given 
seat_nbr and looks at all the available seats between it and ((n) 2 1) 
seats further up. The real trick is switching from the English-language 
statement, “All seats between here and there are available,” to the 
passive-voice version, “Available is the occupancy_status of all the 
seats between here and there,” so that you can see the query.

SELECT seat_nbr, ' thru ', (seat_nbr + (:n - 1))
 FROM Theater AS T1
WHERE occupancy_status = 'A'
  AND 'A' = ALL (SELECT occupancy_status
            FROM Theater AS T2
          WHERE T2.seat_nbr > T1.seat_nbr
             AND T2.seat_nbr <= T1.seat_nbr + (:n - 1));

Please notice that this returns subregions. That is, if seats  
(1, 2, 3, 4, 5) are available, this query will return (1, 2, 3), (2, 3, 4), 
and (3, 4, 5) as its result set.
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32.2 Numbering Regions
Instead of looking for a region, we want to number the regions 
in the order in which they appear. For example, given a view or 
table with a payment history we want to break it into group-
ings of behavior, say whether or not the payments were on time 
or late.

CREATE TABLE PaymentHistory
(payment_nbr INTEGER NOT NULL PRIMARY KEY,
paid_on_time_flg CHAR(1) DEFAULT 'Y' NOT NULL
   CHECK(paid_on_time_flg IN ('Y', 'N')));

INSERT INTO PaymentHistory
VALUES (1006, 'Y'), (1005, 'Y'),
(1004, 'N'),
(1003, 'Y'), (1002, 'Y'), (1001, 'Y'),
(1000, 'N');

In the results, we want to assign a grouping number to each 
run of on-time/late payments, thus.

Results

grping payment_nbr paid_on_time_flg

1 1006 'Y'
1 1005 'Y'
2 1004 'N'
3 1003 'Y'
3 1002 'Y'
3 1001 'Y'
4 1000 'N'

A solution by Hugo Kornelis depends on the payments always 
being numbered consecutively.

SELECT (SELECT COUNT(*)
     FROM PaymentHistory AS H2,
       PaymentHistory AS H3
    WHERE H3.payment_nbr = H2.payment_nbr + 1
     AND H3.paid_on_time_flg <> H2.paid_on_time_flg
     AND H2.payment_nbr >= H1.payment_nbr) + 1 AS grping,
  payment_nbr, paid_on_time_flg
FROM PaymentHistory AS H1;
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This can be modified for more types of behavior.
Here is another version using the ordinal functions. Let’s 

assume we have a test that returns ‘A’ or ‘B’ and we want to see 
clusters where the score stayed the same:

CREATE TABLE Tests
(sample_time TIMESTAMP NOT NULL PRIMARY KEY,
sample_score CHAR(1) NOT NULL);

INSERT INTO Tests
VALUES ('2014-01-01 12:00:00', 'A'),
   ('2014-01-01 12:01:00', 'A'),
   ('2014-01-01 12:02:00', 'A'),
   ('2014-01-01 12:03:00', 'B'),
   ('2014-01-01 12:04:00', 'B'),
   ('2014-01-01 12:05:00', 'A'),
   ('2014-01-01 12:06:00', 'A'),
   ('2014-01-01 12:07:00', 'A'),
   ('2014-01-01 12:08:00', 'A'),
   ('2014-01-01 12:09:00', 'B'),
   ('2014-01-01 12:10:00', 'B'),
   ('2014-01-01 12:11:00', 'A'),
   ('2014-01-01 12:12:00', 'A'),
   ('2014-01-01 12:13:00', 'C'),
   ('2014-01-01 12:14:00', 'D'),
   ('2014-01-01 12:15:00', 'A');

SELECT MIN(X.sample_time) AS cluster_start,
   MAX(X.sample_time) AS cluster_end,
   MIN(X.sample_score) AS cluster_score
FROM (SELECT sample_time, sample_score,
      (ROW_NUMBER () OVER (ORDER BY sample_time)
            • ROW_NUMBER() OVER (PARTITION BY sample_score

         ORDER BY sample_time))
FROM Tests) AS X(sample_time, sample_score, cluster_nbr)
GROUP BY cluster_nbr;

These groupings are called clusters or islands, or “OLAP sort-
ing” in the literature.

32.3 Finding Regions of Maximum Size
A query to find a region, rather than a subregion of a known size, 
of seats was presented in SQL Forum (Rozenshtein, Abramovich, 
and Birger, 1993).

SELECT T1.seat_nbr AS start_seat_nbr, T2.seat_nbr 
AS end_seat_nbr

 FROM Theater AS T1, Theater AS T2
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WHERE T1.seat_nbr < T2.seat_nbr
  AND NOT EXISTS
      (SELECT *
        FROM Theater AS T3
         WHERE (T3.seat_nbr BETWEEN T1.seat_nbr AND  

    T2.seat_nbr
        AND T3.occupancy_status <> 'A')
         OR (T3.seat_nbr = T2.seat_nbr + 1
           AND T3.occupancy_status = 'A')
         OR (T3.seat_nbr = T1.seat_nbr - 1
           AND T3.occupancy_status = 'A'));

The trick here is to look for the starting and ending seats in the 
region. The starting seat_nbr of a region is to the right of a sold 
seat_nbr and the ending seat_nbr is to the left of a sold seat_nbr. 
No seat_nbr between the start and the end has been sold.

If you only keep the available seat_nbrs in a table, the solution 
is a bit easier. It is also a more general problem that applies to any 
table of sequential, possibly noncontiguous, data:

CREATE TABLE AvailableSeating
(seat_nbr INTEGER NOT NULL
    CONSTRAINT valid_seat_nbr
    CHECK (seat_nbr BETWEEN 001 AND 999));

INSERT INTO Seatings
VALUES (199), (200), (201), (202), (204),
   (210), (211), (212), (214), (218);

where you need to create a result that will show the start and 
 finish values of each sequence in the table, thus:

Results

start_seat_nbr end_seat_nbr

199 202
204 204
210 212
214 214
218 218

This is a common way of finding the missing values in a 
sequence of tickets sold, unaccounted for invoices, and so forth. 
Imagine a number line with closed dots for the numbers that are 
in the table and open dots for the numbers that are not. What do 
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you see about a sequence? Well, we can start with a fact that any-
one who has done inventory knows. The number of elements in 
a sequence is equal to the ending sequence number minus the 
starting sequence number plus one. This is a basic property of 
ordinal numbers:
 (finish 2 start 1 1) 5 count of open seats

This tells us that we need to have a self-JOIN with two copies of 
the table, one for the starting value and one for the ending value 
of each sequence. Once we have those two items, we can com-
pute the length with our formula and see if it is equal to the count 
of the items between the start and finish.

SELECT S1.seat_nbr, MAX(S2.seat_nbr)-- start and rightmost 
item

   FROM AvailableSeating AS S1
     INNER JOIN
     AvailableSeating AS S2-- self-join
     ON S1.seat_nbr <= S2.seat_nbr
      AND (S2.seat_nbr - S1.seat_nbr + 1)-- formula for length
       = (SELECT COUNT(*)-- items in the sequence
          FROM AvailableSeating AS S3
        WHERE S3.seat_nbr BETWEEN S1.seat_nbr
                  AND S2.seat_nbr)
        AND NOT EXISTS (SELECT *
                FROM AvailableSeating AS S4
                  WHERE S1.seat_nbr - 1
                   = S4.seat_nbr)
GROUP BY S1.seat_nbr;

Finally, we need to be sure that we have the furthest item to the 
right as the end item. Each sequence of (n) items has (n) subse-
quences that all start with the same item. So we finally do a GROUP 
BY on the starting item and use a MAX() to get the rightmost value.

However, there is a faster version with three tables. This solution 
is based on another property of the longest possible sequences. 
If you look to the right of the last item, you do not find anything. 
Likewise, if you look to the left of the first item, you do not find 
anything either. These missing items that are “just over the border” 
define a sequence by framing it. There also cannot be any “gaps”—
missing items—inside those borders. That translates into SQL as:

SELECT S1.seat_nbr, MIN(S2.seat_nbr)-- start and leftmost 
border

 FROM AvailableSeating AS S1, AvailableSeating AS S2
WHERE S1.seat_nbr <= S2.seat_nbr
  AND NOT EXISTS-- border items of the sequence

       (SELECT *
      FROM AvailableSeating AS S3
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WHERE S3.seat_nbr NOT BETWEEN S1.seat_nbr AND 
S2.seat_nbr

AND (S3.seat_nbr = S1.seat_nbr - 1
OR S3.seat_nbr = S2.seat_nbr + 1))

GROUP BY S1.seat_nbr;

We do not have to worry about getting the rightmost item in the 
sequence, but we do have to worry about getting the leftmost bor-
der. Once we do a GROUP BY, but use a MIN() to get what we want.

Since the second approach uses only three copies of the orig-
inal table, it should be a bit faster. Also, the EXISTS() predicates 
can often take advantage of indexing and thus run faster than 
subquery expressions, which require a table scan.

The new ordinal functions allow you to answer these queries 
without explicit self-joins or a sequencing column. Since self-
joins are expensive, it is better to use ordinal functions that might 
be optimized. Consider a single column of integers:

CREATE TABLE Foobar (data_val INTEGER NOT NULL PRIMARY KEY);
INSERT INTO Foobar
VALUES (1), (2), (5), (6), (7), (8), (9), (11), (12), (22);

Here is a query to get the final results:

WITH X (data_val, data_seq, absent_data_grp)
AS
(SELECT data_val,
   ROW_NUMBER() OVER (ORDER BY data_val ASC) ,
   (data_val
   - ROW_NUMBER() OVER (ORDER BY data_val ASC))
  FROM Foobar)

SELECT absent_data_val, COUNT(*), MIN(data_val) AS 
start_data_val

 FROM X
GROUP BY absent_data_val;

The CTE produces this result. The absent_data_grp tells you 
how many values are missing from the data values, just not what 
they are.

 data_val data_seq absent_data_grp

1 1 0
2 2 0
5 3 2
6 4 2

(Continued)
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The final query gives us:

 data_val data_seq absent_data_grp

7 5 2
8 6 2
9 7 2
11 8 3
12 9 3
22 10 12

so, the maximum contiguous sequence is five rows. Since it starts 
at 5, we know that the contiguous set is {5, 6, 7, 8, 9}.

32.4 Bound Queries
Another form of query asks if there was an overall trend between 
two points in time bounded by a low value and a high value in 
the sequence of data. This is easier to show with an example. 
Let us assume that we have data on the selling prices of a stock 
in a table. We want to find periods of time when the price was 
 generally increasing.

Consider this data:

 absent_data_grp COUNT(*) start_data_val  

0 2 1
2 5 5
3 2 11
12 1 22

MyStock
sale_date stock_price

'2011-12-01' 10.00
'2011-12-02' 15.00
'2011-12-03' 13.00
'2011-12-04' 12.00
'2011-12-05' 20.00
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The stock was generally increasing in all the periods that 
began on December 1 or ended on December 5—that is, it fin-
ished higher at the ends of those periods, in spite of the slump in 
the middle. A query for this problem is:

SELECT S1.sale_date AS start_date, S2.sale_date AS 
finish_date

 FROM MyStock AS S1, MyStock AS S2
WHERE S1.sale_date < S2.sale_date
 AND NOT EXISTS
   (SELECT *
     FROM MyStock AS S3

WHERE S3.sale_date BETWEEN S1.sale_date AND 
S2.sale_date

      AND S3.stock_price
        NOT BETWEEN S1.stock_price AND S2.stock_price);

32.5 Run and Sequence Queries
Runs are informally defined as sequences with gaps. That is, we 
have a set of unique numbers whose order has some meaning, 
but the numbers are not all consecutive. Time series information 
where the samples are taken at irregular intervals is an example 
of this sort of data. Runs can be constructed in the same manner 
as the sequences by making a minor change in the search condi-
tion. Let’s do these queries with an abstract table made up of a 
sequence number and a value:

CREATE TABLE Runs
(list_seq INTEGER NOT NULL PRIMARY KEY,
list_val INTEGER NOT NULL);

Runs

 list_seq list_val  

1 6
2 41
3 12
4 51
5 21
6 70
7 79 (Continued)
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One of the problems is that we do not want to get back all the 
runs and sequences of length one. Ideally, the length (n) of the 
run should be adjustable. This query will find runs of length (n) 
or greater; if you want runs of exactly (n), change the “greater 
than” to an equal sign.

SELECT R1.list_seq AS start_list_seq,
   R2.list_seq AS end_list_seq_nbr
 FROM Runs AS R1, Runs AS R2
   WHERE R1.list_seq < R2.list_seq-- start and end points
AND (R2.list_seq - R1.list_seq) > (:n - 1)-- length 

restrictions
AND NOT EXISTS-- ordering within the end points

   (SELECT *
      FROM Runs AS R3, Runs AS R4
       WHERE R4.list_seq BETWEEN R1.list_seq AND R2.list_seq
        AND R3.list_seq BETWEEN R1.list_seq AND R2.list_seq
        AND R3.list_seq < R4.list_seq
        AND R3.list_val > R4.list_val);

What this query does is set up the S1 sequence number as the 
starting point and the S2 sequence number as the ending point 
of the run. The monster subquery in the NOT EXISTS() predicate 

 list_seq list_val  

8 62
9 30
10 31
11 32
12 34
13 35
14 57
15 19
16 84
17 80
18 90
19 63
20 53
21 3
22 59
23 69
24 27
25 33
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is looking for a row in the middle of the run that violates the 
 ordering of the run. If there is none, the run is valid. The best way 
to understand what is happening is to draw a linear diagram. 
This shows that as the ordering, list_seq, increases, so must the 
corresponding values, list_val.

A sequence has the additional restriction that every value 
increases by 1 as you scan the run from left to right. This means 
that in a sequence, the highest value minus the lowest value, plus 
one, is the length of the sequence.

SELECT R1.list_seq AS start_list_seq, R2.list_seq AS 
end_list_seq_nbr

 FROM Runs AS R1, Runs AS R2
WHERE R1.list_seq < R2.list_seq

AND (R2.list_seq - R1.list_seq) = (R2.list_val - 
R1.list_val)-- order condition

AND (R2.list_seq - R1.list_seq) > (:n - 1)-- length 
restrictions

AND NOT EXISTS
    (SELECT *
      FROM Runs AS R3
        WHERE R3.list_seq BETWEEN R1.list_seq AND R2.list_seq
         AND((R3.list_seq - R1.list_seq)
           <> (R3.list_val - R1.list_val)
        OR (R2.list_seq - R3.list_seq)
            <> (R2.list_val - R3.list_val)));

The subquery in the NOT EXISTS predicate says that there is no 
point in between the start and the end of the sequence that vio-
lates the ordering condition.

Obviously, any of these queries can be changed from increas-
ing to decreasing, from strictly increasing to simply increasing or 
simply decreasing, and so on, by changing the comparison predi-
cates. You can also change the query for finding sequences in a 
table by altering the size of the step from 1 to k, by observing that 
the difference between the starting position and the ending posi-
tion should be k times the difference between the starting value 
and the ending value.

32.5.1 Filling in Missing Numbers
A fair number of SQL programmers want to reuse a sequence 
of numbers for keys. Although I do not approve of the practice 
of generating a meaningless, unverifiable key after the creation of 
an entity, the problem of inserting missing numbers is interesting. 
The usual specifications are:
1. The sequence starts with 1, if it is missing or the table is empty.
2. We want to reuse the lowest missing number first.
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3. Do not exceed some maximum value; if the sequence is full, 
then give us a warning or a NULL. Another option is to give us 
(MAX(list_seq) +1) so we can add to the high end of the list.
This answer is a good example of thinking in terms of sets 

rather than doing row-at-a-time processing.

SELECT MIN(new_list_seq)
 FROM (SELECT CASE
     WHEN list_seq + 1 NOT IN (SELECT list_seq FROM List)
     THEN list_seq + 1
     WHEN list_seq - 1 NOT IN (SELECT list_seq FROM List)
     THEN list_seq - 1
     WHEN 1 NOT IN (SELECT list_seq FROM List)
     THEN 1 ELSE NULL END
   FROM List
   WHERE list_seq BETWEEN 1
         AND (SELECT MAX(list_seq) FROM List)
  AS P(new_list_seq);

The idea is to build a table expression of some of the miss-
ing values, then pick the minimum one. The starting value, 1, is 
treated as an exception. Since an aggregate function cannot take 
a query expression as a parameter, we have to use a derived table.

Along the same lines, we can use aggregate functions in a CASE 
expression:

SELECT CASE WHEN MAX(list_seq) = COUNT(*)
     THEN CAST(NULL AS INTEGER)
    -- THEN MAX(list_seq) + 1 as other option
     WHEN MIN(list_seq) > 1
     THEN 1
     WHEN MAX(list_seq) <> COUNT(*)
     THEN (SELECT MIN(list_seq)+1
        FROM List
        WHERE (list_seq)+1
          NOT IN (SELECT list_seq FROM List))
    ELSE NULL END
 FROM List;

The first WHEN clause sees if the table is already full and returns 
a NULL; the NULL has to be cast as an INTEGER to become an expres-
sion that can then be used in the THEN clause. However, you might 
want to increment the list by the next value.

The second WHEN clause looks to see if the minimum sequence 
number is 1 or not. If so, it uses 1 as the next value.

The third WHEN clause handles the situation when there is a 
gap in the middle of the sequence. It picks the lowest missing 
number. The ELSE clause is in case of errors and should not be 
executed.
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The order of execution in the CASE expression is important. 
It is a way of forcing an inspection from front to back of the 
table’s values. Simpler methods based on group characteristics 
would be:

SELECT COALESCE(MIN(L1.list_seq) + 1, 1)
 FROM List AS L1
  LEFT OUTER JOIN
  List AS L2
  ON L1.list_seq = L2.list_seq - 1
WHERE L2.list_seq IS NULL;

or:

SELECT MIN(list_seq + 1)
 FROM (SELECT list_seq FROM List
  UNION ALL
  SELECT list_seq
    FROM (VALUES (0)))
  AS X(list_seq)
WHERE (list_seq +1)
  NOT IN (SELECT list_seq FROM List);

Finding entire gaps follows from this pattern and we get this 
short piece of code.

SELECT (s + 1) AS gap_start,
   (e - 1) AS gap_end
 FROM (SELECT L1.list_seq, MIN(L2.list_seq)
   FROM List AS L1, List AS L2
   WHERE L1.list_seq < L2.list_seq
   GROUP BY L1.list_seq)
  AS G(s, e)
WHERE (e - 1) > s;

or without the derived table:

SELECT (L1.list_seq + 1) AS gap_start,
   (MIN(L2.list_seq) - 1) AS gap_end
 FROM List AS L1, List AS L2
WHERE L1.list_seq < L2.list_seq
GROUP BY L1.list_seq
HAVING (MIN(L2.list_seq) - L1.list_seq) > 1;

32.6 Summation of a Series
Before we had the ordinal functions, building a running total 
of the values in a table was a difficult task. Let’s build a sim-
ple table with a sequencing column and the values we wish to 
total.
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CREATE TABLE Series
(list_seq INTEGER NOT NULL PRIMARY KEY,
list_val INTEGER NOT NULL);

SELECT list_seq, list_val,
   SUM (list_val)
    OVER (ORDER BY list_seq
      ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
   AS running_tot
 FROM Series;

A sample result would look like this:

This is the form we can use for most problems of this type 
with only one level of summation. It is easy to write an UPDATE 
statement to store the running total in the table, if it does not 
have to be recomputed each query. But things can be worse. 
This problem came from Francisco Moreno and on the surface it 
sounds easy. First, create the usual table and populate it:

CREATE TABLE Series
(list_seq INTEGER NOT NULL,
list_val REAL NOT NULL,
running_avg REAL);

INSERT INTO Series
VALUES (0, 6.0, NULL),
  (1, 6.0, NULL),
  (2, 10.0, NULL),
  (3, 12.0, NULL),
  (4, 14.0, NULL);

list_seq list_val running_tot

1 6 6
2 41 47
3 12 59
4 51 110
5 21 131
6 70 201
7 79 280
8 62 342
...
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The goal is to compute the average of the first two terms, then 
add the third list_val to the result and average the two of them, 
and so forth. This is not the same thing as:

SELECT list_seq, list_val,
   AVG(list_val)
   OVER (ORDER BY list_seq
     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
   AS running_avg
FROM Series;

In this data, we want this answer:

list_seq list_val running_avg

0 6.0 NULL
1 6.0 6.0
2 10.0 8.0
3 12.0 10.0
4 14.0 12.0

 list_seq list_val running_avg  

1 12.0 NULL
2 10.0 NULL
3 12.0 NULL
4 14.0 NULL

The obvious approach is to do the calculations directly.

UPDATE Series
 SET running_tot = (Series.list_val
         + (SELECT S1.running_tot
            FROM Series AS S1
            WHERE S1.list_seq = Series.list_seq - 1))/2.0
WHERE running_tot IS NULL;

But there is a problem with this approach. It will only calcu-
late one list_val at a time. The reason is that this series is much 
more complex than a simple running total.
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What we have is actually a double summation, in which the 
terms are defined by a continued fraction. Let’s work out the first 
four answers by brute force and see if we can find a pattern.

answer1 = (12)/2 = 6
answer2 = ((12)/2 + 10)/2 = 8
answer3 = (((12)/2 + 10)/2 + 12)/2 = 10
answer4 = (((((12)/2 + 10)/2 + 12)/2) + 14)/2 = 12

The real trick is to do some algebra and get rid of the nested 
parentheses.

answer1 = (12)/2 = 6
answer2 = (12/4) + (10/2) = 8
answer3 = (12/8) + (10/4) + (12/2) = 10
answer4 = (12/16) + (10/8) + (12/4) + (14/2) = 12

When we see powers of 2, we know we can do some algebra:

answer1 = (12)/2^1 = 6
answer2 = (12/(2^2)) + (10/(2^1)) = 8
answer3 = (12/(2^3)) + (10/(2^2)) + (12/(2^1)) = 10
answer4 = (12/2^4) + (10/(2^3)) + (12/(2^2)) +  

(14/(2^1)) = 12

The problem is that you need to “count backward” from 
the current list_val to compute higher powers for the previous 
terms of the summation. That is simply (current_list_val – 
previous_list_val + 1). Putting it all together, we get this 
expression.

UPDATE Series
 SET running_avg
   = (SELECT SUM(list_val
        * POWER(2,
           CASE WHEN S1.list_seq > 0
             THEN Series.list_seq - S1.list_seq + 1
             ELSE NULL END))
      FROM Series AS S1
      WHERE S1.list_seq < = Series.list_seq);

The POWER(base, exponent) function is part of SQL:2003, but 
check your product for implementation-defined precision and 
rounding.

32.7 Swapping and Sliding Values in a List
You will often want to manipulate a list of values, changing their 
sequence position numbers. The simplest such operation is to 
swap two values in your table.
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CREATE PROCEDURE SwapValues
(IN low_list_seq INTEGER, IN high_list_seq INTEGER)
LANGUAGE SQL
BEGIN-- put them in order
SET least_list_seq
 = CASE WHEN low_list_seq <= high_list_seq
     THEN low_list_seq ELSE high_list_seq;
SET greatest_list_seq
 = CASE WHEN low_list_seq <= high_list_seq
     THEN high_list_seq ELSE low_list_seq;
UPDATE Runs-- swap
 SET list_seq = least_list_seq + ABS(list_seq 

- greatest_list_seq)
WHERE list_seq IN (least_list_seq, greatest_list_seq);
END;

The CASE expressions could be folded into the UPDATE state-
ment, but it makes the code harder to read.

Inserting a new value into the table is easy:

CREATE PROCEDURE InsertValue (IN new_value INTEGER)
LANGUAGE SQL
INSERT INTO Runs (list_seq, list_val)
VALUES ((SELECT MAX(list_seq) FROM Runs) + 1, new_value);

A bit trickier procedure is moving one value to a new position 
and sliding the remaining values either up or down. This mimics 
the way a physical queue would act. Here is a solution from Dave 
Portas.

CREATE PROCEDURE SlideValues
(IN old_list_seq INTEGER, IN new_list_seq INTEGER)
LANGUAGE SQL
UPDATE Runs
 SET list_seq
   = CASE
    WHEN list_seq = old_list_seq THEN new_list_seq

WHEN list_seq BETWEEN old_list_seq AND new_list_seq 
THEN list_seq - 1

WHEN list_seq BETWEEN new_list_seq AND old_list_seq 
THEN list_seq + 1

    ELSE list_seq END
WHERE list_seq BETWEEN old_list_seq AND new_list_seq
 OR list_seq BETWEEN new_list_seq AND old_list_seq;

This handles moving a value to a higher or lower position in 
the table. You can see how calls or slight changes to these proce-
dures could do other related operations.

One of the most useful tricks is to have calendar table that 
has a Julianized date column. Instead of trying to manipulate 



612  Chapter 32 SUBSEQUENCES, REGIONS, RUNS, GAPS, AND ISLANDS

 temporal data, convert the dates to a sequence of integers and 
treat the queries as regions, runs, gaps, and so forth.

The sequence can be made up of calendar days or Julianized 
business days, which do not include holidays and weekend. There 
are a lot of possible methods.

32.8 Condensing a List of Numbers
The goal is to take a list of numbers and condense them into 
contiguous ranges. Show the high and low values for each range; 
if the range has one number, then the high and low values will be 
the same. This answer is due to Steve Kass.

SELECT MIN(i) AS low, MAX(i) AS high
FROM (SELECT N1.i, COUNT(N2.i) - N1.i
   FROM Numbers AS N1, Numbers AS N2
   WHERE N2.i <= N1.i
   GROUP BY N1.i)
  AS N(i, gp)
GROUP BY gp;

32.9 Folding a List of Numbers
It is possible to use the Series table to give columns in the same 
row, which are related to each other, values with a little math 
instead of self-joins.

For example, given the numbers 1 to (n), you might want to 
spread them out across (k) columns. Let (k 5 3) so we can see the 
pattern.

SELECT list_seq,
   CASE WHEN MOD((list_seq + 1), 3) = 2
       AND list_seq + 1 <= :n
     THEN (list_seq + 1)
     ELSE NULL END AS second,
   CASE WHEN MOD((list_seq + 2), 3) = 0
       AND (list_seq + 2) <= :n
     THEN (list_seq + 2)
     ELSE NULL END AS third
  FROM Series
WHERE MOD((list_seq + 3), 3) = 1
   AND list_seq <= :n;

Columns that have no value assigned to them will get a NULL. 
That is, for (n 5 8) the incomplete row will be (7, 8, NULL) and 
for (n 5 7) it would be (7, NULL, NULL). We never get a row with 
(NULL, NULL, NULL).
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The use of math can be fancier. In a golf tournament, the 
 players with the lowest and highest scores are matched together 
for the next round. Then the players with the second lowest and 
second highest scores are matched together, and so forth. If there 
are an odd number of players, the player with the middle score 
sits out that round. These pairs can be built with a simple query.

SELECT list_seq AS low_score,
   CASE WHEN list_seq <= (:n - list_seq)
     THEN (:n - list_seq) + 1
     ELSE NULL END AS high_score
FROM Series AS S1
WHERE S1.list_seq
   <= CASE WHEN MOD(:n, 2) = 1
      THEN FLOOR(:n/2) + 1
      ELSE (:n/2) END;

If you play around with the basic math functions, you can do 
quite a bit.

32.10 Coverings
Vadim Tropashko proposed the problem of writing the shortest 
SQL query that would return a minimal cover of a set of intervals. 
For example, given this table, how do you find the contiguous 
numbers that are completely covered by the given intervals?

CREATE TABLE Intervals
(x INTEGER NOT NULL,
y INTEGER NOT NULL,
CHECK (x <= y),
PRIMARY KEY (x, y));

INSERT INTO Intervals
VALUES (1, 3),(2, 5),(4, 11),
  (10, 12), (20, 21),
  (120, 130), (120, 128), (120, 122),
  (121, 132), (121, 122), (121, 124), (121, 123),
  (126, 127);

The query should return:

Results
 min_x MAX(y)  

1 12
20 21
120 132
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Dieter Nöth found an answer with OLAP functions:

SELECT min_x, MAX(y)
 FROM (SELECT x, y,
      MAX(CASE WHEN x <= MAX_Y THEN NULL ELSE x END)
      OVER (ORDER BY x, y
        ROWS UNBOUNDED PRECEDING) AS min_x
    FROM (SELECT x, y,
          MAX(y)
          OVER(ORDER BY x, y
          ROWS BETWEEN UNBOUNDED PRECEDING
          AND 1 PRECEDING) AS max_y
        FROM Intervals)
       AS DT)
   AS DT
GROUP BY min_x;

Here is a query that uses a self-join and three levels of corre-
lated subquery that uses the same approach.

SELECT I1.x, MAX(I2.y) AS y
 FROM Intervals AS I1
  INNER JOIN
  Intervals AS I2
  ON I2.y > I1.x
WHERE NOT EXISTS
  (SELECT *
    FROM Intervals AS I3
    WHERE I1.x - 1 BETWEEN I3.x AND I3.y)
      AND NOT EXISTS
       (SELECT *
           FROM Intervals AS I4
          WHERE I4.y > I1.x
           AND I4.y < I2.y
           AND NOT EXISTS
            (SELECT *
              FROM Intervals AS I5
              WHERE I4.y + 1 BETWEEN I5.x AND I5.y))
GROUP BY I1.x;

And this is essentially the same format, but converted to use 
left anti-semi-joins instead of subqueries. I do not think it is 
shorter, but it might execute better on some platforms and some 
people prefer this format to subqueries.

SELECT I1.x, MAX(I2.y) AS y
 FROM Intervals AS I1
  INNER JOIN
  Intervals AS I2
  ON I2.y > I1.x
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   LEFT OUTER JOIN
   Intervals AS I3
   ON I1.x - 1 BETWEEN I3.x AND I3.y
    LEFT OUTER JOIN
    (Intervals AS I4
    LEFT OUTER JOIN
    Intervals AS I5
    ON I4.y + 1 BETWEEN I5.x AND I5.y)
      ON I4.y > I1.x
       AND I4.y < I2.y
       AND I5.x IS NULL
WHERE I3.x IS NULL
  AND I4.x IS NULL
GROUP BY I1.x;

If the table is large, the correlated subqueries (version 1) or the 
quintuple self-join (version 2) will probably make it slow. But we 
were asked for a short query, not for a quick one.

Tony Andrews came with this answer.

SELECT Starts.x, Ends.y
 FROM (SELECT x, ROW_NUMBER() OVER(ORDER BY x) AS rn
   FROM (SELECT x, y,
        LAG(y) OVER(ORDER BY x) AS prev_y
      FROM Intervals)
   WHERE prev_y IS NULL
    OR prev_y < x) AS Starts,
 (SELECT y, ROW_NUMBER() OVER(ORDER BY y) AS rn
   FROM (SELECT x, y,
        LEAD(x) OVER(ORDER BY y) AS next_x
      FROM Intervals)
      WHERE next_x IS NULL
       OR y < next_x) AS Ends
WHERE Starts.rn = Ends.rn;

John Gilson decided that using recursion is an interesting take 
on this and made this offering:

WITH RECURSIVE Cover (x, y, n)
AS (SELECT x, y, (SELECT COUNT(*) FROM Intervals)
  FROM Intervals
  UNION ALL
  SELECT CASE WHEN I3.x <= I.x THEN I3.x ELSE I.x END,
     CASE WHEN I3.y >= I.y THEN I3.y ELSE I.y END,
     I3.n - 1
   FROM Intervals AS I, Cover AS C
   WHERE I.x <= I3.y
      AND I.y >= I3.x
      AND (I.x <> I3.x OR I.y <> I3.y)
      AND I3.n > 1);
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SELECT DISTINCT C1.x, C1.y
FROM Cover AS C1
WHERE NOT EXISTS
  (SELECT *
    FROM Cover AS C2
    WHERE C2.x <= C1.x
       AND C2.y >= C1.y
       AND (C1.x <> C2.x OR C1.y <> C2.y))
ORDER BY C1.x;

Finally, try this approach. Assume we have the usual Series 
auxiliary table. Now we find all the holes in the range of the inter-
vals and put them in a VIEW or a WITH clause derived table.

CREATE VIEW Holes (hole)
AS
SELECT list_seq
 FROM Series
WHERE list_seq <= (SELECT MAX(y) FROM Intervals)
    AND NOT EXISTS
   (SELECT *
     FROM Intervals
     WHERE list_seq BETWEEN x AND y)
    UNION (SELECT list_seq FROM (VALUES (0))
      AS L(list_seq)
    UNION SELECT MAX(y) + 1 FROM Intervals
      AS R(list_seq)-- right sentinel value
    );

The query picks start and end pairs that are on the edge of a 
hole and counts the number of holes inside that range. Covering 
has no holes inside its range.

SELECT Starts.x, Ends.y
 FROM Intervals AS Starts,
  Intervals AS Ends,
  Series AS S-- usual auxiliary table
WHERE S.list_seq BETWEEN Starts.x AND Ends.y-- restrict 

list_seq numbers
     AND S.list_seq < (SELECT MAX(hole) FROM Holes)
AND S.list_seq NOT IN (SELECT hole FROM Holes)-- not a 

hole
AND Starts.x - 1 IN (SELECT hole FROM Holes)-- on a left 

cusp
AND Ends.y + 1 IN (SELECT hole FROM Holes)-- on a right 

cusp
GROUP BY Starts.x, Ends.y
HAVING COUNT(DISTINCT list_seq) = Ends.y - Starts.x + 1; 

-- no holes
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33
MATRICES IN SQL

Arrays are not the same thing as matrices. An array is a data 
structure whose elements are accessed by a numeric value called 
an index. A matrix is an array with mathematical operations 
defined on it. A matrix can be one, two, three, or more dimen-
sional structures. The most common mathematical convention 
has been to use the letters i, j, and k for the indexes.

SQL had neither arrays nor matrices because the only data 
structure in the Relational Model is a table. Arrays violate the 
rules of First Normal Form (1NF) required for a relational data-
base, which say that all columns are scalars.

This was unfortunately changed in SQL:2003 with the addi-
tion of collection types. You can now declare a column to be an 
array of one of the SQL data types. The array is one-dimensional 
and has no mathematical operations on it. There is an array con-
structor and a comparison operation. The constructor can be a 
comma separated list or a query with an ORDER BY clause.

There is no obvious way to display or transmit a multidi-
mensional array column as a result set. Different languages and 
different compilers for the same language store arrays in column-
major or row-major order, so there is no standard. There is no 
obvious way to write constraints on nonscalar values.

The goal of SQL was to be a database language that would 
operate with a wide range of host languages. To meet that goal, 
the scalar data types are as varied as possible to match the host 
language data types, but as simple in structure as possible to 
make the transfer of data to the host language as easy as possible. 
The extensions after SQL-92 ruin all of these advantages.

33.1 Arrays via Named Columns
An array in other programming languages has a name and sub-
scripts by which the array elements are referenced. The array 
elements are all of the same data type and the subscripts are all 

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00033-8
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-382022-8.00033-8
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sequential integers. Some languages start numbering at zero, 
some start numbering at one, and some let the user set the upper 
and lower bounds. For example, a Pascal array declaration would 
look like this:

foobar : ARRAY [1..5] OF INTEGER;

Would have integer elements foobar[1], foobar[2], foobar[3], 
foobar[4], and foobar[5]. The same structure is most often 
mapped into an SQL declaration as:

CREATE TABLE Foobar1
(element1 INTEGER NOT NULL,
element2 INTEGER NOT NULL,
element3 INTEGER NOT NULL,
element4 INTEGER NOT NULL,
element5 INTEGER NOT NULL);

The elements cannot be accessed by the use of a subscript 
in this table as they can in a true array. That is, to set the array 
 elements equal to zero in Pascal takes one statement with a FOR 
loop in it:

FOR i := 1 TO 5 DO foobar[i] := 0;

The same action in SQL would be performed with the 
statement:

UPDATE Foobar1
 SET element1 = 0,
   element2 = 0,
   element3 = 0,
   element4 = 0,
   element5 = 0;

because there is no subscript that can be iterated in a loop. Any 
access has to be based on column names and not on subscripts. 
These “pseudo-subscripts” lead to building column names on 
the fly in dynamic SQL, giving code that is both slow and danger-
ous. Even worse, some users will use the same approach in table 
names to destroy their logical data model.

Let’s assume that we design an Employee table with separate 
columns for the names of four children, and we start with an 
empty table and then try to use it.
1. What happens if we hire a man with fewer than four children?
 We can fire him immediately or make him have more children. 

We can restructure the table to allow for fewer children. The 
usual, and less drastic, solution is to put NULLs in the columns 
for the nonexistent children. We then have all the problems 
associated with NULLs to handle.
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2. What happens if we hire a man with five children?
 We can fire him immediately or order him to kill one of his 

 children. We can restructure the table to allow five children. 
We can add a second row to hold the information on children  
5 through 8; however, this destroys the uniqueness of the  
emp_id, so it cannot be used as a key. We can overcome that 
problem by adding a new column for record number, which 
will form a two-column key with the emp_id. This leads to 
needless duplication in the table.

3. What happens if the employee dies?
 We will delete all his children’s data along with his, even if 

the company owes benefits to the survivors. You could have a 
 status of ‘dead’ for the employee and a lot of logic in any state-
ment about his family; this will not be pretty.

4. What happens if the child of an employee dies?
 We can fire him or order him to get another child immediately. 

We can restructure the table to allow only three children. We 
can overwrite the child’s data with NULLs and get all of the prob-
lems associated with NULL values.

 This last one is the most common decision. But what if we 
had used the multiple-row trick and this employee had a fifth 
child—should that child be brought up into the vacant slot in 
the current row and the second row of the set deleted?

5. What happens if the employee replaces a dead child with a 
new one?

 Should the new child’s data overwrite the NULLs in the dead 
child’s data? Should the new child’s data be put in the next 
available slot and overwrite the NULLs in those columns?
Some of these choices involve rebuilding the database. Others 

are simply absurd attempts to restructure reality to fit the data-
base. The real point is that each insertion or deletion of a child 
involves a different procedure, depending on the size of the 
group to which he belongs. File systems had variant records that 
could change the size of their repeating groups.

Consider instead a table of employees and another table for 
the children:

CREATE TABLE Personnel
(emp_id INTEGER NOT NULL PRIMARY KEY,
emp_name CHAR(30) NOT NULL,
...);

CREATE TABLE Dependents
(emp_id INTEGER NOT NULL
  REFERENCES Personnel(emp_id)
  ON UPDATE CASCADE,
child_name CHAR(30) NOT NULL,



620  Chapter 33 MATRICES IN SQL

PRIMARY KEY (emp_id, child_name),
birth_date DATE NOT NULL,
sex_code CHAR(1) NOT NULL);

To add a child, you insert a row into Children. To remove a 
child, you delete a row from Children. There is nothing special 
about the fourth or fifth child that requires the database system 
to use special procedures. There are no NULLs in either table.

The trade-off is that the number of tables in the database 
schema increases, but the total amount of storage used will be 
smaller, because you will keep data only on children who exist 
rather than using NULLs to hold space. The goal is to have data in 
the simplest possible format so that any host program can use it.

Gabrielle Wiorkowski, in her excellent DB2 classes, used an 
example of a table for tracking the sales made by salespersons 
during the past year. That table could be defined as:

CREATE TABLE AnnualSales1
(salesman CHAR(15) NOT NULL PRIMARY KEY,
jan DECIMAL(5,2),
feb DECIMAL(5,2),
mar DECIMAL(5,2),
apr DECIMAL(5,2),
may DECIMAL(5,2),
jun DECIMAL(5,2),
jul DECIMAL(5,2),
aug DECIMAL(5,2),
sep DECIMAL(5,2),
oct DECIMAL(5,2),
nov DECIMAL(5,2),
"dec" DECIMAL(5,2) -- DEC[IMAL] is a reserved word
);

We have to allow for NULLs in the monthly sales_amts in 
the first version of the table, but the table is actually quite a bit 
smaller than it would be if we were to declare it as:

CREATE TABLE AnnualSales2
(salesman CHAR(15) NOT NULL PRIMARY KEY,
sale_month CHAR(3)
  CONSTRAINT valid_month_abbrev
  CHECK (sale_month IN ('Jan', 'Feb', 'Mar', 'Apr',
     'May', 'Jun', 'Jul', 'Aug',
     'Sep', 'Oct', 'Nov', 'Dec'),
sales_amt DECIMAL(5,2) NOT NULL,
PRIMARY KEY(salesman, sale_month));

In Wiorkowski’s actual example in DB2, the break-even point 
for DASD storage was April; that is, the storage required for 
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AnnualSales1 and AnnualSales2 is about the same in April of the 
given year.

