
M A N N I N G

IN DEPTH
Jon Skeet

FOREWORD BY ERIC LIPPERT

SECOND EDITION

Covers C# 4

Praise for the First Edition

The best C# book available for intermediate to expert developers. Experienced .NET
developers who think they know everything there is to know about the C# language will
almost certainly learn more than a thing or two in this book. It is an interesting cover-
to-cover read, and will be a handy desktop reference as well. I recommend this book to
anyone who wants to become a C# expert.

 —Alvin Ashcraft, DZone review

Simply put, C# in Depth is perhaps the best computer book I’ve read.
—Craig Pelkie, Author, System iNetwork

I have been developing in C# from the very beginning and this book had some nice sur-
prises even for me. I was especially impressed with the excellent coverage of delegates,
anonymous methods, covariance and contravariance. Even if you are a seasoned devel-
oper, C# in Depth will teach you something new about the C# language... This book
truly has depth that no other C# language book can touch.

 —Adam J. Wolf
 Southeast Valley .NET User Group

I enjoyed reading the whole book; it is well-written—the samples are easy to understand.
I actually found it very easy to engage into the whole lambda expressions topic and
really liked the chapter about lambda expressions.

 —Jose Rolando Guay Paz
 Web Developer, CSW Solutions

This book wraps up the author’s great knowledge of the inner workings of C# and
hands it over to readers in a well-written, concise, usable book.

 —Jim Holmes
Author of Windows Developer Power Tools

Every term is used appropriately and in the right context, every example is spot-on
and contains the least amount of code that shows the full extent of the feature...this
is a rare treat.

 —Franck Jeannin, Amazon UK reviewer

If you have developed using C# for several years now, and would like to know the inter-
nals, this book is absolutely right for you.

 —Golo Roden, Author, Speaker, and
Trainer for .NET and related technologies
Licensed to Devon Greenway <devon.greenway@gmail.com>

More Praise for the First Edition

If there’s one must-have book for .NET developers, this is it. Jon Skeet provides every-
thing you need to know about C# mazes, with particular attention to LINQ. The
author really knows his stuff and provides invaluable comments about C# features.

 —Luigi Zambetti, Developer, Milan

This book is the best C# reference money can buy at the moment.
—Jan Van Ryswyck, ElegantCode.com

 Jon Skeet’s writing style is clear and concise and he’s got lots of great examples.
—Peter Kellner, Blogger

A first-class book about C#.
 —Teemu Keiski, ASP.NET MVP, AspInsider

Become a C# 3 maestro!
 —Fabrice Marguerie, C# MVP, author of LINQ in Action

The best C# book I’ve ever read.
 —Chris Mullins, C# MVP

Clear and concise.
 —Robin Shahan, GoldMail.com

A treat!
 —Anil Radhakrishna, ASP.NET MVP

Reveals C#’s powerful mysteries.
 —Christopher Haupt, BuildingWebApps.com

So good, it hurts my head.
 —J.D. Conley, Hive7 Inc.

Enriches the beginner, polishes the expert.
 —Josh Cronemeyer ThoughtWorks
Licensed to Devon Greenway <devon.greenway@gmail.com>

C# in Depth
SECOND EDITION

JON SKEET

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Devon Greenway <devon.greenway@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
180 Broad St. Copyeditor: Benjamin Berg
Suite 1323 Proofreader: Katie Tennant
Stamford, CT 06901 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 978-1-935182-47-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.manning.com

 For Holly, with much, much love
Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

brief contents

PART 1 PREPARING FOR THE JOURNEY.......................................1

1 ■ The changing face of C# development 3

2 ■ Core foundations: building on C# 1 27

PART 2 C# 2: SOLVING THE ISSUES OF C# 1 55

3 ■ Parameterized typing with generics 57

4 ■ Saying nothing with nullable types 103

5 ■ Fast-tracked delegates 130

6 ■ Implementing iterators the easy way 156

7 ■ Concluding C# 2: the final features 179

PART 3 C# 3: REVOLUTIONIZING HOW WE CODE.................... 201

8 ■ Cutting fluff with a smart compiler 203

9 ■ Lambda expressions and expression trees 227

10 ■ Extension methods 256

11 ■ Query expressions and LINQ to Objects 279

12 ■ LINQ beyond collections 321
vii

Licensed to Devon Greenway <devon.greenway@gmail.com>

viii
PART 4 C# 4: PLAYING NICELY WITH OTHERS......................... 363

13 ■ Minor changes to simplify code 365

14 ■ Dynamic binding in a static language 401

15 ■ Letting your code speak more clearly with Code Contracts 452

16 ■ Whither now? 490
Licensed to Devon Greenway <devon.greenway@gmail.com>

contents
foreword xix
preface xxi
acknowledgments xxiii
about this book xxv

PART 1 PREPARING FOR THE JOURNEY..............................1

1 The changing face of C# development 3
1.1 Starting with a simple data type 4

The Product type in C# 1 4 ■ Strongly typed collections in
C# 2 6 ■ Automatically implemented properties in C# 3 7
Named arguments in C# 4 7

1.2 Sorting and filtering 9
Sorting products by name 9 ■ Querying collections 12

1.3 Handling an absence of data 14
Representing an unknown price 14 ■ Optional parameters
and default values 15

1.4 Introducing LINQ 16
Query expressions and in-process queries 16 ■ Querying
XML 17 ■ LINQ to SQL 18
ix

Licensed to Devon Greenway <devon.greenway@gmail.com>

x

1.5 COM and dynamic typing 19
Simplifying COM interoperability 19 ■ Interoperating with a
dynamic language 20

1.6 Dissecting the .NET platform 21
C#, the language 22 ■ Runtime 22 ■ Framework libraries 22

1.7 Making your code super awesome 23
Presenting full programs as snippets 23 ■ Didactic code isn’t
production code 24 ■ Your new best friend: the language
specification 25

1.8 Summary 26

2 Core foundations: building on C# 1 27
2.1 Delegates 28

A recipe for simple delegates 28 ■ Combining and removing
delegates 33 ■ A brief diversion into events 34 ■ Summary
of delegates 35

2.2 Type system characteristics 36
C#’s place in the world of type systems 36 ■ When is C# 1’s
type system not rich enough? 39 ■ Summary of type system
characteristics 42

2.3 Value types and reference types 42
Values and references in the real world 43 ■ Value and reference
type fundamentals 43 ■ Dispelling myths 45 ■ Boxing and
unboxing 47 ■ Summary of value types and reference types 48

2.4 Beyond C# 1: new features on a solid base 48
Features related to delegates 49 ■ Features related to the type
system 51 ■ Features related to value types 53

2.5 Summary 54

PART 2 C# 2: SOLVING THE ISSUES OF C#155

3 Parameterized typing with generics 57
3.1 Why generics are necessary 58
3.2 Simple generics for everyday use 60

Learning by example: a generic dictionary 60 ■ Generic types
and type parameters 62 ■ Generic methods and reading generic
declarations 65
Licensed to Devon Greenway <devon.greenway@gmail.com>

xi
3.3 Beyond the basics 68
Type constraints 69 ■ Type inference for type arguments of generic
methods 74 ■ Implementing generics 75

3.4 Advanced generics 81
Static fields and static constructors 81 ■ How the JIT compiler
handles generics 83 ■ Generic iteration 85 ■ Reflection and
generics 88

3.5 Limitations of generics in C# and other languages 91
Lack of generic variance 92 ■ Lack of operator constraints or a
“numeric” constraint 97 ■ Lack of generic properties, indexers,
and other member types 98 ■ Comparison with C++ templates 99
Comparison with Java generics 100

3.6 Summary 101

4 Saying nothing with nullable types 103
4.1 What do you do when you just don’t have a value? 104

Why value type variables can’t be null 104 ■ Patterns for
representing null values in C# 1 105

4.2 System.Nullable<T>and System.Nullable 107
Introducing Nullable<T> 107 ■ Boxing Nullable<T>and
unboxing 110 ■ Equality of Nullable<T> instances 111
Support from the nongeneric Nullable class 111

4.3 C# 2’s syntactic sugar for nullable types 112
The ? modifier 113 ■ Assigning and comparing with null 114
Nullable conversions and operators 116 ■ Nullable logic 119
Using the as operator with nullable types 120 ■ The null
coalescing operator 121

4.4 Novel uses of nullable types 124
Trying an operation without using output parameters 124
Painless comparisons with the null coalescing operator 126

4.5 Summary 129

5 Fast-tracked delegates 130
5.1 Saying goodbye to awkward delegate syntax 131
5.2 Method group conversions 133
5.3 Covariance and contravariance 134

Contravariance for delegate parameters 135 ■ Covariance of
delegate return types 136 ■ A small risk of incompatibility 138
Licensed to Devon Greenway <devon.greenway@gmail.com>

xii
5.4 Inline delegate actions with anonymous methods 138
Starting simply: acting on a parameter 139 ■ Returning
values from anonymous methods 141 ■ Ignoring delegate
parameters 143

5.5 Capturing variables in anonymous methods 144
Defining closures and different types of variables 145
Examining the behavior of captured variables 146 ■ What’s the
point of captured variables ? 147 ■ The extended lifetime of
captured variables 148 ■ Local variable instantiations 149
Mixtures of shared and distinct variables 151 ■ Captured variable
guidelines and summary 153

5.6 Summary 154

6 Implementing iterators the easy way 156
6.1 C# 1: the pain of handwritten iterators 157
6.2 C# 2: simple iterators with yield statements 160

Introducing iterator blocks and yield return 160 ■ Visualizing an
iterator’s workflow 162 ■ Advanced iterator execution flow 164
Quirks in the implementation 167

6.3 Real-life iterator examples 169
Iterating over the dates in a timetable 169 ■ Iterating over lines in
a file 170 ■ Filtering items lazily using an iterator block and a
predicate 173

6.4 Pseudo-synchronous code with the Concurrency and
Coordination Runtime 175

6.5 Summary 177

7 Concluding C# 2: the final features 179
7.1 Partial types 180

Creating a type with multiple files 181 ■ Uses of partial
types 183 ■ Partial methods—C# 3 only! 184

7.2 Static classes 186
7.3 Separate getter/setter property access 189
7.4 Namespace aliases 190

Qualifying namespace aliases 191 ■ The global namespace
alias 192 ■ Extern aliases 192

7.5 Pragma directives 194
Warning pragmas 194 ■ Checksum pragmas 195

7.6 Fixed-size buffers in unsafe code 196
Licensed to Devon Greenway <devon.greenway@gmail.com>

xiii
7.7 Exposing internal members to selected assemblies 198
Friend assemblies in the simple case 198 ■ Why use
InternalsVisibleTo? 199 ■ InternalsVisibleTo and signed
assemblies 199

7.8 Summary 200

PART 3 C# 3: REVOLUTIONIZING HOW WE CODE........... 201

8 Cutting fluff with a smart compiler 203
8.1 Automatically implemented properties 204
8.2 Implicit typing of local variables 207

Using var to declare a local variable 207 ■ Restrictions on
implicit typing 208 ■ Pros and cons of implicit typing 209
Recommendations 211

8.3 Simplified initialization 211
Defining our sample types 212 ■ Setting simple properties 213
Setting properties on embedded objects 214 ■ Collection
initializers 215 ■ Uses of initialization features 218

8.4 Implicitly typed arrays 219
8.5 Anonymous types 220

First encounters of the anonymous kind 220 ■ Members of
anonymous types 222 ■ Projection initializers 223
What’s the point? 225

8.6 Summary 226

9 Lambda expressions and expression trees 227
9.1 Lambda expressions as delegates 229

Preliminaries: introducing the Func<...> delegate types 229
First transformation to a lambda expression 230 ■ Using a single
expression as the body 231 ■ Implicitly typed parameter lists 231
Shortcut for a single parameter 232

9.2 Simple examples using List<T> and events 233
Filtering, sorting, and actions on lists 233 ■ Logging in an
event handler 235

9.3 Expression trees 236
Building expression trees programmatically 236 ■ Compiling
expression trees into delegates 238 ■ Converting C# lambda
expressions to expression trees 239 ■ Expression trees at the heart
of LINQ 242 ■ Expression trees beyond LINQ 244
Licensed to Devon Greenway <devon.greenway@gmail.com>

xiv
9.4 Changes to type inference and overload resolution 246
Reasons for change: streamlining generic method calls 246
Inferred return types of anonymous functions 247 ■ Two-phase
type inference 248 ■ Picking the right overloaded method 252
Wrapping up type inference and overload resolution 254

9.5 Summary 254

10 Extension methods 256
10.1 Life before extension methods 257
10.2 Extension method syntax 259

Declaring extension methods 259 ■ Calling extension
methods 261 ■ Extension method discovery 262
Calling a method on a null reference 263

10.3 Extension methods in .NET 3.5 265
First steps with Enumerable 265 ■ Filtering with Where and
chaining method calls together 267 ■ Interlude: haven’t we seen
the Where method before? 269 ■ Projections using the Select method
and anonymous types 269 ■ Sorting using the OrderBy
method 270 ■ Business examples involving chaining 272

10.4 Usage ideas and guidelines 273
“Extending the world” and making interfaces richer 274
Fluent interfaces 274 ■ Using extension methods sensibly 276

10.5 Summary 277

11 Query expressions and LINQ to Objects 279
11.1 Introducing LINQ 280

Fundamental concepts in LINQ 280 ■ Defining the sample
data model 285

11.2 Simple beginnings: selecting elements 285
Starting with a source and ending with a selection 286 ■ Compiler
translations as the basis of query expressions 287 ■ Range
variables and nontrivial projections 290 ■ Cast, OfType, and
explicitly typed range variables 292

11.3 Filtering and ordering a sequence 294
Filtering using a where clause 294 ■ Degenerate query
expressions 295 ■ Ordering using an orderby clause 296

11.4 Let clauses and transparent identifiers 298
Introducing an intermediate computation with let 298
Transparent identifiers 299
Licensed to Devon Greenway <devon.greenway@gmail.com>

xv
11.5 Joins 301
Inner joins using join clauses 301 ■ Group joins with join ... into
clauses 305 ■ Cross joins and flattening sequences using multiple
from clauses 308

11.6 Groupings and continuations 311
Grouping with the group ... by clause 311 ■ Query
continuations 314

11.7 Choosing between query expressions and dot
notation 317
Operations that require dot notation 317 ■ Query expressions
where dot notation may be simpler 318 ■ Where query
expressions shine 319

11.8 Summary 320

12 LINQ beyond collections 321
12.1 Querying a database with LINQ to SQL 322

Getting started: the database and model 323 ■ Initial
queries 325 ■ Queries involving joins 327

12.2 Translations using IQueryable and IQueryProvider 329
Introducing IQueryable<T> and related interfaces 330 ■ Faking
it: interface implementations to log calls 331 ■ Gluing expressions
together: the Queryable extension methods 334 ■ The fake query
provider in action 335 ■ Wrapping up IQueryable 337

12.3 LINQ-friendly APIs and LINQ to XML 337
Core types in LINQ to XML 338 ■ Declarative construction 340
Queries on single nodes 342 ■ Flattened query operators 344
Working in harmony with LINQ 345

12.4 Replacing LINQ to Objects with Parallel LINQ 346
Plotting the Mandelbrot set with a single thread 346
Introducing ParallelEnumerable, ParallelQuery, and
AsParallel 347 ■ Tweaking parallel queries 349

12.5 Inverting the query model with LINQ to Rx 350
IObservable<T> and IObserver<T> 351 ■ Starting simply
(again) 353 ■ Querying observables 354 ■ What’s the
point? 356

12.6 Extending LINQ to Objects 357
Design and implementation guidelines 357 ■ Sample extension:
selecting a random element 359

12.7 Summary 360
Licensed to Devon Greenway <devon.greenway@gmail.com>

xvi
PART 4 C# 4: PLAYING NICELY WITH OTHERS363

13 Minor changes to simplify code 365
13.1 Optional parameters and named arguments 366

Optional parameters 366 ■ Named arguments 372
Putting the two together 376

13.2 Improvements for COM interoperability 380
The horrors of automating Word before C# 4 380 ■ The revenge
of optional parameters and named arguments 381 ■ When is a
ref parameter not a ref parameter? 382 ■ Calling named
indexers 383 ■ Linking primary interop assemblies 385

13.3 Generic variance for interfaces and delegates 387
Types of variance: covariance and contravariance 387 ■ Using
variance in interfaces 389 ■ Using variance in delegates 392
Complex situations 392 ■ Restrictions and notes 394

13.4 Teeny tiny changes to locking and field-like events 398
Robust locking 398 ■ Changes to field-like events 399

13.5 Summary 400

14 Dynamic binding in a static language 401
14.1 What? When? Why? How? 403

What is dynamic typing? 403 ■ When is dynamic typing useful,
and why? 404 ■ How does C# 4 provide dynamic typing? 405

14.2 The five-minute guide to dynamic 406
14.3 Examples of dynamic typing 408

COM in general, and Microsoft Office in particular 408
Dynamic languages such as IronPython 410 ■ Dynamic typing
in purely managed code 415

14.4 Looking behind the scenes 421
Introducing the Dynamic Language Runtime 421 ■ DLR core
concepts 422 ■ How the C# compiler handles dynamic 426
The C# compiler gets even smarter 430 ■ Restrictions on dynamic
code 432

14.5 Implementing dynamic behavior 435
Using ExpandoObject 435 ■ Using DynamicObject 440
Implementing IDynamicMetaObjectProvider 446

14.6 Summary 450
Licensed to Devon Greenway <devon.greenway@gmail.com>

xvii
15 Letting your code speak more clearly with Code Contracts 452
15.1 Life before Code Contracts 454
15.2 Introducing Code Contracts 455

Preconditions 456 ■ Postconditions 458 ■ Invariants 459
Assertions and assumptions 461 ■ Legacy contracts 462

15.3 Rewriting binaries with ccrewrite and ccrefgen 464
Simple rewriting 464 ■ Contract inheritance 466
Contract reference assemblies 469 ■ Failure behavior 470

15.4 Static checking 472
Getting started with static checking 473 ■ Implicit
obligations 475 ■ Selective checking 478

15.5 Documenting contracts with ccdocgen 480
15.6 Practical contracts 482

Philosophy: what’s in a contract? 483 ■ How do I get
started? 484 ■ Options, options everywhere 485

15.7 Summary 488

16 Whither now? 490
16.1 C#—mixing tradition and modernity 490
16.2 Computer science and .NET 491
16.3 The world of computing 492
16.4 Farewell 493

appendix A LINQ standard query operators 495
appendix B Generic collections in .NET 508
appendix C Version summaries 521

index 529
Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

foreword
There are two kinds of pianists.

 There are some pianists who play, not because they enjoy it, but because their par-
ents force them to take lessons. Then there are those who play the piano because it
pleases them to create music. They don’t need to be forced; on the contrary, they
sometimes don’t know when to stop.

 Of the latter kind, there are some who play the piano as a hobby. Then there are
those who play for a living. That requires a whole new level of dedication, skill, and tal-
ent. They may have some degree of freedom about what genre of music they play and
the stylistic choices they make when playing it, but fundamentally those choices are
driven by the needs of the employer or the tastes of the audience.

 Of the latter kind, there are some who do it primarily for the money. Then there
are those professionals who would want to play the piano in public even if they weren’t
being paid. They enjoy using their skills and talents to make music for others. That
they can have fun and get paid for it is so much the better.

 Of the latter kind, there are some who are self-taught, who play by ear, who might
have great talent and ability but can’t communicate that intuitive understanding to
others except through the music itself. Then there are those who have formal training
in both theory and practice. They can explain what techniques the composer used to
achieve the intended emotional effect, and use that knowledge to shape their inter-
pretation of the piece.

 Of the latter kind, there are some who have never looked inside their pianos. Then
there are those who are fascinated by the clever escapements that lift the damper felts
a fraction of a second before the hammers strike the strings. They own key levelers
xix

Licensed to Devon Greenway <devon.greenway@gmail.com>

FOREWORDxx
and capstan wrenches. They take delight and pride in being able to understand the
mechanisms of an instrument that has 5–10,000 moving parts.

 Of the latter kind, there are some who are content to master their craft and exer-
cise their talents for the pleasure and profit it brings. Then there are those who are
not just artists, theorists, and technicians; somehow they find the time to pass that
knowledge on to others as mentors.

 I have no idea if Jon Skeet is any kind of pianist. But from my email conversations
with him as one of the C# team’s Most Valuable Professionals over the years, from
reading his blog, and from reading every word of this book at least three times, it has
become clear to me that Jon is that latter kind of software developer: enthusiastic,
knowledgeable, talented, curious and analytical—a teacher of others.

 C# is a highly pragmatic and rapidly evolving language. Through the addition of
query comprehensions, richer type inference, a compact syntax for anonymous func-
tions, and so on, I hope that we have enabled a whole new style of programming while
still staying true to the statically typed, component-oriented approach that has made
C# a success.

 Many of these new stylistic elements have the paradoxical quality of feeling very
old (lambda expressions go back to the foundations of computer science in the first
half of the twentieth century) and yet at the same time feeling new and unfamiliar to
developers used to a more modern object-oriented approach.

 Jon gets all that. This book is ideal for professional developers who have a need to
understand the what and how of the latest revision to C#. But it is also for those devel-
opers whose understanding is enriched by exploring the why of the language’s design
principles.

 Being able to take advantage of all that new power will require new ways of think-
ing about data, functions, and the relationship between them. It’s not unlike trying to
play jazz after years of classical training—or vice versa. Either way, I’m looking forward
to finding out what sorts of functional compositions the next generation of C# pro-
grammers come up with. Happy composing, and thanks for choosing the key of C# to
do it in.

 ERIC LIPPERT

 Senior Software
 Engineer, Microsoft
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.manning.com/C#inDepthSecondEdition
http://www.manning.com/C#inDepthSecondEdition

preface
It feels like a very long time since I wrote the preface to the first edition, but it’s actu-
ally only been about two and a half years. In that time, there have been many changes
both for myself and in the landscape of technology.

 In my personal life, I’m now very proud to be a software engineer at Google—with
the one downside that I don’t spend as much time working in C# as I used to. I’ve
found a new addiction in the form of Stack Overflow, the developer question-and-
answer forum. My youngest sons who were barely two years old when the first edition
came out are now about to start school. I’ve had the privilege of giving talks about C#
in London, Oslo, Copenhagen, and various other places, with more to come. It’s all
been a lot of fun, although occasionally somewhat hectic.

 The technological world has been no less shaken up. I’m writing this on a net-
book—a word which barely had any meaning when I was writing the first edition. The
smartest of smart phones was pretty primitive by today’s standards, and my current
laptop would have served as an outrageously overpowered desktop machine. The
developments in software have been less mind-blowing in my opinion, although many
of the projects which are now becoming mainstream (such as Parallel Extensions)
were in their early stages back then. Silverlight had only just made the leap to being a
fully managed language, and ASP.NET MVC was still very young, and wouldn’t have its
1.0 release for some time. Of course, C# itself has changed as well—otherwise there’d
be little reason to bring out a second edition.

 Despite all this change, the focus of this book has stayed the same. I remain com-
mitted to helping people form a more intimate connection with C#. As ever more
frameworks pop up—and as we have to learn them ever more quickly—it’s vital to
xxi

Licensed to Devon Greenway <devon.greenway@gmail.com>

FOREWORDxxii
have a firm foundation to build on. We should at least be secure in saying, “this is a
generic method call, this is a property access, this is a lambda expression being con-
verted into a delegate,” and so on.

 I believe the general standard of language knowledge is improving, in fact. I’ve
been pleasantly surprised to see how well LINQ seems to be understood by many devel-
opers, although to some it’s clearly still a black box of magic. Admittedly these obser-
vations are mostly via Stack Overflow, which is obviously a biased, self-selecting subset
of all developers—but even so, I think there’s reason for optimism. I hope the first
edition of this book has played some small part in that improvement, and that this edi-
tion will too.

 I keep meaning to learn a new language, properly. I’ve dabbled with F# and
Python. I’ve promised myself that I’ll learn Erlang and Haskell. I keep meaning to see
what all the fuss is about with Ruby... but C# pulls me back, every time. It’s not perfect,
but it usually allows me to express myself clearly and concisely, and those are probably
the most important attributes a language can have. One day I’ll manage to stray far
enough away to start genuinely thinking in a different language—but until that time, I
hope I can convey some of my passion for C# to you in this book.
Licensed to Devon Greenway <devon.greenway@gmail.com>

acknowledgments
You might expect that writing the second edition of a book is easier than writing the
first: just add another few chapters, make some modifications to the existing ones,
and you’re done, right? If that sounds plausible, think about writing code for a new
project compared with trying to modify an existing application. Now imagine doing it
without a compiler or unit tests. Fortunately, although there are precious few ways of
really testing the quality of a book, I have been lucky enough to have a great set of
people supporting me and keeping the book on the straight and narrow.

 Most importantly, my family have put up with me spending evenings writing,
rewriting, editing, indexing, and generally not being with them as much as I’d like. My
sons don’t seem to have been put off computing by this though, and my oldest son,
Tom, is nearly old enough to start programming. It’ll be wonderful for him to have
some idea of what I do all day at work. My children are generally in bed when I’m writ-
ing, though, so it’s mostly my wife Holly who has dealt with the worst of this. Despite
our many commitments, my family is of utmost importance to me, and I’m immensely
grateful that they have supported me in this and many other endeavors.

 The formal peer reviewers are listed later on, but I’d like to add a note of personal
thanks to all those who ordered early access copies of this second edition, finding
typos and suggesting changes... and also constantly asking when the book was coming
out. The very fact that I had readers who were eager to get their hands on the finished
book was a huge source of encouragement.

 I always get on well with the team at Manning, and it’s been a pleasure to work with
some familiar friends from the first edition as well as newcomers. Mike Stephens and
Jeff Bleiel have guided the whole process smoothly, as we decided what to change
xxiii

Licensed to Devon Greenway <devon.greenway@gmail.com>

ACKNOWLEDGMENTSxxiv
from the first edition and what to keep. They’ve generally put the whole thing into the
right shape. Benjamin Berg and Katie Tennant provided expert copyediting and
proofreading, respectively, never once expressing irritation with my Englishness, pick-
iness, or general bewilderment. The production team has worked its magic in the
background, as ever, but I’m grateful to them nonetheless: Dottie Marsico, Janet Vail,
Marija Tudor, and Mary Piergies. Finally, I’d like to thank the publisher, Marjan Bace,
for allowing me a second edition and exploring some interesting future options.

 Peer review is immensely important, not only for getting the technical details of
the book right, but also the balance and tone. Sometimes the comments we received
have merely shaped the overall book; in other cases I’ve made very specific changes in
response. Either way, all feedback has been welcome. So thanks to the following
reviewers for making the book better for all of us: Michael Caro, Austin Ziegler, Dave
Corun, Amos Bannister, Lester Lobo, Marc Gravel, Nikander Bruggeman, Margriet
Bruggeman, Joe Albahari, Tyson S. Maxwell, Horaci Macias, Eric Lippert, Kirill Osen-
kov, Stuart Caborn, Sean Reilly, Aleksy Nudelman, Keith Hill, Josh Heyer, and Jared
Parsons.

 In the first edition of the book I thanked the C# team, but this time I have wider
thanks to give to Softies. I’m always amazed at how generous the various software engi-
neers and project managers have been when I’ve pestered them with specific ques-
tions or sections to review. Some of these folks may not even have realized they were
helping with the book, but they certainly were: Todd Apley, Mike Barnett, Chris Bur-
rows, Wes Dyer, Manuel Fahndrich, Neal Gafter, Eric Lippert, Francesco Logozzo, Erik
Meijer, Sam Ng, Kirill Osenkov, Alexandra Rusina, Chris Sells, Mads Torgersen, Ste-
phen Toub, and Jeffrey Van Gogh.

 Out of that list, I’d like to call Eric Lippert out for special attention, as the tech
reviewer for the book once again and for writing the foreword. Since the first edition
I’ve had many more conversations with Eric, and finally met up with him a couple of
times, both of which have been delightful. I’m still utterly in awe of both his knowl-
edge and the meticulous but readable way in which he shares it with the world both
in his blog and on Stack Overflow. I couldn’t have asked for a better reviewer, and I
look forward to bugging Eric more in the future about anything and everything
related to C#.
Licensed to Devon Greenway <devon.greenway@gmail.com>

about this book
This is a book about C# from version 2 onwards—it’s as simple as that. I barely cover
C# 1, and only cover the .NET Framework libraries and Common Language Runtime
(CLR) when they’re related to the language. This is a deliberate decision, and the
result is quite a different book from most of the C# and .NET books I’ve seen.

 By assuming a reasonable amount of knowledge of C# 1, I avoid spending hun-
dreds of pages covering material that I think most people already understand. This
gives me much more room to expand on the details of C# 2, 3, and 4, which is what I
hope you’re reading the book for.

 I believe that many developers would be less frustrated with their work if they had
a deeper connection with the language they’re writing in. I know it sounds geeky in
the extreme to talk about having a “relationship” with a programming language, but
that’s the best way I can describe it. This book is my attempt to help you achieve that
sort of understanding, or deepen it further. It won’t be enough on its own—it should
be a companion to your coding, guiding you and suggesting some interesting avenues
to explore, as well as explaining why your code behaves the way it does.

Who should read this book?
I’ve been very pleasantly surprised at the community reaction to the first edition of
this book. I’ve seen it recommended in various places, especially on Stack Overflow
(where I admit my presence might encourage a little bias). It’s usually recommended
for those who wish to really know what’s going on in their code... but occasionally it’s
suggested as a learning tool for beginners too. On its own, I think that’s a little bit
unfortunate. You could probably struggle through, looking up C# 1 concepts as and
xxv

Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOKxxvi
when you needed to—but you’d be much better off reading this book in conjunction
with another which starts from scratch.

 Without wishing to dissuade you from buying this book if you haven’t already,
there are plenty of other good C# books on the market—and they actually work well
as companions to this one. I’ve seen numerous reports of readers who have started off
with a book which makes fewer assumptions, and then gradually added C# in Depth to
the mix. I’m happy to recommend C# 4.0 in a Nutshell (O’Reilly, 2010) as one possible
choice here: it not only covers C# from scratch, but also digs into the core of the .NET
Framework.

 I’m not going to claim that reading this book will make you a fabulous coder.
There’s so much more to software engineering than knowing the syntax of the lan-
guage you happen to be using. I give some words of guidance (rather more in this sec-
ond edition than in the first), but ultimately there’s a lot more gut instinct in
development than most of us would like to admit. What I will claim is that if you read
and understand this book, you should feel comfortable with C#, and free to follow
your instincts without too much apprehension. It’s not about being able to write code
that no one else will understand because it uses unknown corners of the language: it’s
about being confident that you know the options available to you, and know which
path the C# idioms are encouraging you to follow.

Roadmap
The book’s structure is simple. There are four parts and three appendixes. The first
part serves as an introduction, including a refresher on topics in C# 1 that are impor-
tant for understanding C# 2 and 3, and that are often misunderstood. The second
part covers the new features in C# 2. The third part covers the new features in C# 3.
I’ll leave it as an exercise to the reader to guess what the fourth part contains.

 There are occasions where organizing the material this way means we come back
to a topic a couple of times—in particular delegates are improved in C# 2 and then
again in C# 3—but there’s method in my madness. I anticipate that a number of read-
ers will be using different versions for different projects: for example, you may be
using C# 3 at work, but experimenting with C# 4 at home. That means that it’s useful
to clarify what is in which version. It also provides a feeling of context and evolution—
it shows how the language has developed over time.

 Chapter 1 sets the scene by taking a simple piece of C# 1 code and evolving it, see-
ing how later versions allow the source to become more readable and powerful. We
look at the historical context in which C# has grown, and the technical context in
which it operates as part of a complete platform: C# as a language builds on frame-
work libraries and a powerful runtime to turn abstraction into reality.

 Chapter 2 looks back at C# 1, and three specific aspects: delegates, the type system
characteristics, and the differences between value types and reference types. These
topics are often understood “just well enough” by C# 1 developers, but as C# has
Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOK xxvii
evolved and developed them significantly, a solid grounding is required in order to
make the most of the new features.

 Chapter 3 tackles the biggest feature of C# 2, and potentially the hardest to grasp:
generics. Methods and types can be written generically, with type parameters standing
in for real types which are specified in the calling code. Initially it’s as confusing as this
description makes it sound, but once you understand generics you’ll wonder how you
survived without them.

 If you’ve ever wanted to represent a null integer, chapter 4 is for you. It introduces
nullable types, a feature built on generics and taking advantage of support in the lan-
guage, runtime, and framework.

 Chapter 5 shows the improvements to delegates in C# 2. You may have only used
delegates for handling events such as button clicks before now. C# 2 makes it easier to
create delegates, and library support makes them more useful for situations other
than events.

 In chapter 6 we examine iterators, and the easy way to implement them in C# 2.
Few developers use iterator blocks, but as LINQ to Objects is built on iterators, they’ll
become more and more important. The lazy nature of their execution is also a key
part of LINQ.

 Chapter 7 shows a number of smaller features introduced in C# 2, each making life
a little more pleasant. The language designers have smoothed over a few rough places
in C# 1, allowing more flexible interaction with code generators, better support for
utility classes, more granular access to properties, and more.

 Chapter 8 once again looks at a few relatively simple features—but this time in C#
3. Almost all the new syntax is geared toward the common goal of LINQ but the build-
ing blocks are also useful in their own right. With anonymous types, automatically
implemented properties, implicitly typed local variables, and greatly enhanced initial-
ization support, C# 3 gives a far richer language with which your code can express its
behavior.

 Chapter 9 looks at the first major topic of C# 3—lambda expressions. Not content
with the reasonably concise syntax we saw in chapter 5, the language designers have
made delegates even easier to create than in C# 2. Lambdas are capable of more—they
can be converted into expression trees: a powerful way of representing code as data.

 In chapter 10 we examine extension methods, which provide a way of fooling the
compiler into believing that methods declared in one type actually belong to another.
At first glance this appears to be a readability nightmare, but with careful consider-
ation it can be an extremely powerful feature—and one which is vital to LINQ.

 Chapter 11 combines the previous three chapters in the form of query expres-
sions, a concise but powerful way of querying data. Initially we concentrate on LINQ to
Objects, but see how the query expression pattern is applied in a way which allows
other data providers to plug in seamlessly.

 Chapter 12 is a quick tour of various different uses of LINQ. First we see the bene-
fits of query expressions combined with expression trees: showing how LINQ to SQL is
Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOKxxviii
able to convert what appears to be normal C# into SQL statements. We then move on
to see how libraries can be designed to mesh well with LINQ, taking LINQ to XML as an
example. Parallel LINQ and Reactive Extensions show two alternative approaches to
in-process querying, and we close the chapter with a discussion of how you can extend
LINQ to Objects with your own LINQ operators.

 Our coverage of C# 4 begins in chapter 13, where we look at named arguments
and optional parameters, COM interop improvements, and generic variance. In some
ways these are very separate features, but named arguments and optional parameters
contribute to COM interop as well as the more specific abilities which are only avail-
able when working with COM objects.

 Chapter 14 describes the single biggest feature in C# 4: dynamic typing. The ability
to bind members dynamically at execution time instead of statically at compile time is
a huge departure for C#, but it is applied selectively: only code which involves a
dynamic value will be executed dynamically.

 Chapter 15 is about one potential future of C# code, rather than a new feature of
the language itself. We look at Code Contracts, a new set of libraries and tools from
Microsoft which allow you to express much more detail about what your methods
need and what they’re willing to guarantee than the type system itself can. It’s early
days, but it’s possible that in a few years, you wouldn’t dream of writing new code with-
out specifying its contracts.

 We wind down in chapter 16 by thinking about where we’ve come from, the cur-
rent state of the industry, and what the future might hold.

 The appendixes are all reference material really. In appendix A, I cover the LINQ
standard query operators, with some examples. Appendix B looks at the core generic
collection classes and interfaces, including the new concurrent collections in .NET 4.
Appendix C provides a brief look at the different versions of .NET, including the dif-
ferent flavors such as the Compact Framework and Silverlight.

Terminology and typography
Most of the terminology of the book is explained as it goes along, but there are a few
definitions that are worth highlighting here. I use C# 1, C# 2, C# 3, and C# 4 in a rea-
sonably obvious manner—but you may see other books and websites referring to C#
1.0, C# 2.0, C# 3.0, and C# 4.0. The extra “.0” seems redundant to me, which is why
I’ve omitted it—I hope the meaning is clear.

 I’ve appropriated a pair of terms from a C# book by Mark Michaelis. To avoid the
confusion between runtime being an execution environment (as in “the Common
Language Runtime”) and a point in time (as in “overriding occurs at runtime”), Mark
uses execution time for the latter concept, usually in comparison with compile time.
This seems to me to be a thoroughly sensible idea, and one that I hope catches on in
the wider community. I’m doing my bit by following his example in this book.

 I frequently refer to the language specification or just the specification—unless I
indicate otherwise, this means the C# language specification. However, multiple ver-
Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOK xxix
sions of the specification are available, partly due to different versions of the language
itself and partly due to the standardization process. Any section numbers provided are
from the C# 4.0 language specification from Microsoft.

 This book contains numerous pieces of code, which appear in a fixed-width
font like this; output from the listings appears in the same way. Code annotations
accompany some listings, and at other times particular sections of the code are high-
lighted in bold. Almost all of the code appears in snippet form, allowing it to stay com-
pact but still runnable—within the right environment. That environment is Snippy, a
custom tool that’s introduced in section 1.7. Snippy is available for download, along
with all of the code from the book (in the form of snippets, full Visual Studio solu-
tions, or more often both) from the book’s website at csharpindepth.com.

Source code downloads
The source code for all of the examples from the book is available from the pub-
lisher’s website at www.manning.com/CSharpinDepthSecondEdition and from
csharpindepth.com.

Author Online and the C# in Depth website
Purchase of C# in Depth, Second Edition includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/CSharpinDepth
SecondEdition. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 In addition to Manning’s own website, I have set up a companion website for the
book at csharpindepth.com, containing information that didn’t quite fit into the
book, downloadable source code for all the listings in the book, and links to other
resources.

About the author
I’m not a typical C# developer, I think it’s fair to say. For the last two years, almost all
of my time working with C# has been for fun—effectively as a somewhat obsessive
hobby. At work, I’ve been writing server-side Java in the Mobile team in Google Lon-
don—and I can safely claim that few things help you to appreciate new language fea-
tures than having to code in a language which doesn’t have them, but is similar
enough to remind you of their absence.

 I’ve tried to keep in touch with what other developers find hard about C# by keep-
ing a careful eye on Stack Overflow, posting oddities to my blog, and occasionally talk-
ing about C# and related topics just about anywhere that will provide people to listen
to me. In short, C# is still coursing through my veins as strongly as ever.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.manning.com/CSharpinDepthSecondEdition
www.manning.com/CSharpinDepthSecondEdition
www.manning.com/CSharpinDepthSecondEdition

ABOUT THIS BOOKxxx
 For all these oddities—and despite my ever-surprising micro-celebrity status due to
Stack Overflow—I’m a very ordinary developer in many other ways. I write plenty of
code which makes me grimace when I come back to it. My unit tests don’t always come
first...and sometimes they don’t even exist. I make off-by-one errors every so often.
The type inference section of the C# specification still confuses me, and there are
some uses of Java wildcards which make me want to have a little lie down. I’m a deeply
flawed programmer.

 That’s the way it should be. For the next few hundred pages, I’ll try to pretend oth-
erwise: I’ll espouse best practices as if I always followed them myself, and frown on
dirty shortcuts as if I’d never dream of taking them. Don’t believe a word of it. The
truth of the matter is, I’m probably just like you. I happen to know a bit more about
how C# works, that’s all ...and even that state of affairs will only last until you’ve fin-
ished the book.

About the cover illustration
The caption on the illustration on the cover of C# in Depth, Second Edition is a "Musi-
cian.” The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 1

Preparing
for the journey

 Every reader will come to this book with a different set of expectations and

a different level of experience. Are you an expert looking to fill some holes, how-
ever small, in your present knowledge? Perhaps you consider yourself an average
developer, with a bit of experience in using generics and lambda expressions,
but a desire to know how they work better. Maybe you’re reasonably confident
with C# 2 and 3 but have no C# 4 experience.

 As an author, I can’t make every reader the same—and I wouldn’t want to
even if I could. But I hope that all readers have two things in common: the
desire for a deeper relationship with C# as a language, and at least a basic knowl-
edge of C# 1. If you can bring those elements to the party, I’ll provide the rest.

 The potentially huge range of skill levels is the main reason why this part of
the book exists. You may already know what to expect from later versions of C#—
or it could all be brand new to you. You could have a rock-solid understanding of
C# 1, or you might be rusty on some of the details—some of which will become
increasingly important as you learn C# 2, 3, and 4. By the end of part 1, I won’t
have leveled the playing field entirely, but you should be able to approach the
rest of the book with confidence and an idea of what’s coming later.

 For the first two chapters, we’ll be looking both forward and back. One of the
key themes of the book is evolution. Before introducing any feature into the lan-
Licensed to Devon Greenway <devon.greenway@gmail.com>

guage, the C# design team carefully considers that feature in the context of what’s
already present and the general aims of the future. This brings a feeling of consistency
to the language even in the midst of change. To understand how and why the lan-
guage is evolving, we need to see where we’ve come from and where we’re going.

 Chapter 1 presents a bird’s-eye view of the rest of the book, taking a brief look at
some of the biggest features of C# 2, 3, and 4. I’ll show a progression of code from
C# 1 onward, applying new features one by one until the code is almost unrecogniz-
able from its humble beginnings. We’ll also look at some of the terminology I’ll be
using in the rest of the book, as well as the format for the sample code.

 Chapter 2 is heavily focused on C# 1. If you’re an expert in C# 1, you can skip this
chapter, but it does tackle some of the areas of C# 1 that tend to be misunderstood.
Rather than try to explain the whole of the language, the chapter concentrates on fea-
tures that are fundamental to the later versions of C#. From this solid base, we can
move on and look at C# 2 in part 2 of the book.

Licensed to Devon Greenway <devon.greenway@gmail.com>

The changing face
of C# development
Do you know what I really like about dynamic languages such as Python, Ruby, and
Groovy? They suck away fluff from your code, leaving just the essence of it—the bits
that really do something. Tedious formality gives way to features such as generators,
lambda expressions, and list comprehensions.

 The interesting thing is that few of the features that tend to give dynamic lan-
guages their lightweight feel have anything to do with being dynamic. Some do, of
course—duck typing, and some of the magic used in Active Record, for example—
but statically typed languages don't have to be clumsy and heavyweight.

 Enter C#. In some ways, C# 1 could be seen as a nicer version of the Java lan-
guage circa 2001. The similarities were all too clear, but C# had a few extras: prop-
erties as a first-class feature in the language, delegates and events, foreach loops,

This chapter covers
 An evolving example

 The composition of .NET

 Using the code in this book

 The C# language specification
3

Licensed to Devon Greenway <devon.greenway@gmail.com>

4 CHAPTER 1 The changing face of C# development
using statements, explicit method overriding, operator overloading, and custom
value types, to name a few. Obviously language preference is a personal issue, but C# 1
definitely felt like a step up from Java when I first started using it.

 Since then, things have only gotten better. Each new version of C# has added sig-
nificant features to reduce developer angst, but always in a carefully considered way,
and with little backward incompatibility. Even before C# 4 gained the ability to use
dynamic typing where it’s genuinely useful, many features traditionally associated with
dynamic (and functional) languages had made it into C#, leading to code that’s easier
to write and maintain.

 In this book, I’ll take you through those changes one by one, in enough detail to
make you feel comfortable with some of the miracles the C# compiler is now prepared
to perform on your behalf. All that comes later, though—in this chapter I’m going to
whizz through as many features as I can, barely taking a breath. I’ll define what I mean
when I talk about C# as a language compared with .NET as a platform, and give a few
important caveats about what you should take from the rest of the book. Then we can
dive into the details.

 We won’t be looking at all the changes to C# in this single chapter—but we’re
going to see generics, properties with different access modifiers, nullable types, anon-
ymous methods, automatically implemented properties, enhanced collection initializ-
ers, enhanced object initializers, lambda expressions, extension methods, implicit
typing, LINQ query expressions, named arguments, optional parameters, simpler
COM interop, and dynamic typing. These will carry us from C# 1 all the way up to the
latest release, C# 4. Obviously that’s a lot to get through, so let’s get started.

1.1 Starting with a simple data type
For this chapter, I’m going to let the C# compiler do amazing things without telling
you how, and barely mentioning the what or the why. This is the only time that I won’t
explain how things work, or try to go one step at a time. Quite the opposite, in fact—
the plan is to impress rather than educate. If you read this entire section without get-
ting at least a little excited about what C# can do, maybe this book isn’t for you. With
any luck, though, you’ll be eager to get to the details of how these magic tricks work—
to slow down the sleight of hand until it’s obvious what’s going on—and that’s what
the rest of the book is for.

 The example I’m using is contrived—it’s designed to pack as many new features
into as short a piece of code as possible. It’s also clichéd—but at least that makes it
familiar. Yes, it’s a product/name/price example, the e-commerce virtual child of
“hello, world.” We’ll look at how various tasks can be achieved, and how as we move for-
ward in versions of C#, we can accomplish them more simply and elegantly than before.

1.1.1 The Product type in C# 1

We’ll start off with a type representing a product, and then manipulate it. We’re not
looking for anything particularly impressive yet—just encapsulation of a couple of
Licensed to Devon Greenway <devon.greenway@gmail.com>

5Starting with a simple data type
properties. To make life simpler for demonstration purposes, this is also where we cre-
ate a list of predefined products. Listing 1.1 shows the type as it might be written in
C# 1. We’ll then move on to see how the code might be rewritten for each later ver-
sion. This is the pattern we’ll follow for each of the other pieces of code. Given that
I’m writing this in 2010, it’s likely that you’re already familiar with code that uses some
of the features I’m going to introduce—but it’s worth looking back so we can see how
far the language has come.

using System.Collections;
public class Product
{

string name;
public string Name { get { return name; } }

decimal price;
public decimal Price { get { return price; } }

public Product(string name, decimal price)
{

this.name = name;
this.price = price;

}

public static ArrayList GetSampleProducts()
{

ArrayList list = new ArrayList();
list.Add(new Product("West Side Story", 9.99m));
list.Add(new Product("Assassins", 14.99m));
list.Add(new Product("Frogs", 13.99m));
list.Add(new Product("Sweeney Todd", 10.99m));
return list;

}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

Nothing in listing 1.1 should be hard to understand—it’s just C# 1 code, after all.
There are three limitations that it demonstrates, though:

 An ArrayList has no compile-time information about what’s in it. We could’ve
accidentally added a string to the list created in GetSampleProducts and the
compiler wouldn’t have batted an eyelid.

 We’ve provided public “getter” properties, which means that if we wanted
matching “setters,” they’d have to be public, too.

 There’s a lot of fluff involved in creating the properties and variables—code
that complicates the simple task of encapsulating a string and a decimal.

Let’s see what C# 2 can do to improve matters.

Listing 1.1 The Product type (C# 1)
Licensed to Devon Greenway <devon.greenway@gmail.com>

6 CHAPTER 1 The changing face of C# development
1.1.2 Strongly typed collections in C# 2

Our first set of changes (shown in listing 1.2) tackles the first two items listed previ-
ously, including the most important change in C# 2: generics. The parts that are new
are listed in bold.

public class Product
{

string name;
public string Name
{

get { return name; }
private set { name = value; }

}

decimal price;
public decimal Price
{

get { return price; }
private set { price = value; }

}

public Product(string name, decimal price)
{

Name = name;
Price = price;

}

public static List<Product> GetSampleProducts()
{

List<Product> list = new List<Product>();
list.Add(new Product("West Side Story", 9.99m));
list.Add(new Product("Assassins", 14.99m));
list.Add(new Product("Frogs", 13.99m));
list.Add(new Product("Sweeney Todd", 10.99m));
return list;

}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

We now have properties with private setters (which we use in the constructor), and it
doesn’t take a genius to guess that List<Product> is telling the compiler that the list
contains products. Attempting to add a different type to the list would result in a com-
piler error, and also we won’t need to cast the results when we fetch them from the
list. The changes in C# 2 leave only one of the original three difficulties unanswered—
and C# 3 helps out there.

Listing 1.2 Strongly typed collections and private setters (C# 2)
Licensed to Devon Greenway <devon.greenway@gmail.com>

7Starting with a simple data type
1.1.3 Automatically implemented properties in C# 3

We’re starting off with some fairly tame features from C# 3. The automatically imple-
mented properties and simplified initialization shown in the following listing are relatively
trivial compared with lambda expressions and the like, but they can make code a lot
simpler.

using System.Collections.Generic;

class Product
{

public string Name { get; private set; }
public decimal Price { get; private set; }

public Product(string name, decimal price)
{

Name = name;
Price = price;

}

Product() {}

public static List<Product> GetSampleProducts()
{

return new List<Product>
{

new Product { Name="West Side Story", Price = 9.99m },
new Product { Name="Assassins", Price=14.99m },
new Product { Name="Frogs", Price=13.99m },
new Product { Name="Sweeney Todd", Price=10.99m}

};
}

public override string ToString()
{

return string.Format("{0}: {1}", Name, Price);
}

}

The properties now don’t have any code (or visible variables!) associated with them,
and we’re building the hard-coded list in a very different way. With no name and price
variables to access, we’re forced to use the properties everywhere in the class, improv-
ing consistency. We now have a private parameterless constructor for the sake of the
new property-based initialization. In this example, we could’ve actually removed the
public constructor completely, but then no outside code could’ve created other prod-
uct instances.

1.1.4 Named arguments in C# 4

For C# 4, we’ll go back to the original code when it comes to the properties and con-
structor. One reason for this might be to make it immutable: although a type with only
private setters can’t be publicly mutated, it can be clearer if it’s not privately mutable

Listing 1.3 Automatically implemented properties and simpler initialization (C# 3)
Licensed to Devon Greenway <devon.greenway@gmail.com>

8 CHAPTER 1 The changing face of C# development
either.1 There’s no shortcut for read-only properties, unfortunately... but C# 4 lets us
specify argument names for the constructor call, as shown in listing 1.4, which gives us
the clarity of C# 3 initializers without the mutability.

using System.Collections.Generic;
public class Product
{

readonly string name;
public string Name { get { return name; } }

readonly decimal price;
public decimal Price { get { return price; } }

public Product(string name, decimal price)
{

this.name = name;
this.price = price;

}

public static List<Product> GetSampleProducts()
{

return new List<Product>
{

new Product(name: "West Side Story", price: 9.99m),
new Product(name: "Assassins", price: 14.99m),
new Product(name: "Frogs", price: 13.99m),
new Product(name: "Sweeney Todd", price: 10.99m)

};
}

public override string ToString()
{

return string.Format("{0}: {1}", name, price);
}

}

The benefits of this are relatively minimal in this particular example, but when a
method or constructor has several parameters, it can make the meaning of the code
much clearer—particularly if they’re of the same type, or if you’re passing in null for
some arguments. You can choose when to use this feature, of course, only specifying
the names for arguments when it makes the code easier to understand.

 Figure 1.1 shows a summary of how our Product type has evolved so far. I’ll include
a similar diagram after each task, so you can see the pattern of how the evolution of
C# improves the code.

 So far, the changes are relatively minimal. In fact, the addition of generics (the
List<Product> syntax) is probably the most important part of C# 2, but we’ve only
seen part of its usefulness so far. There’s nothing to get the heart racing yet, but we’ve
only just started. Our next task is to print out the list of products in alphabetical order.

1 The C# 1 code could’ve been immutable too—I only left it mutable to simplify the changes for C# 2 and 3.

Listing 1.4 Named arguments for clear initialization code (C# 4)
Licensed to Devon Greenway <devon.greenway@gmail.com>

9Sorting and filtering
1.2 Sorting and filtering
In this section, we’re not going to change the Product type at all—instead, we’re
going to take the sample products and sort them by name, and then find just the
expensive ones. Neither of these tasks is exactly difficult, but we’ll see how much sim-
pler they become over time.

1.2.1 Sorting products by name

The easiest way to display a list in a particular order is to sort the list and then run
through it, displaying items. In .NET 1.1, this involved using ArrayList.Sort, and in
our case providing an IComparer implementation. We could’ve made the Product type
implement IComparable, but we could only define one sort order that way, and it’s not
a stretch to imagine that we might want to sort by price at some stage as well as by
name. The following listing implements IComparer, then sorts the list and displays it.

class ProductNameComparer : IComparer
{

public int Compare(object x, object y)
{

Product first = (Product)x;
Product second = (Product)y;
return first.Name.CompareTo(second.Name);

}
}
...
ArrayList products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());
foreach (Product product in products)
{

Console.WriteLine (product);
}

Listing 1.5 Sorting an ArrayList using IComparer (C# 1)

C# 1

Read-only properties
Weakly typed collections

C# 4
Named arguments for

clearer constructor
and method calls

C# 3
Automatically implemented

properties
Enhanced collection and

object initialization

C# 2

Private property "setters"
Strongly typed collections

Figure 1.1 Evolution of
the Product type,
showing greater
encapsulation, stronger
typing, and ease of
initialization over time
Licensed to Devon Greenway <devon.greenway@gmail.com>

10 CHAPTER 1 The changing face of C# development
The first thing to spot in listing 1.5 is that we’ve had to introduce an extra type to help
us with the sorting. That’s not a disaster, but it’s a lot of code if we only want to sort by
name in one place. Next, we see the casts in the Compare method. Casts are a way of
telling the compiler that we know more information than it does—and that usually
means there’s a chance we’re wrong. If the ArrayList we returned from Get-
SampleProducts did contain a string, that’s where the code would go bang—where the
comparison tries to cast the string to a Product.

 We also have a cast in the code that displays the sorted list. It’s not obvious, because
the compiler puts it in automatically, but the foreach loop implicitly casts each ele-
ment of the list to Product. Again, that cast could fail at execution time, and once
more generics come to the rescue in C# 2. Listing 1.6 shows the earlier code with the
use of generics as the only change.

class ProductNameComparer : IComparer<Product>
{

public int Compare(Product x, Product y)
{

return x.Name.CompareTo(y.Name);
}

}
...
List<Product> products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());
foreach (Product product in products)
{

Console.WriteLine(product);
}

The code for the comparer in listing 1.6 is simpler because we’re given products to
start with. No casting is necessary. Similarly, the invisible cast in the foreach loop is
effectively gone now. The compiler still has to consider the conversion from the
source type of the sequence to the target type of the variable, but it knows that in this
case both types are Product, so it doesn’t need to emit any code for the conversion.

 That’s an improvement, but it’d be nice if we could sort the products by simply
specifying the comparison to make, without needing to implement an interface to do
so. The following listing shows how to do precisely this, telling the Sort method how
to compare two products using a delegate.

List<Product> products = Product.GetSampleProducts();
products.Sort(delegate(Product x, Product y)

{ return x.Name.CompareTo(y.Name); }
);
foreach (Product product in products)
{

Console.WriteLine(product);
}

Listing 1.6 Sorting a List<Product> using IComparer<Product> (C# 2)

Listing 1.7 Sorting a List<Product> using Comparison<Product> (C# 2)
Licensed to Devon Greenway <devon.greenway@gmail.com>

11Sorting and filtering
Behold the lack of the ProductNameComparer type. The statement in bold actually cre-
ates a delegate instance, which we provide to the Sort method in order to perform
the comparisons. We’ll learn more about this feature (anonymous methods) in
chapter 5. We’ve now fixed all the things we didn’t like about the C# 1 version. That
doesn’t mean that C# 3 can’t do better, though. First we’ll replace the anonymous
method with an even more compact way of creating a delegate instance, as shown in
the following listing.

List<Product> products = Product.GetSampleProducts();
products.Sort((x, y) => x.Name.CompareTo(y.Name));
foreach (Product product in products)
{

Console.WriteLine(product);
}

We’ve gained even more strange syntax (a lambda expression), which still creates a
Comparison<Product> delegate just as listing 1.7 did, but this time with less fuss. We
haven’t had to use the delegate keyword to introduce it, or even specify the types of
the parameters. There’s more, though: with C# 3 we can easily print the names out in
order without modifying the original list of products. The next listing shows this using
the OrderBy method.

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.OrderBy(p => p.Name))
{

Console.WriteLine (product);
}

We appear to be calling an OrderBy method on the list, but if you look in MSDN,
you’ll see that it doesn’t even exist in List<Product>. We’re able to call it due to the
presence of an extension method, which we’ll see in more detail in chapter 10. We’re
not actually sorting the list “in place” anymore, just retrieving the contents of the list
in a particular order. Sometimes you’ll need to change the actual list; sometimes an
ordering without any other side effects is better. The important point is that it’s
much more compact and readable (once you understand the syntax, of course). We
wanted the list ordered by name, and that’s exactly what the code says. It doesn’t say
to sort by comparing the name of one product with the name of another, like the
C# 2 code did, or to sort by using an instance of another type that knows how to com-
pare one product with another. It just says to order by name. This simplicity of
expression is one of the key benefits of C# 3. When the individual pieces of data que-
rying and manipulation are so simple, larger transformations can remain compact
and readable in one piece of code. That in turn encourages a more “data-centric”
way of looking at the world.

Listing 1.8 Sorting using Comparison<Product> from a lambda expression (C# 3)

Listing 1.9 Ordering a List<Product> using an extension method (C# 3)
Licensed to Devon Greenway <devon.greenway@gmail.com>

12 CHAPTER 1 The changing face of C# development
We’ve seen more of the power of C# 2 and 3 in this section, with a lot of (as yet) unex-
plained syntax, but even without understanding the details we can see the progress
toward clearer, simpler code. Figure 1.2 shows that evolution.

 That’s it for sorting.2 Let’s do a different form of data manipulation now—querying.

1.2.2 Querying collections

Our next task is to find all the elements of the list that match a certain criterion—in
particular, those with a price greater than $10. The following listing shows how in C# 1,
we need to loop around, testing each element and printing it out where appropriate.

ArrayList products = Product.GetSampleProducts();
foreach (Product product in products)
{

if (product.Price > 10m)
{

Console.WriteLine(product);
}

}

Okay, this is not difficult code to understand. But it’s worth bearing in mind how
intertwined the three tasks are—looping with foreach, testing the criterion with if,
then displaying the product with Console.WriteLine. The dependency is obvious
because of the nesting. The following listing demonstrates how C# 2 lets us flatten
things out a bit.

List<Product> products = Product.GetSampleProducts();
Predicate<Product> test = delegate(Product p) { return p.Price > 10m; };
List<Product>matches = products.FindAll(test);

Action<Product> print = Console.WriteLine;
matches.ForEach(print);

The test variable is initialized using the anonymous method feature we saw in the
previous section; the print variable initialization uses another new C# 2 feature called
method group conversions that makes it easier to create delegates from existing methods.

2 C# 4 does provide one feature that can be relevant when sorting, called generic variance, but giving an example
here would require too much explanation. You can find the details near the end of chapter 13.

Listing 1.10 Looping, testing, printing out (C# 1)

Listing 1.11 Separating testing from printing (C# 2)

C# 2
Strongly typed comparator

 Delegate comparisons
 Anonymous methods

C# 3
Lambda expressions

 Extension methods
 Option of leaving list unsorted

C# 1
Weakly typed comparator

 No delegate sorting option

Figure 1.2 Features involved in making sorting easier in C# 2 and 3
Licensed to Devon Greenway <devon.greenway@gmail.com>

13Sorting and filtering
 I’m not going to claim that this code is simpler than the C# 1 code—but it is a lot
more powerful.3 In particular, it makes it very easy to change the condition we’re test-
ing for and the action we take on each of the matches independently. The delegate
variables involved (test and print) could be passed into a method—that same
method could end up testing radically different conditions and taking radically differ-
ent actions. Of course, we could’ve put all the testing and printing into one statement,
as shown in the following listing.

List<Product> products = Product.GetSampleProducts();
products.FindAll(delegate(Product p) { return p.Price > 10;})

.ForEach(Console.WriteLine);

In some ways that's better, but the delegate(Product p) is getting in the way, as are
the braces. They’re adding noise to the code, which hurts readability. I still prefer the
C# 1 version, in the case where we only ever want to use the same test and perform the
same action. (It may sound obvious, but it’s worth remembering that there’s nothing
stopping us from using the C# 1 code with a later compiler version. You wouldn’t use a
bulldozer to plant tulip bulbs, which is the kind of overkill we’re using here.) The
next listing shows how C# 3 improves matters dramatically by removing a lot of the
fluff surrounding the actual logic of the delegate.

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price > 10))
{

Console.WriteLine(product);
}

The combination of the lambda expression putting the test in just the right place and
a well-named method means we can almost read the code out loud and understand it
without even thinking. We still have the flexibility of C# 2—the argument to Where
could come from a variable, and we could use an Action<Product> instead of the
hard-coded Console.WriteLine call if we wanted to.

 This task has emphasized what we already knew from sorting—anonymous meth-
ods make writing a delegate simple, and lambda expressions are even more concise. In
both cases, that brevity means that we can include the query or sort operation inside
the first part of the foreach loop without losing clarity. Figure 1.3 summarizes the
changes we’ve just seen. C# 4 doesn't offer us anything to simplify this task any further.

 So, now that we’ve displayed the filtered list, let’s consider a change to our initial
assumptions about the data. What happens if we don’t always know the price for a
product? How can we cope with that within our Product class?

3 In some ways, this is cheating. We could’ve defined appropriate delegates in C# 1 and called them within the
loop. The FindAll and ForEach methods in .NET 2.0 just encourage you to consider separation of concerns.

Listing 1.12 Separating testing from printing redux (C# 2)

Listing 1.13 Testing with a lambda expression (C# 3)
Licensed to Devon Greenway <devon.greenway@gmail.com>

14 CHAPTER 1 The changing face of C# development
1.3 Handling an absence of data
We’re going to look at two different forms of missing data. First we’ll deal with the sce-
nario where we genuinely don’t have the information, and then see how we can
actively remove information from method calls, using default values instead.

1.3.1 Representing an unknown price

I’m not going to present much code this time, but I’m sure it’ll be a familiar problem
to you, especially if you’ve done a lot of work with databases. Let’s imagine our list of
products contains not just products on sale right now but ones that aren’t available
yet. In some cases, we may not know the price. If decimal were a reference type, we
could just use null to represent the unknown price—but as it’s a value type, we can’t.
How would you represent this in C# 1? There are three common alternatives:

 Create a reference type wrapper around decimal.
 Maintain a separate Boolean flag indicating whether the price is known.
 Use a “magic value” (decimal.MinValue, for example) to represent the

unknown price.

I hope you’ll agree that none of these holds much appeal. Time for a little magic: we
can solve the problem with the addition of a single extra character in the variable and
property declarations. .NET 2.0 makes matters a lot simpler by introducing the
Nullable<T> structure, and C# 2 provides some additional syntactic sugar that lets us
change the property declaration to this block of code:

decimal? price;
public decimal? Price
{

get { return price; }
private set { price = value; }

}

The constructor parameter changes to decimal? as well, and then we can pass in null
as the argument, or say Price = null; within the class. That’s a lot more expressive
than any of the other solutions. The rest of the code just works as-is—a product with
an unknown price will be considered to be less expensive than $10, due to the way
nullable values are handled in “greater-than” comparisons. To check whether a price
is known, we can compare it with null or use the HasValue property—so to show all
the products with unknown prices in C# 3, we’d write the code in listing 1.14.

C# 2
Separate condition from

 action invoked.
 Anonymous methods

 make delegates simple.

C# 3
Lambda expressions

 make the condition
 even easier to read.

C# 1
Strong coupling between

 condition and action.
 Both are hard-coded.

Figure 1.3 Anonymous methods and lambda expressions aid separation of concerns and
readability for C# 2 and 3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

15Handling an absence of data

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price == null))
{

Console.WriteLine(product.Name);
}

The C# 2 code would be similar to listing 1.12 but would use return p.Price ==
null; as the body for the anonymous method. C# 3 doesn’t offer any changes here,
but C# 4 has a feature that’s at least tangentially related.

1.3.2 Optional parameters and default values

Sometimes you just don’t want to tell a method everything it needs to know—if you
almost always use the same value for a particular parameter, for example. Traditionally
the solution has been to overload the method in question, but C# introduces optional
parameters to make this simpler. In our C# 4 version of the Product type, we have a con-
structor that takes the name and the price. We can make the price a nullable decimal
just as in C# 2 and 3, but now let’s suppose that most of our products didn’t have
prices. It would be nice to be able to initialize a product like this:

Product p = new Product("Unreleased product");

Prior to C# 4, we would’ve had to introduce a new overload in the Product construc-
tor for this purpose. C# 4 allows us to declare a default value (in this case null) for the
price parameter:

public Product(string name, decimal? price = null)
{

this.name = name;
this.price = price;

}

You always have to specify a constant value when you declare an optional parameter. It
doesn’t have to be null; that just happens to be the default we want in this situation.
This is applicable to any type of parameter, although for reference types other than
strings you are limited to null as the only constant value available. Figure 1.4 summa-
rizes the evolution we’ve seen across different versions of C#.

 So far the features have been useful, but perhaps nothing to write home about.
Next we’ll look at something rather more exciting: LINQ.

Listing 1.14 Displaying products with an unknown price (C# 3)

C# 2 / 3
Nullable types make the

 "extra work" option simple
 and syntactic sugar improves

 matters even further.

C# 1
Choice between extra work

 maintaining a flag, changing
 to reference type semantics,
 or the hack of a magic value.

C# 4

Optional parameters
allow simple defaulting.

Figure 1.4 Options for working with “missing” data
Licensed to Devon Greenway <devon.greenway@gmail.com>

16 CHAPTER 1 The changing face of C# development
1.4 Introducing LINQ
LINQ (Language Integrated Query) is what C# 3 is all about at its heart. As its name
suggests, LINQ is all about queries—the aim is to make it easy to write queries against
multiple data sources with consistent syntax and features, in a readable and compos-
able fashion.

 Whereas the features in C# 2 are arguably more about fixing annoyances in C# 1
than setting the world on fire, almost everything in C# 3 builds toward LINQ—and the
result is rather special. I’ve seen features in other languages that tackle some of the
same areas as LINQ, but nothing quite so well-rounded and flexible.

1.4.1 Query expressions and in-process queries

If you’ve seen any LINQ before, you’re probably aware of query expressions that allow
a declarative style for creating queries on various data sources. The reason none of
the examples so far have used them is because they’ve all actually been simpler
without using the extra syntax. That’s not to say we couldn’t use it anyway, of
course—listing 1.15, for example, is equivalent to listing 1.13.

List<Product> products = Product.GetSampleProducts();
var filtered = from Product p in products

where p.Price > 10
select p;

foreach (Product product in filtered)
{

Console.WriteLine(product);
}

Personally, I find the earlier listing easier to read—the only benefit to the query
expression version is that the where clause is simpler. I’ve snuck in one extra feature
here—implicitly typed local variables, which are declared using the var contextual key-
word. These allow the compiler to infer the type of a variable from the value that it’s
initially assigned—in this case, the type of filtered is IEnumerable<Product>. I’ll use
var fairly extensively for the rest of the examples in this chapter; it’s particularly useful
in books, where space in listings is at a premium.

 But if query expressions are no good, why does everyone make such a fuss about
them, and about LINQ in general? The first answer is that though query expressions
aren’t particularly beneficial for simple tasks, they’re very good for more complicated
situations that would be hard to read if written out in the equivalent method calls
(and fiendish in C# 1 or 2). Let’s make things a little harder by introducing another
type—Supplier.

 Each supplier has a Name (string) and a SupplierID (int). I’ve also added
SupplierID as a property in Product and adapted the sample data appropriately.
Admittedly that’s not a very object-oriented way of giving each product a supplier—it’s
much closer to how the data would be represented in a database. It makes this

Listing 1.15 First steps with query expressions: filtering a collection
Licensed to Devon Greenway <devon.greenway@gmail.com>

17Introducing LINQ
particular feature easier to demonstrate for now, but we’ll see in chapter 12 that LINQ
allows us to use a more natural model, too.

 Now let’s look at the code (listing 1.16) to join the sample products with the sam-
ple suppliers (obviously based on the supplier ID), apply the same price filter as
before to the products, sort by supplier name and then product name, and print out
the name of both the supplier and the product for each match. That was a mouthful
(fingerful?), and in earlier versions of C# it would’ve been a nightmare to implement.
In LINQ, it’s almost trivial.

List<Product> products = Product.GetSampleProducts();
List<Supplier> suppliers = Supplier.GetSampleSuppliers();
var filtered = from p in products

join s in suppliers
on p.SupplierID equals s.SupplierID

where p.Price > 10
orderby s.Name, p.Name
select new { SupplierName = s.Name, ProductName = p.Name };

foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}

The more astute among you will have noticed that it looks remarkably like SQL.
Indeed, the reaction of many people on first hearing about LINQ (but before examin-
ing it closely) is to reject it as merely trying to put SQL into the language for the sake
of talking to databases. Fortunately, LINQ has borrowed the syntax and some ideas
from SQL, but as we’ve seen, you needn’t be anywhere near a database in order to use
it—none of the code we’ve run so far has touched a database at all. Indeed, we could
be getting data from any number of sources: XML, for example.

1.4.2 Querying XML

Suppose that instead of hard-coding our suppliers and products, we’d used the follow-
ing XML file:

<?xml version="1.0"?>
<Data>

<Products>
<Product Name="West Side Story" Price="9.99" SupplierID="1" />
<Product Name="Assassins" Price="14.99" SupplierID="2" />
<Product Name="Frogs" Price="13.99" SupplierID="1" />
<Product Name="Sweeney Todd" Price="10.99" SupplierID="3" />

</Products>

<Suppliers>
<Supplier Name="Solely Sondheim" SupplierID="1" />
<Supplier Name="CD-by-CD-by-Sondheim" SupplierID="2" />
<Supplier Name="Barbershop CDs" SupplierID="3" />

</Suppliers>
</Data>

Listing 1.16 Joining, filtering, ordering, and projecting (C# 3)
Licensed to Devon Greenway <devon.greenway@gmail.com>

18 CHAPTER 1 The changing face of C# development
The file is simple enough, but what’s the best way of extracting the data from it? How
do we query it? Join on it? Surely it’s going to be somewhat harder than listing 1.16,
right? The following listing shows how much work we have to do in LINQ to XML.

XDocument doc = XDocument.Load("data.xml");
var filtered = from p in doc.Descendants("Product")

join s in doc.Descendants("Supplier")
on (int)p.Attribute("SupplierID")
equals (int)s.Attribute("SupplierID")

where (decimal)p.Attribute("Price") > 10
orderby (string)s.Attribute("Name"),

(string)p.Attribute("Name")
select new
{

SupplierName = (string)s.Attribute("Name"),
ProductName = (string)p.Attribute("Name")

};
foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}

It’s not quite as straightforward, because we need to tell the system how it should
understand the data (in terms of what attributes should be used as what types)—but
it’s not far off. In particular, there’s an obvious relationship between each part of the
two listings. If it weren’t for the line length limitations of books, you’d see an exact
line-by-line correspondence between the two queries.

 Impressed yet? Not quite convinced? Let’s put the data where it’s much more likely
to be—in a database.

1.4.3 LINQ to SQL

There’s some work (much of which can be automated) to let LINQ to SQL know about
what to expect in what table, but it’s all fairly straightforward. We'll skip straight to the
querying code, which is shown in the following listing. If you want to see the details of
LinqDemoDataContext, they're all in the downloadable source code.

using (LinqDemoDataContext db = new LinqDemoDataContext())
{

var filtered = from p in db.Products
join s in db.Suppliers

on p.SupplierID equals s.SupplierID
where p.Price > 10
orderby s.Name, p.Name
select new
{

SupplierName = s.Name,

Listing 1.17 Complex processing of an XML file with LINQ to XML (C# 3)

Listing 1.18 Applying a query expression to a SQL database (C# 3)
Licensed to Devon Greenway <devon.greenway@gmail.com>

19COM and dynamic typing
ProductName = p.Name
};

foreach (var v in filtered)
{

Console.WriteLine("Supplier={0}; Product={1}",
v.SupplierName, v.ProductName);

}
}

By now, this should be looking incredibly familiar. Everything below the join line is
cut and pasted directly from listing 1.16 with no changes. That’s impressive enough,
but if you’re performance-conscious, you may be wondering why we’d want to pull
down all the data from the database and then apply these .NET queries and orderings.
Why not get the database to do it? That’s what it’s good at, isn’t it? Well, indeed—and
that’s exactly what LINQ to SQL does. The code in listing 1.18 issues a database
request, which is basically the query translated into SQL. Even though we’ve expressed
the query in C# code, it’s been executed as SQL.

 We’ll see later that there’s a more relation-oriented way of approaching this kind
of join when the schema and the entities know about the relationship between suppli-
ers and products. The result is the same, though, and it shows just how similar LINQ to
Objects (the in-memory LINQ operating on collections) and LINQ to SQL can be.

 LINQ is extremely flexible—you can write your own provider to talk to a web ser-
vice, or translate a query into your own specific representation. In chapter 13, we’ll
look at how broad the term LINQ really is, and how it can go beyond what you might
consider in terms of querying collections.

1.5 COM and dynamic typing
The final features I want to demonstrate are specific to C# 4. Where LINQ was the
major focus of C# 3, interoperability is the biggest theme in C# 4. This includes work-
ing with both the old technology of COM and also the brave new world of dynamic lan-
guages executing on the Dynamic Language Runtime (DLR). We’ll start by exporting our
product list to an Excel spreadsheet.

1.5.1 Simplifying COM interoperability

There are various ways of making data available to Excel, but using COM to control it
gives the most power and flexibility. Unfortunately, previous incarnations of C# made
it quite difficult to work with COM; VB had much better support. C# 4 largely rectifies
that situation. The following listing shows some code to save our data to a new
spreadsheet.

var app = new Application { Visible = false };
Workbook workbook = app.Workbooks.Add();
Worksheet worksheet = app.ActiveSheet;
int row = 1;
foreach (var product in Product.GetSampleProducts()

.Where(p => p.Price != null))

Listing 1.19 Saving data to Excel using COM (C# 4)
Licensed to Devon Greenway <devon.greenway@gmail.com>

20 CHAPTER 1 The changing face of C# development
{
worksheet.Cells[row, 1].Value = product.Name;
worksheet.Cells[row, 2].Value = product.Price;
row++;

}
workbook.SaveAs(Filename: "demo.xls",

FileFormat: XlFileFormat.xlWorkbookNormal);
app.Application.Quit();

Though this may not be quite as nice as we’d like, it’s a lot better than it would’ve been
using earlier versions of C#. In fact, you already know about some of the C# 4 features
we can see here—but there are a couple of other ones that aren’t so obvious. Here's
the full list:

 The SaveAs call uses named arguments.
 Various calls omit arguments for optional parameters—in particular, SaveAs

would normally have an extra 10 arguments!
 C# 4 can embed the relevant parts of the Primary Interop Assembly (PIA) into the

calling code—so you no longer need to deploy the PIA separately.
 In C# 3, the assignment to worksheet would fail without a cast, as the type of

the ActiveSheet property is represented as object. When using the embedded
PIA feature, the type of ActiveSheet becomes dynamic, which leads to a whole
other feature.

Additionally, C# 4 supports named indexers when working with COM—a feature not
demonstrated in this example.

 I’ve already mentioned our final feature: dynamic typing in C# using the new
dynamic type.

1.5.2 Interoperating with a dynamic language

Dynamic typing is such a big topic that it has its own (rather long) chapter, near the
end of the book. I’m just going to show you one small example of what it can do. Let’s
suppose our products aren’t stored in a database, or in XML, or in memory. They’re
accessible via a web service of sorts, but you only have Python code to access it—and
that code uses the dynamic nature of Python to build results without declaring a type
with all the properties you need to access. Instead, it’ll let you ask for any property,
and try to work out what you mean at execution time. In a language like Python,
there’s nothing unusual about that. But how can we access our results from C#?

 The answer comes in the form of dynamic—a new type,4 which the C# compiler
allows you to use dynamically. If an expression is of type dynamic, you can call meth-
ods on it, access properties, pass it around as a method argument, and so on—and
most of the normal binding process happens at execution time instead of compile
time. You can implicitly convert a value from dynamic to any other type (which is why
our worksheet cast worked in listing 1.19) and all kinds of other fun stuff.

4 Sort of, anyway. It’s a type as far as the C# compiler is involved, but the CLR doesn’t know anything about it.
Licensed to Devon Greenway <devon.greenway@gmail.com>

21Dissecting the .NET platform
 This ability can be useful even within pure C# code, with no interop involved, but
it’s likely to prove more useful when working with dynamic languages. Listing 1.20
shows how we can get our list of products from IronPython and print them out. This
includes all the setup code to run the Python code in the same process as well.

ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.ExecuteFile("FindProducts.py");
dynamic products = scope.GetVariable("products");
foreach (dynamic product in products)
{

Console.WriteLine("{0}: {1}", product.ProductName, product.Price);
}

Both products and product are declared to be dynamic, so the compiler is happy to
let us iterate over the list of products and print out the properties, even though it
doesn’t know whether it’ll work. If we’d made a typo, using product.Name instead of
product.ProductName, for example, that would only show up at execution time.

 This is completely contrary to the rest of C#, which is statically typed. But dynamic
typing only comes into play when expressions with a type of dynamic are involved:
most C# code is likely to remain statically typed throughout.

 Are you dizzy yet? Relax—I’ll be going a lot more slowly for the rest of the book. In
particular, I’ll be explaining some of the corner cases, going into more detail about
why various features were introduced, and giving some guidance as to when it’s appro-
priate to use them.

 So far I’ve been showing you features of C#. Some of these are also library features.
Some of them are also runtime features. I’m going to say this sort of thing a lot, so let’s
clear up what I mean.

1.6 Dissecting the .NET platform
When it was originally introduced, .NET was used as a catchall term for a vast range of
technologies coming from Microsoft. For instance, Windows Live ID was called .NET
Passport, despite there being no clear relationship between that and what we currently
know as .NET. Fortunately, things have calmed down somewhat since then. In this sec-
tion we’ll look at the various parts of .NET.

 In several places in this book, I’ll refer to three different kinds of features: features
of C# as a language, features of the runtime that provides the “engine” if you will, and
features of the .NET framework libraries. In particular, this book is heavily focused on
the language of C#, for the most part explaining runtime and framework features only
when they relate to features of C# itself. This only makes sense if there’s a clear distinc-
tion between the three. Often features will overlap, but it’s important to understand
the principle of the matter.

Listing 1.20 Running IronPython and extracting properties dynamically (C# 4)
Licensed to Devon Greenway <devon.greenway@gmail.com>

22 CHAPTER 1 The changing face of C# development
1.6.1 C#, the language

The language of C# is defined by its specification, which describes the format of C#
source code, including both syntax and behavior. It does not describe the platform
that the compiler output will run on, beyond a few key points at which the two inter-
act. For instance, the C# language requires a type called System.IDisposable, which
contains a method called Dispose. These are required in order to define the using
statement. Likewise, the platform needs to be able to support (in one form or other)
both value types and reference types, along with garbage collection.

 In theory, any platform that supports the required features could have a C# com-
piler targeting it. For example, a C# compiler could legitimately produce output in a
form other than the Intermediate Language (IL), which is the typical output at the time
of this writing. A runtime could interpret the output of a C# compiler, or convert it all
to native code in one step rather than JIT-compiling it. Though these options are rela-
tively uncommon, they do exist in the wild: for example, the Micro Framework uses an
interpreter, as can Mono. At the other end of the spectrum, NGen and MonoTouch
(http://monotouch.net/)—a platform for building applications for the iPhone5—use
ahead-of-time compilation.

1.6.2 Runtime

The runtime aspect of the .NET platform is the relatively small amount of code that’s
responsible for making sure that programs written in IL execute according to the Com-
mon Language Infrastructure (CLI) specification, partitions I to III. The runtime part of
the CLI is called the Common Language Runtime (CLR). When I refer to the CLR in the
rest of the book, I mean Microsoft’s implementation.

 Some elements of language never appear at the runtime level, but others cross the
divide. For instance, enumerators aren’t defined at a runtime level, and neither is any
particular meaning attached to the IDisposable interface—but arrays and delegates
are important to the runtime.

1.6.3 Framework libraries

Libraries provide code that’s available to our programs. The framework libraries in
.NET are largely built as IL themselves, with native code used only where necessary.
This is a mark of the strength of the runtime: your own code isn’t expected to be a sec-
ond-class citizen—it can provide the same kind of power and performance as the
libraries it utilizes. The amount of code in the library is much greater than that of the
runtime, in the same way that there’s much more to a car than the engine.

 The framework libraries are partially standardized. Partition IV of the CLI specifica-
tion provides a number of different profiles (compact and kernel) and libraries. Parti-
tion IV comes in two parts—a general textual description of the libraries, including
which libraries are required within which profiles, and another part containing the

5 And the iPod Touch and iPad.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://monotouch.net/

23Making your code super awesome
details of the libraries themselves in XML format. This is the same form of documenta-
tion produced when you use XML comments within C#.

 There’s much within .NET that’s not within the base libraries. If you write a pro-
gram that only uses libraries from the specification, and only uses them correctly, you
should find that your code works flawlessly on any implementation—Mono, .NET, or
anything else. In practice, almost any program of any size will use libraries that aren’t
standardized—Windows Forms or ASP.NET, for instance. The Mono project has its
own libraries that aren’t part of .NET as well, such as GTK#, in addition to implement-
ing many of the nonstandardized libraries.

 The term .NET refers to the combination of the runtime and libraries provided by
Microsoft, and it also includes compilers for C# and VB.NET. It can be seen as a whole
development platform built on top of Windows. Each aspect of .NET is versioned sepa-
rately, which can be a source of confusion. Appendix C gives a quick rundown of
which version of what came out when and with which features.

 If that’s all clear, I have one last bit of housekeeping to go through before we really
start diving into C#.

1.7 Making your code super awesome
I apologize for the misleading title. This section (in itself) will not make your code
super awesome. It won’t even make it refreshingly minty. It will help you to make the
most of this book though—and that's why I wanted to make sure you actually read it.
There’s more of this sort of thing in the front matter (the bit before page 1) but I
know that many readers skip over that, heading straight for the meat of the book. I
can understand that, so I’ll make this as quick as possible.

1.7.1 Presenting full programs as snippets

One of the challenges when writing a book about a computer language (other than
scripting languages) is that complete programs—ones that the reader can compile
and run with no source code other than what’s presented—get long pretty quickly. I
wanted to get around this, to provide you with code that you could easily type in and
experiment with. I believe that actually trying something is a much better way of learn-
ing about it than just reading.

 With the right assembly references and the right using directives, you can accom-
plish a lot with a fairly short amount of C# code—but the killer is the fluff involved in
writing those using directives, then declaring a class, then declaring a Main method
before you’ve even written the first line of useful code. My examples are mostly in the
form of snippets, which ignore the fluff that gets in the way of simple programs, con-
centrating on the important part. The snippets can be run directly in a small tool I’ve
built called Snippy.

 If a snippet doesn't contain an ellipsis (...) then all of the code should be consid-
ered to be the body of the Main method of a program. If there is an ellipsis, then
Licensed to Devon Greenway <devon.greenway@gmail.com>

24 CHAPTER 1 The changing face of C# development
everything before it is treated as declarations of methods and nested types, and every-
thing after the ellipsis goes in the Main method. So for example, consider this snippet:

static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
...
Console.WriteLine(Reverse("dlrow olleH"));

This is expanded by Snippy into the following:

using System;
public class Snippet
{

static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}

[STAThread]
static void Main()
{

Console.WriteLine(Reverse("dlrow olleH"));
}

}

In reality, Snippy includes far more using directives, but the expanded version was
already getting long. Note that the containing class will always be called Snippet, and
any types declared within the snippet will be nested within that class.

 There are more details about how to use Snippy on the book’s website (http://
mng.bz/Lh82), along with all the examples as both snippets and expanded versions in
Visual Studio solutions. Additionally, there’s support for LINQPad (http://www.
linqpad.net)—a similar tool developed by Joe Albahari, with particularly helpful fea-
tures for exploring LINQ.

 Next, let’s look at what’s wrong with the code we’ve just seen.

1.7.2 Didactic code isn’t production code

It’d be lovely if you could take all the examples from this book and use them directly
in your own applications with no further thought involved... but I strongly suggest you
don’t. Most examples are given to demonstrate a specific point—and that’s usually the
limit of the intent. For example, most snippets don’t include argument validation,
access modifiers, unit tests, or documentation. They may also simply fail when used
outside their intended context. For example, let’s consider the body of the method
previously shown for reversing a string. I use this code several times in the course of
the book.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/Lh82
http://mng.bz/Lh82
http://www.linqpad.net
http://www.linqpad.net

25Making your code super awesome
char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

Leaving aside argument validation, this succeeds in reversing the sequence of UTF-16
code points within a string—but in some cases that’s not good enough. For example,
if a single displayed glyph is composed of an e followed by a combining character rep-
resenting an acute accent, you don’t want to switch the sequence of the code points:
the accent will end up on the wrong character. Or suppose your string contains a char-
acter outside the basic multilingual plane, formed from a surrogate pair—reordering
the code points will lead to a string which is effectively invalid UTF-16. Fixing these
problems would lead to much more complicated code, distracting from the point it’s
meant to be demonstrating.

 You’re welcome to use the code from the book, but please bear this section in
mind if you do so—it’d be much better to take inspiration from it than to copy it ver-
batim and assume it’ll work according to your particular requirements.

 Finally, there’s another book you should really download in order to make the
absolute most of this one.

1.7.3 Your new best friend: the language specification

I’ve tried extremely hard to be accurate in this book, but I’d be amazed if there were
no errors at all—indeed you’ll find a list of any known errors on the book’s website
(http://mng.bz/m1Hh). If you think you’ve found a mistake, I’d be grateful if you
could email me (skeet@pobox.com) or add a note on the author forum (http://
mng.bz/gi4q). But you may not want to wait for me to get back to you—or you may
have a question that simply isn’t covered in the book. Ultimately, the definitive source
for the intended behavior of C# is the language specification.

 There are two important forms of the spec—the international standard from
ECMA, and the Microsoft specification. At the time of this writing, the ECMA specifica-
tion only covers C# 2, despite being the fourth edition. It’s unclear whether or when
this will be updated, but the Microsoft version is complete and freely available. This
book’s website has links to all the available versions of both specification flavors (http:/
/mng.bz/8s38). When I refer to sections of the specification within this book, I’ll use
numbering from the Microsoft C# 4 specification, even when I’m talking about earlier
versions of the language. I strongly recommend that you download this version and
have it on hand whenever you find yourself eager to check out a weird corner case.

 One of my aims is to make the spec mostly redundant for developers—to provide a
more developer-oriented form covering everything you’re likely to see in everyday
code, without the huge level of detail required by compiler authors. Having said that,
it’s extremely readable as specifications go, and you shouldn’t be daunted by it. If you
find the spec interesting, there’s already an annotated version available for C# 3
(http://mng.bz/0y9c), which contains fascinating comments from the C# team and
other contributors; an updated version for C# 4 is in the works.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/m1Hh
http://mng.bz/gi4q
http://mng.bz/gi4q
http://mng.bz/8s38
http://mng.bz/8s38
http://mng.bz/0y9c

26 CHAPTER 1 The changing face of C# development
1.8 Summary
In this chapter, I’ve shown (but not explained) some of the features that are tackled in
depth in the rest of the book. There are plenty more that haven’t been shown here,
and many of the features we’ve seen so far have further “subfeatures” associated with
them. Hopefully what you’ve seen here has whetted your appetite for the rest of the
book.

 Although features have taken up most of the chapter, we’ve also looked at some
areas that should help you get the most out of the book. I’ve clarified what I mean
when I refer to the language, runtime, or libraries, and also explained how code will
be laid out in the book.

 There’s one more area we need to cover before we dive into the features of C# 2,
and that’s C# 1. Obviously, as an author I have no idea how knowledgeable you are
about C# 1, but I do have some understanding of which areas of C# often cause con-
ceptual problems. Some of these areas are critical to getting the most out of the later
versions of C#, so in the next chapter I’ll go over them in some detail.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Core foundations:
building on C# 1
This isn’t a refresher on the whole of C# 1. Let’s get that out of the way immedi-
ately. I couldn’t do justice to any topic in C# if I had to cover the whole of the first
version in a single chapter. I’ve written this book assuming that my readers are at
least reasonably competent in C# 1. What counts as “reasonably competent” is, of
course, somewhat subjective, but I’ll assume you’d at least be happy to walk into an
interview for a junior C# developer role and answer technical questions appropri-
ate to that job. My expectation is that many readers will have more experience, but
that’s the level of knowledge I’m assuming.

 In this chapter we’re going to focus on three areas of C# 1 that are particularly
important in order to understand the features of later versions. This should raise
the “lowest common denominator” a little, so that I can make slightly greater
assumptions later on in the book. Given that it is a lowest common denominator,
you may find you already have a perfect understanding of all the concepts in this

This chapter covers
 Delegates

 Type system characteristics

 Value/reference types
27

Licensed to Devon Greenway <devon.greenway@gmail.com>

28 CHAPTER 2 Core foundations: building on C# 1
chapter. If you believe that’s the case without even reading the chapter, then feel free
to skip it. You can always come back later if it turns out something isn’t as simple as
you thought. You might want to at least look at the summary at the end of each sec-
tion, which highlights the important points—if any of those sound unfamiliar, it’s
worth reading that section in detail.

 We’ll start off by looking at delegates, then think about how the C# type system
compares with some other possibilities, and finally look at the differences between
value types and reference types. With each topic I’ll describe the ideas and behavior,
as well as take the opportunity to define terms so that I can use them later on. After
we’ve looked at how C# 1 works, I’ll show you a quick preview of how many of the new
features in later versions relate to the topics examined in this chapter.

2.1 Delegates
I’m sure you already have an instinctive idea about the concept of a delegate, even
though it can be hard to articulate. If you’re familiar with C and had to describe dele-
gates to another C programmer, the term function pointer would no doubt crop up.
Essentially, delegates provide a level of indirection: instead of specifying behavior to be
executed immediately, it can somehow be “contained” in an object. That object can
then be used like any other, and one operation you can perform with it is to execute
the encapsulated action. Alternatively, you can think of a delegate type as a single-
method interface, and a delegate instance as an object implementing that interface.

 If that’s just gobbledygook to you, maybe an example will help. It’s slightly morbid,
but it does capture what delegates are all about. Consider your will—your last will and
testament. It’s a set of instructions—“pay the bills, make a donation to charity, leave
the rest of my estate to the cat,” for instance. You write it before your death, and leave it
in an appropriately safe place. After your death, your attorney will (you hope!) act on
those instructions.

 A delegate in C# acts like your will does in the real world—as a sequence of actions
to be executed at the appropriate time. Delegates are typically used when the code
that wants to execute the actions doesn’t know the details of what those actions should
be. For instance, the only reason why the Thread class knows what to run in a new
thread when you start it is because you provide the constructor with a ThreadStart or
ParameterizedThreadStart delegate instance.

 We’ll start our tour of delegates with the four absolute basics, without which none
of the rest would make sense.

2.1.1 A recipe for simple delegates

In order for delegates to do anything, four things need to happen:

 The delegate type needs to be declared.
 There must be a method containing the code to execute.
 A delegate instance must be created.
 The delegate instance must be invoked.
Licensed to Devon Greenway <devon.greenway@gmail.com>

29Delegates
Let’s take each step of this recipe in turn.

DECLARING THE DELEGATE TYPE

A delegate type is effectively a list of parameter types and a return type. It specifies what
kind of action can be represented by instances of the type. For instance, consider a
delegate type declared like this:

delegate void StringProcessor(string input);

The code says that if we want to create an instance of StringProcessor, we’re going to
need a method with one parameter (a string) and a void return type (the method
doesn’t return anything). It’s important to understand that StringProcessor really is
a type, deriving from System.MulticastDelegate, which in turn derives from
System.Delegate. It has methods, you can create instances of it, pass around refer-
ences to instances, the whole works. There are obviously a few “special features,” but if
you’re ever stuck wondering what’ll happen in a particular situation, first think about
what would happen if you were just using a normal reference type.

SOURCE OF CONFUSION: THE AMBIGUOUS TERM DELEGATE Delegates can be mis-
understood because the word delegate is often used to describe both a delegate
type and a delegate instance. The distinction between these two is exactly the
same as between any other type and instances of that type—the string type
itself is different from a particular sequence of characters, for example. I’ve
used the terms delegate type and delegate instance throughout this chapter to try
to keep clear exactly what I’m talking about at any point.

We’ll use the StringProcessor delegate type when we consider the next ingredient.

FINDING AN APPROPRIATE METHOD FOR THE DELEGATE INSTANCE’S ACTION

Our next ingredient is to find (or write, of course) a method that does what we want
and has the same signature as the delegate type we’re using. The idea is to make sure
that when we try to invoke a delegate instance, the parameters we use will all match up
and we’ll be able to use the return value (if any) in the way we expect—just like a nor-
mal method call.

 Now consider these five method signatures as candidates to be used for a String-
Processor instance:

void PrintString(string x)
void PrintInteger(int x)
void PrintTwoStrings(string x, string y)
int GetStringLength(string x)
void PrintObject(object x)

The first method has everything right, so we can use it to create a delegate instance.
The second method has one parameter, but it’s not string, so it’s incompatible with
StringProcessor. The third method has the correct first parameter type, but it has
another parameter as well, so it’s still incompatible.

 The fourth method has the right parameter list but a nonvoid return type. (If our
delegate type had a return type, the return type of the method would have to match
Licensed to Devon Greenway <devon.greenway@gmail.com>

30 CHAPTER 2 Core foundations: building on C# 1
that, too.) The fifth method is interesting—any time we invoke a StringProcessor
instance, we could call the PrintObject method with the same arguments, because
string derives from object. It would make sense to be able to use it for an instance of
StringProcessor, but C# 1 limits the delegate to have exactly the same parameter
types.1 C# 2 changes this situation—see chapter 5 for more details. In some ways, the
fourth method is similar, as you could always ignore the unwanted return value. But
void and nonvoid return types are currently always deemed to be incompatible. This is
partly because other aspects of the system (particularly the JIT) need to know whether
a value will be left on the stack as a return value when a method is executed.2

 Let’s assume we have a method body for the compatible signature (PrintString)
and move on to our next ingredient—the delegate instance itself.

CREATING A DELEGATE INSTANCE

Now that we have a delegate type and a method with the right signature, we can create
an instance of that delegate type, specifying that this method be executed when the
delegate instance is invoked. No official terminology has been defined for this, but for
this book I’ll call it the action of the delegate instance. The exact form of the expres-
sion used to create the delegate instance depends on whether the action uses an
instance method or a static method. Suppose PrintString is a static method in a type
called StaticMethods and an instance method in a type called InstanceMethods.
Here are two examples of creating an instance of StringProcessor:

StringProcessor proc1, proc2;
proc1 = new StringProcessor(StaticMethods.PrintString);
InstanceMethods instance = new InstanceMethods();
proc2 = new StringProcessor(instance.PrintString);

When the action is a static method, you only need to specify the type name. When the
action is an instance method, you need an instance of the type (or a derived type)—
just as if you were calling the method in the normal way. This object is called the target
of the action, and when the delegate instance is invoked, the method will be called on
that object. If the action is within the same class (as it often is, particularly when
you’re writing event handlers in UI code), you don’t need to qualify it either way—the
this reference is used implicitly for instance methods.3 Again, these rules act just as if
you were calling the method directly.

UTTER GARBAGE! (OR NOT, AS THE CASE MAY BE...) It’s worth being aware that a
delegate instance will prevent its target from being garbage collected, if the
delegate instance itself can’t be collected. This can result in apparent
memory leaks, particularly when a “short-lived” object subscribes to an event

1 In addition to the parameter types, you have to match whether the parameter is in (the default), out, or ref.
It’s reasonably rare to use out/ref parameters with delegates, though.

2 This is a deliberately vague use of the word stack to avoid going into too much irrelevant detail. See Eric Lip-
pert’s blog post “The void is invariant” for more information (http://mng.bz/4g58).

3 Of course, if the action is an instance method and you’re trying to create a delegate instance from within a
static method, you’ll still need to provide a reference to be the target.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/4g58

31Delegates
in a “long-lived” object, using itself as the target. The long-lived object indi-
rectly holds a reference to the short-lived one, prolonging its lifetime.

There’s not much point in creating a delegate instance if it doesn’t get invoked at
some point. Let’s look at our last step—the invocation.

INVOKING A DELEGATE INSTANCE

This is the really easy bit4—it’s just a case of calling a method on the delegate instance.
The method itself is called Invoke, and it’s always present in a delegate type with the
same list of parameters and return type that the delegate type declaration specifies. So
in our case, there’s a method like this:

void Invoke(string input)

Calling Invoke will execute the action of the delegate instance, passing on whatever
arguments you’ve specified in the call to Invoke, and (if the return type isn’t void)
returning the return value of the action.

 As simple as this is, C# makes it even easier—if you
have a variable5 whose type is a delegate type, you can
treat it as if it were a method itself. It’s easiest to see this
happening as a chain of events occurring at different
times, as shown in figure 2.1.

 So, that’s simple too. All our ingredients are in
place, so we can preheat our CLR to 200°C, stir every-
thing together, and see what happens.

A COMPLETE EXAMPLE AND SOME MOTIVATION

It’s easiest to see all this in action in a complete exam-
ple—finally, something we can actually run! As there
are lots of bits and pieces going on, I’ve included the
whole source code this time rather than using snippets.
There’s nothing mind-blowing in the following listing,
so don’t expect to be amazed—it’s just useful to have
concrete code to discuss.

using System;
delegate void StringProcessor(string input);
class Person
{

string name;
public Person(string name) { this.name = name; }
public void Say(string message)

4 For synchronous invocation, anyway. You can use BeginInvoke and EndInvoke to invoke a delegate
instance asynchronously, but that’s beyond the scope of this chapter.

5 Or any other kind of expression—but it’s usually a variable.

Listing 2.1 Using delegates in a variety of simple ways

Declares delegate typeB

Declares compatible
instance method

C

proc1("Hello");

proc1.Invoke("Hello");

PrintString("Hello");

Compiles to...

Which at
execution
time invokes...

Figure 2.1 Processing a call to a
delegate instance that uses the
C# shorthand syntax
Licensed to Devon Greenway <devon.greenway@gmail.com>

32 CHAPTER 2 Core foundations: building on C# 1
{
Console.WriteLine("{0} says: {1}", name, message);

}
}
class Background
{

public static void Note(string note)
{

Console.WriteLine("({0})", note);
}

}
class SimpleDelegateUse
{

static void Main()
{

Person jon = new Person("Jon");
Person tom = new Person("Tom");
StringProcessor jonsVoice, tomsVoice, background;
jonsVoice = new StringProcessor(jon.Say);
tomsVoice = new StringProcessor(tom.Say);
background = new StringProcessor(Background.Note);

jonsVoice("Hello, son.");
tomsVoice.Invoke("Hello, Daddy!");
background("An airplane flies past.");

 }
}

To start with, we declare the delegate type B. Next, we create two methods (C and D)
that are both compatible with the delegate type. We have one instance method
(Person.Say) and one static method (Background.Note) so that we can see how
they’re used differently when we create the delegate instances E. We’ve created two
instances of the Person class so that we can see the difference that the target of a dele-
gate makes. When jonsVoice is invoked F, it calls the Say method on the Person
object with the name Jon; likewise, when tomsVoice is invoked, it uses the object with
the name Tom. I’ve included both the ways we’ve seen of invoking delegate instances—
calling Invoke explicitly and using the C# shorthand—just for interest’s sake. Normally
you’d just use the shorthand. The output for listing 2.1 is fairly obvious:

Jon says: Hello, son.
Tom says: Hello, Daddy!
(An airplane flies past.)

Frankly, there’s an awful lot of code in listing 2.1 to display three lines of output. Even
if we wanted to use the Person class and the Background class, there’s no real need to
use delegates here. So what’s the point? Why can’t we just call methods directly? The
answer lies in our original example of an attorney executing a will—just because you
want something to happen, that doesn’t mean you’re always there at the right time
and place to make it happen yourself. Sometimes you need to give instructions—to
delegate responsibility, as it were.

 I should stress that back in the world of software, this isn’t a matter of objects leav-
ing dying wishes. Often the object that first creates a delegate instance is still alive and

Declares compatible
static method

D

Creates
three
delegate
instances

E

Invokes
delegate
instances

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

33Delegates
well when the delegate instance is invoked. Instead, it’s about specifying some code to
be executed at a particular time, when you may not be able to (or may not want to)
change the code that’s running at that point. If I want something to happen when a
button is clicked, I don’t want to have to change the code of the button—I just want to
tell the button to call one of my methods that’ll take the appropriate action. It’s a mat-
ter of adding a level of indirection —as so much of object-oriented programming is. As
we’ve seen, this adds complexity (look at how many lines of code it took to produce so
little output!) but also flexibility.

 Now that we understand more about simple delegates, we’ll take a brief look at
combining delegates together to execute a whole bunch of actions instead of just one.

2.1.2 Combining and removing delegates

So far, all the delegate instances we’ve looked at have had a single action. The truth is
a bit more complicated: a delegate instance actually has a list of actions associated
with it. This is called the invocation list of the delegate instance. The static Combine
and Remove methods of the System.Delegate type are responsible for creating new
delegate instances by respectively splicing together the invocation lists of two delegate
instances or removing the invocation list of one delegate instance from another.

DELEGATES ARE IMMUTABLE Once you’ve created a delegate instance, noth-
ing about it can be changed. This makes it safe to pass around references to
delegate instances and combine them with others without worrying about
consistency, thread safety, or anyone trying to change their actions. This is the
same as with strings, which are also immutable. I mention this because
Delegate.Combine is just like String.Concat—they both combine existing
instances together to form a new one without changing the original objects at
all. In the case of delegate instances, the original invocation lists are concate-
nated together. Note that if you ever try to combine null with a delegate
instance, the null is treated as if it were a delegate instance with an empty
invocation list.

You’ll rarely see an explicit call to Delegate.
Combine in C# code—usually the + and += opera-
tors are used. Figure 2.2 shows the translation
process, where x and y are both variables of the
same (or compatible) delegate types. All of this is
done by the C# compiler.

 As you can see, it’s a straightforward transfor-
mation, but it does make the code a lot neater. Just
as you can combine delegate instances, you can
remove one from another with the Delegate.
Remove method, and C# uses the shorthand of the
- and -= operators in the obvious way. Delegate.
Remove(source, value) creates a new delegate

void Dump(int x, int y = 20, int z

required
parameter

default
values

optional
parameters

Figure 2.2 The transformation process
used for the C# shorthand syntax for
combining delegate instances
Licensed to Devon Greenway <devon.greenway@gmail.com>

34 CHAPTER 2 Core foundations: building on C# 1
whose invocation list is the one from source, with the list from value having been
removed. If the result would have an empty invocation list, null is returned.

 When a delegate instance is invoked, all its actions are executed in order. If the
delegate’s signature has a nonvoid return type, the value returned by Invoke is the
value returned by the last action executed. It’s rare to see a nonvoid delegate instance
with more than one action in its invocation list, because it means the return values of
all the other actions are never seen unless the invoking code explicitly executes one at
a time using Delegate.GetInvocationList to fetch the list of actions.

 If any of the actions in the invocation list throws an exception, that prevents any of
the subsequent actions from being executed. For example, if a delegate instance with
an invocation list [a, b, c] is invoked, and action b throws an exception, then the
exception will be propagated immediately and action c won’t be executed.

 Combining and removing delegate instances is particularly useful when it comes to
events. Now that we understand what combining and removing involves, we can sensi-
bly talk about events.

2.1.3 A brief diversion into events

You probably have an instinctive idea about the overall point of events—particularly if
you’ve written any UIs. The idea is that an event allows code to react when something
happens—saving a file when the appropriate button is clicked, for example. In this
case, the event is the clicking of the button, and the action is the saving of the file.
Understanding the reason for the concept isn’t the same as understanding how C#
defines events in language terms, though.

 Developers often confuse events and delegate instances, or events and fields
declared with delegate types. The difference is important: events aren’t fields. The rea-
son for the confusion is that yet again, C# provides a shorthand, in the form of field-like
events. We’ll come to those in a minute, but first let’s consider what events consist of as
far as the C# compiler is concerned.

 It’s helpful to think of events as being similar to properties. To start with, both of
them are declared to be of a certain type, which in the case of an event is forced to be
a delegate type. When you use properties, it looks like you’re fetching or assigning val-
ues directly to fields, but you’re actually calling methods (getters and setters). The
property implementation can do what it likes within those methods—it just happens
that most properties are implemented with simple fields backing them, sometimes
with some validation in the setter and sometimes with some thread safety thrown in
for good measure.

 Likewise, when you subscribe to or unsubscribe from an event, it looks like you’re
using a field whose type is a delegate type, with the += and -= operators. Again,
though, you’re actually calling methods (add and remove).6 That’s all you can do with

6 These aren’t their names in the compiled code; otherwise you could only have one event per type. The com-
piler creates two methods with names that aren’t used elsewhere, and a special piece of metadata to let other
types know that there’s an event with the given name, and what its add/remove methods are called.
Licensed to Devon Greenway <devon.greenway@gmail.com>

35Delegates
an event—subscribe to it (add an event handler) or unsubscribe from it (remove an
event handler). It’s up to the event methods to do something useful—such as taking
notice of the event handlers you’re trying to add and remove, and making them avail-
able elsewhere within the class.

 The reason for having events in the first place is much like the reason for having
properties—they add a layer of encapsulation, implementing the publish/subscribe
pattern (see http://mng.bz/otVt). Just as you don’t want other code to be able to set
field values without the owner at least having the option of validating the new value,
you often don’t want code outside a class to be able to arbitrarily change (or call) the
handlers for an event. Of course, a class can add methods to give extra access—for
instance, to reset the list of handlers for an event, or to raise the event (in other words,
call its event handlers). For example, BackgroundWorker.OnProgressChanged just
calls the ProgressChanged event handlers. But if you only expose the event itself, code
outside the class only has the ability to add and remove handlers.

 Field-like events make the implementation of all of this much simpler to look at—a
single declaration and you’re done. The compiler turns the declaration into both an
event with default add/remove implementations, and a private field of the same type.
Code inside the class sees the field; code outside the class only sees the event. This
makes it look as if you can invoke an event—but what you actually do to call the event
handlers is invoke the delegate instance stored in the field.

 The details of events are outside the scope of this chapter—events themselves
haven’t changed much7 in later versions of C#—but I wanted to draw attention to the
difference between delegate instances and events now, to prevent confusion later on.

2.1.4 Summary of delegates

So, to summarize what we’ve covered on delegates:

 Delegates encapsulate behavior with a particular return type and set of parame-
ters, similar to a single-method interface.

 The type signature described by a delegate type declaration determines which
methods can be used to create delegate instances, and the signature for
invocation.

 Creating a delegate instance requires a method and (for instance methods) a
target to call the method on.

 Delegate instances are immutable.
 Delegate instances each contain an invocation list—a list of actions.
 Delegate instances can be combined together and removed from each other.
 Events aren’t delegate instances—they’re just add/remove method pairs (think

property getters/setters).

7 There are very small changes to field-like events in C# 4. See section 4.2 for details.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/otVt

36 CHAPTER 2 Core foundations: building on C# 1
Delegates are one specific feature of C# and .NET—a detail, in the grand scheme of
things. Both of the other “reminder” sections in this chapter deal with much broader
topics. First, we’ll consider what it means to talk about C# being a statically typed lan-
guage and the implications that has.

2.2 Type system characteristics
Almost every programming language has a type system of some kind. Over time, these
have been classified as strong/weak, safe/unsafe, static/dynamic, and no doubt some
more esoteric variations. It’s obviously important to understand the type system with
which one is working, and it’s reasonable to expect that knowing the categories into
which a language falls would give a lot of information to help on that front. But
because the terms are used by different people to mean somewhat different things,
miscommunication is almost inevitable. I’ll try to say exactly what I mean by each term
to avoid confusion as much as possible.

 One important thing to note is that this section is only applicable to “safe” code—
which means all C# code that isn’t explicitly within an unsafe context. As you might
judge from the name, code within an unsafe context can do various things that safe
code can’t, and that may violate some aspects of normal type safety—although the
type system is still safe in many other ways. Most developers are unlikely ever to need
to write unsafe code, and the characteristics of the type system are far simpler to
describe and understand when only safe code is considered.

 This section shows what restrictions are and aren’t enforced in C# 1 while defining
some terms to describe that behavior. We’ll then see a few things we can’t do with
C# 1—first from the point of view of what we can’t tell the compiler, and then from the
point of view of what we wish we didn’t have to tell the compiler.

 Let’s start off with what C# 1 does, and what terminology is usually used to describe
that kind of behavior.

2.2.1 C#’s place in the world of type systems

It’s easiest to begin by making a statement, and then clarify what it actually means and
what the alternatives might be:

 C# 1’s type system is static, explicit, and safe.

You might have expected the word strong to appear in the list, and I had half a mind to
include it. But though most people can reasonably agree on whether a language has
the listed characteristics, deciding whether a language is strongly typed can cause
heated debate because the definitions vary so wildly. Some meanings (those prevent-
ing any conversions, explicit or implicit) would clearly rule C# out—whereas others
are quite close to (or even the same as) statically typed, which would include C# 1. Most
of the articles and books I’ve read that describe C# as a strongly typed language are
effectively using it to mean statically typed.

 Let’s take the terms in the definition one at a time and shed some light on them.
Licensed to Devon Greenway <devon.greenway@gmail.com>

37Type system characteristics

W

STATIC TYPING VERSUS DYNAMIC TYPING

C# 1 is statically typed : each variable8 is of a particular type, and that type is known at
compile time. Only operations that are known for that type are allowed, and this is
enforced by the compiler. Consider this example of enforcement:

object o = "hello";
Console.WriteLine(o.Length);

As developers looking at the code, we obviously know that the value of o refers to a
string, and that the string type has a Length property, but the compiler only thinks of
o as being of type object. If we want to get to the Length property, we have to tell the
compiler that the value of o actually refers to a string:

object o = "hello";
Console.WriteLine(((string)o).Length);

The compiler is then able to find the Length property of System.String. It uses this
to validate that the call is correct, emit the appropriate IL, and also work out the type
of the larger expression. The compile-time type of an expression is also known as its
static type—so we might say, “The static type of o is System.Object,” for example.

WHY IS IT CALLED STATIC TYPING? The word static is used to describe this kind
of typing because the analysis of what operations are available is performed
using unchanging data: the compile-time types of expressions. Suppose a vari-
able is declared to be of type Stream: the type of the variable doesn’t change
even if the value of the variable varies between a reference to a Memory-
Stream, a FileStream, or no stream at all (with a null reference). Even
within static type systems, there can be some dynamic behavior of course: the
actual implementation executed by a virtual method call will depend on the
value it’s called on. Although the idea of unchanging information is also the
motivation behind the static modifier, it’s generally simpler to think of a
static member as one belonging to the type itself rather than any particular
instance of the type. For most practical purposes, you can think of the two
uses of the word as unrelated.

The alternative to static typing is dynamic typing, which can take a variety of guises. The
essence of dynamic typing is that variables just have values—they aren’t restricted to
particular types, so the compiler can’t perform the same sort of checks. Instead, the
execution environment attempts to understand any given expression in an appropri-
ate manner for the value involved. For example, if C# 1 were dynamically typed, we
could do this:

o = "hello";
Console.WriteLine(o.Length);
o = new string[] {"hi", "there"};
Console.WriteLine(o.Length);

8 This applies to most expressions too, but not quite all of them. Certain expressions don’t have a type, such as
void method invocations, but this doesn’t affect C# 1’s status of being statically typed. I’ve used the word vari-
able throughout this section to avoid unnecessary brain strain.

HAT IF?
Licensed to Devon Greenway <devon.greenway@gmail.com>

38 CHAPTER 2 Core foundations: building on C# 1
This would invoke two completely unrelated Length properties—String.Length and
Array.Length—by examining the types dynamically at execution time. Like many
areas of defining type systems, there are different levels of dynamic typing. Some lan-
guages allow you to specify types where you want to—possibly still treating them
dynamically apart from assignment—but let you use untyped variables elsewhere.

 Although I’ve specified C# 1 repeatedly in this description, C# was entirely stati-
cally typed up to and including C# 3. We'll see later that C# 4 introduces some
dynamic typing, although the vast majority of code in most C# 4 applications will still
use static typing.

EXPLICIT TYPING VERSUS IMPLICIT TYPING

The distinction between explicit typing and implicit typing is only relevant in statically
typed languages. With explicit typing, the type of every variable must be explicitly
stated in the declaration. Implicit typing allows the compiler to infer the type of the
variable based on its use. For example, the language could dictate that the type of the
variable is the type of the expression used to assign the initial value.

 Consider a hypothetical language that uses the keyword var to indicate type infer-
ence.9 Table 2.1 shows how code in such a language could be written in C# 1. The
code in the left column is not allowed in C# 1, but the code in the right column is the
equivalent valid code.

Hopefully it’s clear why this is only relevant for statically typed situations: for both
implicit and explicit typing, the type of the variable is known at compile time, even if
it’s not explicitly stated. In a dynamic context, the variable doesn’t even have a com-
pile-time type to state or infer.

TYPE-SAFE VERSUS TYPE-UNSAFE

The easiest way of describing a type-safe system is to describe its opposite. Some lan-
guages (I’m thinking particularly of C and C++) allow you to do some really devious
things. They’re potentially powerful in the right situations, but with great power
comes a free box of donuts, or however the expression goes—and the right situations
are relatively rare. Some of these devious things can shoot you in the foot if you get
them wrong. Abusing the type system is one of them.

 With the right voodoo rituals, you can persuade these languages to treat a value of
one type as if it were a value of a completely different type without applying any

9 Okay, not so hypothetical. See section 8.2 for C# 3’s implicitly typed local variable capabilities.

Invalid C# 1—implicit typing Valid C# 1—explicit typing

var s = "hello"; string s = "hello";

var x = s.Length; int x = s.Length;

var twiceX = x * 2; int twiceX = x * 2;

Table 2.1 An example
showing the differences
between implicit and
explicit typing
Licensed to Devon Greenway <devon.greenway@gmail.com>

39Type system characteristics
conversions. I don’t just mean calling a method that happens to have the same name,
as in our dynamic typing example earlier. I mean code that looks at the raw bytes
within a value and interprets them in the “wrong” way. The following listing gives a
simple C example of what I mean.

#include <stdio.h>
int main(int argc, char**argv)
{

char *first_arg = argv[1];
int *first_arg_as_int = (int *)first_arg;
printf ("%d", *first_arg_as_int);

}

If you compile listing 2.2 and run it with a simple argument of "hello", you’ll see a
value of 1819043176—at least on a little-endian architecture with a compiler treating
int as 32 bits and char as 8 bits, and where text is represented in ASCII or UTF-8. The
code is treating the char pointer as an int pointer, so dereferencing it returns the
first 4 bytes of text, treating them as a number.

 In fact, this tiny example is tame compared with other potential abuses—casting
between completely unrelated structs can easily result in total mayhem. It’s not that
this happens in real life very often, but some elements of the C typing system often
require you to tell the compiler what to do, leaving it no option but to trust you even
at execution time.

 Fortunately, none of this occurs in C#. Yes, there are plenty of conversions avail-
able, but you can’t pretend that data for one particular type of object is actually data
for a different type. You can try by adding a cast to give the compiler this extra (and
incorrect) information, but if the compiler spots that it’s actually impossible for that
cast to work, it’ll trigger a compilation error—and if it’s theoretically allowed but actu-
ally incorrect at execution time, the CLR will throw an exception.

 Now that we know a little about how C# 1 fits into the bigger picture of type sys-
tems, I’d like to mention a few downsides of its choices. That’s not to say the choices
are wrong—just limiting in some ways. Often language designers have to choose
between different paths that add different limitations or have other undesirable con-
sequences. I’ll start with the case where you want to tell the compiler more informa-
tion, but there’s no way of doing so.

2.2.2 When is C# 1’s type system not rich enough?

There are two common situations where you might want to expose more information
to the caller of a method, or perhaps force the caller to limit what it provides in its
arguments. The first involves collections, and the second involves inheritance and
overriding methods or implementing interfaces. We’ll examine each in turn.

Listing 2.2 Demonstrating a type-unsafe system with C code
Licensed to Devon Greenway <devon.greenway@gmail.com>

40 CHAPTER 2 Core foundations: building on C# 1
COLLECTIONS, STRONG AND WEAK

Having avoided the terms strong and weak for the C# type system in general, I’ll use
them when talking about collections. They’re used almost everywhere in this context,
with little room for ambiguity. Broadly speaking, three kinds of collection types are
built into .NET 1.1:

 Arrays—strongly typed—which are built into both the language and the
runtime

 The weakly typed collections in the System.Collections namespace
 The strongly typed collections in the System.Collections.Specialized

namespace

Arrays are strongly typed,10 so at compile time you can’t set an element of a string[]
to be a FileStream, for instance. But reference type arrays also support covariance,
which provides an implicit conversion from one type of array to another, so long as
there’s a conversion between the element types. Checks occur at execution time to
make sure that the wrong type of reference isn’t actually stored, as shown in the fol-
lowing listing.

string[] strings = new string[5];
object[] objects = strings;
objects[0] = new Button();

If you run listing 2.3, you’ll see that an ArrayTypeMismatchException is thrown C.
This is because the conversion from string[] to object[] B returns the original ref-
erence—both strings and objects refer to the same array. The array itself knows it’s
a string array, and will reject attempts to store references to nonstrings. Array covari-
ance is occasionally useful, but comes at the cost of some of the type safety being
implemented at execution time instead of compile time.

 Let’s compare this with the situation that the weakly typed collections such as
ArrayList and Hashtable put us in. The API of these collections uses object as the
type of keys and values. When you write a method that takes an ArrayList, for exam-
ple, there’s no way of making sure at compile time that the caller will pass in a list of
strings. You can document it, and the type safety of the runtime will enforce it if you
cast each element of the list to string, but you don’t get compile-time type safety.
Likewise, if you return an ArrayList, you can indicate in the documentation that it’ll
just contain strings, but callers will have to trust that you’re telling the truth, and will
have to insert casts when they access the elements of the list.

 Finally, consider the strongly typed collections such as StringCollection. These
provide a strongly typed API, so you can be confident that when you receive a
StringCollection as a parameter or return value, it’ll only contain strings, and you
don’t need to cast when fetching elements of the collection. It sounds ideal, but
there are two problems. First, it implements IList, so you can still try to add

10 At least, the language allows them to be. You can use the Array type for weakly typed access to arrays, though.

Listing 2.3 Demonstration of the covariance of arrays, and execution time checking

Applies covariant conversionB
Attempts to store a Button referenceC
Licensed to Devon Greenway <devon.greenway@gmail.com>

41Type system characteristics
nonstrings to it (although you’ll fail at execution time). Second, it only deals with
strings. There are other specialized collections, but all told they don’t cover much
ground. There’s the CollectionBase type, which can be used to build your own
strongly typed collections, but that means creating a new collection type for each ele-
ment type, which is also not ideal.

 Now that we’ve seen the problem with collections, let’s consider the issue that can
occur when overriding methods and implementing interfaces. It’s related to the idea
of covariance, which we’ve already seen with arrays.

LACK OF COVARIANT RETURN TYPES

ICloneable is one of the simplest interfaces in the framework. It has a single method,
Clone, which should return a copy of the object that the method is called on. Now,
leaving aside the issue of whether this should be a deep or shallow copy, let’s look at
the signature of the Clone method:

object Clone()

It’s a straightforward signature, certainly—but as I said, the method should return a
copy of the object it’s called on. That means it needs to return an object of the same
type—or at least a compatible one (where that meaning will vary depending on the
type). It would make sense to be able to override the method with a signature that
gives a more accurate description of what the method actually returns. For example,
in a Person class it’d be nice to be able to implement ICloneable with

public Person Clone()

That wouldn’t break anything—code expecting any old object would still work fine.
This feature is called return type covariance but, unfortunately, interface implementa-
tion and method overriding don’t support it. Instead, the normal workaround for
interfaces is to use explicit interface implementation to achieve the desired effect:

public Person Clone()
{
 [Implementation goes here]
}
object ICloneable.Clone()
{
 return Clone();

}

Any code that calls Clone() on an expression with a static type of Person will call the
top method; if the type of the expression is just ICloneable, it’ll call the bottom
method. This works but is really ugly. The mirror image of this situation also occurs
with parameters, where if you had an interface or virtual method with a signature of,
say, void Process(string x), then it’d seem logical to be able to implement or over-
ride the method with a less demanding signature, such as void Process(object x).
This is called parameter type contravariance—and is just as unsupported as return type
covariance, with the same workaround for interfaces and normal overloading for vir-
tual methods. It’s not a showstopper, but it’s irritating.

Implements
interface explicitly

Calls noninterface method
Licensed to Devon Greenway <devon.greenway@gmail.com>

42 CHAPTER 2 Core foundations: building on C# 1
 Of course, C# 1 developers put up with all of these issues for a long time—and Java
developers had a similar situation for far longer. Though compile-time type safety is a
great feature in general, I can’t remember seeing many bugs where people actually put
the wrong type of element in a collection. I can live with the workaround for the lack
of covariance and contravariance. But there’s such a thing as elegance and making
your code clearly express what you mean, preferably without needing explanatory
comments. Even if bugs don’t actually strike, enforcing the documented contract that
a collection must only contain strings (for example) can be expensive and fragile in
the face of mutable collections. This is the sort of contract you really want the type sys-
tem itself to enforce.

 We’ll see later that C# 2 isn’t flawless either, but it makes large improvements.
There are more changes in C# 4, but even so, return type covariance and parameter
contravariance are missing.11

2.2.3 Summary of type system characteristics

In this section we’ve learned some of the differences between type systems, and in par-
ticular which characteristics apply to C# 1:

 C# 1 is statically typed—the compiler knows what members to let you use.
 C# 1 is explicit—you have to state the type of every variable.
 C# 1 is safe—you can’t treat one type as if it were another without the availabil-

ity of a genuine conversion.
 Static typing still doesn’t allow a single collection to be a strongly typed “list of

strings” or “list of integers” without a lot of code duplication for different ele-
ment types.

 Method overriding and interface implementation don’t allow covariance or
contravariance.

Our next section covers one of the most fundamental aspects of C#’s type system
beyond its high-level characteristics—the differences between structs and classes.

2.3 Value types and reference types
It would be hard to overstate how important the subject of this section is. Everything
you do in .NET will deal with either a value type or a reference type—and yet it’s curi-
ously possible to develop for a long time with only a vague idea of what the difference
is. Worse yet, there are plenty of myths to confuse things further. The unfortunate fact
is that it’s easy to make a short but incorrect statement that’s close enough to the truth
to be plausible but inaccurate enough to be misleading—but it’s relatively tricky to
come up with a concise but accurate description.

 This section isn’t a complete breakdown of how types are handled, marshalling
between application domains, interoperability with native code, and the like. Instead,

11 C# 4 introduces limited generic covariance and contravariance, but that’s not quite the same thing.
Licensed to Devon Greenway <devon.greenway@gmail.com>

43Value types and reference types
it’s a brief look at the absolute basics of the topic (as applied to C# 1) that are crucial
to understand in order to come to grips with later versions of C#.

 We’ll start off by seeing how the fundamental differences between value types and
reference types appear naturally in the real world as well as in .NET.

2.3.1 Values and references in the real world

Suppose you’re reading something fantastic, and want a friend to read it too. Let’s fur-
ther suppose that it’s a document in the public domain, just to avoid any accusations
of supporting copyright violation. What do you need to give your friend so that he can
read it too? It depends entirely on what you’re reading.

 First we’ll deal with the case where you have real paper in your hands. To give your
friend a copy, you’d need to photocopy all the pages and then give it to him. At that
point, he has his own complete copy of the document. In this situation, we’re dealing
with value type behavior. All the information is directly in your hands—you don’t need
to go anywhere else to get it. Your copy of the information is also independent of your
friend’s after you’ve made the copy. You could add some notes to your pages, and his
pages wouldn’t be changed at all.

 Compare that with the situation where you’re reading a web page. This time, all
you have to give your friend is the URL of the web page. This is reference type behavior,
with the URL taking the place of the reference. In order to actually read the docu-
ment, you have to navigate the reference by putting the URL in your browser and ask-
ing it to load the page. On the other hand, if the web page changes for some reason
(imagine it’s a wiki page and you’ve added your notes to the page), both you and your
friend will see that change the next time each of you loads the page.

 The differences we’ve seen in the real world form the heart of the distinction
between value types and reference types in C# and .NET. Most types in .NET are refer-
ence types, and you’re likely to create far more reference than value types. The most
common cases to know are that classes (declared using class) are reference types, and
structures (declared using struct) are value types. The other situations are as follows:

 Array types are reference types, even if the element type is a value type (so
int[] is still a reference type, even though int is a value type).

 Enumerations (declared using enum) are value types.
 Delegate types (declared using delegate) are reference types.
 Interface types (declared using interface) are reference types, but they can be

implemented by value types.

Now that we have a basic idea of what reference types and value types are about, we’ll
look at a few of the most important details.

2.3.2 Value and reference type fundamentals

The key concept to grasp when it comes to value types and reference types is what the
value of a particular expression is. To keep things concrete, I’ll use variables as the
Licensed to Devon Greenway <devon.greenway@gmail.com>

44 CHAPTER 2 Core foundations: building on C# 1
most common examples of expressions—but the same thing applies to properties,
method calls, indexers, and other expressions.

 As we discussed in section 2.2.1, most expressions have a static type associated with
them. The value of a value type expression is the value, plain and simple. For instance,
the value of the expression “2+3” is 5. The value of a reference type expression, though,
is a reference. It’s not the object that the reference refers to. So, the value of the
expression String.Empty is not an empty string—it’s a reference to an empty string. In
everyday discussions and even in documentation, we tend to blur this distinction. For
instance, we might describe String.Concat as returning “a string that’s the concate-
nation of all the parameters.” Using precise terminology here would be time consum-
ing and distracting, and there’s no problem so long as everyone involved understands
that only a reference is returned.

 To demonstrate this further, consider a Point type that stores two integers, x and y.
It could have a constructor that takes the two values. Now, this type could be imple-
mented as either a struct or a class. Figure 2.3 shows the result of executing the follow-
ing lines of code:

Point p1 = new Point(10, 20);
Point p2 = p1;

The left side of figure 2.3 indicates the values involved when Point is a class (a refer-
ence type), and the right side shows the situation when Point is a struct (a value type).

 In both cases, p1 and p2 have the same value after the assignment. But in the case
where Point is a reference type, that value is a reference: both p1 and p2 refer to the
same object. When Point is a value type, the value of p1 is the whole of the data for a
point—the x and y values. Assigning the value of p1 to p2 copies all of that data.

 The values of variables are stored wherever they’re declared. Local variable values
are always stored on the stack,12 and instance variable values are always stored wher-
ever the instance itself is stored. Reference type instances (objects) are always stored
on the heap, as are static variables.

12 This is only totally true for C# 1. We’ll see later that local variables can end up on the heap in certain situations
in later versions.

ref

p1

10p2

ref

20

y

When Point is a
reference type

When Point is
a value type

p1

p2

x

10 20

yx

10 20

yx

Figure 2.3 Comparing value type and
reference type behaviors, particularly
with regard to assignment
Licensed to Devon Greenway <devon.greenway@gmail.com>

45Value types and reference types
 Another difference between the two kinds of type is that value types can’t be derived
from. One consequence of this is that the value doesn’t need any extra information
about what type that value actually is. Compare that with reference types, where each
object contains a block of data at the start identifying the actual type of the object,
along with some other information. You can never change the type of an object—
when you perform a simple cast, the runtime just takes a reference, checks whether
the object it refers to is a valid object of the desired type, and returns the original ref-
erence if it’s valid or throws an exception otherwise. The reference itself doesn’t know
the type of the object—so the same reference value can be used for multiple variables
of different types. For instance, consider the following code:

Stream stream = new MemoryStream();
MemoryStream memoryStream = (MemoryStream) stream;

The first line creates a new MemoryStream object and sets the value of the stream vari-
able to be a reference to that new object. The second line checks whether the value of
stream refers to a MemoryStream (or derived type) object and sets the value of memory-
Stream to be the same as stream.

 Once you understand these basic points, you can apply them when thinking about
some of the falsehoods that are often stated about value types and reference types.

2.3.3 Dispelling myths

Various myths do the rounds on a regular basis. I’m sure the misinformation is almost
always passed on with no malice and with no idea of the inaccuracies involved, but it’s
unhelpful nonetheless. In this section I’ll tackle the most prominent myths, explain-
ing the true situation as I go.

MYTH #1: “STRUCTS ARE LIGHTWEIGHT CLASSES”

This myth comes in a variety of forms. Some people believe that value types can’t or
shouldn’t have methods or other significant behavior—they should be used as simple
data transfer types, with just public fields or simple properties. The DateTime type is a
good counterexample to this: it makes sense for it to be a value type, in terms of being
a fundamental unit like a number or a character, and it also makes sense for it to be
able to perform calculations to do with its value. Looking at things from the other
direction, data transfer types should often be reference types anyway—the decision
should be based on the desired value or reference type semantics, not the simplicity of
the type.

 Other people believe that value types are “lighter” than reference types in terms of
performance. The truth is that in some cases value types are more performant—they
don’t require garbage collection unless they're boxed, don’t have the type identifica-
tion overhead, and don’t require dereferencing, for example. But in other ways refer-
ence types are more performant—parameter passing, assigning values to variables,
returning values, and similar operations only require 4 or 8 bytes to be copied
(depending on whether you’re running the 32-bit or 64-bit CLR) rather than copying
all the data. Imagine if ArrayList were somehow a “pure” value type, and passing an
Licensed to Devon Greenway <devon.greenway@gmail.com>

46 CHAPTER 2 Core foundations: building on C# 1
ArrayList expression to a method involved copying all its data! In almost all cases,
performance isn’t really determined by this sort of decision anyway. Bottlenecks are
almost never where you think they’ll be, and before you make a design decision based
on performance, you should measure the different options.

 It’s worth noting that the combination of the two beliefs doesn’t work either: it
doesn’t matter how many methods a type has (whether it's a class or a struct)—the
memory taken per instance isn’t affected. (There’s a cost in terms of the memory
taken up for the code itself, but that’s incurred once rather than for each instance.)

MYTH #2: “REFERENCE TYPES LIVE ON THE HEAP; VALUE TYPES LIVE ON THE STACK”

This one is often caused by laziness on the part of the person repeating it. The first
part is correct—an instance of a reference type is always created on the heap. It’s the
second part that causes problems. As I’ve already noted, a variable’s value lives wher-
ever it’s declared—so if you have a class with an instance variable of type int, that vari-
able’s value for any given object will always be where the rest of the data for the object
is—on the heap. Only local variables (variables declared within methods) and method
parameters live on the stack. In C# 2 and later, even some local variables don’t really
live on the stack, as we’ll see when we look at anonymous methods in chapter 5.

ARE THESE CONCEPTS RELEVANT NOW? It’s arguable that if you’re writing man-
aged code, you should let the runtime worry about how memory is best used.
Indeed, the language specification makes no guarantees about what lives
where; a future runtime may be able to create some objects on the stack if it
knows it could get away with it, or the C# compiler could generate code that
hardly uses the stack at all.

The next myth is usually just a terminology issue.

MYTH #3: “OBJECTS ARE PASSED BY REFERENCE IN C# BY DEFAULT”

This is probably the most widely propagated myth. Again, the people who make this
claim often (though not always) know how C# actually behaves, but they don’t know
what “pass by reference” really means. Unfortunately, this is confusing for people who
do know what it means. The formal definition of pass by reference is relatively compli-
cated, involving l-values and similar computer science terminology, but the important
thing is that if you pass a variable by reference, the method you’re calling can change
the value of the caller’s variable by changing its parameter value. Now remember that the
value of a reference type variable is the reference, not the object itself. You can change
the contents of the object that a parameter refers to without the parameter itself being
passed by reference. For instance, the following method changes the contents of the
StringBuilder object in question, but the caller’s expression will still refer to the
same object as before:

void AppendHello(StringBuilder builder)
{

builder.Append("hello");
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

47Value types and reference types
When this method is called, the parameter value (a reference to a StringBuilder) is
passed by value. If I were to change the value of the builder variable within the
method—for example, with the statement builder = null;—that change wouldn’t be
seen by the caller, contrary to the myth.

 It’s interesting to note that not only is the “by reference” bit of the myth inaccu-
rate, but so is the “objects are passed” bit. Objects themselves are never passed, either
by reference or by value. When a reference type is involved, either the variable is
passed by reference or the value of the argument (the reference) is passed by value.
Aside from anything else, this answers the question of what happens when null is
used as a by-value argument—if objects were being passed around, that would cause
issues, as there wouldn’t be an object to pass! Instead, the null reference is passed by
value in the same way as any other reference would be.

 If this quick explanation has left you bewildered, you might want to look at the arti-
cle on my main C# website (http://mng.bz/otVt), which goes into much more detail.

 These myths aren’t the only ones around. Boxing and unboxing come in for their
fair share of misunderstanding, which I’ll try to clear up next.

2.3.4 Boxing and unboxing

Sometimes, you just don’t want a value type value. You want a reference. There are any
number of reasons why this can happen, and fortunately C# and .NET provide a mech-
anism called boxing that lets you create an object from a value type value and use a ref-
erence to that new object. Before we leap straight into an example, let’s start off by
reviewing two important facts:

 The value of a reference type variable is always a reference.
 The value of a value type variable is always a value of that type.

Given those two facts, the following three lines of code don’t seem to make much
sense at first glance:

int i = 5;
object o = i;
int j = (int) o;

We have two variables: i is a value type variable, and o is a reference type variable. How
does it make sense to assign the value of i to o? The value of o has to be a reference,
and the number 5 isn’t a reference—it’s an integer value. What’s actually happening is
boxing: the runtime creates an object (on the heap—it’s a normal object) that con-
tains the value (5). The value of o is then a reference to that new object. The value in
the object is a copy of the original value—changing the value of i won't change the
value in the box at all.

 The third line performs the reverse operation—unboxing. We have to tell the com-
piler which type to unbox the object as, and if we use the wrong type (if it’s a boxed
uint or long, for example, or not a boxed value at all), an InvalidCastException is
thrown. Again, unboxing copies the value that was in the box: after the assignment,
there's no further association between j and the object.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/otVt

48 CHAPTER 2 Core foundations: building on C# 1
 That’s it, really—boxing and unboxing in a nutshell. The only remaining problem
is knowing when boxing and unboxing occur. Unboxing is usually obvious, because
the cast is present in the code. Boxing can be more subtle. We’ve seen the simple ver-
sion, but it can also occur if you call the ToString, Equals, or GetHashCode methods
on the value of a type that doesn’t override them,13 or if you use the value as an inter-
face expression—assigning it to a variable whose type is an interface type or passing it
as the value for a parameter with an interface type. For example, the statement
IComparable x = 5; would box the number 5.

 It’s worth being aware of boxing and unboxing because of the potential perfor-
mance penalty involved. A single box or unbox operation is cheap, but if you perform
hundreds of thousands of them, you not only have the cost of the operation itself, but
you’re also creating a lot of objects, which gives the garbage collector more work to do.
Again, this performance hit isn’t usually an issue, but it’s worth being aware of so you
can measure the effect if you’re concerned.

2.3.5 Summary of value types and reference types

In this section we’ve looked at the differences between value types and reference
types, as well as some of the myths surrounding them. Here are the key points:

 The value of a reference type expression (a variable, for example) is a refer-
ence, not an object.

 References are like URLs—they’re small pieces of data that let you access the
real information.

 The value of a value type expression is the actual data.
 There are times when value types are more efficient than reference types, and

vice versa.
 Reference type objects are always on the heap, but value type values can be on

either the stack or the heap, depending on context.
 When a reference type is used as a method parameter, by default the argument

is passed by value—but the value itself is a reference.
 Value type values are boxed when reference type behavior is needed; unboxing

is the reverse process.

Now that we’ve had a look at all the bits of C# 1 that you need to be comfortable with,
it’s time to take a quick look forward and see where each of the features will be
enhanced by the later versions.

2.4 Beyond C# 1: new features on a solid base
The three topics covered in this chapter are all vital to all versions of C#. Almost all
the new features relate to at least one of them, and they change the balance of how

13 Boxing will always occur when you call GetType() on a value type variable, because it can't be overridden.
You should already know the exact type if you’re dealing with the unboxed form, so you can just use typeof
instead.
Licensed to Devon Greenway <devon.greenway@gmail.com>

49Beyond C# 1: new features on a solid base
the language is used. Before we wrap up the chapter, let’s explore how the new fea-
tures relate to the old ones. I’m not going to give many details (for some reason the
publisher didn’t want a single 600-page section), but it’s helpful to have an idea of
where these areas are going before we get to the nitty-gritty. We’ll look at them in the
same order as we covered them earlier, starting with delegates.

2.4.1 Features related to delegates

Delegates of all kinds get a boost in C# 2, and then they’re given even more special
treatment in C# 3. Most of the features aren’t new to the CLR, but are clever compiler
tricks to make delegates work more smoothly within the language. The changes affect
not just the syntax we can use, but the appearance and feeling of idiomatic C# code.
Over time, C# is gaining a more functional approach.

 C# 1 has pretty clumsy syntax when it comes to creating a delegate instance. For
one thing, even if you need to accomplish something straightforward, you have to
write a whole separate method dedicated to that job in order to create a delegate
instance for it. C# 2 fixes this with anonymous methods, and introduces a simpler syn-
tax for the cases where you still want to use a normal method to provide the action for
the delegate. You can also create delegate instances using methods with compatible sig-
natures—the method signature no longer has to be exactly the same as the delegate’s
declaration.

 The following listing demonstrates all these improvements.

static void HandleDemoEvent(object sender, EventArgs e)
{
 Console.WriteLine ("Handled by HandleDemoEvent");

}
...
EventHandler handler;
handler = new EventHandler(HandleDemoEvent);
handler(null, EventArgs.Empty);

handler = HandleDemoEvent;
handler(null, EventArgs.Empty);

handler = delegate(object sender, EventArgs e)
{
 Console.WriteLine ("Handled anonymously");
};
handler(null, EventArgs.Empty);

handler = delegate
{

 Console.WriteLine ("Handled anonymously again");
};
handler(null, EventArgs.Empty);

MouseEventHandler mouseHandler = HandleDemoEvent;
mouseHandler(null, new MouseEventArgs(MouseButtons.None,
 0, 0, 0, 0));

Listing 2.4 Improvements in delegate instantiation brought in by C# 2

Specifies delegate
type and method

B

Implicitly converts to
delegate instance

C

Specifies action
with anonymous
method

D

Uses
anonymous
method
shortcut

E

Uses delegate
contravariance

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

50 CHAPTER 2 Core foundations: building on C# 1
The first part of the main code B is just C# 1 code, kept for comparison. The remain-
ing delegates all use new features of C# 2. Method group conversions C make event
subscription code read a lot more pleasantly—lines such as saveButton.Click +=
SaveDocument; are straightforward, with no extra fluff to distract the eye. The anony-
mous method syntax D is a little cumbersome, but does allow the action to be clear at
the point of creation, rather than being another method to look at before you under-
stand what’s going on. A shortcut is available when using anonymous methods E,
but this form can only be used when you don’t need the parameters. Anonymous
methods have other powerful features as well, but we’ll see those later.

 The final delegate instance created F is an instance of MouseEventHandler rather
than just EventHandler—but the HandleDemoEvent method can still be used due to
contravariance, which specifies parameter compatibility. Covariance specifies return
type compatibility. We’ll be looking at both of these in more detail in chapter 5. Event
handlers are probably the biggest beneficiaries of this, as suddenly the Microsoft
guideline to make all delegate types used in events follow the same convention makes
a lot more sense. In C# 1, it didn’t matter whether two different event handlers looked
quite similar—you had to have a method with an exactly matching signature in order
to create a delegate instance. In C# 2, you may find yourself able to use the same
method to handle many different kinds of events, particularly if the purpose of the
method is fairly event independent, such as logging.

 C# 3 provides special syntax for instantiating delegate types, using lambda expres-
sions. To demonstrate these, we’ll use a new delegate type. As part of the CLR gaining
generics in .NET 2.0, generic delegate types became available and were used in a num-
ber of API calls in generic collections. But .NET 3.5 takes things a step further, introduc-
ing a group of generic delegate types called Func that all take a number of parameters
of specified types and return a value of another specified type. The following listing
gives an example of the use of a Func delegate type as well as lambda expressions.

Func<int,int,string> func = (x, y) => (x * y).ToString();
Console.WriteLine(func(5, 20));

Func<int,int,string> is a delegate type that takes two integers and returns a string.
The lambda expression in listing 2.5 specifies that the delegate instance (held in
func) should multiply the two integers together and call ToString(). The syntax is
much more straightforward than that of anonymous methods, and there are other
benefits in terms of the amount of type inference the compiler is prepared to perform
for you. Lambda expressions are absolutely crucial to LINQ, and you should get ready
to make them a core part of your language toolkit. They’re not restricted to working
with LINQ, though—any use of anonymous methods from C# 2 can use lambda
expressions in C# 3, and that will almost always lead to shorter code.

 To summarize, the new features related to delegates are as follows:

Listing 2.5 Lambda expressions, which are like improved anonymous methods
Licensed to Devon Greenway <devon.greenway@gmail.com>

51Beyond C# 1: new features on a solid base
 Generics (generic delegate types)—C# 2
 Delegate instance creation expressions—C# 2
 Anonymous methods—C# 2
 Delegate covariance/contravariance—C# 2
 Lambda expression—C# 3

Additionally C# 4 allows generic covariance and contravariance for delegates, which
goes beyond what we’ve just seen. Indeed, generics form one of the principle enhance-
ments to the type system, which we’ll look at next.

2.4.2 Features related to the type system

The primary new feature in C# 2 regarding the type system is the inclusion of generics.
It largely addresses the issues I raised in section 2.2.2 about strongly typed collections,
although generic types are useful in a number of other situations, too. As a feature, it’s
elegant, it solves a real problem, and despite a few wrinkles it generally works well.
We’ve seen examples of this in quite a few places already, and it’s described fully in the
next chapter, so I won’t go into any more details here. It’ll be a brief reprieve,
though—generics form probably the most important feature in C# 2 with respect to
the type system, and you’ll see generic types throughout the rest of the book.

 C# 2 doesn't tackle the issues of return type covariance and parameter contravari-
ance for overriding members or implementing interfaces. But it does improve the situ-
ation for delegate instance creation in certain situations, as we saw in section 2.4.1.

 C# 3 introduces a wealth of new concepts in the type system, most notably anony-
mous types, implicitly typed local variables, and extension methods. Anonymous types them-
selves are mostly present for the sake of LINQ, where it’s useful to be able to effectively
create a data transfer type with a bunch of read-only properties without having to actu-
ally write the code for them. There’s nothing to stop them from being used outside
LINQ, though, which makes life easier for demonstrations. Listing 2.6 shows both fea-
tures in action.

var jon = new { Name = "Jon", Age = 31 };
var tom = new { Name = "Tom", Age = 4 };
Console.WriteLine ("{0} is {1}", jon.Name, jon.Age);
Console.WriteLine ("{0} is {1}", tom.Name, tom.Age);

The first two lines each show implicit typing (the use of var) and anonymous object
initializers (the new {...} bit), which create instances of anonymous types.

 There are two things worth noting at this stage, long before we get into the
details—points that have caused people to worry needlessly before. The first is that
C# 3 is still statically typed. The C# compiler has declared jon and tom to be of a par-
ticular type, just as normal, and when we use the properties of the objects they’re nor-
mal properties—no dynamic lookup is going on. It’s just that we (as source code

Listing 2.6 Demonstration of anonymous types and implicit typing
Licensed to Devon Greenway <devon.greenway@gmail.com>

52 CHAPTER 2 Core foundations: building on C# 1
authors) couldn’t tell the compiler what type to use in the variable declaration because
the compiler will be generating the type itself. The properties are also statically
typed—here the Age property is of type int, and the Name property of type string.

 The second point is that we haven’t created two different anonymous types here.
The variables jon and tom both have the same type because the compiler uses the
property names, types, and order to work out that it can generate just one type and
use it for both statements. This is done on a per-assembly basis, and makes life a lot
simpler in terms of being able to assign the value of one variable to another (for
example, jon = tom; would be permitted in the previous code) and similar operations.

 Extension methods are also there for the sake of LINQ but can be useful outside it.
Think of all the times you’ve wished that a framework type had a certain method, and
you’ve had to write a static utility method to implement it. For instance, to create a
new string by reversing an existing one, you might write a static StringUtil.Reverse
method. Well, the extension method feature effectively lets you call that static method
as if it existed on the string type itself, so you could write

string x = "dlrow olleH".Reverse();

Extension methods also let you appear to add methods with implementations to inter-
faces—and that’s what LINQ relies on heavily, allowing calls to all kinds of methods on
IEnumerable<T> that have never previously existed.

 C# 4 has two features related to the type system. A relatively minor feature is cova-
riance and contravariance for generic delegates and interfaces. This has been present
in the CLR since .NET 2.0 came out, but only with the introduction of C# 4 (and
updates to the generic types in the BCL) has it become usable for C# developers. A far
bigger feature—although one many coders may never need—is dynamic typing in C#.

 Remember the introduction I gave to static typing, where I tried to use the Length
property of an array and a string via the same variable? Well in C# 4, it works—when
you want it to. The following listing shows the same code except for the variable decla-
ration, but working as valid C# 4 code.

dynamic o = "hello";
Console.WriteLine(o.Length);
o = new string[] {"hi", "there"};
Console.WriteLine(o.Length);

By declaring the variable o as having a static type of dynamic (yes, you read that right),
the compiler handles almost everything to do with o differently, leaving all the bind-
ing decisions (such as what Length means) until execution time.

 Obviously we’re going to look at dynamic typing in greater depth, but I want to
stress now that C# 4 is still a statically typed language for the most part. Unless you’re
using the dynamic type (which acts as a static type denoting a dynamic value), every-
thing works exactly the same way as before. Most C# developers will only rarely need
dynamic typing, and for the rest of the time they can ignore it. When dynamic typing

Listing 2.7 Dynamic typing in C# 4
Licensed to Devon Greenway <devon.greenway@gmail.com>

53Beyond C# 1: new features on a solid base
is handy, it can be really slick—and of course it lets you play nicely with code written in
dynamic languages running on the Dynamic Language Runtime (DLR). I’d just advise
you not to start using C# as a primarily dynamic language. If that’s what you want, use
IronPython or something similar; languages which are designed to support dynamic
typing from the ground up are likely to have fewer unexpected gotchas.

 Here’s the quick-view list of these features, along with which version of C# they’re
introduced in:

 Generics—C# 2
 Limited delegate covariance/contravariance—C# 2
 Anonymous types—C# 3
 Implicit typing—C# 3
 Extension methods—C# 3
 Limited generic covariance/contravariance—C# 4
 Dynamic typing—C# 4

After that fairly diverse set of features on the type system in general, let’s look at the
features added to one specific part of typing in .NET—value types.

2.4.3 Features related to value types

There are only two features to talk about here, both introduced in C# 2. The first goes
back to generics yet again, and in particular collections. One common complaint
about using value types in collections with .NET 1.1 was that due to all of the “general-
purpose” APIs being specified in terms of the object type, every operation that added
a struct value to a collection would involve boxing it, and when retrieving it you’d have
to unbox it. While boxing is pretty cheap for an individual call, it can cause a signifi-
cant performance hit when it’s used every time with frequently accessed collections. It
also takes more memory than it needs to, due to the per-object overhead. Generics fix
both the speed and memory deficiencies by using the real type involved rather than
just a general-purpose object. As an example, it would’ve been madness to read a file
and store each byte as an element in an ArrayList in .NET 1.1—but in .NET 2.0 it
wouldn’t be crazy to do the same with a List<byte>.

 The second feature addresses another common cause of complaint, particularly
when talking to databases—the fact that you can’t assign null to a value type variable.
There’s no such concept as an int value of null, for instance, even though a database
integer field may well be nullable. At that point it can be hard to model the database
table within a statically typed class without ugliness of some form or another. Nullable
types are part of .NET 2.0, and C# 2 includes extra syntax to make them easy to use.
The following listing gives a brief example of this.

int? x = null;
x = 5;

Listing 2.8 Demonstration of a variety of nullable type features

Declares, sets
nullable variable
Licensed to Devon Greenway <devon.greenway@gmail.com>

54 CHAPTER 2 Core foundations: building on C# 1
if (x != null)
{

int y = x.Value;
Console.WriteLine(y);

}
int z = x ?? 10;

Listing 2.8 shows a number of the features of nullable types and the shorthand that C#
provides for working with them. We’ll get around to the details of each feature in
chapter 4, but the important point is how much easier and cleaner all of this is than
any of the alternative workarounds that have been used in the past.

 The list of enhancements is smaller this time, but they’re important features in
terms of both performance and elegance of expression:

 Generics—C# 2
 Nullable types—C# 2

2.5 Summary
This chapter has mostly been a revision exercise for C# 1. The aim wasn’t to cover any
one topic in its entirety, but merely to get everyone on the same page so that I can
describe the later features without worrying about the ground that I’m building on.

 All of the topics we’ve covered are core to C# and .NET, but I’ve seen a lot of mis-
understandings around them within community discussions. Although this chapter
hasn’t gone into much depth about any one point, it’ll hopefully have cleared up any
confusion that would’ve made the rest of the book harder to understand.

 The three core topics we’ve briefly covered in this chapter have all been signifi-
cantly enhanced since C# 1, and some features touch on more than one topic. In par-
ticular, generics has an impact on almost every area we’ve covered in this chapter—it’s
probably the most widely used and important feature in C# 2. Now that we’ve finished
all our preparations, we can start looking at it properly in the next chapter.

Tests for presence
of “real” value

Obtains “real” value

Uses null-coalescing
operator
Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 2

C# 2: solving the
issues of C# 1

 In part 1 we took a quick look at a few of the features of C# 2. Now it’s time to

do the job properly. We’ll see how C# 2 fixes various problems that developers
ran into when using C# 1, and how C# 2 makes existing features more useful by
streamlining them. This is no mean feat, and life with C# 2 is much more pleas-
ant than with C# 1.

 The new features in C# 2 have a certain amount of independence. That’s not
to say they’re not related at all; many of the features are based on—or at least
interact with—the massive contribution that generics make to the language. But
the different topics we’ll look at in the next five chapters don’t combine into one
“super feature.”

 The first four chapters of this part cover the biggest new features. We’ll look
at the following:

 Generics—The most important new feature in C# 2 (and indeed in the CLR
for .NET 2.0), generics allow type and method parameterization in terms
of the types they interact with.

 Nullable types—Value types such as int and DateTime don’t have any con-
cept of “no value present”; nullable types allow you to represent the
absence of a meaningful value.
Licensed to Devon Greenway <devon.greenway@gmail.com>

 Delegates—Although delegates haven’t changed at the CLR level, C# 2 makes
them a lot easier to work with. In addition to a few simple shortcuts, the intro-
duction of anonymous methods begins the movement toward a more functional
style of programming—a trend that continues in C# 3.

 Iterators—Though using iterators has always been simple in C# with the foreach
statement, it’s a pain to implement them in C# 1. The C# 2 compiler is happy to
build a state machine for you behind the scenes, hiding a lot of the complexity
involved.

Having covered the major, complex new features of C# 2 with a chapter dedicated to
each one, chapter 7 rounds off our coverage by introducing several simpler features.
Simpler doesn’t necessarily mean less useful: partial types in particular are crucial for
better designer support in versions of Visual Studio from 2005 onward. The same fea-
ture is beneficial for other generated code, too. Likewise many C# developers take the
ability to write a property with a public getter and a private setter for granted these
days—but it was only introduced in C# 2.

 When the first edition of this book was published, many developers still hadn’t
used C# 2 at all. My impression in 2010 is that it’s rare to find someone who’s cur-
rently using C#, but hasn’t at least dabbled with C# 2 and probably 3. The topics cov-
ered here are fundamental to how C# 3 and 4 work; in particular, attempting to
learn about LINQ without understanding generics and iterators would be tricky. If
you’ve been using C# 2 and upward for a while, you may find a lot of this part cov-
ers familiar ground—but I suspect you’ll still benefit from a deeper knowledge of
the details presented.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Parameterized typing
with generics
True1 story: The other day my wife and I did our weekly grocery shopping. Just
before we left, she asked me if I had the list. I confirmed that I did have the list, and
off we went. It was only when we got to the grocery store that our mistake made
itself obvious. My wife had been asking about the shopping list whereas I’d actually
brought the list of neat features in C# 2. When we asked an assistant whether we
could buy any anonymous methods, we received a strange look.

This chapter covers
 Understanding generic types and methods

 Type inference for generic methods

 Type constraints

 Reflection and generics

 CLR behavior

 Limitations of generics

 Comparisons with other languages

1 By which I mean “convenient for the purposes of introducing the chapter”—not necessarily accurate.
57

Licensed to Devon Greenway <devon.greenway@gmail.com>

58 CHAPTER 3 Parameterized typing with generics
 If only we could’ve expressed ourselves more clearly! If only she’d had some way of
saying that she wanted me to bring the list of items we wanted to buy! If only we’d had
generics...

 For most developers, generics will be the most important new feature of C# 2. They
enhance performance, make your code more expressive, and move a lot of safety
from execution time to compile time. Essentially, they allow you to parameterize types
and methods. Just as normal method calls often have parameters to tell them what val-
ues to use, generic types and methods have type parameters to tell them what types to
use. It all sounds confusing to start with—and if you’re completely new to generics,
you can expect a certain amount of head scratching—but once you’ve got the basic
idea, you’ll come to love them.

 In this chapter we’ll be looking at how to use generic types and methods that oth-
ers have provided (whether in the framework or as third-party libraries), and how to
write your own. Along the way, we’ll look at how generics work with the reflection calls
in the API, as well as a bit of detail around how the CLR handles generics. To conclude
the chapter, I’ll present some of the most frequently encountered limitations of
generics, along with possible workarounds, and compare generics in C# with similar
features in other languages.

 First, though, we need to understand the problems that caused generics to be
devised in the first place.

3.1 Why generics are necessary
If you still have any C# 1 code available, look at it and count the casts—particularly in
code that uses collections extensively. Don’t forget that almost every use of foreach
contains an implicit cast. When you use types that are designed to work with many dif-
ferent types of data, that naturally leads to casting, quietly telling the compiler not to
worry, that everything’s fine, just treat the expression over there as if it had this partic-
ular type. Using almost any API that has object as either a parameter type or a return
type will probably involve casts at some point. Having a single-class hierarchy with
object as the root makes some things more straightforward, but the object type in
itself is extremely dull, and in order to do anything genuinely useful with an object
you almost always need to cast it.

 Casts are bad, m’kay? Not bad in an “almost never do this” kind of way (like muta-
ble structs and nonprivate fields) but bad in a “necessary evil” kind of way. They’re an
indication that you ought to give the compiler more information somehow, and that
you’re choosing to ask the compiler to trust you at compile time and generate a check
to run at execution time, to keep you honest.

 Now, if you need to tell the compiler the information somewhere, chances are that
anyone reading your code is also going to need the same information. They can see it
where you’re casting, of course, but that’s not terribly useful. The ideal place to keep
such information is usually at the point of declaring a variable or method. This is even
more important if you’re providing a type or method that other people will call
Licensed to Devon Greenway <devon.greenway@gmail.com>

59Why generics are necessary
without access to your code. Generics allow library providers to prevent their users from
compiling code that calls the library with bad arguments. In C# 1, we had to rely on
manually written documentation —which can easily become incomplete or inaccu-
rate, as duplicate information so often is. When the extra information can be declared
in code as part of a method or type declaration, everyone can work more productively.
The compiler can do more checking; the IDE can present IntelliSense options based
on the extra information (for instance, offering the members of string as the next
step when you access an element within a list of strings); callers of methods can be
more confident of correctness in terms of arguments passed in and values returned;
and anyone maintaining your code can better understand what was running through
your head when you originally wrote it.

WILL GENERICS REDUCE YOUR BUG COUNT? Every description of generics I’ve
read (including my own) emphasizes the importance of compile-time type
checking over execution-time type checking. I’ll let you in on a secret: I can’t
remember ever fixing a bug in released code that was directly due to the lack
of type checking. In other words, the casts we put in C# 1 code always
worked, in my experience. Those casts were like warning signs, forcing us to
think about the type safety explicitly rather than it flowing naturally in the
code we write. Although generics may not radically reduce the number of
type safety bugs you encounter, the greater readability afforded can reduce
the number of bugs across the board. Code that’s simple to understand is
simple to get right. Likewise code which has to be robust in the face of mali-
cious callers is much simpler to write correctly when the type system can pro-
vide appropriate guarantees.

All of this would be enough to make generics worthwhile—but there are performance
improvements, too. First, as the compiler can perform more enforcement, that leaves
less to be checked at execution time. Second, the JIT can treat value types in a particu-
larly clever way that manages to eliminate boxing and unboxing in many situations. In
some cases, this can make a huge difference to performance in terms of both speed
and memory consumption.

 Many of the benefits of generics may strike you as being similar to the benefits of
statically typed languages over dynamic ones: better compile-time checking, more
information expressed directly in the code, more IDE support, better performance.
The reason for this is fairly simple: when you’re using a general API (for example,
ArrayList) that can’t differentiate between the different types, you effectively are in a
dynamic situation in terms of access to that API. The reverse isn’t generally true, by the
way—the benefits that dynamic languages provide rarely apply to the choice between
generic/nongeneric APIs. When you can reasonably use generics, the decision to do
so is usually a no-brainer.

 So, those are the goodies awaiting us in C# 2—now it’s time to actually start using
generics.
Licensed to Devon Greenway <devon.greenway@gmail.com>

60 CHAPTER 3 Parameterized typing with generics
3.2 Simple generics for everyday use
The topic of generics has a lot of dark corners if you want to know everything about it.
The C# language specification goes into a great deal of detail in order to make sure
that the behavior is specified in pretty much every conceivable case. But we don’t
need to understand most of those corner cases in order to be productive. (The same is
true in other areas, in fact. For example, you don’t need to know all the exact rules
about definite assignment—you just fix the code appropriately when the compiler
complains.)

 This section will cover most of what you’ll need in your day-to-day use of generics,
both consuming generic APIs that other people have created and creating your own.
If you get stuck while reading this chapter but want to keep making progress, I suggest
you concentrate on what you need to know in order to use generic types and methods
within the framework and other libraries; writing your own generic types and methods
crops up a lot less often than using the framework ones.

 We’ll start by looking at one of the collection classes introduced in .NET 2.0—
Dictionary<TKey,TValue>.

3.2.1 Learning by example: a generic dictionary

Using generic types can be straightforward if you don’t happen to hit some of the lim-
itations and start wondering what’s wrong. You don’t need to know any of the termi-
nology to have a pretty good guess as to what the code will do when reading it, and
with a bit of trial and error you can experiment your way to writing your own working
code, too. (One of the benefits of generics is that more checking is done at compile
time, so you’re more likely to have working code by the time it all compiles—this
makes the experimentation simpler.) Of course, the aim of this chapter is to give you
the knowledge so that you won’t be using guesswork—you’ll know what’s going on at
every stage.

 For now, let’s look at some code that’s straightforward even if the syntax is unfa-
miliar. Listing 3.1 uses a Dictionary<TKey,TValue> (roughly the generic equivalent
of the nongeneric Hashtable class) to count the frequencies of words in a given
piece of text.

static Dictionary<string,int> CountWords(string text)
{

Dictionary<string,int> frequencies;
frequencies = new Dictionary<string,int>();

string[] words = Regex.Split(text, @"\W+");

foreach (string word in words)
{

if (frequencies.ContainsKey(word))
{

frequencies[word]++;

Listing 3.1 Using a Dictionary<TKey,TValue> to count words in text

Creates new map from
word to frequency

B

Splits text
into words

C

Adds to or
updates map

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

61Simple generics for everyday use
}
else
{

frequencies[word] = 1;
}

}
return frequencies;

}
...
string text = @"Do you like green eggs and ham?

I do not like them, Sam-I-am.
I do not like green eggs and ham.";

Dictionary<string,int> frequencies = CountWords(text);
foreach (KeyValuePair<string,int> entry in frequencies)
{

string word = entry.Key;
int frequency = entry.Value;
Console.WriteLine ("{0}: {1}", word, frequency);

}

The CountWords method first creates an empty map from string to int B. This will
effectively count how often each word is used within the given text. We then use a reg-
ular expression C to split the text into words. It’s crude—we end up with an empty
string due to the period at the end of the text, and I haven’t worried about the fact
that do and Do are counted separately. These issues are easily fixable, but I wanted to
keep the code as simple as possible for this example. For each word, we check whether
it’s already in the map. If it is, we increment the existing count; otherwise, we give the
word an initial count of 1 D. Note how the incrementing code doesn’t need to do a
cast to int in order to perform the addition: the value we retrieve is known to be an
int at compile time. The step incrementing the count is actually performing a get on
the indexer for the map, then incrementing, then performing a set on the indexer.
Some developers may find it easier to keep this explicit, using frequencies[word] =
frequencies[word] + 1; instead.

 The final part of the listing is familiar: enumerating through a Hashtable gives a
similar (nongeneric) DictionaryEntry with Key and Value properties for each
entry E. But in C# 1 we would’ve needed to cast both the word and the frequency,
as the key and value would’ve been returned as just object. That also means that
the frequency would’ve been boxed. Admittedly we don’t have to put the word and
the frequency into variables—we could’ve just had a single call to Console.Write-
Line and passed entry.Key and entry.Value as arguments. I just have the vari-
ables here to ram home the point that no casting is necessary.

 Now that we’ve seen an example, let’s look at what it means to talk about
Dictionary<TKey,TValue> in the first place. What are TKey and TValue, and why do
they have angle brackets round them?

D

Prints each
key/value pair
from map

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

62 CHAPTER 3 Parameterized typing with generics
3.2.2 Generic types and type parameters

There are two forms of generics in C#: generic types (including classes, interfaces, dele-
gates, and structures—there are no generic enums) and generic methods. Both are
essentially a way of expressing an API (whether it’s for a single generic method or a
whole generic type) such that in some places where you’d expect to see a normal type,
you see a type parameter instead.

 A type parameter is a placeholder for a real type. Type parameters appear in
angle brackets within a generic declaration, using commas to separate them. So in
Dictionary<TKey,TValue> the type parameters are TKey and TValue. When you use
a generic type or method, you specify the real types you want to use. These are called
the type arguments—for example, in listing 3.1 the type arguments were string (for
TKey) and int (for TValue).

JARGON ALERT! A lot of detailed terminology is involved in generics. I’ve
included it for reference—and because occasionally it makes it easier to talk
about topics in a precise manner. It could be useful if you ever need to con-
sult the language specification, but you’re unlikely to need to use this termi-
nology in day-to-day life. Just grin and bear it for the moment. A lot of this
terminology is defined in section 4.4 of the C# 4 specification—look there for
further details.

The form where none of the type parameters have been provided with type arguments
is called an unbound generic type. When type arguments are specified, the type is said to
be a constructed type. Unbound generic types are effectively blueprints for constructed
types, in a way similar to how types (generic or not) can be regarded as blueprints for
objects. It’s a sort of extra layer of abstraction. Figure 3.1 shows this graphically.

Instance of
Hashtable

Instantiation

Instance of
Dictionary<string,int>

Specification of

type arguments

(etc.)

Instance of
Dictionary<byte,long>

Nongeneric
blueprints

Generic
blueprints

Instantiation Instantiation

Dictionary<TKey,TValue>
(unbound generic type)

Hashtable Dictionary<string,int>
(constructed type)

Dictionary<byte,long>
(constructed type)

Figure 3.1 Unbound generic types act as blueprints for constructed types, which then act as
blueprints for actual objects, just as nongeneric types do.
Licensed to Devon Greenway <devon.greenway@gmail.com>

63Simple generics for everyday use
 As a further complication, types can be open or closed. An open type is one that still
involves a type parameter (for example, as one of the type arguments, or as the array
element type), whereas a closed type is one that isn’t open; every aspect of the type is
known precisely. All code actually executes in the context of a closed constructed type.
The only time you see an unbound generic type appear within C# code (other than as
a declaration) is within the typeof operator, which we’ll meet in section 3.4.4.

 The idea of a type parameter “receiving” information and a type argument “pro-
viding” the information—the dashed lines in figure 3.1—is exactly the same as with
method parameters and arguments, although type arguments have to be types rather
than just arbitrary values. The type argument has to be known at compile time, but it
can be (or involve) a type parameter from the relevant context.

 You can think of a closed type as having the API of the open type, but with the type
parameters being substituted with their corresponding type arguments.2 Table 3.1
shows some public method and property declarations from the open type Dictionary
<TKey,TValue> and the equivalent member in the closed type we built from it—
Dictionary<string,int>.

One important thing to note is that none of the methods in table 3.1 are actually
generic methods. They’re just “normal” methods within a generic type, and they hap-
pen to use the type parameters declared as part of the type. We’ll look at generic
methods in the next section.

 Now that you know what TKey and TValue mean, and what the angle brackets are
for, we can see what the declarations in table 3.1 would look like within the class decla-
ration. Here’s what the code for Dictionary<TKey,TValue> might look like—
although the actual method implementations are all missing, and there are more
members in reality:

namespace System.Collections.Generic
{

public class Dictionary<TKey,TValue>
: IEnumerable<KeyValuePair<TKey,TValue>>

2 It doesn’t always work exactly that way—there are corner cases that break when you apply that simple rule—
but it’s an easy way of thinking about generics that works in the vast majority of situations.

Table 3.1 Examples of how method signatures in generic types contain placeholders, which are
replaced when the type arguments are specified

Method signature in generic type
Method signature after type parameter

substitution

void Add(TKey key, TValue value) void Add(string key, int value)

TValue this[TKey key] { get; set; } int this[string key] { get; set; }

bool ContainsValue(TValue value) bool ContainsValue(int value)

bool ContainsKey(TKey key) bool ContainsKey(string key)

Declares
generic
class Implements generic

interface
Licensed to Devon Greenway <devon.greenway@gmail.com>

64 CHAPTER 3 Parameterized typing with generics
{
public Dictionary() { ... }

public void Add(TKey key, TValue value) { ... }

public TValue this[TKey key]
{

get { ... }
set { ... }

}

public bool ContainsValue(TValue value) { ... }

public bool ContainsKey(TKey key) { ... }

[... other members ...]
}

}

Note how Dictionary<TKey,TValue> implements the generic interface IEnumerable
<KeyValuePair<TKey,TValue>> (and many other interfaces in real life). Whatever
type arguments you specify for the class are applied to the interface where the same
type parameters are used—so in our example, Dictionary<string,int> implements
IEnumerable<KeyValuePair<string,int>>. That’s actually sort of a doubly generic
interface—it’s the IEnumerable<T> interface, with the structure KeyValue-

Pair<string,int> as the type argument. It’s because it implements that interface that
listing 3.1 was able to enumerate the keys and values in the way that it did.

 It’s also worth pointing out that the constructor doesn’t list the type parameters in
angle brackets. The type parameters belong to the type rather than to the particular
constructor, so that’s where they’re declared. Members only declare type parameters
when they’re introducing new ones—and only methods can do that.

PRONOUNCING GENERICS If you ever need to describe a generic type to a col-
league, it’s conventional to use “of” to introduce the type parameters or argu-
ments—so List<T> is pronounced “list of T,” for example. In VB, this is part
of the language: the type itself would be written as List(Of T). When there
are multiple type parameters, I find it makes sense to separate them with a
word appropriate to the meaning of the overall type—so I’d talk about a “dic-
tionary of string to int” in order to emphasize the mapping aspect, but a
“tuple of string and int.”

Generic types can effectively be overloaded on the number of type parameters—so
you could define MyType, MyType<T>, MyType<T,U>, MyType<T,U,V>, and so forth, all
within the same namespace. The names of the type parameters aren’t used when con-
sidering this—just how many there are. These types are unrelated except in name—
there’s no default conversion from one to another, for instance. The same is true for
generic methods: two methods can be exactly the same in signature other than the
number of type parameters. Although this may sound like a recipe for disaster, it can
be useful if you want to take advantage of generic type inference, where the compiler can
work out some of the type arguments for you; we'll come back to that in section 3.3.2.

Declares parameterless constructor

Declares method using
type parameters
Licensed to Devon Greenway <devon.greenway@gmail.com>

65Simple generics for everyday use
NAMING CONVENTIONS FOR TYPE PARAMETERS Although you could have a type
with type parameters T, U, and V, it wouldn’t give much indication of what they
actually meant, or how they should be used. Compare this with Dictionary
<TKey,TValue>, where it’s obvious that TKey represents the type of the keys
and TValue represents the type of the values. Where you have a single type
parameter and its meaning is clear, T is conventionally used (List<T> is a good
example of this). Multiple type parameters should usually be named accord-
ing to meaning, using the prefix T to indicate a type parameter. Every so often,
you may run into a type with multiple single-letter type parameters
(SynchronizedKeyedCollection<K,T>, for example), but you should try to
avoid creating the same situation yourself.

Now that we have an idea of what generic types do, let’s look at generic methods.

3.2.3 Generic methods and reading generic declarations

I’ve mentioned generic methods a few times, but we haven’t actually met one yet. You
may find the overall idea of generic methods more confusing than generic types—
they’re somehow less natural for the brain—but it’s the same basic principle. We’re
used to the parameters and return value of a method having firmly specified types,
and we’ve seen how a generic type can use its type parameters in method declarations.
Generic methods go one step further: even if you know exactly which constructed type
you’re dealing with, an individual method can have type parameters, too. Don’t worry
if you’re still none the wiser—the concept is likely to click at some point after you’ve
seen enough examples.

 Dictionary<TKey,TValue> doesn’t have any generic methods, but its close neigh-
bor List<T> does. As you can imagine, List<T> is just a list of items of whatever type is
specified—so List<string> is a list of strings, for instance. Remembering that T is the
type parameter for the whole class, let’s dissect a generic method declaration.
Figure 3.2 shows what the different parts of the declaration of the ConvertAll method
mean.3

 When you look at a generic declaration—whether it’s for a generic type or a
generic method—it can be daunting trying to work out what it means, particularly if
you have to deal with generic types of generic types, as we did when we looked at the

3 I’ve renamed the parameter from converter to conv so that it fits on one line, but everything else is as doc-
umented.

List<TOutput> ConvertAll<TOutput>(Converter<T,TOutput> conv)

Return type
(a generic list)

Parameter type (generic delegate)Method name

Parameter nameType parameter

Figure 3.2 The anatomy of a generic method declaration
Licensed to Devon Greenway <devon.greenway@gmail.com>

66 CHAPTER 3 Parameterized typing with generics
interface implemented by the dictionary. The key is to not panic—just take things
calmly, and pick an example situation. Use a different type for each type parameter,
and apply them all consistently.

 In this case, let’s start by replacing the type parameter of the type containing the
method (the <T> part of List<T>). We’ll stick with the concept of a list of strings, and
replace T with string everywhere in the method declaration:

List<TOutput> ConvertAll<TOutput>(Converter<string,TOutput> conv)

That looks a bit better, but we’ve still got TOutput to deal with. We can tell that it’s a
method’s type parameter (apologies for the confusing terminology) because it’s in
angle brackets directly after the name of the method. So, let’s try to use another famil-
iar type—Guid—as the type argument for TOutput. Again we replace the type parame-
ter with the type argument everywhere. We can now think of the method as if it were
nongeneric, removing the type parameter part of the declaration:

List<Guid> ConvertAll(Converter<string,Guid> conv)

Now everything is expressed in terms of a concrete type, so it’s easier to think about.
Even though the real method is generic, we’re just treating it as if it weren’t for the
sake of understanding it better. Going through the elements of this declaration from
left to right:

 The method returns a List<Guid>.
 The method’s name is ConvertAll.
 The method has a single parameter: a Converter<string,Guid> called conv.

Now we just need to know what Converter<string,Guid> is and we’re all done. Not sur-
prisingly, Converter<string,Guid> is a constructed generic delegate type (the unbound
type is Converter<TInput,TOutput>), which is used to convert a string to a GUID.

 So, we have a method that can operate on a list of strings, using a converter to pro-
duce a list of GUIDs. Now that we understand the method’s signature, it’s easier to
understand the documentation, which confirms that this method does the obvious
thing and creates a new List<Guid>, converts each element in the original list into the
target type adding it to the new list, and then returns that list. Thinking about the sig-
nature in concrete terms gives us a clearer mental model, and makes it simpler to
think about what we might expect the method to do. Although this technique may
sound somewhat simplistic, I find it useful for complicated methods even now. Some
of the LINQ method signatures with four type parameters are fearsome beasts, but
putting it into concrete terms tames them significantly.

 Just to prove I haven’t been leading you down the garden path, let’s take a look at
this method in action. Listing 3.2 shows the conversion of a list of integers into a list of
floating-point numbers, where each element of the second list is the square root of the
corresponding element in the first list. After the conversion, we print out the results.
Licensed to Devon Greenway <devon.greenway@gmail.com>

67Simple generics for everyday use

static double TakeSquareRoot(int x)
{

return Math.Sqrt(x);
}
...
List<int> integers = new List<int>();
integers.Add(1);
integers.Add(2);
integers.Add(3);
integers.Add(4);
Converter<int,double> converter = TakeSquareRoot;
List<double> doubles;
doubles = integers.ConvertAll<double>(converter);
foreach (double d in doubles)
{

Console.WriteLine(d);
}

The creation and population of the list B is straightforward enough—it’s just a
strongly typed list of integers. C uses a feature of delegates (method group conver-
sions), which is new to C# 2 and which we’ll discuss in more detail in section 5.2.
Although I don’t like using a feature before describing it fully, the line would’ve been
too long to fit on the page with the C# 1 delegate syntax. It does what you expect it to,
though. At D we call the generic method, specifying the type argument for the
method in the same way as we’ve seen for generic types. This is one situation where we
could’ve used type inference to avoid explicitly specifying the type argument, but I
wanted to take it one step at a time. Writing out the list that has been returned is sim-
ple, and when you run the code you’ll see it print 1, 1.414..., 1.732..., and 2, as
expected.

 So, what’s the point of all of this? We could’ve just used a foreach loop to go
through the integers and printed out the square root immediately, of course, but it’s
not uncommon to want to convert a list of one type to a list of another by performing
some logic on it. The code to do it manually is still simple, but it’s easier to read a ver-
sion that just does it in a single method call. That’s often the way with generic meth-
ods—they often do things that previously you’d have happily done “longhand” but
that are simpler with a method call. Before generics, there could’ve been a similar
operation to ConvertAll on ArrayList converting from object to object, but it
would’ve been a lot less satisfactory. Anonymous methods (see section 5.4) also help
here—if we hadn’t wanted to introduce an extra method, we could’ve just specified
the conversion “inline.” LINQ and lambda expressions take this pattern much further,
as we’ll see in part 3.

 Note that generic methods can be part of nongeneric types as well. Listing 3.3
shows a generic method being declared and used within a normal nongeneric class.

Listing 3.2 The List<T>.ConvertAll<TOutput> method in action

Creates, populates
list of integers

B

Creates delegate
instance

C

Calls generic method
to convert listD
Licensed to Devon Greenway <devon.greenway@gmail.com>

68 CHAPTER 3 Parameterized typing with generics

static List<T> MakeList<T>(T first, T second)
{

List<T> list = new List<T>();
list.Add(first);
list.Add(second);
return list;

}
...
List<string> list = MakeList<string>("Line 1", "Line 2");
foreach (string x in list)
{

Console.WriteLine (x);
}

The MakeList<T> generic method only needs one type parameter (T). All it does is
build a list containing the two parameters. It’s worth noting that we can use T as a type
argument when we create the List<T> in the method, though. Just as when we were
looking at generic declarations, think of the implementation as (roughly speaking)
replacing all of the places where it says T with string. When we call the method, we
use the same syntax we’ve seen before to specify the type arguments.

 All okay so far? You should now have the hang of simple generics. There’s a bit
more complexity to come, I’m afraid, but if you’re happy with the fundamental idea
of generics, you’ve jumped the biggest hurdle. Don’t worry if it’s still a bit hazy—par-
ticularly when it comes to the open/closed/unbound/constructed terminology—but
now would be a good time to do some experimentation so you can see generics in
action before we go any further. If you haven’t used the generic collections before,
you might want to quickly look at appendix B, which describes what’s available. The
collection types give you a simple starting point for playing with generics, as well as
being widely used in almost every nontrivial .NET program.

 One thing you may find when you experiment is that it’s hard to go only part of
the way. Once you make one part of an API generic, you often find that you need to
rework other code, either making that generic too or putting in the casts required by
the new, more strongly typed method calls. An alternative can be to have a strongly
typed implementation, using generic classes under the covers, but leaving a weakly
typed API for the moment. As time goes on, you’ll become more confident about
when it’s appropriate to use generics.

3.3 Beyond the basics
Though the relatively simple uses of generics we’ve seen can get you a long way, there
are some more features available that can help you further. We’ll start by examining
type constraints, which give you more control over which type arguments can be speci-
fied. They’re useful when creating your own generic types and methods, and you’ll
need to understand them in order to know what options are available when using the
framework, too.

Listing 3.3 Implementing a generic method in a nongeneric type
Licensed to Devon Greenway <devon.greenway@gmail.com>

69Beyond the basics
 We’ll then examine type inference—a handy compiler trick that means that when
you’re using generic methods, you don’t always have to explicitly state the type argu-
ments. You don’t have to use it, but it can make your code a lot easier to read when
used appropriately. We’ll see in part 3 that the C# compiler is gradually being allowed
to infer a lot more information from your code, while still keeping the language safe
and statically typed.4

 The last part of this section deals with obtaining the default value of a type param-
eter and what comparisons are available when you’re writing generic code. We’ll wrap
up with an example demonstrating most of the features we’ve covered, as well as being
a useful class in itself.

 Although this section delves a bit deeper into generics, there’s nothing really hard
about it. There’s plenty to remember, but all the features serve a purpose, and you’ll
be grateful for them when you need them. Let’s get started.

3.3.1 Type constraints

So far, all the type parameters we’ve seen can be applied to any type at all—they’re
unconstrained. We can have a List<int>, a Dictionary<object,FileMode>, anything.
That’s fine when we’re dealing with collections that don’t have to interact with what
they store—but not all uses of generics are like that. Often you want to call methods
on instances of the type parameter, or create new instances, or make sure you only
accept reference types (or only accept value types). In other words, you want to specify
rules to say which type arguments are considered valid for your generic type or
method. In C# 2, you do this with constraints.

 Four kinds of constraints are available, and the general syntax is the same for all of
them. Constraints come at the end of the declaration of a generic method or type,
and are introduced by the contextual keyword where. They can be combined together
in sensible ways, as we’ll see later. First, though, we’ll explore each kind of constraint
in turn.

REFERENCE TYPE CONSTRAINTS

The first kind of constraint, which is expressed as T : class and which must be the
first constraint specified for that type parameter, simply ensures that the type argu-
ment used is a reference type. This can be any class, interface, array, or delegate—or
another type parameter that’s already known to be a reference type. For example,
consider the following declaration:

struct RefSample<T> where T : class

Valid closed types include

 RefSample<IDisposable>
 RefSample<string>
 RefSample<int[]>

4 Well, aside from any C# 4 code that explicitly uses dynamic typing, anyway.
Licensed to Devon Greenway <devon.greenway@gmail.com>

70 CHAPTER 3 Parameterized typing with generics
Invalid closed types include

 RefSample<Guid>
 RefSample<int>

I deliberately made RefSample a struct (and therefore a value type) to emphasize the
difference between the constrained type parameter and the type itself. RefSample
<string> is still a value type with value semantics everywhere—it just happens to use
the string type wherever T is specified in the code.

 When a type parameter is constrained this way, you can compare references
(including null) with == and !=, but be aware that unless there are any other con-
straints, only references will be compared, even if the type in question overloads those
operators (as string does, for example). With a conversion type constraint
(described later), you can end up with “compiler guaranteed” overloads of == and !=,
in which case those overloads are used—but that’s relatively rare.

VALUE TYPE CONSTRAINTS

This constraint, expressed as T : struct, ensures that the type argument used is a
value type, including enums. It excludes nullable types (as described in chapter 4),
though. Let’s look at an example declaration:

class ValSample<T> where T : struct

Valid closed types include

 ValSample<int>
 ValSample<FileMode>

Invalid closed types include

 ValSample<object>
 ValSample<StringBuilder>

This time ValSample is a reference type, despite T being constrained to be a value
type. Note that System.Enum and System.ValueType are both reference types in
themselves, so they aren’t allowed as valid type arguments for ValSample. When a
type parameter is constrained to be a value type, comparisons using == and != are
prohibited.

 I rarely find myself using value or reference type constraints, although we’ll see in
the next chapter that nullable value types rely on value type constraints. The remain-
ing two constraints are likely to prove more useful to you when writing your own
generic types.

CONSTRUCTOR TYPE CONSTRAINTS

The third kind of constraint is expressed as T : new() and must be the last constraint
for any particular type parameter. It simply checks that the type argument used has a
parameterless constructor, which can be used to create an instance. This applies to
any value type; any nonstatic, nonabstract class without any explicitly declared con-
structors; and any nonabstract class with an explicit public parameterless constructor.

Licensed to Devon Greenway <devon.greenway@gmail.com>

71Beyond the basics
C# VERSUS CLI STANDARDS There’s a discrepancy between the C# and CLI
standards when it comes to value types and constructors. The C# specification
states that all value types have a default parameterless constructor, and it uses
the same syntax to call both explicitly declared constructors and the parame-
terless one, relying on the compiler to do the right thing underneath. The
CLI specification has no such requirement, but provides a special instruction
to create a default value without specifying any parameters. You can see this
discrepancy at work when you use reflection to find the constructors of a
value type—you won’t see a parameterless one.

Again, let’s look at a quick example, this time for a method. Just to show how it’s use-
ful, I’ll give the implementation of the method, too:

public T CreateInstance<T>() where T : new()
{

return new T();
}

This method just returns a new instance of whatever type you specify, provided that it
has a parameterless constructor. So calls to CreateInstance<int>() and Create-
Instance<object>() are okay, but CreateInstance<string>() isn’t, because string
doesn’t have a parameterless constructor.

 There’s no way of constraining type parameters to force other constructor signa-
tures—for instance, you can’t specify that there has to be a constructor taking a single
string parameter. It can be frustrating, but that’s unfortunately just the way it is. We’ll
look at this issue in more detail when we consider the various restrictions of .NET
generics in section 3.5.

 Constructor type constraints can be useful when you need to use factory-like pat-
terns, where one object will create another one as and when it needs to. Factories
often need to produce objects that are compatible with a certain interface, of
course—and that’s where our last type of constraint comes in.

CONVERSION TYPE CONSTRAINTS

The final (and most complicated) kind of constraint lets you specify another type that
the type argument must be implicitly convertible to via an identity, reference, or box-
ing conversion. You can specify that one type argument be convertible to another,
too—this is called a type parameter constraint and makes it harder to understand the
declaration, but can be handy every so often. Table 3.2 shows some examples of
generic type declarations with conversion type constraints, along with valid and
invalid examples of corresponding constructed types.

 The third constraint of T : IComparable<T> is just one example of using a generic
type as the constraint. Other variations such as T : List<U> (where U is another type
parameter) and T : IList<string> are also fine. You can specify multiple interfaces,
but only one class. For instance, this is fine (if hard to satisfy):

class Sample<T> where T : Stream,
IEnumerable<string>,
IComparable<int>
Licensed to Devon Greenway <devon.greenway@gmail.com>

72 CHAPTER 3 Parameterized typing with generics
But this isn’t:

class Sample<T> where T : Stream,
ArrayList,
IComparable<int>

No type can derive directly from more than one class anyway, so such a constraint
would usually either be impossible (like this one) or part of it would be redundant
(specifying that the type had to derive from both Stream and MemoryStream, for exam-
ple). One more set of restrictions: the type you specify can’t be a value type, a sealed
class (such as string), or any of the following “special” types:

 System.Object
 System.Enum
 System.ValueType
 System.Delegate

WORKING AROUND THE LACK OF ENUM AND DELEGATE CONSTRAINTS The inabil-
ity to specify the preceding types in conversion type constraints sounds like
it’s due to a CLR restriction—but it’s not. It may have been historically (at
some point while generics were still being designed), but if you construct the
appropriate code in IL, it works fine. The CLI specification even lists these as
examples and explains what would be valid and what wouldn’t. This is frus-
trating, and there are plenty of generic methods that would be useful when
restricted to delegates or enums. I have an open source project called Uncon-
strained Melody (http://mng.bz/s9Ca), which performs some hackery to
build a class library that does have these constraints on various utility methods.
Although the C# compiler won’t let you declare such constraints, it’s happy to
apply them when you call the methods in the library. Perhaps in a future ver-
sion of C#, the prohibition will be lifted.

Conversion type constraints are probably the most useful kind, as they mean you can
use members of the specified type on instances of the type parameter. One particularly

Table 3.2 Examples of conversion type constraints

Declaration Constructed type examples

class Sample<T> where T : Stream Valid: Sample<Stream> (identity conversion)
Invalid: Sample<string>

struct Sample<T> where T : IDisposable Valid: Sample<SqlConnection>
(reference conversion)

Invalid: Sample<StringBuilder>

class Sample<T> where T : IComparable<T> Valid: Sample<int> (boxing conversion)
Invalid: Sample<FileInfo>

class Sample<T,U> where T : U Valid: Sample<Stream,IDisposable>
(reference conversion)

Invalid: Sample<string,IDisposable>
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/s9Ca

73Beyond the basics
handy example of this is T : IComparable<T>, so that you know you can compare two
instances of T meaningfully and directly. We’ll see an example of this (as well as discuss
other forms of comparison) in section 3.3.3.

COMBINING CONSTRAINTS

I’ve mentioned the possibility of having multiple constraints, and we’ve seen them in
action for conversion type constraints, but we haven’t seen the different kinds being
combined together. Obviously no type can be both a reference type and a value type,
so that combination is forbidden. Likewise, every value type has a parameterless con-
structor, so you can’t specify the construction constraint when you already have a value
type constraint (although you can still use new T() within methods if T is constrained
to be a value type). If you have multiple conversion type constraints and one of them
is a class, that has to come before the interfaces—and you can’t specify the same inter-
face more than once. Different type parameters can have different constraints, and
they’re each introduced with a separate where.

 Let’s see some valid and invalid examples:

Valid
class Sample<T> where T : class, IDisposable, new()
class Sample<T> where T : struct, IDisposable
class Sample<T,U> where T : class where U : struct, T
class Sample<T,U> where T : Stream where U : IDisposable

Invalid
class Sample<T> where T : class, struct
class Sample<T> where T : Stream, class
class Sample<T> where T : new(), Stream
class Sample<T> where T : IDisposable, Stream
class Sample<T> where T : XmlReader, IComparable, IComparable
class Sample<T,U> where T : struct where U : class, T
class Sample<T,U> where T : Stream, U : IDisposable

I included the last example on each list because it’s so easy to try the invalid one
instead of the valid version, and the compiler error isn’t at all helpful. Just remember
that each list of type parameter constraints needs its own introductory where. The
third valid example is interesting—if U is a value type, how can it derive from T, which
is a reference type? The answer is that T could be an object or an interface that U
implements. It’s a pretty nasty constraint, though.

SPECIFICATION TERMINOLOGY The specification categorizes constraints slightly
differently—into primary constraints, secondary constraints, and constructor
constraints. A primary constraint is a reference type constraint, a value type
constraint, or a conversion type constraint using a class. A secondary con-
straint is a conversion type constraint using an interface or another type
parameter. I don’t find these particularly useful categories, but they make it
easier to define the grammar of constraints: the primary constraint is optional
but you can only have one; you can have as many secondary constraints as you
like; the constructor constraint is optional (unless you have a value type con-
straint, in which case it’s forbidden).
Licensed to Devon Greenway <devon.greenway@gmail.com>

74 CHAPTER 3 Parameterized typing with generics
Now that you have all the knowledge you need to read generic type declarations, let’s
look at the type argument inference that I mentioned earlier. In listing 3.2 we explicitly
stated the type arguments to List<T>.ConvertAll, and we did the same in listing 3.3
for our own MakeList method—but let’s now ask the compiler to work them out when
it can, making it simpler to call generic methods.

3.3.2 Type inference for type arguments of generic methods

Specifying type arguments when you’re calling a generic method can often seem
pretty redundant. Usually it’s obvious what the type arguments should be, based on
the method arguments themselves. To make life easier, from C# 2 onward, the com-
piler is allowed to be smart in tightly defined ways, so you can call the method without
explicitly stating the type arguments.

 Before we go any further, I should stress that this is only true for generic methods. It
doesn’t apply to generic types. Now that we’ve cleared that up, let’s look at the relevant
lines from listing 3.3, and see how things can be simplified. Here are the lines declar-
ing and invoking the method:

static List<T> MakeList<T>(T first, T second)
...
List<string> list = MakeList<string>("Line 1", "Line 2");

Now look at the arguments we’ve specified—they’re both strings. Each of the parame-
ters in the method is declared to be of type T. Even if we didn’t have the <string> part
of the method invocation expression, it would be fairly obvious that we meant to call
the method using string as the type argument for T. The compiler allows you to omit
it, leaving this:

List<string> list = MakeList("Line 1", "Line 2");

That’s a bit neater, isn’t it? At least, it’s shorter. That doesn’t always mean it’s more
readable, of course—in some cases it’ll be harder for the reader to work out what type
arguments you’re trying to use, even if the compiler can do it easily. I recommend that
you judge each case on its merits. My personal preference is to let the compiler infer
the type arguments in most cases where it works.

 Note how the compiler definitely knows that we’re using string as the type argu-
ment, because the assignment to list works too, and that still does specify the type
argument (and has to). The assignment has no influence on the type parameter infer-
ence process, though. It just means that if the compiler works out what type argu-
ments it thinks you want to use but gets it wrong, you’re still likely to get a compile-
time error.

 How could the compiler get it wrong? Suppose we actually wanted to use object as
the type argument. Our method parameters are still valid, but the compiler thinks we
actually meant to use string, as they’re both strings. Changing one of the parameters
to explicitly be cast to object makes type inference fail, as one of the method argu-
ments would suggest that T should be string, and the other suggests that T should be
object. The compiler could look at this and say that setting T to object would satisfy
Licensed to Devon Greenway <devon.greenway@gmail.com>

75Beyond the basics
everything but setting T to string wouldn’t, but the specification only gives a limited
number of steps to follow. This area is already fairly complicated in C# 2, and C# 3
takes things even further. I won’t try to give all of the nuts and bolts of the C# 2 rules
here, but the basic steps are as follows:

1 For each method argument (the bits in normal parentheses, not angle brack-
ets), try to infer some of the type arguments of the generic method, using some
fairly simple techniques.

2 Check that all the results from the first step are consistent—in other words, if
one argument implied one type argument for a particular type parameter, and
another implied a different type argument for the same type parameter, then
inference fails for the method call.

3 Check that all the type parameters needed for the generic method have been
inferred. You can’t let the compiler infer some while you specify others explic-
itly—it’s all or nothing.

To avoid learning all the rules (and I wouldn’t recommend it unless you’re particu-
larly interested in the fine details), there’s one simple thing to do: try it to see what
happens. If you think the compiler might be able to infer all the type arguments, try
calling the method without specifying any. If it fails, stick the type arguments in explic-
itly. You lose nothing more than the time it takes to compile the code once, and you
don’t need to have all the extra language-lawyer garbage in your head.

 Type inference can be combined with the idea of overloading type names based on
the number of type parameters to make it easier to use generic types. We’ll see an
example of this in a while, when we put everything together.

3.3.3 Implementing generics

Although you’re likely to spend more time using generic types and methods than writ-
ing them yourself, there are a few things you should know for those occasions when
you’re providing the implementation. Most of the time you can just pretend T (or
whatever your type parameter is called) is the name of a type and get on with writing
code as if you weren’t using generics at all. There are a few extra things you should
know, though.

DEFAULT VALUE EXPRESSIONS

When you know exactly what type you’re working with, you know its default value—
the value an otherwise uninitialized field would have, for instance. When you don’t
know what type you’re referring to, you can’t specify that default value directly. You
can’t use null because it might not be a reference type. You can’t use 0 because it
might not be a numeric type. Though it’s fairly rare to need the default value, it can
be useful on occasion. Dictionary<TKey,TValue> provides a good example—it has a
TryGetValue method that works a bit like the TryParse methods on the numeric
types: it uses an output parameter for the value you’re trying to fetch, and a Boolean
return value to indicate whether it succeeded. This means that the method has to have
Licensed to Devon Greenway <devon.greenway@gmail.com>

76 CHAPTER 3 Parameterized typing with generics
some value of type TValue to populate the output parameter with. (Remember that
output parameters must be assigned before the method returns normally.)

THE TRYXXX PATTERN A few patterns in .NET are easily identifiable by the
names of the methods involved—BeginXXX and EndXXX suggest an asynchro-
nous operation, for example. The TryXXX pattern is one that has had its use
expanded between .NET 1.1 and 2.0. It’s designed for situations that might
normally be considered to be errors (in that the method can’t perform its pri-
mary duty) but where failure could well occur without indicating a serious
issue, and shouldn’t be deemed exceptional. For instance, users often fail to
type in numbers correctly, so being able to try to parse some text without hav-
ing to catch an exception and swallow it is useful. Not only does it improve
performance in the failure case, but more importantly, it saves exceptions for
genuine error cases where something is wrong in the system (however widely
you wish to interpret that). It’s a useful pattern to have up your sleeve as a
library designer, when applied appropriately.

C# 2 provides the default value expression to cater for just this need. The specification
doesn’t refer to it as an operator, but you can think of it as being similar to the typeof
operator, just returning a different value. The following listing shows this in a generic
method, and also gives an example of type inference and a conversion type constraint
in action.

static int CompareToDefault<T>(T value)
where T : IComparable<T>

{
return value.CompareTo(default(T));

}
...
Console.WriteLine(CompareToDefault("x"));
Console.WriteLine(CompareToDefault(10));
Console.WriteLine(CompareToDefault(0));
Console.WriteLine(CompareToDefault(-10));
Console.WriteLine(CompareToDefault(DateTime.MinValue));

Listing 3.4 shows a generic method being used with three different types: string, int,
and DateTime. The CompareToDefault method dictates that it can only be used with
types implementing the IComparable<T> interface, which allows us to call
CompareTo(T) on the value passed in. The other value we use for the comparison is
the default value for the type. As string is a reference type, the default value is null—
and the documentation for CompareTo states that for reference types, everything
should be greater than null so the first result is 1. The next three lines show compari-
sons with the default value of int, demonstrating that the default value is 0. The out-
put of the last line is 0, showing that DateTime.MinValue is the default value for
DateTime.

Listing 3.4 Comparing a given value to the default in a generic way
Licensed to Devon Greenway <devon.greenway@gmail.com>

77Beyond the basics
 Of course, the method in listing 3.4 will fail if you pass it null as the argument—
the line calling CompareTo will throw NullReferenceException in the normal way.
Don’t worry about it for the moment—there’s an alternative using IComparer<T>, as
we’ll see soon.

DIRECT COMPARISONS

Although listing 3.4 showed how a comparison is possible, we don’t always want to
constrain our types to implement IComparable<T> or its sister interface, IEquat-
able<T>, which provides a strongly typed Equals(T) method to complement the
Equals(object) method that all types have. Without the extra information these
interfaces give us access to, there’s little we can do in terms of comparisons, other
than calling Equals(object), which will result in boxing the value we want to com-
pare with when it’s a value type. (In fact, there are a couple of types to help us in some
situations—we’ll come to them in a minute.)

 When a type parameter is unconstrained (no constraints are applied to it), you can
use == and != operators, but only to compare a value of that type with null. You can’t
compare two values of type T with each other. When the type argument is a reference
type, the normal reference comparison will be used. In the case where the type argu-
ment provided for T is a non-nullable value type, a comparison with null will always
decide that they’re unequal (so the comparison can be removed by the JIT compiler).
When the type argument is a nullable value type, the comparison will behave in the
natural way, making the comparison against the null value of the type.5 (Don’t worry if
this last bit doesn’t make sense yet—it will when you’ve read the next chapter. Some
features are too intertwined to allow me to describe either of them completely without
referring to the other, unfortunately.)

 When a type parameter is constrained to be a value type, == and != can’t be used
with it at all. When it’s constrained to be a reference type, the kind of comparison per-
formed depends on exactly what the type parameter is constrained to be. If it’s just a ref-
erence type, simple reference comparisons are performed. If it’s further constrained
to derive from a particular type that overloads the == and != operators, those overloads
are used. Beware, though—extra overloads that happen to be made available by the
type argument specified by the caller are not used. The next listing demonstrates this
with a simple reference type constraint and a type argument of string.

static bool AreReferencesEqual<T>(T first, T second)
where T : class

{
return first == second;

}

5 At the time of this writing, the code generated by the JIT compiler for comparing unconstrained type param-
eter values against null is extremely slow for nullable value types. If you constrain a type parameter T to be
non-nullable and then compare a value of type T? against null, that comparison is much faster. This shows
some scope for future JIT optimization.

Listing 3.5 Comparisons using == and != using reference comparisons

Compares referencesB
Licensed to Devon Greenway <devon.greenway@gmail.com>

78 CHAPTER 3 Parameterized typing with generics
...
string name = "Jon";
string intro1 = "My name is " + name;
string intro2 = "My name is " + name;
Console.WriteLine(intro1 == intro2);
Console.WriteLine(AreReferencesEqual(intro1, intro2));

Even though string overloads == (as demonstrated by C printing True), this over-
load isn’t used by the comparison at B. Basically, when AreReferencesEqual<T> is
compiled, the compiler doesn’t know what overloads will be available—it’s as if the
parameters passed in were of type object.

 This isn’t just specific to operators—when the compiler encounters a generic type,
it resolves all the method overloads when compiling the unbound generic type, rather
than reconsidering each possible method call for more specific overloads at execution
time. For instance, a statement of Console.WriteLine(default(T)); will always
resolve to a call to Console.WriteLine(object value)—it doesn’t call Console.
WriteLine(string value) when T happens to be string. This is similar to the normal
situation of overloads being chosen at compile time rather than execution time, but
readers familiar with templates in C++ may be surprised nonetheless.6

 Two classes that are extremely useful when it comes to comparing values are
EqualityComparer<T> and Comparer<T>, both in the System.Collections.Generic
namespace. They implement IEqualityComparer<T> and IComparer<T> respectively,
and the Default property returns an implementation that generally does the right
thing for the appropriate type.

THE GENERIC COMPARISON INTERFACES There are four main generic inter-
faces for comparisons. Two of them—IComparer<T> and IComparable<T>—
are about comparing values for ordering (is one value less than, equal to, or
greater than the other?), and the other two—IEqualityComparer<T> and
IEquatable<T>—are for comparing two items for equality according to some
criteria, and finding the hash of an item (in a manner compatible with the
same notion of equality).

Splitting the four another way, IComparer<T> and IEqualityComparer<T>
are implemented by types that are capable of comparing two different values,
whereas an instance of IComparable<T> and IEquatable<T> is capable of
comparing itself with another value.

See the documentation for more details, but consider using these (and similar types
such as StringComparer) when performing comparisons. We’ll use Equality-
Comparer<T> in our next example.

FULL COMPARISON EXAMPLE: REPRESENTING A PAIR OF VALUES

To finish off our section on implementing generics—and, indeed, medium-level
generics—here’s a complete example. It implements a useful generic type—a
Pair<T1,T2>, which just holds two values together, like a key/value pair, but with no
expectations as to the relationship between the two values.

6 We’ll see in chapter 14 that dynamic typing provides the ability to resolve overloads at execution time.

Compares using
string overload

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

79Beyond the basics
.NET 4 AND TUPLES .NET 4 provides a lot of this functionality out of the
box—and for many different numbers of type parameters, too. Look for
Tuple<T1>, Tuple<T1,T2>, and so on in the System namespace.

In addition to providing properties to access the values themselves, we’ll override
Equals and GetHashCode to allow instances of our type to play nicely when used as
keys in a dictionary. The following listing gives the complete code.

using System;
using System.Collections.Generic;

public sealed class Pair<T1, T2> : IEquatable<Pair<T1, T2>>
{

private static readonly IEqualityComparer<T1> FirstComparer =
EqualityComparer<T1>.Default;

private static readonly IEqualityComparer<T2> SecondComparer =
EqualityComparer<T2>.Default;

private readonly T1 first;
private readonly T2 second;

public Pair(T1 first, T2 second)
{

this.first = first;
this.second = second;

}

public T1 First { get { return first; } }

public T2 Second { get { return second; } }

public bool Equals(Pair<T1, T2> other)
{

return other != null &&
FirstComparer.Equals(this.First, other.First) &&
SecondComparer.Equals(this.Second, other.Second);

}

public override bool Equals(object o)
{

return Equals(o as Pair<T1, T2>);
}

public override int GetHashCode()
{

return FirstComparer.GetHashCode(first) * 37 +
SecondComparer.GetHashCode(second);

}
}

Listing 3.6 is straightforward. The constituent values are stored in appropriately typed
member variables, and access is provided by simple read-only properties. We imple-
ment IEquatable<Pair<T1,T2>> to give a strongly typed API that’ll avoid unnecessary
execution-time checks. The equality and hash-code computations both use the default

Listing 3.6 Generic class representing a pair of values
Licensed to Devon Greenway <devon.greenway@gmail.com>

80 CHAPTER 3 Parameterized typing with generics
equality comparer for the two type parameters—these handle nulls for us automati-
cally, which makes the code somewhat simpler.7

 The static variables used to store the equality comparers for T1 and T2 are mostly
there for the sake of formatting the code onto the printed page, but they’ll also be
useful as a reference point in the next section.

 If we wanted to support sorting, we could implement IComparer<Pair<T1,T2>>,
perhaps ordering by the first component and then the second. This kind of type is a
good candidate for bearing in mind what functionality you might want, but not actu-
ally implement until you need it.

 Now that we have our Pair class, how do we construct an instance of it? At the
moment, you’d need to use something like this:

Pair<int,string> pair = new Pair<int,string>(10, "value");

That’s not terribly nice. It would be good to use type inference, but that only works for
generic methods, and we don’t have any of those. If we put a generic method in the
generic type, we’d still need to specify the type arguments for the type to start with.
The solution is to use a nongeneric helper class with a generic method in it, as shown
in the following listing.

public static class Pair
{

public static Pair<T1,T2> Of<T1,T2>(T1 first, T2 second)
{

return new Pair<T1,T2>(first, second);
}

}

If you're reading this book for the first time, ignore the fact that the class is declared
to be static—we’ll come to that in chapter 7. The important point is that we have a
nongeneric class with a generic method. That means we can turn our earlier example
into the far-more-pleasant

Pair<int,string> pair = Pair.Of(10, "value");

In C# 3 we could even dispense with the explicit typing of the pair variable, but let’s
not get ahead of ourselves. This use of nongeneric helper classes (or partially generic
helper classes, if you have two or more type parameters and want to infer some of
them but leave others explicit) is a useful trick.

 We’ve finished looking at our intermediate features now. I realize it can all seem
complicated at first sight, but don’t be put off: the benefits far outweigh the added
complexity. Over time, they become second nature. Now that you have the Pair class

7 The formula used for calculating the hash code based on the two “part” results comes from reading Effective
Java, 2nd edition (Prentice Hall PTR, 2008), by Joshua Bloch. It certainly doesn’t guarantee a good distribution
of hash codes, but in my opinion it’s better than using a bitwise exclusive OR. See Effective Java for more
details, and for many other useful tips and design insights.

Listing 3.7 Using a nongeneric type with a generic method to enable type inference
Licensed to Devon Greenway <devon.greenway@gmail.com>

81Advanced generics
as an example, it might be worth looking over your own code base to see whether
there are some patterns that you keep reimplementing solely to use different types.

 With any large topic there’s always more to learn. The next section will take you
through the most important advanced topics in generics. If you’re feeling over-
whelmed by now, you might want to skip to the relative comfort of section 3.5, where
we explore some of the limitations of generics. It’s worth understanding the topics in
the next section eventually, but if everything so far has been new to you, it wouldn’t
hurt to skip it for the moment.

3.4 Advanced generics
You may expect me to claim that in the rest of this chapter we’ll cover every aspect of
generics that we haven’t looked at so far. But there are so many little nooks and cran-
nies involving generics, that’s simply not possible—or at least, I certainly wouldn’t
want to even read about all the details, let alone write about them. Fortunately, the
nice people at Microsoft and ECMA have written all the details in the language specifi-
cation, so if you ever want to check some obscure situation that isn’t covered here,
that should be your next port of call. Unfortunately I can’t point to one particular
area of the specification that covers generics: they pop up almost everywhere. Argu-
ably if your code ends up in a corner case so complicated that you need to consult the
specification to work out what it should do, you should refactor it into a more obvious
form anyway; you don’t want each maintenance engineer from now until eternity to
have to read the gory details.

 My aim with this section is to cover everything you’re likely to want to know about
generics. I’ll talk more about the CLR and framework side of things than the particu-
lar syntax of the C# 2 language, although of course it’s all relevant when developing in
C#. We’ll start by considering static members of generic types, including type initial-
ization. From there, it’s a natural step to wonder how all this is implemented under
the covers—although we’ll keep it fairly light on detail, concentrating on the impor-
tant effects of the implementation decisions. We’ll look at what happens when you
enumerate a generic collection using foreach in C# 2, and round off the section by
seeing how reflection in the .NET Framework is affected by generics.

3.4.1 Static fields and static constructors

Just as instance fields belong to an instance, static fields belong to the type they’re
declared in. If you declare a static field x in class SomeClass, there’s exactly one Some-
Class.x field, no matter how many instances of SomeClass you create, and no matter
how many types derive from SomeClass.8 That’s the familiar scenario from C# 1—so
how does it map across to generics?

8 Well, one per application domain. For the purposes of this section, we’ll assume we’re only dealing with one
application domain. The concepts for different application domains work the same with generics as with non-
generic types. Variables decorated with [ThreadStatic] violate this rule, too.
Licensed to Devon Greenway <devon.greenway@gmail.com>

82 CHAPTER 3 Parameterized typing with generics
 The answer is that each closed type has its own set of static fields. We saw this in list-
ing 3.6 when we stored the default equality comparers for T1 and T2 in static fields,
but let’s look at it in more detail with another example. Listing 3.8 creates a generic
type including a static field. We set the field’s value for different closed types, and then
print out the values to show that they’re separate.

class TypeWithField<T>
{

public static string field;
public static void PrintField()
{

Console.WriteLine(field + ": " + typeof(T).Name);
}

}
...
TypeWithField<int>.field = "First";
TypeWithField<string>.field = "Second";
TypeWithField<DateTime>.field = "Third";

TypeWithField<int>.PrintField();
TypeWithField<string>.PrintField();
TypeWithField<DateTime>.PrintField();

We set the value of each field to a different value, and print out each field along with
the name of the type argument used for that closed type. Here’s the output from list-
ing 3.8:

First: Int32
Second: String
Third: DateTime

So the basic rule is “one static field per closed type.” The same applies for static initial-
izers and static constructors. But it’s possible to have one generic type nested within
another, and types with multiple generic parameters. This sounds a lot more compli-
cated, but it works as you probably think it should. The following listing shows this in
action, this time using static constructors to show just how many types there are.

public class Outer<T>
{

public class Inner<U,V>
{

static Inner()
{

Console.WriteLine("Outer<{0}>.Inner<{1},{2}>",
 typeof(T).Name,
 typeof(U).Name,
 typeof(V).Name);

}

Listing 3.8 Proof that different closed types have different static fields

Listing 3.9 Static constructors with nested generic types
Licensed to Devon Greenway <devon.greenway@gmail.com>

83Advanced generics
public static void DummyMethod() {}
}

}
...
Outer<int>.Inner<string,DateTime>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();
Outer<object>.Inner<string,object>.DummyMethod();
Outer<string>.Inner<string,object>.DummyMethod();
Outer<object>.Inner<object,string>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();

The first call to DummyMethod() for any type will cause the type to be initialized, at
which point the static constructor prints out some diagnostics. Each different list of
type arguments counts as a different closed type, so the output of listing 3.9 looks like
this:

Outer<Int32>.Inner<String,DateTime>
Outer<String>.Inner<Int32,Int32>
Outer<Object>.Inner<String,Object>
Outer<String>.Inner<String,Object>
Outer<Object>.Inner<Object,String>

Just as with nongeneric types, the static constructor for any closed type is only executed
once, which is why the last line of listing 3.9 doesn’t create a sixth line of output—the
static constructor for Outer<string>.Inner<int,int> executed earlier, producing
the second line of output. To clear up any doubts, if we had a nongeneric PlainInner
class inside Outer, there still would’ve been one possible Outer<T>.PlainInner type
per closed Outer type, so Outer<int>.PlainInner would be separate from
Outer<long>.PlainInner, with a separate set of static fields as seen earlier.

 Now that we’ve seen what constitutes a different type, we should think about what
the effects of that might be in terms of the amount of native code generated. And no,
it’s not as bad as you might think...

3.4.2 How the JIT compiler handles generics

Given that we have all of these different closed types, the JIT’s job is to convert the IL
of the generic type into native code so it can actually be run. In some ways, we
shouldn’t care exactly how it does that—beyond keeping a close eye on memory and
CPU time, we wouldn’t see much difference if the JIT took the simplest possible
approach and generated native code for each closed type separately, as if each one
had nothing to do with any other type. But the JIT authors are clever enough that it’s
worth seeing just what they’ve done.

 Let’s start with a simple situation first, with a single type parameter—we’ll use
List<T> for the sake of convenience. The JIT creates different code for each closed
type with a type argument that’s a value type—int, long, Guid, and the like. But it
shares the native code generated for all the closed types that use a reference type as
the type argument, such as string, Stream, and StringBuilder. It can do this because
all references are the same size (the size varies between a 32-bit CLR and a 64-bit CLR,
Licensed to Devon Greenway <devon.greenway@gmail.com>

84 CHAPTER 3 Parameterized typing with generics
but within any one CLR all references are the same size). An array of references will
always be the same size whatever the references happen to be. The space required on
the stack for a reference will always be the same. It can use the same register optimiza-
tions whatever type is being used—the List<Reason> goes on.

 Each of the types still has its own static fields, as described in section 3.4.1, but the
executable code itself is reused. Of course, the JIT still does all of this lazily—it won’t
generate the code for List<int> before it needs to, and it’ll cache that code for all
future uses of List<int>. In theory, it’s possible to share code for at least some value
types. The JIT would have to be careful, not just due to size, but also for garbage col-
lection reasons—it has to be able to quickly identify areas of a struct value that are live
references. But value types that are the same size and have the same in-memory foot-
print as far as the GC is concerned could share code. At the time of this writing, that’s
been of sufficiently low priority that it hasn’t been implemented, and it may well stay
that way.

 This level of detail is primarily of academic interest, but it does have a slight per-
formance impact in terms of more code being JIT compiled. The performance benefits
of generics can be huge, though, and again that comes down to having the opportu-
nity to JIT to different code for different types. Consider a List<byte>, for instance.
In .NET 1.1, adding individual bytes to an ArrayList would’ve meant boxing each one
of them, and storing a reference to each boxed value. Using List<byte> has no such
impact—List<T> has a member of type T[] to replace the object[] within Array-
List, and that array is of the appropriate type, taking the appropriate space. So
List<byte> has a straight byte[] within it used to store the elements of the array. (In
many ways, this makes a List<byte> behave like a MemoryStream.)

 Figure 3.3 shows an ArrayList and a List<byte>, each with the same six values.
The arrays themselves have more than six elements, to allow for growth. Both List<T>
and ArrayList have a buffer, and they create a larger buffer when they need to.

 The difference in efficiency here is incredible. Let’s look at the ArrayList first,
considering a 32-bit CLR.9 Each of the boxed bytes will take up 8 bytes of object over-
head, plus 4 bytes (1 byte, rounded up to a word boundary) for the data itself. On top
of that, you have all the references themselves, each of which takes up 4 bytes. So for
each byte of useful data, we’re paying at least 16 bytes—and then there’s the extra
unused space for references in the buffer.

 Compare this with the List<byte>. Each byte in the list takes up a single byte
within the elements array. There’s still wasted space in the buffer, waiting to be used
potentially by new items—but at least we’re only wasting a single byte per unused ele-
ment there.

 We don’t just gain space, but execution speed, too. We don’t need the time taken
to allocate the box, the type checking involved in unboxing the bytes in order to get at
them, or the garbage collection of the boxes when they’re no longer referenced.

9 When running on a 64-bit CLR, the overheads are bigger.
Licensed to Devon Greenway <devon.greenway@gmail.com>

85Advanced generics
We don’t have to go down to the CLR level to find things happening transparently on
our behalf, though. C# has always made life easier with syntactic shortcuts, and our
next section looks at a familiar example but with a generic twist: iterating with
foreach.

3.4.3 Generic iteration

One of the most common operations you’ll want to perform on a collection is to iter-
ate through all its elements. The simplest way of doing that is usually to use the
foreach statement. In C# 1, this relied on the collection either implementing the
System.Collections.IEnumerable interface or having a similar GetEnumerator()
method that returned a type with a suitable MoveNext() method and Current prop-
erty. The Current property didn’t have to be of type object—and that was the whole
point of having these extra rules, which look odd on first sight. Yes, even in C# 1 you
could avoid boxing and unboxing during iteration if you had a custom iteration type.

 C# 2 makes this somewhat easier, as the rules for the foreach statement have been
extended to also use the System.Collections.Generic.IEnumerable<T> interface
along with its partner, IEnumerator<T>. These are simply the generic equivalents of
the old iteration interfaces, and they’re used in preference to the nongeneric ver-
sions. This means that if you iterate through a generic collection of value type ele-
ments—List<int>, for example—then no boxing is performed at all. If the old
interface had been used instead, then although we wouldn’t have incurred the boxing
cost while storing the elements of the list, we’d still have ended up boxing them when
we retrieved them using foreach!

5

3

15

10

12

13

...

List<byte>

ref

6

byte[]ArrayList

ref

6

ref

ref

ref

ref

ref

ref

...

object[]

5

3

15

10

12

13

Boxed
bytes

count count

elements elements

Figure 3.3 Visual demonstration of why List<T> takes up a lot less space than ArrayList
when storing value types
Licensed to Devon Greenway <devon.greenway@gmail.com>

86 CHAPTER 3 Parameterized typing with generics
 All of this is done for you under the covers—all you need to do is use the foreach
statement in the normal way, using an appropriate type for the iteration variable, and
all will be well. That’s not the end of the story, though. In the relatively rare situation
when you need to implement iteration over one of your own types, you’ll find that
IEnumerable<T> extends the old IEnumerable interface, which means you have to
implement two different methods:

IEnumerator<T> GetEnumerator();
IEnumerator GetEnumerator();

Can you see the problem? The methods differ only in return type, and the overload-
ing rules of C# prevent you from writing two such methods normally. If you think back
to section 2.2.2, we saw a similar situation—and we can use the same workaround. If
you implement IEnumerable using explicit interface implementation, you can imple-
ment IEnumerable<T> with a “normal” method. Fortunately, because IEnumerator<T>
extends IEnumerator, you can use the same return value for both methods, and imple-
ment the nongeneric method by just calling the generic version. Of course, now you
need to implement IEnumerator<T> and you quickly run into similar problems, this
time with the Current property.

 The following listing gives a full example, implementing an enumerable class that
always just enumerates to the integers 0 to 9.

class CountingEnumerable: IEnumerable<int>
{

public IEnumerator<int> GetEnumerator()
{

return new CountingEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{

return GetEnumerator();
}

}

class CountingEnumerator : IEnumerator<int>
{

int current = -1;

public bool MoveNext()
{

current++;
return current < 10;

}

public int Current { get { return current; } }

object IEnumerator.Current { get { return Current; } }

public void Reset()
{

Listing 3.10 A full generic iterator—of the numbers 0 to 9

Implements
IEnumerable<T>
implicitly

B

Implements
IEnumerable
explicitly

C

DImplements
IEnumerator<T>.Current

implicitly

E

Implements
IEnumerator.Current

explicitly
Licensed to Devon Greenway <devon.greenway@gmail.com>

87Advanced generics
current = -1;
}
public void Dispose() {}

}
...
CountingEnumerable counter = new CountingEnumerable();
foreach (int x in counter)
{

Console.WriteLine(x);
}

Clearly this isn’t useful in terms of the result, but it shows the little hoops you have to
go through in order to implement generic iteration appropriately—at least if you’re
doing it all longhand. (And that’s without making an effort to throw exceptions if
Current is accessed at an inappropriate time.) If you think that listing 3.10 looks like a
lot of work just to print out the numbers 0 to 9, I can’t help but agree with you—and
there’d be even more code if we wanted to iterate over anything useful. Fortunately
we’ll see in chapter 6 that C# 2 takes a large amount of the work away from iterators in
many cases. I’ve shown the full version so you can appreciate the slight wrinkles that
have been introduced by the design decision for IEnumerable<T> to extend IEnumer-
able. I’m not suggesting it was the wrong decision, though; it means that you can pass
any IEnumerable<T> into a method written in C# 1 with an IEnumerable parameter.
That’s not as important now as it was back in 2005, but it’s still a useful transition path.

 We only need the trick of using explicit interface implementation twice—once for
IEnumerable.GetEnumerator C, and once at IEnumerator.Current E. Both of
these call their generic equivalents (B and D respectively). Another addition to
IEnumerator<T> is that it extends IDisposable, so you have to provide a Dispose
method. The foreach statement in C# 1 already called Dispose on an iterator if it
implemented IDisposable, but in C# 2 no execution-time testing is required—if the
compiler finds that you’ve implemented IEnumerable<T>, it creates an unconditional
call to Dispose at the end of the loop (in a finally block). Many iterators won’t
actually need to dispose of anything, but it’s nice to know that when it is required, the
most common way of working through an iterator (the foreach statement F) han-
dles the calling side automatically. This is most commonly used to release resources
when you’ve finished iterating—for example, you might have an iterator that reads
lines from a file, and needs to close the file handle when the calling code has fin-
ished looping.

 We’ll now go from compile-time efficiency to execution-time flexibility: our final
advanced topic is reflection. Even in .NET 1.0/1.1, reflection could be tricky, but
generic types and methods introduce an extra level of complexity. The framework
provides everything we need (with a bit of helpful syntax from C# 2 as a language),
and although the additional considerations can be daunting, it’s not too bad if you
take it one step at a time.

Proves that
enumerable
type works

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

88 CHAPTER 3 Parameterized typing with generics
3.4.4 Reflection and generics

Reflection is used by different people for all sorts of things. You might use it for execu-
tion-time introspection of objects to perform a simple form of data binding. You
might use it to inspect a directory full of assemblies to find implementations of a plug-
in interface. You might write a file for an Inversion of Control framework (see http://
mng.bz/xc3J) to load and dynamically configure your application’s components. As
the uses of reflection are so diverse, I won’t focus on any particular one, but will give
you more general guidance on performing common tasks. We’ll start by looking at
the extensions to the typeof operator.

USING TYPEOF WITH GENERIC TYPES

Reflection is all about examining objects and their types. As such, one of the most
important things you need to be able to do is obtain a reference to a particular
System.Type object, which allows access to all the information about that type. C#
uses the typeof operator to obtain such a reference for types known at compile time,
and this has been extended to encompass generic types.

 There are two ways of using typeof with generic types—one retrieves the generic
type definition (in other words, the unbound generic type) and one retrieves a particu-
lar constructed type. To obtain the generic type definition—the type with none of the
type arguments specified—you simply take the name of the type as it would’ve been
declared and remove the type parameter names, keeping any commas. To retrieve
constructed types, you specify the type arguments in the same way as you would to
declare a variable of the generic type. Listing 3.11 gives an example of both uses. It
uses a generic method so we can revisit how typeof can be used with a type parameter,
which we previously saw in listing 3.8.

static void DemonstrateTypeof<X>()
{

Console.WriteLine(typeof(X));

Console.WriteLine(typeof(List<>));
Console.WriteLine(typeof(Dictionary<,>));

Console.WriteLine(typeof(List<X>));
Console.WriteLine(typeof(Dictionary<string,X>));

Console.WriteLine(typeof(List<long>));
Console.WriteLine(typeof(Dictionary<long,Guid>));

}
...
DemonstrateTypeof<int>();

Most of listing 3.11 works as you might naturally expect, but it’s worth pointing out
two things. First, look at the syntax for obtaining the generic type definition of
Dictionary<TKey,TValue>. The comma in the angle brackets is required to tell the
compiler to look for the type with two type parameters: remember that there can be

Listing 3.11 Using the typeof operator with type parameters

Displays method’s
type parameter

Displays generic type

Displays closed types
(despite using type parameter)

B

Displays closed types
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/xc3J
http://mng.bz/xc3J

89Advanced generics
several generic types with the same name, as long as they vary by the number of type
parameters they have. Similarly, you’d retrieve the generic type definition for
MyClass<T1,T2,T3,T4> using typeof(MyClass<,,,>). The number of type parame-
ters is specified in IL (and in full type names as far as the framework is concerned) by
putting a back tick after the first part of the type name and then the number. The type
parameters are then indicated in square brackets instead of the angle brackets we’re
used to. For instance, the second line printed ends with List`1[T], showing that
there’s one type parameter, and the third line includes Dictionary`2[TKey,TValue].

 Second, note that wherever the method’s type parameter (X) is used, the actual
value of the type argument is used at execution time. So line B prints List`1[System.
Int32] rather than List`1[X], which you might have expected.10 In other words, a
type that’s open at compile time may be closed at execution time. This is very confusing.
You should be aware of it in case you don’t get the results you expect, but otherwise, don’t worry.
To retrieve a truly open constructed type at execution time, you need to work a bit
harder. See the MSDN documentation for Type.IsGenericType for a suitably convo-
luted example (http://mng.bz/9W6O).

 For reference, here’s the output of listing 3.11:

System.Int32
System.Collections.Generic.List`1[T]
System.Collections.Generic.Dictionary`2[TKey,TValue]
System.Collections.Generic.List`1[System.Int32]
System.Collections.Generic.Dictionary`2[System.String,System.Int32]
System.Collections.Generic.List`1[System.Int64]
System.Collections.Generic.Dictionary`2[System.Int64,System.Guid]

Having retrieved an object representing a generic type, there are many next steps you
can take. All the previously available ones (finding the members of the type, creating
an instance, and so on) are still present—although some aren’t applicable for generic
type definitions—and there are new ones as well that let you inquire about the generic
nature of the type.

METHODS AND PROPERTIES OF SYSTEM.TYPE

There are far too many new methods and properties to look at them all in detail, but
there are two particularly important ones: GetGenericTypeDefinition and Make-
GenericType. They’re effectively opposites—the first acts on a constructed type,
retrieving the generic type definition; the second acts on a generic type definition and
returns a constructed type. Arguably it would’ve been clearer if this method had been
called ConstructType, MakeConstructedType, or some other name with construct or
constructed in it, but we’re stuck with what we’ve got.

 Just like normal types, there’s only one Type object for any particular type—so call-
ing MakeGenericType twice with the same types as arguments will return the same ref-
erence twice. Similarly, calling GetGenericTypeDefinition on two types constructed

10 I deliberately bucked the convention of using a type parameter named T, precisely so that we could tell the
difference between the T in the List<T> declaration and the X in our method declaration.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/9W6O

90 CHAPTER 3 Parameterized typing with generics
from the same generic type definition will give the same result for both calls, even if
the constructed types are different (such as List<int> and List<string>).

 Another method—this time one that already existed in .NET 1.1—that’s worth
exploring is Type.GetType(string), and its related Assembly.GetType(string)
method, both of which provide a dynamic equivalent to typeof. You might expect to
be able to feed each line of the output of listing 3.11 to the GetType method called on
an appropriate assembly, but unfortunately life isn’t quite that straightforward. It’s
fine for closed constructed types—the type arguments just go in square brackets. For
generic type definitions, though, you need to remove the square brackets entirely—
otherwise GetType thinks you mean an array type. Listing 3.12 shows all of these meth-
ods in action.

string listTypeName = "System.Collections.Generic.List`1";

Type defByName = Type.GetType(listTypeName);

Type closedByName = Type.GetType(listTypeName + "[System.String]");
Type closedByMethod = defByName.MakeGenericType(typeof(string));
Type closedByTypeof = typeof(List<string>);

Console.WriteLine(closedByMethod == closedByName);
Console.WriteLine(closedByName == closedByTypeof);

Type defByTypeof = typeof(List<>);
Type defByMethod = closedByName.GetGenericTypeDefinition();

Console.WriteLine(defByMethod == defByName);
Console.WriteLine(defByName == defByTypeof);

The output of listing 3.12 is just True four times, validating that however you obtain a
reference to a particular type object, only one such object is involved.

 As I mentioned earlier, there are many new methods and properties on Type, such
as GetGenericArguments, IsGenericTypeDefinition, and IsGenericType. Again, the
documentation for IsGenericType is probably the best starting point for further
exploration.

REFLECTING GENERIC METHODS

Generic methods have a similar (though smaller) set of additional properties and
methods. The following listing gives a brief demonstration of this, calling a generic
method by reflection.

public static void PrintTypeParameter<T>()
{

Console.WriteLine(typeof(T));
}
...
Type type = typeof(Snippet);
MethodInfo definition = type.GetMethod("PrintTypeParameter");
MethodInfo constructed;

Listing 3.12 Various ways of retrieving generic and constructed Type objects

Listing 3.13 Retrieving and invoking a generic method with reflection
Licensed to Devon Greenway <devon.greenway@gmail.com>

91Limitations of generics in C# and other languages
constructed = definition.MakeGenericMethod(typeof(string));
constructed.Invoke(null, null);

First we retrieve the generic method definition, and then we make a constructed
generic method using MakeGenericMethod. As with types, we could go the other way if
we wanted to—but unlike Type.GetType, there’s no way of specifying a constructed
method in the GetMethod call. The framework also has a problem if there are meth-
ods that are overloaded purely by number of type parameters—there are no methods
in Type that allow you to specify the number of type parameters, so instead you’d have
to call Type.GetMethods and find the right one by looking through all the methods.

 After retrieving the constructed method, we invoke it. The arguments in this exam-
ple are both null, as we’re invoking a static method that doesn’t have any normal
parameters. The output is System.String, as we’d expect. Note that the methods
retrieved from generic type definitions can’t be invoked directly—instead, you must
get the method from a constructed type. This applies to both generic and nongeneric
methods.

SAVED BY C# 4 If all of this looks messy to you, I agree. Fortunately, in many
cases C#’s dynamic typing can come to the rescue, taking a lot of the work out
of generic reflection. It doesn’t help in all situations, so it’s worth being aware
of the general flow of the preceding code, but where it does apply it’s great.
We’ll look at dynamic typing in detail in chapter 14.

Again, more methods and properties are available on MethodInfo, and IsGeneric-
Method is a good starting point in MSDN (http://mng.bz/PDmC). Hopefully the
information in this section will have been enough to get you going, though—and to
point out some of the added complexities you might not have otherwise anticipated
when first starting to access generic types and methods with reflection.

 That’s all we’re going to cover in the way of advanced features. Just to reiterate,
this isn’t meant to be a complete guide by any means—but most developers are
unlikely to need to know the more obscure areas. I hope for your sake that you fall
into this camp, as specifications tend to get harder to read the deeper you go into
them. Remember that unless you’re developing alone and just for yourself, you’re
unlikely to be the only one to work on your code. If you need features that are more
complex than the ones demonstrated here, you almost certainly shouldn’t assume
that anyone reading your code will understand it without help. On the other hand, if
you find that your co-workers don’t know about some of the topics we’ve covered so
far, please feel free to direct them to the nearest bookshop...

 Our final main section of the chapter looks at some of the limitations of generics
in C# and considers similar features in other languages.

3.5 Limitations of generics in C# and other languages
There’s no doubt that generics contribute a great deal to C# in terms of expressive-
ness, type safety, and performance. The feature has been carefully designed to cope
with most of the tasks that C++ programmers typically used templates for, but without
some of the accompanying disadvantages. But this isn’t to say limitations don’t exist.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/PDmC

92 CHAPTER 3 Parameterized typing with generics
There are some problems that C++ templates solve with ease but that C# generics
can’t help with. Similarly, though generics in Java are generally less powerful than in
C#, there are some concepts that can be expressed in Java but that don’t have a C#
equivalent. This section will take you through some of the most commonly encoun-
tered weaknesses, and I’ll briefly compare the C#/.NET implementation of generics
with C++ templates and Java generics.

 It’s important to stress that pointing out these snags doesn’t imply that they
should’ve been avoided in the first place. In particular, I’m in no way saying that I
could’ve done a better job! The language and platform designers have had to balance
power with complexity (and the small matter of achieving both design and implemen-
tation within a reasonable time scale). Most likely, you won’t encounter problems, and
if you do, you’ll be able to work around them with the guidance given here.

 We’ll start with the answer to a question that almost everyone raises sooner or later:
why can’t I convert a List<string> to a List<object>?

3.5.1 Lack of generic variance

In section 2.2.2, we looked at the covariance of arrays—the fact that an array of a refer-
ence type can be viewed as an array of its base type, or an array of any of the interfaces
it implements. There are actually two forms of this idea, called covariance and contra-
variance, or collectively just variance. Generics don’t support this—they’re invariant.
This is for the sake of type safety, as we’ll see, but it can be annoying.

 One thing I'd like to make clear to start with: C# 4 improves the generic variance
situation somewhat. Many of the restrictions listed here do still apply though, and this
section serves as a useful introduction to the idea of variance. We’ll see how C# 4 helps
in chapter 13, but many of the clearest examples of generic variance rely on other new
features from C# 3, including LINQ. Variance is also quite a complicated topic in itself,
so it’s worth waiting until you’re comfortable with the rest of C# 2 and 3 before you
tackle it. For the sake of readability, I’m not going to point out every place in this sec-
tion that’s slightly different in C# 4... it’ll all become clear in chapter 13.

WHY DON’T GENERICS SUPPORT COVARIANCE?

Let’s suppose we have two classes, Turtle and Cat, both of which derive from an
abstract Animal class. In the code that follows, the array code (on the left) is valid
C# 2; the generic code (on the right) isn’t:

Valid (at compile time) Invalid
Animal[] animals = new Cat[5]; List<Animal> animals = new List<Cat>();
animals[0] = new Turtle(); animals.Add(new Turtle());

The compiler has no problem with the second line in either case, but the first line on
the right causes the following error:

error CS0029: Cannot implicitly convert type
'System.Collections.Generic.List<Cat>' to
'System.Collections.Generic.List<Animal>'

This was a deliberate choice on the part of the framework and language designers.
The obvious question to ask is why this is prohibited—and the answer lies on the
Licensed to Devon Greenway <devon.greenway@gmail.com>

93Limitations of generics in C# and other languages
second line. There’s nothing about the second line that should raise any suspicion.
After all, List<Animal> effectively has a method with the signature void Add(Animal
value)—you should be able to put a Turtle into any list of animals, for instance. But
the actual object referred to by animals is a Cat[] (in the code on the left) or a
List<Cat> (on the right), both of which require that only references to instances of
Cat (or further subclasses) are stored in them. Although the array version will com-
pile, it’ll fail at execution time. This was deemed by the designers of generics to be
worse than failing at compile time, which is reasonable—the whole point of static typ-
ing is to find out about errors before the code ever gets run.

SO WHY ARE ARRAYS COVARIANT? Having answered the question about why
generics are invariant, the next obvious step is to question why arrays are cova-
riant. According to the Common Language Infrastructure Annotated Standard
(Miller and Ragsdale, Addison-Wesley Professional, 2003), for the first edition
the designers wanted to reach as broad an audience as possible, which
included being able to run code compiled from Java source. In other words,
.NET has covariant arrays because Java has covariant arrays—despite this being
a known wart in Java.

So, that’s why things are the way they are—but why should you care, and how can you
get around the restriction?

WHERE COVARIANCE WOULD BE USEFUL

The example I’ve given with a list is clearly problematic. We can add items to the list,
which is where we lose the type safety in this case. Now an add operation is an example
of a value being used as an input into the API: the caller is supplying the value. What
would happen if we limited ourselves to getting values out? The obvious example of
this is IEnumerator<T> and (by association) IEnumerable<T>. In fact, these are almost
the canonical example for generic covariance. Together they describe a sequence of
values—all we know about the values we see is that each one will be compatible with T,
such that you can always write

T currentValue = iterator.Current;

This uses the normal idea of compatibility—it would be fine for an IEnumerator
<Animal> to yield references to instances of Cat or Turtle, for example. There’s no
way we can push values that are inappropriate for the actual sequence type, so we’d
like to be able to treat an IEnumerator<Cat> as an IEnumerator<Animal>. Let me give
an example of where that might be useful.

 Suppose we take the customary shape example for inheritance, but using an inter-
face (IShape). Now consider another interface, IDrawing, to represent a drawing
made up of shapes. We’re going to have two concrete types of drawing—a Mondrian-
Drawing (made of rectangles) and a SeuratDrawing (made of circles).11 Figure 3.4
shows the class hierarchies involved.

11 If these names mean nothing to you, check out their Wikipedia entries (http://mng.bz/pWl7 and http://
mng.bz/1025). They have special meaning to me for different reasons: Mondrian is also the name of the code
review tool we use at Google, and Seurat is the eponymous George of Sunday in the Park with George—a won-
derful musical by Stephen Sondheim.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/pWl7
http://mng.bz/1025
http://mng.bz/1025

94 CHAPTER 3 Parameterized typing with generics
Both drawing types need to implement the IDrawing interface, so they need to expose
a property with this signature:

IEnumerable<IShape> Shapes { get; }

But each drawing type would probably find it easier to maintain a more strongly typed
list internally. For example, a Seurat drawing may include a field of type List<Circle>.
It’s useful for it to have this rather than a List<IShape> so that if it needs to manipu-
late the circles in a circle-specific way, it can do so without casting. If we had a
List<IShape>, we could either return it directly or at least wrap it in a ReadOnly-
Collection<IShape> to prevent callers from messing with it via casting—the property
implementation would be cheap and simple either way. But we can’t do that when our
types don’t match up... we can’t convert from an IEnumerable<Circle> to an
IEnumerable<Shape>. So what can we do?

 There are a few options here. We could

 Change the field type to List<IShape> and just live with the casts. This isn’t
pleasant, and defeats a lot of the point of using generics.

 Use the new features provided by C# 2 for implementing iterators, as we’ll see
in chapter 6. This is a reasonable solution for this particular case, but only this
case (when we’re dealing with IEnumerable<T>).

 Make each Shapes property implementation create a new copy of the list, possi-
bly using List<T>.ConvertAll for simplicity. Creating an independent copy of
a collection is often the right thing to do in an API anyway, but it does cause a
lot of copying, which can be unnecessarily inefficient in many cases.

 Make IDrawing generic, indicating the type of shapes in the drawing. Thus
MondrianDrawing would implement IDrawing<Rectangle> and SeuratDrawing
would implement IDrawing<Circle>. This is only viable when you own the
interface.

 Create a helper class to adapt one kind of IEnumerable<T> into another:
class EnumerableWrapper<TOriginal, TWrapper> : IEnumerable<TWrapper>

where TOriginal : TWrapper

Again, as this particular situation (IEnumerable<T>) is special, we could get
away with just a utility method. In fact, .NET 3.5 ships with two useful methods

<<interface>>
IShape

Circle Rectangle

<<interface>>
IDrawing

+Shapes: IEnumerable<IShape>

MondrianDrawing
+rectangles: List<Rectangle>

SeuratDrawing
+circles: List<Circle>

Figure 3.4 Interfaces for shapes and drawings, and two implementations of each
Licensed to Devon Greenway <devon.greenway@gmail.com>

95Limitations of generics in C# and other languages
like this: Enumerable.Cast<T> and Enumerable.OfType<T>. They’re part of
LINQ, and we’ll look at them in chapter 11. Although this is a special case, it’s
probably the most common form of generic covariance you’ll come across.

When you run into covariance issues, you may need to consider all of these options
and anything else you can think of. It depends heavily on the exact nature of the situ-
ation. Unfortunately, covariance isn’t the only problem we have to deal with. There’s
also the matter of contravariance, which is like covariance in reverse.

WHERE CONTRAVARIANCE WOULD BE USEFUL

Contravariance feels slightly less intuitive than covariance, but it does make sense.
With covariance, we were trying to convert from SomeType<Circle> to Some-
Type<IShape> (using IEnumerable<T> for SomeType in our example). Contravariance
is about converting the other way—from SomeType<IShape> to SomeType<Circle>.
How can that be safe? Well, covariance is safe when SomeType only describes opera-
tions that return the type parameter—and contravariance is safe when SomeType only
describes operations that accept the type parameter.12

 The simplest example of a type that only uses its type parameter in an input posi-
tion is IComparer<T>, which is commonly used to sort collections. Let’s expand our
IShape interface (which has been empty so far) to include an Area property. It’s now
easy to write an implementation of IComparer<IShape> that compares any two shapes
by area. We’d then like to be able to write the following code:

IComparer<IShape> areaComparer = new AreaComparer();
List<Circle> circles = new List<Circle>();
circles.Add(new Circle(Point.Empty, 20));
circles.Add(new Circle(Point.Empty, 10));
circles.Sort(areaComparer);

That won’t work, though, because the Sort method on List<Circle> effectively takes
an IComparer<Circle>. The fact that our AreaComparer can compare any shape
rather than just circles doesn’t impress the compiler at all. It considers IComparer
<Circle> and IComparer<IShape> to be completely different types. Maddening, isn’t
it? It would be nice if the Sort method had this signature instead:

void Sort<S>(IComparer<S> comparer) where T : S

Unfortunately, not only is that not the signature of Sort, but it can’t be—the con-
straint is invalid, because it’s a constraint on T instead of S. We want a conversion type
constraint but in the other direction, constraining the S to be somewhere up the
inheritance tree of T instead of down.

 Given that this isn’t possible, what can we do? There are fewer options this time.
First, you could revisit the idea of creating a generic helper class as shown in
listing 3.14.

12 We’ll see in chapter 13 that there’s slightly more to it than that—but that’s the general principle.

INVALID
Licensed to Devon Greenway <devon.greenway@gmail.com>

96 CHAPTER 3 Parameterized typing with generics

class ComparisonHelper<TBase, TDerived> : IComparer<TDerived>
where TDerived : TBase

{
private readonly IComparer<TBase> comparer;

public ComparisonHelper(IComparer<TBase> comparer)
{

this.comparer = comparer;
}

public int Compare(TDerived x, TDerived y)
{

return comparer.Compare(x, y);
}

}

Again, this is the adapter pattern at work, this time varying in the type of items to com-
pare. We just remember the original comparer providing the real logic to compare
items of the base type C and then call it when we’re asked to compare items of the
derived type D. The fact that we don’t have any casts involved (not even hidden ones)
should give us some confidence: this helper is completely type-safe. We’re able to call
the base comparer due to an implicit conversion being available from TDerived to
TBase, which we required with a type constraint B.

 The second option is to make the area comparison class generic, with a conversion
type constraint, so it can compare any two values of the same type, as long as that type
implements IShape. For the sake of simplicity in the situation where you really don’t
need this functionality, you could keep the nongeneric class by just making it derive
from the generic one:

class AreaComparer<T> : IComparer<IShape> where T : IShape

class AreaComparer : AreaComparer<IShape>

Of course, you can only do this when you’re able to change the comparison class. This
can be an effective solution, but it still feels unnatural—why should you have to con-
struct the comparer in various ways for different types, when it’s not going to behave
any differently? Why should you have to derive from the class to simplify things when
you’re not actually specializing the behavior?

 Note that the various options for both covariance and contravariance use more
generics and constraints to express the interface in a more general manner, or to pro-
vide generic helper classes. I know that adding a constraint makes it sound less gen-
eral, but the generality is added by first making the type or method generic. When you
run into a problem like this, adding a level of genericity somewhere with an appropri-
ate constraint should be the first option to consider. Generic methods (rather than
generic types) are often helpful here, as type inference can make the lack of variance
invisible to the naked eye. This is particularly true in C# 3, which has stronger type
inference capabilities than C# 2.

Listing 3.14 Working around the lack of contravariance with a helper

Constrains type
parameter
appropriatelyB

Remembers
original
comparerC

Uses implicit
conversions to
call comparer

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

97Limitations of generics in C# and other languages
 This limitation is a very common cause of questions on C# discussion sites. The
remaining issues are either relatively academic or affect only a moderate subset of the
development community. The next one mostly affects those who do a lot of calcula-
tions (usually scientific or financial) in their work.

3.5.2 Lack of operator constraints or a “numeric” constraint

C# isn’t without its downsides when it comes to heavily mathematical code. The need
to explicitly use the Math class for every operation beyond the simplest arithmetic and
the lack of C-style typedefs to allow the data representation used throughout a pro-
gram to be easily changed have always been raised by the scientific community as bar-
riers to C#’s adoption. Generics weren’t likely to fully solve either of those issues, but
there’s a common problem that stops generics from helping as much as they could
have. Consider this (illegal) generic method:

public T FindMean<T>(IEnumerable<T> data)
{

T sum = default(T);
int count = 0;
foreach (T datum in data)
{

sum += datum;
count++;

}
return sum / count;

}

Obviously that could never work for all types of data—what could it mean to add one
Exception to another, for instance? Clearly a constraint of some kind is called for...
something that can express what we need to be able to do: add two instances of T
together, and divide a T by an integer. If that were available, even if it were limited to
built-in types, we could write generic algorithms that wouldn’t care whether they were
working on an int, a long, a double, a decimal, and so forth. Limiting it to the built-
in types would’ve been disappointing but better than nothing. The ideal solution
would have to also allow user-defined types to act in a numeric capacity—so you could
define a Complex type to handle complex numbers, for instance.13 That complex num-
ber could then store each of its components in a generic way as well, so you could
have a Complex<float>, a Complex<double>, and so on.

 Two related solutions present themselves. One would be simply to allow con-
straints on operators, so you could write a set of constraints such as

where T : T operator+ (T, T), T operator/ (T, int)

This would require that T have the operations we need in the earlier code. The other
solution would be to define a few operators and perhaps conversions that must be sup-
ported in order for a type to meet the extra constraint—we could make it the
“numeric constraint” written where T : numeric.

13 This is assuming you’re not using .NET 4, of course, which already has System.Numerics.ComplexNumber.
Licensed to Devon Greenway <devon.greenway@gmail.com>

98 CHAPTER 3 Parameterized typing with generics
 One problem with both of these options is that they can’t be expressed as normal
interfaces, because operator overloading is performed with static members, which
can’t be used to implement interfaces. I find the idea of static interfaces appealing:
interfaces that only declare static members, including methods, operators, and con-
structors. Such static interfaces would only be useful within type constraints, but
they’d present a type-safe generic way of accessing static members. This is just blue sky
thinking, though (see http://mng.bz/3Rk3)—I don't know of any plans to include
this in a future version of C#.

 The two neatest workarounds for this problem to date require later versions of
.NET: one designed by Marc Gravell (http://mng.bz/9m8i) uses expression trees
(which we’ll meet in chapter 9) to build dynamic methods; the other is to use the
dynamic features of C# 4. We’ll see an example of the latter in chapter 14. But, as you
can tell by the descriptions, both of these are dynamic—you have to wait until execu-
tion time to see whether your code will work with a particular type. There are a few
workarounds that still use static typing, but they have other disadvantages (surpris-
ingly enough, they can sometimes be slower than the dynamic code).

 The two limitations we’ve looked at so far have been quite practical—they’ve been
issues you may well run into during actual development. But if you’re generally curi-
ous like I am, you may also be asking yourself about other limitations that don’t neces-
sarily slow down development but are intellectual curiosities. In particular, just why
are generics limited to types and methods?

3.5.3 Lack of generic properties, indexers, and other member types

We’ve seen generic types (classes, structs, delegates, and interfaces) and we’ve seen
generic methods. There are plenty of other members that could be parameterized. But
there are no generic properties, indexers, operators, constructors, finalizers, or
events. First let’s be clear about what we mean here: clearly an indexer can have a
return type that’s a type parameter—List<T> is an obvious example. KeyValue-
Pair<TKey,TValue> provides similar examples for properties. What you can’t have is
an indexer or property (or any of the other members in that list) with extra type
parameters. Leaving the possible syntax of declaration aside for the minute, let’s look
at how these members might have to be called:

SomeClass<string> instance = new SomeClass<string><Guid>("x");
int x = instance.SomeProperty<int>;
byte y = instance.SomeIndexer<byte>["key"];
instance.Click<byte> += ByteHandler;
instance = instance +<int> instance;

I hope you’ll agree that all of those look somewhat silly. Finalizers can’t even be called
explicitly from C# code, which is why there isn’t a line for them. The fact that we can’t
do any of these isn’t going to cause significant problems anywhere, as far as I can
see—it’s just worth being aware of this as an academic limitation.

 The one exception to this is possibly the constructor. A static generic method in the
class is a good workaround for this, though, and the syntax with two lists of type argu-
ments is horrific.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/3Rk3
http://mng.bz/9m8i

99Limitations of generics in C# and other languages
 These are by no means the only limitations of C# generics, but I believe they’re the
ones that you’re most likely to run up against, either in your daily work, in community
conversations, or when idly considering the feature as a whole. In our next two sec-
tions, we’ll see how some aspects of these aren’t issues in the two languages whose fea-
tures are most commonly compared with C#’s generics: C++ (with templates) and Java
(with generics as of Java 5). We’ll tackle C++ first.

3.5.4 Comparison with C++ templates

C++ templates are a bit like macros taken to an extreme level. They’re incredibly pow-
erful, but have costs associated with them both in terms of code bloat and ease of
understanding.

 When a template is used in C++, the code is compiled for that particular set of tem-
plate arguments, as if the template arguments were in the source code. This means
that there’s not as much need for constraints, as the compiler will check whether
you’re allowed to do everything you want to with the type anyway while it’s compiling
the code for this particular set of template arguments. The C++ standards committee
has recognized that constraints are still useful, though. They’ve been postponed from
C++0x (the next version of C++) but may yet see the light of day some time in the
future, under the name of concepts.

 The C++ compiler is smart enough to compile the code only once for any given set
of template arguments, but it isn’t able to share code in the way that the CLR does with
reference types. That lack of sharing does have its benefits, though—it allows type-
specific optimizations, such as inlining method calls for some type parameters but not
others, from the same template. It also means that overload resolution can be per-
formed separately for each set of type parameters, rather than just once based solely
on the limited knowledge the C# compiler has due to any constraints present.

 Don’t forget that with normal C++ there’s only one compilation involved, rather
than the “compile to IL” then “JIT compile to native code” model of .NET. A program
using a standard template in 10 different ways will include the code 10 times in a C++
program. A similar program in C# using a generic type from the framework in 10 dif-
ferent ways won’t include the code for the generic type at all—it’ll refer to it, and the
JIT will compile as many different versions as required (as described in section 3.4.2)
at execution time.

 One significant feature that C++ templates have over C# generics is that the tem-
plate arguments don’t have to be type names. Variable names, function names, and
constant expressions can be used as well. A common example of this is a buffer type
that has the size of the buffer as one of the template arguments—so a buffer
<int,20> will always be a buffer of 20 integers, and a buffer<double,35> will always
be a buffer of 35 doubles. This ability is crucial to template metaprogramming (see
http://mng.bz/c1G0)—an advanced C++ technique the very idea of which scares me,
but that can be powerful in the hands of experts.

 C++ templates are more flexible in other ways, too. They don’t suffer from the
problem described in section 3.5.2, and there are a few other restrictions that don’t
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/c1G0

100 CHAPTER 3 Parameterized typing with generics
exist in C++: you can derive a class from one of its type parameters, and you can spe-
cialize a template for a particular set of type arguments. The latter ability allows the
template author to write general code to be used when there’s no more knowledge
available but specific (often highly optimized) code for particular types.

 The same variance issues of .NET generics exist in C++ templates as well—an exam-
ple given by Bjarne Stroustrup14 is that there are no implicit conversions between
vector<shape*> and vector<circle*> with similar reasoning—in this case, it might
allow you to put a square peg in a round hole.

 For further details of C++ templates, I recommend Stroustrup’s The C++ Program-
ming Language (Addison-Wesley, 1991). It’s not always the easiest book to follow, but
the templates chapter is fairly clear (once you get your mind around C++ terminology
and syntax). For more comparisons with .NET generics, look at the blog post by the
Visual C++ team on this topic (http://mng.bz/En13).

 The other obvious language to compare with C# in terms of generics is Java, which
introduced the feature into the mainstream language for the 1.5 release,15 several
years after other projects had created Java-like languages which supported generics.

3.5.5 Comparison with Java generics

Where C++ includes more of the template in the generated code than C# does, Java
includes less. In fact, the Java runtime doesn’t know about generics at all. The Java
bytecode (roughly equivalent terminology to IL) for a generic type includes some
extra metadata to say that it’s generic, but after compilation the calling code doesn’t
have much to indicate that generics were involved at all—and certainly an instance of
a generic type only knows about the nongeneric side of itself. For example, an
instance of HashSet<T> doesn’t know whether it was created as a HashSet<String> or
a HashSet<Object>. The compiler effectively adds casts where necessary and performs
more sanity checking. Here’s an example—first the generic Java code:

ArrayList<String> strings = new ArrayList<String>();
strings.add("hello");
String entry = strings.get(0);
strings.add(new Object());

and now the equivalent nongeneric code:

ArrayList strings = new ArrayList();
strings.add("hello");
String entry = (String) strings.get(0);
strings.add(new Object());

They would generate the same Java bytecode, except for the last line—which is valid in
the nongeneric case but caught by the compiler as an error in the generic version. You
can use a generic type as a raw type, which is equivalent to using java.lang.Object for
each of the type arguments. This rewriting—and loss of information—is called type

14 The inventor of C++.
15 Or 5.0, depending on which numbering system you use. Don’t get me started.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/En13

101Summary
erasure. Java doesn’t have user-defined value types, but you can’t even use the built-in
ones as type arguments. Instead, you have to use the boxed version—ArrayList<Inte-

ger> for a list of integers, for example.
 You’ll be forgiven for thinking this is all a bit disappointing compared with gener-

ics in C#, but there are some nice features of Java generics, too:

 The virtual machine doesn’t know anything about generics, so you can use code
compiled using generics on an older version, as long as you don’t use any
classes or methods that aren’t present on the old version. Versioning in .NET is
much stricter in general—for each assembly you reference, you can specify
whether the version number has to match exactly. In addition, code built to run
on the 2.0 CLR won’t run on .NET 1.1.

 You don’t need to learn a new set of classes to use Java generics—where a non-
generic developer would use ArrayList, a generic developer just uses Array-
List<T>. Existing classes can reasonably easily be upgraded to generic versions.

 The previous feature has been utilized quite effectively with the reflection sys-
tem—java.lang.Class (the equivalent of System.Type) is generic, which
allows compile-time type safety to be extended to cover many situations involv-
ing reflection. In some other situations it’s a pain, though.

 Java has support for generic variance using wildcards. For instance, ArrayList<?
extends Base> can be read as “this is an ArrayList of some type that derives
from Base, but we don’t know which exact type.” When we discuss C# 4’s support
for generic variance in chapter 13, we’ll revisit this with a short example.

My personal opinion is that .NET generics are superior in almost every respect,
although when I run into covariance/contravariance issues I often wish I had wild-
cards. C# 4’s limited generic variance improves this somewhat, but there are still times
where the variance Java model works better. Java with generics is still much better than
Java without generics, but there are no performance benefits and the safety only
applies at compile time.

3.6 Summary
Phew! It’s a good thing generics are simpler to use in reality than they are to describe.
Although they can get complicated, they’re widely regarded as the most important
addition to C# 2 and are incredibly useful. The worst thing about writing code using
generics is that if you ever have to go back to C# 1, you’ll miss them terribly.

 In this chapter I haven’t tried to cover every detail of what is and isn’t allowed
when using generics—that’s the job of the language specification, and it makes for dry
reading. Instead, I’ve aimed for a practical approach, providing the information you’ll
need in everyday use, with a smattering of theory for the sake of academic interest.

 We’ve seen three main benefits to generics: compile-time type safety, performance,
and code expressiveness. Being able to get the IDE and compiler to validate your code
early is certainly a good thing, but it’s arguable that more is to be gained from tools
providing intelligent options based on the types involved than the actual safety aspect.
Licensed to Devon Greenway <devon.greenway@gmail.com>

102 CHAPTER 3 Parameterized typing with generics
 Performance is improved most radically when it comes to value types, which no
longer need to be boxed and unboxed when they’re used in strongly typed generic
APIs, particularly the generic collection types provided in .NET 2.0. Performance with
reference types is usually improved but only slightly.

 Your code is able to express its intention more clearly using generics—instead of a
comment or a long variable name being required to describe exactly what types are
involved, the details of the type itself can do the work. Comments and variable names
can often become inaccurate over time, as they can be forgotten when the code is
changed—but the type information is correct by definition.

 Generics aren’t capable of doing everything we might sometimes like them to do,
and we’ve studied some of their limitations in the chapter, but if you truly embrace
C# 2 and the generic types within the .NET 2.0 Framework, you’ll come across good
uses for them incredibly frequently in your code.

 This topic will come up time and time again in future chapters, as other new fea-
tures build on this key one. Indeed, the subject of our next chapter would be very dif-
ferent without generics—we’re going to look at nullable types, as implemented by
Nullable<T>.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Saying nothing
with nullable types
Nullity is a concept that has provoked debate over the years. Is a null reference a
value, or the absence of a value? Is “nothing” a “something”? Should languages sup-
port the concept of nullity at all, or should it be represented in other patterns? In
this chapter, I’ll try to stay more practical than philosophical. First we’ll look at why
there’s a problem at all—why you can’t set a value type variable to null in C# 1 and
what the traditional alternatives have been. After that, I’ll introduce you to our
knight in shining armor—System.Nullable<T> —before we see how C# 2 makes
working with nullable types simple and compact. Like generics, nullable types
sometimes have some uses beyond what you might expect, and we’ll look at a few
examples of these at the end of the chapter.

 So, when is a value not a value? Let’s find out.

This chapter covers
 Motivation for null values

 Framework and runtime support

 Language support in C# 2

 Patterns using nullable types
103

Licensed to Devon Greenway <devon.greenway@gmail.com>

104 CHAPTER 4 Saying nothing with nullable types
4.1 What do you do when you just don’t have a value?
The C# and .NET designers don’t add features just for kicks. There has to be a real,
significant problem to be fixed before they’ll go as far as changing C# as a language or
.NET at the platform level. In this case, the problem is best summed up in one of the
most frequently asked questions in C# and .NET discussion groups:

I need to set my DateTime1variable to null, but the compiler won’t let me. What should I do?

It’s a question that comes up fairly naturally—an example might be in an e-commerce
application where users are looking at their account history. If an order has been
placed but not delivered, there may be a purchase date but no dispatch date—so how
would you represent that in a type that’s meant to provide the order details?

 Before C# 2, the answer to the question was usually in two parts: first, why you
couldn’t just use null in the first place, and second, which options were available.
Nowadays the answer would usually explain nullable types instead—but it’s worth
looking at the C# 1 options to understand where the problem comes from.

4.1.1 Why value type variables can’t be null

As we saw in chapter 2, the value of a reference type variable is a reference, and the
value of a value type variable is the real data itself. A non-null reference is a way of get-
ting at an object, but null acts as a special value that means “I don’t refer to any
object.” If you want to think of references as being like URLs, null is (very roughly
speaking) the reference equivalent of about:blank. It’s represented as all zeroes in
memory (which is why it’s the default value for all reference types—clearing a whole
block of memory is cheap, so that’s the way objects are initialized), but it’s still basi-
cally stored in the same way as other references. There’s no extra bit hidden some-
where for each reference type variable. That means we can’t use the “all zeroes” value
for a real reference, but that’s okay—our memory is going to run out long before we
have that many live objects anyway.

 The last sentence is the key to why null isn’t a valid value type value, though. Let’s
consider the byte type as a familiar one that's easy to think about. The value of a vari-
able of type byte is stored in a single byte—it may be padded for alignment purposes,
but the value itself is conceptually only made up of one byte. We’ve got to be able to
store the values 0–255 in that variable; otherwise it’s useless for reading arbitrary
binary data. So, with the 256 normal values and one null value, we’d have to cope with
a total of 257 values, and there’s no way of squeezing that many values into a single
byte. Now, the designers could’ve decided that every value type would have an extra
flag bit somewhere determining whether a value was null or contained real data, but
the memory usage implications are horrible, not to mention the fact that we’d have to
check the flag every time we wanted to use the value. So in a nutshell, with value types
you often care about having the whole range of possible bit patterns available as real

1 It’s almost always DateTime rather than any other value type. I’m not entirely sure why—it’s as if developers
inherently understand why a byte shouldn’t be null, but feel that dates are more inherently nullable.
Licensed to Devon Greenway <devon.greenway@gmail.com>

105What do you do when you just don’t have a value?
values, whereas with reference types we’re happy enough to lose one potential value
in order to gain the benefits of making the null reference available.

 That’s the usual situation—now why would you want to be able to represent null
for a value type anyway? The most common reason is simply because databases typi-
cally support NULL as a value for every type (unless you specifically make the field non-
nullable), so you can have nullable character data, nullable integers, nullable Bool-
eans—the whole works. When you fetch data from a database, it’s generally not a good
idea to lose information, so you want to be able to represent the nullity of whatever
you read, somehow.

 That just moves the question one step further on, though. Why do databases allow
null values for dates, integers, and the like? Null values are typically used for
unknown or missing values such as the dispatch date in our earlier e-commerce
example. Nullity represents an absence of definite information, which can be impor-
tant in many situations. Indeed, there doesn’t have to be a database involved for nul-
lable value types to be useful: that’s just the scenario where developers typically
encounter the problem first.

 That brings us to options for representing null values in C# 1.

4.1.2 Patterns for representing null values in C# 1

There are three basic patterns commonly used to get around the lack of nullable
value types in C# 1. Each has its pros and cons—mostly cons—and all of them are
fairly unsatisfying. But they’re worth knowing, partly to more fully appreciate the ben-
efits of the integrated solution in C# 2.

PATTERN 1: THE MAGIC VALUE

The first pattern tends to be used as the solution for DateTime, because few people
expect their databases to actually contain dates in AD1. In other words, it goes against
the line of reasoning I gave earlier, which assumes that every possible value needs to
be available for normal purposes. So, we sacrifice one value (typically DateTime.
MinValue) to mean a null value. The semantic meaning of that will vary from applica-
tion to application—it may mean that the user hasn’t entered the value into a form
yet, or that it’s not required for that record, for example.

 The good news is that using a magic value doesn’t waste any memory or require
any new types. But it does rely on you picking an appropriate value that you’ll never
actually want to use for real data. Also, it’s basically inelegant. It just doesn’t feel right.
If you ever find yourself needing to go down this path, you should at least have a con-
stant (or static read-only value for types that can’t be expressed as constants) repre-
senting the magic value—comparisons with DateTime.MinValue everywhere, for
instance, don’t express the meaning of the magic value. Additionally, it’s easy to acci-
dentally use the magic value as if it were a normal, meaningful one—neither the com-
piler nor the runtime will help you spot the error. Most of the other solutions
presented here (including the one in C# 2) would result in either a compilation error
or an exception at execution time, depending on the exact situation.
Licensed to Devon Greenway <devon.greenway@gmail.com>

106 CHAPTER 4 Saying nothing with nullable types
 The magic value pattern is deeply embedded in computing in the form of IEEE-754
binary floating-point types such as float and double. These go further than the idea
of a single value representing “this isn’t really a number”—there are many bit patterns
that are classified as “not a number” (NaN) as well as values for positive and negative
infinity. I suspect few programmers (myself included) are as cautious around these
values as we should be, which is another indication of the pattern’s shortcomings.

 ADO.NET has a variation on this pattern where the same magic value—
DBNull.Value—is used for all null values, regardless of the type. In this case, an extra
value and indeed an extra type have been introduced to indicate when a database has
returned null. But it’s only applicable where compile-time type safety isn’t important
(in other words, when you’re happy to use object and cast after testing for nullity),
and again it doesn’t feel quite right. In fact, it’s a mixture of the magic value pattern
and the reference type wrapper pattern, which we’ll look at next.

PATTERN 2: A REFERENCE TYPE WRAPPER

The second solution can take two forms. The simpler one is to just use object as the
variable type, boxing and unboxing values as necessary. The more complex (and
more appealing) form is to have a reference type for each value type you need in a
nullable form, containing a single instance variable of that value type, and with
implicit conversion operators to and from the value type. With generics, you could do
this in one generic type—but if you’re using C# 2 anyway, you might as well use the
nullable types described in this chapter instead. If you’re stuck in C# 1, you have to
create extra source code for each type you wish to wrap. This isn’t hard to put in the
form of a template for automatic code generation, but it’s still a burden that’s best
avoided if possible.

 Both of these forms have the problem that though they allow you to use null
directly, they do require objects to be created on the heap, which can lead to garbage
collection pressure if you need to use this approach frequently, and adds memory use
due to the overhead associated with objects. For the more complex solution, you
could make the reference type mutable, which may reduce the number of instances
you need to create but could also make for some unintuitive code.

PATTERN 3: AN EXTRA BOOLEAN FLAG

The final pattern revolves around having a normal value type value available, and
another value—a Boolean flag—indicating whether the value is “real” or whether it
should be disregarded. Again, there are two ways of implementing this solution.
Either you could maintain two separate variables in the code that uses the value, or
you could encapsulate the “value plus flag” into another value type.