Queries that deal with individual salespersons will run much 
faster against the AnnualSales1 table than queries based on the 
AnnualSales2 table, because all the data is in one row in the 
AnnualSales1 table. They may be a bit messy and may have to 
have function calls to handle possible NULL values, but they are 
not very complex.

The only reason for using AnnualSales1 is that you have a 
data warehouse and all you want to see is summary information, 
grouped into years. This design is not acceptable in an OLTP system.

33.2 Arrays via Subscript Columns
Another approach to faking a multidimensional array is to map 
arrays into a table with an integer column for each subscript, 
thus:

CREATE TABLE Foobar2
(i INTEGER NOT NULL PRIMARY KEY
 CONSTRAINT valid_array_index
 CHECK(i BETWEEN 1 AND 5),
element_val REAL NOT NULL);

This looks more complex than the first approach, but it is 
closer to what the original Pascal declaration was doing behind 
the scenes. Subscripts resolve to unique physical addresses, so it 
is not possible to have two values for foobar[i]; hence, i is a key. 
The Pascal compiler will check to see that the subscripts are 
within the declared range; hence the CHECK() clause.

The first advantage of this approach is that multidimensional 
arrays are easily handled by adding another column for each sub-
script. The Pascal declaration,

ThreeD : ARRAY [1..3, 1..4, 1..5] OF REAL;

is mapped over to:

CREATE TABLE ThreeD
(i INTEGER NOT NULL
   CONSTRAINT valid_i
   CHECK(i BETWEEN 1 AND 3),
j INTEGER NOT NULL
   CONSTRAINT valid_j
   CHECK(j BETWEEN 1 AND 4),
k INTEGER NOT NULL
   CONSTRAINT valid_k
   CHECK(k BETWEEN 1 AND 5),



622  Chapter 33 MATRICES IN SQL

element_val REAL NOT NULL,
PRIMARY KEY (i, j, k));

Obviously, SELECT statements with GROUP BY clauses on the 
subscript columns will produce row and column totals, thus:

SELECT i, j, SUM(element_val) -- sum across the k columns
FROM ThreeD
GROUP BY i, j;

SELECT i, SUM(element_val) -- sum across the j and k columns
FROM ThreeD
GROUP BY i;

SELECT SUM(element_val) -- sum the entire array
FROM ThreeD;

If the original one element/one column approach were used, 
the table declaration would have 120 columns, named “element_
val_111” through “element_val_345”. This would be too many 
names to handle in any reasonable way; you would not be able to 
use the GROUP BY clauses for array projection, either.

Another advantage of this approach is that the subscripts can 
be data types other than integers. DATE and TIME data types are 
often useful, but CHARACTER and approximate numeric data types 
can have their uses too.

33.3 Matrix Operations in SQL
A matrix is not quite the same thing as an array. Matrices are 
mathematical structures with particular properties that we 
cannot take the time to discuss here. You can find that infor-
mation in a college freshman algebra book. Though it is pos-
sible to do many matrix operations in SQL, it is not a good idea, 
because such queries and operations will eat up resources and 
run much too long. SQL was never meant to be a language for 
calculations.

Let us assume that we have two-dimensional arrays that are 
declared as tables, using two columns for subscripts, and that all 
columns are declared with a NOT NULL constraint.

The presence of NULLs is not defined in linear algebra and I 
have no desire to invent a three-valued linear algebra of my own. 
Another problem is that a matrix has rows and columns that are 
not the same as the rows and columns of an SQL table; as you 
read the rest of this section, be careful not to confuse the two.

CREATE TABLE MyMatrix
(element_val INTEGER NOT NULL, -- could be any numeric data 

type
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i INTEGER NOT NULL CHECK (i > 0),
j INTEGER NOT NULL CHECK (j > 0),
CHECK ((SELECT MAX(i) FROM MyMatrix)
  = (SELECT COUNT(i) FROM MyMatrix)),
CHECK ((SELECT MAX(j) FROM MyMatrix)
  = (SELECT COUNT(j) FROM MyMatrix)));

The constraints see that the subscripts of each element are 
within proper range. I am starting my subscripts at one, but a lit-
tle change in the logic would allow any value.

33.3.1 Matrix Equality
This test for matrix equality is from the article “SQL Matrix 
Processing” by Mrdalj, Vujovic, and Jovanovic in the July 1996 
issue of Database Programming & Design. Two matrices are equal 
if their cardinalities and the cardinality of the their intersection 
are all equal.

SELECT COUNT(*) FROM MatrixA
UNION
SELECT COUNT(*) FROM MatrixB
UNION
SELECT COUNT(*)
  FROM MatrixA AS A, MatrixB AS B
WHERE A.i = B.i
 AND A.j = B.j
 AND A.element_val = B.element_val;

If this query returns one number, then MartixA and MatrixB 
are equal. Another way to do this uses set difference.

NOT EXISTS
 (SELECT * FROM MatrixA
   EXCEPT
   SELECT * FROM MatrixB)
AND NOT EXISTS
 (SELECT * FROM MatrixB
   EXCEPT
   SELECT * FROM MatrixA)

33.3.2 Matrix Addition
Matrix addition and subtraction are possible only between matri-
ces of the same dimensions. The obvious way to do the addition 
is simply:

SELECT A.i, A.j, (A.element_val + B.element_val) AS total
  FROM MatrixA AS A, MatrixB AS B
WHERE A.i = B.i
 AND A.j = B.j;
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But properly, you ought to add some checking to be sure the 
matrices match. We can assume that both start numbering sub-
scripts with either one or zero.

SELECT A.i, A.j, (A.element_val + B.element_val) AS total
  FROM MatrixA AS A, MatrixB AS B
WHERE A.i = B.i
 AND A.j = B.j
 AND (SELECT COUNT(*) FROM MatrixA)
   = (SELECT COUNT(*) FROM MatrixB)
 AND (SELECT MAX(i) FROM MatrixA)
   = (SELECT MAX(i) FROM MatrixB)
 AND (SELECT MAX(j) FROM MatrixA)
   = (SELECT MAX(j) FROM MatrixB));

Likewise, to make the addition permanent, you can use the 
same basic query in an UPDATE statement:

UPDATE MatrixA
 SET element_val = element_val
        + (SELECT element_val
           FROM MatrixB
            WHERE MatrixB.i = MatrixA.i
             AND MatrixB.j = MatrixA.j)
WHERE (SELECT COUNT(*) FROM MatrixA)
  = (SELECT COUNT(*) FROM MatrixB)
 AND (SELECT MAX(i) FROM MatrixA)
  = (SELECT MAX(i) FROM MatrixB)
 AND (SELECT MAX(j) FROM MatrixA)
  = (SELECT MAX(j) FROM MatrixB));

33.3.3 Matrix Multiplication
Multiplication by a scalar constant is direct and easy:

UPDATE MyMatrix
 SET element_val = element_val * :constant;

Matrix multiplication is not as big a mess as might be 
expected.

Remember that the first matrix must have the same number 
of rows as the second matrix has columns. That means A[i, k] * 
B[k, j] 5 C[i, j], which we can show with an example:

CREATE TABLE MatrixA
(i INTEGER NOT NULL
 CHECK (i BETWEEN 1 AND 10), -- pick your own bounds
k INTEGER NOT NULL
 CHECK (k BETWEEN 1 AND 10), -- must match MatrixB.k range
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element_val INTEGER NOT NULL,
PRIMARY KEY (i, k));

MatrixA
i k element_val
=================
1 1 2
1 2 -3
1 3 4
2 1 -1
2 2 0
2 3 2

CREATE TABLE MatrixB
(k INTEGER NOT NULL
 CHECK (k BETWEEN 1 AND 10), -- must match MatrixA.k range
j INTEGER NOT NULL
 CHECK (j BETWEEN 1 AND 4), -- pick your own bounds
element_val INTEGER NOT NULL,
PRIMARY KEY (k, j));

MatrixB
k j element_val
=================
1 1 -1
1 2 2
1 3 3
2 1 0
2 2 1
2 3 7
3 1 1
3 2 1
3 3 -2

CREATE VIEW MatrixC(i, j, element_val)
AS
SELECT i, j, SUM(MatrixA.element_val * MatrixB.element_val)
  FROM MatrixA, MatrixB
WHERE MatrixA.k = MatrixB.k
GROUP BY i, j;

This is taken directly from the definition of matrix 
multiplication.

33.3.4 Matrix Transpose
The transpose of a matrix is easy to do:

CREATE VIEW TransA (i, j, element_val)
AS SELECT j, i, element_val FROM MatrixA;
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Again, you can make the change permanent with an UPDATE 
statement:

UPDATE MatrixA
 SET i = j, j = i;

Multiplication by a column or row vector is just a special case 
of matrix multiplication, but a bit easier. Given the vector V and 
MatrixA:

SELECT i, SUM(A.element_val * V.element_val)
FROM MatrixA AS A, VectorV AS V
WHERE V.j = A.i
GROUP BY A.i;

Cross tabulations and other statistical functions traditionally 
use an array to hold data. But you do not need a matrix for them 
in SQL.

It is possible to do other matrix operations in SQL, but the 
code becomes so complex, and the execution time so long, that 
it is simply not worth the effort. If a reader would like to submit 
queries for eigenvalues and determinants, I will be happy to put 
them in future editions of this book.

33.3.5 Row and Column Sorting
You can sort a row or a column with the ROW_NUMBER() function in 
Standard SQL:

UPDATE MatrixA
 SET i = ROW_NUMBER() OVER (ORDER BY element_val)
WHERE j = :my_column;

and likewise:

UPDATE MatrixA
 SET j = ROW_NUMBER() OVER (ORDER BY element_val)
WHERE i = :my_column;

33.3.6 Other Matrix Operations
If you had a good math course at some point in your educa-
tion, you might remember the terms “Determinant,” “Inverse,” 
and “Eigenvalue,” which have to do with using matrices to solve 
simultaneous equations. It is probably possible to write general 
queries for them with recursive CTEs and other functions. Do 
not do it. SQL is not a computational language and it will not run 
very well for a matrix of any size. Use Mathematica, MathLab, or 
some other product meant for this kind of thing.
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33.4 Flattening a Table into an Array
Reports and data warehouse summary tables often want to see an 
array laid horizontally across a line. The original one  element_val/
one column approach to mapping arrays was based on  seeing 
such reports and duplicating that structure in a table. A subscript 
is often an enumeration, denoting a month or another time period, 
rather than an integer.

For example, a row in a “Salesmen” table might have a dozen 
columns, one for each month of the year, each of which holds the 
total commission earned in a particular month. The year is really 
an array, subscripted by the month. The subscripts-and-value 
approach requires more work to produce the same results. It is 
often easier to explain a technique with an example. Let us imag-
ine a company that collects time cards from its truck drivers, each 
with the driver’s name, the week within the year (numbered 0 to 
51 or 52, depending on the year), and his total hours. We want to 
produce a report with one line for each driver and 6 weeks of his 
time across the page. The Timecards table looks like this:

CREATE TABLE Timecards
(driver_name CHAR(25) NOT NULL,
week_nbr INTEGER NOT NULL
 CONSTRAINT valid_week_nbr
 CHECK(week BETWEEN 0 AND 52)
work_hrs INTEGER
  CONSTRAINT zero_or_more_hours
  CHECK(work_hrs >= 0),
PRIMARY KEY (driver_name, week_nbr));

We need to “flatten out” this table to get the desired rows for 
the report. First create a working storage table from which the 
report can be built.

CREATE TEMPORARY TABLE TimeReportWork -- working storage
(driver_name CHAR(25) NOT NULL,
wk1 INTEGER, -- important that these columns are NULL-able
wk2 INTEGER,
wk3 INTEGER,
wk4 INTEGER,
wk5 INTEGER,
wk6 INTEGER);

Notice two important points about this table. First, there is no 
primary key; second, the weekly data columns are NULL-able. This 
table is then filled with time card values, thus:

INSERT INTO TimeReportWork (driver_name, wk1, wk2, wk3, 
wk4, wk5, wk6)
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SELECT driver_name,
 SUM(CASE (week_nbr = :rpt_week_nbr)
     THEN work_hrs ELSE 0 END) AS wk1,
 SUM(CASE (week_nbr = :rpt_week_nbr - 1)
     THEN work_hrs ELSE 0 END) AS wk2,
 SUM(CASE (week_nbr = :rpt_week_nbr - 2)
     THEN work_hrs ELSE 0 END) AS wk3,
 SUM(CASE (week_nbr = :rpt_week_nbr - 3)
     THEN work_hrs ELSE 0 END) AS wk4,
 SUM(CASE (week_nbr = :rpt_week_nbr - 4)
     THEN work_hrs ELSE 0 END) AS wk5,
 SUM(CASE (week_nbr = :rpt_week_nbr - 5)
     THEN work_hrs ELSE 0 END) AS wk6
   FROM Timecards
WHERE week_nbr BETWEEN :rpt_week_nbr AND (:rpt_week_nbr - 5);

The number of the weeks in the WHERE clauses will vary with 
the period covered by the report. The parameter :rpt_week_nbr is 
week of the report and it computes backwards for the prior five 
weeks. If a driver did not work in a particular week, the corre-
sponding weekly column gets a zero hours total. However, if the 
driver has not worked at all in the last six weeks, we could lose 
him completely (no time cards, no summary). Depending on the 
nature of the report, you might consider using an OUTER JOIN to a 
Personnel table to be sure you have all the driver’s names.

The NULLs are coalesced to zero in this example, but if you 
drop the ..ELSE 0 clauses, the SUM() will have to deal with a week 
of all NULLs and return a NULL. This lets you tell the difference 
between a driver who was missing for the reporting period and a 
driver who worked zero hours and turned in a time card for that 
during the period. That difference could be important for com-
puting the payroll.

33.5 Comparing Arrays in Table Format
It is often necessary to compare one array or set of values with 
another when the data is represented in a table. Remember that 
comparing a set with a set does not involve ordering the ele-
ments, whereas an array does. For this discussion, let us create 
two tables, one for employees and one for their dependents. The 
children are subscripted in the order of their births; that is, 1 is 
the oldest living child, and so forth.

CREATE TABLE Personnel
(emp_id INTEGER PRIMARY KEY,
emp_name CHAR(15) NOT NULL,
. . . );
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CREATE TABLE Dependents
(emp_id INTEGER NOT NULL -- the parent
dependent_name CHAR(15) NOT NULL, -- the array element
birth_seq INTEGER NOT NULL, -- the array subscript
PRIMARY KEY (emp_id, dependent_name));

The query, “Find pairs of employees whose children have the 
same set of names,” is very restrictive, but we can make it more so 
by requiring that the children be named in the same birth order. 
Both Mr. X and Mr. Y must have exactly the same number of 
dependents; both sets of names must match. We can assume that 
no parent has two children with the same name (George Foreman 
does not work here) or born at the same time (we will order 
twins). Let us begin by inserting test data into the Dependents 
table, thus:

In this test data, employees 1, 2, and 3 all have dependents 
named ‘Tom’, ‘Dick’, and ‘Harry’.

The birth order is the same for the children of employees 1 
and 3, but not for employee 2.

For testing purposes, you might consider adding an extra 
child to the family of employee 3, and so forth, to play with  
this data.

Dependents

emp_id dependent_name_name birth_seq

1 'Dick' 2
1 'Harry' 3
1 'Tom' 1
2 'Dick' 3
2 'Harry' 1
2 'Tom' 2
3 'Dick' 2
3 'Harry' 3
3 'Tom' 1
4 'Harry' 1
4 'Tom' 2
5 'Curly' 2
5 'Harry' 3
5 'Moe' 1
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Though there are many ways to solve this query, this approach 
will give us some flexibility that others would not. Construct a 
VIEW that gives us the number of dependents for each employee:

CREATE VIEW FamilySize (emp_id, tally)
AS
SELECT emp_id, COUNT(*)
FROM Dependents
GROUP BY emp_id;

Create a second VIEW that holds pairs of employees who have 
families of the same size.

This VIEW is also useful for other statistical work, but that is 
another topic.

CREATE VIEW Samesize (emp_id1, emp_id2, tally)
AS SELECT F1.emp_id, F2.emp_id, F1.tally
 FROM Familysize AS F1, Familysize AS F2
WHERE F1.tally = F2.tally
 AND F1.emp_id < F2.emp_id;

We will test for set equality by doing a self-JOIN on the depen-
dents of employees with families of the same size. If one set can 
be mapped onto another with no children left over, and in the 
same birth order, then the two sets are equal.

SELECT D1.emp_id, ' named his ',
   S1.tally, ' kids just like ',
   D2.emp_id
FROM Dependents AS D1, Dependents AS D2, Samesize AS S1
WHERE S1.emp_id1 = D1.emp_id
 AND S1.emp_id2 = D2.emp_id
 AND D1.dependent_name = D2.dependent_name
 AND D1.birth_seq = D2.birth_seq
GROUP BY D1.emp_id, D2.emp_id, S1.tally
HAVING COUNT(*) = S1.tally;

If birth order is not important, then drop the predicate D1.
birth_seq = D2.birth_seq from the query.

This is a form of exact relational division with a second col-
umn equality test as part of the criteria.
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34
SET OPERATIONS

By set operations, I mean union, intersection, and set differences 
where the sets in SQL are tables. These are the basic operators 
used in elementary set theory, which has been taught in the US 
public school systems for decades. Since the relational model is 
based on sets, you would expect that SQL would have had a good 
variety of set operators from the start. But this was not the case. 
Standard SQL has added the basic set operators, but they are still 
not common in actual products.

There is another problem in SQL that you did not have in 
high school set theory. SQL tables are multisets (also called 
bags), which means that, unlike sets, they allow duplicate ele-
ments (rows or tuples). Dr. Codd’s relational model is stricter and 
uses only true sets. SQL handles these duplicate rows with an 
ALL or DISTINCT modifier in different places in the language; ALL 
 preserves duplicates and DISTINCT removes them.

So that we can discuss the result of each operator formally, let 
R be a row that is a duplicate of some row in TableA, or of some 
row in TableB, or of both. Let m be the number of duplicates of 
R in TableA and let n be the number of duplicates of R in TableB, 
where (m >5 0) and (n >5 0). Informally, the engines will pair off 
the two tables on a row-per-row basis in set operations. We will 
see how this works for each operator.

For the rest of this discussion, let us create two tables with the 
same structure, which we can use for examples.

CREATE TABLE S1 (a1 CHAR(1));
INSERT INTO S1
VALUES ('a'), ('a'), ('b'), ('b'), ('c');

CREATE TABLE S2 (a2 CHAR(1));
INSERT INTO S2
VALUES ('a'), ('b'), ('b'), ('b'), ('c'), ('d');

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00034-X
Copyright © 2011 by Elsevier Inc. All rights reserved.
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34.1 UNION and UNION ALL
UNIONs have been supported since SQL-86, with this infixed syntax:

 <table expression> UNION [ALL] <table expression>

The two versions of the UNION statement take two tables and 
build a result table from them. The two tables must be union 
compatible, which means that they have exactly the same 
 number of columns, and that each column in the first table has 
the same data type (or automatically cast to it) as the column in 
the same position in the second table. That is, their rows have the 
same structure, so they can be put in the same final result table. 
Most implementations will do some data type conversions to cre-
ate the result table, but this can be implementation-dependent 
and you should check it out for yourself.

There are two forms of the UNION statement: the UNION and the 
UNION ALL. The simple UNION is the same operator you had in high 
school set theory; it returns the rows that appear in either or both 
tables and removes redundant duplicates from the result table. 
The phrase “redundant duplicates” sounds funny; but it means 
that you leave one copy of the row in the table. The sample tables 
will yield:

(SELECT a1 FROM S1
UNION
SELECT a2 FROM S2)
==================
a
b
c
d

In many early SQL implementations, merge-sorting the two 
tables, discarding duplicates during the sorting, did this removal. 
This had the side effect that the result table is sorted, but you 
cannot depend on that. Later implementations use hashing, 
indexing, and parallel processing to find the duplicates.

The UNION ALL preserves the duplicates from both tables in 
the result table. Most early implementations simply appended 
one table to the other in physical storage. They used file systems 
based on physically contiguous storage, so this was easy and 
used the file system code. But, again, you cannot depend on any 
ordering in the results of either version of the UNION statement. 
Again, the sample tables will yield:

(SELECT a1 FROM S1
UNION ALL
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SELECT a2 FROM S2)
==================
'a'
'a'
'a'
'b'
'b'
'b'
'b'
'b'
'c'
'c'
'd'

You can assign names to the columns by using the AS operator 
to make the result set into a derived table, thus:

SELECT rent, utilities, phone
 FROM
(SELECT a, b, c FROM OldLocations WHERE city = 'Boston'
UNION
SELECT x, y, z FROM NewLocations WHERE city = 'New York')
AS Cities (rent, utilities, phone);

A few SQL products will attempt to optimize UNIONs if they are 
made on the same table. Those UNIONs can often be replaced with 
OR-ed predicates. For example:

SELECT city_name, 'Western'
 FROM Cities
WHERE market_code = 't'
UNION ALL
SELECT city_name, 'Eastern'
 FROM Cities
WHERE market_code = 'v';

could be rewritten (probably more efficiently) as:

SELECT city_name,
   CASE market_code
   WHEN 't' THEN 'Western'
   WHEN 'v' THEN 'Eastern' END
FROM Cities
WHERE market_code IN ('v', 't');

It takes system architecture based on domains rather than 
tables to optimize UNIONs if they are made on different tables.

Doing a UNION to the same table is the same as a SELECT 
DISTINCT, but the SELECT DISTINCT will probably run faster and 
preserve the column names too.
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34.1.1 Order of Execution
UNION and UNION ALL operators are executed from left to right 
unless parentheses change the order of execution. Since the 
UNION operator is associative and commutative, the order of 
a chain of UNIONs will not affect the results. However, order and 
grouping can affect performance. Consider two small tables that 
have many duplicates between them. If the optimizer does not 
consider table sizes, this query:

(SELECT * FROM SmallTable1)
UNION
(SELECT * FROM BigTable)
UNION
(SELECT * FROM SmallTable2);

will merge SmallTable1 into BigTable, then merge SmallTable2 
into that first result. If the rows of SmallTable1 are spread out in 
the first result table, locating duplicates from SmallTable2 will 
take longer than if we had written the query, thus:

(SELECT * FROM SmallTable1)
UNION
(SELECT * FROM SmallTable2)
 UNION
(SELECT * FROM BigTable);

Again, optimization of UNIONs is highly product-dependent, so 
you should experiment with it.

34.1.2 Mixed UNION and UNION ALL Operators
If you know that there are no duplicates, or that duplicates are 
not a problem in your situation, use UNION ALL instead of UNION 
for speed. For example, if we are sure that BigTable has no dupli-
cates in common with SmallTable1 and SmallTable2, this query 
will produce the same results as before but should run much 
faster:

((SELECT * FROM SmallTable1)
 UNION
(SELECT * FROM SmallTable2))
 UNION ALL
(SELECT * FROM BigTable);

But be careful when mixing UNION and UNION ALL  operators. 
The left-to-right order of execution will cause the last operator 
in the chain to have an effect on the results.
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34.1.3 UNION of Columns from the Same Table
A useful trick for building the union of columns from the same 
table is to use a CROSS JOIN and a CASE expression, thus:

SELECT CASE WHEN S1.seq_nbr = 1 THEN F1.col1
      WHEN S1.seq_nbr = 2 THEN F1.col2
      ELSE NULL END
  FROM Foobar AS F1
    CROSS JOIN
    Series AS S1(seq_nbr)
 WHERE S1.seq_nbr IN (1, 2)

This acts like the UNION ALL statement, but change the SELECT 
to SELECT DISTINCT and you have a UNION. The advantage of this 
statement over the more obvious UNION is that it makes one pass 
through the table. Given a large table, that can be important for 
good performance.

34.2 INTERSECT and EXCEPT
The INTERSECT and EXCEPT set operators take two tables and build 
a new table from them. The two tables must be “union compat-
ible,” which means that they have the same number of columns, 
and that each column in the first table has the same data type 
(or automatically cast to it) as the column in the same position in 
the second table.

That is, their rows have the same structure, so they can be 
put in the same final result table. Most implementations will do 
some data type conversions to create the result table, but this is 
very implementation-dependent and you should check it out 
for yourself. Like the UNION, the result of an INTERSECT or EXCEPT 
should use an AS operator if you want to have names for the 
result table and its columns.

Oracle was the first major vendor to have the EXCEPT opera-
tor with the keyword MINUS. The set difference is the rows in the 
first table, except for those that also appear in the second table. 
It answers questions like, “Give me all the employees except the 
salesmen” in a natural manner.

Let’s take our two multisets and use them to explain the basic 
model, by making a mapping between them:

S1 = {a, a, b, b,    c   }
   �   �   �     �
S2 = {a,    b, b, b, c, d}
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The INTERSECT and EXCEPT operators remove all duplicates 
from both sets, so we would have:

S1 = {a, b, c   }
     �    �  �
S2 = {a, b, c, d}

and therefore,

S1 INTERSECT S2 = {a, b, c}

and,

S2 EXCEPT S1 = {d}
S1 EXCEPT S2 = {}

When you add the ALL option, things are trickier. The mapped 
pairs become the unit of work. The INTERSECT ALL keeps each 
pairing, so that

S1 INTERSECT ALL S2 = {a, b, b, c}

and the EXCEPT ALL throws them away, retaining what is left in the 
first set, thus:

S2 EXCEPT ALL S1 = {b, d}

Trying to write the INTERSECT and EXCEPT with other opera-
tors is trickier than it looks. It has to be general enough to han-
dle situations where there is no key available and the number of 
 columns is not known.

Standard SQL defines the actions for duplicates in terms of 
the count of duplicates of matching rows. Let (m) be the num-
ber of rows of one kind in S1 and (n) be the number in S2. The 
UNION ALL will have (m 1 n) copies of the row. The INTERSECT ALL 
will have LEAST(m, n) copies. EXCEPT ALL will have the greater of 
either the first table’s count minus the second table’s count or 
zero copies.

The immediate impulse of a programmer is to write the code 
with EXISTS() predicates. The bad news is that it does not work 
because of NULLs. This is easier to show with code. Let’s redo our 
two sample tables.

CREATE TABLE S1 (a1 CHAR(1));
INSERT INTO S1
VALUES ('a'), ('a'), ('b'), ('b'), ('c'), (NULL), (NULL);

CREATE TABLE S2 (a2 CHAR(1));
INSERT INTO S2
VALUES ('a'), ('b'), ('b'), ('b'), ('c'), ('d'), (NULL);

Now build a view to hold the tally of each value in each table.
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CREATE VIEW DupCounts (a, s1_dup, s2_dup)
AS
SELECT S.a, SUM(s1_dup), SUM(s2_dup)
 FROM (SELECT S1.a1, 1, 0
    FROM S1
   UNION ALL
  SELECT S2.a2, 0, 1
    FROM S2) AS S(a, s1_dup, s2_dup)
GROUP BY S.a, s1_dup, s2_dup;

The GROUP BY will put the NULLs into a separate group  giving 
them the right tallies. Now code is a straightforward implementa-
tion of the definitions in Standard SQL.

-- S1 EXCEPT ALL S2
SELECT DISTINCT D1.a, (s1_dup - s2_dup) AS dups
  FROM DupCounts AS D1,
    Series AS S1
 WHERE S1.seq_nbr <= (s1_dup - s2_dup);

-- S1 INTERSECT ALL S2
SELECT DISTINCT D1.a,
       CASE WHEN s1_dup <= s2_dup
         THEN s1_dup ELSE s2_dup END
       AS tally
  FROM DupCounts AS D1,
    Series AS S1
 WHERE S1.seq_nbr <= CASE WHEN s1_dup <= s2_dup
       THEN s1_dup ELSE s2_dup END;

Notice that we had to use SELECT DISTINCT. Without it, the 
sample data will produce this table.

A tally

NULL 1
A 1
B 2
B 2 b redundant row
C 1

The nonduplicated versions are easy to write from the definitions 
in the Standards. In effect their duplication tallies are set to one.

-- S1 INTERSECT S2
SELECT D1.a
  FROM DupCounts AS D1
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 WHERE s1_dup > 0
   AND s2_dup > 0;

-- S1 EXCEPT S2
SELECT D1.a
  FROM DupCounts AS D1
 WHERE s1_dup > 0
   AND s2_dup = 0;

-- S2 EXCEPT S1
SELECT D1.a
  FROM DupCounts AS D1
 WHERE s2_dup > 0
   AND s1_dup = 0;

34.2.1  INTERSECT and EXCEPT without NULLs 
and Duplicates

INTERSECT and EXCEPT are much easier if each of the two tables 
does not have NULLs and duplicate values in them. Intersection is 
simply:

SELECT *
 FROM S1
WHERE EXISTS
   (SELECT *
     FROM S2
     WHERE S1.a1 = S2.a2);

or:

SELECT *
 FROM S2
WHERE EXISTS
   (SELECT *
     FROM S1
     WHERE S1.a1 = S2.a2);

You can also use:

SELECT DISTINCT S2.*
 FROM (S2 INNER JOIN S1 ON S1.a1 = S2.a2);

This is given as a motivation for the next piece of code, but 
you may find that some SQL engines do joins faster than EXISTS() 
predicates and vice versa, so it is a good idea to have more than 
one trick in your bag.

The set difference can be written with an OUTER JOIN operator. 
This code is due to Jim Panttaja.

SELECT DISTINCT S2.*
 FROM (S2 LEFT OUTER JOIN S1
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  ON S1.a1 = S2.a2)
WHERE S1.a1 IS NULL;

34.2.2  INTERSECT and EXCEPT with NULLs and 
Duplicates

These versions of INTERSECT and EXCEPT are due to Itzak Ben-Gan. 
They make very good use of the UNION and DISTINCT operators to 
implement set theory definitions.

-- S1 INTERSECT S2
SELECT D.a
FROM (SELECT DISTINCT a1 FROM S1
   UNION ALL
   SELECT DISTINCT a2 FROM S2) AS D(a)
GROUP BY D.a
HAVING COUNT(*) > 1;

-- S1 INTERSECT ALL S2
SELECT D2.a
FROM (SELECT D1.a, MIN(cnt) AS mincnt
   FROM (SELECT a1, COUNT(*)
      FROM S1
     GROUP BY a1
    UNION ALL
    SELECT a2, COUNT(*)
      FROM S2
     GROUP BY a2) AS D1(a, cnt)
   GROUP BY D1.a
   HAVING COUNT(*) > 1) AS D2
 INNER JOIN
 Series
ON seq_nbr <= min_cnt;

-- S1 EXCEPT ALL S2
SELECT D2.a
 FROM (SELECT D1.a, SUM(cnt)
     FROM (SELECT a1, COUNT(*)
        FROM S1
       GROUP BY a1
      UNION ALL
      SELECT a2, -COUNT(*)
        FROM S2
       GROUP BY a2)
      AS D1(a, cnt)
   GROUP BY D1.a
   HAVING SUM(cnt) > 0)
  AS D2(a, dups)
  INNER JOIN
  Series ON seq_nbr <= D2.dups;
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The Series table is discussed in other places in this book. It is a 
table of integers from 1 to (n) that is used to replace iteration and 
counting in SQL. Obviously, (n) has to be large enough for these 
statements to work.

34.3 A Note on ALL and SELECT DISTINCT
Here is a series of observations about the relationship between 
the ALL option in set operations and the SELECT DISTINCT options 
in a query from Beught Gunne.

Given two tables with duplicate values:

CREATE TABLE A (i INTEGER NOT NULL);
INSERT INTO A VALUES (1), (1), (2), (2), (4), (4);

CREATE TABLE B (i INTEGER NOT NULL);
INSERT INTO B VALUES (2), (2), (3), (3);

The UNION and INTERSECT operations have regular behavior 
in that:

(A UNION B) = SELECT DISTINCT (A UNION ALL B) = 
((1), (2), (3))

and:

(A INTERSECT B) = SELECT DISTINCT (A INTERSECT ALL B) = (2)

However,

(A EXCEPT B) <> SELECT DISTINCT (A EXCEPT ALL B)

or more literally, (1) <> ((1), (2)) for the tables given in the 
 example. And likewise, we have:

(B EXCEPT A) = SELECT DISTINCT (B EXCEPT ALL A) = (3)

by a coincidence of the particular values used in these tables.

34.4 Equality and Proper Subsets
At one point, when SQL was still in the laboratory at IBM, there 
was a CONTAINS operator that would tell you if one table was a 
subset of another. It disappeared in later versions of the language 
and no vendor picked it up. Set equality was never part of SQL as 
an operator, so you would have to have used the two expressions 
((A CONTAINS B) AND (B CONTAINS A)) to find out.

Today, you can use the methods shown in the section on 
Relational Division to determine containment or equality. Or you 
can use set theory expressions, such as NOT EXISTS ((A EXCEPT B) 
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UNION (B EXCEPT A)). Which method is fastest is going to depend 
on the SQL product and the access method used.

However, Itzak Ben-Gan came up with a novel approach for 
finding containment and equality that is worth a mention.

SELECT SUM(DISTINCT match_col)
 FROM (SELECT CASE
       WHEN S1.col
         IN (SELECT S2.col FROM S2)
       THEN 1 ELSE -1 END
   FROM S1) AS X(match_col)
HAVING SUM(DISTINCT match_col) = :n;

You can set (:n) to 1, 0, or −1 for each particular test.
When I find a matching row in S1, I get a one; when I find a 

mismatched row in S1, I get a −1, and they sum together to give 
me a zero. Therefore, S1 is a proper subset of S2. If they sum to 
one, then they are equal. If they sum to −1, they are disjoint.
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35
SUBSETS

I am defining subset operations as queries, which extract a partic-
ular subset from a given set, as opposed to set operations, which 
work among sets. The obvious way to extract a subset from a table 
is just to use a WHERE clause, which will pull out the rows that meet 
that criterion. But not all the subsets we want are easily defined 
by such a simple predicate. This chapter is a collection of tricks 
for constructing useful, but not obvious, subsets from a table.

35.1 Every N-th Item in a Table
SQL is a set-oriented language, which cannot identify individual 
rows by their physical positions in a disk file that holds a table. 
Instead, a unique logical key is detected by logical expressions 
and a row is retrieved. If you are given a file of employees and 
you want to pick out every n-th employee for a survey where 
the ordering of that file is based on their employee identifica-
tion numbers, the job is easy. You write a procedure that loops 
through the file and writes every n-th one to a second file.

The immediate thought of how to do this in SQL is that you 
can simply compute MOD(emp_nbr, :n) and save those employee 
rows where this function is zero. The trouble is that employees 
are not issued consecutive identification numbers. The identifi-
cation numbers are unique, however.

In the old days, you had to use vendor extensions that 
exposed a physical row locator that gives a sequential numbering 
to the physical records. Such things are highly proprietary, but 
because these features are so low-level they will run very fast on 
that one particular product. Today we have the ordinal functions, 
so we can use:

SELECT P1.emp_nbr
  FROM (SELECT P.emp_nbr,
       ROW_NUMBER()
       OVER(ORDER BY emp_nbr)
    FROM Personnel) AS P1(emp_nbr, emp_seq)
WHERE MOD (emp_seq, :n) = 0;

http://dx.doi.org/10.1016/B978-0-12-382022-8.00035-1
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A nonordinal function version of the same query looks  
like this:

SELECT P1.emp_nbr
  FROM Personnel AS P1, Personnel AS P2
WHERE P1.emp_nbr >= P2.emp_nbr
GROUP BY P1.emp_nbr
HAVING MOD (COUNT(*), :n) = 0;

This query will count the number of P2 rows with a value 
less than the P1 row. This older trick should be slower than 
the ROW_NUMBER() version, but you might see this in older 
code.

35.2 Random Rows from a Table
The answer is that, basically, you cannot directly pick a set of 
random rows from a table in SQL. There is no randomize opera-
tor in Standard SQL and you do not often find the same pseudo-
random number generator function in various vendor extensions 
either.

Picking random rows from a table for a statistical sample is 
a handy thing and you do it in other languages with a pseudo-
random number generator. There are two kinds of random 
drawings from a set, with or without replacement. If SQL had a 
random number function, I suppose these would be shown as 
RANDOM(x) and RANDOM(DISTINCT x), where x is a seed or dummy 
value. As examples in the real world, dealing a Poker hand is a 
random with no replacement situation, whereas shooting craps 
is a random with replacement situation. If two players in a Poker 
game get identical cards, you are using a Pinochle deck. In a Crap 
game, each roll of the dice is independent of the previous one 
and can repeat (that is how you win).

The problem is that SQL is a set-oriented language and wants 
to do an operation “all at once” on a well-defined set of rows. 
Random sets are defined by a nondeterministic procedure by 
definition, instead of a deterministic logic expression.

The SQL/PSM language does have an option to declare or cre-
ate a procedure that is DETERMINISTIC or NOT DETERMINISTIC. The 
DETERMINISTIC option means that the optimizer can compute 
this function once for a set of input parameter values and then 
use that result everywhere in the current SQL statement where 
a call to the procedure with those parameters appears. The NOT 
DETERMINISTIC option means given the same parameters, you 
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might not get the same results for each call to the procedure 
within the same SQL statement.

Unfortunately, SQL products can have proprietary extensions 
that vary: the random number function in Oracle is nondeter-
ministic and the one in SQL Server is deterministic (i.e., pseudo-
random number generator procedures). For example, using 
RANDOM() as the random number function:

CREATE TABLE RandomNbrs
(seq_nbr INTEGER NOT NULL PRIMARY KEY,
random_nbr FLOAT NOT NULL);

INSERT INTO RandomNbrs
VALUES (1, RANDOM()),
  (2, RANDOM()),
  (3, RANDOM());

will result in the three rows all getting the same value in the ran-
dom_nbr column in versions of SQL Server, but three potentially 
different numbers in versions of Oracle.

Although subqueries are not allowed in DEFAULT clauses, 
system-related functions like CURRENT_TIMESTAMP, CURRENT_USER 
are allowed. In some SQL implementations, this includes the 
RANDOM() function.

CREATE TABLE RandomNbrs2
(seq_nbr INTEGER PRIMARY KEY,
random_nbr FLOAT -- warning! not Standard SQL
     DEFAULT (
(CASE (CAST(RANDOM() + 0.5 AS INTEGER) * −1)
WHEN 0.0 THEN 1.0 ELSE −1.0 END)
* MOD (CAST(RANDOM() * 100000 AS INTEGER), 10000)
* RANDOM())
NOT NULL);

INSERT INTO RandomNbrs2
VALUES (1, DEFAULT);
 (2, DEFAULT),
 (3, DEFAULT),
 (4, DEFAULT),
 (5, DEFAULT),
 (6, DEFAULT),
 (7, DEFAULT),
 (8, DEFAULT),
 (9, DEFAULT),
 (10, DEFAULT);

Here is a sample output from an SQL Server 7.0 
implementation.
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The best way to do this is to add a column to the table to 
hold a random number, then use an external language with a 
good pseudo-random number generator in its function library 
to load the new column with random values with a cursor in a 
host language. You have to do it this way because random num-
ber generators work differently from other function calls. They 
start with an initial value called a “seed” (shown as Random[0] 
in the rest of this discussion) provided by the user or the system 
clock. The seed is used to create the first number in the sequence, 
Random[1]. Then each call, Random[n], to the function uses the 
previous number to generate the next one, Random[n 1 1].

The term “pseudo-random number generator” often is 
referred to as a just “random number generator,” but this is tech-
nically wrong. You can get true random numbers from things 
like radioactive decay or other physical phenomena in chaotic 
systems. All the generators will eventually return a value that 
appeared in the sequence earlier and the procedure will hang in a 
cycle. Procedures are deterministic and we are living in a mathe-
matical heresy when we try to use them to produce truly random 
results. However, if the sequence has a very long cycle and meets 
some other tests for randomness over the range of the cycle, then 
we can use it.