 This latter solution is quite similar to the more complicated reference type idea
described earlier, except that you avoid the garbage collection issue by using a value
type, and indicate nullity within the encapsulated value rather than by virtue of a null
reference. The downside of having to create a new one of these types for every value
type you wish to handle is the same, though. Also, if the value is ever boxed for some
reason, it’ll be boxed in the normal way whether it’s considered to be null or not.
Licensed to Devon Greenway <devon.greenway@gmail.com>

107System.Nullable<T>and System.Nullable
 The last pattern (in the more encapsulated form) is effectively how nullable types
work in C# 2. We’ll see that when the new features of the framework, CLR, and lan-
guage are all combined, the solution is significantly neater than anything that was pos-
sible in C# 1. Our next section deals with just the support provided by the framework
and the CLR: if C# 2 only supported generics, most of section 4.2 would still be relevant
and the feature would still work and be useful. But C# 2 provides extra syntactic sugar
to make it even better—that’s the subject of section 4.3.

4.2 System.Nullable<T>and System.Nullable
The core structure at the heart of nullable types is the System.Nullable<T> struct. In
addition, the System.Nullable static class provides utility methods that occasionally
make nullable types easier to work with. (From now on I’ll leave out the namespace,
to make life simpler.) We’ll look at both of these types in turn, and for this section I’ll
avoid any extra features provided by the language, so you’ll be able to understand
what’s going on in the IL code when we do look at the shorthand provided by C# 2.

4.2.1 Introducing Nullable<T>

As you can tell by its name, Nullable<T> is a generic type. The type parameter T has a
value type constraint, so you can’t use Nullable<Stream>, for example. As I men-
tioned in section 3.3.1, this also means you can’t use another nullable type as the
argument—so Nullable<Nullable<int>> is forbidden, even though Nullable<T> is
a value type in every other way. The type of T for any particular nullable type is called
the underlying type of that nullable type. For example, the underlying type of
Nullable<int> is int.

 The most important parts of Nullable<T> are its properties, HasValue and Value.
They do the obvious: Value represents the non-nullable value (the real one, if you will)
when there is one, and throws an InvalidOperationException if (conceptually)
there’s no real value. HasValue is simply a Boolean property indicating whether
there’s a real value or whether the instance should be regarded as null. For now, I’ll
talk about an “instance with a value” and an “instance without a value,” which mean
instances where the HasValue property returns true or false, respectively.

 These properties are backed by simple fields in the obvious way. Figure 4.1 shows
instances of Nullable<int> representing (from left to right) no value, 0, and 5.
Remember that Nullable<T> is still a
value type, so if you have a variable of type
Nullable<int>, the variable’s value will
directly contain a bool and an int—it
won’t be a reference to a separate object.

 Now that we know what we want the
properties to achieve, let’s see how to cre-
ate an instance of the type. Nullable<T>
has two constructors: the default one

false

hasValue

0

value

true

hasValue

0

value

true

hasValue

5

value

No value
(null)

Value of 0 Value of 5

Figure 4.1 Sample values of Nullable<int>
Licensed to Devon Greenway <devon.greenway@gmail.com>

108 CHAPTER 4 Saying nothing with nullable types
(creating an instance without a value) and one taking an instance of T as the value.
Once an instance has been constructed, it’s immutable.

VALUE TYPES AND MUTABILITY A type is said to be immutable if it’s designed so
that an instance can’t be changed after it’s been constructed. Immutable
types often lead to a cleaner design than having to keep track of what might be
changing shared values—particularly among different threads.

Immutability is particularly important for value types: they should almost
always be immutable. If you need a way of basing one value on another, follow
the lead of DateTime and TimeSpan—provide methods and operators that
return a new value rather than modifying an existing one. This avoids all
kinds of subtle bugs, including situations where you may appear to be chang-
ing something, but you’re actually just changing a copy. Just say “no” to muta-
ble value types.2

Nullable<T> introduces a single new method, GetValueOrDefault, which has two
overloads. Both return the value of the instance if there is one, or a default value oth-
erwise. One overload doesn’t have any parameters (in which case the default value of
the underlying type is used), and the other allows you to specify the default value to
return if necessary.

 The other methods implemented by Nullable<T> all override existing methods
(GetHashCode, ToString, and Equals). GetHashCode returns 0 if the instance doesn’t
have a value, or the result of calling GetHashCode on the value if there is one.
ToString returns an empty string if there isn’t a value, or the result of calling
ToString on the value if there is. Equals is slightly more complicated—we’ll come
back to it when we’ve discussed boxing.

 Finally, two conversions are provided by the framework. First, there’s an implicit
conversion from T to Nullable<T>. This always results in an instance where HasValue
returns true. Likewise, there’s an explicit conversion from Nullable<T> to T, which
behaves exactly the same as the Value property, including throwing an exception
when there’s no real value to return.

WRAPPING AND UNWRAPPING The C# specification names the process of con-
verting an instance of T to an instance of Nullable<T> wrapping, with the obvi-
ous opposite process being called unwrapping. The specification actually
defines these terms with reference to the constructor taking a parameter and
the Value property, respectively. Indeed these calls are generated by the C#
code, even when it otherwise looks as if you’re using the conversions provided
by the framework. The results are the same either way, though. For the rest of
this chapter, I won’t distinguish between the two implementations available.

Before we go any further, let’s see all this in action. Listing 4.1 shows everything you
can do with Nullable<T> directly, leaving Equals aside for the moment.

2 Most value types in the framework are immutable, but there are some commonly used exceptions—in partic-
ular, the Point structures for both Windows Forms and Windows Presentation Foundation are mutable.
Licensed to Devon Greenway <devon.greenway@gmail.com>

109System.Nullable<T>and System.Nullable

static void Display(Nullable<int> x)
{

Console.WriteLine("HasValue: {0}", x.HasValue);
if (x.HasValue)
{

Console.WriteLine("Value: {0}", x.Value);
Console.WriteLine("Explicit conversion: {0}", (int)x);

}
Console.WriteLine("GetValueOrDefault(): {0}",

x.GetValueOrDefault());
Console.WriteLine("GetValueOrDefault(10): {0}",

x.GetValueOrDefault(10));
Console.WriteLine("ToString(): \"{0}\"", x.ToString());
Console.WriteLine("GetHashCode(): {0}", x.GetHashCode());
Console.WriteLine();

}
...
Nullable<int> x = 5;
x = new Nullable<int>(5);
Console.WriteLine("Instance with value:");
Display(x);

x = new Nullable<int>();
Console.WriteLine("Instance without value:");
Display(x);

In listing 4.1, we first show the two different ways (in terms of C# source code) of
wrapping a value of the underlying type, and then we use various different members
on the instance. Next, we create an instance that doesn’t have a value, and use the same
members in the same order, just omitting the Value property and the explicit conver-
sion to int since these would throw exceptions. The output of listing 4.1 is as follows:

Instance with value:
HasValue: True
Value: 5
Explicit conversion: 5
GetValueOrDefault(): 5
GetValueOrDefault(10): 5
ToString(): "5"
GetHashCode(): 5

Instance without value:
HasValue: False
GetValueOrDefault(): 0
GetValueOrDefault(10): 10
ToString(): ""
GetHashCode(): 0

So far, you could probably have predicted all of the results just by looking at the mem-
bers provided by Nullable<T>. When it comes to boxing and unboxing, though,
there’s special behavior to make nullable types behave how we’d really like them to

Listing 4.1 Using various members of Nullable<T>
Licensed to Devon Greenway <devon.greenway@gmail.com>

110 CHAPTER 4 Saying nothing with nullable types
behave, rather than how they’d behave if we
slavishly followed the normal boxing rules.

4.2.2 Boxing Nullable<T>and unboxing

It’s important to remember that Nullable <T>
is a struct—a value type. This means that if you
want to convert it to a reference type (object is
the most obvious example), you’ll need to box
it. It’s only with respect to boxing and unbox-
ing that the CLR itself has any special behavior
regarding nullable types—the rest is standard
generics, conversions, method calls, and so
forth. In fact, the behavior was only changed
shortly before the release of .NET 2.0, as the
result of community requests.

 An instance of Nullable<T> is boxed to
either a null reference (if it doesn’t have a
value) or a boxed value of T (if it does), as shown in figure 4.2. It never boxes to a
“boxed nullable int”—there’s simply no such type.

 You can unbox from a boxed value either to its normal type or to the corresponding
nullable type. Unboxing a null reference will throw a NullReferenceException if you
unbox to the normal type, but will unbox to an instance without a value if you unbox
to the appropriate nullable type. This behavior is shown in the following listing.

Nullable<int> nullable = 5;

object boxed = nullable;
Console.WriteLine(boxed.GetType());

int normal = (int)boxed;
Console.WriteLine(normal);

nullable = (Nullable<int>)boxed;
Console.WriteLine(nullable);

nullable = new Nullable<int>();
boxed = nullable;
Console.WriteLine(boxed == null);

nullable = (Nullable<int>)boxed;
Console.WriteLine(nullable.HasValue);

The output of listing 4.2 shows that the type of the boxed value is printed as System.
Int32 (not System.Nullable<System.Int32>). It then confirms that we can retrieve
the value by unboxing to either just int or to Nullable<int>. Finally, the output dem-
onstrates we can box from a nullable instance without a value to a null reference and
successfully unbox again to another valueless nullable instance. If we’d tried unboxing

Listing 4.2 Boxing and unboxing behavior of nullable types

Boxes nullable
with value

Unboxes to non-
nullable variable

Unboxes to
nullable variable

Boxes nullable
without value

Unboxes to
nullable variable

false

hasValue

0

value

false

0

value
null reference

true

hasValue

5

value

Boxing

Nullable<int>

5

Boxed int
reference

Boxing

Nullable<int>

Figure 4.2 Results of boxing an instance
without a value (top) or one with a value
(bottom)
Licensed to Devon Greenway <devon.greenway@gmail.com>

111System.Nullable<T>and System.Nullable
the last value of boxed to a non-nullable int, the program would’ve blown up with a
NullReferenceException.

 Now that we understand the behavior of boxing and unboxing, we can begin to
tackle the behavior of Nullable<T>.Equals.

4.2.3 Equality of Nullable<T> instances

Nullable<T> overrides object.Equals(object) but doesn’t introduce any equality
operators or provide an Equals(Nullable<T>) method. Since the framework has sup-
plied the basic building blocks, languages can add extra functionality on top, includ-
ing making existing operators work as we’d expect them to. We’ll see the details of
that in section 4.3.3, but the basic equality as defined by the vanilla Equals method
follows these rules for a call to first.Equals(second):

 If first has no value and second is null, they’re equal.
 If first has no value and second isn’t null, they aren’t equal.
 If first has a value and second is null, they aren’t equal.
 Otherwise, they’re equal if first’s value is equal to second.

Note that we don’t have to consider the case where second is another Nullable<T>
because the rules of boxing prohibit that situation. The type of second is object, so in
order to be a Nullable<T> it would have to be boxed, and as we’ve just seen, boxing a
nullable instance creates a box of the non-nullable type or returns a null reference.
Initially the first rule may appear to be breaking the contract for object.Equals
(object), which insists that x.Equals(null) returns false—but that’s only when x is
a non-null reference. Again, due to the boxing behavior, Nullable<T>’s implementa-
tion will never be called via a reference.

 The rules are mostly consistent with the rules of equality elsewhere in .NET, so you
can use nullable instances as keys for dictionaries and any other situations where you
need equality. Just don’t expect it to differentiate between a non-nullable instance and
a nullable instance with a value—it’s all been carefully set up so that those two cases
are treated the same way as each other.

 That covers the Nullable<T> structure itself, but it has a shadowy partner: the
Nullable class.

4.2.4 Support from the nongeneric Nullable class

The System.Nullable<T> struct does almost everything you want it to. But it gets help
from the System.Nullable class. This is a static class—it only contains static methods,
and you can’t create an instance of it.3 In fact, everything it does could’ve been done
equally well by other types, and if Microsoft had seen where it was going right from
the beginning, it might not have even existed—which would’ve saved confusion over

3 You’ll learn more about static classes in chapter 7.
Licensed to Devon Greenway <devon.greenway@gmail.com>

112 CHAPTER 4 Saying nothing with nullable types
what the two types are there for, aside from anything else. But this accident of history
has three methods to its name, and they’re still useful.

 The first two are comparison methods:

public static int Compare<T>(Nullable<T> n1, Nullable<T> n2)
public static bool Equals<T>(Nullable<T> n1, Nullable<T> n2)

Compare uses Comparer<T>.Default to compare the two underlying values (if they
exist), and Equals uses EqualityComparer<T>.Default. In the face of instances with
no values, the results returned from each method comply with the .NET conventions
of nulls comparing equal to each other and less than anything else.

 Both of these methods could happily be part of Nullable<T> as static but nonge-
neric methods. The one small advantage of having them as generic methods in a non-
generic type is that generic type inference can be applied, so you’ll rarely need to
explicitly specify the type parameter.

 The final method of System.Nullable isn’t generic—indeed, it couldn’t be. Its sig-
nature is as follows:

public static Type GetUnderlyingType(Type nullableType)

If the parameter is a nullable type, the method returns its underlying type; otherwise
it returns null. The reason this couldn’t be a generic method is that if you knew the
underlying type to start with, you wouldn’t have to call it!

 We’ve now seen what the framework and the CLR provide to support nullable
types—but C# 2 adds language features to make life a lot more pleasant.

4.3 C# 2’s syntactic sugar for nullable types
The examples so far have shown nullable types doing their job, but they haven’t been
particularly pretty to look at. Admittedly it makes it obvious that you are using nullable
types when you have to type Nullable<> around the name of the type you’re really
interested in, but it makes the nullability more prominent than the underlying type,
which is usually not a good idea.

 In addition, the very name nullable suggests that we should be able to assign null
to a variable of a nullable type, and we haven’t seen that—we’ve always used the
default constructor of the type. In this section we’ll see how C# 2 deals with these
issues and others.

 Before we get into the details of what C# 2 provides as a language, there’s one def-
inition I can finally introduce. The null value of a nullable value type is the value
where HasValue returns false—or an “instance without a value,” as I referred to it in
section 4.2. I didn’t use it before because it’s specific to C#. The CLI specification
doesn’t mention it, and the documentation for Nullable<T> itself doesn’t mention it.
I’ve honored that difference by waiting until we’re specifically talking about C# 2 itself
before introducing the term. The term also applies to reference types: the null value
of a reference type is simply the null reference we’re familiar with from C# 1.
Licensed to Devon Greenway <devon.greenway@gmail.com>

113C# 2’s syntactic sugar for nullable types
NULLABLE TYPE VERSUS NULLABLE VALUE TYPE In the C# language specifica-
tion, nullable type is used to mean any type with a null value—so any reference
type, or any Nullable<T>. You may have noticed that I’ve been using this term
as if it were synonymous with nullable value type (which obviously doesn’t
include reference types). Although I’m usually a huge pedant when it comes
to terminology, if I’d used “nullable value type” everywhere in this chapter it
would’ve been horrible to read. You should also expect “nullable type” to be
used ambiguously in the real world: it’s probably more common to use it when
describing Nullable<T> than in the sense described in the specification.

With that out of the way, let’s see what features C# 2 gives us, starting by reducing the
clutter in our code.

4.3.1 The ? modifier

There are some elements of syntax that may be unfamiliar at first but have an appro-
priate feel to them. The conditional operator (a ? b : c) is one of them for me—it asks
a question and then has two corresponding answers. In the same way, the ? modifier
for nullable types just feels right to me.

 It’s a shorthand way of specifying a nullable type, so instead of using Nullable
<byte> we can use byte? throughout our code. The two are interchangeable and
compile to exactly the same IL, so you can mix and match them if you want to—but
on behalf of whoever reads your code next, I’d urge you to pick one way or the other
and use it consistently. Listing 4.3 is exactly equivalent to listing 4.2 but uses the ?
modifier, which is shown in bold.

int? nullable = 5;

object boxed = nullable;
Console.WriteLine(boxed.GetType());

int normal = (int)boxed;
Console.WriteLine(normal);

nullable = (int?)boxed;
Console.WriteLine(nullable);

nullable = new int?();
boxed = nullable;
Console.WriteLine(boxed == null);

nullable = (int?)boxed;
Console.WriteLine(nullable.HasValue);

I won’t go through what the code does or how it does it, because the result is exactly
the same as listing 4.2. The two listings compile down to the same IL—they’re simply
using different syntax, just as using int is interchangeable with System.Int32. The
only changes are the ones in bold. You can use the shorthand version everywhere,
including in method signatures, typeof expressions, casts, and the like.

Listing 4.3 The same code as listing 4.2 but using the ? modifier
Licensed to Devon Greenway <devon.greenway@gmail.com>

114 CHAPTER 4 Saying nothing with nullable types
 The reason I feel the modifier is well chosen is that it adds an air of uncertainty to
the nature of the variable. Does the variable nullable in listing 4.3 have an integer
value? Well, at any particular time it might, or it might be the null value. From now on,
we’ll use the ? modifier in all the examples—it’s neater, and it’s arguably the idiomatic
way to use nullable types in C#. But you may feel that it’s too easy to miss when reading
the code, in which case there’s nothing to stop you from using the longer syntax. You
may wish to compare the listings in this section and the previous one to see which you
find more clear.

 Given that the C# 2 specification defines the null value, it would be odd if we
couldn’t use the null literal we already have in the language in order to represent it.
Fortunately we can...

4.3.2 Assigning and comparing with null

A concise author could cover this whole section in a single sentence: “The C# com-
piler allows the use of null to represent the null value of a nullable type in both com-
parisons and assignments.” I prefer to show you what it means in real code, as well as
think about why the language has been given this feature.

 You may have felt uncomfortable every time we used the default constructor of
Nullable<T>. It achieves the desired behavior, but it doesn’t express the reason why we
want to do it—it doesn’t leave the right impression with the reader. We want to give the
same sort of feeling that using null does with reference types. If it seems odd to you
that I’ve talked about feelings in both this section and the last one, just think about
who writes code, and who reads it. Sure, the compiler has to understand the code, and
it couldn’t care less about the subtle nuances of style—but few pieces of code used in
production systems are written and then never read again. Anything you can do to get
the reader into the mental process you were going through when you originally wrote
the code is good—and using the familiar null literal helps to achieve that.

 With that in mind, we’re going to change the example we’re using from one that
just shows syntax and behavior to one that gives an impression of how nullable types
might be used. We’ll consider modeling a Person class where you need to know the
name, date of birth, and date of death of a person. We’ll only keep track of people
who have definitely been born, but some of those people may still be alive—in which
case our date of death is represented by null. Listing 4.4 shows some of the possible
code. Although a real class would clearly have more operations available, we’re just
looking at the calculation of age for this example.

class Person
{

DateTime birth;
DateTime? death;
string name;

public TimeSpan Age

Listing 4.4 Part of a Person class including calculation of age
Licensed to Devon Greenway <devon.greenway@gmail.com>

115C# 2’s syntactic sugar for nullable types
{
get
{

if (death == null)
{

return DateTime.Now - birth;
}
else
{

return death.Value - birth;
}

}
}

public Person(string name,
DateTime birth,
DateTime? death)

{
this.birth = birth;
this.death = death;
this.name = name;

}
}
...
Person turing = new Person("Alan Turing",

new DateTime(1912, 6, 23),
new DateTime(1954, 6, 7));

Person knuth = new Person("Donald Knuth",
new DateTime(1938, 1, 10),
null);

Listing 4.4 doesn’t produce any output, but the fact that it compiles might have sur-
prised you before reading this chapter. Apart from the use of the ? modifier causing
confusion, you might have found it odd that you could compare a DateTime? with
null, or pass null as the argument for a DateTime? parameter.

 Hopefully by now the meaning is intuitive—when we compare the death variable
with null, we’re asking whether its value is the null value or not. Likewise when we use
null as a DateTime? instance, we’re really creating the null value for the type by calling
the default constructor. Indeed, you can see in the generated IL that the code the
compiler spits out for listing 4.4 really does just call the death.HasValue property B,
and creates a new instance of DateTime? E using the default constructor (repre-
sented in IL as the initobj instruction). The date of Alan Turing’s death D is created
by calling the normal DateTime constructor and then passing the result into the
Nullable<DateTime> constructor that takes a parameter.

 I mention looking at the IL because that can be a useful way of finding out what
your code is actually doing, particularly if something compiles when you don’t expect
it to. You can use the ildasm tool that comes with the .NET SDK, or for a better user
interface you can use Reflector (see http://mng.bz/pMXJ), which has many other fea-
tures (most notably decompilation to high-level languages such as C# as well as disas-
sembly to IL).

Checks
HasValue

B

Unwraps for
calculation

C

Wraps DateTime
as nullable

D

Specifies null
date of death

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/pMXJ

116 CHAPTER 4 Saying nothing with nullable types
 We’ve seen how C# provides shorthand syntax for the concept of a null value, mak-
ing the code more expressive once nullable types are understood in the first place.
But one part of listing 4.4 took a bit more work than we might have hoped—the sub-
traction at C. Why did we have to unwrap the value? Why couldn’t we just return
death - birth directly? What would we want that expression to mean if death had
been null (excluded in our code by our earlier test, of course)? These questions—
and more—are answered in our next section.

4.3.3 Nullable conversions and operators

We’ve seen that we can compare instances of nullable types with null, but there are
other comparisons that can be made and other operators that can be used in some
cases. Likewise we’ve seen wrapping and unwrapping, but other conversions can be
used with some types. This section explains what’s available. I’m afraid it’s pretty much
impossible to make this kind of topic genuinely exciting, but carefully designed fea-
tures like these are what make C# a pleasant language to work with in the long run.
Don’t worry if not all of it sinks in the first time: just remember that the details are
here if you need to refer to them in the middle of a coding session.

 The executive summary is that if there’s an operator or conversion available on a
non-nullable value type, and that operator or conversion only involves other non-
nullable value types, then the nullable value type also has the same operator or con-
version available, usually converting the non-nullable value types into their nullable
equivalents. To give a more concrete example, there’s an implicit conversion from int
to long, and that means there’s also an implicit conversion from int? to long? that
behaves in the obvious manner.

 Unfortunately, although that broad description gives the right general idea, the
exact rules are slightly more complicated. Each one is simple, but there are quite a few
of them. It’s worth knowing about them because otherwise you may end up staring at
a compiler error or warning for a while, wondering why it believes you’re trying to
make a conversion that you never intended in the first place. We’ll start with the con-
versions, and then look at operators.

CONVERSIONS INVOLVING NULLABLE TYPES

For completeness, let’s start with the conversions we already know about:

 An implicit conversion from the null literal to T?
 An implicit conversion from T to T?
 An explicit conversion from T? to T

Now consider the predefined and user-defined conversions available on types. For
instance, there’s a predefined conversion from int to long. For any conversion like
this, from one non-nullable value type (S) to another (T), the following conversions
are also available:

 S? to T? (explicit or implicit depending on original conversion)
 S to T? (explicit or implicit depending on original conversion)
 S? to T (always explicit)
Licensed to Devon Greenway <devon.greenway@gmail.com>

117C# 2’s syntactic sugar for nullable types
To carry our example forward, this means that you can convert implicitly from int? to
long? and from int to long? as well as explicitly from int? to long. The conversions
behave in the natural way, with null values of S? converting to null values of T?, and
non-null values using the original conversion. As before, the explicit conversion from
S? to T will throw an InvalidOperationException when converting from a null value
of S?. For user-defined conversions, these extra conversions involving nullable types
are known as lifted conversions.

 So far, so relatively simple. Now let’s consider the operators, where things are
slightly more tricky.

OPERATORS INVOLVING NULLABLE TYPES

C# allows the following operators to be overloaded:

 Unary: + ++ - -- ! ~ true false
 Binary: + - * / % & | ^ << >>
 Equality:4 == !=
 Relational: < > <= >=

When these operators are overloaded for a non-nullable value type T, the nullable type
T? has the same operators, with slightly different operand and result types. These are
called lifted operators whether they’re predefined operators such as addition on
numeric types, or user-defined operators such as adding a TimeSpan to a DateTime.
There are a few restrictions as to when they apply:

 The true and false operators are never lifted. They’re incredibly rare in the
first place, though, so it’s no great loss.

 Only operators with non-nullable value types for the operands are lifted.
 For the unary and binary operators (other than equality and relational opera-

tors), the return type has to be a non-nullable value type.
 For the equality and relational operators, the return type has to be bool.
 The & and | operators on bool? have separately defined behavior, which we’ll

see in section 4.3.6.

For all the operators, the operand types become their nullable equivalents. For the
unary and binary operators, the return type also becomes nullable, and a null value is
returned if any of the operands is a null value. The equality and relational operators
keep their non-nullable Boolean return types. For equality, two null values are consid-
ered equal, and a null value and any non-null value are considered different, which is
consistent with the behavior we saw in section 4.2.3. The relational operators always
return false if either operand is a null value. When none of the operands is a null
value, the operator of the non-nullable type is invoked in the obvious way.

 All these rules sound more complicated than they really are—for the most part,
everything works as you probably expect it to. It’s easiest to see what happens with a

4 The equality and relational operators are binary operators too, but we’ll see that they behave slightly differ-
ently than the others; hence their separation here.
Licensed to Devon Greenway <devon.greenway@gmail.com>

118 CHAPTER 4 Saying nothing with nullable types
few examples, and as int has so many predefined operators (and integers can be so
easily expressed), it’s the natural demonstration type. Table 4.1 shows a number of
expressions, the lifted operator signature, and the result. It’s assumed that there are
variables four, five, and nullInt, each with type int? and with the obvious values.

 Possibly the most surprising line of the table is the bottom one—that a null value
isn’t deemed less than or equal to another null value, even though they are deemed to
be equal to each other (as per the fifth row)! Very odd—but unlikely to cause prob-
lems in real life, in my experience.

 One aspect of lifted operators and nullable conversion that has caused some con-
fusion is unintended comparisons with null when using a non-nullable value type.
The code that follows is legal, but not useful:

int i = 5;
if (i == null)
{

Console.WriteLine ("Never going to happen");
}

The C# compiler raises warnings on this code, but you may consider it surprising that
it’s allowed at all. What’s happening is that the compiler sees the int expression on
the left side of the ==, sees null on the right side, and knows that there’s an implicit
conversion to int? from each of them. Because a comparison between two int? val-
ues is perfectly valid, the code doesn’t generate an error—just the warning. As a fur-
ther complication, this isn’t allowed in the case where instead of int, we’re dealing
with a generic type parameter that has been constrained to be a value type—the rules
on generics prohibit the comparison with null in that situation.

 Either way, there’ll be an error or a warning, so as long as you look closely at warn-
ings, you shouldn’t end up with deficient code due to this quirk—and hopefully
pointing it out to you now may save you from getting a headache trying to work out
exactly what’s going on.

Expression Lifted operator Result

-nullInt int? –(int? x) null

-five int? –(int? x) -5

five + nullInt int? +(int? x, int? y) null

five + five int? +(int? x, int? y) 10

nullInt == nullInt bool ==(int? x, int? y) true

five == five bool ==(int? x, int? y) true

five == nullInt bool ==(int? x, int? y) false

five == four bool ==(int? x, int? y) false

four < five bool <(int? x, int? y) true

nullInt < five bool <(int? x, int? y) false

five < nullInt bool <(int? x, int? y) false

nullInt < nullInt bool <(int? x, int? y) false

nullInt <= nullInt bool <=(int? x, int? y) false

Table 4.1 Examples of
lifted operators applied
to nullable integers
Licensed to Devon Greenway <devon.greenway@gmail.com>

119C# 2’s syntactic sugar for nullable types
 Now we can answer the question at the end of the previous section—why we used
death.Value - birth in listing 4.4 instead of just death - birth. Applying the previ-
ous rules, we could have used the latter expression, but the result would’ve been a
TimeSpan? instead of a TimeSpan. This would’ve left us with the options of casting the
result to TimeSpan, using its Value property, or changing the Age property to return a
TimeSpan?—which just pushes the issue onto the caller. It’s still a bit ugly, but we’ll see
a nicer implementation of the Age property in section 4.3.6.

 In the list of restrictions regarding operator lifting, I mentioned that bool? works
slightly differently than the other types. Our next section explains this and pulls back
the lens to see the bigger picture of why all these operators work the way they do.

4.3.4 Nullable logic

I vividly remember my early electronics lessons at school. They always seemed to
revolve around either working out the voltage across different parts of a circuit using
the V=IR formula, or applying truth tables—the reference charts for explaining the dif-
ference between NAND gates and NOR gates and so on. The idea is simple—a truth
table maps out every possible combination of inputs into whatever piece of logic
you’re interested in and tells you the output.

 The truth tables we drew for simple, two-input logic gates always had four rows—
each input had two possible values, which means there were four possible combina-
tions. Boolean logic is simple like that—but what happens when you have a tristate
logical type? Well, bool? is just such a type—the value can be true, false, or null.
That means that our truth tables now need nine rows for our binary operators, as
there are nine combinations. The specification only highlights the logical AND and
inclusive OR operators (& and |, respectively) because the other operators—unary log-
ical negation (!) and exclusive OR (^)—follow the same rules as other lifted opera-
tors. There are no conditional logical operators (the short-circuiting && and ||
operators) defined for bool?, which makes life simpler.

 For the sake of completeness, table 4.2 gives the truth table for all four valid bool?
logical operators.

x y x & y x | y x ^ y !x

true true true true false false

true false false true true false

true null null true null false

false true false true true true

false false false false false true

false null false null null true

null true null true null null

null false false null null null

null null null null null null

Table 4.2 Truth table for
the logical operators AND,
inclusive OR, exclusive
OR, and logical negation,
applied to the bool? type
Licensed to Devon Greenway <devon.greenway@gmail.com>

120 CHAPTER 4 Saying nothing with nullable types
For those who find reasoning about rules easier to understand than looking up val-
ues in tables, the idea is that a null bool? value is in some senses a “maybe.” If you
imagine that each null entry in the input side of the table is a variable instead, then
you’ll always get a null value on the output side of the table if the result depends on
the value of that variable. For instance, looking at the third line of the table, the
expression true & y will only be true if y is true, but the expression true | y will
always be true whatever the value of y is, so the nullable results are null and true,
respectively.

 When considering the lifted operators and particularly how nullable logic works,
the language designers had two slightly contradictory sets of existing behavior—C# 1
null references and SQL NULL values. In many cases, these don’t conflict at all—C# 1
had no concept of applying logical operators to null references, so there was no prob-
lem in using the SQL-like results given earlier. The definitions we’ve seen may surprise
some SQL developers, though, when it comes to comparisons. In standard SQL, the
result of comparing two values (in terms of equality or greater than/less than) is
always unknown if either value is NULL. The result in C# 2 is never null, and in particu-
lar two null values are considered to be equal to each other.

REMINDER: THIS IS C# SPECIFIC! It’s worth remembering that the lifted opera-
tors and conversions, along with the bool? logic described in this section, are
all provided by the C# compiler and not by the CLR or the framework itself. If
you use ildasm on code that evaluates any of these nullable operators, you’ll
find that the compiler has created all the appropriate IL to test for null values
and dealt with them accordingly. This means that different languages can
behave differently on these matters—definitely something to look out for if
you need to port code between different .NET-based languages.

Another familiar operator is now available with nullable value types, and it behaves
exactly as you’d expect it to if you consider your existing knowledge of null references
and just tweak it to be in terms of null values.

4.3.5 Using the as operator with nullable types

Prior to C# 2, the as operator was only available for reference types. As of C# 2, it can
now be applied to nullable value types as well. The result is a value of that nullable
type—either the null value if the original reference was the wrong type or null, or a
meaningful value otherwise. Here’s a short example:

static void PrintValueAsInt32(object o)
{

int? nullable = o as int?;
Console.WriteLine(nullable.HasValue ?

nullable.Value.ToString() : "null");
}
...
PrintValueAsInt32(5);
PrintValueAsInt32("some string");

Prints "5"
Prints "null"
Licensed to Devon Greenway <devon.greenway@gmail.com>

121C# 2’s syntactic sugar for nullable types
This allows you to safely convert from an arbitrary reference to a value in a single
step—although you’d normally check. In C# 1, you’d have had to use the is operator
followed by a cast, which is inelegant: it’s asking the CLR to perform the same type
check twice, effectively.

SURPRISING PERFORMANCE TRAP I’d always assumed that doing one check
would be faster than two, but it appears that’s not the case—at least with the
versions of .NET I’ve tested with. When writing a quick benchmark that
summed all the integers within an array of type object[] where only a third
of the values were actually boxed integers, using is and then a cast ended up
being 20 times faster than using the as operator. The details are beyond the
scope of this book, and as always you should test performance with your
actual code and data before deciding the best course of action for your spe-
cific situation—but it’s worth being aware of.

We now know enough to use nullable types and predict how they’ll behave, but C# 2
has a sort of “bonus track” when it comes to syntax enhancements: the null coalescing
operator.

4.3.6 The null coalescing operator

Aside from the ? modifier, all of the rest of the C# compiler’s tricks relating to nul-
lable types so far have worked with the existing syntax. But C# 2 introduces a new
operator that can occasionally make code shorter and sweeter. It’s called the null
coalescing operator and appears in code as ?? between its two operands. It’s like the con-
ditional operator but specially tweaked for nulls.

 It’s a binary operator that evaluates first ?? second by going through the follow-
ing steps (roughly speaking):

1 Evaluate first.
2 If the result is non-null, that’s the result of the whole expression.
3 Otherwise, evaluate second; the result then becomes the result of the whole

expression.

I say “roughly speaking” because the formal rules in the specification have to deal with
situations involving conversions between the types of first and second. As ever, these
aren’t important in most uses of the operator, and I don’t intend to go through
them—consult section 7.13 of the specification if you need the details.

 Importantly, if the type of the second operand is the underlying type of the first
operand (and therefore non-nullable), then the overall result is that underlying type.
For example, this code is perfectly valid:

int? a = 5;
int b = 10;
int c = a ?? b;

Note how we’re assigning directly to c even though its type is the non-nullable int
type. We can only do this because b is non-nullable, so we know that we’ll get a
Licensed to Devon Greenway <devon.greenway@gmail.com>

122 CHAPTER 4 Saying nothing with nullable types
non-nullable result eventually. Obviously that’s a pretty simplistic example; let’s find
a more practical use for this by revisiting the Age property from listing 4.4. As a
reminder, here’s how it was implemented back then, along with the relevant vari-
able declarations:

DateTime birth;
DateTime? death;

public TimeSpan Age
{

get
{

if (death == null)
{

return DateTime.Now - birth;
}
else
{

return death.Value - birth;
}

}
}

Note how both branches of the if statement subtract the value of birth from some
non-null DateTime value. The value we’re interested in is the latest time the person was
alive—the time of the person’s death if he or she has already died, or now otherwise. To
make progress in little steps, let’s try just using the normal conditional operator first:

DateTime lastAlive = (death == null ? DateTime.Now : death.Value);
return lastAlive – birth;

That’s progress of a sort, but arguably the conditional operator has actually made it
harder to read rather than easier, even though the new code is shorter. The condi-
tional operator is often like that—how much you use it is a matter of personal prefer-
ence, although it’s worth consulting the rest of your team before using it extensively.
Let’s see how the null coalescing operator improves things. We want to use the value
of death if it’s non-null, and DateTime.Now otherwise. We can change the implemen-
tation to

DateTime lastAlive = death ?? DateTime.Now;
return lastAlive – birth;

Note how the type of the result is DateTime rather than DateTime? because we’ve
used DateTime.Now as the second operand. We could shorten the whole thing to one
expression:

return (death ?? DateTime.Now) - birth;

But this is more obscure—in particular, in the two-line version the name of the last-
Alive variable helps the reader to see why we’re applying the null coalescing operator.
I hope you agree that the two-line version is simpler and more readable than either
the original version using the if statement or the version using the normal condi-
tional operator from C# 1. Of course, it relies on the reader understanding what the
Licensed to Devon Greenway <devon.greenway@gmail.com>

123C# 2’s syntactic sugar for nullable types
null coalescing operator does. In my experience, this is one of the least well-known
aspects of C# 2, but it’s useful enough to make it worth trying to enlighten your co-
workers rather than avoiding it.

 There are two further aspects that increase the operator’s usefulness. First, it
doesn’t just apply to nullable value types—it works with reference types too; you just
can’t use a non-nullable value type for the first operand, as that would be pointless.
Also, it’s right associative, which means an expression of the form first ?? second ??
third is evaluated as first ?? (second ?? third)—and so it continues for more oper-
ands. You can have any number of expressions, and they’ll be evaluated in order, stop-
ping with the first non-null result. If all of the expressions evaluate to null, the result
will be null too.

 As a concrete example of this, suppose you have an online ordering system (who
doesn’t these days?) with the concepts of a billing address, contact address, and ship-
ping address. The business rules declare that any user must have a billing address, but
the contact address is optional. The shipping address for a particular order is also
optional, defaulting to the billing address. These optional addresses are easily repre-
sented as null references in the code. To work out whom to contact in the case of a
problem with a shipment, the code in C# 1 might look something like this:

Address contact = user.ContactAddress;
if (contact == null)
{

contact = order.ShippingAddress;
if (contact == null)
{

contact = user.BillingAddress;
}

}

Using the conditional operator in this case is even more horrible. But using the null
coalescing operator makes the code very straightforward:

Address contact = user.ContactAddress ??
order.ShippingAddress ??
user.BillingAddress;

If the business rules changed to use the shipping address by default instead of the
user’s contact address, the change here would be extremely obvious. It wouldn’t be
particularly taxing with the if/else version, but I know I’d have to stop and think
twice, and verify the code mentally. I’d also be relying on unit tests, so there’d be little
chance of actually getting it wrong, but I’d prefer not to think about things like this
unless I absolutely have to.

EVERYTHING IN MODERATION Just in case you may be thinking that my code is
littered with uses of the null coalescing operator, it’s really not. I tend to con-
sider it when I see defaulting mechanisms involving nulls and possibly the
conditional operator, but it doesn’t come up often. When its use is natural,
though, it can be a powerful tool in the battle for readability.
Licensed to Devon Greenway <devon.greenway@gmail.com>

124 CHAPTER 4 Saying nothing with nullable types
We’ve seen how nullable types can be used for ordinary properties of objects—cases
where we naturally might not have a value for some particular aspect that’s still best
expressed with a value type. Those are the more obvious uses for nullable types and
indeed the most common ones. A few patterns aren’t as obvious but can still be power-
ful when you’re used to them. We’ll explore two of these patterns in our next section.
This is more for the sake of interest than as part of learning about the behavior of nul-
lable types themselves—you now have all the tools you need to use them in your own
code. If you’re interested in quirky ideas and perhaps trying something new, read on...

4.4 Novel uses of nullable types
Before nullable types became a reality, I saw lots of people effectively asking for them,
usually related to database access. That’s not the only use they can be put to, though.
The patterns presented in this section are unconventional but can make code simpler.
If you only ever stick to normal idioms of C#, that’s fine—this section might not be for
you, and I have a lot of sympathy for that point of view. I usually prefer simple code
over code that’s clever—but if a whole pattern provides benefits when it’s known, that
sometimes makes the pattern worth learning. Whether you use these techniques is
entirely up to you—but you may find that they suggest other ideas to use elsewhere in
your code. Without further ado, let’s start with an alternative to the TryXXX pattern
mentioned in section 3.3.3.

4.4.1 Trying an operation without using output parameters

The pattern of using a return value to say whether an operation worked, and an out-
put parameter to return the real result, is becoming increasingly common in the .NET
Framework. I have no issues with the aims—the idea that some methods are likely to
fail to perform their primary purpose in non-exceptional circumstances is common
sense. My one problem with it is that I’m not a huge fan of output parameters. There’s
something slightly clumsy about the syntax of declaring a variable on one line, then
immediately using it as an output parameter.

 Methods returning reference types have often used a pattern of returning null on
failure and non-null on success. It doesn’t work so well when null is a valid return
value in the success case. Hashtable is an example of both of these statements, in a
slightly ambivalent way. You see, null is a theoretically valid value in a Hashtable, but
in my experience most uses of Hashtable never use null values, which makes it per-
fectly acceptable to have code that assumes that a null value means a missing key. One
common scenario is to have each value of the Hashtable as a list: the first time an item
is added for a particular key, a new list is created and the item added to it. Thereafter,
adding another item for the same key involves adding the item to the existing list.
Here’s the code in C# 1:

ArrayList list = hash[key];
if (list == null)
{

list = new ArrayList();
Licensed to Devon Greenway <devon.greenway@gmail.com>

125Novel uses of nullable types
hash[key] = list;
}
list.Add(newItem);

Hopefully you’d use variable names more specific to your situation, but I’m sure you
get the idea and may well have used the pattern yourself.5 With nullable types, this pat-
tern can be extended to value types—and in fact, it’s safer with value types, because if
the natural result type is a value type, then a null value could only be returned as a
result of failure. Nullable types add that extra Boolean piece of information in a nice
general way with language support—so why not use them?

 To demonstrate this pattern in practice and in a context other than dictionary
lookups, I’ll use the classic example of the TryXXX pattern—parsing an integer. The
implementation of the TryParse method in listing 4.5 shows the version of the pat-
tern using an output parameter, but then we see the use of the version using nullable
types in the main part at the bottom.

static int? TryParse(string text)
{

int ret;
if (int.TryParse(text, out ret))
{

return ret;
}
else
{

return null;
}

}
...
int? parsed = TryParse("Not valid");
if (parsed != null)
{

Console.WriteLine ("Parsed to {0}", parsed.Value);
}
else
{

Console.WriteLine ("Couldn't parse");
}

You may think there’s little to distinguish the two versions here—they’re the same
number of lines, after all. But I believe there’s a difference in emphasis. The nullable
version encapsulates the natural return value and the success or failure into a single
variable. It also separates the doing from the testing, which puts the emphasis in the
right place in my opinion. Usually, if I call a method in the condition part of an if
statement, that method’s primary purpose is to return a Boolean value. Here, the

5 Wouldn’t it be great if Hashtable and Dictionary<TKey,TValue> could take a delegate to call whenever
a new value was required due to looking up a missing key? Situations like this would be a lot simpler.

Listing 4.5 An alternative implementation of the TryXXX pattern

Classic call with
output parameter

Nullable call
Licensed to Devon Greenway <devon.greenway@gmail.com>

126 CHAPTER 4 Saying nothing with nullable types
return value is in some ways less important than the output parameter. When you’re
reading code, it’s easy to miss an output parameter in a method call and be left won-
dering what’s actually doing all the work and magically giving the answer. With the
nullable version, this is more explicit—the result of the method has all the informa-
tion we’re interested in. I’ve used this technique in a number of places (often with
more method parameters, at which point output parameters become even harder to
spot) and believe it has improved the general feel of the code. Of course, this only
works for value types.

 Another advantage of this pattern is that it can be used in conjunction with the
null coalescing operator—you can try to understand several pieces of input, stopping
at the first valid one. The normal TryXXX pattern allows this using the short-circuiting
operators, but the meaning isn’t nearly as clear when you use the same variable for
two different output parameters in the same statement.

 The next pattern is an answer to a specific pain point—the irritation and fluff that
can be present when writing multitiered comparisons.

4.4.2 Painless comparisons with the null coalescing operator

I suspect you dislike writing the same code over and over again as much as I do. Refac-
toring can often get rid of duplication, but some cases resist refactoring surprisingly
effectively. Code for Equals and Compare often falls firmly into this category in my
experience.

 Suppose you’re writing an e-commerce site and have a list of products. You may
wish to sort them by popularity (descending), then price, then name—so that the five-
star-rated products come first, but the cheapest five-star products come before the
more expensive ones. If there are multiple products with the same price, products
beginning with A are listed before products beginning with B. This isn’t a problem
specific to e-commerce sites—sorting data by multiple criteria is a fairly common
requirement in computing.

 Assuming we have a suitable Product type, we can write the comparison with code
like this in C# 1:

public int Compare (Product first, Product second)
{

// Reverse comparison of popularity to sort descending
int ret = second.Popularity.CompareTo(first.Popularity);
if (ret != 0)
{

return ret;
}
ret = first.Price.CompareTo(second.Price);
if (ret != 0)
{

return ret;
}
return first.Name.CompareTo(second.Name);

}

Licensed to Devon Greenway <devon.greenway@gmail.com>

127Novel uses of nullable types
This assumes that we won’t be asked to compare null references, and that all of the
properties will return non-null references too. We could use some up-front null com-
parisons and Comparer<T>.Default to handle those cases, but that would make the
code even longer and more involved. The code could be shorter (and avoid returning
from the middle of the method) if we rearranged it slightly, but the fundamental
“compare, check, compare, check” pattern would still be present, and it wouldn’t be
as obvious that once we have a nonzero answer, we’re done.

 Ah... that last sentence is reminiscent of something else: the null coalescing opera-
tor. As we saw in section 4.3, if we have a lot of expressions separated by ??, then the
operator will be repeatedly applied until it hits a non-null expression. Now all we have
to do is work out a way of returning null instead of zero from a comparison. This is easy
to do in a separate method that can also encapsulate the use of the default comparer.
We can even have an overload to use a specific comparer if we want. We’ll also deal with
the case where either of the Product references we’re passed is null. First, let’s look at
the class implementing our helper methods, as shown in the following listing.

public static class PartialComparer
{

public static int? Compare<T>(T first, T second)
{

return Compare(Comparer<T>.Default, first, second);
}

public static int? Compare<T>(IComparer<T> comparer,
T first, T second)

{
int ret = comparer.Compare(first, second);
return ret == 0 ? new int?() : ret;

}

public static int? ReferenceCompare<T>(T first, T second)
where T : class

{
return first == second ? 0

: first == null ? -1
: second == null ? 1
: new int?();

}
}

The Compare methods in listing 4.6 are almost pathetically simple—when a comparer
isn’t specified, the default comparer for the type is used, and all that happens to the
comparison’s return value is that zero is translated to the null value.

NULL VALUES AND THE CONDITIONAL OPERATOR You may have been surprised to
see me use new int?() rather than null to return the null value in the sec-
ond Compare method. But the conditional operator requires that its second
and third operands either be of the same type, or that there be an implicit
conversion from one to the other. That wouldn’t be the case with null,

Listing 4.6 Helper class for providing partial comparisons
Licensed to Devon Greenway <devon.greenway@gmail.com>

128 CHAPTER 4 Saying nothing with nullable types
because the compiler wouldn’t know what type the value was meant to be—
the language rules don’t take the overall aim of the statement (returning
from a method with a return type of int?) into account when examining sub-
expressions. Other options include casting either operand to int? explicitly
or using default(int?) for the null value. Basically, the important thing is to
make sure that one of the operands is known to be an int? value.

The ReferenceCompare method uses another conditional operator—three of them,
in fact. You may find this less readable than the (rather longer) equivalent code using
if/else blocks —it depends on how comfortable you are with the conditional opera-
tor. I like it in terms of making the order of the comparisons clear. Also, this could
easily have been a nongeneric method with two object parameters—but this form
prevents you from accidentally using the method to compare value types via boxing.
The method really is only useful with reference types, which is indicated by the type
parameter constraint.

 Even though this class is simple, it’s remarkably useful. We can now replace our
previous product comparison with a neater implementation:

public int Compare(Product first, Product second)
{

return PC.ReferenceCompare(first, second) ??
// Reverse comparison of popularity to sort descending
PC.Compare(second.Popularity, first.Popularity) ??
PC.Compare(first.Price, second.Price) ??
PC.Compare(first.Name, second.Name) ??
0;

}

As you may have noticed, I’ve used PC rather than PartialComparer—this is solely for
the sake of being able to fit the lines on the printed page. In real code, I’d use the full
type name and still have one comparison per line. Of course, if you wanted short lines
for some reason, you could specify a using directive to make PC an alias for Partial-
Comparer—I just wouldn’t recommend it.

 The final 0 indicates that if all of the earlier comparisons have passed, the two
Product instances are equal. We could have just used Comparer<string>.Default.
Compare(first.Name, second.Name) as the final comparison, but that would hurt the
symmetry of the method.

 This comparison plays nicely with nulls, is easy to modify, forms an easy pattern to
use for other comparisons, and only compares as far as it needs to: if the prices are dif-
ferent, the names won’t be compared.

 You may be wondering whether the same technique could be applied to equality
tests, which often have similar patterns. There’s much less point in the case of equal-
ity, because after the nullity and reference equality tests, you can just use && to provide
the desired short-circuiting functionality for Booleans. A method returning a bool?
can be used to obtain an initial definitely equal, definitely not equal, or unknown result
based on the references, though. The complete code of PartialComparer on this
book’s website contains the appropriate utility method and examples of its use.
Licensed to Devon Greenway <devon.greenway@gmail.com>

129Summary
4.5 Summary
When faced with a problem, developers tend to take the easiest short-term solution,
even if it’s not particularly elegant. That’s often the right decision—we don’t want to
be guilty of overengineering, after all. But it’s always nice when a good solution is also
the easiest solution.

 Nullable types solve a specific problem that only had somewhat ugly solutions
before C# 2. The features provided are just a better-supported version of a solution
that was feasible but time consuming in C# 1. The combination of generics (to avoid
code duplication), CLR support (to provide suitable boxing and unboxing behavior),
and language support (to provide concise syntax along with convenient conversions
and operators) makes the solution far more compelling than it was previously.

 It so happens that in providing nullable types, the C# and Framework designers
have made some other patterns available that just weren’t worth the effort before.
We’ve looked at some of them in this chapter, and I wouldn’t be surprised to see more
of them appearing over time.

 So far our two new features (generics and nullable types) have addressed areas
where in C# 1 we occasionally had to hold our noses due to unpleasant code smells.
This pattern continues in the next chapter, where we discuss the enhancements to del-
egates. These form an important part of the subtle change of direction of both the C#
language and the .NET Framework, toward a slightly more functional viewpoint. This
emphasis is made even clearer in C# 3, so though we’re not looking at those features
quite yet, the delegate enhancements in C# 2 act as a bridge between the familiarity of
C# 1 and the style of idiomatic C# 3, which can often be radically different from ear-
lier versions.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Fast-tracked delegates
The journey of delegates in C# and .NET is an interesting one, showing remarkable
foresight (or really good luck) on the part of the designers. The conventions sug-
gested for event handlers in .NET 1.0/1.1 didn’t make a lot of sense—until C# 2
showed up. Likewise, the effort put into delegates for C# 2 seems in some ways out
of proportion to how widely used they are—until you see how pervasive they are in
idiomatic C# 3 code. In other words, it’s as if the language and platform designers
had a vision of at least the rough direction they’d be taking, years before the desti-
nation itself became clear.

 Of course, C# 3 isn’t a “final destination” in itself—generic delegates get a bit
more flexibility in C# 4, and we may see even more advances in the future—but the
differences between C# 1 and C# 3 in this area are the most startling ones. (The
primary change in C# 3 supporting delegates is in lambda expressions, which we’ll
meet in chapter 9.)

This chapter covers
 Long-winded C# 1 syntax

 Simplified delegate construction

 Covariance and contravariance

 Anonymous methods

 Captured variables
130

Licensed to Devon Greenway <devon.greenway@gmail.com>

131Saying goodbye to awkward delegate syntax
 C# 2 is a sort of stepping stone in terms of delegates. Its new features pave the way
for the dramatic changes of C# 3, keeping developers reasonably comfortable while still
providing useful benefits. I’m reliably informed that language designers were aware
that the combined feature set of C# 2 would open up whole new ways of looking at
code, but they didn’t necessarily know where those paths would lead. So far, their
instincts have proved remarkably beneficial in the area of delegates.

 Delegates play a more prominent part in .NET 2.0 than in earlier versions,
although they’re not as common as they are in .NET 3.5. In chapter 3 we saw how they
can be used to convert from one type of list to another, and way back in chapter 1 we
sorted a list of products using the Comparison delegate instead of the IComparer inter-
face. Although the framework and C# keep a respectful distance from each other
where possible, I believe that the language and platform drove each other in this case:
the inclusion of more delegate-based API calls supports the improved syntax available
in C# 2, and vice versa.

 In this chapter we’ll see how C# 2 makes two small changes that make life easier
when creating delegate instances from normal methods, and then we’ll look at the
biggest change: anonymous methods, which allow you to specify a delegate instance’s
action inline at the point of its creation. The largest section of the chapter is devoted
to the most complicated part of anonymous methods—captured variables—which
provide delegate instances with a richer environment to play in. We’ll cover the topic
in significant detail due to its importance and complexity. Once you’ve come to grips
with anonymous methods, lambda expressions are easy to understand.

 First, though, let’s remind ourselves of the pain points of C# 1’s delegate facilities.

5.1 Saying goodbye to awkward delegate syntax
The syntax for delegates in C# 1 doesn’t sound too bad—the language already has syn-
tactic sugar around Delegate.Combine, Delegate.Remove, and the invocation of dele-
gate instances. It makes sense to specify the delegate type when creating a delegate
instance—it’s the same syntax used to create instances of other types, after all.

 This is all true, but for some reason it also sucks. It’s hard to say exactly why the del-
egate creation expressions of C# 1 raise hackles, but they do—at least for me. When
hooking up a bunch of event handlers, it just looks ugly to have to write “new Event-
Handler” (or whatever is required) all over the place, when the event itself has speci-
fied which delegate type it’ll use. Beauty is in the eye of the beholder, of course, and
you could argue that there’s less call for guesswork when reading event handler wiring
code in the C# 1 style, but the extra text just gets in the way and distracts from the
important part of the code: the method you want to handle the event.

 Life becomes more black and white when you consider covariance and contravari-
ance as applied to delegates. Suppose you have an event handling method that saves
the current document, or just logs that it’s been called, or any number of other
actions that may not need to know details of the event. The event itself shouldn’t
mind that your method is capable of working with only the information provided by
the EventHandler signature, even though it (the event) is declared to pass in mouse
Licensed to Devon Greenway <devon.greenway@gmail.com>

132 CHAPTER 5 Fast-tracked delegates
event details. Unfortunately, in C# 1 you need to have a different method for each dif-
ferent event handler signature.

 Likewise it’s undeniably ugly to write methods that are so simple that their imple-
mentation is shorter than their signature, solely because delegates need to have an
action to execute in the form of a method. It adds an extra layer of indirection
between the code creating the delegate instance and the code that should execute
when it’s invoked. Often extra layers of indirection are welcome—and of course that
option hasn’t been removed in C# 2—but at the same time it often makes the code
harder to read, and pollutes the class with a bunch of methods that are only used for
delegates.

 Unsurprisingly, all of these issues are improved greatly in C# 2. The syntax can still
be wordier than we might like (until we get lambda expressions in C# 3), but the dif-
ference is significant. To illustrate the pain, we’ll start with some code in C# 1 and
improve it in the next couple of sections. The following listing builds a (very) simple
form with a button and then subscribes to three of the button’s events.

static void LogPlainEvent(object sender, EventArgs e)
{

Console.WriteLine("LogPlain");
}

static void LogKeyEvent(object sender, KeyPressEventArgs e)
{

Console.WriteLine("LogKey");
}

static void LogMouseEvent(object sender, MouseEventArgs e)
{

Console.WriteLine("LogMouse");
}
...
Button button = new Button();
button.Text = "Click me";
button.Click += new EventHandler(LogPlainEvent);
button.KeyPress += new KeyPressEventHandler(LogKeyEvent);
button.MouseClick += new MouseEventHandler(LogMouseEvent);

Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

The output lines in the three event handling methods are there to prove that the code
is working: if you press the spacebar with the button highlighted, you’ll see that the
Click and KeyPress events are both raised. Pressing Enter just raises the Click event;
clicking on the button raises the Click and MouseClick events. In the following sec-
tions we’ll improve this code using some of the C# 2 features.

 Let’s start by asking the compiler to make a pretty obvious deduction—which dele-
gate type we want to use when subscribing to an event.

Listing 5.1 Subscribing to three of a button’s events
Licensed to Devon Greenway <devon.greenway@gmail.com>

133Method group conversions
5.2 Method group conversions
In C# 1, if you want to create a delegate instance, you need to specify both the dele-
gate type and the action. If you remember from chapter 2, we defined the action as
the method to call and (for instance methods) the target to call it on. So, for exam-
ple, in listing 5.1 when we needed to create a KeyPressEventHandler, we used this
expression:

new KeyPressEventHandler(LogKeyEvent)

As a standalone expression, it doesn’t look too bad. Even used in a simple event sub-
scription it’s tolerable. It becomes uglier when used as part of a longer expression,
though. A common example of this is starting a new thread:

Thread t = new Thread(new ThreadStart (MyMethod));

What we want to do is start a new thread that’ll execute MyMethod. As ever, we want to
express ourselves as simply as possible, and C# 2 allows you to do this by means of an
implicit conversion from a method group to a compatible delegate type. A method
group is simply the name of a method, optionally with a target—exactly the same kind
of expression as we used in C# 1 to create delegate instances. (Indeed, the expression
was called a method group back then—it’s just that the conversion wasn’t available.) If
the method is generic, the method group may also specify type arguments—although
this is rarely used in my experience. The new implicit conversion allows us to turn our
event subscription into

button.KeyPress += LogKeyEvent;

Likewise the thread creation code becomes simply

Thread t = new Thread(MyMethod);

The readability differences between the original and the streamlined versions aren’t
huge for a single line, but in the context of a significant amount of code, they can
reduce the clutter considerably. To make it look less like magic, let’s briefly look at
what this conversion is doing.

 First, let’s consider the expressions LogKeyEvent and MyMethod as they appear in
the examples. The reason they’re classified as method groups is because more than
one method may be available, due to overloading. The implicit conversions available
will convert a method group to any delegate type with a compatible signature. So, if
you had two method signatures as follows

void MyMethod()
void MyMethod(object sender, EventArgs e)

you could use MyMethod as the method group in an assignment to either a Thread-
Start or an EventHandler as follows:

ThreadStart x = MyMethod;
EventHandler y = MyMethod;
Licensed to Devon Greenway <devon.greenway@gmail.com>

134 CHAPTER 5 Fast-tracked delegates
But you couldn’t use it as the parameter to a method that itself was overloaded to take
either a ThreadStart or an EventHandler—the compiler would complain that the call
was ambiguous. Likewise, you unfortunately can’t use an implicit method group con-
version to convert to the plain System.Delegate type, since the compiler doesn’t
know which specific delegate type to create an instance of. This is a pain, but you can
still be slightly briefer than in C# 1 by making the conversion explicit. For example:

Delegate invalid = SomeMethod;
Delegate valid = (ThreadStart)SomeMethod;

For local variables, this usually isn’t a problem—but it’s somewhat more annoying
when you’re using an API that has a parameter of type Delegate, such as Control.
Invoke. There are a few solutions here: using a helper method, casting, or using an
intermediate variable. Here’s an example using the MethodInvoker delegate type,
which takes no parameters and doesn’t return anything:

static void SimpleInvoke(Control control,
MethodInvoker invoker)

{
control.Invoke(invoker);

}
...
SimpleInvoke(form, UpdateUI);
form.Invoke((MethodInvoker)UpdateUI);
MethodInvoker invoker = UpdateUI;
form.Invoke(invoker);

Different situations will encourage different solutions; none of these is particularly
appealing, but they’re not awful either.1

 As with generics, the precise rules of conversion validity are slightly complicated,
and the just-try-it approach works well: if the compiler complains that it doesn’t have
enough information, just tell it what conversion to use and all should be well. If it
doesn’t complain, you should be fine. For the exact details, consult the language spec-
ification, section 6.6. Speaking of possible conversions, there may be more than you
expect, as we’ll see in our next section.

5.3 Covariance and contravariance
We’ve already talked a lot about the concepts of covariance and contravariance in dif-
ferent contexts, usually bemoaning their absence, but delegate construction is the
one area in which they’re actually available in C# prior to version 4. If you want to
refresh yourself about the meaning of the terms at a relatively detailed level, refer
back to section 2.2.2—but the gist of the topic with respect to delegates is that if it
would be valid (in a static typing sense) to call a method and use its return value every-

1 Extension methods (see chapter 10) make the helper method approach somewhat more appealing if you’re
using C# 3.

Invokes with a
helper method

Invokes with a cast

Invokes with a local variable
Licensed to Devon Greenway <devon.greenway@gmail.com>

135Covariance and contravariance
where that you could invoke an instance of a particular delegate type and use its
return value, then that method can be used to create an instance of that delegate type.
That’s wordy, but it’s a lot simpler with examples.

DIFFERENT TYPES OF VARIANCE IN DIFFERENT VERSIONS You may already be
aware that C# 4 offers generic covariance and contravariance for delegates and
interfaces. This is entirely different from the variance we’re looking at here—
we’re only dealing with creating new instances of delegates at the moment.

Generic variance uses reference conversions, which don’t create new objects—
they just view the existing object as a different type.

We'll look at contravariance first, then covariance.

5.3.1 Contravariance for delegate parameters

Let’s consider the event handlers we have in our little Windows Forms application.
The signatures2 of the three delegate types involved are as follows:

void EventHandler (object sender, EventArgs e)
void KeyPressEventHandler (object sender, KeyPressEventArgs e)
void MouseEventHandler (object sender, MouseEventArgs e)

Now, consider that KeyPressEventArgs and MouseEventArgs both derive from Event-
Args (as do a lot of other types—MSDN lists 403 types that derive directly from Event-
Args in .NET 4). So, if you have a method with an EventArgs parameter, you could
always call it with a KeyPressEventArgs argument instead. It therefore makes sense to
be able to use a method with the same signature as EventHandler to create an
instance of KeyPressEventHandler—and that’s exactly what C# 2 does. This is an
example of contravariance of parameter types.

 To see that in action, let’s think back to listing 5.1 and suppose that we don’t need
to know which event was firing—we just want to write out the fact that an event has
happened. Using method group conversions and contravariance, our code becomes a
lot simpler, as shown in the following listing.

static void LogPlainEvent(object sender, EventArgs e)
{

Console.WriteLine("An event occurred");
}
...
Button button = new Button();
button.Text = "Click me";
button.Click += LogPlainEvent;
button.KeyPress += LogPlainEvent;
button.MouseClick += LogPlainEvent;

2 I’ve removed the public delegate part for reasons of space.

Listing 5.2 Demonstration of method group conversions and delegate contravariance

Handles all eventsB

Uses method
group conversion

C

Uses conversion
and contravariance

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

136 CHAPTER 5 Fast-tracked delegates
Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

We’ve managed to completely remove the two handler methods that dealt specifically
with key and mouse events, using one event handling method B for everything. Of
course, this isn’t terribly useful if you want to do different things for different types of
events, but sometimes all you need to know is that an event occurred and, potentially,
the source of the event. The subscription to the Click event C only uses the implicit
conversion we discussed in the previous section because it has a simple EventArgs
parameter, but the other event subscriptions D involve the conversion and contravari-
ance due to their different parameter types.

 I mentioned earlier that the .NET 1.0/1.1 event handler convention didn’t make
much sense when it was first introduced. This example shows exactly why the guide-
lines are more useful with C# 2. The convention dictates that event handlers should
have a signature with two parameters, the first of which is of type object and is the ori-
gin of the event, and the second of which carries any extra information about the
event in a type deriving from EventArgs. Before contravariance became available, this
wasn’t useful—there was no benefit to making the informational parameter derive
from EventArgs, and sometimes there wasn’t much use for the origin of the event. It
was often more sensible to pass the relevant information directly in the form of nor-
mal parameters with appropriate types, just like any other method. Now, you can use a
method with the EventHandler signature as the action for any delegate type that hon-
ors the convention.

 So far we’ve looked at the values entering a method or delegate—what about the
value coming out?

5.3.2 Covariance of delegate return types

Demonstrating covariance is harder, as relatively few of the delegates available in
.NET 2.0 are declared with a nonvoid return type, and those that are tend to return
value types. There are some available, but it’s easier to declare our own delegate type
that uses Stream as its return type. For simplicity we’ll make it parameterless:3

delegate Stream StreamFactory();

We can now use this with a method that’s declared to return a specific type of stream,
as shown in listing 5.3. We declare a method that always returns a MemoryStream with
some sequential data (bytes 0, 1, 2, and so on up to 15), and then use that method as
the action for a StreamFactory delegate instance.

3 Return type covariance and parameter type contravariance can be used at the same time, although you’re
unlikely to come across situations where it would be useful.
Licensed to Devon Greenway <devon.greenway@gmail.com>

137Covariance and contravariance

delegate Stream StreamFactory();

static MemoryStream GenerateSampleData()
{

byte[] buffer = new byte[16];
for (int i = 0; i < buffer.Length; i++)
{

buffer[i] = (byte) i;
}
return new MemoryStream(buffer);

}
...
StreamFactory factory = GenerateSampleData;

using (Stream stream = factory())
{

int data;
while ((data = stream.ReadByte()) != -1)
{

Console.WriteLine(data);
}

}

The actual generation and display of the data in listing 5.3 is only present to give the
code something to do. The important points are the annotated lines. We declare that
the delegate type has a return type of Stream B, but the GenerateSampleData
method C has a return type of MemoryStream. The line creating the delegate instance
D performs the conversion we saw earlier and uses covariance of return types to allow
GenerateSampleData to be used for the action for StreamFactory. By the time we
invoke the delegate instance, E the compiler no longer knows that a MemoryStream
will be returned—if we changed the type of the stream variable to MemoryStream,
we’d get a compilation error.

 Covariance and contravariance can also be used to construct one delegate instance
from another. For instance, consider these two lines of code (which assume an appro-
priate HandleEvent method):

EventHandler general = new EventHandler(HandleEvent);
KeyPressEventHandler key = new KeyPressEventHandler(general);

The first line is valid in C# 1, but the second isn’t—in order to construct one delegate
from another in C# 1, the signatures of the two delegate types involved have to match.
For instance, you could create a MethodInvoker from a ThreadStart—but you
couldn’t do what we’re doing in the previous code. We’re using contravariance to cre-
ate a new delegate instance from an existing one with a compatible delegate type signa-
ture, where compatibility is defined in a less restrictive manner in C# 2 than in C# 1.

 All of this is positive, except for one small fly in the ointment.

Listing 5.3 Demonstration of covariance of return types for delegates

Declares delegate
type returning StreamB

Declares method
returning MemoryStreamC

Converts method
group with covariance

D

Invokes delegate to
obtain streamE
Licensed to Devon Greenway <devon.greenway@gmail.com>

138 CHAPTER 5 Fast-tracked delegates
5.3.3 A small risk of incompatibility

This new flexibility in C# 2 causes one of the few cases where existing valid C# 1 code
may produce different results when compiled under C# 2. Suppose a derived class
overloads a method declared in its base class, and you try to create an instance of a
delegate using a method group conversion. A conversion that previously only
matched the base class method could match the derived class method due to covari-
ance or contravariance in C# 2, in which case that derived class method would be cho-
sen by the compiler. The following listing gives an example of this.

delegate void SampleDelegate(string x);

public void CandidateAction(string x)
{

Console.WriteLine("Snippet.CandidateAction");
}

public class Derived : Snippet
{

public void CandidateAction(object o)
{

Console.WriteLine("Derived.CandidateAction");
}

}
...
Derived x = new Derived();
SampleDelegate factory = new SampleDelegate(x.CandidateAction);
factory("test");

Remember that Snippy4 will be generating all of this code within a class called Snippet,
which the nested type derives from. Under C# 1, listing 5.4 would print Snippet.
CandidateAction because the method taking an object parameter wasn’t compatible
with SampleDelegate. Under C# 2, it is compatible and is the method chosen due to
being declared in a more derived type—so the result is that Derived.CandidateAction
is printed. Fortunately, the C# 2 compiler knows that this is a breaking change and
issues an appropriate warning. I’ve included this section because you ought to be aware
of the possibility of such a problem, but I'm sure it’s rarely encountered in real life.

 Enough doom and gloom about potential breakage. We’ve still got to see the most
important new feature regarding delegates: anonymous methods. They’re a bit more
complicated than the topics we’ve covered so far, but they’re also very powerful—and
a large step toward C# 3.

5.4 Inline delegate actions with anonymous methods
Back in C# 1, it was common to implement a delegate with a particular signature, even
though you already had a method with exactly the right behavior but with a slightly
different set of parameters. Likewise, you’d often want a delegate to do just one teeny,

Listing 5.4 Demonstration of breaking change between C# 1 and C# 2

4 In case you skipped the first chapter, Snippy is a tool I’ve used to create short but complete code samples. See
section 1.7.1 for more details.
Licensed to Devon Greenway <devon.greenway@gmail.com>

139Inline delegate actions with anonymous methods
tiny thing—but that meant you needed a whole extra method. The new method
would represent behavior that was only relevant within the original method, but was
now exposed to the whole class, creating noise in IntelliSense and generally getting in
the way.

 All this was intensely frustrating. The covariance and contravariance features
we’ve just talked about can sometimes help with the first problem, but often they don’t.
Anonymous methods, which are also new in C# 2, can pretty much always help with
these issues.

 Informally, anonymous methods allow you to specify the action for a delegate
instance inline as part of the delegate instance creation expression. They also provide
some far more powerful behavior in the form of closures, but we’ll come to those in
section 5.5. For the moment, let’s stick with relatively simple stuff.

 First we’ll see examples of anonymous methods that take parameters but don’t
return any values; then we’ll explore the syntax involved in providing return values
and a shortcut available when we don’t need to use the parameter values passed to us.

5.4.1 Starting simply: acting on a parameter

.NET 2.0 introduced a generic delegate type called Action<T>, which we’ll use for our
examples. Its signature is simple (aside from the fact that it’s generic):

public delegate void Action<T>(T obj)

In other words, an Action<T> does something with a value of type T. So an
Action<string> could reverse the string and print it out, an Action<int> could print
out the square root of the number passed to it, and an Action<IList<double>> could
find the average of all the numbers given to it and print that out. By complete coinci-
dence, these examples are all implemented using anonymous methods in the follow-
ing listing.

Action<string> printReverse = delegate(string text)
{

char[] chars = text.ToCharArray();
Array.Reverse(chars);
Console.WriteLine(new string(chars));

};

Action<int> printRoot = delegate(int number)
{

Console.WriteLine(Math.Sqrt(number));
};

Action<IList<double>> printMean = delegate(IList<double> numbers)
{

double total = 0;
foreach (double value in numbers)
{

total += value;
}

Listing 5.5 Anonymous methods used with the Action<T> delegate type

Uses anonymous
method to create
Action<string>

B

Uses loop in
anonymous
method

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

140 CHAPTER 5 Fast-tracked delegates
Console.WriteLine(total / numbers.Count);
};

printReverse("Hello world");
printRoot(2);
printMean(new double[] { 1.5, 2.5, 3, 4.5 });

Listing 5.5 shows a few of the different features of anonymous methods. First, the syn-
tax of anonymous methods: use the delegate keyword, followed by the parameters (if
there are any), followed by the code for the action of the delegate instance, in a block.
The string reversal code B shows that the block can contain local variable declara-
tions, and the “list averaging” code C demonstrates looping within the block. Basi-
cally you can do (almost) anything in an anonymous method that you can do in a
normal method body. Likewise, the result of an anonymous method is a delegate
instance that can be used like any other one D. Be warned that contravariance
doesn’t apply to anonymous methods: you have to specify the parameter types that
match the delegate type exactly.

A COUPLE OF RESTRICTIONS... One slight oddity is that if you’re writing an
anonymous method in a value type, you can’t reference this from within it.
There’s no such restriction within a reference type.

Additionally, in the Microsoft C# 2 and 3 compiler implementations,
accessing a base member within an anonymous method via the base keyword
resulted in a warning that the resulting code was unverifiable. This has been
fixed for the C# 4 compiler.

In terms of implementation, we’re still creating a method in IL for each anonymous
method in the source code: in this case the compiler will generate a method within
the existing class and use that as the action when it creates the delegate instance, just
as if it were a normal method.5 The CLR neither knows nor cares that an anonymous
method was used. You can see the extra methods within the compiled code using
ildasm or Reflector. (Reflector knows how to interpret the IL to display anonymous
methods in the method that uses them, but the extra methods are still visible.) These
methods have unspeakable names—ones that are valid in IL, but invalid in C#. This
stops you from attempting to refer to them directly in your C# code, and avoids the
possibility of naming collisions. Many of the features of C# 2 and later versions are
implemented in a similar way; one easy way to spot them is that they usually contain
angle brackets. For example, an anonymous method in a Main method might cause a
method called <Main>b__0 to be created. It’s entirely implementation-specific,
though. Microsoft could change its private conventions in a future version, for exam-
ple. This shouldn’t break anything, as nothing should be relying on these names.

 It’s worth pointing out at this stage that listing 5.5 is exploded compared with how
anonymous methods normally look in real code. You’ll often see them used as argu-
ments to another method (rather than assigned to a variable of the delegate type) and
with few line breaks—compactness is part of the reason for using them, after all. To

5 We’ll see in section 5.5.4 that although there’s always a new method, it’s not always created where you might
expect.

Invokes delegates
as normal

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

141Inline delegate actions with anonymous methods
demonstrate this, we’ll use the List<T>.ForEach method that takes an Action<T> as a
parameter and performs that action on each element. Listing 5.6 shows an extreme
example, applying the same square-rooting action we used in listing 5.5, but in a com-
pact form.

List<int> x = new List<int>();
x.Add(5);
x.Add(10);
x.Add(15);
x.Add(20);
x.Add(25);

x.ForEach(delegate(int n){Console.WriteLine(Math.Sqrt(n));});

That’s pretty horrendous—especially when at first sight the last six characters appear
to be ordered almost at random. There’s a happy medium, of course. I tend to break
my usual “braces on a line on their own” rule for anonymous methods (as I do for triv-
ial properties) but still allow a decent amount of whitespace. I might well write the last
line of listing 5.6 in one of these two forms:

x.ForEach(delegate(int n)
{ Console.WriteLine(Math.Sqrt(n)); }

);

x.ForEach(delegate(int n) {
Console.WriteLine(Math.Sqrt(n));

});

Even just adding spaces to listing 5.6 would’ve helped, of course. In each of these for-
mats, the parentheses and braces are now less confusing, and the “what it does” part
stands out appropriately. Of course, how you space out your code is entirely your own
business, but I encourage you to actively think about where you want to strike the bal-
ance, and talk about it with your teammates to try to achieve some consistency. Consis-
tency doesn’t always lead to the most readable code, though—sometimes keeping
everything on one line is the most straightforward format.

 So far the only interaction we’ve had with the calling code is through parameters.
What about return values?

5.4.2 Returning values from anonymous methods

The Action<T> delegate has a void return type, so we haven’t had to return anything
from our anonymous methods. To demonstrate how we can do so when we need to,
we’ll use the Predicate<T> delegate type from .NET 2.0, which has this signature:

public delegate bool Predicate<T>(T obj)

Listing 5.7 shows an anonymous method creating an instance of Predicate<T> to
return whether the argument passed in is odd or even. Predicates are usually used in
filtering and matching—you could use the code in listing 5.7 to filter a list to contain
just the even elements, for instance.

Listing 5.6 Extreme example of code compactness. Warning: unreadable code ahead!
Licensed to Devon Greenway <devon.greenway@gmail.com>

142 CHAPTER 5 Fast-tracked delegates

Predicate<int> isEven = delegate(int x) { return x % 2 == 0; };

Console.WriteLine(isEven(1));
Console.WriteLine(isEven(4));

The new syntax is almost certainly what you’d have expected—we just return the
appropriate value as if the anonymous method were a normal method. You may have
expected to see a return type declared near the delegate keyword, but there’s no
need. The compiler just checks that all the possible return values are compatible with
the declared return type of the delegate type it’s trying to convert the anonymous
method into.

JUST WHAT ARE YOU RETURNING FROM? When you return a value from an
anonymous method, it really is only returning from the anonymous
method—it’s not returning from the method creating the delegate instance.
It’s easy to look down some code, see the return keyword, and think that it’s
an exit point from the current method, so be careful.

As I mentioned before, relatively few delegates in .NET 2.0 return values, although as
we’ll see in part 3, .NET 3.5 uses this idea much more often, particularly with LINQ.
There’s another reasonably common delegate type in .NET 2.0 though: Comparison
<T>, which can be used when sorting collections. It’s the delegate equivalent of the
IComparer<T> interface, effectively. Often you only need a particular sort order in one
situation, so it makes sense to be able to specify that order inline, rather than expos-
ing it as a method within the rest of the class. The following listing demonstrates this,
printing out the files within the C:\ directory, ordering them first by name and then
(separately) by size.

static void SortAndShowFiles(string title, Comparison<FileInfo> sortOrder)
{

FileInfo[] files = new DirectoryInfo(@"C:\").GetFiles();

Array.Sort(files, sortOrder);
Console.WriteLine(title);
foreach (FileInfo file in files)
{

Console.WriteLine (" {0} ({1} bytes)", file.Name, file.Length);
}

}
...
SortAndShowFiles("Sorted by name:", delegate(FileInfo f1, FileInfo f2)

{ return f1.Name.CompareTo(f2.Name); }
);

SortAndShowFiles("Sorted by length:", delegate(FileInfo f1, FileInfo f2)
{ return f1.Length.CompareTo(f2.Length); }

);

Listing 5.7 Returning a value from an anonymous method

Listing 5.8 Using anonymous methods to sort files simply
Licensed to Devon Greenway <devon.greenway@gmail.com>

143Inline delegate actions with anonymous methods
If we weren’t using anonymous methods, we’d need a separate method for each sort
order. Instead, listing 5.8 makes it clear what we’ll sort by in each case right where we
call SortAndShowFiles. (Sometimes you’ll be calling Sort directly at the point where
the anonymous method is called for. In this case we’re performing the same fetch/
sort/display sequence twice, just with different sort orders, so I encapsulated those
steps in their own method.)

 One special syntactic shortcut is sometimes applicable. If you don’t care about the
parameters of a delegate, you don’t have to declare them at all. Let’s see how that
works.

5.4.3 Ignoring delegate parameters

Occasionally, you want to implement a delegate that doesn’t depend on its parameter
values. You may wish to write an event handler whose behavior was only appropriate
for one event and didn’t depend on the event arguments: saving the user’s work, for
instance. The event handlers from our original example in listing 5.1 fit this criterion
perfectly. In this case, you can leave out the parameter list entirely, just using the
delegate keyword and then the block of code to use as the action for the method.
The following listing is equivalent to listing 5.1 but uses the shorter syntax.

Button button = new Button();
button.Text = "Click me";
button.Click += delegate { Console.WriteLine("LogPlain"); };
button.KeyPress += delegate { Console.WriteLine("LogKey"); };
button.MouseClick += delegate { Console.WriteLine("LogMouse"); };

Form form = new Form();
form.AutoSize = true;
form.Controls.Add(button);
Application.Run(form);

Normally we’d have had to write each subscription as something like this:

button.Click += delegate (object sender, EventArgs e) { ... };

That wastes a lot of space for little reason—we don’t need the values of the parame-
ters, so the compiler lets us get away with not specifying them at all. I’ve found this
shortcut most useful when it comes to implementing my own events. I get sick of hav-
ing to perform a nullity check before raising an event. One way of getting around this
is to make sure that the event starts off with a handler, which is then never removed.
As long as the handler doesn’t do anything, all you lose is a tiny bit of performance.
Before C# 2, you had to explicitly create a method with the right signature, which usu-
ally wasn’t worth the benefit... but now you can write code like this:

public event EventHandler Click = delegate {};

From then on, you can just call Click without any nullity tests.

Listing 5.9 Subscribing to events with anonymous methods that ignore parameters
Licensed to Devon Greenway <devon.greenway@gmail.com>

144 CHAPTER 5 Fast-tracked delegates
 You should be aware of one trap about this parameter wildcarding feature—if the
anonymous method could be converted to multiple delegate types (for example, to
call different method overloads) then the compiler needs more help. To show you
what I mean, we’ll take the same troublesome example we saw with method group
conversions: starting a new thread. There are four thread constructors in .NET 2.0:

public Thread(ParameterizedThreadStart start)
public Thread(ThreadStart start)
public Thread(ParameterizedThreadStart start, int maxStackSize)
public Thread(ThreadStart start, int maxStackSize)

The two delegate types involved are

public delegate void ThreadStart()
public delegate void ParameterizedThreadStart(object obj)

Now, consider the following three attempts to create a new thread:

new Thread(delegate() { Console.WriteLine("t1"); });
new Thread(delegate(object o) { Console.WriteLine("t2"); });
new Thread(delegate { Console.WriteLine("t3"); });

The first and second lines contain parameter lists—the compiler knows that it can’t
convert the anonymous method in the first line into a ParameterizedThreadStart, or
convert the anonymous method in the second line into a ThreadStart. Those lines
compile, because there’s only one applicable constructor overload in each case. The
third line, though, is ambiguous—the anonymous method can be converted into
either delegate type, so both of the single parameter constructor overloads are appli-
cable. In this situation, the compiler throws its hands up and issues an error. You can
solve this either by specifying the parameter list explicitly or casting the anonymous
method to the right delegate type.

 Hopefully what you’ve seen of anonymous methods so far will have provoked some
thought about your own code, and made you consider where you could use these
techniques to good effect. Indeed, even if anonymous methods could only do what
we’ve already seen, they’d still be very useful. But there’s more to anonymous methods
than just avoiding the inclusion of an extra method in your code. Anonymous meth-
ods are C# 2’s implementation of a feature known elsewhere as closures by way of cap-
tured variables. Our next section explains both of these terms and shows how
anonymous methods can be extremely powerful—and confusing if you’re not careful.

5.5 Capturing variables in anonymous methods
I don’t like having to give warnings, but I think it makes sense to include one here: if
this topic is new to you, then don’t start this section until you’re feeling reasonably
awake and have a bit of time to spend on it. I don’t want to alarm you unnecessarily,
and you should feel confident that there’s nothing so insanely complicated that you
won’t be able to understand it with a little effort. It’s just that captured variables can
be somewhat confusing to start with, partly because they overturn some of your exist-
ing knowledge and intuition.
Licensed to Devon Greenway <devon.greenway@gmail.com>

145Capturing variables in anonymous methods
 Stick with it, though! The payback can be massive in terms of code simplicity and
readability. This topic will also be crucial when we come to look at lambda expressions
and LINQ in C# 3, so it’s worth the investment. Let’s start with a few definitions.

5.5.1 Defining closures and different types of variables

The concept of closures is an old one, first implemented in Scheme, but it’s been gain-
ing more prominence in recent years as more mainstream languages have taken it on
board. The basic idea is that a function6 is able to interact with an environment
beyond the parameters provided to it. That’s all there is to it in abstract terms, but to
understand how it applies to C# 2, we need a couple more terms:

 An outer variable is a local variable or parameter7 whose scope includes an anon-
ymous method. The this reference also counts as an outer variable of any
anonymous method within an instance member of a class.

 A captured outer variable (usually shortened to just captured variable) is an outer
variable that’s used within an anonymous method. So to go back to closures, the
function part is the anonymous method, and the environment it can interact
with is the set of variables captured by it.

That’s all very dry and may be hard to imagine, but the main thrust is that an anony-
mous method can use local variables defined in the same method that declares it. This
may not sound like a big deal, but in many situations it’s enormously handy—you can
use contextual information that you have on hand rather than having to set up extra
types just to store data you already know. We’ll see some useful concrete examples
soon, I promise—but first it’s worth looking at some code to clarify these definitions.
Listing 5.10 provides an example with a number of local variables. It’s just a single
method, so it can’t be run on its own. I’m not going to explain how it would work or
what it would do yet; I just want to discuss how the different variables are classified.
Again we’re using the MethodInvoker delegate type for simplicity.

void EnclosingMethod()
{

int outerVariable = 5;
string capturedVariable = "captured";

if (DateTime.Now.Hour == 23)
{

int normalLocalVariable = DateTime.Now.Minute;
Console.WriteLine(normalLocalVariable);

}

MethodInvoker x = delegate()
{

string anonLocal = "local to anonymous method";

6 This is general computer science terminology, not C# terminology.
7 Excluding ref and out parameters

Listing 5.10 Examples of different kinds of variables with respect to anonymous methods

Outer variable
(uncaptured variables)

B

Outer variable captured
by anonymous methodC

Local variable of
normal methodD

Local variable of
anonymous method

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

146 CHAPTER 5 Fast-tracked delegates
Console.WriteLine(capturedVariable + anonLocal);
};
x();

}

Let’s go through all the variables from the simplest to the most complicated:

 normalLocalVariable D isn’t an outer variable because there are no anony-
mous methods within its scope. It behaves exactly the way that local variables
always have.

 anonLocal E isn’t an outer variable either, but it’s local to the anonymous
method, not to EnclosingMethod. It’ll only exist (in terms of being present in
an executing stack frame) when the delegate instance is invoked.

 outerVariable B is an outer variable because the anonymous method is
declared within its scope. But the anonymous method doesn’t refer to it, so it’s
not captured.

 capturedVariable C is an outer variable because the anonymous method is
declared within its scope, and it’s captured by virtue of being used at F.

Okay, so we now understand the terminology, but we’re not a lot closer to seeing what
captured variables do. I suspect you could guess the output if we ran the method from
listing 5.10, but there are some other cases that would probably surprise you. We’ll
start off with a simple example and gradually build up to more complex ones.

5.5.2 Examining the behavior of captured variables

When a variable is captured, it really is the variable that’s captured by the anonymous
method, not its value at the time the delegate instance is created. We’ll see later that
this has far-reaching consequences, but first we’ll make sure we understand what that
means for a relatively straightforward situation. Listing 5.11 has a captured variable
and an anonymous method that both prints out and changes the variable. We’ll see
that changes to the variable from outside the anonymous method are visible within
the anonymous method, and vice versa.

string captured = "before x is created";

MethodInvoker x = delegate
{

Console.WriteLine(captured);
captured = "changed by x";

};

captured = "directly before x is invoked";
x();

Console.WriteLine(captured);

captured = "before second invocation";
x();

Listing 5.11 Accessing a variable both inside and outside an anonymous method

Capture of
outer variableF
Licensed to Devon Greenway <devon.greenway@gmail.com>

147Capturing variables in anonymous methods
The output of listing 5.11 is as follows:

directly before x is invoked
changed by x
before second invocation

Let’s look at how this happens. First, we declare the variable captured and set its value
with a perfectly normal string literal. So far, there’s nothing special about the variable.
We then declare x and set its value using an anonymous method that captures
captured. The delegate instance will always print out the current value of captured,
and then set it to “changed by x.” Don’t forget that creating this delegate instance
doesn’t execute it.

 To make it absolutely clear that just creating the delegate instance didn’t read the
variable and stash its value away somewhere, we now change the value of captured to
“directly before x is invoked.” We then invoke x for the first time. It reads the value of
captured and prints it out—our first line of output. It sets the value of captured to
“changed by x” and returns. When the delegate instance returns, the normal method
continues in the usual way. It prints out the current value of captured, giving us our
second line of output.

 The normal method then changes the value of captured yet again (this time to
“before second invocation”) and invokes x for the second time. The current value of
captured is printed out, giving our last line of output. The delegate instance changes
the value of captured to “changed by x” and returns, at which point the normal
method has run out of code and we’re done.

 That’s a lot of detail about how a short piece of code works, but there’s really only
one crucial idea in it: the captured variable is the same one that the rest of the method uses. For
some people, that’s hard to grasp; for others it comes naturally. Don’t worry if it’s
tricky to start with—it’ll get easier over time. Even if you’ve understood everything eas-
ily so far, you may be wondering why you’d want to do any of this. It’s about time we
had an example that was actually useful.

5.5.3 What’s the point of captured variables ?

To put it simply, captured variables eliminate the need to write extra classes just to
store the information a delegate needs to act on, beyond what it’s passed via parame-
ters. Before ParameterizedThreadStart existed, if you wanted to start a new (non-
threadpool) thread and give it some information—the URL of a page to fetch, for
instance—you had to create an extra type to hold the URL and put the action of the
ThreadStart delegate instance in that type. Even with ParameterizedThreadStart,
your method had to accept a parameter of type object and cast it to the type you really
wanted. It was all an ugly way of achieving something that should’ve been simple.

 As another example, suppose you had a list of people and wanted to write a
method that would return a second list containing all the people who were under a
given age. List<T> has a method called FindAll that returns another list of every-
thing matching the specified predicate. Before anonymous methods and captured
Licensed to Devon Greenway <devon.greenway@gmail.com>

148 CHAPTER 5 Fast-tracked delegates
variables, it wouldn’t have made much sense for List<T>.FindAll to exist, because of
all the hoops you’d have to go through in order to create the right delegate to start
with. It would’ve been simpler to do all the iteration and copying manually. With C# 2,
though, we can do it all very easily:

List<Person> FindAllYoungerThan(List<Person> people, int limit)
{

return people.FindAll(delegate (Person person)
{ return person.Age < limit; }

);
}

Here we’re capturing the limit parameter within the delegate instance—if we’d had
anonymous methods but not captured variables, we could’ve performed a test against
a hardcoded limit, but not one that was passed into the method as a parameter. I hope
you’ll agree that this approach is neat: it expresses exactly what we want to do with
much less fuss about exactly how it should happen than you’d have seen in a C# 1 ver-
sion. (It’s even neater in C# 3, admittedly...8) It’s relatively rare that you come across a
situation where you need to write to a captured variable, but again that can certainly
have its uses.

 Still with me? Good. So far, we’ve only used the delegate instance within the
method that creates it. That doesn’t raise many questions about the lifetime of the
captured variables—but what would happen if the delegate instance escaped into the
big bad world? How would it cope after the method that created it had finished?

5.5.4 The extended lifetime of captured variables

The simplest way of tackling this topic is to state a rule, give an example, and then
think about what would happen if the rule weren’t in place. Here we go:

A captured variable lives for at least as long as any delegate instance referring to it.

Don’t worry if it doesn’t make a lot of sense yet—that’s what the example is for.
Listing 5.12 shows a method that returns a delegate instance. That delegate instance is
created using an anonymous method that captures an outer variable. So, what’ll hap-
pen when the delegate is invoked after the method has returned?

static MethodInvoker CreateDelegateInstance()
{

int counter = 5;

MethodInvoker ret = delegate
{

Console.WriteLine(counter);
counter++;

};

8 In case you’re wondering: return people.Where(person => person.Age < limit);

Listing 5.12 Demonstration of a captured variable having its lifetime extended
Licensed to Devon Greenway <devon.greenway@gmail.com>

149Capturing variables in anonymous methods
ret();
return ret;

}
...
MethodInvoker x = CreateDelegateInstance();
x();
x();

The output of listing 5.12 consists of the numbers 5, 6, and 7 on separate lines. The
first line of output comes from the invocation of the delegate instance within Create-
DelegateInstance, so it makes sense that the value of counter is available at that
point. But what about after the method has returned? Normally we’d consider
counter to be on the stack, so when the stack frame for CreateDelegateInstance is
destroyed we’d expect counter to effectively vanish... and yet subsequent invocations
of the returned delegate instance seem to keep using it!

 The secret is to challenge the assumption that counter is on the stack in the first
place. It isn’t. The compiler has actually created an extra class to hold the variable.
The CreateDelegateInstance method has a reference to an instance of that class so it
can use counter, and the delegate has a reference to the same instance—which lives
on the heap in the normal way. That instance isn’t eligible for garbage collection until
the delegate is ready to be collected. Some aspects of anonymous methods are very
compiler-specific (different compilers could achieve the same semantics in different
ways), but it’s hard to see how the specified behavior could be achieved without using
an extra class to hold the captured variable. Note that if you only capture this, no
extra types are required—the compiler just creates an instance method to act as the
delegate’s action. As I mentioned before, you probably shouldn’t worry about the
stack and heap details too much, but it’s worth knowing the kind of thing the com-
piler is capable of doing, just in case you get confused as to how the specified behavior
is even possible.

 Okay, so local variables can live on even after a method has returned. You may be
wondering what I could possibly throw at you next—how about multiple delegates
capturing different instances of the same variable? It sounds crazy, so it’s just the kind
of thing you should be expecting by now.

5.5.5 Local variable instantiations

On a good day, captured variables act exactly the way I expect them to at a glance. On
a bad day, I’m still surprised when I’m not careful. When there are problems, it’s
almost always due to forgetting how many “instances” of local variables I’m actually
creating. A local variable is said to be instantiated each time execution enters the scope
where it’s declared. Here’s a simple example comparing two very similar bits of code:

int single; for (int i = 0; i < 10; i++)
for (int i = 0; i < 10; i++) {
{ int multiple = 5;

single = 5; Console.WriteLine(multiple + i);
Console.WriteLine(single + i); }

}

Licensed to Devon Greenway <devon.greenway@gmail.com>

150 CHAPTER 5 Fast-tracked delegates
In the good old days, it was reasonable to say that pieces of code like this were seman-
tically identical. Indeed, they’d usually compile to the same IL—and they still will, if
there aren’t any anonymous methods involved. All the space for local variables is allo-
cated on the stack at the start of the method, so there’s no cost to redeclaring the
variable for each iteration of the loop.9 In our new terminology, the single variable
will be instantiated only once, but the multiple variable will be instantiated 10
times—it’s as if there were 10 local variables, all called multiple, which were created
one after another.

 I’m sure you can see where I’m going—when a variable is captured, it’s the rele-
vant “instance” of the variable that’s captured. If we captured multiple inside the
loop, the variable captured in the first iteration would be different from the variable
captured the second time round, and so on. The following listing shows exactly this
effect.

List<MethodInvoker> list = new List<MethodInvoker>();

for (int index = 0; index < 5; index++)
{

int counter = index * 10;
list.Add(delegate
{

Console.WriteLine(counter);
counter++;

});
}

foreach (MethodInvoker t in list)
{

t();
}
list[0]();
list[0]();
list[0]();

list[1]();

Listing 5.13 creates five different delegate instances C—one for each time we go
around the loop. Invoking the delegate will print out the value of counter and then
increment it. Now, because counter is declared inside the loop, it’s instantiated for
each iteration B, and so each delegate captures a different variable. So, when we go
through and invoke each delegate D, we see the different values initially assigned to
counter: 0, 10, 20, 30, 40. Just to hammer the point home, when we then go back to
the first delegate instance and execute it three more times E, it keeps going from
where that instance’s counter variable had left off: 1, 2, 3. Finally we execute the

9 In my view it’s also cleaner to redeclare the variable unless you explicitly need to maintain its value between
iterations.

Listing 5.13 Capturing multiple variable instantiations with multiple delegates

Instantiates counterB

Prints and increments
captured variableC

Executes all five
delegate instances

D

Executes first one
three more timesE

Executes second one againF
Licensed to Devon Greenway <devon.greenway@gmail.com>

151Capturing variables in anonymous methods
second delegate instance F, and that keeps going from where that instance’s counter
variable had left off: 11.

 So, each of the delegate instances has captured a different variable in this case.
Before we leave this example, I should point out what would’ve happened if we’d cap-
tured index—the variable declared by the for loop—instead of counter. In this case,
all the delegates would have shared the same variable. The output would’ve been the
numbers 5 to 13; 5 first because the last assignment to index before the loop termi-
nates would’ve set it to 5, and then incrementing the same variable regardless of
which delegate was involved. We’d see the same behavior with a foreach loop: the
variable declared by the initial part of the loop is only instantiated once. It’s easy to get
this wrong! If you want to capture the value of a loop variable for that particular itera-
tion of the loop, introduce another variable within the loop, copy the loop variable’s
value into it, and capture that new variable—effectively what we’ve done in listing 5.13
with the counter variable.

THIS COULD CHANGE... Though the behavior in a for loop is reasonable—the
variable does appear to be declared just once, after all—it’s more surprising
in the foreach case. In fact, it’s almost always wrong to capture a foreach iter-
ation variable in an anonymous method that’s going to exist beyond the
immediate iteration. (It’s fine if the delegate instance is only used within that
iteration.)

This has caused problems for so many developers that the C# team is con-
sidering changing the semantics of foreach in a future version, to make it act
more naturally—as if each iteration has its own separate variable. At the time
of this writing, this is still only an idea being kicked around, but it’s worth
keeping your ear to the ground for future changes in this area.

For our final example, let’s look at something really nasty—sharing some captured
variables but not others.

5.5.6 Mixtures of shared and distinct variables

Let me say before I show you this next example that it’s not code I’d recommend. In
fact, the whole point of presenting it is to show how if you try to use captured variables
in too complicated a fashion, things can get tricky really fast. Listing 5.14 creates two
delegate instances that each capture “the same” two variables. But the story gets more
convoluted when we look at what’s actually captured.

MethodInvoker[] delegates = new MethodInvoker[2];

int outside = 0;

for (int i = 0; i < 2; i++)
{

int inside = 0;

Listing 5.14 Capturing variables in different scopes. Warning: nasty code ahead!

Instantiates variable onceB

Instantiates variable
multiple times

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

152 CHAPTER 5 Fast-tracked delegates
delegates[i] = delegate
{

Console.WriteLine ("({0},{1})", outside, inside);
outside++;
inside++;

};
}

MethodInvoker first = delegates[0];
MethodInvoker second = delegates[1];

first();
first();
first();

second();
second();

How long would it take you to predict the output from listing 5.14 (even with the
annotations)? Frankly it would take me a while—longer than I like to spend under-
standing code. Just as an exercise, though, let’s look at what happens.

 First let’s consider the outside variable B. The scope it’s declared in is only
entered once, so it’s a straightforward case—there’s only ever one of it, effectively.
The inside variable C is a different matter—each loop iteration instantiates a new
one. That means that when we create the delegate instance D, the outside variable
is shared between the two delegate instances, but each of them has its own inside
variable.

 After the loop has ended, we call the first delegate instance we created three times.
Because it’s incrementing both of its captured variables each time, and we started off
with them both as 0, we see (0,0), then (1,1), then (2,2). The difference between the
two variables in terms of scope becomes apparent when we execute the second dele-
gate instance. It has a different inside variable, so that still has its initial value of 0,
but the outside variable is the one we’ve already incremented three times. The out-
put from calling the second delegate twice is therefore (3,0), then (4,1).

 Just for the sake of interest, let’s think about how this is implemented—at least
with Microsoft’s C# 2 compiler. What happens is that one extra class is generated to
hold the outer variable, and another one is generated to hold an inner variable and a
reference to the first extra class. Essentially, each scope that contains a captured variable
gets its own type, with a reference to the next scope out that contains a captured vari-
able. In our case, there were two instances of the type holding inner, and they both
refer to the same instance of the type holding outer. Other implementations may
vary, but this is the most obvious way of doing things. Figure 5.1 shows the values after
listing 5.14 has executed. (The names aren’t the ones that the compiler would gener-
ate, but they’re close enough. Note that the delegate instances would also have other
members in reality—only the target is interesting here, though.)

 Even after you understand this code fully, it’s still a good template for experiment-
ing with other elements of captured variables. As we noted earlier, certain elements of
variable capture are implementation specific, and it’s often useful to refer to the

Captures variables
with anonymous
methodD
Licensed to Devon Greenway <devon.greenway@gmail.com>

153Capturing variables in anonymous methods
specification to see what’s guaranteed—but it’s also important to be able to just play
with code to see what happens.

 It’s possible that there are situations where code like listing 5.14 would be the sim-
plest and clearest way of expressing the desired behavior—but I’d have to see it to
believe it, and I’d certainly want comments in the code to explain what would hap-
pen. So, when is it appropriate to use captured variables, and what do you need to
look out for?

5.5.7 Captured variable guidelines and summary

Hopefully this section has convinced you to be very careful with captured variables.
They make good logical sense (and almost any change to make them simpler would
probably make them either less useful or less logical), but they also make it easy to
produce horribly complicated code.

 Don’t let that discourage you from using them sensibly, though—they can save you
masses of tedious code, and when they’re used appropriately they can be the most
readable way of getting the job done. But what counts as sensible?

GUIDELINES FOR USING CAPTURED VARIABLES

The following is a list of suggestions for using captured variables:

 If code that doesn’t use captured variables is just as simple as code that does,
don’t use them.

 Before capturing a variable declared by a for or foreach statement, consider
whether your delegate is going to live beyond the loop iteration, and whether
you want it to see the subsequent values of that variable. If not, create another
variable inside the loop that just copies the value you do want.

 If you create multiple delegate instances (whether in a loop or explicitly) that
capture variables, put thought into whether you want them to capture the same
variable.

<>_Generated1

inside

<>_outside

first

<>_Generated1

inside

<>_outside

second

outside

<>_Generated2

3 2

5

target

ref

target

ref

ref ref

Figure 5.1 Snapshot of
multiple captured variable
scopes in memory
Licensed to Devon Greenway <devon.greenway@gmail.com>

154 CHAPTER 5 Fast-tracked delegates
 If you capture a variable that doesn’t actually change (either in the anonymous
method or the enclosing method body), then you don’t need to worry as much.

 If the delegate instances you create never escape from the method—in other
words, they’re never stored anywhere else, or returned, or used for starting
threads—life is a lot simpler.

 Consider the extended lifetime of any captured variables in terms of garbage
collection. This is normally not an issue, but if you capture an object that’s
expensive in terms of memory, it may be significant.

The first point is the golden rule. Simplicity is a good thing—so any time the use of a
captured variable makes your code simpler after you’ve factored in the additional
inherent complexity of forcing your code’s maintainers to understand what the cap-
tured variable does, use it. You need to include that extra complexity in your consider-
ations, that’s all—don’t just go for minimal line count.

 We’ve covered a lot of ground in this section, and I’m aware that it can be hard to
take in. I’ve listed the most important things to remember next, so that if you need
to come back to this section another time, you can jog your memory without having
to read through the whole thing again:

 The variable is captured—not its value at the point of delegate instance
creation.

 Captured variables have lifetimes extended to at least that of the capturing
delegate.

 Multiple delegates can capture the same variable...
 ...but within loops, the same variable declaration can effectively refer to differ-

ent variable “instances.”
 for/foreach loop declarations create variables that live for the duration of the

loop—they’re not instantiated on each iteration.
 Extra types are created where necessary to hold captured variables.
 Be careful! Simple is almost always better than clever.

We’ll see more variables being captured when we look at C# 3 and its lambda expres-
sions, but for now you may be relieved to hear that we’ve finished our rundown of the
new C# 2 delegate features.

5.6 Summary
C# 2 has radically changed the ways in which delegates can be created, and in doing
so it’s opened up the framework to a more functional style of programming. There
are more methods in .NET 2.0 that take delegates as parameters than there were in
.NET 1.0/1.1, and this trend continues in .NET 3.5. The List<T> type is the best exam-
ple of this, and is a good test-bed for checking your skills at using anonymous methods
and captured variables. Programming in this way requires a slightly different mind-
set—you must be able to take a step back and consider what the ultimate aim is, and
Licensed to Devon Greenway <devon.greenway@gmail.com>

155Summary
whether it’s best expressed in the traditional C# manner, or whether a functional
approach makes things clearer.

 All the changes to delegate handling are useful, but they do add complexity to the
language, particularly when it comes to captured variables. Closures are always tricky
in terms of determining exactly how the available environment is shared, and C# is no
different in this respect. The reason the concept has lasted so long, though, is that it
can make code simpler to understand and more immediate. The balancing act
between complexity and simplicity is always a difficult one, and it’s worth being cau-
tious to start with. But over time you should expect to get better at working with cap-
tured variables and understanding how they behave. LINQ encourages their use even
further, and a great deal of modern, idiomatic C# code uses closures frequently.

 Anonymous methods aren’t the only change in C# 2 that involves the compiler cre-
ating extra types behind the scenes and doing devious things with variables that
appear to be local. We’ll see a lot more of this in our next chapter, where the compiler
effectively builds a whole state machine for us in order to make it easier for the devel-
oper to implement iterators.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Implementing iterators
the easy way
The iterator pattern is an example of a behavioral pattern—a design pattern that sim-
plifies communication between objects. It’s one of the simplest patterns to under-
stand, and incredibly easy to use. In essence, it allows you to access all the elements
in a sequence of items without caring about what kind of sequence it is—an array, a
list, a linked list, or none of the above. This can be effective for building a data pipe-
line, where an item of data enters the pipeline and goes through a number of differ-
ent transformations or filters before coming out at the other end. Indeed, this is
one of the core patterns of LINQ, as we’ll see in part 3.

 In .NET, the iterator pattern is encapsulated by the IEnumerator and
IEnumerable interfaces and their generic equivalents. (The naming is unfortu-
nate—the pattern is normally called iteration to avoid getting confused with other

This chapter covers
 Implementing iterators in C# 1

 Iterator blocks in C# 2

 Sample iterator usage

 Iterators as coroutines
156

Licensed to Devon Greenway <devon.greenway@gmail.com>

157C# 1: the pain of handwritten iterators
meanings of the word enumeration. I’ve used iterator and iterable throughout this chap-
ter.) If a type implements IEnumerable, that means it can be iterated over; calling the
GetEnumerator method will return the IEnumerator implementation, which is the
iterator itself. You can think of the iterator as being like a database cursor: a position
within the sequence. The iterator can only move forward within the sequence, and
there can be many iterators operating on the same sequence at the same time.

 As a language, C# 1 has built-in support for consuming iterators using the foreach
statement. This makes it easy to iterate over collections—easier than using a straight
for loop—and is nicely expressive. The foreach statement compiles down to calls to
the GetEnumerator and MoveNext methods and the Current property, with support
for disposing the iterator afterward if IDisposable has been implemented. It’s a small
but useful piece of syntactic sugar.

 In C# 1, though, implementing an iterator is a relatively difficult task. C# 2 makes
this much simpler, which can sometimes lead to the iterator pattern being worth
implementing in cases where otherwise it would’ve caused more work than it saved.

 In this chapter we’ll look at what’s required to implement an iterator and the sup-
port given by C# 2. After we’ve looked at the syntax in detail, we’ll examine a few exam-
ples from the real world, including an exciting (if slightly off-the-wall) use of the
iteration syntax in a concurrency library from Microsoft. I’ve held off on providing the
examples until the end of the description, because there isn’t very much to learn—and
the examples will be a lot clearer when you can understand what the code is doing. If
you really want to read the examples first, they’re in sections 6.3 and 6.4.

 If you just want a teaser, think about the last time you iterated over the lines in a
file. Assuming you didn’t want to load the whole file in one go with File.ReadAll-
Lines, you probably ended up using a slightly ugly while loop. Wouldn’t foreach
have been nicer? If only there were some way we could lazily iterate over lines in a file
as if they were just another collection...

 As in other chapters, let’s start off by looking at what life was like before C# 2. We’ll
implement an iterator the hard way.

6.1 C# 1: the pain of handwritten iterators
We’ve already seen one example of an iterator implementation in section 3.4.3 when
we looked at what happens when you iterate over a generic collection. In some ways
that was harder than a real C# 1 iterator implementation would’ve been, because we
implemented the generic interfaces as well—but it was also easier in other ways
because it wasn’t actually iterating over anything useful.

 To put the C# 2 features into context, we’ll first implement an iterator that’s about
as simple as it can be while still providing real functionality. Suppose we wanted a new
type of collection based on a circular buffer. We’ll implement IEnumerable so that
users of our new class can easily iterate over all the values in the collection. We’ll
ignore the guts of the collection here and just concentrate on the iteration side. Our
collection will store its values in an array (object[]—no generics here!), and the
Licensed to Devon Greenway <devon.greenway@gmail.com>

158 CHAPTER 6 Implementing iterators the easy way
collection will have the interesting feature that you can set its logical starting point—
so if the array had five elements, you could set the start point to 2, and expect ele-
ments 2, 3, 4, 0, and then 1 to be returned. Although I won’t show the full circular buf-
fer code here, it’s in the downloadable code.

 To make the class easy to demonstrate, we’ll provide both the values and the start-
ing point in the constructor. So, we should be able to write code such as listing 6.1 in
order to iterate over the collection.

object[] values = {"a", "b", "c", "d", "e"};
IterationSample collection = new IterationSample(values, 3);
foreach (object x in collection)
{

Console.WriteLine (x);
}

Running listing 6.1 should (eventually) produce output of “d”, “e”, “a”, “b”, and finally
“c” because we specified a starting point of 3. Now that we know what we need to
achieve, let’s look at the skeleton of the class as shown in the following listing.

using System;
using System.Collections;

public class IterationSample : IEnumerable
{

object[] values;
int startingPoint;

public IterationSample(object[] values, int startingPoint)
{

this.values = values;
this.startingPoint = startingPoint;

}

public IEnumerator GetEnumerator()
{

throw new NotImplementedException();
}

}

As you can see, we haven’t implemented GetEnumerator yet, but the rest of the code is
ready to go. So, how do we go about writing the GetEnumerator code? The first thing
to understand is that we need to store some state somewhere. One important aspect of
the iterator pattern is that we don’t return all of the data in one go—the client just
asks for one element at a time. That means we need to keep track of how far we’ve
already gone through our array. The stateful nature of iterators will be important
when we look at what the C# 2 compiler does for us, so keep a close eye on the state
required in this example.

Listing 6.1 Code using the (as yet unimplemented) new collection type

Listing 6.2 Skeleton of the new collection type, with no iterator implementation
Licensed to Devon Greenway <devon.greenway@gmail.com>

159C# 1: the pain of handwritten iterators
 So, where should this state live? Suppose we tried to put it in the IterationSample
class itself, making that implement IEnumerator as well as IEnumerable. At first sight,
this looks like a good plan—after all, the data is in the right place, including the start-
ing point. Our GetEnumerator method could just return this. But there’s a big prob-
lem with this approach—if GetEnumerator is called several times, several independent
iterators should be returned. For instance, we should be able to use two foreach state-
ments, one inside another, to get all possible pairs of values. The two iterators need to
be independent—which suggests we need to create a new object each time Get-
Enumerator is called. We could still implement the functionality directly within
IterationSample, but then we’d have a class that didn’t have a single clear responsibil-
ity—it would be pretty confusing.

 Instead, let’s create another class to implement the iterator itself. We’ll use the fact
that in C# a nested type has access to its enclosing type’s private members, which
means we can just store a reference to the parent IterationSample, along with the
state of how far we’ve gone so far. This is shown in the following listing.

class IterationSampleIterator : IEnumerator
{

IterationSample parent;
int position;

internal IterationSampleIterator(IterationSample parent)
{

this.parent = parent;
position = -1;

}

public bool MoveNext()
{

if (position != parent.values.Length)
{

position++;
}
return position < parent.values.Length;

}

public object Current
{

get
{

if (position == -1 ||
position == parent.values.Length)

{
throw new InvalidOperationException();

}
int index = position + parent.startingPoint;
index = index % parent.values.Length;
return parent.values[index];

}
}

Listing 6.3 Nested class implementing the collection’s iterator

Collection we’re
iterating over

B

How far we’ve iteratedC

Starts before
first element

D

Increments
position if
still going

E

Prevents access
before first or
after last element

F

Implements
wraparound

G

Licensed to Devon Greenway <devon.greenway@gmail.com>

160 CHAPTER 6 Implementing iterators the easy way
public void Reset()
{

position = -1;
}

}

What a lot of code to perform such a simple task! We remember the original collection
of values we’re iterating over B and keep track of where we’d be in a simple zero-based
array C. To return an element, we offset that index by the starting point G. In keeping
with the interface, we consider our iterator to start logically before the first element D,
so the client will have to call MoveNext before using the Current property for the first
time. The conditional increment at E makes the test at F simple and correct even if
MoveNext is called again after it’s first reported that no more data is available. To reset
the iterator, we set our logical position back to before the first element H.

 Most of the logic involved is fairly straightforward, although there’s lots of room
for off-by-one errors; my first implementation failed its unit tests for precisely that rea-
son. The good news is that it works, and that we only need to implement IEnumerable
in IterationSample to complete the example:

public IEnumerator GetEnumerator()
{

return new IterationSampleIterator(this);
}

I won’t reproduce the combined code here, but it’s available on the book’s website,
including listing 6.1, which now has the expected output.

 It’s worth bearing in mind that this is a relatively simple example—there’s not a lot
of state to keep track of, and no attempt to check whether the collection has changed
between iterations. With such a large burden involved to implement a simple iterator,
we shouldn’t be surprised at the rarity of implementing the pattern in C# 1. Developers
were generally happy to use foreach on the collections provided by the framework,
but more direct (and collection-specific) access when it came to their own collections.

 So, about 40 lines of code to implement the iterator in C# 1. Let’s see if C# 2 can
do any better.

6.2 C# 2: simple iterators with yield statements
I’ve always been the kind of person who likes to stay up until midnight on Christmas
Eve in order to open a present as soon as Christmas Day arrives. In the same way, I’d
find it almost impossible to wait any significant amount of time before showing you
how neat the solution is in C# 2.

6.2.1 Introducing iterator blocks and yield return

This chapter wouldn’t exist if C# 2 didn’t have a powerful feature that cuts down the
amount of code you have to write to implement iterators. In some other topics the
amount of code has only been reduced slightly, or has just made something more
elegant. In this case, though, the amount of code required is reduced massively.
Listing 6.4 shows the complete implementation of the GetEnumerator method in C# 2.

Moves back to
before first element

H

Licensed to Devon Greenway <devon.greenway@gmail.com>

161C# 2: simple iterators with yield statements

public IEnumerator GetEnumerator()
{

for (int index = 0; index < values.Length; index++)
{

yield return values[(index + startingPoint) % values.Length];
}

}

Four lines of implementation, two of which are just braces. To be clear, that replaces
the whole of the IterationSampleIterator class. Completely. At least in the source
code... Later on we’ll see what the compiler has done behind our back, and some of
the quirks of the implementation it’s provided, but for the moment let’s look at the
source code we’ve used.

 The method looks perfectly normal until you see the use of yield return. That’s
what tells the C# compiler that this isn’t a normal method but one implemented with
an iterator block. The method is declared to return an IEnumerator, and you can only
use iterator blocks to implement methods1 that have a return type of IEnumerable,
IEnumerator, or one of the generic equivalents. The yield type of the iterator block is
object if the declared return type of the method is a nongeneric interface, or the
type argument of the generic interface otherwise. For instance, a method declared to
return IEnumerable<string> would have a yield type of string.

 No normal return statements are allowed within iterator blocks—only yield
return. All yield return statements in the block must try to return a value compati-
ble with the yield type of the block. To use our previous example, you couldn’t write
yield return 1; in a method declared to return IEnumerable<string>.

RESTRICTIONS ON YIELD RETURN There are a few further restrictions on yield
statements. You can’t use yield return inside a try block if it has any catch
blocks, and you can’t use either yield return or yield break (which we’ll
come to shortly) in a finally block. That doesn’t mean you can’t use try/
catch or try/finally blocks inside iterators—it just restricts what you can do
in them.2

The big idea that you need to get your head around when it comes to iterator blocks is
that although you’ve written a method that looks like it executes sequentially, what
you’ve actually asked the compiler to do is create a state machine for you. This is neces-
sary for exactly the same reason we had to put so much effort into implementing the
iterator in C# 1—the caller only wants to see one element at a time, so we need to
keep track of what we were doing when we last returned a value.

Listing 6.4 Iterating through the sample collection with C# 2 and yield return

1 Or properties, as we’ll see later on. You can’t use an iterator block in an anonymous method, though.
2 If you want to know more about why these restrictions exist, Eric Lippert has a whole series of blog posts about

these and other design decisions involving iterators: see http://mng.bz/EJ97.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/EJ97

162 CHAPTER 6 Implementing iterators the easy way
 When the compiler encounters an iterator block, it creates a nested type for the
state machine. This type remembers exactly where we are within the block and the val-
ues of local variables (including parameters). The generated class is somewhat similar
to the longhand implementation we wrote earlier, in that it keeps all the necessary
state as instance variables. Let’s think about what this state machine has to do in order
to implement the iterator:

 It has to have some initial state.
 Whenever MoveNext is called, it has to execute code from the GetEnumerator

method until we’re ready to provide the next value (in other words, until we hit
a yield return statement).

 When the Current property is used, it has to return the last value we yielded.
 It has to know when we’ve finished yielding values so that MoveNext can return

false.

The second point in this list is the tricky one, because it always needs to restart the
code from the point it had previously reached. Keeping track of the local variables (as
they appear in the method) isn’t too hard—they’re just represented by instance vari-
ables in the state machine. The restarting aspect is trickier, but the good news is that
unless you’re writing a C# compiler yourself, you needn’t care about how it’s achieved:
the result from a black box point of view is that it just works. You can write perfectly
normal code within the iterator block and the compiler is responsible for making sure
that the flow of execution is exactly as it would be in any other method; the difference
is that a yield return statement appears to only temporarily exit the method—you
could think of it as being paused, effectively.

 Next we’ll examine the flow of execution in more detail, and in a more visual way.

6.2.2 Visualizing an iterator’s workflow

It may help to think about how iterators execute in terms of a sequence diagram (see
http://mng.bz/jH7I). Rather than drawing the diagram by hand, listing 6.5 prints it
out for us. The iterator itself just provides a sequence of numbers (0, 1, 2, –1) and
then finishes. The interesting part isn’t the numbers provided so much as the flow of
the code.

static readonly string Padding = new string(' ', 30);

static IEnumerable<int> CreateEnumerable()
{

Console.WriteLine("{0}Start of CreateEnumerable()", Padding);

for (int i=0; i < 3; i++)
{

Console.WriteLine("{0}About to yield {1}", Padding, i);
yield return i;
Console.WriteLine("{0}After yield", Padding);

}

Listing 6.5 Showing the sequence of calls between an iterator and its caller
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/jH7I

163C# 2: simple iterators with yield statements
Console.WriteLine("{0}Yielding final value", Padding);
yield return -1;

Console.WriteLine("{0}End of CreateEnumerable()", Padding);
}
...
IEnumerable<int> iterable = CreateEnumerable();
IEnumerator<int> iterator = iterable.GetEnumerator();
Console.WriteLine("Starting to iterate");
while (true)
{

Console.WriteLine("Calling MoveNext()...");
bool result = iterator.MoveNext();
Console.WriteLine("... MoveNext result={0}", result);
if (!result)
{

break;
}
Console.WriteLine("Fetching Current...");
Console.WriteLine("... Current result={0}", iterator.Current);

}

Listing 6.5 isn’t pretty, particularly around the iteration side of things. In the nor-
mal course of events we’d just use a foreach loop, but to show exactly what’s happen-
ing when, I had to break the use of the iterator out into pieces. This code broadly
does what foreach does, although foreach also calls Dispose at the end. This is
important for iterator blocks, as we’ll explore shortly. As you can see, there’s no dif-
ference in the syntax within the iterator method even though this time we’re return-
ing IEnumerable<int> instead of IEnumerator<int>. Usually you'll only want to
return IEnumerator<T> in order to implement IEnumerable<T>; if you want to just
yield a sequence from a method, return IEnumerable<T> instead.

 Here’s the output from listing 6.5:

Starting to iterate
Calling MoveNext()...

Start of CreateEnumerable()
About to yield 0

... MoveNext result=True
Fetching Current...
... Current result=0
Calling MoveNext()...

After yield
About to yield 1

... MoveNext result=True
Fetching Current...
... Current result=1
Calling MoveNext()...

After yield
About to yield 2

... MoveNext result=True
Fetching Current...
... Current result=2
Calling MoveNext()...

After yield
Licensed to Devon Greenway <devon.greenway@gmail.com>

164 CHAPTER 6 Implementing iterators the easy way
Yielding final value
... MoveNext result=True
Fetching Current...
... Current result=-1
Calling MoveNext()...

End of CreateEnumerable()
... MoveNext result=False

There are various important things to note from this output:

 None of the code we wrote in CreateEnumerable is called until the first call to
MoveNext.

 Calling MoveNext is where all the work gets done; fetching Current doesn’t run
any of our code.

 The code stops executing at yield return and picks up again just afterward at
the next call to MoveNext.

 We can have multiple yield return statements in different places in the
method.

 The code doesn’t end at the last yield return—instead, the call to MoveNext
that causes us to reach the end of the method is the one that returns false.

The first point is particularly important, because it means you can’t use an iterator
block for any code that has to be executed immediately when the method is called—
such as argument validation. If you put normal checking into a method implemented
with an iterator block, it won’t behave nicely. You’ll almost certainly fall foul of this at
some point—it’s an extremely common error, and hard to understand until you think
about what the iterator block is doing. We’ll see the solution to the problem in section
6.3.7.

 There are two things we haven’t seen yet—an alternative way of halting the itera-
tion, and how finally blocks work in this somewhat odd form of execution. Let’s take
a look at them now.

6.2.3 Advanced iterator execution flow

In normal methods, the return statement has two effects. First, it supplies the value
the caller sees as the return value. Second, it terminates the execution of the method,
executing any appropriate finally blocks on the way out. We’ve seen that the yield
return statement temporarily exits the method, but only until MoveNext is called
again, and we haven’t examined the behavior of finally blocks at all yet. How can we
really stop the method, and what happens to all of those finally blocks? We’ll start
with a fairly simple construct—the yield break statement.

ENDING AN ITERATOR WITH YIELD BREAK

You can always find a way to make a method have a single exit point, and many people
work hard to achieve this.3 The same techniques can be applied in iterator blocks. But

3 I personally find that the hoops you have to jump through to achieve this often make the code much harder
to read than just having multiple return points, especially as try/finally is available for cleanup and you
need to account for the possibility of exceptions occurring anyway. The point is that it can be done.
Licensed to Devon Greenway <devon.greenway@gmail.com>

165C# 2: simple iterators with yield statements
should you wish to have an early out, the yield break statement is your friend. This
effectively terminates the iterator, making the current call to MoveNext return false.

 Listing 6.6 demonstrates this by counting up to 100 but stopping early if it runs out
of time. This also demonstrates the use of a method parameter in an iterator block,4

and proves that the name of the method is irrelevant.

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{

for (int i = 1; i <= 100; i++)
{

if (DateTime.Now >= limit)
{

yield break;
}
yield return i;

}
}
...
DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine("Received {0}", i);
Thread.Sleep(300);

}

Typically when you run listing 6.6, you’ll see about seven lines of output. The foreach
loop terminates perfectly normally—as far as it’s concerned, the iterator has just run
out of elements to iterate over. The yield break statement behaves much like a
return statement in a normal method.

 So far, so simple. There’s one last aspect of execution flow to explore: how and
when finally blocks are executed.

EXECUTION OF FINALLY BLOCKS

We’re used to finally blocks executing whenever we leave the relevant scope. Itera-
tor blocks don’t behave quite like normal methods, though—as we’ve seen, a yield
return statement effectively pauses the method rather than exiting it. Following that
logic, we wouldn’t expect any finally blocks to be executed at that point—and they
aren’t.

 But appropriate finally blocks are executed when a yield break statement is hit,
just as you’d expect them to be when returning from a normal method.5 The most
common use of finally in an iterator block is to dispose of resources, typically with a
convenient using statement. We’ll see a real-world example of this in section 6.3.6,
but for now we’re just trying to see how and when finally blocks are executed. The

4 Note that methods taking ref or out parameters can’t be implemented with iterator blocks.

Listing 6.6 Demonstration of yield break

5 They also work as normal when execution leaves the relevant scope without reaching either a yield return
or a yield break statement. I’m only focusing on the behavior of the two yield statements here because
that’s where the flow of execution is new and different.

Stops if our
time is up
Licensed to Devon Greenway <devon.greenway@gmail.com>

166 CHAPTER 6 Implementing iterators the easy way
following listing shows this in action—it’s the same code as listing 6.6, but with a
finally block. The changes are shown in bold.

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{
 try
 {

for (int i = 1; i <= 100; i++)
{

if (DateTime.Now >= limit)
{

yield break;
}
yield return i;

}
}

 finally
 {
 Console.WriteLine("Stopping!");
 }
}
...
DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine("Received {0}", i);
Thread.Sleep(300);

}

The finally block in listing 6.7 is executed whether the iterator block finishes by
counting to 100, or whether it has to stop due to the time limit being reached. (It
would also execute if the code threw an exception.) But there are other ways we might
try to avoid the finally block from being called... Let’s try to be sneaky.

 We’ve seen that code in the iterator block is only executed when MoveNext is
called. So what happens if we never call MoveNext? Or if we call it a few times and then
stop? Let’s consider changing the calling part of listing 6.7 to this:

DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{

Console.WriteLine ("Received {0}", i);
if (i > 3)
{

Console.WriteLine("Returning");
return;

}
Thread.Sleep(300);

}

Here we’re not stopping early in the iterator code—we’re stopping early in the code
using the iterator. The output is perhaps surprising:

Listing 6.7 Demonstration of yield break working with try/finally

Executes
however the
loop ends
Licensed to Devon Greenway <devon.greenway@gmail.com>

167C# 2: simple iterators with yield statements
Received 1
Received 2
Received 3
Received 4
Returning
Stopping!

Here, code is being executed after the return statement in the foreach loop. That
doesn’t normally happen unless a finally block is involved—and in this case there
are two! We already know about the finally block in the iterator method, but the
question is what’s causing it to be executed. I gave a hint to this earlier on—foreach

calls Dispose on the iterator returned by GetEnumerator, in its own finally block
(just like the using statement). When you call Dispose on an iterator created with an
iterator block before it’s finished iterating, the state machine executes any finally
blocks that are in the scope of where the code is currently “paused.” That’s a compli-
cated and somewhat detailed explanation, but the result is simpler to express: so long
as callers use a foreach loop, finally works within iterator blocks in the way you want
it to.

 We can prove easily that it’s the call to Dispose that triggers this by using the itera-
tor manually:

DateTime stop = DateTime.Now.AddSeconds(2);
IEnumerable<int> iterable = CountWithTimeLimit(stop);
IEnumerator<int> iterator = iterable.GetEnumerator();

iterator.MoveNext();
Console.WriteLine ("Received {0}", iterator.Current);

iterator.MoveNext();
Console.WriteLine ("Received {0}", iterator.Current);

This time the stopping line is never printed. If you add a call to Dispose explicitly,
you’ll see the extra line in the output again. It’s relatively rare that you’ll want to ter-
minate an iterator before it’s finished, and it’s relatively rare that you’ll be iterating
manually instead of using foreach, but if you do, remember to wrap the iterator in a
using statement.

 We’ve now covered most of the behavior of iterator blocks, but before we end this
section it’s worth considering a few oddities to do with the current Microsoft
implementation.

6.2.4 Quirks in the implementation

If you compile iterator blocks with the Microsoft C# 2 compiler and look at the result-
ing IL in either ildasm or Reflector, you’ll see the nested type that the compiler has
generated for us behind the scenes. In my case when compiling our (evolved) first
iterator block example, it was called IterationSample.<GetEnumerator>d__0 (where
the angle brackets make it an unspeakable name—nothing to do with generics). I
won’t go through exactly what’s generated in detail here, but it’s worth looking at it in
Reflector to get a feel for what’s going on, preferably with the language specification
Licensed to Devon Greenway <devon.greenway@gmail.com>

168 CHAPTER 6 Implementing iterators the easy way
next to you, open at section 10.14: the specification defines different states the type
can be in, and this description makes the generated code easier to follow. The bulk of
the work is performed in MoveNext, which is generally a big switch statement.

 Fortunately, as developers we don’t need to care much about the hoops the com-
piler has to jump through. But there are a few quirks about the implementation that
are worth knowing about:

 Before MoveNext is called for the first time, the Current property will always
return the default value for the yield type of the iterator.

 After MoveNext has returned false, the Current property will always return the
final value yielded.

 Reset always throws an exception instead of resetting like our manual imple-
mentation did. This is required behavior, laid down in the specification.

 The nested class always implements both the generic and nongeneric form of
IEnumerator (and the generic and nongeneric IEnumerable where appropriate).

Failing to implement Reset is reasonable—the compiler can’t work out what you’d
need to do in order to reset the iterator, or even whether it’s feasible. Arguably Reset
shouldn’t have been in the IEnumerator interface to start with, and I can’t remember
the last time I called it. Many collections don’t support it, so callers can’t generally rely
on it anyway.

 Implementing extra interfaces does no harm either. It’s interesting that if your
method returns IEnumerable, you end up with one class implementing five interfaces
(including IDisposable). The language specification explains it in detail, but the
upshot is that as a developer you don’t need to worry. The fact that it implements both
IEnumerable and IEnumerator is slightly unusual—the compiler goes to some pains
to make sure that the behavior is correct whatever you do with it, but also manages to
create a single instance of the nested type in the common case where you just iterate
through the collection in the same thread that created it.

 The behavior of Current is odd—in particular, keeping hold of the last item after
supposedly moving off it could keep it from being garbage collected. It’s possible that
this may be fixed in a later release of the C# compiler, though it’s unlikely, as it could
break existing code.6 Strictly speaking, it’s correct from the point of view of the C# 2
language specification—the behavior of the Current property is undefined in this sit-
uation. It’d be nicer, though, if it implemented the property in the way that the frame-
work documentation suggests, throwing exceptions at appropriate times.

 So, there are a few tiny drawbacks from using the autogenerated code, but sensible
callers won’t have any problems—and let’s face it, we’ve saved a lot of code in order to
come up with the implementation. This means it makes sense to use iterators more
widely than we might’ve done in C# 1. Our next section provides some sample code so
you can check your understanding of iterator blocks and see how they’re useful in real
life rather than in theoretical scenarios.

6 The Microsoft C# compilers shipping with .NET 3.5 and 4 behave in the same way.
Licensed to Devon Greenway <devon.greenway@gmail.com>

169Real-life iterator examples
6.3 Real-life iterator examples
Have you ever written some code that’s really simple in itself but makes your project
much neater? It happens to me every so often, and it usually makes me happier than it
probably ought to—enough to get strange looks from colleagues, anyway. That sort of
childlike delight is particularly strong when it comes to using a new language feature
in a way that’s clearly nicer and not just doing it for the sake of playing with new toys.

 Even after using iterators for a few years now, I still come across situations where a
solution presents itself using iterator blocks, and the resulting code is brief, clean, and
easy to understand. In this section I’ll share three such scenarios with you.

6.3.1 Iterating over the dates in a timetable

While working on a project involving timetables, I came across a few loops, all of
which started like this:

for (DateTime day = timetable.StartDate;
day <= timetable.EndDate;
day = day.AddDays(1))

I was working on this area of code a lot, and I always hated that loop, but it was only
when I was reading the code out loud to another developer as pseudo-code that I real-
ized I was missing a trick. I said something like, “For each day within the timetable.” In
retrospect, it’s obvious that what I really wanted was a foreach loop. (This may have
been obvious to you from the start—apologies if this is the case. Fortunately I can’t see
you looking smug.) The loop is much nicer when rewritten as

foreach (DateTime day in timetable.DateRange)

In C# 1, I might’ve looked at that as a fond dream but not bothered implementing it:
we’ve seen how messy it is to implement an iterator by hand, and the end result only
made a few for loops neater in this case. In C# 2, though, it was easy. Within the class
representing the timetable, I simply added a property:

public IEnumerable<DateTime> DateRange
{

get
{

for (DateTime day = StartDate;
day <= EndDate;
day = day.AddDays(1))

{
yield return day;

}
}

}

This has just moved the original loop into the timetable class, but that’s okay—it’s
much nicer for it to be encapsulated there, in a property that just loops through the
days, yielding them one at a time, than to be in business code that was dealing with
those days. If I ever wanted to make it more complex (skipping weekends and public
holidays, for instance), I could do it in one place and reap the rewards everywhere.
Licensed to Devon Greenway <devon.greenway@gmail.com>

170 CHAPTER 6 Implementing iterators the easy way
 This one small change made a massive improvement to the readability of the code
base. As it happens, I stopped refactoring at that point in the commercial code. I did
think about introducing a Range<T> type to represent a general-purpose range, but as
I only needed it in this one situation, it didn’t make sense to expend any more effort
on the problem. It turns out that was a wise move. In the first edition of this book, I
created just such a type—but it had some shortcomings that were hard to address in a
book-friendly manner. I redesigned it significantly for my utility library, but I still have
a few misgivings. Types like this often sound simpler than they really are, and soon you
end up with a corner case to be handled at every turn. The details of the difficulties I
encountered don’t really belong in this book—they’re more points about general
design than C#—but they’re interesting in their own right, so I’ve written them up as
an article on the book’s website (see http://mng.bz/GAmS).