There are many kinds of generators. The linear congruence 
pseudo-random number generator family has generator formu-
las of the form:

Random[n + 1]:= MOD ((x * Random[n] + y), m);

seq_nbr random_nbr

1 –121.89758452446999

2 –425.61113508053933

3 3918.1554683876675

4 9335.2668286173412

5 54.463890640027664

6 –5.0169085346410522

7 –5435.63417246276

8 915.9835973796487

9 28.109161998753301

10 741.79452047043048
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There are restrictions on the relationships among x, y, and m 
that deal with their relative primality. Knuth gives a proof that if

Random[0] is not a multiple of 2 or 5
m = 10^e where (e >= 5)
y = 0
MOD (x, 200) is in the set (3, 11, 13, 19, 21, 27, 29, 37, 53,
59, 61, 67, 77, 83, 91, 109, 117, 123, 131, 133, 139, 141, 147,
163, 171, 173, 179, 181, 187, 189, 197)

then the period will be 5 * 10^(e-2).
There are old favorites that many C programmers use from 

this family, such as:

Random(n + 1) := (Random(n) * 1103515245) + 12345;
Random(n + 1) := MOD ((16807 * Random(n)), ((2^31) – 1));

The first formula has the advantage of not requiring a MOD 
function, so it can be written in Standard SQL. However, the sim-
plest generator that can be recommended (Park and Miller) uses:

Random(n + 1) := MOD ((48271 * Random(n)), ((2^31) – 1));

Notice that the modulus is a prime number; this is important.
The period of this generator is ((2^31) 2 2), which is 2, 

147, 483, 646, or over two billion numbers before this genera-
tor repeats. You must determine if this is long enough for your 
application.

If you have an XOR function in your SQL, then you can also 
use shift register algorithms. The XOR is the bitwise exclusive OR 
that works on an integer as it is stored in the hardware; I would 
assume 32 bits on most small computers. Some usable shift regis-
ter algorithms are:

Random(n + 1) := Random(n – 103) XOR Random(n – 250);
Random(n + 1) := Random(n – 1063) XOR Random(n – 1279);

One method for writing a random number generator on the 
fly when the vendor’s library does not have one is to pick a seed 
using one or more key columns and a call to the system clock’s 
fractional seconds, such as RANDOM(keycol + EXTRACT (SECOND 
FROM CURRENT_TIME)) * 1000. This avoids problems with patterns 
in the keys, while the key column values assure uniqueness of the 
seed values.

Another method is to use a PRIMARY KEY or UNIQUE column(s) 
and apply a hashing algorithm. You can pick one of the ran-
dom number generator functions already discussed and use the 
unique values as if it were the seed as a quick way to get a hashing 
function. Hashing algorithms try to be uniformly distributed, so 
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if you can find a good one, you will approach nearly unique ran-
dom selection. The trick is that the hashing algorithm has to be 
simple enough to be written in the limited math  available in SQL.

Once you have a column of random numbers you can convert 
the random numbers into a randomly ordered sequence with this 
statement.

UPDATE RandomNbrs
  SET random_nbr = (SELECT COUNT(*)
           FROM Series AS S1
           WHERE S1.random_nbr <= Series.seq_nbr);

To get one random row from a table, you can use this 
approach:

CREATE VIEW LotteryDrawing (keycol, .., spin)
AS SELECT LotteryTickets.*,
    (RANDOM(<keycol> + <fractional seconds from clock>))
  FROM LotteryTickets
    GROUP BY spin
 HAVING COUNT(*) = 1;

then simply use this query:

SELECT *
  FROM LotteryDrawing
WHERE spin = (SELECT MAX(spin)
       FROM LotteryDrawing)

The pseudo-random number function is not Standard SQL, but 
it is common enough. Using the keycol as the seed probably means 
that you will get a different value for each row, but we can avoid 
duplicates with the GROUP BY. HAVING. Adding the fractional seconds 
will change the result every time, but it might be illegal in some SQL 
products, which disallow variable elements in VIEW definitions.

Let’s assume you have a function called RANDOM() that returns a 
random number between 0.00 and 1.00. If you just want one ran-
dom row out of the table, and you have a numeric key column, 
Tom Moreau proposed that you could find the MAX() and MIN(), 
then calculate a random number between them.

SELECT L1.*
  FROM LotteryDrawing AS L1
WHERE col_1
  = (SELECT MIN(keycol)
       + (MAX (keycol) − MIN (keycol) * RANDOM()))
     FROM LotteryDrawing AS L2);

Here is a version that uses the COUNT(*) functions and a 
self-join instead.
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SELECT L1.*
 FROM LotteryDrawing AS L1
   WHERE CEILING ((SELECT COUNT(*) FROM LotteryDrawing)
       * RANDOM())
     = (SELECT COUNT(*)
        FROM LotteryDrawing AS L2
        WHERE L1.keycol <= L2.keycol);

The rounding away from zero is important, since we are in 
effect numbering the rows from one. The idea is to use the deci-
mal fraction to hit the row that is far into the table when the rows 
are ordered by the key.

Having shown you this code, I have to warn you that the pure 
SQL has a good number of self-joins, and they will be expensive 
to run.

35.3 The CONTAINS  Operators
Set theory has two symbols for subsets. One, A ⊂ B, means that set A 
is contained within set B; this is sometimes said to denote a proper 
subset. The other, A ⊆ B, means that A is contained in or equal to B, 
and is sometimes called just a subset or containment operator.

Standard SQL has never had an operator to compare tables 
against each other for equality or containment. Several college 
textbooks on relational databases mention a CONTAINS predicate, 
which does not exist in Standard SQL. This predicate existed in 
the original System R, IBM’s first experimental SQL system, but 
it was dropped from later SQL implementations because of the 
expense of running it.

35.3.1 Proper Subset Operators
The IN() predicate is a test for membership. For those of you who 
remember your high school set theory, membership is shown 
with a stylized epsilon with the containing set on the right side: 
a ∈ A. Membership is for one element, whereas a subset is itself 
a set, not just an element. As an example of a subset predicate, 
consider a query to tell you the names of each employee who 
works on all the projects in department five. Using the System R 
syntax,

SELECT emp_name -- Not valid SQL!
  FROM Personnel
WHERE (SELECT project_nbr
   FROM JobAssignments
   WHERE Personnel.emp_nbr = JobAssignments.emp_nbr)
  CONTAINS
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   (SELECT project_nbr
      FROM Projects
      WHERE dept_nbr = 5);

In the second SELECT statement of the CONTAINS predicate, we 
build a table of all the projects in department five. In the first 
SELECT statement of the CONTAINS predicate, we have a correlated 
subquery that will build a table of all the projects each employee 
works on. If the table of the employee’s projects is equal to or a 
superset of the department five table, the predicate is TRUE.

You must first decide what you are going to do about dupli-
cate rows in either or both tables. That is, does the set {a, b, c} 
contain the multiset {a, b, b} or not? Some SQL set operations, 
such as SELECT and UNION, have options to remove or keep dupli-
cates from the results, as in UNION ALL and SELECT DISTINCT.

I would argue that duplicates should be ignored and the  
multiset is a subset of the other. For our example, let us use a 
table of employees and another table with the names of the  
company bowling team members, which should be a proper 
subset of the Personnel table. For the bowling team to be con-
tained in the set of employees, each bowler must be an employee, 
or, to put it another way, there must be no bowler who is not  
an employee.

NOT EXISTS
(SELECT *
   FROM Bowling AS B1
    WHERE B1.emp_nbr NOT IN (SELECT emp_nbr FROM Personnel))

35.3.2 Table Equality
How can I find out if two tables are equal to each other? This is 
a common programming problem and the specification sounds 
obvious.

When two sets, A and B, are equal then we know that:
1. Both have the same number of elements.
2. No elements in A are not in B.
3. No elements in B are not in A.
4. Set A is equal to the intersection of A and B.
5. Set B is equal to the intersection of A and B.
6. Set B is a subset of A.
7. Set A is a subset of B.
and probably a few other things vaguely remembered from an 
old math class. But equality is not as easy as it sounds in SQL 
because the language is based on multisets or bags, which allow 
duplicate elements, and the language has NULLs. Given this list of 
multisets, which pairs are equal to each other?
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S0 = {a, b, c}
S1 = {a, b, NULL}
S2 = {a, b, b, c, c}
S3 = {a, b, NULL}
S4 = {a, b, c}
S5 = {x, y, z}

Everyone will agree that S0 5 S4, because they are identical.
Everyone will agree that S5 is not equal to any other set 

because it has no elements in common with any of them. How 
do you handle redundant duplicates? If you ignore them, then 
S0 5 S2. Should NULLs be given the benefit of the doubt and 
matched to any known value or not? Thus S0 5 S1 and S0 5 S3. 
But then do you want to say that S1 5 S3 because we can pair up 
the NULLs with each other?

To make matters even worse, are two rows equal if they match 
on just their keys, on a particular subset of their columns, or on 
all their columns? The reason this question comes up in practice 
is that you often have to match up data from two sources that 
are slightly different versions of the same information (i.e., “Joe 
Celko” and “Joe F. Celko” are probably the same person, but you 
are not quite so sure about “Joseph Frank Celko”).

The good part about matching things on the keys is that you 
do have a true set—keys are unique and cannot have NULLs. If 
you go back to the list of set equality tests that I gave at the start of 
this chapter, you can see some possible ways to code a solution.

If you use facts (2) and (3) in the list, then you might use NOT 
EXISTS() predicates.

..
WHERE NOT EXISTS (SELECT *
         FROM A
       WHERE A.keycol
            NOT IN (SELECT keycol
             FROM B
              WHERE A.keycol = B.keycol))
   AND NOT EXISTS (SELECT *
        FROM B
          WHERE B.keycol
          NOT IN (SELECT keycol
             FROM A
             WHERE A.keycol = B.keycol))

which can also be written as:

..
WHERE NOT EXISTS
   (SELECT *
     FROM A
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       EXCEPT [ALL]
       SELECT *
        FROM B
        WHERE A.keycol = B.keycol)
     UNION
     SELECT *
      FROM B
        EXCEPT [ALL]
        SELECT *
         FROM A
           WHERE A.keycol = B.keycol))

The use of the optional EXCEPT ALL operators will determine 
how duplicates are handled. However, if you look at (1), (4), and 
(5) you might come with this answer:

..
WHERE (SELECT COUNT(*) FROM A)
  = (SELECT COUNT(*
     FROM A INNER JOIN B
       ON A.keycol = B.keycol)
   AND (SELECT COUNT(*) FROM B)
  = (SELECT COUNT(*)
       FROM A INNER JOIN B
         ON A.keycol = B.keycol)

This query will produce a list of the unmatched values; you 
might want to keep them in two columns instead of coalescing 
them as I have shown here.

SELECT DISTINCT COALESCE(A.keycol, B.keycol) AS non_matched_key
 FROM A
   FULL OUTER JOIN
   B
   ON A.keycol = B.keycol
   WHERE A.keycol IS NULL
     OR B.keycol IS NULL;

Eventually, you will be able to handle this with the INTERSECT 
{ALL] and UNION [ALL] operators in Standard SQL and tune the 
query to whatever definition of equality you wish to use.

Unfortunately, these examples are for just comparing the keys. 
What do we do if we have tables without keys or if we want to 
compare all the columns?

The GROUP BY, the DISTINCT, and a few other things in SQL treat 
NULLs as if they were equal to each other. This is probably the defi-
nition of equality we would like to use.

Remember that if one table has more columns or more rows 
than the other, we can stop right there since they cannot possi-
bly be equal under that definition. We have to assume that the 
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tables have the same number of columns, of the same type, and 
in the same positions. But row counts look useful. Imagine that 
there are two children, each with a bag of candy. To determine 
that both bags are identical, the first children can start by pulling 
a piece of candy out and asking the other, “How many red ones 
do you have?” If the two counts disagree, we know that the bags 
are different. Now ask about the green pieces, if we matched on 
reds. We do not have to match each particular piece of candy in 
one bag with a particular piece of candy in the other bag. The 
counts are enough information only if they differ. If the counts 
are the same more work needs to be done. We could each have 
one brown piece of candy but mine could be an M&M and yours 
could be a malted milk ball.

Now, generalize that idea. Let’s combine the two tables into 
one big table, with an extra column, x0, to show from where each 
row originally came.

Now form groups based on all the original columns. Within 
each group, count the number of rows from one table and the 
number of rows from the second table. If the counts are different, 
there are unmatched rows.

This will handle redundant duplicate rows within one table. 
This query does not require that the tables have keys. The 
assumption in a GROUP BY clause is that all NULLs are treated as if 
they were equals. Here is the final query.

SELECT x1, x2, .., xn,
   COUNT(CASE WHEN x0 = 'A'
       THEN 1 ELSE 0 END) AS a_tally,
   COUNT(CASE WHEN x0 = 'B'
       THEN 1 ELSE 0 END) AS b_tally
   FROM (SELECT 'A', A.* FROM A
   UNION ALL
   SELECT 'B', B.* FROM B) AS X (x0, x1, x2, .., xn)
   GROUP BY x1, x2, x3, x4, .. xn
HAVING COUNT(CASE WHEN x0 = 'A' THEN 1 ELSE 0 END)
  <> COUNT(CASE WHEN x0 = 'B' THEN 1 ELSE 0 END);

You might want to think about the differences that changing 
the expression for the derived table X can make. If you use a UNION 
instead of a UNION ALL, then the row count for each group in both 
tables will be one. If you use a SELECT DISTINCT instead of a SELECT, 
then the row count in just that table will be one for each group.

Subset Equality
A surprisingly usable version of set equality is finding identical 
subsets within the same table. These identical subsets can build 
partitions that are known as equivalence classes in set theory. 
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Let’s use Chris Date’s suppliers-and-parts table to find pairs of 
suppliers who provide exactly the same parts. That is, the set of 
parts from one supplier is equal to the set of parts from the other 
supplier.

CREATE TABLE SupParts
(sup_nbr CHAR(2) NOT NULL,
part_nbr CHAR(2) NOT NULL,
PRIMARY KEY (sup_nbr, part_nbr));

The usual way of proving that two sets are equal is to show 
that set A contains set B and set B contains set A.

Any of the methods given can be modified to handle two cop-
ies of the same table under aliases. Instead, consider another 
approach. First, JOIN one supplier to another on their common 
parts, eliminating the situation where the first supplier is also the 
second supplier, so that you have the intersection of the two sub-
sets. If the intersection has the same number of pairs as each of 
the two subsets has elements, the two subsets are equal.

SELECT SP1.sup_nbr, SP2.sup_nbr, COUNT(*) AS part_count
  FROM SupParts AS SP1
   INNER JOIN
    SupParts AS SP2
   ON SP1.part_nbr = SP2.part_nbr
    AND SP1.sup_nbr < SP2.sup_nbr
GROUP BY SP1.sup_nbr, SP2.sup_nbr
HAVING COUNT(*) = (SELECT COUNT(*)
        FROM SupParts AS SP3
          WHERE SP3.sup_nbr = SP1.sup_nbr)
   AND COUNT(*) = (SELECT COUNT(*)
         FROM SupParts AS SP4
       WHERE SP4.sup_nbr = SP2.sup_nbr);

If there is an index on the supplier number in the SupParts 
table, it can provide the counts directly as well as helping with 
the JOIN operation. The only problem with this answer is that it 
is hard to see the groups of suppliers among the pairs. The part_
count column helps a bit, but it does not assign a grouping iden-
tifier to the rows.

35.4 Gaps in a Series
Gaps can exist in a sequence of numbers or dates. For example, the 
set {1, 6, 7, 8, 9} has missing elements {2, 3, 4, 5}. Unless told other-
wise, do not look for endpoints and just assume that the maximum 
value in the given set is the upper limit; that is, {10, 11, 12} is not 
a gap in this example.
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Let’s assume we have a table of people who bought tickets that 
are supposed to be in sequential order and we want to make a list 
of what is missing in each buyer_id’s set of tickets.

CREATE TABLE Tickets
(buyer_id CHAR(5) NOT NULL,
ticket_nbr INTEGER DEFAULT 1 NOT NULL
      CHECK (ticket_nbr > 0),
PRIMARY KEY (buyer_id, ticket_nbr));

INSERT INTO Tickets
VALUES ('a', 2), ('a', 3), ('a', 4),
  ('b', 4),
  ('c', 1), ('c', 2), ('c', 3), ('c', 4), ('c', 5),
  ('d', 1), ('d', 6), ('d', 7), ('d', 9),
  ('e', 10);

If we can assume that there is a relatively small number of 
tickets, then you could use a table of sequential numbers from 
1 to (n) and write:

SELECT DISTINCT T1.buyer_id, S1.seq_nbr
  FROM Tickets AS T1, Series AS S1
WHERE seq_nbr <= (SELECT MAX(ticket_nbr) -- set the range
       FROM Tickets AS T2
      WHERE T1.buyer_id = T2.buyer_id)
 AND seq_nbr NOT IN (SELECT ticket_nbr -- get missing 

numbers
            FROM Tickets AS T3
          WHERE T1.buyer_id = T3.buyer_id);

In effect, we are saying that a gap is a “sequence that is not in 
the table,” but we also know something about each contiguous 
gap. The starting value of the gap 2 1 and the ending value of the 
gap 1 1 are both in the table. Furthermore, no value between the 
start and the end are in the table. This gives us some boundaries 
to look for.

SELECT T1.buyer_id,
   (T1.ticket_nbr + 1) AS gap_start,
   (MIN(T2.ticket_nbr) - 1) AS gap_end
  FROM (TABLE Tickets
   UNION ALL
   SELECT DISTINCT buyer_id, 0
    FROM Tickets) AS T1(buyer_id, ticket_nbr),
   Tickets AS T2
  WHERE T1.ticket_nbr < T2.ticket_nbr
 AND T1.buyer_id = T2.buyer_id
  GROUP BY T1.buyer_id, T1.ticket_nbr
HAVING MIN(T2.ticket_nbr) - T1.ticket_nbr > 1;
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The trick here is realizing that the numbering starts with 1, 
so if 1 is missing from the set, there is no zero to form a bound-
ary for it. Hence, a little UNION ALL trick to add a zero to the 
table.

Intuitively, the “inverse” problem—list the ranges of all  
numbers that are present—would be easier than the solution for 
missing numbers. Turns out it is not!

SELECT X.buyer_id, MIN(X.initial), X.final
 FROM (SELECT T1.buyer_id, T1.ticket_nbr AS initial,
        MAX(T2.ticket_nbr) AS final
   FROM Tickets AS T1, Tickets AS T2
   WHERE T1.ticket_nbr <= T2.ticket_nbr
      AND (SELECT COUNT(DISTINCT T3.ticket_nbr)
      FROM Tickets AS T3
      WHERE T1.buyer_id = T3.buyer_id
        AND T3.ticket_nbr
        BETWEEN T1.ticket_nbr AND T2.ticket_nbr)
     = (T2.ticket_nbr - T1.ticket_nbr +1)
   GROUP BY T1.buyer_id, T1.ticket_nbr)
  AS X(buyer_id, initial, final)
GROUP BY buyer_id, final;

35.5 Covering for Overlapping Intervals
A related problem is finding a minimal covering for a set of over-
lapping intervals. This usually shows up in temporal queries 
where the intervals are durations of time, but the problem is eas-
ier to see with ranges of integers. For example, given:

Intervals = {(1, 2, 3), (2, 3, 4, 5), (4, 5, 6, 7, 8, 9, 
10, 11), (10, 11, 12), (20, 21)}

we want to get this set back: {(1, 12), (20, 21)}.
First, let’s create and load a table of intervals.

CREATE TABLE Intervals
(x INTEGER NOT NULL,
y INTEGER NOT NULL,
CHECK (x <= y),
PRIMARY KEY (x, y));

INSERT INTO Intervals
VALUES (1, 3), (2, 5), (4, 11), (10, 12);
   (20, 21), (120, 130), (120, 128), (120, 122), (121, 132), 
(121, 122), (121, 124), (121, 123), (126, 127);

There are a lot of approaches to a solution. Let’s start with 
older solutions and then move to more exotic SQL-99 solutions. 
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First, here is a query from Hugo Cornelius that uses a self-join 
and three nested correlated subqueries:

SELECT I1.x, MAX(I2.y) AS y
  FROM Intervals AS I1
  INNER JOIN
  Intervals AS I2
  ON I2.y > I1.x
WHERE NOT EXISTS
  (SELECT *
  FROM Intervals AS I3
WHERE I1.x - 1 BETWEEN I3.x AND I3.y)
    AND NOT EXISTS
  (SELECT *
    FROM Intervals AS I4
      WHERE I4.y > I1.x
     AND I4.y < I2.y
     AND NOT EXISTS
      (SELECT *
       FROM Intervals AS I5
         WHERE I4.y + 1 BETWEEN I5.x AND I5.y))
GROUP BY I1.x;

And here is another version of that approach, but converted 
to use left anti-semi-joins instead of subqueries. It might execute 
better on some platforms, and some people prefer this format to 
subqueries.

SELECT I1.x, MAX(I2.y) AS y
  FROM Intervals AS I1
    INNER JOIN
    Intervals AS I2
    ON I2.y > I1.x
   LEFT OUTER JOIN
   Intervals AS I3
   ON I1.x - 1 BETWEEN I3.x AND I3.y
    LEFT OUTER JOIN
    (Intervals AS I4
     LEFT OUTER JOIN
     Intervals AS I5
     ON I4.y + 1 BETWEEN I5.x AND I5.y)
    ON I4.y > I1.x
     AND I4.y < I2.y
     AND I5.x IS NULL
WHERE I3.x IS NULL
    AND I4.x IS NULL
GROUP BY I1.x;

If the table is large, the correlated subqueries (version 1) or the 
quintuple self-join (version 2) will probably make it slow.
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A second approach in Standard SQL assumes we have the 
usual Series auxiliary table. Now we find all the holes in the range 
of the intervals and put them in a VIEW; later we could use a WITH 
clause derived table in SQL-99.

CREATE VIEW Holes(hole_nbr)
AS
SELECT seq_nbr
  FROM Series
WHERE seq_nbr <= (SELECT MAX(y) FROM Intervals)
 AND NOT EXISTS
  (SELECT *
    FROM Intervals
      WHERE seq_nbr BETWEEN x AND y)
UNION VALUES (0) -- get the edge of the universe
UNION (SELECT MAX(y) + 1 FROM Intervals);

The query picks start and end pairs that are on the edge of a 
hole and counts the number of holes inside that range. Covering 
has no holes inside its range.

SELECT Starts.x, Ends.y
  FROM Intervals AS Starts,
    Intervals AS Ends,
    Series AS S -- usual auxiliary table
WHERE S.seq_nbr BETWEEN Starts.x AND Ends.y -- restrict 

seq_nbr numbers
    AND S.seq_nbr < (SELECT MAX(hole) FROM Holes)
    AND S.seq_nbr NOT IN (SELECT hole FROM Holes) -- not a hole
   AND Starts.x - 1 IN (SELECT hole FROM Holes) -- on a left 

cusp
    AND Ends.y + 1 IN (SELECT hole FROM Holes) -- on a right 

cusp
GROUP BY Starts.x, Ends.y
HAVING COUNT(DISTINCT seq_nbr)
   = Ends.y - Starts.x + 1; -- no holes in range

Now that you have ordinal functions in your SQL, there are 
ways to use them to solve the problem. John Gilson came up with 
a recursive solution using DB2. Notice the use of a count in the 
WITH clause.

WITH RECURSIVE
IntervalTally (n) AS (SELECT COUNT(*) FROM Intervals),
Cover (x, y, n)
AS
(SELECT I1.x, I1.y, T.n
    FROM Intervals AS I1, IntervalTally AS T
  WHERE NOT EXISTS
  (SELECT *
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    FROM Intervals AS I2
   WHERE I2.x <= I1.x
       AND I2.y >= I1.y
       AND (I2.x <> I1.x OR I2.y <> I1.y))
UNION ALL
SELECT CASE WHEN C.x <= I.x THEN C.x ELSE I.x END,
     CASE WHEN C.y >= I.y THEN C.y ELSE I.y END,
     C.n - 1
  FROM Intervals AS I, Cover AS C
WHERE I.x <= C.y
    AND I.y >= C.x
    AND (I.x < C.x OR I.y > C.y)
    AND C.n > 1)
-- main body of query
SELECT DISTINCT C1.x, C1.y
  FROM Cover AS C1
  WHERE NOT EXISTS
  (SELECT *
   FROM Cover AS C2
     WHERE C2.x <= C1.x
     AND C2.y >= C1.y
     AND (C1.x <> C2.x OR C1.y <> C2.y));

Dieter Nöth came up with this OLAP solution.

SELECT min_x, MAX(y)
  FROM (SELECT x, y,
        MAX(CASE WHEN x <= max_y THEN NULL ELSE x END)
        OVER(ORDER BY x, y ROWS UNBOUNDED PRECEDING)
      AS min_x
    FROM (SELECT x, y,
          MAX(y)
          OVER(ORDER BY x, y
            ROWS BETWEEN UNBOUNDED PRECEDING
               AND 1 PRECEDING)
          AS max_y
        FROM Intervals) AS D1
   ) AS D2
GROUP BY min_x;

35.6 Picking a Representative Subset
This problem and solution for it are due to Ross Presser. The 
problem is to find a subset of rows such that each value in each 
of two columns appears in at least one row. The purpose is to 
produce a set of samples from a large table. The table has a club_
name column and an ifc column; I want a set of samples that 
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contains at least one of each club_name and at least one of each 
ifc, but no more than necessary.

CREATE TABLE Memberships
(member_id INTEGER NOT NULL PRIMARY KEY,
club_name CHAR(7) NOT NULL,
ifc CHAR(4) NOT NULL);

CREATE TABLE Samples
(member_id INTEGER NOT NULL PRIMARY KEY,
club_name CHAR(7) NOT NULL,
ifc CHAR(4) NOT NULL);

INSERT INTO Memberships
VALUES (6401715, 'aarprat', 'ic17'),
  (1058337, 'aarprat', 'ic17'),
  (0459443, 'aarpprt', 'ic25'),
  (4018210, 'aarpbas', 'ig21'),
  (2430656, 'aarpbas', 'ig21'),
  (6802081, 'aarpprd', 'ig29'),
  (4236511, 'aarpprd', 'ig29'),
  (2162104, 'aarpbas', 'ig21'),
  (2073679, 'aarpprd', 'ig29'),
  (8148891, 'aarpbas', 'ig21'),
  (1868445, 'aarpbas', 'ig21'),
  (6749213, 'aarpbas', 'ig21'),
  (8363621, 'aarppup', 'ig29'),
  (9999, 'aarppup', 'ic17'); -- redundant

To help frame the problem better, consider this subset, 
which has a row with both a redundant club_name value and ifc 
value.

There can be more than one minimal solution. But we would 
be happy to simply find a near-minimal solution.

Nonminimal subset

 member_id club_name ifc

9999 aarppup ic17 > redundant row
1058337 aarprat ic17 > ifc
459443 aarpprt ic25
1868445 aarpbas ig21
2073679 aarpprd ig29
8363621 aarppup ig29 > club_name
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David Portas came up with a query that gives a near-minimal 
solution. This will produce a sample containing at least one row of 
each value in the two columns. It is not guaranteed to give the *min-
imum* subset but it should contain at most (c 1 i 2 1) rows, where 
(c) is the number of distinct clubs and (i) the number of distinct ifcs.

SELECT member_id, club_name, ifc
  FROM Memberships AS M
WHERE member_id
    IN
    (SELECT MIN(member_id)
      FROM Memberships
      GROUP BY club_name
     UNION ALL
     SELECT MIN(member_id)
     FROM Memberships AS M2
    GROUP BY ifc
   HAVING NOT EXISTS
     (SELECT *
       FROM Memberships
         WHERE member_id
          IN (SELECT MIN(member_id)
             FROM Memberships
           GROUP BY club_name)
       AND ifc = M2.ifc));

I am not sure it’s possible to find the minimum subset every 
time unless you use an iterative solution. The results are very 
dependent on the exact data involved.

Ross Presser’s iterative solution used a six-step system (fol-
lowing), and found that the number of rows resulting depended 
on both the order of the insert queries and on whether we used 
MAX() or MIN(). That said, the resulting row count varied only from 
403 to 410 rows on a real run of 52,776 invoices for a set where  
(c 5 325) and (i 5 117). Portas’s query gave a result of 405 rows, 
which is worse but not fatally worse.

-- first step: unique clubs
INSERT INTO Samples (member_id, club_name, ifc)
SELECT MIN(Randommid), club_name, MIN(ifc)
 FROM Memberships
GROUP BY club_name
HAVING COUNT(*) = 1;

-- second step: unique ifcs where club_name not already 
there

INSERT INTO Samples (member_id, club_name, ifc)
SELECT MIN(Memberships.Member_id), MIN(Memberships.club_

name), Memberships.ifc
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  FROM Memberships
GROUP BY Memberships.ifc
HAVING MIN(Memberships.club_name)
    NOT IN (SELECT club_name FROM Samples)
    AND COUNT(*) = 1;

-- intermezzo: views for missing ifcs, missing clubs
CREATE VIEW MissingClubs (club_name)
AS
SELECT Memberships.club_name
  FROM Memberships
    LEFT OUTER JOIN
    Samples
    ON Memberships.club_name = Samples.club_name
WHERE Samples.club_name IS NULL
GROUP BY Memberships.club_name;

CREATE VIEW MissingIfcs (ifc)
AS
SELECT Memberships.ifc
  FROM Memberships
    LEFT OUTER JOIN
    Samples
    ON Memberships.ifc = Samples.ifc
WHERE Samples.ifc IS NULL
GROUP BY Memberships.ifc;

-- third step: distinct missing clubs that are also 
 missing ifcs

INSERT INTO Samples (member_id, club_name, ifc)
SELECT MIN(Memberships.Member_id),
     Memberships.club_name,
     MIN(Memberships.ifc)
  FROM Memberships, MissingClubs, MissingIfcs
WHERE Memberships.club_name = MissingClubs.club_name
   AND Memberships.ifc = MissingIfcs.ifc
GROUP BY Memberships.club_name;

-- fourth step: distinct missing ifcs that are also 
 missing clubs

INSERT INTO Samples (member_id, club_name, ifc)
SELECT MIN(Memberships.member_id),
     MIN(Memberships.club_name),
     Memberships.ifc
  FROM Memberships, MissingClubs, MissingIfcs
WHERE Memberships.club_name = MissingClubs.club_name)
    AND Memberships.ifc = MissingIfcs.ifc
GROUP BY Memberships.ifc;

-- fifth step: remaining missing ifcs
INSERT INTO Samples (member_id, club_name, ifc)
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SELECT MIN(Memberships.member_id),
     MIN(memberships.club_name),
     memberships.ifc
  FROM Memberships, MissingIfcs
WHERE Memberships.ifc = MissingIfcs.ifc
GROUP BY Memberships.ifc;

-- sixth step: remaining missing clubs
INSERT INTO Samples (Member_id, club_name, ifc)
SELECT MIN(Memberships.Member_id),
     Memberships.club_name,
     MIN(Memberships.ifc)
  FROM Memberships, MissingClubs
WHERE Memberships.club_name = MissingClubs.club_name
GROUP BY Memberships.club_name;

We can check the candidate rows for redundancy removal 
with the two views that were created earlier to be sure.
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36
TREES AND HIERARCHIES IN SQL

I have a separate book (Trees and Hierarchies in SQL, ISBN 
 978-1558609204) devoted to this topic in great detail, so this will 
be a very quick discussion of the three major approaches to mod-
eling trees and hierarchies in SQL.

A tree is a special kind of directed graph. Graphs are data struc-
tures that are made up of nodes (usually shown as boxes or circles) 
connected by edges (usually shown as lines with arrowheads). Each 
edge represents a one-way relationship between the two nodes it 
connects. In an organizational chart, the nodes are positions that can 
be filled by employees and each edge is the “reports to” relationship. 
In a parts explosion (also called a bill of materials), the nodes are 
assembly units that eventually resolve down to individual parts from 
inventory, and each edge is the “is made of” relationship.

The top of the tree is called the root. In an organizational 
chart, it is the highest authority; in a parts explosion, it is the 
final assembly. The number of edges coming out of the node is 
its outdegree, and the number of edges entering it is its indegree. 
A binary tree is one in which a parent_node can have at most two 
children; more generally, an n-ary tree is one in which a node can 
have at most outdegree n.

The nodes of the tree that have no subtrees beneath them are 
called the leaf nodes. In a parts explosion, they are the individual 
parts, which cannot be broken down any further. The descen-
dants, or children, of a node (the parent_node) are every node in 
the subtree that has the parent_node node as its root.

There are several ways to define a tree: It is a graph with no 
cycles; it is a graph where all nodes except the root have indegree 1 
and the root has indegree zero. Another defining property is that a 
path can be found from the root to any other node in the tree by fol-
lowing the edges in their natural direction.

The tree structure and the nodes are very different things and 
therefore should be modeled in separate tables. But I am going to 
violate that design rule in this chapter and use an abstract tree in 
this chapter that looks like Figure 36.1.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00036-3
Copyright © 2011 by Elsevier Inc. All rights reserved.
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Figure 36.1 Abstract Tree.
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This little tree is small enough that you can remember what 
it looks like as you read the rest of this chapter, and it will illus-
trate the various techniques discussed here. I will use the terms  
child_node, parent_node, and node; you will see other terms 
used in various books on graphs.

36.1 Adjacency List Model
Most SQL databases have used the adjacency list model for two rea-
sons. The first reason is that Dr. Codd came up with it in the early 
days of the relational model and nobody thought about it after that. 
The second reason is that the adjacency list is a way of “faking” 
pointer chains, the traditional programming method in procedural 
languages for handling trees. It is a recording of the edges in a “boxes 
and arrows” diagram, something like this simple table:

CREATE TABLE AdjTree
(child_node CHAR(2) NOT NULL,
parent_node CHAR(2), -- null is root
PRIMARY KEY (child_node, parent_node));

AdjTree

 child_node parent_node

 'A' NULL
 'B' 'A'
 'C' 'A'
 'D' 'C'
 'E' 'C'
 'F' 'C'
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The queries for the leaf nodes and root are obvious. The root 
has a NULL parent_node and the leaf nodes have no subordi-
nates. Each row models two nodes that share an adjacent edge in 
a directed. The Adjacency List Model is both the most common 
and the worst possible tree model. On the other hand, it is the 
best way to model any general graph.

36.1.1 Complex Constraints
The first problem is that the Adjacency List Model requires com-
plex constraints to maintain any data integrity. In practice, the 
usual solution is to ignore the problems and hope that nothing 
bad happens to the structure. But if you care about data integrity, 
you need to be sure that:
1. There is only one root node. You may find that this is hard 

to write in many SQL products because they do not support 
CHECK() constraints that allow subquery expressions or aggre-
gate functions.

CREATE TABLE AdjTree
(child_node CHAR(2) NOT NULL,
parent_node CHAR(2), -- null is root
PRIMARY KEY (child_node, parent_node),
CONSTRAINT one_root
CHECK((SELECT COUNT(*)
   FROM AdjTree
      WHERE parent_node IS NULL) = 1)
..);

2. There are no cycles. Unfortunately, this cannot be done with-
out a trigger. The trigger code has to trace all the paths looking 
for a cycle. The most obvious constraint, to prohibit a single 
node cycle in the graph, would be:

CHECK (child_node <> parent_node) -- cannot be your own father!

But that does not detect (n > 2) node cycles. We know that the 
number of edges in a tree is the number of nodes minus one, so 
this is a connected graph. That constraint looks like this:

CHECK ((SELECT COUNT(*) FROM AdjTree) -1 -- edges
   = (SELECT COUNT(parent_node) FROM AdjTree)) -- nodes

The COUNT(parent_node) will drop the NULL in the root row. That 
gives us the effect of having a constraint to check for one NULL:

CHECK((SELECT COUNT(*) FROM Tree WHERE parent_node IS 
NULL) = 1)
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This is a necessary condition, but it is not a sufficient condition. 
Consider this data, in which ‘D’ and ‘E’ are both in a cycle and that 
cycle is not in the tree structure.

Cycle

 child_node parent_node

 'A' NULL
 'B' 'A'
 'C' 'A'
 'D' 'E'
 'E' 'D'

One approach would be to remove all the leaf nodes and 
repeat this procedure until the tree is reduced to an empty set. If 
the tree does not reduce to an empty set, then there is a discon-
nected cycle.

CREATE FUNCTION TreeTest() RETURNS CHAR(6)
LANGUAGE SQL
BEGIN ATOMIC
DECLARE row_count INTEGER;
SET row_count
  = (SELECT COUNT(DISTINCT parent_node) + 1
     FROM AdjTree);
-- put a copy in a temporary table
INSERT INTO WorkTree
SELECT emp, parent_node FROM AdjTree;

WHILE row_count > 0
DO DELETE FROM WorkTree -- prune leaf nodes
 WHERE Tree.child_node
   NOT IN (SELECT T2.parent_node
        FROM Tree AS T2
        WHERE T2.parent_node IS NOT NULL);
 SET row_count = row_count -1;
END WHILE;
IF NOT EXISTS (SELECT * FROM WorkTree)
THEN RETURN ('Tree '); --pruned everything
ELSE RETURN ('Cycles'); --cycles were left
END IF;
END;
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36.1.2 Procedural Traversal for Queries
The second problem is that the Adjacency List Model requires 
that you traverse from node to node to answer any interest-
ing questions such as, “Does Mr. King have any authority over 
Mr. Jones?” or any aggregations up and down the tree.

SELECT P1.child_node, ' parent_node to ', C1.child_node
   FROM AdjTree AS P1, AdjTree AS C1
WHERE P1.child_node = C1.parent_node;

But something is missing here. This gives only the immedi-
ate parent_node of the node. Your parent_node’s parent_node 
also has authority over you, and so forth up the tree until we find 
someone who has no subordinates. To go two levels deep in the 
tree, we need to do a more complex self-JOIN, thus:

SELECT B1.child_node, ' parent_node to ', E2.child_node
   FROM AdjTree AS B1, AdjTree AS E1, AdjTree AS E2
WHERE B1.child_node = E1.parent_node
   AND E1.child_node = E2.parent_node;

Unfortunately, you have no idea just how deep the tree is, so 
you must keep extending this query until you get an empty set 
back as a result. The practical problem is that most SQL compil-
ers will start having serious problems optimizing queries with a 
large number of tables.

The other methods are to declare a CURSOR and traverse the 
tree with procedural code. This is usually painfully slow, but 
it will work for any depth of tree. It also defeats the purpose of 
using a nonprocedural language like SQL.

With recursive Common Table Expressions in SQL-99, you can 
also write a query that recursively constructs the transitive clo-
sure of the table by hiding the traversal. This feature is still slow 
compared to the nested sets model. Here is a simple recursive 
traversal that computes the level in the organizational chart.

WITH RECURSIVE PersonnelTraversal
AS -- start at the root
(SELECT emp_id,
      1 AS hierarchy_level
 FROM Personnel
WHERE mgr_emp_id IS NULL
UNION ALL
SELECT E.emp_id, -- add each level
     (X.hierarchy_level + 1) AS hierarchy_level
 FROM Personnel AS E,
   PersonnelTraversal AS X
   WHERE X.emp_id = E.mgr_emp_id)
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SELECT emp_id, hierarchy_level
   FROM PersonnelTraversal;

This is the basic skeleton for computations in an adjacency 
list model.

36.1.3 Altering the Table
Insertion of a new node is the only easy operation in the 
Adjacency list model. You simply do an INSERT INTO statement 
and check to see that the parent_node already exists in the table.

Deleting an edge in the middle of a tree will cause the table to 
become a forest of separate trees. You need some rules for rear-
ranging the structure. The two usual methods are:
1. Promote a subordinate to the vacancy (and cascade the vacancy 

downward).
2. Assign all the subordinates to their parent_node’s parent_node 

(the orphans go to live with grandparents).
Consider what has to happen when a middle level node is 

changed. The change must occur in both the child_node and 
 parent_node columns.

UPDATE AdjTree
 SET child_node
   = CASE WHEN child_node = 'C'
      THEN 'C1',
      ELSE child_node END,
   parent_node
   = CASE WHEN parent_node= 'C'
      THEN 'C1',
      ELSE parent_node END
WHERE 'C' IN (parent_node, child_node);

36.2 The Path Enumeration Model
The next method for representing hierarchies in SQL was first 
discussed in detail by Stefan Gustafsson on an Internet site for 
SQL Server users. Later Tom Moreau and Itzak Ben-Gan devel-
oped it in more detail in their book, Advanced Transact-SQL for 
SQL Server 2000 (ISBN 978-1-893115-82-8 ). This model stores the 
path from the root to each node as a string at that node.

Of course we purists might object that this is a denormalized 
table, since the path is not a scalar value. The worst case oper-
ation you can do in this representation is to alter the root of 
the tree. We then have to recalculate all the paths in the entire 
tree. But if the assumption is that structural modifications high 
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in the tree are relatively uncommon, then this might not be a 
problem. The table for a simple tree we will use for this chapter 
looks like this:

CREATE TABLE PathTree
(node CHAR(2) NOT NULL PRIMARY KEY,
path VARCHAR (900) NOT NULL);

The example tree would get the following representation:

node path

'A' 'a/'
'B' 'a/b/'
'C' 'a/c/'
'D' 'a/c/d/'
'E' 'a/c/e/'
'F' 'a/c/f/'

What we have done is concatenate the node names and sepa-
rated them with a slash. All the operations will depend on string 
manipulations, so we’d like to have short node identifiers, so the 
paths will be short. We would prefer, but not require, identifiers 
of one length to make substrings easier.

You have probably recognized this because I used a slash 
separator; this is a version of the directory paths used in several 
operating systems such as the UNIX family and Windows.

36.2.1 Finding Subtrees and Nodes
The major trick in this model is the LIKE predicate. The subtree 
rooted at :mynode is found with this query.

SELECT node
 FROM PathTree
WHERE path LIKE '%' || :my_node || '%';

Finding the root node is easy, since that is the substring of any 
node up to the first slash. However, the leaf nodes are harder.

SELECT T1.node
 FROM PathTree AS T1
   WHERE NOT EXISTS
  (SELECT *
     FROM PathTree AS T2
   WHERE T2.path LIKE T1.path || '/_');
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36.2.2 Finding Levels and Subordinates
The depth of a node is shown by the number of ‘/’ in the path 
string. If you have a REPLACE(), which can remove the ‘/’ charac-
ters, the difference between the length of the part with and without 
those characters gives you the level.

CREATE VIEW DetailedTree (node, path, level)
AS SELECT node, path,
     CHARLENGTH (path)
      - CHARLENGTH (REPLACE (path, '/', ''))
   FROM PathTree;

The immediate descendents of a given node can be found 
with this query, if you know the length of the node identifiers. In 
this sample data, that length is one character:

SELECT :mynode, T2.node
 FROM PathTree AS T1, PathTree AS T2
   WHERE T1.node = :mynode
  AND T2.path LIKE T1.path || '_/';

This can be expanded with OR-ed like predicates that cover 
the possible lengths of the node identifiers.

36.2.3 Deleting Nodes and Subtrees
This is a bit weird at first, because the removal of a node requires 
that you first update all the paths. Let us delete node ‘B’ in the 
sample tree:

BEGIN ATOMIC
UPDATE PathTree
 SET path
   = REPLACE (path, 'b/', '')
WHERE POSITION ('b/' IN path) > 0;
DELETE FROM PathTree
WHERE node = 'B';
END;

Deleting a subtree rooted at :mynode is actually simpler:

DELETE FROM PathTree
WHERE path LIKE (SELECT path
        FROM PathTree
          WHERE node = :my_node ||'%';

36.2.4 Integrity Constraints
If a path has the same node in it twice, then there is a cycle in the 
graph. We can use a VIEW with just the node names in it to some 
advantage here.
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CHECK (NOT EXISTS
   (SELECT *
     FROM NodeList AS D1, PathTree AS P1
       WHERE CHAR_LENGTH (REPLACE (D1.node, P1.path, ''))
       < (CHAR_LENGTH(P1.path) - CHAR_LENGTH(D1.node))
  ))

Unfortunately, a subquery in a constraint is not widely imple-
mented yet.

36.3 Nested Set Model of Hierarchies
Since SQL is a set-oriented language, this is a better model for the 
approach discussed here. If you have used HTML, XML, or a lan-
guage with a block structure, then you understand the basic idea 
of this model. The lft and rgt columns (their names are abbrevia-
tions for “left” and “right,” which are reserved words in Standard 
SQL) are the count of the “tags” in an XML representation of a tree.

Imagine circles inside circles without any of them overlap-
ping, the way you would draw a markup language structure. This 
has some predictable results that we can use for building queries.

If that mental model does not work for you, to convert the 
“boxes and arrows” graph into a Nested Set Model, think of a 
little worm crawling along the tree. The worm starts at the top, 
the root, and makes a complete trip around the tree. When he 
comes to a node, he puts a number in the cell on the side that 
he is visiting and increments his counter. Each node will get two 

Figure 36.2 Traditional “boxes & arrows” tree diagram.
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numbers, one for the right side and one for the left. Computer 
science majors will recognize this as a modified preorder tree 
traversal algorithm.

CREATE TABLE NestTree
(node CHAR(2) NOT NULL PRIMARY KEY,
lft INTEGER NOT NULL UNIQUE CHECK (lft > 0),
rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
CONSTRAINT order_okay CHECK (lft < rgt));

Figure 36.4 Linear nested sets tree diagram.
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Figure 36.3 Nested sets tree diagram.
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Another nice thing is that the name of each node appears 
once and only once in the table. The path enumeration and adja-
cency list models used lots of self-references to nodes, which 
made updating more complex.

36.3.1 The Counting Property
The lft and rgt numbers have a definite meaning and carry infor-
mation about the location and nature of each subtree. The root is 
always (lft, rgt) = (1, 2 * (SELECT COUNT(*) FROM TreeTable)) 
and leaf nodes always have (lft + 1 = rgt).

SELECT node AS root
 FROM NestTree
WHERE lft = 1;
SELECT node AS leaf
 FROM NestTree
WHERE lft = (rgt - 1);

Another very useful result of the counting property is that 
any node in the tree is the root of a subtree (the leaf nodes are a 
degenerate case) of size (rgt - lft +1)/2.

36.3.2 The Containment Property
In the Nested Set Model table, all the descendants of a node 
can be found by looking for the nodes with a rgt and lft number 
between the lft and rgt values of their parent_node node. For 
example, to find out all the subordinates of each boss in the cor-
porate hierarchy, you would write:

SELECT Superiors.node, ' is a boss of ', Subordinates.node
 FROM NestTree AS Superiors, NestTree AS Subordinates
WHERE Subordinates.lft BETWEEN Superiors.lft AND Superiors 

.rgt;

This would tell you that everyone is also his own boss, so in 
some situations you would also add the predicate,

 .. AND Subordinates.lft <> Superiors.lft

This simple self-JOIN query is the basis for almost everything 
that follows in the Nested Set Model. The containment property 
does not depend on the values of lft and rgt having no gaps, but 
the counting property does.

The level of a node in a tree is the number of edges between 
the node and the root, where the larger the depth number, the 
farther away the node is from the root. A path is a set of edges 
that directly connect two nodes.
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The Nested Set Model uses the fact that each containing set is 
“wider” (where width 5 (rgt 2 lft)) than the sets it contains.

Obviously, the root will always be the widest row in the table. 
The level function is the number of edges between two given 
nodes; it is fairly easy to calculate. For example, to find the level 
of each subordinate node, you would use:

SELECT T2.node, (COUNT(T1.node) - 1) AS level
 FROM NestTree AS T1, NestTree AS T2
WHERE T2.lft BETWEEN T1.lft AND T1.rgt
GROUP BY T2.node;

The reason for using the expression (COUNT(*) – 1) is to 
remove the duplicate count of the node itself because a tree starts 
at level zero. If you prefer to start at one, then drop the extra 
arithmetic.

36.3.3 Subordinates
The Nested Set Model usually assumes that the subordinates are 
ranked by age, seniority, or in some way from left to right among 
the immediate subordinates of a node. The adjacency model 
does not have a concept of such rankings, so the following que-
ries are not possible without extra columns to hold the rankings 
in the adjacency list model.

Most senior subordinate is found by this query:

SELECT Subordinates.node, ' is the oldest child_node of ', 
:my_node

 FROM NestTree AS Superiors, NestTree AS Subordinates
WHERE Superiors.node = :my_node
 AND Subordinates.lft - 1 = Superiors.lft; -- leftmost 

child_node

Most junior subordinate:

SELECT Subordinates.node, ' is the youngest child_node of ', 
:my_node

 FROM NestTree AS Superiors, NestTree AS Subordinates
WHERE Superiors.node = :my_node
 AND Subordinates.rgt = Superiors.rgt - 1; -- rightmost 

child_node

To convert a nested sets model into an adjacency list model 
with the immediate subordinates, use this query in a VIEW.

CREATE VIEW AdjTree (parent_node, child_node)
AS
SELECT B.node, E.node
 FROM NestTree AS E
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    LEFT OUTER JOIN
    NestTree AS B
    ON B.lft
     = (SELECT MAX(lft)
        FROM NestTree AS S
          WHERE E.lft > S.lft
        AND E.lft < S.rgt);

36.3.4 Hierarchical Aggregations
To find the level of each node, so you can print the tree as an 
indented listing. Technically, you should declare a cursor to go 
with the ORDER BY clause.

SELECT COUNT(T2.node) AS indentation, T1.node
  FROM NestTree AS T1, NestTree AS T2
 WHERE T1.lft BETWEEN T2.lft AND T2.rgt
 GROUP BY T1.lft, T1.emp
 ORDER BY T1.lft;

This same pattern of grouping will also work with other aggre-
gate functions. Let’s assume a second table contains the weight of 
each of the nodes in the NestTree. A simple hierarchical total of 
the weights by subtree is a two-table join.

SELECT Superiors.node, SUM (Subordinates.weight) AS 
subtree_weight

 FROM NestTree AS Superiors, NestTree AS Subordinates
   NodeWeights AS W
WHERE Subordinates.lft BETWEEN Superiors.lft AND Superiors.rgt
 AND W.node = Subordinates,node;

36.3.5 Deleting Nodes and Subtrees
Another interesting property of this representation is that the 
subtrees must fill from lft to rgt. In other tree representations, it is 
possible for a parent_node node to have a rgt child_node and no 
lft child_node. This lets you assign some significance to being the 
leftmost child_node of a parent_node. For example, the node in 
this position might be the next in line for promotion in a corpo-
rate hierarchy.

Deleting a single node in the middle of the tree is conceptu-
ally harder than removing whole subtrees. When you remove a 
node in the middle of the tree, you have to decide how to fill 
the hole.

There are two ways. The first method is to promote one of 
the children to the original node’s position—Dad dies and the 
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oldest son takes over the business. The second method is to 
connect the children to the parent_node of the original node—
Mom dies and Grandma adopts the kids. This is the default 
action in a Nested Set Model because of the containment prop-
erty; the deletion will destroy the counting property, however.

If you wish to close multiple gaps, you can do this by renum-
bering the nodes, thus.

UPDATE NestTree
 SET lft = (SELECT COUNT(*)
         FROM (SELECT lft FROM NestTree
            UNION ALL
           SELECT rgt FROM NestTree) AS LftRgt (seq_nbr)
         WHERE seq_nbr <= lft),
   rgt = (SELECT COUNT(*)
         FROM (SELECT lft FROM NestTree
            UNION ALL
           SELECT rgt FROM NestTree) AS LftRgt (seq_nbr)
WHERE seq_nbr <= rgt);

If the derived table LftRgt is a bit slow, you can use a tempo-
rary table and index it or use a VIEW that will be materialized.

CREATE VIEW LftRgt (seq_nbr)
AS SELECT lft FROM NestTree
 UNION
 SELECT rgt FROM NestTree;

This VIEW can also be used to check that the tree has all of the 
lft and rgt values it should with this query:

 NOT EXISTS
 (SELECT * 
   FROM (SELECT seq_nbr, ROW_NUMBER() OVER (ORDER BY 

seq_nbr) AS rn
       FROM LftRgt) AS X
 WHERE seq_nbr <> rn)

36.3.6  Converting Adjacency List to Nested  
Set Model

It would be fairly easy to load an adjacency list model table into 
a host language program, then use a recursive preorder tree tra-
versal program from a college freshman data structures textbook 
to build the nested set model. Here is version with an explicit 
stack in SQL/PSM.

-- Tree holds the adjacency model
CREATE TABLE Tree
(node CHAR(10) NOT NULL,
parent_node CHAR(10));
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-- Stack starts empty, will hold the nested set model
CREATE TABLE Stack
(stack_top INTEGER NOT NULL,
node CHAR(10) NOT NULL,
lft INTEGER,
rgt INTEGER);

BEGIN ATOMIC
DECLARE counter INTEGER;
DECLARE max_counter INTEGER;
DECLARE current_top INTEGER;

SET counter = 2;
SET max_counter = 2 * (SELECT COUNT(*) FROM Tree);
SET current_top = 1;

--clear the stack
DELETE FROM Stack;

-- push the root
INSERT INTO Stack
SELECT 1, node, 1, max_counter
 FROM Tree
WHERE parent_node IS NULL;

-- delete rows from tree as they are used
DELETE FROM Tree WHERE parent_node IS NULL;

WHILE counter <= max_counter- 1
 DO IF EXISTS (SELECT *
       FROM Stack AS S1, Tree AS T1
       WHERE S1.node = T1.parent_node
        AND S1.stack_top = current_top)
  THEN -- push when top has subordinates and set lft value
   INSERT INTO Stack

SELECT (current_top + 1), MIN(T1.node), counter, 
CAST(NULL AS INTEGER)

    FROM Stack AS S1, Tree AS T1
    WHERE S1.node = T1.parent_node
     AND S1.stack_top = current_top;

    -- delete rows from tree as they are used
    DELETE FROM Tree
    WHERE node = (SELECT node
          FROM Stack
          WHERE stack_top = current_top + 1);
    -- housekeeping of stack pointers and counter
    SET counter = counter + 1;
    SET current_top = current_top + 1;
   ELSE -- pop the stack and set rgt value
    UPDATE Stack
     SET rgt = counter,
       stack_top = -stack_top -- pops the stack



680  Chapter 36 TREES AND HIERARCHIES IN SQL

     WHERE stack_top = current_top;
    SET counter = counter + 1;
    SET current_top = current_top - 1;
   END IF;
  END WHILE;
END;

-- the top column is not needed in the final answer
SELECT node, lft, rgt FROM Stack;

This is not the fastest way to do a conversion, but since con-
versions are probably not going to be frequent tasks, it might be 
good enough when translated into your SQL product’s proce-
dural language.

36.4 Other Models for Trees and Hierarchies
Other models for trees are discussed in a separate book (Trees & 
Hierarchies in SQL, ISBN 978-1558609204), but these three meth-
ods represent the major families of models. You can also use 
 specialized models for specialized trees, such as binary trees. 
The real point is that you can use SQL for hierarchical structures, 
but you have to pick the right one for your task. I would classify 
the choices as:
1. Frequent node changes and infrequent structure changes. 

Example: organizational charts where personnel come and go, 
but the organization stays much the same.

2. Infrequent node changes with frequent structure changes. 
Example: a message board where the e-mails are the nodes that 
never change and the structure is simply extended with each 
new e-mail.

3. Infrequent node changes and infrequent structure changes. 
Example: historical data in a data warehouse that has a cate-
gorical hierarchy in place as a dimension.

4. Both frequent node changes and frequent structure changes. 
Example: a mapping system that attempts to find the best 
path from a central dispatch to the currently most critical 
node through a tree that is also changing. Let’s make that a bit 
clearer with the concrete example of getting a fire truck from 
the engine house to the worst fire in its service area based on 
the traffic at the time.
I am not going to pick any particular tree model for any of those 

situations. The answer is, “Well, it all depends …” once again.
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37
GRAPHS IN SQL

The terminology in graph theory pretty much explains itself; 
the concept of a bunch of lines connecting dots seems simple 
enough. But graph theory is surprisingly powerful and rich in 
mathematical complexity. You might want to read some of the 
books suggested in the last section of this chapter, if you never 
had a course in it before.

Graphs are important because they are a general way to rep-
resent many different types of data and their relationships. A few 
examples among many are:
•	 Social	networks
•	 Friend	of	a	friend
•	 Degree	of	separation
•	 Traffic	routing

Here	 is	 a	 quick	 review	 of	 terms,	 though	 you	 will	 find	 other	
authors have different ones for the same concepts.

A graph is a data structure made up of nodes connected by 
edges. Edges can be directed (permit travel in only one  direction) 
or undirected (permit travel in both directions). The number of 
edges entering a node is its indegree; likewise, the number of 
edges leaving a node is its outdegree. A set of edges that allow 
you to travel from one node to another is called a path. A cycle 
is a path that comes back to the node from which it started with-
out	crossing	itself	(this	means	that	a	big	‘O’	is	fine	but	a	figure	‘8’	
is not).

A tree is a type of directed graph that is important enough to 
have its own terminology. Its special properties and frequent use 
have made it important enough to be covered in a separate chap-
ter. The following section will stress other useful kinds of gener-
alized	directed	graphs.	Generalized	directed	graphs	are	classified	
into nonreconvergent and reconvergent graphs. In a reconver-
gent graph there are multiple paths between at least one pair of 
nodes. Reconvergent graphs are either cyclic or acyclic.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00037-5
Copyright © 2011 by Elsevier Inc. All rights reserved.

http://dx.doi.rog/10.1016/B978-0-12-382022-8.00037-5
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37.1 Adjacency List Model Graphs
The	most	common	way	to	model	a	graph	in	SQL	is	with	an	adja-
cency list model. Each edge of the graph is shown as a pair of 
nodes in which the ordering matters, and then any values associ-
ated with that edge is shown in another column.

Here	 is	 the	 skeleton	 of	 the	 basic	 adjacency	 list	 model	 of	 a	
graph, with nodes in a separate table. This is the most common 
method	 for	 modeling	 graphs	 in	 SQL.	 Before	 we	 had	 recursive	
CTEs, you had to use cursors and procedural code for the interest-
ing algorithms.

CREATE TABLE Nodes
(node_id INTEGER NOT NULL PRIMARY KEY,
 « other attributes of the node »);

CREATE TABLE AdjacencyListGraph
(begin_node_id INTEGER NOT NULL
   REFERENCES Nodes (node_id)
   ON DELETE CASCADE,
end_node_id INTEGER NOT NULL
   REFERENCES Nodes (node_id)
   ON DELETE CASCADE,
 « other attributes of the edge »,
PRIMARY KEY (begin_node_id, end_node_id));

Technically, the begin_node_id can be the same as the end_
node_id and we can have a node without any edges. They are 
easy to diagram, as seen in Figure	37.1.

The “other attributes of the edge” are usually called weights. 
These attributes model distance or travel time for maps, electri-
cal resistance for circuits, cost of a process in workflow networks, 

Figure 37.1 Nodes.
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and so on. They are usually expressed as a numeric value on 
some scale, and we want to do computations with them.

Likewise,	the	“other	attributes	of	the	node”	are	usually	a	name	
(say, “5 ohm resistor” in a circuit diagram) or where the weight 
(travel distance in a road map) is kept in the schema.

37.1.1 SQL and the Adjacency List Model
There	 are	 only	 two	 approaches	 with	 an	 adjacency	 list	 model	
of a graph. You can use procedural code, which has two more 
options—a procedure or a cursor. Or you can use a recursive CTE, 
but it is not recommended. Recursion is usually slow and most 
SQL	products	choke	at	a	certain	depth,	usually	some	power	of	two.

The procedural approaches are usually direct translations of 
known algorithms from your favorite procedural programming 
languages	into	SQL/PSM.	You	replace	the	arrays	with	tables	that	
mimic arrays.

Though still procedural under the covers, you can use recur-
sive CTEs instead of loops and perhaps gain advantages from the 
query optimizer and parallelism. The very general skeleton of 
such queries is:

WITH RECURSIVE
SolutionGraph (source_node, dest_node, <wgt>, ..)
AS
(SELECT source_node, dest_node, <wgt>,
     <other attributes>, <possible counts>
  FROM AdjacencyListGraph
 UNION ALL
 SELECT G1.source_node, G2.dest_node,
     <computation on wgt>,
     <computation on other attributes>,
     <increment counts>
  FROM SolutionGraph AS G1, Graph AS G2
 WHERE G2.source_node = G1.dest_node
  AND G2.dest_node <> G1.source_node
  AND NOT EXISTS
   (SELECT *
     FROM Graph AS G3
    WHERE G3.source_node = G1.source_node
     AND G3.dest_node = G2.dest_node
     AND <special conditions>))

SELECT source_node, dest_node,
    <aggregate computation on wgt>,
    <aggregate computation on other attributes>,
    <final counts>
 FROM SoluitonGraph
WHERE <special conditions>
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GROUP BY source_node, dest_node
HAVING <special conditions>;

In English, you start with an initial set of nodes and see if they 
are what you wanted; if not, then add more nodes recursively. This 
is not the only way to build graph algorithms, but it is a common 
design pattern. The bad news is that an iterative program can stop 
at	the	first	right	answer;	recursive	CTEs	(and	SQL	in	general)	tend	
to	find	all	the	valid	answers,	no	matter	what	the	cost.

37.1.2 Paths with CTE
The following queries with CTEs	 is	 due	 to	 Frédéric	 Brouard	 of	
France.	The	sample	data	and	the	narrative	are	so	delightful	that	I	
am using his material directly.

Perhaps you never go to France. So you may be interested by the 
fact that in Paris, there are beautiful girls, and in Toulouse a 
famous dish called Cassoulet, and a small plane constructor called 
Airbus. So the problem is to go by car from Paris to Toulouse using 
the speedway network. I just simplify for you (if you are lost and 
you do not know the pronunciation to ask people your way to 
 Toulouse, it is simple. Just say “to loose” …):

CREATE TABLE Journeys
(depart_town VARCHAR(32) NOT NULL,
arrival_town VARCHAR(32) NOT NULL,
CHECK (depart_town <> arrival_town),

Figure 37.2 The French road trip graph.
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PRIMARY KEY (depart_town, arrival_town),
jny_distance INTEGER NOT NULL
   CHECK (jny_distance > 0));

INSERT INTO Journeys
VALUES ('Paris', 'Nantes', 385),
('Paris', 'Clermont-Ferrand', 420),
('Paris', 'Lyon', 470),
('Clermont-Ferrand', 'Montpellier', 335),
('Clermont-Ferrand', 'Toulouse ', 375),
('Lyon', 'Montpellier', 305),
385
420
470
375
335
305
320
205
240
('Lyon', 'Marseille', 320),
('Montpellier', 'Toulouse ', 240),
('Marseille', 'Nice', 205);

Now we will try a very simple query, giving all the journeys 
 between towns:

WITH Trips (arrival_town)
 AS (SELECT DISTINCT depart_town
    FROM Journeys
   UNION ALL
   SELECT arrival_town
    FROM Journeys AS Arrivals,
      Journeys AS Departures
   WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT DISTINCT arrival_town FROM Trips;

arrival_town

Clermont-Ferrand
Lyon
Marseille
Montpellier
Paris
Nantes
Toulouse
Nice
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We have probably three ways to go to Toulouse. Can we filter the 
destination? Sure!

WITH Journeys (arrival_town)
 AS (SELECT DISTINCT depart_town
     FROM Journeys
    WHERE depart_town = 'Paris'
   UNION ALL
   SELECT arrival_town
    FROM Journeys AS Arrivals,
      Journeys AS Departures
   WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town
 FROM Journeys
WHERE arrival_town = 'Toulouse';

This query is not very interesting because we do not know from 
which town we came. We just know the towns where we can go, 
and the fact that we have probably different ways to go to same 
place. Let us see if we can have some more information …

First, we want to start from Paris:

WITH Trips (arrival_town)
 AS (SELECT DISTINCT depart_town
    FROM Journeys
      WHERE depart_town = 'Paris'
  UNION ALL
  SELECT arrival_town
   FROM Journeys AS Arrivals
     INNER Journeys AS Departures
        ON Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town FROM Journeys;

arrival_town

Paris
Nantes
Clermont-Ferrand
Lyon
Montpellier
Marseille
Nice
Toulouse    b goal
Montpellier
Toulouse    b goal
Toulouse    b goal
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We can refine this query by calculating the number of steps 
 involved in the different ways:

WITH Trips (arrival_town, steps)
 AS (SELECT DISTINCT depart_town, 0
     FROM Journeys
    WHERE depart_town = 'Paris'
   UNION ALL
   SELECT arrival_town, Departures.steps + 1
     FROM Journeys AS Arrivals,
       Journeys AS Departures
    WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps
 FROM Trips
WHERE arrival_town = 'Toulouse';

arrival_town Steps

Toulouse 3
Toulouse 2
Toulouse 3

The cherry on the cake will be to know the distances of the different 
ways:

WITH Trips (arrival_town, steps, total_distance)
AS
  (SELECT DISTINCT depart_town, 0, 0
   FROM Journeys
   WHERE depart_town = 'Paris'
   UNION ALL
   SELECT arrival_town, Departures.steps + 1,
      Departures.total_distance + Arrivals.jny_distance
    FROM Journeys AS Arrivals,
      Journeys AS Departures
    WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps, total_distance
 FROM Trips
WHERE arrival_town = 'Toulouse';

arrival_town

Toulouse
Toulouse
Toulouse
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arrival_town steps total_distance way

Toulouse 3 1015  Paris, Lyon, Montpelier, 
Toulouse

Toulouse 2 795  Paris, Clermont-Ferrand, 
Toulouse

Toulouse 3 995  Paris, Clermont-Ferrand, 
Montpelier, Toulouse

The girl in the cake will be to know the different towns we visit by 
those different ways:

WITH Trips (arrival_town, steps, total_distance, way)
 AS (SELECT DISTINCT depart_town, 0, 0,
          CAST('Paris' AS VARCHAR(MAX))
      FROM Journeys
     WHERE depart_town = 'Paris'
    UNION ALL
    SELECT arrival_town, Departures.steps + 1,
       Departures.total_distance + Arrivals.jny_distance,
       Departures.way ║ ',' ║Arrivals.arrival_town
     FROM Journeys AS Arrivals,
       Journeys AS Departures
     WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps, total_distance, way
 FROM Trips
WHERE arrival_town = 'Toulouse ';

arrival_town steps total_distance

Toulouse 3 1015
Toulouse 2 795
Toulouse 3 995

And now, ladies and gentleman, the recursive query is proud to 
present to you how to solve a very complex problem, called the 
traveling salesman problem. This is one of the operational research 
problems for which Edsger Wybe Dijkstra found the first efficient 
algorithm and received the Turing Award in 1972.

WITH Trips (arrival_town, steps, total_distance, way)
 AS (SELECT DISTINCT depart_town, 0, 0, CAST('Paris' 

AS VARCHAR(MAX))
     FROM Journeys
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     WHERE depart_town = 'Paris'
     UNION ALL
     SELECT arrival_town, Departures.steps + 1,
        Departures.total_distance + Arrivals.jny_distance,
        Departures.way ║','║Arrivals.arrival_town
      FROM Journeys AS Arrivals,
        Journeys AS Departures
     WHERE Departures.arrival_town = Arrivals.depart_town),
 ShortestDistance (total_distance)
 AS (SELECT MIN(total_distance)
      FROM Journeys
     WHERE arrival_town = 'Toulouse')
SELECT arrival_town, steps, total_distance, way
 FROM Trips AS T
   ShortestDistance AS S
WHERE T.total_distance = S.total_distance
  AND arrival_town = 'Toulouse';

37.1.3 Nonacyclic Graphs
In fact, one thing that is limiting the process in our network of 
speedways is that we have made routes with a single sense. I mean, 
we can go from Paris to Lyon, but we are not allowed to go from 
Lyon to Paris. For that, we need to add the reverse ways in the 
table, like:

depart_town arrival_town jny_distance

Lyon  Paris 470

This can be done by a very simple query:

INSERT INTO Journeys
SELECT arrival_town, depart_town, jny_distance
FROM Journeys;

The only problem is that previous queries will not work properly:

WITH Journeys (arrival_town)
AS (SELECT DISTINCT depart_town
    FROM Journeys
    WHERE depart_town = 'Paris'
 UNION ALL
 SELECT arrival_town
     FROM Journeys AS Arrivals,
    Journeys AS Departures
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  WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town
  FROM Journeys;

This query will give you an error message about the maximum 
depth of recursion being violated. What happened? Simply, you  
are trying all ways including cycling ways like Paris, Lyon, Paris, 
Lyon, Paris … ad infinitum … Is there a way to avoid cycling routes? 
Maybe. In one of our previous queries, we have a column that gives 
the complete list of stepped towns. Why do we not use it to avoid 
cycling? The condition will be: do not pass through a town that is 
already in the way. This can be written as:

WITH Trips (arrival_town, steps, total_distance, way)
 AS (SELECT DISTINCT depart_town, 0, 0, CAST('Paris' AS 

VARCHAR(255))
     FROM Journeys
     WHERE depart_town = 'Paris'
    UNION ALL
    SELECT arrival_town, Departures.steps + 1,
       Departures.total_distance + Arrivals.jny_distance,
       Departures.way ║','║Arrivals.arrival_town
    FROM Journeys AS Arrivals,
      Journeys AS Departures
    WHERE Departures.arrival_town = Arrivals.depart_town
     AND Departures.way NOT LIKE '%' ║ Arrivals.arrival_ 

   town ║ '%')
SELECT arrival_town, steps, total_distance, way
 FROM Trips
WHERE arrival_town = 'Toulouse';

arrival_town steps total_distance way

Toulouse 3 1015  Paris, Lyon, Montpellier, 
Toulouse

Toulouse 4 1485  Paris, Lyon, Montpellier, 
Clermont-Ferrand, Toulouse

Toulouse 2 795  Paris, Clermont-Ferrand, 
Toulouse

Toulouse 3 995  Paris, Clermont-Ferrand, 
Montpellier, Toulouse

As you see, a new route occurs. The worst in distance, but perhaps 
the most beautiful!

A CTE can simplify the expression of complex queries. Recursive 
queries must be employed where recursion is needed. Trust your 
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SQL product to terminate a bad query. There is usually an  option 
to set the depth of recursion either in the SQL engine or as an 
 OPTION clause at the end of the CTE clause.

37.1.4 Adjacency Matrix Model
An	adjacency	matrix	is	a	square	array	whose	rows	are	out-nodes	
and columns are in-nodes of a graph. A 1 in a cell means that 
there is edge between the two nodes. Using the following graph, 
we would have an array like this:

 A B C D E F G H

A| 1 1 1 0 0 0 0 0
B| 0 1 0 1 0 0 0 0
C| 0 0 1 1 0 0 1 0
D| 0 0 0 1 1 1 0 0
E| 0 0 0 0 1 0 0 1
F| 0 0 0 0 0 1 0 0
G| 0 0 0 0 0 0 1 1
H| 0 0 0 0 0 0 0 1

Figure 37.3 Simple directed graph.
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Many	 graph	 algorithms	 are	 based	 on	 the	 adjacency	 matrix	
model	and	can	be	translated	into	SQL.	Go	the	appropriate		chapter	
for	 the	 details	 of	 modeling	 matrices	 in	 SQL	 and	 in	 	particular,	
look	at	the	section	on	matrix	multiplication	in	SQL.	For	example,	
Dijkstra’s	 algorithm	 for	 the	 shortest	 distances	 between	 each	 pair	
of nodes in a graph looks like this in this array pseudo-code.
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FOR k = 1 TO n
 DO FOR i = 1 TO n
  DO FOR j = 1 TO n
   IF a[i,k] + a[k,j] < a[i,j]
   THEN a[i,j] = a[i,k] + a[k,j]
   END IF;
  END FOR;
 END FOR;
END FOR;

You need to be warned that for a graph of (n) nodes, the table 
will	be	of	size	(n^2).	The	algorithms	often	run	in	(n^3)	time.	The	
advantage it has is that once you have completed a table, it can 
be used for look-ups rather than recomputing distances over 
and over.

Running the query against the data set:

INSERT INTO AdjacencyListGraph
VALUES ('a', 'd', 1),
  ('d', 'e', 1),
  ('e', 'c', 1),
  ('c', 'b', 1),
  ('b', 'd', 1),
  ('a', 'e', 5);

gives the result SET:

source_node dest_node min_wgt

a b 4
a c 3
a d 1
a e 2
b c 3
b d 1
b e 2
c b 1
c d 2
c e 3
d b 3
d c 2
d e 1
e b 2
e c 1
e d 3
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Doing	the	Dijkstra	algorithm	would	probably	execute	signifi-
cantly	faster	in	a	language	with	arrays	than	in	SQL.

37.2  Split Node Nested Set Models 
for Graphs

It is also possible to load an acyclic directed graph into a nested 
set model by splitting the nodes. It is a specialized trick for a cer-
tain	class	of	graphs,	not	a	general	method	like	the	adjacency	list	
model graphs. Here is a skeleton table with minimal constrains 
for	a	Nested	Sets	Model	of	a	tree.

CREATE TABLE NestedSetsGraph
(node_id INTEGER NOT NULL REFERENCES Nodes (node_id),
lft INTEGER NOT NULL CHECK (lft >= 1) PRIMARY KEY,
rgt INTEGER NOT NULL UNIQUE,
CHECK (rgt > lft),
UNIQUE (node_id, lft));

You split nodes by starting at the sink nodes and move up 
the tree. When you come to a node of (indegree . 1) replace it 
with that many copies of the node under each of its superiors. 
Continue to do this until you get to the root. The acyclic graph 
will become a tree, but with duplicated node values. There are 
advantages to this model when you want to avoid recursion. You 
are trading speed for storage space, however.

37.2.1 All Nodes in the Graph
The nodes in the Nodes table might not all be used in the graph, 
and	 those	 that	 are	 used	 can	 be	 repeated.	 It	 is	 safer	 to	 find	 the	
nodes in the graph with a simple view instead.

Figure 37.4 Node splitting to avoid a cyclic graph.
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CREATE VIEW GraphNodes (node_id)
AS
SELECT DISTINCT node_id FROM NestedSetsGraph;

This is worth its own subsection because of double counting 
problems in this model.

37.2.2 Path Endpoints
A path through a graph is a traversal of consecutive nodes along a 
sequence of edges. Clearly, the node at the end of one edge in the 
sequence must also be the node at the beginning of the next edge 
in the sequence. The length of the path is the number of edges 
that are traversed along the path.

Path	endpoints	are	the	first	and	last	nodes	of	each	path	in	the	
graph.	For	a	path	of	length	zero,	the	path	endpoints	are	the	same	
node. Yes, it is legal to have an edge that loops back around to 
the same node. And it is legal to have a node without any edges, 
but	 you	 cannot	 model	 that	 with	 adjacency	 list;	 thank	 goodness	
nobody usually cares about those isolated nodes.

If there is more than one path between two nodes, then each 
path will be distinguished by its own distinct set of number pairs 
for the nested-set representation.

If there is only one path (p) between two nodes but this path is 
a subpath of more than one distinct path then the endpoints of (p) 
will have number pairs for each of these greater paths. As a canoni-
cal form, the least numbered pairs are returned for these endpoints.

CREATE VIEW PathEndpoints
(begin_node_id, end_node_id,
begin_lft, begin_rgt,
end_lft, end_rgt)
AS
SELECT G1.node_id, G2.node_id,
   G1.lft, G1.rgt, G2.lft, G2.rgt
 FROM (SELECT node_id, MIN(lft), MIN(rgt)
    FROM NestedSetsGraph
   GROUP BY node_id) AS G1 (node_id, lft, rgt)
  INNER JOIN
  NestedSetsGraph AS G2
  ON G2.lft >= G1.lft
    AND G2.lft < G1.rgt;

37.2.3 Reachable Nodes
If a node is reachable from another node then a path exists from 
one node to the other. It is assumed that every node is reachable 
from itself.
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CREATE VIEW ReachableNodes (begin_node_id, end_node_id)
AS
SELECT DISTINCT begin_node_id, end_node_id
 FROM PathEndpoints;

37.2.4 Edges
Edges	are	pairs	of	adjacent	connected	nodes	in	the	graph.	If	edge	
E is represented by the pair of nodes (n0, n1) then (n1) is reach-
able from (n0) in a single traversal.

CREATE VIEW Edges (begin_node_id, end_node_id)
AS
SELECT begin_node_id, end_node_id
 FROM PathEndpoints AS PE
WHERE begin_node_id <> end_node_id
  AND NOT EXISTS
    (SELECT *
      FROM NestedSetsGraph AS G
     WHERE G.lft > PE.begin_lft
      AND G.lft < PE.end_lft
      AND G.rgt > PE.end_rgt);

37.2.5 Indegree and Outdegree
The indegree of a node (n) is the number of distinct edges ending 
at (n). Nodes that have zero indegree are not returned. Indegree 
of all nodes in the graph:

CREATE VIEW Indegree (node_id, node_indegree)
AS
SELECT N.node_id, COUNT(E.begin_node_id)
 FROM GraphNodes AS N
   LEFT OUTER JOIN
   Edges AS E
   ON N.node_id = E.end_node_id
GROUP BY N.node_id;

Outdegree of a node (n) is the number of distinct edges begin-
ning at (n). Nodes that have zero outdegree are not returned. 
Outdegree of all nodes in the graph:

CREATE VIEW Outdegree (node_id, node_outdegree)
AS
SELECT N.node_id, COUNT(E.end_node_id)
 FROM GraphNodes AS N
   LEFT OUTER JOIN
   Edges AS E
   ON N.node_id = E.begin_node_id
GROUP BY N.node_id;
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37.2.6 Source, Sink, Isolated, and Internal Nodes
A source node of a graph has a positive outdegree but zero inde-
gree; that is, it has edges leading from, but not to, the node. This 
assumes there are no isolated nodes (nodes belonging to no edges).

CREATE VIEW SourceNodes (node_id, lft, rgt)
AS
SELECT node_id, lft, rgt
 FROM NestedSetsGraph AS G1
WHERE NOT EXISTS
  (SELECT *
    FROM NestedSetsGraph AS G
   WHERE G1.lft > G2.lft
     AND G1.lft < G2.rgt);

Likewise,	a	sink	node	of	a	graph	has	positive	indegree	but	zero	
outdegree. It has edges leading to, but not from, the node. This 
assumes there are no isolated nodes.

CREATE VIEW SinkNodes (node_id)
AS
SELECT node_id
 FROM NestedSetsGraph AS G1
WHERE lft = rgt − 1
  AND NOT EXISTS
   (SELECT *
     FROM NestedSetsGraph AS G2
    WHERE G1.node_id = G2.node_id
      AND G2.lft < G1.lft);

An isolated node belongs to no edges; that is, it has zero inde-
gree and zero outdegree. But we have agreed to leave them out of 
the model.

CREATE VIEW IsolatedNodes (node_id, lft, rgt)
AS
SELECT node_id, lft, rgt
 FROM NestedSetsGraph AS G1
WHERE lft = rgt − 1
  AND NOT EXISTS
    (SELECT *
      FROM NestedSetsGraph AS G2
     WHERE G1.lft > G2.lft
       AND G1.lft < G2.rgt);

An internal node of a graph has an (indegree . 0) and an 
 (outdegree . 0); that is, it acts as both a source and a sink.

CREATE VIEW InternalNodes (node_id)
AS
SELECT node_id
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 FROM (SELECT node_id, MIN(lft) AS lft, MIN(rgt) AS rgt
    FROM NestedSetsGraph
   WHERE lft < rgt − 1
  GROUP BY node_id) AS G1
WHERE EXISTS
  (SELECT *
    FROM NestedSetsGraph AS G2
   WHERE G1.lft > G2.lft
     AND G1.lft < G2.rgt)

37.2.7 Converting Acyclic Graphs to Nested Sets
Let’s	start	with	a	simple	graph	in	an	adjacency	list	model.

INSERT INTO Nodes (node_id)
VALUES ('a'), ('b'), ('c'), ('d'),
   ('e'), ('f'), ('g'), ('h');

INSERT INTO AdjacencyListGraph (begin_node_id, 
end_node_id)

VALUES ('a', 'b'), ('a', 'c'), ('b', 'd'), ('c', 'd'),
   ('c', 'g'), ('d', 'e'), ('d', 'f'), ('e', 'h'),
   ('g', 'h');

We	 can	 convert	 this	 adjacency	 list	 model	 to	 the	 nested	 sets	
model with a simple stack algorithm. You might want to try to 
rewrite this with a recursive CTE.