 The next example is one of my favourites—it demonstrates everything I love about
iterator blocks.

6.3.2 Iterating over lines in a file

I mentioned this in the introduction to the chapter because it’s such a common task. I
dread to think how often I’ve written code like this:

using (TextReader reader = File.OpenText(filename))
{

string line;
while ((line = reader.ReadLine()) != null)
{

// Do something with line
}

}

We have four separate concepts here:

 How to obtain a TextReader
 Managing the lifetime of the TextReader
 Iterating over the lines returned by TextReader.ReadLine
 Doing something with each of those lines

Only the first and last of these are generally specific to the situation—the lifetime
management and the mechanism for iterating are just boilerplate code. (At least the
lifetime management is simple in C#. Thank goodness for using statements !) There
are two ways we could improve things. We could use a delegate—we could write a utility
method that would take a reader and a delegate as parameters, call the delegate for
each line in the file, and close the reader at the end. That’s often used as an example
of closures and delegates—but there’s an alternative that I find more elegant, and
which fits in much better with LINQ. Instead of passing our logic into a method as a
delegate, we can use an iterator to return a single line at a time from the file, so we
can use the normal foreach loop.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/GAmS

171Real-life iterator examples
 You can achieve this using a whole type implementing IEnumerable<string> (I
have a LineReader class in my MiscUtil library for this purpose) but a standalone
method in another class will work fine, too. It’s really simple, as the next listing proves.

static IEnumerable<string> ReadLines(string filename)
{

using (TextReader reader = File.OpenText(filename))
{

string line;
while ((line = reader.ReadLine()) != null)
{

yield return line;
}

}
}
...
foreach (string line in ReadLines("test.txt"))
{

Console.WriteLine(line);
}

The body of the method is pretty exactly what we had before—except that what we’re
doing with the line is yielding it to the caller when it iterates over the collection. As
before, we open the file, read a line at a time, and then close the reader when we've
finished... although the concept of “when we’ve finished” is more interesting in this
case than with a using statement in a normal method, where the flow control is more
obvious.

 This is why it’s important that the foreach loop dispose of the iterator—because
that’s what makes sure the reader gets cleaned up. The using statement in the iterator
method is acting as a try/finally block; that finally block will execute if either we
get to the end of the file or we call Dispose on the IEnumerator<string> when we’re
part of the way through. It’d be possible for calling code to abuse the IEnumerator
<string> returned by ReadLines(...).GetEnumerator() and end up with a resource
leak, but that’s usually the case with IDisposable—if you don’t call Dispose, you may
leak resources. It’s rarely a problem though, as foreach does the right thing. It’s
important to be aware of this potential abuse—if you relied upon some sort of try/
finally block in an iterator to grant some permission and then remove it again later,
that really would be a security hole.

 This method encapsulates the first three of the four concepts I listed earlier—but
it's a bit restrictive. It’s reasonable to lump together the lifetime management and iter-
ation aspects, but what if we want to read text from a network stream instead? Or if we
want to use an encoding other than UTF-8? We need to put the first part back in con-
trol of the caller. The most obvious approach would be to change the method signa-
ture to accept a TextReader, like this:

static IEnumerable<string> ReadLines(TextReader reader)

Listing 6.8 Looping over the lines in a file using an iterator block
Licensed to Devon Greenway <devon.greenway@gmail.com>

172 CHAPTER 6 Implementing iterators the easy way
This is a bad idea, though. We want to take ownership of the reader so that we can
clean it up conveniently for the caller—but that means we have to clean it up, so long
as the caller uses us sensibly. The problem is, if something happens before the first call
to MoveNext(), we’re never going to have any chance to clean up: none of our code
will run. The IEnumerable<string> itself isn’t disposable, and yet it would’ve stored
this piece of state which required disposal. Another problem would occur if Get-
Enumerator() were called twice: that ought to generate two independent iterators,
but they’d both be using the same reader. We could mitigate this somewhat by chang-
ing the return type to IEnumerator<string>, but that would mean the result couldn’t
be used in a foreach loop, and we still wouldn’t get to run any cleanup code if we
never got as far as the first MoveNext() call. Fortunately, there’s a way around this.

 Just as our code doesn’t get to run immediately, we don’t need the reader immedi-
ately. What we need is a way of getting the reader when we need it. We could use an
interface to represent the idea of “I can provide a TextReader when you want one,” but
the idea of a single method interface should usually make you reach for a delegate.
We’re going to cheat slightly, by introducing a delegate that’s part of .NET 3.5. It’s actu-
ally overloaded by different numbers of type parameters, but we only need one:

public delegate TResult Func<TResult>()

As you can see, this delegate has no parameters, but returns a result of the same type
as the type parameter. It’s a classic provider or factory signature. In this case, we want
to get a TextReader, so we’ll use Func<TextReader>. The changes to the method are
simple:

static IEnumerable<string> ReadLines(Func<TextReader> provider)
{

using (TextReader reader = provider())
{

string line;
while ((line = reader.ReadLine()) != null)
{

yield return line;
}

}
}

Now the resource is only acquired just before we actually need it—and by that point,
we’re in the context of IDisposable so we can release the resource at the appropriate
time. Furthermore, if GetEnumerator() is called multiple times on the returned value,
each call will result in an independent TextReader being created.

 We can easily use anonymous methods to add overloads to open files, optionally
specifying an encoding:

static IEnumerable<string> ReadLines(string filename)
{

return ReadLines(filename, Encoding.UTF8);
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

173Real-life iterator examples
static IEnumerable<string> ReadLines(string filename, Encoding encoding)
{

return ReadLines(delegate {
 return new StreamReader(filename,encoding);

});
}

This single example uses generics, an anonymous method (which captures parame-
ters), and an iterator block. All that’s missing is nullable value types and you’d have
the full house of C# 2’s major features. I’ve used this code on a number of occasions,
and it’s always much cleaner than the cumbersome code we started off with.

 As a final example, let’s get a first taste of LINQ—even though we’ll only use C# 2.

6.3.3 Filtering items lazily using an iterator block and a predicate

Even though we haven’t started to look at LINQ properly yet, I’m sure you have some
idea of what it’s about: it allows you to query data in a simple and powerful way, across
multiple data sources such as in-memory collections and databases. C# 2 doesn’t have
any of the language integration for query expressions, nor the lambda expressions
and extension methods that can make it so concise, but we can still achieve some of
the same effects.

 One of the core features of LINQ is filtering with the Where method. You provide a
collection and a predicate, and the result is a lazily evaluated query that’ll yield only
the items in the collection that match the predicate. This is a little like List<T>.Find-
All, but it’s lazy and works with any IEnumerable<T>. One of the beautiful things
about LINQ7 is that the cleverness is in the design. It’s quite simple to implement LINQ
to Objects—as we’ll prove now, at least for the Where method. Ironically even though
most of the language features that make LINQ shine are part of C# 3, these are almost
all about how you can access methods such as Where, rather than how they’re imple-
mented. Listing 6.9 shows a full example, including simple argument validation, and
uses the filter to display all the using directives in the source file that contains the
sample code itself.

public static IEnumerable<T> Where<T>(IEnumerable<T> source,
Predicate<T> predicate)

{
if (source == null || predicate == null)
{

throw new ArgumentNullException();
}
return WhereImpl(source, predicate);

}

private static IEnumerable<T> WhereImpl<T>(IEnumerable<T> source,
Predicate<T> predicate)

7 Or to be more precise, LINQ to Objects. LINQ providers for databases and the like are far more complex.

Listing 6.9 Implementing LINQ's Where method using iterator blocks

Eagerly checks
argumentsB

Lazily processes dataC
Licensed to Devon Greenway <devon.greenway@gmail.com>

174 CHAPTER 6 Implementing iterators the easy way
{
foreach (T item in source)
{

if (predicate(item))
{

yield return item;
}

}
}
...
IEnumerable<string> lines = LineReader.ReadLines("../../FakeLinq.cs");
Predicate<string> predicate = delegate(string line)

{ return line.StartsWith("using"); };
foreach (string line in Where(lines, predicate))
{

Console.WriteLine(line);
}

As you can see, we’ve split the implementation up into two parts: argument validation,
and the real business logic of filtering. This is slightly ugly, but entirely necessary for
sensible error handling. Suppose we put everything in the same method—what would
happen when we called Where<string>(null, null)? The answer is nothing... or at
least, the desired exception wouldn’t be thrown. This is due to the lazy semantics of
iterator blocks: none of the code in the body of the method runs until the first call to
MoveNext(), as we saw in section 6.2.2. Typically you want to check the preconditions
to the method eagerly—there’s no point in delaying the exception, and it just makes
debugging harder. The standard workaround for this is to split the method in half, as
we do in listing 6.9. First we check the arguments B in a normal method, and then
call the method implemented using an iterator block to lazily process the data as and
when it’s requested C.

 The iterator block itself is mind-numbingly straightforward: for each item in the
original collection, we test the predicate D and yield the value if it matches. If it
doesn’t match, we try the next item and so on until we find something that does match,
or we run out of items. It’s straightforward—but a C# 1 implementation would’ve
been much harder to follow (and couldn’t have been generic, of course).

 The final piece of code to demonstrate the method in action uses our previous
example to provide the data—in this case, the source code of the implementation.
The predicate simply tests a line to see whether it begins with “using”—it could con-
tain far more complicated logic, of course. I’ve created separate variables for the data
and the predicate just to make the formatting clearer, but it could all have been writ-
ten inline. It’s important to note the principal difference between this example and
the equivalent that could’ve been achieved using File.ReadAllLines and
Array.FindAll<string>: this implementation is entirely lazy and streaming. Only a
single line from the source file is ever required in memory at a time. Of course, that
wouldn’t matter in this particular case where the file is small—but if you imagine a
multigigabyte log file, you can see the benefits of this approach.

Tests current item
against predicate

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

175Pseudo-synchronous code with the Concurrency and Coordination Runtime
 I hope these examples have given you an inkling of why iterator blocks are so
important—as well as perhaps a desire to hurry on and find out more about LINQ.
Before that, I’d like to mess with your mind a bit, and introduce you to a thoroughly
bizarre (but really neat) use of iterators.

6.4 Pseudo-synchronous code with the Concurrency
and Coordination Runtime
The Concurrency and Coordination Runtime (CCR) is a library developed by Microsoft to
offer an alternative way of writing asynchronous code that’s amenable to complex
coordination. At the time of this writing, it’s only available as part of the Microsoft
Robotics Studio (see http://www.microsoft.com/robotics) or the Microsoft CCR and
DSS Toolkit (see http://www.microsoft.com/ccrdss/). Microsoft has been putting a
lot of resources into concurrency in various projects, and the Parallel Extensions
framework included in .NET 4 is probably the most important one for the majority of
developers. But I wanted to use the CCR to show you how iterator blocks can change
the whole execution model.8 The sample code does actually work (against dummy ser-
vices) but the ideas are more important than the details.

 Suppose we’re writing a server that needs to handle lots of requests. As part of
dealing with those requests, we need to first call a web service to fetch an authentica-
tion token, and then use that token to get data from two independent data sources
(say a database and another web service). We then process that data and return the
result. Each of the fetch stages could take a while—perhaps a few seconds. Normally
we’d consider the simple synchronous route or the stock asynchronous approach. The
synchronous version might look something like this:

HoldingsValue ComputeTotalStockValue(string user, string password)
{

Token token = AuthService.Check(user, password);
Holdings stocks = DbService.GetStockHoldings(token);
StockRates rates = StockService.GetRates(token);
return ProcessStocks(stocks, rates);

}

That’s easy to understand, but if each request takes two seconds, the whole operation
will take six seconds and tie up a thread for the whole time it’s running. If we want to
scale up to hundreds of thousands of requests running in parallel, we’re in trouble.
Now let’s consider a fairly simple asynchronous version, which avoids tying up a
thread when nothing’s happening9 and uses parallel calls where possible:

void StartComputingTotalStockValue(string user, string password)
{

AuthService.BeginCheck(user, password, AfterAuthCheck, null);
}

8 In .NET 4, you’d usually use Task.ContinueWith to achieve similar results in a slightly different way... or
perhaps Reactive Extensions.

9 Well, mostly—it might still be inefficient, as we’ll see in a moment.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.microsoft.com/robotics
http://www.microsoft.com/ccrdss/

176 CHAPTER 6 Implementing iterators the easy way
void AfterAuthCheck(IAsyncResult result)
{

Token token = AuthService.EndCheck(result);
IAsyncResult holdingsAsync = DbService.BeginGetStockHoldings

(token, null, null);
StockService.BeginGetRates(token, AfterGetRates, holdingsAsync);

}

void AfterGetRates(IAsyncResult result)
{

IAsyncResult holdingsAsync = (IAsyncResult)result.AsyncState;
StockRates rates = StockService.EndGetRates(result);
Holdings stocks = DbService.EndGetStockHoldings(holdingsAsync);
OnRequestComplete(ProcessStocks(stocks, rates));

}

This is much harder to read and understand—and that’s only a simple version! The
coordination of the two parallel calls is only achievable in a simple way because we
don’t need to pass any other state around, and even so it’s not ideal. If the stock ser-
vice call completes quickly, we’ll still block a thread pool thread waiting for the data-
base call to complete. More importantly, it’s far from obvious what’s going on, because
the code jumps between different methods.

 By now you may be asking yourself where iterators come into the picture. Well, the
iterator blocks provided by C# 2 effectively allow you to pause current execution at
certain points of the flow through the block, and then come back to the same place,
with the same state. The clever folks designing the CCR realized that that’s exactly
what’s needed for a continuation-passing style of coding. We need to tell the system that
there are certain operations we need to perform—including starting other operations
asynchronously—but that we’re then happy to wait until the asynchronous operations
have finished before we continue. We do this by providing the CCR with an implemen-
tation of IEnumerator<ITask> (where ITask is an interface defined by the CCR).
Here’s some code to achieve the same results using this style:

static IEnumerator<ITask> ComputeTotalStockValue(string user, string pass)
{

string token = null;
yield return Arbiter.Receive(false, AuthService.CcrCheck(user, pass),

delegate(string t) { token = t; });

IEnumerable<Holding> stocks = null;
IDictionary<string,decimal> rates = null;
yield return Arbiter.JoinedReceive(false,

DbService.CcrGetStockHoldings(token),
StockService.CcrGetRates(token),
delegate(IEnumerable<Holding> s, IDictionary<string,decimal> r)

{ stocks = s; rates = r; });

OnRequestComplete(ComputeTotal(stocks, rates));
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

177Summary
Confused? I certainly was when I first saw it—but now I’m in awe of how neat it is. The
CCR calls into our code (with a call to MoveNext on the iterator), and we execute until
and including the first yield return statement. The CcrCheck method within Auth-
Service kicks off an asynchronous request, and the CCR waits (without using a dedi-
cated thread) until it has completed, calling the supplied delegate to handle the
result. It then calls MoveNext again, and our method continues. This time we kick off
two requests in parallel, and ask the CCR to call another delegate with the results of
both operations when they’ve both finished. After that, MoveNext is called for a final
time and we get to complete the request processing.

 Although it’s obviously more complicated than the synchronous version, it’s still all
in one method, it gets executed in the order written, and the method itself can hold
the state (in the local variables, which become state in the extra type generated by the
compiler). It’s fully asynchronous, using as few threads as it can get away with. I
haven’t shown any error handling, but that’s also available in a sensible fashion that
forces you to think about the issue at appropriate places.

 I’ve deliberately not gone into the details of the Arbiter class, the ITask interface,
and so forth here. I’m not trying to promote the CCR in this section, although it’s fas-
cinating to read about and experiment with; I suspect that Parallel Extensions will
have more impact on mainstream developers. The point has been to show that itera-
tors can be used in radically different contexts that have little to do with traditional
collections. At the heart of this use of them is the idea of a state machine: two of the
tricky aspects of asynchronous development are handling state and effectively pausing
until something interesting happens. Iterator blocks are a natural fit for both of these
problems.

6.5 Summary
C# supports many patterns indirectly, in terms of it being feasible to implement them
in C#. But relatively few patterns are directly supported in terms of language features
being specifically targeted at a particular pattern. In C# 1, the iterator pattern was
directly supported from the point of view of the calling code, but not from the per-
spective of the collection being iterated over. Writing a correct implementation of
IEnumerable was time consuming and error-prone, without being interesting. In C# 2,
the compiler does all the mundane work for you, building a state machine to cope
with the call-back nature of iterators.

 It should be noted that iterator blocks have one aspect in common with the anony-
mous methods we saw in chapter 5, even though the actual features are very different.
In both cases, extra types may be generated, and a potentially complicated code trans-
formation is applied to the original source. Compare this with C# 1, where most of the
transformations for syntactic sugar (lock, using, and foreach being the most obvious
examples) were straightforward. We’ll see this trend toward smarter compilation con-
tinuing with almost every aspect of C# 3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

178 CHAPTER 6 Implementing iterators the easy way
 I've shown you one piece of LINQ-related functionality in this chapter: filtering a
collection. IEnumerable<T> is one of the most important types in LINQ, and if you ever
want to write your own LINQ operators on top of LINQ to Objects,10 you’ll be eternally
grateful to the C# team for including iterator blocks in the language.

 In addition to seeing some real-life examples of the use of iterators, we’ve looked
at how one particular library has used them in a fairly radical way that has little to do
with what comes to mind when we think about iteration over a collection. It’s worth
bearing in mind that many languages have also looked at this sort of problem
before—in computer science the term coroutine is applied to concepts of this nature.
Different languages have historically supported them to a greater or lesser extent,
with tricks being applicable to simulate them sometimes—for example, Simon
Tatham has an excellent article on how even C can express coroutines if you’re willing
to bend coding standards somewhat (see http://mng.bz/H8YX). We’ve seen that C# 2
makes coroutines easy to write and use.

 Having seen some major and sometimes mind-warping language changes focused
around a few key features, our next chapter is a change of pace. It describes a number
of small changes that make C# 2 more pleasant to work with than its predecessor,
learning from the little niggles of the past to produce a language that has fewer rough
edges, more scope for dealing with awkward backward-compatibility cases, and a bet-
ter story around working with generated code. Each feature is relatively straightfor-
ward, but there are quite a few of them.

10 This is less daunting and more fun than it sounds. We’ll look at a few guidelines around this topic in
chapter 12.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/H8YX

Concluding C# 2:
the final features
So far we’ve looked at the four biggest new features in C# 2: generics, nullable
types, delegate enhancements, and iterator blocks. Each addresses a fairly complex
requirement, which is why we’ve gone into them in some depth. The remaining
new features of C# 2 knock a few rough edges off C# 1. They’re little niggles that
the language designers decided to correct—either areas where the language
needed a bit of improvement for its own sake, or where the experience of working
with code generation and native code could be made more pleasant.

This chapter covers
 Partial types

 Static classes

 Separate getter/setter property access

 Namespace aliases

 Pragma directives

 Fixed-size buffers

 Friend assemblies
179

Licensed to Devon Greenway <devon.greenway@gmail.com>

180 CHAPTER 7 Concluding C# 2: the final features
 Over time, Microsoft has received a lot of feedback from the C# community (and
its own developers, no doubt) about areas where C# hasn’t gleamed quite as brightly
as it might. Several smaller changes made it into C# 2 along with the larger ones, for
the purpose of alleviating some of these small pain points.

 None of the features in this chapter is particularly difficult, and we’ll go through
them fairly quickly. Don’t underestimate how important they are, though—just
because a topic can be explored in a few pages doesn’t mean it’s useless. You’re likely
to use some of these features on a frequent basis. Here’s a quick rundown of the fea-
tures covered in this chapter, so you know what to expect:

 Partial types—The ability to write the code for a type in multiple source files;
particularly handy for types where part of the code is autogenerated and the
rest is written manually.

 Static classes—Tidying up utility classes so that the compiler can spot when
you’re trying to use them inappropriately, and making your intentions clearer.

 Separate getter/setter property access—Finally, the ability to have a public getter and
a private setter for properties! (That’s not the only combination available, but
it’s the most common.)

 Namespace aliases—Ways out of sticky situations where type names aren’t unique.
 Pragma directives—Compiler-specific instructions for actions such as suppressing

specific warnings for a particular section of code.
 Fixed-size buffers—More control over how structs handle arrays in unsafe code.
 InternalsVisibleToAttribute (friend assemblies)—A feature spanning language,

framework, and runtime, this allows selected assemblies more access when
required.

You may be itching to get on to the sexy stuff from C# 3 by this point, and I don’t
blame you. Nothing in this chapter is going to set the world on fire—but each of these
features can make your life more pleasant, or dig you out of a hole in some cases. Hav-
ing dampened your expectations somewhat, our first feature is actually pretty nifty.

7.1 Partial types
The first change we’ll look at is due to the power struggle that was usually involved
when using code generators with C# 1. For Windows Forms, the designer in Visual
Studio required its own regions of code that couldn’t be touched by developers,
within the same file that developers had to edit for user interface functionality. This
was clearly a brittle situation.

 In other cases, code generators create source that’s compiled alongside manually
written code. In C# 1, adding extra functionality involved deriving new classes from
the autogenerated ones, which is ugly. There are plenty of other scenarios where hav-
ing an unnecessary link in the inheritance chain can cause problems or reduce encap-
sulation. For instance, if two different parts of your code want to call each other, you
need virtual methods for the parent type to call the child, and protected methods for
the reverse situation, where normally you’d just use two private nonvirtual methods.
Licensed to Devon Greenway <devon.greenway@gmail.com>

181Partial types
 C# 2 allows more than one file to contribute to a type, and IDEs can extend this
notion so that some of the code used for a type may not even be visible as C# source
code at all. Types built from multiple source files are called partial types.

 In this section we’ll also learn about partial methods, which are only relevant in par-
tial types and allow a rich but efficient way of adding manually written hooks into
autogenerated code. This is actually a C# 3 feature (this time based on feedback about
C# 2), but it’s more logical to discuss it when we examine partial types than to wait
until the next part of the book.

7.1.1 Creating a type with multiple files

Creating a partial type is a cinch—you just need to include the partial contextual
keyword in the declaration for the type in each file it occurs in. A partial type can be
declared within as many files as you like, although all the examples in this section
use two.

 The compiler effectively combines all the source files together before compiling.
This means that code in one file can call code in another and vice versa, as shown in
figure 7.1—there’s no need for forward references or other tricks.

 You can’t write half of a member in one file and half of it in another—each individ-
ual member has to be complete within its own file.1 There are a few obvious restric-
tions about the declarations of the type—the declarations have to be compatible. Any
file can specify interfaces to be implemented (and they don’t have to be implemented
in that file); any file can specify the base type; any file can specify constraints on a type
parameter. But if multiple files specify a base type, those base types have to be the
same, and if multiple files specify type constraints, the constraints have to be identical.
Listing 7.1 gives an example of the flexibility afforded (while not doing anything even
remotely useful).

1 There’s an exception here: partial types can contain nested partial types spread across the same set of files.

partial class Example
{
 void FirstMethod()
 {
 SecondMethod();
 }

 void ThirdMethod()
 {
 }
}

partial class Example
{
 void SecondMethod()
 {
 ThirdMethod();
 }
}

Example2.csExample1.cs

Figure 7.1 Code in partial types is able to see all of the members of the type,
regardless of which file each member is in.
Licensed to Devon Greenway <devon.greenway@gmail.com>

182 CHAPTER 7 Concluding C# 2: the final features

// Example1.cs
using System;

partial class Example<TFirst, TSecond>
: IEquatable<string>
where TFirst : class

{
public bool Equals(string other)
{

return false;
}

}

// Example2.cs
using System;

partial class Example<TFirst, TSecond>
: EventArgs, IDisposable

{
public void Dispose()
{
}

}

I stress that this listing is solely for the purpose of talking about what’s legal in a decla-
ration—the types involved were only picked for convenience and familiarity. We can
see that both declarations (B and D) contribute to the list of interfaces that must be
implemented. In this example, each file implements the interfaces it declares, and
that’s a common scenario, but it would be legal to move the implementation of
IDisposable e to Example1.cs and the implementation of IEquatable<string> C
to Example2.cs. I’ve used the ability to specify interfaces separately from the imple-
mentation myself, encapsulating methods with the same signature generated for mul-
tiple different types into an interface. The code generator doesn't know about the
interface, so it wouldn’t know to declare that the type implements it.

 Only B specifies any type constraints, and only d specifies a base class. If B had
specified a base class, it would have to be EventArgs, and if E had specified any type
constraints they’d have to be exactly as in B. In particular, we can’t specify a type con-
straint for TSecond in D even though it’s not mentioned in B. Both types have to
have the same access modifier, if any—we couldn’t make one declaration internal
and the other public, for example. Essentially, the rules around combining files allow
flexibility in most cases while encouraging consistency.

 In single file types, initialization of member and static variables is guaranteed to
occur in the order they appear in the file, but there’s no guaranteed order when mul-
tiple files are involved. Relying on the order of declaration within the file is brittle to
start with—it leaves your code open to subtle bugs if a developer decides to “harm-
lessly” move things around. So, it’s worth avoiding this situation where you can any-
way, but particularly avoid it with partial types.

Listing 7.1 Demonstration of mixing declarations of a partial type

Interface and type
parameter constraint

B

Implements
IEquatable<string>

C

Base class and interfaceD

Implements IDisposableE
Licensed to Devon Greenway <devon.greenway@gmail.com>

183Partial types
 Now that we know what we can and can’t do, let’s take a closer look at why we’d
want to do it.

7.1.2 Uses of partial types

As I mentioned earlier, partial types are primarily useful in conjunction with designers
and other code generators. If a code generator has to modify a file that’s owned by a
developer, there’s always a risk of things going wrong. With the partial types model, a
code generator can own the file where it’ll work, and completely overwrite the whole
file every time it wants to.

 Some code generators may even choose not to generate a C# file at all until the
build is well under way. For instance, Snippy has Extensible Application Markup Lan-
guage (XAML) files that describe the user interface. When the project is built, each
XAML file is converted into a C# file in the obj directory (the filenames end with .g.cs
to show they’ve been generated) and compiled along with the partial class providing
extra code for that type (typically event handlers and extra construction code). This
completely prevents developers from tweaking the generated code, at least without
going to the extreme lengths of hacking the build file.

 I’ve been careful to use the phrase code generator instead of just designer because
there are plenty of code generators around besides designers. For instance, in Visual
Studio web service proxies are generated as partial classes, and you may have your own
tools that generate code based on other data sources. One reasonably common exam-
ple of this is object-relational mapping (ORM)—some ORM tools use database entity
descriptions from a configuration file (or straight from the database) and generate
partial classes representing those entities. Likewise my .NET port of the Google Proto-
col Buffer serialization framework generates partial classes—a feature that has proven
useful even within the implementation itself.

 This makes it straightforward to add behavior to the type: overriding virtual meth-
ods of the base class, adding new members with business logic, and so forth. It’s a
great way of letting the developer and the tool work together, rather than constantly
squabbling about who’s in charge.

 One scenario that’s occasionally useful is for one file to be generated containing
multiple partial types, and then some of those types are enhanced in other files, one
manually generated file per type. To return to the ORM example, the tool could gen-
erate a single file containing all the entity definitions, and some of those entities could
have extra code provided by the developer, using one file per entity. This keeps the
number of automatically generated files low, but still provides good visibility of the
manual code involved.

 Figure 7.2 shows how the uses of partial types for XAML and entities are similar, but
with slightly different timing involved when it comes to creating the autogenerated C#
code.

 A somewhat different use of partial types is as an aid to refactoring. Sometimes a
type gets too big and assumes too many responsibilities. One first step to dividing the
Licensed to Devon Greenway <devon.greenway@gmail.com>

184 CHAPTER 7 Concluding C# 2: the final features
bloated type into smaller, more coherent types can be to first split it into a partial type
over two or more files. This can be done with no risk and in an experimental manner,
moving methods between files until each file only addresses a particular concern.
Although the next step of splitting the type up is still far from automatic at that stage,
it should be a lot easier to see the end goal.

 One final use to mention: unit testing. Often the set of unit tests for a class can end
up being much larger than the implementation itself. One way to split the tests into
more understandable chunks is using partial types. You can still easily run all the tests
for a type in one go (as you still have a single test class), but you can easily see the tests
for different areas of functionality in different files. By hand-editing the project file,
you can even have the same parent/child expansion in Solution Explorer as you see
when partial types are used for Visual Studio’s generated code. This won’t be to every-
one's tastes, but I’ve found it to be a useful way of managing tests.

 When partial types first appeared in C# 2, no one knew exactly how they’d be used.
One feature that was almost immediately requested was a way to provide optional
extra code for generated methods to call. This need has been addressed by C# 3 with
partial methods.

7.1.3 Partial methods—C# 3 only!

To reiterate my previous explanation, I realize that the rest of this part of the book just
deals with C# 2 features—but partial methods don’t fit with any of the other C# 3 fea-
tures and they do fit in well when describing partial types. Apologies for any confusion
this may cause.

GuiPage.xaml.cs
(Hand-written C#)

GuiPage.xaml
(XAML)

GuiPage.g.cs
(C#)

GuiPage type
(Part of an assembly)

XAML to C#
converter

(Build time)

Customer.cs
(Hand-written C#)

Schema/model
(Database, XML etc)

GeneratedEntities.cs
(C# - includes partial

Customer class)

Customer type
(Part of an assembly)

Code generator
(Pre-build)

Using XAML for declarative UI design Pre-building partial classes for database entities

C# compilation C# compilation

Figure 7.2 Comparison between XAML precompilation and autogenerated entity classes
Licensed to Devon Greenway <devon.greenway@gmail.com>

185Partial types
 Back to the feature: sometimes we want to be able to specify behavior in a manually
created file and use that behavior from an automatically generated file. For instance,
in a class that has lots of automatically generated properties, we might want to be able
to specify code to be executed as validation of a new value for some of those proper-
ties. Another common scenario is for a code generator to include constructors—man-
ually written code may want to hook into object construction to set default values,
perform some logging, and so forth.

 In C# 2, these requirements could only be met either by using events that the man-
ually generated code could subscribe to, or by making the automatically generated
code assume that the handwritten code will include methods of a particular name—
making the whole code fail to compile unless the relevant methods are provided.
Alternatively, the generated code can provide a base class with virtual methods that do
nothing by default. The manually generated code can then derive from the class and
override some or all of the methods.

 All of these solutions are somewhat messy. C# 3’s partial methods effectively pro-
vide optional hooks that have no cost whatsoever if they’re not implemented—any calls
to the unimplemented partial methods are removed by the compiler. This allows tools
to be very generous in terms of the hooks they provide—in the compiled code, you
only pay for what you use. It’s easiest to understand this with an example. Listing 7.2
shows a partial type specified in two files, with the constructor in the automatically
generated code calling two partial methods, one of which is implemented in the man-
ually generated code.

// Generated.cs
using System;
partial class PartialMethodDemo
{

public PartialMethodDemo()
{

OnConstructorStart();
Console.WriteLine("Generated constructor");
OnConstructorEnd();

}

partial void OnConstructorStart();
partial void OnConstructorEnd();

}

// Handwritten.cs
using System;
partial class PartialMethodDemo
{

partial void OnConstructorEnd()
{

Console.WriteLine("Manual code");
}

}

Listing 7.2 A partial method called from a constructor
Licensed to Devon Greenway <devon.greenway@gmail.com>

186 CHAPTER 7 Concluding C# 2: the final features
As shown in listing 7.2, partial methods are declared just like abstract methods: by pro-
viding the signature without any implementation but using the partial modifier. Sim-
ilarly, the actual implementations just have the partial modifier but are otherwise
like normal methods.

 Calling the parameterless constructor of PartialMethodDemo would result in “Gen-
erated constructor” and then “Manual code” being printed out. Examining the IL for
the constructor, you wouldn’t see a call to OnConstructorStart because it no longer
exists—there’s no trace of it anywhere in the compiled type.

 Because the method may not exist, partial methods must have a return type of
void and can’t take out parameters. They have to be private, but they can be static
and/or generic. If the method isn’t implemented in one of the files, the whole state-
ment calling it is removed, including any argument evaluations. If evaluating any of the
arguments has a side effect that you want to occur whether or not the partial method
is implemented, you should perform the evaluation separately. For instance, suppose
you have the following code:

LogEntity(LoadAndCache(id));

Here LogEntity is a partial method, and LoadAndCache loads an entity from the data-
base and inserts it into the cache. You might want to use this instead:

MyEntity entity = LoadAndCache(id);
LogEntity(entity);

That way, the entity is loaded and cached regardless of whether an implementation
has been provided for LogEntity. Of course, if the entity can be loaded equally
cheaply later on, and may not even be required, you should leave the statement in the
first form and avoid an unnecessary load in some cases.

 To be honest, unless you’re writing your own code generators, you’re more likely
to be implementing partial methods than declaring and calling them. If you’re only
implementing them, you don’t need to worry about the argument evaluation side of
things.

 In summary, partial methods in C# 3 allow generated code to interact with hand-
written code in a rich manner without any performance penalties for situations where
the interaction is unnecessary. This is a natural continuation of the C# 2 partial types
feature, which enables a much more productive relationship between code generators
and developers.

 Our next feature is entirely different, and is just a way of telling the compiler more
about the intended nature of a type so that it can perform more checking on both the
type itself and any code using it.

7.2 Static classes
Our second new feature is in some ways completely unnecessary—it just makes things
tidier and more elegant when you write utility classes.
Licensed to Devon Greenway <devon.greenway@gmail.com>

187Static classes
 Everyone has utility classes. I haven’t seen a significant project in either Java or C#
that didn’t have at least one class consisting solely of static methods. The classic exam-
ple appearing in developer code is a type with string helper methods, doing anything
from escaping, reversing, smart replacing—you name it. An example from the Frame-
work is the System.Math class. The key features of a utility class are as follows:

 All members are static (except a private constructor).
 The class derives directly from object.
 Typically there’s no state at all, unless some caching or a singleton is involved.
 There are no visible constructors.
 The class is sealed if the developer remembers to do so.

The last two points are optional, and if there are no visible constructors (including
protected ones) then the class is effectively sealed anyway. Both of them help make the
purpose of the class more obvious, though.

 The following listing gives an example of a C# 1 utility class—then we’ll see how
C# 2 improves matters.

public sealed class NonStaticStringHelper
{

private NonStaticStringHelper()
{
}

public static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
}

The class is sealed B so that no one tries to derive from it. Inheritance is supposed to
be about specialization, and there’s nothing to specialize here, as all the members are
static D except the private constructor C. That constructor may seem odd at first
sight—why have it at all if it’s private and never going to be used? The reason is
because if you don’t supply any constructors for a class, the C# 1 compiler will always
provide a default constructor that’s public and parameterless. In this case, we don’t want
any visible constructors, so we have to provide a private one.

 This pattern works reasonably well, but C# 2 makes it explicit and actively prevents
the type from being misused. First we’ll see what changes are needed to turn listing 7.3
into a proper static class as defined in C# 2. As you can see from listing 7.4, little action
is required.

Listing 7.3 A typical C# 1 utility class

Seals class to
prevent derivationB

Prevents instantiation
from other codeC

All methods are staticD
Licensed to Devon Greenway <devon.greenway@gmail.com>

188 CHAPTER 7 Concluding C# 2: the final features

using System;

public static class StringHelper
{

public static string Reverse(string input)
{

char[] chars = input.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
}

We’ve used the static modifier in the class declaration this time instead of sealed,
and we haven’t included a constructor at all—those are the only code differences. The
C# 2 compiler knows that a static class shouldn’t have any constructors, so it doesn’t
provide a default one. In fact, the compiler enforces a number of constraints on the
class definition:

 It can’t be declared as abstract or sealed, although it’s implicitly both.
 It can’t specify any implemented interfaces.
 It can’t specify a base type.
 It can’t include any nonstatic members, including constructors.
 It can’t include any operators.
 It can’t include any protected or protected internal members.

It’s worth noting that although all the members must be static, you have to explicitly
make them static. Although nested types are implicitly static members of the enclos-
ing class, the nested type itself can be a nonstatic type if that’s required.

 The compiler doesn’t just put constraints on the definition of static classes—it also
guards against their misuse. As it knows that there can never be any instances of the
class, it prevents any use that would require one. For instance, all of the following are
invalid when StringHelper is a static class:

StringHelper variable = null;
StringHelper[] array = null;
public void Method1(StringHelper x) {}
public StringHelper Method1() { return null; }
List<StringHelper> x = new List<StringHelper>();

None of these is prevented if the class just follows the C# 1 pattern—but all of them
are essentially useless. In short, static classes in C# 2 don’t allow you to do anything
you couldn’t do before—but they prevent you from doing things that you shouldn’t
have been doing anyway. They also explicitly state your intentions. By making a class
static, you’re saying that you definitely don't want any instances to be created—it’s just
not a quirk of the implementation; it’s a design choice.

 The next feature on our list has a more positive feel. It’s aimed at a specific—
although widely encountered—situation, and allows a solution that’s neither ugly nor
breaks encapsulation, which was the choice available in C# 1.

Listing 7.4 The same utility class as in listing 7.3 but converted into a C# 2 static class
Licensed to Devon Greenway <devon.greenway@gmail.com>

189Separate getter/setter property access
7.3 Separate getter/setter property access
I’ll admit to being bemused when I first saw that C# 1 didn’t allow you to have a public
getter and a private setter for properties. This isn’t the only combination of access
modifiers that’s prohibited by C# 1, but it’s the most commonly desired one. In fact, in
C# 1 both the getter and the setter need to have the same accessibility—it’s declared
as part of the property declaration rather than as part of the getter or setter.

 There are perfectly good reasons to want different accessibility for the getter and
the setter—often you may want some validation, logging, locking, or other code to be
executed when changing a variable that backs the property but you don’t want to
make the property writable to code outside the class. In C# 1 the alternatives were
either to break encapsulation by making the property publicly writable against your
better judgment or to write a SetXXX() method in the class to do the setting, which
frankly looks ugly when you’re used to real properties.

 C# 2 fixes the problem by allowing either the getter or the setter to explicitly have
more restrictive access than that declared for the property itself. This is most easily
seen with an example:

string name;

public string Name
{

get { return name; }
private set
{

// Validation, logging etc here
name = value;

}
}

In this case, the Name property is effectively read-only to all other types,2 but we can
use the familiar property syntax for setting the property within the type itself. The
same syntax is also available for indexers as well as properties. You could make the set-
ter more public than the getter (a protected getter and a public setter, for example)
but that’s a pretty rare situation, in the same way that write-only properties are few and
far between compared with read-only properties.

TRIVIA: THE ONLY PLACE WHERE “PRIVATE” IS REQUIRED Everywhere else in C#,
the default access modifier in any given situation is the most private one possi-
ble. For example, if something can be declared to be private, it will default to
private if you don't specify any access modifiers. This is a nice element of lan-
guage design, because it’s hard to get it wrong accidentally: if you want some-
thing to be more public than it is, you’ll notice when you try to use it. But if
you accidentally make something too public, then the compiler can’t help you
to spot the problem. Specifying the access of a property getter or setter is the
one exception to this rule—if you don’t specify anything, the default is to give
the getter/setter the same access as the overall property itself.

2 Except nested types, which always have access to private members of their enclosing types.
Licensed to Devon Greenway <devon.greenway@gmail.com>

190 CHAPTER 7 Concluding C# 2: the final features
Note that you can’t declare the property itself to be private and make the getter pub-
lic—you can only make a particular getter/setter more private than the property. Also,
you can’t specify an access modifier for both the getter and the setter—that would be
silly, as you could declare the property itself to be whichever is the more public of the
two modifiers.

 This aid to encapsulation is extremely welcome. There’s still nothing in C# 2 to
stop other code in the same class from bypassing the property and going directly to
whatever fields are backing it, unfortunately. As we’ll see in the next chapter, C# 3
fixes this in one particular case, but not in general.

 We move from a feature you may want to use regularly to one that you’ll want to
avoid most of the time—it allows your code to be absolutely explicit in terms of which
types it’s referring to, but at a significant cost to readability.

7.4 Namespace aliases
Namespaces are primarily intended as a means of organizing types into a useful hier-
archy. They also allow you to keep fully qualified names of types distinct even when the
unqualified names may be the same. This shouldn’t be seen as an invitation to reuse
unqualified type names without good cause—but there are times when it’s the natural
thing to do.

 An example of this is the unqualified name Button. There are two classes with that
name in the .NET 2.0 Framework: System.Windows.Forms.Button and System.Web.
UI.WebControls.Button. Although they’re both called Button, it’s easy to tell them
apart by their namespaces. This mirrors real life closely—you may know several peo-
ple called Jon, but you’re unlikely to know anyone else called Jon Skeet. If you’re talk-
ing with friends in a particular context, you may be able to use just the name Jon
without specifying which one you’re talking about—but in other contexts you may
need to provide more exact information.

 The using directive of C# 1 (not to be confused with the using statement that calls
Dispose automatically) was available in two flavors—one created an alias for a
namespace or type (for example, using Out = System.Console;) and the other just
introduced a namespace into the list of contexts the compiler would search when
looking for a type (for example, using System.IO;). By and large, this was adequate,
but there are a few situations that the language couldn’t cope with. In some other
cases, automatically generated code would have to go out of its way to make absolutely
sure that the right namespaces and types were being used whatever happened.

 C# 2 fixes these problems, bringing additional expressiveness to the language. You
can now write code that’s guaranteed to mean what you want it to regardless of which
other types, assemblies, and namespaces are introduced. These extreme measures are
rarely needed outside automatically generated code, but it’s nice to know that they’re
there when you need them. In C# 2 there are three types of aliases: the namespace
aliases of C# 1, the global namespace alias, and extern aliases. We’ll start off with the one
type of alias that was already present in C# 1, but we’ll introduce a new way of using
aliases to ensure that the compiler knows to treat it as an alias rather than checking to
see whether it’s the name of another namespace or type.
Licensed to Devon Greenway <devon.greenway@gmail.com>

191Namespace aliases
7.4.1 Qualifying namespace aliases

Even in C# 1, it was a good idea to avoid namespace aliases wherever possible. Every so
often you might find that one type name clashed with another—as with our Button
example earlier—and so you either had to specify the full name including the
namespace every time you used them, or have an alias that distinguished the two, in
some ways acting like a shortened form of the namespace. The following listing shows
an example where the two types of Button are used, qualified by an alias.

using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class Test
{

static void Main()
{

Console.WriteLine(typeof(WinForms.Button));
Console.WriteLine(typeof(WebForms.Button));

}
}

Listing 7.5 compiles without any errors or warnings, although it’s still not as pleasant
as it would be if we only needed to deal with one kind of Button to start with. There’s
a problem, though—what if someone were to introduce a type or namespace called
WinForms or WebForms? The compiler wouldn’t know what WinForms.Button meant,
and would use the type or namespace in preference to the alias. We want to be able to
tell the compiler that we need it to treat WinForms as an alias, even though it’s avail-
able elsewhere. C# 2 introduces the :: namespace alias qualifier syntax to do this, as
shown in the following listing.

using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class WinForms {}

class Test
{

static void Main()
{

Console.WriteLine(typeof(WinForms::Button));
Console.WriteLine(typeof(WebForms::Button));

}
}

Instead of WinForms.Button, listing 7.6 uses WinForms::Button, and the compiler is
happy. If you change the :: back to . you’ll get a compilation error. So, if you use ::
everywhere you use an alias, you’ll be fine, right? Well, not quite...

Listing 7.5 Using aliases to distinguish between different Button types

Listing 7.6 Using :: to tell the compiler to use aliases
Licensed to Devon Greenway <devon.greenway@gmail.com>

192 CHAPTER 7 Concluding C# 2: the final features
7.4.2 The global namespace alias

There’s one part of the namespace hierarchy that you can’t define your own alias for:
the root of it, or the global namespace. Suppose you have two classes, both named
Configuration; one within a namespace of MyCompany and the other with no
namespace specified at all. How can you refer to the root Configuration class from
within the MyCompany namespace? You can’t use a normal alias, and if you just specify
Configuration the compiler will use MyCompany.Configuration.

 In C# 1, there was no way of getting around this. Again, C# 2 comes to the rescue,
allowing you to use global::Configuration to tell the compiler exactly what you
want. The following listing demonstrates both the problem and the solution.

using System;

class Configuration {}

namespace Chapter7
{

class Configuration {}

class Test
{

static void Main()
{

Console.WriteLine(typeof(Configuration));
Console.WriteLine(typeof(global::Configuration));
Console.WriteLine(typeof(global::Chapter7.Test));

}
}

}

Most of listing 7.7 is just setting up the situation—the three lines within Main are the
interesting ones. The first line prints “Chapter7.Configuration” as the compiler
resolves Configuration to that type before moving out to the namespace root. The
second line indicates that the type has to be in the global namespace, and so simply
prints “Configuration.” I included the third line to demonstrate that using the global
alias, you can still refer to types within namespaces, but you have to specify the fully
qualified name.

 At this point we can get to any uniquely named type, using the global namespace
alias if necessary—and if you ever write a code generator where the code doesn’t need
to be readable, you may wish to use this feature liberally to make sure that you always
refer to the correct type whatever other types are present by the time the code is com-
piled. What do we do if the type’s name isn’t unique even when we include its
namespace? The plot thickens...

7.4.3 Extern aliases

At the start of this section, I referred to human names as examples of namespaces and
contexts. I specifically said that you’re unlikely to know more than one person called

Listing 7.7 Use of the global namespace alias to specify the desired type exactly
Licensed to Devon Greenway <devon.greenway@gmail.com>

193Namespace aliases
Jon Skeet. But I know that there is more than one person with my name, and it’s not
beyond the realm of possibility that you might know two or more of us. In this case, in
order to specify which one you mean, you have to provide some more information
beyond just the full name—the reason you know the particular person, or the country
he lives in, or something similarly distinctive.

 C# 2 lets you specify that extra information in the form of an extern alias—a name
that exists not only in your source code, but also in the parameters you pass to the
compiler. For the Microsoft C# compiler, this means specifying the assembly that con-
tains the types in question. Let’s suppose that two assemblies—First.dll and
Second.dll—both contain a type called Demo.Example. We can’t just use the fully
qualified name to distinguish them, as they both have the same fully qualified name.
Instead, we can use extern aliases to specify which we mean. The following listing
shows an example of the C# code involved, along with the command line needed to
compile it.

// Compile with
// csc Test.cs /r:FirstAlias=First.dll /r:SecondAlias=Second.dll

extern alias FirstAlias;
extern alias SecondAlias;

using System;
using FD = FirstAlias::Demo;

class Test
{

static void Main()
{

Console.WriteLine(typeof(FD.Example));
Console.WriteLine(typeof(SecondAlias::Demo.Example));

}
}

The code in listing 7.8 is straightforward. The first thing we have to do is introduce
the two extern aliases B. After that we can use them either via namespace aliases (C
and D) or directly E. In fact, a normal using directive without an alias (such as
using FirstAlias::Demo;) would’ve allowed us to use the name Example without any
further qualification at all. One extern alias can cover multiple assemblies, and several
extern aliases can all refer to the same assembly—although I’d think carefully before
using either of these features, and particularly before combining them together. To
specify an external alias in Visual Studio, just select the assembly reference within
Solution Explorer and modify the Aliases value in the Properties window, as shown in
figure 7.3.

 Hopefully I don’t need to persuade you to avoid this kind of situation wherever you
can. It can be necessary to work with assemblies from different third parties who hap-
pen to have used the same fully qualified type name, at which point you’d otherwise be

Listing 7.8 Working with different types of the same type in different assemblies

Specifies two
extern aliasesB

Refers to extern alias
with namespace aliasC

Uses
namespace alias

D

Uses extern alias directly E
Licensed to Devon Greenway <devon.greenway@gmail.com>

194 CHAPTER 7 Concluding C# 2: the final features
stuck. Where you have more control over the nam-
ing, make sure that your names never lead you
into this territory in the first place.

 Our next feature is almost a meta-feature. The
exact functionality it provides depends on which
compiler you’re using, because its purpose is to
enable control over compiler-specific features—
but we’ll concentrate on the Microsoft compiler.

7.5 Pragma directives
Describing pragma directives in general is
extremely easy: a pragma directive is a preprocess-
ing directive represented by a line beginning with #pragma. The rest of the line can
contain any text at all. The result of a pragma directive can’t change the behavior of
the program to contravene anything within the C# language specification, but it can
do anything outside the scope of the specification. If the compiler doesn’t understand
a particular pragma directive, it can issue a warning, but not an error.

 That’s basically everything the specification has to say on the subject. The Micro-
soft C# compiler understands two pragma directives: warnings and checksums.

7.5.1 Warning pragmas

Occasionally, the C# compiler issues warnings that are justifiable but annoying. The
correct response to a compiler warning is almost always to fix it—the code is rarely
made worse by fixing the warning, and usually it’s improved.

 But sometimes there’s a good reason to ignore a warning—and that’s what warn-
ing pragmas are available for. As an example, we’ll create a private field that’s never
read from or written to. It’s almost always going to be useless... unless we happen to
know that it’ll be used by reflection. The following listing is a complete class demon-
strating this.

public class FieldUsedOnlyByReflection
{

int x;
}

If you try to compile listing 7.9, you’ll get a warning message like this:

FieldUsedOnlyByReflection.cs(3,9): warning CS0169:
The private field 'FieldUsedOnlyByReflection.x' is never used

That’s the output from the command line compiler. In the Error List window of Visual
Studio, you can see the same information (plus the project it’s in) except that you don’t
get the warning number (CS0169). To find the number, you need to either select the
warning and bring up the help related to it, or look in the Output window, where the

Listing 7.9 Class containing an unused field

Figure 7.3 Part of the Properties
window of Visual Studio 2010, showing
an extern alias of FirstAlias for the
First.dll reference
Licensed to Devon Greenway <devon.greenway@gmail.com>

195Pragma directives
full text is shown. We need the number in order to make the code compile without
warnings, as shown in the following listing.

public class FieldUsedOnlyByReflection
{
#pragma warning disable 0169

int x;
#pragma warning restore 0169
}

Listing 7.10 is self-explanatory—the first pragma disables the particular warning we’re
interested in, and the second one restores it. It’s good practice to disable warnings for
as short a space as you can, so that you don’t miss any warnings you genuinely ought to
fix. If you want to disable or restore multiple warnings in a single line, just use a
comma-separated list of warning numbers. If you don’t specify any warning numbers
at all, the result is to disable or restore all warnings in one fell swoop—but that’s a bad
idea in almost every imaginable scenario.

7.5.2 Checksum pragmas

You’re unlikely to need the second form of pragma recognized by the Microsoft com-
piler. It supports the debugger by allowing it to check that it’s found the right source
file. Normally when a C# file is compiled, the compiler generates a checksum from
the file and includes it in the debugging information. When the debugger needs to
locate a source file and finds multiple potential matches, it can generate the check-
sum itself for each of the candidate files and see which is correct.

 Now, when an ASP.NET page is converted into C#, the generated file is what the C#
compiler sees. The generator calculates the checksum of the .aspx page, and uses a
checksum pragma to tell the C# compiler to use that checksum instead of calculating
one from the generated page.

 The syntax of the checksum pragma is

#pragma checksum "filename" "{guid}" "checksum bytes"

The GUID indicates which hashing algorithm has been used to calculate the check-
sum. The documentation for the CodeChecksumPragma class gives GUIDs for SHA-1 and
MD5, should you ever wish to implement your own dynamic compilation framework
with debugger support.

 It’s possible that future versions of the C# compiler will include more pragma
directives, and other compilers (such as the Mono compiler, gmcs) could have their
own support for different features. Consult your compiler documentation for the
most up-to-date information.

 The next feature is another one that you may never use—but if you ever do, it’s
likely to make your life somewhat simpler.

Listing 7.10 Disabling (and restoring) warning CS0169
Licensed to Devon Greenway <devon.greenway@gmail.com>

196 CHAPTER 7 Concluding C# 2: the final features
7.6 Fixed-size buffers in unsafe code
When calling into native code with P/Invoke, it’s not unusual to find yourself dealing
with a structure that’s defined to have a buffer of a particular length within it. Prior to
C# 2, such structures were difficult to handle directly, even with unsafe code. Now, you
can declare a buffer of the right size to be embedded directly with the rest of the data
for the structure.

 This capability isn’t just available for calling native code, although that’s its primary
use. You could use it to easily populate a data structure directly corresponding to a file
format, for instance. The syntax is simple, and once again we’ll demonstrate it with an
example. To create a field that embeds an array of 20 bytes within its enclosing struc-
ture, you’d use

fixed byte data[20];

This would allow data to be used as if it were a byte* (a pointer to byte data),
although the implementation used by the C# compiler is to create a new nested type
within the declaring type and apply the new FixedBuffer attribute to the variable
itself. The CLR then takes care of allocating the memory appropriately.

 One downside of this feature is that it’s only available within unsafe code: the
enclosing structure has to be declared in an unsafe context, and you can only use
the fixed-size buffer member within an unsafe context. This limits the situations in
which it’s useful, but it can still be a nice trick to have up your sleeve. Also, fixed-size
buffers are only applicable to primitive types, and can’t be members of classes (only
structures).

 There are remarkably few Windows APIs where this feature is directly useful.
Numerous situations call for a fixed array of characters—the TIME_ZONE_INFORMATION
structure, for example—but unfortunately fixed-size buffers of characters appear to
be handled poorly by P/Invoke, with the marshaler getting in the way.

 As one example, though, listing 7.11 is a console application that displays the col-
ors available in the current console window. It uses an API function, GetConsole-
ScreenBufferEx, that was introduced in Windows Vista and Windows Server 2008,
and that retrieves extended console information. The following listing displays all 16
colors in hexadecimal format (bbggrr).

using System;
using System.Runtime.InteropServices;

struct COORD
{

public short X, Y;
}

struct SMALL_RECT
{

public short Left, Top, Right, Bottom;
}

Listing 7.11 Demonstration of fixed-size buffers to obtain console color information
Licensed to Devon Greenway <devon.greenway@gmail.com>

197Fixed-size buffers in unsafe code
unsafe struct CONSOLE_SCREEN_BUFFER_INFOEX
{

public int StructureSize;
public COORD ConsoleSize, CursorPosition;
public short Attributes;
public SMALL_RECT DisplayWindow;
public COORD MaximumWindowSize;
public short PopupAttributes;
public int FullScreenSupported;
public fixed int ColorTable[16];

}

static class FixedSizeBufferDemo
{

const int StdOutputHandle = -11;

[DllImport("kernel32.dll")]
static extern IntPtr GetStdHandle(int nStdHandle);

[DllImport("kernel32.dll")]
static extern bool GetConsoleScreenBufferInfoEx

(IntPtr handle, ref CONSOLE_SCREEN_BUFFER_INFOEX info);

unsafe static void Main()
{

IntPtr handle = GetStdHandle(StdOutputHandle);
CONSOLE_SCREEN_BUFFER_INFOEX info;
info = new CONSOLE_SCREEN_BUFFER_INFOEX();
info.StructureSize = sizeof(CONSOLE_SCREEN_BUFFER_INFOEX);
GetConsoleScreenBufferInfoEx(handle, ref info);

for (int i=0; i < 16; i++)
{

Console.WriteLine ("{0:x6}", info.ColorTable[i]);
}

}
}

Listing 7.11 uses fixed-size buffers for the table of colors. Before fixed-size buffers, we
could still have used the API either with a field for each color table entry or by mar-
shalling a normal array as UnmanagedType.ByValArray. But this would’ve created a
separate array on the heap instead of keeping the information all within the structure.
That’s not a problem here, but in some high-performance situations it’s nice to be
able to keep lumps of data together. On a different performance note, if the buffer is
part of a data structure on the managed heap, you have to pin it before accessing it. If
you do this a lot, it can significantly affect the garbage collector. Stack-based structures
don’t have this problem, of course.

 I’m not going to claim that fixed-size buffers are a hugely important feature in
C# 2—at least, they’re not important to most people. I’ve included them for com-
pleteness—doubtless someone, somewhere, will find them invaluable. Our final fea-
ture can barely be called a C# 2 language feature at all—but it just about counts, so I’ve
included it for completeness.
Licensed to Devon Greenway <devon.greenway@gmail.com>

198 CHAPTER 7 Concluding C# 2: the final features
7.7 Exposing internal members to selected assemblies
Some features are obviously in the language—iterator blocks, for example. Some fea-
tures obviously belong to the runtime, such as JIT compiler optimizations. Some
clearly sit in both camps, such as generics. This last feature has a toe in each but is suf-
ficiently odd that it doesn’t merit a mention in either specification. In addition, it uses
a term that has different meanings in C++ and VB.NET—adding a third meaning to
the mix. To be fair, all the terms are used in the context of access permissions, but
they have different effects.

7.7.1 Friend assemblies in the simple case

In .NET 1.1 it was entirely accurate to say that something defined to be internal
(whether a type, a method, a property, a variable, or an event) could only be accessed
within the same assembly in which it was declared.3 In .NET 2.0 that’s still mostly true,
but there’s a new attribute to let you bend the rules slightly: InternalsVisibleTo-
Attribute, usually referred to as just InternalsVisibleTo. (When applying an attri-
bute whose name ends with Attribute, the C# compiler will apply the suffix
automatically.)

 InternalsVisibleTo can only be applied to an assembly (not a specific member),
and you can apply it multiple times to the same assembly. We’ll call the assembly con-
taining the attribute the source assembly, although this is unofficial terminology. When
you apply the attribute, you have to specify another assembly, known as the friend
assembly. The result is that the friend assembly can see all the internal members of the
source assembly as if they were public. This may sound alarming, but it can be useful,
as we’ll see in a minute.

 The following listing shows this with three classes in three different assemblies.

// Compiled to Source.dll
using System.Runtime.CompilerServices;
[assembly:InternalsVisibleTo("FriendAssembly")]
public class Source
{

internal static void InternalMethod() {}

public static void PublicMethod() {}
}

// Compiled to FriendAssembly.dll
public class Friend
{

static void Main()
{

Source.InternalMethod();
Source.PublicMethod();

}
}

3 Using reflection when running with suitable permissions doesn’t count.

Listing 7.12 Demonstration of friend assemblies

Grants additional access

Uses additional access
within FriendAssembly
Licensed to Devon Greenway <devon.greenway@gmail.com>

199Exposing internal members to selected assemblies
// Compiled to EnemyAssembly.dll
public class Enemy
{

static void Main()
{

// Source.InternalMethod();
Source.PublicMethod();

}
}

In listing 7.12 a special relationship exists between FriendAssembly.dll and
Source.dll—although it only operates one way: Source.dll has no access to internal
members of FriendAssembly.dll. If we were to uncomment the line at B, the Enemy
class would fail to compile.

 So, why on earth would we want to open up our well-designed assembly to certain
assemblies to start with?

7.7.2 Why use InternalsVisibleTo?

I can’t say I’ve ever used InternalsVisibleTo between two production assemblies.
I’m not saying there aren’t legitimate use cases for that, but I’ve not come across
them. I have used the attribute when it comes to unit testing.

 Some say you should only test the public interface to code. Personally I’m happy to
test whatever I can in the simplest manner possible. Friend assemblies make that a lot
easier: suddenly it’s trivial to test code that only has internal access without taking the
dubious step of making members public just for the sake of testing, or including the
test code within the production assembly. (It does occasionally mean making mem-
bers internal for the sake of testing where they might otherwise be private, but that’s
less worrying.)

 The only downside to this is that the name of your test assembly lives on in your
production assembly. In theory this could represent a security attack vector if your
assemblies aren’t signed, and if your code normally operates under a restricted set of
permissions. (Anyone with full trust could use reflection to access the members in the
first place. You could do that yourself for unit tests, but it’s much nastier.) If this ever
ends up as a genuine issue for anyone, I’ll be very surprised. But it does bring the
option of signing assemblies into the picture. Just when you thought this was a nice,
simple little feature...

7.7.3 InternalsVisibleTo and signed assemblies

If a friend assembly is signed, the source assembly needs to specify the public key of
the friend assembly, to make sure it’s trusting the right code. You need the full public
key, not just the public key token. For instance, consider the following command line
and output (rewrapped and modified slightly for formatting) used to discover the
public key of a signed FriendAssembly.dll:

c:\Users\Jon\Test>sn -Tp FriendAssembly.dll
Microsoft (R) .NET Framework Strong Name Utility Version 3.5.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.

EnemyAssembly has
no special access

B

Access public
method as normal
Licensed to Devon Greenway <devon.greenway@gmail.com>

200 CHAPTER 7 Concluding C# 2: the final features
Public key is
0024000004800000940000000602000000240000525341310004000001
000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe
563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981
e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc
0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef
d4b5306efd0dec7787ec6b664471c2

Public key token is 647b99330b7f792c

The source code for the Source class would now need to have this as the attribute:

[assembly:InternalsVisibleTo("FriendAssembly,PublicKey=" +
"0024000004800000940000000602000000240000525341310004000001" +
"000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe" +
"563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981" +
"e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc" +
"0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef" +
"d4b5306efd0dec7787ec6b664471c2")]

Unfortunately, you need to either have the public key on one line or use string concat-
enation—whitespace in the public key will cause a compilation failure. It’d be a lot
more pleasant to look at if we could specify the token instead of the whole key, but for-
tunately this ugliness is usually confined to AssemblyInfo.cs, so you won’t need to see
it often.

 In theory, it’s possible to have an unsigned source assembly and a signed friend
assembly. In practice, that’s not terribly useful, as the friend assembly typically wants to
have a reference to the source assembly—and you can’t refer to an unsigned assembly
from one that’s signed! Likewise a signed assembly can’t specify an unsigned friend
assembly, so typically you end up with both assemblies being signed if either one of
them is.

7.8 Summary
This completes our tour of the new features in C# 2. The topics we’ve looked at in this
chapter have broadly fallen into two categories: “nice to have” improvements that
streamline development, and “hope you don’t need it” features that can get you out of
tricky situations when you need them. To make an analogy between C# 2 and improve-
ments to a house, the major features from our earlier chapters are comparable to full-
scale additions. Some of the features we’ve seen in this chapter (such as partial types
and static classes) are more like redecorating a bedroom, and features such as
namespace aliases are akin to fitting smoke alarms—you may never see a benefit, but
it’s nice to know they’re there if you ever need them.

 The range of features in C# 2 is broad—the designers tackled many of the areas
where developers were feeling pain, without any one overarching goal. That’s not to
say the features don’t work well together—nullable value types wouldn’t be feasible
without generics, for instance—but there’s no one aim that every feature contributes
to, unless you count general productivity.

 Now that we’ve finished examining C# 2, it’s time to move on to C# 3, where the
picture is very different. Nearly every feature in C# 3 forms part of the grand picture
of LINQ, a conglomeration of technologies that massively simplifies many tasks.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 3

C# 3: revolutionizing
how we code

There’s no doubt that C# 2 is a significant improvement over C# 1. The ben-
efits of generics in particular are fundamental to other changes, not just in C# 2
but also in C# 3. But C# 2 is in some sense a piecemeal collection of features.
Don’t get me wrong: they fit together nicely enough, but they address a set of
individual issues. That was appropriate at that stage of C#’s development, but
C# 3 is different.

 Almost every feature in C# 3 enables one specific technology: LINQ. Many of
the features are useful outside this context, and you certainly shouldn’t confine
yourself to only using them when you happen to be writing a query expression,
for example—but it’d be equally silly not to recognize the complete picture cre-
ated by the set of jigsaw puzzle pieces presented in the remaining chapters.

 When I originally wrote about C# 3 and LINQ in 2007, I was highly impressed
on a somewhat academic level. The more deeply you study the language, the
more clearly you see the harmony between the various elements that have been
introduced. The elegance of query expressions—and in particular the ability to
use the same syntax for both in-process queries and providers like LINQ to
SQL—was very appealing. LINQ had a great deal of promise.

 Now, two and a half years later, I can look back on the promises and see how
they’ve played out. In my experience with the community—particularly on Stack
Overflow—it’s obvious that LINQ has been widely adopted and really has
changed how we approach many data-oriented tasks. Database providers aren’t
Licensed to Devon Greenway <devon.greenway@gmail.com>

just restricted to those from Microsoft—LINQ to NHibernate and SubSonic are just
two of the other options available. Microsoft hasn’t stopped innovating around LINQ
either: in chapter 12 we’ll see Parallel LINQ and Reactive Extensions, two very differ-
ent ways of handling data that still use the familiar LINQ operators. And then there’s
LINQ to Objects—the simplest, most predictable, almost mundane LINQ provider—
and the one that’s most pervasive in industry. The days of writing yet another filtering
loop, yet another piece of code to find some maximum value, yet another check to see
whether any items in a collection satisfy some condition have gone—and good rid-
dance.

 Despite the broad adoption of LINQ, I still see a number of questions which
make it clear that some developers regard LINQ as a sort of magic black box. What’s
going to happen when I use a query expression, compared with using extension
methods directly? When does the data actually get read? How can I make it work
more efficiently? Though you can learn a lot of LINQ just by playing with it and look-
ing at examples in blog posts, you’ll get a great deal more out of it by seeing how it
all works at a language level, and then learning about what the various libraries do
for you.

 This is not a book about LINQ—I’m still concentrating on the language features
that enable LINQ rather than going into details of concurrency considerations for the
Entity Framework and so on. But once you’ve seen the language elements individually
and how they fit together, you’ll be in a much better position to learn the details of
specific providers.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Cutting fluff
with a smart compiler
We start looking at C# 3 in the same way that we finished looking at C# 2—with a
collection of relatively simple features. These are just the first small steps on the
path to LINQ. Each of them can be used outside that context, but almost all are
important for simplifying code to the extent that LINQ requires in order to be
effective.

 One important point to note is that though two of the biggest features of C# 2—
generics and nullable types—required CLR changes, there were no significant
changes to the CLR that shipped with .NET 3.5. There were some tweaks, but noth-
ing fundamental. The framework grew to support LINQ, along with introducing a
few more features to the base class library, but that’s a different matter. It’s worth

This chapter covers
 Automatically implemented properties

 Implicitly typed local variables

 Object and collection initializers

 Implicitly typed arrays

 Anonymous types
203

Licensed to Devon Greenway <devon.greenway@gmail.com>

204 CHAPTER 8 Cutting fluff with a smart compiler
being clear in your mind which changes are only in the C# language, which are library
changes, and which are CLR changes.

 This means that almost all of the new features exposed in C# 3 are due to the
compiler being willing to do more work for you. We saw some evidence of this in
part 2—particularly with anonymous methods and iterator blocks—and C# 3 contin-
ues in the same vein. In this chapter, we’ll meet the following features that are new
to C# 3:

 Automatically implemented properties—Remove the drudgery of writing simple
properties backed directly by fields

 Implicitly typed local variables—Reduce redundancy from local variable declara-
tions by inferring the variable type from the initial value

 Object and collection initializers—Simplify the creation and initialization of objects
in single expressions

 Implicitly typed arrays—Reduce redundancy from array creation expressions by
inferring the array type from the contents

 Anonymous types—Enable the creation of ad hoc types to contain simple properties

In addition to describing what the new features do, I’ll make recommendations
about their use. Many of the features of C# 3 require a certain amount of discretion
and restraint on the part of the developer. That’s not to say they’re not powerful and
incredibly useful—quite the opposite—but the temptation to use the latest and
greatest funky syntax shouldn’t be allowed to overrule the drive toward clear and
readable code.

 The considerations I’ll discuss in this chapter (and the rest of the book) will rarely
be black and white. Perhaps more than ever before, readability is in the eye of the
beholder—and as you become more comfortable with the new features, they’re likely
to become more readable to you. I should stress, though, that unless you have good
reason to suppose you’ll be the only one to ever read your code, you should consider
the needs and views of your colleagues carefully.

 Enough navel gazing for the moment. We’ll start off with a feature that shouldn’t
cause any controversy. Simple but effective, automatically implemented properties just
make life better.

8.1 Automatically implemented properties
Our first feature is probably the simplest in the whole of C# 3. It’s even simpler than
any of the new features in C# 2. Despite that—or possibly because of that—it’s also
immediately applicable in many, many situations. When you read about iterator blocks
in chapter 6, you may not immediately have thought of any areas of your current code-
base that could be improved by using them, but I’d be surprised to find any nontrivial
C# program that couldn’t be modified to use automatically implemented properties.
This fabulously simple feature allows you to express trivial properties with less code
than before.
Licensed to Devon Greenway <devon.greenway@gmail.com>

205Automatically implemented properties
What do I mean by a trivial property ? I mean one that’s read/write and that stores its
value in a straightforward private variable without any validation or other custom
code. Trivial properties only take a few lines of code, but it’s still a lot when you con-
sider that you’re only expressing a very simple concept. C# 3 reduces the verbosity by
applying a simple compile-time transformation, as shown in figure 8.1.

 The code at the bottom isn’t quite valid C#, of course. The field has an unspeakable
name to prevent naming collisions, in the same way as we’ve seen before for anony-
mous methods and iterator blocks. But that’s effectively the code that’s generated by
the automatically implemented property at the top.

 Where previously you might have been tempted to use a public variable for the sake
of simplicity, there’s now even less excuse for not using a property instead. This is par-
ticularly true for throwaway code—which we all know tends to live far longer than
anticipated.

TERMINOLOGY: AUTOMATIC OR AUTOMATICALLY IMPLEMENTED PROPERTY? When
automatically implemented properties were first discussed, long before the full
C# 3 specification was published, they were called automatic properties. Person-
ally, I find this less of a mouthful than the full name, and it’s more widely used
in the community. There’s no risk of ambiguity, so for the rest of this book I’ll
use automatic property and automatically implemented property synonymously.

The feature of C# 2 that allows you to specify different access for the getter and the
setter is still available here, and you can also create static automatic properties. But
static automatic properties are almost always pointless. Although most types don’t
claim to have thread-safe instance members, publicly visible static members usually
should be thread-safe, and the compiler doesn’t do anything to help you in this
respect. Listing 8.1 gives an example of a safe, but useless, static automatic property
that counts how many instances of a class have been created, along with instance prop-
erties for the name and age of a person.

public string Name { get; set; }

private string <Name>k__BackingField;
public string Name
{
 get { return <Name>k__BackingField; }
 set { <Name>k__BackingField = value; }
}

... is compiled as...

Figure 8.1 Transformation of an
automatically implemented property
Licensed to Devon Greenway <devon.greenway@gmail.com>

206 CHAPTER 8 Cutting fluff with a smart compiler

public class Person
{
 public string Name { get; private set; }
 public int Age { get; private set; }

 private static int InstanceCounter { get; set; }
 private static readonly object counterLock = new object();

 public InstanceCountingPerson(string name, int age)
 {
 Name = name;

 Age = age;

 lock (counterLock)
 {

 InstanceCounter++;
 }

 }
}

We’re using a lock to make sure we don’t have threading problems, and we’d also
need to use the same lock whenever we accessed the property. There are better alter-
natives here involving the Interlocked class, but they require access to fields. In
short, the only scenario in which I can see static automatic properties being useful is
where the getter is public, the setter is private, and the setter is only called within the
type initializer.

 The other properties in listing 8.1, representing the name and age of the person,
tell a much happier tale—using automatic properties is a no-brainer here. Where you
have properties that you’d have implemented trivially in previous versions of C#,
there’s no benefit in not using automatic properties.

 One slight wrinkle occurs if you use automatic properties when writing your own
structs: all of your constructors need to explicitly call the parameterless constructor—
this()—so that the compiler knows that all the fields have been definitely assigned.
You can’t set the fields directly because they’re anonymous, and you can’t use the
properties until all the fields have been set. The only way of proceeding is to call the
parameterless constructor, which will set the fields to their default values.

 That’s all there is to automatically implemented properties. There are no bells and
whistles to them—for instance, there’s no way of declaring them with initial default
values, and no way of making them genuinely read-only (a private setter is as close as
you can get). If all the C# 3 features were that simple, we could cover everything in a
single chapter. Of course, that’s not the case—but there are still some features that
don’t take too much explanation. Our next topic removes duplicate code in another
common but specific situation—declaring local variables.

Listing 8.1 Demonstration of the awkwardness of static automatic properties

Declares properties
with public getters

Declares private
static property
and lock

Uses lock for safe
property access
Licensed to Devon Greenway <devon.greenway@gmail.com>

207Implicit typing of local variables

I

8.2 Implicit typing of local variables
In chapter 2, I discussed the nature of the C# 1 type system. In particular, I stated that
it was static, explicit, and safe. That’s still true in C# 2, and in C# 3 it’s still almost com-
pletely true. The static and safe parts are still true (ignoring explicitly unsafe code, just
as we did in chapter 2) and most of the time it’s still explicitly typed—but you can ask
the compiler to infer the types of local variables for you.1

8.2.1 Using var to declare a local variable

In order to use implicit typing, all you need to do is replace the type part of a normal
local variable declaration with var. Certain restrictions exist (we’ll come to those in a
moment), but essentially it’s as easy as changing this:

MyType variableName = someInitialValue;

into this:

var variableName = someInitialValue;

The results of the two lines (in terms of compiled code) are exactly the same, assuming
that the type of someInitialValue is MyType. The compiler simply takes the compile-
time type of the initialization expression and makes the variable have that type too.
The type can be any normal .NET type, including generics, delegates, and interfaces.
The variable is still statically typed; you just haven’t written the name of the type in
your code.

 This is important to understand, as it goes to the heart of what a lot of developers
initially fear when they see this feature—that var makes C# dynamic or weakly typed.
That’s not true at all. The best way of explaining this is to show you some invalid code:

var stringVariable = "Hello, world.";
stringVariable = 0;

That doesn’t compile, because the type of stringVariable is System.String, and you
can’t assign the value 0 to a string variable. In many dynamic languages, the code
would have compiled, leaving the variable with no particularly useful type as far as the
compiler, IDE, or runtime environment is concerned. Using var is not like using a
VARIANT type from COM or VB6. The variable is statically typed; the type has just been
inferred by the compiler. I apologize if I seem to be laboring this point somewhat, but
it’s incredibly important, and has been the cause of a lot of confusion.

 In Visual Studio, you can tell the type that the compiler has used for the variable by
hovering over the var part of the declaration, as shown in figure 8.2. Note how the
type parameters for the generic Dictionary type are also explained.

 If this looks familiar, that’s because it’s exactly the same behavior you get when you
declare local variables explicitly.

1 C# 4 changes the game yet again, allowing you to use dynamic typing where you want to, as we’ll see in
chapter 14. One step at a time—C# was still fully statically typed up to and including version 3.

NVALID
Licensed to Devon Greenway <devon.greenway@gmail.com>

208 CHAPTER 8 Cutting fluff with a smart compiler
Tooltips aren’t just available at the point of declaration, either. As you’d probably
expect, the tooltip displayed when you hover over the variable name later on in the
code indicates the type of the variable too. This is shown in figure 8.3, where the same
declaration is used and then I’ve hovered over a use of the variable.

 Again, that’s exactly the same behavior as a normal local variable declaration. Now,
there are two reasons for bringing up Visual Studio in this context. The first is that it’s
more evidence of the static typing involved—the compiler clearly knows the type of the
variable. The second is to point out that you can easily discover the type involved, even
from deep within a method. This’ll be important when we talk about the pros and cons
of using implicit typing in a minute. First, though, I ought to mention some limitations.

8.2.2 Restrictions on implicit typing

You can’t use implicit typing for every variable in every situation. You can only use it
when

 The variable being declared is a local variable, rather than a static or instance
field.

 The variable is initialized as part of the declaration.
 The initialization expression isn’t a method group or anonymous function2

(without casting).
 The initialization expression isn’t null.
 Only one variable is declared in the statement.
 The type you want the variable to have is the compile-time type of the initializa-

tion expression.
 The initialization expression doesn’t involve the variable being declared.3

2 The term anonymous function covers both anonymous methods and lambda expressions, which we’ll delve into
in chapter 9.

3 It’d be highly unusual to do so anyway, but with normal declarations it’s possible if you try hard enough.

Figure 8.2 Hovering over var in
Visual Studio displays the type of the
declared variable.

Figure 8.3 Hovering over the use of an implicitly typed local variable displays its type.
Licensed to Devon Greenway <devon.greenway@gmail.com>

209Implicit typing of local variables

I

The third and fourth points are interesting. You can’t write this:

var starter = delegate() { Console.WriteLine(); }

This is because the compiler doesn’t know what type to use. You can write this:

var starter = (ThreadStart) delegate() { Console.WriteLine(); }

but if you’re going to do that you’d be better off explicitly declaring the variable in
the first place. The same is true in the null case—you could cast the null appropri-
ately, but there’d be no point. Note that you can use the result of method calls or
properties as the initialization expression—you’re not limited to constants and con-
structor calls. For instance, you could use

var args = Environment.GetCommandLineArgs();

In that case args would then be of type string[]. In fact, initializing a variable with
the result of a method call is likely to be the most common situation where implicit
typing is used, as part of LINQ. We’ll see all that later on—just bear it in mind as the
examples progress.

 It’s also worth noting that you are allowed to use implicit typing for the local vari-
ables declared in the first part of a using, for, or foreach statement. For example, the
following are all valid (with appropriate bodies, of course):

for (var i = 0; i < 10; i++)
using (var x = File.OpenText("test.dat"))
foreach (var s in Environment.GetCommandLineArgs())

The variables in question would end up with types of int, StreamReader, and string,
respectively. Of course, just because you can do this doesn’t mean you should. Let’s
look at the reasons for and against using implicit typing.

8.2.3 Pros and cons of implicit typing

The question of when it’s a good idea to use implicit typing is the cause of a lot of
community discussion. Views range from “everywhere” to “nowhere” with plenty of
more balanced approaches between the two. We’ll see in section 8.5 that in order to
use another of C# 3’s features—anonymous types—you often need to use implicit typ-
ing. You could avoid anonymous types as well, of course, but that’s throwing the baby
out with the bathwater.

 The main reason for using implicit typing (leaving anonymous types aside for the
moment) is not that it reduces the number of keystrokes required to enter the code,
but that it makes the code less cluttered (and therefore more readable) on the screen.
In particular, when generics are involved, the type names can get very long. Figures
8.1 and 8.2 used a type of Dictionary<string, List<Person>>, which is 33 charac-
ters. By the time you have that twice on a line (once for the declaration and once for
the initialization), you end up with a massive line just for declaring and initializing a
single variable! An alternative is to use an alias, but that puts the real type involved a
long way (conceptually at least) from the code that uses it.

NVALID
Licensed to Devon Greenway <devon.greenway@gmail.com>

210 CHAPTER 8 Cutting fluff with a smart compiler
 When reading the code, there’s no point in seeing the same long type name twice
on the same line when it’s obvious that they should be the same. If the declaration isn’t
visible on the screen, you’re in the same boat whether implicit typing was used or not
(all the ways you’d use to find out the variable type are still valid) and if it is visible, the
expression used to initialize the variable tells you the type anyway.

 Additionally, using var changes the emphasis of the code. Sometimes you want the
reader to pay close attention to the precise types involved, because they’re significant.
For example, even though the generic SortedList and SortedDictionary types have
similar APIs, they have different performance characteristics, and that may be impor-
tant for your particular piece of code. Other times, all you really care about is the
operations that are being performed: you wouldn’t really mind if the expression used
to initialize the variable changed, so long as you could achieve the same goals.4 Using
var allows the reader to focus on the use of a variable rather than the declaration—the
what rather than the how of the code.

 All of this sounds good, so what are the arguments against implicit typing? Para-
doxically enough, readability is the most important one, despite also being an argu-
ment in favor of implicit typing! By not being explicit about what type of variable
you’re declaring, you may be making it harder to work it out just by reading the code.
It breaks the “state what we’re declaring, then what value it’ll start off with” mindset
that keeps the declaration and the initialization separate. To what extent that’s an
issue depends on both the reader and the initialization expression involved.

 If you’re explicitly calling a constructor, it’s always going to be pretty obvious what
type you’re creating. If you’re calling a method or using a property, it depends on how
obvious the return type is just from looking at the call. Integer literals provide a good
example of a case where it’s harder to guess the type of an expression than you might
suppose. How quickly can you work out the type of each of the variables declared
here?

var a = 2147483647;
var b = 2147483648;
var c = 4294967295;
var d = 4294967296;
var e = 9223372036854775807;
var f = 9223372036854775808;

The answers are int, uint, uint, long, long, and ulong, respectively—the type used
depends on the value of the expression. There’s nothing new here in terms of the
handling of literals—C# has always behaved like this—but implicit typing makes it eas-
ier to write obscure code in this case.

 The argument that’s rarely explicitly stated but that I believe is behind a lot of
the concern over implicit typing is, “It just doesn’t feel right.” If you’ve been writing
in a C-like language for years and years, there’s something unnerving about the

4 I realize this sounds a little like duck typing: “so long as it can quack, I’m happy.” The difference is that we’re
still checking quackability at compile time, not execution time.
Licensed to Devon Greenway <devon.greenway@gmail.com>

211Simplified initialization
whole business, however much you tell yourself that it’s still static typing under the
covers. This may not be a rational concern, but that doesn’t make it any less real. If
you’re uncomfortable, you’re likely to be less productive. If the advantages don’t out-
weigh your negative feelings, that’s fine. Depending on your personality, you may
wish to try to push yourself to become more comfortable with implicit typing—but you
certainly don’t have to.

8.2.4 Recommendations

Here are some recommendations based on my experience with implicit typing. That’s
all they are—recommendations—and you should feel free to take them with a pinch
of salt:

 If it’s important that someone reading the code knows the type of the variable
at a glance, use explicit typing.

 If the variable is directly initialized with a constructor and the type name is long
(which often occurs with generics), consider using implicit typing.

 If the precise type of the variable isn’t important, but its general nature is clear
from the context, use implicit typing to de-emphasize how the code achieves its
aim and concentrate on the higher level of what it’s achieving.

 Consult your teammates on the matter when embarking on a new project.
 When in doubt, try a line both ways and go with your gut feelings.
 Unless there’s a significant gain in code simplicity, I tend to use explicit typing

for production code. (Implicit typing is wonderful for throwaway code, though,
and also test code.)

Effectively, my recommendation boils down to not using implicit typing either because
it’s new or for reasons of laziness, saving a few keystrokes. Where it keeps the code
tidier, allowing you to concentrate on the most important elements of the code, go for
it. I’ll be using implicit typing extensively in the rest of the book, for the simple reason
that code is harder to format in print than on a screen—not as much width is available.

 We’ll come back to implicit typing when we see anonymous types, as they create sit-
uations where you are forced to ask the compiler to infer the types of some variables.
Before that, let’s look at how C# 3 makes it easier to construct and populate a new
object in one expression.

8.3 Simplified initialization
One would’ve thought that object-oriented languages would’ve streamlined object
creation long ago. After all, before you start using an object, something has to create it,
whether it’s through your code directly or a factory method of some sort. Despite this,
few language features in C# 2 are geared toward making life easier when it comes to
initialization. If you can’t do what you want using constructor arguments, you’re basi-
cally out of luck—you need to create the object, then manually initialize it with prop-
erty calls and the like.
Licensed to Devon Greenway <devon.greenway@gmail.com>

212 CHAPTER 8 Cutting fluff with a smart compiler
 This is particularly annoying when you want to create a whole bunch of objects in
one go, such as in an array or other collection—without a single-expression way of ini-
tializing an object, you’re forced to either use local variables for temporary manipula-
tion, or create a helper method that performs the appropriate initialization based on
parameters.

 C# 3 comes to the rescue in a number of ways, as we’ll see in this section.

8.3.1 Defining our sample types

The expressions we’re going to be using in this section are called object initializers.
These are just ways of specifying initialization that should occur after an object has
been created. You can set properties, set properties of properties (don’t worry, it’s sim-
pler than it sounds), and add to collections that are accessible via properties. To dem-
onstrate all this, we’ll use a Person class again. To start with, there’s the name and age
we’ve used before, exposed as writable properties. We’ll provide both a parameterless
constructor and one that accepts the name as a parameter. We’ll also add a list of
friends and the person’s home location, both of which are accessible as read-only
properties, but that can still be modified by manipulating the retrieved objects. A sim-
ple Location class provides Country and Town properties to represent the person’s
home. The following listing shows the complete code for the classes.

public class Person
{

public int Age { get; set; }
public string Name { get; set; }

List<Person> friends = new List<Person>();
public List<Person> Friends { get { return friends; } }

Location home = new Location();
public Location Home { get { return home; } }

public Person() { }

public Person(string name)
{

Name = name;
}

}

public class Location
{

public string Country { get; set; }
public string Town { get; set; }

}

Listing 8.2 is straightforward, but it’s worth noting that both the list of friends and the
home location are created in a blank way when the person is created, rather than
being left as just null references. The friends and home location properties are read-
only, too. That’ll be important later on—but for the moment let’s look at the proper-
ties representing the name and age of a person.

Listing 8.2 A fairly simple Person class used for further demonstrations
Licensed to Devon Greenway <devon.greenway@gmail.com>

213Simplified initialization
8.3.2 Setting simple properties

Now that we have our Person type, we want to create some instances of it using the
new features of C# 3. In this section we’ll look at setting the Name and Age properties—
we’ll come to the others later.

 In fact, object initializers aren’t restricted to using properties. Everything shown
here also applies to fields, but the vast majority of the time you’ll be using properties.
In a well-encapsulated system you’re unlikely to have access to fields anyway, unless
you’re creating an instance of a type within that type’s own code. It’s worth knowing
that you can use fields, of course—so for the rest of the section, just read property and
field whenever the text says property.

 With that out of the way, let’s get down to business. Suppose we want to create a
person called Tom, who is six years old. Prior to C# 3, there were two ways this could be
achieved:

Person tom1 = new Person();
tom1.Name = "Tom";
tom1.Age = 6;

Person tom2 = new Person("Tom");
tom2.Age = 6;

The first version simply uses the parameterless constructor and then sets both proper-
ties. The second version uses the constructor overload, which sets the name, and then
sets the age afterward. Both of these options are still available in C# 3, of course, but
there are other alternatives:

Person tom3 = new Person() { Name="Tom", Age = 6 };
Person tom4 = new Person { Name="Tom", Age = 6 };
Person tom5 = new Person("Tom") { Age = 6 };

The part in braces at the end of each line is the object initializer. Again, it’s just com-
piler trickery. The IL used to initialize tom3 and tom4 is identical, and is nearly5 the
same as we used for tom1. Predictably, the code for tom5 is nearly the same as for tom2.
Note how for tom4 we omitted the parentheses for the constructor. You can use this
shorthand for types with a parameterless constructor, which is what gets called in the
compiled code.

 After the constructor has been called, the specified properties are set in the obvi-
ous way. They’re set in the order specified in the object initializer, and you can only
specify any particular property at most once—you can’t set the Name property twice,
for example. (You could call the constructor taking the name as a parameter, and
then set the Name property. It would be pointless, but the compiler wouldn’t stop you
from doing it.) The expression used as the value for a property can be any expression
that isn’t itself an assignment—you can call methods, create new objects (potentially
using another object initializer), pretty much anything.

5 In fact, the variable’s new value isn’t assigned until all the properties have been set. A temporary local variable
is used until then. This is rarely important, but worth knowing to avoid confusion if you happen to break into
the debugger halfway through the initializer.
Licensed to Devon Greenway <devon.greenway@gmail.com>

214 CHAPTER 8 Cutting fluff with a smart compiler
 You may be wondering just how useful this is—we’ve saved one or two lines of code,
but surely that’s not a good enough reason to make the language more complicated, is
it? There’s a subtle point here, though: we haven’t just created an object in one line—
we’ve created it in one expression. That difference can be very important. Suppose you
want to create an array of type Person[] with some predefined data in it. Even without
using the implicit array typing we’ll see later, the code is neat and readable:

Person[] family = new Person[]
{

new Person { Name = "Holly", Age = 34 },
new Person { Name = "Jon", Age = 33 },
new Person { Name = "Tom", Age = 6 },
new Person { Name = "William", Age = 3 },
new Person { Name = "Robin", Age = 3 }

};

Now, in a simple example like this we could’ve written a constructor taking both the
name and age as parameters, and initialized the array in a similar way in C# 1 or 2. But
appropriate constructors aren’t always available—and if there are several constructor
parameters, it’s often not clear which one means what just from the position. By the
time a constructor needs to take five or six parameters, I often find myself relying on
IntelliSense more than I want to. Using the property names is a great boon to read-
ability in such cases.6

 This form of object initializer is the one you’ll probably use most often. But there
are two other forms—one for setting subproperties, and one for adding to collections.
Let’s look at subproperties—properties of properties—first.

8.3.3 Setting properties on embedded objects

So far we’ve found it easy to set the Name and Age properties, but we can’t set the Home
property in the same way—it’s read-only. We can set the town and the country of a per-
son, by first fetching the Home property and then setting properties on the result. The
language specification refers to this as setting the properties of an embedded object. Just
to make it clear, what we’re talking about is the following C# 1 code:

Person tom = new Person("Tom");
tom.Age = 6;
tom.Home.Country = "UK";
tom.Home.Town = "Reading";

When we’re populating the home location, each statement is doing a get to retrieve
the Location instance, and then a set on the relevant property on that instance.
There’s nothing new in that, but it’s worth slowing your mind down to look at it care-
fully; otherwise, it’s easy to miss what’s going on behind the scenes.

 C# 3 allows all of this to be done in one expression, as shown here:

Person tom = new Person("Tom")
{

6 C# 4 provides an alternative approach here using named arguments, which we’ll meet in chapter 13.
Licensed to Devon Greenway <devon.greenway@gmail.com>

215Simplified initialization
Age = 6,
Home = { Country = "UK", Town = "Reading" }

};

The compiled code for these snippets is effectively the same. The compiler spots that
to the right side of the = sign is another object initializer, and applies the properties to
the embedded object appropriately. One point about the formatting I’ve used—just as
in almost all C# features, it’s whitespace-independent: you can collapse the whitespace
in the object initializer, putting it all on one line if you like. It’s up to you to work out
where the sweet spot is in balancing long lines against lots of lines.

 The absence of the new keyword in the part initializing Home is significant. If you
need to work out where the compiler is going to create new objects and where it’s
going to set properties on existing ones, look for occurrences of new in the initializer.
Every time a new object is created, the new keyword appears somewhere.

 We’ve dealt with the Home property—but what about Tom’s friends? There are
properties we can set on a List<Person>, but none of them will add entries to the list.
It’s time for the next feature—collection initializers.

8.3.4 Collection initializers

Creating a collection with some initial values is an extremely common task. Until C# 3
arrived, the only language feature that gave any assistance was array creation—and
even that was clumsy in many situations. C# 3 has collection initializers, which allow you
to use the same type of syntax as array initializers but with arbitrary collections and
more flexibility.

CREATING NEW COLLECTIONS WITH COLLECTION INITIALIZERS

As a first example, let’s use the now-familiar List<T> type. In C# 2, you could populate
a list either by passing in an existing collection or by calling Add repeatedly after creat-
ing an empty list. Collection initializers in C# 3 take the latter approach. Suppose we
want to populate a list of strings with some names—here’s the C# 2 code (on the left)
and the close equivalent in C# 3 (on the right):

List<string> names = new List<string>(); var names = new List<string>
names.Add("Holly"); {
names.Add("Jon"); "Holly", "Jon", "Tom",
names.Add("Tom"); "Robin", "William"
names.Add("Robin"); };
names.Add("William");

Just as with object initializers, you can specify constructor parameters if you want, or
use a parameterless constructor either explicitly or implicitly. The use of implicit typ-
ing here was partly for space reasons—the names variable could equally well have been
declared explicitly. Reducing the number of lines of code (without reducing readabil-
ity) is nice, but there are two bigger benefits of collection initializers:

 The create-and-initialize part counts as a single expression.
 There’s a lot less clutter in the code.
Licensed to Devon Greenway <devon.greenway@gmail.com>

216 CHAPTER 8 Cutting fluff with a smart compiler
The first point becomes important when you want to use a collection as either an
argument to a method or as one element in a larger collection. That happens relatively
rarely (although often enough to still be useful)—but the second point is the real rea-
son this is a killer feature in my view. If you look at the code on the right, you can eas-
ily see the information you need, with each piece of information written only once.
The variable name occurs once, the type being used occurs once, and each of the ele-
ments of the initialized collection appears once. It’s all extremely simple, and much
clearer than the C# 2 code, which contains a lot of fluff around the useful bits.

 Collection initializers aren’t limited to just lists. You can use them with any type
that implements IEnumerable, as long as it has an appropriate Add method for each
element in the initializer. You can use an Add method with more than one parameter
by putting the values within another set of braces. The most common use for this is
creating dictionaries. For example, if we wanted a dictionary mapping names to ages,
we could use the following code:

Dictionary<string,int> nameAgeMap = new Dictionary<string,int>
{

{ "Holly", 34 },
{ "Jon", 33 },
{ "Tom", 6 }

};

In this case, the Add(string, int) method would be called three times. If multiple
Add methods are available, different elements of the initializer can call different over-
loads. If no compatible overload is available for a specified element, the code will fail
to compile. There are two interesting points about the design decision here:

 The fact that the type has to implement IEnumerable is never used by the
compiler.

 The Add method is only found by name—there’s no interface requirement
specifying it.

These are both pragmatic decisions. Requiring IEnumerable to be implemented is a
reasonable attempt to check that the type really is a collection of some sort, and using
any accessible overload of the Add method (rather than requiring an exact signature)
allows for simple initializations such as the earlier dictionary example.

 An early draft of the C# 3 specification required ICollection<T> to be imple-
mented instead, and the implementation of the single-parameter Add method (as
specified by the interface) was called rather than allowing different overloads. This
sounds more pure, but there are far more types that implement IEnumerable than
ICollection<T>—and using the single-parameter Add method would be inconve-
nient. For example, in our case it would’ve forced us to explicitly create an instance of
a KeyValuePair<string,int> for each element of the initializer. Sacrificing a bit of
academic purity has made the language far more useful in real life.
Licensed to Devon Greenway <devon.greenway@gmail.com>

217Simplified initialization
POPULATING COLLECTIONS WITHIN OTHER OBJECT INITIALIZERS

So far we’ve only seen collection initializers used in a stand-alone fashion to create
whole new collections. They can also be combined with object initializers to populate
embedded collections. To show this, we’ll go back to our Person example. The
Friends property is read-only, so we can’t create a new collection and specify that as
the collection of friends—but we can add to whatever collection is returned by the
property’s getter. The way we do this is similar to the syntax we’ve already seen for set-
ting properties of embedded objects, but we just specify a collection initializer instead
of a sequence of properties.

 Let’s see this in action by creating another Person instance for Tom, this time with
some of his friends.

Person tom = new Person
{

Name = "Tom",
Age = 6,
Home = { Town = "Reading", Country = "UK" },
Friends =
{

new Person { Name = "Alberto" },
new Person("Max"),
new Person { Name = "Zak", Age = 4 },
new Person("Ben"),
new Person("Alice")
{

Age = 6,
Home = { Town = "Twyford", Country="UK" }

}
}

};

Listing 8.3 uses all the features of object and collection initializers we’ve come across.
The main part of interest is the collection initializer, which itself uses lots of different
forms of object initializers internally. Note that we’re not creating a new collection
here, just adding to an existing one. (If the property had a setter, we could create a new
collection and still use collection initializer syntax.)

 We could’ve gone further, specifying friends of friends, friends of friends of
friends, and so forth. But we couldn’t specify that Tom is Alberto’s friend—while
you’re still initializing an object, you don’t have access to it, so you can't express cyclic
relationships. This can be awkward in a few cases, but usually isn’t a problem.

 Collection initialization within object initializers works as a sort of cross between
stand-alone collection initializers and setting embedded object properties. For each
element in the collection initializer, the collection property getter (Friends in this
case) is called, and then the appropriate Add method is called on the returned value.
The collection isn’t cleared in any way before elements are added. For example, if you
were to decide that a person should always be his own friend, and added this to the

Listing 8.3 Building up a rich object using object and collection initializers

Implicitly calls parameterless constructor

Sets properties directly

Initializes embedded object

Initializes collection with
further object initializers
Licensed to Devon Greenway <devon.greenway@gmail.com>

218 CHAPTER 8 Cutting fluff with a smart compiler
list of friends within the Person constructor, using a collection initializer would only
add extra friends.

 As you can see, the combination of collection and object initializers can be used to
populate whole trees of objects. But when and where is this likely to actually happen?

8.3.5 Uses of initialization features

Trying to pin down exactly where these features are useful is reminiscent of being in a
Monty Python sketch about the Spanish Inquisition—every time you think you have a
reasonably complete list, another common example pops up. I’ll just mention three
examples, which I hope will encourage you to consider where else you might use them.

CONSTANT COLLECTIONS

It’s not uncommon for me to want some kind of collection (often a map) that’s effec-
tively constant. Of course, it can’t be a constant as far as the C# language is concerned,
but it can be declared static and read-only, with big warnings to say that it shouldn’t be
changed. (It’s usually private, so that’s good enough. Alternatively, you can use Read-
OnlyCollection<T>.) Typically, this used to involve writing a static constructor or a
helper method, just to populate the map. With C# 3’s collection initializers, it’s easy to
set the whole thing up inline.

SETTING UP UNIT TESTS

When writing unit tests, I frequently want to populate an object just for one test, often
passing it in as an argument to the method I’m trying to test at the time. Writing all of
the initialization longhand can be long-winded and also hides the essential structure
of the object from the reader of the code, just as XML creation code can often obscure
what the document would look like if you viewed it (appropriately formatted) in a text
editor. With appropriate indentation of object initializers, the nested structure of the
object hierarchy can become obvious in the very shape of the code, as well as make
the values stand out more than they would otherwise.

THE BUILDER PATTERN

For various reasons, sometimes you want to specify a lot of values for a single method
or constructor call. The most common situation in my experience is creating an
immutable object. Instead of having a huge set of parameters (which can become a
readability problem as the meaning of each argument becomes unclear7), you can
use the builder pattern: create a mutable type with appropriate properties, and then
pass an instance of the builder into the constructor or method. The framework
ProcessStartInfo type is a good example of this—the designers could have over-
loaded Process.Start with many different sets of parameters, but using Process-
StartInfo makes everything clearer.

 Object and collection initializers allow you to create the builder object in a clearer
manner—you can even specify it inline when you call the original member if you

7 Named arguments in C# 4 help in this area, admittedly.
Licensed to Devon Greenway <devon.greenway@gmail.com>

219Implicitly typed arrays

IN
want. Admittedly you still have to write the builder type in the first place—but auto-
matic properties help on that front.

<INSERT YOUR FAVORITE USE HERE>

Of course, there are uses beyond these three in ordinary code, and I don’t want to put
you off using the new features elsewhere. There’s little reason not to use them, other
than possibly confusing developers who aren’t familiar with C# 3 yet. You may decide
that using an object initializer just to set one property (as opposed to just explicitly set-
ting it in a separate statement) is over the top—that’s a matter of aesthetics, and I
can’t give you much objective guidance there. As with implicit typing, it’s a good idea
to try the code both ways, and learn to predict your own (and your team’s) reading
preferences.

 So far we’ve looked at a fairly diverse range of features: implementing properties
easily, simplifying local variable declarations, and populating objects in single expres-
sions. In the remainder of this chapter we’ll be gradually bringing these topics
together, using more implicit typing and more object population, and creating whole
types without giving any implementation details.

 Our next topic appears to be quite similar to collection initializers when you look
at code using it. I mentioned earlier that array initialization was a bit clumsy in C# 1
and 2. I’m sure it won’t surprise you to learn that it’s been streamlined for C# 3. Let’s
take a look.

8.4 Implicitly typed arrays
In C# 1 and 2, initializing an array as part of a variable declaration and initialization
statement was quite neat—but if you wanted to do it anywhere else, you had to specify
the exact array type involved. So for example, this compiles without any problem:

string[] names = {"Holly", "Jon", "Tom", "Robin", "William"};

This doesn’t work for parameters, though: suppose we want to make a call to
MyMethod, declared as void MyMethod(string[] names). This code won’t work:

MyMethod({"Holly", "Jon", "Tom", "Robin", "William"});

Instead, you have to tell the compiler what type of array you want to initialize:

MyMethod(new string[] {"Holly", "Jon", "Tom", "Robin", "William"});

C# 3 allows something in between:

MyMethod(new[] {"Holly", "Jon", "Tom", "Robin", "William"});

Clearly the compiler needs to work out what type of array to use. It starts by forming a
set containing all the compile-time types of the expressions inside the braces. If
there’s exactly one type in that set that all the others can be implicitly converted to,
that’s the type of the array. Otherwise, (or if all the values are typeless expressions,
such as constant null values or anonymous methods, with no casts) the code won’t

VALID
Licensed to Devon Greenway <devon.greenway@gmail.com>

220 CHAPTER 8 Cutting fluff with a smart compiler

IN
compile. Note that only the types of the expressions are considered as candidates for
the overall array type. This means that occasionally you might have to explicitly cast a
value to a less-specific type. For instance, this won’t compile:

new[] { new MemoryStream(), new StringWriter() }

There’s no conversion from MemoryStream to StringWriter, or vice versa. Both are
implicitly convertible to object and IDisposable, but the compiler only considers
types that are in the original set produced by the expressions themselves. If we
change one of the expressions in this situation so that its type is either object or
IDisposable, the code compiles:

new[] { (IDisposable) new MemoryStream(), new StringWriter() }

The type of this last expression is implicitly IDisposable[]. Of course, at that point
you might as well explicitly state the type of the array just as you would in C# 1 and 2,
to make it clearer what you’re trying to achieve.

 Compared with the earlier features, implicitly typed arrays are a bit of an anticli-
max. I find it hard to get excited about them, even though they do make life simpler in
cases where an array is passed as an argument. You could argue that this feature
doesn’t prove itself in the usefulness/complexity balance used by the language design-
ers to decide what should be part of the language.

 The designers haven’t gone mad, though—there’s one important situation in
which this implicit typing is absolutely crucial. That’s when you don’t know (and can’t
know) the name of the type of the elements of the array. How can you possibly get
into this peculiar state? Read on...

8.5 Anonymous types
Implicit typing, object and collection initializers, and implicit array typing are all use-
ful in their own right, to a greater or lesser extent. But they also serve a higher pur-
pose—they make it possible to work with this chapter's final feature, anonymous types.
They, in turn, serve a higher purpose—LINQ.

8.5.1 First encounters of the anonymous kind

It’s much easier to explain anonymous types when you already have some idea of what
they are through an example. I’m sorry to say that without the use of extension meth-
ods and lambda expressions, the examples in this section are likely to be a little con-
trived, but there’s a distinct chicken-and-egg situation here: anonymous types are
most useful within the context of the more advanced features, but we need to under-
stand the building blocks before we can see much of the bigger picture. Stick with it—
it will make sense in the long run, I promise.

 Let’s pretend we didn’t have the Person class, and the only properties we cared
about were the name and age. Listing 8.4 shows how we could still build objects with
those properties, without ever declaring a type.

VALID
Licensed to Devon Greenway <devon.greenway@gmail.com>

221Anonymous types

var tom = new { Name = "Tom", Age = 6 };
var holly = new { Name = "Holly", Age = 34 };
var jon = new { Name = "Jon", Age = 33 };

Console.WriteLine("{0} is {1} years old", jon.Name, jon.Age);

As you can tell from listing 8.4, the syntax for initializing an anonymous type is similar
to the object initializers we saw in section 8.3.2—it’s just that the name of the type is
missing between new and the opening brace. We’re using implicitly typed local vari-
ables because that’s all we can use (other than object of course)—we don’t have a
type name to declare the variable with. As you can see from the last line, the type has
properties for the Name and Age, both of which can be read and which will have the
values specified in the anonymous object initializer used to create the instance—so in
this case the output is “Jon is 33 years old.” The properties have the same types as the
expressions in the initializers—string for Name, and int for Age. Just as in normal
object initializers, the expressions used in anonymous object initializers can call meth-
ods or constructors, fetch properties, perform calculations—whatever you need to do.

 You may now be starting to see why implicitly typed arrays are important. Suppose
we want to create an array containing the whole family, and then iterate through it to
work out the total age.8 The following listing does just that—and demonstrates a few
other interesting features of anonymous types at the same time.

var family = new[]
{

 new { Name = "Holly", Age = 34 },
new { Name = "Jon", Age = 33 },
new { Name = "Tom", Age = 6 },
new { Name = "Robin", Age = 3 },
new { Name = "William", Age = 3 }

};

int totalAge = 0;
foreach (var person in family)
{

totalAge += person.Age;
}
Console.WriteLine("Total age: {0}", totalAge);

Putting together listing 8.5 and what we learned about implicitly typed arrays in sec-
tion 8.4, we can deduce something important: all the people in the family are of the same
type. If each use of an anonymous object initializer in C referred to a different type,
the compiler couldn’t infer an appropriate type for the array declared at B. Within
any given assembly, the compiler treats two anonymous object initializers as the same

Listing 8.4 Creating objects of an anonymous type with Name and Age properties

8 If you already know LINQ, you may feel that this is a quaint way of summing the ages. I agree, calling
family.Sum(p => p.Age) would be a lot neater—but let’s take things one step at a time.

Listing 8.5 Populating an array using anonymous types and then finding the total age

Uses implicitly typed
array initializerB

Uses same anonymous
type five timesC

Uses implicit
typing for person

D

Sums agesE
Licensed to Devon Greenway <devon.greenway@gmail.com>

222 CHAPTER 8 Cutting fluff with a smart compiler
type if there are the same number of properties, with the same names and types, and
they appear in the same order. In other words, if we swapped the Name and Age prop-
erties in one of the initializers, there’d be two different types involved—likewise if we
introduced an extra property in one line, or used a long instead of an int for the age
of one person, another anonymous type would’ve been introduced. At that point the
type inference for the array would fail.

IMPLEMENTATION DETAIL: HOW MANY TYPES? If you ever decide to look at the
IL (or decompiled C#) for an anonymous type generated by Microsoft 's com-
piler, be aware that although two anonymous object initializers with the same
property names in the same order but using different property types will pro-
duce two different types, they’ll actually be generated from a single generic
type. The generic type is parameterized, but the closed, constructed types will
be different because they’ll be given different type arguments for the differ-
ent initializers.

Notice that we can use a foreach statement to iterate over the array just as we would
any other collection. The type involved is inferred D, and the type of the person vari-
able is the same anonymous type we’ve used in the array. Again, we can use the same
variable for different instances because they’re all of the same type.

 Listing 8.5 also proves that the Age property really is strongly typed as an int—
otherwise trying to sum the ages E wouldn’t compile. The compiler knows about the
anonymous type, and Visual Studio is even willing to share the information via toolt-
ips, just in case you’re uncertain. Figure 8.4 shows the result of hovering over the per-
son part of the person.Age expression from listing 8.5.

 Now that we’ve seen anonymous types in action, let’s go back and look at what the
compiler is actually doing for us.

8.5.2 Members of anonymous types

Anonymous types are created by the compiler and included in the compiled assembly
in the same way as the extra types for anonymous methods and iterator blocks. The
CLR treats them as perfectly ordinary types, and so they are—if you later move from
an anonymous type to a normal, manually coded type with the behavior described in
this section, you shouldn’t see anything change. Anonymous types contain the follow-
ing members:

Figure 8.4 Hovering over a variable
that’s declared (implicitly) to be of an
anonymous type shows the details of
that anonymous type.
Licensed to Devon Greenway <devon.greenway@gmail.com>

223Anonymous types
 A constructor taking all the initialization values. The parameters are in the
same order as they were specified in the anonymous object initializer, and have
the same names and types.

 Public read-only properties.
 Private read-only fields backing the properties.
 Overrides for Equals, GetHashCode, and ToString.

That’s it—there are no implemented interfaces, no cloning or serialization
capabilities—just a constructor, some properties, and the normal methods from
object.

 The constructor and the properties do the obvious things. Equality between two
instances of the same anonymous type is determined in the natural manner, compar-
ing each property value in turn using the property type’s Equals method. The hash
code generation is similar, calling GetHashCode on each property value in turn and
combining the results. The exact method for combining the various hash codes
together to form one composite hash is unspecified, and you shouldn’t write code
that depends on it anyway—you just need to be confident that two equal instances will
return the same hash, and two unequal instances will usually return different hashes.
All of this only works if the Equals and GetHashCode implementations of all the differ-
ent types involved as properties conform to the normal rules, of course.

 Note that because the properties are read-only, all anonymous types are immutable
so long as the types used for their properties are immutable. This provides you with all
the normal benefits of immutability—being able to pass values to methods without
fear of them changing, simple sharing of data across threads, and so forth.

VB ANONYMOUS TYPE PROPERTIES ARE MUTABLE BY DEFAULT Anonymous types
are also available in Visual Basic 9 and 10. But by default their properties are
mutable: you need to declare any properties you want to be immutable with
the Key modifier. Only properties declared as keys are used in hashing and
equality comparisons. This is easy to overlook when converting code from
one language to another.

We’re almost done with anonymous types now. But there’s one slight wrinkle still to
talk about—a shortcut for a situation that’s fairly common in LINQ.

8.5.3 Projection initializers

The anonymous object initializers we’ve seen so far have all been lists of name/value
pairs—Name="Jon", Age=33 and the like. As it happens, I’ve always used constants
because they make for smaller examples, but in real code you often want to copy prop-
erties from an existing object. Sometimes you’ll want to manipulate the values in some
way, but often a straight copy is enough.

 Again, without LINQ it’s hard to give convincing examples of this, but let’s go back
to our Person class, and just suppose we had a good reason to want to convert a collec-
tion of Person instances into a similar collection where each element has just a name
Licensed to Devon Greenway <devon.greenway@gmail.com>

224 CHAPTER 8 Cutting fluff with a smart compiler
and a flag to say whether that person is an adult. Given an appropriate person vari-
able, we could use something like this:

new { Name = person.Name, IsAdult = (person.Age >= 18) }

That works, and for just a single property the syntax for setting the name (the part in
bold) isn’t too clumsy—but if you were copying several properties it would get tire-
some. C# 3 provides a shortcut: if you don’t specify the property name, but just the
expression to evaluate for the value, it’ll use the last part of the expression as the
name—provided it’s a simple field or property. This is called a projection initializer. It
means we can rewrite the previous code as

new { person.Name, IsAdult = (person.Age >= 18) }

It’s common for all the bits of an anonymous object initializer to be projection initial-
izers—it typically happens when you’re taking some properties from one object and
some properties from another, often as part of a join operation. Anyway, I’m getting
ahead of myself. The following listing shows the previous code in action, using the
List<T>.ConvertAll method and an anonymous method.

List<Person> family = new List<Person>
{

new Person { Name="Holly", Age=34 },
new Person { Name="Jon", Age=33 },
new Person { Name="Tom", Age=6 },
new Person { Name="Robin", Age=3 },
new Person { Name="William", Age=3 }

};

var converted = family.ConvertAll(delegate(Person person)
{ return new { person.Name, IsAdult = (person.Age >= 18) }; }

);

foreach (var person in converted)
{

Console.WriteLine("{0} is an adult? {1}",
person.Name, person.IsAdult);

}

In addition to the use of a projection initializer for the Name property, listing 8.6 shows
the value of delegate type inference and anonymous methods. Without them, we
couldn’t have retained our strong typing of converted, as we wouldn’t have been able
to specify what the TOutput type parameter of Converter should be. As it is, we can
iterate through the new list and access the Name and IsAdult properties as if we were
using any other type.

 Don’t spend too long thinking about projection initializers at this point—the
important thing is to be aware that they exist, so you won’t get confused when you see
them later. In fact, that advice applies to this entire section on anonymous types—so
without going into details, let’s look at why they’re present at all.

Listing 8.6 Transformation from Person to a name and adulthood flag
Licensed to Devon Greenway <devon.greenway@gmail.com>

225Anonymous types
8.5.4 What’s the point?

I hope you’re not feeling cheated at this point, but I sympathize if you are. Anony-
mous types are a fairly complex solution to a problem we haven’t really encountered
yet... except that I bet you have seen part of the problem before, really.

 If you’ve ever done any real-life work involving databases, you’ll know that you don’t
always want all of the data that’s available on all the rows that match your query criteria.
Often it’s not a problem to fetch more than you need, but if you only need two col-
umns out of the 50 in the table, you wouldn’t bother to select all 50, would you?

 The same problem occurs in nondatabase code. Suppose we have a class that reads
a log file and produces a sequence of log lines with many fields. Keeping all of the
information might be far too memory-intensive if we only care about a couple of fields
from the log. LINQ lets you filter that information easily.

 But what’s the result of that filtering? How can we keep some data and discard the
rest? How can we easily keep some derived data that isn’t directly represented in the
original form? How can we combine pieces of data that may not initially have been
consciously associated, or that may only have a relationship in a particular situation?
Effectively, we want a new data type—but manually creating such a type in every situa-
tion is tedious, particularly when you have tools such as LINQ available that make the
rest of the process so simple. Figure 8.5 shows the three elements that make anony-
mous types a powerful feature.

 If you find yourself creating a type that’s only used in a single method, and that
only contains fields and trivial properties, consider whether an anonymous type would
be appropriate. I suspect that you’ll find that most of the times when you find yourself
leaning toward anonymous types, you could also use LINQ to help you.

 If you find yourself using the same sequence of properties for the same purpose in
several places, though, you might want to consider creating a normal type for the pur-
pose, even if it still just contains trivial properties. Anonymous types naturally infect
whatever code they’re used in with implicit typing—which is often fine, but can be a
nuisance at other times. In particular, it means you can't easily create a method to

Avoiding excessive
dat accumulation

Tailoring data
encapsulation to

one situation

Avoiding manual
“turn the handle”

coding

Anonymous
types

AAAAvoiding manual
“turn the handle”

coding

AAAAvoiding excessiveAA
dat accumulation

Anonymous
types

Tailoring data
encapsulation to

one situation

Avoiding excessive
data accumulation

Tailoring data
encapsulation to

one situation

Avoiding manual
turn-the-handle

coding

Anonymous
types

Figure 8.5 Anonymous types allow you to
keep just the data you need for a particular
situation, in a form that’s tailored to that
situation, without the tedium of writing a
fresh type each time.
Licensed to Devon Greenway <devon.greenway@gmail.com>

226 CHAPTER 8 Cutting fluff with a smart compiler
return an instance of that type in a strongly typed way. As with the previous features,
use anonymous types when they genuinely make the code simpler to work with, not
just because they’re new and cool.

8.6 Summary
What a seemingly mixed bag of features! We’ve seen four features that are quite simi-
lar, at least in syntax: object initializers, collection initializers, implicitly typed arrays,
and anonymous types. The other two features—automatic properties and implicitly
typed local variables—are somewhat different. Likewise, most of the features would’ve
been useful individually in C# 2, whereas implicitly typed arrays and anonymous types
only pay back the cost of learning about them when the rest of the C# 3 features are
brought into play.

 So what do these features really have in common? They all relieve the developer of
tedious coding. I’m sure you don’t enjoy writing trivial properties any more than I do, or
setting several properties, one at a time, using a local variable—particularly when
you’re trying to build up a collection of similar objects. Not only do the new features
of C# 3 make it easier to write the code, they also make it easier to read it, at least when
they’re applied sensibly.

 In our next chapter we’ll look at a major new language feature, along with a frame-
work feature it provides direct support for. If you thought anonymous methods made
creating delegates easy, just wait until you see lambda expressions.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Lambda expressions
and expression trees
In chapter 5 we saw how C# 2 made delegates much easier to use due to implicit
conversions of method groups, anonymous methods, and return type and param-
eter variance. This is enough to make event subscription significantly simpler and
more readable, but delegates in C# 2 are still too bulky to be used all the time: a
page of code full of anonymous methods is painful to read, and you wouldn’t
want to start putting multiple anonymous methods in a single statement on a reg-
ular basis.

This chapter covers
 Lambda expression syntax

 Conversions from lambdas to delegates

 Expression tree framework classes

 Conversions from lambdas to expression trees

 Why expression trees matter

 Changes to type inference

 Changes to overload resolution
227

Licensed to Devon Greenway <devon.greenway@gmail.com>

228 CHAPTER 9 Lambda expressions and expression trees
 One of the fundamental building blocks of LINQ is the ability to create pipelines of
operations, along with any state required by those operations. These operations can
express all kinds of logic about data: how to filter it, how to order it, how to join differ-
ent data sources together, and much more. When LINQ queries are executed in-
process, those operations are usually represented by delegates.

 Statements containing several delegates are common when manipulating data with
LINQ to Objects,1 and lambda expressions in C# 3 make all of this possible without sacri-
ficing readability. (While I’m mentioning readability, this chapter uses lambda expres-
sion and lambda interchangeably; as I need to refer to normal expressions quite a lot, it
helps to use the short version in many cases.)

IT’S ALL GREEK TO ME The term lambda expression comes from lambda calculus,
also written as λ-calculus, where λ is the Greek letter lambda. This is an area of
math and computer science dealing with defining and applying functions. It’s
been around for a long time and is the basis of functional languages such as
ML. The good news is that you don’t need to know lambda calculus to use
lambda expressions in C# 3.

Executing delegates is only part of the LINQ story. To use databases and other query
engines efficiently, we need a different representation of the operations in the pipe-
line: a way to treat code as data that can be examined programmatically. The logic
within the operations can then be transformed into a different form, such as a web
service call, a SQL or LDAP query—whatever’s appropriate.

 Although it’s possible to build up representations of queries in a particular API, it’s
usually tricky to read and sacrifices a lot of compiler support. This is where lambdas
save the day again: not only can they be used to create delegate instances, but the C#
compiler can also transform them into expression trees—data structures representing
the logic of the lambda expressions so that other code can examine it. In short,
lambda expressions are the idiomatic way of representing the operations in LINQ data
pipelines—but we’ll take things one step at a time, examining them in a fairly isolated
way before we embrace the whole of LINQ.

 In this chapter we’ll look at both ways of using lambda expressions, although for
the moment our coverage of expression trees will be relatively basic—we’re not going
to create any SQL just yet. With the theory under your belt, you should be relatively
comfortable with lambda expressions and expression trees by the time we hit the
really impressive stuff in chapter 12.

 In the final part of this chapter, we’ll examine how type inference has changed for
C# 3, mostly due to lambdas with implicit parameter types. This is a bit like learning
how to tie shoelaces: far from exciting, but without this ability you’ll trip over yourself
when you start running.

 Let’s begin by seeing what lambda expressions look like. We’ll start with an anony-
mous method and gradually transform it into shorter and shorter forms.

1 LINQ to Objects handles sequences of data within the same process. By contrast, providers such as LINQ to
SQL offload the work to other out-of-process systems—databases, for example.
Licensed to Devon Greenway <devon.greenway@gmail.com>

229Lambda expressions as delegates
9.1 Lambda expressions as delegates
In many ways, lambda expressions can be seen as an evolution of anonymous methods
from C# 2. Lambda expressions can do almost everything that anonymous methods
can,2 and they’re almost always more readable and compact. In particular, the behav-
ior of captured variables is exactly the same in lambda expressions as in anonymous
methods. In the most explicit form, not much difference exists between the two—but
lambda expressions have a lot of shortcuts available to make them compact in com-
mon situations. Like anonymous methods, lambda expressions have special conver-
sion rules—the type of the expression isn’t a delegate type in itself, but it can be
converted into a delegate instance in various ways, both implicitly and explicitly. The
term anonymous function covers anonymous methods and lambda expressions—in
many cases the same conversion rules apply to both of them.

 We’re going to start with a simple example, initially expressed as an anonymous
method. We’ll create a delegate instance that takes a string parameter and returns
an int (which is the length of the string). First we need to choose a delegate type to
use; fortunately, .NET 3.5 comes with a whole family of generic delegate types to help
us out.

9.1.1 Preliminaries: introducing the Func<...> delegate types

There are five generic Func delegate types in .NET 3.5’s System namespace. There’s
nothing special about Func—it’s just handy to have some predefined generic types
that are capable of handling many situations. Each delegate signature takes between
zero and four parameters, the types of which are specified as type parameters.3 The
last type parameter is used for the return type in each case. Here are the signatures of
all the Func delegate types in .NET 3.5:

TResult Func<TResult>()
TResult Func<T,TResult>(T arg)
TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2)
TResult Func<T1,T2,T3,TResult>(T1 arg1, T2 arg2, T3 arg3)
TResult Func<T1,T2,T3,T4,TResult>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)

For example, Func<string,double,int> is equivalent to a delegate type of the form

public delegate int SomeDelegate(string arg1, double arg2)

The Action<...> set of delegates provides the equivalent functionality when you want
a void return type. The single parameter form of Action existed in .NET 2.0, but the
rest are new to .NET 3.5. If four arguments aren’t enough for you, then .NET 4 has the
answer: it expands both the Action<...> and Func<...> families to take up to 16
arguments—so Func<T1,...,T16,TResult> has an eye-watering 17 type parameters.

2 The one feature available to anonymous methods but not lambda expressions is the ability to concisely ignore
parameters. Look back at section 5.4.3 for more details if you’re interested, but in practice it’s not something
you’ll really miss with lambda expressions.

3 You may remember we met the version without any parameters (but one type parameter) in chapter 6.
Licensed to Devon Greenway <devon.greenway@gmail.com>

230 CHAPTER 9 Lambda expressions and expression trees
This is primarily to help support the Dynamic Language Runtime that we’ll meet in
chapter 14, and you’re unlikely to need to deal with it directly.

 For our example, we need a type that takes a string parameter and returns an
int, so we’ll use Func<string,int>.

9.1.2 First transformation to a lambda expression

Now that we know the delegate type, we can use an anonymous method to create our
delegate instance. The following listing shows this, along with executing the delegate
instance afterward so we can see it working.

Func<string,int> returnLength;
returnLength = delegate (string text) { return text.Length; };

Console.WriteLine(returnLength("Hello"));

Listing 9.1 prints “5” just as we’d expect it to. I’ve separated the declaration of
returnLength from the assignment to it so we can keep it on one line—it’s easier to
keep track of that way. The anonymous method expression is the part in bold; that’s
the part we’re going to convert into a lambda expression.

 The most long-winded form of a lambda expression is this:

(explicitly-typed-parameter-list) => { statements }

The => part is new to C# 3 and tells the compiler that we’re using a lambda expres-
sion. Most of the time lambda expressions are used with a delegate type that has a
nonvoid return type—the syntax is slightly less intuitive when there isn’t a result. This
is another indication of the changes in idiom between C# 1 and C# 3. In C# 1, dele-
gates were usually used for events and rarely returned anything. In LINQ they’re usu-
ally used as part of a data pipeline, taking input and returning a result to say what the
projected value is, or whether the item matches the current filter, and so forth.

 With the explicit parameters and statements in braces, this version looks very simi-
lar to an anonymous method. Listing 9.2 is equivalent to listing 9.1 but uses a lambda
expression.

Func<string,int> returnLength;
returnLength = (string text) => { return text.Length; };

Console.WriteLine(returnLength("Hello"));

Again, I’ve used bold to indicate the expression used to create the delegate instance.
When reading lambda expressions, it helps to think of the =>part as “goes to”—so the
example in listing 9.2 could be read as “text goes to text.Length.” As this is the only
part of the listing that’s interesting for a while, I’ll show it alone from now on. You can
replace the bold text from listing 9.2 with any of the lambda expressions listed in this
section and the result will be the same.

Listing 9.1 Using an anonymous method to create a delegate instance

Listing 9.2 A long-winded first lambda expression, similar to an anonymous method
Licensed to Devon Greenway <devon.greenway@gmail.com>

231Lambda expressions as delegates
 The same rules that govern return statements in anonymous methods apply to
lambdas too: you can’t try to return a value from a lambda expression with a void
return type, whereas if there’s a nonvoid return type, every code path has to return a
compatible value.4 It’s all pretty intuitive and rarely gets in the way.

 So far, we haven’t saved much space or made things particularly easy to read. Let’s
start applying the shortcuts.

9.1.3 Using a single expression as the body

The form we’ve seen so far uses a full block of code to return the value. This is flexi-
ble—you can have multiple statements, perform loops, return from different places in
the block, and so on, just as with anonymous methods. But most of the time, you can
easily express the whole of the body in a single expression, the value of which is the
result of the lambda.5 In these cases, you can specify just that expression, without any
braces, return statements, or semicolons. The format then is

(explicitly-typed-parameter-list) => expression

In our case, this means that the lambda expression becomes

(string text) => text.Length

That’s starting to look simpler already. Now, what about that parameter type? The
compiler already knows that instances of Func<string,int> take a single string
parameter, so we should be able to just name that parameter.

9.1.4 Implicitly typed parameter lists

Most of the time, the compiler can guess the parameter types without you explicitly
stating them. In these cases, you can write the lambda expression as

(implicitly-typed-parameter-list) => expression

An implicitly typed parameter list is just a comma-separated list of names, without the
types. You can’t mix and match for different parameters—either the whole list is
explicitly typed, or it’s all implicitly typed. Also, if any of the parameters are out or ref
parameters, you’re forced to use explicit typing. In our case, it’s fine—so our lambda
expression is now just

(text) => text.Length

That’s getting pretty short now—there’s not a lot more we could get rid of. The paren-
theses seem redundant, though.

4 Code paths throwing exceptions don’t need to return a value, of course, and neither do detectable infinite
loops.

5 You can still use this syntax for a delegate with a void return type if you only need one statement. You omit
the semicolon and the braces, basically.
Licensed to Devon Greenway <devon.greenway@gmail.com>

232 CHAPTER 9 Lambda expressions and expression trees
9.1.5 Shortcut for a single parameter

When the lambda expression only needs a single parameter, and that parameter can
be implicitly typed, C# 3 allows us to omit the parentheses, so it now has this form:

parameter-name => expression

The final form of our lambda expression is therefore

text => text.Length

You may be wondering why there are so many special cases with lambda expressions—
none of the rest of the language cares whether a method has one parameter or more,
for instance. Well, what sounds like a particular case actually turns out to be extremely
common, and the improvement in readability from removing the parentheses from
the parameter list can be significant when there are many lambdas in a short piece of
code.

 It’s worth noting that you can put parentheses around the whole lambda expres-
sion if you want to, just like other expressions. Occasionally this helps readability in
the case where you’re assigning the lambda to a variable or property—otherwise, the
equals symbols can get confusing, at least to start with. Most of the time it’s perfectly
readable without any extra syntax at all. Listing 9.3 shows this in the context of our
original code.

Func<string,int> returnLength
returnLength = text => text.Length;

Console.WriteLine(returnLength("Hello"));

At first you may find listing 9.3 confusing to read, in the same way that anonymous
methods appear strange to many developers until they get used to them. When you are
used to lambda expressions, though, you can appreciate how concise they are. It’d be
hard to imagine a shorter, clearer way of creating a delegate instance.6 We could’ve
changed the variable name text to something like x, and in full LINQ that’s often use-
ful, but longer names give a bit more information to the reader.

 I’ve shown this transformation over the course of a few pages, but figure 9.1 makes
it clear just how much extraneous syntax we’ve saved.

 The decision of whether to use the short form for the body of the lambda expres-
sion, specifying just an expression instead of a whole block, is completely independent
from the decision about whether to use explicit or implicit parameters. We happen to
have gone down one route of shortening the lambda, but we could’ve started off by
making the parameters implicit. When you’re comfortable with lambda expressions
you won’t think about this at all—you’ll just write the shortest available form naturally.

Listing 9.3 A concise lambda expression

6 That’s not to say it’s impossible. Some languages allow closures to be represented as simple blocks of code
with a magic variable name to represent the common case of a single parameter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

233Simple examples using List<T> and events
HIGHER-ORDER FUNCTIONS The body of a lambda expression can itself contain
a lambda expression—and this tends to be as confusing as it sounds. Alterna-
tively, the parameter to a lambda expression can be another delegate, which
is just as bad. Both of these are examples of higher-order functions. If you enjoy
feeling dazed and confused, have a look at some of the sample code in the
downloadable source. Although I’m being flippant, this approach is common
in functional programming and can be useful. It just takes a certain degree of
perseverance to get into the right mindset.

So far we’ve only dealt with a single lambda expression, just putting it into different
forms. Let’s look at a few examples to make things more concrete before we examine
the details.

9.2 Simple examples using List<T> and events
When we look at extension methods in chapter 10, we’ll use lambda expressions all
the time. Until then, List<T> and event handlers give us the best examples. We’ll start
off with lists, using automatically implemented properties, implicitly typed local vari-
ables, and collection initializers for the sake of brevity. We’ll then call methods that
take delegate parameters—using lambda expressions to create the delegates, of
course.

9.2.1 Filtering, sorting, and actions on lists

If you remember the FindAll method on List<T>, it takes a Predicate<T> and
returns a new list with all the elements from the original list that match the predicate.
The Sort method takes a Comparison<T> and sorts the list accordingly. Finally, the
ForEach method takes an Action<T> to perform on each element. Listing 9.4 uses
lambda expressions to provide the delegate instance to each of these methods. The

delegate(String text) { return text.Length; }

(String text) => { return text.Length; }

(String text) => text.Length

(text) => text.Length

text => text.Length

Convert to lambda expression

Single-expression: no braces required

Let the compiler infer the parameter type

Remove unnecessary parentheses

Start with an anonymous method

Figure 9.1 Lambda syntax shortcuts
Licensed to Devon Greenway <devon.greenway@gmail.com>

234 CHAPTER 9 Lambda expressions and expression trees
sample data in question is just the name and year of release for various films. We print
out the original list, then create and print out a filtered list of only old films, then sort
and print out the original list, ordered by name. (It’s interesting to consider how
much more code would’ve been required to do the same thing in C# 1.)

class Film
{

public string Name { get; set; }
public int Year { get; set; }

}
...
var films = new List<Film>
{

new Film { Name = "Jaws", Year = 1975 },
new Film { Name = "Singing in the Rain", Year = 1952 },
new Film { Name = "Some Like it Hot", Year = 1959 },
new Film { Name = "The Wizard of Oz", Year = 1939 },
new Film { Name = "It's a Wonderful Life", Year = 1946 },
new Film { Name = "American Beauty", Year = 1999 },
new Film { Name = "High Fidelity", Year = 2000 },
new Film { Name = "The Usual Suspects", Year = 1995 }

};

Action<Film> print =
film => Console.WriteLine("Name={0}, Year={1}",

film.Name, film.Year);

films.ForEach(print);

films.FindAll(film => film.Year < 1960)
.ForEach(print);

films.Sort((f1, f2) => f1.Name.CompareTo(f2.Name));
films.ForEach(print);

The first half of listing 9.4 involves setting up the data. I’ve created a named type just
to make life easier—an anonymous type would’ve meant a few more hoops to jump
through in this particular case.