-- Stack to keep track of nodes being traversed in depth-
first fashion

CREATE TABLE NodeStack
(node_id INTEGER NOT NULL PRIMARY KEY
  REFERENCES Nodes (node_id),
distance INTEGER NOT NULL CHECK (distance >= 0),
lft INTEGER CHECK (lft >= 1),
rgt INTEGER,
CHECK (rgt > lft));

CREATE PROCEDURE AdjacencyListsToNestedSetsGraph ()
LANGUAGE SQL
READS SQL DATA
BEGIN
DECLARE path_length INTEGER;
DECLARE current_number INTEGER;
SET path_length = 0;
SET current_number = 0;
-- Clear the table that will hold the result
DELETE FROM NestedSetsGraph;
-- Initialize stack by inserting all source nodes of graph
INSERT INTO NodeStack (node_id, distance)
SELECT DISTINCT G1.begin_node_id, path_length
 FROM AdjacencyListGraph AS G1
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WHERE NOT EXISTS
   (SELECT *
     FROM AdjacencyListGraph AS G2
    WHERE G2.end_node_id = G1.begin_node_id);

WHILE EXISTS (SELECT * FROM NodeStack)
DO
 SET current_number = current_number + 1;
 IF EXISTS (SELECT * FROM NodeStack WHERE distance  

= path_length)
 THEN UPDATE NodeStack
    SET lft = current_number
   WHERE distance = path_length
    AND NOT EXISTS
      (SELECT *
        FROM NodeStack AS S2
       WHERE distance = path_length
        AND S2.node_id < NodeStack.node_id);
   INSERT INTO NodeStack (node_id, distance)
   SELECT G.end_node_id, (S.distance + 1)
    FROM NodeStack AS S,
      AdjacencyListGraph AS G
   WHERE S.distance = path_length
    AND S.lft IS NOT NULL
    AND G.begin_node_id = S.node_id;

    SET path_length = (path_length + 1);
 ELSE SET path_length = (path_length − 1);
    UPDATE NodeStack
      SET rgt = current_number
     WHERE lft IS NOT NULL
      AND distance = path_length;

    INSERT INTO NestedSetsGraph (node_id, lft, rgt)
    SELECT node_id, lft, rgt
     FROM NodeStack
    WHERE lft IS NOT NULL
     AND distance = path_length;
  DELETE FROM NodeStack
   WHERE lft IS NOT NULL
    AND distance = path_length;
 END IF;
END WHILE;
END;

37.3 Points inside Polygons
Although not actually part of graph theory, this seemed to be the 
reasonable place to put this section since it is also related to spa-
tial queries. A polygon can be described as a set of corner points 
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in an (x, y) coordinate system. The usual query is to tell if a given 
point is inside or outside of the polygon.

This	 algorithm	 is	 due	 to	 Darel	 R.	 Finley.	 The	 main	 advan-
tage	it	has	is	that	it	can	be	done	in	Standard	SQL	without	trigo-
nometry functions. The disadvantage is that it does not work 
for concave polygons. The work-around is to dissect the convex 
polygons into concave polygons, then add column for the name 
of the original area. The math behind the working code can be 
found here: http://local.wasp.uwa.edu.au/~pbourke/geometry/
insidepoly/.

-- set up polygon, with any ordering of the corners
CREATE TABLE Polygon
(x FLOAT NOT NULL,
y FLOAT NOT NULL,
PRIMARY KEY (x, y));

INSERT INTO Polygon
VALUES (2.00, 2.00), (1.00, 4.00),
   (3.00, 6.00), (6.00, 4.00), (5.00, 2.00);

--set up some sample points
CREATE TABLE Points
(xx FLOAT NOT NULL,
yy FLOAT NOT NULL,
location VARCHAR(10) NOT NULL, -- answer the question in 

advance!
PRIMARY KEY (xx, yy));
INSERT INTO Points
VALUES (2.00, 2.00, 'corner'),
   (1.00, 5.00, 'outside'),
   (3.00, 3.00, 'inside'),
   (3.00, 4.00, 'inside'),
   (5.00, 1.00, 'outside'),
   (3.00, 2.00, 'side');

-- do the query
SELECT P1.xx, P1.yy, p1.location, SIGN(
SUM
(CASE WHEN (polyY.y < P1.yy AND polyY.x >= P1.yy
    OR polyY.x < P1.yy AND polyY.y >= P1.yy)
   THEN CASE WHEN polyX.y + (P1.yy − polyY.y)
         /(polyY.x − polyY.y) * (polyX.x − polyX.y)  

      < P1.xx
       THEN 1 ELSE 0 END
   ELSE 0 END))AS flag
 FROM Polygon AS polyY, Polygon AS polyX, Points AS P1
GROUP BY P1.xx, P1.yy, p1.location;

When flag 5 1, the point is inside, when flag 5 0, it is outside.

http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
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Sides	are	counted	as	inside,	but	if	you	want	to	count	the		corner	
points as outside you should start the CASE expression with:

CASE WHEN EXISTS
   (SELECT * FROM Polygon
    WHERE x = P1.xx AND y = P1.yy)
    THEN 1 ..".
2,2
1,5
3,3
3,4
5,1
3,2
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3.0 2.0 side 1
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38
TEMPORAL QUERIES

Temporal data is the hardest type of data for people to handle 
conceptually. Perhaps time is difficult because it is dynamic and 
all other data types are static or perhaps because time allows 
multiple parallel events. This is an old puzzle that still catches 
people.

If a hen and a half lays an egg and a half in a day and a half, 
how many eggs will five hens lay in six days? Do not look at the 
rest of the page—try to answer the question in your head.

Suppose two hens lay four eggs in three days. That means that 
each hen laid two eggs during those three days, so each hen lays 
2/3 of an egg per day. Now if you had five hens and six days, they 
would lay five times as many eggs per day, totaling 10/3 per day; 
multiply that by 6 days, and there would be 20 eggs.

The algebra in this problem looks like this, where we want to 
solve for the rate in terms of “eggs per day,” a strange but con-
venient unit of measurement for summarizing the hen house 
output:

1½ hens * 1½ days * rate 5 1½ eggs
The first urge is to multiple both sides by 2⁄3 in an attempt to 

turn ALL of the 1½’s into 1’s. But what you actually get is:
1 hens * 1½ days * rate 5 1 egg; multiple by eggs per hen
1½ days * rate 5 1 egg per hen; divide by the number of hens
rate 5 2⁄3 egg per hen per day;

38.1 Temporal Math
Almost every SQL implementation has a DATE data type, but the 
functions available for them vary quite a bit. The most common 
ones are a constructor that builds a date from integers or strings; 
extractors to pull out the month, day, or year; and some display 
options to format output. Since display should not be done in the 
database, I am not going to bother with the display options.

Joe Celko’s SQL for Smarties. DOI: 10.1016/B978-0-12-382022-8.00038-7
Copyright © 2011 by Elsevier Inc. All rights reserved.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://dx.doi.rog/10.1016/B978-0-12-382022-8.00038-7


702  Chapter 38 TEMPORAL QUERIES

In Standard SQL, the constructor is CAST (<string expression> 
AS [DATE | TIME | TIMESTAMP]) for a string expression, or you can 
use literal constructors:

<date literal> ::= DATE <date string>
<time literal> ::= TIME <time string>
<timestamp literal> ::= TIMESTAMP <timestamp string>

In Standard SQL, the only ISO 8601 format allowed for datetime 
values are “yyyy-mm-dd” for dates, “hh:mm:ss.sssss” for times, and 
“yyyy-mm-dd hh:mm:ss.sssss” for timestamps, with the number 
of decimal places being implementation-defined. However, the 
FIPS-127 Standards want at least five decimal places in the  seconds. 
This avoids problems like confusing the British (dd/mm/yy), 
American (mm/dd/yy), and other traditional national shorthands.

The ISO 8601 Standard has many other date and time formats 
that are not ambiguous, and could be added to the strings recog-
nized by SQL. For example, a date without punctuation is legal 
(yyyymmdd) and so are strings with embedded letters. SQL does 
not have these options to keep things simple.

The extractor is the function EXTRACT(<extract field> FROM 
<extract source>) defined by:

<extract field> ::= <primary datetime field> | <time zone field>
<time zone field> ::= TIMEZONE_HOUR | TIMEZONE_MINUTE
<extract source> ::= <datetime value expression> | <inter-

val value expression>

The extract field options are a little easier to see in a table 
(Table 38.1).

The obvious ordering is from most significant to least signifi-
cant: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

The primary datetime fields other than SECOND contain non-
negative integer values, constrained by the natural rules for dates 

Table 38.1 Extract Field Options

Meaning of <primary datetime field> Keyword

Year in Common Era Calendar (0001–9999) YEAR
Month within year (01–12) MONTH
Day within month (01–31) DAY
Minute within hour (00–59) MINUTE
Second within minute with decimal fractions (00–59.99 …) SECOND
Hour value of time zone displacement; can be positive or negative (–12 to +14) TIMEZONE_HOUR
Minute value of time zone displacement; can be positive or negative (–12:59 to +14:00) TIMEZONE_MINUTE
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using the Common Era calendar. SECOND, however, can be defined 
to have a <time fractional seconds precision> that indicates the 
number of decimal digits maintained following the decimal point 
in the seconds value, a nonnegative exact numeric value.

There are three classes of datetime data types defined within 
this part of ISO/IEC 9075 that are defined from the primary date-
time fields:
DATE: contains YEAR, MONTH, and DAY
TIME: contains HOUR, MINUTE, and SECOND
TIMESTAMP: contains YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND

Items of type datetime are comparable only if they have the 
same primary datetime fields.

You can assume that your SQL implementation at least has 
simple date arithmetic functions, although with different syntax 
from product to product. The basic functions you need are just 
those that work with dates:
A date plus or minus an interval of days yields a new date.
A date minus a second date yields an interval of days.

Here is a table of the valid combinations of <datetime> and 
<interval> data types in Standard SQL:

<datetime> – <datetime> = <interval>
<datetime> + <interval> = <datetime>
<interval> (* or /) <numeric> = <interval>
<interval> + <datetime> = <datetime>
<interval> + <interval> = <interval>
<numeric> * <interval> = <interval>

There are other rules, which deal with time zones and the rela-
tive precision of the two operands, that are intuitively obvious.

There should also be a function that returns the current date 
from the system clock. This function has a different name with 
each vendor: TODAY, SYSDATE, NOW(), CURRENT DATE, and get-
date() are some examples. There may also be a function to return 
the day of the week from a date, which is sometimes called DOW() 
or WEEKDAY(). Standard SQL provides for CURRENT_DATE, CURRENT_
TIME [(<time precision>)] and CURRENT_TIMESTAMP [(<timestamp 
precision>)] functions, which are self-explanatory.

You will also find ISO Standards for time in the BCE range, but 
only museums have any needs for this. Oracle supports dates 
well outside the ISO range, but almost nobody else does.

38.2 Personal Calendars
One of the most common applications of dates is to build cal-
endars that list upcoming events or actions to be taken by 
their user. People have no trouble with using a paper calendar 
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to  trigger their own actions, but the idea of having an internal 
enterprise level calendar as a table in their database is somehow 
strange. Procedural programmers seem to prefer to write a func-
tion that calculates the date and matches it to events.

It is easier to make a table for cyclic data than people first 
think. The cycle has to repeat itself every 400 years, so today is on 
the same day of the week that it was on 400 years ago. This gives 
us 20,871 weeks or 146,097 days to model in a table. This is not a 
large table in modern computers.

Another trick that might apply to your SQL product is to use 
a sorted index that is in descending order. The idea is that most of 
your work will be done with recent dates, so if the physical ordering 
of the table lets you find those orders first, statements will run faster.

As an example, business days are defined as excluding 
Saturdays, Sundays, and certain holidays in Western countries, 
but the weekend is usually just Friday in Muslim countries.

Here is a classification system of holidays:
1. Fixed date every year.
2. Days relative to Easter.
3. Fixed date but will slide to make a three-day weekend. The 

4th of July in the US, the day Columbus discovered America in 
Argentina, are examples.

4. Fixed date but slides to Monday if Saturday, or Tuesday if 
 Sunday (UK Boxing Day is the only one).

5. Specific day of week after a given date (usually first/last  Monday 
in a month but can be other days, like the first Thursday after 
November 22 5 Thanksgiving).

6. Days relative to Greek Orthodox Easter (not always the same as 
Western Easter).

7. Fixed date in Hijri (Muslim) Calendar. This turns out to be only 
approximate due to the way the calendar works. An Imam has 
to see a full moon to begin the cycle and declare the holiday.

8. Days relative to previous Winter Solstice (Chinese holiday of 
Qing Ming Jie).

9. Civil holidays set by decree, such as a National Day of Mourning.
As you can see, some of these are getting a bit esoteric and a 

bit fuzzy. A calendar table for US secular holidays can be built 
from the data at this web site, so you will get the three-day week-
ends: http://www.smart.net/~mmontes/ushols.html.

38.3 Time Series
One of the major problems in the real world is how to handle a 
series of events that occur in the same time period or in some 
particular order. The best way to do this is in the DDL so that 
unwanted gaps and overlaps never get into the database in the 

http://www.smart.net/~mmontes/ushols.html
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first place. Alexander Kuznetsov came up with this DDL to pre-
vent durations from overlapping with the DDL.

CREATE TABLE Events
(event_id INTEGER NOT NULL PRIMARY KEY,
some_value INTEGER NOT NULL,
start_date DATE NOT NULL,
end_date DATE NOT NULL,
prev_end_date DATE,
PRIMARY KEY(event_id, end_date),
UNIQUE(event_id, prev_end_date),
FOREIGN KEY(event_id, prev_end_date)
 REFERENCES Events(event_id, end_date),
CONSTRAINT no_overlaps
  CHECK (prev_end_date <= start_date),
CONSTRAINT starts_before_endding
 CHECK (start_date < end_date));

You can prohibit gaps altogether; just replace the following 
constraint:

CHECK (prev_end_date <= start_date),

with a stricter one, as follows:

CHECK (prev_end_date = start_date),

But if you allow gaps, the query to retrieve them is:

SELECT prev_end_date AS gap_start_date, start_date AS 
gap_end_date

  FROM Events
WHERE start_date > prev_end_date;

If you need to update column end_date, you have to also 
update prev_end_date for the next duration to match, as follows:

CREATE PROCEDURE UpdateEvent
DETERMINISTIC
SQL DATA
(IN in_event_id INTEGER,
IN in_old_end_date DATE.
IN in_new_end_date)
UPDATE Events
SET end_date
  = CASE
   WHEN end_date = in_old_end_date
   THEN in_new_end_date
   ELSE end_date END,
  prev_end_date
  = CASE
   WHEN prev_end_date = in_old_end_date
   THEN in_new_end_date
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   ELSE prev_end_date END
WHERE event_id = in_event_id
 AND in_old_end_date IN (end_date, prev_end_date);

You might think that an ON UPDATE CASCADE clause would 
do the work, but not all SQL products can use CASCADE for self- 
referencing constraints. Deferred constraints would allow for 
easier modifications, but this is not portable.

You probably did not use this skeleton schema, so let’s talk 
about cleaning up tables with only (start_time, end_time) pairs.

38.3.1 Gaps in a Time Series
The time line can be partitioned into intervals and a set of inter-
vals can be drawn from that partition for reporting. One of the 
stock questions on an employment form asks the prospective 
employee to explain any gaps in his record of employment. Most 
of the time this gap means that you were unemployed. If you are 
in data processing, you answer that you were consulting, which is 
a synonym for unemployed.

Given this table, how would you write an SQL query to display 
the time periods and their durations for each of the candidates?

CREATE TABLE JobApps
(candidate_name CHAR(25) NOT NULL,
job_title CHAR(15) NOT NULL,
start_date DATE NOT NULL,
end_date DATE, -- null means still employed
CONSTRAINT started_before_ended
 CHECK(start_date <= end_date)
..);

Notice that the end date of the current job_code is set to NULL 
because SQL does not support an ‘eternity’ or ‘end of time’ value 
for temporal data types. Using ‘9999-12-31 23:59:59.999999’, 
which is the highest possible date value that SQL can represent, 
is not a correct model and can cause problems when you do 
 temporal arithmetic. The NULL can be handled with a COALESCE() 
function in the code, as I will show later.

It is obvious that this has to be a self-JOIN query, so you have 
to do some date arithmetic. The first day of each gap is the last 
day of an employment period plus 1 day, and that the last day of 
each gap is the first day of the next job_code minus 1 day. This 
start-point and end-point problem is the reason that SQL defined 
the OVERLAPS predicate this way.

All versions of SQL support temporal data types and arithme-
tic. But unfortunately, no two implementations look alike and 
few look like the ANSI standard. The first attempt at this query 
is usually something like the following, which will produce the 
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right results, but with a lot of extra rows that are just plain wrong. 
Assume that if I add a number of days to a date, or subtract a 
number of days from it, I get a new date.

SELECT J1.candidate_name,
  (J1.end_date + INTERVAL '1' DAY) AS gap_start,
  (J2.start_date - INTERVAL '1' DAY) AS gap_end,
  (J2.start_date - J1.end_date) AS gap_length
 FROM JobApps AS J1, JobApps AS J2
WHERE J1.candidate_name = J2.candidate_name
   AND (J1.end_date + INTERVAL '1' DAY) < J2.start_date;

Here is why this does not work. Imagine that we have a table 
that includes candidate_name ‘Bill Jones’ with the following work 
history:

Result

candidate_name job_title start_date end_date

'John Smith' 'Vice Pres' '2010-01-10' '2010-12-31'
'John Smith' 'President' '2011-01-12' '2012-12-31'
'Bill Jones' 'Scut Worker' '2011-02-24' '2011-04-21'
'Bill Jones' 'Manager' '2012-01-01' '2012-01-05'
'Bill Jones' 'Grand Poobah' '2012-04-04' '2012-05-15'

We would get this as a result:

The problem is that the ‘John Smith’ row looks just fine and 
can fool you into thinking that you are doing fine. He had two 
jobs; therefore, there was one gap in between. However, ‘Bill 
Jones’ cannot be right because only two gaps can separate three 
jobs, yet the query shows three gaps.

Result

candidate_name gap_start gap_end gap_length

'John Smith' '2011-01-01' '2011-01-11' 12
'Bill Jones' '2011-04-22' '2011-12-31' 255
'Bill Jones' '2012-01-06' '2012-04-03' 89
'Bill Jones' '2011-04-22' '2012-04-03' 348 > false data
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The query does its JOIN on all possible combinations of start 
and end dates in the original table. This gives false data in the results 
by counting the end of one job_code, ‘Scut Worker’ and the start of 
another, ‘Grand Poobah’, as a gap. The idea is to use only the most 
recently ended job_code for the gap. This can be done with a MIN() 
function and a correlated subquery. The final result is this:

SELECT J1.candidate_name, (J1.end_date + INTERVAL '1' DAY) 
AS gap_start,

  (J2.start_date - INTERVAL '1' DAY) AS gap_end
  FROM JobApps AS J1, JobApps AS J2
WHERE J1.candidate_name = J2.candidate_name
 AND J2.start_date
  = (SELECT MIN(J3.start_date)
     FROM JobApps AS J3
     WHERE J3.candidate_name = J1.candidate_name
        AND J3.start_date > J1.end_date)
 AND (J1.end_date + INTERVAL '1' DAY)
   < (J2.start_date - INTERVAL '1' DAY)
UNION ALL
SELECT J1.candidate_name, MAX(J1.end_date) + INTERVAL '1' DAY,
    CURRENT_TIMESTAMP
  FROM JobApps AS J1
GROUP BY J1.candidate_name
HAVING COUNT(*) = COUNT(DISTINCT J1.end_date);

The length of the gap can be determined with simple tempo-
ral arithmetic. The purpose of the UNION ALL is to add the current 
period of unemployment, if any, to the final answer.

38.3.2 Continuous Time Periods
Given a series of jobs that can start and stop at any time, how can 
you be sure that an employee doing all these jobs was really working 
without any gaps? Let’s build a table of timesheets for one employee.

  TABLE Timesheets
(job_code CHAR(5) NOT NULL PRIMARY KEY,
  start_date DATE NOT NULL,
 end_date DATE NOT NULL,
  CONSTRAINT started_before_ended
 CHECK (start_date <= end_date));

INSERT INTO Timesheets (job_code, start_date, end_date)
VALUES ('j01', '2018-01-01', '2018-01-03');
   ('j02', '2018-01-06', '2018-01-10'),
   ('j03', '2018-01-05', '2018-01-08'),
   ('j04', '2018-01-20', '2018-01-25'),
   ('j05', '2018-01-18', '2018-01-23'),
   ('j06', '2018-02-01', '2018-02-05'),
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   ('j07', '2018-02-03', '2018-02-08'),
   ('j08', '2018-02-07', '2018-02-11'),
   ('j09', '2018-02-09', '2018-02-10'),
   ('j10', '2018-02-01', '2018-02-11'),
   ('j11', '2018-03-01', '2018-03-05'),
   ('j12', '2018-03-04', '2018-03-09'),
   ('j13', '2018-03-08', '2018-03-14'),
   ('j14', '2018-03-13', '2018-03-20');

The most immediate answer is to build a search condition for 
all the characteristics of a continuous time period.

This algorithm is due to Mike Arney, a DBA at BORN 
Consulting. It uses derived tables to get the extreme start and 
ending dates of a contiguous run of durations.

SELECT Early.start_date, MIN(Latest.end_date)
  FROM (SELECT DISTINCT start_date
        FROM Timesheets AS T1
     WHERE NOT EXISTS
      (SELECT *
           FROM Timesheets AS T2
        WHERE T2.start_date < T1.start_date
         AND T2.end_date >= T1.start_date)
   ) AS Early (start_date)
   INNER JOIN
   (SELECT DISTINCT end_date
     FROM Timesheets AS T3
     WHERE NOT EXISTS
       (SELECT *
         FROM Timesheets AS T4
          WHERE T4.end_date > T3.end_date
           AND T4.start_date <= T3.end_date)
   ) AS Latest (end_date)
   ON Early.start_date <= Latest.end_dae
GROUP BY Early.start_date;

Result

start_date end_date

'2018-01-01' '2018-01-03'
'2018-01-05' '2018-01-10'
'2018-01-18' '2018-01-25'
'2018-02-01' '2018-02-11'
'2018-03-01' '2018-03-20'
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However, another way of doing this is a query, which will also 
tell you which jobs bound the continuous periods.

SELECT T2.start_date,
  MAX(T1.end_date) AS finish_date,
  MAX(T1.job_code || ' to ' || T2.job_code) AS 

job_code_pair
 FROM Timesheets AS T1, Timesheets AS T2
WHERE T2.job_code <> T1.job_code
 AND T1.start_date BETWEEN T2.start_date AND T2.end_date
 AND T2.end_date BETWEEN T1.start_date AND T1.end_date
GROUP BY T2.start_date;

Result

start_date finish_date job_code_pair

'2018-01-05' '2018-01-10' 'j02 to j03'

'2018-01-18' '2018-01-25' 'j04 to j05'
'2018-02-01' '2018-02-08' 'j07 to j06'
'2018-02-03' '2018-02-11' 'j08 to j07'

DELETE FROM Results
WHERE EXISTS
  (SELECT R1.job_code_list
    FROM Results AS R1
   WHERE POSITION (Results.job_code_list
         IN R1.job_code_list) > 0);

A third solution will handle an isolated job_code like ‘j01’, as 
well as three or more overlapping jobs, like ‘j06’, ‘j07’ and ‘j08’.

SELECT T1.start_date,
   MIN(T2.end_date) AS finish_date,
   MIN(T2.end_date + INTERVAL '1' DAY) -
   - MIN(T1.start_date) AS duration -- find any (T1.

start_date)
 FROM Timesheets AS T1, Timesheets AS T2
WHERE T2.start_date >= T1.start_date
AND T2.end_date >= T1.end_date
 AND NOT EXISTS
  (SELECT *
    FROM Timesheets AS T3
    WHERE (T3.start_date <= T2.end_date
      AND T3.end_date > T2.end_date)
    OR (T3.end_date >= T1.start_date
      AND T3.start_date < T1.start_date))
GROUP BY T1.start_date;
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You will also want to look at how to consolidate overlapping 
intervals of integers.

A fourth solution uses the auxiliary Calendar table (see 
Section 38.8 for details) to find the dates that are and are not cov-
ered by any of the durations. The coverage flag and calendar date 
can then be used directly by other queries that need to look at the 
status of single days instead of date ranges.

SELECT C1.cal_date,
  SUM(DISTINCT
   CASE
   WHEN C1.cal_date BETWEEN T1.start_date AND T1.end_date
   THEN 1 ELSE 0 END) AS covered_date_flag
 FROM Calendar AS C1, Timesheets AS T1
WHERE C1.cal_date BETWEEN (SELECT MIN(start_date FROM 

Timesheets)
          AND (SELECT MAX(end_date FROM Timesheets)
GROUP BY C1.cal_date;

This is reasonably fast because the WHERE clause uses static 
scalar queries to set the bounds and the Calendar table uses cal_
date as a primary key, so it will have an index.

A slightly different version of the problem is to group contigu-
ous measurements into durations that have the value on that 
measurement.

I have the following table:

CREATE TABLE Calibrations
(start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP
        NOT NULL PRIMARY KEY
end_time TIMESTAMP NOT NULL,
CONSTRAINT started_before_ended
 CHECK (end_time = start_time + INTERVAL '1' MINUTE,
cal_value INTEGER NOT NULL);

with this data:

Calibrations

start_time end_time cal_value

'2014-05-11 02:52:00.000' '2014-05-11 02:53:00.000' 8
'2014-05-11 02:53:00.000' '2014-05-11 02:54:00.000' 8
'2014-05-11 02:54:00.000' '2014-05-11 02:55:00.000' 8
'2014-05-11 02:55:00.000' '2014-05-11 02:56:00.000' 8

(Continued)
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The table being selected from is updated every minute with 
a new calibration value. The calibration value can change from 
minute to minute. I want a select statement that will sum up the 
start of the cal_value and the end of the calibration value before it 
changes.

SELECT MIN(start_time) AS start_time,
     MAX(end_time) AS end_time,
     cal_value
 FROM (SELECT C1.start_time, C1.end_time, C1.cal_value,
        MIN(C2.start_time)
   FROM Calibrations AS C1
        LEFT OUTER JOIN
        Calibrations AS C2
        ON C1.start_time < C2.start_time
         AND C1.cal_value <> C2.cal_value
   GROUP BY C1.start_time, C1.end_time, C1.cal_value)
  AS T (start_time, end_time, cal_value, x_time))
GROUP BY cal_value, x_time;

I want to be able to group this up so that it looks like this:

start_time end_time cal_value
'2014-05-11 02:52:00.000' '2014-05-11 02:57:00.000' 8

'2014-05-11 02:57:00.000' '2014-05-11 03:02:00.000' 9

'2014-05-11 03:02:00.000' '2014-05-11 03:05:00.000' 8

start_time end_time cal_value
'2014-05-11 02:56:00.000' '2014-05-11 02:57:00.000' 8
'2014-05-11 02:57:00.000' '2014-05-11 02:58:00.000' 9
'2014-05-11 02:58:00.000' '2014-05-11 02:59:00.000' 9
'2014-05-11 02:59:00.000' '2014-05-11 03:00:00.000' 9
'2014-05-11 03:00:00.000' '2014-05-11 03:01:00.000' 9
'2014-05-11 03:01:00.000' '2014-05-11 03:02:00.000' 9
'2014-05-11 03:02:00.000' '2014-05-11 03:03:00.000' 8
'2014-05-11 03:03:00.000' '2014-05-11 03:04:00.000' 8
'2014-05-11 03:04:00.000' '2014-05-11 03:05:00.000' 8

Calibrations
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38.3.3 Missing Times in Contiguous Events
Consider the following simple table, which we will use to illus-
trate how to handle missing times in events.

CREATE TABLE Events
(event_id CHAR(2) NOT NULL PRIMARY KEY,
start_date DATE NOT NULL,
end_date DATE,
CONSTRAINT proper_date_ordering
 CONSTRAINT started_before_ended (start_date < end_date));

INSERT INTO Events
VALUES
('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', '2015-01-31'),
('C', '2015-02-01', '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

Due to circumstances beyond our control the end_date col-
umn may contain a NULL instead of a valid date. Imagine that we 
had (‘B’, ‘2015-01-01’, NULL) as a row in the table.

One reasonable solution is to populate the missing end_date 
with the (start_date -1 day) of the next period. This is easy enough.

UPDATE Events
 SET end_date
  = (SELECT MIN(E1.start_date) - INTERVAL '1' DAY)
     FROM Events AS E1
    WHERE E1.start_date > Events.start_date)
WHERE end_date IS NULL;

Likewise, if due to circumstances beyond our control, the 
start_date column may contain a NULL instead of a valid date. 
Imagine that we had (‘B’, NULL, ‘2015-01-31’) as a row in the table. 
Using the same logic, we could take the last known ending date 
and add one to it to give us a guess at the missing starting value.

UPDATE Events
 SET start_date
  = (SELECT MIN(E1.end_date) + INTERVAL '1' DAY)
     FROM Events AS E1
    WHERE E1.end_date < Events.end_date)
WHERE start_date IS NULL;

This has a nice symmetry to it, but it does not cover all possible 
cases. Consider an event where we know nothing about the times:

INSERT INTO Events
VALUES
('A', '2014-01-01', '2014-12-31'),
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('B', NULL, NULL),
('C', ‘2015-02-01’, ‘2015-02-29'),
('D', ‘2015-02-01', '2015-02-29');

You can run each of the previous UPDATE statements and get 
the NULLs filled in with values. However, you can combine them 
into one update:

UPDATE Events
 SET end_date
  = CASE WHEN end_date IS NULL
   THEN (SELECT MIN(E1.start_date) - INTERVAL '1' DAY
      FROM Events AS E1
       WHERE E1.start_date > Events.start_date)
   ELSE end_date END,
  start_date
  = CASE WHEN start_date IS NULL
   THEN (SELECT MIN(E1.end_date) + INTERVAL '1' DAY
      FROM Events AS E1
       WHERE E1.end_date < Events.end_date)
   ELSE start_date END
WHERE start_date IS NULL
 OR end_date IS NULL;

The real problem is having no boundary dates on contiguous 
events, like this:

INSERT INTO Events
VALUES
('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', NULL),
('C', NULL, '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

The result of applying the previous update is that we get an 
error because it will try to set the start_date equal to end_date in 
both rows.

Given the restrictions that each event lasts for at least one day, 
event ‘B’ could have finished on any day between ‘2015-01-02’ 
and ‘2015-02-27’ and likewise, event ‘C’ could have begun on any 
day between ‘2015-01-03’ and ‘2015-02-28’; note the two different 
durations.

Any rules we make for resolving the NULLs is going to be arbi-
trary. For example, we could give event ‘B’ the benefit of the 
doubt and assume that it lasted until ‘2015-02-27’ or just as well 
given event ‘C’ the same benefit. I might make a random choice 
of a pair of dates (d, d11) in the gap between ‘B’ and ‘C’ dates. 
I might pick a middle point.

However, this pairwise approach does not solve the problem 
of all the possible combinations of NULL dates.
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Let me propose these rules and apply them in order:
1. If the start_date is NOT NULL and the end_date is NOT NULL, leave 

the row alone.
2. If the table has too many NULLs in a series, give up. Report too 

much missing data.
3. If the start_date IS NULL and the end_date IS NOT NULL, set the 

start_date to the day before the end_date.

UPDATE Events
 SET start_date
  = (SELECT MIN(E1.end_date) + INTERVAL '1' DAY)
      FROM Events AS E1
     WHERE E1.end_date < Events.end_date)
WHERE start_date IS NULL
 AND end_date IS NOT NULL;

4. If the start_date is NOT NULL and the end_date is NULL, set the 
end_date to the day before the next known start_date.

UPDATE Events
 SET end_date
  = (SELECT MIN(E1.start_date) - INTERVAL '1' DAY)
      FROM Events AS E1
     WHERE E1.start_date > Events.start_date)
WHERE start_date IS NOT NULL
 AND end_date IS NULL;

5. If the start_date and end_date are both NULL, look at the prior 
and following events to get the minimal start_date and/or   
end_date. This will leave a gap in the dates that has to be 
 handled later.

 For example:

('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', NULL),
('C', NULL, '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

 becomes:

('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', NULL),
('C', '2015-02-28', '2015-02-29'), > rule #2
('D', '2015-02-01', '2015-02-29');

 which becomes:

('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', '2015-02-27'), > rule #3
('C', '2015-02-28', '2015-02-29'),
('D', '2015-02-01', '2015-02-29');
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 Now consider this data:

('A', '2014-01-01', '2014-12-31'),
('B', NULL, NULL),
('C', '2015-02-01', '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

 which becomes:

('A', '2014-01-01', '2014-12-31'),
('B', '2015-01-01', '2015-01-31'), > rule #4
('C', '2015-02-01', '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

 Consider this example:

('A', '2014-01-01', '2014-12-31'),
('B', NULL, NULL),
('C', NULL, '2015-02-29'),
('D', '2015-02-01', '2015-02-29');

38.3.4 Locating Dates
This little problem is sneakier than it sounds. I first saw it in 
Explain magazine, then met the author, Rudy Limeback, at the 
Database World conference in Boston years ago. The problem 
is to print a list of the employees whose birthdays will occur in 
the next 45 days. The employee files have each date of birth. The 
answer will depend on what date functions you have in your 
implementation of SQL, but Rudy was working with DB2.

What makes this problem interesting is the number of possi-
ble false starts. Most versions of SQL also have a library function 
MAKEDATE(year, month, day) or an equivalent, which will construct 
a date from three numbers representing a year, month, and day, 
and extraction functions to disassemble a date into integers rep-
resenting the month, day, and year. The SQL standard would 
do this with the general function CAST (<string> AS DATE), but 
there is no provision in the standard for using integers without 
first converting them to strings, either explicitly or implicitly. For 
example,
•	 Direct	use	of	strings	to	build	a	date:

CAST ('2014-01-01' AS DATE)

•	 Concatenation	causes	integer	to	cast	to	strings:

CAST (2014 || '-'|| 01 ||'-' || 01 AS DATE)

The first “gotcha” in this problem is trying to use the com-
ponent pieces of the dates in a search condition. If you were 
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looking for birthdays all within the same month, it would be 
easy:

SELECT emp_name, emp_dob, CURRENT_DATE
FROM Personnel
WHERE EXTRACT(MONTH FROM CURRENT_DATE) = EXTRACT(MONTH 

FROM dob);

Attempts to extend this approach fall apart, however, since 
a 45-day period could extend across three months and possibly 
into the following year and might fall in a leap year. Very soon, the 
number of function calls is too high and the logic is too complex.

The second “gotcha” is trying to write a simple search condi-
tion with these functions to construct the birthday in the current 
year from the date of birth (dob) in the Employee table:

SELECT emp_name, emp_dob, CURRENT_DATE
 FROM Personnel
WHERE MAKEDATE(EXTRACT (YEAR FROM CURRENT_DATE), --  

birthday this year
      EXTRACT (MONTH FROM dob),
      EXTRACT (DAY FROM dob))
  BETWEEN CURRENT_DATE
   AND (CURRENT_DATE + INTERVAL 45 DAYS);

But a leap-year date of birth will cause an exception to be 
raised on an invalid date if this is not also a leap year. There is 
also another problem. The third “gotcha” comes when the 45-day 
period wraps into the next year. For example, if the current 
month is December 1992, we should include January 1993 birth-
days, but they are not constructed by the MAKEDATE() function. At 
this point, you can build a messy search condition that also goes 
into the next year when constructing birthdays.

Rory Murchison of the Aetna Institute pointed out that if you are 
working with DB2 or some other SQL implementations, you will 
have an AGE(date1 [, date2]) function. This returns the difference 
in years between date1 and date2. If date2 is missing, it defaults to 
CURRENT_DATE. The AGE() function can be constructed from other 
functions in implementations that do not support it. In Standard 
SQL, the expression would be (date2 – date1) YEAR, which would 
construct an INTERVAL value. That makes the answer quite simple:

SELECT emp_name, emp_dob, CURRENT_DATE
 FROM Personnel
WHERE INTERVAL (CURRENT_DATE - birthday) YEAR
  <INTERVAL (CURRENT_DATE - birthday + INTERVAL 45 DAYS) YEAR;

In English, this says that if the employee is a year older 45 days 
from now, he must have had a birthday in the meantime.
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38.3.5 Starting and Ending Dates
Dates can be stored in several different ways in a database. The 
result is that there is no best way to calculate either the first day 
of the month or the last day of the month from a given date, nor it 
there a standard function for it.

To return the last day of the previous month, use this expres-
sion: CURRENT_TIMESTAMP - INTERVAL (EXTRACT(DAY FROM CURRENT_
TIMESTAMP) DAYS).

Obviously, you can get the first day of this month with:

CURRENT_TIMESTAMP
- (EXTRACT (DAY FROM CURRENT_TIMESTAMP)
  + INTERVAL '1' DAY);

Another way is with a user-defined function.

CREATE FUNCTION LastDayOfMonth (IN my_date DATE)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
RETURN
CAST(CASE
  WHEN EXTRACT(MONTH FROM my_date) IN (1, 3, 5, 7, 8, 10,  

  12) THEN 31
  WHEN EXTRACT(MONTH FROM my_date) IN (4, 6, 9, 11)  

  THEN 30
  ELSE CASE WHEN MOD(EXTRACT (YEAR FROM my_date)/100, 4) <> 0  

  THEN 28
    WHEN MOD(EXTRACT (YEAR FROM my_date)/100, 400) = 0  

    THEN 29
    WHEN MOD(EXTRACT (YEAR FROM my_date)/100, 100) = 0  

    THEN 28
    ELSE 29 END
END AS INTEGER);

You can prevent overlaps in the DDL with this skeleton:

CREATE TABLE Events
(event_id INTEGER NOT NULL,
start_date DATE NOT NULL,
finish_date DATE NOT NULL,
prev_finish_date DATE,

--constraints
PRIMARY KEY (event_id, start_date),
UNIQUE (event_id, prev_finish_date),
FOREIGN KEY (event_id, prev_finish_date)
 REFERENCES Events(event_id, finish_date),
CHECK (prev_finish_date <= start_date),
CHECK (start_date < finish_date),
--other data);
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38.3.6 Starting and Ending Times
Another problem that you will find in the real world is that peo-
ple never read the ISO 8601 standards for temporal data and they 
insist upon writing midnight as ‘24:00:00’ and letting it “leak” into 
the next day. That is, ‘2014-01-01 24:01:00’ probably should have 
been ‘2014-01-02 00:01:00’ instead. DB2 allows both 00 and 24 
for the hour component of its TIMESTAMP data type, which exacer-
bates the problem. The EXTRACT() function is now more compli-
cated than it needs to be.

The best bet, if you cannot teach people to use the ISO 8601 
Standards, is to correct the string at input time. This can be done 
with a simple auxiliary time that looks like this:

TABLE FixTheClock
(input_date_string CHAR(6) NOT NULL,
input_time_pattern CHAR(25) NOT NULL PRIMARY KEY,
correct_time_string CHAR(25) NOT NULL);

INSERT INTO FixTheClock
VALUES ('2014-01-01', '2014-01-01 24:__:__._____', '2014-

01-02 00:');
...

Then use a LIKE predicate to replace the pattern with the cor-
rected time.

SELECT CASE WHEN R1.raw_input_timestamp LIKE 
F1.input_time_pattern

    THEN F1.correct_time_string
      || CAST (EXTRACT(TIMEZONE_MINUTE FROM R1.raw_input_ 

       timestamp) AS VARCHAR(10))
    ELSE raw_input_timestamp END, ...
 FROM RawData AS R1, FixTheClock AS F1
WHERE F1.input_date_string = SUBSTRING (raw_input_time-

stamp FROM 1 FOR 6);

Notice that this is strictly a string function and that the results 
will have to be cast to a temporal data type before being stored in 
the database.

38.4 Julian Dates
All SQL implementations support a DATE data type, but there is 
no standard defining how they should implement it internally. 
Some products represent the year, month, and day as parts of 
a double-word integer, others use Julianized dates, some use 
ISO ordinal dates, and some store dates as character strings. 
The programmer does not care as long as the dates work 
correctly.
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There is a technical difference between a Julian date and a 
Julianized date. A Julian date is an astronomer’s term that counts 
the number of days since 4713 January 1 BCE. This count is now 
well over 2 billion; nobody but astronomers use it. However, 
computer companies have corrupted the term to mean a count 
from some point in time from which they can build a date or 
time. The fixed point is usually the year 1, or 1900, or the start of 
the Gregorian calendar.

An ordinal date is an ISO Standard that gives the position of 
the date within its year, so it falls between 1 and 365 or 366. You 
will see this number printed on the bottom edges of desk calendar 
pages. The usual way to find the Julianized day within the current 
year is to use a simple program that stores the number of days in 
each month as an array and sums them with the day of the month 
for the date in question. The only difficult part is remembering to 
add 1 if the year is a leap year and the month is after February.

Here is a very fast and compact algorithm that computes the 
Julian date from a Gregorian date and vice versa. These algo-
rithms appeared as Algorithm 199 (ACM, 1980) and were first 
written in ALGOL by Robert Tantzen. Here are SQL translations of 
the code:

CREATE FUNCTION Julianize1
  (greg_day INTEGER, greg_month INTEGER, greg_year INTEGER)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE century INTEGER;
DECLARE yearincentury INTEGER;
IF (greg_month > 2)
THEN SET greg_month = greg_month - 3;
ELSE SET greg_month = greg_month + 9;
  SET greg_year = greg_year - 1;
END IF;
SET century = greg_year/100;
SET yearincentury = greg_year - 100 * century;
RETURN ((146097 * century)/4
  + (1461 * yearincentury)/4
  + (153 * greg_month + 2)/5 + greg_day + 1721119);
END;

Remember that the division will be integer division because 
the variables involved are all integers. Here is a Pascal proce-
dure taken from Numerical Recipes in Pascal (William Press 
et al.; Cambridge University Press; Revised edition, 1990; ISBN 
0-52138766-3) for converting a Georgian date to a Julian date. 
First, you need to know the difference between TRUNCATE() and 
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FLOOR(). The FLOOR() function is also called the greatest integer 
function; it returns the greatest integer less than its argument. 
The TRUNCATE() function returns the integer part of a number. 
Thus, they behave differently with negative decimals.

FLOOR(-2.5) = -3
FLOOR(-2) = -2
FLOOR(2.5) = 2
FLOOR(2) = 2
TRUNCATE(-2.5) = -2
TRUNCATE(-2) = -2
TRUNCATE(2.5) = 2
TRUNCATE(2) = 2

Here is an SQL/PSM version of the algorithm.

CREATE FUNCTION Julianize (IN greg_year INTEGER, IN greg_
month INTEGER, IN greg_day INTEGER)

RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE gregorian INTEGER;
DECLARE greg_year INTEGER;
DECLARE jul_leap INTEGER;
DECLARE greg_month INTEGER;
SET gregorian = 588829;
IF greg_year = 0 -- error: no greg_year zero
THEN SIGNAL SQLSTATE 'no year zero'; -- not actual SQL 

state code!
END IF;
IF greg_year < 0
THEN SET greg_year = greg_year + 1;
END IF;
IF greg_month > 2
THEN SET greg_year = greg_year;
  SET greg_month = greg_month + 1;
ELSE SET greg_year = greg_year - 1;
  SET greg_month = greg_month + 13;
  END IF;
SET greg_day = TRUNCATE(365.2522 * greg_year)
  + TRUNCATE(30.6001 * greg_month)
  + greg_day + 1720995;
IF (greg_day + 31 * (greg_month + 12 * greg_year) >= 

gregorian)
THEN SET jul_leap = TRUNCATE(greg_year * 0.01);
  SET greg_day = greg_day + 2 - jul_leap + TRUNCATE(0.25 *  

  jul_leap);
END IF;
END;
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This algorithm to convert a Julian day number into a 
Gregorian calendar date is due to Peter Meyer. You need to 
assume that you have FLOOR() and TRUNCATE() functions.

CREATE PROCEDURE JulDate (IN julian INTEGER,
        OUT greg_year INTEGER,
        OUT greg_month INTEGER,
        OUT greg_day INTEGER)
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE z INTEGER;
DECLARE r INTEGER;
DECLARE g INTEGER;
DECLARE a INTEGER;
DECLARE b INTEGER;

SET z = FLOOR(julian - 1721118.5);
SET r = julian - 1721118.5 - z;
SET g = z - 0.25;
SET a = FLOOR(g/36524.25);
SET b = a - FLOOR(a/4.0);
SET greg_year = FLOOR((b + g)/365.25);
SET c = b + z - FLOOR(365.25 * greg_year);
SET greg_month = TRUNCATE((5 * c + 456)/153);
SET greg_day = c - TRUNCATE((153 * greg_month - 457)/5) + 

r;
IF greg_month > 12
THEN SET greg_year = greg_year + 1;
    SET greg_month = greg_month - 12;
END IF;
END;

There are two problems with these algorithms. First, the Julian 
day the astronomers use starts at noon. If you think about it, it 
makes sense because they are doing their work at night. The sec-
ond problem is that the integers involved get large and you can-
not use floating-point numbers to replace them because the 
rounding errors are too great. You need long integers that can go 
to 2.5 million.

38.5 Other Temporal Functions
Another common set of functions, which are not represented 
in standard SQL, deal with weeks. For example, Sybase’s SQL 
Anywhere (nee WATCOM SQL) has a DOW(<date>) that returns a 
number between 1 and 7 to represent the day of the week (1 5 
Sunday, 2 5 Monday, .., 7 5 Saturday, following an ISO standard 
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convention). You can also find functions that add or subtract 
weeks from a date given the number of the date within the year 
and so on. The function for finding the day of the week for a date 
is called Zeller’s algorithm:

CREATE FUNCTION Zeller (IN z_year INTEGER, IN z_month 
INTEGER, IN z_day INTEGER)

RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE m INTEGER;
DECLARE d INTEGER;
DECLARE y INTEGER;
SET y = z_year;
SET m = z_month - 2;
IF (m <= 0)
THEN SET m = m + 12;
   SET y = y - 1;
END IF;
RETURN (MOD((z_day + (13 * m - 1)/5
 + 5 * MOD(y, 100)/4 - 7 * y/400), 7) + 1);
END;

DB2 and other SQLs have an AGE(<date1>, <date2>)  function, 
which returns the difference in years between <date1> and 
<date2>.

The OVERLAPS predicate determines whether two chrono logical 
periods overlap in time (see Section 13.2 for details). A chrono-
logical period is specified either as a pair of <datetimes> (starting 
and ending) or as a starting <datetime> and an <interval>.

38.6 Weeks
Weeks are not part of the SQL temporal functions, but they are 
part of ISO 8601 Standards. Although not as common in the 
United States as it is in the Nordic countries and Europe, many 
commercial and industrial applications use the week within a 
year as a unit of time.

Week 01 of a year is defined as the first week that has the 
Thursday in that year, which is equivalent to the week that con-
tains the fourth day of January. In other words, the first week of a 
New Year is the week that has the majority of its days in the New 
Year. Week 01 might also contain days from the previous year, so 
it does not align with the years. As an aside, American calendars 
put Sunday in the leftmost column and split the Friday-Saturday-
Sunday weekend. European and other calendars put Sunday in 
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the rightmost column. But Sunday is the last day of the week in 
ISO Standards.

The standard notation uses the letter ‘W’ to announce that the 
following two digits are a week number. The week number com-
ponent of the vector can be separated with a hyphen or not, as 
required by space.

‘1999-W01’ or ‘1999W01’
A single digit between 1 and 7 can extend this notation for the 

day of the week. For example, the day 2010-01-05, which is the 
Tuesday (day 2) of the first week of 2010, can be shown as

‘2010-W01-2’ or ‘2010W012’
The ISO standard avoids explicitly stating the possible range 

of week numbers, but a little thought will show that the range is 
between 01 and 52 or between 01 and 53, depending on the par-
ticular year. There is one exception to the rule that a year has 
at least 52 weeks; 1753 when the Gregorian calendar was intro-
duced had less than 365 days and therefore less than 52 weeks.

SQL Server programmers have to be very careful because their 
product has not followed ISO Standards for numbering the weeks 
in its function library. As of the SQL Sever 2008 release, they have 
a ISOWEEK() function as a kludge. Furthermore, it is not easy to 
see how to calculate the weeks between two different dates.

Here is an example from Rudy Limeback (SQL Consultant, 
r938.com) taken from http://searchdatabase.techtarget.com/ate-
QuestionNResponse/0,289625,sid13_cid517627_tax285649,00.
html.

Suppose we have a beginning date of ‘2010-05-06’ and an 
end date of ‘2010-05-19’. I would like to see the weeks as two 
because the 17th is not a Tuesday. There are a number of ways 
to approach this problem, and the solution depends on what 
the meaning of the word “week” is. Here is the calendar for that 
month, just in case you cannot figure it out in your head.

Su Mo Tu We Th Fr Sa
1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

In this example, we want the number of weeks between May 
6 and 19.

http://r938.com
http://searchdatabase.techtarget.com/ate-QuestionNResponse/0,289625,sid13_cid517627_tax285649,00.html
http://searchdatabase.techtarget.com/ate-QuestionNResponse/0,289625,sid13_cid517627_tax285649,00.html
http://searchdatabase.techtarget.com/ate-QuestionNResponse/0,289625,sid13_cid517627_tax285649,00.html
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First method: One. One week after the 6th is the 13th. Another 
week is the 20th. Since we are only as far as the 19th, it is not 
two weeks yet.
Second method: Two. The number of days is 14 if we count 
both the 6th and the 19th at the beginning and end of the spec-
ified range. Since there are seven days in a week, 14/7 5 2.
Third method: One. We should not count both the beginning 
and end days. We do not do it for years, for example. How many 
years are between 1999 and 2007? Most people would say 8, not 
9, and they do this by subtracting the earlier from the later. So 
using days, 19 2 6 5 13. Then 13/7 5 1.857142 …,which trun-
cates to one.
Fourth method: Two. We want a whole number of weeks, so it 
is okay to round 1.857142 up to 2.
Fifth method: One. Did you mean whole weeks? There’s only 
one whole week in that date range, and it is the week from the 
9th to the 15th. In fact, if the starting date were the 3rd and the 
ending date the 21st, that would be 18 (or 19) days, and there’s 
still only one whole week in there.
Sixth method: Three. February 6th is in week 6 of 2003. Febru-
ary 19th is in week 8. Between them are several days from each 
of three different weeks.
Seventh method: Two. February 6th is in week 6 of 2003. Febru-
ary 19th is in week 8. Subtract the week numbers to get 2.
This is why Standard SQL prefers to deal with days, a nice unit 

of time that does not have fractional parts.

38.6.1 Sorting by Weekday Names
This trick is due to Craig S. Mullins. Given a table with a column 
containing the name of the day of the week, on which an event 
happened like this:

CREATE TABLE Foobar
(..
day_name CHAR(3) NOT NULL
  CHECK day_name
      IN ('SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'),
..);

how do we sort it properly? We’d want Sunday first, followed by 
Monday, Tuesday, Wednesday, and so on. Well, if we write the first 
query that comes to mind, the results will obviously be sorted 
improperly:

SELECT day_name, col1, col2, ..
  FROM Foobar
ORDER BY day_name;
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The results from this query would be ordered alphabetically; in 
other words:

FRI
MON
SAT
SUN
THU
TUE
WED

Of course, one solution would be to design the table with a 
numeric column that uses Zeller’s number. There is another solu-
tion that is both elegant and does not require any change to the 
database.

SELECT day_name, col1, cl2, ..,
    POSITION (day_name IN 'SUNMONTUEWEDTHUFRISAT') AS day_nbr
 FROM Foobar
ORDER BY day_nbr;

Of course, you can go one step further if you’d like. Some que-
ries may need to actually return the day of week. You can use 
the same technique with a twist to return the day of week value, 
given only the day’s name.

CAST (POSITION (day_name IN 'SUNMONTUEWEDTHUFRISAT')/3 AS 
INTEGER) + 1;

Obviously the same trick can be used with the three-letter 
month abbreviations. This was very handy in the first release of 
ACCESS that did sort dates alphabetically.

38.7 Modeling Time in Tables
Since the nature of time is a continuum and the ISO model is 
half-open intervals, the best approach is to have (start_time, 
end_time) pairs for each event in a history. This is a state transi-
tion model of data, where the fact represented by the columns in 
that row were true for the time period given. For this to work, we 
need the constraint that the (start_time, end_time) pairs do not 
overlap.

A NULL ending time is the flag for an “unfinished fact,” such as 
a hotel room stay that is still in progress. A history for an entity 
can clearly have at most one NULL at a time.

CREATE TABLE FoobarHistory
(foo_key INTEGER NOT NULL,
start_date DATE DEFAULT CURRENT_DATE NOT NULL,
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PRIMARY KEY (foo_key, start_date),
end_date TIMESTAMP, -- null means current
foo_status INTEGER NOT NULL,
..
CONSTRAINT started_before_ended
  CHECK(start_date < end_date),

CONSTRAINT end_time_open_interval
 CHECK (end_date = CAST(end_date AS DATE)
        + INTERVAL '23:59:59.999' HOUR TO SECOND),

CONSTRAINT no_date_overlaps
 CHECK (NOT EXISTS
   (SELECT *
    FROM FoobarHistory AS H1, Calendar AS C1
    WHERE C1.cal_date BETWEEN H1.start_date
    AND H1.end_date
   GROUP BY foo_key
   HAVING COUNT(*) > 1)),

CONSTRAINT only_one_current_status
CHECK (NOT EXISTS
  (SELECT *
    FROM FoobarHistory AS H1
    WHERE H1.end_date IS NULL
   GROUP BY foo_key
  HAVING COUNT(*) > 1))
);

The Calendar table is explained in a following section. Table 
level CHECK() constraints are still not common in SQL implemen-
tations, so you might have to use a TRIGGER to enforce integrity.

The real trick here is that the start_date is a DATE data type, so 
it will set to 00:00:00.00000 when it is converted to a TIMESTAMP. 
The end_time is a TIMESTAMP, so we can place it almost, but not 
quite, to the next day. This will let us use BETWEEN predicates, as 
we will see in the next section. You could also do this in a VIEW, 
make both columns DATE data types and add the extra hours to 
end_time.

In practice this is going to be highly proprietary code and you 
might consider using triggers to keep the (start_time, end_time) 
pairs correct.

38.7.1 Using Duration Pairs
If the table does not have the (start_time, end_time) pairs, then 
they have to be built with a self-join of the queries, or we have 
to assume that the status changes are ordered properly. For 
example, how would you write a SELECT query for returning all 
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Projects whose current project status is 10, given the following 
schema?

CREATE TABLE Projects
(project_id INTEGER NOT NULL PRIMARY KEY,
project_name CHAR(15) NOT NULL);

CREATE TABLE ProjectStatusHistory
(project_id INTEGER NOT NULL
  REFERENCES Projects(project_id),

project_date DATE DEFAULT CURRENT_DATE NOT NULL,
project_status INTEGER NOT NULL,
PRIMARY KEY (project_id, project_date));

A solution from David Portas, which assumes that the project 
is still active, is:

SELECT P.project_id, P.project_name
  FROM Projects AS P
WHERE EXISTS
  (SELECT *
   FROM ProjectStatusHistory AS H
   WHERE H.project_id = P.project_id
  HAVING MAX(CASE WHEN H.project_status = 10
        THEN project_date END) = MAX(project_date));

But now try to answer the question, which projects had a status 
of 10 on a prior date?

SELECT X.project_id
 FROM (SELECT P1.project_id, P1.project_date AS start_date,
      MIN(P2.project_date) AS end_date
       FROM Projects AS P1
      LEFT OUTER JOIN
      Projects AS P2
      ON P1.project_id = P2.project_id
       AND P1.project_date < P2.project_date
   WHERE project_status = 10
   GROUP BY P1.project_id, P1.project_date)
   AS X(project_id, start_date, end_date)
WHERE :my_date BETWEEN X.start_date
       AND COALESCE (X.end_date, CURRENT_DATE);

The X derived table is what Projects would have looked like with 
(start_time, end_time) pairs.

The COALESCE() handles the use of NULL for an eternity marker. 
Depending on the circumstances, you might also use this form of 
the predicate.

WHERE :my_date BETWEEN X.start_date
       AND COALESCE (X.end_date, :my_date)
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38.8 Calendar Auxiliary Table
Auxiliary tables are a way of building functions that would be 
difficult if not impossible to do with the limited computational 
power of SQL. They should not appear on the E-R diagrams for 
the database because they are not really a part of the model, but 
serve as adjuncts to all the tables and queries in the database that 
could use them.

This is very true with the calendar because it is so irregular 
that trying to figure out dates via computations is insanely com-
plex. Look up the algorithm for finding Easter, Ramadan, and 
other lunar or lunar/solar holidays, for example.

Consider the Security and Exchange Commission (SEC) rule 
that a brokerage transaction must close within three business 
days as we mentioned earlier. A business day does not include 
Saturdays, Sundays, or holidays declared by the New York Stock 
Exchange. You can compute the occurrences of Saturdays and 
Sundays with a library function in many SQL products, but not 
the holidays. In fact, the New York Stock Exchange can be closed 
by a declared national emergency.

This calendar tables has two general forms. The first form 
maps single dates into some value and has the general declaration:

CREATE TABLE Calendar
(cal_date DATE NOT NULL PRIMARY KEY,
julian_day INTEGER NOT NULL
       CONSTRAINT valid_julian_day
       CHECK (julian_day BETWEEN 1 AND 366),
business_day INTEGER NOT NULL CHECK (business_day  

IN (0, 1)),
three_business_days DATE NOT NULL,
fiscal_month INTEGER NOT NULL
      CONSTRAINT valid_month_nbr
      CHECK (fiscal_month BETWEEN 1 AND 12),
fiscal_year INTEGER NOT NULL,
...);

Since this is probably going to be a static table that you fill 
with 10 or 20 years’ worth of data at once (20 years is about 7000 
rows—a very small table), you might consider dropping the 
 constraints and keeping only the primary key.

The second form maps an <interval> into some value and has 
the general declaration, with the same constraints as we used in 
the last section:

CREATE TABLE EventCalendar
(event VARCHAR(30) NOT NULL PRIMARY KEY,
start_date DATE NOT NULL,
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end_date TIMESTAMP NOT NULL,
...,
CONSTRAINT started_before_ended
  CHECK(start_date < end_date),

CONSTRAINT end_time_open_interval
CHECK (end_date = CAST(end_date AS DATE)
        + INTERVAL '23:59:59.99999' HOUR),

CONSTRAINT no_date_overlaps
  CHECK (..),

CONSTRAINT only_one_current_status
  CHECK (..));

The data for the calendar table can be built with the help 
of a good spreadsheet, since spreadsheets usually have more 
 temporal functions than databases. Events tend to be volatile, so 
the constraints are a good idea.

38.8.1 Events and Dates
The Calendar table allows you to use a simple query to find 
which events were concurrent. The diagram in Figure 38.1 
explains the solution.

SELECT event_id
  FROM Events
WHERE :my_date BETWEEN start_date AND end_date;

Or, if you have arranged the times so that you do not want the 
ends, then use:

SELECT event_id
  FROM Events
WHERE :my_time >=start_time
 AND :my_time < end_time;

Figure 38.1

T1 T2

T3

T4
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38.9 Problems with the Year 2000
The special problems with the year 2000 took on a life of their 
own in the computer community, so they rate a separate sec-
tion in this book. Yes, I know you thought that the “Y2K Crisis” or 
“Millennium Bug” was over by now, but it still shows up and you 
need to think about it. The three major problems with represen-
tations of the year 2000 in computer systems are:
1. The year 2000 has a lot of zeros in it.
2. The year 2000 is a leap year.
3. The year 2000 is the last year of the old millennium
4. Many date fields are not really dates.

38.9.1 The Zeros
I like to call problem 1—the zeros in 2000—the “odometer prob-
lem” because it is in the hardware or system level. This is not 
the same as the millennium problem, where date arithmetic is 
invalid. If you are using a year-in-century format, the year 2000 is 
going to “roll over” like a car odometer that has reached its limit 
and leave a year that is assumed to be 1900 (or something else 
other than 2000) by the application program.

This problem lives where you cannot see it, in hardware and 
operating systems related to the system clock. Information on 
such problems is very incomplete, so you will need to keep your-
self posted as new releases of your particular products come out.

Another subtle form of “the zero problem” is that some hash-
ing and random number generators use parts of the system date 
as a parameter. Zero is a perfectly good number until you try to 
divide by it and your program aborts.

The problem is in mainframes. For example, the Unisys 2200 
system was set to fail on the first day of 1996 because the 8th 
bit of the year field—which is a signed integer—would go to 1. 
Fortunately, the vendor had some solutions ready. Do you know 
what other hardware uses this convention? You might want to 
look.

The real killer will be with older Intel-based PCs. When the 
odometer wraps around, DOS jumps to 1980 most of the time 
and sometimes to 1984, depending on your BIOS chip. Windows 
3.1 jumps to 1900 most of the time. Since PCs are now common 
as stand-alone units and as workstations, you can test this for 
yourself. Set the date and time to 2005-12-31 at 23:59:30 Hrs and 
let the clock run. What happens next depends on your BIOS chip 
and version of DOS.
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The results can be that the clock display shows 12:00 AM and 
a date display of 01/01/00, so you think you have no problems. 
However, you will find that you have newly created files dated 
1984 or 1980. Surprise!

This problem is passed along to application programs, but 
not always the way that you would think. Quicken Version 3 for 
the IBM PC running on MS-DOS 6 is one example. As you expect, 
directly inputting the date 2000-01-01 results in the year resetting 
to 1980 or 1984 off the system clock. But strangely enough, if you 
let the date wrap from 2005-12-31 into the year 2000, Quicken 
Version 3 interprets the change as 1901-01-01 and not as 1900.

It is worth doing a Google search for information on older 
software when you have to work with it.

38.9.2 Leap Year
Problem 2 always seems to shock people. You might remember 
being told in grade school that there are 365¼ days per year and 
that the accumulation of the fractional day creates a leap year 
every four years. Once more, your teachers lied to you; there are 
really 365.2422 days per year. Every four years, the extra 0.2400 
days accumulate and create an additional day; this gives us a leap 
year. Every 400 years the extra 0.0022 days accumulate enough to 
create an additional day and give us this special leap year. Since 
most of us are not over 400 years old, we did not have to worry 
about this until the year 2000. However, every 100 years the miss-
ing 0.01 days (i.e., 365.25 – 365.2422 rounded up) balances out 
and we do not have a leap year.

The correct test for leap years in SQL/PSM is:

CREATE FUNCTION Test_Leapyear (IN my_year INTEGER)
RETURNS CHAR(3)
LANGUAGE SQL
DETERMINISTIC
RETURN (CASE WHEN MOD(my_year, 400) = 0
   THEN 'Yes'
   WHEN MOD(my_year, 100) = 0
   THEN 'No'
   ELSE CASE WHEN MOD(my_year, 4) = 0
        THEN 'Yes' ELSE 'No'
      END
   END);

Or if you would like a more compact form, you can use this 
solution from Phil Alexander, which will fit into in-line code as a 
search expression:

(MOD(my_year, 400) = 0
OR (MOD(my_year, 4) = 0 AND NOT (MOD(my_year, 100) = 0)))
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People who did not know this algorithm wrote lots of pro-
grams. I do not mean COBOL legacy programs in your orga-
nization; I mean packaged programs for which you paid good 
money. The date functions in the first releases of Lotus, Excel, 
and Quattro Pro did not handle the day 2000-02-29 correctly. 
Lotus simply made an error and the others followed suit to 
maintain “Lotus compatibility” in their products. Microsoft 
Excel for Windows Version 4 shows correctly that the next day 
after 2000-02-28 is 2000-03-01. However, it thought that the next 
day after 1900-02-28 was also February 29 instead of March 01. 
Microsoft Excel for Macintosh did not handle the years 1900 
through 1903.

Have you checked all of your word processors, spreadsheets, 
desktop databases, appointment calendars, and other off-the-
shelf packages for this problem yet? Just key in the date 2000-02-
29, then do some calculations with date arithmetic and see what 
happens.

With networked systems, this is a real nightmare. All you 
needed was one program on one node in the network to reject 
leap year day 2000 and the whole network was useless for that 
day; transactions might not reconcile for some time afterward. 
How many nodes do you think there are in the ATM banking 
 networks in North America and Europe?

38.9.3 The Millennium
I saved problem 3 for last because it is the one best known in the 
popular and computer trade press. We programmers have not 
been keeping TRUE dates in fields for a few decades. Instead, we 
have been using one of several year-in-century formats. These 
will not work in the last year of the previous millennium. The first 
millennium of the Common Era calendar ends in the year 2000 
and the second millennium begins with the year 2001—that is 
why Arthur C. Clarke used it for the title of his book.

If only we had been good programmers and not tried to save 
storage space at the expense of accuracy, we would have used 
ISO standard formats and would not have to deal with these 
problems today. Since we did not, programs have been doing 
arithmetic and comparisons based on the year-in-century and 
not on the year. A 30-year mortgage taken out in 1992 will be 
over in the year 2022, but when you subtract the two year-in- 
centuries, you get:

(22 – 92) 5 –70 years
This is a very early payoff of a mortgage!

It might be worth mentioning the old COBOL programmer 
trick of checking to see if the two-digit year is less than 30 (or 
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some other magical number): if it is, we add 2000 to it, if it isn’t 
then add 1900 to it and come up with a four-digit year. A lot of old 
COBOL programs will be exploding 20, 30, or 40 years from when 
they were written if they are still chugging along. If you con-
sider how long COBOL has stayed in use, this is a real problem. 
Gary Barnett, Research Director of Ovum, reported in 2005 that 
COBOL accounted for 90% of all financial transactions estimates 
and 75% of transactions generally. You can find information on 
COBOL at http://www.infogoal.com/cbd/.

Inventory retention programs were throwing away good stock, 
thinking it is outdated—look at the 10-year retention required 
in the automobile industry. Lifetime product warranties were 
 dishonored because the services schedule dates and manufac-
turing dates could not be resolved correctly. One hospital sent a 
geriatrics patient to the pediatrics ward because it keeps only two 
digits of the birth year. You can imagine your own horror stories 
or do a web search for books and articles from that period.

According to Benny Popek, of Coopers & Lybrand LLP (Xenakis, 
1995), “This problem is so big that we will consider these bugs 
to be out of the scope of our normal software maintenance con-
tracts. For those clients who insist that we should take responsi-
bility, we’ll exercise the cancellation clause and terminate the 
outsourcing contract.”

Popek commented, “We’ve found that a lot of our clients are 
in denial. We spoke to one CIO who just refused to deal with the 
problem, since he’s going to retire next year.”

But the problem is subtler than just looking for date data 
fields. Timestamps often are buried inside encoding schemes. 
If the year-in-century is used for the high-order digits of a serial 
numbering system, then any program that depends on increas-
ing serial numbers will fail. Those of you with magnetic tape 
libraries might want to look at your tape labels now. The five-
digit code is used in many mainframe shops for archives and tape 
management software also has the convention that if program-
mers want a tape to be kept indefinitely, they code the label with 
a retention date of 99365. This method failed at the start of the 
year 2000 when the retention label had 00001 in it.

38.9.4 Weird Dates in Legacy Data
Some of the problems with dates in legacy data have been 
 discussed in an article by Randall L. Hitchens (Hitchens, 1991) 
and in one by me on the same subject (Celko, 1981). The problem 
is subtler than Hitchens implied in his article, which dealt with 
nonstandard date formats. Dates hide in other places, not just 

http://www.infogoal.com/cbd/
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in date fields. The most common places are serial numbers and 
computer-generated identifiers.

In the early 1960s, a small insurance company in Atlanta 
bought out an even smaller company that sold burial insurance 
policies to poor people in the Deep South. These policies guaran-
teed the subscriber a funeral in exchange for a weekly or monthly 
premium of a few dollars, and were often sold by local funeral 
homes; they are now illegal.

The burial insurance company used a policy number format 
identical to that of the larger company. The numbers began with 
the two digits of the year-in-century, followed by a dash, followed 
by an eight-digit sequential number.

The systems analysts decided that the easiest way to do this 
was to add 20 years to the first two digits. Their logic was that 
no customer would keep these cheap policies for 20 years—and 
the analyst who did this would not be working there in 20 years, 
so who cared? As the years passed, the company moved from a 
simple file system to a hierarchical database and was using the 
policy numbers for unique record keys. The system simply gener-
ated new policy numbers on demand, using a global counter in a 
policy library routine, and no problems occurred for decades.

There were about 100 burial policies left in the database after 
20 years. Nobody had written programs to protect against dupli-
cate keys, since the problem had never occurred. Then, one day, 
they created their first duplicate number. Sometimes the data-
base would crash, but sometimes the child records would get 
attached to the wrong parent. This second situation was worse, 
since the company started paying and billing the wrong people.

The company was lucky enough to have someone who recog-
nized the old burial insurance policies when he saw them. It took 
months to clean up the problem, because they had to search a 
warehouse to find the original policy documents. If the policies 
were still valid, there were insurance regulation problems because 
those policies had been made illegal in the intervening years.

In this case, the date was being used to generate a unique iden-
tifier. But consider a situation in which this same scheme is used, 
starting in the year 1999, for a serial number. Once the company 
goes into the year 2000, you can no longer select the largest serial 
number in the database and increment it to get the next one.

38.9.5 The Aftermath
The Y2K crisis is over now and we have some idea of the cost of 
this conversion. By various estimates, the total expenditure on 
remediation by governments and businesses ranged from a low 
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of $200 billion to well over half a trillion dollars. As a result of 
Y2K, many ISO Standards—not just SQL—require that dates be in 
ISO 8601 format.

The other good side effect was that people actually looked at 
their data and became aware of their data quality levels. Most 
companies would not have done such a data audit without the 
“Y2K Crisis” looming over their heads.

This was also a major reason that thºe SQL Standards spent so 
much time on, well, time.
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39
OPTIMIZING SQL

There is no set of rules for writing code that will take the best 
advantage of every query optimizer on every SQL product every 
time. The query optimizers depend on the underlying architec-
ture and are simply too different for many universal rules; how-
ever, we can make a few general statements. Just remember that 
you have to test code. What would improve performance in one 
SQL implementation might not do anything at all in another or 
make the performance worse. Even worse, the next release of the 
same SQL can perform differently.

There are two kinds of optimizers: cost-based and rule-based. 
A rule-based optimizer (such as Oracle before Version 7.0) will 
parse a query and execute it in the order in which it was written, 
perhaps doing some reorganization of the query into an equiva-
lent form using some syntax rules. Basically, it is no optimizer 
at all. The only reason I mention them is that small in-memory 
databases will use a rule-based optimizer because it cannot 
afford the overhead of statistics and extra code. If the entire data-
base is in primary storage, there is not much need for traditional 
optimizations that deal with reducing disk access.

A cost-based optimizer looks at both the query and the sta-
tistical data about secondary storage, the current data in cache 
shared by sessions, and decides on the best way to execute the 
query. These decisions involve deciding on the access methods 
to use, which data to bring into main storage, what sorting tech-
nique to use, and so forth. Most of the time (but not all), it will 
make better decisions than a human programmer would have 
simply because it has more information.

An old heuristic was to order the tables in the FROM clause in 
ascending or descending order by size. This was helpful in the old 
days because as the number of tables increases, many optimiz-
ers do not try all the combinations of possible JOIN orderings; the 
number of combinations is factorial. So the optimizer fell back 
on the order in the FROM clause. This kicked in when the number 
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of tables got over 5 (5! 5 120 permutations to test, but 6! 5 720 
and 10! 5 3,628,800). Do not worry about it today. Most modern 
optimizers keep descriptive statistics of the data and make deci-
sions based on the actual data distributions.

Ingres has had one of the best optimizers, which extensively 
reorders a query before executing it. It is one of the few products 
that can find most semantically identical queries and reduce 
them to the same internal form.

Rdb, a DEC product that now belongs to Oracle, uses a 
searching method taken from an AI (Artificial Intelligence) 
game- playing program to inspect the costs of several different 
approaches before making a decision. DB2 has a system table 
with a statistical profile of the base tables. In short, no two prod-
ucts use exactly the same optimization techniques.

39.1 Access Methods
For this discussion, let us assume that we have a disk storage sys-
tem of some kind. In a few years, this might not be true when we 
make some more breakthroughs in Solid State Disk (SSD).

In disk systems, there are four basic methods of getting to 
data: table scans or sequential reads of all the rows in the table, 
access via some kind of tree index, hashing, and bit vector 
indexes.

39.1.1 Sequential Access
The table scan is a sequential read of all the data in the order in 
which it appears in physical storage, grabbing one page of mem-
ory at a time. Most databases do not physically remove deleted 
rows, so a table can use a lot of physical space and yet hold little 
data. Depending on just how dynamic the database is, you may 
want to run a utility program to reclaim storage and compress 
the database. The performance can suddenly improve drastically 
after database reorganization.

Today, many SQL products can partition a table and distrib-
ute the data so that it can be accessed in parallel. This is not part 
of the ANSI/ISO Standards, but you have to know your product. If 
the table is partitioned sometimes the optimizer is smart enough 
to be able to skip partitions, or to scan only the relevant parti-
tions based on the partitioning key and the query.

This does not apply to columnar databases; they store each 
column of a table in its own structure and have to assemble the 
rows from those structures. SQL does not guarantee that a query 
will return the rows in the same order each time it is executed.
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39.1.2 Indexed Access
Indexed access returns one row or data page at a time. The index 
is probably going to be a B-tree, B1 tree, T-Tree or trie (popular 
with in-memory databases), or some other flavor. Obviously, if 
you do not have an index on a table, then you cannot use indexed 
access on it. Even if you do have an index on the table, the formu-
lation of your predicates and the particular DBMS optimizer you 
are using may preclude you from being able to use the index.

An index can be sequential or nonsequential. A sequential 
index has a table that is in sorted order in the physical storage. 
Obviously, there can be only one sequential index on a table. 
Sequential indexes keep the table in sorted order, so a table scan 
will often produce results in that order. A sequential index will 
also tend to put duplicates of the indexed column values on the 
same page of physical memory, which may speed up aggregate 
functions.

Sequential in this sense is the Sybase/SQL Server term 
 “clustered”; Oracle uses “clustered” to mean a single data page 
that contains matching rows from multiple tables. The first ver-
sion of this was IBM’s old ISAM (Indexed Sequential Access 
Method) file system, and it is still in use on mainframes. If you 
aggregate your data, then a sequential index on those columns 
can be a huge improvement; the read/write head jumps imme-
diately to the physically contiguous storage where the data 
resides.

As tables get bigger, the deeper the tree structure becomes, 
and it requires more and more probes to locate the physical 
records with the data.

39.1.3 Hashed Indexes
Writing hashing functions is not easy. The idea is that given 
input values, the hashing function will return a physical storage 
address. If two or more values have the same hash value (“hash 
clash” or “collision”), then they are put into the same “bucket” 
in the hash table, or they are run through a second hashing 
function.

Let me give a very simplified example. Given a key that can be 
expressed as a binary integer, divide it by 5 and use the remain-
der as the hash, which will be {0, 1, 2, 3, 4}. If I have the keys 42, 
35, and 120 they will hash to 2, 0, and 0, respectively. I use the 
value 2 to go to a hash table, usually an array of pointer chains 
in main storage, and I find the physical address of the record that 
holds the row with a key of 2. But when I am asked to find the row 
with a key of 35, I also hash to the one with a key 120.
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I can resolve the collision by chaining the hash table elements 
together by pointers and follow it until I find what I wanted. 
Alternatively, I can apply another hash function and look in 
another location. Hashing is fast, simple math so doing several of 
these function calls is cheap and you seldom need more than five 
attempts. In this super-simple case, I might divide by 7 and get 6.

If the index is on a unique column, the ideal situation is what 
is called a minimal perfect hashing function—each value hashes 
to a unique physical storage address and there are no empty 
spaces in the hash table. The next best situation for a unique col-
umn is what is called a perfect hashing function—every value 
hashes to one physical storage address without collisions, but 
there are some empty spaces in the physical hash table storage.

A hashing function for a nonunique column should hash to a 
bucket small enough to fit into main storage. In the Teradata SQL 
engine, which is based on hashing, any row can be found in at most 
two probes, and 90% or more of the accesses require only one probe.

39.1.4 Bit Vector Indexes
The fact that a particular occurrence of an entity has a particu-
lar value for a particular attribute is represented as a single bit 
in a vector or array. Predicates are handled by doing Boolean bit 
operations on the arrays. These techniques are very fast for large 
amounts of data and are used by the SAND database engine from 
Sand Technology and Foxpro’s Rushmore indexes.

39.2 How to Index
There are two kinds of indexes; primary and secondary. Primary 
indexes are those that are required to preserve primary keys, 
uniqueness constraints, and in products with multiple table 
indexes, those that enforce FOREIGN KEY relationships. Secondary 
indexes are added for performance.

Without giving you a computer science lecture, a computer 
problem is called NP-complete if it gets so big, so fast, that it is 
not practical to solve it for a reasonable-sized set of input values.

Usually this means that you have to try all possible combina-
tions to find the answer. Finding the optimal indexing arrange-
ment is known to be NP-complete. If you want the details refer to 
the following:
Comer, D. 1978. “The Difficulty of Optimum Index Selection.” 
ACM Transactions on Database Systems 3(4):440–445.
Paitetsky-Shapiro, G. 1983. “The Optimal Selection of Secondary 
Indexes in NP-Complete.” SIGMOD Record 13(2):72–75.



 Chapter 39 OPTIMIZING SQL  741

This does not mean that you cannot optimize indexing for a 
particular database schema and set of input queries, but it does 
mean that you cannot write a program that will do it for all pos-
sible relational databases and query sets.

Over-indexing can slow inserts, updates, and deletes because 
the extra indexes have to be changed when the base table is 
changed. But it can also confuse the optimizer and slow down 
queries.

Here are some tips for faster DML statements. Like all heuris-
tics, these tips will not be valid for all products in all situations, 
but they are how the smart money bets. In fairness, most opti-
mizers are smart enough to do many of these things internally 
today.

39.2.1 Use Simple Search Conditions
Where possible, write simple search conditions. Optimizers have 
trouble using an index with complicated expressions or func-
tion calls. SQL is not built for algebra, so you are not going to get 
a search condition reduced to a simpler expression if it requires 
any serious effort.

Functions have to be evaluated each time they are invoked, 
so it can be impossible to use an index. The exception is with 
SQLs that allow a function to be used in creating an index. You 
will need to know your product and its particular syntax, but here 
is an example with a nonstandard trig function. First consider a 
simple index on a single column:

CREATE INDEX Foobar_idx ON Foobar (x);

and the query:

SELECT x, sin(x), a, b, c
 FROM Foobar
WHERE sin(x) = 0.08715; -– x = 5

Since SQL is not a computational language most implemen-
tations have simple algebraic simplifications at best. There is no 
way the optimizer can use Foobar_idx. However, if we had:

CREATE INDEX Foobar_Sin_idx ON Foobar (sin(x));

this index could be used. But it would be useless for the query:

SELECT x, sin(x), a, b, c
 FROM Foobar
WHERE x = 5;

If a column appears in a mathematical or string expression, 
then the optimizer cannot use its indexes.
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The not-equal ,. comparison has some unique problems. 
Some optimizers assume that this comparison will return more 
rows than it rejects, so they will prefer a sequential scan and will 
not use an index on a column involved in such a comparison. 
This is not always true, however. For example, to find someone in 
Ireland who is not a Catholic, you would normally write:

SELECT last_name, first_name, religion_name
 FROM Ireland
WHERE religion_name <> 'Catholic';

The way around this is to break up the inequality like this:

SELECT *
 FROM Ireland
WHERE religion_name < 'Catholic'
   OR religion_name > 'Catholic';

and force the use of an index. However, without an index on 
 religion_name, the OR-ed version of the predicate could take 
 longer to run.