 Before we use the newly created list, we create a delegate instance B, which we’ll
use to print out the items of the list. We use this delegate instance three times, which is
why I’ve created a variable to hold it rather than using a separate lambda expression
each time. It just prints a single element, but by passing it into List<T>.ForEach we
can dump the whole list to the console. A subtle but important point is that the semi-
colon at the end of this statement is part of the assignment statement, not part of the
lambda expression. If we were using the same lambda expression as an argument in a
method call, there wouldn’t be a semicolon directly after Console.WriteLine(...).

 The first list we print out C is just the original one without any modifications. We
then find all the films in our list that were made before 1960 and print those out D.
This is done with another lambda expression, which is executed for each film in the
list—it only has to determine whether a single film should be included in the filtered

Listing 9.4 Manipulating a list of films using lambda expressions

Creates reusable
list-printing delegate

B

Prints original listC
Creates filtered listD

Sorts original list
Licensed to Devon Greenway <devon.greenway@gmail.com>

235Simple examples using List<T> and events
list. The source code uses the lambda expression as a method argument, but really the
compiler has created a method like this:

private static bool SomeAutoGeneratedName(Film film)
{

return film.Year < 1960;
}

The method call to FindAll is then effectively this:

films.FindAll(new Predicate<Film>(SomeAutoGeneratedName))

The lambda expression support here is just like the anonymous method support in
C# 2; it’s all cleverness on the part of the compiler. (In fact, the Microsoft compiler is
even smarter in this case—it realizes it can get away with reusing the delegate instance
if the code is ever called again, so it caches it.)

 Sorting the list B is also achieved using a lambda expression, which compares any
two films using their names. I have to confess that explicitly calling CompareTo our-
selves is a bit ugly. In the next chapter we’ll see how the OrderBy extension method
allows us to express ordering in a neater way.

 Let’s look at another example, this time using lambda expressions with event
handling.

9.2.2 Logging in an event handler

If you think back to chapter 5, in listing 5.9 we saw an easy way of using anonymous
methods to log which events were occurring—but we could only get away with a com-
pact syntax because we didn’t mind losing the parameter information. What if we
wanted to log both the nature of the event and information about its sender and argu-
ments? Lambda expressions enable this in a neat way, as shown in the following listing.

static void Log(string title, object sender, EventArgs e)
{

Console.WriteLine("Event: {0}", title);
Console.WriteLine(" Sender: {0}", sender);
Console.WriteLine(" Arguments: {0}", e.GetType());
foreach (PropertyDescriptor prop in

TypeDescriptor.GetProperties(e))
{

string name = prop.DisplayName;
object value = prop.GetValue(e);
Console.WriteLine(" {0}={1}", name, value);

}
}
...
Button button = new Button { Text = "Click me" };
button.Click += (src, e) => Log("Click", src, e);
button.KeyPress += (src, e) => Log("KeyPress", src, e);
button.MouseClick += (src, e) => Log("MouseClick", src, e);

Form form = new Form { AutoSize = true, Controls = { button } };
Application.Run(form);

Listing 9.5 Logging events using lambda expressions
Licensed to Devon Greenway <devon.greenway@gmail.com>

236 CHAPTER 9 Lambda expressions and expression trees
Listing 9.5 uses lambda expressions to pass the event name and parameters to the Log
method, which logs details of the event. We don’t log the details of the event source,
beyond whatever its ToString override returns, because an overwhelming amount of
information is associated with controls. But we use reflection over property descrip-
tors to show the details of the EventArgs instance passed to us. Here’s some sample
output when you click the button:

Event: Click
Sender: System.Windows.Forms.Button, Text: Click me
Arguments: System.Windows.Forms.MouseEventArgs

Button=Left
Clicks=1
X=53
Y=17
Delta=0
Location={X=53,Y=17}

Event: MouseClick
Sender: System.Windows.Forms.Button, Text: Click me
Arguments: System.Windows.Forms.MouseEventArgs

Button=Left
Clicks=1
X=53
Y=17
Delta=0
Location={X=53,Y=17}

All of this is possible without lambda expressions, of course—but it’s a lot neater than it
would’ve been otherwise. Now that we’ve seen lambdas being converted into delegate
instances, it’s time to look at expression trees, which represent lambda expressions as
data instead of code.

9.3 Expression trees
The idea of “code as data” is an old one, but it hasn’t been used much in popular pro-
gramming languages. You could argue that all .NET programs use the concept,
because the IL code is treated as data by the JIT, which then converts it into native
code to run on your CPU. That’s deeply hidden though, and although libraries to
manipulate IL programmatically exist, they’re not widely used.

 Expression trees in .NET 3.5 provide an abstract way of representing some code as
a tree of objects. It’s like CodeDOM but operating at a slightly higher level. The pri-
mary use of expression trees is in LINQ, and later in this section we’ll see how crucial
expression trees are to the whole LINQ story.

 C# 3 provides built-in support for converting lambda expressions to expression
trees, but before we cover that, let’s explore how they fit into the .NET Framework
without using any compiler tricks.

9.3.1 Building expression trees programmatically

Expression trees aren’t as mystical as they sound, although some of the uses they’re
put to look like magic. As the name suggests, they’re trees of objects, where each node
Licensed to Devon Greenway <devon.greenway@gmail.com>

237Expression trees
in the tree is an expression in itself. Different types of expressions represent the differ-
ent operations that can be performed in code: binary operations, such as addition;
unary operations, such as taking the length of an array; method calls; constructor
calls; and so forth.

 The System.Linq.Expressions namespace contains the various classes that repre-
sent expressions. All of them derive from the Expression class, which is abstract and
mostly consists of static factory methods to create instances of other expression
classes. It exposes two properties, though:

 The Type property represents the .NET type of the evaluated expression—you
can think of it like a return type. The type of an expression that fetches the
Length property of a string would be int, for example.

 The NodeType property returns the kind of expression represented, as a member
of the ExpressionType enumeration, with values such as LessThan, Multiply,
and Invoke. To use the same example, in myString.Length the property access
part would have a node type of MemberAccess.

There are many classes derived from Expression, and some of them can have many
different node types. BinaryExpression, for instance, represents any operation with
two operands: arithmetic, logic, comparisons, array indexing, and the like. This is
where the NodeType property is important, as it distinguishes between different kinds
of expressions that are represented by the same class.

 I don’t intend to cover every expression class or node type—there are far too many,
and MSDN does a perfectly good job of explaining them (see http://mng.bz/3vW3).
Instead, we’ll try to get a general feel for what you can do with expression trees.

 Let’s start off by creating one of the simplest possible expression trees, adding two
constant integers together. The following listing creates an expression tree to repre-
sent 2+3.

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Console.WriteLine(add);

Running listing 9.6 will produce the output “(2 + 3),” which demonstrates that the var-
ious expression classes override ToString to produce human-readable output.
Figure 9.2 depicts the tree generated by the code.

 It’s worth noting that the leaf expressions are created first in the code: you build
expressions from the bottom up. This is enforced by the fact that expressions are
immutable—once you’ve created an expression, it’ll never change, so you can cache
and reuse expressions at will.

 Now that we’ve built up an expression tree, let’s try to actually execute it.

Listing 9.6 A simple expression tree, adding 2 and 3
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/3vW3

238 CHAPTER 9 Lambda expressions and expression trees
9.3.2 Compiling expression trees into delegates

One of the types derived from Expression is LambdaExpression. The generic class
Expression<TDelegate> then derives from LambdaExpression. It’s all slightly confus-
ing—figure 9.3 shows the type hierarchy to make things clearer.

 The difference between Expression and Expression<TDelegate> is that the
generic class is statically typed to indicate what kind of expression it is, in terms of
return type and parameters. Obviously, this is expressed by the TDelegate type param-
eter, which must be a delegate type. For instance, our simple addition expression takes
no parameters and returns an integer—this is matched by the signature of Func<int>,
so we could use an Expression<Func<int>> to represent the expression in a statically
typed manner. We do this using the Expression.Lambda method. This has a number
of overloads—our examples use the generic method, which uses a type parameter to
indicate the type of delegate we want to represent. See MSDN for alternatives.

 So, what’s the point of doing this? Well, LambdaExpression has a Compile method
that creates a delegate of the appropriate type; Expression<TDelegate> has another
method by the same name, but statically typed to return a delegate of type TDelegate.
This delegate can now be executed in the normal manner, as if it had been created
using a normal method or any other means. Listing 9.7 shows this in action, with the
same expression as before.

firstArg
ConstantExpression NodeType=Constant Type=System.Int32

Value=2

secondArg
ConstantExpression NodeType=Constant Type=System.Int32

Value=3

BinaryExpression
NodeType=Add

Type=System.Int32

Left Right

add

Figure 9.2 Graphical representation of
the expression tree created by listing 9.6

Expression

LambdaExpression

Expression<TDelegate>

BinaryExpression (Other types)

Figure 9.3 Type hierarchy from
Expression<TDelegate> up to Expression
Licensed to Devon Greenway <devon.greenway@gmail.com>

239Expression trees

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Func<int> compiled = Expression.Lambda<Func<int>>(add).Compile();
Console.WriteLine(compiled());

Arguably listing 9.7 is one of the most convoluted ways of printing out “5” that you
could ask for. At the same time, it’s also rather impressive. We’re programmatically
creating some logical blocks and representing them as normal objects, and then ask-
ing the framework to compile the whole thing into real code that can be executed.
You may never need to actually use expression trees this way, or even build them up
programmatically at all, but it’s useful background information that will help you
understand how LINQ works.

 As I said at the beginning of this section, expression trees aren’t too far removed
from CodeDOM—Snippy compiles and executes C# code that has been entered as
plain text, for instance. But two significant differences exist between CodeDOM and
expression trees.

 First, in .NET 3.5 expression trees were only able to represent single expressions.
They weren’t designed for whole classes, methods, or even just statements. This has
changed somewhat in .NET 4, where they’re used to support dynamic typing—you can
now create blocks, assign values to variables, and so on. But there are still significant
restrictions compared with CodeDOM.

 Second, C# supports expression trees directly in the language, through lambda
expressions. Let’s take a look at that now.

9.3.3 Converting C# lambda expressions to expression trees

As we’ve already seen, lambda expressions can be converted to appropriate delegate
instances, either implicitly or explicitly. That’s not the only conversion that’s available.
You can also ask the compiler to build an expression tree from your lambda expres-
sion, creating an instance of Expression<TDelegate> at execution time. For example,
the following listing shows a much shorter way of creating the “return 5” expression,
compiling it, and then invoking the resulting delegate.

Expression<Func<int>> return5 = () => 5;
Func<int> compiled = return5.Compile();
Console.WriteLine(compiled());

In the first line of listing 9.8, the () => 5 part is the lambda expression. Note that we
don’t need any casts because the compiler can verify everything as it goes. We could’ve
written 2+3 instead of 5, but the compiler would’ve optimized the addition away for
us. The important point to take away is that the lambda expression has been con-
verted into an expression tree.

Listing 9.7 Compiling and executing an expression tree

Listing 9.8 Using lambda expressions to create expression trees
Licensed to Devon Greenway <devon.greenway@gmail.com>

240 CHAPTER 9 Lambda expressions and expression trees
THERE ARE LIMITATIONS Not all lambda expressions can be converted to
expression trees. You can’t convert a lambda with a block of statements (even
just one return statement) into an expression tree—it has to be in the form
that just evaluates a single expression. That expression can’t contain assign-
ments, either. Although these are the most common restrictions, they’re not
the only ones—the full list isn’t worth describing here, as this issue comes up
so rarely. If there’s a problem with an attempted conversion, you’ll find out at
compile time.

The restriction about only converting single expressions applies even in
.NET 4 with its extended abilities for expression trees. It’s possible that a
future version of C# will be more permissive about what kind of lambda
expressions can be converted, but nothing has been announced at the time of
this writing.

Let’s look at a more complicated example just to see how things work, particularly
with respect to parameters. This time we’ll write a predicate that takes two strings and
checks to see if the first one begins with the second. The code is simple when written
as a lambda expression, as shown in the following listing.

Expression<Func<string, string, bool>> expression =
(x, y) => x.StartsWith(y);

var compiled = expression.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

The expression tree itself is more complicated, especially by the time we’ve con-
verted it into an instance of LambdaExpression. The next listing shows how it could
be built in code.

MethodInfo method = typeof(string).GetMethod
("StartsWith", new[] { typeof(string) });

var target = Expression.Parameter(typeof(string), "x");
var methodArg = Expression.Parameter(typeof(string), "y");
Expression[] methodArgs = new[] { methodArg };

Expression call = Expression.Call(target, method, methodArgs);

var lambdaParameters = new[] { target, methodArg };
var lambda = Expression.Lambda<Func<string, string, bool>>

(call, lambdaParameters);

var compiled = lambda.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

As you can see, listing 9.10 is considerably more involved than the version with the C#
lambda expression. But it does make it more obvious exactly what’s involved in the

Listing 9.9 Demonstration of a more complicated expression tree

Listing 9.10 Building a method call expression tree in code

Builds up
parts of
method call

B

Creates
CallExpression
from partsC

D
Converts call into

LambdaExpression
Licensed to Devon Greenway <devon.greenway@gmail.com>

241Expression trees
tree and how parameters are bound. We start off by working out everything we need
to know about the method call that forms the body of the final expression B: the tar-
get of the method (in other words, the string we’re calling StartsWith on); the
method itself (as a MethodInfo); and the list of arguments (in this case, just the one).
It so happens that our method target and argument will both be parameters passed
into the expression, but they could be other types of expressions—constants, the
results of other method calls, property evaluations, and so forth.

 After building the method call as an expression C, we then need to convert it into
a lambda expression D, binding the parameters as we go. We reuse the same
ParameterExpression values we created as information for the method call: the order
in which they’re specified when creating the lambda expression is the order in which
they’ll be picked up when we eventually call the delegate.

 Figure 9.4 shows the same final expression tree graphically. To be picky, even
though it’s still called an expression tree, the fact that we reuse the parameter expres-
sions (and we have to—creating a new one with the same name and attempting to
bind parameters that way causes an exception at execution time) means that it’s not
really a tree in the purest sense.

 Glancing at the complexity of figure 9.4 and listing 9.10 without trying to look at
the details, you’d be forgiven for thinking that we were doing something really

method

MethodInfo for
string.StartsWith(string)

target

ParameterExpression
NodeType=Parameter
Type=System.String

Name="x"

call

MethodCallExpression
NodeType=Call

Type=System.Boolean

Method Object

methodArgs

Collection of
Expressions

Arguments

methodArg

ParameterExpression
NodeType=Parameter
Type=System.String

Name="y"

lambda

Expression<T>
NodeType=Lambda

Type=System.Boolean

Body

lambdaParameters

Collection of
ParameterExpressions

Parameters

(Contains)

(Contains)

(Contains)

Figure 9.4 Graphical representation of
expression tree that calls a method and uses
parameters from a lambda expression
Licensed to Devon Greenway <devon.greenway@gmail.com>

242 CHAPTER 9 Lambda expressions and expression trees
complicated when in fact it’s just a single method call. Imagine what the expression
tree for a genuinely complex expression would look like—and then be grateful that
C# 3 can create expression trees from lambda expressions!

 For one final way of looking at the same idea, Visual Studio 2010 provides a built-in
visualizer for expression trees.7 This can be useful if you’re trying to work out how to
build up an expression tree in code, and want to get an idea of what it should look
like: write a lambda expression that does what you want with some dummy data, look
at the visualization in the debugger, and then work out how to build similar trees with
the information you have in your real code. The visualizer relies on changes within
.NET 4, so it won’t work with projects targeting .NET 3.5. Figure 9.5 shows the visualiza-
tion for our “StartsWith” example.

 The .Lambda and .Call parts of the visualization correspond to our calls to
Expression.Lambda and Expression.Call; $x and $y correspond to the parameter
expressions. The visualization is the same whether the expression tree has been built
up explicitly through code or using a lambda expression conversion.

 One small point to note is that although the C# compiler builds expression trees in
the compiled code using code similar to listing 9.10, it has one shortcut up its sleeve: it
doesn’t need to use normal reflection to get the MethodInfo for string.StartsWith.
Instead, it uses the method equivalent of the typeof operator. This is only available in
IL, not in C# itself—and the same operator is also used to create delegate instances
from method groups.

 Now that we’ve seen how expression trees and lambda expressions are linked, let’s
take a brief look at why they’re so useful.

9.3.4 Expression trees at the heart of LINQ

Without lambda expressions, expression trees would have relatively little value.
They’d be an alternative to CodeDOM in cases where you only wanted to model a

7 If you’re using Visual Studio 2008, you can download some sample code to build a similar visualizer (see
http://mng.bz/g6xd), but obviously it’s easier to use the one shipped with Visual Studio 2010 if you have it.

Figure 9.5 Debugger
visualization of an
expression tree
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/g6xd

243Expression trees
single expression instead of whole statements, methods, types, and so forth—but the
benefit would still be limited.

 The reverse is also true to a limited extent: without expression trees, lambda
expressions would certainly be less useful. Having a more compact way of creating del-
egate instances would still be welcome, and the shift toward a more functional mode
of development would still be viable. Lambda expressions are particularly effective
when combined with extension methods, as we’ll see in the next chapter. But with
expression trees in the picture as well, things get a lot more interesting.

 So what do we get by combining lambda expressions, expression trees, and exten-
sion methods? The answer is the language side of LINQ, pretty much. The extra syntax
we’ll see in chapter 11 is icing on the cake, but the story would still have been compel-
ling with just those three ingredients. For a long time we could have either nice
compile-time checking or the ability to tell another platform to run some code, usually
expressed as text (SQL queries being the most obvious example). We couldn’t do both
at the same time.

 By combining lambda expressions that provide compile-time checks and expres-
sion trees that abstract the execution model away from the desired logic, we can have
the best of both worlds—within reason. At the heart of out-of-process LINQ providers
is the idea that we can produce an expression tree from a familiar source language
(C# in our case) and use the result as an intermediate format that can then be con-
verted into the native language of the target platform: SQL, for example. In some
cases there may not be a simple native language so much as a native API—making dif-
ferent web service calls depending on what the expression represents, perhaps.
Figure 9.6 shows the different paths of LINQ to Objects and LINQ to SQL.

 In some cases the conversion may try to perform all the logic on the target plat-
form, whereas other cases may use the compilation facilities of expression trees to

Query results

C# compiler

LINQ to SQL provider

Executed at database
and fetched back

Query results

C# compiler

Delegate code
executed directly

in the CLR

LINQ to Objects LINQ to SQL

Compile time

Execution time

C# compiler

C# query code with
lambda expressions

C# compiler

C# query code with
lambda expressions

IL using
expression trees

E t d t

Dynamic SQL

IL using
delegates

Figure 9.6 Both LINQ
to Objects and LINQ to
SQL start with C#
code and end with
query results. The
ability to execute
the code remotely
comes through
expression trees.
Licensed to Devon Greenway <devon.greenway@gmail.com>

244 CHAPTER 9 Lambda expressions and expression trees
execute some of the expression locally and some elsewhere. We’ll look at some of the
details of this conversion step in chapter 12, but you should bear this end goal in mind
as we explore extension methods and LINQ syntax in chapters 10 and 11.

NOT ALL CHECKING CAN BE DONE BY THE COMPILER When expression trees are
examined by some sort of converter, often some cases have to be rejected. For
instance, although it’s possible to convert a call to string.StartsWith into a
similar SQL expression, a call to string.IsInterned doesn’t make sense in a
database environment. Expression trees allow a large amount of compile-time
safety, but the compiler can only check that the lambda expression can be
converted into a valid expression tree; it can’t make sure that the expression
tree will be suitable for its eventual use.

Though the most common uses of expression trees are related to LINQ, that’s not
always the case...

9.3.5 Expression trees beyond LINQ

Bjarne Stroustrup once said, “I wouldn’t like to build a tool that could only do what I
had been able to imagine for it.” Though expression trees were introduced into .NET
primarily for LINQ, both the community and Microsoft have found other uses for
them since then. This section is far from comprehensive, but it might give you a few
ideas of where expression trees might help you.

OPTIMIZING THE DYNAMIC LANGUAGE RUNTIME

We’re going to see a lot more of the Dynamic Language Runtime (DLR) in chapter 14,
when we talk about dynamic typing in C#, but expression trees are a core part of the
architecture. They have three properties that make them attractive to the DLR:

 They’re immutable, so you can cache them safely.
 They’re composable, so you can build complex behavior out of simple building

blocks.
 They can be compiled into delegates that are JIT-compiled into native code as

normal.

The DLR has to make decisions about how to handle various expressions where the
meaning can change subtly based on different rules. Expression trees allow these rules
(and the results) to be transformed into code that’s close to what you’d write by hand
if you knew all the rules and results you’d seen so far. It’s a powerful concept, and one
that allows dynamic code to execute surprisingly quickly.

REFACTOR-PROOF REFERENCES TO MEMBERS

In section 9.3.3 I mentioned that the compiler can emit references to MethodInfo val-
ues in a similar way to the typeof operator. Unfortunately, C# doesn’t have the same
ability, which means the only way of telling one piece of general-purpose, reflection-
based code to “use the property called BirthDate defined in my type” has previously
been to use a string literal and make sure that if you change the name of the property,
Licensed to Devon Greenway <devon.greenway@gmail.com>

245Expression trees
you also change the literal. Using C# 3, you can build an expression tree representing
a property reference using a lambda expression. The method can then dissect the
expression tree and work out the property you mean. It could then do whatever it liked
with the information—as well as compiling the expression tree into a delegate and
using it directly, of course. As an example of how this might be used, you could write

serializationContext.AddProperty(x => x.BirthDate);

The serialization context would then know that you wanted to serialize the BirthDate
property, and it could record appropriate metadata as well as retrieve the value. Serial-
ization is just one area where you may want a property or method reference; it’s fairly
common within reflection-driven code. Now if you refactor the BirthDate property to
call it DateOfBirth, the lambda expression will change too. Of course, it’s not fool-
proof—there’s no compile-time check that the expression really evaluates a simple
property; that has to be an execution-time check in the AddProperty code.

 It’s possible that one day C# will gain the ability to do this within the language
itself. Such an operator has already been named: infoof, pronounced either “info-of”
or “in-foof” depending on your level of light-heartedness. This has been on the C#
team’s possible-feature list for a while, and unsurprisingly Eric Lippert has blogged
about it (see http://mng.bz/24y7)—but it hasn’t made the cut yet. Maybe in C# 5.

SIMPLER REFLECTION

The final use I want to mention before we delve into the murky depths of type infer-
ence is also about reflection. As I mentioned in chapter 3, arithmetic operators don’t
play nicely with generics, which makes it hard to write generic code to (say) add up a
series of values. Marc Gravell used expression trees to great effect to provide a generic
Operator class and a nongeneric helper class allowing you to write code such as

T runningTotal = initialValue;
foreach (T item in values)
{

runningTotal = Operator.Add(runningTotal, values);
}

This will even work in cases where the values are a different type than the running
total—adding a whole sequence of TimeSpan values to a DateTime, for example. It’s
possible to do this in C# 2, but it’s significantly more fiddly due to the ways that opera-
tors are exposed via reflection, particularly for the primitive types. Expression trees
allow the implementation of this magic to be quite clean, and the fact that they’re
compiled to normal IL which is then JIT compiled gives great performance.

 These are just some examples, and no doubt there are many developers busy work-
ing on completely different uses. But they mark an end to our direct coverage of
lambda expressions and expression trees. We’ll see a good deal more of them when
we look at LINQ, but before we go any further there are a few changes to C# that need
some explanation. These are changes to type inference and how the compiler selects
between overloaded methods.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/24y7

246 CHAPTER 9 Lambda expressions and expression trees
9.4 Changes to type inference and overload resolution
The steps involved in type inference and overload resolution were altered in C# 3 to
accommodate lambda expressions and to make anonymous methods more useful.
This may not count as a new feature of C# as such, but it can be important to under-
stand what the compiler is going to do. If you find details like this tedious and irrele-
vant, feel free to skip to the chapter summary—but remember that this section exists,
so you can read it if you run across a compilation error related to this topic and can’t
understand why your code doesn’t work. (Alternatively, you might want to come back
to this section if you find your code does compile, but you don’t think it should!)

 Even within this section I’m not going to go into every nook and cranny—that’s
what the language specification is for; the details are in section 7.5.2 of the C# 4 spec.
Instead, I’ll give an overview of the new behavior, providing examples of common
cases. The primary reason for changing the specification is to allow lambda expres-
sions to work in a concise fashion, which is why I’ve included the topic in this particu-
lar chapter. Let’s look a little deeper at what problems we’d have run into if the C#
team had stuck with the old rules.

9.4.1 Reasons for change: streamlining generic method calls

Type inference occurs in a few situations. We’ve already seen it apply to implicitly
typed arrays, and it’s also required when you try to implicitly convert a method group
to a delegate type. This can be particularly confusing when the conversion occurs
when you’re using a method group as an argument to another method: with overload-
ing of the method being called, and overloading of methods within the method
group, and the possibility of generic methods getting involved, the set of potential
conversions may be enormous.

 By far the most common situation for type inference is when you’re calling a
generic method without specifying any type arguments. This happens all the time in
LINQ—the way that query expressions work depends heavily on this ability. It’s all han-
dled so smoothly that it’s easy to ignore how much the compiler has to work out on
your behalf, all for the sake of making your code clearer and more concise.

 The rules were reasonably straightforward in C# 2, although method groups and
anonymous methods weren’t always handled as well as we might’ve liked. The type
inference process didn’t deduce any information from them, leading to situations
where the desired behavior was obvious to developers but not to the compiler. Life is
more complicated in C# 3 due to lambda expressions—if you call a generic method
using a lambda expression with an implicitly typed parameter list, the compiler needs
to work out what types you’re talking about before it can check the lambda expres-
sion’s body.

 This is much easier to see in code than in words. Listing 9.11 gives an example of
the kind of issue we want to solve: calling a generic method using a lambda expression.
Licensed to Devon Greenway <devon.greenway@gmail.com>

247Changes to type inference and overload resolution

static void PrintConvertedValue<TInput,TOutput>
(TInput input, Converter<TInput,TOutput> converter)

{
Console.WriteLine(converter(input));

}
...
PrintConvertedValue("I'm a string", x => x.Length);

The method PrintConvertedValue in listing 9.11 simply takes an input value and a
delegate that can convert that value into a different type. It’s completely generic—it
makes no assumptions about the type parameters TInput and TOutput. Now, look at
the types of the arguments we’re calling it with in the bottom line of the listing. The
first argument is clearly a string, but what about the second? It’s a lambda expression,
so we need to convert it into a Converter<TInput,TOutput>—and that means we
need to know the types of TInput and TOutput.

 If you remember from section 3.3.2, the type inference rules of C# 2 were applied
to each argument individually, with no way of using the types inferred from one argu-
ment to another. In our case, these rules would’ve stopped us from finding the types
of TInput and TOutput for the second argument, so the code in listing 9.11 would’ve
failed to compile.

 Our eventual goal is to understand what makes listing 9.11 compile in C# 3 (and it
does, I promise you), but we’ll start with something more modest.

9.4.2 Inferred return types of anonymous functions

The following listing shows another example of some code that looks like it should
compile but doesn’t under the type inference rules of C# 2.

delegate T MyFunc<T>();

static void WriteResult<T>(MyFunc<T> function)
{

Console.WriteLine(function());
}
...
WriteResult(delegate { return 5; });

Compiling listing 9.12 under C# 2 gives an error like this:

error CS0411: The type arguments for method
'Snippet.WriteResult<T>(Snippet.MyFunc<T>)' cannot be inferred from the
usage. Try specifying the type arguments explicitly.

We can fix the error in two ways—either specify the type argument explicitly (as sug-
gested by the compiler) or cast the anonymous method to a concrete delegate type:

WriteResult<int>(delegate { return 5; });

WriteResult((MyFunc<int>)delegate { return 5; });

Listing 9.11 Example of code requiring the new type inference rules

Listing 9.12 Attempting to infer the return type of an anonymous method

Declares
delegate type:
Func<T> isn't
in .NET 2.0

Declares
generic
method with
delegate
parameter

Requires
type
inference
for T
Licensed to Devon Greenway <devon.greenway@gmail.com>

248 CHAPTER 9 Lambda expressions and expression trees
Both of these work, but they’re ugly. We’d like the compiler to perform the same kind
of type inference as for nondelegate types, using the type of the returned expression
to infer the type of T. That’s exactly what C# 3 does for both anonymous methods and
lambda expressions—but there’s one catch. Although in many cases only one return
statement is involved, there can sometimes be more. The following listing is a slightly
modified version of listing 9.12 where the anonymous method sometimes returns an
integer and sometimes returns an object.

delegate T MyFunc<T>();

static void WriteResult<T>(MyFunc<T> function)
{

Console.WriteLine(function());
}
...
WriteResult(delegate
{

if (DateTime.Now.Hour < 12)
{

return 10;
}
else
{

return new object();
}

});

The compiler uses the same logic to determine the return type in this situation as it
does for implicitly typed arrays, as described in section 8.4. It forms a set of all the
types from the return statements in the body of the anonymous function8 (in this case
int and object) and checks to see if exactly one of the types can be implicitly con-
verted to from all the others. There’s an implicit conversion from int to object (via
boxing) but not from object to int, so the inference succeeds with object as the
inferred return type. If there are no types matching that criterion (or more than one),
no return type can be inferred and you’ll get a compilation error.

 So, now we know how to work out the return type of an anonymous function—but
what about lambda expressions where the parameter types can be implicitly defined?

9.4.3 Two-phase type inference

The details of type inference in C# 3 are much more complicated than they are for
C# 2. It’s rare that you’ll need to reference the specification for the exact behavior,
but if you do I recommend you write down all the type parameters, arguments, and so
forth on a piece of paper, and then follow the specification step by step, carefully

Listing 9.13 Code returning an integer or an object depending on the time of day

8 Returned expressions that don’t have a type, such as null or another lambda expression, aren’t included in
this set. Their validity is checked later, once a return type has been determined, but they don’t contribute to
that decision.

Return type is int

Return type is object
Licensed to Devon Greenway <devon.greenway@gmail.com>

249Changes to type inference and overload resolution
noting down every action it requires. You’ll end up with a sheet full of fixed and unfixed
type variables, with a different set of bounds for each of them. A fixed type variable is
one that the compiler has decided the value of; otherwise it’s unfixed. A bound is a
piece of information about a type variable. In addition to a bunch of notes, I suspect
you’ll get a headache; this stuff isn’t pretty.

 I’m going to present a more fuzzy way of thinking about type inference—one
that’s likely to serve just as well as knowing the specification, and will be a lot easier to
understand. The fact is, if the compiler doesn’t perform type inference in exactly the
way you want it to, it’ll almost certainly result in a compilation error rather than code
that builds but doesn’t behave properly. If your code doesn’t build, try giving the
compiler more information—it’s as simple as that. But here’s roughly what’s changed
for C# 3.

 The first big difference is that the method arguments work as a team in C# 3. In
C# 2 every argument was used to try to pin down some type parameters exactly, and the
compiler would complain if any two arguments came up with different results for a par-
ticular type parameter, even if they were compatible. In C# 3, arguments can contrib-
ute pieces of information—types that must be implicitly convertible to the final fixed
value of a particular type variable. The logic used to come up with that fixed value is
the same as for inferred return types and implicitly typed arrays. The following listing
shows an example of this—without using any lambda expressions or even anonymous
methods.

static void PrintType<T>(T first, T second)
{

Console.WriteLine(typeof(T));
}
...
PrintType(1, new object());

Although the code in listing 9.14 is syntactically valid in C# 2, it wouldn’t build: type
inference would fail, because the first parameter would decide that T must be int and
the second parameter would decide that T must be object. In C# 3 the compiler
determines that T should be object in exactly the same way that it did for the inferred
return type in listing 9.13. In fact, the inferred return type rules are effectively one
example of the more general process in C# 3.

 The second change is that type inference is now performed in two phases. The first
phase deals with normal arguments where the types involved are known to begin with.
This includes anonymous functions where the parameter list is explicitly typed.

 The second phase then kicks in, where implicitly typed lambda expressions and
method groups have their types inferred. The idea is to see whether any of the infor-
mation we’ve pieced together so far is enough to work out the parameter types of the
lambda expression (or method group). If it is, the compiler can then examine the
body of the lambda expression and work out the inferred return type—which is often
another of the type parameters we’re looking for. If the second phase gives some

Listing 9.14 Flexible type inference combining information from multiple arguments
Licensed to Devon Greenway <devon.greenway@gmail.com>

250 CHAPTER 9 Lambda expressions and expression trees
more information, we go through it again, repeating until either we run out of clues
or we’ve worked out all the type parameters involved. Figure 9.7 shows this in flow
chart form—but please bear in mind that this is still a heavily simplified version of
the algorithm.

 Let’s look at two examples to show how it works. First we’ll take the code we started
the section with—listing 9.11.

static void PrintConvertedValue<TInput,TOutput>
(TInput input, Converter<TInput,TOutput> converter)

{
Console.WriteLine(converter(input));

}
...
PrintConvertedValue("I'm a string", x => x.Length);

Are there any
unfixed type
variables left?

Finished:
type inference

succeeded

Finished: type
inference failed
(compile error)

No

No

Yes

Yes

Phase 1

Phase 2

s

Have we made
any progress
this iteration?

Infer information
from explicitly

typed arguments

Fix type variables
which don't depend on

anything still being decided

Infer more information
based on newly fixed

type parameters

Figure 9.7 The two-phase
type inference flow
Licensed to Devon Greenway <devon.greenway@gmail.com>

251Changes to type inference and overload resolution
The type parameters we need to work out in listing 9.11 are TInput and TOutput. The
steps performed are as follows:

1 Phase 1 begins.
2 The first parameter is of type TInput, and the first argument is of type string.

We infer that there must be an implicit conversion from string to TInput.
3 The second parameter is of type Converter<TInput,TOutput>, and the second

argument is an implicitly typed lambda expression. No inference is per-
formed—we don’t have enough information.

4 Phase 2 begins.
5 TInput doesn’t depend on any unfixed type parameters, so it’s fixed to string.
6 The second argument now has a fixed input type, but an unfixed output type. We

can consider it to be (string x) => x.Length and infer the return type as int.
Therefore an implicit conversion must take place from int to TOutput.

7 Phase 2 repeats.
8 TOutput doesn’t depend on anything unfixed, so it’s fixed to int.
9 There are now no unfixed type parameters, so inference succeeds.

Complicated, eh? Still, it does the job—the result is what we’d want (TInput=string,
TOutput=int) and everything compiles without any problems. The importance of
phase 2 repeating is best shown with another example. Listing 9.15 shows two conver-
sions being performed, with the output of the first one becoming the input of the sec-
ond. Until we’ve worked out the output type of the first conversion, we don’t know the
input type of the second, so we can’t infer its output type either.

static void ConvertTwice<TInput,TMiddle,TOutput>
(TInput input,
Converter<TInput,TMiddle> firstConversion,
Converter<TMiddle,TOutput> secondConversion)

{
TMiddle middle = firstConversion(input);
TOutput output = secondConversion(middle);
Console.WriteLine(output);

}
...
ConvertTwice("Another string",

text => text.Length,
length => Math.Sqrt(length));

The first thing to notice is that the method signature appears to be pretty horrific. It’s
not too bad when you stop being scared and just look at it carefully—and certainly the
example usage makes it more obvious. We take a string and perform a conversion on
it: the same conversion as before, just a length calculation. We then take that length
(an int) and find its square root (a double).

 Phase 1 of type inference tells the compiler that there must be a conversion from
string to TInput. The first time through phase 2, TInput is fixed to string and we

Listing 9.15 Multistage type inference
Licensed to Devon Greenway <devon.greenway@gmail.com>

252 CHAPTER 9 Lambda expressions and expression trees
infer that there must be a conversion from int to TMiddle. The second time through
phase 2, TMiddle is fixed to int and we infer that there must be a conversion from
double to TOutput. The third time through phase 2, TOutput is fixed to double and
type inference succeeds. When type inference has finished, the compiler can look at
the code within the lambda expression properly.

CHECKING THE BODY OF A LAMBDA EXPRESSION The body of a lambda expres-
sion cannot be checked until the input parameter types are known. The lambda
expression x => x.Length is valid if x is an array or a string, but invalid in
many other cases. This isn’t a problem when the parameter types are explic-
itly declared, but with an implicit parameter list the compiler needs to wait
until it’s performed the relevant type inference before it can try to work out
what the lambda expression means.

These examples have shown only one change working at a time—in practice there can
be several pieces of information about different type variables, potentially discovered
in different iterations of the process. In an effort to save your sanity (and mine), I’m
not going to present any more complicated examples—hopefully you understand the
general mechanism, even if the exact details are hazy.

 Although it may seem as if this kind of situation will occur so rarely that it’s not
worth having such complex rules to cover it, in fact it’s common in C# 3, particularly
with LINQ. You could easily use type inference extensively without even thinking
about it—it’s likely to become second nature to you. If it fails and you wonder why, you
can always revisit this section and the language specification.

 We need to cover one more change, but you’ll be glad to hear it’s easier than type
inference: let's look at method overloading.

9.4.4 Picking the right overloaded method

Overloading occurs when there are multiple methods available with the same name
but different signatures. Sometimes it’s obvious which method is appropriate, because
it’s the only one with the right number of parameters, or it’s the only one where all
the arguments can be converted into the corresponding parameter types.

 The tricky bit comes when there are multiple methods that could be the right one.
The rules in section 7.5.3 of the specification are quite complicated (yes, again)—but
the key part is the way that each argument type is converted into the parameter type.9

For instance, consider these method signatures, as if they were both declared in the
same type:

void Write(int x)
void Write(double y)

The meaning of a call to Write(1.5) is obvious, because there’s no implicit conversion
from double to int, but a call to Write(1) is trickier. There is an implicit conversion

9 I’m assuming that all the methods are declared in the same class. When inheritance is involved as well, it
becomes even more complicated. That aspect hasn’t changed in C# 3, though.
Licensed to Devon Greenway <devon.greenway@gmail.com>

253Changes to type inference and overload resolution
from int to double, so both methods are possible. At that point, the compiler consid-
ers the conversion from int to int, and from int to double. A conversion from any
type to itself is defined to be better than any conversion to a different type, so the
Write(int x) method is better than Write(double y) for this particular call.

 When there are multiple parameters, the compiler has to make sure there’s a best
method to use. One method is better than another if all the argument conversions
involved are at least as good as the corresponding conversions in the other method, and
at least one conversion is strictly better. As a simple example, suppose we had

void Write(int x, double y)
void Write(double x, int y)

A call to Write(1, 1) would be ambiguous, and the compiler would force you to add
a cast to at least one of the parameters to make it clear which method you meant to
call. Each overload has one better argument conversion, so neither of them is the best
method.

 That logic still applies to C# 3, but with one extra rule about anonymous functions,
which never specify a return type. In this case, the inferred return type (as described
in section 9.4.2) is used in the better-conversion rules.

 Let’s see an example of the kind of situation that needs the new rule. The follow-
ing listing contains two methods with the name Execute, and a call using a lambda
expression.

static void Execute(Func<int> action)
{

Console.WriteLine("action returns an int: " + action());
}
static void Execute(Func<double> action)
{

Console.WriteLine("action returns a double: " + action());
}
...

Execute(() => 1);

The call to Execute in listing 9.16 could’ve been written with an anonymous method
or a method group instead—the same rules are applied whatever kind of conversion is
involved. So, which Execute method should be called? The overloading rules say that
when two methods are both applicable after performing conversions on the argu-
ments, those argument conversions are examined to see which one is better. The con-
versions here aren’t from a normal .NET type to the parameter type—they’re from a
lambda expression to two different delegate types. So, which conversion is better?

 Surprisingly enough, the same situation in C# 2 would result in a compilation
error—there was no language rule covering this case. In C# 3, the method with the
Func<int> parameter would be chosen. The extra rule that has been added can be
paraphrased this way:

Listing 9.16 Sample of overloading choice influenced by delegate return type
Licensed to Devon Greenway <devon.greenway@gmail.com>

254 CHAPTER 9 Lambda expressions and expression trees
If an anonymous function can be converted to two delegate types that have the same
parameter list but different return types, then the delegate conversions are judged by the
conversions from the inferred return type to the delegates’ return types.

That’s pretty much gibberish without referring to an example. Let’s look back at list-
ing 9.16: we’re converting from a lambda expression with no parameters and an
inferred return type of int to either Func<int> or Func<double>. The parameter lists
are the same (empty) for both delegate types, so the rule applies. We then just need to
find the better conversion: int to int, or int to double. This puts us in more familiar
territory—as we saw earlier, the int to int conversion is better. Listing 9.16 therefore
prints out “action returns an int: 1.”

9.4.5 Wrapping up type inference and overload resolution

This section has been pretty heavy. I would’ve loved to have made it simpler—but it’s a
fundamentally complicated topic. The terminology involved doesn’t make it any eas-
ier, especially as parameter type and type parameter mean completely different things!
Congratulations if you made it through and actually understood it all. Don’t worry if
you didn’t: hopefully next time you read through the section, it’ll shed more light on
the topic—particularly after you’ve run into situations where it’s relevant to your own
code. For the moment, here are the most important points:

 Anonymous functions (anonymous methods and lambda expressions) have
inferred return types based on the types of all the return statements.

 Lambda expressions can only be understood by the compiler when the types of
all the parameters are known.

 Type inference no longer requires that each argument independently come to
exactly the same conclusion about type parameters, as long as the results stay
compatible.

 Type inference is now multistage: the inferred return type of one anonymous
function may be used as a parameter type for another.

 Finding the best overloaded method when anonymous functions are involved
takes the inferred return type into account.

9.5 Summary
In C# 3, lambda expressions almost entirely replace anonymous methods. Of course,
anonymous methods are supported for the sake of backward compatibility, but idiom-
atic, freshly written C# 3 code will contain few of them.

 We’ve seen how lambda expressions are more than just a more compact syntax for
delegate creation. They can be converted into expression trees, subject to some limita-
tions. The expression trees can then be processed by other code, possibly performing
equivalent actions in different execution environments. Without this ability, LINQ
would be resticted to in-process queries.
Licensed to Devon Greenway <devon.greenway@gmail.com>

255Summary
 Our discussion of type inference and overloading was a necessary evil to some
extent: very few people actually enjoy discussing the sort of rules that are required, but
it’s important to have at least a passing understanding of what’s going on. Before we
all feel too sorry for ourselves, spare a thought for the poor language designers who
have to live and breathe this kind of thing, making sure the rules are consistent and
don’t fall apart in nasty situations. Then pity the testers who have to try to break the
implementation!

 That’s it in terms of describing lambda expressions—but we’ll be seeing a lot more
of them in the rest of the book. For instance, our next chapter is all about extension
methods. Superficially, they’re completely separate from lambda expressions—but in
reality the two features are often used together.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Extension methods
I’m not a fan of inheritance. Or rather, I’m not a fan of a number of places where
inheritance has been used in code that I’ve maintained, or class libraries I’ve
worked with. As with so many things, it’s powerful when used properly, but its
design overhead is often overlooked and can become painful over time. It’s some-
times used as a way of adding extra behavior and functionality to a class, even
when no real information is being added about the object—where nothing is
being specialized.

 Sometimes that’s appropriate—if objects of the new type should carry around
the details of the extra behavior—but often it’s not. Often it’s just not possible to
use inheritance in this way in the first place, if you’re working with a value type, a
sealed class, or an interface. The alternative is usually to write a bunch of static
methods, most of which take an instance of the type in question as at least one of

This chapter covers
 Writing extension methods

 Calling extension methods

 Method chaining

 Extension methods in .NET 3.5

 Other uses for extension methods
256

Licensed to Devon Greenway <devon.greenway@gmail.com>

257Life before extension methods
their parameters. This works fine, without the design penalty of inheritance, but it
does tend to make code look ugly.

 C# 3 introduced the idea of extension methods, which have the benefits of the static
methods solution and also improve the readability of code that calls them. They let
you call static methods as if they were instance methods of a completely different class.
Don’t panic—it’s not as crazy or as arbitrary as it sounds.

 In this chapter we’ll first look at how to use extension methods and how to write
them. We’ll then examine a few of the extension methods provided by .NET 3.5, and
see how they can be chained together easily. This chaining ability is an important part
of the reason for introducing extension methods to the language in the first place,
and is an important part of LINQ.1 Finally, we’ll consider some of the pros and cons of
using extension methods instead of plain static methods.

 First, though, let’s have a closer look at why extension methods are sometimes
desirable compared with what’s available in C# 1 and 2, particularly when you create
utility classes.

10.1 Life before extension methods
You may be getting a sense of déjà vu at this point, because utility classes came up in
chapter 7 when we looked at static classes. If you’ve written a lot of C# 2 code by the
time you start using C# 3, you should look at your static classes—many of the meth-
ods in them may be good candidates for turning into extension methods. That’s not
to say that all existing static classes are a good fit, but you may well recognize the fol-
lowing traits:

 You want to add some members to a type.
 You don’t need to add any more data to the instances of the type.
 You can’t change the type itself, because it’s in someone else’s code.

One slight variation on this is where you want to work with an interface instead of a
class, adding useful behavior while only calling methods on the interface. A good
example of this is IList<T>. Wouldn’t it be nice to be able to sort any (mutable)
implementation of IList<T>? It’d be horrendous to force all implementations of the
interface to implement sorting themselves, but it’d be nice from the point of view of
the user of the list.

 The thing is, IList<T> provides all the building blocks for a completely generic
sort routine (several, in fact), but you can’t put that implementation in the interface.
IList<T> could’ve been specified as an abstract class instead, and the sorting func-
tionality included that way, but as C# and .NET have single inheritance of implementa-
tion, that would’ve placed a significant restriction on the types deriving from it.

1 If you’re getting fed up with hearing about how many features are “an important part of LINQ,” I don’t blame
you—but that’s part of its greatness. There are lots of small parts, but the sum of them is very shiny. The fact
that each feature can be used independently is an added bonus.
Licensed to Devon Greenway <devon.greenway@gmail.com>

258 CHAPTER 10 Extension methods
Extension methods would allow us to sort any IList<T> implementation, making it
appear as if the list itself provided the functionality.

 We’ll see later that a lot of the functionality of LINQ is built on extension methods
over interfaces. For the moment, we’ll use a different type for our examples: System.
IO.Stream, the bedrock of binary communication in .NET. Stream itself is an abstract
class with several concrete derived classes, such as NetworkStream, FileStream, and
MemoryStream. Unfortunately, there are a few pieces of functionality that would’ve
been handy to include in Stream but that just aren’t there.

 The missing features I'm most often aware of are the ability to read the whole of a
stream into memory as a byte array, and the ability to copy2 the contents of one
stream into another. Both of these are frequently implemented badly, making assump-
tions about streams that just aren’t valid—the most common misconception being
that Stream.Read will completely fill the given buffer if the data doesn’t run out first.

NOT SO “MISSING” AFTER ALL One of these features has been added to .NET 4:
Stream now has a CopyTo method. This is actually useful in terms of demon-
strating one slightly brittle aspect of extension methods—we’ll come back to
it in section 10.2.3. ReadFully is still missing, but it should be used carefully
anyway: you should only try to read the entirety of a stream if you’re confident
it actually has an end, and that all the data fits into memory. Streams are
under no obligation to have a finite amount of data.

It’d be nice to have the functionality in a single place, rather than duplicating it in sev-
eral projects. That’s why I wrote the StreamUtil class in my miscellaneous utility
library. The real code contains a fair amount of error checking and other functional-
ity, but the following listing shows a cut-down version that’s more than adequate for
our needs.

using System.IO;

public static class StreamUtil
{

const int BufferSize = 8192;

public static void Copy(Stream input, Stream output)
{

byte[] buffer = new byte[BufferSize];
int read;
while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
{

 output.Write(buffer, 0, read);
}

}

2 Due to the nature of streams, this copying doesn’t necessarily duplicate the data—it just reads it from one
stream and writes it to another. Although copy isn’t a strictly accurate term in this sense, the difference is usu-
ally irrelevant.

Listing 10.1 A simple utility class to provide extra functionality for streams
Licensed to Devon Greenway <devon.greenway@gmail.com>

259Extension method syntax
public static byte[] ReadFully(Stream input)
{

using (MemoryStream tempStream = new MemoryStream())
{

Copy(input, tempStream);
return tempStream.ToArray();

}
}

}

The implementation details don’t matter much, although it’s worth noting that the
ReadFully method calls the Copy method—that’ll be useful to demonstrate a point
about extension methods later. The class is easy to use—the following listing shows
how we can write a web response to disk, for example.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())
using (FileStream output = File.Create("response.dat"))
{

StreamUtil.Copy(responseStream, output);
}

Listing 10.2 is quite compact, and the StreamUtil class has taken care of looping and
asking the response stream for more data until it’s all been received. It’s done its job
as a utility class perfectly reasonably. Even so, it doesn’t feel very object-oriented. We’d
really like to ask the response stream to copy itself to the output stream, just like the
MemoryStream class has a WriteTo method. It’s not a big problem, but it’s a little ugly
as it is.

 Inheritance wouldn’t help us in this situation (we want this behavior to be available
for all streams, not just ones we’re responsible for) and we can’t go changing the
Stream class itself—so what can we do? With C# 2, we were out of options—we had to
stick with the static methods and live with the clumsiness. C# 3 allows us to change our
static class to expose its members as extension methods, so we can pretend that the
methods have been part of Stream all along. Let’s see what changes are required.

10.2 Extension method syntax
Extension methods are almost embarrassingly easy to create, and simple to use, too.
The considerations around when and how to use them are significantly deeper than
the difficulties involved in learning how to write them in the first place. Let’s start by
converting our StreamUtil class to have a couple of extension methods.

10.2.1 Declaring extension methods

You can’t use just any method as an extension method—it must have the following
characteristics:

Listing 10.2 Using StreamUtil to copy a web response stream to a file
Licensed to Devon Greenway <devon.greenway@gmail.com>

260 CHAPTER 10 Extension methods
 It must be in a non-nested, nongeneric static class (and therefore must be a
static method).

 It must have at least one parameter.
 The first parameter must be prefixed with the this keyword.
 The first parameter can’t have any other modifiers (such as out or ref).
 The type of the first parameter must not be a pointer type.

That’s it—the method can be generic, return a value, have ref/out parameters other
than the first one, be implemented with an iterator block, be part of a partial class, use
nullable types—anything, as long as the preceding constraints are met.

 We’ll call the type of the first parameter the extended type of the method, and say
that the method extends that type—so in this case we’re extending Stream. This isn’t
official terminology from the specification, but it’s a useful piece of shorthand.

 Not only does the previous list provide all the restrictions, but it also gives the
details of what you need to do to turn a normal static method in a static class into an
extension method—just add the this keyword. The following listing shows the same
class as in listing 10.1, but this time with both methods as extension methods.

public static class StreamUtil
{

const int BufferSize = 8192;

public static void CopyTo(this Stream input, Stream output)
{

byte[] buffer = new byte[BufferSize];
int read;
while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
{

output.Write(buffer, 0, read);
}

}

public static byte[] ReadFully(this Stream input)
{

using (MemoryStream tempStream = new MemoryStream())
{

CopyTo(input, tempStream);
return tempStream.ToArray();

}
}

}

Yes, the only big change in listing 10.3 is the addition of the two modifiers, as shown in
bold. I’ve also changed the name of the method from Copy to CopyTo. As we’ll see in a
minute, that’ll allow calling code to read more naturally, although it does look slightly
strange in the ReadFully method at the moment.

 Now, it’s not much use having extension methods if we can’t use them...

Listing 10.3 The StreamUtil class again, but this time with extension methods
Licensed to Devon Greenway <devon.greenway@gmail.com>

261Extension method syntax
10.2.2 Calling extension methods

I’ve mentioned it in passing, but we haven’t yet seen what an extension method actu-
ally does. Simply put, it pretends to be an instance method of another type—the type
of the first parameter of the method.

 The transformation of our example code that uses StreamUtil is as simple as the
transformation of the utility class itself. This time, instead of adding something in,
we’ll take it away. Listing 10.4 is a repeat performance of listing 10.2, but using the
new syntax to call CopyTo. I say “new,” but it’s really not new at all—it’s the same syntax
we’ve always used for calling instance methods.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())
using (FileStream output = File.Create("response.dat"))
{

responseStream.CopyTo(output);
}

In listing 10.4 it at least looks like we’re asking the response stream to do the copying.
It’s still StreamUtil doing the work behind the scenes, but the code reads in a more
natural way. In fact, the compiler has converted the CopyTo call into a normal static
method call to StreamUtil.CopyTo, passing the value of responseStream as the first
argument (followed by output as normal).

 Now that you can see the code in question, I hope you can understand why I
changed the method name from Copy to CopyTo. Some names work just as well for
static methods as instance methods, but you’ll find that others need tweaking to get
the maximum readability benefit.

 If we want to make the StreamUtil code slightly more pleasant, you can change
the line of ReadFully that calls CopyTo like this:

input.CopyTo(tempStream);

At this point, the name change is fully appropriate for all the uses—although there’s
nothing to stop you from using the extension method as a normal static method,
which is useful when you’re migrating a lot of code.

 You may have noticed that nothing in these method calls indicates that we’re using
an extension method instead of a regular instance method of Stream. This can be
seen in two ways: it’s a good thing if our aim is to make extension methods blend in as
much as possible and cause little alarm—but it’s a bad thing if you want to be able to
immediately see what’s really going on. If you’re using Visual Studio, you can hover
over a method call and get an indication in the tooltip when it’s an extension method,
as shown in figure 10.1.

 IntelliSense also indicates when it’s offering an extension method, in both the icon
for the method and the tooltip when it’s selected. Of course, you don’t want to have to

Listing 10.4 Copying a stream using an extension method
Licensed to Devon Greenway <devon.greenway@gmail.com>

262 CHAPTER 10 Extension methods
hover over every method call you make or be super careful with IntelliSense, but most
of the time it doesn’t matter whether you’re calling an instance or extension method.

 There’s still one rather strange thing about our calling code—it doesn’t mention
StreamUtil anywhere! How does the compiler know to use the extension method in
the first place?

10.2.3 Extension method discovery

It’s important to know how to call extension methods—but it’s also important to know
how to not call them—how to avoid being presented with unwanted options. To
achieve that, we need to know how the compiler decides which extension methods to
use in the first place.

 Extension methods are made available to the code in the same way that classes are
made available without qualification—with using directives. When the compiler sees
an expression that looks like it’s trying to use an instance method but none of the
instance methods are compatible with the method call (if there’s no method with that
name, for instance, or no overload matches the arguments given), it then looks for an
appropriate extension method. It considers all the extension methods in all the
imported namespaces and the current namespaces, and matches ones where there’s
an implicit conversion from the expression type to the extended type.

IMPLEMENTATION DETAIL: HOW DOES THE COMPILER SPOT AN EXTENSION METHOD?
To work out whether to use an extension method, the compiler has to be able
to tell the difference between an extension method and other methods within
a static class that happen to have an appropriate signature. It does this by
checking whether System.Runtime.CompilerServices.ExtensionAttribute
has been applied to the method and the class. This attribute was introduced
in .NET 3.5, but the compiler doesn’t check which assembly the attribute
comes from. This means that you can still use extension methods even if your
project targets .NET 2.0—you just need to define your own attribute with the
right name, in the right namespace. You can then declare your extension
methods as normal and the attribute will be applied automatically. The com-
piler also applies the attribute to the assembly containing the extension
method, but it doesn’t currently require this when searching for extension
methods.

Figure 10.1 Hovering over a method call in Visual Studio reveals whether the method
is actually an extension method.
Licensed to Devon Greenway <devon.greenway@gmail.com>

263Extension method syntax
Introducing your own copies of system types can become problematic when
you later need to use a version of the framework that already defines those
types. If you do use this technique, it’s worth using preprocessor symbols to
only declare the attribute conditionally. You can then build one version of
your code targeting .NET 2.0, and another targeting .NET 3.5 and higher.

If multiple applicable extension methods are available for different extended types
(using implicit conversions), the most appropriate one is chosen with the better con-
version rules used in overloading. For instance, if IChild inherits from IParent, and
there’s an extension method with the same name for both, then the IChild extension
method is used in preference to the one on IParent. Again, this feature is used in
LINQ, as you’ll see in section 12.2 where we meet the IQueryable<T> interface.

 It’s important to note that if an applicable instance method is available, that will
always be used before searching for extension methods, but the compiler doesn’t issue
a warning if an extension method also matches an existing instance method. For
example, .NET 4 has a new Stream method that’s also called CopyTo. It has two over-
loads, one of which conflicts with our extension method. The result is that the new
method is picked in preference to the extension method, so if you compile listing 10.4
against .NET 4, you’ll end up using Stream.CopyTo instead of StreamUtil.CopyTo.
You can still call the StreamUtil method statically using the normal syntax of Stream-
Util.CopyTo(input, output), but it’ll never be picked as an extension method. In
this case there’s no harm to existing code: the new instance method has the same
meaning as our extension method, so it doesn’t matter which one is used. In other
cases there could be subtle differences in semantics that could be hard to spot until
the code breaks.

 Another potential problem with the way that extension methods are made avail-
able to code is that it’s very wide-ranging. If there are two classes in the same
namespace containing methods with the same extended type, there’s no way of only
using the extension methods from one of the classes. Likewise, there’s no way of
importing a namespace for the sake of making types available using only their simple
names, but without making the extension methods within that namespace available at
the same time. You may want to use a namespace that solely contains static classes with
extension methods to mitigate this problem, unless the rest of the functionality of the
namespace is heavily dependent on the extension methods already (as is the case for
System.Linq, for example).

 One aspect of extension methods can be quite surprising when you first encounter
it, but is also useful in some situations. It’s all about null references—let’s take a look.

10.2.4 Calling a method on a null reference

I’d be amazed if I ever encountered anyone who’d done a significant amount of
.NET programming without seeing a NullReferenceException due to calling a
method via a variable whose value turned out to be a null reference. You can’t call
instance methods on null references in C# (although IL itself supports it for
Licensed to Devon Greenway <devon.greenway@gmail.com>

264 CHAPTER 10 Extension methods
nonvirtual calls)—but you can call extension methods with a null reference. This is
demonstrated by the following listing. Note that this isn’t a snippet since nested
classes can’t contain extension methods.

using System;
public static class NullUtil
{

public static bool IsNull(this object x)
{

return x == null;
}

}

public class Test
{

static void Main()
{

object y = null;
Console.WriteLine(y.IsNull());
y = new object();
Console.WriteLine(y.IsNull());

}
}

The output of listing 10.5 is “True” then “False”—if IsNull had been a normal
instance method, an exception would’ve been thrown in the second line of Main.
Instead, IsNull was called with null as the argument. Prior to the advent of extension
methods, C# had no way of letting you write the more readable y.IsNull() form
safely, requiring NullUtil.IsNull(y) instead. There’s one particularly obvious exam-
ple in the framework where this could be useful: string.IsNullOrEmpty. C# 3 allows
you to write an extension method that has the same signature (other than the extra
parameter for the extended type) as an existing static method on the extended type.
To save you reading through that sentence several times, here’s an example—even
though the string class has a static, parameterless method IsNullOrEmpty, you can
still create and use the following extension method:

public static bool IsNullOrEmpty(this string text)
{

return string.IsNullOrEmpty(text);
}

At first it seems odd to be able to call IsNullOrEmpty on a variable that’s null without
an exception being thrown, particularly if you’re familiar with it as a static method
from .NET 2.0. In my view, code using the extension method is more easily under-
standable. For instance, if you read the expression if (name.IsNullOrEmpty()) out
loud, it says exactly what it’s doing. As always, experiment to see what works for you—
but be aware of the possibility of other people using this technique if you’re debug-
ging code. Don’t be certain that an exception will be thrown on a method call unless
you’re sure it’s not an extension method! Also note that you should think carefully

Listing 10.5 Extension method being called on a null reference
Licensed to Devon Greenway <devon.greenway@gmail.com>

265Extension methods in .NET 3.5
before reusing an existing name for an extension method—the previous extension
method could confuse readers who are only familiar with the static method from the
framework.

CHECKING FOR NULLITY As a conscientious developer, I’m sure that your pro-
duction methods always check their arguments’ validity before proceeding.
One question that naturally arises from this quirky feature of extension
methods is what exception to throw when the first argument is null (assum-
ing it’s not meant to be). Should it be ArgumentNullException, as if it were a
normal argument, or should it be NullReferenceException, which is what
would’ve happened if the extension method had been an instance method
to start with? I recommend the former: it’s still an argument, even if the
extension method syntax doesn’t make that obvious. This is the route that
Microsoft has taken for the extension methods in the framework, so it has
the benefit of consistency too. Finally, bear in mind that extension methods
can still be called as normal static methods—and in that situation,
ArgumentNullException is clearly the preferred result.

Now that we know the syntax and behavior of extension methods, we can look at some
examples of the ones provided in .NET 3.5 as part of the framework.

10.3 Extension methods in .NET 3.5
The biggest use of extension methods in the framework is for LINQ. Some LINQ pro-
viders have a few extension methods to help them along, but there are two classes that
stand out, both of them appearing in the System.Linq namespace: Enumerable and
Queryable. These contain many, many extension methods: most of the ones in
Enumerable operate on IEnumerable<T> and most of those in Queryable operate on
IQueryable<T>. We’ll see the purpose of IQueryable<T> in chapter 12, but for the
moment let’s concentrate on Enumerable.

10.3.1 First steps with Enumerable

Even just looking at Enumerable, we’re getting close to LINQ now. A lot of the time
you don’t need full-blown query expressions to solve a problem. Enumerable has a lot
of methods in it, and the purpose of this section isn’t to cover all of them but to give
you enough of a feel for them to let you go off and experiment. It’s a joy to just play
with everything available in Enumerable—although this time it’s definitely worth firing
up Visual Studio or LINQPad for your experiments (rather than using Snippy), as
IntelliSense is handy for this kind of activity. Appendix A gives a quick run-down of
the behavior too.

 All the complete examples in this section deal with a simple situation: we start with
a collection of integers and transform it in various ways. Obviously real-life situations
are likely to be somewhat more complicated, usually dealing with business-related
types. At the end of this section, I’ll present a couple examples of just the transforma-
tion side of things applied to possible business situations, with full source code avail-
able on the book’s website—but that’s harder to play with than a straightforward
Licensed to Devon Greenway <devon.greenway@gmail.com>

266 CHAPTER 10 Extension methods
collection of numbers. It’s worth considering some recent projects you’ve been work-
ing on as we go: see if you can think of situations where you could’ve made your code
simpler or more readable by using the kind of operations described here.

 There are a few methods in Enumerable that aren’t extension methods, and we’ll
use one of them in the examples for the rest of the chapter. The Range method takes
two int parameters: a number to start with, and how many results to yield. The result
is an IEnumerable<int>, which simply returns one number at a time in the obvious
way. To demonstrate the Range method and give us a framework to play with, let’s just
print out the numbers 0 to 9, as shown in the following listing.

var collection = Enumerable.Range(0, 10);

foreach (var element in collection)
{

Console.WriteLine(element);
}

No extension methods are called in listing 10.6, just a plain static method. And yes, it
really does just print the numbers 0 to 9—I never claimed this code would set the
world on fire.

DEFERRED EXECUTION The Range method doesn’t build a list with the appro-
priate numbers—it just yields them at the appropriate time. In other words,
constructing the enumerable instance doesn’t do the bulk of the work; it just
gets things ready, so that the data can be provided in a just-in-time fashion at
the appropriate point. This is called deferred execution—we’ve already seen this
sort of behavior when we looked at iterator blocks in chapter 6, but we’ll see
much more of it in the next chapter.

Pretty much the simplest thing we can do with a sequence of numbers (which is
already in order) is to reverse it. The following listing uses the Reverse extension
method to do this—it returns an IEnumerable<T> that yields the same elements as the
original sequence but in the reverse order.

var collection = Enumerable.Range(0, 10)
.Reverse();

foreach (var element in collection)
{

Console.WriteLine(element);
}

Predictably enough, this prints out 9, then 8, then 7, and so on right down to 0. We’ve
called Reverse (seemingly) on an IEnumerable<int> and the same type has been
returned. This pattern of returning one enumerable based on another is pervasive in
the Enumerable class.

Listing 10.6 Using Enumerable.Range to print out the numbers 0 to 9

Listing 10.7 Reversing a collection with the Reverse method
Licensed to Devon Greenway <devon.greenway@gmail.com>

267Extension methods in .NET 3.5
EFFICIENCY: BUFFERING VERSUS STREAMING The extension methods provided
by the framework try hard to stream or pipe data wherever possible—when an
iterator is asked for its next element, it’ll often take an element off the iterator
it’s chained to, process that element, and then return something appropriate,
preferably without using any more storage itself. Simple transformations and
filters can do this easily, and it’s a powerful way of efficiently processing data
where it’s possible—but some operations such as reversing the order, or sort-
ing, require all the data to be available, so it’s all loaded into memory for bulk
processing. The difference between this buffered approach and piping is sim-
ilar to the difference between reading data by loading a whole DataSet versus
using a DataReader to process one record at a time. It’s important to consider
what’s required when using LINQ—a single method call can have significant
performance implications.

Streaming is also known as lazy evaluation; buffering is also known as eager
evaluation. For example, the Reverse method uses deferred execution (it
does nothing until the first call to MoveNext) but it then eagerly evaluates its
data source. Personally I dislike the terms lazy and eager, as they mean differ-
ent things to different people (see http://mng.bz/3LLM).

Let’s do something more adventurous now—we’ll use a lambda expression to remove
the even numbers.

10.3.2 Filtering with Where and chaining method calls together

The Where extension method is a simple but powerful way of filtering collections: it
accepts a predicate, which it applies to each of the elements of the original collection.
Again, it returns an IEnumerable<T>, and this time any element that matches the pred-
icate is included in the resulting collection. Listing 10.8 demonstrates this, applying
the odd/even filter to the collection of integers before reversing it. We don’t have to
use a lambda expression here—for instance, we could use a delegate we’d created ear-
lier, or an anonymous method. In this case (and in many other real-life situations), it’s
simple to put the filtering logic inline, and lambda expressions keep the code concise.

var collection = Enumerable.Range(0, 10)
.Where(x => x % 2 != 0)
.Reverse();

foreach (var element in collection)
{

Console.WriteLine(element);
}

Listing 10.8 prints out the numbers 9, 7, 5, 3, and 1. Hopefully you’ll have noticed a
pattern forming—we’re chaining the method calls together. The chaining idea itself
isn’t new. For example, StringBuilder.Replace always returns the instance you call it
on, allowing code like this:

Listing 10.8 Using the Where method with a lambda expression to find odd numbers
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/3LLM

268 CHAPTER 10 Extension methods
builder = builder.Replace("<", "<")
.Replace(">", ">")
...

String.Replace returns a string, but a new one each time—this allows chaining, but
in a slightly different way. Both are handy patterns to know about; the “return the
same reference” pattern works well for mutable types, whereas “return a new instance
that’s a copy of the original with some changes” is required for immutable types.

 These are both fine for instance methods, but extension methods allow static
method calls to be chained together. This is one of the primary reasons why extension meth-
ods exist. They’re useful for other utility classes, but their true power is revealed in this
ability to chain static methods in a natural way. That’s why extension methods primar-
ily show up in Enumerable and Queryable in .NET: LINQ is geared toward this
approach to data processing, with information effectively traveling through pipelines
constructed of individual operations chained together.

EFFICIENCY CONSIDERATION: REORDERING METHOD CALLS TO AVOID WASTE I’m
not a fan of micro-optimization without good cause, but it’s worth looking at
the ordering of the method calls in listing 10.8. We could’ve added the Where
call after the Reverse call instead and achieved the same results. But that
would’ve wasted some effort—the Reverse call would’ve had to work out
where the even numbers should come in the sequence even though they’ll be
discarded from the final result. In this case it’s not going to make much dif-
ference, but it can have a significant effect on performance in real situations:
if you can reduce the amount of wasted work without compromising readabil-
ity, that’s a good thing. That doesn’t mean you should always put filters at the
start of the pipeline, though; you need to think carefully about any reorder-
ing to make sure you’ll still get the correct results.

There are two obvious ways of writing the first part of listing 10.8 without using the
fact that Reverse and Where are extension methods. One is to use a temporary vari-
able, which keeps the structure intact:

var collection = Enumerable.Range(0, 10);
collection = Enumerable.Where(collection, x => x % 2 != 0)
collection = Enumerable.Reverse(collection);

I hope you’ll agree that the meaning of the code is far less clear here than in
listing 10.8. It gets even worse with the other option, which is to keep the single-
statement style:

var collection = Enumerable.Reverse
(Enumerable.Where

(Enumerable.Range(0, 10),
x => x % 2 != 0));

The method call order appears to be reversed, because the innermost method call
(Range) will be performed first, then the others, with execution working its way out-
ward. Even with just three method calls it’s ugly—it becomes far worse for queries
Licensed to Devon Greenway <devon.greenway@gmail.com>

269Extension methods in .NET 3.5
involving more operators. Before we move on, let’s think a bit about what the Where
method does.

10.3.3 Interlude: haven’t we seen the Where method before?

If the Where method feels familiar, it’s because we implemented it in chapter 6. All we
need to do is convert it into an extension method and change the delegate type from
Predicate<T> to Func<T,bool> and we have a perfectly good alternative implementa-
tion to Enumerable.Where:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
Func<T, bool> predicate)

{
if (source == null || predicate == null)
{

throw new ArgumentNullException();
}
return WhereImpl(source, predicate);

}

private static IEnumerable<T> WhereImpl<T>(IEnumerable<T> source,
Func<T, bool> predicate)

{
foreach (T item in source)
{

if (predicate(item))
{

yield return item;
}

}
}

We can convert our earlier example of calling this with in conjunction with our
LineReader class, too:

foreach (string line in LineReader.ReadLines("../../FakeLinq.cs")
.Where(line => line.StartsWith("using")))

{
Console.WriteLine(line);

}

This is effectively a LINQ query without using the System.Linq namespace. It would
work perfectly well in .NET 2.0 if you declared the appropriate Func delegate and
[ExtensionAttribute]. You could even use that implementation for the where clause
in a query expression (while still targeting .NET 2.0!) as we’ll see in the next chapter—
but let’s not get ahead of ourselves. Filtering is one of the simplest operations in a
query, and another is transforming or projecting the results.

10.3.4 Projections using the Select method and anonymous types

The most commonly used projection method in Enumerable is Select—it operates on
an IEnumerable<TSource> and projects it into an IEnumerable<TResult> by way of a
Func<TSource,TResult>, which is the transformation to use on each element,
Licensed to Devon Greenway <devon.greenway@gmail.com>

270 CHAPTER 10 Extension methods
specified as a delegate. It’s much like the ConvertAll method in List<T>, but operat-
ing on any enumerable collection and using deferred execution to perform the pro-
jection only as each element is requested.

 When I introduced anonymous types, I said they were useful with lambda expres-
sions and LINQ—here’s an example of the kind of thing you can do with them. We
currently have the odd numbers between 0 and 9 (in reverse order)—let’s create a
type that encapsulates the square root of the number as well as the original number.
The following listing shows both the projection and a slightly modified way of writing
out the results. I’ve adjusted the whitespace solely for the sake of space on the printed
page.

var collection = Enumerable.Range(0, 10)
.Where(x => x % 2 != 0)
.Reverse()
.Select(x => new { Original = x, SquareRoot = Math.Sqrt(x) });

foreach (var element in collection)
{

Console.WriteLine("sqrt({0})={1}",
element.Original,
element.SquareRoot);

}

This time the type of collection isn’t IEnumerable<int>—it’s IEnumerable

<Something>, where Something is the anonymous type created by the compiler. We
can’t give the collection variable an explicit type except either the nongeneric
IEnumerable type or object. Implicit typing (with var) is what allows us to use the
Original and SquareRoot properties when writing out the results. The output of list-
ing 10.9 is as follows:

sqrt(9)=3
sqrt(7)=2.64575131106459
sqrt(5)=2.23606797749979
sqrt(3)=1.73205080756888
sqrt(1)=1

Of course, a Select method doesn’t have to use an anonymous type at all—we
could’ve selected just the square root of the number, discarding the original. In that
case the result would’ve been IEnumerable<double>. Alternatively, we could’ve manu-
ally written a type to encapsulate an integer and its square root—it was just easiest to
use an anonymous type in this case.

 Let’s look at one last method to round off our coverage of Enumerable for the
moment: OrderBy.

10.3.5 Sorting using the OrderBy method

Sorting is a common requirement when processing data, and in LINQ this is usually
performed using the OrderBy or OrderByDescending methods. The first call is some-

Listing 10.9 Projection using a lambda expression and an anonymous type
Licensed to Devon Greenway <devon.greenway@gmail.com>

271Extension methods in .NET 3.5
times followed by ThenBy or ThenByDescending if you need to sort by more than one
property of the data. This ability to sort on multiple properties has always been avail-
able the hard way using a complicated comparison, but it’s much clearer to be able to
present a series of simple comparisons.

 To demonstrate this, I’m going to make a small change to the operations involved.
We’ll start off with the integers –5 to 5 (inclusive—11 elements in total), and then
project to an anonymous type containing the original number and its square (rather
than square root). Finally, we’ll sort by the square and then the original number. The
following listing shows all of this.

var collection = Enumerable.Range(-5, 11)
.Select(x => new { Original = x, Square = x * x })
.OrderBy(x => x.Square)
.ThenBy(x => x.Original);

foreach (var element in collection)
{

Console.WriteLine(element);
}

Note how aside from the call to Enumerable.Range, the code reads almost exactly like
the textual description. This time I’ve decided to let the anonymous type’s ToString
implementation do the formatting, and here are the results:

{ Original = 0, Square = 0 }
{ Original = -1, Square = 1 }
{ Original = 1, Square = 1 }
{ Original = -2, Square = 4 }
{ Original = 2, Square = 4 }
{ Original = -3, Square = 9 }
{ Original = 3, Square = 9 }
{ Original = -4, Square = 16 }
{ Original = 4, Square = 16 }
{ Original = -5, Square = 25 }
{ Original = 5, Square = 25 }

As intended, the main sorting property is Square—but for two values that both have
the same square, the negative original number is always sorted before the positive
one. Writing a single comparison to do the same kind of thing (in a general case—
there are mathematical tricks to cope with this particular example) would’ve been sig-
nificantly more complicated, to the extent that you wouldn’t want to include the code
inline in the lambda expression.

 One thing to note is that the ordering doesn’t change an existing collection—it
returns a new sequence that yields the same data as the input sequence, except sorted.
Contrast this with List<T>.Sort or Array.Sort, which change the element order
within the list or array. LINQ operators are intended to be side-effect fre e : they don’t
affect their input, and they don’t make any other changes to the environment, unless
you’re iterating through a naturally stateful sequence (such as reading from a network

Listing 10.10 Ordering a sequence by two properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

272 CHAPTER 10 Extension methods
stream) or a delegate argument has side effects. This is an approach from functional
programming, and it leads to code that’s more readable, testable, composable, pre-
dictable, thread-safe, and robust.

 We’ve seen just a few of the many extension methods available in Enumerable, but
hopefully you can appreciate how neatly they can be chained together. In the next
chapter we’ll see how this can be expressed in a different way using extra syntax pro-
vided by C# 3 (query expressions)—as well as some other operations we haven’t cov-
ered here. It’s worth remembering that you don’t have to use query expressions—often
it can be simpler to make a couple of calls to methods in Enumerable, using extension
methods to chain operations together.

 Now that we’ve seen how all these apply to our collection-of-numbers example, it’s
time for me to make good on the promise of some more business-related situations.

10.3.6 Business examples involving chaining

Much of what we do as developers involves moving data around. In fact, for many
applications that’s the only meaningful thing we do—the user interface, web services,
database, and other components often exist solely to get data from one place to
another, or from one form into another. It should be of no surprise that the extension
methods we’ve looked at in this section are well-suited to many business problems. I’ll
just give a couple of examples, as I’m sure you’ll be able to take them as a springboard
into thinking about your business requirements and how C# 3 and the Enumerable
class can help you solve problems more expressively than before. For each example
I’ll only include a sample query—it should be enough to understand the purpose of
the code, but without all the baggage. Full working code is on the book’s website.

AGGREGATION: SUMMING SALARIES

The first example involves a company composed of several departments. Each depart-
ment has a number of employees, each of whom has a salary. Suppose we want to
report on total salary cost by department, with the most expensive department first.
The query is simply

company.Departments
.Select(dept => new
{

dept.Name,
Cost = dept.Employees.Sum(person => person.Salary)

})
 .OrderByDescending(deptWithCost => deptWithCost.Cost);

This query uses an anonymous type to keep the department name (using a projection
initializer) and the sum of the salaries of all the employees within that department.
The salary summation uses a self-explanatory Sum extension method, again part of
Enumerable. In the result, the department name and total salary can be retrieved as
properties. If you wanted the original department reference, you’d just need to
change the anonymous type used in the Select method.
Licensed to Devon Greenway <devon.greenway@gmail.com>

273Usage ideas and guidelines
GROUPING: COUNTING BUGS ASSIGNED TO DEVELOPERS

If you’re a professional developer, I’m sure you’ve seen many project management
tools giving you different metrics. If you have access to the raw data, LINQ can help
you transform it in practically any way you choose. As a simple example, we could look
at a list of developers and how many bugs they have assigned to them at the moment:

bugs.GroupBy(bug => bug.AssignedTo)
.Select(list => new { Developer = list.Key, Count = list.Count() })
.OrderByDescending(x => x.Count);

This query uses the GroupBy extension method, which groups the original collection
by a projection (the developer assigned to fix the bug in this case), resulting in an
IGrouping<TKey,TElement>. There are many overloads of GroupBy, but I’ve used the
simplest one here and then selected just the key (the name of the developer) and the
number of bugs assigned to them. After that we’ve ordered the result to show the
developers with the most bugs first.

 One of the problems when looking at the Enumerable class can be working out
exactly what’s going on—one of the overloads of GroupBy has four type parameters
and five normal parameters (three of which are delegates), for instance. Don’t
panic—just follow the steps shown in chapter 3, assigning different types to different
type parameters until you have a concrete example of what the method would look
like. That usually makes it a lot easier to understand what’s going on.

 We’ll use the example of defect tracking as our sample data when we look at query
expressions in the next chapter.

 These examples aren’t particularly involved, but I hope you can see the power of
chaining method calls together, where each method takes an original collection and
returns another one in some form or other, whether by filtering out some values,
ordering them, transforming each element, aggregating some values, or other
options. In many cases, the resulting code can be read aloud and understood immedi-
ately—and in other situations it’s still usually a lot simpler than the equivalent code
would’ve been in previous versions of C#.

 Now that we’ve seen some of the extension methods provided for us, we’ll consider
just how and when it makes sense for you to write them yourself.

10.4 Usage ideas and guidelines
Like implicit typing of local variables, extension methods are controversial. It’d be dif-
ficult to claim that they make the overall aim of the code harder to understand in
many cases, but at the same time they do obscure the details of what method is getting
called. In the words of one of the lecturers at my university, “I’m hiding the truth in
order to show you a bigger truth”—if you believe that the most important aspect of the
code is its result, extension methods are great. If the implementation is more impor-
tant to you, then explicitly calling a static method is more clear. Effectively, it’s the dif-
ference between the what and the how.
Licensed to Devon Greenway <devon.greenway@gmail.com>

274 CHAPTER 10 Extension methods
 We’ve already looked at using extension methods for utility classes and method
chaining, but before we discuss the pros and cons further, it’s worth calling out a cou-
ple of aspects that may not be obvious.

10.4.1 “Extending the world” and making interfaces richer

Wes Dyer, a former developer on the C# compiler team, has a fantastic blog covering
all kinds of subject matter (see http://mng.bz/1CYo). One of his posts about exten-
sion methods particularly caught my attention (see http://mng.bz/I4F2). It’s called
“Extending the World,” and it talks about how extension methods can make code eas-
ier to read by effectively adapting your environment to your needs:

Typically for a given problem, a programmer is accustomed to building up a solution until it
finally meets the requirements. Now, it is possible to extend the world to meet the solution
instead of solely just building up until we get to it. That library doesn’t provide what you
need, just extend the library to meet your needs.

This has implications beyond situations where you’d use a utility class. Typically devel-
opers only start creating utility classes when they’ve seen the same kind of code repro-
duced in dozens of places—but extending a library is about clarity of expression as
much as avoiding duplication. Extension methods can make the calling code feel like
the library is richer than it really is.

 We’ve already seen this with IEnumerable<T>, where even the simplest implemen-
tation appears to have a wide set of operations available, such as sorting, grouping, pro-
jection, and filtering. Of course, the benefits aren’t limited to interfaces—you can also
“extend the world” with enums, abstract classes, and so forth.

 The .NET Framework also provides a good example of another use for extension
methods: fluent interfaces.

10.4.2 Fluent interfaces

There used to be a television program in the United Kingdom called Catchphrase. The
idea was that contestants would watch a screen where an animation would show some
cryptic version of a phrase or saying, which they’d have to guess. The host would often
try to help by instructing them: “Say what you see.” That’s pretty much the idea behind
fluent interfaces—that if you read the code verbatim, its purpose will leap off the screen
as if it were written in a natural human language. The term was originally coined by
Martin Fowler (see http://mng.bz/3T9T) and Eric Evans. If you’re familiar with
domain-specific languages (DSLs), you may be wondering what the differences are
between a fluent interface and a DSL. A lot has been written on the subject, but the
consensus seems to be that a DSL has more freedom to create its own syntax and gram-
mar, whereas a fluent interface is constrained by the host language (C# in our case).

 Some good examples of fluent interfaces in the framework are the OrderBy and
ThenBy methods: with a bit of interpretation of lambda expressions, the code explains
exactly what it does. In the case of our numbers example earlier, we could read “order
by the square, then by the original number” without much work. Statements end up
reading as whole sentences rather than just individual noun-verb phrases.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/1CYo
http://mng.bz/I4F2
http://mng.bz/3T9T

275Usage ideas and guidelines
Writing fluent interfaces can require a change of mindset. Method names defy the
normal descriptive-verb form, with And, Then, and If sometimes being suitable meth-
ods in a fluent interface. The methods themselves often do little more than setting up
context for future calls, often returning a type whose sole purpose is to act as a bridge
between calls. Figure 10.2 gives an example of how this bridging works. It only uses
two extension methods (on int and TimeSpan), but they make all the difference to
the readability.

 The grammar of the example in figure 10.2 could have many different forms: you
may be able to add additional attendees to an UntimedMeeting, or create an Unat-
tendedMeeting at a particular time before specifying the attendees, for instance. For a
lot more guidance on DSLs, see Building Domain-Specific Languages in Boo by Ayende
Rahien (Manning).

 C# 3 only supports extension methods rather than extension properties, which
restricts fluent interfaces slightly—it means we can’t have expressions such as
1.week.from.now or 2.days + 10.hours (which are both valid in Groovy with an
appropriate package—see http://mng.bz/0s2a), but with a few superfluous parenthe-
ses we can achieve similar results. At first it looks odd to call a method on a number
(such as 2.Dollars() or 3.Meters()), but it’s hard to deny that the meaning is clear.
Without extension methods, this sort of clarity simply isn’t possible when you need to
act on types such as numbers that aren’t under your control.

 At the time of this writing, the development community is still on the fence about
fluent interfaces: they’re relatively rare in most fields, although many mocking and
unit testing libraries have at least some fluent aspects. They’re certainly not universally
applicable, but in the right situations they can radically transform the readability of
the calling code. As an example, with appropriate extension methods from my
MiscUtil library I can iterate over every day I've been alive in a readable way:

foreach (DateTime day in 19.June(1976).To(DateTime.Today)
.Step(1.Days()))

Although the range-related implementation details are complicated, the extension
methods allowing 19.June(1976) and 1.Days() are extremely simple. This is culture-
specific code, which you may not want to expose in your production code—but it can
make unit tests a great deal more pleasant.

Meeting.Between("Jon")

.And("Russell")

.At(8.OClock().Tomorrow())

Returns SoloMeeting

Returns UntimedMeeting

Returns Meeting

Returns TimeSpan

Returns DateTime

Figure 10.2 Pulling apart a
fluent interface expression to
create a meeting. The time of the
meeting is specified using
extension methods to create a
TimeSpan from an int, and a
DateTime from a TimeSpan.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/0s2a

276 CHAPTER 10 Extension methods
 These aren’t the only uses available for extension methods, of course. I've used
them for argument validation, implementing alternative approaches to LINQ, adding
my own operators to LINQ to Objects, making composite comparisons easier to build,
adding more flag-related functionality to enums, and much more. I’m constantly
amazed at how such a simple feature can have such a profound impact on readability
when used appropriately. The key word there is “appropriately”—which is easier to say
than describe.

10.4.3 Using extension methods sensibly

I’m in no position to dictate how you write your code. It may be possible to write tests
to objectively measure readability for an average developer, but it only matters for
those who’re going to use and maintain your code. So, you need to consult with the
relevant people as far as you can: this depends on your type of project and its audi-
ence, of course, but it’s nice to present different options and get appropriate feed-
back. Extension methods make this particularly easy in many cases, as you can
demonstrate both options in working code simultaneously—turning a method into an
extension method doesn’t stop you from calling it explicitly in the same way as before.

 The main question to ask is the one I referred to at the start of this section: is the
“what does it do” aspect of the code more important than the “how does it do it”? That
varies by person and situation, but here are some guidelines to bear in mind:

 Everyone on the development team should be aware of extension methods and
where they might be used. Where possible, avoid surprising code maintainers.

 By putting extensions in their own namespace, you make it hard to use them
accidentally. Even if it’s not obvious when reading the code, the developer writ-
ing it should at least be aware of what she’s doing. Use a project-wide or
company-wide convention for naming the namespace. You may choose to take
this one step further and use a single namespace for each extended type. For
instance, you could create a TypeExtensions namespace for classes that extend
System.Type.

 Think carefully before you extend very widely used types such as numbers or
object, or before you write a method where the extended type is actually a type
parameter. Some guidelines go as far as to recommend that you shouldn’t do
this at all; I think such extensions have their place, but should have to really
earn their place in your library. In this situation it’s even more important that
the extension method be either internal or in its own namespace: I wouldn’t
want IntelliSense to be suggesting the June extension method everywhere I
used an integer, for example—only in classes that used at least some extension
methods related to date and time.

 The decision to write an extension method should always be a conscious one. It
shouldn’t become habitual—not every static method deserves to be an exten-
sion method.
Licensed to Devon Greenway <devon.greenway@gmail.com>

277Summary
 Document whether the first parameter (the value your method appears to be
called on) is allowed to be null—if it’s not, check the value in the method and
throw an ArgumentNullException if necessary.

 Be careful not to use a method name that already has a meaning in the
extended type. If the extended type is a framework type or comes from a third-
party library, check all your extended method names whenever you change ver-
sions of the library. If you’re lucky (as I was with Stream.CopyTo) the new mean-
ing is the same as the old—but even so, you may wish to deprecate your
extension method.

 Question your instincts, but acknowledge that they affect your productivity. Just
like with implicit typing, there’s little point in forcing yourself to use a feature
you instinctively dislike.

 Try to group extension methods into static classes dealing with the same
extended type. Sometimes related classes (such as DateTime and TimeSpan) can
be sensibly grouped together, but avoid grouping extension methods targeting
disparate types such as Stream and string within the same class.

 Think really carefully before adding extension methods with the same extended
type and same name in two different namespaces, particularly if there are situa-
tions where the different methods may both be applicable (they have the same
number of parameters). It’s reasonable for adding or removing a using direc-
tive to make a program fail to build, but it’s nasty if it still builds but changes the
behavior.

Few of these guidelines are particularly clear-cut—to some extent you’ll have to feel
your own way to the best use or avoidance of extension methods. It’s perfectly reason-
able to never write your own extension methods at all but still use the LINQ-related
ones for the readability gains available there. It’s worth at least thinking about what’s
possible, though.

10.5 Summary
The mechanical aspect of extension methods is straightforward—the feature is simple
to describe and demonstrate. The benefits (and costs) of them are harder to talk
about in a definitive manner—it’s a touchy-feely topic, and different people are
bound to have different views on the value provided.

 In this chapter I’ve tried to show a bit of everything—early on we looked at what
the feature achieves in the language, before we saw some of the capabilities available
through the framework. In some ways, this was a relatively gentle introduction to
LINQ: we’ll be revisiting some of the extension methods we’ve seen so far when we
delve into query expressions in the next chapter, as well as seeing some new ones.

 A wide variety of methods are available within the Enumerable class, and we’ve only
scratched the surface in this chapter. It’s fun to come up with a scenario of your own
devising (whether hypothetical or in a real project) and browse through MSDN to see
what’s available to help you. I urge you to use a sandbox project of some description
Licensed to Devon Greenway <devon.greenway@gmail.com>

278 CHAPTER 10 Extension methods
to play with the extension methods provided—it does feel like play rather than work,
and you’re unlikely to want to constrain yourself to just looking at what you need to
achieve your most immediate goal. Appendix A has a list of the standard query opera-
tors from LINQ, which covers many of the methods within Enumerable.

 New patterns and practices keep emerging in software engineering, and ideas
from some systems often cross-pollinate to others. That’s one of the things that keeps
development exciting. Extension methods allow code to be written in a way that was
previously unavailable in C#, creating fluent interfaces and changing the environment
to suit our code rather than the other way around. Those are just the techniques we’ve
looked at in this chapter—there are bound to be interesting future developments
using the new C# features, whether individually or combined.

 The revolution obviously doesn’t end here. For a few calls, extension methods are
fine. In our next chapter we look at the real power tools: query expressions and full-
blown LINQ.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Query expressions
and LINQ to Objects
You may be tired of all the hyperbole around LINQ by now. We’ve already seen
some examples earlier in the book, and you’ve almost certainly read a lot about it
on the web. This is where we separate myth from reality:

 LINQ isn’t going to turn the most complicated query into a one-liner.
 LINQ isn’t going to mean you never need to look at raw SQL again.
 LINQ isn’t going to magically imbue you with architectural genius.

This chapter covers
 Streaming sequences of data

 Deferred execution

 Standard query operators

 Translating query expressions

 Range variables and transparent identifiers

 Projecting, filtering, and sorting

 Joining and grouping

 Choosing which syntax to use
279

Licensed to Devon Greenway <devon.greenway@gmail.com>

280 CHAPTER 11 Query expressions and LINQ to Objects
Given all that, LINQ is still the best way of expressing queries that I’ve seen within an
object-oriented environment. It’s not a silver bullet, but it’s a very powerful tool to
have in your development armory. We’ll explore two distinct aspects of LINQ: the
framework support, and the compiler translation of query expressions. The latter can
look odd to start with, but I’m sure you’ll learn to love them.

 Query expressions are effectively preprocessed by the compiler into “normal”
C# 3, which is then compiled in an ordinary way. This is a neat way of integrating que-
ries into the language without changing the specification in more than one small sec-
tion. Most of this chapter is a list of the preprocessing translations performed by the
compiler, as well as the effects achieved when the result uses the Enumerable exten-
sion methods.

 You won’t see any SQL or XML here—all that awaits us in chapter 12. But with this
chapter as a foundation, you should be able to understand what the more exciting
LINQ providers do when we meet them. Call me a spoilsport, but I want to take away
some of their magic. Even without the air of mystery, LINQ is still very cool.

 First let’s consider the basis of LINQ, and how we’re going to explore it.

11.1 Introducing LINQ
A topic as large as LINQ needs a certain amount of background before we’re ready to
see it in action. In this section we’ll look at a few of the core principles behind LINQ,
and the data model we're going to use for the examples in this chapter and the next.
I know you’re likely to be itching to get into the code, so I’ll keep it fairly brief.

11.1.1 Fundamental concepts in LINQ

Most of this chapter is dedicated to exactly what the C# 3 compiler does with query
expressions, but it won’t make much sense until we better understand the ideas
underlying LINQ as a whole. One of the problems with reducing the impedance mis-
match between two data models is that it usually involves creating yet another model
to act as the bridge. This section describes the LINQ model, beginning with its most
important aspect: sequences.

SEQUENCES

You’re already familiar with the concept of a sequence: it’s encapsulated by the
IEnumerable and IEnumerable<T> interfaces, and we looked at those fairly closely in
chapter 6 when we studied iterators. A sequence is like a conveyor belt of items—you
fetch them one at a time until either you’re no longer interested or the sequence has
run out of data.

 The key difference between a sequence and other collection data structures such
as lists and arrays is that when you’re reading from a sequence, you don’t generally
know how many more items are waiting, or have access to arbitrary items—just the
current one. Indeed, some sequences could be never-ending: you could easily have an
infinite sequence of random numbers, for example. Lists and arrays can act as
sequences, of course—just as List<T> implements IEnumerable<T>—but the reverse
isn’t always true. You can’t have an infinite array or list, for example.
Licensed to Devon Greenway <devon.greenway@gmail.com>

281Introducing LINQ
Sequences are LINQ’s bread and butter. When you read a query expression, you
should think about the sequences involved: there’s always at least one sequence to
start with, and it’s usually transformed into other sequences along the way, possibly
being joined with yet more sequences. Examples of LINQ queries are frequently pro-
vided on the web with little explanation: when you take them apart by looking at each
sequence in turn, things make a lot more sense. As well as being an aid to reading
code, this can also help a lot when writing it. Thinking in sequences can be tricky—it’s
a bit of a mental leap sometimes—but if you can get there, it’ll help you immeasurably
when you’re working with LINQ.

 As a simple example, let’s take another query expression running against a list of
people. We’ll apply the same transformation as before, but with a filter involved that
keeps only adults in the resulting sequence:

var adultNames = from person in people
where person.Age >= 18
select person.Name;

Figure 11.1 shows this query expression graphically, breaking it down into its individ-
ual steps.

 Each arrow represents a sequence—the description is on the left side and some
sample data is on the right. Each box is a step in our query expression. Initially, we
have the whole family (as Person objects); then, after filtering, the sequence only con-
tains adults (again, as Person objects); and the final result has the names of those
adults as strings. Each time we take one sequence and apply an operation to produce
a new sequence. The result isn’t the strings “Holly” and “Jon”—instead, it’s an
IEnumerable<string>, which, when asked for its elements one by one, will first yield
“Holly” and then “Jon”.

All "Person" objects
in "people"

All "Person" objects with
an age of at least 18

from person in people

Name="Holly", Age=34
Name="Tom", Age=6
Name="Jon", Age=33
Name="William", Age=3
Name="Robin", Age=3

(Result of query)

Name="Holly", Age=34
Name="Jon", Age=33

Names of people with
an age of at least 18

"Holly"
"Jon"

where person.Age >= 18

select person.Name

Figure 11.1 A simple query expression broken down
into the sequences and transformations involved
Licensed to Devon Greenway <devon.greenway@gmail.com>

282 CHAPTER 11 Query expressions and LINQ to Objects
 This example was straightforward to start with, but we’ll apply the same technique
later to more complicated query expressions in order to understand them more easily.
Some advanced operations involve more than one sequence as input, but it’s still a lot
less to worry about than trying to understand the whole query in one go.

 So, why are sequences so important? They’re the basis for a streaming model for
data handling—one that allows us to fetch and process data only when we need it.

DEFERRED EXECUTION AND STREAMING

When the query expression shown in figure 11.1 is created, no data is processed. The
original list of people isn’t accessed at all.1 Instead, a representation of the query is
built up in memory. Delegate instances are used to represent the predicate testing for
adulthood and the conversion from a person to that person’s name. The wheels only
start turning when the resulting IEnumerable<string> is asked for its first element.

 This aspect of LINQ is called deferred execution. When the first element of the result
is requested, the Select transformation asks the Where transformation for its first ele-
ment. The Where transformation asks the list for its first element, checks whether the
predicate matches (which it does in this case), and returns that element back to
Select. That in turn extracts the name and returns it as the result.

HAVEN'T WE SEEN THIS BEFORE? You may be getting a sense of déjà vu here; I
did mention all of this in chapter 10. But it’s such an important topic that it’s
worth covering a second time, in more detail.

That’s a mouthful, but a sequence diagram makes it all much clearer. I’m going to col-
lapse the calls to MoveNext and Current to a single fetch operation: it makes the dia-
gram a lot simpler. Just remember that each time the fetch occurs, it’s effectively
checking for the end of the sequence as well. Figure 11.2 shows the first few stages of
our sample query expression in operation, when we print out each element of the
result using a foreach loop.

 As you can see in figure 11.2, only one element of data is processed at a time. If we
decided to stop printing output after writing “Holly”, we’d never execute any of the
operations on the other elements of the original sequence. Although several stages
are involved here, processing data in a streaming manner like this is efficient and flexi-
ble. In particular, regardless of how much source data there is, you don’t need to
know about more than one element at any one point in time.

 This is a best-case scenario. There are times where in order to fetch the first result
of a query, you have to evaluate all of the data from the source. We’ve already seen one
example of this in the previous chapter: the Enumerable.Reverse method needs to
fetch all the data available in order to return the last original element as the first ele-
ment of the resulting sequence. This makes Reverse a buffering operation—which can
have a huge effect on the efficiency (or even feasibility) of your overall operation. If

1 The various parameters involved are checked for nullity, though. This is important to bear in mind if you
implement your own LINQ operators, as we’ll see in chapter 12.
Licensed to Devon Greenway <devon.greenway@gmail.com>

283Introducing LINQ
you can’t afford to have all the data in memory at one time, you can’t use buffering
operations.

 Just as the streaming aspect depends on which operation you perform, some trans-
formations take place as soon as you call them, rather than using deferred execution.
This is called immediate execution. Generally speaking, operations that return another
sequence (usually an IEnumerable<T> or IQueryable<T>) use deferred execution,
whereas operations that return a single value use immediate execution.

 The operations that are widely available in LINQ are known as the standard query
operators—let’s take a brief look at them now.

Caller
(foreach) Select Where List

Fetch
Fetch

Fetch

Return {"Holly", 34}

Check: Age >= 18? Yes
Return {"Holly", 34}

Transform:
{"Holly", 34} => "Holly"

Return "Holly"

Fetch
Fetch

Fetch

Print "Holly"

Return {"Jon", 33}

Return {"Tom", 6}

Check: Age >= 18? No

Return {"Jon", 33}

Check: Age >= 18? Yes

Fetch

Transform:
{"Jon", 33} => "Jon"

Return "Jon"

Print "Jon"

(and so on)

Figure 11.2 Sequence diagram of the execution of a query expression
Licensed to Devon Greenway <devon.greenway@gmail.com>

284 CHAPTER 11 Query expressions and LINQ to Objects
STANDARD QUERY OPERATORS

LINQ’s standard query operators are a collection of transformations whose meanings are
well understood. LINQ providers are encouraged to implement as many of these oper-
ators as possible, making the implementation obey the expected behavior. This is cru-
cial in providing a consistent query framework across multiple data sources. Of
course, some LINQ providers may expose more functionality, and some of the opera-
tors may not map appropriately to the target domain of the provider—but at least the
opportunity for consistency is there.

IMPLEMENTATION-SPECIFIC DETAILS OF STANDARD OPERATORS Just because the
standard query operators have common general meanings doesn’t mean
they’ll work exactly the same for every implementation. For example, some
LINQ providers may load the data for a whole query as soon as they need the
first item—if you’re accessing a web service, that may make perfect sense.
Likewise a query that works in LINQ to Objects may have subtly different
semantics in LINQ to SQL. This doesn’t mean that LINQ has failed, just that
you still need to consider which data source you’re accessing when you write a
query. There’s still a massive advantage in having a single set of query opera-
tors and a consistent query syntax, even though it’s not a panacea.

C# 3 has support for some of the standard query operators built into the language via
query expressions, but they can always be called manually. You may be interested to
know that VB 9 has more of the operators present in the language: as ever, there’s a
trade-off between the added complexity of including a feature in the language and
the benefits that feature brings. Personally I think the C# team has done an admirable
job: I’ve always been a fan of a relatively small language with a large library behind it.

OPERATOR OVERLOADING The word operator is used to describe both query
operators (methods such as Select and Where) and the familiar operators
such as addition, equality, and so on. Usually it should be obvious which one I
mean from the context—if I’m talking about LINQ, operator will almost always
refer to a method used as part of a query.

We’ll see some of these operators in our examples as we go through this chapter and
the next, but I don’t aim to give a comprehensive guide to them here: this book is pri-
marily about C#, not the whole of LINQ. You don’t need to know all of the operators
in order to be productive in LINQ, but your experience is likely to grow over time.
Appendix A gives a brief description of each of the standard query operators, and
MSDN gives more details of each specific overload. When you run into a problem,
check the list: if it feels like there ought to be a built-in method to help you, there
probably is! That’s not always the case, though—I founded the MoreLINQ open
source project to add some extra operators to LINQ to Objects (see http://mng.bz/
TuXP). Likewise the Reactive Extensions package (see http://mng.bz/R7ip) has addi-
tions for the pull model of LINQ to Objects as well as the push model we’ll look at
later. If the standard operators fail you, check both projects before building your own
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/TuXP
http://mng.bz/TuXP
http://mng.bz/R7ip

285Simple beginnings: selecting elements
solution. It’s not a disaster if you do have to write your own operator, though; it can be
a lot of fun. In chapter 12 I’ll give a few tips on this subject.

 Having mentioned examples, it’s time to introduce the data model that most of
the rest of the sample code in this chapter will use.

11.1.2 Defining the sample data model

In section 10.3.4 I gave a brief example of defect tracking as a real use for extension
methods and lambda expressions. We’ll use the same idea for almost all of the sample
code in this chapter—it’s a fairly simple model, but one that can be manipulated in
many different ways to give useful information. Defect tracking is also a domain that
most professional developers are all too familiar with, unfortunately.

 Our fictional setting is SkeetySoft, a small software company with big ambition.
The founders have decided to attempt to create an office suite, a media player, and an
instant messaging application. After all, there are no big players in those markets, are
there?

 The development department of SkeetySoft consists of five people: two developers
(Deborah and Darren), two testers (Tara and Tim), and a manager (Mary). There’s
currently a single customer: Colin. The aforementioned products are SkeetyOffice,
SkeetyMediaPlayer, and SkeetyTalk, respectively.2 We’re going to look at defects
logged during May 2010, using the data model shown in figure 11.3.

 As you can see, we’re not recording a lot of data. In particular, there’s no real his-
tory to the defects, but there’s enough here to let us demonstrate the query expres-
sion features of C# 3. For the purposes of this chapter, all the data is stored in
memory. We have a class named SampleData with properties AllDefects, AllUsers,
AllProjects, and AllSubscriptions, which each return an appropriate type of
IEnumerable<T>. The Start and End properties return DateTime instances for the
start and end of May respectively, and there are nested classes Users and Projects
within SampleData to provide easy access to a particular user or project. The one type
that may not be immediately obvious is NotificationSubscription: the idea behind
this is to send an email to the specified address every time a defect is created or
changed in the relevant project.

 There are 41 defects in the sample data, created using C# 3 object initializers. All
of the code is available on the book’s website, but I won’t include the sample data
itself in this chapter.

 Now that the preliminaries are dealt with, let’s get cracking with some queries!

11.2 Simple beginnings: selecting elements
Having brought up some general LINQ concepts beforehand, I’ll introduce the con-
cepts that are specific to C# 3 as they arise in the course of the chapter. We’re going to
start with a simple query (even simpler than the one we saw earlier) and work up to

2 The marketing department of SkeetySoft isn’t particularly creative.
Licensed to Devon Greenway <devon.greenway@gmail.com>

286 CHAPTER 11 Query expressions and LINQ to Objects
some complicated ones, not only building up your understanding of what the C# 3
compiler is doing, but also teaching you how to read LINQ code.

 All of our examples will follow the pattern of defining a query and then printing
the results to the console. We’re not interested in binding queries to data grids or any-
thing like that—it’s all important, but not directly relevant to learning C# 3.

 We can use a simple expression that just prints out all our users as the starting
point for examining what the compiler is doing behind the scenes and learning about
range variables.

11.2.1 Starting with a source and ending with a selection

Every query expression in C# 3 starts off in the same way—stating the source of a
sequence of data:

from element in source

The element part is just an identifier, with an optional type name before it. Most of
the time you won’t need the type name, and we won’t have one for our first example.
The source part is just a normal expression. Lots of different things can happen after
that first clause, but sooner or later you always end with a select clause or a group

Figure 11.3 Class diagram of
the SkeetySoft defect data model
Licensed to Devon Greenway <devon.greenway@gmail.com>

287Simple beginnings: selecting elements
clause. We’ll start off with a select clause to keep things nice and simple. The syntax
for a select clause is also easy:

select expression

The select clause is known as a projection. Combining the two together and using the
most trivial expression we can think of gives a simple (and practically useless) query,
as shown in the following listing.

var query = from user in SampleData.AllUsers
select user;

foreach (var user in query)
{

Console.WriteLine(user);
}

The query expression is the part highlighted in bold. I’ve overridden ToString for
each of the entities in the model, so the results of listing 11.1 are as follows:

User: Tim Trotter (Tester)
User: Tara Tutu (Tester)
User: Deborah Denton (Developer)
User: Darren Dahlia (Developer)
User: Mary Malcop (Manager)
User: Colin Carton (Customer)

You may be wondering how useful this is as an example: after all, we could’ve just used
SampleData.AllUsers directly in our foreach statement. But we’ll use this query
expression—trivial though it is—to introduce two new concepts. First we’ll look at the
general nature of the translation process the compiler uses when it encounters a query
expression, and then we’ll discuss range variables.

11.2.2 Compiler translations as the basis of query expressions

The C# 3 query expression support is based on the compiler translating query expres-
sions into normal C# code. It does this in a mechanical manner that doesn’t try to
understand the code, apply type inference, check the validity of method calls, or any
of the normal business of a compiler. That’s all done later, after the translation. In
many ways, this first phase can be regarded as a preprocessor step. The compiler trans-
lates listing 11.1 into listing 11.2 before doing the real compilation.

var query = SampleData.AllUsers.Select(user => user);

foreach (var user in query)
{

Console.WriteLine(user);
}

Listing 11.1 Trivial query to print the list of users

Listing 11.2 The query expression of listing 11.1 translated into a method call
Licensed to Devon Greenway <devon.greenway@gmail.com>

288 CHAPTER 11 Query expressions and LINQ to Objects
The C# 3 compiler translates the query expression into exactly that code before prop-
erly compiling it further. In particular, it doesn’t assume that it should use
Enumerable.Select, or that List<T> will contain a method called Select. It merely
translates the code and then lets the next phase of compilation deal with finding an
appropriate method—whether as a straightforward member or as an extension
method.3 The parameter can be a suitable delegate type or an Expression<T> for an
appropriate type T.

 This is where it’s important that lambda expressions can be converted into both
delegate instances and expression trees. All the examples in this chapter will use dele-
gates, but we’ll see how expression trees are used when we look at the other LINQ pro-
viders in chapter 12. When I present the signatures for some of the methods called by
the compiler later on, remember that these are just the ones called in LINQ to Objects
—whenever the parameter is a delegate type (which most of them are), the compiler
will use a lambda expression as the argument, and then try to find a method with a
suitable signature.

 It’s also important to remember that wherever a normal variable (such as a local
variable within the method) appears within a lambda expression after translation has
been performed, it’ll become a captured variable in the same way that we saw back in
chapter 5. This is normal lambda expression behavior—but unless you understand
which variables will be captured, you could easily be confused by the results of your
queries.

 The language specification gives details of the query expression pattern, which must
be implemented for all query expressions to work, but this isn’t defined as an inter-
face as you might expect. It makes a lot of sense: it allows LINQ to be applied to inter-
faces such as IEnumerable<T> using extension methods. This chapter tackles each
element of the query expression pattern, one at a time. If you want to see exactly how
the language specification defines each translation, see section 7.16 of the C# 4 spec.

 Listing 11.3 proves how the compiler translation works: it provides a dummy
implementation of both Select and Where, with Select as a normal instance method
and Where as an extension method. Our original simple query expression only con-
tained a select clause, but I’ve included the where clause to show both kinds of meth-
ods in use. I’ve used a full listing rather than a snippet as extension methods can only
be declared in top-level static classes.

static class Extensions
{

public static Dummy<T> Where<T>(this Dummy<T> dummy,

3 It’s even more general than that—the compiler doesn’t require Select to be a method, or
SampleData.AllUsers to be a property access. So long as the translated code compiles, it’s happy. In almost
every sensible case you’ll access either standard or extension methods, but I have a blog post with some par-
ticularly odd queries (see http://mng.bz/7E3i). I haven’t found this useful in practice, but I do like it as a way
of hammering home how mechanical the translation process is, and how it doesn’t care about the meaning of
the translated code.

Listing 11.3 Compiler translation calling methods on a dummy LINQ implementation

Declares Where
extension method
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/7E3i

289Simple beginnings: selecting elements
Func<T,bool> predicate)
{

Console.WriteLine ("Where called");
return dummy;

}
}

class Dummy<T>
{

public Dummy<U> Select<U>(Func<T,U> selector)
{

Console.WriteLine ("Select called");
return new Dummy<U>();

}
}

class TranslationExample
{

static void Main()
{

var source = new Dummy<string>();
var query = from dummy in source

where dummy.ToString() == "Ignored"
select "Anything";

}
}

Running listing 11.3 prints “Where called” and then “Select called” just as we’d
expect, because the query expression has been translated into this code:

var query = source.Where(dummy => dummy.ToString() == "Ignored")
.Select(dummy => "Anything");

Of course, we’re not doing any querying or transformation here, but it shows how the
compiler is translating our query expression. If you’re puzzled as to why we’ve
selected "Anything" instead of just dummy, it’s because a projection of just dummy
(which is a do-nothing projection) would be removed by the compiler in this particu-
lar case. We’ll look at that later in section 11.3.2, but for the moment the important
idea is the overall type of translation involved. We only need to learn what translations
the C# compiler will use, and then we can take any query expression, convert it into
the form that doesn’t use query expressions, and then look at what it’s doing from
that point of view.

 Note how we don’t implement IEnumerable<T> at all in Dummy<T>. The translation
from query expressions to normal code doesn’t depend on it, but in practice most
LINQ providers will expose data either as IEnumerable<T> or IQueryable<T> (which
we’ll look at in chapter 12). The fact that the translation doesn’t depend on any par-
ticular types but merely on the method names and parameters is a sort of compile-
time form of duck typing. This is similar to the same way that the collection initializers
presented in chapter 8 find a public method called Add using normal overload resolu-
tion rather than using an interface containing an Add method with a particular signa-
ture. Query expressions take this idea one step further—the translation occurs early
in the compilation process in order to allow the compiler to pick either instance

Declares Select
instance method

Creates source
to be queried Calls methods via a

query expression
Licensed to Devon Greenway <devon.greenway@gmail.com>

290 CHAPTER 11 Query expressions and LINQ to Objects
methods or extension methods. You could even consider the translation to be the
work of a separate preprocessing engine. You may think I’m banging on about this a
lot, but it's all part of removing the mist that sometimes shrouds LINQ. If you rewrite a
query expression as a series of method calls, effectively doing what the compiler
would’ve done, you won’t change the performance and your query won’t behave any
differently. They’re just two different ways of representing the same code.

WHY from ... where ... select INSTEAD OF select ... from ... where? Many
developers find the order of the clauses in query expressions confusing to
start with. It looks just like SQL—except back to front. If you look back to the
translation into methods, you’ll see the main reason behind it. The query
expression is processed in the same order that it’s written: we start with a
source in the from clause, then filter it in the where clause, then project it in
the select clause. Another way of looking at it is to consider the diagrams
throughout this chapter. The data flows from top to bottom, and the boxes
appear in the diagram in the same order as their corresponding clauses
appear in the query expression. Once you get over any initial discomfort due
to unfamiliarity, you may find this approach appealing—I do. You may even
find yourself asking the equivalent question about SQL.

So, we know that a source level translation is involved—but there’s another crucial
concept to understand before we move on any further.

11.2.3 Range variables and nontrivial projections

Let’s look back at our original query expression in more depth. We haven’t examined
the identifier in the from clause or the expression in the select clause. Figure 11.4
shows the query expression again, with each part labeled to explain its purpose.

 The contextual keywords are easy to explain—they specify to the compiler what
we want to do with the data. Likewise the source expression is just a normal C#
expression—a property in this case, but it could just as easily have been a method call
or a variable.

 The tricky bits are the range variable
declaration and the projection expres-
sion. Range variables aren’t like any
other type of variable. In some ways
they’re not variables at all! They’re only
available in query expressions, and
they’re effectively present to propagate
context from one expression to another.
They represent one element of a particu-
lar sequence at a time, and they’re used
in the compiler translation to allow other
expressions to be turned into lambda
expressions easily.

Query expression
contextual keywords

Range variable
declaration

Expression using
range variable

Source expression
(normal code)

from user in SampleData.AllUsers

select user

Figure 11.4 A simple query expression broken
down into its constituent parts
Licensed to Devon Greenway <devon.greenway@gmail.com>

291Simple beginnings: selecting elements
 We’ve already seen that our original query expression was turned into

SampleData.AllUsers.Select(user => user)

The left side of the lambda expression—the part that provides the parameter name —
comes from the range variable declaration. The right side comes from the select
clause. The translation is as simple as that (in this case). It all works out okay because
we’ve used the same name on both sides. Suppose we’d written the query expression
like this:

from user in SampleData.AllUsers
select person

In that case, the translated version would’ve been

SampleData.AllUsers.Select(user => person)

At that point the compiler would’ve complained because it wouldn’t have known what
person referred to. Now that we know how simple the process is, it becomes easier to
understand a query expression that has a slightly more complicated projection. The
following listing prints out just the names of our users.

IEnumerable<string> query = from user in SampleData.AllUsers
select user.Name;

foreach (string name in query)
{

Console.WriteLine(name);
}

This time we’re using user.Name as the projection, and the result is a sequence of
strings, not of User objects. (I’ve used an explicitly typed variable to emphasize this
point.) The translation of the query expression follows the same rules as before, and
becomes

SampleData.AllUsers.Select(user => user.Name)

The compiler allows this, because the chosen Select extension method from
Enumerable has this signature:4

static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source,
Func<TSource,TResult> selector)

The type inference described in chapter 9 kicks in, converting the lambda expression
into a Func<TSource,TResult>. First it infers that TSource is User due to the type of
SampleData.AllUsers. At that point it knows about the parameter type for the
lambda expression, so it can resolve user.Name as a property access expression

Listing 11.4 Query selecting just the names of the users

4 In order to allow all the methods signatures in this chapter to fit on the printed page, I’ve omitted the public
modifier. In reality they are all public though.
Licensed to Devon Greenway <devon.greenway@gmail.com>

292 CHAPTER 11 Query expressions and LINQ to Objects
returning type string, thus inferring that TResult is string. This is why lambda
expressions allow implicitly typed parameters, and why there are such complicated
type inference rules: these are the gears and pistons of the LINQ engine.

WHY DO YOU NEED TO KNOW ALL THIS? You can almost ignore what’s going on
with range variables a lot of the time. You may have seen many, many queries
and understood what they achieve without ever knowing about what’s going
on behind the scenes. That’s fine for when things are working (as they tend
to with examples in tutorials), but when things go wrong, it pays to know
about the details. If you have a query expression that won’t compile because
the compiler is complaining that it doesn’t know about a particular identifier,
you should look at the range variables involved.

So far we’ve only seen implicitly typed range variables. What happens when we
include a type in the declaration? The answer lies in the Cast and OfType standard
query operators.

11.2.4 Cast, OfType, and explicitly typed range variables

Most of the time, range variables can be implicitly typed; you’re likely to be working
with generic collections where the specified type is all you need. What if that weren’t
the case, though? What if we had an ArrayList, or perhaps an object[] that we
wanted to perform a query on? It would be a pity if LINQ couldn’t be applied in those
situations. Fortunately, there are two standard query operators that come to the res-
cue: Cast and OfType. Only Cast is supported directly by the query expression syntax,
but we’ll look at both in this section.

 The two operators are similar: both take an arbitrary untyped sequence (they’re
extension methods on the nongeneric IEnumerable type) and return a strongly typed
sequence. Cast does this by casting each element to the target type (and failing on any
element that isn’t of the right type) and OfType does a test first, skipping any elements
of the wrong type.

 Listing 11.5 demonstrates both of these operators, used as simple extension meth-
ods from Enumerable. Just for a change, we won’t be using our SkeetySoft defect sys-
tem for our sample data—after all, that’s all strongly typed! Instead, we’ll just use two
ArrayList objects.

ArrayList list = new ArrayList { "First", "Second", "Third" };
IEnumerable<string> strings = list.Cast<string>();
foreach (string item in strings)
{

Console.WriteLine(item);
}

list = new ArrayList { 1, "not an int", 2, 3 };
IEnumerable<int> ints = list.OfType<int>();
foreach (int item in ints)

Listing 11.5 Using Cast and OfType to work with weakly typed collections
Licensed to Devon Greenway <devon.greenway@gmail.com>

293Simple beginnings: selecting elements
{
Console.WriteLine(item);

}

The first list contains only strings, so we’re safe to use Cast<string> to obtain a
sequence of strings. The second list has mixed content, so in order to fetch just the
integers from it we use OfType<int>. If we’d used Cast<int> on the second list, an
exception would’ve been thrown when we tried to cast “not an int” to int. Note that
this would only have happened after we’d printed “1”—both operators stream their
data, converting elements as they fetch them.

IDENTITY, REFERENCE, AND UNBOXING CONVERSIONS ONLY The behavior of Cast
changed subtly in .NET 3.5 SP1. In the original .NET 3.5, it would perform
more conversions—so using Cast<int> on a List<short> would convert each
short into a int as it was fetched. In service pack 1 this will throw an excep-
tion. If you want any conversion other than a reference conversion or an
unboxing conversion (or the no-op identity conversion), use a Select projec-
tion instead. OfType only performs these conversions too, although it doesn’t
throw an exception if they fail.

When you introduce a range variable with an explicit type, the compiler uses a call to
Cast to make sure the sequence used by the rest of the query expression is of the
appropriate type. The following listing shows this, with a projection using the Sub-
string method to prove that the sequence generated by the from clause is a sequence
of strings.

ArrayList list = new ArrayList { "First", "Second", "Third"};
var strings = from string entry in list

select entry.Substring(0, 3);
foreach (string start in strings)
{

Console.WriteLine(start);
}

The output of listing 11.6 is “Fir,” “Sec,” “Thi”—but what’s more interesting is the
translated query expression:

list.Cast<string>().Select(entry => entry.Substring(0,3));

Without the cast, we wouldn’t be able to call Select at all, because the extension
method is only defined for IEnumerable<T> rather than IEnumerable. Even when
you’re using a strongly typed collection, you might still want to use an explicitly typed
range variable. For instance, you could have a collection that’s defined to be a
List<ISomeInterface> but you know that all the elements are instances of
MyImplementation. Using a range variable with an explicit type of MyImplementation
allows you to access all the members of MyImplementation without manually inserting
casts all over the code.

Listing 11.6 Using an explicitly typed range variable to automatically call Cast
Licensed to Devon Greenway <devon.greenway@gmail.com>

294 CHAPTER 11 Query expressions and LINQ to Objects
 We’ve covered a lot of important conceptual ground so far, even though we
haven’t achieved any impressive results. To recap the most important points briefly:

 LINQ is based on sequences of data, which are streamed wherever possible.
 Creating a query doesn’t usually execute it: most operations use deferred

execution.
 Query expressions in C# 3 involve a preprocessing phase that converts the

expression into normal C#, which is then compiled properly with all the normal
rules of type inference, overloading, lambda expressions, and so forth.

 The variables declared in query expressions don’t act like anything else: they
are range variables, which allow you to refer to data consistently within the
query expression.

I know that there’s a lot of somewhat abstract information to take in. Don’t worry if
you’re beginning to wonder if LINQ is worth all this trouble. I promise you that it is.
With a lot of the groundwork out of the way, we can start doing genuinely useful
things—such as filtering our data, and then ordering it.

11.3 Filtering and ordering a sequence
You may be surprised to learn that these two operations are some of the simplest to
explain in terms of compiler translations. This is because they always return a
sequence with the same element type as their input, which means we don’t need to
worry about any new range variables being introduced. It also helps that we’ve seen
the corresponding extension methods in chapter 10.

11.3.1 Filtering using a where clause

It’s remarkably easy to understand the where clause. The syntax is just

where filter-expression

The compiler translates this into a call to the Where method with a lambda expres-
sion, which uses the appropriate range variable as the parameter and the filter
expression as the body. The filter expression is applied as a predicate to each element
of the incoming stream of data, and only those that return true are present in the
resulting sequence. Using multiple where clauses results in multiple chained Where
calls—only elements that match all of the predicates are part of the resulting
sequence. The following listing demonstrates a query expression that finds all open
defects assigned to Tim.

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
select defect.Summary;

Listing 11.7 Query expression using multiple where clauses
Licensed to Devon Greenway <devon.greenway@gmail.com>

295Filtering and ordering a sequence
foreach (var summary in query)
{

Console.WriteLine(summary);
}

The query expression in listing 11.7 is translated into this:

SampleData.AllDefects.Where(defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)
.Select(defect => defect.Summary)

The output of listing 11.7 is as follows:

Installation is slow
Subtitles only work in Welsh
Play button points the wrong way
Webcam makes me look bald
Network is saturated when playing WAV file

Of course, we could write a single where clause that combined the two conditions as
an alternative to using multiple where clauses. In some cases this may improve perfor-
mance, but it’s worth bearing the readability of the query expression in mind, too.
Once more, this is likely to be fairly subjective. My personal inclination is to combine
conditions that are logically related but keep others separate. In this case, both parts
of the expression deal directly with a defect (as that’s all our sequence contains), so
it’d be reasonable to combine them. As before, it’s worth trying both forms to see
which is clearer.

 In a moment, we’ll start trying to apply some ordering rules to our query, but first
we should look at a small detail to do with the select clause.

11.3.2 Degenerate query expressions

While we have a fairly simple translation to work with, let’s revisit a point I glossed
over earlier in section 11.2.2 when I first introduced the compiler translations. So far,
all our translated query expressions have included a call to Select. What happens if
our select clause does nothing, effectively returning the same sequence as it’s given?
The answer is that the compiler removes that call to Select—but only if there are
other operations being performed within the query expression. For example, the fol-
lowing query expression just selects all the defects in the system:

from defect in SampleData.AllDefects
select defect

This is known as a degenerate query expression. The compiler deliberately generates a call
to Select even though it seems to do nothing:

SampleData.AllDefects.Select(defect => defect)

There’s a big difference between this and using SampleData.AllDefects as a simple
expression though. The items returned by the two sequences are the same, but the
result of the Select method is just the sequence of items, not the source itself. The
result of a query expression is never the same object as the source data, unless the
Licensed to Devon Greenway <devon.greenway@gmail.com>

296 CHAPTER 11 Query expressions and LINQ to Objects
LINQ provider has been poorly coded. This can be important from a data integrity
point of view—a provider can return a mutable result object, knowing that changes
to the returned data sequence won’t affect the master even in the face of a degener-
ate query.

 When other operations are involved, there’s no need for the compiler to keep no-
op select clauses. For example, suppose we change the query expression in
listing 11.7 to select the whole defect rather than just the name:

from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == SampleData.Users.TesterTim
select defect

We now don’t need the final call to Select, so the translated code is just this:

SampleData.AllDefects.Where(defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)

These rules rarely get in the way when you’re writing query expressions, but they can
cause confusion if you decompile the code with a tool such as Reflector—it can be sur-
prising to see the Select call go missing for no apparent reason.

 With that knowledge in hand, let’s improve our query so that we know what Tim
should work on next.

11.3.3 Ordering using an orderby clause

It’s not uncommon for developers and testers to be asked to work on the most critical
defects before they tackle more trivial ones. We can use a simple query to tell Tim the
order in which he should tackle the open defects assigned to him. The following list-
ing does exactly this using an orderby clause, printing out all the details of the
defects, in descending order of priority.

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
orderby defect.Severity descending
select defect;

foreach (var defect in query)
{

Console.WriteLine("{0}: {1}", defect.Severity, defect.Summary);
}

The output of listing 11.8 shows that we’ve sorted the results appropriately:

Showstopper: Webcam makes me look bald
Major: Subtitles only work in Welsh
Major: Play button points the wrong way
Minor: Network is saturated when playing WAV file
Trivial: Installation is slow

Listing 11.8 Sorting by the severity of a defect, from high to low priority
Licensed to Devon Greenway <devon.greenway@gmail.com>

297Filtering and ordering a sequence
You can see that we have two major defects. Which order should those be tackled in?
Currently no clear ordering is involved. Let’s change the query so that after sorting by
severity in descending order, we sort by last modified time in ascending order. This
means that Tim will test the defects that were fixed a long time ago before those
addressed more recently. This just requires an extra expression in the orderby clause,
as shown in the following listing.

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
orderby defect.Severity descending, defect.LastModified
select defect;

foreach (var defect in query)
{

Console.WriteLine("{0}: {1} ({2:d})",
defect.Severity, defect.Summary, defect.LastModified);

}

The results of listing 11.9 are shown here. Note how the order of the two major
defects has been reversed:

Showstopper: Webcam makes me look bald (05/27/2010)
Major: Play button points the wrong way (05/17/2010)
Major: Subtitles only work in Welsh (05/23/2010)
Minor: Network is saturated when playing WAV file (05/31/2010)
Trivial: Installation is slow (05/15/2010)

So, that’s what the query expression looks like—but what does the compiler do? It sim-
ply calls the OrderBy and ThenBy methods (or OrderByDescending/ThenByDescending
for descending orders). Our query expression is translated into

SampleData.AllDefects.Where(defect => defect.Status != Status.Closed)
.Where(defect => defect.AssignedTo == tim)
.OrderByDescending(defect => defect.Severity)
.ThenBy(defect => defect.LastModified)

Now that we’ve seen an example, we can look at the general syntax of orderby clauses.
They’re basically the contextual keyword orderby followed by one or more orderings.
An ordering is just an expression (which can use range variables) optionally followed by
ascending or descending, which have the obvious meanings. (The default order is
ascending.) The translation for the primary ordering is a call to OrderBy or OrderBy-
Descending, followed by as many calls to ThenBy or ThenByDescending as you have
subsequent orderings.

 The difference between OrderBy and ThenBy is simple: OrderBy assumes it has pri-
mary control over the ordering, whereas ThenBy understands that it’s subservient to
one or more previous orderings. For LINQ to Objects, ThenBy is only defined as an

Listing 11.9 Ordering by severity and then last modified time
Licensed to Devon Greenway <devon.greenway@gmail.com>

298 CHAPTER 11 Query expressions and LINQ to Objects
extension method for IOrderedEnumerable<T>, which is the type returned by OrderBy
(and by ThenBy itself, to allow further chaining).

 It’s important to note that although you can use multiple orderby clauses, each
one will start with its own OrderBy or OrderByDescending clause, which means the last
one will effectively win. I’ve yet to see a situation in which this is useful unless you do
something else to the query between orderby clauses: you should almost always use a
single clause containing multiple orderings instead.

 As noted in chapter 10, applying an ordering requires all the data to be loaded (at
least for LINQ to Objects)—you can’t order an infinite sequence, for example. Hope-
fully the reason for this is obvious: you don’t know whether you’ll see something that
should come at the start of the resulting sequence until you’ve seen all the elements.

 We’re about halfway through learning about query expressions, and you may be
surprised that we haven’t seen any joins yet. Obviously they’re important in LINQ just
as they’re important in SQL, but they’re also complicated. I promise we’ll get to them
in due course, but in order to introduce just one new concept at a time, we’ll detour
via let clauses first. That way we can learn about transparent identifiers before we hit
joins.

11.4 Let clauses and transparent identifiers
Most of the rest of the operators we still need to look at involve transparent identifiers.
Just like range variables, you can get along perfectly well without understanding trans-
parent identifiers, if you only want to have a fairly shallow grasp of query expressions.
If you’ve bought this book, I hope you want to know C# at a deeper level, which will
(among other things) enable you to look compilation errors in the face and know
what they’re talking about.

 You don’t need to know everything about transparent identifiers, but I’ll teach you
enough so that if you see one in the language specification you won’t feel like running
and hiding. You’ll also understand why they’re needed at all—and that’s where an
example will come in handy. The let clause is the simplest transformation available
that uses transparent identifiers.

11.4.1 Introducing an intermediate computation with let

A let clause introduces a new range variable with a value that can be based on other
range variables. The syntax is as easy as pie:

let identifier = expression

To explain this operator in terms that don’t use any other complicated operators, I’m
going to resort to a very artificial example. Suspend your disbelief, and imagine that
finding the length of a string is a costly operation. Now imagine that we had a com-
pletely bizarre system requirement to order our users by the lengths of their names,
and then display the name and its length. Yes, I know it’s unlikely. Listing 11.10 shows
one way of doing this without a let clause.
Licensed to Devon Greenway <devon.greenway@gmail.com>

299Let clauses and transparent identifiers

var query = from user in SampleData.AllUsers
orderby user.Name.Length
select user.Name;

foreach (var name in query)
{

Console.WriteLine("{0}: {1}", name.Length, name);
}

That works fine, but it uses the dreaded Length property twice—once to sort the
users, and once in the display side. Surely not even the fastest supercomputer could
cope with finding the lengths of six strings twice! No, we need to avoid that redundant
computation. We can do so with the let clause, which evaluates an expression and
introduces it as a new range variable. Listing 11.11 achieves the same result as listing
11.10, but only uses the Length property once per user.

var query = from user in SampleData.AllUsers
let length = user.Name.Length
orderby length
select new { Name = user.Name, Length = length };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
}

Listing 11.11 introduces a new range variable called length, which contains the
length of the user’s name (for the current user in the original sequence). We then use
that new range variable for both sorting and the projection at the end. Have you spot-
ted the problem yet? We need to use two range variables, but the lambda expression
passed to Select only takes one parameter! This is where transparent identifiers come
on the scene.

11.4.2 Transparent identifiers

In listing 11.11, we have two range variables involved in the final projection, but the
Select method only acts on a single sequence. How can we combine the range vari-
ables? The answer is to create an anonymous type that contains both variables, and
then to apply a clever translation to make it look as if we actually have two parameters
for the select and orderby clauses. Figure 11.5 shows the sequences involved.

 The let clause achieves its objectives by using another call to Select, creating an
anonymous type for the resulting sequence, and effectively creating a new range vari-
able whose name can never be seen or used in source code. Our query expression
from listing 11.11 is translated into something like this:

SampleData.AllUsers
.Select(user => new { user, length = user.Name.Length })

Listing 11.10 Sorting by the lengths of user names without a let clause

Listing 11.11 Using a let clause to remove redundant calculations
Licensed to Devon Greenway <devon.greenway@gmail.com>

300 CHAPTER 11 Query expressions and LINQ to Objects
.OrderBy(z => z.length)

.Select(z => new { Name = z.user.Name, Length = z.length })

Each part of the query has been adjusted appropriately: where the original query
expression referenced user or length directly, if the reference occurs after the let
clause, it’s replaced by z.user or z.length. The choice of z as the name here is arbi-
trary—it’s all hidden by the compiler.

ANONYMOUS TYPES ARE AN IMPLEMENTATION DETAIL Strictly speaking, it’s up
to the C# compiler implementation to decide how to group together differ-
ent range variables to make transparent identifiers work. The Microsoft
implementation uses anonymous types, and the specification shows the trans-
lations in those terms as well—so I’ve followed the trend. Even if another
compiler chose a different approach, it shouldn’t affect the results.

If you consult the language specification about let clauses (section 7.16.2.4), you’ll
see that the translation it describes is from one query expression to another. It uses an
asterisk (*) to represent the transparent identifier introduced. The transparent identi-
fier is then erased as a final step in translation. I won’t use that notation in this chapter,
as it’s hard to come to grips with and unnecessary at the level of detail we’re going

from user in
SampleData.AllUsers

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
...

user=User: { Name="Tim Trotter" ... }, length=11
user=User: { Name="Tara Tutu" ... }, length=9
user=User: { Name="Dave Denton" ... }, length=11
...

user=User: { Name="Tara Tutu" ... }, length=9
user=User: { Name="Tim Trotter" ...}, length=11
user=User: { Name="Dave Denton" ... }, length=11
...

(Result of query)

{ Name="Tara Tutu", Length=9 }
{ Name="Tim Trotter", Length=11 }
{ Name="Dave Denton", Length=11 }
...

Two range variables:
user and length

Same sequence,
ordered by length

Name and length in
an anonymous type

let length = user.Name.Length

orderby length

select new { Name=user.Name,
Length=length }

Figure 11.5 Sequences involved in
listing 11.11, where a let clause
introduces the length range variable
Licensed to Devon Greenway <devon.greenway@gmail.com>

301Joins
into. Hopefully with this background, the specification won’t be quite as impenetrable
as it might be otherwise, should you need to refer to it.

 The good news is that we can now look at the rest of the translations making up
C# 3’s query expression support. I won’t go into the details of every transparent iden-
tifier introduced, but I’ll mention the situations in which they occur. Let’s look at the
support for joins first.

11.5 Joins
If you’ve ever read anything about SQL, you probably have an idea what a database join
is. It takes two tables (or views, or table-valued functions, and so forth) and creates a
result by matching one set of rows against another set of rows. A LINQ join is similar,
except it works on sequences. Three types of join are available, although not all of
them use the join keyword in the query expression. We’ll start with the join that’s
closest to a SQL inner join.

11.5.1 Inner joins using join clauses

Inner joins involve two sequences. One key selector expression is applied to each ele-
ment of the first sequence and another key selector (which may be totally different) is
applied to each element of the second sequence. The result of the join is a sequence
of all the pairs of elements where the key from the first element is the same as the key
from the second element.

TERMINOLOGY CLASH! INNER AND OUTER SEQUENCES The MSDN documentation
for the Join method used to evaluate inner joins calls the sequences involved
inner and outer, and the real method parameters are based on these names
too. This has nothing to do with inner joins and outer joins—it’s just a way of
differentiating between the sequences. You can think of them as first and sec-
ond, left and right, Bert and Ernie—anything you like that helps you. I’ll use
left and right for this chapter, so that it's clear which is which in the diagram.
Usually, outer corresponds with left and inner corresponds with right.

The two sequences can be anything you like: the right sequence can even be the same
as the left sequence, if that’s useful. (Imagine finding pairs of people who were born
on the same day, for example.) The only thing that matters is that the two key selector
expressions must result in the same type of key.5 You can’t join a sequence of people
to a sequence of cities by saying that the birth date of the person is the same as the
population of the city—it doesn’t make any sense. But one important possibility is to
use an anonymous type for the key: this works because anonymous types implement
equality and hashing appropriately. If you need to effectively create a multicolumn
key, anonymous types are the way to go. This is also applicable for the grouping oper-
ations we’ll see later.

5 It’s also valid for there to be two key types involved, with an implicit conversion from one to the other. One
of the types must be a better choice than the other, in the same way that the compiler infers the type of an
implicitly typed array. In my experience, you rarely need to consciously consider this detail.
Licensed to Devon Greenway <devon.greenway@gmail.com>

302 CHAPTER 11 Query expressions and LINQ to Objects
 The syntax for an inner join looks more complicated than it is:

[query selecting the left sequence]
 join right-range-variable in right-sequence
 on left-key-selector equals right-key-selector

Seeing equals as a contextual keyword rather than using symbols can be disconcert-
ing, but it makes it easier to distinguish the left key selector from the right key selec-
tor. Often (but not always) at least one of the key selectors is a trivial one that just
selects the exact element from that sequence. The contextual keyword is used by the
compiler to separate the key selectors into different lambda expressions. The ability to
obtain the keys for each value (on each side of the join) is important both for perfor-
mance in LINQ to Objects and for the feasibility of translating the query into other
forms such as SQL.

 Let’s look at an example from our defect system. Suppose we’d just added the noti-
fication feature, and wanted to send the first batch of emails for all the existing
defects. We need to join the list of notifications against the list of defects, where their
projects match. The following listing performs just such a join.

var query = from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.EmailAddress, entry.Summary);
}

Listing 11.12 will show each of the media player defects twice—once for media-
bugs@skeetysoft.com and once for theboss@skeetysoft.com (because the boss really
cares about the media player project).

 In this particular case we could easily have made the join the other way around,
reversing the left and right sequences. The result would’ve been the same entries but
in a different order. The implementation in LINQ to Objects returns entries such that
all the pairs using the first element of the left sequence are returned (in the order of
the right sequence), then all the pairs using the second element of the left sequence,
and so on. The right sequence is buffered, but the left sequence is streamed—so if you
want to join a massive sequence to a tiny one, it’s worth using the tiny one as the right
sequence if you can. The operation is still deferred: it waits until you ask for the first
pair before reading any data from either sequence. At that point, it reads the entirety
of the right sequence in order to build a lookup from keys to the values producing
those keys. After that, it doesn’t need to read from the right sequence again, and can
begin to iterate over the left sequence, yielding pairs appropriately.

 One error that might trip you up is putting the key selectors the wrong way
around. In the left key selector, only the left sequence range variable is in scope; in the

Listing 11.12 Joining the defects and notification subscriptions based on project
Licensed to Devon Greenway <devon.greenway@gmail.com>

303Joins
right key selector, only the right range variable is in scope. If you reverse the left and
right sequences, you have to reverse the left and right key selectors too. Fortunately
the compiler knows that this is a common mistake and suggests the appropriate
course of action.

 Just to make it more obvious what’s going on, figure 11.6 shows the sequences as
they’re processed.

 Often you want to filter the sequence, and filtering before the join occurs is more
efficient than filtering it afterward. At this stage the query expression is simpler if the
left sequence is the one requiring filtering. For instance, if we wanted to show only
defects that are closed, we could use this query expression:

from defect in SampleData.AllDefects
where defect.Status == Status.Closed
join subscription in SampleData.AllSubscriptions

Defect: { ID=1, Project=Media player, Summary="MP3 files ..." ... }
Defect: { ID=2, Project=Media player, Summary="Text is too big", ...}
Defect: { ID=3, Project=Talk, Summary="Sky is wrong ..." ...}
...

defect = { ID=1 ... }, subscription = { Media player, "media-bugs@..." }
defect = { ID=1 ... }, subscription = { Media player, "theboss@..." }
defect = { ID=2 ... }, subscription = { Media player, "media-bugs@..." }
defect = { ID=2 ... }, subscription = { Media player, "theboss@..." }
defect = { ID=3 ... }, subscription = { Talk, "talk-bugs@..." }

{ Summary="MP3 files ...", EmailAddress="media-bugs@..." }
{ Summary="MP3 files ...", EmailAddress="theboss@..." }
{ Summary="Text is too big", EmailAddress="media-bugs@..." }
{ Summary="Text is too big", EmailAddress="theboss@... }
{ Summary="Sky is wrong ...", EmailAddress="talk-bugs@..." }

(Result of query)

NotificationSubscription sequence:
{ Media player, "media-bugs@..." },
{ Talk, "talk-bugs@..." },
{ Office, "office-bugs@..." }
{ Media player, "theboss@..."}

All known defects

All subscriptions

Defects and subscriptions
in two range variables;

each can appear multiple
times if the join matches

more than once

The same sequence
projected into an
anonymous type

from defect in SampleData.AllDefects

join subscription in SampleData.AllSubscriptions
 on defect.Project equals subscription.Project

from subscription in
SampleData.AllSubscriptions

select new { defect.Summary,
subscription.EmailAddress }

Figure 11.6 The join from listing 11.12 in graphical form, showing two different sequences
(defects and subscriptions) used as data sources
Licensed to Devon Greenway <devon.greenway@gmail.com>

304 CHAPTER 11 Query expressions and LINQ to Objects
on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

We can perform the same query with the sequences reversed, but it’s messier:

from subscription in SampleData.AllSubscriptions
join defect in (from defect in SampleData.AllDefects

where defect.Status == Status.Closed
select defect)

on subscription.Project equals defect.Project
select new { defect.Summary, subscription.EmailAddress }

Note how you can use one query expression inside another—the language specifica-
tion describes many of the compiler translations in these terms. Nested query expres-
sions are useful but hurt readability as well: it’s often worth looking for an alternative,
or using a variable for the sequence on the right in order to make the code clearer.

ARE INNER JOINS USEFUL IN LINQ TO OBJECTS? Inner joins are used all the time
in SQL. They’re effectively the way that we navigate from one entity to a
related one, usually joining a foreign key in one table to the primary key on
another. In the object-oriented model, we tend to navigate from one object to
another via references. For instance, retrieving the summary of a defect and
the name of the user assigned to work on it would require a join in SQL—in
C# we often just use a chain of properties. If we’d had a reverse association
from Project to the list of NotificationSubscription objects associated
with it in our model, we wouldn’t have needed the join to achieve the goal of
this example, either. That’s not to say that inner joins aren’t useful sometimes
even within object-oriented models—but they don’t naturally occur nearly as
often as in relational models.

Inner joins are translated by the compiler into calls to the Join method, like this:

leftSequence.Join(rightSequence,
leftKeySelector,
rightKeySelector,
resultSelector)

The signature of the overload used for LINQ to Objects is as follows (this is the real sig-
nature, with the real parameter names—hence the inner and outer references):

static IEnumerable<TResult> Join<TOuter,TInner,TKey,TResult> (
this IEnumerable<TOuter> outer,
IEnumerable<TInner> inner,
Func<TOuter,TKey> outerKeySelector,
Func<Inner,TKey> innerKeySelector,
Func<TOuter,TInner,TResult> resultSelector

)

The first three parameters are self-explanatory when you’ve remembered to treat inner
and outer as right and left, respectively, but the last one is more interesting. It’s a projec-
tion from two elements (one from the left sequence and one from the right
sequence) into a single element of the resulting sequence. When the join is followed
by anything other than a select clause, the C# 3 compiler introduces a transparent
Licensed to Devon Greenway <devon.greenway@gmail.com>

305Joins
identifier in order to make the range variables used in both sequences available for
later clauses, and creates an anonymous type and simple mapping to use for the
resultSelector parameter.

 But if the next part of the query expression is a select clause, the projection from
the select clause is used directly as the resultSelector parameter—there’s no point
in creating a pair and then calling Select when you can do the transformation in one
step. You can still think about it as a “join” step followed by a “select” step despite the
two being squished into a single method call. This leads to a more consistent mental
model in my view, and one that’s easier to reason about. Unless you’re looking at the
generated code, just ignore the optimization the compiler is performing for you.

 The good news is that having learned about inner joins, our next type of join is
much easier to approach.

11.5.2 Group joins with join ... into clauses

We’ve seen that the result sequence from a normal join clause consists of pairs of ele-
ments, one from each of the input sequences. A group join looks similar in terms of the
query expression but has a significantly different outcome. Each element of a group
join result consists of an element from the left sequence (using its original range vari-
able) and also a sequence of all the matching elements of the right sequence, exposed
as a new range variable specified by the identifier coming after into in the join
clause.

 Let’s change our previous example to use a group join. Listing 11.13 again shows
all the defects and the notifications required for each of them, but breaks them out in
a per-defect manner. Pay particular attention to how we’re displaying the results with a
nested foreach loop.

var query = from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
into groupedSubscriptions

select new { Defect = defect,
Subscriptions = groupedSubscriptions };

foreach (var entry in query)
{

Console.WriteLine(entry.Defect.Summary);
foreach (var subscription in entry.Subscriptions)
{

Console.WriteLine (" {0}", subscription.EmailAddress);
}

}

The Subscriptions property of each entry is the embedded sequence of subscrip-
tions matching that entry’s defect. Figure 11.7 shows how the two initial sequences are
combined.

Listing 11.13 Joining defects and subscriptions with a group join
Licensed to Devon Greenway <devon.greenway@gmail.com>

306 CHAPTER 11 Query expressions and LINQ to Objects
One important difference between an inner join and a group join—and between a
group join and normal grouping—is that a group join has a one-to-one correspon-
dence between the left sequence and the result sequence, even if some of the ele-
ments in the left sequence don’t match any elements of the right sequence. This can
be important, and is sometimes used to simulate a left outer join from SQL. The embed-
ded sequence is empty when the left element doesn’t match any right elements. As
with an inner join, a group join buffers the right sequence but streams the left one.

 Listing 11.14 shows an example of this, counting the number of defects created on
each day in May. It uses a DateTimeRange type to generate a sequence of dates in May

Defect: { ID=1, Project=Media player, ... }
Defect: { ID=2, Project=Media player, ...}
Defect: { ID=3, Project=Talk, ...}
...

(Result of query)

defect = Defect: { ID=1, Project=Media player ... },
groupedSubscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

defect = Defect: { ID=2, Project=Media player ... },
groupedSubscriptions=

defect = Defect: { ID=3, Project=Talk ... },
groupedSubscriptions = { Talk, "talk-bugs@..." ... }
...

(NotificationSubscription sequence)

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=1, Project=Media player ... },
Subscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=2, Project=Media player ... },
Subscriptions=

{ Defect=Defect: { ID=3, Project=Talk ... },
Subscriptions= { Talk, "talk-bugs@..." ... }

...

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

join subscription in SampleData.AllSubscriptions
on defect.Project equals subscription.Project
into groupedSubscriptions

from subscription in
SampleData.AllSubscriptions

from defect in SampleData.AllDefects

select new { Defect = defect,
Subscriptions = groupedSubscriptions }

Two range variables:
defect is only a single

defect per sequence entry,
but groupedSubscriptions

has all the matching
subscriptions

The same sequence
projected into an
anonymous type

All known defects

Figure 11.7 Sequences involved in the group join from listing 11.13. The short arrows indicate
embedded sequences within the result entries. In the output, some entries contain multiple email
addresses for the same defect.
Licensed to Devon Greenway <devon.greenway@gmail.com>

307Joins
as the left sequence, and a projection that calls Count() on the embedded sequence
in the result of the group join.6

var dates = new DateTimeRange(SampleData.Start, SampleData.End);

var query = from date in dates
join defect in SampleData.AllDefects

on date equals defect.Created.Date
into joined

select new { Date = date, Count = joined.Count() };
foreach (var grouped in query)
{

Console.WriteLine("{0:d}: {1}", grouped.Date, grouped.Count);
}

The Count() method uses immediate execution, iterating through all the elements of
the sequence it’s called on—but we’re only calling it in the projection part of the
query expression, so it becomes part of a lambda expression. This means we still have
deferred execution: nothing is evaluated until we start the foreach loop.

 Here’s the first part of the results of listing 11.14, showing the number of defects
created each day in the first week of May:

05/01/2010: 1
05/02/2010: 0
05/03/2010: 2
05/04/2010: 1
05/05/2010: 0
05/06/2010: 1
05/07/2010: 1

The compiler translation involved for a group join is simply a call to the GroupJoin
method in the same way as Join. Here's the signature for Enumerable.GroupJoin:

static IEnumerable<TResult> GroupJoin<TOuter,TInner,TKey,TResult>(
this IEnumerable<TOuter> outer,
IEnumerable<TInner> inner,
Func<TOuter,TKey> outerKeySelector,
Func<TInner,TKey> innerKeySelector,
Func<TOuter,IEnumerable<TInner>,TResult> resultSelector

)

This is exactly the same as for inner joins, except that the resultSelector parameter
has to work with a sequence of right-hand elements, not just a single one. As with
inner joins, if a group join is followed by a select clause, the projection is used as the
result selector of the GroupJoin call; otherwise, a transparent identifier is introduced.
In this case we have a select clause immediately after the group join, so the trans-
lated query looks like this:

dates.GroupJoin(SampleData.AllDefects,
date => date,

Listing 11.14 Counting the number of defects raised on each day in May

6 This is a simple implementation for the sake of the example—not a full-blown, general-purpose range.
Licensed to Devon Greenway <devon.greenway@gmail.com>

308 CHAPTER 11 Query expressions and LINQ to Objects
defect => defect.Created.Date,
(date, joined) => new { Date = date,

Count = joined.Count() })

Our final type of join is known as a cross join—but it’s not as straightforward as it might
initially seem.

11.5.3 Cross joins and flattening sequences using multiple from clauses

So far all our joins have been equijoins—a match has been performed between ele-
ments of the left and right sequences. Cross joins don’t perform any matching
between the sequences: the result contains every possible pair of elements. They’re
achieved by simply using two (or more) from clauses. For the sake of sanity we’ll only
consider two from clauses for the moment—when there are more, just mentally per-
form a cross join on the first two from clauses, then cross join the resulting sequence
with the next from clause, and so on. Each extra from clause adds its own range vari-
able via a transparent identifier.

 Listing 11.15 shows a simple (but useless) cross join in action, producing a
sequence where each entry consists of a user and a project. I’ve deliberately picked
two completely unrelated initial sequences to show that no matching is performed.

var query = from user in SampleData.AllUsers
from project in SampleData.AllProjects
select new { User = user, Project = project };

foreach (var pair in query)
{

Console.WriteLine("{0}/{1}",
pair.User.Name,
pair.Project.Name);

}

The output of listing 11.15 begins like this:

Tim Trotter/Skeety Media Player
Tim Trotter/Skeety Talk
Tim Trotter/Skeety Office
Tara Tutu/Skeety Media Player
Tara Tutu/Skeety Talk
Tara Tutu/Skeety Office

Figure 11.8 shows the sequences involved to get this result.
 If you’re familiar with SQL, you’re probably comfortable so far—it looks just like a

Cartesian product obtained from a query specifying multiple tables. But more power
is available when you want it: the right sequence can depend on the current value of
the left sequence. In other words, each element of the left sequence is used to gener-
ate a right sequence, and then that left element is paired with each element of the
new sequence. When this is the case, it’s not a cross join in the normal sense of the
term. Instead, it’s effectively flattening a sequence of sequences into one single
sequence. The query expression translation is the same whether or not we’re using a

Listing 11.15 Cross joining users against projects
Licensed to Devon Greenway <devon.greenway@gmail.com>

309Joins
true cross join, so we need to understand the more complicated scenario in order to
understand the translation process.

 Before we dive into the details, let’s see the effect it produces. The following listing
shows a simple example, using sequences of integers.

var query = from left in Enumerable.Range(1, 4)
from right in Enumerable.Range(11, left)
select new { Left=left, Right=right };

foreach (var pair in query)
{

Console.WriteLine("Left={0}; Right={1}",
pair.Left, pair.Right);

}

Listing 11.16 Cross join where the right sequence depends on the left element

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
User: { Name="Darren Dahlia" ...}
User: { Name="Mary Malcop" ...}
User: { Name="Colin Carton" ...}

user = User (Tim Trotter), project = Project (Media Player)
user = User (Tim Trotter), project = Project (Talk)
user = User (Tim Trotter), project = Project (Office)
user = User (Tara Tutu), project = Project (Media Player)
user = User (Tara Tutu), project = Project (Talk)
user = User (Tara Tutu), project = Project (Office)
...

(Result of query)

Project: { Name="Skeety Media Player }
Project: { Name="Skeety Talk" }
Project: { Name="Skeety Office" }

{ User = User (Tim Trotter), Project = Project (Media Player) }
{ User = User (Tim Trotter), Project = Project (Talk) }
{ User = User (Tim Trotter), Project = Project (Office) }
{ User = User (Tara Tutu), Project = Project (Media Player) }
{ User = User (Tara Tutu), Project = Project (Talk) }
{ User = User (Tara Tutu), Project = Project (Office) }
...

from user in SampleData.AllUsers

from project in SampleData.AllProjects

SampleData.AllProjects

select new { User = user, Project = project }

All users

Two range variables:
each project occurs

with each user, pair-wise

The same sequence
projected into an
anonymous type

Figure 11.8 Sequences from listing 11.15, cross joining users and projects. All possible
combinations are returned in the results.
Licensed to Devon Greenway <devon.greenway@gmail.com>

310 CHAPTER 11 Query expressions and LINQ to Objects
Listing 11.16 starts with a simple range of integers, 1 to 4. For each of those integers,
we create another range, beginning at 11 and having as many elements as the original
integer. By using multiple from clauses, the left sequence is joined with each of the
generated right sequences, resulting in this output:

Left=1; Right=11
Left=2; Right=11
Left=2; Right=12
Left=3; Right=11
Left=3; Right=12
Left=3; Right=13
Left=4; Right=11
Left=4; Right=12
Left=4; Right=13
Left=4; Right=14

The method the compiler calls to generate this sequence is SelectMany. It takes a sin-
gle input sequence (the left sequence in our terminology), a delegate to generate
another sequence from any element of the left sequence, and a delegate to generate a
result element given an element of each of the sequences. Here’s the signature of
Enumerable.SelectMany:

static IEnumerable<TResult> SelectMany<TSource,TCollection,TResult>(
this IEnumerable<TSource,TCollection> source,
Func<TSource,IEnumerable<TCollection>> collectionSelector,
Func<TSource,TCollection,TResult> resultSelector

)

As with the other joins, if the part of the query expression following the join is a
select clause, that projection is used as the final argument; otherwise, a transparent
identifier is introduced to make the range variables of both the left and right
sequences available later in the query.

 Just to make this all a bit more concrete, here’s the query expression of listing
11.16, as the translated source code:

Enumerable.Range(1, 4)
.SelectMany (left => Enumerable.Range(11, left),

(left, right) => new {Left = left, Right = right})

One interesting feature of SelectMany is that the execution is completely streamed—
it only needs to process one element of each sequence at a time, because it uses a
freshly generated right sequence for each different element of the left sequence.
Compare this with inner joins and group joins: they both load the right sequence
completely before starting to return any results. You should bear in mind the
expected size of sequence, and how expensive it might be to evaluate it multiple
times, when considering which type of join to use and which sequence to use as the
left and which as the right.

 The flattening behavior of SelectMany can be very useful. Consider a situation
where you want to process a lot of log files, a line at a time. We can process a seamless
sequence of lines with barely any work. The following pseudo-code is filled in more
Licensed to Devon Greenway <devon.greenway@gmail.com>

311Groupings and continuations
thoroughly in the downloadable source code, but the overall meaning and usefulness
should be clear:

var query = from file in Directory.GetFiles(logDirectory, "*.log")
from line in ReadLines(file)
let entry = new LogEntry(line)
where entry.Type == EntryType.Error
select entry;

In just five lines of code we’ve retrieved, parsed, and filtered a whole collection of log
files, returning a sequence of entries representing errors. Crucially, we haven’t had to
load even a single full log file into memory all in one go, let alone all of the files—all
the data is streamed.

 Having tackled joins, the last items we need to look at are slightly easier to under-
stand. We’re going to look at grouping elements by a key, and continuing a query
expression after a group ... by or select clause.

11.6 Groupings and continuations
One common requirement is to group a sequence of elements by one of its proper-
ties. LINQ makes this easy with the group ... by clause. In addition to describing this
final type of clause, we’ll also revisit our earliest one (select) to see a feature called
query continuations that can be applied to both groupings and projections. Let’s start
with a simple grouping.

11.6.1 Grouping with the group ... by clause

Grouping is largely intuitive, and LINQ makes it simple. To group a sequence in a
query expression, all you need to do is use the group ... by clause, with this syntax:

group projection by grouping

This clause comes at the end of a query expression in the same way a select clause
does. The similarities between these clauses don’t end there: the projection expres-
sion is the same kind of projection that select clauses use. The outcome is somewhat
different, though.

 The grouping expression determines what the sequence is grouped by—the key of
the grouping. The overall result is a sequence where each element is itself a sequence
of projected elements, and also has a Key property, which is the key for that group;
this combination is encapsulated in the IGrouping<TKey,TElement> interface, which
extends IEnumerable<TElement>. Again, if you want to group by multiple values, you
can use an anonymous type for the key.

 Let’s look at a simple example from the SkeetySoft defect system: grouping defects
by their current assignee. Listing 11.17 does this with the simplest form of projection,
so that the resulting sequence has the assignee as the key, and a sequence of defects
embedded in each entry.
Licensed to Devon Greenway <devon.greenway@gmail.com>

312 CHAPTER 11 Query expressions and LINQ to Objects

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo;

foreach (var entry in query)
{

Console.WriteLine(entry.Key.Name);
foreach (var defect in entry)
{

Console.WriteLine(" ({0}) {1}",
defect.Severity, defect.Summary);

}
Console.WriteLine();

}

Listing 11.17 might be useful in a daily build report, to quickly see what defects each
person needs to look at. We’ve filtered out all the defects that don’t need any more
attention B and then grouped using the AssignedTo property. Although this time
we’re just using a property, the grouping expression can be anything you like—it’s
applied to each entry in the incoming sequence, and the sequence is grouped based
on the result of the expression. Note that grouping can’t stream the results: it applies
the key selection and projection to each element in the input and buffers the grouped
sequences of projected elements. Even though it’s not streamed, execution is still
deferred until you start retrieving the results.

 The projection we’ve applied in the grouping C is trivial—it just selects the origi-
nal element. As we go through the resulting sequence, each entry has a Key property,
which is of type User D, and each entry also implements IEnumerable<Defect>,
which is the sequence of defects assigned to that user E.

 The results of listing 11.17 start like this:

Darren Dahlia
(Showstopper) MP3 files crash system
(Major) Can't play files more than 200 bytes long
(Major) DivX is choppy on Pentium 100
(Trivial) User interface should be more caramelly

After all of Darren’s defects have been printed out, we see Tara’s, then Tim’s, and so
on. The implementation effectively keeps a list of the assignees it’s seen so far, and
adds a new one every time it needs to. Figure 11.9 shows the sequences generated
throughout the query expression, which may make this ordering more clear.

 Within each entry’s subsequence, the order of the defects is the same as the order
of the original defect sequence. If you actively care about the ordering, consider
explicitly stating it in the query expression, to make it more readable.

 If you run listing 11.17, you’ll see that Mary Malcop doesn’t appear in the output at
all, because she doesn’t have any defects assigned to her. If you wanted to produce a
full list of users and defects assigned to each of them, you’d need to use a group join
like the one in listing 11.14.

Listing 11.17 Grouping defects by assignee—trivial projection

Filters out
unassigned defects

B

Groups by
assigneeC

Uses key of each
entry: assignee

D

Iterates over
entry’s subsequenceE
Licensed to Devon Greenway <devon.greenway@gmail.com>

313Groupings and continuations
The compiler always uses a method called GroupBy for grouping clauses. When the
projection in a grouping clause is trivial—in other words, when each entry in the orig-
inal sequence maps directly to the exact same object in a subsequence—the compiler
uses a simple method call that only requires the grouping expression, so it knows how
to map each element to a key. For instance, the query expression in listing 11.17 is
translated into this:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)

When the projection is nontrivial, a slightly more complicated version is used. Listing
11.18 gives an example of a projection so that we only capture the summary of each
defect rather than the Defect object itself.

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=2, AssignedTo=null ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

(Result of query)

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Darren Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Tara Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=13, AssignedTo=Tara ...}
...

Key=Tim Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=8, AssignedTo=Tim ...}
...

from defect in SampleData.AllDefects

where defect.AssignedTo != null

group defect by defect.AssignedTo

All known defects

Defects assigned
to a user

Groups of defects,
keyed by the user

the defects are
assigned to

Figure 11.9 Sequences
used when grouping defects
by assignee. Each entry of
the result has a Key property
and is also a sequence of
defect entries.
Licensed to Devon Greenway <devon.greenway@gmail.com>

314 CHAPTER 11 Query expressions and LINQ to Objects

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect.Summary by defect.AssignedTo;

foreach (var entry in query)
{

Console.WriteLine(entry.Key.Name);
foreach (var summary in entry)
{

Console.WriteLine(" {0}", summary);
}
Console.WriteLine();

}

I’ve highlighted the differences between listing 11.18 and listing 11.17 in bold. Having
projected a defect to just its summary, the embedded sequence in each entry is just an
IEnumerable<string>. In this case, the compiler uses an overload of GroupBy with
another parameter to represent the projection. The query expression in listing 11.18
is translated into the following expression:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo,

defect => defect.Summary)

Grouping clauses are relatively simple but useful. Even in our defect-tracking system,
you could easily imagine wanting to group defects by project, creator, severity, or sta-
tus, as well as the assignee we’ve used for these examples.

 So far, we’ve ended each query expression with a select or group ... by clause, and
that’s been the end of the expression. But there are times when you want to do more
with the results—and that’s where query continuations are used.

11.6.2 Query continuations

Query continuations provide a way of using the result of one query expression as the
initial sequence of another. They apply to both group ... by and select clauses, and
the syntax is the same for both—you simply use the contextual keyword into and then
provide the name of a new range variable. That range variable can then be used in the
next part of the query expression.

 The specification explains this in terms of a translation from one query expression
to another, changing

first-query into identifier
second-query-body

into

from identifier in (first-query)
second-query-body

An example will make this clearer. Let’s go back to our grouping of defects by
assignee, but this time imagine we only want the count of the defects assigned to each

Listing 11.18 Grouping defects by assignee—projection retains just the summary
Licensed to Devon Greenway <devon.greenway@gmail.com>

315Groupings and continuations
person. We can’t do that with the projection in the grouping clause, because that only
applies to each individual defect. We want to project each group, which contains an
assignee and the sequence of their defects, into a single element consisting of the
assignee and the count of defects in the group, which is achieved using the code in
the following listing.

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo into grouped
select new { Assignee = grouped.Key,

Count = grouped.Count() };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}",
entry.Assignee.Name, entry.Count);

}

The changes to the query expression are highlighted in bold. We can use the grouped
range variable in the second part of the query, but the defect range variable is no lon-
ger available—you can think of it as being out of scope. Our projection simply creates
an anonymous type with Assignee and Count properties, using the key of each group
as the assignee, and counting the sequence of defects associated with each group. The
results of listing 11.19 are as follows:

Darren Dahlia: 14
Tara Tutu: 5
Tim Trotter: 5
Deborah Denton: 9
Colin Carton: 2

Following the specification, the query expression from listing 11.19 is translated into
this one:

from grouped in (from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo)

select new { Assignee = grouped.Key, Count = grouped.Count() }

The rest of the translations are then performed, resulting in the following code:

SampleData.AllDefects
.Where(defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)
.Select(grouped => new { Assignee = grouped.Key,

Count = grouped.Count() })

An alternative way of understanding continuations is to think of two separate state-
ments. This isn’t as accurate in terms of the actual compiler translation, but I find it
makes it easier to see what’s going on. In this case, the query expression (and assign-
ment to the query variable) can be thought of as the following two statements:

Listing 11.19 Continuing a grouping with another projection
Licensed to Devon Greenway <devon.greenway@gmail.com>

316 CHAPTER 11 Query expressions and LINQ to Objects
var tmp = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo;

var query = from grouped in tmp
select new { Assignee = grouped.Key,

Count = grouped.Count() };

Of course, if you find this easier to read, there’s nothing to stop you from breaking
up the original expression into this form in your source code. Nothing will be evalu-
ated until you start trying to step through the query results anyway, due to deferred
execution.

join ... into ISN’T A CONTINUATION It’s easy to fall into the trap of thinking
that wherever you see the contextual keyword into, you have a continuation.
This isn’t true for joins—the join ... into clause (which is used for group
joins) doesn’t form a continuation. The important difference is that with a
group join, all the earlier range variables (apart from the one used to name the
right side of the join) can still be used. Compare that with the queries we’re
looking at in this section, where the continuation wipes the slate clean; the only
range variable available afterward is the one declared by the continuation.

Let’s extend this example to see how multiple continuations can be used. Our results
are currently unordered—let’s change that so we can see who has the most defects
assigned to them first. We could use a let clause after the first continuation, but the
following listing shows an alternative with a second continuation after our current
expression.

var query = from defect in SampleData.AllDefects
where defect.AssignedTo != null
group defect by defect.AssignedTo into grouped
select new { Assignee = grouped.Key,

Count = grouped.Count() } into result
orderby result.Count descending
select result;

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}",
entry.Assignee.Name,
entry.Count);

}

The changes between listing 11.19 and 11.20 are highlighted in bold. We haven’t had
to change any of the output code, because we have the same type of sequence—we’ve
just applied an ordering to it. This time the translated query expression is as follows:

SampleData.AllDefects
.Where (defect => defect.AssignedTo != null)
.GroupBy(defect => defect.AssignedTo)
.Select(grouped => new { Assignee = grouped.Key,

Listing 11.20 Query expression continuations from group and select
Licensed to Devon Greenway <devon.greenway@gmail.com>

317Choosing between query expressions and dot notation
Count = grouped.Count() })
.OrderByDescending(result => result.Count);

By pure coincidence, this is remarkably similar to the first defect-tracking query we
came across, in section 10.3.4. Our final select clause effectively does nothing, so the
C# compiler ignores it. It’s required in the query expression, though, as all query
expressions must end with either a select or a group ... by clause. There’s nothing to
stop you from using a different projection or performing other operations with the
continued query—joins, further groupings, and so forth. Just keep an eye on the read-
ability of the query expression as it grows. Speaking of readability, there are options to
consider when you’re writing LINQ queries.

11.7 Choosing between query expressions and dot notation
As we've seen throughout this chapter, query expressions are translated into normal
C# before being compiled any further. There isn’t an official name for a call to the
LINQ query operators written using normal C# rather than as a query expression, but
many developers now refer to this as dot notation.7 Every query expression can be writ-
ten in dot notation, but the reverse isn’t true: many LINQ operators don’t have a query
expression equivalent in C#. The big question is: when should you use which syntax?

11.7.1 Operations that require dot notation

The most obvious situation where you’re forced to use dot notation is when you’re
calling a method such as Reverse or ToDictionary that simply isn’t represented in
query expression syntax at all. But even when you use a query operator that’s sup-
ported by query expressions, it’s quite possible for the particular overload you want to
be unavailable. For example, Enumerable.Where has an overload where the index into
the parent sequence is supplied as another argument to the delegate. So, for example,
to take every other item from a sequence you could use

sequence.Where((item, index) => index % 2 == 0)

There’s a similar overload for Select—so if you wanted to be able to get at the origi-
nal index in a sequence after ordering, you could do something like this:

sequence.Select((Item, Index) => new { Item, Index })
.OrderBy(x => x.Item.Name)

This example shows another option you may wish to consider: if you’re going to use a
lambda expression parameter directly in an anonymous type, you could buck the nor-
mal convention of starting the parameter name with a lowercase letter, and then use a
projection initializer to avoid writing new { Item = item, Index = index }, which can
be distracting. Of course, you can ignore the convention about property names
instead, and make your anonymous type have properties beginning with a lowercase

7 That’s the term I’ll use from now on, but if you hear others talking about fluent notation, they probably mean
the same thing.
Licensed to Devon Greenway <devon.greenway@gmail.com>

318 CHAPTER 11 Query expressions and LINQ to Objects
letter (item and index, for example). All of this is entirely up to you—and it’s worth
experimenting. Though consistency is usually important, it doesn’t matter too much
here, as the impact of inconsistency is confined to the method in question: you’re not
exposing these names in your public API or throughout the rest of your class.

 Many of the query operators also support custom comparisons—ordering and
joining being the most obvious examples. These are unlikely to be required often, in
my experience, but they’re occasionally invaluable. For example, if you want to per-
form a join on a person’s name in a case-insensitive manner, you can specify String-
Comparer.OrdinalIgnoreCase (or a culture-specific comparer) as the final argument
to a Join call. Again, if you feel that an operator nearly does what you want but doesn’t
quite cut it, check the documentation for other overloads.

 When you’re forced to use dot notation, the decision to use it is easy—but what
about cases where a query expression could be used?

11.7.2 Query expressions where dot notation may be simpler

Some developers use query expressions everywhere they can get away with it; person-
ally I look at what the query is doing and decide which approach will be more read-
able. For example, take this query expression, which is similar to the one we used near
the start of the chapter:

var adults = from person in people
where person.Age >= 18
select person;

This is three lines of code with a lot of baggage, even though all it’s doing is filtering.
In this case I’d use dot notation:

var adults = people.Where(person => person.Age >= 18);

I find that clearer—every part of it mentions something we’re actually interested in.
 Another area where using dot notation throughout a query expression can give

more clarity is when you’re forced to use it for part of the query anyway. For example,
suppose we’re going to use the ToList() extension method to end up with a list of the
names of adults. (I’m performing a projection as well in this case so that it’s a more
balanced comparison.) Here’s the query expression:

var adultNames = (from person in people
where person.Age >= 18
select person.Name).ToList();

Here’s the dot notation equivalent:

var adultNames = people.Where(person => person.Age >= 18)
.Select(person => person.Name)
.ToList();

Something about the need for parentheses around the query expression in the first
case makes it seem uglier to me. This is very much a case of personal choice—this sec-
tion is really just raising your awareness that there is a choice, and that you can pick
Licensed to Devon Greenway <devon.greenway@gmail.com>

319Choosing between query expressions and dot notation
and choose. If you’re going to use LINQ to any significant extent, you really should be
comfortable with both notations, and there’s no harm in switching style based on the
query in question. As we’ve seen, the generated code is absolutely equivalent. None of
this is to say that I dislike query expressions, of course.

11.7.3 Where query expressions shine

Having explained where you might find dot notation beneficial, I should point out
that when it comes to any operations where the query expression would use transpar-
ent identifiers—particularly joins—dot notation starts to suffer in terms of readability.
The beauty of transparent identifiers is that they’re transparent—so transparent that
you can’t see them at all when you only have to look at the query expression! Even a
simple let clause can be enough to swing the decision in favor of query expressions:
introducing a new anonymous type just to propagate context through the query gets
annoying quickly.

 The other area where query expressions win is in situations where multiple lambda
expressions would be required, or even multiple method calls. Again this includes
joins, where you have to specify the key selector for each side of the join as well as the
result selector. For example, here’s a cut-down version of an earlier query from where
I introduced inner joins:

from defect in SampleData.AllDefects
join subscription in SampleData.AllSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

In an IDE it’d be reasonable to put the whole join clause on one line, leading to fairly
easy-to-read code. The dot notation equivalent is fairly horrible, though:

SampleData.AllDefects.Join(SampleData.AllSubscriptions,
defect => defect.Project,
subscription => subscription.Project,
(defect, subscription) => new { defect.Summary,

subscription.EmailAddress })

The last argument could all fit on one line in an IDE, but it’s still pretty ugly because
the lambda expressions don’t have much context: you can’t immediately tell which
argument means what. Named arguments in C# 4 can help there, but that adds even
more bulk to the query.

 Complex orderings can be similarly unpleasant in dot notation. Consider which
you’d rather read—this orderby clause:

orderby item.Rating descending, item.Price, item.Name

or three method calls:

.OrderByDescending(item => item.Rating)

.ThenBy(item => item.Price)

.ThenBy(item => item.Name)
Licensed to Devon Greenway <devon.greenway@gmail.com>

320 CHAPTER 11 Query expressions and LINQ to Objects
Changing the priority of these orderings is simple in the query expression—just
switch them around. In dot notation, you may also have to switch from OrderBy to
ThenBy or vice versa.

 Just to reiterate, I’m not trying to press my own personal preferences onto your
code. I simply want you to know what’s available, and think about the choices you
make. Of course, this is only one aspect of writing readable code, but it’s a whole new
area to consider in C#.

11.8 Summary
In this chapter, we’ve looked at how LINQ to Objects and C# 3 interact, focusing on
the way that query expressions are first translated into code that doesn’t involve query
expressions, then compiled in the usual way. We’ve seen how all query expressions
form a series of sequences, applying a transformation of some description at each
step. In many cases, these sequences are evaluated using deferred execution, fetching
data only when it’s first required.

 Compared with all the other features of C# 3, query expressions look somewhat
alien—more like SQL than the C# we’re used to. One of the reasons they look so odd
is that they’re declarative instead of imperative—a query talks about the features of the
end result rather than the exact steps required to achieve it. This goes hand in hand
with a more functional way of thinking. It can take a while to click, and it’s not suitable
for every situation, but where declarative syntax is appropriate it can vastly improve
readability, as well as make code easier to test and also easier to parallelize.

 Don’t be fooled into thinking that LINQ should only be used with databases. Plain
in-memory manipulation of collections is common, and we’ve seen how well it’s sup-
ported by query expressions and the extension methods in Enumerable.

 In a real sense, you’ve now seen all the features introduced in C# 3! Although we
haven’t looked at any other LINQ providers yet, we have a clearer understanding of
what the compiler will do for us when we ask it to handle XML and SQL. The compiler
itself doesn’t know the difference between LINQ to Objects, LINQ to SQL, or any of the
other providers: it just follows the same rules blindly. In the next chapter we’ll see how
these rules form the final piece of the LINQ jigsaw puzzle when they convert lambda
expressions into expression trees so that the various clauses of query expressions can
be executed on different platforms... as well as look at other examples of what LINQ
can do.
Licensed to Devon Greenway <devon.greenway@gmail.com>

LINQ beyond collections
Suppose an alien visited you and asked you to describe “culture.” How could you
capture the diversity of human culture in a short space of time? You may decide to
spend that time showing him culture rather than just describing it in the abstract: a
visit to a New Orleans jazz club, opera in La Scala, the Louvre gallery in Paris, a
Shakespeare play in Stratford-upon-Avon, and so on.

 Would this alien know everything about culture afterward? Could he compose a
tune, write a book, dance a ballet, craft a sculpture? Absolutely not. But he’d hope-
fully come away with a sense of culture—its richness and variety, its ability to light up
people’s lives.

 So it is with this chapter. You’ve now seen all of the features of C# 3, but without
seeing more of LINQ you don’t have enough context to really appreciate them.

This chapter covers
 LINQ to SQL

 IQueryable and expression tree queries

 LINQ to XML

 Parallel LINQ

 Reactive extensions for .NET

 Writing your own operators
321

Licensed to Devon Greenway <devon.greenway@gmail.com>

322 CHAPTER 12 LINQ beyond collections
When the first edition of this book was published, not many LINQ technologies were
available—now there’s a glut of them, both from Microsoft and third parties. That in
itself hasn’t surprised me—but I’ve been fascinated to see the different nature of these
technologies.

 We’re going to look at various ways in which LINQ manifests itself, with an example
of each. I’ve chosen to demonstrate Microsoft technologies in the main, because
they’re the most typical ones. This isn’t meant to imply that third parties aren’t wel-
come in the LINQ ecosystem: there are a number of projects, both commercial and
open source, providing access to varied data sources and building extra features on
top of existing providers. In contrast to the rest of this book, we’ll only skim the sur-
face of each of the topics here—the point isn’t to learn the details, but to immerse
yourself in the spirit of LINQ. To investigate any of these technologies further, I recom-
mend that you get a dedicated book or read the relevant documentation carefully. I’ve
resisted the temptation to say “there’s more to LINQ to [xxx] than this” at the end of
each section, but please take it as read. Each technology has many capabilities beyond
querying, but I’ve focused on the areas that are directly related to LINQ.

 Let’s start off with the provider that generally got the most attention when LINQ
was first introduced: LINQ to SQL.

12.1 Querying a database with LINQ to SQL
I’m sure by now you’ve absorbed the message that LINQ to SQL converts query expres-
sions into SQL, which is then executed on the database. It’s more than that—it’s a full
ORM solution—but I’m going to concentrate on the query side of LINQ to SQL rather
than go into concurrency handling and the other details that an ORM has to deal with.
I’ll show you just enough so that you can experiment with it yourself—the database
and code are available on the book’s website (http://csharpindepth.com). The data-
base is in SQL Server 2005 format to make it easy to play with even if you don’t have
the latest version of SQL Server installed, although obviously Microsoft has made sure
that LINQ to SQL works against newer versions too.

WHY LINQ TO SQL RATHER THAN THE ENTITY FRAMEWORK? Speaking of “newer
versions,” you may be wondering why I’ve chosen to demonstrate LINQ to SQL
instead of the Entity Framework, which is now Microsoft’s preferred solution
(and also supports LINQ). The answer is merely simplicity: whereas the Entity
Framework is undoubtedly more powerful than LINQ to SQL in various ways,
it requires extra concepts that would take too much space to explain here.
I’m trying to give you a sense of the consistency (and occasional inconsisten-
cies) that LINQ provides, and that’s as applicable to LINQ to SQL as to the
Entity Framework.

Before we start writing any queries, we need a database and a model to represent it in
code.
Licensed to Devon Greenway <devon.greenway@gmail.com>

323Querying a database with LINQ to SQL
12.1.1 Getting started: the database and model

LINQ to SQL needs metadata about the database to know which classes correspond to
which database tables, and so on. There are various ways of representing that meta-
data: I’m going to use the LINQ to SQL designer built into Visual Studio. You can
design the entities first and ask LINQ to create the database, or design your database
and let Visual Studio work out what the entities should look like. Personally I favor the
second approach, but there are pros and cons for both ways.

CREATING THE DATABASE SCHEMA

The mapping from the classes in chapter 11 to database tables is straightforward. Each
table has an autoincrementing integer ID column with an appropriate name:
ProjectID, DefectID, and so forth. The references between tables simply use the
same name, so the Defect table has a ProjectID column, for instance, with a foreign
key constraint. There are a few exceptions to this simple set of rules:

 User is a reserved word in T-SQL, so the User class is mapped to the DefectUser
table.

 The enumerations (status, severity, and user type) don’t have tables: their values
are simply mapped to tinyint columns in the Defect and DefectUser tables.

 The Defect table has two links to the DefectUser table: one for the user who
created the defect and one for the current assignee. These are represented with
the CreatedByUserId and AssignedToUserId columns, respectively.

CREATING THE ENTITY CLASSES

Once our tables are created, generating the entity classes from Visual Studio is easy.
Simply open Server Explorer (View -> Server Explorer) and add a data source to the
SkeetySoftDefects database (right-click on Data Connections and select Add Connec-
tion). You should be able to see four tables: Defect, DefectUser, Project, and
NotificationSubscription.

 You can then add a new item of type “LINQ to SQL classes” to the project. This
name will be the basis for a generated class representing the overall database model:
I’ve used the name DefectModel, which leads to a class called DefectModelData-
Context. The designer will open when you’ve created the new item. You can then
drag the four tables from Server Explorer into the designer, and it’ll figure out all the
associations. After that, you can rearrange the diagram and adjust various properties
of the entities. Here’s a list of what I changed:

 I renamed the DefectID property to ID to match our previous model.
 I renamed DefectUser to User (so although the table is still called DefectUser,

we’ll generate a class called User, just like before).
 I changed the type of the Severity, Status, and UserType properties to their

enum equivalents (having copied those enumerations into the project).
 I renamed the parent and child properties used for the associations between

Defect and DefectUser—the designer guessed suitable names for the other
Licensed to Devon Greenway <devon.greenway@gmail.com>

324 CHAPTER 12 LINQ beyond collections
associations, but had trouble here because there were two associations between
the same pair of tables. I named the relationships AssignedTo/Assigned-
Defects and CreatedBy/CreatedDefects.

Figure 12.1 shows the designer diagram after all of these changes. As you can see, it
looks much like the class diagram we saw in figure 11.3, except without the
enumerations.

 If you look in the C# code generated by the designer (Defect-
Model.designer.cs), you’ll find five partial classes: one for each of the entities, and
the DefectModelDataContext class I mentioned earlier. The fact that they’re partial is
useful: in this case I added extra constructors to match the ones we had for our origi-
nal in-memory classes, so the code from chapter 11 to create the sample data could be
reused without much extra work. For the sake of brevity I haven’t included the inser-
tion code here, but if you look at PopulateDatabase.cs in the source code, you
should be able to follow it easily enough. Of course, you don’t have to run this your-
self—the downloadable database is already populated.

 Now that we have a schema in SQL, an entity model in C#, and some sample data,
let’s get querying.

Figure 12.1 The LINQ to SQL classes designer
showing the rearranged and modified entities
Licensed to Devon Greenway <devon.greenway@gmail.com>

325Querying a database with LINQ to SQL
12.1.2 Initial queries

I’m sure you’ve guessed what’s coming, but hopefully that won’t make it any less
impressive. We’re going to execute query expressions against our data source, watch-
ing LINQ to SQL convert the query into SQL on the fly. For the sake of familiarity, we’ll
use some of the same queries we saw executing against our in-memory collections in
chapter 11.

FIRST QUERY: FINDING DEFECTS ASSIGNED TO TIM

I’ll skip over the trivial examples from early in the chapter, starting instead with the
query from listing 11.7 that checks for open defects assigned to Tim. Here’s the query
part of listing 11.7, for the sake of comparison:

User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
select defect.Summary;

The full LINQ to SQL equivalent of listing 11.7 is shown in the following listing.

using (var context = new DefectModelDataContext())
{

context.Log = Console.Out;
User tim = context.Users

.Where(user => user.Name == "Tim Trotter")

.Single();

var query = from defect in context.Defects
where defect.Status != Status.Closed
where defect.AssignedTo == tim
select defect.Summary;

foreach (var summary in query)
{

Console.WriteLine(summary);
}

}

Listing 12.1 requires a certain amount of explanation, because it’s all new. First we cre-
ate a new data context to work with B. Data contexts are pretty multifunctional, taking
responsibility for connection and transaction management, query translation, track-
ing changes in entities, and dealing with identity. For the purposes of this chapter, we
can regard a data context as our point of contact with the database. We won’t be look-
ing at the more advanced features here, but we take advantage of one useful capabil-
ity: we tell the data context to write out all the SQL commands it executes to the
console C. The model-related properties used in the code for this section (Defects,
Users, and so on) are all of type Table<T> for the relevant entity type. They act as the
data sources for our queries.

Listing 12.1 Querying the database to find all Tim’s open defects

Creates context
to work withBEnables

console logging
C

Queries for TimD

Queries for Tim’s
open defects

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

326 CHAPTER 12 LINQ beyond collections
 We can’t use SampleData.Users.TesterTim to identify Tim in the main query
because that object doesn’t know the ID of the relevant row in the DefectUser table.
Instead, we use a separate query to load Tim’s user entity D. I happen to have used
dot notation for this, but a query expression would’ve worked just as well. The Single
method just returns a single result from a query, throwing an exception if there isn’t
exactly one element. In a real-life situation, you may have the entity as a product of
other operations such as logging in—and if you don’t have the full entity, you may
have its ID, which can be used equally well within the main query. As an alternative in
this case, we could’ve changed the open defects query to filter based on the assignee’s
name. That wouldn’t have quite been in the spirit of the original query, though.

 Within the query expression E, the only difference between the in-memory query
and the LINQ to SQL query is the data source—instead of using SampleData.All-
Defects, we use context.Defects. The final results are the same (although the order-
ing isn’t guaranteed), but the work has been done on the database.

 As we’ve asked the data context to log the generated SQL, we can see exactly what’s
going on when we run the code. The console output shows both of the queries exe-
cuted on the database, along with the query parameter values:1

SELECT [t0].[UserID], [t0].[Name], [t0].[UserType]
FROM [dbo].[DefectUser] AS [t0]
WHERE [t0].[Name] = @p0
-- @p0: Input String (Size = 11; Prec = 0; Scale = 0) [Tim Trotter]

SELECT [t0].[Summary]
FROM [dbo].[Defect] AS [t0]
WHERE ([t0].[AssignedToUserID] = @p0) AND ([t0].[Status] <> @p1)
-- @p0: Input Int32 (Size = 0; Prec = 0; Scale = 0) [2]
-- @p1: Input Int32 (Size = 0; Prec = 0; Scale = 0) [4]

Note how the first query fetches all of the properties of the user because we’re popu-
lating a whole entity—but the second query only fetches the summary, as that’s all we
need. LINQ to SQL has also converted our two separate where clauses in the second
query into a single filter on the database.

 LINQ to SQL is capable of translating a wide range of expressions. Let’s try a
slightly more complicated query from chapter 11, just to see what SQL is generated.

SQL GENERATION FOR A MORE COMPLEX QUERY: A LET CLAUSE

Our next query shows what happens when we introduce a sort of temporary variable
with a let clause. In chapter 11 we considered a bizarre situation, if you remember—
pretending that calculating the length of a string took a long time. Again, the query
expression is exactly the same as in listing 11.11, with the exception of the data
source. Listing 12.2 shows the LINQ to SQL code.

1 Additional log output is generated showing some details of the data context, which I’ve cut to avoid distracting
from the SQL. The console output also contains the summaries printed by the foreach loop, of course.
Licensed to Devon Greenway <devon.greenway@gmail.com>

327Querying a database with LINQ to SQL

using (var context = new DefectModelDataContext())
{

context.Log = Console.Out;

var query = from user in context.Users
let length = user.Name.Length
orderby length
select new { Name = user.Name, Length = length };

foreach (var entry in query)
{

Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
}

}

The generated SQL is close to the spirit of the sequences we saw in figure 11.5. The
innermost sequence (the first one in that diagram) is the list of users; that’s trans-
formed into a sequence of name/length pairs (as the nested select), and then the
no-op projection is applied, with an ordering by length:

SELECT [t1].[Name], [t1].[value]
FROM (

SELECT LEN([t0].[Name]) AS [value], [t0].[Name]
FROM [dbo].[DefectUser] AS [t0]
) AS [t1]

ORDER BY [t1].[value]

This is a good example of where the generated SQL is wordier than it needs to be.
Although we couldn’t reference the elements of the final output sequence when per-
forming an ordering on the query expression, you can in SQL. This simpler query
would’ve worked fine:

SELECT LEN([t0].[Name]) AS [value], [t0].[Name]
FROM [dbo].[DefectUser] AS [t0]
ORDER BY [value]

Of course, what’s important is what the query optimizer does on the database—the
execution plan displayed in SQL Server Management Studio Express is the same for
both queries, so it doesn’t look like we’re losing out.

 The final set of LINQ to SQL queries we’re going to look at are all joins.

12.1.3 Queries involving joins

We’ll try both inner joins and group joins, using the examples of joining notification
subscriptions against projects. I suspect you’re used to the drill now—the pattern of
the code is the same for each query, so from here on I’ll just show the query expres-
sion and the generated SQL unless something else is going on.

EXPLICIT JOINS: MATCHING DEFECTS WITH NOTIFICATION SUBSCRIPTIONS

Our first query is the simplest kind of join—an inner equijoin using a LINQ join
clause:

Listing 12.2 Using a let clause in LINQ to SQL
Licensed to Devon Greenway <devon.greenway@gmail.com>

328 CHAPTER 12 LINQ beyond collections
// Query expression (modified from listing 11.12)
from defect in context.Defects
join subscription in context.NotificationSubscriptions

on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

-- Generated SQL
SELECT [t0].[Summary], [t1].[EmailAddress]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[NotificationSubscription] AS [t1]
ON [t0].[ProjectID] = [t1].[ProjectID]

Unsurprisingly, it uses an inner join in SQL. It’d be easy to guess at the generated SQL
in this case. How about a group join, though? This is where things get slightly more
hectic:

// Query expression (modified from listing 11.13)
from defect in context.Defects
join subscription in context.NotificationSubscriptions

on defect.Project equals subscription.Project
into groupedSubscriptions

select new { Defect = defect, Subscriptions = groupedSubscriptions }

-- Generated SQL
SELECT [t0].[DefectID] AS [ID], [t0].[Created],
[t0].[LastModified], [t0].[Summary], [t0].[Severity],
[t0].[Status], [t0].[AssignedToUserID],
[t0].[CreatedByUserID], [t0].[ProjectID],
[t1].[NotificationSubscriptionID],
[t1].[ProjectID] AS [ProjectID2], [t1].[EmailAddress],

(SELECT COUNT(*)
FROM [dbo].[NotificationSubscription] AS [t2]
WHERE [t0].[ProjectID] = [t2].[ProjectID]) AS [count]

FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[NotificationSubscription] AS [t1]
ON [t0].[ProjectID] = [t1].[ProjectID]
ORDER BY [t0].[DefectID], [t1].[NotificationSubscriptionID]

That’s a major change in the amount of SQL generated! There are two important
things to notice. First, it uses a left outer join instead of an inner join, so we’d still see a
defect even if it didn’t have anyone subscribing to its project. If you want a left outer
join but without the grouping, the conventional way of expressing this is to use a
group join and then an extra from clause using the DefaultIfEmpty extension
method on the embedded sequence. It looks odd, but it works well.

 The second odd thing about the previous query is that it calculates the count for
each group within the database. This is effectively a trick performed by LINQ to SQL to
make sure that all the processing can be done on the server. A naive implementation
would have to perform the grouping in memory, after fetching all the results. In some
cases the provider could do tricks to avoid needing the count, simply spotting when
the grouping ID changes, but there are issues with this approach for some queries. It’s
possible that a later implementation of LINQ to SQL will be able to switch courses of
action depending on the exact query.
Licensed to Devon Greenway <devon.greenway@gmail.com>

329Translations using IQueryable and IQueryProvider
 You don’t need to explicitly write a join in the query expression to see one in the
SQL. Our final queries will show joins implicitly created through property access
expressions.

IMPLICIT JOINS: SHOWING DEFECT SUMMARIES AND PROJECT NAMES

Let’s take a simple example. Suppose we want to list each defect, showing its summary
and the name of the project it’s part of. The query expression is just a matter of a
projection:

// Query expression
from defect in context.Defects
select new { defect.Summary, ProjectName = defect.Project.Name }

-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[Project] AS [t1]
ON [t1].[ProjectID] = [t0].[ProjectID]

Note how we’ve navigated from the defect to the project via a property—LINQ to SQL
has converted that navigation into an inner join. It can use an inner join here because
the schema has a non-nullable constraint on the ProjectID column of the Defect
table—every defect has a project. Not every defect has an assignee, though—the
AssignedToUserID field is nullable, so if we use the assignee in a projection instead, a
left outer join is generated:

// Query expression
from defect in context.Defects
select new { defect.Summary, Assignee = defect.AssignedTo.Name }

-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[DefectUser] AS [t1]
ON [t1].[UserID] = [t0].[AssignedToUserID]

Of course, if you navigate via more properties, the joins get more and more compli-
cated. I’m not going into the details here—the important thing is that LINQ to SQL
has to do a lot of analysis of the query expression to work out what SQL is required. In
order to perform that analysis, it clearly needs to be able to look at the query we’ve
specified. Let’s move away from LINQ to SQL specifically, and think in general terms
about what LINQ providers of this kind need to do. This will apply to any provider that
needs to introspect the query, rather than just being handed a delegate. At long last,
it’s time to see why expression trees were added as a feature of C# 3.

12.2 Translations using IQueryable and IQueryProvider
In this section we’re going to find out the basics of how LINQ to SQL manages to con-
vert our query expressions into SQL. This is the starting point for implementing your
own LINQ provider, should you wish to. (Please don’t underestimate the technical dif-
ficulties involved in doing so—but if you like a challenge, implementing a LINQ
Licensed to Devon Greenway <devon.greenway@gmail.com>

330 CHAPTER 12 LINQ beyond collections
provider is certainly interesting.) This is the most theoretical section in the chapter,
but it’s useful to have some insight as to how LINQ decides whether to use in-memory
processing, a database, or some other query engine.

 In all the query expressions we’ve seen in LINQ to SQL, the source has been a
Table<T>. But if you look at Table<T>, you’ll see it doesn’t have a Where method, or
Select, or Join, or any of the other standard query operators. Instead, it uses the
same trick that LINQ to Objects does—just as the source in LINQ to Objects always
implements IEnumerable<T> (possibly after a call to Cast or OfType) and then uses
the extension methods in Enumerable, so Table<T> implements IQueryable<T> and
then uses the extension methods in Queryable. We’ll see how LINQ builds up an
expression tree and then allows a provider to execute it at the appropriate time. Let’s
start by looking at what IQueryable<T> consists of.

12.2.1 Introducing IQueryable<T> and related interfaces

If you look up IQueryable<T> in the documentation and see what members it con-
tains directly (rather than inheriting), you may be disappointed. There aren’t any.
Instead, it inherits from IEnumerable<T> and the nongeneric IQueryable, which in
turn inherits from the nongeneric IEnumerable. So, IQueryable is where the new and
exciting members are, right? Well, nearly. In fact, IQueryable just has three proper-
ties: QueryProvider, ElementType, and Expression. The QueryProvider property is
of type IQueryProvider—yet another new interface to consider.

 Lost? Perhaps figure 12.2 will help out—a class diagram of all the interfaces
directly involved.

 The easiest way of thinking about IQueryable is that it represents a query that’ll
yield a sequence of results when you execute it. The details of the query in LINQ terms
are held in an expression tree, as returned by the Expression property of the
IQueryable. Executing a query is performed by beginning to iterate through an
IQueryable (in other words, calling the GetEnumerator method and then MoveNext
on the result) or by a call to the Execute method on an IQueryProvider, passing in an
expression tree.

 So, with at least some grasp of what IQueryable is for, what’s IQueryProvider? We
can do more with a query than just execute it—we can also use it to build a bigger
query, which is the purpose of the standard query operators in LINQ.2 To build up a
query, we need to use the CreateQuery method on the relevant IQueryProvider.3

 Think of a data source as a simple query (SELECT * FROM SomeTable in SQL, for
instance)—calling Where, Select, OrderBy, and similar methods results in a different
query, based on the first one. Given any IQueryable query, you can create a new query
by performing the following steps:

2 Well, the ones that keep deferring execution, such as Where and Join. We’ll see what happens with the aggre-
gations such as Count in a while.

3 Both Execute and CreateQuery have generic and nongeneric overloads. The nongeneric versions make it
easier to create queries dynamically in code. Compile-time query expressions use the generic version.
Licensed to Devon Greenway <devon.greenway@gmail.com>

331Translations using IQueryable and IQueryProvider
1 Ask the existing query for its query expression tree (using the Expression
property).

2 Build a new expression tree that contains the original expression and the extra
functionality you want (a filter, projection, or ordering, for instance).

3 Ask the existing query for its query provider (using the Provider property).
4 Call CreateQuery on the provider, passing in the new expression tree.

Of those steps, the only tricky one is creating the new expression tree. Fortunately,
there are a bunch of extension methods on the static Queryable class that do all that
for us. Enough theory—let’s start implementing the interfaces so we can see all this in
action.

12.2.2 Faking it: interface implementations to log calls

Before you get too excited, we’re not going to build our own fully fledged query pro-
vider in this chapter. But if you understand everything in this section, you’ll be in a
much better position to build one if you ever need to—and possibly more importantly,
you’ll understand what’s going on when you issue LINQ to SQL queries. Most of the
hard work of query providers goes on at the point of execution, where they need to
parse an expression tree and convert it into the appropriate form for the target plat-
form. We’re concentrating on the work that happens before that—how LINQ prepares
to execute a query.

Figure 12.2 Class diagram based on the
interfaces involved in IQueryable<T>
Licensed to Devon Greenway <devon.greenway@gmail.com>

332 CHAPTER 12 LINQ beyond collections
 We’ll write our own implementations of IQueryable and IQueryProvider, and
then try to run a few queries against them. The interesting part isn’t the results—we
won’t be doing anything useful with the queries when we execute them—but the
series of calls made up to the point of execution. We’ll write types FakeQueryProvider
and FakeQuery. The implementation of each interface method writes out the current
expression involved, using a simple logging method (not shown here). Let’s look first
at FakeQuery, as shown in the following listing.

class FakeQuery<T> : IQueryable<T>
{

public Expression Expression { get; private set; }
public IQueryProvider Provider { get; private set; }
public Type ElementType { get; private set; }

internal FakeQuery(IQueryProvider provider,
Expression expression)

{
Expression = expression;
Provider = provider;
ElementType = typeof(T);

}

internal FakeQuery() : this(new FakeQueryProvider(), null)
{

Expression = Expression.Constant(this);
}

public IEnumerator<T> GetEnumerator()
{

Logger.Log(this, Expression);
return Enumerable.Empty<T>().GetEnumerator();

}

IEnumerator IEnumerable.GetEnumerator()
{

Logger.Log(this, Expression);
return Enumerable.Empty<T>().GetEnumerator();

}

public override string ToString()
{

return "FakeQuery";
}

}

The property members of IQueryable are implemented in FakeQuery with automatic
properties B, which are set by the constructors. There are two constructors: a param-
eterless one that’s used by our main program to create a plain source for the query,
and one that’s called by FakeQueryProvider with the current query expression.

 The use of Expression.Constant(this) as the initial source expression C is just a
way of showing that the query initially represents the original object. (Imagine an

Listing 12.3 A simple implementation of IQueryable that logs method calls

Declares simple
automatic
properties

B

Uses this query as
initial expressionC

Returns empty
result sequence

D

Overrides ToString
for logging

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

333Translations using IQueryable and IQueryProvider
implementation representing a table, for example—until you apply any query opera-
tors, the query would just return the whole table.) When the constant expression is
logged, it uses the overridden ToString method, which is why we’ve given a short,
constant description E. This makes the final expression much cleaner than it
would’ve been without the override. When we’re asked to iterate over the results of
the query, we always just return an empty sequence D to make life easy. Production
implementations would parse the expression here, or (more likely) call Execute on
their query provider and just return the result.

 As you can see, not a lot is going on in FakeQuery, and the following listing shows
that FakeQueryProvider is simple, too.

class FakeQueryProvider : IQueryProvider
{

public IQueryable<T> CreateQuery<T>(Expression expression)
{

Logger.Log(this, expression);
return new FakeQuery<T>(this, expression);

}

public IQueryable CreateQuery(Expression expression)
{

Type queryType = typeof(FakeQuery<>).MakeGenericType
(expression.Type);

object[] constructorArgs = new object[] { this, expression };
return (IQueryable)Activator.CreateInstance

(queryType, constructorArgs);
 }

public T Execute<T>(Expression expression)
{

Logger.Log(this, expression);
return default(T);

}

public object Execute(Expression expression)
{

Logger.Log(this, expression);
return null;

}
}

There’s even less to talk about in terms of the implementation of FakeQueryProvider
than there was for FakeQuery<T>. The CreateQuery methods do no real processing
but act as factory methods for the query. The only tricky bit is that the nongeneric
overload still needs to provide the right type argument for FakeQuery<T> based on the
Type property of the given expression. The Execute method overloads just return
empty results after logging the call. This is where a lot of analysis would normally be
done, along with the actual call to the web service, database, or whatever the target
platform is.

Listing 12.4 An implementation of IQueryProvider that uses FakeQuery
Licensed to Devon Greenway <devon.greenway@gmail.com>

334 CHAPTER 12 LINQ beyond collections
 Even though we’ve done no real work, when we start to use FakeQuery as the
source in a query expression, interesting things start to happen. I’ve already let slip
how we’re able to write query expressions without explicitly writing methods to han-
dle the standard query operators: it’s all about extension methods, this time the ones
in the Queryable class.

12.2.3 Gluing expressions together: the Queryable extension methods

Just as the Enumerable type contains extension methods on IEnumerable<T> to imple-
ment the LINQ standard query operators, the Queryable type contains extension
methods on IQueryable<T>. There are two big differences between the implementa-
tions in Enumerable and those in Queryable.

 First, the Enumerable methods all use delegates as their parameters—the Select
method takes a Func<TSource,TResult>, for example. That’s fine for in-memory
manipulation, but for LINQ providers that execute the query elsewhere, we need a for-
mat we can examine more closely—expression trees. For example, the corresponding
overload of Select in Queryable takes a parameter of type Expression<Func
<TSource,TResult>>. The compiler doesn’t mind at all—after query translation, it
has a lambda expression that it needs to pass as an argument to the method, and
lambda expressions can be converted to either delegate instances or expression trees.

 This is how LINQ to SQL can work so seamlessly. The four key elements involved are
all new features of C# 3: lambda expressions, the translation of query expressions into
normal expressions that use lambda expressions, extension methods, and expression
trees. Without all four, there’d be problems. If query expressions were always trans-
lated into delegates, for instance, they couldn’t be used with a provider such as LINQ to
SQL, which requires expression trees. Figure 12.3 shows two possible paths taken by
query expressions; they differ only in what interfaces their data source implements.

 Note how in figure 12.3 the early parts of the compilation process are independent
of the data source. The same query expression is used, and it’s translated in exactly
the same way. It’s only when the compiler looks at the translated query to find the
appropriate Select and Where methods to use that the data source is truly important.
At that point, the lambda expressions can be converted to either delegate instances or
expression trees, potentially giving radically different implementations: typically in-
memory for the left path, and SQL executing against a database in the right path.

 Just to hammer home a familiar point, the decision in figure 12.3 of whether to use
Enumerable or Queryable has no explicit support in the C# compiler. These aren't the
only two possible paths, as we’ll see later with Parallel LINQ and Reactive LINQ. You
can create your own interface and implement extension methods following the query
pattern, or even create a type with appropriate instance methods.

 The second big difference between Enumerable and Queryable is that the
Enumerable extension methods do the actual work associated with the corresponding
query operator (or at least they build iterators that do that work). There’s code in
Enumerable.Where to execute the specified filter and only yield appropriate elements
as the result sequence, for example. By contrast, the query operator implementations
Licensed to Devon Greenway <devon.greenway@gmail.com>

335Translations using IQueryable and IQueryProvider
in Queryable do little: they just create a new query based on the parameters or call
Execute on the query provider, as described at the end of section 12.2.1. In other
words, they’re only used to build up queries and request that they be executed—they
don’t contain the logic behind the operators. This means they’re suitable for any
LINQ provider that uses expression trees—but they’re useless on their own. They’re
the glue between your code and the details of the provider.

 With the Queryable extension methods available and ready to use our IQueryable
and IQueryProvider implementations, it’s finally time to see what happens when we
use a query expression with our custom provider.

12.2.4 The fake query provider in action

Listing 12.5 shows a simple query expression, which (supposedly) finds all the strings
in our fake source beginning with “abc” and projects the results into a sequence of the
lengths of the matching strings. We iterate through the results, but don’t do anything
with them, as we know already that they’ll be empty. Of course, we have no source
data, and we haven’t written any code to do any real filtering—we’re just logging
which calls are made by LINQ in the course of creating the query expression and iter-
ating through the results.

Overload resolution

Query expression translation

IQueryable<T> implementationPlain IEnumerable<T>
implementation

from user in users
where user.Name.StartsWith("D")
select user.Name

users.Where(user => user.Name.StartsWith("D"))
 .Select(user => user.Name)

IL to create expression trees, with
calls to Queryable.Where and
Queryable.Select

Extension methods on Queryable
are chosen, which use expression
trees as parameters

Extension methods on Enumerable
are chosen, which use delegates
as parameters

IL to create delegate instances,
with calls to Enumerable.Where
and Enumerable.Select

Figure 12.3 A query taking two paths, depending on whether the data source
implements IQueryable or only IEnumerable
Licensed to Devon Greenway <devon.greenway@gmail.com>

336 CHAPTER 12 LINQ beyond collections

var query = from x in new FakeQuery<string>()
where x.StartsWith("abc")
select x.Length;

foreach (int i in query) { }

What would you expect the results of running listing 12.5 to be? In particular, what
would you like to be logged last, at the point where we’d normally expect to do some
real work with the expression tree? Here are the results, reformatted slightly for clarity:

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

FakeQuery<Int32>.GetEnumerator
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

The two important things to note are that GetEnumerator is only called at the end, not
on any intermediate queries: by the time GetEnumerator is called, we have all the
information present in the original query expression. We haven’t manually had to
keep track of earlier parts of the expression in each step—a single expression tree cap-
tures all the information so far.

 Don’t be fooled by the concise output, by the way—the actual expression tree is
deep and complicated, particularly due to the where clause including an extra
method call. This expression tree is what LINQ to SQL would examine to work out
what query to execute. LINQ providers could build up their own queries (in whatever
form they may need) as calls to CreateQuery are made, but usually looking at the final
tree when GetEnumerator is called is simpler, as all the necessary information is avail-
able in one place.

 The final call logged by listing 12.5 was to FakeQuery.GetEnumerator, and you
may be wondering why we also need an Execute method on IQueryProvider. Well,
not all query expressions generate sequences—if you use an aggregation operator
such as Sum, Count, or Average, we’re no longer really creating a source—we’re evalu-
ating a result immediately. That’s when Execute is called, as shown by the following
listing and its output.

var query = from x in new FakeQuery<string>()
where x.StartsWith("abc")
select x.Length;

double mean = query.Average();

// Output
FakeQueryProvider.CreateQuery

Listing 12.5 A simple query expression using the fake query classes

Listing 12.6 IQueryProvider.Execute
Licensed to Devon Greenway <devon.greenway@gmail.com>

337LINQ-friendly APIs and LINQ to XML
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

FakeQueryProvider.Execute
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

.Select(x => x.Length)

.Average()

The FakeQueryProvider can be quite useful when it comes to understanding what the
C# compiler is doing behind the scenes with query expressions. It’ll show the trans-
parent identifiers introduced within a query expression, along with the translated calls
to SelectMany, GroupJoin, and the like.

12.2.5 Wrapping up IQueryable

We haven’t written any of the significant code that a real query provider would need
in order to get useful work done, but hopefully our fake provider has given you
insight into how LINQ providers are given the information from query expressions.
It’s all built up by the Queryable extension methods, given an appropriate implemen-
tation of IQueryable and IQueryProvider.

 We’ve gone into a bit more detail in this section than we will for the rest of the
chapter, as it’s involved the foundations that underpin the LINQ to SQL code we saw
earlier. Even though you’re unlikely to need to implement the query interfaces your-
self, the steps involved in taking a C# query expression and (at execution time) run-
ning some SQL on a database are quite profound and lie at the heart of the big
features of C# 3. Understanding why C# has gained these features will help keep you
more in tune with the language.

 This is the end of our coverage of LINQ using expression trees. The rest of the
chapter involves in-process queries using delegates—but as we’ll see, there can still be
a great deal of variety and innovation in how LINQ can be used. Our first port of call is
LINQ to XML, which is “merely” an XML API designed to integrate well with LINQ to
Objects.

12.3 LINQ-friendly APIs and LINQ to XML
LINQ to XML is by far the most pleasant XML API I’ve ever used. Whether you’re con-
suming existing XML, generating a new document, or a bit of both, it’s easy to use and
understand. Part of that is completely independent of LINQ, but a lot of it’s due to
how well it interacts with the rest of LINQ. As with section 12.1, I’ll give you just
enough introductory information to understand the examples, and then see how
LINQ to XML blends its own query operators with those in LINQ to Objects. By the end
of the section you may have some ideas about how you can make your own APIs work
in harmony with the framework.
Licensed to Devon Greenway <devon.greenway@gmail.com>

338 CHAPTER 12 LINQ beyond collections
12.3.1 Core types in LINQ to XML

LINQ to XML lives in the System.Xml.Linq assembly, and most of the types are in the
System.Xml.Linq namespace too.4 Almost all of the types in that namespace have a
prefix of X; so whereas the normal DOM API has an XmlElement type, the LINQ to XML
equivalent is XElement. This makes it easy to spot when code is using LINQ to XML,
even if you’re not immediately familiar with the exact type involved. Figure 12.4 shows
the types you’ll use most often.

 Here’s a brief rundown of the types shown:

 XName is used for names of elements and attributes. Instances are usually cre-
ated using an implicit conversion from a string (in which case no namespace is
used) or via the +(XNamespace, string) overloaded operator.

 XNamespace represents an XML namespace—a URI, basically. Instances are usu-
ally created by the implicit conversion from string.

 XObject is the common ancestor of both XNode and XAttribute: unlike in the
DOM API, an attribute isn’t a node in LINQ to XML. Methods returning child
nodes don’t include attributes, for example.

 XNode represents a node in the XML tree. It defines various members to manip-
ulate and query the tree. There are various other classes derived from XNode
that aren’t shown in figure 12.4, such as XComment and XDeclaration. These are
used relatively infrequently—the most common node types are documents, ele-
ments, and text.

 XAttribute is an attribute with a name and a value. The value is intrinsically
text, but there are explicit conversions to many other data types, such as int
and DateTime.

 XContainer is a node in the XML tree that can have child content—it’s an ele-
ment or a document, basically.

 XText is a text node; a further derived type XCData is used to represent CDATA
text nodes. (Roughly equivalent to a verbatim string literal—less escaping is
required.) XText is rarely instantiated directly in user code; instead when a
string is used as the content of an element or document, that’s converted into
an XText instance.

 XElement is an element. This is the most commonly used class in LINQ to XML,
along with XAttribute. Unlike in the DOM API, you can create an XElement
without creating a document to contain it; unless you really need a document
object (for a custom XML declaration, perhaps), you can often just use elements.

 XDocument is a document. Its root element is accessed using the Root prop-
erty—this is the equivalent to XmlDocument.DocumentElement. As noted earlier,
this often isn’t required.

4 I regularly forget whether it’s System.Xml.Linq or System.Linq.Xml. I would say that if you remember that
it’s an XML API first and foremost, you should be okay—but it’s clearly not working for me. Maybe you’ll have
better luck.
Licensed to Devon Greenway <devon.greenway@gmail.com>

339LINQ-friendly APIs and LINQ to XML
More types are available even within the document model, and a few other types for
things such as loading and saving options—but these are the most important ones. Of
the preceding types, the only ones you regularly need to reference explicitly are
XElement and XAttribute. If you use namespaces, you’ll use XNamespace as well, but
most of the rest of the types can be ignored the rest of the time. It’s amazing how
much you can do with so few types. Speaking of amazing, I can’t resist showing you
how the namespace support works in LINQ to XML. We’re not going to use
namespaces anywhere else, but it’s a good example of how a well-designed set of con-
versions and operators can make life easier. It’ll also ease us into our first topic: con-
structing elements.

 If you only need to specify the name of an element or attribute without a
namespace, you can just use a string. You won’t find any constructors for either type
with parameters of type string though—they all accept an XName. An implicit conver-
sion exists from string to XName, and also from string to XNamespace. Adding
together a namespace and a string also gives you an XName. There’s a fine line between
operator abuse and genius, but in this case LINQ to XML really makes it work. Here’s
some code to create two elements—one within a namespace and one not:

XElement noNamespace = new XElement("no-namespace");
XNamespace ns = "http://csharpindepth.com/sample/namespace";
XElement withNamespace = new XElement(ns + "in-namespace");

This makes for readable code even when namespaces are involved—which comes as a
welcome relief from some other APIs. But we’ve just created two empty elements. How
do we give them some content?

Figure 12.4 Class diagram for LINQ
to XML, showing the most
commonly used types
Licensed to Devon Greenway <devon.greenway@gmail.com>

340 CHAPTER 12 LINQ beyond collections
12.3.2 Declarative construction

Normally in the DOM API, you create an element and then add content to it. We can
do that in LINQ to XML as well, via the Add method inherited from XContainer—but
that’s not the idiomatic LINQ to XML way of doing things.5 It’s worth looking at the
signature of XContainer.Add though, because it introduces us to the content model.
You might’ve expected a signature of Add(XNode) or perhaps Add(XObject)—but in
fact it’s just Add(object). The same pattern is used for the XElement (and XDocument)
constructor signatures. After the name, you can specify nothing (to create an empty
element), a single object (to create an element with a single child node), or an array
of objects to create multiple child nodes. In the multiple children case, a parameter
array is used (the params keyword in C#), which means the compiler will create the
array for you—you can just keep listing arguments.

 The use of plain object for the content type may sound crazy, but it’s incredibly
useful. When you add content—whether it’s through a constructor or the Add
method—the following points are considered.

 Null references are ignored.
 XNode and XAttribute instances are added in a relatively straightforward man-

ner; they’re cloned if they already have parents, but otherwise no conversion is
required. (Some other sanity checks are performed, for instance to make sure
you don’t have duplicate attributes in a single element.)

 Strings, numbers, dates, times, and so on are added by converting them into
XText nodes using standard XML formatting.

 If the argument implements IEnumerable (and isn’t covered by anything else)
then Add will iterate over its contents and add each value in turn, recursing
where necessary.

 Anything that doesn't have special-case handling is converted into text by just
calling ToString().

This means that you often don’t need to prepare your content in a special way before
adding it to an element—LINQ to XML just does the right thing for you. The details
are explicitly documented, so you don’t need to worry about it being too magical—
but it really works. Constructing nested elements leads to code that naturally resem-
bles the hierarchical structure of the tree. This is best shown with an example. Here’s
a snippet of LINQ to XML code:

new XElement("root",
new XElement("child",

new XElement("grandchild", "text")),
new XElement("other-child"));

And here’s the XML of the created element—note the visual similarity between the
code and the output:

5 In some ways it’s a shame that XElement doesn’t implement IEnumerable—as otherwise collection initializ-
ers would be another approach to construction. Never mind—using the constructor works neatly anyway.
Licensed to Devon Greenway <devon.greenway@gmail.com>

341LINQ-friendly APIs and LINQ to XML
<root>
<child>

<grandchild>text</grandchild>
</child>
<other-child />

</root>

So far, so good—but the important part for us is the fourth bullet in the earlier list,
where sequences are processed recursively... because that lets you build an XML struc-
ture out of a LINQ query in a natural way. For example, the book’s website has some
code to generate an RSS feed from its database. The statement to construct the XML
document is 28 lines long—which I’d normally expect to be an abomination—but it’s
remarkably pleasant to read.6 That statement contains two LINQ queries—one to pop-
ulate an attribute value, and the other to provide a sequence of elements, each repre-
senting a news item. As you read the code, it’s obvious what the resulting XML will
look like.

 To make this more concrete, let’s take two simple examples from the defect track-
ing system. I’ll demonstrate using the LINQ to Objects sample data, but we could use
almost identical queries to work with another LINQ provider instead. First we’ll build
an element containing all the users in the system. In this case we just need a projec-
tion, so the following listing uses dot notation:

var users = new XElement("users",
SampleData.AllUsers.Select(user => new XElement("user",

new XAttribute("name", user.Name),
new XAttribute("type", user.UserType)))

);
Console.WriteLine(users);

// Output
<users>

<user name="Tim Trotter" type="Tester" />
<user name="Tara Tutu" type="Tester" />
<user name="Deborah Denton" type="Developer" />
<user name="Darren Dahlia" type="Developer" />
<user name="Mary Malcop" type="Manager" />
<user name="Colin Carton" type="Customer" />

</users>

If we want to make a slightly more complex query, it’s probably worth using a query
expression. Listing 12.8 creates another list of users, but this time only the developers
within SkeetySoft. For a bit of variety, this time each developer’s name is a text node
within an element instead of an attribute value:

6 One contributing factor to the readability is an extension method I created to convert anonymous types into
elements, using the properties for child elements. If you’re interested, the code is freely available as part of
my MiscUtil project (see http://mng.bz/xDMt). It only helps when the XML structure you need fits a certain
pattern, but in that case it can reduce the clutter of XElement constructor calls significantly.

Listing 12.7 Creating elements from the sample users
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/xDMt

342 CHAPTER 12 LINQ beyond collections

var developers = new XElement("developers",
from user in SampleData.AllUsers
where user.UserType == UserType.Developer
select new XElement("developer", user.Name)

);
Console.WriteLine(developers);

// Output
<developers>

<developer>Deborah Denton</developer>
<developer>Darren Dahlia</developer>

</developers>

This sort of thing can be applied to all the sample data, leaving a document structure
like this:

<defect-system>
<projects>

<project name="..." id="...">
<subscription email="..." />

</project>
</projects>
<users>

<user name="..." id="..." type="..." />
</users>
<defects>

<defect id="..." summary="..." created="..." project="..."
assigned-to="..." created-by="..." status="..."
severity="..." last-modified="..." />

</defects>
</defect-system>

You can see the code to generate all of this in XmlSampleData.cs in the downloadable
solution. It demonstrates an alternative to the one-huge-statement approach: each of
the elements under the top level is created separately, then glued together like this:

XElement root = new XElement("defect-system", projects, users, defects);

We’ll use this XML to demonstrate our next LINQ integration point: queries. Let’s
start with the query methods available on a single node.

12.3.3 Queries on single nodes

You may be expecting me to reveal that XElement implements IEnumerable and that
LINQ queries come for free. It’s not quite that simple, because there are so many differ-
ent things that an XElement could iterate through. XElement contains a number of
axis methods that are used as query sources. If you’re familiar with XPath, the idea of an
axis will no doubt be familiar to you. Here are the axis methods used directly for que-
rying a single node, each of which returns an appropriate IEnumerable<T>:

Listing 12.8 Creating elements with text nodes

 Ancestors AncestorsAndSelf
 Annotations Attributes
 Descendants DescendantsAndSelf
Licensed to Devon Greenway <devon.greenway@gmail.com>

343LINQ-friendly APIs and LINQ to XML
All of these are fairly self-explanatory (and the MSDN documentation provides more
details). There are useful overloads to retrieve only nodes with an appropriate name:
calling Descendants("user") on an XElement will return all user elements under-
neath the element you call it on, for instance.

 In addition to these calls returning sequences, some methods return a single
result—Attribute and Element are the most important, returning the named attri-
bute and the first child element with the specified name, respectively. Additionally,
there are explicit conversions from an XAttribute or XElement to any number of
other types, such as int, string, and DateTime. These are important for both filtering
and projecting results. Each conversion to a non-nullable value type also has a conver-
sion to its nullable equivalent—these (and the conversion to string) return a null
value if you invoke them on a null reference. This null propagation means you don’t
have to check for the presence or absence of attributes or elements within the query—
you can use the query results instead.

 What does this have to do with LINQ? Well, the fact that multiple search results are
returned in terms of IEnumerable<T> means you can use the normal LINQ to Objects
methods after finding some elements. The following listing shows an example of find-
ing the names and types of the users, this time starting off with the sample data in XML.

XElement root = XmlSampleData.GetElement();

var query = root.Element("users").Elements().Select(user => new
{

Name = (string) user.Attribute("name"),
UserType = (string) user.Attribute("type")

});
foreach (var user in query)
{

Console.WriteLine ("{0}: {1}", user.Name, user.UserType);
}

After creating the data at the start, we navigate down to the users element, and ask it
for its direct child elements. This two-step fetch could be shortened to just
root.Descendants("user"), but it’s good to know about the more rigid navigation so
you can use it where necessary. It’s also more robust in the face of changes to the doc-
ument structure, such as another (unrelated) user element being added elsewhere in
the document.

 The rest of the query expression is merely a projection of an XElement into an
anonymous type. I’ll admit that we’re cheating slightly with the user type: we’ve kept it
as a string instead of calling Enum.Parse to convert it into a proper UserType value.
The latter approach works perfectly well—but it’s quite longwinded when you only

 DescendantNodes DescendantNodesAndSelf
 Elements ElementsAfterSelf
 ElementsBeforeSelf Nodes

Listing 12.9 Displaying the users within an XML structure
Licensed to Devon Greenway <devon.greenway@gmail.com>

344 CHAPTER 12 LINQ beyond collections
need the string form, and the code becomes hard to format sensibly within the strict
limits of the printed page.

 There’s nothing particularly special here—returning query results as sequences is
fairly common, after all. It’s worth noting how seamlessly we can go from domain-
specific query operators to general-purpose ones. That’s not the end of the story
though—LINQ to XML has some extra extension methods to add as well.

12.3.4 Flattened query operators

We’ve seen how the result of one part of a query is often a sequence—and in LINQ to
XML it’s often a sequence of elements. What if you wanted to then perform an XML-
specific query on each of those elements? To present a somewhat contrived example,
we can find all the projects in our sample data with root.Element("projects").
Elements(), but how can we find the subscription elements within them? We need
to apply another query to each element, and then flatten the results. (Again, we could
use root.Descendants("subscription")—but imagine a more complex document
model where that wouldn’t work.)

 This may sound familiar, and it is—LINQ to Objects already provides the Select-
Many operator (represented by multiple from clauses in a query expression) to do this.
So we could write our query as

from project in root.Element("projects").Elements()
from subscription in project.Elements("subscription")
select subscription

As there are no elements within a project other than subscription, we could just use
the overload of Elements that doesn’t specify a name. I find it clearer to specify the
element name in this case, but it’s often just a matter of taste. (The same argument
could be made for calling Element("projects").Elements("project") to start with,
admittedly.) Here’s the same query written using dot notation and an overload of
SelectMany that only returns the flattened sequence, without performing any further
projections:

root.Element("projects").Elements()
.SelectMany(project => project.Elements("subscription"))

Neither of these queries are completely unreadable by any means, but they’re not
ideal. LINQ to XML provides a number of extension methods (in the System.
Xml.Linq.Extensions class) which either act on a specific sequence type or are
generic with a constrained type argument, to cope with the lack of generic interface
covariance prior to C# 4. There’s InDocumentOrder, which does exactly what it sounds
like—and most of the axis methods mentioned in section 12.4.3 are also available as
extension methods. This means that we can convert our query into this simpler form:

root.Element("projects").Elements().Elements("subscription")

This sort of construction makes it easy to write XPath-like queries in LINQ to XML
without everything just being a string. If you want to use XPath, that’s available too via
Licensed to Devon Greenway <devon.greenway@gmail.com>

345LINQ-friendly APIs and LINQ to XML
more extension methods—but personally I’ve found that the query methods have
served me well more often than not. This also supports mixing the query with the
operators of LINQ to Objects. For example, to find all the subscriptions for projects
with a name including “Media,” you could use

root.Element("projects").Elements()
.Where(project => ((string) project.Attribute("name"))

.Contains("Media"))
.Elements("subscription")

Before we move on to Parallel LINQ, let’s think about how the design of LINQ to XML
merits the “LINQ” part of its title—and how you could potentially apply the same tech-
niques to your own API.

12.3.5 Working in harmony with LINQ

Some of the design decisions in LINQ to XML seem odd if you take them in isolation
as part of an XML API, but in the context of LINQ they make perfect sense. The design-
ers clearly imagined how their types could be used within LINQ queries, and how they
could interact with other data sources. If you’re writing your own data access API, in
whatever context that might be, it’s worth taking the same things into account. If
someone uses your methods in the middle of a query expression, are they left with
something useful? Will they be able to use some of your query methods, then some
from LINQ to Objects, then some more of yours in one fluent expression?

 We’ve seen three ways in which LINQ to XML has accommodated the rest of LINQ:

 It’s good at consuming sequences with its approach to construction. LINQ is
deliberately declarative, and LINQ to XML supports this with a declarative way of
creating XML structures.

 It returns sequences from its query methods. This is probably the most obvious
step that data access APIs would already take: returning query results as
IEnumerable<T> or a class implementing it is pretty much a no-brainer.

 It extends the set of queries you can perform on sequences of XML types: this
makes it feel like a unified querying API, even though some of it’s XML-specific.

You may be able to think of other ways in which your own libraries can play nicely with
LINQ: these aren’t the only options you should consider, but they’re a good starting
point. Above all, I’d urge you to put yourself in the shoes of a developer wanting to
use your API within code that’s already using LINQ. What might such a developer want
to achieve? Can LINQ and your API be mixed easily, or are they really aiming for differ-
ent goals?

 We’re roughly halfway through our whirlwind tour of different approaches to
LINQ. Our next stop is in some ways reassuring and in some ways terrifying: we’re back
to querying simple sequences, but this time in parallel...
Licensed to Devon Greenway <devon.greenway@gmail.com>

346 CHAPTER 12 LINQ beyond collections
12.4 Replacing LINQ to Objects with Parallel LINQ
I’ve been following Parallel LINQ for a long time. I first came across it when Joe Duffy
introduced it on his blog in September 2006 (see http://mng.bz/vYCO). The first
Community Technology Preview (CTP) was released in November 2007, and the over-
all feature set has evolved over time too. It’s now part of a wider effort called Parallel
Extensions, which is part of .NET 4, aiming to provide higher level building blocks for
concurrent programming than the relatively small set of primitives we’ve had to work
with until now. There’s a lot more to Parallel Extensions than Parallel LINQ—or
PLINQ , as it’s often known—but we’ll only be looking at the LINQ aspect here.

 The idea behind Parallel LINQ is that you should be able to take a LINQ to Objects
query that’s taking a long time and make it run faster by using multiple threads to take
advantage of multiple cores—with as few changes to the query as possible. As with any-
thing to do with concurrency, it’s not quite as simple as that, but you may be surprised
at just what can be achieved. Of course, we’re still trying to think bigger than individ-
ual LINQ technologies—we’re thinking about the different models of interaction
involved, rather than the precise details. But if you’re interested in concurrency, I’d
heartily recommend that you dive into Parallel Extensions—it’s one of the most prom-
ising approaches to parallelism that I’ve come across recently.

 I’m going to use a single example for this section: rendering a Mandelbrot set
image (see http://mng.bz/D6YL). Let’s start off by trying to get it right with a single
thread before moving into trickier territory.

12.4.1 Plotting the Mandelbrot set with a single thread

Before any mathematicians attack me, I should point out that I’m using the term Man-
delbrot set loosely here. The details aren’t really important—but these aspects are

 We’re trying to create a rectangular image, given various options such as width,
height, origin and search depth.

 For each pixel in the image, we’re going to calculate a byte value that will end
up as the index into a 256-entry palette.

 The calculation of one pixel value doesn’t rely on any other results.

The last point is absolutely crucial—it means this task is embarrassingly parallel. In other
words, there’s nothing in the task itself that makes it hard to parallelize. We still need
a mechanism for distributing the workload across threads and then gathering the
results together, but the rest should be easy. PLINQ will be responsible for the distribu-
tion and collation (with a little help and care); we just need to express what we want to
do. For the purposes of demonstrating multiple approaches, I’ve put together an
abstract base class that’s responsible for setting things up, running the query, and dis-
playing the results, along with a method to compute the color of an individual pixel.
An abstract method is responsible for creating a byte array of values, which are then
converted into the image. The first row of pixels comes first, left to right, then the sec-
ond row, and so on. Each example here is just an implementation of this method.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/vYCO
http://mng.bz/D6YL

347Replacing LINQ to Objects with Parallel LINQ
I should note that using LINQ really isn’t an ideal solution here—there are various
inefficiencies in the way that I’m doing things. Don’t focus on that side of things: con-
centrate on the idea that we have an embarrassingly parallel query, and we want to
execute it across multiple cores. The following listing shows the single-threaded ver-
sion in all its simple glory:

var query = from row in Enumerable.Range(0, Height)
from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

We iterate over every row and every column within each row, computing the index of
the relevant pixel. Calling ToArray() evaluates the resulting sequence, converting it
into an array. Figure 12.5 shows the beautiful results.

 This took about 5.5 seconds to generate on my dual-core laptop; the ComputeIndex
method performs more iterations than we really need, in order to make the timing
differences more obvious.7 Now that we have a benchmark in terms of both timing
and what the results should look like, let’s try to parallelize the query.

12.4.2 Introducing ParallelEnumerable, ParallelQuery, and AsParallel

Parallel LINQ brings with it several new types... but in many cases, you’ll never see their
names mentioned. They live in the System.Linq namespace, so you don’t even need to
change using directives. ParallelEnumerable is a static class, similar to Enumerable—
it mostly contains extension methods, the majority of which extend ParallelQuery.

Listing 12.10 Single-threaded Mandelbrot generation query

7 Proper benchmarking is hard—particularly when threading is involved. I haven’t attempted to do rigorous
measurements or anything of the kind. The timings given are just meant to be indicative of “faster” and
“slower”; please take the numbers with a pinch of salt.

Figure 12.5 Mandelbrot image
generated on a single thread
Licensed to Devon Greenway <devon.greenway@gmail.com>

348 CHAPTER 12 LINQ beyond collections
This latter type has both a nongeneric and a
generic form (ParallelQuery and Paral-
lelQuery<TSource>) but most of the time
you’ll use the generic form, just as IEnumera-
ble<T> is more widely used than IEnumera-
ble. Additionally, there’s
OrderedParallelQuery<TSource>, which is
the parallel equivalent of IOrdered-

Enumerable<T>. The relationships between
all of these types are shown in figure 12.6.

 As you can see, ParallelQuery<TSource>
implements IEnumerable<TSource>, so once
you’ve constructed a query appropriately,
you can iterate through the results in the
normal way. Once you have a parallel query,
the extension methods in Parallel-

Enumerable take precedence over the ones in Enumerable (because Parallel-
Query<T> is more specific than IEnumerable<T>; see section 10.2.3 if you need a
reminder of the rules)—which is how the parallelism is maintained throughout a
query. There’s a parallel equivalent to all the LINQ standard query operators—
although you should be careful if you’ve created any of your own extension methods.
You’ll still be able to call them, but they’ll force the query to be single-threaded from
that point onward.

 So how do you get a parallel query to start with? By calling AsParallel—an exten-
sion method in ParallelEnumerable, but which extends IEnumerable<T>. So we can
parallelize our Mandelbrot query incredibly simply, as shown in the following listing.

var query = from row in Enumerable.Range(0, Height)
.AsParallel()

from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

Job done? Well, not quite. This query does run in parallel—but the results aren’t quite
what we need: it doesn’t maintain the order in which we process the rows. Instead of
our beautiful Mandelbrot image, we get something like figure 12.7... although the
exact details change every time, of course.

 Oops. On the bright side, this rendered in about 3.2 seconds, so my machine was
clearly making use of its second core. On the other hand, getting the right answer is
pretty important.

 You may be surprised to hear that this is a deliberate feature of Parallel LINQ.
Ordering a parallel query requires more coordination between the threads, and the

Listing 12.11 First attempt at a multithreaded Mandelbrot generation query

Figure 12.6 Class diagram for Parallel LINQ,
including relationship to normal LINQ
interfaces
Licensed to Devon Greenway <devon.greenway@gmail.com>

349Replacing LINQ to Objects with Parallel LINQ
whole purpose of parallelization is to improve performance—so PLINQ defaults to an
unordered query. It’s a bit of a nuisance in our case though.

12.4.3 Tweaking parallel queries

Fortunately, there’s a way out of this—you just need to force the query to be treated as
ordered, which is available via the AsOrdered extension method. Listing 12.12 shows
the fixed code, which produces the original image. It’s slightly slower than the unor-
dered query, but still significantly faster than the single-threaded version.

var query = from row in Enumerable.Range(0, Height)
.AsParallel().AsOrdered()

from column in Enumerable.Range(0, Width)
select ComputeIndex(row, column);

return query.ToArray();

The nuances of ordering are beyond the scope of this book, but I recommend that
you read this blog post, http://blogs.msdn.com/pfxteam/archive/2008/06/11/
8592301.aspx>, which goes into the gory details. A number of other methods can be
used to alter how the query behaves:

 AsUnordered—Makes an ordered query unordered; if you only need results to
be ordered for the first part of a query, this allows later stages to be executed
more efficiently.

 WithCancellation—Specifies a cancellation token to be used with this query.
Cancellation tokens are used throughout Parallel Extensions to allow tasks to
be cancelled in a safe, controlled manner.

 WithDegreeOfParallelism—Allows you to specify the maximum number of
concurrent tasks used to execute the query. You could use this to limit the

Listing 12.12 Multithreaded Mandelbrot query maintaining ordering

Figure 12.7 Mandelbrot image
generated using an unordered query,
resulting in some sections being
incorrectly placed
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://blogs.msdn.com/pfxteam/archive/2008/06/11/8592301.aspx>
http://blogs.msdn.com/pfxteam/archive/2008/06/11/8592301.aspx>

350 CHAPTER 12 LINQ beyond collections
number of threads used if you wanted to avoid swamping the machine, or to
increase the number of threads used for a query which wasn’t CPU-bound.

 WithExecutionMode—Can be used to force the query to execute in parallel,
even if Parallel LINQ thinks it’d execute faster as a single-threaded query.

 WithMergeOptions—Allows you to tweak how the results are buffered: disabling
buffering gives the shortest time before the first result is returned, but also
lower throughput; full buffering gives the highest throughput, but no results
are returned before the query has executed completely. The default is a com-
promise between the two.

The important point is that aside from ordering, these shouldn’t affect the results of
the query. You can design your query and test it in LINQ to Objects, then parallelize it,
work out your ordering requirements, and tweak it if necessary to perform just how
you want it to. If you showed the final query to someone who knew LINQ but not
PLINQ, you’d only have to explain the PLINQ-specific method calls—the rest of the
query would be familiar. Have you ever seen such an easy way to achieve concurrency?
(The rest of Parallel Extensions is aimed at achieving simplicity where possible, too.)

PLAY WITH THE CODE YOURSELF A couple of further points are demonstrated
in the downloadable source code: if you parallelize across the whole query of
pixels rather than just the rows, then an unordered query looks even weirder;
and there’s a ParallelEnumerable.Range method that gives PLINQ a bit
more information than calling Enumerable.Range(...).AsParallel(). I
used AsParallel() in this section, as that’s the more general way of parallelis-
ing a query: most queries don’t start with a range.

Changing the in-process query model from single-threaded to parallel is quite a small
conceptual leap, really. In our next section we’ll turn the model on its head.

12.5 Inverting the query model with LINQ to Rx
All of the LINQ libraries we’ve seen so far have one thing in common: you pull data
from them using IEnumerable<T>. At first sight, that seems so obvious that it’s not
worth saying—what would be the alternative? Well, how about if you push the data
instead of pulling it? Instead of the data consumer being in control, the provider can
be in the driving seat, letting the data consumer react when new data is available. Don’t
worry too much if all this sounds dauntingly different: you actually know about the
fundamental concept already, in the form of events. If you’re comfortable with the
idea of subscribing to an event, reacting to it, and unsubscribing later, that’s a good
starting point.

 Reactive Extensions for .NET is a Microsoft project on DevLabs (see http://
mng.bz/R7ip and http://mng.bz/HCLP); versions are available for .NET 3.5 SP1,
.NET 4, Silverlight 3 and 4, and there’s even a version targeting JavaScript. You may
hear it going by various names, but Rx and LINQ to Rx are the most common abbrevia-
tions, and they’re the ones I’ll use here. Its scope is more than just the reactive side of
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/R7ip
http://mng.bz/R7ip
http://mng.bz/HCLP

351Inverting the query model with LINQ to Rx
things we’re looking at here—in particular, there’s an interesting assembly called
System.Interactive that contains various extra LINQ to Objects methods; the push
operations are implemented within System.Reactive. Even within the push model
we’ll barely be scratching the surface here. I know this is true for everything we’ve cov-
ered in this chapter, but I think it’s particularly applicable in this section: not only is
there a lot to learn about the library itself, but it’s a whole different way of thinking.
There are loads of videos on Channel 9 (see http://mng.bz/QoXE)—some are based
on the mathematical aspects, whereas others are more practical. In this section I’ll be
emphasizing the way that the LINQ concepts can be applied to this push model for
data flow.

 Enough of the introduction... let’s meet the two interfaces that form the basis of
LINQ to Rx.

12.5.1 IObservable<T> and IObserver<T>

The data model of LINQ to Rx is the mathematical dual of the normal IEnumerable<T>
model.8 When you iterate over a pull collection, you effectively start off by saying,
“Please give me an iterator” (the call to GetEnumerator) and then repeatedly say “Is
there another item? If so, I'd like it now” (via calls to MoveNext and Current). LINQ to
Rx reverses this. Instead of requesting an iterator, you provide an observer. Then,
instead of requesting the next item, your code is told when one is ready—or when an
error occurs, or the end of the data is reached. Here are the declarations of the two
interfaces involved:

public interface IObservable<T>
{

IDisposable Subscribe (IObserver<T> observer);
}

public interface IObserver<T>
{

void OnNext (T value);
void OnCompleted();
void OnException (Exception error);

}

These interfaces are actually part of .NET 4 (in the System namespace), even though
the rest of LINQ to Rx is in a separate download. In fact, they’re IObservable<out T>
and IObserver<in T> in .NET 4, expressing the covariance of IObservable and the
contravariance of IObserver. We’ll learn more about generic variance in the next
chapter, but I’m presenting the interfaces here as if they were invariant for the sake of
simplicity. One concept at a time! Figure 12.8 shows the duality in terms of how data
flows in each model.

8 For a more detailed examination of this duality—and the essence of LINQ itself—I recommend Bart de
Smet’s “MinLinq” blog post at http://mng.bz/96Wh.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/QoXE
http://mng.bz/96Wh

352 CHAPTER 12 LINQ beyond collections
I suspect I’m not alone in finding the push model harder to think about, as it has the
natural ability to work asynchronously—but look at how much simpler it is than the
pull model, in terms of the flow diagram. This is partly due to the multiple method
approach of the pull model: if IEnumerator<T> just had a method with a signature of
bool TryGetNext(out T item), it’d be somewhat simpler.

 Earlier I mentioned that LINQ to Rx is similar to the events we’re already familiar
with. Calling Subscribe on an observable is like using += with an event to register a
handler. The disposable value returned by Subscribe remembers the observer you
passed in: disposing of it is like using -= with the same handler. In many cases you
really don’t need to unsubscribe from the observable; it’s really available in case you
need to unsubscribe halfway through a sequence—the equivalent of breaking out of a
foreach loop early. Failing to dispose of an IDisposable value may feel like anathema
to you, but it’s often safe in LINQ to Rx. None of the examples in this chapter will use
the return value of Subscribe.

 That’s all there is to IObservable<T>—but what about the observer itself? Why
does it have three methods? Consider the normal pull model where for any Move-
Next/Current pair of calls, three things can happen:

 We may be at the end of the sequence, in which case MoveNext returns false.
 We may not have reached the end of the sequence, in which case MoveNext

returns true, and Current returns the new value.
 An error may occur—we could fail to read the next line from a network connec-

tion, for example. In this case, an exception would be thrown.

Pull model

Caller IEnumerable<T> IEnumerator<T>

GetEnumerator()

Return: IEnumerator<T>

MoveNext()

Return: true

Current

Return: first value

MoveNext()

Return: false

Caller IObservable<T> IObserver<T>

Subscribe(observer)

Return: IDisposable

... (more items) ...

OnNext(first value)

... (more items) ...

OnCompleted()

Push model

Figure 12.8 Sequence diagram showing the duality of IEnumerable<T> and IObservable<T>
Licensed to Devon Greenway <devon.greenway@gmail.com>

353Inverting the query model with LINQ to Rx
The IObserver<T> interface represents each of these options as a separate method.
Typically an observer will have its OnNext method called repeatedly, and then finally
OnCompleted—unless there’s an error of some kind, in which case OnError will be
called instead. After the sequence has completed or encountered an error, no further
method calls will be made. You rarely need to implement IObserver<T> directly,
though. There are many extension methods on IObservable<T>, including overloads
for Subscribe. These allow you to subscribe to an observable by just providing appro-
priate delegates: usually you provide a delegate to be executed for each item, and
then optionally one to be executed on completion, on error, or both.

 With that bit of theory out of the way, we can see some actual code using LINQ to Rx.

12.5.2 Starting simply (again)

We’re going to demonstrate LINQ to Rx in the same way we started off with LINQ to
Objects—using a range. Instead of Enumerable.Range, we’ll use Observable.Range,
which creates an observable range. Each time an observer subscribes to the range, the
numbers are emitted to that observer using OnNext, followed by OnCompleted. We’ll
start off as simply as we can, just printing out each value as we receive it, and a confir-
mation message at the end or if an error occurs. The following listing shows that this is
actually less code than you’d need for the pull model.

var observable = Observable.Range(0, 10);
observable.Subscribe(x => Console.WriteLine("Received {0}", x),

e => Console.WriteLine("Error: {0}", e),
() => Console.WriteLine("Finished"));

In this case it’s hard to see how we could get an error, but I’ve included the error noti-
fication delegate for completeness. The results are as you’d expect:

Received 0
Received 1
...
Received 9
Finished

The observable returned by the Range method is known as a cold observable : it lies dor-
mant until an observer subscribes to it, at which point it’ll emit the values to that indi-
vidual observer. If you subscribe with another observer, that will see another copy of
the range. This isn’t quite the same as a normal event such as a button click, where
several observers could be subscribed to the same actual sequence of values—and the
values may be effectively yielded whether there are any observers or not. (You can
click a button even if there aren’t any event handlers attached, after all.) Sequences
like this are known as hot observables. It’s important to know which type you’re dealing
with, even though the same set of operations apply to both kinds.

 Now that we’ve done the simplest thing possible, let’s try some familiar LINQ
operators.

Listing 12.13 First contact with IObservable<T>
Licensed to Devon Greenway <devon.greenway@gmail.com>

354 CHAPTER 12 LINQ beyond collections
12.5.3 Querying observables

By now I'm sure you’re familiar with the pattern—there are various extension meth-
ods in a static class (called Observable, somewhat predictably) that perform appropri-
ate transformations. We’ll look at just a few of the available operators, and think a
little about what’s not available, and why it’s not.

FILTERING AND PROJECTING

Let’s jump straight into a query expression that takes a sequence of numbers, filters
out the odd ones, and squares anything that’s left. We subscribe Console.WriteLine
to the final result of the query, so that any items produced will be displayed. The fol-
lowing listing shows the code—look at how the query expression could easily be a
LINQ to Objects query.

var numbers = Observable.Range(0, 10);
var query = from number in numbers

where number % 2 == 0
select number * number;

query.Subscribe(Console.WriteLine);

For simplicity’s sake, I haven’t added handlers for completion or error—and using the
conversion from the Console.WriteLine method group to an Action<int> keeps the
code nice and short. This produces the same results it would in LINQ to Objects: 0, 4,
16 and so on. Let’s move on to grouping.

GROUPING

A group by query expression in LINQ to Rx produces a new IGroupedObservable<T>
for each group—although what you then do with the grouping isn’t always obvious.
For example, it’s not uncommon to have a nested subscription so that each time a new
group is produced, you subscribe an observer to that group. The results within each
group are produced as they’re received by the grouping construct—effectively it acts
as a sort of redirection choice, like an usher at a play examining each person’s ticket
as they arrive, and directing them to the relevant section of the theatre. By contrast,
LINQ to Objects collects a whole group together before returning it—which means it
has to read to the end of the sequence, buffering all the results.

 The following listing shows an example of this nested subscription, and also dem-
onstrates how group results are emitted.

var numbers = Observable.Range(0, 10);
var query = from number in numbers

group number by number % 3;
query.Subscribe(group => group.Subscribe

(x => Console.WriteLine("Value: {0}; Group: {1}", x, group.Key)));

The best way to understand this is probably to remember that dealing with groups in
LINQ to Objects often involves having a nested foreach loop—so we have nested

Listing 12.14 Filtering and projecting in LINQ to Rx

Listing 12.15 Grouping numbers mod 3
Licensed to Devon Greenway <devon.greenway@gmail.com>

355Inverting the query model with LINQ to Rx
subscriptions in LINQ to Rx. When in doubt, try to find the duality between the two
data models. In LINQ to Objects we’d normally process each whole group in turn,
whereas the order in LINQ to Rx means the output of listing 12.15 looks like this:

Value: 0; Group: 0
Value: 1; Group: 1
Value: 2; Group: 2
Value: 3; Group: 0
Value: 4; Group: 1
Value: 5; Group: 2
Value: 6; Group: 0
Value: 7; Group: 1
Value: 8; Group: 2
Value: 9; Group: 0

This makes perfect sense when you think of the push model—and in some cases it
means that operations that would’ve required a lot of data buffering in LINQ to
Objects can be implemented in LINQ to Rx much more efficiently. As a final example,
let’s look at another operator that uses multiple sequences.

FLATTENING

LINQ to Rx supplies a few overloads of SelectMany and the idea is still the same as in
LINQ to Objects: each item in the original sequence produces a new sequence, and
the result is the combination of all these new sequences, flattened. The following list-
ing shows this in action—it’s a little like listing 11.16, when we first introduced
SelectMany in LINQ to Objects.

var query = from x in Observable.Range(1, 3)
from y in Observable.Range(1, x)
select new { x, y };

query.Subscribe(Console.WriteLine);

Here are the results, which should be reasonably predictable:

{ x = 1, y = 1 }
{ x = 2, y = 1 }
{ x = 2, y = 2 }
{ x = 3, y = 1 }
{ x = 3, y = 2 }
{ x = 3, y = 3 }

In this case, the results are deterministic, but that’s only because by default,
Observable.Range emits items on the current thread. It’s entirely possible to have
multiple sequences being produced on multiple threads. For fun, you might want to
change the second call to Observable.Range to specify Scheduler.ThreadPool as a
third argument. At that point, while each of the inner sequences comes out in order
with respect to itself, those separate sequences can be mixed up amongst each other.
Imagine a sports stadium with one official firing a starting pistol for several different
races in quick succession: even if you know the winner of each race, you don’t know
which race will finish first.

Listing 12.16 SelectMany producing multiple ranges
Licensed to Devon Greenway <devon.greenway@gmail.com>

356 CHAPTER 12 LINQ beyond collections
 Apologies if this makes you want to go and lie down. If it’s any consolation, it gives
me the same feeling. I do find it fascinating at the same time though.

WHAT’S IN AND WHAT’S OUT?

We already know that a let clause works by just calling Select, so that’s okay—but not
all LINQ to Objects operators are implemented in LINQ to Rx. The missing operators
are generally the ones that would have to buffer all their output and return a new
observable. For example, there’s no Reverse method, and no OrderBy. C# is quite
happy with that—it just won’t let you use an orderby clause in a query expression
based on observables. There’s a Join method, but that doesn’t deal with observables
directly—it handles join plans. This is part of the Rx implementation of the join-
calculus, and well beyond the scope of this book. Likewise there’s no GroupJoin
method, so join...into isn’t supported.

 For the various LINQ standard query operators that aren’t covered by the query
expression syntax—and to see the range of extra methods it makes available—see the
System.Reactive documentation. Although you may start off being disappointed
about the familiar functionality from LINQ to Objects that’s missing in LINQ to Rx
(usually because it just doesn’t make sense), you may be surprised by how rich the set
of available methods really is. Many of the new methods are then ported to LINQ to
Objects in the System.Interactive assembly.

12.5.4 What’s the point?

I’m well aware that I haven’t provided any compelling reasons to use LINQ to Rx yet.
This is deliberate, as I don’t intend to show a full, useful example—it’s incidental to
the point of this chapter, and would take too much space. But Rx provides an elegant
way of thinking about all kinds of asynchronous processes—normal .NET events
(which can be viewed as an observable using Observable.FromEvent), asynchronous
I/O, and calls to web services, for example. It provides a way of managing the com-
plexity and concurrency in an efficient manner. There’s no doubt that it is harder to
get your head around than LINQ to Objects, but if you’re in the kind of situation
where it’d be useful, you’re already facing a mountain of complexity.

 LINQ to Rx is a relatively young project, with the first release appearing on Dev-
Labs in November 2009. If you’ve found this short introduction interesting, you
should definitely take a closer look. The reason I wanted to cover Rx in this book,
despite not being able to do it any sort of justice, is because it shows why LINQ was
designed the way it was. Although there are conversion methods available between
IEnumerable<T> and IObservable<T>, there’s no inheritance relationship—if the lan-
guage had made any requirement that the types involved in LINQ had to be pull
sequences, there would’ve been no query expression support for Rx at all. It would’ve
been even more disastrous if extension methods had been limited to IEnumerable<T>
in some way. Likewise, we’ve seen that not all the normal LINQ operators are applica-
ble to Rx—which is why it’s important that the language specifies query translations in
terms of a pattern that should be supported as far as it makes sense for the given
Licensed to Devon Greenway <devon.greenway@gmail.com>

357Extending LINQ to Objects
provider. I hope you have a sense that even though the push and pull models are very
different to work with, LINQ acts as a sort of unifying force where possible.

 You may be relieved to hear that our last topic is a lot simpler—it’s back on the
home ground of LINQ to Objects, but this time we’re writing our own extension
methods.

12.6 Extending LINQ to Objects
One of the nice things about LINQ is that it’s extensible. Not only can you come up
with your own query providers and data models, you can also add to existing ones. In
my experience, the most common situation where this is useful is with LINQ to
Objects. If you need a particular type of query that isn’t directly supported (or is awk-
ward or inefficient with the standard query operators), you can write your own. Of
course, writing a general-purpose generic method can be more challenging than just
solving your immediate problem, but if you find yourself writing similar code a few
times, it’s worth considering whether you could refactor it into a new operator.

 Personally I enjoy writing query operators. There are interesting technical chal-
lenges, but it rarely requires a huge amount of code—and the results can be elegant.
In this section we’ll look at some of the ways you can make your custom operators
behave efficiently and predictably, followed by a full sample for selecting a random
element from a sequence.

12.6.1 Design and implementation guidelines

Most of these may seem fairly obvious, but this section can form a useful checklist
when you write an operator.

UNIT TESTS

It’s generally pretty easy to write a good set of unit tests for operators, although you
may be surprised at how many you end up with for what originally appears to be sim-
ple code. Don’t forget to test corner cases such as empty sequences as well as invalid
arguments. MoreLINQ has some helper methods in its unit test project that you may
wish to use for your own tests.

ARGUMENT CHECKING

Good methods check their arguments... but there’s a problem when it comes to LINQ
operators. Many operators return another sequence, as we’ve already seen—and itera-
tor blocks are the easiest way to implement this functionality. But you should really
perform the argument checking as soon as your method is called, rather than waiting
until the caller decides to iterate over the results. If you’re going to use an iterator
block, split your method into two: perform argument checking in a public method
and then call a private method to do the iteration.

OPTIMIZATION

IEnumerable<T> itself is fairly weak in terms of the operations it supports, but the
execution-time type of a sequence you’re working on may have considerably more
Licensed to Devon Greenway <devon.greenway@gmail.com>

358 CHAPTER 12 LINQ beyond collections
functionality. For example, the Count() operator will always work, but it’ll generally
be an O(n) operation. If you call it on an implementation of ICollection<T>, though,
it can use the Count property directly—which will generally be O(1). In .NET 4, this
optimization is extended to cover ICollection as well. Likewise retrieving a specific
element by index is slow in the general case, but can be efficient if the sequence
implements IList<T>. If your operator can benefit from these optimizations, you can
have different execution paths depending on the execution-time type. To test the slow
path in unit tests, you can always call Select(x => x) on a List<T> to retrieve a nonlist
sequence. LinkedList<T> can test the case where you want an ICollection<T> that
doesn’t implement IList<T>.

DOCUMENTATION

It’s important to document what your code will do with its inputs, and also the expected
performance of the operator. This is particularly important if your method needs to work
with multiple sequences: which will be evaluated first, and how far? Does your code stream
its data, buffer it, or a mixture? Does it use deferred or immediate execution? Can any
parameters be null, and if so, does that have a special meaning?

ITERATE ONCE WHERE POSSIBLE

IEnumerable<T> will let you iterate over it multiple times—you can have multiple iter-
ators active at the same time over the same sequence, potentially. But this is rarely a
good idea within an operator. Wherever possible, it’s wise to iterate over your input
sequences just once. This will mean your code will work even for nonrepeatable
sequences, such as lines read from a network stream. If you do need to read the
sequence multiple times (and you don’t want to buffer the whole sequence yourself
like Reverse does), you should draw particular attention to this in the documentation.

REMEMBER TO DISPOSE OF ITERATORS

In most cases, you can use a foreach statement to iterate over your data source. But
it’s sometimes useful to treat the first item differently, in which case using an iterator
directly can lead to the simplest code. In that situation, remember to include a using
block for the iterator. We’re not used to disposing of iterators ourselves because nor-
mally foreach does it for us, which can make it hard to spot the bug.

CUSTOM COMPARISONS

Many LINQ operators have overloads that allow you to specify an appropriate
IEqualityComparer<T> or IComparer<T>. If you’re building a general-purpose library
for others (potentially developers who you aren’t in contact with), it may be worth
providing similar overloads yourself. On the other hand, if you’re the sole user, or it’s
just going to be members of your team, you can do this on a need-to-implement basis.
It’s easy though: typically the simpler overloads just call a more complex one, passing
EqualityComparer<T>.Default or Comparer<T>.Default as the comparison.

 Now that I’ve talked the talk, let’s check whether I can actually walk the walk.
Licensed to Devon Greenway <devon.greenway@gmail.com>

359Extending LINQ to Objects
12.6.2 Sample extension: selecting a random element

The idea of our extension method is simple: given a sequence and an instance of
Random, return a random element from the sequence. You could add an overload that
didn’t require the instance of Random, but I prefer to make the dependency on a ran-
dom number generator explicit. Randomness is a tricky topic for various reasons;
rather than discuss it here, I’ve included an article on the book’s website (see http://
mng.bz/h483). Also for reasons of space, I haven’t included the XML documentation
or unit tests in listing 12.17, but of course they’re in the downloadable code.

public static T RandomElement<T>(this IEnumerable<T> source,
Random random)

{
if (source == null)
{

throw new ArgumentNullException("source");
}
if (random == null)
{

throw new ArgumentNullException("random");
}
ICollection collection = source as ICollection;
if (collection != null)
{

int count = collection.Count;
if (count == 0)
{

throw new InvalidOperationException("Sequence was empty.");
}
int index = random.Next(count);
return source.ElementAt(index);

}
using (IEnumerator<T> iterator = source.GetEnumerator())
{

if (!iterator.MoveNext())
{

throw new InvalidOperationException("Sequence was empty.");
}
int countSoFar = 1;
T current = iterator.Current;
while (iterator.MoveNext())
{

countSoFar++;
if (random.Next(countSoFar) == 0)
{

current = iterator.Current;
}

}
return current;

}
}

Listing 12.17 Extension method to choose a random element from a sequence

Validates argumentsB

Optimizes for
collections

C

ElementAt
optimizes further

Handles
slow caseD

Sometimes replaces
current guess

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/h483
http://mng.bz/h483

360 CHAPTER 12 LINQ beyond collections
Listing 12.17 doesn’t show the technique of splitting an extension method into argu-
ment validation and then implementation, because it doesn’t use an iterator block.
Look back at our implementation of the Where operator in section 10.3.7 for an exam-
ple of this. No custom comparisons are required either—but apart from that, every
item on our checklist is appropriate.

 First we validate our arguments in the obvious way B. In chapter 15 we’ll learn an
alternative way of expressing preconditions using Code Contracts, but for now I’ve
kept with normal exceptions. Things get more interesting at C—we handle the case
where the source sequence implements ICollection.9 This allows us to take the
count cheaply, and then generate just a single random number to work out which ele-
ment to pick. We don’t explicitly handle the case where the source sequence imple-
ments IList<T>—instead, we rely on ElementAt to do that for us (as it’s documented
to do).

 If we’re dealing with a noncollection sequence (such as the result of another query
operator), we want to avoid taking the count and then picking an element: that would
require us to either buffer the contents of the sequence or iterate over it twice.
Instead we step through it once, explicitly fetching the iterator D so that we can test
for an empty sequence easily. The clever bit10 is at E—we replace our current idea of
a random element with the element from the iterator with a probability of 1/n, where
n is the number of elements we’ve seen so far. So there’s a 1/2 chance of replacing the
first element with the second, a 1/3 chance of replacing the result after two elements
with the third element, and so on. The final result is that each element in the
sequence has an equal chance of being picked, and we’ve managed to iterate just
once.

 Of course the important point isn’t what this particular method does—it’s the
potential issues we had to think about as we implemented it. Once you know what to
look for, it really doesn’t take much effort to implement a robust method like this, and
your personal toolbox will grow over time.

12.7 Summary
Phew! This chapter has been the exact opposite of most of the rest of the book.
Instead of focusing on a single topic in great detail, we’ve covered a range of LINQ
technologies, but at a shallow level.

 I wouldn’t expect you to feel particularly familiar with any one of the specific tech-
nologies we’ve looked at here, but I hope you have a deeper understanding of why
LINQ is important. It’s not about XML, or in-memory queries, SQL queries, observ-
ables, or enumerators—it’s about consistency of expression, and giving the C# com-
piler the opportunity to validate your queries to at least some extent, regardless of
their final execution platform.

9 The downloadable code contains the same test for implementations of ICollection<T>, just like Count()
does in .NET 4. It’s exactly the same block of code, just with a different type and a different variable name.

10 I’m allowed to say that it’s clever because even though it’s my implementation, it’s not my idea.
Licensed to Devon Greenway <devon.greenway@gmail.com>

361Summary
 You should now appreciate why expression trees are so important that they’re
among the few framework elements that the C# compiler has direct intimate knowledge
of (along with strings, IDisposable, IEnumerable<T>, and Nullable<T>, for example).
They’re passports for behavior, allowing it to cross the border of the local machine,
expressing logic in whatever foreign tongue is catered for by a LINQ provider.

 It’s not just expression trees—we’ve also relied on the query expression translation
employed by the compiler, and the way that lambda expressions can be converted to
both delegates and expression trees. Extension methods are also important, as with-
out them each provider would have to give implementations of all the relevant meth-
ods. If you look back at all the new features of C#, you’ll find few that don’t contribute
significantly to LINQ in some way or other. That’s part of the reason for this chapter’s
existence: to show the connections between all the features.

 I shouldn’t wax lyrical for too long, though—as well as the upsides of LINQ, we’ve
seen a few gotchas. LINQ won’t always allow us to express everything we need in a
query, nor does it hide all the details of the underlying data source. When it comes to
database LINQ providers, the impedance mismatches that have caused developers so
much trouble in the past are still with us: we can reduce their impact with ORM systems
and the like, but without a proper understanding of the query being executed on your
behalf, you’re likely to run into significant issues. In particular, don’t think of LINQ as
a way of removing your need to understand SQL—just think of it as a way of hiding the
SQL when you’re not interested in the details. Likewise, in order to plan an effective
parallel query, you’ve got to know where ordering matters and where it doesn’t, and
perhaps help the framework along a bit by giving it more tuning information.

 Since .NET 3.5 came out, I’ve been delighted to see how wholeheartedly the com-
munity has embraced it. In that case I have the benefit of hindsight. I have little idea
of how developers will take to the features of C# 4... but let’s dive into them in the
final part of the book.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 4

C# 4:
playing nicely

with others

C# 4 is a funny beast. It doesn’t have the “several, almost unrelated, major
new features” feeling of C# 2, nor the “all in the cause of LINQ” feeling of C# 3.
Instead, the new features of C# 4 fall somewhere between the two. Interoperabil-
ity is a major theme, but equally many of the features are useful even if you never
need to work with other environments.

 My personal favorite features from C# 4 are optional parameters and
named arguments. They’re relatively simple, but can be put to good use in
many places, improving the readability of code and generally making life
more pleasant. Do you waste time working out which argument means what?
Put some names on them. Are you tired of writing endless overloads to avoid
callers having to specify everything? Make some parameters optional.

 If you work with COM, C# 4 will be a breath of fresh air for you. To start with,
the features I just described make some APIs much simpler to work with, where
the component designers have pretty much assumed that you’ll be working with
a language supporting optional parameters and named arguments. Beyond that
there’s a better deployment story, support for named indexers, and a helpful
shortcut to avoid having to pass arguments by reference everywhere. The biggest
feature of C# 4—dynamic typing—also makes COM integration easier.
Licensed to Devon Greenway <devon.greenway@gmail.com>

 We’ll look at all of these areas in chapter 13, along with the brain-busting topic of
generic variance applied to interfaces and delegates. Don’t worry: we’ll take that rea-
sonably slowly, and the best part is that most of the time you don’t need to know the
details... it just makes code work where you might’ve expected it to in C# 3 anyway!

 Chapter 14 covers dynamic typing and the Dynamic Language Runtime (DLR).
This is an enormous topic; I’ve concentrated on how the C# language implements
dynamic typing, but we’ll also look at a few examples of interoperating with dynamic
languages such as IronPython, and provide examples of how a type can dynamically
respond to method calls, property accesses, and so on. It’s worth applying a little per-
spective here: the fact that this is a major feature doesn’t mean that you should expect
to see dynamic expressions cropping up all over your codebase. This won’t be as per-
vasive as LINQ, for example—but when you do want dynamic typing, you’ll find it well-
implemented in C# 4.

 Chapter 15 takes us in a slightly different direction; Code Contracts aren’t imple-
mented as a language feature of C# 4, but they still change how idiomatic C# 4 may
be written. The core types used by Code Contracts are part of .NET 4, but they do little
by themselves: the supporting tools really make the contracts come alive. Applying
contracts to your code—in terms of preconditions, postconditions, assertions, and
invariants—allows you to express elements of behavior that previously would’ve been
left to documentation. How far you take Code Contracts is up to you, but it’s one of
the most exciting and potentially cross-cutting pieces of technology in .NET 4.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Minor changes
to simplify code
Just as in previous versions, C# 4 has a few minor features that don’t merit individ-
ual chapters to themselves. In fact, there’s only one really big feature in C# 4—
dynamic typing—which we’ll cover in the next chapter. The changes we’ll cover
here just make C# that little bit more pleasant to work with, particularly if you work
with COM on a regular basis. These features generally make code clearer, remove
drudgery from COM calls, or simplify deployment.

 Will any of those make your heart race with excitement? It’s unlikely. They’re
nice features all the same, and some of them may be widely applicable. Let’s start by
looking at how we call methods.

This chapter covers
 Optional parameters

 Named arguments

 Streamlining ref parameters in COM

 Embedding COM primary interop assemblies

 Calling named indexers declared in COM

 Generic variance for interfaces and delegates

 Changes in locking and field-like events
365

Licensed to Devon Greenway <devon.greenway@gmail.com>

366 CHAPTER 13 Minor changes to simplify code
13.1 Optional parameters and named arguments
These are perhaps the Batman and Robin1 features of C# 4. They’re distinct, but usu-
ally seen together. I’m going to keep them apart for the moment so we can examine
each in turn, but then we’ll use them together for some more interesting examples.

PARAMETERS AND ARGUMENTS This section obviously talks about parameters
and arguments a lot. In casual conversation, the two terms are often used
interchangeably, but I’m going to use them in line with their formal defini-
tions. Just to remind you, a parameter (also known as a formal parameter) is the
variable that’s part of the method or indexer declaration. An argument is an
expression used when calling the method or indexer. So, for example, con-
sider this snippet:
void Foo(int x, int y)
{

// Do something with x and y
}
...
int a = 10;
Foo(a, 20);

Here the parameters are x and y, and the arguments are a and 20.

We’ll start by looking at optional parameters.

13.1.1 Optional parameters

Visual Basic has had optional parameters for ages, and they’ve been in the CLR from
.NET 1.0. The concept is as obvious as it sounds: some parameters are optional, so
their values don’t have to be explicitly specified by the caller. Any parameter that
hasn’t been specified as an argument by the caller is given a default value.

MOTIVATION

Optional parameters are usually used when there are several values required for an
operation, where the same values are used a lot of the time. For example, suppose you
wanted to read a text file; you might want to provide a method that allows the caller to
specify the name of the file and the encoding to use. The encoding is almost always
UTF-8, though, so it’s nice to be able to use that automatically if it’s all you need.