Another trick is to avoid the x IS NOT NULL predicate and use 
x .5 <minimal constant> instead. The NULLs are kept in different 
ways in different implementations, not always in the same physi-
cal storage area as their columns. As a result, the SQL engine 
has to do extra searching. For example, if we have a CHAR(3) col-
umn that holds a NULL or three letters, we could look for missing 
data with:

SELECT sale_nbr, alpha_code
 FROM Sales
WHERE alpha_code IS NOT NULL;

but it might be better written as:

SELECT sale_nbr, alpha_code
 FROM Sales
WHERE alpha_code >= 'AAA';

because it avoids the extra reads.

39.2.2 Simple String Expressions
Likewise, string expressions can be expensive. In particular, favor 
a LIKE over a SIMILAR TO predicate. The regular expression is more 
complex to compute each time. I would recommend getting 
a book on regular expressions to learn how to write them in an 
optimal fashion; it is not something I can cover here.

But with the LIKE predicate, avoid ‘%’ in favor of ‘_’ in the 
 pattern string.
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For example, consider this table with a fixed length CHAR(5) 
column:

SELECT student_first_name, student_last_name,  
homeroom_nbr

 FROM Students
WHERE homeroom_nbr LIKE 'A-1__'; -- two underscores in 

pattern

may or may not use an index on the homeroom_nbr column. 
However, if we know that the last two positions are always 
numerals, then we can replace this query with:

SELECT student_first_name, student_last_name,  
homeroom_nbr

 FROM Students
WHERE homeroom_nbr BETWEEN 'A-100' AND 'A-199';

This query can use an index on the homeroom_nbr column. 
Notice that this trick assumes that the homeroom_nbr column is 
CHAR(5), and not a VARCHAR(5) column. If it were VARCHAR(5), then 
the second query would pick ‘A-1’ but the original LIKE predicate 
would not. String equality and BETWEEN predicates pad the shorter 
string with blanks on the right before comparing them; the LIKE 
predicate does not pad either the string or the pattern.

39.2.3 Simple Temporal Expressions
Avoid temporal math whenever possible for the same reasons we 
avoided complex string and numeric expressions. Internally the 
irregular nature of the Common Era calendar and the base-60 
Babylonian temporal model makes the math pretty ugly.

Temporal data can be stored at the DATE or TIMESTAMP level 
of granularity; use the coarsest level that does the job. Carrying 
work out to nanoseconds when a date will do saves complicated 
programming. As an example of this, look at MS SQL Server code 
before the SQL Server 2008 added a subset of the ANSI Standard 
DATE data type. The product only had a version of TIMESTAMP and 
programmers spent huge amounts of computer time setting the 
TIME portion to ‘00:00:00’ to kludge a DATE data type.

For example, given a table of tasks and their start and finish 
dates, to find the tasks that took three days to complete, we could 
write:

SELECT task_nbr
 FROM Tasks
WHERE (finish_date - start_date) = INTERVAL '3' DAY
  AND start_date >= DATE '2015-01-01';
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But since most of the reports deal with the finish dates, we 
have an index on that column. This means that the query will run 
faster if it is rewritten as:

SELECT task_nbr
 FROM Tasks
WHERE finish_date = (start_date + INTERVAL '3' DAY)
  AND start_date >= DATE '2015-01-01';

39.3 Give Extra Information
Optimizers are not always able to draw conclusions that a human 
being can draw. The more information contained in the query, 
the better the chance that the optimizer will be able to find an 
improved execution plan. The best to do this is with constraints 
in the DDL. These constraints will be picked up by the optimizer 
for all queries, inserts, updates, and deletions without writing any 
extra code.

However, if you do not have the constraints, you can provide 
them in your code. For example, given this query:

SELECT sale_nbr, alpha_code
 FROM Sales
WHERE sale_amt >= 500.00;

If the DDL has a column constraint on the alpha_code like 
this:

CREATE TABLE Sales
(..
alpha_code CHAR(3) NOT NULL
  CHECK (alpha_code SIMILAR TO 'A[:UPPER:]C'),
..);

The query effectively becomes:

SELECT sale_nbr, alpha_code
 FROM Sales
WHERE sale_amt >= 500.00;
  AND alpha_code SIMILAR TO 'A[:UPPER:]C';

Do not confuse this extra data with redundant logical expres-
sions that might be recalculated and can be expensive. For 
example:

SELECT sale_nbr, alpha_code
 FROM Sales
WHERE sale_amt >= 500.00
  AND alpha_code SIMILAR TO 'A[:UPPER:]C'
  AND alpha_code BETWEEN 'AAA' AND 'ZZZ';
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might redo the BETWEEN predicate for every row. It does not pro-
vide any information that can be used for a JOIN, and, very 
clearly, if the LIKE predicate is TRUE, then the BETWEEN predicate 
also has to be TRUE.

Do not confuse this extra data with hints, pragmas, or other 
vendor terms for interventions into the execution plan. Optimizer 
hints can be either suggestions or commands, depending on your 
SQL. The problem with mandatory hints is that they stay there 
forever. When the statistics, table structures, indexes, or other 
things change, the hints do not. Nobody dares to remove them 
because they are just not sure why they are there. This is the SQL 
version of the old programming maxim that there is nothing more 
permanent than a “temporary” code patch.

39.4 Index Multiple Columns Carefully
For obvious physical reasons, you can create only one sequen-
tial index on a table. The decision as to which columns to use in 
the index can be important to performance. There is a “supersti-
tion” among older DBAs who have worked with ISAM files and 
network and hierarchical databases that the PRIMARY KEY must be 
done with a sequential index. This stems from the fact that in the 
older file systems, files had to be sorted on their keys. All search-
ing and navigation was based on this.

This is not true in SQL systems. The PRIMARY KEY’s  uniqueness 
will probably be preserved by a unique index, but it does not 
have to be a sequential unique index. Consider a table of employ-
ees keyed by a unique employee identification number. Updates 
are done with the employee ID number, of course, but very few 
queries use it for ordering reports. Updating individual rows in a 
table will actually be about as fast with a sequential or a nonse-
quential index. Both tree structures will be the same, except for 
the final physical position to which they point.

However, it might be that the most important corporate unit 
for reporting purposes is the department, not the employee. A 
sequential index on the employee ID number would sort the 
table in employee ID order. There is no inherent meaning in that 
ordering; in fact, I would be more likely to sort a list of employees 
by their last names than by their ID numbers.

However, a sequential index on the (nonunique) department 
code would sort the table in department order and put employ-
ees in the same department on the same physical page of storage. 
The result would be that fewer pages would be read to answer 
queries.
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Modern SQL products can use multiple indexes for AND and 
OR search criteria. If the index has all the columns needed for a 
query, it is possible that the SQL engine will never read the base 
tables.

39.5 Watch the IN Predicate
The IN predicate is really shorthand for a series of OR-ed equality 
tests. There are two forms: either an explicit list of values is given 
or a subquery is used to make such a list of values.

The database engine has no statistics about the relative fre-
quency of the values in a list of constants, so it will assume that 
the list is in the order in which they are to be used. People like 
to order lists alphabetically or by magnitude, but it would be 
better to order the list from most frequently occurring  values 
to least frequent. It is also pointless to have duplicate val-
ues in the constant list, since the predicate will return TRUE if 
it matches the first duplicate it finds and will never get to the 
second occurrence. Likewise, if the predicate is FALSE for that 
value, the program wastes computer time traversing a need-
lessly long list.

Many SQL engines perform an IN predicate with a subquery 
by building the result set of the subquery first as a temporary 
working table, then scanning that result table from left to right. 
This can be expensive in many cases. For example,

SELECT P1.first_name, P1.last_name
 FROM Personnel AS P1, BowlingTeam AS B1
WHERE P1.last_name
  IN (SELECT last_name
      FROM BowlingTeam AS B1
     WHERE P1.emp_nbr = B1.emp_nbr)
       AND P1.last_name
        IN (SELECT last_name
            FROM BowlingTeam AS B2
           WHERE P1.emp_nbr = B2.emp_nbr);

will not run as fast as:

SELECT P1.first_name, P1.last_name
 FROM Personnel AS P1
WHERE first_name || last_name
  IN (SELECT first_name || last_name
         FROM BowlingTeam AS B1
       WHERE P1.emp_nbr = B1.emp_nbr);
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which can be further simplified to:

SELECT P1.first_name, P1.last_name
 FROM Personnel AS P1
WHERE first_name || last_name
  IN (SELECT first_name || last_name
      FROM BowlingTeam);

or using Standard SQL row constructors to:

SELECT P1.first_name, P1.last_name
 FROM Personnel AS P1
WHERE (first_name, last_name)
  IN (SELECT first_name, last_name
      FROM BowlingTeam);

since there can be only one row with a complete name in it.
The first version of the query may make two passes through 

the Bowling Team table to construct two separate result tables. 
The second version makes only one pass to construct the con-
catenation of the names in its result table. Likewise, the row con-
structor version should make only one pass.

The optimizer is supposed to figure out when two queries are 
the same and will not be fooled by two queries with the same 
meaning and different syntax. For example, the SQL standard 
defines:

SELECT *
 FROM Warehouse AS W1
WHERE onhand_qty IN (SELECT order_qty FROM Sales);

as identical to:

SELECT *
 FROM Warehouse
WHERE onhand_qty = ANY (SELECT order_qty FROM Sales);

but you will find that some older SQL engines prefer the first 
 version to the second because they do not convert the expres-
sions into a common internal form. Very often, things like the 
choice of operators and their order make a large performance 
difference.

The first query can be converted to this “flattened” JOIN query:

SELECT W1.*
 FROM Warehouse AS W1, Sales AS S1
WHERE W1.onhand_qty = S1.order_qty;

This form will often be faster if there are indexes to help with 
the JOIN.
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39.6 Avoid UNIONs
A UNION is often implemented by constructing the two result 
sets, then merging them together usually with a sort to get rid of 
redundant duplicates. The optimizer works only within a single 
SELECT statement or subquery. For example,

SELECT *
 FROM Personnel
WHERE work_city_name = 'New York'
UNION
SELECT *
 FROM Personnel
WHERE home_city_name = 'Chicago';

is the same as:

SELECT DISTINCT *
 FROM Personnel
WHERE work_city_name = 'New York'
   OR home_city_name = 'Chicago';

which will usually run faster.
Another trick is to use the UNION ALL in place of the UNION 

whenever duplicates are not a problem. The UNION ALL is imple-
mented as an append operation, without the need for a sort to 
aid duplicate removal.

39.7 Prefer Joins over Nested Queries
A nested query is hard to optimize. Optimizers try to “flat-
ten” nested queries so that they can be expressed as JOINs and 
the best order of execution can be determined. Consider the 
database:

CREATE TABLE Authors
(author_nbr INTEGER NOT NULL PRIMARY KEY,
author_name CHAR(50) NOT NULL);

CREATE TABLE Titles
(isbn CHAR(10)NOT NULL PRIMARY KEY,
book_title CHAR(50) NOT NULL
advance_amt DECIMAL(8,2) NOT NULL);

CREATE TABLE Authorship
(author_nbr INTEGER NOT NULL REFERENCES 

Authors(author_nbr),
isbn CHAR(10)NOT NULL REFERENCES Titles(isbn),
royalty_rate DECIMAL(5,4) NOT NULL,
PRIMARY KEY (author_nbr, isbn));
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This query finds authors who are getting less than 50% royalties:

SELECT author_nbr
 FROM Authors
WHERE author_nbr
  IN (SELECT author_nbr
         FROM Authorship
       WHERE royalty < 0.50)

which could also be expressed as:

SELECT DISTINCT Authors.author_nbr
 FROM Authors, Authorship
WHERE Authors.author_nbr = Authorship.author_nbr
  AND royalty_rate < 0.50;

The SELECT DISTINCT is important. Each author’s name will 
occur only once in the Authors table. Therefore, the IN predicate 
query should return one occurrence of O’Leary. Assume that 
O’Leary wrote two books; with just a SELECT, the second query 
would return two O’Leary rows, one for each book.

39.8 Use Fewer Statements
The more work you can do with one statement, the fewer times 
the SQL engine will have to access the database. Fewer state-
ments also mean less code to maintain.

The MERGE statement is the most powerful example of this heu-
ristic. I strongly suggest that you look at old code and try to find 
updates and inserts to the same table in stored procedures and 
see what can be done with a single MERGE statement.

A better example of the power of this heuristic is found in a  contest 
sponsored by Advanced DataTools (http://www.advancedatatools.
com/), an INFORMIX consultancy. Cleaning up their sample code you 
were given a schema with the following tables and sample data:

CREATE TABLE State_Taxes –- 52 rows
(state_code CHAR(2) NOT NULL PRIMARY KEY,
state_name CHAR(15) NOT NULL,
sales_tax_rate DECIMAL(16,2) NOT NULL);

CREATE TABLE Customers –- 101,000 rows
(customer_nbr INTEGER NOT NULL PRIMARY KEY,
cust_last_name CHAR(30) NOT NULL,
cust_first_name CHAR(30) NOT NULL,
customer_address CHAR(50) NOT NULL,
city_name CHAR(20) NOT NULL,
state_code CHAR(2) NOT NULL
–- REFERENCES State_Codes(state_code),
zip_code CHAR(5) NOT NULL,

http://www.advancedatatools.com/
http://www.advancedatatools.com/
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start_date DATE DEFAULT CURRENT_DATE NOT NULL,
balance_due_amt DECIMAL(16,2) NOT NULL,
billing_notes CHAR(2000) NOT NULL,
product_nbr CHAR(4) NOT NULL
–- REFERENCES Products (product_nbr));

CREATE TABLE Products –- 10 rows
(product_nbr NOT NULL PRIMARY KEY,
product_name CHAR(50) NOT NULL,
product_type CHAR(4) NOT NULL,
product_price DECIMAL(16,2) NOT NULL);

The contestants were not allowed to change these tables and 
were to create a Bills table that gets dropped and recreated with 
each run. At the end of the process there will be 605,280 bills. They 
could change the system configuration and add other things.

The process steps were simple and had these business rules:
1. Bills are generated in batches for two products (limited to two 

to avoid a long transaction).
2. Next, Bills are generated for two more products. A final batch of 

Bills are generated for two products.
3. The best customers are given a $10 discount.
4. The bill total is calculated for each row (product_price – 

 product_discount) 1 sales_tax 5 total_bill decimal.
5. The customer balance is updated. Totals are displayed to check 

row and dollar counts.
6. A checkpoint is performed; this is the last step and must be 

performed. We want everything safely written to disk.
The benchmark, which had three inserts to Bills and two 

updates to Customers, took about 40 hours to run; add one index 
and it will run in 30 minutes. With a few changes to the configu-
ration, it can run in 5 to 6 minutes, and with some more changes 
it can run in under 2 minutes.

The tricks that were used were to add an index on Bills so it 
could be joined to the Customers via the customer_nbr (you 
can get the same effect with a REFERENCES clause). This dropped 
the time from 40 hours to 30 minutes. Several entries created too 
many indexes and slowed the process.

The winning answer from Eric Rowell was under 1 minute. His 
answer put all the work into one INSERT statement and a TRIGGER 
on EACH ROW so that as each bill was inserted, it would update the 
corresponding Customers row.

39.9 Avoid Sorting
The SELECT DISTINCT, GROUP BY, and ORDER BY clauses usually 
cause a sort in most SQL products, so avoid them unless you 
really need them. Use them if you need to remove duplicates or 
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if you need to guarantee a particular result set order explicitly. In 
the case of a small result set, the time to sort it can be longer than 
the time to process redundant duplicates.

The UNION, INTERSECT, and EXCEPT clauses can do sorts to 
remove duplicates; the exception is when an index exists that can 
be used to eliminate the duplicates without sorting. In particu-
lar, the UNION ALL will tend to be faster than the plain UNION, so if 
you have no duplicates or do not mind having them, then use it 
instead. There are not enough implementations of INTERSECT ALL 
and EXCEPT ALL to make a generalization yet.

The GROUP BY often uses a sort to cluster groups together, does 
the aggregate functions and then reduces each group to a single 
row based on duplicates in the grouping columns. Each sort will 
cost you (n*log2(n)) operations, which is a lot of extra computer 
time that you can save if you do not need to use these clauses.

If a SELECT DISTINCT clause includes a set of key columns in it, 
then all the rows are already known to be unique. Since you can 
declare a set of columns to be a PRIMARY KEY in the table decla-
ration, an optimizer can spot such a query and automatically 
change SELECT DISTINCT to just SELECT.

You can often replace a SELECT DISTINCT clause with an 
EXISTS() subquery, in violation of another rule of thumb that says 
to prefer unnested queries to nested queries.

For example, a query to find the students who are majoring in 
the sciences would be:

SELECT DISTINCT S1.name
FROM Students AS S1, ScienceDepts AS D1
WHERE S1.dept = D1.dept;

This can be better replaced with:

SELECT S1.name
 FROM Students AS S1
WHERE EXISTS
  (SELECT *
    FROM ScienceDepts AS D1
    WHERE S1.dept = D1.dept);

Another problem is that the DBA might not declare all candi-
date keys or might declare superkeys instead. Consider a table for 
a school schedule:

CREATE TABLE Schedule
(room_nbr INTEGER NOT NULL,
course_name CHAR(7) NOT NULL,
teacher_name CHAR(20) NOT NULL,
period_nbr INTEGER NOT NULL,
PRIMARY KEY (room_nbr, period_nbr));
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This says that if I know the room and the period, I can find a 
unique teacher and course—“Third-period Freshman English 
in Room 101 is taught by Ms. Jones.” However, I might have also 
added the constraint UNIQUE (teacher, period), since Ms. Jones 
can be in only one room and teach only one class during a given 
period. If the table was not declared with this extra constraint, 
the optimizer could not use it in parsing a query. Likewise, if the 
DBA decided to declare PRIMARY KEY (room_nbr, course_name, 
teacher_name, period_nbr), the optimizer could not break down 
this superkey into candidates keys.

Avoid using a HAVING or a GROUP BY clause if the SELECT or WHERE 
clause can do all the needed work. One way to avoid grouping is 
in situations where you know the group criterion in advance and 
then make it a constant. This example is a bit extreme, but you 
can convert:

SELECT project_type, AVG(cost)
 FROM Tasks
GROUP BY project_type
HAVING project_type = 'bricklaying';

to the simpler and faster:

SELECT 'bricklaying', AVG(cost)
 FROM Tasks
WHERE project_type = 'bricklaying';

Both queries have to scan the entire table to inspect values in 
the project column. The first query will simply throw each row 
into a bucket based on its project code, then look at the HAVING 
clause to throw away all but one of the buckets before computing 
the average.

The second query rejects those unneeded rows and arrives at 
one subset of projects when it scans.

Standard SQL has ways of removing GROUP BY clauses because 
it can use a subquery in a SELECT statement. This is easier to show 
with an example in which you are now in charge of the Widget-
Only Company inventory. You get requisitions that tell how many 
widgets people are putting into or taking out of the warehouse on 
a given date. Sometimes that quantity is positive (returns); some-
times it is negative (withdrawals).

The table of requisitions looks like this:

CREATE TABLE Requisitions
(req_date DATE NOT NULL,
req_qty INTEGER NOT NULL
CONSTRAINT non_zero_qty
CHECK (req_qty <> 0));
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Your job is to provide a running balance on the quantity on 
hand with a query. We want something like:

Result

req_date req_qty onhand_qty

'2013-07-01' 100 100
'2013-07-02' 120 220
'2013-07-03' –150 70
'2013-07-04' 501 20
'2013-07-05' –35 85

The classic SQL solution would be:

SELECT R1.req_date, R1.req_qty, SUM(R2.req_qty) AS 
onhand_qty

 FROM Requisitions AS R1, Requisitions AS R2
WHERE R2.req_date <= R1.req_date
GROUP BY R1.req_date, R1.req_qty;

Standard SQL can use a subquery in the SELECT list, even a cor-
related query. The rule is that the result must be a single value, 
hence the name scalar subquery; if the query results are an 
empty table, the result is a NULL.

In this problem, we need to do a summation of all the requisi-
tions posted up to and including the date we are looking at. The 
query is a nested self-JOIN, thus:

SELECT R1.req_date, R1.req_qty,
   (SELECT SUM(R2.req_qty)
    FROM Requisitions AS R2
      WHERE R2.req_date <= R1.req_date) AS onhand_qty
FROM Requisitions AS R1;

Frankly, both solutions are going to run slowly compared to 
a procedural solution that could build the current quantity on 
hand from the previous quantity on hand from a sorted file of 
records. Both queries will have to build the subquery from the 
self-joined table based on dates. However, the first query will 
also probably sort rows for each group it has to build. The earliest 
date will have one row to sort, the second earliest date will have 
two rows, and so forth until the most recent date will sort all the 
rows. The second query has no grouping, so it just proceeds to 
the summation without the sorting.
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39.10 Avoid CROSS JOINs
Consider a three-table JOIN like this.

SELECT P1.paint_color
 FROM Paints AS P1, Warehouse AS W1, Sales AS S1
WHERE W1.onhand_qty + S1.sold_qty = P1.gallons/2.5;

Because all the columns involved in the JOIN are in a single 
expression, their indexes cannot be used. The SQL engine will 
construct the CROSS JOIN of all three tables first, then prune that 
temporary working table to get the final answer. In Standard SQL, 
you can first do a subquery with a CROSS JOIN to get one side of 
the equation:

(SELECT (W1.onhand_qty + S1.sold_qty) AS stuff
 FROM Warehouse AS W1 CROSS JOIN Sales AS S1)

and push it into the WHERE clause, like this:

SELECT paint_color
 FROM Paints AS P1
WHERE EXISTS
   ((SELECT (W1.onhand_qty + S1.sold_qty)
      FROM Warehouse AS W1 CROSS JOIN Sales AS S1)
     = (P1.gallons/2.5));

The SQL engine, we hope, will do the two-table CROSS JOIN 
subquery and put the results into a temporary table. That tem-
porary table will then be filtered using the Paints table, but with-
out generating a three-table CROSS JOIN as the first form of the 
query did.

With a little algebra, the original equation can be changed 
around and different versions of this query built with other com-
binations of tables.

A good heuristic is that the FROM clause should only have those 
tables that provide columns to its matching SELECT clause.

39.11 Know Your Optimizer
One of the best tricks is to know what your optimizer favors. It is 
often the case that one query construction will have special code 
written for it that an equivalent query construction does not. 
Consider this simple adjacency list model of a tree.

CREATE TABLE Tree
(node_id CHAR(2) NOT NULL,
parent_node_id CHAR(2), -- null is root node
creation_date DATE DEFAULT CURRENT_TIMESTAMP NOT NULL);
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Let’s try to group all the parent_node_ids and display the 
 creation_date of the most recent subordinate under that parent_
node_id. This is a straightforward query that can be done with 
this statement.

SELECT node_id, T1.parent_node_id, T1.creation_date
 FROM Tree AS T1
WHERE NOT EXSTS
  (SELECT *
      FROM Tree AS T2
        WHERE T2.parent_node_id = T1.parent_node_id
      AND T2.creation_date > T1.creation_date);

The EXISTS() predicate says that there is no sibling younger 
than the one we picked, or, as an alternative, which uses an OUTER 
JOIN to do the same logic.

SELECT T1.node_id, T1.parent_node_id, T1.creation_date
 FROM Tree AS T1
   LEFT OUTER JOIN
   Tree AS T2
   ON T2.parent_node_id = T1.parent_node_id
    AND T2.creation_date > T1.creation_date
WHERE T2.node_id IS NULL;

However, this query was run in SQL Server 2000. Lee Tudor 
pointed out that SQL Server looks for a join to an aggregated self 
view on the group condition and aggregate. Performance is far 
superior to the alternates due to the query optimizer having a 
special way of dealing with it.

SELECT T1.node_id, T1.parent_node_id, T1.creation_date
 FROM Tree AS T1
   INNER JOIN
   (SELECT parent_node_id, MAX(creation_date)
     FROM Tree
    GROUP BY parent_node_id)
   AS T2 (parent_node_id, creation_date)
   ON T2.parent_node_id = T1.parent_node_id
    AND T2.creation_date = T1.creation_date;

The optimizer will change from release to release, but it is a 
good general statement that once a trick is coded into it, the trick 
will stay there until there is a major change in the product.

In 1988, Fabian Pascal published an article on the PC data-
base systems available at the time in Database Programming 
and Design (vol. 1, #12, December 1998; “SQL Redundancy and 
DBMS Performance”) in which he wrote seven logically equiva-
lent  queries as a test suite. These tests revealed vastly uneven 
 performance for all the RDBMS products except Ingres. Ingres 
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timings were approximately the same for all seven queries and 
Ingres had the best average time. The other products showed 
wide variations across the seven queries with the worst timing 
over an order of magnitude longer than its best. In the case of 
Oracle, the worst timing was over 600 times the best.

Although optimizers have gotten better over the years, there 
are still “hot spots” in specific optimizers that favor particular 
constructions.

39.12  Recompile Static SQL after Schema 
Changes

In most implementations, static SQL is compiled in a host pro-
gram with a fixed execution plan. If a database schema object is 
altered, execution plans based on that object have to be changed.

In older SQL implementations, if a schema object was dropped, 
the programmer had to recompile the queries that referred to it. 
The SQL engine was not required to do any checking and most 
implementations did not. Instead, you could get a runtime error.

Even worse, you could have a scenario like this:
1. Create table A.
2. Create view VA on table A.
3. Use view VA.
4. Drop table A.
5. Create a new table A.
6. Use view VA.

What happens in step 6? That depended on your SQL product, 
but the results were not good. The worst result was that the entire 
schema could be hopelessly messed up. The best result was that 
VA in step 3 was not the VA in step 6, but was still usable.

Standard SQL added the option of specifying the behavior 
of any of the DROP statements as either CASCADE or RESTRICT. The 
RESTRICT option is the default in Standard SQL, and it will disal-
low the dropping of any schema object that is being used to 
define another object. For example, you cannot drop a base table 
that has VIEWs defined on it or is part of a referential integrity con-
straint if RESTRICT is used. The CASCADE option will drop any of the 
dependent objects from the schema when the original object is 
removed.

Be careful with this! The X/Open transaction model assumes 
a default action of CASCADE and some products may allow this to 
be set as a system parameter. The moral to the story is never use 
an implicit default on statements that can destroy your schema 
when an explicit clause is available.
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Some products will automatically recompile static SQL when 
an index is dropped and some will not. However, few products 
automatically recompile static SQL when an index is added. 
Furthermore, few products automatically recompile static SQL 
when the statistical distribution within the data has changed. 
Oracle’s Rdb is an exception to this, since it investigates possible 
execution paths when each query is invoked.

The DBA usually has to update the statistical information 
explicitly and ask for a recompilation. What usually happens is 
that one person adds an index and then compiles his program. 
The new index could either hinder or help other queries when 
they are recompiled, so it is hard to say whether the new index is 
a good or a bad thing for the overall performance of the system.

However, it is always bad is when two programmers build 
indexes that are identical in all but name and never tell each other. 
Most SQL implementations will not detect this. The duplication 
will waste both time and space. Whenever one index is updated, 
the other one will have to be updated also. This is one reason that 
only the DBA should be allowed to create schema objects.

39.13  Temporary Tables Are Sometimes 
Handy

Generally speaking temporary tables are a bad thing. It has to 
be materialized; if the intermediate result could have been put 
in main storage, then this is a waste. If the intermediate result is 
too big for main storage, then the optimizer will discover this and 
create secondary storage.

But sometimes temporary tables can hold intermediate results 
to avoid CROSS JOINs and excessive recalculations. Remember 
that the ANSI/ISO temporary tables have every option a base 
table has, but they clean themselves. A materialized VIEW is also a 
form of temporary table, but you cannot index it. In this problem, 
we want to find the total amount of the latest balances in all our 
accounts.

Assume that the Payments table holds the details of each pay-
ment and that the payment numbers are increasing over time. 
The Accounts table shows the account identification number 
and the balance after each payment is made. The query might be 
done like this:

SELECT SUM(A1.acct_balance)
 FROM Accounts AS A1, Payments AS P1
WHERE P1.acct_nbr = A1.acct_nbr
  AND P1.payment_nbr
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   = (SELECT MAX(payment_nbr)
      FROM Payments AS P2
        WHERE P2.acct_nbr = A1.acct_nbr);

Since this uses a correlated subquery with an aggregate func-
tion, it will take a little time to run for each row in the answer. 
It might be faster to create a temporary working table or VIEW 
like this:

BEGIN
CREATE TABLE LastPayments
(act_nbr INTEGER NOT NULL,
last_payment_nbr INTEGER NOT NULL,
payment_amt DECIMAL(8,2) NOT NULL,
payment_date DATE NOT NULL,
. . . );

CREATE INDEX LPX ON LastPayment(act_nbr, payment_nbr);

INSERT INTO LastPayments
SELECT act_nbr, payment_nbr, MAX(payment_nbr)
FROM Payments
GROUP BY act_nbr, payment_nbr;

SELECT SUM(A1.balance) -- final answer
FROM Accounts AS A1, LastPayments AS LP1
WHERE LP1.acct_nbr = A1.acct_nbr
AND LP1.payment_nbr = A1.payment_nbr;

DROP TABLE LastPayments;

END;

Consider this three-table query that creates a list of combina-
tions of items and all the different packages for which the sell-
ing price (price and box cost) is 10% of the warranty plan cost. 
Assume that any item can fit into any box we have and that any 
item can be put on any warranty plan.

SELECT I1.item
 FROM Inventory AS I1, Packages AS P1, Warranty AS W1
WHERE I1.price + P1.box = W1.plancost * 10;

Since all the columns appear in an expression, the engine can-
not use indexes, so the query will become a large CROSS JOIN in 
most SQL implementations. This query can be broken down into 
a temporary table that has an index on the calculations, thus:

BEGIN
CREATE TABLE SellingPrices
(item_name CHAR (15) NOT NULL,
sell_price DECIMAL (8,2) NOT NULL);
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-- optional index on the calculation
CREATE INDEX SPX ON SellingPrices (sell_price);

-- do algebra and get everything on one side of an 
equation

INSERT INTO SellingPrices (item_name, sell_price)
SELECT DISTINCT I1.item_name, (P1.box + I1.price) * 0.1
 FROM Inventory AS I1, packages AS P1;

-- do the last JOIN
SELECT DISTINCT SP1.item_name
 FROM SellingPrices AS SP1, Warranty AS W1
WHERE SP1.sell_price = W1.plancost;
END;

The Sybase/SQL Server family allows a programmer to cre-
ate temporary tables on the fly. This is a totally different model 
of temporary table than the Standard SQL model. The standard 
model does not allow a USER to create any schema objects; that is 
ADMIN-only power.

Many lesser SQL products with such “ad hoc” creations have 
no indexes or constraints, therefore act like “scratch paper” with 
its own name, but do not give much help to the optimizer. This is 
a holdover from the days when we allocated scratch tapes in file 
systems to hold the results from one step to another in a proce-
dural process.

You can often use derived tables in the query in place of these 
temporary tables. The derived table definition is put into the 
parse tree and the execution plan can take advantage of con-
straints, indexing, and self-joins.

39.14 Update Statistics
This is going to sound obvious, but the optimizer cannot work 
correctly without valid statistics. Some signs that your statistics 
need to be updated are:
1. Two queries with the same basic structure have different exe-

cution times.
2. This usually means that the statistical distribution has changed, 

so one of the queries is being executed under old assumptions.
3. You have just loaded a lot of new data. This is often a good time 

to do the update to the statistics because some products can 
get them as part of the loading operation.

4. You have just deleted a lot of old data. Unfortunately, deletion 
operations do not usually change statistics like insertions.

5. You have changed the query mix. For example, the end-of-the-
month reports depend on shared views to aggregate data. In the 
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earlier SQL products, you could put these VIEWs into  temporary 
tables and index those tables. This would allow the optimizer 
to gather statistics.
Today, the better SQL products will do the same job under the 

covers by materializing these VIEWs. You need to find out if you 
need to compute indexes and/or do the statistics.

39.15 Do Not Trust Newer Features
Newer features might look cool, but sometimes you will find that 
they have not been in your SQL long enough to be optimized. 
Experiment, and then put the better code into production while 
keeping the other code as a comment. When the new feature has 
settled in, swap the comment for the code.

For example, when SQL got the ordinal functions, they looked 
like a good way to replace self-joined queries. But the extra sort-
ing in the early implementations sometimes was worse than a 
simple self-join. For example, I did a programming puzzle col-
umn for the Simple Talk web site run by Red Gate Software. 
(Celko’s SQL Stumper: The Data Warehouse Problem; http://www.
simple-talk.com/sql/t-sql-programming/celkos-sql-stumper-
the-data-warehouse-problem-/). I took an old puzzle I had pub-
lished decades ago and asked if the new ordinal functions and 
CTEs in SQL Server 2008 could beat the performance of a three-
way self. The old version was much faster.

Consider a simple example, with the usual Personnel skeleton 
table. We want to know who the highest paid employee is in each 
department.

CREATE TABLE Personnel
(emp_name VARCHAR(20) NOT NULL PRIMARY KEY,
salary_amt DECIMAL (8,2) NOT NULL,
dept_name VARCHAR(20) NOT NULL)

1. The “traditional version” uses a self-join, which says to return 
this row if it has the greatest salary in the department. This is 
what most people will code.

SELECT P1.emp_name, P1.salary_amt, P1.dept_name
 FROM Personnel AS P1
WHERE P1.salary_amt
  = (SELECT MAX(salary_amt)
     FROM Personnel AS P2
       WHERE P2.dept_name = P1.dept_name)

2. The second “traditional version” uses a self-join that says to 
return this row if there is nobody with a greater salary.

http://www.simple-talk.com/sql/t-sql-programming/celkos-sql-stumper-the-data-warehouse-problem-/
http://www.simple-talk.com/sql/t-sql-programming/celkos-sql-stumper-the-data-warehouse-problem-/
http://www.simple-talk.com/sql/t-sql-programming/celkos-sql-stumper-the-data-warehouse-problem-/
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SELECT P1.emp_name, P1.salary_amt, P1.dept_name
 FROM Personnel AS P1
WHERE NOT EXISTS
  (SELECT *
    FROM Personnel AS P2
      WHERE P2.salary_amt > P1.salary_amt
     AND P2.dept_name = P1.dept_name);

 If the salary amounts referenced pay steps in another table 
or the department name was in a sequential index, then this 
can be quite fast. The EXISTS() uses the indexes rather than 
building the subquery we had in the first version.
 But this is not very cool looking, so we will try some of the 
new features.

3. Use a CTE and a windowed NAX() to find the salary we want.

WITH P_Max (emp_name, salary_amt, dept_name, salary_amt_max)
AS
(SELECT emp_name, salary_amt, dept_name,
    MAX(salary_amt) OVER (PARTITION BY dept_name)
  FROM Personnel)
SELECT emp_name, salary_amt, dept_name
 FROM P_Max
WHERE salary_amt = salary_amt_max;

 The maximum departmental salary is repeated over and 
over in the CTE, then filtered in the main query. A smart opti-
mizer will use some of its GROUP BY tools to build the partitions 
and find a MAX(). In short, it will be very much like the first tra-
ditional solution.

4. But you can use the GROUP BY instead of partitions and find a 
MAX(). Versions #4 and #3 ought to be the same, but you need to 
check to be sure.

WITH P2 (dept_name, salary_amt_max)
AS
(SELECT dept_name, MAX(salary_amt)
  FROM Personnel
 GROUP BY dept_name)
SELECT P1.emp_name, P1.salary_amt, P1.dept_name
 FROM Personnel AS P1, P2
WHERE P1.dept_name = P2.dept_name
  AND P1.salary_amt = P2.salary_amt_max;

5. Does this mean that windowed functions are a waste? No, but 
neither are they magic. The following should be better than the 
other methods, if the optimizer has some smarts to it.