 Historically the idiomatic way of allowing this in C# has been to use method over-
loading: declare one method with all the possible parameters, and others that call that
method, passing in default values where appropriate. For instance, you might create
methods like this:

public IList<Customer> LoadCustomers(string filename,
Encoding encoding)

{
...

}

public IList<Customer> LoadCustomers(string filename)

1 Or Cavalleria Rusticana and Pagliacci if you’re feeling more highly cultured.

Do real work here
Licensed to Devon Greenway <devon.greenway@gmail.com>

367Optional parameters and named arguments
{
return LoadCustomers(filename, Encoding.UTF8);

}

This works fine for a single parameter, but it becomes trickier when there are multiple
options. Each extra option doubles the number of possible overloads, and if two of
them are of the same type, you can have problems due to trying to declare multiple
methods with the same signature. Often the same set of overloads is also required for
multiple parameter types. For example, the XmlReader.Create() method can create
an XmlReader from a Stream, a TextReader, or a string—but it also provides the
option of specifying an XmlReaderSettings and other arguments. Due to this duplica-
tion, there are 12 overloads for the method. This could be significantly reduced with
optional parameters. Let’s see how it’s done.

DECLARING OPTIONAL PARAMETERS AND OMITTING THEM WHEN SUPPLYING ARGUMENTS

Making a parameter optional is as simple as supplying a default value for it, using what
looks like a variable initializer. Figure 13.1
shows a method with three parameters: two are
optional, one is required.

 All the method does is print out the argu-
ments, but that’s enough to see what's going
on. The following listing gives the full code
and calls the method three times, specifying a
different number of arguments for each call.

static void Dump(int x, int y = 20, int z = 30)
{

Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(1, 2);
Dump(1);

The optional parameters are the ones with default values specified B. If the caller
doesn’t specify y, its initial value will be 20, and likewise z has a default value of 30.
The first call C explicitly specifies all the arguments; the remaining calls (C and E)
omit one or two arguments respectively, so the default values are used. When there’s
one argument missing, the compiler assumes that the final parameter has been omit-
ted—then the penultimate one, and so on. The output is therefore

x=1 y=2 z=3
x=1 y=2 z=30
x=1 y=20 z=30

Note that although the compiler could use some clever analysis of the types of the
optional parameters and the arguments to work out what’s been left out, it doesn’t: it

Listing 13.1 Declaring a method with optional parameters and calling

Default to UTF-8

Declares method
with optional
parametersB

Calls method with
all arguments

C

Omits one argumentD
Omits two argumentsE

void Dump(int x, int y = 20, int z = 30)

required
parameter

default
values

optional
parameters

Figure 13.1 Declaring optional parameters
Licensed to Devon Greenway <devon.greenway@gmail.com>

368 CHAPTER 13 Minor changes to simplify code
assumes that you’re supplying arguments in the same order as the parameters.2 This
means that the following code is invalid:

static void TwoOptionalParameters(int x = 10,
string y = "default")

{
Console.WriteLine("x={0} y={1}", x, y);

}
...
TwoOptionalParameters("second parameter");

This tries to call the TwoOptionalParameters method specifying a string for the first
argument. There’s no overload with a first parameter that’s convertible from a string,
so the compiler issues an error. This is a good thing—overload resolution is tricky
enough (particularly when generic type inference gets involved) without the compiler
trying all kinds of different permutations to find something you might be trying to call.
If you want to omit the value for one optional parameter but specify a later one, you
need to use named arguments.

RESTRICTIONS ON OPTIONAL PARAMETERS

There are a few rules for optional parameters. All optional parameters must come
after required parameters. The exception to this is a parameter array (as declared with
the params modifier), which still has to come at the end of a parameter list, but can
come after optional parameters. A parameter array can’t be declared as an optional
parameter—if the caller doesn’t specify any values for it, an empty array will be used
instead. Optional parameters can’t have ref or out modifiers either.

 An optional parameter can be of any type, but there are restrictions on the default
value specified. You can always use constants: numeric and string literals, null, const
members, enum members, and the default(T) operator. Additionally, for value types,
you can call the parameterless constructor, although this is equivalent to using the
default (...) operator anyway. There has to be an implicit conversion from the spec-
ified value to the parameter type, but this must not be a user-defined conversion.
Table 13.1 shows some examples of valid parameter lists.

2 Unless you’re using named arguments, of course—we’ll learn about those soon.

Table 13.1 Valid method parameter lists using optional parameters

Declaration Notes

Foo(int x, int y = 10) Numeric literal used for default value

Foo(decimal x = 10) Implicit built-in conversion from int to
decimal

Foo(string name = "default") String literal used for default value

Foo(DateTime dt = new DateTime()) Zero value of DateTime

Foo(DateTime dt = default(DateTime)) Alternative syntax for the zero value

Error!
Licensed to Devon Greenway <devon.greenway@gmail.com>

369Optional parameters and named arguments
By contrast, table 13.2 shows some invalid parameter lists and explains why they’re not
allowed.

The fact that the default value has to be constant is a pain in two different ways. One
of them is familiar from a slightly different context, as we’ll see now.

VERSIONING AND OPTIONAL PARAMETERS

The restrictions on default values for optional parameters may remind you of the
restrictions on const fields or attribute values, and they behave very similarly. In both
cases, when the compiler references the value, it copies it directly into the output. The
generated IL acts exactly as if your original source code had contained the default
value. This means if you ever change the default value without recompiling everything
that references it, the old callers will still be using the old default value. To make this
concrete, imagine this set of steps:

1 Create a class library (Library.dll) with a class like this:
public class LibraryDemo
{

public static void PrintValue(int value = 10)
{

System.Console.WriteLine(value);
}

}

2 Create a console application (Application.exe) that references the class library:
public class Program
{

Foo<T>(T value = default(T)) Default value operator works with type
parameters

Foo(int? x = null) Nullable conversion

Foo(int x, int y = 10, params int[] z) Parameter array after optional parameters

Table 13.2 Invalid method parameter lists using optional parameters

Declaration (invalid) Notes

Foo(int x = 0, int y) Required non-params parameter can’t come after an
optional parameter

Foo(DateTime dt = DateTime.Now) Default values must be constants

Foo(XName name = "default") Conversion from string to XName is user-defined

Foo(params string[] names = null) Parameter arrays can’t be optional

Foo(ref string name = "default") ref/out parameters can’t be optional

Table 13.1 Valid method parameter lists using optional parameters (continued)

Declaration Notes
Licensed to Devon Greenway <devon.greenway@gmail.com>

370 CHAPTER 13 Minor changes to simplify code
static void Main()
{

LibraryDemo.PrintValue();
}

}

3 Run the application—it’ll print 10, predictably.
4 Change the declaration of PrintValue as follows, then recompile just the class

library:
public static void PrintValue(int value = 20)

5 Rerun the application—it’ll still print 10. The value has been compiled directly
into the executable.

6 Recompile the application and rerun it—this time it’ll print 20.

This versioning issue can cause bugs that are hard to track down, because all the code
looks correct. Essentially, you’re restricted to using genuine constants that should
never change as default values for optional parameters.3 There’s one benefit of this
setup: it gives the caller a guarantee that the value it knew about at compile-time is the
one that’ll be used. Developers may feel more comfortable with that than with a
dynamically computed value, or one that depends on the version of the library used at
execution time.

 Of course, this also means you can’t use any values that can’t be expressed as con-
stants anyway—you can’t create a method with a default value of “the current time,”
for example.

MAKING DEFAULTS MORE FLEXIBLE WITH NULLITY

Fortunately, there’s a way round this. Essentially you introduce a magic value to repre-
sent the default, and then replace that magic value with the real default within the
method itself. If the phrase magic value bothers you, I’m not surprised—except we’re
going to use null for the magic value, which already represents the absence of a nor-
mal value. If the parameter type would normally be a value type, we simply make it the
corresponding nullable value type, at which point we can still specify that the default
value is null.

 As an example of this, let’s look at a similar situation to the one I used to introduce
the whole topic: allowing the caller to supply an appropriate text encoding to a
method, but defaulting to UTF-8. We can’t specify the default encoding as Encoding.
UTF8 as that’s not a constant value, but we can treat a null parameter value as “use the
default.” To demonstrate how we can handle value types, we’ll make the method
append a timestamp to a text file with a message. We’ll default the encoding to UTF-8
and the timestamp to the current time. Listing 13.2 shows the complete code and a few
examples of using it.

3 Or you could just accept that you’ll need to recompile everything if you change the value. In many contexts
that’s a reasonable tradeoff.
Licensed to Devon Greenway <devon.greenway@gmail.com>

371Optional parameters and named arguments

static void AppendTimestamp(string filename,
string message,
Encoding encoding = null,
DateTime? timestamp = null)

{
Encoding realEncoding = encoding ?? Encoding.UTF8;
DateTime realTimestamp = timestamp ?? DateTime.Now;
using (TextWriter writer = new StreamWriter(filename,

true,
realEncoding))

{
writer.WriteLine("{0:s}: {1}", realTimestamp, message);

}
}
...
AppendTimestamp("utf8.txt", "First message");
AppendTimestamp("ascii.txt", "ASCII", Encoding.ASCII);
AppendTimestamp("utf8.txt", "Message in the future", null,

new DateTime(2030, 1, 1));

Listing 13.2 shows a few nice features of this approach. First, we’ve solved the version-
ing problem. The default values for the optional parameters are null B, but the effec-
tive values are “the UTF-8 encoding” and “the current date and time.” Neither of these
could be expressed as constants, and should we ever wish to change the effective
default—for example to use the current UTC time instead of the local time—we could
do so without having to recompile everything that called AppendTimestamp. Of course,
changing the effective default changes the behavior of the method—you need to take
the same sort of care over this as you would with any other code change. At this point,
you (as the library author) are in charge of the versioning story—you’re taking respon-
sibility for not breaking clients, effectively. At least it’s more familiar territory: you
know that all callers will experience the same behavior, regardless of recompilation.

 We’ve also introduced an extra level of flexibility. Not only do optional parameters
mean we can make the calls shorter, but having a specific “use the default” value
means that should we ever wish to, we can explicitly make a call allowing the method to
choose the appropriate value. At the moment, this is the only way we know to specify
the timestamp explicitly without also providing an encoding D, but that’ll change
when we look at named arguments.

 The optional parameter values are simple to deal with thanks to the null coalesc-
ing operator C. I’ve used separate variables for the sake of printed formatting, but in
real code you’d probably use the same expressions directly in the calls to the Stream-
Writer constructor and the WriteLine method.

 There are two downsides to this approach: first, it means that if a caller accidentally
passes in null due to a bug, it’ll get the default value instead of an exception. In cases
where you’re using a nullable value type and callers will either explicitly use null or
have a non-nullable argument, that’s not much of a problem—but for reference types
it could be an issue.

Listing 13.2 Using null default values to handle nonconstant situations

Two required parameters

Two optional
parametersB

Null coalescing
operator for
convenienceC

Explicit
use of null

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

372 CHAPTER 13 Minor changes to simplify code
 On a related note, it requires that you don’t want to use null as a “real” value.4

There are occasions where you want null to mean null—and if you don’t want that to
be the default value, you’ll have to find a different constant or just leave the parame-
ter as a required one. But in other cases where there isn’t an obvious constant value
that’ll clearly always be the right default, I’d recommend this approach to optional
parameters as one that’s easy to follow consistently and removes some of the normal
difficulties.

 We’ll need to look at how optional parameters affect overload resolution, but it
makes sense to wait until we’ve seen how named arguments work. Speaking of which...

13.1.2 Named arguments

The basic idea of named arguments is that when you specify an argument value, you
can also specify the name of the parameter it’s supplying the value for. The compiler
then makes sure that there is a parameter of the right name, and uses the value for
that parameter. Even on its own, this can increase readability in some cases. In reality,
named arguments are most useful in cases where optional parameters are also likely
to appear, but we’ll look at the simple situation first.

INDEXERS, OPTIONAL PARAMETERS, AND NAMED ARGUMENTS You can use
optional parameters and named arguments with indexers as well as methods.
But this is only useful for indexers with more than one parameter: you can’t
access an indexer without specifying at least one argument anyway. Given this
limitation, I don’t expect to see the feature used much with indexers, and I
haven’t demonstrated it in the book. It works exactly as you’d expect it to,
though.

I’m sure we’ve all seen code that looks something like this:

MessageBox.Show("Please do not press this button again", // text
"Ouch!"); // title

I’ve actually chosen a pretty tame example; it can get a lot worse when there are loads
of arguments, especially if a lot of them are the same type. But this is still realistic:
even with just two parameters, I’d find myself guessing which argument meant what
based on the text when reading this code, unless it had comments like the ones I have
here. There’s a problem though: comments can lie about the code they describe.
Nothing is checking them at all. Named arguments ask the compiler to help.

SYNTAX

All we need to do to the previous example is prefix each argument with the name of
the corresponding parameter and a colon:

MessageBox.Show(text: "Please do not press this button again",
caption: "Ouch!");

4 We almost need a second null-like special value, meaning “please use the default value for this parameter”—
and allow that special value to be supplied either automatically for missing arguments or explicitly in the argu-
ment list. I’m sure this would cause dozens of problems, but it’s an interesting thought experiment.
Licensed to Devon Greenway <devon.greenway@gmail.com>

373Optional parameters and named arguments
Admittedly we now don’t get to choose the name we find most meaningful (I prefer
title to caption) but at least we’ll know if we get something wrong. Of course, the
most common way in which we could get something wrong here is to get the arguments
the wrong way around. Without named arguments, this would be a problem: we’d end
up with the pieces of text switched in the message box. With named arguments, the
ordering becomes largely irrelevant. We can rewrite the previous code like this:

MessageBox.Show(caption: "Ouch!",
text: "Please do not press this button again");

We’d still have the right text in the right place, because the compiler would work out
what we meant based on the names. For another example, look at the StreamWriter
constructor call we used in listing 13.2. The second argument is just true—what does
this mean? Is it going to force a stream flush after every write? Include a byte order
mark? Append to an existing file instead of creating a new one? Here’s the equivalent
call using named arguments:

new StreamWriter(path: filename,
append: true,
encoding: realEncoding)

In both of the examples, we’ve seen how named arguments effectively attach semantic
meaning to values. In the never-ending quest to make our code communicate better
with humans as well as computers, this is a definite step forward. I’m not suggesting
that named arguments should be used when the meaning is already obvious, of
course. Like all features, it should be used with discretion and thought.

NAMED ARGUMENTS WITH out AND ref If you want to specify the name of an
argument for a ref or out parameter, you put the ref or out modifier after
the name, and before the argument. So using int.TryParse as an example,
you might have code like this:
int number;
bool success = int.TryParse("10", result: out number);

To explore some other aspects of the syntax, the following listing shows a method
with three integer parameters, just like the one we used to start looking at optional
parameters.

static void Dump(int x, int y, int z)
{

Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(x: 1, y: 2, z: 3);
Dump(z: 3, y: 2, x: 1);
Dump(1, y: 2, z: 3);
Dump(1, z: 3, y: 2);

Listing 13.3 Simple examples of using named arguments

Declares method
as normalB

Calls method
as normal

C
Specifies names
for all arguments

D

Specifies names for
some arguments

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

374 CHAPTER 13 Minor changes to simplify code
The output is the same for each call in listing 13.3:
x=1, y=2, z=3. We’ve effectively made the same
method call in five different ways. It’s worth noting
that there are no tricks in the method declaration
B: you can use named arguments with any
method that has parameters. First we call the
method in the normal way, without using any new
features C. This is a sort of control point to make
sure that the other calls really are equivalent. We
then make two calls to the method using just
named arguments D. The second of these calls reverses the order of the arguments,
but the result is still the same, because the arguments are matched up with the param-
eters by name, not position. Finally there are two calls using a mixture of named argu-
ments and positional arguments E. A positional argument is one that isn’t named—so
every argument in valid C# 3 code is a positional argument from the point of view of
C# 4. Figure 13.2 shows how the final line of code works.

 All named arguments have to come after positional arguments—you can’t switch
between the styles. Positional arguments always refer to the corresponding parameter
in the method declaration—you can’t make positional arguments skip a parameter by
specifying it later with a named argument. This means that these method calls would
both be invalid:

 Dump(z: 3, 1, y: 2)—Positional arguments must come before named ones.
 Dump(2, x: 1, z: 3)—x has already been specified by the first positional argu-

ment, so we can’t specify it again with a named argument.

Now, although in this particular case the method calls have been equivalent, that’s not
always the case. Let’s look at why reordering arguments might change behavior.

ARGUMENT EVALUATION ORDER

We’re used to C# evaluating its arguments in the order they’re specified—which, until
C# 4, has always been the order in which the parameters have been declared too. In
C# 4, only the first part is still true: the arguments are still evaluated in the order
they’re written, even if that’s not the same as the order in which they’re declared as
parameters. This matters if evaluating the arguments has side effects. It’s usually worth
trying to avoid having side effects in arguments, but there are cases where it can make
the code clearer. A more realistic rule is to try to avoid side effects that might interfere
with each other. For the sake of demonstrating execution order, we’ll break both of
these rules. Please don’t treat this as a recommendation that you do the same thing.

 First we’ll create a relatively harmless example, introducing a method that logs its
input and returns it—a sort of logging echo. We’ll use the return values of three calls
to this to call the Dump method (which isn’t shown, as it hasn’t changed). Listing 13.4
shows two calls to Dump that result in slightly different output.

static void Dump(int x, int y, int z)

Dump(1, z: 3, y: 2)

positional
argument

named
arguments

Figure 13.2 Positional and named
arguments in the same call
Licensed to Devon Greenway <devon.greenway@gmail.com>

375Optional parameters and named arguments

static int Log(int value)
{

Console.WriteLine("Log: {0}", value);
return value;

}
...
Dump(x: Log(1), y: Log(2), z: Log(3));
Dump(z: Log(3), x: Log(1), y: Log(2));

The results of running listing 13.4 show what happens:

Log: 1
Log: 2
Log: 3
x=1 y=2 z=3
Log: 3
Log: 1
Log: 2
x=1 y=2 z=3

In both cases, the parameters in the Dump method are still 1, 2, and 3, in that order.
But we can see that although they were evaluated in that order in the first call (which
was equivalent to just using positional arguments), the second call evaluated the value
used for the z parameter first. We can make the effect even more significant by using
side effects that change the results of the argument evaluation, as shown in the follow-
ing listing, again using the same Dump method.

int i = 0;
Dump(x: ++i, y: ++i, z: ++i);
i = 0;
Dump(z: ++i, x: ++i, y: ++i);

The results of listing 13.5 may be best expressed in terms of the blood spatter pattern
at a murder scene, after someone maintaining code like this has gone after the origi-
nal author with an axe. Yes, technically speaking the last line prints out x=2 y=3 z=1 but
I’m sure you see what I’m getting at. Just say “no” to code like this. By all means, reor-
der your arguments for the sake of readability: you may think that laying out a call to
MessageBox.Show with the title coming above the text in the code itself reflects the
onscreen layout more closely, for example. If you want to rely on a particular evalua-
tion order for the arguments, though, introduce some local variables to execute the
relevant code in separate statements. The compiler won’t care either way—it’ll follow
the rules of the spec—but this reduces the risk of a “harmless refactoring” that inad-
vertently introduces a subtle bug.

 To return to cheerier matters, let’s combine the two features (optional parameters
and named arguments) and see how much tidier the code can be.

Listing 13.4 Logging argument evaluation

Listing 13.5 Abusing argument evaluation order
Licensed to Devon Greenway <devon.greenway@gmail.com>

376 CHAPTER 13 Minor changes to simplify code
13.1.3 Putting the two together

The two features work in tandem with no
extra effort required on your part. It’s
not uncommon to have a bunch of
parameters where there are obvious
defaults, but where it’s hard to predict
which ones a caller will want to specify
explicitly. Figure 13.3 shows just about
every combination: a required parame-
ter, two optional parameters, a positional
argument, a named argument, and a missing argument for an optional parameter.

 Going back to an earlier example, in listing 13.2 we wanted to append a timestamp
to a file using the default encoding of UTF-8, but with a particular timestamp. Back
then we just used null for the encoding argument, but now we can write the same
code more simply, as shown in the following listing.

static void AppendTimestamp(string filename,
string message,
Encoding encoding = null,
DateTime? timestamp = null)

{

}
...
AppendTimestamp("utf8.txt", "Message in the future",

timestamp: new DateTime(2030, 1, 1));

In this fairly simple situation, the benefit isn’t particularly huge, but in cases where
you want to omit three or four arguments but specify the final one, it’s a real blessing.

 We’ve seen how optional parameters reduce the need for huge long lists of over-
loads, but one specific pattern where this is worth mentioning is with respect to
immutability.

IMMUTABILITY AND OBJECT INITIALIZATION

One aspect of C# 4 that disappoints me somewhat is that it hasn’t done much explicitly
to make immutability easier. Immutable types are a core part of functional program-
ming, and C# has been gradually supporting the functional style more and more...
except for immutability. Object and collection initializers make it easy to work with
mutable types, but immutable types have been left out in the cold. (Automatically
implemented properties fall into this category too.) Fortunately, though they’re not
particularly designed to aid immutability, named arguments and optional parameters
allow you to write object initializer–like code that just calls a constructor or other fac-
tory method. For instance, suppose we were creating a Message class, which required a
from address, a to address, and a body, with the subject and attachment being optional.

Listing 13.6 Combining named and optional arguments

static void Dump(int x, int y = 20, int z = 30)

Dump(10, z: 3)

20

Figure 13.3 Mixing named arguments and
optional parameters

Same implementation as before

Encoding
is omitted

Named
timestamp
argument
Licensed to Devon Greenway <devon.greenway@gmail.com>

377Optional parameters and named arguments
(We’ll stick with single recipients in order to keep the example as simple as possible.)
We could create a mutable type with appropriate writable properties, and construct
instances like this:

Message message = new Message {
From = "skeet@pobox.com",
To = "csharp-in-depth-readers@everywhere.com",
Body = "Hope you like the second edition",
Subject = "A quick message"

};

That has two problems: first, it doesn’t enforce the required data to be provided. We
could force those to be supplied to the constructor, but then (before C# 4) it wouldn’t
be obvious which argument meant what:

Message message = new Message(
"skeet@pobox.com",
"csharp-in-depth-readers@everywhere.com",
"Hope you like the second edition")

{
Subject = "A quick message"

};

The second problem is that this initialization pattern simply doesn’t work for immuta-
ble types. The compiler has to call a property setter after it has initialized the object. But
we can use optional parameters and named arguments to come up with something
that has the nice features of the first form (only specifying what you’re interested in
and supplying names) without losing the validation of which aspects of the message are
required or the benefits of immutability. The following listing shows a possible con-
structor signature and the construction step for the same message as before.

public Message(string from, string to,
string body, string subject = null,
byte[] attachment = null)

{

}
...
Message message = new Message(

from: "skeet@pobox.com",
to: "csharp-in-depth-readers@everywhere.com",
body: "Hope you like the second edition",
subject: "A quick message"

);

I really like this in terms of readability and general cleanliness. You don’t need hun-
dreds of constructor overloads to choose from, just one with some of the parameters
being optional. The same syntax will also work with static creation methods, unlike
object initializers. The only downside is that it really relies on your code being con-
sumed by a language that supports optional parameters and named arguments;

Listing 13.7 Constructing an immutable message using C# 4

Normal initialization code goes here
Licensed to Devon Greenway <devon.greenway@gmail.com>

378 CHAPTER 13 Minor changes to simplify code
otherwise callers will be forced to write ugly code to specify values for all the optional
parameters. Obviously there’s more to immutability than getting values to the initial-
ization code, but this is a welcome step in the right direction nonetheless.

 There are a couple of final points to make around these features before we move
on to COM, both around the details of how the compiler handles our code and the dif-
ficulty of good API design.

OVERLOAD RESOLUTION

Clearly both named arguments and optional parameters affect how the compiler
resolves overloads—if there are multiple method signatures available with the same
name, which should it pick? Optional parameters can increase the number of applica-
ble methods (if some methods have more parameters than the number of specified
arguments) and named arguments can decrease the number of applicable methods (by
ruling out methods that don’t have the appropriate parameter names).

 For the most part, the changes are intuitive: to check whether any particular
method is applicable, the compiler tries to build a list of the arguments it would pass
in, using the positional arguments in order, then matching the named arguments up
with the remaining parameters. If a required parameter hasn’t been specified or if a
named argument doesn’t match any remaining parameters, the method isn’t applica-
ble. The specification gives more detail around this in section 7.5.3, but there are two
situations I’d like to draw particular attention to.

 First, if two methods are both applicable and one of them has been given all of its
arguments explicitly whereas the other uses an optional parameter filled in with a
default value, the method that doesn’t use any default values will win. But this doesn’t
extend to just comparing the number of default values used—it’s a strict “does it use
default values or not” divide. For example, consider the following:

static void Foo(int x = 10) {}
static void Foo(int x = 10, int y = 20) {}
...
Foo();
Foo(1);
Foo(y: 2);
Foo(1, 2);

In the first call B, both methods are applicable because of their optional parameters.
But the compiler can’t work out which one you meant to call: it’ll raise an error. In the
second call C, both methods are still applicable, but the first overload is used because
it can be applied without using any default values, whereas the second overload uses
the default value for y. For both the third and fourth calls, only the second overload is
applicable. The third call D names the y argument, and the fourth call E has two
arguments; both of these mean the first overload isn’t applicable.

OVERLOADS AND INHERITANCE DON’T ALWAYS MIX NICELY All of this is assuming
that the compiler has gone as far as finding multiple overloads to choose
between. If some methods are declared in a base type, but there are applicable
methods in a more derived type, the latter will win. This has always been the

Error: ambiguousB
Calls first overloadC

Calls second overloadD
Calls second overloadE
Licensed to Devon Greenway <devon.greenway@gmail.com>

379Optional parameters and named arguments
case, and it can cause some surprising results (see http://mng.bz/aEmE)...
but now optional parameters mean there may be more applicable methods
than you’d expect.

I advise you to avoid overloading a base class method within a derived class
unless you get a huge benefit.

The second point is that sometimes named arguments can be an alternative to casting
in order to help the compiler resolve overloads. Sometimes a call can be ambiguous
because the arguments can be converted to the parameter types in two different meth-
ods, but neither method is better than the other in all respects. For instance, consider
the following method signatures and a call:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, 10);

Both methods are applicable, and neither is better than the other. There are two ways
to resolve this, assuming you can’t change the method names to make them unambig-
uous that way. (That’s my preferred approach. Make each method name more infor-
mative and specific, and the general readability of the code can go up.) You can either
cast one of the arguments explicitly, or use named arguments to resolve the ambiguity:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, (object) 10);
Method(x: 10, y: 10);

Of course this only works if the parameters have different names in the different
methods—but it’s a handy trick to know. Sometimes the cast will give more readable
code; sometimes the name will. It’s just an extra weapon in the fight for clear code. It
does have a downside, along with named arguments in general: it’s another thing to
be careful about when you change a method.

THE SILENT HORROR OF CHANGING NAMES

In the past, parameter names haven’t mattered much if you’ve only been using C#.
Other languages may have cared, but in C# the only times that parameter names were
important were when you were looking at IntelliSense and when you were looking at
the method code itself. Now, the parameter names of a method are effectively part of
the API even if you’re only using C#. If you change them at a later date, code can
break—anything that was using a named argument to refer to one of your parameters
will fail to compile if you decide to change it. This may not be much of an issue if your
code is only consumed by itself anyway, but if you’re writing a public API, be aware that
changing a parameter name is a big deal. It always has been really, but if everything
calling the code was written in C#, we’ve been able to ignore that until now.

 Renaming parameters is bad; switching the names around is worse. That way the
calling code may still compile, but with a different meaning. A particularly evil form of

Ambiguous call

Casting to
resolve ambiguity Naming to

resolve ambiguity
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/aEmE

380 CHAPTER 13 Minor changes to simplify code
this is to override a method and switch the parameter names in the overridden ver-
sion. The compiler will always look at the deepest override it knows about, based on
the static type of the expression used as the target of the method call. You don’t want
to get into a situation where calling the same method implementation with the same
argument list results in different behavior based on the static type of a variable.

SUMMARY

Named arguments and optional parameters are possibly two of the simplest-sounding
features of C# 4—and yet they still have a fair amount of complexity, as we’ve seen.
The basic ideas are easily expressed and understood—and the good news is that most
of the time that’s all you need to care about. You can take advantage of optional
parameters to reduce the number of overloads you write, and named arguments can
make code much more readable when several easily confusable arguments are used.

 The trickiest bit is probably deciding which default values to use, bearing in mind
potential versioning issues. Likewise it’s now more obvious than before that parameter
names matter, and you need to be careful when overriding existing methods, to avoid
being evil to your callers.

 Speaking of evil, let’s move on to the new features relating to COM. I’m only kid-
ding... mostly, anyway.

13.2 Improvements for COM interoperability
I readily admit to being far from a COM expert. When I tried to use it before .NET
came along, I always ran into issues that were no doubt partially caused by my lack of
knowledge and partially caused by the components I was working with being poorly
designed or implemented. The overall impression of COM as a sort of black magic has
lingered, though. I’ve been reliably informed that there’s a lot to like about it, but
unfortunately I haven’t found myself going back to learn it in detail—and there seems
to be a lot of detail to study.

THIS SECTION IS MICROSOFT-SPECIFIC The changes for COM interoperability
won’t make sense for all C# compilers, and a compiler can still be deemed
compliant with the specification without implementing these features.

.NET has made COM somewhat friendlier in general, but until now there have been
distinct advantages to using it from Visual Basic instead of C#. The playing field has
been leveled significantly by C# 4, as we’ll see in this section. For the sake of familiar-
ity, I’m going to use Word for the example in this chapter, and Excel in the next chap-
ter. There’s nothing Office-specific about the new features, though; you should find
the experience of working with COM to be nicer in C# 4 whatever you’re doing.

13.2.1 The horrors of automating Word before C# 4

Our example is going to be simple—it’s just going to start Word, create a document
with a single paragraph of text, save it, and then exit. Sounds easy, right? If only that
were so. Listing 13.8 shows the code required before C# 4.
Licensed to Devon Greenway <devon.greenway@gmail.com>

381Improvements for COM interoperability

object missing = Type.Missing ;

Application app = new Application { Visible = true };
app.Documents.Add(ref missing, ref missing,

ref missing, ref missing);
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add(ref missing);
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(ref filename, ref format,

ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing,
ref missing, ref missing);

doc.Close(ref missing, ref missing, ref missing);
app.Application.Quit(ref missing, ref missing, ref missing);

Each step in this code sounds simple: first we create an instance of the COM type B
and make it visible using an object initializer expression; then we create and fill in a
new document C. The mechanism for inserting some text into a document isn’t quite
as straightforward as we might expect, but it’s worth remembering that a Word docu-
ment can have a fairly complex structure: this isn’t as bad as it might be. A couple of
the method calls here have optional by-reference parameters; we’re not interested in
them, so we pass a local variable by reference with a value of Type.Missing. If you’ve
ever done any COM work before, you’re probably very familiar with this pattern.

 Next comes the really nasty bit: saving the document D. Yes, the SaveAs method
really does have 16 parameters, of which we’re only using 2. Even those 2 need to be
passed by reference, which means creating local variables for them. In terms of read-
ability, this is a complete nightmare. Don’t worry—we’ll soon sort it out.

 Finally we close the document and the application E. Aside from the fact that
both calls have three optional parameters that we don’t care about, there’s nothing
interesting here.

 Let’s start off by using the features we’ve already seen in this chapter—they can cut
the example down significantly on their own.

13.2.2 The revenge of optional parameters and named arguments

First things first: let’s get rid of all those arguments corresponding to optional param-
eters we’re not interested in. That also means we don’t need the missing variable.
That still leaves us with 2 parameters out of a possible 16 for the SaveAs method. At
the moment it’s obvious which is which based on the local variable names—but what if
we have them the wrong way around? All the parameters are weakly typed, so we’re
really going on guesswork. We can easily give the arguments names to clarify the call.

Listing 13.8 Creating and saving a document in C# 3

Starts WordB

Creates new
document

C

Saves
document

D

Shuts down
Word

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

382 CHAPTER 13 Minor changes to simplify code
If we wanted to use one of the later parameters we’d have to specify the name anyway,
just to skip the ones we’re not interested in.

 The following listing shows the code—it looks a lot cleaner already.

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(FileName: ref filename, FileFormat: ref format);

doc.Close();
app.Application.Quit();

That’s much better—although it’s still ugly to have to create local variables for the
SaveAs arguments we are specifying. Also, if you’ve been reading carefully, you may be
concerned about the optional parameters we’ve removed. They were ref parame-
ters—but optional—which isn’t a combination C# supports normally. What’s going on?

13.2.3 When is a ref parameter not a ref parameter?

C# normally takes a pretty strict line on ref parameters. You have to mark the argu-
ment with ref as well as the parameter, to show that you understand what’s going on;
that your variable may have its value changed by the method you’re calling. That’s all
fine in normal code, but COM APIs often use ref parameters for almost everything for
perceived performance reasons. They usually don’t actually modify the variable you
pass in. Passing arguments by reference is slightly painful in C#. Not only do you have
to specify the ref modifier, you also must have a variable. You can’t just pass values by
reference.

 In C# 4 the compiler makes this a lot easier by letting you pass an argument by
value into a COM method, even if it’s for a ref parameter. Consider a call like this,
where argument might happen to be a variable of type string, but the parameter is
declared as ref object:

comObject.SomeMethod(argument);

The compiler emits code which is equivalent to this:

object tmp = argument;
comObject.SomeMethod(ref tmp);

Note that any changes made by SomeMethod are discarded, so the call really does
behave as if you were passing argument by value. This same process is used for optional
ref parameters: each involves a local variable initialized to Type.Missing and passed
by reference into the COM method. If you decompile the slimlined C# code, you’ll see
that the IL emitted is actually pretty bulky with all of those extra variables.

Listing 13.9 Automating Word using normal C# 4 features
Licensed to Devon Greenway <devon.greenway@gmail.com>

383Improvements for COM interoperability
 We can now apply the finishing touches to our Word example, as shown in the fol-
lowing listing.

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";
doc.SaveAs(FileName: "test.doc",

FileFormat: WdSaveFormat.wdFormatDocument97);
doc.Close();
app.Application.Quit();

As you can see, the final result is much cleaner code than we started with. With an API
like Word, you still need to work through a somewhat bewildering set of methods,
properties, and events in the core types such as Application and Document, but at
least your code will be a lot easier to read.

 There’s one final aspect to the COM support we need to look at in terms of
changes to the source code involved, before we see the deployment improvements
available.

13.2.4 Calling named indexers

Several aspects of C# 4 involve providing support for features that Visual Basic has
enjoyed for a long time—and this is another one. The CLR, COM, and Visual Basic all
permit nondefault properties with parameters—named indexers in C# terms. Until ver-
sion 4, C# has not only forbidden you to declare your own named indexers—it hasn’t
provided a way of accessing them using property syntax either. The only indexer you
can use from C# is the one declared as the default property for the type. This hasn’t
been a great issue for .NET components written in Visual Basic, as named indexers are
generally discouraged. But COM components such as those for Office use them more
heavily. C# 4 allows you to call named indexers in a more natural fashion, but you still
can’t declare them for your own C# types.

TERMINOLOGY CLASHES AGAIN I’ve used the term indexer throughout this sec-
tion to describe what in VB terms would be known as a parameterized property.
The CLI specification calls it an indexed property. Whatever the terminology, it’s
declared as a property in the IL, and it has parameters. The normal indexer
(as far as C# is concerned) is defined by the default member (or default property)
for the type—for example, the default member of StringBuilder is the
Chars property (which has an Int32 parameter). When I talk about named
indexers here, I’m talking about ones that aren’t the default for the type, so
you have to refer to them by name.

We’ll use Word for the example again, this time showing the different meanings for
words. The _Application type in Word defines an indexer called SynonymInfo with a
declaration like this:

Listing 13.10 Passing arguments by value in COM methods

Arguments
passed by value
Licensed to Devon Greenway <devon.greenway@gmail.com>

384 CHAPTER 13 Minor changes to simplify code
SynonymInfo SynonymInfo[string Word,
ref object LanguageId = Type.Missing]

That’s not valid C# syntax, because you can’t declare a named indexer—but hopefully
it’s obvious what it means. The name of the indexer is SynonymInfo. It returns a refer-
ence to a SynonymInfo object and has two parameters, one of which is optional. (The
fact that the name of the indexer and the name of the return type are the same in this
case is entirely coincidental.) The SynonymInfo can be used to find meanings for the
word and synonyms for each meaning. The following listing shows three different ways
of using the indexer to display the number of meanings for three different words.

static void ShowInfo(SynonymInfo info)
{

Console.WriteLine("{0} has {1} meanings",
info.Word, info.MeaningCount);

}
...
Application app = new Application { Visible = false };

object missing = Type.Missing;
ShowInfo(app.get_SynonymInfo("painful", ref missing));

ShowInfo(app.SynonymInfo["nice", WdLanguageID.wdEnglishUS]);

ShowInfo(app.SynonymInfo[Word: "features"]);

app.Application.Quit();

Even without named indexers, the previous features we’ve seen would’ve helped alle-
viate the pain of B; we could’ve called app.get_SynonymInfo("better") and taken
advantage of optional parameters, for example. But you can see from C and D that
the indexer syntax looks less awkward than the get_ call. You could argue that this
should be a method call anyway, or that there should be a parameterless SynonymInfo
property that returns a collection with an appropriate default indexer. That’s one case
of the general argument given by the C# designers for not implementing full support
for named indexers, including declaring them within C#. But the point is that it
already is an indexer in Word, so it’s nice to be able to use it that way.5 C uses the
implicit ref parameter feature from section 13.2.3, and D omits the optional parame-
ter and names the remaining argument just for kicks.

 There’s one slight twist to optional parameters and indexers: if all of the parame-
ters are optional, and you don’t want to specify any arguments, you have to omit the
square brackets. So instead of writing foo.Indexer[] you’d just use foo.Indexer. All
of this applies both for getting from the indexer and setting to it.

 So far, so good—but writing the code is only part of the battle. You usually need to
be able to deploy it onto other machines as well. Again, C# 4 makes this task easier.

Listing 13.11 Displaying synonym counts using a named indexer

5 It might’ve been more interesting to display the actual meanings—but that leads to interop problems that
aren’t relevant to this chapter. See the book’s website for more details.

Uses earlier
C# syntax

B

Specifies both
argumentsCUses optional

parameterD
Licensed to Devon Greenway <devon.greenway@gmail.com>

385Improvements for COM interoperability
13.2.5 Linking primary interop assemblies

When you build against a COM type, you use an assembly generated for the compo-
nent library. Usually you use a primary interop assembly or PIA, which is the canonical
interop assembly for a COM library, signed by the publisher. You can generate these
using the Type Library Importer tool (tlbimp) for your own COM libraries. PIAs make
life easier in terms of having one true way of accessing the COM types, but they’re a
pain in other ways. They can be quite large, and the whole PIA needs to be present
even if you’re only using a small subset of the functionality. Also, you need to have the
same version of the PIA on the deployment machine as the one you compiled against.
This can be awkward in situations where licensing issues prevent you from redistribut-
ing the PIA itself, relying on the right version being installed already. If there are a
number of versions available but they all expose the functionality you need, you might
have to ship different versions of your code to make the references work.

 C# 4 allows a very different approach. Instead of referencing a PIA like any other
assembly, you can link it. In Visual Studio 2010 this is an option in the properties of
the assembly reference, as shown in figure 13.4.

 Command line fans can use the /l (or /link) option instead of /r (or /reference)
to link instead of reference:

csc /l:Path\To\PIA.dll MyCode.cs

When you link a PIA, the compiler embeds just the bits it needs from the PIA directly
into your own assembly. It only takes the types it needs, and only the members within
those types. For example, the compiler creates these types for the code we’ve written
in this chapter:

Figure 13.4 Linking PIAs
in Visual Studio 2010
Licensed to Devon Greenway <devon.greenway@gmail.com>

386 CHAPTER 13 Minor changes to simplify code
namespace Microsoft.Office.Interop.Word
{

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Application

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Document

[ComImport, CompilerGenerated, TypeIdentifier, Guid("...")]
public interface Application : _Application

[ComImport, Guid("..."), TypeIdentifier, CompilerGenerated]
public interface Document : _Document

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface Documents : IEnumerable

[TypeIdentifier("...", "WdSaveFormat"), CompilerGenerated]
public enum WdSaveFormat

}

And if you look in the _Application interface, it looks like this:

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Application
{

void _VtblGap 1_4();
Documents Documents { [...] get; }
void _VtblGap2_1();
Document ActiveDocument { [...] get; }

}

I’ve omitted the GUIDs and the property attributes here just for the sake of space, but
you can always use Reflector to look at the embedded types. These are just interfaces
and enums—there’s no implementation. Whereas a normal PIA has a CoClass repre-
senting the actual implementation (but proxying everything to the real COM type of
course), when the compiler needs to create an instance of a COM type via a linked PIA,
it creates the instance using the GUID associated with the type. For example, the line
in our Word demo that creates an instance of Application is translated into this code
when linking is enabled:6

Application application = (Application) Activator.CreateInstance(
Type.GetTypeFromCLSID (new Guid("...")));

Figure 13.5 shows how this works at execution time.
 There are various benefits to embedding type libraries:

 Deployment is easier: the original PIA isn’t needed, so you don’t have to rely on
the right version being present already or ship the PIA yourself.

 Versioning is simpler: so long as you only use members from the version of the
COM library that’s actually installed, it doesn’t matter if you compile against an
earlier or later PIA.

 Variants are treated as dynamic types, reducing the amount of casting required.

6 Well, nearly. The object initializer makes it slightly more complicated because the compiler uses an extra tem-
porary variable.
Licensed to Devon Greenway <devon.greenway@gmail.com>

387Generic variance for interfaces and delegates
Don’t worry about the last point for now—I need to explain dynamic typing before
it’ll make much sense. All will be revealed in the next chapter.

 As you can see, Microsoft has really taken COM interoperability seriously for C# 4,
making the whole development process less painful. Of course the degree of pain has
always been variable depending on the COM library you’re developing against—some
will benefit more than others from the new features.

 Our next feature is entirely separate from COM, named arguments, and optional
parameters, but again it eases development a bit.

13.3 Generic variance for interfaces and delegates
You may remember that in chapter 3 I mentioned that the CLR had some support for
variance in generic types, but that C# hadn’t exposed that support yet. That’s changed
with C# 4. C# has gained the syntax required to declare generic variance, and the
compiler now knows about the possible conversions for interfaces and delegates.

 This isn’t a life-changing feature—it’s more a case of flattening some speed bumps
you may have hit occasionally. It doesn’t even remove all the bumps; there are various
limitations, mostly in the name of keeping generics absolutely type-safe. But it’s still a
nice feature to have up your sleeve.

 Just in case you need a reminder of what variance is all about, let’s start with a
recap of the two basic forms it comes in.

13.3.1 Types of variance: covariance and contravariance

In essence, variance is about being able to use an object of one type as if it were
another, in a type-safe way. We’re used to variance in terms of normal inheritance: if a
method has a declared return type of Stream, you can return a MemoryStream from
the implementation, for example. Generic variance is the same concept, but applied
to generics—where it becomes a bit more complicated. The variance is applied to the
type parameters within the interfaces and delegate types. That’s the bit you need to
concentrate on.

App.cs PIA.dll

01101101
00110011
00011110
11011001

Compile
time

Referencing Linking

01101101
00110011
00011110
11011001

01101101
00110011
00011
11011

Execution
time PIA.dll

App.exe

COM.dll

App.exe

COM.dll
00110101
01101000
10010111
11001101

01
10

01101101
00110011
00011101
11011011

00110101
01101000
10010111
11001101

Figure 13.5 Comparing
referencing and linking
Licensed to Devon Greenway <devon.greenway@gmail.com>

388 CHAPTER 13 Minor changes to simplify code
 Ultimately, it doesn’t matter whether you remember the terminology I’m going to
use in this section. It’ll be useful while you’re reading the chapter, but you’re unlikely
to find yourself needing it in conversation. The concepts are far more important.

 There are two types of variance: covariance and contravariance. They’re essentially
the same idea, but used in the context of values moving in different directions. We’ll
start with covariance, which is generally easier to understand.

COVARIANCE: VALUES COMING OUT OF AN API

Covariance is all about values being returned from an operation back to the caller.
Let’s imagine a very simple generic interface representing the factory pattern. It has a
single method, CreateInstance, which will return an instance of the appropriate
type. Here’s the code:

interface IFactory<T>
{

T CreateInstance();
}

Now, T only occurs once in the interface (aside from the name). It’s only used as the
return value—it’s the output of the method. That means it makes sense to be able to
treat a factory of a specific type as a factory of a more general type. To put it in real-
world terms, you can think of a pizza factory as a food factory.

CONTRAVARIANCE: VALUES GOING INTO AN API

Contravariance is the opposite way around. It’s about values being passed into the API
by the caller: the API is consuming the values instead of producing them. Let’s imag-
ine another simple interface—one that can pretty-print a particular document type to
the console. Again, there’s just one method, this time called Print:

interface IPrettyPrinter<T>
{

void Print(T document);
}

This time T only occurs in the input positions in the interface, as a parameter. To put
this into concrete terms again, if we had an implementation of IPrettyPrinter
<SourceCode>, we should be able to use it as an IPrettyPrinter<CSharpCode>.

INVARIANCE: VALUES GOING BOTH WAYS

So if covariance applies when values only come out of an API, and contravariance
applies when values only go into the API, what happens when a value goes both ways?
In short: nothing. That type would be invariant. Here’s an interface representing a
type that can serialize and deserialize a data type:

interface IStorage<T>
{

byte[] Serialize(T value);
T Deserialize(byte[] data);

}

This time, if we have an instance of IStorage<T> for a particular type T, we can’t treat
it as an implementation of the interface for either a more or less specific type. If we
Licensed to Devon Greenway <devon.greenway@gmail.com>

389Generic variance for interfaces and delegates
tried to use it in a covariant way (for example, using an IStorage<Customer> as an
IStorage<Person>), we might make a call to Serialize with an object that it can’t
handle. Similarly if we tried to use it in a contravariant way, we might get an unex-
pected type out when we deserialized some data.

 If it helps, you can think invariance as being like ref parameters: to pass a variable
by reference, it has to be exactly the same type as the parameter itself, because the
value goes into the method and effectively comes out again too.

13.3.2 Using variance in interfaces

C# 4 allows you to specify in the declaration of a generic interface or delegate that a
type parameter can be used covariantly by using the out modifier, or contravariantly
using the in modifier. Once the type has been declared, the relevant types of conver-
sion are available implicitly. This works exactly the same way in both interfaces and
delegates, but I’ll show them separately for clarity. Let’s start with interfaces, as they
may be a bit more familiar—and we’ve used them already to describe variance.

VARIANT CONVERSIONS ARE REFERENCE CONVERSIONS Any conversion using
variance or covariance is a reference conversion, which means that the same ref-
erence is returned after the conversion. It doesn’t create a new object; it just
treats the existing reference as if it matched the target type. This is the same
as casting between reference types in a hierarchy: if you cast a Stream to
MemoryStream (or use the implicit conversion the other way) there’s still just
one object.

The nature of these conversions introduces some limitations, as we’ll see
later, but it means they’re efficient, and makes the behavior easier to under-
stand in terms of object identity.

This time we’ll use familiar interfaces to demonstrate the ideas, with some simple
user-defined types for the type arguments.

EXPRESSING VARIANCE WITH IN AND OUT

There are two interfaces that demonstrate variance particularly effectively: IEnumera-
ble<T> is covariant in T, and IComparer<T> is contravariant in T. Here are their new
type declarations in .NET 4:

public interface IEnumerable<out T>
public interface IComparer<in T>

It’s easy enough to remember—if a type parameter is only used for output, you can use
out; if it’s only used for input, you can use in. The compiler doesn’t know whether you
can remember which form is called covariance and which is called contravariance!

 Unfortunately the framework doesn’t contain many inheritance hierarchies that
would help us demonstrate variance particularly clearly, so I’ll fall back to the stan-
dard object-oriented example of shapes. The downloadable source code includes the
definitions for IShape, Circle, and Square, which are fairly obvious. The interface
exposes properties for the bounding box of the shape and its area. I’m going to use
Licensed to Devon Greenway <devon.greenway@gmail.com>

390 CHAPTER 13 Minor changes to simplify code
two lists a lot in the following examples, so I’ll show their construction code just for
reference:

List<Circle> circles = new List<Circle>
{

new Circle(new Point(0, 0), 15),
new Circle(new Point(10, 5), 20),

};

List<Square> squares = new List<Square>
{

new Square(new Point(5, 10), 5),
new Square(new Point(-10, 0), 2)

};

The only important point concerns the types of the variables—they’re declared as
List<Circle> and List<Square> rather than List<IShape>. This can often be use-
ful—if we were to access the list of circles elsewhere, we might want to get at circle-
specific members without having to cast, for example. The actual values involved in
the construction code are entirely irrelevant; I’ll use the names circles and squares
elsewhere to refer to the same lists, but without duplicating the code.7

USING INTERFACE COVARIANCE

To demonstrate covariance, we’ll try to build a list of shapes from a list of circles and a
list of squares. The following listing shows two different approaches, neither of which
would’ve worked in C# 3.

List<IShape> shapesByAdding = new List<IShape>();
shapesByAdding.AddRange(circles);
shapesByAdding.AddRange(squares);

List<IShape> concat = circles.Concat<IShape>(squares)
.ToList();

Effectively, listing 13.12 shows covariance in four places, each converting a sequence
of circles or squares into a sequence of general shapes, as far as the type system is
concerned. First we create a new List<IShape> and call AddRange to add the circle
and square lists to it B. (We could’ve passed one of them into the constructor
instead, then just called AddRange once.) The parameter for List<T>.AddRange is of
type IEnumerable<T>, so in this case we’re treating each list as an IEnumerable
<IShape>—something that wouldn’t have been possible before. AddRange could have
been written as a generic method with its own type parameter, but it wasn’t—doing
this would’ve made some optimizations hard or impossible.

 Another way of creating a list that contains the data in two existing sequences is to
use LINQ C. We can’t directly call circles.Concat(squares), as it would confuse the

7 In the full source code solution, these are exposed as properties on the static Shapes class, but in the snippets
version I’ve included the construction code where it’s needed, so you can tweak it easily if you want to.

Listing 13.12 Building a list of general shapes from lists of circles and squares

Adds lists
directly

B

Uses LINQ for
concatenation

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

391Generic variance for interfaces and delegates
type inference mechanism, but by specifying the type argument explicitly, all is well.
Both circles and squares are implicitly converted to IEnumerable<IShape> via cova-
riance. This conversion isn’t actually changing the value—just how the compiler treats
the value. It isn’t building a separate copy, which is the important point. Covariance is
particularly important in LINQ to Objects, as so much of the API is expressed in terms
of IEnumerable<T>—contravariance isn’t as important, as fewer of the types involved
are contravariant.

 In C# 3 there would certainly have been other ways to approach the same problem.
We could’ve built List<IShape> instances instead of List<Circle> and List<Square>
for the original shapes; we could’ve used the LINQ Cast operator to convert the spe-
cific lists to more general ones; we could’ve written our own list class with a generic
AddRange method. None of these would’ve been as convenient or as efficient as the
alternatives offered here.

USING INTERFACE CONTRAVARIANCE

We’ll use the same shape types to demonstrate contravariance. This time we’ll only
use the list of circles, but a comparer that’s able to compare any two shapes by just
comparing the areas. We couldn’t do this before C# 4 because an IComparer<IShape>
couldn’t be used as an IComparer<Circle>, but the following listing shows contravari-
ance coming to the rescue.

class AreaComparer : IComparer<IShape>
{

public int Compare(IShape x, IShape y)
{

return x.Area.CompareTo(y.Area);
}

}
...
IComparer<IShape> areaComparer = new AreaComparer();
circles.Sort(areaComparer);

There’s nothing complicated here. Our AreaComparer class B is about as simple as an
implementation of IComparer<T> can be; it doesn’t need any state, for example.
There’d normally be some null handling in the Compare method, but that’s not neces-
sary to demonstrate variance.

 Once we have an IComparer<IShape>, we’re using it to sort a list of circles C. The
argument to circles.Sort needs to be an IComparer<Circle>, but contravariance
allows us to convert our comparer implicitly. It’s as simple as that.

SURPRISE, SURPRISE If someone had presented you with this code as if it
were C# 3, you might’ve looked at it and expected it to work. It seems obvious
that it should be able to work, and this is a common feeling; the invariance in
C# 2 and 3 often is an unwelcome surprise. The new abilities of C# 4 in this
area aren’t introducing new concepts you’d never have thought of before;
they just allow you more flexibility.

Listing 13.13 Sorting circles using a general-purpose comparer and contravariance

Compares
shapes by areaB

Sorts using
contravariance

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

392 CHAPTER 13 Minor changes to simplify code
These have both been simple examples using single-method interfaces, but the same
principles apply for more complex APIs. Of course, the more complex the interface is,
the more likely that a type parameter will be used for both input and output, which
would make it invariant. We’ll come back to some tricky examples later, but first we’ll
look at delegates.

13.3.3 Using variance in delegates

Now that we’ve seen how to use variance with interfaces, applying the same knowledge
to delegates is easy. We’ll use some familiar types again:

delegate T Func<out T>()
delegate void Action<in T>(T obj)

These are really equivalent to the IFactory<T> and IPrettyPrinter<T> interfaces we
started off with. Using lambda expressions, we can demonstrate both of these easily,
and even chain the two together. The following listing shows an example using our
shape types.

Func<Square> squareFactory = () => new Square(new Point(5, 5), 10);
Func<IShape> shapeFactory = squareFactory;

Action<IShape> shapePrinter = shape => Console.WriteLine(shape.Area);
Action<Square> squarePrinter = shapePrinter;

squarePrinter(squareFactory());
shapePrinter(shapeFactory());

Hopefully by now the code will need little explanation. Our square factory always pro-
duces a square at the same position, with sides of length 10. Covariance allows us to
treat a square factory as a general shape factory B with no fuss. We then create a
general-purpose action that prints out the area of whatever shape is given to it. This
time we use a contravariant conversion to treat the action as one that can be applied
to any square C. Finally, we feed the square action with the result of calling the square
factory, and the shape action with the result of calling the shape factory. Both print
100, as we’d expect.

 Of course we’ve only used delegates with a single type parameter here. What hap-
pens if we use delegates or interfaces with multiple type parameters? What about
type arguments that are themselves generic delegate types? Well, it can all get quite
complicated.

13.3.4 Complex situations

Before I try to make your head spin, I should provide a little comfort. Although we’ll
be doing some weird and wonderful things, the compiler will stop you from making
mistakes. You may still get confused by the error messages if you’ve used several type
parameters in funky ways, but once you have it compiling you should be safe.

Listing 13.14 Using variance with simple Func<T> and Action<T> delegates

Converts Func<T> using covarianceB

Converts Action<T>
using contravarianceCSanity checking...
Licensed to Devon Greenway <devon.greenway@gmail.com>

393Generic variance for interfaces and delegates
Complexity is possible in both the delegate and interface forms of variance, although
the delegate version is usually more concise to work with. Let’s start off with a rela-
tively simple example.

SIMULTANEOUS COVARIANCE AND CONTRAVARIANCE
WITH Converter<TInput, TOutput>

The Converter<TInput, TOutput> delegate type has been around since .NET 2.0. It’s
effectively Func<T, TResult> but with a clearer expected purpose. In .NET 4, this
becomes Converter<in TInput, out TOutput>, which shows which type parameter
has which kind of variance. The following listing shows a few combinations of variance
using a simple converter.

Converter<object, string> converter = x => x.ToString();
Converter<Button, string> contravariance = converter;
Converter<object, object> covariance = converter;
Converter<Button, object> both = converter;

Listing 13.15 shows the variance conversions available on a delegate of type
Converter<object, string>: a delegate that takes any object and produces a string.
First we implement the delegate using a simple lambda expression that calls
ToString B. As it happens, we never actually call the delegate, so we could’ve just
used a null reference, but I think it’s easier to think about variance if you can pin
down a concrete action that would happen if you called it.

 The next two lines are relatively straightforward, so long as you only concentrate
on one type parameter at a time. The TInput type parameter is only used in an input
position, so it makes sense that you can use it contravariantly, using a Converter
<object, string> as a Converter<Button, string>. In other words, if you can pass
any object reference into the converter, you can certainly hand it a Button reference.
Likewise the TOutput type parameter is only used in an output position (the return
type) so it makes sense to use that covariantly: if the converter always returns a string
reference, you can safely use it where you only need to guarantee that it’ll return an
object reference.

 The final line C is just a logical extension of this idea. It uses both contravariance
and covariance in the same conversion, to end up with a converter that only accepts
buttons and only declares that it’ll return an object reference. Note that you can’t con-
vert this back to the original conversion type without a cast—we’ve essentially relaxed
the guarantees at every point, and you can’t tighten them up again implicitly.

 Let’s up the ante a little, and see just how complex things can get if you try hard
enough.

HIGHER-ORDER FUNCTION INSANITY

The really weird stuff starts happening when you combine variant types together. I’m
not going to go into a lot of detail here—I just want you to appreciate the potential for
complexity. Let’s look at four delegate declarations:

Listing 13.15 Demonstrating covariance and contravariance with a single type

Converts objects
to stringsB

Converts buttons to objectsC
Licensed to Devon Greenway <devon.greenway@gmail.com>

394 CHAPTER 13 Minor changes to simplify code
delegate Func<T> FuncFunc<out T>();
delegate void ActionAction<out T>(Action<T> action);
delegate void ActionFunc<in T>(Func<T> function);
delegate Action<T> FuncAction<in T>();

Each of these declarations is equivalent to nesting one of the standard delegates
inside another. For example, FuncAction<T> is equivalent to Func<Action<T>>. Both
represent a function that will return an Action which can be passed a T. But should
this be covariant or contravariant? Well, the function is going to return something to
do with T, so it sounds covariant—but that something then takes a T so it sounds con-
travariant. The answer is that the delegate is contravariant in T, which is why it’s
declared with the in modifier.

 As a quick rule of thumb, you can think of nested contravariance as reversing the
previous variance, whereas covariance doesn’t—so whereas Action<Action<T>> is
covariant in T, Action<Action<Action<T>>> is contravariant. Compare that with
Func<T> variance, where you can write Func<Func<Func<...Func<T>...>>> with as
many levels of nesting as you like and still get covariance.

 Just to give a similar example using interfaces, let’s imagine we have something
that can compare sequences. If it can compare two sequences of arbitrary objects, it
can certainly compare two sequences of strings—but not vice versa. Converting this to
code (without implementing the interface!), we can see this as

IComparer<IEnumerable<object>> objectsComparer = ...;
IComparer<IEnumerable<string>> stringsComparer = objectsComparer;

This conversion is legal: IEnumerable<string> is a “smaller” type than IEnumerable
<object> due to the covariance of IEnumerable<T>; the contravariance of IComparer
<T> then allows the conversion from a comparer of a “bigger” type to a comparer of a
smaller type.

 Of course we’ve only used delegates and interfaces with a single type parameter in
this section—it can all apply to multiple type parameters too. Don’t worry, though:
you’re unlikely to need this sort of brain-busting variance very often, and when you
do you have the compiler to help you. I really just wanted to make you aware of the
possibilities.

 On the flip side, there are some things you may expect to be able to do, but which
aren’t supported.

13.3.5 Restrictions and notes

The variance support provided by C# 4 is mostly limited by what’s provided by the
CLR. It’d be hard for the language to support conversions that were prohibited by the
underlying platform. This can lead to a few surprises.

NO VARIANCE FOR TYPE PARAMETERS IN CLASSES

Only interfaces and delegates can have variant type parameters. Even if you have a
class that only uses the type parameter for input (or only uses it for output), you
can’t specify the in or out modifiers. For example Comparer<T>, the common
Licensed to Devon Greenway <devon.greenway@gmail.com>

395Generic variance for interfaces and delegates
implementation of IComparer<T>, is invariant—there’s no conversion from
Comparer<IShape> to Comparer<Circle>.

 Aside from any implementation difficulties that this might’ve incurred, I’d say it
makes a certain amount of sense conceptually. Interfaces represent a way of looking at
an object from a particular perspective, whereas classes are more rooted in the
object’s actual type. This argument is weakened somewhat by inheritance letting you
treat an object as an instance of any of the classes in its inheritance hierarchy, admit-
tedly. Either way, the CLR doesn’t allow it.

VARIANCE ONLY SUPPORTS REFERENCE CONVERSIONS

You can’t use variance between two arbitrary type arguments just because there’s a
conversion between them. It has to be a reference conversion. Basically that limits it to
conversions which operate on reference types and which don’t affect the binary repre-
sentation of the reference. This is so that the CLR can know that operations will be
type-safe without having to inject any actual conversion code anywhere. As I men-
tioned in section 13.3.2, variant conversions are themselves reference conversions, so
there wouldn’t be anywhere for the extra code to go anyway.

 In particular, this restriction prohibits any conversions of value types and user-
defined conversions. For example, the following conversions are all invalid:

 IEnumerable<int> to IEnumerable<object>—Boxing conversion
 IEnumerable<short> to IEnumerable<int>—Value type conversion
 IEnumerable<string> to IEnumerable<XName>—User-defined conversion

User-defined conversions aren’t likely to be a problem as they’re relatively rare, but
you may find the restriction around value types a pain.

OUT PARAMETERS AREN’T OUTPUT POSITIONS

This one came as a surprise to me, although it makes sense in retrospect. Consider a
delegate with the following definition:

delegate bool TryParser<T>(string input, out T value)

You might expect that you could make T covariant—after all, it’s only used in an out-
put position... or is it? The CLR doesn’t really know about out parameters. As far as it’s
concerned, they’re just ref parameters with an [Out] attribute applied to them. C#
attaches special meaning to the attribute in terms of definite assignment, but the CLR
doesn’t. However, ref parameters mean data going both ways, so if you have a ref
parameter of type T, that means T is invariant.

 In fact, even if the CLR did support out parameters natively, it still wouldn’t be safe,
because it can be used in an input position within the method itself: after you’ve writ-
ten to the variable, you can read from it as well. It’d be okay if out parameters were
treated as “copy value at return time,” but it essentially aliases the argument and
parameter—which would cause problems if they weren’t exactly the same type. It’s
slightly fiddly to demonstrate, but there’s an example on the book’s website.
Licensed to Devon Greenway <devon.greenway@gmail.com>

396 CHAPTER 13 Minor changes to simplify code
 Delegates and interfaces using out parameters are rare, so this may never affect
you anyway, but it’s worth knowing about just in case.

VARIANCE HAS TO BE EXPLICIT

When I introduced the syntax for expressing variance—applying the in or out modifi-
ers to type parameters—you may have wondered why we needed to bother at all. The
compiler is able to check that whatever variance you try to apply is valid—so why
doesn’t it just apply it automatically ?

 It could do that—at least in many cases—but I’m glad it doesn’t. Normally you can
add methods to an interface and only affect implementations rather than callers. But
if you’ve declared that a type parameter is variant and you then want to add a method
which breaks that variance, all the callers are affected too. I can see this causing a lot of
confusion. Variance requires some thought about what you might want to do in the
future, and forcing developers to explicitly include the modifier encourages them to
plan carefully before committing to variance.

 There’s less of an argument for this explicit nature when it comes to delegates: any
change to the signature that would affect the variance would probably break existing
uses anyway. But there’s a lot to be said for consistency—it would feel odd if you had
to specify the variance in interfaces but not in delegate declarations.

BEWARE OF BREAKING CHANGES

Whenever new conversions become available, there’s the risk of your current code
breaking. For instance, if you rely on the results of the is or as operators not allowing
for variance, your code will behave differently when running under .NET 4. Likewise
there are cases where overload resolution will choose a different method due to there
being more applicable options now. This is another reason for variance to be explicitly
specified: it reduces the risk of breaking your code.

 These situations should be quite rare, and the benefit from variance is more signif-
icant than the potential drawbacks. You do have unit tests to catch subtle changes,
right? In all seriousness, the C# team takes code breakage very seriously, but some-
times there’s no way of introducing a new feature without breaking code.

MULTICAST DELEGATES AND VARIANCE DON’T MIX

Normally, generics make sure that unless you have casts involved, you won’t run into
type-safety issues at execution time. Unfortunately, there’s a nasty situation with vari-
ant delegate types when it comes to combining them together. This is best demon-
strated in code:

Func<string> stringFunc = () => "";
Func<object> objectFunc = () => new object();
Func<object> combined = objectFunc + stringFunc;

This compiles with no problem, because there’s a covariant reference conversion
from an expression of type Func<string> to Func<object>. But the object itself is still
a Func<string>—and the Delegate.Combine method that actually does the work
requires its arguments to be the same type—otherwise it doesn’t know what type of
Licensed to Devon Greenway <devon.greenway@gmail.com>

397Generic variance for interfaces and delegates
delegate it’s meant to create. The preceding code will throw an ArgumentException at
execution time.

 This problem was found relatively late in the .NET 4 release cycle, but Microsoft is
aware of it and there is hope that it may be fixed for the majority of cases in a future
release. Until then, there’s a workaround: you can create a new delegate object of the
correct type based on the variant one, and combine that with another delegate of the
same type. For example, we can modify the preceding code slightly to make it work:

Func<string> stringFunc = () => "";
Func<object> defensiveCopy = new Func<object>(stringFunc);
Func<object> objectFunc = () => new object();
Func<object> combined = objectFunc + defensiveCopy;

Fortunately this is rarely an issue in my experience.

NO CALLER-SPECIFIED OR PARTIAL VARIANCE

This is really a matter of interest and comparison rather than anything else, but it’s
worth noting that C#’s variance is very different to Java’s system. Java’s generic variance
manages to be extremely flexible by approaching it from the other side: instead of the
type itself declaring the variance, code using the type can express the variance it needs.

WANT TO KNOW MORE? This book isn’t about Java generics, but if this little
teaser has piqued your interest, you may want to check out Angelika Langer’s
Java Generics FAQ (http://mng.bz/3qgO). Be warned: it’s a huge and com-
plex topic!

For example, the List<T> interface in Java is roughly equivalent to IList<T> in C#. It
contains methods to both add items and fetch them, so clearly in C# it’s invariant—
but in Java you can decorate the type at the calling code to explain what variance you
want. The compiler then stops you from using the members that go against that vari-
ance. For example, the following code would be perfectly valid:

List<Shape> shapes1 = new ArrayList<Shape>();
List<? super Square> squares = shapes1;
squares.add(new Square(10, 10, 20, 20));

List<Circle> circles = new ArrayList<Circle>();
circles.add(new Circle(10, 10, 20));
List<? extends Shape> shapes2 = circles;
Shape shape = shapes2.get(0);

For the most part, I prefer generics in C# to Java, and type erasure in particular can be
a pain in many cases. But I find this treatment of variance really interesting. I don’t
expect to see anything similar in future versions of C#—so think carefully about how
you can split your interfaces to allow for flexibility, but without introducing more com-
plexity than is really warranted.

 Just before I close the chapter, there are two almost trivial changes to cover—how
the C# compiler handles lock statements and field-like events.

Declaration using
contravariance

Declaration using
covariance
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/3qgO

398 CHAPTER 13 Minor changes to simplify code
13.4 Teeny tiny changes to locking and field-like events
I don’t want to make too much of these changes: chances are they’ll never affect you.
But if you’re ever looking at compiled code and wondering why it looks the way it
does, it’s helpful to know what’s going on.

13.4.1 Robust locking

Let’s consider a simple piece of C# code that uses a lock. The details of what happens
inside the block aren’t important, but I’ve included a single statement just for the sake
of clarity:

lock (listLock)
{

list.Add("item");
}

Prior to C# 4—and including C# 4 if you’re targeting anything earlier than .NET 4—
that would effectively be compiled into this code:

object tmp = listLock;
Monitor.Enter(tmp);
try
{

list.Add("item");
}
finally
{

Monitor.Exit(tmp);
}

This is nearly okay—in particular, it avoids a couple of problems. We want to make sure
that we release the same monitor we acquire, so first we copy the reference into a tem-
porary local variable B. This also means that the locking expression is only evaluated
once. Next we acquire the lock before the try block. This is so that we don’t try to
release the lock in the finally block if the thread is aborted without successfully
acquiring it in the first place. That leads to a different problem: now if the thread is
aborted after the lock is acquired but before we enter the try block, we won’t have
released the lock. That could feasibly lead to a deadlock—another thread could be
waiting eternally for this one to release the lock. Though the CLR has historically tried
hard to stop this from happening, it’s not quite impossible.

 What we want is some way of atomically acquiring the lock and knowing that it was
acquired. Fortunately that’s exposed in .NET 4 via a new overload to Monitor.Enter,
which the C# 4 compiler uses in this way:

bool acquired = false;
object tmp = listLock;
try
{

Monitor.Enter(tmp, ref acquired);
list.Add("item");

Copies reference for lockingB
Acquires lock
before try

Releases lock
whatever Add does

Acquires lock
inside try block
Licensed to Devon Greenway <devon.greenway@gmail.com>

399Teeny tiny changes to locking and field-like events
}
finally
{

if (acquired)
{

Monitor.Release(tmp);
}

}

Now the lock will be released if and only if we successfully acquired it in the first place,
consistently. It should be noted that in some cases a deadlock isn’t the worst result
(see http://mng.bz/Qy7p): occasionally it’s more dangerous for an application to
continue at all than for it to simply halt. But it’d be ridiculous to rely on the deadlock
condition; better to avoid aborting threads if at all possible. (Aborting the currently
executing thread is somewhat better, as you’re in more control—this is what
Response.Redirect does in ASP.NET, for example—but I’d still generally suggest find-
ing better forms of flow control.)

 There’s one last tweak to cover before we move on to the really big feature of C# 4.

13.4.2 Changes to field-like events

Finally, there are two changes to the way field-like events are implements in C# 4 that are
worth mentioning briefly. They’re unlikely to affect you, although they’re potentially
breaking changes. Just to recap, field-like events are events that are declared as if
they’re fields, with no explicit add/remove blocks, like this:

public event EventHandler Click;

First, the way that thread safety is achieved has been changed: before C# 4, field-like
events resulted in code that would lock on either this (for instance events) or the
declaring type (for static events). As of C# 4, the compiler achieves thread-safe, atomic
subscription and unsubscription using Interlocked.CompareExchange<T>. Unlike
the previous change to the lock statement, this applies even when targeting earlier
versions of the .NET framework.

 Second, the meaning of the event’s name within the declaring class has changed. Pre-
viously, if you subscribed to (or unsubscribed from) the event within the class that
contained the declaration—such as with Click += DefaultClickHandler;—that
would go straight to the backing field, skipping the add/remove implementation
completely. Now, it doesn’t—when you’re using += or -=, the name of the event refers
to the event itself, not the backing field. When the name is used for any other purpose
(typically assignment or invocation), it still refers directly to the backing field.

 These are both sensible changes that make everything neater, although you proba-
bly wouldn’t have noticed them in daily use. Chris Burrows goes into the topic in
detail in his blog; if you want to know more (see http://mng.bz/Kyr4).

Conditionally
releases lock
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/Qy7p
http://mng.bz/Kyr4

400 CHAPTER 13 Minor changes to simplify code
13.5 Summary
This has been a bit of a pick-and-mix chapter, with various distinct areas. Having said
that, COM greatly benefits from named arguments and optional parameters, so there’s
some overlap between them.

 I suspect it’ll take a while for C# developers to get the hang of how best to use the
new features for parameters and arguments. Overloading still provides extra portabil-
ity for languages that don’t support optional parameters, and named arguments may
look strange in some situations until you get used to them. The benefits can be signif-
icant, though, as I demonstrated with the example of building instances of immutable
types. You’ll need to take some care when assigning default values to optional parame-
ters, but I hope that you’ll find the suggestion of using null as a “default default value”
to be a useful and flexible one that effectively sidesteps some of the limitations and
pitfalls you might otherwise encounter.

 Working with COM has come a long way for C# 4. I still prefer to use purely man-
aged solutions where they’re available, but at least the code calling into COM is a lot
more readable now, as well as having a better deployment story. We haven't seen all of
the improvements to COM interop yet, as the dynamic typing features we’ll see in the
next chapter impact on COM too, but even without taking that into account we’ve
seen a short sample become a lot more pleasant just by applying a few simple steps.

 Our last major topic was the generic variance now available for interfaces and del-
egates. Sometimes you may end up using variance without even knowing it, and I
think most developers are more likely to use the variance declared in the framework
interfaces and delegates rather than creating their own. I apologise if it occasionally
became tricky, but it’s good to know just what’s out there. If it’s any consolation to you,
C# team member Eric Lippert has publicly acknowledged in a blog post (see http://
mng.bz/79d8) that higher-order functions make even his head hurt, so we’re in good
company. Eric’s post is one in a long series about variance (see http://mng.bz/94H3),
which is as much as anything a dialogue about the design decisions involved. If you
haven’t had enough of variance by now, it’s an excellent read.

 For the sake of completeness we also took a quick peek at the changes to how the
C# compiler handles locking and field-like events.

 This chapter dealt with relatively small changes to C#. Chapter 14 deals with some-
thing far more fundamental: the ability to use C# in a dynamic manner.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/79d8
http://mng.bz/79d8
http://mng.bz/94H3

Dynamic binding
in a static language
C# has always been a statically typed language, with no exceptions. There have
been a few areas where the compiler has looked for particular names rather than
interfaces, such as finding appropriate Add methods for collection initializers, but
there’s been nothing truly dynamic in the language beyond normal polymorphism.
That changes with C# 4—at least partially. The simplest way of explaining it is that
there’s a new static type called dynamic, which you can try to do almost anything
with at compile time and let the framework sort it out at execution time. Of course
there’s more to it than that, but that’s the executive summary.

 Given that C# is still a statically typed language everywhere that you’re not
using dynamic, I don’t expect fans of dynamic programming to suddenly become

This chapter covers
 What it means to be dynamic

 How to use dynamic typing in C# 4

 Examples with COM, Python, and reflection

 How dynamic typing is implemented

 Reacting dynamically
401

Licensed to Devon Greenway <devon.greenway@gmail.com>

402 CHAPTER 14 Dynamic binding in a static language
C# advocates. That’s not the main point of the feature: it’s largely about interopera-
bility. As dynamic languages such as IronRuby and IronPython join the .NET ecosys-
tem, it’d be crazy not to be able to call into C# code from IronPython and vice versa.
Likewise, developing against weakly typed COM APIs has always been awkward in C#,
with an abundance of casts cluttering the code. Dynamic typing addresses all of
these concerns.

 One word of warning—I’ll be repeating this throughout the chapter—it’s worth
being careful with dynamic typing. It’s fun to explore, and it’s been well implemented,
but I still recommend that you think carefully before using it heavily. Just like any
other new feature, weigh the pros and cons rather than rushing into it just because it’s
neat (which it undoubtedly is). The framework does a fine job of optimizing dynamic
code, but it’ll be slower than static code in most cases. More importantly, you lose a lot
of compile-time safety. Whereas unit testing will help you find a lot of the mistakes
that can crop up when the compiler isn’t able to help you much, I still prefer the
immediate feedback of the compiler telling me if I’m trying to use a method that
doesn’t exist or can’t be called with a given set of arguments.

 On the other hand, there are situations where the level of safety given to you by
the compiler isn’t very strong to start with. For example, there are far more things that
can go wrong with code that uses reflection than just the errors a compiler can spot. If
you’re trying to invoke a method given its name, does that method exist? Is it accessi-
ble to your code? Are you providing appropriate arguments? The compiler can’t help
you with any of that. The equivalent dynamic code still can’t spot those errors at com-
pile time, but at least the code may be considerably easier to read and understand. It’s
all a matter of using the most appropriate approach for the particular problem you’re
working on.

 Dynamic behavior can be useful in situations where you’re naturally dealing with
dynamic environments or data, but if you’re really looking to write large chunks of
your code dynamically, I suggest you use a language where that’s the normal style
instead of the exception. C# is still obviously a language that was designed for static typ-
ing: languages that have been dynamic from the start often have various features to
help you work more productively with dynamic behavior. Now that you can easily call
into such languages from C#, you can fairly easily separate out the parts of your code
that benefit from a largely dynamic style from those where static typing works better.

 I don’t want to put too much of a damper on things: where dynamic typing is use-
ful, it can be a lot simpler than the alternatives. In this chapter we’ll look at the basic
rules of dynamic typing in C# 4, and then dive into some examples: using COM
dynamically, calling into some IronPython code, and making reflection a lot simpler.
You can do all of this without knowing details, but after we have the flavor of dynamic
typing, we’ll look at what’s going on under the hood. In particular, we’ll discuss the
Dynamic Language Runtime and what the C# compiler does when it encounters
dynamic code. Finally, we’ll see how you can make your own types respond dynami-
cally to methods calls, property accesses, and the like. First, let’s take a step back.
Licensed to Devon Greenway <devon.greenway@gmail.com>

403What? When? Why? How?
14.1 What? When? Why? How?
Before we get to any code showing off this new feature of C# 4, it’s worth getting a bet-
ter handle on why it was introduced in the first place. I don’t know any other lan-
guages that have gone from being purely static to partially dynamic; this is a
significant step in C#’s evolution, whether you use it often or only occasionally.

 We’ll start by taking a fresh look at what dynamic and static mean, consider some of
the major use cases for dynamic typing in C#, and then delve into how it’s imple-
mented in C# 4.

14.1.1 What is dynamic typing?

In chapter 2, I discussed the characteristics of a type system and described how C# has
previously been a statically typed language. The compiler knows the type of expres-
sions in the code, and knows the members available on any type. It applies a fairly
complex set of rules to determine which exact member should be used when. This
includes overload resolution; the only choice left until later is to pick the implementa-
tion of virtual methods depending on the execution-time type of the object. The pro-
cess of working out which member to use is called binding, and in a statically typed
language it occurs at compile time.

 In a dynamically typed language, all of this binding occurs at execution time. A
compiler or parser can check that the code is syntactically correct, but it can’t check
that the methods you call and the properties you access are actually present. It’s a bit
like a word processor with no dictionary: it may be able to check your punctuation,
but not your spelling. (If you’re to have any sort of confidence in your code, you really
need a good set of unit tests.) Some dynamic languages are always interpreted, with
no compiler involved at all. Others provide both an interpreter and a compiler, to
allow rapid development with a REPL: a read, evaluate, print loop.

REPL AND C# Strictly speaking, REPL isn’t solely associated with dynamic lan-
guages. Some statically typed languages have interpreters that actually compile
on the fly. Notably, F# comes with a tool called F# Interactive which does
exactly this. But interpreters are much more common for dynamic languages
than static ones.

C# does have similar tools: the expression evaluator underlying the Watch
and Immediate windows in Visual Studio can be considered a form of REPL,
and Mono has a C# Shell (see http://mng.bz/nek9).

It’s worth noting that the new dynamic features of C# 4 do not include interpreting C#
source code at execution time: there’s no direct equivalent of the JavaScript eval
function, for example. To execute code based on data in strings, you need to use
either the CodeDOM API (and CSharpCodeProvider in particular) or simple reflec-
tion to invoke individual members.

 Of course, the same kind of work has to be done at some point in time no matter what
approach you’re taking. By asking the compiler to do more work before execution,
static systems usually perform better than dynamic ones. Given the downsides we’ve
Licensed to Devon Greenway <devon.greenway@gmail.com>

404 CHAPTER 14 Dynamic binding in a static language
mentioned so far, you might be wondering why anyone would want to bother with
dynamic typing in the first place.

14.1.2 When is dynamic typing useful, and why?

Dynamic typing has two important points in its favor. First, if you know the name of a
member you want to call, the arguments you want to call it with, and the object you
want to call it on, that’s all you need. That may sound like all the information you
could have anyway, but the C# compiler would normally want to know more. Crucially,
in order to identify the member exactly (modulo overriding), it’d need to know the
type of the object you’re calling it on, and the types of the arguments. Sometimes you
just don’t know those types at compile time, even though you do know enough to be
sure that the member will be present and correct when the code actually runs.

 For example, if you know that the object you’re using has a Length property you
want to use, it doesn’t matter whether it’s a String, a StringBuilder, an Array, a
Stream, or any of the other types with that property. You don’t need that property to
be defined by some common base class or interface—which can be useful if there isn’t
such a type. This is called duck typing, from the notion that “if it walks like a duck and
quacks like a duck, I’d call it a duck.”1 Even when there is a type that offers everything
you need, it can sometimes be irritating to tell the compiler exactly which type you’re
talking about. This is particularly relevant when using Microsoft Office APIs via COM.
Many methods and properties are declared to just return VARIANT, which means that
C# code using these calls is often peppered with casts. Duck typing allows you to omit
all of these casts, so long as you’re confident about what you’re doing.

 The second important feature of dynamic typing is the ability of an object to
respond to a call by analyzing the name and arguments provided to it. It can behave as
if the member had been declared by the type in the normal way, even if the member
names couldn’t possibly be known until execution time. For example, consider the
following call:

books.FindByAuthor("Joshua Bloch")

Normally this would require the FindByAuthor member to be declared by the
designer of the type involved. In a dynamic data layer, there can be a single smart
piece of code to analyse calls like this. It can detect that there’s an Author property in
the associated data (whether that’s from a database, XML document, hardcoded data,
or anything else) and act accordingly: in this case, it would decide that you want to
perform a query using the specified argument as the author. In some ways, this is just
a more complex way of writing something like:

books.Find("Author", "Joshua Bloch")

But the first snippet feels more appropriate: the calling code knows the Author part
statically, even if the receiving code doesn’t. This approach can be used to mimic

1 The Wikipedia article on duck typing has more information about the history of the term:
http://en.wikipedia.org/wiki/Duck_typing.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing

405What? When? Why? How?
domain-specific languages (DSLs) in some situations. It can also be used to create a
natural API for exploring data structures such as XML trees.

 Another feature of programming with dynamic languages tends to be an experi-
mental style of programming using an appropriate interpreter, as I mentioned earlier.
This isn’t directly relevant to C# 4, but the fact that C# 4 can interoperate richly with
dynamic languages running on the DLR (Dynamic Language Runtime) means that if
you’re dealing with a problem that would benefit from this style, you’ll be able to use
the results directly from C# instead of having to port it to C# afterward.

 We’ll look at these scenarios in more depth when we’ve learned the basics of C# 4’s
dynamic abilities, so we can see more concrete examples. It’s worth briefly pointing
out that if these benefits don’t apply to you, dynamic typing is more likely to be a hin-
drance than a help. Many developers won’t need to use dynamic typing much in their
day-to-day coding, and even when it is required, it may only be for a small part of the
code. Just like any feature, it can be overused; in my view it’s usually worth thinking
carefully about whether any alternative designs would allow static typing to solve the
same problem elegantly. But I’m biased due to having a background in statically typed
languages—it’s worth reading books on dynamically typed languages such as Python
and Ruby to see a wider variety of benefits than the ones I present in this chapter.

 You’re probably getting anxious to see some real code by now, so we’ll just take a
moment to get a brief overview of what’s going on, and then dive into some examples.

14.1.3 How does C# 4 provide dynamic typing?

C# 4 introduces a new type called dynamic. The compiler treats this type differently
than any normal CLR type.2 Any expression that uses a dynamic value causes the com-
piler to change its behavior in a radical way. Instead of trying to work out exactly what
the code means, binding each member access appropriately, performing overload res-
olution, and so on, the compiler just parses the source code to work out what kind of
operation you’re trying to perform, its name, what arguments are involved, and any
other relevant information. Instead of emitting IL to execute the code directly, the
compiler generates code that calls into the Dynamic Language Runtime with all the
required information. The rest of the work is then performed at execution time.

 In many ways this is similar to the different kinds of code generated by lambda
expression conversions. These can either just result in code to perform the required
actions (when converting to a delegate type) or result in code that builds a description
of the required actions (when converting to an expression tree). We’ll see later that
expression trees are extremely important in the DLR, and in many cases the C#
compiler will use expression trees to describe the code. (In the simplest cases where
there’s nothing but a member invocation, there’s no need for an expression tree.)

2 In fact, dynamic doesn’t represent a specific CLR type. It’s really just System.Object in conjunction with
System.Dynamic.DynamicAttribute. We’ll look at this in more detail in section 14.4, but for the moment
you can pretend it’s a real type.
Licensed to Devon Greenway <devon.greenway@gmail.com>

406 CHAPTER 14 Dynamic binding in a static language
 When the DLR comes to bind the relevant call at execution time, it goes through a
complicated process to determine what should happen. This not only has to take in
the normal C# rules for method overloads and so on, but also the possibility that the
object itself will want to be part of the decision, as we saw in our FindByAuthor exam-
ple earlier.

 Most of this happens under the hood—the source code you write to use dynamic
typing can be really simple.

14.2 The five-minute guide to dynamic
Do you remember how many new bits of syntax were involved when you learned about
LINQ? Well dynamic typing is just the opposite: there’s a single contextual keyword,
dynamic, which you can use in most places where you’d use a type name. That’s all the
new syntax that’s required, and the main rules about dynamic are easily expressed, if
you don’t mind a bit of hand-waving to start with:

 An implicit conversion exists from almost any CLR type to dynamic.
 An implicit conversion exists from any expression of type dynamic to almost any

CLR type.
 Expressions that use a value of type dynamic are usually evaluated dynamically.
 The static type of a dynamically evaluated expression is usually deemed to be

dynamic.

The detailed rules are more complicated, as we’ll see in section 14.4, but for the
moment let’s stick with the simplified version. The following listing provides a com-
plete example demonstrating each point.

dynamic items = new List<string> { "First", "Second", "Third" };
dynamic valueToAdd = "!";
foreach (dynamic item in items)
{

string result = item + valueToAdd;
Console.WriteLine(result);

}

The result of listing 14.1 shouldn’t come as much of a surprise: it writes out “First!”,
“Second!”, and “Third!”. We could easily have specified the types of the items and
valueToAdd variables explicitly in this case, and it would all have worked in the normal
way—but imagine that the variables are getting their values from other data sources
instead of having them hardcoded. What would happen if we wanted to add an inte-
ger instead of a string? The next listing is just a slight variation, but note that we
haven’t changed the declaration of valueToAdd; just the assignment expression.

dynamic items = new List<string> { "First", "Second", "Third" };
dynamic valueToAdd = 2;
foreach (dynamic item in items)

Listing 14.1 Using dynamic to iterate through a list, concatenating strings

Listing 14.2 Adding integers to strings dynamically
Licensed to Devon Greenway <devon.greenway@gmail.com>

407The five-minute guide to dynamic
{
string result = item + valueToAdd;
Console.WriteLine(result);

}

This time the first result is “First2”—which is hopefully what you’d expect. Using static
typing, we’d have to explicitly change the declaration of valueToAdd from string to
int. The addition operator is still building a string, though. What if we changed the
items to be integers as well? Let’s try that one simple change, as shown in the follow-
ing listing.

dynamic items = new List<int> {1, 2, 3};
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{

string result = item + valueToAdd;
Console.WriteLine(result);

}

Disaster! We’re still trying to convert the result of the addition to a string. The only
conversions that are allowed are the same ones that are present in C# normally, so
there’s no conversion from int to string. The result is an exception (at execution
time, of course):

Unhandled Exception:
Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:

Cannot implicitly convert type 'int' to 'string'
at CallSite.Target(Closure , CallSite , Object)
at System.Dynamic.UpdateDelegates.UpdateAndExecute1[T0,TRet]

(CallSite site, T0 arg0)
...

Unless you’re perfect, you’re likely to encounter RuntimeBinderException a lot when
you start using dynamic typing. It’s the new NullReferenceException, in some ways:
you’re bound to come across it, but with any luck it’ll be in the context of unit tests
rather than customer bug reports. Anyway, we can fix it by changing the type of
result to dynamic, so that the conversion isn’t required anyway. Come to think of it,
why bother with the result variable in the first place? Let’s just call Console.WriteLine
immediately. The following listing shows the changes.

dynamic items = new List<int> { 1, 2, 3 };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{

Console.WriteLine(item + valueToAdd);
}

Now this prints 3, 4, 5 as we’d expect. Changing the input data would now not only
change the operator that was chosen at execution time—it would also change which

Listing 14.3 Adding integers to integers

Listing 14.4 Adding integers to integers—but without the exception

string + int
concatenation

int + int
addition

Calls overload
with int argument
Licensed to Devon Greenway <devon.greenway@gmail.com>

408 CHAPTER 14 Dynamic binding in a static language
overload of Console.WriteLine was called. With the original data, it would call
Console.WriteLine(string); with the updated variables, it would call Console.
WriteLine(int). The data could even contain a mixture of values, making the exact
call change on every iteration!

 You can use dynamic as the declared type for fields, parameters, and return types
as well. This is in stark contrast to the use of var, which is restricted to local variables.

DIFFERENCES BETWEEN var AND dynamic In many of the examples so far,
when we’ve really known the types at compile time, we could’ve used var to
declare the variables. At first glance, the two features look very similar. In
both cases it looks like we’re declaring a variable without specifying its type—
but using dynamic we’re explicitly setting the type to be dynamic. You can
only use var when the compiler is able to infer the type you mean statically,
and the type system really does remain entirely static.

Of course, if you use var for a variable that’s initialized with an expression
of type dynamic, the variable ends up being (statically) typed to be dynamic
too. Given the confusion this could cause, I strongly recommend against it.

The compiler is smart about the information it records, and the code that then uses
that information at execution time is clever too: basically it’s a mini C# compiler in its
own right. It uses whatever static type information was known at compile time to make
the code behave as intuitively as possible. Other than a few details of what you can’t do
with dynamic typing, that’s all you really need to know in order to start using it in your
own code. Later on we’ll come back to those restrictions, as well as details of what the
compiler is actually doing—but first let’s see dynamic typing doing something genu-
inely useful.

14.3 Examples of dynamic typing
Dynamic typing is a bit like unsafe code, or interoperability with native code using
P/Invoke. Many developers will have no need for it, or use it once in a blue moon.
For other developers—particularly those dealing with Microsoft Office—it’ll give a
huge productivity boost, either by making their existing code simpler or by allowing
radically different approaches to their problems.

 This section isn’t meant to be exhaustive by any means, and I look forward to seeing
innovative uses of dynamic typing from C# in the coming years. Will unit testing and
mocking take a big step forward with new frameworks? Will we see dynamic web service
clients, accessing RESTful services with simple member access? I’m not going to make
any predictions, other than that it’ll be an interesting area to keep can eye on.

 We’re going to look at three examples here: working with Excel, calling into
Python, and using normal managed .NET types in a more flexible way.

14.3.1 COM in general, and Microsoft Office in particular

We’ve already seen most of the new features C# 4 brings to COM interop, but there
was one that we couldn’t cover in chapter 13 because we hadn’t seen dynamic typing
Licensed to Devon Greenway <devon.greenway@gmail.com>

409Examples of dynamic typing
yet. If you choose to embed the interop types you’re using into the assembly (by using
the /l compiler switch, or setting the Embed Interop Types property to true) then
anything in the API that would otherwise be declared as object is changed to
dynamic. This makes it much easier to work with somewhat weakly typed APIs such as
those exposed by Office. (Although the object model in Office is reasonably strong in
itself, many properties are exposed as variants because they can deal with numbers,
strings, dates, and so on.)

 Again, I’ll just show you a short example here—one that does even less than the
Word example in chapter 13. The dynamic aspect is easy to understand from this one
scenario. We’re going to set the first 20 cells of the top row of a new Excel worksheet
to the numbers 1 to 20. The following listing shows an initial, statically typed piece of
code to achieve this.

var app = Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = (Worksheet) app.ActiveSheet;
Range start = (Range) worksheet.Cells[1, 1];
Range end = (Range) worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

This time we’ve imported the Microsoft.Office.Interop.Excel namespace—so the
Application type refers to Excel, not Word. We’re still using the new features of C# 4,
by not specifying an argument for the optional parameter in the Workbooks.Add()
call while we’re setting things up B and also by using a named indexer C. When
Excel is up and running, we work out the start and end cells of our overall range. In
this case they’re both on the same row, but we could’ve created a rectangular range
instead by selecting two opposite corners. We could have created the range in a single
call to Range["A1:T1"] but I personally find it easier to work with numbers consis-
tently. Cell names like B3 are great for humans, but harder to use in a program.

 Once we have the range, we set all the values in it by setting the Value property
with an array of integers D. We can use a one-dimensional array, as we’re only setting
a single row; to set a range spanning multiple rows we’d need to use a rectangular
array. This all works, but we’ve had to use three casts in six lines of code. The indexer
we call via Cells and the ActiveSheet property are both declared to return object
normally. (Various parameters are also declared as type object, but that doesn’t mat-
ter as much because there’s an implicit conversion from any nonpointer type to
object—only coming the other way requires the cast.) For simplicity’s sake I haven’t
closed Excel at the end of the listing—it’s easier to just see the open worksheet than to
save it to a file in code, close the application, and then load up the file separately to
check that it’s worked.

 With the primary interop assembly set to embed the required types into our own
binary, all of these examples become dynamic. With the implicit conversion from
dynamic to other types, we can just remove all the casts, as shown in the following listing.

Listing 14.5 Setting a range of values with static typing

Open Excel with active worksheetB

Determine start
and end cells

C

Fill range
with [1, 20]

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

410 CHAPTER 14 Dynamic binding in a static language

var app = new Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = app.ActiveSheet;
Range start = worksheet.Cells[1, 1];
Range end = worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

This is exactly the same code as listing 14.5 but without the casts. But it’s worth noting
that the conversions are still checked at execution time. If we changed the declaration
of start to be Worksheet, the conversion would fail and an exception would be
thrown. Of course, you don’t have to perform the conversion. You could just leave
everything as dynamic, as shown in the following listing.

var app = new Application { Visible = true };
app.Workbooks.Add();
dynamic worksheet = app.ActiveSheet;
dynamic start = worksheet.Cells[1, 1];
dynamic end = worksheet.Cells[1, 20];
worksheet.Range[start, end].Value = Enumerable.Range(1, 20)

.ToArray();

Which is clearer? I’m an old-fashioned static typing fan, so I prefer the previous ver-
sion. It states the types I expect on each line, so if there are any problems, I get to find
out immediately rather than waiting until I try to use a value in a way that may not be
supported. In terms of productivity when initially developing, there are pros and cons
both ways. Using dynamic, I don’t need to work out which particular type I really
expect; I can just use the value and so long as all the necessary operations are sup-
ported, I’m okay. On the other hand, using static typing I can see what’s available at
every stage via IntelliSense. We’re still using dynamic typing to provide the implicit
conversion to Worksheet and Range—we’re just using it for one step at a time rather
than wholesale. The change from static typing to dynamic may not look like much to
start with because the example is relatively simple—but as the complexity of the code
increases, so does the readability benefit of removing all those casts.

 In some ways this has all been a blast from the past—COM is a relatively old tech-
nology. Now we’re going to jump to interoperating with something much more
recent: IronPython.

14.3.2 Dynamic languages such as IronPython

In this section I’m only going to use IronPython as an example, but of course that’s
not the only dynamic language available for the DLR. It’s arguably the most mature,
but there are already alternatives such as IronRuby and IronScheme. One of the
stated aims of the DLR is to make it easier for budding language designers to create a

Listing 14.6 Using implicit conversions from dynamic in Excel

Listing 14.7 Using dynamic everywhere
Licensed to Devon Greenway <devon.greenway@gmail.com>

411Examples of dynamic typing
working language that has good interoperability with other DLR languages and the
traditional .NET languages such as C#, as well as access to the huge .NET framework
libraries.

WHY WOULD I WANT TO USE IRONPYTHON FROM C#?

There are many reasons you might want to interoperate with a dynamic language, just
as it’s been beneficial to interoperate with other managed languages from .NET's
infancy. It’s clearly useful for a VB developer to be able to use a class library written in
C# and vice versa—so why would the same not be true of dynamic languages? I asked
Michael Foord, the author of Iron Python in Action, to come up with a few ideas for
using IronPython within a C# application. Here’s his list:

 User scripting
 Writing a layer of your application in IronPython
 Using Python as a configuration language
 Using Python as a rules engine with rules stored as text (even in a database)
 Using a library that’s available in Python, but has no similar .NET equivalent
 Putting a live interpreter into your application for debugging

If you’re still skeptical, you might want to consider that embedding a scripting lan-
guage in a mainstream application is far from uncommon—Sid Meier’s Civilization IV
computer game3 is scriptable with Python. This isn’t just an afterthought for modifica-
tions, either—a lot of the core gameplay is written in Python. Once they’d built the
engine, the developers found it to be a more powerful development environment
than they’d originally imagined.

 For this chapter, I’m going to pick the single example of using Python as a config-
uration language. Just as with the COM example, I’m going to keep it simple, but
hopefully it’ll provide enough of a starting point for you to experiment more with it if
you’re interested.

GETTING STARTED: EMBEDDING “HELLO, WORLD”

There are various types available if you want to host or embed another language within a
C# application, depending on the level of flexibility and control you want to achieve.
We’re only going to use ScriptEngine and ScriptScope, because our requirements
are primitive. In our example, we know we’re always going to use Python, so we can
ask the IronPython framework to create a ScriptEngine directly; in more general situ-
ations you can use a ScriptRuntime to pick language implementations dynamically by
name. More demanding scenarios may require you to work with ScriptHost and
ScriptSource, as well as using more of the features of the other types, too.

 Not content with merely printing “hello, world” once, our initial example will do
so twice, first by using text passed directly into the engine as a string, and then by load-
ing a file called HelloWorld.py. Listing 14.8 shows everything you need.

3 Or way of life, depending on how you view the world and your level of addiction to playing the game.
Licensed to Devon Greenway <devon.greenway@gmail.com>

412 CHAPTER 14 Dynamic binding in a static language

ScriptEngine engine = Python.CreateEngine();
engine.Execute("print 'hello, world'");
engine.ExecuteFile("HelloWorld.py");

You may find this listing either quite dull or very exciting, both for the same reason.
It’s simple to understand, requiring little explanation. It does little, in terms of actual
output... and yet the fact that it is so easy to embed Python code into C# is a cause for
celebration. True, our level of interaction is somewhat minimal so far—but it really
couldn’t be much easier than this.

PYTHON’S MANY STRING LITERAL FORMS The Python file contains a single line:
print "hello, world"—note the double quotes in the file compared with the
single quotes in the string literal we passed into engine.Execute(). Either
would’ve been fine in either source. Python has various string literal represen-
tations, including triple single quotes or triple double quotes for multiline lit-
erals. I only mention this because it’s useful not to have to escape double
quotes any time you want to put Python code into a C# string literal.

The next type we need is ScriptScope, which will be crucial to our configuration
script.

STORING AND RETRIEVING INFORMATION FROM A SCRIPTSCOPE

The execution methods we’ve used both have overloads with a second parameter—a
scope. In its simplest terms, this can be regarded as a dictionary of names and values.
Scripting languages often allow variables to be assigned without any explicit declara-
tion, and when this is done in the top level of a program (instead of in a function or
class), this usually affects a global scope. When a ScriptScope instance is passed into an
execution method, that is used as the global scope for the script you’ve asked the
engine to execute. The script can retrieve existing values from the scope and create
new values, as shown in the following listing.

string python = @"
text = 'hello'
output = input + 1
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
scope.SetVariable("input", 10);
engine.Execute(python, scope);
Console.WriteLine(scope.GetVariable("text"));
Console.WriteLine(scope.GetVariable("input"));
Console.WriteLine(scope.GetVariable("output"));

I’ve embedded the Python source code into the C# code as a verbatim string literal B
rather than putting it in a file, so that it’s easier to see all the code in one place. I don’t

Listing 14.8 Printing “hello, world” twice using Python embedded in C#

Listing 14.9 Passing information between a host and a script using ScriptScope

Python code
embedded as C#
string literal

B

Sets variable for
Python code to use

C

Fetches variables
back from scope

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

413Examples of dynamic typing
recommend that you do this in production code, partly because Python is sensitive to
whitespace—reformatting the code in a seemingly harmless way can make it fail com-
pletely at execution time.

 The SetVariable and GetVariable methods simply put values into the scope C
and fetch them out again D in the obvious way. They’re declared in terms of object
rather than dynamic, as you might’ve expected. But GetVariable also allows you to
specify a type argument, which acts as a conversion request. This isn’t quite the same
as just casting the result of the nongeneric method, as the latter just unboxes the
value—which means you need to cast it to exactly the right type. For example, we can
put an integer into the scope, but retrieve it as a double:

scope.SetVariable("num", 20)
double x = scope.GetVariable<double>("num")
double y = (double) scope.GetVariable("num");

The first call succeeds: we’re explicitly telling GetVariable what type we want B, so it
knows to coerce the value appropriately. The second call C will throw an Invalid-
CastException, just as it would in any other situation where you try to unbox a value
using the wrong type.

 The scope can also hold functions, which we can retrieve and then call dynami-
cally, passing arguments and returning values. The easiest way of doing this is to use
the dynamic type, as shown in the following listing.

string python = @"
def sayHello(user):

print 'Hello %(name)s' % {'name' : user}
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
engine.Execute(python, scope);
dynamic function = scope.GetVariable("sayHello");
function("Jon");

Configuration files may not often need this ability, but it can be useful in other situa-
tions. For example, you could easily use Python to script a graph-drawing program by
providing a function to be called on each input point. A simple example of this can be
found on the book’s website at http://mng.bz/6yGi. There are a number of situations
in which it’s useful to have some sort of expression evaluator running user code
entered at execution time, such as evaluating business rules for discounts, shipping
costs, and so on. It can be useful to be able to change these rules in text form without
having to recompile or redeploy binaries. Listing 14.10 is quite tame—another exam-
ple in the downloadable source code weaves in and out of the two languages rather
more tortuously, showing that the calls can go both ways: from C# to IronPython as
we’ve seen, and from IronPython to C#.

Listing 14.10 Calling a function declared in a ScriptScope

Converts successfully
to double

B

Unboxing throws exceptionC
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/6yGi

414 CHAPTER 14 Dynamic binding in a static language
PUTTING IT ALL TOGETHER

Now that we can get values into our scope, we’re essentially done. We could poten-
tially wrap the scope in another object providing access via an indexer—or even access
the values dynamically using the techniques shown in section 14.5. The application
code might look something like this:

static Configuration LoadConfiguration()
{

ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
engine.ExecuteFile("configuration.py", scope);
return Configuration.FromScriptScope(scope);

}

The exact form of the Configuration type will depend on your application, but it’s
unlikely to be terribly exciting code. I’ve provided a sample dynamic implementation
in the full source, which allows you to retrieve values as properties and call functions
directly too. Of course we’re not limited to just using primitive types in our configura-
tion: the Python code could be arbitrarily complex, building collections, wiring up
components and services, and so forth. It could perform a lot of the roles of a normal
Dependency Injection or Inversion of Control container.

 The important thing is that we now have a configuration file which is active instead
of the traditional passive XML and .ini files. Of course, you could’ve embedded your
own programming language into previous configuration files, but the result would
probably have been less powerful, and would’ve taken a lot more effort to implement.
As an example of where this could be useful in a simpler situation than full depen-
dency injection, you might want to configure the number of threads to use for some
background processing component in your application. You might normally use as
many threads as you have processors in the system, but occasionally reduce it in order
to help another application run smoothly on the same system. The configuration file
would simply change from something like this

agentThreads = System.Environment.ProcessorCount
agentThreadName = 'Processing agent'

to this

agentThreads = 1
agentThreadName = 'Processing agent (single thread only)'

This change wouldn’t require the application to be rebuilt or redeployed—just edit
the file and restart the application. Particularly smart applications could even choose
to reconfigure themselves on the fly. (I’ve usually found that this ability is more pain-
ful to implement than the extra value it brings, but in certain places it can make a big
difference. The ability to change logging levels either for a particular bit of code or
even just a specific user who’s having difficulties can make debugging much easier.)

 Other than executing functions, we haven’t really looked at using Python in a par-
ticularly dynamic way. The full power of Python is available, and using the dynamic
type in your C# code you can take advantage of metaprogramming and all the other
Licensed to Devon Greenway <devon.greenway@gmail.com>

415Examples of dynamic typing
dynamic features. The C# compiler is responsible for representing your code in an
appropriate fashion, and the script engine is responsible for taking that code and
working out what it means for Python. Just don’t feel you have to be doing anything
particularly clever for it to be worth embedding the script engine in your application.
It’s a simple step toward a more powerful application.

HOW MUCH POWER DO YOU WANT TO GIVE TO YOUR SCRIPT AUTHORS? If you’re
executing arbitrary code, particularly code entered by external users of the
system, you should think seriously about security, and possibly run the script
in some sort of sandboxed environment. Discussion of this topic is outside the
scope of this book, but it needs to be considered carefully.

So far our examples have been interoperating with other systems. Dynamic typing can
make sense even within a purely managed system, though. Let’s visit a few examples.

14.3.3 Dynamic typing in purely managed code

You’ve almost certainly used something like dynamic typing in the past, even if it
wasn’t your own code that had to do the work. Data binding is the simplest example of
this—any time you specify something like ListControl.DisplayMember, you’re asking
the framework to find a property at execution time based on its name. If you’ve ever
used reflection directly in your own code, you’re again using information that’s only
available at execution time.

 In my experience, reflection is error prone, and even when it works you may need
to put in extra effort to optimize it. In some cases, dynamic typing can completely
replace that reflection-based code; it may be faster too depending on exactly what you
were doing.

 It’s particularly tricky to use generic types and methods from reflection. For
instance, if you have an object which you know implements IList<T> for some type
argument T, it can be difficult to work out exactly what T is. If the only reason for dis-
covering T is to then call another generic method, you really want to just ask the com-
piler to call whatever it would have called if you knew the actual type. Of course, that’s
exactly what dynamic typing does. I’ll use this scenario as our first example.

EXECUTION-TIME TYPE INFERENCE

If you want to do more than just call a single method, it’s often best to wrap all the
additional work in a generic method. You can then call the generic method dynami-
cally, but write all the rest of the code using static typing. Listing 14.11 shows a simple
example of this. We’re going to pretend we’ve been given a list of some type and a new
element by some other part of the system. We’ve been promised that they’re compati-
ble, but we don’t know their types statically. There are various reasons this could hap-
pen—this could be the result of deserialization elsewhere, for example. Anyway, our
code is meant to add the new element to the end of the list, but only if there are fewer
than 10 elements in the list at the moment. The method returns whether or not the
element was actually added. Obviously in real life the business logic would be more
complicated, but the point is that we’d really like to be able to use the strong types for
Licensed to Devon Greenway <devon.greenway@gmail.com>

416 CHAPTER 14 Dynamic binding in a static language
these operations. The following listing shows the statically typed method, and the
dynamic call into it.

private static bool AddConditionallyImpl<T>(IList<T> list, T item)
{

if (list.Count < 10)
{

list.Add(item);
return true;

}
return false;

}

public static bool AddConditionally(dynamic list, dynamic item)
{

return AddConditionallyImpl(list, item);
}
...
object list = new List<string> { "x", "y" };
object item = "z";
AddConditionally(list, item);

The public method has dynamic parameters: in previous versions of C# it would per-
haps have taken IEnumerable and Object, relying on complicated checks with reflec-
tion to work out the type of the list and then invoke the generic method with
reflection. With dynamic typing, we can just call a strongly typed implementation B
using the dynamic arguments C, isolating the dynamic access to the single call in the
wrapper method. Of course the call could still fail—but we’ve been saved the effort of
trying to determine the appropriate type argument.

 We could also expose the strongly typed method publicly to avoid the dynamic typ-
ing for callers who knew their list types statically. It’d be worth keeping the names dif-
ferent in that case, to avoid accidentally calling the dynamic version due to a slight
mistake with the static types of the arguments. (It’s also a lot easier to make the right
call within the dynamic version when the names are different!)

 As another example of dynamic typing in purely managed code, I’ve already
bemoaned the lack of generic operator support in C#. There’s no concept of specify-
ing a constraint saying “T must have an operator that allows me to add two values of
type T together.” We used this in our initial demonstration of dynamic typing, so men-
tioning it here should come as no surprise. Let’s take the Sum query operator from
LINQ and make it dynamic.

COMPENSATING FOR THE LACK OF GENERIC OPERATORS

Have you ever looked at the list of overloads for Enumerable.Sum? It’s pretty long.
Admittedly half of the overloads are due to a projection, but even so there are 10 over-
loads, each of which just takes a sequence of elements and adds them together... and
that doesn’t even cover summing unsigned values, or bytes or shorts. Why don’t we
use dynamic typing to try to do it all in one method?

Listing 14.11 Using dynamic type inference

Normal statically
typed codeB

Call helper
method dynamicallyC

Eventually calls
AddConditionallyImpl<string>
Licensed to Devon Greenway <devon.greenway@gmail.com>

417Examples of dynamic typing
 Even though we’ll use dynamic typing internally, the method shown in listing 14.12
is statically typed—though we could’ve declared it as a nongeneric method summing
an IEnumerable<dynamic>, that doesn’t work well due to the limitations of covari-
ance. I’ve named the method DynamicSum rather than Sum to avoid clashing with the
methods in Enumerable. The compiler will pick a nongeneric overload over a generic
one where both signatures have the same parameter types, and it’s simpler to avoid
the collision in the first place.

public static T DynamicSum<T>(this IEnumerable<T> source)
{

dynamic total = default(T);
foreach (T element in source)
{

total = (T) (total + element);
}
return total;

}
...
byte[] bytes = new byte[] { 1, 2, 3 };
Console.WriteLine(bytes.DynamicSum());

The code is mostly straightforward: it looks almost exactly the same as any of the
implementations of the normal Sum overloads would. I’ve omitted checking whether
source is null just for brevity, but most of the rest is simple enough. There are a cou-
ple of interesting points.

 First, we use default(T) to initialize total, which is declared as dynamic so that we
get the desired dynamic behavior B. We have to start off with an initial value some-
how: we could try to use the first value in the sequence, but then we’d be stuck if the
sequence were empty. For non-nullable value types, default(T) is almost always an
appropriate value anyway: it’s a natural zero. For reference types, we’ll end up adding
the first element of the sequence to null, which may or may not be appropriate. For
nullable value types, we’ll end up trying to add the first element to the null value for
that type, which certainly won’t be appropriate.

 Second, we’re casting the result of the addition back to T, even though it’s then
being assigned to a dynamic variable. This may seem odd, but you need to think about
the results of summing two bytes together: the C# compiler would normally promote
each operand to int before performing the addition. Without the cast, the total vari-
able would end up storing an int value, which would then cause an exception when
the return statement attempted to convert it back to byte.

 Both of these points lead to deeper questions, but that’s not the point of this sec-
tion. I’ve written up a more detailed investigation of dynamic summation on the
book’s website (see http://mng.bz/0N37). Just to prove that it’s capable of more
than arithmetic on normal numbers, listing 14.13 shows an example of summing
TimeSpan values.

Listing 14.12 Summing an arbitrary sequence of elements dynamically

Dynamically
typed for later useB

Choose addition
operator dynamically

Prints 6
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/0N37

418 CHAPTER 14 Dynamic binding in a static language

var times = new List<TimeSpan>
{

2.Hours(), 25.Minutes(), 30.Seconds(),
45.Seconds(), 40.Minutes()

};
Console.WriteLine(times.DynamicSum());

The TimeSpan values are created using extension methods for convenience, but the
summation is entirely dynamic, resulting in a total span of 3 hours, 6 minutes, and 15
seconds.

DUCK TYPING

Sometimes you know that a member with a particular name will be available at execu-
tion time, but you can’t tell the compiler exactly which member you’re talking about
because it’ll depend on the type. In some ways this is a more general example of the
same problem that we’ve just solved, except using normal methods and properties
instead of operators.

 There is a difference: usually you’d try to capture the commonality in an interface
or abstract base class. You can’t do this with operators, but it’s the normal approach
for methods and properties. Unfortunately it doesn’t always work—particularly if mul-
tiple libraries are involved. The .NET framework is mostly consistent here, but we’ve
already seen one example where it doesn’t quite work. In chapter 12 we looked at the
optimizations available for counting a sequence, and saw that both ICollection and
ICollection<T> have a Count property—but they have no common ancestor inter-
face with that property, so you have to handle them separately.

 Duck typing lets you just access Count without performing the type checking your-
self, as shown in the following listing.

static void PrintCount(IEnumerable collection)
{

dynamic d = collection;
int count = d.Count;
Console.WriteLine(count);

}
...
PrintCount(new BitArray(10));
PrintCount(new HashSet<int> { 3, 5 });
PrintCount(new List<int> { 1, 2, 3 });

Our method is restricted to implementations of IEnumerable for the same reason that
collection initializers are: it’s a pretty good indication that the Count property we end
up using is an appropriate one. The test collections are a BitArray (which only imple-
ments ICollection), a HashSet<int> (which only implements ICollection<int>),
and a List<int> (which implements both). In all cases, the correct property is found
at execution time.

Listing 14.13 Summing a list of TimeSpan elements dynamically

Listing 14.14 Accessing a Count property with duck typing
Licensed to Devon Greenway <devon.greenway@gmail.com>

419Examples of dynamic typing
EXPLICIT INTERFACE IMPLEMENTATION AND DYNAMIC DON’T MIX WELL When I
first tried to test this code, I used an int[]—which is implicitly convertible to
both of the interfaces involved. I was therefore surprised when the Print-
Count method failed at execution time... until I thought about it more closely.
The execution-time binding is performed using the actual type of the object,
which in this case is an int[]. Array types don’t publicly expose a Count prop-
erty—they use explicit interface implementation for that. You can only use
Count when you view an array object in a particular way.

This is just one example where dynamic typing can behave in a way which
is logical but can be unexpected unless you’re careful. I’m collecting an ongo-
ing list of such oddities on the website (see http://mng.bz/5y7M); please let
me know if you find any new ones.

We’re going to stick with the example of retrieving the count of items, but this time
we’ll look at how execution-time overload resolution can offer an alternative to
explicit type testing.

MULTIPLE DISPATCH

With static typing, C# uses single dispatch: at execution, the exact method called only
depends on the actual type of the target of the method call, through overriding. Over-
loading is decided at compile time. Occasionally multiple dispatch is useful to find the
most specialized implementation of a method based on the execution-time types of
the arguments—again, this is what dynamic typing provides. The following listing
demonstrates how multiple dispatch would allow for a more varied and more robust
implementation of optimised counting.

private static int CountImpl<T>(ICollection<T> collection)
{

return collection.Count;
}

private static int CountImpl(ICollection collection)
{

return collection.Count;
}

private static int CountImpl(string text)
{

return text.Length;
}

private static int CountImpl(IEnumerable collection)
{

int count = 0;
foreach (object item in collection)
{

count++;
}
return count;

}

Listing 14.15 Counting different types efficiently using multiple dispatch
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/5y7M

420 CHAPTER 14 Dynamic binding in a static language
public static void PrintCount(IEnumerable collection)
{

dynamic d = collection;
int count = CountImpl(d);
Console.WriteLine(count);

}
...
PrintCount(new BitArray(5));
PrintCount(new HashSet<int> { 1, 2 });
PrintCount("ABC");
PrintCount("ABCDEF".Where(c => c > 'B'));

We know that at least one overload of CountImpl will be appropriate at execution time
as the parameter for PrintCount is of type IEnumerable. We rely on dynamic typing to
perform the same job as the explicit “if it’s an ICollection<T>, use this implementa-
tion; if it’s an ICollection, use this implementation” steps we used when picking a
random element in listing 12.17. As an example of how this is more than just using the
Count property if it’s available, I’ve included an optimization for strings, where we can
use the Length property to obtain the right result quickly.

 Even using multiple dispatch here, we could still run into problems at execu-
tion time: what if the actual type implemented both ICollection<string> and
ICollection<int> via explicit interface implementation? There would be two possi-
ble results based on which Count implementation was picked. In this case, the bind-
ing would be ambiguous, leading to an exception. Fortunately such pathological
cases are likely to be rare.

 These are just a few examples of areas where you might want to use dynamic typing
even if you’re not trying to interoperate with anything else. As I mentioned at the start
of this section, it’ll be worth keeping an eye on how the development community uses
dynamic typing within C#. I expect to see some innovative approaches, ranging from
the utterly evil to the insanely brilliant.4 Next we’re going to delve into how all these
effects are achieved, before we finish off the chapter by implementing our own
dynamic behavior.

 I should warn you that things are about to get tricky. In fact, it’s all extremely ele-
gant, but it’s complicated because programming languages provide a rich set of
operations, and representing all the necessary information about those operations as
data and then acting on it appropriately is a complex job. The good news is that you
don’t need to understand it all intimately. As ever, you’ll get more out of dynamic
typing the more familiar you are with the machinery behind it, but even if you just
use the techniques we’ve seen so far, there may be situations where it makes you a
lot more productive.

4 Arguably these aren’t mutually exclusive, but ideas which are both brilliant and evil are rarely suitable for pro-
duction work.
Licensed to Devon Greenway <devon.greenway@gmail.com>

421Looking behind the scenes
14.4 Looking behind the scenes
Despite the warning of the previous paragraph, I’m won’t go into huge amounts of
detail about the inner workings of dynamic typing. There would be a lot of ground to
cover, both in terms of the framework and language changes. It’s not often that I shy
away from the nitty-gritty of specifications, but in this case I truly believe there’s not
much to be gained from learning it all. I’ll cover the most important (and interesting)
points, and I can thoroughly recommend Sam Ng’s blog (http://mng.bz/ulV1), the
C# language specification, and the DLR project page (see http://mng.bz/0M6A) for
more information if you need to dig into a particular scenario.

 Our eventual goal is to understand what the C# compiler is doing—the code it
emits to achieve dynamic binding at execution time. Unfortunately, none of the gen-
erated code will make any sense until we see the mechanism that underpins it all—the
DLR. You might like to think of a statically typed program as a conventional stage play
with a fixed script, and a dynamically typed program as more like an improvisation
show. The DLR takes the place of the actors’ brains frantically coming up with some-
thing to say in response to audience suggestions. Let’s meet our quick-thinking star
performer.

14.4.1 Introducing the Dynamic Language Runtime

I’ve been bandying the acronym DLR around for a while now, occasionally expanding
it to Dynamic Language Runtime but never explaining what it is. This has been delib-
erate: I’ve been trying to get across the nature of dynamic typing and how it affects
developers, rather than the details of the implementation. But that excuse was never
going to last until the end of the chapter, so here we are. In its barest terms, the
Dynamic Language Runtime is a library which all dynamic languages and the C# com-
piler use to execute code dynamically.

 Amazingly enough, it really is just a library. Despite its name, it isn’t at the same
level as the CLR (Common Language Runtime)—it doesn’t deal in JIT compilation,
native API marshalling, garbage collection, and so forth. But it builds on a lot of the
work in .NET 2.0 and 3.5, particularly the DynamicMethod and Expression types. The
expression tree API has been expanded in .NET 4 to allow the DLR to express more
concepts, too. Figure 14.1 shows how it all fits together.

 In addition to the DLR, figure 14.1 shows another library that may be new to you.
One of the assemblies in the Binders part of the diagram is Micrsoft.CSharp. It con-
tains a number of types that are referenced by the C# compiler when you use dynamic
in your code. Confusingly, this doesn’t include the existing Microsoft.CSharp.
Compiler and Microsoft.CSharp.CodeDomProvider. (They’re not even in the same
assembly as each other!) We’ll see exactly what the new types are used for in section
14.4.2, where we decompile some code written using dynamic.

 One other important aspect differentiates the DLR from the rest of the .NET frame-
work: it’s provided as open source. The complete code lives in a CodePlex project
(http://dlr.codeplex.com), so you can download it and see the inner workings. One
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/ulV1
http://mng.bz/0M6A
http://dlr.codeplex.com

422 CHAPTER 14 Dynamic binding in a static language
of the benefits of this approach is that the DLR hasn’t had to be reimplemented for
Mono (http://mono-project.com): the same code runs on both .NET and its cross-
platform cousin.

 Although the DLR doesn’t handle native code directly, you can think of it as doing
a similar job to the CLR in one sense: just as the CLR converts IL (Intermediate Lan-
guage) into native code, the DLR converts code represented using binders, call sites,
meta-objects, and various other concepts into expression trees which can then be
compiled down into IL and eventually native code by the CLR. Figure 14.2 shows a sim-
plified view of the lifecycle of a single evaluation of a dynamic expression.

 As you can see, one of the important aspects of the DLR is a multilevel cache. This
is crucial for performance reasons, but to understand that and the other concepts
we’ve already mentioned, we’ll need to dive one layer lower.

14.4.2 DLR core concepts

We can summarize the purpose of the DLR in very general terms as taking a high-level
representation of code and executing that code, based on various pieces of informa-
tion that may only be known at execution time. In this section I’m going to introduce
a lot of terminology to describe how the DLR works, but it’s all contributing to that
common aim.

Python apps Ruby apps

IronPython IronRuby

Dynamic
Language
Runtime
(DLR)

Binders
(e.g. C#, VB,
Microsoft.CSharp)

Other .NET libraries:
WCF, WPF,
ASP.NET, etc.

System libraries
(mscorlib, System, System.Core, etc.)

Common Language Runtime
(JIT, GC, etc.)

.NET 4.0

C# apps VB apps

Figure 14.1 How the components of .NET 4 fit together, allowing static and dynamic
languages to execute on the same underlying platform
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mono-project.com

423Looking behind the scenes
CALL SITES

The first concept we need is a call site. This is sort of the atom of the DLR—the smallest
piece of code that can be considered as a single executable unit. One expression may
contain a lot of call sites, but the behavior is built up in the natural way, evaluating one
call site at a time. For the rest of the discussion, we’ll only consider a single call site.
It’s going to be useful to have a small example of a call site to refer to, so here’s a sim-
ple one, where d is of course a variable of type dynamic:

d.Foo(10);

The call site is represented in code as a System.Runtime.CompilerServices.Call-
Site<T>. We’ll see a full example of how call sites are created and used in the next sec-
tion, when we look at what the C# compiler does at compile time, but here’s an
example of the code which might be called to create the site for the previous snippet:

CallSite<Action<CallSite, object, int>>.Create(Binder.InvokeMember(
CSharpBinderFlags.ResultDiscarded, "Foo", null, typeof(Test),
new CSharpArgumentInfo[] {
CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null),
CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.Constant |

CSharpArgumentInfoFlags.UseCompileTimeType,
null) }));

So now that we have a call site, can we execute the code? Not quite.

Code.cs

C# compiler

DLR + dynamic objects + C# binders

JIT (of IL in cache)

Call site
We have native code —
we can run it!
(At last...)

Caches
(IL + native code

+ rules)

Binder

Caches
(Rules)

Next time... if the cache is hit, just execute the native code.

(Create once and reuse these objects)

Call site
Objects with cache
of behaviorCaches

(IL + rules)

Binder

Caches
(Rules)

C(CrC ea e once andd reutate o

Call site

e thhesh e objbje tcts))

Binding IL

Code.cs

... ...
d.Foo();
...

Source code

Figure 14.2 Lifecycle of a
dynamic expression
Licensed to Devon Greenway <devon.greenway@gmail.com>

424 CHAPTER 14 Dynamic binding in a static language
RECEIVERS AND BINDERS

As well as a call site, we need something to decide what it means and how to execute it.
In the DLR, two entities can decide this: the receiver of a call and the binder. The
receiver of a call is simply the object that a member is called on. In our sample call
site, the receiver is the object that d refers to at execution time. The binder will
depend on the calling language, and is part of the call site—in this case, we can see
that the C# compiler emits code to create a binder using Binder.InvokeMember. The
Binder class in this case is Microsoft.CSharp.RuntimeBinder.Binder, so it really is
C#-specific. The C# binder is also COM-aware, and will perform appropriate COM
binding if the receiver is an IDispatch object.

 The DLR always gives precedence to the receiver: if it’s a dynamic object that knows
how to handle the call, then it’ll use whatever execution path the object provides. An
object can advertise itself as being dynamic by implementing the new IDynamicMeta-
ObjectProvider interface. The name is a mouthful, but it only contains a single mem-
ber: GetMetaObject. You’ll need to be an expression tree ninja to implement it
correctly, as well as knowing the DLR quite well. But in the right hands this can be a
powerful tool, giving you lower-level interaction with the DLR and its execution cache.
If you need to implement dynamic behavior in a high-performance fashion, it’s worth
the investment of learning the details. There are two public implementations of
IDynamicMetaObjectProvider included in the framework to make it easy to imple-
ment dynamic behavior in situations where performance isn’t quite as critical. We’ll
look at all of this in more detail in section 14.5, but for now you just need to be aware
of the interface itself, and that it represents the ability of an object to react dynamically.

 If the receiver isn’t dynamic, the binder gets to decide how the code should be exe-
cuted. In our code, it would apply C#-specific rules to the code and work out what to
do. If you were creating your own dynamic language, you could implement your own
binder to decide how it should behave in general (when the object doesn’t override
the behavior). This lies well beyond the scope of this book, but it’s an interesting topic
in and of itself: one of the aims of the DLR is to make it easier to implement your own
languages.

RULES AND CACHES

The decision for how to execute a call is represented as a rule. Fundamentally this con-
sists of two elements of logic: the circumstances under which the call site should
behave this way, and the behavior itself. The first part is really for optimization. Sup-
pose you have a call site that represents addition of two dynamic values, and the first
time it’s evaluated, both values are of type byte. The binder has gone to a fair amount
of effort to work out that this means both operands should be promoted to int, and
the result should be the sum of those integers. It can reuse that operation any time
the operands turn out to both be byte. Checking a set of previous results for validity
can save a lot of time. The rule I’ve used as an example (the operand types must be
exactly the same as the ones I’ve just seen) is a common one, but the DLR supports
other rules too.
Licensed to Devon Greenway <devon.greenway@gmail.com>

425Looking behind the scenes
 The second part of a rule is the
code to use when the rule matches,
and it’s represented as an expres-
sion tree. It could have been stored
just as a compiled delegate to
call—but keeping the expression
tree representation means the
cache can optimize heavily. There
are three levels of cache in the
DLR: L0, L1, and L2. The caches
store information in different ways,
and with a different scope. Each
call site has its own L0 and L1 caches, but an L2 cache may be shared between several
similar call sites, as shown in figure 14.3.

 The set of call sites that share an L2 cache is determined by their binders—each
binder has an L2 cache associated with it. The compiler (or whatever is creating the
call sites) decides how many binders it wants to use. It can only use a binder for multi-
ple call sites that represent very similar code: where if the context is the same at execu-
tion time, the call sites should execute in the same way. In fact, the C# compiler
doesn’t use this facility—it creates a new binder for every call site,5 so there’s not
much difference between the L1 and L2 caches for C# developers. Genuinely dynamic
languages such as IronRuby and IronPython make more use of it, though.

 The caches themselves are executable, which takes a while to understand. The C#
compiler generates code to simply execute the call site’s L0 cache (which is a delegate
accessed through the Target property). That’s it! The L0 cache has a single rule,
which it checks when it’s called. If the rule matches, it executes the associated behav-
ior. If the rule doesn't match (or if this is the first call, so it doesn’t have even one
rule), it calls into the L1 cache, which in turn calls into the L2 cache. If the L2 cache
can’t find any matching rules, it asks the receiver or the binder to resolve the call. The
results are then put into the cache for next time. In the case of our earlier snippet, the
execution part would look something like this:

callSite.Target(callSite, d, 10);

The L1 and L2 caches look through their rules in a fairly standard way—each has a col-
lection of rules, and each rule is asked whether or not it matches. The L0 cache is
somewhat different. The two parts of its behavior (checking its rule and delegating to
the L1 cache) are combined into a single method which is then JIT compiled. Updat-
ing the L0 cache consists of rebuilding the method from the new rule.

 The result of all of this is that typical call sites which see similar context repeatedly
are very fast; the dispatch mechanism is about as lean as you could make it if you

5 A lot of information is specific to a particular call site, as the binding rules will be different depending on
things like which class it’s being called from.

Call site

L0 cache:
delegate

L1 cache:
rules (few)

Binder

L2 cache:
rules (many)

Call siteCall site

Call sites with the same semantics

...

Figure 14.3 Relationships between dynamic caches and
call sites
Licensed to Devon Greenway <devon.greenway@gmail.com>

426 CHAPTER 14 Dynamic binding in a static language
hand-coded the tests yourself. Of course this has to be weighed against the cost of all
the dynamic code generation involved, but the multilevel cache is complicated pre-
cisely because it tries to achieve a balance across various different scenarios.

 Now that we know a bit about the machinery in the DLR, we’ll be able to under-
stand what the C# compiler does for us in order to set it all in motion.

14.4.3 How the C# compiler handles dynamic

The main jobs of the C# compiler when it comes to dynamic code are to work out when
dynamic behavior is required, and to capture all the necessary context so that the
binder and receiver have enough information to resolve the call at execution time.

IF IT USES DYNAMIC, IT’S DYNAMIC!

One situation is obviously dynamic: when the target of a member call is dynamic. The
compiler has no way of knowing how that’ll be resolved. It may be a truly dynamic
object that’ll perform the resolution itself, or it may end up with the C# binder resolv-
ing it with reflection later. Either way, there’s simply no opportunity for the call to be
resolved statically.

 But when the dynamic value is being used as an argument for the call, there are
some situations where you might expect the call to be resolved statically—particularly
if there’s a suitable overload that has a parameter type of dynamic. The rule is that if
any part of a call is dynamic, the call becomes dynamic and will resolve the overload
with the execution-time type of the dynamic value. The following listing demonstrates
this using a method with two overloads, and invoking it in a number of different ways.

static void Execute(string x)
{

Console.WriteLine("String overload");
}

static void Execute(dynamic x)
{

Console.WriteLine("Dynamic overload");
}
...
dynamic text = "text";
Execute(text);
dynamic number = 10;
Execute(number);

Both calls to Execute are bound dynamically. At execution time, they’re resolved
using the types of the actual values, namely, string and int. The parameter of type
dynamic is treated as if it were declared with type object everywhere except within the
method itself—if you look at the compiled code, you’ll see it is a parameter of type
object, just with an extra attribute applied. This also means you can’t have two meth-
ods whose signatures differ just by dynamic/object parameter types.

Listing 14.16 Experimenting with method overloading and dynamic values

Prints
“String overload”

Prints
“Dynamic overload”
Licensed to Devon Greenway <devon.greenway@gmail.com>

427Looking behind the scenes
 That’s an example of resolving method calls, but there are plenty of other expres-
sions to consider. Sometimes the situation isn’t quite as straightforward as I’ve led you
to believe...

IT’S DYNAMIC... EXCEPT WHEN IT ISN’T

When I introduced dynamic in section 14.2 I had to be careful not to generalize too
far, because there are exceptions to almost every rule. Although you should know
about these, you don’t need to worry about them—they’re unlikely to cause you any
problems. Let’s get them out of the way quickly.

Conversions between CLR types and dynamic
The conversions between CLR types and dynamic are restricted in the same way that
you can’t convert from every CLR type to object; the exceptions are types such as
pointers and System.TypedReference. Given that dynamic is just object at the CLR
level, it’s not surprising that these types are excluded.