WITH P1 (emp_name, dept_name, salary_amt, rk)
AS
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(SELECT emp_name, dept_name, salary_amt,
    DENSE_RANK()
     OVER(PARTITION BY dept_name
        ORDER BY salary_amt DESC)
 FROM Personnel)
SELECT emp_name, dept_name, salary_amt
 FROM P1
WHERE rk = 1;

The construct (<ordinal function> OVER()..) AS x .. WHERE 
x = <constant> is so common that better SQL products look for it 
and optimize it. DENSE_RANK() will handle ties for (rk 5 1).
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ABSOLUTE fetch, 102
Access control language, 3
Access methods

bit vector indexes, 740
hashed indexes, 739
indexed access, 739
sequential access, 738

ActualSchedule table, 198,  
199t

ADD clause, 81
ADD COLUMN clause, 80
Adjacency list model

adjacency matrix 
model, 691–693

complex constraints
CHECK( ), 667
cycle, 668, 668t

nodes, 682, 682f
nonacyclic graphs, 689–691
paths with CTE, 684–689
procedural traversal for 

queries, 669–670
SQL and, 683–684
table alteration, 670

Adjacency matrix model,  
691–693

AFTER trigger, 125
Aftermath, 735–736
AGE( ) function, 717
Aggregate functions, 337,  

365, 399
OUTER JOINs and, 424
in SELECT clause, 404

Algorithms
ascending order, 438
descending order, 439
hashing, 244
NYSIIS, 267–268
phonetic, 261
Zeller’s algorithm, 723

ALL DISTINCT, 640

ALL predicate
converting to EXISTS( ) 

predicate, 392
extrema functions and, 393–394
use of, 392

ALTER COLUMN clause, 80
ALTER TABLE statement, 80–81
AND aggregate functions, 538
ANSI SEQUENCE, 37
ANSI/ISO temporary tables, 757
ANY predicate, 392

converting to EXISTS( ) 
predicate, 392

Area numbers, used in United 
States, 296t

Arithmetic
function, 222–224
and NULLs, 224–225
temporal, 249–250

Armstrong’s axioms, 197
Arrays

1NF, 617
table flattening, 627–628
in table format 

comparison, 628–630
via named columns, 617–621
via subscript columns, 621–622

Artificial keys, 206
AS IDENTITY clause, 89
AS operator, 466
Ascending order algorithm, 438
Atomicity, 12–13
Attribute splitting, avoiding,  

81–83
row level, 83
table level, 81–83

Auto-incrementing 
columns, 85–90

IDENTITY columns, 88–89
and sequences, 89–90

physical disk addresses, 88
ROWID, 88

Auxiliary tables, 145, 159–169
advantages of, 162
calendar, 729–730
function, 159–169
hierarchical, 156
interpolations, 162t, 168–169
inverse functions with, 160–168
lookup, 151–159
OTLT, 156–159
parameter, 154–155
range, 155–156
translation, 153–154

Average deviation, 573
AVG( ) function, 556

across columns, 516–517
with empty groups, 514–516

B
Base-10 values, iterations 

with, 174
BCNF, see Boyce-Codd Normal 

Form
BEFORE trigger, 125
BETWEEN predicate, 328,  

355–358
avoiding, 367
indexing schemes, 358
programming tips, 357–358
results with

empty sets, 357
NULL values, 356–357

BIGINT data type, 216
Binary storage, 235
BIT data type, 218–220
4-bit generator, 173f
Bit vector indexes, 740
Bitwise aggregate functions

AND functions, 538
OR functions, 537–538

BOOLEAN data type, 218–220
Boolean expression, 489–490

convert NOT IN( ) to, 375

INDEX
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Bose-Nelson sorting method,  
211, 214

Bound queries, 602–603
Boyce-Codd Normal Form 

(BCNF), 192–193
BYTE data type, 218–220

C
Calendar

auxiliary table, 729–730
date format, 242
personal, 703–704
standards, 237–240
tables, 145

Cardinal numbers, 272
CASCADE, 80

option, 61, 756
CASE, see Computer Assisted 

Software Engineering
expression, 109, 112, 114,  

114t, 115, 333–341, 492, 588
advantage of, 315
CHECK( ) clauses, 338–341
COALESCE( ) functions, 336
ELSE clause, 334, 335
GROUP BY query, 337–338
LIKE predicate and, 349–350
logical implication, 338–341
for multiple aggregation 

levels, 501
NULLIF( ) functions, 336
and ORDER BY clause,  

134–136
Rozenshtein characteristic 

functions, 342–343
searched, 334
subquery expressions and 

constants, 341–342
THEN clause, 335
UPDATE statement, 315–317
WHEN clause, 334, 335

CAST( ) function, 222
CEILING( ) function, 559, 560
Celko

first median, 559–560
second median, 561–562
third median, 566–569

CHAR(32) column, 294
CHAR(39) storage, 235

CHARACTER data type, 255
Character set, 31–33, 256

CREATE CHARACTER SET, 32
CREATE COLLATION, 32–33
CREATE TRANSLATION, 33

Chebyshev polynomials, 116
CHECK( )

clause, 25, 26, 98, 461–462, 621
EXISTS predicate, 386

constraints, 56–58, 77, 667
IN( ) predicate and, 377

CHECK constraints, 458
Circular reference, 61
Clarke, Lionel, 68
Classic SQL solution, 753
CLOSE

cursor, 103
statement, 137

COALESCE( ) functions, 112,  
226–228, 336, 516–517

COBOL, 9
method, temporal data 

representation, 241
OCCURS keyword in, 5

Codd’s 12 rules, 181
Codd’s T-join, 437–443

ascending order algorithm, 438
descending order algorithm,  

439
Pierre’s solution, 442–443
Stobbs solution, 441–442

Cohesion, 105–106
Coincidental cohesion, 106
Column sorting matrix, 626
Columns

CHAR(32), 294
constraints, 53–54
INTEGER, 292–293
missing values in, 273–274
repeating, 186–187
SMALLINT, 293
VARCHAR(15), 291
vs. fields, 6–7

COMMIT statement, 12
Common coupling, 107
Common table expressions 

(CTEs), 468–469
Communicational  

cohesion, 106

Comparison operators, 323
data types, converting,  

323–326, 325t
symbols and meanings for,  

324t
Complex constraints, adjacency 

list model
CHECK( ), 667
cycle, 668, 668t

Comprehensive Data 
Sublanguage Rule, 182

Computed column, 108
Computer Assisted Software 

Engineering (CASE), 183
expression, 175, 178, 179t

Concurrency control, 14–18
isolation level, 16–18

CURSOR STABILITY, 18
phenomena, 14–16

Condensing, list of numbers, 612
Consistent state, 13
Constrained JOINs, 428–437

ball and box packing, 434–437
inventory and orders, 429–430
stable marriage 

problem, 430–434
CONTAINS operators, 640

proper subset, 649–650
table equality, 650–654

Content coupling, 107
Control break reports, 5
Control coupling, 107
Correlated subqueries, 407–411

WHERE clause, 409
Cost-based optimizer, 737
COUNT( ) functions, 508–511,  

570
COUNT(DISTINCT x) 

function, 495
Coupling, 106–107
Coverings, 613–616
CREATE ASSERTION, 26–31

constraints, 76–77
statement, 7

CREATE CHARACTER SET, 32
CREATE COLLATION, 32–33
CREATE DOMAIN 

statement, 24–25, 98
CREATE FUNCTION, 24
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CREATE PROCEDURE, 108,  
123–124

statement, 24, 99
CREATE SCHEMA 

statement, 7–10, 23–24
CREATE SEQUENCE, 25–26
CREATE TABLE statements,  

53–62, 89, 195
CHECK( ) constraints, 56–58
column constraints, 53–54
DEFAULT clause, 54–55
NOT NULL constraint, 55–56
PRIMARY KEY constraints,  

58–59, 60t
REFERENCES clause, 60–62
UNIQUE constraints, 58–59, 

60t
CREATE TRANSLATION, 33
CREATE TRIGGER, 108

advantage of, 127
AFTER trigger, 125
mechanism, 447
OLD transition table, 124
statement, 24–25, 99
statements, 126
BEFORE trigger, 125
trigger event, 124

CREATE VIEW, 108
CROSS JOIN, 398, 401t, 754

in FROM clause, 401
WHERE clause, 403

Cross tabulations
by CASE expression, 588
by Cross Join, 585–586
by OUTER JOINs, 586–587
by Subquery, 587

CTEs, see Common table 
expressions

CUBES group, 540, 542–543
CUME_DIST( ) function, 548–549

and PERCENT_RANK( ) 
function, 548–549

Cumulative statistics
cumulative percentages,  

575–577
ordinal functions, 577–582
quintiles and related 

statistics, 582
running differences, 574–575

Currency conversion, 294–295
CURRENT OF, 104
Current Resident, 82
CURSOR STABILITY isolation 

level, 18
CURSORs, 100

CLOSE statement, 137
DEALLOCATE statement, 137
DECLARE CURSOR 

statement, 128–129
FETCH statement, 136–137
OPEN statement, 136
ORDER BY clause

and CASE expressions,  
134–136

and NULLs, 130–134
standard syntax of, 129

positioned UPDATE and 
DELETE statements, 141

SQLSTATE code, 139
Cutter tables, 268–269

D
Data

coupling, 107
element, 289
integrity, 591
types

converting, 323–326, 325t
source and target 

combination, 323–326, 325t
warehouse, 539

Data Control Language (DCL), 3
Data Declaration Language 

(DDL), 2
modeling class hierarchies in,  

83–85
DATA DIVISION, 52
Data Item Constraint 

Violation, 19
Data Manipulation Language 

(DML), 2
Data tables vs. generator code, 

115–116
Database

engine
indexing and views, 457
in-line text expansion,  

454–456

pointer structures, 456
view column list, 453
VIEW materialization,  

453–454
programming and design, 755
schema object

CASCADE option, 756
RESTRICT option, 756
X/Open transaction 

model, 756
Database administrator 

(DBA), 22
Database management system 

(DBMS), 96
Date display formats,  

325–326
Dates

events and, 730
Julian, 719–722
locating, 716–717
starting and ending, 718

Date’s second median, 560
Datetime data type, classes of,  

703
Daylight Saving Time (DST),  

240
time zones and, 245–246

Day-time intervals, 245, 248
DBA, see Database 

administrator
DBMS, see Database 

management system
DCE, see Distributed Computing 

Environment
DCL, see Data Control Language
DDL, see Data Declaration 

Language
Deadlock, 21–22
DEALLOCATE statement, 137
DECIMAL data type, 215, 216
Declarative referential integrity 

(DRI), 6, 31, 123
DECLARE, 100
DECLARE CURSOR statement,  

100–104, 128–129
UPDATE and DELETE 

statements, 104
use of CURSOR, 102–104

DEFAULT clause, 54–55



778     INDEX

DELETE FROM
clause, 299–300
statement, 299–307

based on data, 303
forms of, 299
in multiple tables, 307
positioned, 300
redundant duplicates 

removal with ROWID,  
305–306

in table, 304–305
within same table, 303–306
searched, 299
WHERE clause, 300–303

DELETE statements, 104, 141
Deletion anomaly, 185
DeMorgan’s law, 375
Denormalization, 208–214

row sorting, 210–214
DENSE_RANK( ) function, 548
Department of Defense (DoD), 

UID, 91–92
Derived tables

FROM Clause, 467
AS operator, 466
VALUES constructor, 468

Descending order algorithm, 439
Determinant matrix, 626
Developing Time-Oriented 

Database Applications in 
SQL (Snodgrass), 250

Dewey Decimal 
Classification, 157

Dijkstra’s algorithm, 691
Display formats, date,  

325–326
Distance functions, 289–291
DISTINCT predicate, 395
Distributed Computing 

Environment (DCE), 41
Distribution Independence 

rule, 183
DKNF, seeDomain-Key Normal 

Form
DML, see Data Manipulation 

Language
Domain-Key Normal Form 

(DKNF), 196–204
DOUBLE PRECISION, 217

DRI, see Declarative referential 
integrity

DROP ASSERTION statement, 26
Drop behavior clause, 79
DROP COLUMN clause, 80
DROP CONSTRAINT clause, 81
DROP TABLE statement, 79–80,  

463
DST, see Daylight Saving Time
Duplicate rows, 94–96

E
Eastern Standard Time (EST),  

245
Edges, 681

split node nested set models,  
693

Eigenvalue matrix, 626
Elementary Key Normal Form 

(EKNF), 191–192
ELSE clause, CASE 

Expression, 334, 335
Empty table, 272–273
Ending date, 718
Ending time, 719
Entity-Relationship (E-R) 

diagrams, 204
Equality subsets,  640–641,  

653–654
EST, see Eastern Standard Time
EXCEPT ALL operators, 652
EXCEPT clauses, 751
EXCEPT set operators, 635–640

with NULLs and duplicates 
values, 639–640

without NULLs and duplicates 
values, 638–639

EXISTS( ) function, 761
EXISTS( ) predicate, 303,  381, 755

ALL predicate converting to,  
392

ANY predicate converting to,  
392

CHECK( ) clause, 386
IN( ) predicate converting to,  

370, 383
indexes, 381
INNER JOINs and, 384
NOT, 373

NULLs and, 382–384
OR-ed list of, 378
OUTER JOINs and, 385
quantifiers and, 385–386
referential constraints and,  

386–387
three-valued logic and, 387–388

Exponential functions, 230
Exposed physical locators,  

35–40, 85
IDENTITY column, 36–40
physical disk addresses, 35–36
ROWID, 35–36

Extending the Database 
Relational Model to Capture 
More Meaning (Codd), 208

External coupling, 107
Extrema functions

ALL predicate and, 393–394
generalized, 519
GREATEST( ) and LEAST( ) 

functions, 527–530
multiple criteria, 526–527
simple, 517–518

F
FAST_FORWARD, 103
FD, see Functional dependency
Fetch orientation, 102
FETCH statement, 101, 136–137
Fewer statements

MERGE statement, 749
process steps for, 750

Fibonacci numbers, 116, 117,  
171–172

Fibonacci series, 116–118
Fields vs. columns, 6–7
FIFO subsets, 490–492
Fifth Normal Form (5NF),  

194–196
Financial median, 557–572
FIRST functions, 552–553
First Normal Form (1NF),  

184–188, 617
parsing list in string, 187–188
repeating columns, 186–187
table, 153

Flaws in common vendor 
extension, 317–319
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Folding, list of numbers,  
612–613

FOREIGN KEY, 448, 449
FORTRAN, 9
Fourth Normal Form (4NF), 194
FROM clause, 467

CROSS JOIN in, 401
DELETE, 299–300
One-level SELECT statement,  

398
SELECT statement, 398
UPDATE statement, 317
and WHERE clauses, 493

FULL OUTER JOIN, 424–425
Function

arithmetic, 222–224
COALESCE( ), 226–228
converting numbers to 

words, 231–232
distance, 289–291
exponential, 230
extractor, 702
mathematical, 228–232
NULLIF( ), 225
and NULLs, 281
for predicates, 118
scaling, 231
Soundex, 261–262
Standard SQL, 256
string, 258–259
temporal, 722–723

Functional cohesion, 106
Functional dependency (FD),  

183–184
Armstrong’s axioms, 197
for database, 197

Fuzzy Reads, 20

G
Gap-free number sequence, 233
Gaps

in series, 654–656
in time series, 706–708

Generalized extrema 
functions, 519

Generally Accepted Accounting 
Practices (GAAP), 294

GENERATED ALWAYS, 36, 37,  
89, 90

GENERATED BY DEFAULT 
clause, 36, 89

Generated identifiers, 40–42,  
90–94

GUIDs, 40–41, 90–91
pre allocated values, 93–94
sequence generator functions,  

92
UIDs, 91–92
unique value generators, 92–93
UUID, 90–91

Geometric mean, 588
Global constants tables, 169–174

preallocated values, 170–171
tap positions, 174, 175t

GLOBAL TEMPORARY tables, 77
Global Unique Identifiers 

(GUIDs), 40–41, 90–91
GMT, see Greenwich Mean Time
Graphs

adjacency list model
adjacency matrix model,  

691–693
nodes, 682, 682f
nonacyclic graphs, 689–691
paths with CTE, 684–689
SQL and, 683–684

edges, 681
path, 681
points inside polygons,  

698–700
split node nested set models 

for
acyclic graphs to nested sets, 

conversion, 697–698
edges, 695
indegree and outdegree 

nodes, 695
internal node, 696
isolated node, 696
nodes, 693–694
path endpoints, 694
reachable node, 694–695
sink node, 696
source node, 696

GREATEST( ) functions, 527–530
Greenwich Mean Time (GMT),  

240
Gregorian calendar, 720

GROUP BY clause, 622
and HAVING Clause

COUNT(DISTINCT x) 
function, 495

group characteristics,  
496–498

NULLs and groups, 494–495
one-level SELECT statement,  

397–405
SELECT clause, 494
SELECT statement and, 399
and sorting, 504–505
FROM and WHERE clauses, 493

GROUP BY clauses, 752
GROUP BY query, CASE 

Expression with, 337–338
Grouped VIEWs for multiple 

aggregation levels, 498–499
Grouping

on computed columns,  
501–502

into pairs, 502–503
sorting and GROUP BY,  

504–505
GROUPING operators

CUBES group, 540, 542–543
GROUPING SET, 541–542
OLAP function, 543
ROLLUP group, 540, 542

GROUPING SET, 541–542
Guaranteed Access Rule, 182
GUIDs, see Global Unique 

Identifiers

H
Harmonic mean, 588
Hashed indexes, 739–740
Hashing algorithms, 244
HAVING clause, 486, 561,  

564, 752
and GROUP BY clause

COUNT(DISTINCT x) 
function, 495

group characteristics,  
496–498

SELECT statement, 399, 404t
Hierarchical aggregations, 

nested set model, 677
Hierarchical auxiliary table, 156
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Hierarchies
nested set model

to adjacency list conversion,  
678–680

containment property,  
675–676

counting property, 675
deleting nodes and 

subtrees, 677–678
hierarchical aggregations, 677
NestTree, 674t
subordinates, 676–677

path enumeration model
deleting nodes and 

subtrees, 672
finding levels and 

subordinates, 672
finding subtrees and nodes,  

671
integrity constraints, 672–673

High-Level Insert, Update, and 
Delete rule, 182

Host languages, 281–282

I
IANA, see Internet Assigned 

Numbers Authority
IDENTITY columns, 87, 88

and sequences, 89–90
IN predicate

flattened JOIN query, 747
SQL engines, 746, 747

IN( ) predicate, 369, 370
CHECK( ) constraints and, 377
conversion to EXISTS 

predicates, 370
expanding, 369, 375
with JOIN operation, 372
NOT, 373, 374, 375
NULLs and, 374–376
optimizing, 370–373
referential constraints and,  

376–377
replacing ORs with, 373–374
scalar queries and, 377–379
with subqueries, 370, 371,  

373, 374
use of, 436

Indegree node, 695

Indexed access, 739
Indexes, 40, 91
INDICATOR, 100, 101
Infinity, 217
Infixed INNER JOINs, 411–413
Information Rule, 181
In-line text expansion, 454–456
INNER JOINs

EXISTS ( ) predicate and, 384
infixed, 411–413

INSERT INTO
clause, 308
statement, 307–310

bulk load and unload 
utilities, 309–310

DEFAULT VALUES 
clause, 308

forms of, 308
nature of inserts, 309
query, 308
table constant, 308

Insertion anomaly., 185
INTEGER

column, 292–293
data type, 216

Integers, 146t
Integrity constraints, path 

enumeration model, 672–673
Integrity Independence rule, 183
Internal node, 696
Internal Rate of Return 

(IRR), 159, 160, 162, 167
International Telecommunication 

Union (ITU), 240
Internet Assigned Numbers 

Authority (IANA), 293
Internet Protocol (IP) 

addresses, 235–236
Interpolation with auxiliary  

function tables, 162t, 
168–169

INTERSECT
clauses, 751
set operators, 635–640

with NULLs and duplicates 
values, 639–640

without NULLs and 
duplicates values, 638–639

INTERVAL data type, 245, 246–249

Inverse functions with auxiliary 
tables, 160–168

Inverse matrix, 626
IPv4 address, storing, 291–293
IPv6 address, storing, 293–294
IRR, see Internal Rate of Return 

predicate, 330–332, 331t
IS [NOT] DISTINCT FROM 

Operator, 328
IS [NOT] NORMALIZED 

predicate, 332
IS NULL predicate, 329–330, 330t

sources of, 330
ISO-8601 format, 702
Isolated node, 696
Iterative loop, 150–151
ITU, see International 

Telecommunication Union

J
JOIN operators, 484
Join table, 62
Join-Projection Normal Form, see 

Fifth Normal Form
JOINs

Codd’s T-join, see Codd’s T-join
constrained, 428–437
FULL OUTER, 424–425
infixed INNER, 411–413
INNER, 384
NATURAL, 420
old vs. new syntax, 427–428
OUTER, see OUTER JOINs
UNION, 425–426

Julian calendar, 237, 238
Julian dates, 719–722
Junction table, 62

K
Ken Henderson’s median,  

569–670
Keys

artificial, 206t
classification system, 206t
exposed physical locator,  

207–208
natural, 205–206
surrogate, 207

known_addressee constraint, 83
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L
LAG functions, 551–552
LEAD functions, 551–552
Leaf nodes, 665
Leap year, 732–733
LEAST( ) functions, 290, 527–530
LEFT OUTER JOIN, 415, 424

NATURAL, 420
Legacy data, weird dates in,  

734–735
LIFO subsets, 490–492
LIKE predicate, 345

<escape character>, 345
<match value>, 347
<pattern>, 345, 347
CASE expression, 349–350
empty strings result, 347–348
with join, avoiding, 348–349
not equality, 348
NULL values result, 347–348
search conditions, 349–350
tricks with patterns, 346–347

Linear interpolation, 168
LIST( ) aggregate function

by crosstabs, 531–532
with recursive CTE, 530–531

Livelock, 21–22
LOCAL TEMPORARY TABLE, 78
Logic and NULLs, 277–280
Logical cohesion, 106
Logical concurrency control, 21
Logical Data Independence 

rule, 183
Logical decomposition solution,  

121–122
Logical grouping, 550
Logical value, predication, 280
Lookup auxiliary tables,  

151–159
hierarchical, 156
OTLT, 156–159
parameter, 154–155
range, 155–156
translation, 153–154

M
Manipulating tables, 78–81

DROP TABLE statement, 79–80
Mantissa, 216

Mapping, number sequence to 
cycle, 148–149

Massively Unified Code-Key 
(MUCK) table, 156

MATCH FULL clause, 60
MATCH PARTIAL clause, 60
Materialized query tables 

(MQTs), 472
Math and NULLs, 281

temporal, 701–703
Mathematical 

functions, 228–232
number theory operators,  

228–230
Mathematics of Computation 

(Watson), 173
Matrix, operations

addition, 623–624
determinant, 626
eigenvalue, 626
equality, 623
inverse, 626
multiplication, 624–625
row and column sorting, 626
subtraction, 623–624
transpose, 625–626

MAX( ) functions, see Extrema 
functions

Median
Celko’s first median, 559–560
Celko’s second median, 561–562
Celko’s third median, 566–569
with characteristic function,  

563–566
Date’s second median, 560
financial median, 557–572
Ken Henderson’s median,  

569–570
Murchison’s median, 560–561
OLAP medians, 570–572
as programming problem,  

558–559
statistical median, 557–572
upper or right median, 557
Vaughan’s median, 563

MERGE statement, 319–321, 749
Message coupling, 107
Message-Digest algorithm 5 

(MD5), 41

Metaphone, 264–267
Millennium, 733–734
Millennium Bug, see Y2K crisis
MIN( ) functions, see Extrema 

functions
Missing numbers in filling,  

605–607
Missing table, 272–273
Missing times in contiguous 

events, 713–716
Missing values

in columns, 273–274
context and, 275
preventing, 285
tracking, 285

MOD function, 228
Mode, 555–556
Modeling time in tables, 726–728
Moral majority, 64
MQTs, see Materialized query 

tables
Multiple aggregation levels

CASE expressions for, 501
grouped VIEWs, 498–499
subquery expressions, 499–500

Multiple criteria extrema 
functions, 526–527

Multiple parameter auxiliary 
tables, 154–155

Multivalued dependency 
(MVD), 183–184

Multivariable descriptive 
statistics, SQL

covariance, 589
NULLs in, 590–591
Pearson’s r, 589–590
single-column aggregate 

functions, 589
Murchison’s median, 560–561
MVD, see Multivalued 

dependency

N
NaN, see Not a Number
NATO program, 91
NATURAL JOIN, 420
Natural keys, 205–206
NATURAL LEFT OUTER  

JOIN, 420
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Nested queries, 748–749
Nested set model

to adjacency list conversion,  
678–680

containment property, 675–676
counting property, 675
deleting nodes and 

subtrees, 677–678
hierarchical aggregations, 677
NestTree, 674t
subordinates, 676–677

Nested UNIQUE constraints,  
62–76

overlapping keys, 65–68
single vs. multiple-column 

uniqueness, 68–76
Nested VIEWs, 452–453
NestTree, 674t
Net Present Value (NPV),  

159, 160
New York State Identification 

and Intelligence System 
(NYSIIS) algorithm, 267–268

NEXTVAL expression, 39
1NF, see First Normal Form
2NF, see Second Normal Form
3NF, see Third Normal Form
4NF, see Fourth Normal Form
5NF, see Fifth Normal Form
NO ACTION option, 62
Nodes,  682, 682f

adjacency list model, 682, 682f
deleting, 672
indegree, 695
internal, 696
isolated, 696
outdegree, 695
reachable, 694–695
sink, 696
source, 696

Nonacyclic graphs, 689–691
Nondeterministic function, 110
Non-minimal subset, 660
Nonsubversion rule, 183
Normal Forms

1NF, 184–188
2NF, 188–189
3NF, 189–191
4NF, 194

5NF, 194–196
of Relational Model, 181

Normalization, 183
practical hints for, 204–205

Not a Number (NaN), categories 
of, 217

NOT EXISTS( )
function, 480
predicate, 373, 384

OUTER JOINs and, 385
NOT IN( ) predicate, 373,  

374, 375
NOT NULL constraint, 55–56, 58
NP-complete, 740
NPV, see Net Present Value
NULLIF( ) functions, 225, 336
NULLs

arithmetic and, 224–225
avoiding from host 

programs, 284–285
clause, and ORDER BY clause,  

130–134
comparing, 276
converting values to and from,  

225–228
in data type, 218
design advice for, 282–285
EXISTS( ) predicate and,  

382–384
functions and, 281
and host languages, 281–282
IN( ) predicate and, 374–376
and logic, 277–280
math and, 281
multiple values, 285–287
OUTER JOINs and, 418–420
row comparisons and, 326
in subquery predicates,  

279–280
Number

Fibonacci, 171–172
prime, 171
rational, 298

Number theory operators,  
228–230

Numbering regions, 597–598
Numeric data type, 215–220

conversion, 220–222
Numeric series, 44

NYSIIS algorithm, see New 
York State Identification 
and Intelligence System 
algorithm

O
OLAP medians, 570–572
OLTP, see Online Transaction 

Processing
ON COMMIT ROWS, 78
One True Look-up Table (OTLT),  

156–159
One-level SELECT statement,  

397–405
FROM clause, 398
execution order, 398
GROUP BY clause and, 399
HAVING clause and, 399, 404t
WHERE clause, 398, 399

Online Transaction Processing 
(OLTP)

data warehouse, 539
function, 543

Open Software Foundation 
(OSF), 41, 90

OPEN statement, 101, 136
Operators, 277t

arithmetic, 222
number theory, 228–230

Optimistic concurrency 
control, 19

Optimizing IN( ) predicate, 370–373
OR aggregate functions, 537–538
ORDER BY clause, 101

and CASE expressions, 134–136
and NULLs

cursor result sequence,  
131, 131t

sort keys, 132
standard syntax of, 129

ORDER BY subclause, 545
Ordinal functions

logical grouping, 550
PERCENT_RANK( ) and 

CUME_DIST, 548–549
physical grouping, 550
RANK( ) and DENSE_RANK( ),  

548
row numbering, 547
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Ordinal numbers, 272
OSF, see Open Software 

Foundation
OTLT, see One True Look-up 

Table
Outdegree node, 695
OUTER JOINs, 413–425

aggregate functions and, 424
FULL, 424–425
history, 414–418
LEFT, 415, 424
NATURAL vs. searched, 

420–421
NOT EXISTS ( ) predicate and,  

385
NULLs and, 418–420
as query within SELECT 

clause, 426
RIGHT, 415, 419, 424
self, 421–422

Overlapping intervals, 656–659
Overlapping keys, 65–68
OVERLAPS predicate, 358–367

avoiding, 367
rules for, 359
time periods and, 358–367,  

362f, 363f, 364f

P
Parameter auxiliary tables

multiple, 154–155
student’s t-distribution, 154t

PARTITION BY subclause, 544
Partitioning data

in queries
Boolean expressions,  489–490
coverings and partitions,  

473–478
FIFO and LIFO subsets,  

490–492
relational division, 478–485
Romley’s division, 485–488

by ranges, 473–474
by sequences, 475–477
single-column range tables,  

474–475
with windows, 478

Pascal, VARIANT records in, 5
Path

enumeration model
deleting nodes and 

subtrees, 672
finding levels and 

subordinates, 672
finding subtrees and nodes,  

671
integrity constraints,  

672–673
graphs, 681

Pearson’s r statistics, 589–590
correlation, 592

PERCENT_RANK( ) function,  
548–549

Personal calendars, 703–704
Pessimistic concurrency 

control, 18–19
Phonetic algorithms, 261

Metaphone, 264–267
NYSIIS algorithms, 267–268
Soundex, 261–262, 262–264

Physical Data Independence 
rule, 182

Physical grouping, 550
Pierre’s solution, 442–443
Planned Schedule table,  

198, 199t
Pointer structures, 456
Points inside polygons, graphs,  

698–700
Positioned UPDATE statements,  

141
PRD( ) aggregate function

by expressions, 533
by logarithms, 534–536

Preallocated values, 43–44, 93–94
Predicates

BETWEEN, see BETWEEN 
predicate

ALL, see ALL predicate
ANY, 392
in CHECK( ) constraint, 377
DISTINCT, 395
EXISTS( ), see EXISTS( ) 

predicate
IN( ), see IN( ) predicate
Predicates 330, 331f
IS [NOT] NORMALIZED, 332
IS NULL,  329–330, 330t

LIKE, see LIKE predicate
NOT EXISTS ( ), 384
NOT IN( ), 373, 374, 375
optimizing IN( ), 370–373
OVERLAPS, 358–367
quantified subquery, 389
SIMILAR TO, 350–352, 

351t, 352t
UNIQUE, 394–395

PREVVAL expression, 39
Primary indexes, 740
PRIMARY KEYs, 40, 91

constraints, 58–60, 60t
Prime numbers, 45–48, 171
Procedural code, 114

adjacency list model, 683
Procedural cohesion, 106
Procedural constructs

CREATE PROCEDURE,  
123–124

CREATE TRIGGER
advantage of, 127
AFTER trigger, 125
OLD transition table, 124
statements, 126
BEFORE trigger, 125
trigger event, 124

CURSORs
CLOSE statement, 137
DEALLOCATE statement,  

137
DECLARE CURSOR 

statement, 128–129
FETCH statement, 136–137
OPEN statement, 136
ORDER BY clause, 129–130
positioned UPDATE and 

DELETE statements, 141
generated columns, 142–143
SEQUENCEs, 141–142
table functions, 143–144

Procedural decomposition 
solution, 119–121

Projection-Join Normal Form, 
see Fifth Normal Form

Proper subset, 649–650
Pseudo-random numbers,  

244
generator, 646
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Q
Quantified subquery predicates,  

389
Quantifiers, 389

EXISTS( ) predicate and,  
385–386

and missing data, 391–393
universal, 389

Queries
bound, 602–603
run, 603–607
sequence, 603–607

Quiet NaN (QNaN), 217

R
RANDOM( ) function, 645
Random order values, 48–50,  

172–175
Random-number generator, 244
Range auxiliary table, 155–156
RANK( ) function, 548
Rational numbers, 298
Reachable node, 694–695
READ COMMITTED isolation 

level, 17
Read Skew, 19–20
READ UNCOMMITTED 

isolation level, 17
Read-only VIEWs, 446–447
REAL, numeric types, 216, 217
Records vs. rows, 5
Recursion, adjacency list model,  

683
Recursive common table 

expressions
simple incrementation, 470–471
simple tree traversal, 471

Redundant duplicates
removal with ROWID, 305–306
in table, 304–305

REFERENCES clause, 60–62
References specification, 60
Referential constraints

EXISTS( ) predicate and,  
386–387

IN( ) predicate and, 376–377
Regional Internet Registries 

(RIRs), 293

Regions, finding maximum 
size, 598–602

Relational division
exact division, 481
JOIN operators, 484
and nested EXISTS( ), 481–482
with remainder, 480–481
set operators, 485
Todd’s division, 482–484

Relational model, 181
Active Online Catalog Based 

on, 182
Codd’s 12 rules for, 181

RELATIVE fetch, 102
REPEATABLE READ isolation 

level, 17
REPLACE( ) function, 33
Replacement, nested, 269
Representative subset, 659–663
RESTRICT, 80

option, 756
Retrieval language, 591
RIGHT OUTER JOIN, 415,  

419, 424
ROLLBACK statement, 12
ROLLUP group, 540, 542
Romley’s division

characteristic function, 487
HAVING clause, 486

Rounding, 220–222
ROWID, 88

redundant duplicates removal 
with, 305–306

ROW_NUMBER( ) function, 547
Rows

comparisons, 326–328
expression comparisons, 371
numbering, 547
sorting matrix, 626
vs. records, 5

Rule-based optimizer, 737
Run queries, 603–607

S
Savepoints, 12
Scalar queries, IN( ) predicate 

and, 377–379
Scalar SELECT expressions,  

426–427

Scalar subquery comparisons,  
389–390

Scaling functions, 231
Schedule_right constraint, 461
Schema tables, 97
Second Normal Form (2NF),  

188–189
Second Version of the Relational 

Model (1990) (Codd), 437
Secondary indexes, 740
Security and Exchange 

Commission (SEC) rule, 729
SELECT

clause, 494
aggregate functions in, 438

scalar expressions, 426–427
statement, 21, 108, 397, 622

advanced, 407
execution order, 397
one-level, see One-level 

SELECT statement
SELECT DISTINCT, 372, 640

clause, 751
use of, 394

Self OUTER JOINs, 421–422
Sequence generator functions,  

42–43, 92
unique value generators,  

42–43
Sequence queries, 603–607
Sequential access, 738
Sequential cohesion, 106
Sequential index, 739, 745
Serializability, 14
SERIALIZABLE isolation, 17
Series table, 45, 145–151

enumerating list, 146–148
mapping, number sequence to 

cycle, 148–149
replacing iterative loop,  

150–151
SET clause. UPDATE 

statement, 311–312, 419
SET DEFAULT option, 62
SET NULL option, 62
Set operators, 485

ALL DISTINCT, 640
CONTAINS, 640
equality subsets, 640–641
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EXCEPT, 635–640
with NULLs and duplicates 

values, 639–640
without NULLs and 

duplicates values, 638–639
INTERSECT, 635–640

with NULLs and duplicates 
values, 639–640

without NULLs and 
duplicates values, 638–639

proper subsets, 640–641
SELECT DISTINCT, 640

Signaling NaN (SNaN), 218
SIMILAR TO predicates, 350–352, 

351t, 352t
Simple aggregate functions

AVG( ) function
across columns, 516–517
with empty groups, 514–516

bitwise aggregate functions
AND aggregate functions,  

538
OR aggregate functions,  

537–538
COUNT( ) functions

cardinality counting, 508
expression counting,  

508, 510
optimizing aggregates, 

DISTINCT, 510–511
extrema functions

generalized, 519
GREATEST( ) and LEAST( ) 

functions, 527–530
multiple criteria, 526–527
simple, 517–518

LIST( ) aggregate function
by crosstabs, 531–532
with recursive CTE,  

530–531
PRD( ) aggregate function

by expressions, 533
by logarithms, 534–536

SUM( ) function, 511–512
Simple common table 

expressions, 468–469
Simple extrema 

functions, 517–518
Simple incrementation, 470–471

Simple search conditions,  
741–742

Simple string expressions,  
742–743

Simple temporal expressions,  
743–744

Simple tree traversal, 471
Single column uniqueness 

vs. multiple-column 
uniqueness, 68–76

Single precision numbers, 217
Single-column aggregate 

functions, 589
Single-column range tables,  

474–475
Sink node, 696
Skeleton code, 110, 111

for function, 176
SMALLINT

column, 293
data type, 216, 236

Smisteru rule, 338
Snapshot Isolation, 19–21
Social Security Number 

(SSN), 295–298
Software engineering, basics of,  

105
Sort keys, 132
Sorting

classic SQL solution, 753
EXCEPT clauses, 751
GROUP BY clause, 504–505,  

752
INTERSECT clauses, 751
nested self- JOIN, 753
SELECT DISTINCT clause, 751
UNION clauses, 751
by weekday names, 725–726

Soundex, 262–264
functions, 261–262, 475

Source node, 696
Special series, 44–50

prime numbers, 45–48
random order values, 48–50
series table, 45

Split node nested set models for 
graphs

acyclic graphs to nested sets, 
converting, 697–698

edges, 695
indegree and outdegree nodes,  

695
internal node, 696
isolated node, 696
nodes in graph, 693–694
path endpoints, 694
reachable nodes, 694–695
sink node, 696
source node, 696

SQL
implementations, differences 

in, 230t
multivariable descriptive 

statistics
covariance, 589
NULLs in, 590–591
Pearson’s r statistics, 589–590
single-column aggregate 

functions, 589
row comparisons in, 326–328
strings, problems with,  

255–258
temporal data types, 240–246

Display Format Standards,  
242

handling times, 245
handling timestamps,  

242–244
internal representations,  

241–242
SQL-89, 255, 257
SQL-92, 255, 258
SQL:2006, statistical functions in

distribution functions, 592–593
Pearson’s r correlation, 592
variance, standard deviation,  

and descriptive stats,  
591–592

SQL Programming Style 
(Celko), 152, 205

SQLSTATE code, 139
SSN, see Social Security Number
Stable marriage 

problem, 430–434
Stamp coupling, 107
Standard deviation, 572–573
Star Schema, 540
Start_timestamp, 19

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



786     INDEX

Statistical functions in SQL:2006
distribution functions, 592–593
Pearson’s r correlation, 592
variance, standard deviation, 

and descriptive stats, 591–592
Statistical median, 557–572
Statistical update, 759–760
Stobbs solution, 441–442
Strings

character content, 352–353
encoding techniques, 354
functions, 258–259
index creation on, 354
parsing list in, 187–188
problems of

equality, 256–257
grouping, 257–258
ordering, 257

searching vs. declaring, 353–354
tricks with, 352–353

Subqueries, correlated, 407–411
Subregions, finding of size (n),  

596
Subset

CONTAINS operators
proper subset, 649–650
table equality, 650–654

equality, 653–654
non-minimal, 660t
representative, 659–663

Subtrees, deleting, 672
SUM( ) function, 511–512
Summation of series, 607–610
Super key, 64
Surrogate keys, 207
Sybase/SQL Server, 37, 86

family, 759
Systematic Treatment of NULL 

Values, 182

T
Tables

auxiliary function 
tables, 159–169

converting procedural code to,  
175–179

cutter, 268–269
as entities, 4
equality, 650–654

global constants, 169–174
lookup auxiliary 

tables, 151–159
modeling time in, 726–728
n-th item in, 643–644
random rows from, 644–649
as relationships, 4
series, 145–151

Temporal cohesion, 106
Temporal data models, 

durations, 250–252, 252–253
Temporal data types, SQL,  

240–246
Display Format Standards, 242
handling times, 245
handling timestamps, 242–244
internal 

representations, 241–242
Temporal functions, 722–723
Temporal math, 701–703
TEMPORARY TABLE 

declarations, 77–78
Temporary tables, 97
The Art of Computer 

Programming (Knuth), 211
The Relational Model for 

Database Management: 
Version 2 (Codd), 183

THEN clause, CASE 
Expression, 335

Theta operators, 323
Third Normal Form (3NF),  

189–191
Three-valued logic, EXISTS( ) 

predicate and, 387–388
Time series, 704

continuous time 
periods, 708–712

gaps in, 706–708
locating dates, 716–717
missing times in 

events, 713–716
starting and ending, 718

Times
handling, 245
modeling durations, 250–252
relationships among 

durations, 252–253
zones, 245–246

Timestamps, handling, 242–244
TINYINT, 216
T-join, Codd’s, see Codd’s T-join
Todd’s division, 482–484
Traditional version, 760
Transactions

atomicity, 12–13
consistency, 13–14
durability, 14
isolation, 14

Transitive dependency, 190
TRANSLATE( ) function, 33
Translation auxiliary tables

multiple, 153–154
simple, 153

Transpose matrix, 625–626
Trees

abstract, 665, 666f
adjacency list model

complex constraints,  
667–668

procedural traversal for 
queries, 669–670

table alteration, 670
leaf nodes, 665

Trees and Hierarchies in SQL for 
Smarties (Celko), 298

Tricolor domain, 275
TRIGGER, 99
Trigger event, 124
TRIM( ) function, 259
Truncation, 220–222, 258
Two-valued logic, 277
t-zero, 19

U
UCS, see Universal Character 

Set
UDF, see User-defined function
UID, see Universal Identifier
Unicode Consortium, 32
UNION, 748

clauses, 751
operations, 521

UNION ALL
operation, 450
statement, 632–635

mixed, 634
order of execution, 634
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UNION JOIN operators,  
425–426

UNION statement, 632–635
of columns, 635
mixed, 634
order of execution, 634

UNIQUE
constraints, 58–59, 60, 68
predicate, 394–395

Unique value generators,  
42–43, 92–93, 232–235

preallocated values, 234–235
sequences with gaps, 233–234

Universal Character Set (UCS), 32
Universal Coordinated Time, 240
Universal Identifier (UID),  

91–92
Universal Unique Identifiers 

(UUIDs), 41–42, 90–91
UNIX representation, temporal 

data, 241
Updatable VIEWs, 446–447
UPDATE

clause, 310–311
statement, 21, 104, 213,  

310–317, 458, 624, 626
with case expression,  

315–317
FROM clause, 317
forms of, 310
with second table, 312–315
SET clause, 311–312
using CASE expression in,  

315–317
WHERE clause, 311

Update anomaly, 185
Upper or right median, 557
User session, 11
User-defined function (UDF),  

108, 109
UUIDs, see Universal Unique 

Identifiers

V
3-Valued Logic (3VL), 280
Valued predicates

IS [NOT] NORMALIZED 
Predicate, 332

IS NULL, 329–330, 330t
Values, swapping and sliding,  

610–612
VALUES constructor, 468
VARCHAR(15) column, 291
Variance, 572–573
Vaughan’s median, 563
Vendor extensions, 259–268

FIRST and LAST functions,  
552–553

flaws, 317–319
LEAD and LAG functions,  

551–552
Very Large Databases 

(VLDB), 35, 88
VIEW Updating Rule, 182
VIEWs

database engine
indexing and views, 457
in-line text expansion,  

454–456
pointer structures, 456
view column list, 453
VIEW materialization,  

453–454
definition of, 445
dropping

CASCADE option, 462
DROP TABLE statement,  

463
in queries, 445–446
types of

calculated columns, 448
grouped, 449–450
JOINs, 452
nested, 452–453
single-table projection and 

restriction, 448
translated columns,  

448–449
UNION-ed, 450–451

updatable and read-only,  
446–447

vs. TEMPORARY TABLEs
flattening, 464–466
GLOBAL TEMPORARY 

TABLE, 464
VLDB, see Very Large Databases

W
WHEN clause, CASE Expression,  

334, 335
WHERE clauses

and FROM clauses, 493
complexity, 303
correlated subqueries, 409
CROSS JOIN, 403
DELETE FROM 

statement, 300–303
one-level SELECT statement,  

398–399
UPDATE statement, 311

Window clause
ORDER BY subclause, 545
PARTITION BY subclause, 544
window frame subclause,  

546–547
Windowed aggregate functions,  

547
Windows, Icons, Menus, 

and Pulldowns (WIMP) 
interface, 151

WITH CHECK OPTION clause
as CHECK( ) clause, 461–462
CHECK constraint, 458
SQL-89 standard, 457
UPDATE statement, 458
VIEW V5, 460

Write Skew, 20

X
Xbase languages, 257

Y
Year 2000 problem

aftermath, 735–736
leap year, 732–733
millennium, 733–734
weird dates in legacy data,  

734–735
zeros, 731–732

Year-month intervals, 245
Y2K crisis, 731

Z
Zeller’s algorithm, 723
Zipf’s Law, 112, 177 
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