 You may have also noticed that I wrote about a conversion “from an expression of
type dynamic” to a CLR type, not a conversion from the dynamic type itself. This sub-
tlety helps during type inference and other situations that need to consider implicit
conversions between types: in general, life gets unpleasant when there are two types
with implicit conversions both ways. It basically limits the situations in which the con-
version is considered—for example, consider this implicitly typed array:

dynamic d = 0;
string x = "text";
var array = new[] { d, x };

What should the inferred type of array be? If there were an implicit conversion from
dynamic to string, then it could be either string[] or dynamic[], so you’d end up
with ambiguity and a compile-time error. But as the conversion only exists from a
dynamic expression, the compiler sees a conversion from string to dynamic but not the
other way, and array is of type dynamic[]. It’s probably best not to worry about this
subtlety unless you’re trying to work through a particular scenario with the specifica-
tion beside you.

Expressions using dynamic aren’t always evaluated dynamically
There are some cases where the CLR is quite capable of evaluating an expression using
the normal static execution paths, even if one of the subexpressions is dynamic. For
example, consider the as operator:

dynamic d = GetValueDynamically();
string x = d as string;

There’s nothing that can happen dynamically here—either the value of d is a refer-
ence to a string or it isn’t. User-defined conversions aren’t applied when the as opera-
tor is used, so the C# compiler can use exactly the same IL that it would if the variable
were of type object.
Licensed to Devon Greenway <devon.greenway@gmail.com>

428 CHAPTER 14 Dynamic binding in a static language
Dynamically evaluated expressions aren’t always of type dynamic
In some cases, the compiler doesn’t know exactly how it’s going to evaluate an expres-
sion, but it knows the exact type of the result (assuming an exception isn’t thrown). For
example, consider making a constructor call using a dynamic value as an argument:

dynamic d = GetValueDynamically();
SomeType x = new SomeType(d);

The constructor call itself has to be evaluated dynamically—there may be several over-
loads to be resolved at execution time—but the result is always going to be a SomeType
reference. The assignment to x can therefore happen without a dynamic conversion.

 There are a few other cases like this: using a dynamic array index into a statically
typed array can only result in a value of the array element type, for example. But you
shouldn’t assume it’ll always happen where you might expect it to: you could have sev-
eral overloads of a method, all of which have the same static return type, but the type
of that method invocation expression will still be dynamic.

 That’s enough about when dynamic evaluation doesn’t happen, or doesn’t result in
a dynamic value—let’s get back to the situations where it does, and see what the C#
compiler does to make it all work.

CREATING CALL SITES AND BINDERS

You don’t need to know the exact details of what the compiler does with dynamic
expressions in order to use them, but it can be instructive to see what the compiled
code looks like. In particular, if you need to decompile your code for any other rea-
son, it means you won’t be surprised by what the dynamic parts look like. My tool of
choice for this kind of work is Reflector (see http://mng.bz/pMXJ), but you could
use ildasm if you wanted to read the IL directly.

 We’re only going to look at a single example—I’m sure I could fill a whole chapter
by looking at implementation details, but the idea is only to give you the gist of what
the compiler is up to. If you find this example interesting, you may want to experi-
ment more on your own. Just remember that the exact details are implementation-
specific; they may change in future compiler versions, so long as the behavior is equiv-
alent. Here’s the sample snippet, which exists in a Main method in the normal man-
ner for Snippy:

string text = "text to cut";
dynamic startIndex = 2;
string substring = text.Substring(startIndex);

Pretty simple, right? It actually contains two dynamic operations—one to call
Substring, and one (implicit) to dynamically convert the result (which is just dynamic
at compile time) to a string. Listing 14.17 shows the decompiled code for the Snippet
class.6 I’ve omitted the class declaration itself and the implicit parameterless construc-
tor to save space—and I’ve reformatted the code with significantly reduced
whitespace for the same reason.

6 Just as a reminder, Snippet is the class generated by Snippy automatically.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/pMXJ

429Looking behind the scenes

[CompilerGenerated]
private static class <Main>o__SiteContainer0 {

public static CallSite<Func<CallSite, object, string>> <>p__Site1;
public static CallSite<Func<CallSite, string, object, object>>

<>p__Site2;
}

private static void Main() {
string text = "text to cut";
object startIndex = 2;
if (<Main>o__SiteContainer0.<>p__Site1 == null) {

<Main>o__SiteContainer0.<>p__Site1 =
CallSite<Func<CallSite, object, string>>.Create(

new CSharpConvertBinder(typeof(string),
CSharpConversionKind.ImplicitConversion, false));

}
if (<Main>o__SiteContainer0.<>p__Site2 == null) {

<Main>o__SiteContainer0.<>p__Site2 =
CallSite<Func<CallSite, string, object, object>>.Create(

new CSharpInvokeMemberBinder(CSharpCallFlags.None,
"Substring", typeof(Snippet), null,
new CSharpArgumentInfo[] {

new CSharpArgumentInfo(
CSharpArgumentInfoFlags.UseCompileTimeType, null),

new CSharpArgumentInfo(
CSharpArgumentInfoFlags.None, null) }));

}
string substring =

<Main>o__SiteContainer0.<>p__Site1.Target.Invoke(
<Main>o__SiteContainer0.<>p__Site1,
<Main>o__SiteContainer0.<>p__Site2.Target.Invoke(

<Main>o__SiteContainer0.<>p__Site2, text, startIndex));
}

I don’t know about you, but I’m glad that I never have to write or encounter code like
that, other than for the purpose of learning about exactly what’s going on. There’s
nothing new about that, though—the generated code for iterator blocks, expression
trees, and anonymous functions can be pretty gruesome too.

 A nested static class is used to store all the call sites B for the method, as they only
need to be created once. (If they were created each time, the cache would be useless!)
It’s possible that the call sites could be created more than once due to multithreading,
but if that happens it’s just slightly inefficient—and it means the lazy creation is
achieved with no locking at all. It doesn’t really matter if one call site instance is
replaced with another. Each method using dynamic binding has a separate site con-
tainer: this has to be the case for generic methods, as the call site needs to vary based
on the type arguments. Another compiler implementation could choose to use one
site container for all the nongeneric methods, one for all generic methods with a sin-
gle type parameter, and so on.

Listing 14.17 The results of compiling dynamic code

Call sites storageB

Creates
conversion call site

C

Creates
substring call site

D

E
Preserves
text type

Invocation of both callsF
Licensed to Devon Greenway <devon.greenway@gmail.com>

430 CHAPTER 14 Dynamic binding in a static language
 After the call sites are created (C and D) they’re simply invoked. The Substring
call is invoked first (read the code from the innermost part of the statement outward)
and then the conversion is invoked on the result F. At this point we have a statically
typed value again, so we can assign it to the substring variable.

 I'd like to highlight one more aspect of the code: the way that some static type
information is preserved in the call site. The type information itself is present in the
delegate signature used for the type argument of the call site (Func<CallSite,
string, object, object>) and a flag in the corresponding CSharpArgumentInfo indi-
cates that this type information should be used in the binder E. (Even though this is
the target of the method, it’s represented as an argument; instance methods are
treated as static methods with an implicit first parameter of this.) This is a crucial
part of making the binder behave as if it were just recompiling your code at execution
time. Let’s look at why this is so important.

14.4.4 The C# compiler gets even smarter

C# 4 lets you straddle the static/dynamic boundary not just by having some of your
code bound statically and some bound dynamically, but also by combining the two
ideas within a single binding. It remembers everything it needs to know within the call
site, then cleverly merges this information with the types of the dynamic values at exe-
cution time.

PRESERVING COMPILER BEHAVIOR AT EXECUTION TIME

The ideal model for working out how the binder should behave is to imagine that
instead of having a dynamic value in your source code, you have a value of exactly the
right type: the type of the actual value at execution time.7 This only applies to dynamic
values within the expression: any types that are known at compile time are still used
for lookups such as member resolution. I’ll give two examples of where this makes a
difference. The following listing shows a simple overloaded method in a single type.

static void Execute(dynamic x, string y)
{

Console.WriteLine("dynamic, string");
}

static void Execute(dynamic x, object y)
{

Console.WriteLine("dynamic, object");
}
...
object text = "text";
dynamic d = 10;
Execute(d, text);

7 It’s slightly more complicated than that—what if the actual type is internal to another assembly? We wouldn’t
want that to be used as the type argument of a generic method via type inference, for example. The binder
has the notion of a “best accessible type” based on the calling context and the actual type.

Listing 14.18 Dynamic overload resolution within a single type

Prints
“dynamic, object”
Licensed to Devon Greenway <devon.greenway@gmail.com>

431Looking behind the scenes
The important variable here is text. Its compile-time type is object, but at execution time
its value is a string reference. The call to Execute is dynamic because we’re using the
dynamic variable d as one of the arguments, but the overload resolution uses the static
type of text, so the result is “dynamic, object”. If the text variable had been declared
as dynamic as well, it would’ve used the other overload.

 The next listing is similar, but this time it’s the receiver of the call that matters.

class Base
{

public void Execute(object x)
{

Console.WriteLine("object");
}

}

class Derived : Base
{

public void Execute(string x)
{

Console.WriteLine("string");
}

}
...
Base receiver = new Derived();
dynamic d = "text";
receiver.Execute(d);

In listing 14.19, the type of receiver is Derived at execution time, so you might’ve
expected the overload introduced in Derived to be called. But the compile-time type
of receiver is Base, and so the binder restricts the set of methods it considers to just
the ones that would have been available if we’d been binding the method statically.
Despite all of these decisions that have to be taken later, some compile-time checks
are available, even for code that’ll be fully bound at execution time.

COMPILE-TIME ERRORS FOR DYNAMIC CODE

As I said near the start of this chapter, one of the disadvantages of dynamic typing is
that some errors that would normally be detected by the compiler are delayed until
execution time, at which point an exception is thrown. There are many situations
where the compiler has to just hope you know what you’re doing, but where it can
help you, it will. The simplest example of this is when you try to call a method with a
statically typed receiver (or a static method) and none of the overloads can possibly be
valid, whatever type the dynamic value has at execution time. The following listing
shows three examples of invalid calls, two of which are caught by the compiler.

string text = "cut me up";
dynamic guid = Guid.NewGuid();

Listing 14.19 Dynamic overload resolution within a class hierarchy

Listing 14.20 Catching errors in dynamic calls at compile time

Prints “object”
Licensed to Devon Greenway <devon.greenway@gmail.com>

432 CHAPTER 14 Dynamic binding in a static language
text.Substring(guid);
text.Substring("x", guid);
text.Substring(guid, guid, guid);

Here we have three calls to string.Substring. The compiler knows the exact set of
possible overloads, because it knows the type of text statically. It doesn’t complain at
the first call, because it can’t tell what type guid will be—if it turns out to be an inte-
ger, all will be well. But the final two lines throw up errors: there are no overloads that
take a string as the first argument, and there are no overloads with three parameters.
The compiler can guarantee that these would fail at execution time, so it’s reasonable
for it to fail at compile time instead.

 A slightly trickier example is with type inference. If a dynamic value is used to infer
a type argument in a call to a generic method, then the actual type argument won’t be
known until execution time and no validation can occur beforehand. But any type
argument that would be inferred without using any dynamic values can cause type
inference to fail at compile time. The following listing shows an example of this.

void Execute<T>(T first, T second, string other) where T : struct
{
}
...
dynamic guid = Guid.NewGuid();
Execute(10, 0, guid);
Execute(10, false, guid);
Execute("hello", "hello", guid);

Again, the first call compiles, but would fail at execution time. The second call won’t
compile because T can’t be both int and bool, and there are no conversions between
the two of them. The third call won’t compile because T is inferred to be string,
which violates the constraint that it must be a value type.

 The compiler is conservative: it’ll only fail with an error if it can tell that some code
can’t possibly succeed, and it only performs relatively simple tests on this front. There
are some situations where it may be obvious (and provable) to a human that the code
won’t work, but where the compiler allows the code through. Of course, if a particular
line of code will never work, then a single unit test that executes it will fail, so the sim-
plistic nature of the compiler’s checking doesn’t matter if you have good code cover-
age. Think of it as a bonus in the cases where it does spot a problem.

 That covers the most important points in terms of what the compiler can do for
you. But you can’t use dynamic absolutely everywhere. There are limitations, some of
which are painful, but most of which are quite obscure.

14.4.5 Restrictions on dynamic code

You can mostly use dynamic wherever you’d normally use a type name, and then write
normal C#. But there are a few exceptions. This isn’t an exhaustive list, but it covers
the cases you’re most likely to run into.

Listing 14.21 Generic type inference with mixed static and dynamic values
Licensed to Devon Greenway <devon.greenway@gmail.com>

433Looking behind the scenes
EXTENSION METHODS AREN’T RESOLVED DYNAMICALLY

The compiler emits some of the context of the call into the call site, as we’ve already
seen. In particular, the site knows the static types that the compiler was aware of. But it
doesn’t currently know which using directives occurred in the source file containing
the call. That means it doesn’t know which extension methods are available at execu-
tion time.

 This doesn’t just mean that you can’t call extension methods on dynamic values—it
means you can’t pass them into extension methods as arguments either. There are two
workarounds, both of which are helpfully suggested by the compiler. If you actually
know which overload you want, you can cast the dynamic value to the right type within
the method call. Otherwise, assuming you know which static class contains the exten-
sion method, you can just call it as a normal static method. The following listing shows
an example of a failing call and both workarounds.

dynamic size = 5;
var numbers = Enumerable.Range(10, 10);
var error = numbers.Take(size);
var workaround1 = numbers.Take((int) size);
var workaround2 = Enumerable.Take(numbers, size);

Both approaches will work if you want to call the extension method with the dynamic
value as the implicit this value, too—although the cast becomes pretty ugly in that
case.

DELEGATE CONVERSION RESTRICTIONS WITH DYNAMIC

The compiler has to know the exact delegate (or expression) type involved when con-
verting a lambda expression, an anonymous method, or a method group. You can’t
assign any of these to a plain Delegate or object variable without casting, and the
same is true for dynamic. But a cast is enough to keep the compiler happy. This could
be useful in some situations if you want to execute the delegate dynamically later. You
can also use a delegate with a dynamic type as one of its parameters if that’s useful.
Listing 14.23 shows some examples that’ll compile, and some that won’t.

dynamic badMethodGroup = Console.WriteLine;
dynamic goodMethodGroup = (Action<string>) Console.WriteLine;

dynamic badLambda = y => y + 1;
dynamic goodLambda = (Func<int, int>) (y => y + 1);

dynamic veryDynamic = (Func<dynamic, dynamic>) (d => d.SomeMethod());

Note that because of the way overload resolution works, this means you can’t use
lambda expressions in dynamically bound calls at all without casting—even if the only
method that could possibly be invoked has a known delegate type at compile time. For
example, this code won’t compile:

Listing 14.22 Calling extension methods with dynamic arguments

Listing 14.23 Dynamic types and lambda expressions

Compile-time error
Licensed to Devon Greenway <devon.greenway@gmail.com>

434 CHAPTER 14 Dynamic binding in a static language
void Method(Action<string> action, string value)
{

action(value);
}
...
dynamic text = "error";
Method(x => Console.WriteLine(x), text);

It’s worth pointing out that all is not lost in terms of LINQ and dynamic interacting.
You can have a strongly typed collection with an element type of dynamic, at which
point you can still use extension methods, lambda expressions, and even query
expressions. The collection can contain objects of different types, and they’ll behave
appropriately at execution time, as shown in the following listing.

var list = new List<dynamic> { 50, 5m, 5d };
var query = from number in list

where number > 4
select (number / 20) * 10;

foreach (var item in query)
{

Console.WriteLine(item);
}

This prints 20, 2.50, and 2.5. I deliberately divided by 20 and then multiplied by 10 to
show the difference between decimal and double: the decimal type keeps track of
precision without normalizing, which is why 2.50 is displayed instead of 2.5. The first
value is an integer, so integer division is used; hence the value of 20 instead of 25.

CONSTRUCTORS AND STATIC METHODS

You can call constructors and static methods dynamically in the sense that you can
specify dynamic arguments, but you can’t resolve a constructor or static method
against a dynamic type. There’s just no way of specifying which type you mean.

 If you run into a situation where you want to be able to do this dynamically in some
way, try to think of ways to use instance methods instead—for instance, by creating a
factory type. You may find that you can get the dynamic behavior you want using sim-
ple polymorphism or interfaces, but within static typing.

TYPE DECLARATIONS AND GENERIC TYPE PARAMETERS

You can’t declare that a type has a base class of dynamic. You also can’t use dynamic in
a type parameter constraint, or as part of the set of interfaces that your type imple-
ments. You can use it as a type argument for a base class, or when you’re specifying an
interface for a variable declaration. So, for example, these declarations are invalid:

 class BaseTypeOfDynamic : dynamic
 class DynamicTypeConstraint<T> where T : dynamic
 class DynamicTypeConstraint<T> where T : List<dynamic>
 class DynamicInterface : IEnumerable<dynamic>

Listing 14.24 Querying a collection of dynamic elements

Compile-time error
Licensed to Devon Greenway <devon.greenway@gmail.com>

435Implementing dynamic behavior
But these are valid:

 class GenericDynamicBaseClass : List<dynamic>
 IEnumerable<dynamic> variable;

Most of these restrictions around generics are the result of the dynamic type not really
existing as a .NET type. The CLR doesn’t know about it—any uses in your code are
translated into objects with the DynamicAttribute applied appropriately. (For types
such as List<dynamic> or Dictionary<string, dynamic>, the attribute indicates
exactly which parts of the type are dynamic.) DynamicAttribute is only applied when
the dynamic nature needs to be represented in metadata; local variables don’t require
the attribute, as nothing needs to inspect them after compilation to spot their
dynamic nature.

 All the dynamic behavior is achieved through compiler cleverness in deciding how
the source code should be translated, and library cleverness at execution time. This
equivalence between dynamic and object is evident in various places, but it’s perhaps
most obvious if you look at typeof(dynamic) and typeof(object), which return the
same reference. In general, if you find you can’t do what you want to with the dynamic
type, remember what it looks like to the CLR and see if that explains the problem. It
may not suggest a solution, but at least you’ll get better at predicting what’ll work
ahead of time.

 That’s all the detail I’m going to give about how C# 4 treats dynamic, but there’s
another aspect of the dynamic typing picture which we really need to look at to get a
well-rounded view of the topic: reacting dynamically. It’s one thing to be able to call
code dynamically, but it’s another to be able to respond dynamically to those calls.

 Of course, if you’re just calling into third-party code dynamically—or even using
techniques such as multiple dispatch shown earlier—you don’t need to worry about
this. I understand if you feel you’ve already had your fill of dynamic typing, at least for
the moment; we’ve already covered an awful lot of ground. You can safely skip the
next section and come back to it another time—nothing in the rest of the book relies
on it. On the other hand, it’s kind of fun.

14.5 Implementing dynamic behavior
The C# language doesn’t offer any specific help in implementing dynamic behavior,
but the framework does. A type has to implement IDynamicMetaObjectProvider in
order to react dynamically, but there are two built-in implementations that can take a
lot of the work away in many cases. We’ll look at both of these, as well as a very simple
implementation of IDynamicMetaObjectProvider, just to show you what’s involved.
These three approaches are really different, and we’ll start with the simplest of them:
ExpandoObject.

14.5.1 Using ExpandoObject

System.Dynamic.ExpandoObject looks like a funny beast at first glance. Its single pub-
lic constructor has no parameters. It has no public methods, unless you count the
Licensed to Devon Greenway <devon.greenway@gmail.com>

436 CHAPTER 14 Dynamic binding in a static language
explicit implementation of various interfaces—crucially IDynamicMetaObject-

Provider and IDictionary<string, object>. (The other interfaces it implements
are all due to IDictionary<,> extending other interfaces.) Oh, and it’s sealed—so it’s
not a matter of deriving from it to implement useful behavior. No, ExpandoObject is
only useful if you refer to it via dynamic or one of the interfaces it implements.

SETTING AND RETRIEVING INDIVIDUAL PROPERTIES

The dictionary interface gives a hint as to its purpose—it’s basically a way of storing
objects via names. But those names can also be used as properties via dynamic typing.
The following listing shows this working both ways.

dynamic expando = new ExpandoObject();
IDictionary<string, object> dictionary = expando;
expando.First = "value set dynamically";
Console.WriteLine(dictionary["First"]);

dictionary["Second"] = "value set with dictionary";
Console.WriteLine(expando.Second);

Listing 14.25 just uses strings as the values for convenience—you can use any object, as
you’d expect with an IDictionary<string, object>. If you specify a delegate as the
value, you can then call the delegate as if it were a method on the expando, as shown
in listing 14.26.

dynamic expando = new ExpandoObject();
expando.AddOne = (Func<int, int>) (x => x + 1);
Console.Write(expando.AddOne(10));

Although this looks like a method access, you can also think of it as a property access
which returns a delegate, and then an invocation of the delegate. If you created a stat-
ically typed class with an AddOne property of type Func<int, int>, you could use
exactly the same syntax. The C# generated to call AddOne does in fact use an “invoke
member” operation rather than trying to access it as a property and then invoke it, but
ExpandoObject knows what to do. You can also access the property to retrieve the del-
egate if you want to.

 Let’s move on to a slightly larger example—although we’re still not going to do
anything particularly tricky.

CREATING A DOM TREE

We’re going to create a tree of expandos that mirrors an XML DOM tree. This is a
pretty crude implementation, designed for simplicity of demonstration rather than
real-world use. In particular, it’s going to assume we don’t have any XML namespaces
to worry about. Each node in the tree has two name/value pairs that’ll always be pres-
ent: XElement, which stores the original LINQ to XML element used to create the
node, and ToXml, which stores a delegate which just returns the node as an XML
string. You could just call node.XElement.ToString(), but this way gives another

Listing 14.25 Storing and retrieving values with ExpandoObject

Listing 14.26 Faking methods on an ExpandoObject with delegates
Licensed to Devon Greenway <devon.greenway@gmail.com>

437Implementing dynamic behavior
example of how delegates work with ExpandoObject. One point to mention is that I
used ToXml instead of ToString, as setting the ToString property on an expando
doesn’t override the normal ToString method. This could lead to confusing bugs, so I
opted for the different name instead.

 The interesting part isn’t the fixed names; it’s the ones that depend on the real
XML. I’m going to ignore attributes completely, but any elements in the original XML
that are children of the original element are accessible via properties of the same
name. For instance, consider the following XML:

<root>
<branch>

<leaf />
</branch>

</root>

Assuming a dynamic variable called root representing the root element, we could
access the leaf node with two simple property accesses, which can occur in a single
statement:

dynamic leaf = root.branch.leaf;

If an element occurs more than once within a parent, the property just refers to the
first element with that name. To make the other elements accessible, each element
will also be exposed via a property using the element name with a suffix of List which
returns a List<dynamic> containing each of the elements with that name in docu-
ment order. In other words, the access could also be represented as root.
branchList[0].leaf, or perhaps root.branchList[0].leafList[0]. Note that the
indexer here is being applied to the list—you can’t define your own indexer behavior
for expandos.

 The implementation of all of this is actually remarkably simple, with a single recur-
sive method doing all the work, as shown in the following listing.

public static dynamic CreateDynamicXml(XElement element)
{

dynamic expando = new ExpandoObject();
expando.XElement = element;
expando.ToXml = (Func<string>)element.ToString;

IDictionary<string, object> dictionary = expando;
foreach (XElement subElement in element.Elements())
{

dynamic subNode = CreateDynamicXml(subElement);
string name = subElement.Name.LocalName;
string listName = name + "List";
if (dictionary.ContainsKey(name))
{

((List<dynamic>) dictionary[listName]).Add(subNode);
}

Listing 14.27 Implementing a simplistic XML DOM conversion with ExpandoObject

Assigns
simple property

B

Uses delegate
for propertyC

Recursively
processes
subelementD

Adds repeated
element to list E
Licensed to Devon Greenway <devon.greenway@gmail.com>

438 CHAPTER 14 Dynamic binding in a static language
else
{

dictionary[name] = subNode;
dictionary[listName] = new List<dynamic> { subNode };

}
}
return expando;

}

Without the list handling, listing 14.27 would’ve been even simpler. We set the
XElement and ToXml properties dynamically (B and C), but we can’t do that for the
elements or their lists, because we don’t know the names at compile time.8 We use the
dictionary representation instead (E and F), which also allows us to check for
repeated elements easily. You can’t tell whether an expando contains a value for a par-
ticular key just by accessing it as a property: any attempt to access a property that
hasn’t already been defined results in an exception. The recursive handling of subele-
ments is as straightforward in dynamic code as it’d be in statically typed code: we just
call the method recursively D with each subelement, using its result to populate the
appropriate properties.

 We’re going to need some XML to use as an example, but it’s helpful to picture it
graphically as well as in its raw format. We’ll use a simple structure representing
books. Each book has a single name represented as an attribute, and may have multi-
ple authors, each with their own element. Figure 14.4 shows the whole file as a tree,
and the text appears afterward.

<books>
<book name="Mortal Engines">

<author name="Philip Reeve" />
</book>
<book name="The Talisman">

<author name="Stephen King" />
<author name="Peter Straub" />

</book>
<book name="Rose">

<author name="Holly Webb" />
<excerpt>

Rose was remembering the illustrations from
Morally Instructive Tales for the Nursery.

</excerpt>
</book>

</book>

Listing 14.28 shows a brief example of how the expando code can be used with this
XML document, including the ToXml and XElement properties. The books.xml file
contains the XML document shown in the figure.

8 There's a certain irony here—the names we know statically can be set dynamically, but the names we know
dynamically have to use static typing.

Creates new
list and sets
properties

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

439Implementing dynamic behavior

XDocument doc = XDocument.Load("books.xml");
dynamic root = CreateDynamicXml(doc.Root);
Console.WriteLine(root.book.author.ToXml());
Console.WriteLine(root.bookList[2].excerpt.XElement.Value);

Listing 14.28 should hold no surprises, unless you’re unfamiliar with the XElement.
Value property, which simply returns the text within an element. The output of the
listing is as we’d expect:

<author name="Philip Reeve" />
Rose was remembering the illustrations from
Morally Instructive Tales for the Nursery.

This is all good, but there are a few issues with our DOM. In particular:

 It doesn’t handle attributes at all.
 We need two properties for each element name, due to the need to represent

lists.
 It’d be nice to override ToString() instead of adding an extra property.
 The result is mutable—there’s nothing to stop code from adding its own prop-

erties afterward.
 Although the expando is mutable, it won’t reflect any changes to the underly-

ing XElement (which is also mutable).

Listing 14.28 Using a dynamic DOM created from expandos

books

book
name="..."

book
name="..."

book
name="..."

author
name="..."

author
name="..."

author
name="..."

author
name="..."

excerpt (Text node)
Figure 14.4 Tree
structure of sample
XML file
Licensed to Devon Greenway <devon.greenway@gmail.com>

440 CHAPTER 14 Dynamic binding in a static language
 There are many opportunities for naming clashes, such as a node containing
elements Foo and FooList, or elements called XElement or ToXml.

 We populate the entire tree up-front, which is a lot of work if we only need a few
nodes.

Fixing these issues requires more control than just being able to set properties. Enter
DynamicObject.

14.5.2 Using DynamicObject

DynamicObject is a more powerful way of interacting with the DLR than using
ExpandoObject, but it’s a lot simpler than implementing IDynamicMetaObject-
Provider. Although it’s not actually an abstract class, you really need to derive from it
to do anything useful—and the only constructor is protected, so it might as well be
abstract for all practical purposes. There are four kinds of method that you might wish
to override:

 TryXXX() invocation methods, representing dynamic calls to the object
 GetDynamicMemberNames(), which can return a list of the available members
 The normal Equals(), GetHashCode(), and ToString() methods, which can be

overridden as usual
 GetMetaObject(), which returns the metaobject used by the DLR

We’ll look at all but the last of these to improve our XML DOM representation, and
we’ll discuss metaobjects in the next section when we implement IDynamicMeta-
ObjectProvider from scratch. In addition, it can be useful to create new members in
your derived type, even if callers are likely to use instances as dynamic values. Before
we take any of these steps, we’ll need a class to hold all these members.

GETTING STARTED

As we’re deriving from DynamicObject instead of just calling methods on it, we need
to start with a class declaration. The following listing shows the basic skeleton that
we’ll be fleshing out.

public class DynamicXElement : DynamicObject
{

private readonly XElement element;

private DynamicXElement(XElement element)
{

this.element = element;
}

public static dynamic CreateInstance(XElement element)
{

return new DynamicXElement(element);
}

}

Listing 14.29 Skeleton of DynamicXElement

XElement this
instance wraps

B

Private constructor
prevents direct
instantiationC

Public method
to create
instancesD
Licensed to Devon Greenway <devon.greenway@gmail.com>

441Implementing dynamic behavior
The DynamicXElement class just wraps an XElement B. This will be all the state we
have, which is a significant design decision in itself. When we created an Expando-
Object earlier, we recursed into its structure and populated a whole mirrored tree. We
really had to do that, because we couldn’t intercept property accesses with custom
code later on. Obviously this is more expensive than the DynamicXElement approach,
where we’ll only ever wrap the elements of the tree when we actually have to. Addi-
tionally, it means that any changes to the XElement after we’ve created the expando
are effectively lost: if you add more subelements, for example, they won’t appear as
properties because they weren’t present when we took the snapshot. The lightweight
wrapping approach is always “live”—any changes you make in the tree will be visible
through the wrapper.

 The disadvantage of this is that we no longer provide the same idea of identity that
we had before. With the expando, the expression root.book.author would evaluate
to the same reference if we used it twice. Using DynamicXElement, each time the
expression is evaluated it’ll create new instances to wrap the subelements. We could
implement some sort of smart caching to get around this, but it could end up getting
very complicated, very quickly.

 I’ve chosen to make the constructor of DynamicXElement private C and provide a
public static method to create instances D. The method has a return type of dynamic,
because that’s how we expect developers to use the class. A slight alternative would’ve
been to create a separate public static class with an extension method to XElement,
and keep DynamicXElement itself internal. The class itself is an implementation detail:
there’s not much point in using it unless you’re working dynamically.

 With our skeleton in place, we can start adding features. We’ll start with really sim-
ple stuff: adding methods and indexers as if this were just a normal class.

DYNAMICOBJECT SUPPORT FOR SIMPLE MEMBERS

When we created our expando, there were two members we always added: the ToXml
method and the XElement property. This time we don’t need a new method to convert
the object to a string representation: we can override the normal ToString() method.
We can also provide the XElement property as if we were writing any other class. One
of the nice things about DynamicObject is that when some behavior doesn’t need to
be truly dynamic, you don’t have to implement it dynamically. Before the associated
metaobject uses any of the TryXXX methods, it checks whether the member already
exists as a straightforward CLR member. If it does, that member will be called. This
makes life significantly simpler.

 We’re going to have two indexers in DynamicXElement as well, to provide access to
attributes and replace our element lists. The following listing shows the new code to
be added to the class.
Licensed to Devon Greenway <devon.greenway@gmail.com>

442 CHAPTER 14 Dynamic binding in a static language

public override string ToString()
{

return element.ToString();
}

public XElement XElement
{

get { return element; }
}

public XAttribute this[XName name]
{

get { return element.Attribute(name); }
}

public dynamic this[int index]
{

get
{

XElement parent = element.Parent;
if (parent == null)
{

if (index != 0)
{

throw new ArgumentOutOfRangeException();
}
return this;

}
XElement sibling = parent.Elements(element.Name)

.ElementAt(index);
return element == sibling ? this

: new DynamicXElement(sibling);
}

}

There’s a fair amount of code in listing 14.30, but most of it is straightforward. We
override ToString()B by just proxying the call to the XElement, and if we wanted to
implement value equality we could do something similar for Equals() and GetHash-
Code(). The property returning the underlying element C and the indexer for attri-
butes D are also simple, although it’s worth noting that we only need to use an XName
for the parameter to the attribute indexer: if you provide a string at execution time,
DynamicObject will take care of calling the implicit conversion to XName for you.

 The trickiest part of the code is understanding what the indexer with the int
parameter E is meant to be doing. It’s probably easiest to explain this in terms of
expected usage. The idea is to avoid having the extra list property by making an ele-
ment act as both a single element and a list of child elements of the same name.
Figure 14.5 shows our sample XML with a few expressions to reach different nodes
within it.

 Once you understand what the indexer is meant to do, the implementation is fairly
simple, complicated only by the possibility that we could already be at the top of the

Listing 14.30 Adding nondynamic members to DynamicXElement

Overrides ToString()
as normalB

Returns
wrapped elementC

Indexer retrieving
attributeD

Indexer retrieving
sibling elementE

Is this the root element?F

Find appropriate
sibling

G

Licensed to Devon Greenway <devon.greenway@gmail.com>

443Implementing dynamic behavior
tree F. Otherwise we just have to ask the element for all its siblings, then pick the one
we’ve been asked for G.

 So far we haven’t done anything dynamic except in terms of the return type of
CreateInstance()—none of our examples will work, because we haven’t written the
code to fetch subelements. Let’s fix that now.

OVERRIDING TRYXXX METHODS

In DynamicObject, you respond to calls dynamically by overriding one of the TryXXX
methods. There are 12 of them, representing different types of operation, as shown in
table 14.1.

Table 14.1 Virtual TryXXX methods in DynamicObject

Name Type of call represented (where x is the dynamic object)

TryBinaryOperation Binary operation, such as x + y

TryConvert Conversions, such as (Target) x

TryCreateInstance Object creation expressions: no equivalent in C#

TryDeleteIndex Indexer removal operation: no equivalent in C#

TryDeleteMember Property removal operation: no equivalent in C#

TryGetIndex Indexer getter, such as x[10]

books book
name="..."

book
name="..."

author
name="..."

author
name="..."

author
name="..."

author
name="..."

excerpt (Text node)

root.book[2].excerpt.XElement.Value

root.book[1].author[1]

root.book.author["name"]

root.book[2]

book
name="..."

Figure 14.5 Selecting data using DynamicXElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

444 CHAPTER 14 Dynamic binding in a static language
Each of these methods has a Boolean return type to indicate whether the binding was
successful. Each takes an appropriate binder as the first parameter, and if the opera-
tion logically has arguments (for instance, the arguments to a method, or the indexes
for an indexer) these are represented as an object[]. Finally, if the operation might
have a return value (which includes everything except the set and delete operations),
then there’s an out parameter of type object to capture that value. The exact type of
the binder depends on the operation: there’s a different binder type for each of the
operations. For example, the full signature of TryInvokeMember is

public virtual bool TryInvokeMember(InvokeMemberBinder binder,
object[] args, out object result)

You only need to override the methods representing operations you support dynami-
cally. In our case, we have dynamic read-only properties (for the elements) so we need
to override TryGetMember(), as shown in the following listing.

public override bool TryGetMember(GetMemberBinder binder,
out object result)

{
XElement subElement = element.Element(binder.Name);
if (subElement != null)
{

result = new DynamicXElement(subElement);
return true;

}
return base.TryGetMember(binder, out result);

}

The implementation in listing 14.31 is simple. The binder contains the name of the
requested property, so we look for the appropriate subelement in the tree B. If there
is one, we create a new DynamicXElement with it, assign that to the output parameter
result, and return true to indicate that the call was bound successfully C. If there
was no subelement with the right name, we just call the base implementation of Try-
GetMember()D. The base implementation of each of the TryXXX methods just returns
false and sets the output parameter to null if there is one. We could easily have done

TryGetMember Property getter, such as x.Property

TryInvoke Direct invocation effectively treating x like a delegate, such as x(10)

TryInvokeMember Invocation of a member, such as x.Method()

TrySetIndex Indexer setter, such as x[10] = 20

TrySetMember Property setter, such as x.Property = 10

TryUnaryOperation Unary operation, such as !x or -x

Listing 14.31 Implementing a dynamic property with TryGetMember()

Table 14.1 Virtual TryXXX methods in DynamicObject (continued)

Name Type of call represented (where x is the dynamic object)

Find first
matching
subelement

B

If found, build new
dynamic element

C

Otherwise use base
implementation

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

445Implementing dynamic behavior
this explicitly, but we’d have had two separate statements: one to set the output
parameter and one to return false. If you prefer the slightly longer code, there’s no
reason not to write it—the base implementations are just slightly convenient in terms
of doing everything required to indicate that the binding failed.

 I’ve side-stepped one bit of complexity: the binder has another property (Ignore-
Case) which indicates whether the property should be bound in a case-insensitive way.
For example, Visual Basic is case-insensitive, so its binder implementation would
return true for this property, whereas C#’s would return false. In our situation, it’s
slightly awkward. Not only would it be more work for TryGetMember to find the ele-
ment in a case-insensitive manner (“more work” is always unpleasant, but it’s not a
good reason not to implement it), but there’s the more philosophical problem of
what happens when you then use the indexer (by number) to select siblings. Should
the object remember whether it’s case-sensitive, and select siblings in the same way
later on? You could easily get into situations where the behavior is hard both to pre-
dict and explain in documentation. This sort of impedance mismatch is likely to hap-
pen in other, similar situations too. If you aim for perfection, you’re likely to tie
yourself up in knots. Instead, find a pragmatic solution that you’re confident you can
implement and maintain, and then document the restrictions.

 With all this in place, we can test DynamicXElement as shown in the following listing.

XDocument doc = XDocument.Load("books.xml");
dynamic root = DynamicXElement.CreateInstance(doc.Root);
Console.WriteLine(root.book[2]["name"]);
Console.WriteLine(root.book[1].author[1]);
Console.WriteLine(root.book);

We could add more complexity to our class, of course. We could add a Parent prop-
erty to go back up the tree, or we might want to change to access subelements using
method calls and make property access represent attributes. The principle would be
exactly the same: where you know the name in advance, implement it as a normal
class member. If you need it to be dynamic, override the appropriate DynamicObject
method.

 There’s one more piece of polish to apply to DynamicXElement before we leave it.
It’s time to advertise what we’ve got to offer.

OVERRIDING GETDYNAMICMEMBERNAMES

Some languages, such as Python, allow you to ask an object what names it knows about.
For example, you can use the dir function in Python to output a list. This information
is useful in a REPL environment, and it can also be handy when you’re debugging in an
IDE. The DLR makes this information available through the GetDynamicMember-
Names() method of both DynamicObject and DynamicMetaObject (we’ll meet the lat-
ter in a minute). All we have to do is override this method, provide a sequence of the
dynamic member names, and we make our object’s properties more discoverable. List-
ing 14.33 shows the implementation for DynamicXElement.

Listing 14.32 Testing DynamicXElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

446 CHAPTER 14 Dynamic binding in a static language

public override IEnumerable<string> GetDynamicMemberNames()
{

return element.Elements()
.Select(x => x.Name.LocalName)
.Distinct()
.OrderBy(x => x);

}

As you can see, all we need is a simple LINQ query. That won't always be the case, but I
suspect many dynamic implementations will be able to use LINQ in this way. In this
case we need to make sure that we don’t return the same value more than once if
there’s more than one element with any particular name, and I’ve sorted the results
just for consistency. In the Visual Studio 2010 debugger, you can expand the Dynamic
View of a dynamic object and see the property names and values, as shown in
figure 14.6.

 You can drill down through the dynamic object, showing the dynamic view at each
level. For figure 14.6 I’ve drilled down from the document, to the first book, to the
author. The dynamic view of the author shows that there’s no further information in
the hierarchy.

 We’ve now finished our DynamicXElement class, as far as we’re going to take it in
this book. I believe that DynamicObject hits a sweet spot between control and simplic-
ity: it’s fairly easy to get it right, but it has far fewer restrictions than ExpandoObject.
But if you really need total control over binding, you’ll need to implement IDynamic-
MetaObjectProvider directly.

14.5.3 Implementing IDynamicMetaObjectProvider

I won't go into a lot of detail here, but I really wanted to at least show one example of
low-level dynamic behavior. The tough bit of implementing IDynamicMetaObject-
Provider isn’t the interface itself—it's creating the DynamicMetaObject to return

Listing 14.33 Implementing GetDynamicMemberNames in DynamicXElement

Figure 14.6 Visual Studio 2010 displaying dynamic properties of a DynamicXElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

447Implementing dynamic behavior
from the interface’s sole method. DynamicMetaObject is a bit like DynamicObject in
that it contains a lot of methods, and you override individual ones to affect the behav-
ior; where we’ve previously overridden DynamicObject.TryGetMember, you’d override
DynamicMetaObject.BindGetMember. But within the overridden methods, instead of
taking the required action directly, the idea is to build up an expression tree describing
the required action, and the circumstances in which that action should be taken. That
extra level of indirection is why it’s a metaobject.

 I’m going to leap straight into an example, and then leap out with only a brief
explanation. I really want to get across the difference in level of interaction here—it’s
a bit like tinkering with the guts of the JIT compiler. Most C# developers won’t need
to know the details, and if you do need to do this, it probably means you’re trying to
write a library that responds dynamically but has to perform well too. Alternatively, it
may mean that you’re trying to build your own dynamic language. If that’s the case,
then good luck—and please find a more comprehensive resource than this meager
example.

 The example isn’t meant to be clever: it’s a Rumpelstiltskin type. We’re going to
create an instance of Rumpelstiltskin with a given name (stored in a perfectly ordinary
string variable) and call methods on the object until we call a method with the right
name. The object will write out appropriate responses based on our guesses.9 Just to
make this concrete, the following listing shows the code we’re eventually going to run.

dynamic x = new Rumpelstiltskin("Hermione");
x.Harry();
x.Ron();
x.Hermione();

I haven’t called the object Rumpelstiltskin—that would be too obvious. Instead, I’ve
used some other magicians—even though none of them is particularly famous for
alchemy. The aim is for the first two method calls to result in denials, and the third to
admit defeat. We’ll also make our method calls return a Boolean value to indicate
whether the guess was successful, but for brevity we’re not using the result here.

 Let’s look at the Rumpelstiltskin type itself first. Don’t forget that this isn’t the
metaobject—that’ll come later. Listing 14.35 shows the complete code.

public sealed class Rumpelstiltskin : IDynamicMetaObjectProvider
{

private readonly string name;
public Rumpelstiltskin(string name)
{

this.name = name;

9 If you’re not familiar with the fairy tale of Rumpelstiltskin, look at its wikipedia article (see http://mng.bz/
0AN0). The example will make more sense afterward!

Listing 14.34 The final aim: calling methods dynamically until we hit the right name

Listing 14.35 The Rumpelstiltskin type, without its metaobject code

Constructs
new instance

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/0AN0
http://mng.bz/0AN0

448 CHAPTER 14 Dynamic binding in a static language
}

public DynamicMetaObject GetMetaObject(Expression expression)
{

return new MetaRumpelstiltskin(expression, this);
}

private object RespondToWrongGuess(string guess)
{

Console.WriteLine("No, I'm not {0}! (I'm {1}.)",
 guess, name);

return false;
}

private object RespondToRightGuess()
{

Console.WriteLine("Curses! Foiled again!");
return true;

}
}

There are three aspects to this class. There’s construction B, which is perfectly ordi-
nary. There’s the implementation of IDynamicMetaObjectProvider’s sole method C,
and then there are two methods we’ll use to perform the real work D. The metaob-
ject constructed at C needs to know which instance it’s responding to, and the
expression tree used to refer to the instance within the calling code. We’re given the
expression tree as a parameter, we know our own instance via the this reference, so
we just pass those on in the constructor.

WHY DO THE METHODS RETURN object? You may be wondering why the meth-
ods are declared to return object rather than bool. My original implementa-
tion actually had void methods—but unfortunately dynamic method
invocations are expected to return something, and the binder always expects
object in my experience. (There’s a ReturnType property you can check.)
That makes a call to a void method throw an exception at execution time—
and the same is true for a bool method: we need to perform the boxing our-
selves to make the types match up properly. We could build the boxing into
the expression tree, but that’s more painful than just changing the return
type of the method. These are the kinds of subtleties you’ll need to deal with
if you ever implement IDynamicMetaObjectProvider in real life.

Strictly speaking, we don’t need the two response methods. When we build up the
behavior to react to the incoming method calls, we could express that logic directly in
an expression tree. But it’d be relatively painful to do so, compared with just return-
ing an expression tree that calls the right method. More to the point, though it
wouldn’t actually be too hard in this case, in other situations it could be much worse.
We’re effectively going to create a bridge between the static and dynamic worlds,
responding to dynamic method calls by redirecting them to static ones with appropri-
ate arguments. This leads to simpler code in the metaobject. Speaking of which, let’s
finally look at the code for MetaRumpelstiltskin—it’s in listing 14.36, and it’s actu-
ally a private nested class inside Rumpelstiltskin.

CExposes dynamic behavior

Responds to guessesD
Licensed to Devon Greenway <devon.greenway@gmail.com>

449Implementing dynamic behavior

private class MetaRumpelstiltskin : DynamicMetaObject
{

private static readonly MethodInfo RightGuessMethod =
typeof(Rumpelstiltskin).GetMethod("RespondToRightGuess",
BindingFlags.Instance | BindingFlags.NonPublic);

private static readonly MethodInfo WrongGuessMethod =
typeof(Rumpelstiltskin).GetMethod("RespondToWrongGuess",
BindingFlags.Instance | BindingFlags.NonPublic);

internal MetaRumpelstiltskin
(Expression expression, Rumpelstiltskin creator)
: base(expression, BindingRestrictions.Empty, creator)

{}

public override DynamicMetaObject BindInvokeMember
(InvokeMemberBinder binder, DynamicMetaObject[] args)

{
Rumpelstiltskin targetObject = (Rumpelstiltskin) base.Value;
Expression self = Expression.Convert(base.Expression,

typeof(Rumpelstiltskin));

Expression targetBehavior;
if (binder.Name == targetObject.name)
{

targetBehavior = Expression.Call(self, RightGuessMethod);
}
else
{

targetBehavior = Expression.Call(self, WrongGuessMethod,
Expression.Constant(binder.Name));

}

var restrictions = BindingRestrictions.GetInstanceRestriction
(self, targetObject);

return new DynamicMetaObject(targetBehavior, restrictions);
}

}

As I type this, I can almost see your eyes glazing over due to listing 14.36. It’s dense
code, and it looks like an awful lot of work to get a simple job done. Just remember:
you’re unlikely to ever need to do this, so just relax and let the general flavor of the
code sink in while the details wash over you.

 The first half of the code is genuinely easy. We stash the MethodInfo for the two
response methods in static variables B (they don’t change for different instances)
and declare a constructor that does nothing but pass its parameters up to the base
class C. All of the real work is done in BindInvokeMember D, which has to work out
two things: how the object should react to the method call, and the circumstances in
which that decision is valid.

 We want to react by calling either RespondToRightGuess or RespondToWrongGuess
based on whether the name of the method call is the same as the name of the object.
The metaobject knows what the real instance is because we passed it into the

Listing 14.36 The real dynamic guts of Rumpelstiltskin—its metaobject

Obtains
methods by
reflection

B

Delegates
construction
to base class

C

Responds to
member
invocation

D

E
Recalls

real object

Determines
appropriate behaviorF

GResponds with
behavior and restrictions
Licensed to Devon Greenway <devon.greenway@gmail.com>

450 CHAPTER 14 Dynamic binding in a static language
constructor—we access it again using the Value property, and remember it using the
targetObject variable E. We also need the expression tree that was originally used
to create the metaobject, so that we can bind the appropriate method call entirely
within expression trees. The Expression.Convert method is the expression tree
equivalent of the cast in the previous line.

 Once we know the real object, we can check its name against the method call that
we’re binding, which is available via the InvokeMemberBinder.Name property. We
build a call to the appropriate method using Expression.Call, passing in the name of
the method as an argument in the case where the guess was wrong F. Again, I’d like
to stress that at this point we’re not actually calling the method—we’re describing the
method call.

 The restrictions in this case are simple: this call will always be bound in the same
way if it’s calling the same argument, but it’d be bound differently if it were called on
a different object, because it could have a different name. GetInstanceRestriction
returns an appropriate restriction; if we wanted to always behave the same way regard-
less of which instance the method was called on, we might use GetTypeRestriction
instead, to indicate that the call would be handled the same way for any instance of
Rumpelstiltskin. The full source code includes an alternative implementation that
does exactly this, by always passing in the actual method name, putting the condition
testing inside the normal method.

 Finally, we create a new DynamicMetaObject representing the results of the bind-
ing G. It’s fairly confusing for the result to be of the same type as the object that’s
working out the binding, but that’s how the DLR works.

 At this point, we’re done—cross your fingers, run the code, and see if it works...
then debug it a few times to work out exactly what’s wrong, if you’re anything like
me. As I’ve said, this isn’t something that most developers will need to take on—it’s a
bit like LINQ, in that far more people will use LINQ than implement their own
IQueryable-based LINQ provider. It’s useful to get a peek at how it all works instead
of treating it as magic, but most of the time you can just sit back and enjoy the hard
work of the DLR team.

14.6 Summary
It feels like we’ve come a long way from mainstream, statically typed C#. We’ve looked
at some situations where dynamic typing can be useful, how C# 4 makes it possible
(both in terms of the code you write and how it works under the surface), and how to
respond dynamically to calls. Along the way, we’ve seen a bit of COM, a bit of Python,
some reflection, and learned a little about the Dynamic Language Runtime.

 This has not been a complete guide to how the DLR works, or even how C# oper-
ates with it. The truth is, this is a deep topic with many dark corners. In reality, many
of the problems are obscure enough that you won’t bump into them—and most devel-
opers won’t even use the simple scenarios often. I’m sure whole books will be written
about the DLR, but I hope I’ve given enough detail here to let 99 percent of C#
Licensed to Devon Greenway <devon.greenway@gmail.com>

451Summary
developers get on with their jobs without needing any more information. If you want
to know more, the documentation on the DLR website is a good starting point (see
http://mng.bz/0M6A).

 If you never use the dynamic type, you can pretty much ignore dynamic typing
entirely. I recommend that you do exactly that for the majority of your code—in par-
ticular, I wouldn’t use it as a crutch to avoid creating appropriate interfaces, base
classes, and so on. Where you do need dynamic typing, I’d use it as sparingly as possi-
ble: don’t take the attitude, “I’m using dynamic in this method, so I might as well
make everything dynamic.”

 I don’t want to sound too negative. If you find yourself in a situation where
dynamic typing is helpful, I’m sure you’ll be thankful that it’s present in C# 4. Even if
you never need it for production code, I’d encourage you to give it a try for the fun of
it—I’ve found it fascinating to delve into. You may also find the DLR useful without
really using dynamic typing: most of our Python example didn’t use any features of
dynamic typing, but it used the DLR to execute the Python script containing the con-
figuration data.

 Between this chapter and the previous one, we’ve now covered all the new features
of C# 4 as a language. But part of the aim of this book is to help developers evolve
their ideas of idiomatic C#. Microsoft is introducing a new set of types and tools with
.NET 4 that have the potential to change the way we write code in terms of robustness
and clarity, just as LINQ has changed our perspective on working with collections. If
you’re fed up with wondering exactly what a method requires in the way of argu-
ments—or what it might return to you—then Code Contracts is for you.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/0M6A

Letting your code
speak more clearly

with Code Contracts
This book is about C#, the language. I haven’t attempted to cover the whole of the
.NET framework or even just the Base Class Library (BCL). Apart from when we
were looking at different LINQ providers in chapter 12, I’ve been rigidly focused on
explaining the features introduced in each version of C#. This chapter is somewhat
different. It’s not about a new ability of the language itself, but a combination of
tools and types (collectively called Code Contracts) that can radically change your

This chapter covers
 The objectives of Code Contracts

 Writing contracts in your code

 Binary rewriting

 Static checking

 Contract documentation

 Applying contracts
452

Licensed to Devon Greenway <devon.greenway@gmail.com>

453
code’s appearance and how much information it conveys. If this were a book about
the English language, this would be a chapter on poetry. Even though poems use the
same words as prose, they look and feel different. You need to read them in a particu-
lar way to understand what they’re trying to express, but they can convey a lot of
meaning in a powerful way.

 Now I’m aware that this all sounds melodramatic, and the difference made by
Code Contracts isn’t quite as striking as reading Shakespeare, but it’s pretty special
nonetheless. I hope that contracts take off to such an extent that within a few years, any
book that attempts to convey idiomatic C# without demonstrating them would be
seen as hideously outdated. Obviously I don’t want this book to be viewed in that light,
so I've stretched my objective of being language focused to include this chapter.

 Contracts allow developers to express requirements and promises between APIs.
Guarantees that have previously been given in documentation can now be stated once
in code and automatically checked at execution time. Of course you’ve always been
able to write assertions and argument validation in the past, but Code Contracts
makes the whole process a lot smoother, with features such as contract inheritance
and automatic documentation generation. Additionally, if you’re using Visual Studio
Premium or Ultimate, the contracts can be used to check your code for correctness at
compile time.

 Although this isn’t part of C# 4 itself, it has the same ubiquitous nature as language
constructs. Whereas specific APIs for web services, database access, UI development,
and so on are only relevant in certain situations, contracts are almost universally use-
ful. When you treat the contracts as part of the task of designing a type, you’ll find you
not only communicate your intentions more clearly with other developers, but you
understand your code’s boundaries better yourself.

 One of the consequences of this being a nonspecific technology is that it isn’t
suited to full business-related examples. As such, most of the code samples in this
chapter are short and don’t do anything useful in themselves. You may find it helpful
to keep in mind a bit of code that you’re working on at the moment. Take a look at
both the code and documentation for a method, and ask yourself what it’s trying to
say. What does it need in order to do its job correctly? What will the results of that job
be? At a larger level, what can you always say about the state of your object? Combin-
ing my examples of how to express contracts with your own real-world code may make
the chapter more meaningful for you.

 We’re going to start off by looking at how contracts have been expressed relatively
informally before now, and then see how Code Contracts treats the same ideas. Once
we have the hang of what contracts are for, we’ll look at what the tools can do to
enforce them both at compile time and execution time. Finally, I’ll attempt to give
some practical advice. There are lots of different ways of using contracts, and the tools
provide a huge range of options. You’ll have to think about what’s right for your par-
ticular context, but I hope I’ll get you thinking along the right lines.
Licensed to Devon Greenway <devon.greenway@gmail.com>

454 CHAPTER 15 Letting your code speak more clearly with Code Contracts
15.1 Life before Code Contracts
The idea of contracts isn’t new. Bertrand Meyer made it a key part of the design of the
Eiffel programming language in the 1980s, and it’s been gradually becoming more
mainstream ever since. A lot of computer science research has gone into formal specifi-
cation and verification, which allows a program to be checked for correctness at compile
time, but that isn’t the only benefit of contracts.

 At the heart of programming by contract is the idea of separating the require-
ments and guarantees of an API from the implementation. It’s no coincidence that
this sounds like the use of interfaces, but contracts allow a much richer expression of
behavior. You may be thinking that there’s nothing new about the idea of specifying
what a method will do, and what it requires of its inputs. We do that all the time with
documentation. There’s nothing new about the idea of checking this at execution
time, either. Of course, sometimes the two might get slightly out of sync, but we usu-
ally seem to get by.

 Suppose we were to write a method that counted the number of whitespace charac-
ters in a given string. The following listing shows one possible implementation.

/// <summary>Counts the number of whitespace characters
/// in <paramref name="text"/>.</summary>
/// <param name="text">String to examine. Must not be null.</param>
/// <exception cref="ArgumentNullException">
/// <paramref name="text"/> is null.</exception>
/// <returns>The number of whitespace characters.</returns>
static int CountWhitespace(string text)
{

if (text == null)
{

throw new ArgumentNullException("text");
}
return text.Count(char.IsWhiteSpace);

}

Listing 15.1 has more XML documentation than I usually provide, I’ll admit. I rarely
bother documenting exceptions that are obvious from the text: in this case we’ve
already stated that text can’t be null, so why add the extra fluff? Likewise I’m some-
times sloppy when it comes to providing proper parameter references and the like.
I’m somewhat pickier for public APIs, but not to the point of perfectionism. I strongly
suspect I’m not alone in this. If you pay as much attention to the documentation of
your methods as the implementation, my guess is that you’re in a tiny minority.

 We’re being pretty rigorous in the implementation, validating that the parameter
isn’t null. The fact that it’s taking up four out of the five lines is unfortunate, but
avoidable. I've found it handy to have a generic extension method with a reference
type constraint that lets me write validation like this:

text.ThrowIfNull("text");

Listing 15.1 Simple method with argument validation and documentation
Licensed to Devon Greenway <devon.greenway@gmail.com>

455Introducing Code Contracts
It’s annoying to have to restate the name of the parameter (and I usually have an over-
load allowing me to omit it when I don’t care) but at least it’s compact. Some people
object to this as an abuse of extension methods, but I find it useful. In particular it’s
more compact than writing something like ExceptionUtils.ThrowIfNull(text,
"text"): the name of the class here is pure cruft; it doesn’t help us understand the
code at all. Arguably in this case you could just let Enumerable.Count throw Argument-
NullException, but then the reported parameter name would be source instead of
text, which isn’t ideal. It’s also generally preferable to explicitly perform validation
before doing anything else: it makes it a lot easier to guarantee that calling a method
with invalid arguments won’t have any side effects beyond the exception being thrown.

 An alternative to this would be to use Debug.Assert(text != null), which per-
forms the same checking for debug builds but won’t (by default) catch bad arguments
in a release build. Finally, you could use exactly the same code, but put it all on one
line, possibly omitting the braces. Personally I don’t favor that style, but it’s an alterna-
tive to consider.

 Even with all this bulk around what’s effectively a single-line implementation, we
haven’t said all we could. We know that the return value will always be greater than or
equal to 0. (You can’t create strings with lengths greater than int.MaxValue.) We
could communicate that by making the return value uint instead, but unsigned types
aren’t used particularly commonly in .NET, partly because they’re not CLS-compliant.
It’s reasonably obvious to a human that this will be the case, but not to a machine. It’s
also tricky to verify that claim at execution time in the general case, unless you rigor-
ously stick to a single exit point per method, which I find detrimental to readability in
many situations.

 Why would a machine care whether the return value was nonnegative? Well, sup-
pose we then wanted to feed that into another method for some reason, and that
method required the argument to be nonnegative. Wouldn’t it be nice if something
could check that we met that requirement—and also check at execution time that the
first method really did return a nonnegative value? Enter Code Contracts.

15.2 Introducing Code Contracts
Code Contracts has its roots in a research language developed by Microsoft called
Spec# (see http://mng.bz/4147). Like C (the research language that spawned
LINQ), this is a C#-like language with a twist. In this case, the main twist is contracts,
which are expressed in a declarative manner. For example, in Spec#, expressing the
contract that a parameter has to be non-null is a simple matter of changing the
declared type of the parameter:

static int CountWhitespace(string! text)
{

return text.Count(char.IsWhiteSpace);
}

Spec# features compile-time support for non-nullable reference types as well as a
sophisticated program verifier.
Licensed to Devon Greenway <devon.greenway@gmail.com>

456 CHAPTER 15 Letting your code speak more clearly with Code Contracts
 Code Contracts attempts to cover the same sort of ground, but purely with a library
and tools. This approach has the advantage of giving all the benefits to all languages
immediately, but doesn’t yield quite as concise code. Contracts are expressed at a per-
type and a per-member level as calls to methods in the System.Diagnostics.
Contracts.Contract class. Unless I specify otherwise, every contract-related method
in this section is in the Contract class.

 A tool called ccrewrite—also known as the binary rewriter—then executes as part
of the build1 to make sure that the contracts are enforced according to your project
settings. A closely related tool is ccrefgen, which generates contract reference assemblies
to be distributed alongside the implementation assemblies, giving contract informa-
tion to clients even if the contract checks have been removed from the implementa-
tion. Another tool called cccheck—also known as the static checker—is available if
you’re using Visual Studio 2010 Premium or Ultimate edition. The aim of the checker
is to prove that your code will satisfy your contracts at compile time, rather than just
checking what’s actually happening at execution time. Finally, you can probably guess
what ccdocgen is for: it generates XML documentation for the contracts specified in
the code.

 The Code Contract tools aren’t included in Visual Studio 2010 or .NET 4, but the
core types are exposed in mscorlib. You need to download the tools from the Code
Contracts DevLabs page (http://mng.bz/CN2k); after installation your Visual Studio
project properties page should have a Code Contracts tab, as shown2 in figure 15.1.
The contracts can be broadly divided into five main categories. We’ll look at each cat-
egory briefly so we know what’s available, and then see what the tools are capable of
once we’ve defined our contracts.

15.2.1 Preconditions

Preconditions make requirements of the caller of a method rather than expressing
anything about the behavior of the method itself in normal conditions. We all know
that our code works perfectly but no one else’s can be trusted, so preconditions are the
most common form of contract-like code in existing programs. That’s exactly what we
have in our whitespace-counting sample: we require that the text parameter be non-
null. Preconditions are expressed with the Requires method. There are four forms of
this—each takes a condition, but there’s also an optional message and an exception
type can be expressed as a type argument.

 As we’re putting a burden on the caller, the condition has to be expressed in terms
that the caller is in charge of or can at least check. Code Contracts will warn you if a

1 It’s only part of the build if you’re using msbuild, either directly or from Visual Studio. If you’re running the
C# compiler manually, you’ll need to run ccrewrite too. The same is true for the other tools.

2 This screenshot was taken using Visual Studio 2010 Premium; static checking isn’t supported in Visual Studio
2010 Professional, so that part of the properties page may be blank. Additionally, the properties page is evolv-
ing with the tools—by the time you read this, it may have changed appearance and functionality.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/CN2k

457Introducing Code Contracts
member’s precondition depends on a piece of state with less visibility than the mem-
ber—it wouldn’t be fair to the caller.3

 If you don’t specify a type argument, a contract failure will throw a Contract-
Exception—if none of the contract failure handlers involved terminate the process
first. The execution-time behavior of contracts is complicated, but we’ll look at it in
the next section. For now, we’re just seeing what the contracts look like. Here’s our
whitespace counter with a simple precondition:

static int CountWhitespace(string text)
{

Contract.Requires(text != null);
return text.Count(char.IsWhiteSpace);

}

If we wanted to still throw ArgumentNullException, we could use the generic form of
Requires, which specifies which exception to throw:

static int CountWhitespace(string text)
{

3 You can decorate a private field with the [ContractPublicPropertyName] attribute. This lets you refer to
the private field within preconditions, knowing that the caller can get at the same information with a property.

Figure 15.1 Code Contracts project property page in Visual Studio 2010
Licensed to Devon Greenway <devon.greenway@gmail.com>

458 CHAPTER 15 Letting your code speak more clearly with Code Contracts
Contract.Requires<ArgumentNullException>(text != null, "text");
return text.Count(char.IsWhiteSpace);

}

This time we specify the message explicitly, because we want the exception thrown to
have the right value for its ParamName property.

 For other contract types, you don’t need to make the decision between the default
behavior and a specific exception type, because they involve failures in your code rather
than the caller’s. Let’s move on to the opposite of preconditions: postconditions.

15.2.2 Postconditions

Whereas preconditions express constraints on the input to a method (potentially
including the original state of the target object), postconditions express constraints on
the output of a method: its return value, any out or ref parameter values, and any
mutated state (whether in the target object or one of the parameters). Postconditions
are expressed with the Ensures method. For example, we can easily express that our
whitespace counter will never return a negative value,4 as shown in the following listing.

static int CountWhitespace(string text)
{

Contract.Requires(text != null, "text");
Contract.Ensures(Contract.Result<int>() >= 0);
return text.Count(char.IsWhiteSpace);

}

You may be surprised to see that the postcondition comes before the actual implemen-
tation. On the face of it, that makes no sense—it can’t possibly check the return value
before it’s calculated. This is where there’s an important difference between Code
Contracts and any manual assertions we could’ve implemented before. Previously, the
implementation code and the checks were intermingled—there was no difference
between them, essentially. Code Contracts are all about expressing the checks, not
executing them. The binary rewriter takes care of actually validating the contract at
execution time if necessary, or removing the checks entirely otherwise.

 All preconditions and postconditions are expressed before the main implementa-
tion in Code Contracts. The tools assume that anything that comes after the last refer-
ence to Contract (apart from calls to Assert and Assume, which we’ll meet in a
minute) is part of the implementation, but anything up to that point is purely contrac-
tual and has no impact on the real work of the method. If you mistakenly put a post-
condition at the end of the method, Code Contracts will complain of a “malformed
contract.”

 Normally to express a postcondition on a return value, you’d set the candidate
return value in a local variable, test that its value was appropriate, and then return it.

Listing 15.2 Expressing a simple postcondition for a return value

4 We could also add a postcondition for the upper bound: the method will never return a value larger than the
length of the text that’s passed in. I’m going to keep it simple here, though.
Licensed to Devon Greenway <devon.greenway@gmail.com>

459Introducing Code Contracts
Obviously we can’t do that when the contract is expressed before the implementation,
so the Result<T> method acts as a sort of placeholder: when the tools see a call to it,
they know it means “the return value when we really get there.”

 Two similar methods exist for situations where you want to refer to state that
changes during the course of execution. The OldValue method refers to the original
state, and ValueAtReturn refers to the final state. The rewritten code will capture any
original state it needs to after the preconditions are checked. Listing 15.3 shows an
example of using all three of these methods in a single contract. The implementation
is buggy, but the postcondition protects the caller by alerting them to the problem.

static bool TryParsePreserveValue(string text, ref int value)
{

Contract.Ensures(Contract.Result<bool>() ||
Contract.OldValue(value) == Contract.ValueAtReturn(out value));

return int.TryParse(text, out value);
}

The idea behind the method in listing 15.3 is for it to act like int.TryParse, but
instead of taking an out parameter to receive the result, it takes a ref parameter. If
parsing fails, the value should stay as it was before—this makes it easy to use a default
value. In other words, either our return value should be true (successful parse) or the
value should be the same at the end as it was at the start. Unfortunately, our imple-
mentation doesn’t obey this properly—it uses the parameter as an argument to
int.TryParse, which will overwrite the value with 0 if parsing fails.5 The postcondi-
tion will spot this and blow up appropriately rather than letting the caller continue
assuming that the implementation was correct.

 One final feature of postconditions is exception handling. Any contract expressed
using Ensures is only relevant when the method completes normally. You can specify
any postconditions for exceptional situations using EnsuresOnThrow<T>, where T is an
exception type. This allows you to have different postconditions for different scenar-
ios, although this isn’t typically needed.

15.2.3 Invariants

So far we haven’t actually used any state in our tests, although we certainly could
have—it’s entirely reasonable to depend on the initial state of an object in a precondi-
tion, and a method that mutates an object may want to express the intended result as
a postcondition.

 Invariants are slightly different: they’re contracts about the state of the object
which should apply at all times that the state is visible. In other words, it’s okay to
change an invariant while a public method in the class is running, but at the end of

Listing 15.3 A complicated postcondition involving a return value, old and new state

5 The fix to this bug is just to use a local variable as the argument to int.TryParse, and then conditionally
copy the value into the ref parameter. The corrected code is in the downloadable source.

Guarantee
desired
semantics

Eek, bug!
Licensed to Devon Greenway <devon.greenway@gmail.com>

460 CHAPTER 15 Letting your code speak more clearly with Code Contracts
the method the invariant should be satisfied again. In Code Contracts, invariants are
expressed through an extra method decorated with the ContractInvariantMethod
attribute. The method is conventionally named ObjectInvariant, but it doesn’t have
to be. Inside the method, you call Invariant to check the invariants. When invariants
are enabled, they are run at the end of every public method.6

 Despite the name, invariants aren’t always about a value remaining the same.
They’re about a fixed condition always holding. For example, you might have a string
variable which is modified over the lifetime of an object, but which should never be
null. You could express that fact everywhere that the field was modified, but it’d be easy
to make a mistake. An invariant allows you to apply the check automatically at predict-
able places.

 As another example, suppose we were writing a card game. Cards can move
between the deck, a player’s hand, and the discard pile—but cards are never dupli-
cated or lost. We can express this reasonably cheaply as an object invariant by count-
ing the cards in each location. Here’s the skeleton of a possible CardGame class,
including its invariant:

public sealed class CardGame
{

private readonly Stack<Card> deck =
 new Stack<Card>(Card.CreateFullDeck());

private readonly Stack<Card> discardPile = new Stack<Card>();
private readonly List<Player> players = new List<Player>();

public void DealCard(Player player) { ... }

[ContractInvariantMethod]
private void ObjectInvariant()
{

Contract.Invariant(deck.Count + discardPile.Count +
 players.Sum(p => p.CardCount) == Card.FullDeckSize);
}

}

For such a short piece of code, there’s a lot to talk about. The obvious point is that the
invariant method is a void, parameterless method decorated with the required attri-
bute to make it an object invariant. It’s also private: even in nonsealed classes, the
invariant method must be private. Derived classes need to be able to call the invariant
implicitly, but the binary rewriter takes care of that for you by turning it into a pro-
tected method with an unspeakable name.

 It’s worth noting that the invariant I've expressed isn’t foolproof by any means.
We’re only checking how many cards there are, not that they’re all different. A
method to deal a card could easily break a more strict invariant but pass this one. But
by making the invariant cheap to execute, we can keep it enabled in more situations
without worrying about losing too much performance.

6 Finalizers and implementations of IDisposable.Dispose don’t check the invariant at the end. It’s
expected that the object may be unusable after disposal.
Licensed to Devon Greenway <devon.greenway@gmail.com>

461Introducing Code Contracts
 All the work is done in the evaluation of the argument to Invariant. An invariant
method can only contain calls to Invariant, with no loops, local variables, and so on.
This is important for the sake of the static checker, which tries to understand what
your invariants really mean in order to prove that they’re maintained. If it gets really
difficult to express an invariant inline in a single expression, you can always create
another method or property to call, but this will leave the static checker with less
chance of helping you.

 There are two methods to help express contracts (including preconditions and
postconditions) more simply: ForAll and Exists, which take predicates to check for
a range of items. For example, if you wanted to express an invariant that a collection
didn’t contain any null elements, you could use either of the following equivalent
contracts:

Contract.Invariant(Contract.ForAll(collection, item => item != null));
Contract.Invariant(!Contract.Exists(collection, item => item == null));

Sometimes, there are conditions that you want to check during the execution of the
method. These aren’t contracts in the same sense as preconditions, postconditions,
and invariants, but they’re still validating the logic of the method.

15.2.4 Assertions and assumptions

So far we’ve been performing sanity checking before or after executing the useful
work of a method. That’s fine in many cases, particularly for short methods, but some-
times it’s nice to be able to put a stake in the ground about what’s going on halfway
through a method.7 Code Contracts provides two methods for this: Assert and Assume.
If you’re not using the static checker, you don’t need to know the difference between
them, and they both act in a similar way to the familiar Debug.Assert method, check-
ing that a condition is true at execution time, assuming assertions are enabled.

 The static checker treats the two somewhat differently. It tries to prove that an
assertion is correct, but makes no such attempt for an assumption: it believes that you
know what you’re claiming. In both cases, it’ll add the condition to its set of known
facts from that point onward. If you can use Assert instead of Assume, it’s a more pow-
erful method—but Assume is useful if you want to effectively let the static checker
know something it can’t prove. Listing 15.4 shows an example of this, providing a
method to simulate rolling a pair of dice.

public static int RollDice(Random rng)
{

Contract.Ensures(Contract.Result<int>() >= 2);
Contract.Ensures(Contract.Result<int>() <= 12);

7 This is in no way meant to discourage you from trying to write short methods—short methods with precondi-
tions and postconditions can sometimes remove the need for midmethod contracts. Sometimes it’s just too
hard, though.

Listing 15.4 Making assumptions and assertions when rolling dice

Postcondition
for return valueB
Licensed to Devon Greenway <devon.greenway@gmail.com>

462 CHAPTER 15 Letting your code speak more clearly with Code Contracts
if (rng == null)
{

rng = new Random();
}
Contract.Assert(rng != null);

int firstRoll = rng.Next(1, 7);
Contract.Assume(firstRoll >= 1);
Contract.Assume(firstRoll <= 6);
int secondRoll = rng.Next(1, 7);
Contract.Assume(secondRoll >= 1);
Contract.Assume(secondRoll <= 6);

return firstRoll + secondRoll;
}

Listing 15.4 provides a method that can roll a pair of pseudorandom six-sided dice,
either based on a new instance of Random with a time-based seed or an existing
instance. First we express a postcondition B which states that the outcome of rolling
the two dice will be between 2 and 12 inclusive. By the end of the method, the static
checker should be able to prove that this is the case.

 After we’ve possibly created a new instance of Random, we know that the rng vari-
able won’t be null, so we’re safe to call methods on it. We’re so sure of this that we
assert it—we think the static checker will be able to prove it C. Usually assertions
would be more complicated, of course: we’d be asking the checker to prove some-
thing that wasn’t obvious, both for our own peace of mind and for the benefit of any-
one reading the code later.

 Now that we definitely have a reference to a random-number generator, we can
roll the dice. Let’s assume the static checker doesn’t know what Random.Next does,8 so
we tell it what it can assume about the output D. Based on those assumptions, the
static checker will try to check our postconditions. Note that each of the conditions
we’ve specified (for each of the dice rolls and for our postcondition) is split into two
parts: one for the minimum value, and one for the maximum. The static checker is
able to understand individual contracts more easily than compound ones using the &&
operator. Not only is it able to prove more results this way, but the error messages are
clearer too, as it can point out exactly which condition may be violated.

15.2.5 Legacy contracts

The final type of contract is really another kind of precondition—and we’ve already
seen an example of it, way back before we started using the contracts library. Legacy
contracts are the preconditions we expressed with if/throw statements in our original
code. Legacy contracts have to be expressed simply, using just conditions with throw
statements. There can’t be any assignments or any other impure code.

8 In fact, Random.Next now has contracts applied to it, so we could’ve used Assert or just let the checker work
it out. Just pretend that it doesn’t have any contracts for the sake of the example—a lot of existing code
doesn’t!

Static checker
can prove
non-nullity

C

Static checker
doesn’t know
about RandomD
Licensed to Devon Greenway <devon.greenway@gmail.com>

463Introducing Code Contracts
PURITY You can call other code from all contracts, but only if it’s pure. This
means it can’t have any side effects. You can use the [Pure] attribute to mark
your own methods as being pure, and you can call existing pure methods
defined on other types. The Code Contracts documentation lists the frame-
work methods that are assumed to be pure—most notably anything in
System.String, and the Predicate<T> and Comparison<T> delegates. The
contract reference assemblies shipped with Code Contracts also decorate
other aspects of the framework, such as the Enumerable.Sum method we
called in the previous section. Operators and property getters are also
assumed to be pure.

As I mentioned when we discussed postconditions, the Code Contracts tools assume
that anything after the last reference to Contract is part of the functional part of the
method implementation. Our original code didn’t have any code calling Contract at
all, so we need to give the tools a clue using EndContractBlock, as shown in the fol-
lowing listing.

static int CountWhitespace(string text)
{

if (text == null)
{

throw new ArgumentNullException("text");
}
Contract.EndContractBlock();
return text.Count(char.IsWhiteSpace);

}

Just to be clear, the EndContractBlock method does absolutely nothing at execution
time. It’s solely there for the benefit of the binary rewriter, which actually removes the
call in the rewritten code. An alternative strategy is to replace legacy contracts with the
new ones. If you express another new style contract such as a postcondition after the
legacy contract but before the main body of the code, the rewriter knows what to do
automatically: you don’t need EndContractBlock in that situation. This has the addi-
tional benefit of expressing the postcondition, which has to be a good thing. But I’d
personally go the whole hog and convert the preconditions to the new style of con-
tracts—it makes the code more consistent, as well as making the rewriter include a
more useful error message if the contract is violated. There’s not a lot of advantage to
maintaining the legacy contracts—although they could make it slightly easier to have
one build targeting a recent framework and using Code Contracts, and another build
targeting (say) .NET 2.0 and using just legacy contracts. At that point, you’d only need
to write an EndContractBlock method in your own Contract class, and you’d have
compatibility. This is a fairly extreme case—it’d usually just be better to convert the
code.

 It’s worth bearing in mind that even just using EndContractBlock could be consid-
ered a breaking change to existing code. Depending on your exact settings, you may

Listing 15.5 Signalling the end of a contract block explicitly

Signal end
of contracts
Licensed to Devon Greenway <devon.greenway@gmail.com>

464 CHAPTER 15 Letting your code speak more clearly with Code Contracts
end up with a different exception being thrown by the contract checker, or the pre-
condition being removed entirely, leaving your method to blithely execute its main
code with potentially invalid parameters.

 If the tools detect that you’re using code that isn’t part of a contract from within
the contract section, it’ll report an error. There are cases that’ll fool the tools, but
most problems will be caught this way.

 Now that we’ve seen the basics of what we can do with contracts, we really need to
look at how the tools involved use them. We’ll start off with the binary rewriter.

15.3 Rewriting binaries with ccrewrite and ccrefgen
In the history of .NET, there have been many advances that have required two or more
pieces of the ecosystem to both improve at the same time. Even features that don’t
require any explicit library or runtime support (such as object initializers and anony-
mous types) have typically been designed to fit into a grander plan. In the case of Code
Contracts, the library and the supporting tools really are critical to each other. You can
express some contracts in code but then ignore the tools. The preconditions will be
checked (so long as you define the CONTRACTS_FULL or CONTRACTS_PRECONDITIONS
preprocessor symbol); postconditions will generate an assertion telling you to use the
rewriter; invariants simply won’t be called. Likewise you can use the binary rewriter
without expressing any contracts—but don’t expect it to do anything useful.

 We’ll look at documentation and static checking later, but the rewriter is at the
core of Code Contracts. Let’s see what it can do.

15.3.1 Simple rewriting

Just as the name suggests, the binary rewriter takes the assembly you’ve just built and
rewrites parts of it. Usually it replaces the original assembly, but you can ask it to cre-
ate a new one in another directory instead. Some of the operations are pretty much
what you’d expect, but there are sophisticated features too. Let’s start with the obvious
ones. For each method, the rewriter will rewrite it so that it follows this sequence of
events:

 Preconditions are checked.
 Initial state is captured for OldValue method calls.
 The functional part of the code executes (including any assertions and assump-

tions being checked; they aren’t moved around by the binary rewriter).
 Postconditions are checked.
 Invariants are checked on public methods.

Unless you’ve already specified a message in the contract, the rewriter examines your
source code and rewrites the contract to use the actual code for the message. You have
to build a PDB file for it to extract the source, but the default settings for Visual Studio
work fine for both debug and release builds. The target of the contract call is also
changed—instead of using the version of Contract in mscorlib, a new type is created
Licensed to Devon Greenway <devon.greenway@gmail.com>

465Rewriting binaries with ccrewrite and ccrefgen
in the rewritten assembly called __ContractsRuntime. This contains everything
required at execution time, and also has a nested type called ContractException,
which is the exception type used by default for failed contracts that didn’t have
another one specified explicitly.

 Various options may remove some of these checks; for instance, you may only want
to check preconditions for a release build, or only check contracts for public meth-
ods. You can use the Perform Runtime Contract Checking and Only Public Surface
Contracts options in the project property page to control which contracts are
included in the rewritten file.

 The rewriter’s behavior can be tweaked in a number of ways, and I’m not going to
delve into every available switch, but I’ll cover the most important options. If you can
imagine some form of flexibility that might be useful, chances are ccrewrite supports
it. This should reinforce the idea that contracts aren’t normal code. The C# compiler
doesn’t know anything special about contracts—it thinks they’re normal code—but
the rewriter can radically change how your code behaves.

 If you look inside the rewritten code, you’ll see that there’s slightly more to it even
in the simplest case. Just in case you use a method or property with a contract as part
of evaluating another contract, there’s a recursion guard to stop the contract from
blowing up the stack. Combining all of this together, our simplest contract method is
rewritten as the following.

private static int CountWhitespace(string text)
{

if (__ContractsRuntime.insideContractEvaluation <= 4)
{

try
{

__ContractsRuntime.insideContractEvaluation++;
__ContractsRuntime.Requires(text != null, null,

"text != null");
}
finally
{

__ContractsRuntime.insideContractEvaluation--;
}

}
return text.Count(char.IsWhiteSpace);

}

Fortunately you’ll rarely need to dive into the details of this, but it can make for some
interesting reading—particularly when other options are involved. What appears to be
a simple method can become quite complex. Any concerns about the impact on per-
formance should be measured rather than guessed, but it’s worth considering that
this extra complexity may reduce the CLR’s ability to inline code.

 Another way to introduce complexity is to bring inheritance into the picture.
That’s true in general, but Code Contracts brings an extra (welcome) twist.

Listing 15.6 A simple contract after binary rewriting
Licensed to Devon Greenway <devon.greenway@gmail.com>

466 CHAPTER 15 Letting your code speak more clearly with Code Contracts
15.3.2 Contract inheritance

It’s hard to say what I like best about Code Contracts, but contract inheritance is cer-
tainly one of the neatest features. It can be summed up in two rules:

 When you override a method (or implement an interface method), you inherit
its contracts.

 You can’t add extra preconditions to inherited ones, but you can make invari-
ants and postconditions stronger.

Let’s get the second rule out of the way first. It’s really about Liskov’s Substitution
Principle (see http://mng.bz/sb2w): if a caller only knows that it’s using an interface,
and its call meets all the preconditions in the interface, it would be unfair to claim
that it violated a contract that you happen to want on your implementation. But you
can guarantee that your implementation goes above and beyond the call of duty when
it comes to postconditions and invariants.

 Bearing that in mind, how does the first rule work? Essentially the rewriter inserts
all the inherited preconditions and postconditions into the methods as it goes, and
makes any invariant methods call the base invariant method if there is one. The fol-
lowing listing shows an example of this, as well as displaying the order in which the
contracts are tested.

[Pure] static bool Report(string text)
{

Console.WriteLine(text);
return true;

}

class Base
{

public virtual void VirtualMethod(string text)
{

Contract.Requires(Report("Base precondition"));
Contract.Ensures(Report("Base postcondition"));

}
}

class Derived : Base
{

public override void VirtualMethod(string text)
{

Contract.Ensures(Report("Derived postcondition"));
}

}
...
Base d = new Derived();
d.VirtualMethod("");

The Report method B is used to simulate a condition that’s always satisfied, and also
give an indication of what’s going on without having to decompile the code. The code

Listing 15.7 Contract inheritance with concrete classes

Fake condition
for diagnosticsB

Virtual method
with contracts

C

Overridden
method with extra
postcondition

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/sb2w

467Rewriting binaries with ccrewrite and ccrefgen
does nothing other than check the fake condition. We have a virtual method declared
in Base C and overridden in Derived D; both have postconditions but only the base
declaration is allowed to specify preconditions. In the downloadable source code ver-
sion, there are also invariants in both classes to demonstrate inheritance there, too.
The output of listing 15.7 makes it clear that even though the override in Derived
doesn’t call base.VirtualMethod(), the contracts are still enforced:

Base precondition
Derived postcondition
Base postcondition

In the case of invariants, the base invariant is called before the derived one.

BREAKING INVARIANTS SNEAKILY Invariants are only applied to public meth-
ods... and the rewriter only applies the invariant of the class that it knows
about. If a public method in a base class calls a protected virtual method in a
derived class, that method may break the derived class’s invariant without it
being checked. There’s an example in the full source code, and there are
other ways of observing an object while its invariants are broken unless
you’re careful.

The lesson is to not assume that invariants are bulletproof. You should
understand when they’re expected to hold, and if you do expose the object in
a broken state (such as via a callback), you should document that clearly.

That’s all well and good, I hear you say, but what about abstract methods and inter-
faces? How can we express the contracts for methods we’re not implementing? Good
question. I’m personally somewhat wary of class inheritance—I think it’s easy to abuse
and hard to design well. Interfaces, though, are great—it’d be a pity if we couldn’t
express contracts on them.

 Fortunately, we can. We just need to create a new abstract class to implement the
interface or derive from the abstract class, purely for the sake of expressing contracts.
This is called the contract class. We then decorate the interface or abstract class with a
[ContractClass(...)] attribute, and also add a[ContractClassFor(...)] attribute
to the contract class. The contract class implements the methods just by a series of
contract calls, and the contracts are automatically applied to any implementations
(assuming the appropriate rewriter options are turned on).

 The next listing shows a simple interface with a contract class and an implementation.

[ContractClass(typeof(ICaseConverterContracts))]
public interface ICaseConverter
{

string Convert(string text);
}

[ContractClassFor(typeof(ICaseConverter))]
internal abstract class ICaseConverterContracts : ICaseConverter
{

Listing 15.8 Specifying contracts for an interface

Specifies
contract classB

Declares what type
contracts are for

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

468 CHAPTER 15 Letting your code speak more clearly with Code Contracts
public string Convert(string text)
{

Contract.Requires(text != null);
Contract.Ensures(Contract.Result<string>() != null);
return default(string);

}

private ICaseConverterContracts() {}
}

public class CurrentCultureUpperCaseFormatter : ICaseConverter
{

public string Convert(string text)
{

return text.ToUpper(CultureInfo.CurrentCulture);
}

}

This is basically the simplest interface I could imagine with useful pre- and postcondi-
tions. It’s meant to convert a string to a particular case (lower, upper, title, and so on).
You should never pass in a null reference, and implementations should never return a
null reference. The interface specifies that its contracts are in ICaseConverter-
Contracts B, and that refers back to the interface C. The suggested convention is to
name the contract class after the interface, just with a Contracts suffix. This looks
slightly odd, as there’s then a class with an I-prefixed name, but it’s effectively just rep-
resenting metadata about the interface. It’s not a normal class in terms of implement-
ing real behavior. (The CLR considers it to be an entirely normal class, of course—
only the Code Contracts tools and we as developers make the distinction.) You may
wish to consider keeping the contracts class in the same file as the interface, again
with the justification that it’s really just metadata and not a separate concept.9

 In the contracts-only implementation of Convert, we express the precondition and
postcondition in the normal way D before returning a default value E. You could
explicitly return null of course—I just find that using default (...) gives more of a
hint that this isn’t meant to be treated as a real result. Of course this would actually
violate the postcondition if we executed it, but that doesn’t matter, as this code is only
present for the sake of the contracts. To make sure that we never really create an
instance of the contract class, I've given it a private constructor which is never called
from the class itself F. I've also made it internal so that it won’t confuse developers in
other projects.

 Finally we’ve implemented the interface in a normal way in CurrentCulture-
UpperCaseFormatter. The implementation doesn’t specify any contracts or do any
checks itself G. Instead it relies on the binary rewriter to enforce the contracts at exe-
cution time.

 Admittedly the contract is separated from the interface itself, but apart from that,
this is a great situation to be in. We don’t have to test that the interface implementations

9 If C# allowed interfaces to declare nested types, this would be an ideal situation to use that ability. Unfortu-
nately, it doesn’t.

Applies pre- and
postconditions

D

Returns
dummy valueE

Prevents
instantiationF

Inherits
contracts
from interface

G

Licensed to Devon Greenway <devon.greenway@gmail.com>

469Rewriting binaries with ccrewrite and ccrefgen
honor the preconditions, and although we may write tests to try to provoke the post-
conditions being violated in corner cases, we can be confident that such violations
won’t silently be propagated to calling code (assuming the appropriate rewriter set-
tings, of course). Callers can also be certain of what they’re allowed to do—the precon-
ditions are clearly stated, and implementations can’t have added their own ones. Of
course there’s nothing to stop an implementation from checking and throwing an
ArgumentException anyway, but in a system based on Code Contracts, this is a con-
scious violation of best practices, rather than the accidental introduction of an extra
requirement.

15.3.3 Contract reference assemblies

Code Contracts has more capabilities up its virtual sleeves. Sometimes you may not
want the contracts to be present in the executable code, but you want to let callers use
the contracts anyway. Another tool (ccrefgen) lets you build a contract reference assembly
to distribute along with your normal assembly. The contract reference assembly con-
tains all the types, interfaces, methods, and so on of the original assembly, but with no
implementation except the original contracts. It’ll have the same name as the original
assembly, but with .Contracts at the end. For example, an assembly of Skeety-
Soft.Media would have a contract reference assembly called SkeetySoft.Media.
Contracts.

 When another developer adds a reference to your main assembly, the Code Con-
tract tools will look for the contract reference assembly to go with it. If it finds the con-
tracts, it can use those for static checking and also enforce the preconditions in the
caller’s assembly. For example, consider the code in the following listing, which is split
between a simple library class and a call to it.

public class PreconditionDemo
{

public void DontPassInNull(string text)
{

Contract.Requires(text != null);
Console.WriteLine("In DontPassInNull()");

}
}
...
new PreconditionDemo().DontPassInNull("hello");

Suppose the class library is built with execution-time contract checking turned off, but
with a separate contract reference assembly. The calling assembly can tick Call-site
Requires Checking in the Code Contacts project property page, at which point the last
line is converted into something like this:

System.Diagnostics.Contracts.Wrappers.ContractAssemblyDemo.
PreconditionDemo.NV$DontPassInNull(new PreconditionDemo(), "hello");

Listing 15.9 Adding preconditions at the call site

In class library

In separate
assembly
Licensed to Devon Greenway <devon.greenway@gmail.com>

470 CHAPTER 15 Letting your code speak more clearly with Code Contracts
The extra type here has been built into the calling assembly; its NV$DontPassInNull
method executes the preconditions copied from the contract reference assembly (in
the normal way, with calls to __ContractsRuntime.Requires) and then calls the real
DontPassInNull method if the preconditions pass. It’s all seamless to the caller,
which gets the same behavior as if preconditions were turned on in the target assem-
bly. This way the caller gets to choose whether it wants contracts enforced, without
requiring two different copies of the same assembly (one with contracts enabled and
one without).

ONLY PRECONDITIONS ARE COPIED Using Call-site Requires Checking doesn’t
enforce postconditions or invariants. In some cases it wouldn’t be able to—
they can refer to the internal state of an object, which may not be visible to
the caller. That shouldn’t be a problem—you do trust the code you’re calling
to be perfect, don’t you? Seriously, it is a matter of trust—and knowing what
to expect. If you believe that it’s more likely that there’s a bug in your code
than the code you’re calling (which is certainly the case when I’m developing
against the BCL, for example) then there’s still a lot of value to having just the
preconditions checked.

Of course if you turn this feature on and the target assembly also has execution-time
checking, you’ll end up testing the preconditions twice, which isn’t ideal.

15.3.4 Failure behavior

So far we’ve looked carefully at how to express the contracts and whether they’re
checked, but hardly considered what happens when they’re violated. The behavior on
failure is relatively complicated and highly tweakable, but it usually boils down to
three possible options:

 A normal exception type will be thrown if you’ve specified one in a
precondition.

 The system may raise an assertion error window or break into the
debugger if you’re already debugging.

 A ContractException (created by the binary rewriter) will be thrown
otherwise.

The decision for whether to provoke an assertion failure or throw a Contract-
Exception is controlled by the Assert on Contract Failure option in the project prop-
erties. Note that it’s an either/or option. If you trigger an assertion failure but then
ignore it, the code will proceed normally—it doesn’t throw a ContractException
afterward. ContractException is deliberately designed to be uncatchable—you can’t
refer to it in your own code. This is like the C# compiler generating unspeakable
names for anonymous types and iterators.

 The only way of catching a ContractException is to catch Exception. This is usu-
ally reserved for the top level of an application’s stack, where you might want to pre-
vent one bad request from bringing down a whole server—although you generally
Licensed to Devon Greenway <devon.greenway@gmail.com>

471Rewriting binaries with ccrewrite and ccrefgen
need to be careful of situations where you should terminate the whole process anyway.
The rationale for this is that you should never be catching contract violations: they
indicate bugs rather than some external failure, and it’s hard to sensibly proceed in
the face of “I’m calling code and something’s gone wrong, but I've no idea what.”

 All of this talk of exceptions and assertions is assuming you haven’t included any
custom error handling of your own. A global event is raised whenever a contract fails:
Contract.ContractFailed. This allows subscribers to observe the failure and option-
ally state that it has been handled. A handled failure won’t trigger an exception or
break into the debugger. The following listing shows an example of this sort of mask-
ing, as well as showing what information is available in the event.

static void RequireNonNullArgument(string text)
{

Contract.Requires(text != null, "Don't pass in null");
Console.WriteLine("In method body");

}

static void HandleFailure(object sender,
ContractFailedEventArgs args)

{
Console.WriteLine("{0}: {1}; {2}", args.FailureKind,

args.Condition, args.Message);
args.SetHandled();

}
...
Contract.ContractFailed += HandleFailure;
RequireNonNullArgument(null);

We start off with a method with a precondition B. This could be any contract that’s
easily violated, but we’re just checking for argument non-nullity. Nothing new here. If
the precondition is satisfied, we print out a diagnostic message.

 HandleFailure C is the method we’re going to use to create an Event-
Handler<ContractFailedEventArgs> delegate for the ContractFailed event. First it
writes out the kind of failure (precondition, postcondition, invariant, assertion, or
assumption), the condition that failed (in this case text != null), and the message
(if any—in this case “Don’t pass in null”). It then claims that we’ve handled the fail-
ure. If there are multiple handlers, they’ll still all get called, but only one handler
needs to call SetHandled for the failure to be considered as handled. Contract-
FailedEventArgs also has a SetUnwind method (not shown in this example), which
has a similar but opposite effect: it ensures that even if SetHandled has been called,
the normal escalation policy is still applied.

 To test the method, we first attach the event handler D and then call the method
in a way that’ll violate the precondition E. Despite the failure, we still get into the
method body. Here’s the output:

Precodition: text != null; Don't pass in null
In method body

Listing 15.10 Masking a contract with Contract.ContractFailed

Method with
precondition
to violateB

Failure
handling
methodC

Subscribes to global
failure event

D

Triggers failureE
Licensed to Devon Greenway <devon.greenway@gmail.com>

472 CHAPTER 15 Letting your code speak more clearly with Code Contracts
Another way of influencing what happens on contract failure is to use custom rewriter
methods. In the project properties page, you can specify an assembly and class to use.
Any of the static methods present in that class which match the signatures used by the
contract’s runtime will be used instead of the default behavior. For example, if you
want to change how assertions are handled, you’d write a method like this:

public static void Assert(bool cond, string userMsg, string condText)
{

Console.WriteLine("Checking condition {0}", condText);
Console.WriteLine("Result of check? {0}", cond);

}

Any required methods that aren’t available in the class are given the usual behavior.
See the documentation provided with the Code Contracts download for the other
method signatures.

 Changing the failure behavior either for a whole assembly (using custom meth-
ods) or a whole AppDomain (using the ContractFailed event) isn’t something you’ll
want to do for normal applications. It’s mostly useful if you’re writing a custom frame-
work that’ll execute third-party code: a test harness or a plug-in system, for example.
It’s worth knowing about what can happen, mostly so that if you’re executing in an
environment that does change the failure mode, you won’t be surprised. I expect most
mainstream unit test frameworks to gain support for Code Contracts in the near
future. Most of the time, you should be thinking about any differences in behavior
you want to see between a debug build and a release build. We’ll discuss these deci-
sions later.

 As we’ve seen, the precise behavior of a contract failure depends on many fac-
tors—a full treatment is beyond the scope of this book, and would be irrelevant to
most developers. For more details, you can consult the documentation—also I’d rec-
ommend posting on the Code Contracts user forum if you want to check anything
particularly out of the ordinary (see http://mng.bz/43E0). The Code Contracts team
monitors the forum closely, and can provide advice taking into account the many
available options and their implications.

 The binary rewriter’s job is to change how the code behaves at execution time. The
next tool we’ll look at is the static checker, which affects how your code behaves at
compile time.

15.4 Static checking
The static checker (cccheck) checks at compile time that you won’t break contracts at
execution time. In some ways, the static typing we’ve been used to for years is a restric-
tive version of what the static checker can do. Just as the normal C# compiler checks
that your code obeys the “type contracts” in every method we declare (the number
and types of the parameters, for example), the static checker analyzes the more com-
plex contracts expressed earlier and warns you if it believes you may break them.

 Currently, the static checker is only available if you’re either using Code Contracts
under the academic license or you have the Visual Studio 2010 Premium or Ultimate
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/43E0

473Static checking
edition installed. This may change in the future, but even if you can’t use the static
checker yourself, it’s worth being aware of what it can and can’t do. This will help you
to think in terms of contracts, leading to more robust and understandable code that
leaves fellow developers in less doubt as to how they should interact with it. Whether
or not you use an automated checker, more information is always useful when you per-
form your own mental checking for your code’s correctness.

15.4.1 Getting started with static checking

Let’s look at a simple example first. Yet again, it deals with nullity of input and output
values. I should probably emphasize that contracts can be a lot more complex than
this, but in my experience nullity is the single biggest irritation in terms of knowing
what an API expects and will provide. It’s not surprising that it gained its own syntax in
Spec#, or that F# avoids even the possibility of null values wherever it can. It also helps
that it’s extremely easy to demonstrate in examples. The following listing asks the
static checker to prove a number of contracts—some successfully, and some not.

static string DontPassMeNull(string input)
{

Contract.Requires(input != null);
Contract.Ensures(Contract.Result<string>() != null);
return input;

}

static string MightReturnNull()
{

return "Not null really";
}
...
DontPassMeNull("definitely okay");
DontPassMeNull(MightReturnNull());
DontPassMeNull(null);

To work out what the static checker is going to do, we have to think about where
things might go wrong. Preconditions need to be checked at call sites, invariants need
to be checked at each exit point of each public method, and postconditions need to
be checked at each exit point of the method they’re declared in. Assertions and
assumptions are checked at their location within the program text. Neither invariants
nor normal postconditions (simple Ensures calls) are checked if the method throws
an exception. In listing 15.11 we have four contracts to check: the postcondition of
DontPassMeNull B (once; there’s only one exit point) and the precondition of the
same method (we call it three times).

 The postcondition check passes: the checker knows that input can’t be null due to
the precondition. Likewise the first call to DontPassMeNull will definitely pass D—the
string literal is definitely not null. After that, things get trickier. The next line might
not be a bug, and by inspection we can tell that MightReturnNull C never actually
returns a null reference. The precondition will always pass—but the checker can’t

Listing 15.11 Experimenting with the static checker and simple contracts

Contains pre- and
postconditionsB

Contains no
contractsC

Tries
various callsD
Licensed to Devon Greenway <devon.greenway@gmail.com>

474 CHAPTER 15 Letting your code speak more clearly with Code Contracts
prove it. It doesn’t try to infer a postcondition of return value non-nullity for Might-
ReturnNull, even though it could prove that such a contract would always pass. It
doesn’t know that the precondition will always fail, either, so it reports a result of
“unproven.” The final call is easy: the checker knows that the precondition will never
pass, so it reports a definite failure. Figure 15.2 shows the results in the Error List win-
dow in Visual Studio.

 Before I move on from this example, I want to go back to the point about how the
checker treats MightReturnNull. It’s tempting to think of this as a limitation of the
checker, but it’s not.10 If a method wants to say that it guarantees never to return a null
reference, it should declare that as a contract. If it doesn’t make that guarantee, then
a later change to return a null reference is valid—it still conforms to the contract of
the method. To go back to our static typing analogy, it’s like a method that’s declared
to return IEnumerable<string>. You may happen to know that the current imple-
mentation always returns a List<string>, but it’d be unwise to blindly cast the result:
a future implementation could use an iterator block or return an array, for example.
Of course, if you come across this situation in your code, you may decide that the
method really should guarantee that it returns a non-null value; the correct fix is to
add the contract. Otherwise, you can either use Contract.Assume or explicitly handle
the case where it returns null.

THE STATIC CHECKER STOPS ON FAILURE If the checker detects that a certain
call will always fail a precondition (or that an assertion will always fail) then it
treats the end of the call as unreachable. Any other statements that could nor-
mally only be reached via that point of failure aren’t checked for correctness.
That means when you fix one problem, you may find there was another one
waiting on the next line, which hadn’t been reported because the checker
knew you’d already have failed by then.

On the other hand, some requirements don’t need to be explicitly stated... the static
checker is happy to try to prove them for you anyway.

10 In fact, you can change this behavior with the -infer option to the checker. By default the checker will infer
postconditions for properties, but not methods. There’s a -suggest option that displays postconditions you
might like to consider adding, but it doesn’t use this knowledge when checking for correctness.

Figure 15.2 Static check
results in Visual Studio 2010
Licensed to Devon Greenway <devon.greenway@gmail.com>

475Static checking
15.4.2 Implicit obligations

Whenever you call an instance member (a real one, not an extension method) on a
reference type value, there’s an implicit requirement that the reference mustn’t be
null. If you turn on the Implicit Non-null Obligations option then the checker will
detect potential problems of dereferencing null values.

IMPLICIT NON-NULL OBLIGATIONS

One way to think about implicit non-null obligations is to imagine that every instance
member on every reference type started with a precondition like this:

Contract.Requires(this != null);

If you turn on the Implicit Non-null Obligations option in Visual Studio, the checker
tries to prove that obligation—again, using the contracts available on other members.
The following listing shows an example of this, fetching strings from methods or using
a literal—and then trying to dereference the relevant variables.

static string WontReturnNull()
{

Contract.Ensures(Contract.Result<string>() != null);
return "Guaranteed not null";

}

static string MightReturnNull()
{

return "A later implementation may return null";
}
...
string literal = "Obviously not null";
string wontBeNull = WontReturnNull();
string mightBeNull = MightReturnNull();

Console.WriteLine(literal.Length);
Console.WriteLine(wontBeNull.Length);
Console.WriteLine(mightBeNull.Length);

This is similar to listing 15.11, but using implicit contracts instead of an explicit pre-
condition. We have three variables B—one initialized with a string literal, one initial-
ized with a method that has a postcondition to guarantee that it won’t return null, and
one initialized with a method that doesn’t make any guarantees. When we try to print
out the length of each string C, the first two calls are fine, but the checker reports a
warning on the last one: “Possibly calling a method on a null reference ‘mightBeNull’.”

 Of course, as with any contract, the checker can perform a lot more complex rea-
soning than this. There may be several code paths that initialize the variable, and so
long as the checker can prove that any time it’s deferenced it’s definitely not null, it
won’t issue a warning. I want to highlight this explicitly because all of the examples in
this chapter are quite simple—that’s the nature of book examples—but real-world
code tends to have more complexity. If you use the checker against your own code,

Listing 15.12 Testing implicit non-null obligations

Sets up string
variables

B

Dereferences
each variable

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

476 CHAPTER 15 Letting your code speak more clearly with Code Contracts
you’ll see just how much it can work out—or how many possible bugs are lurking in
your source.

IMPLICIT ARRAY BOUNDS OBLIGATIONS

Another implicit obligation occurs when accessing arrays. Though .NET arrays can
have a nonzero lower bound, any single-dimensional array accessed directly with an
indexer in C# has to be a vector in CLR terminology. These are much faster than rect-
angular arrays and arrays with a nonzero lower bound, and the static checker can
attempt to prove that you never violate either bound if you have the Implicit Array
Bounds Obligations option ticked. The following listing shows a simple example of
where you might go wrong.

static void Main(string[] args)
{

for (int i = 0; i <= args.Length; i++)
{

Console.WriteLine(args[i]);
}

}

We’ve accidentally used <= instead of < in the for statement B. Normally this would
only show up at execution time (hopefully in a test), but with Code Contracts, the
checker reports a compile-time warning of “Array access might be above the upper
bound.” In other cases it’ll be more definite, with warnings such as “Array access IS
above the upper bound.” The exact details of the message depend on whether the
checker detects that the code will fail every time the expression is evaluated or only on
some occasions. In this case, although it’ll definitely fail eventually, it’ll be okay for the
first args.Length iterations—hence the “might” part of the warning.

 That’s relatively simple—it’s pretty obvious that we’ll be venturing outside the
bounds of the array. The checker can be somewhat more impressive, though. It’s rea-
sonably common when working with arrays to iterate through one array to populate
another. The sizes of the arrays are related, but not necessarily the same. The follow-
ing listing shows an example of this, populating a new string array by alternating
between a value from an original array and the default value (null).

static void Main(string[] args)
{

string[] copy = new string[args.Length * 2 - 1];
for (int i = 0; i < args.Length; i++)
{

copy[i * 2] = args[i];
}

}

Listing 15.13 Invalid indexing due to a typo

Listing 15.14 More complex array bounds checking

Oops! TypoB
Licensed to Devon Greenway <devon.greenway@gmail.com>

477Static checking
Here the access to args[i] is obviously okay, but what about copy[i * 2]? The checker
detects the relationship between the lengths of the two arrays, and performs arithmetic
and range analysis to check whether the index is still valid. If you look carefully at the
size of the new array, you’ll see I've deliberately reduced the size by one to avoid having
a trailing null value—so that a copy of ["a", "b", "c"] becomes ["a", null, "b",
null, "c"], for example. If you change the array index used to copy[i * 2 + 1], the
checker will realize that on the last iteration, that’ll go out of bounds. Maybe I’m easily
impressed, but I think that’s pretty clever.

 Even that’s not all—we still have a potential problem, even in this code. We
won’t access any invalid indexes in the array, but what if the original array (args) is
empty? We’ll end up trying to create a new array with a negative size. The checker
spots this and adds a warning: “Suggested precondition: Contract.Requires(0 <=
((int)(args.Length) * 2 - 1));.” This precondition is stricter than the simpler
precondition we might’ve coded by hand (Contract.Requires(args.Length > 0))
to cover the case where the array length is so big that doubling it overflows the
bounds of Int32.

 You might be wondering why it hasn’t also prompted us to require that args not be
null. The answer is that it normally would, but it realises that Main is an entry point,
and so in normal use args won't be null anyway.

IMPLICIT ARITHMETIC OBLIGATIONS

The final kind of implicit obligation is arithmetic. Currently there are two kinds of
arithmetic checking provided: division by zero, and negation of the minimum value of
signed integer types. In many ways the latter is a more insidious problem than the for-
mer: at least if you try to divide by zero you’ll get an exception, rather than bad data.
To show the danger of negating minimal integers, the following listing shows a flawed
implementation of IComparer<T>.

public class BadReverseComparer<T> : IComparer<T>
{

private readonly IComparer<T> original;

public BadReverseComparer(IComparer<T> original)
{

Contract.Requires(original != null);
this.original = original;

}

public int Compare(T x, T y)
{

return -original.Compare(x, y);
}

}

The aim of listing 15.15 is to reverse the order of an existing comparison. IComparer
<T> is a nicely composable interface: you can write implementations that chain to
other comparisons to provide a secondary sort order, compare two elements by

Listing 15.15 An incorrect implementation of a “reverse comparer”
Licensed to Devon Greenway <devon.greenway@gmail.com>

478 CHAPTER 15 Letting your code speak more clearly with Code Contracts
properties, or reverse the comparison order like we’re attempting here—it’s great.
Unfortunately, there’s a nasty trap waiting in this implementation—a trap that unit
tests alone may well not spot. This implementation works perfectly well except in one
specific situation: when the value returned by original.Compare is int.MinValue.
Due to the range of integers available, -int.MinValue is still int.MinValue, so that
particular comparison wouldn’t be reversed. Fortunately, when you have Implicit
Arithmetic Obligations turned on, Code Contracts spots this potential problem and
issues a warning: “Possible negation of MinValue of type Int32.” Just in case you’re
wondering, the correct11 fix to this is to reverse the order of the arguments passed to
the original comparison, like this:

public int Compare(T x, T y)
{

return original.Compare(y, x);
}

Obviously the checker performs appropriate analysis first: it won’t report a warning if
it can prove that the value you’ll be negating can never be the minimum value for the
type. Although only two checks are performed at the moment, I wouldn’t be surprised
to see more added later, such as possible overflows in a checked context.

 You may be wondering why all these are only options—options which are turned
off by default. It turns out you can have too much of a good thing.

15.4.3 Selective checking

It’s not often you see documentation for a product that pretty much discourages you
from using it, but the Code Contracts user manual is blunt about static checking
being tricky to use effectively. Aside from some fairly subtle behavior, the biggest
problem is likely to be information overload. It’s one thing to start a project from
scratch and use static checking every step of the way, but applying it to an existing
code base can be daunting. Just as an example, I imported my small utility project
(MiscUtil—see http://mng.bz/xDMt) and turned on static checking for normal con-
tracts and all the implicit obligations. After I’d turned up the maximum number of
warnings, the checker found 555 unproven contracts and suggested 220 precondi-
tions. This is overwhelming even for a relatively small amount of code—for a full
commercial application it’d be a positive avalanche.

 Code Contracts provides two ways of managing this situation: baselines and an
attribute to control what’s checked.

USING BASELINES TO HIGHLIGHT NEW ISSUES

Suppose you want to start using Code Contracts on an existing code base that cur-
rently raises thousands of warnings in the static checker. There are two major con-
cerns: first, you want to make sure the code doesn’t get any worse. You should avoid

11 That’s “correct” for the intention of reversing all comparisons. It violates the documentation of
IComparer<T>, which states that a null reference is considered less than any non-null reference, assuming
that the original comparison obeys the same rule.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/xDMt

479Static checking
introducing any new violations. Second, you want to nibble away at the warnings a
chunk at a time. Baselines help with the first problem.

 The idea of a baseline is that it’s a “known bad” build result. Usually in software
engineering we have known good versions, but in this case we know that our code is
bad in terms of having lots of unprovable contracts—we need to know where it’s bad.
To use baselines you just specify a filename in the Code Contracts project proper-
ties. This is relative to the location of the assembly that’s being checked: the default
value is ..\ ..\baseline.xml, which will be in the project’s root directory for default
build configurations.

 When the static checker is invoked, it first looks for an existing baseline file. If the
file doesn’t exist, the check is performed as normal and the results are written to the
baseline file. Otherwise, the checker loads the results from the existing file and
doesn’t report errors it had already seen, only showing new problems. A new file is
also generated with the new problems. The new file has the same name as the normal
baseline file, but with .new appended to the end. The files are just simple XML, so you
can easily analyze them with external tools if you want to, merge them together (order
isn’t important in the file), and include them in continuous build reports. In addition
to preventing new issues, you could also use baselines to show positive progress: as you
fix some issues, you can rename the baseline file, rebuild, and then see how many
problems have been fixed by comparing the two.

 Another approach to managing an initially unwieldy code base is to only perform
static checking on certain parts of the project.

USING [CONTRACTVERIFICATION] TO CONTROL CHECKING

If you’re trying to actively remove some of the existing warnings produced by the
static checker, it can help to focus on one piece of code at a time. You can apply the
[ContractVerification] attribute to specify whether an assembly, type, or individual
member should be checked. The following listing shows how simple it is.

[assembly:ContractVerification(false)]

[ContractVerification(true)]
public class CheckedType
{

public void CheckedMethod() {}

[ContractVerification(false)]
public void UncheckedMethod() {}

}

public class UncheckedType
{

public void UncheckedMethod() {}

[ContractVerification(true)]
public void CheckedMethod() {}

}

Listing 15.16 Applying checking selectively with [ContractVerification]

No checking
by defaultBCheck

this typeC

Don’t check
this methodD

Check this
methodE
Licensed to Devon Greenway <devon.greenway@gmail.com>

480 CHAPTER 15 Letting your code speak more clearly with Code Contracts
Obviously there’s nothing to be checked in any of the methods in listing 15.16, but
the names should be clear enough. The main point of the listing is to demonstrate
how pseudo-inheritance of contract verification works. Each type inherits the assem-
bly’s attribute value unless it specifies the attribute itself, and likewise each member
inherits the value from its containing type. So in listing 15.16, although the assembly-
level attribute turns off static checking B, it can be turned back on at the type C or
member level E—and turned off again at the member level D if it’s turned on for
the type. It’s important to note that this is not related to normal type inheritance. A
class derived from CheckedType within the same assembly wouldn’t be checked by
default, for example.

 One subtlety is worth knowing about as well. As we’ve seen in previous chapters, in
some cases the C# compiler creates extra types and methods for you—in particular,
for anonymous functions and iterator blocks. The C# compiler doesn’t know anything
about [ContractVerification], so it doesn’t propagate the value to any extra mem-
bers created as a result of complex transformations. For example, if Unchecked-
Type.CheckedMethod used a complex lambda expression in its body, that code
wouldn’t be checked, because as far as the static checker is concerned, the code would
be in a separate method without the attribute applied to it.

 With judicious use of this attribute, you can choose to tackle one type or even one
method at a time, fixing up any contractual requirements as you go. One other reason
to apply this attribute may be if your codebase is too large to run the static checker
over during development—while implementing a new class or subsystem, you may
want to only check the new code, leaving full checking of the whole project to the con-
tinuous build system. You could temporarily add [ContractVerification(false)] to
the whole assembly, and then add [ContractVerification(true)] to the new types.
To avoid the danger of accidentally checking this into source control and disabling
static checking for everyone, you might want to define a preprocessor symbol for this
purpose, and add code like the following to AssemblyInfo.cs:

#if SELECTIVE_STATIC_CHECKING
[assembly:ContractVerification(false)]
#endif

You can then define a build configuration based on Debug but including that symbol,
making it trivial to develop with selective checking turned on.

 The final tool available is ccdocgen, which doesn’t require Visual Studio Premium
or Ultimate; it generates XML documentation from your contracts.

15.5 Documenting contracts with ccdocgen
This is one area of contracts that’s simple from the point of view of the code you write:
you don’t need to change a thing in order to document your contracts. Simply tick the
Emit Contracts into XML Doc File check box, and when you build your normal XML
documentation, the contracts will be emitted too. Listing 15.17 shows a class with a
single public method including contracts, and an invariant.
Licensed to Devon Greenway <devon.greenway@gmail.com>

481Documenting contracts with ccdocgen

/// <summary>
/// Class summary.
/// </summary>
public sealed class DocDemo
{

private int callCount = 0;

[ContractInvariantMethod]
private void Invariant()
{

Contract.Invariant(callCount >= 0);
Contract.Invariant(callCount < 100, "Wrap at 100.");

}

/// <summary>
/// Method summary.
/// </summary>
/// <returns>The input, reversed.</returns>
public string Reverse(string text)
{

Contract.Requires<ArgumentNullException>(text != null, "text");
Contract.Ensures(text != null);
callCount = (callCount + 1) % 100;
char[] chars = text.ToCharArray();
Array.Reverse(chars);
return new string(chars);

}
}

There’s nothing remarkable here in terms of the contracts. For the sake of showing
variety in the generated XML, I've specified a description in one Contract.Invariant
call and forced the use of ArgumentNullException for the precondition in the
method. The complete generated XML documentation for the class looks like this
(reformatted slightly):

<doc>
<assembly><name>CcDoc</name></assembly>
<members>

<member name="T:CcDoc.DocDemo">
<summary>Class summary.</summary>
<invariant>callCount >= 0</invariant>
<invariant description="Wrap at 100.">

callCount < 100
</invariant>

</member>
<member name="M:CcDoc.DocDemo.Reverse(System.String)">

<summary>Method summary.</summary>
<returns>The input, reversed.</returns>
<requires description="text"

exception="T:System.ArgumentNullException">
text != null

</requires>
<exception cref="T:System.ArgumentNullException">

Listing 15.17 Automatically documenting method contracts with ccdocgen
Licensed to Devon Greenway <devon.greenway@gmail.com>

482 CHAPTER 15 Letting your code speak more clearly with Code Contracts
text == null
</exception>
<ensures>text != null</ensures>

</member>
</members>

</doc>

It’s fairly simple, but there are a few things to note about the generated documentation:

 The text of the contract elements comes from the code: in some cases this can
cause private information to leak into documentation, such as the name of the
callCount variable. This isn’t much of a problem, but you should be aware of
it—and make sure your variables have appropriate names! Adding a description
to the contract method call can add clarity here; it’ll be emitted in the
description attribute.

 An exception element has been generated for us because we explicitly speci-
fied the exception to throw if the precondition isn’t met. If you let Code Con-
tracts throw the default ContractException, this element isn’t generated.

 The requires element also specifies the exception that’ll be thrown if the pre-
condition fails; again, this would be omitted in the default case.

Some other elements can be generated; at the time of this writing this list only consists
of pure (for pure methods) and ensuresOnThrow (for postconditions that apply even
when exceptions are thrown). Likewise the documentation can indicate when con-
tracts have been inherited from a base class or interface. I've omitted these features
from the example for the sake of brevity, but the Code Contracts documentation goes
into more detail.

 Once you have the XML, you’re free to do with it as you please. The Code Con-
tracts documentation gives instructions for patching Sandcastle to make it render the
elements appropriately, and no doubt other documentation transformation tools will
adapt to include them in the future. Unfortunately, at the time of this writing Visual
Studio’s own IntelliSense doesn’t display the contracts within the IDE, making the fea-
ture slightly less valuable. But it’s possible that plug-ins may improve this situation
over time. We still have the core benefit that the contracts are expressed in a single
place, and then used for documentation, compile-time checking, and execution-time
checking. There’s no way for the three aspects to get out of sync with each other.

 Now that we’ve looked at the tools, let’s consider some of the broader questions
raised by Code Contracts.

15.6 Practical contracts

MAY CONTAIN NUTS This section is very subjective, and contains only trace
amounts of technical information. If you’re happy enough to work out the
best way of using contracts for yourself, you won’t miss out on anything by
skipping to the chapter summary.
Licensed to Devon Greenway <devon.greenway@gmail.com>

483Practical contracts
Unless you happen to have used a language supporting Design by Contract before,
you may sometimes find yourself unsure of how to proceed with Code Contracts. If
you’re using it in conjunction with test-driven development, what should you write
first: the contract or the implementation? Should you write unit tests for the con-
tracts? When is it appropriate to let ContractException be thrown, and when should
you throw a standard .NET exception such as ArgumentNullException? Should your
release builds check contracts or not?

 We’ll think about all of these questions in this section, but I don’t promise to come
up with concrete answers for everything. At the time of this writing, Code Contracts is
a young and evolving product. Nobody has much experience with it, and I don’t claim
to be an exception. Furthermore, many of these decisions are heavily dependent on
your exact situation, and some are a matter of personal taste too. Hopefully with the
discussion in this section, you’ll be in a good position to work out a strategy that’s
right for you and your team.

 The Code Contracts user manual has guidance too, including situations where you
don’t want to run the binary rewriter at all. For the rest of this section I've assumed
that you’re happy to run the rewriter: it gives you a lot more control and options for
no real disadvantages other than build time.

15.6.1 Philosophy: what’s in a contract?

First, it’s worth thinking about what contracts mean to you—in particular what precon-
ditions mean. To some people, they indicate the expected input states under which the
method guarantees to operate correctly. This is a bit like having a warranty for a vac-
uum cleaner, which means the manufacturer will repair it if it breaks under normal
conditions. They’re not going to fix the cleaner if you start attacking it with a hammer,
and the company won’t try to guarantee you won’t be injured in such a situation either.
In other words, if you break the terms of the warranty, all bets are off. People who regard
contracts in this way are likely to have Debug.Assert calls within their existing code:
they’re measures to help you iron out any wrinkles in your code before you ship, but if
a bug creeps through and violates the preconditions in the released code, there’s no
telling what might happen. Likewise with postconditions: you’ve made a best effort to
ensure that all the bugs have been fixed during development, but if a bug is still lurk-
ing, you could end up with an invalid result. There probably won’t be unit tests for fail-
ing preconditions, because there’s no particular expected behavior.

 To other people, contracts are a firmer guarantee: they not only say that the code
will execute in a particular way if the preconditions are met, but also that the code
won’t execute at all if they fail. This is more like a height limit for a roller-coaster ride:
the theme park isn’t just willing to guarantee your safety if you’re above a certain
height, but they’ll actively prevent you from putting yourself into danger if you fail to
meet their criteria. Developers with this mentality are more likely to have explicit tests
for bad argument values, throwing ArgumentNullException and so on, regardless of
whether the code is built in debug or release mode. Postconditions have been harder
Licensed to Devon Greenway <devon.greenway@gmail.com>

484 CHAPTER 15 Letting your code speak more clearly with Code Contracts
to express until now, but this attitude is likely to encourage their enforcement in
release builds too: a guarantee that the method really will never silently return a value
that the contract forbids, or leave the object in an invalid state. Preconditions are
likely to have unit tests, as otherwise there’s nothing to test the guarantees.

 It’s worth noting that these different groups may agree on what the contracts for
any particular operation should be: whether a particular value is a valid input,
whether the method should guarantee the range of its return value, and so on. The
difference is in what the behavior should be when that contract is violated. I’m not
going to claim that either attitude is wrong, although I tend to favour the latter
approach. I generally dislike code that behaves significantly differently in a debug
build than in a release build. Whichever side you come down on, try to achieve consis-
tency within a project—which for most developers will mean discussing the issue with
other team members.

15.6.2 How do I get started?

Everyone has a different development style. Personally I like test-first coding, although
I’m not as strict with myself as I’d like to be, and I couldn’t really claim that all my
design is test-driven. Before contracts, you already had the choice of whether to design
the API first, the implementation first (changing the design as you went along), or the
tests first. Now we have to add contracts into the mixture. Fortunately, I don’t think it’s
as bad as it sounds, because I think each of those steps naturally yields its own set of
contracts.

 Sometimes tests will provoke contracts—usually preconditions. When you’re writ-
ing success case unit tests, think about what else you could be passing into the
method, or other ways you could set up the object. Are there some combinations or
arguments that don’t make sense? Can you express them as contracts?

 Sometimes the implementation will provoke contracts, both private ones (asser-
tions and assumptions) and public ones (usually postconditions). It can be hard to
know exactly what your code is willing to guarantee until you’ve written it, but if you
can see something that’ll certainly be true when you exit, consider telling the caller
about it as a postcondition.

 Invariants are more likely to come out of the higher-level design of the class, as
they affect the whole type instead of specific members. One possibly obvious piece of
advice: don’t even think about invariants for immutable types. If something can’t vary
its state, it can’t break an invariant. Instead, if there are rules that must be adhered to
on construction, those should be preconditions.

 Don’t worry about capturing absolutely everything , though. Just like with unit test-
ing, it’s better to have a few good contracts than decide that because you don’t have
enough time to put full functional contracts in for everything, you won’t bother at all.
Likewise it’s worth thinking carefully about what you guarantee: though a weak post-
condition is less useful for callers right now, it does give you more flexibility in the
future. Try to think about the logical guarantees you want to make, even if the imple-
mentation can guarantee a lot more.
Licensed to Devon Greenway <devon.greenway@gmail.com>

485Practical contracts
UNIT TESTING CONTRACTS

With legacy contracts, I tend to write unit tests to prove the contracts. Sometimes this
feels like a waste of time—if you have several parameters, none of which can be null,
having a test for each of them can get extremely boring. But it does prove that the
behavior matches the documentation. With Code Contracts, you get that for free: if
the autogenerated documentation includes a contract, it must be present in the code.
That doesn’t mean the contracts will be checked at execution time, of course—but
unless you run your unit tests with every build configuration, a test couldn’t check that
anyway. I find it’s particularly clean when you’re implementing an interface, as then
most of the contracts will be specified entirely separately from your implementation
anyway, so there’s less of a feeling of cheating.

 It’s entirely reasonable to write unit tests to provoke corner cases that you suspect
may break the contracts, of course. That’s just normal testing where you should test
the expected result, and you’ll get the added benefit of the contract performing sanity
checking too.

 If you decide you do want to test that your contracts are present and being
checked, you may find a slight problem if you’re using the default Contract-
Exception. It’s designed to be uncatchable at a fine-grained level, which makes it hard
to use in traditional test framework “expect this action to throw this exception” asser-
tions. I suspect that test frameworks will gradually evolve to include explicit support
for this scenario, but until then one alternative is to use your own custom rewriter
methods in a debug build. For instance, they could throw a publicly available excep-
tion instead of the hidden ContractException, in which case you could expect that
public exception just like any other failure. All of this is obviously unnecessary if
you’re using the old-style exceptions. Speaking of that sort of choice, let’s think about
how you might want to configure Code Contracts in the first place.

15.6.3 Options, options everywhere

You can’t fault Code Contracts when it comes to flexibility. Combining the various fea-
tures of the tools with different build configurations, you can achieve almost any
effect you want. The difficult part isn’t the tweaking—it’s deciding what you want to
start with.

CHOOSING A FAILURE MODE

Unless you start creating your own custom rewriter methods or subscribing to the
ContractFailed event, you have four mutually exclusive options for what should hap-
pen if a contract is violated:

 The application stops with an assertion failure, allowing you to break into the
debugger.

 A ContractException is thrown, which can’t be caught except as a blanket
Exception.

 A standard .NET exception is thrown, which can be caught by client code.
 Nothing—the code continues as if no contracts were involved.
Licensed to Devon Greenway <devon.greenway@gmail.com>

486 CHAPTER 15 Letting your code speak more clearly with Code Contracts
Some of this can be decided on a per-configuration basis—in particular, whether to
use ContractException or assertions, and how many contracts to check—whereas the
decision to use standard .NET exceptions requires the types to be specified in the code
itself. Though you could write every precondition twice, using preprocessor symbols to
determine which to use for a given configuration, it sounds like a step too far to me.

 Unless you’re migrating an existing project with legacy contracts to use Code Con-
tracts, I’d personally recommend using the nongeneric Requires method, which will
either assert or throw a ContractException. It results in the simplest code, and you
don’t have to repeat the parameter name for ArgumentException-related precondi-
tions. The familiarity of existing exceptions tugs at me a little, but fundamentally the
type of the exception doesn’t provide any extra information beyond what’s already in
the contract—and removing the possibility of catching specific exceptions is a step
toward encouraging appropriate exception handling policies. One disadvantage of
ContractException is that because you can’t explicitly catch it, it’s hard to write unit
tests to check your contracts, as we’ve just seen.

 If you build a contract reference assembly, you can let your callers have some con-
trol over what happens too. There’s little point in building a reference assembly if the
contracts are present in the rewritten binary anyway, though. Having said that, a refer-
ence assembly will only help with certain contracts.

CONTRACT TYPES

Different contract types can have different behavior associated with them. There isn’t
complete freedom about what to do here—you can’t easily make some contracts fail
with a ContractException and others fail with an assertion error, for example—but
the binary rewriter does let you specify the general level of contracts to keep in the
rewritten binary:

 None—All contracts, including legacy ones, will be removed.
 Release requires—Legacy contracts and preconditions that specify a standard

.NET exception will be included.
 Preconditions—As above, but with preconditions throwing ContractException

included as well.
 Pre and post—As above, but with Contract.Ensures (and Contract.EnsuresOn-

Throw) calls included.
 Everything—The above, with invariants, assertions, and assumptions included.

If you really want to include some of the later items but exclude earlier ones, you
could use C# preprocessor directives to achieve another degree of flexibility. For
example, you may want full contract checking in an ideal world, but have some post-
conditions that are just too expensive to validate in release builds. You could use a pre-
processor symbol of EXPENSIVE_CONTRACTS and only define it in debug builds, or even
have a separate build configuration. That leads us to consider what kinds of build you
want in the first place.
Licensed to Devon Greenway <devon.greenway@gmail.com>

487Practical contracts
DIFFERENT CHOICES FOR DIFFERENT PROJECTS This is a good example of where
different projects may have different requirements. The BCL team is scrupu-
lous in unit testing their contracts, and their binaries ship with a relatively
small set of contracts included at execution time. They’re in a fairly unique
position—they have relatively little idea of how the code is going to be used,
so any performance impact from contracts could be serious. They also don’t
have the luxury of letting users decide which version to run against—we really
don’t want to start having different configurations of .NET installed on end-
user machines for different contract preferences. Your own requirements will
no doubt be different, so think about them carefully.

Additionally, there’s the question of where the contracts are applied. If your code has
a lot of contracts for debugging and verification purposes but at execution time you
mostly care about the behavior at the boundaries between your code and third-party
assemblies, you can turn on the Only Public Surface Contracts option.

BUILD CONFIGURATIONS

Visual Studio creates projects with Debug and Release configurations by default. The
general idea is that you develop using the Debug configuration but then ship using
Release. But what counts as “shipping”? Code is used in an increasingly diverse way—
shipping a shrink-wrapped consumer application is very different from deploying
your code to the one-and-only server running your production web service, which is
also different from releasing a new version of an open source library. Try to work out
who’ll want to use the code and in what context. If you’re building a class library, do
you know the other developers and their needs? Will some developers be concerned
about the performance of checking contracts frequently? Are they likely to know
about Code Contracts, and perhaps want to use the static checker against your
library’s contracts (even if perhaps you don’t use the checker yourself)?

 If you’re building an application, so the code won’t be consumed by other devel-
opers, only users, that makes life easier: you can decide the behavior you want to give
you confidence that the application won’t malfunction, and tune the settings accord-
ingly. Open source projects are easy in the other direction: at least then if you don’t
guess your users’ needs correctly, they can change the settings and rebuild the code
themselves. The hardest situation is perhaps that of the component vendor, shipping
class libraries as binaries to paying customers.

 You can introduce more flexibility in what you ship by creating multiple build con-
figurations—some with full checking, others with only public API checking of precon-
ditions, and so on. Beware of the cost of maintaining a large number of
configurations, though—especially if other variables are involved other than con-
tracts. You probably don’t want to get into the business of building multiple versions
to target different versions of the .NET framework and different levels of contracts and
different optimization levels, and so on.

 Assertion failures are reasonable for debug builds (whether you’re the one doing
the debugging or not), but are almost certainly not right for anything that might
Licensed to Devon Greenway <devon.greenway@gmail.com>

488 CHAPTER 15 Letting your code speak more clearly with Code Contracts
reasonably be called a release build. This can be decided on a per-configuration basis
easily from the options. I know this goes against my earlier point of debug and release
builds behaving differently, but at least in both cases execution of that unit of work will
halt—it’s just the difference between bubbling up a nearly uncatchable exception to a
top-level handler and raising an ugly but attention-grabbing assertion window.

WHY NOT VALIDATE EVERYTHING?

I’d generally suggest writing defensive code that validates both its inputs and its own
behavior. There’s one obvious potential drawback: performance. Checking a contract
is clearly more work than not checking it. If you stick to contracts that are cheap to val-
idate, they’re unlikely to become a performance bottleneck other than for small
methods called a huge number of times—but if you have any performance bench-
marks, it’d be worth running them both with and without execution time contract
checking so you can tell for sure. As ever, it’s hard to make accurate guesses about per-
formance—so don’t. Gather data that’s as realistic as possible, and base your decision
on that.

 If you have internal methods that are called frequently, you may find that just
restricting contracts to the public API is good enough. If you do turn execution-time
contract checking off, and you’re building a class library, it makes sense to build a con-
tract reference assembly. There are no downsides to this, other than the build taking
slightly longer, and it at least gives others the option of running call site validation or
static checking against your code.

15.7 Summary
I have high hopes for Code Contracts. I suspect it’ll take a while to gain traction,
partly as it requires an additional download even before you get started, and partly
because some of its goodness is currently only available to Visual Studio Premium and
Ultimate users. But I believe it addresses some of the issues that have frustrated devel-
opers for a long time.

 It’s worth acknowledging that part of the problem is that the type system in .NET
isn’t quite rich enough to start with. If non-nullable reference types were embedded
in .NET and C#, a whole class of preconditions and postconditions would be unneces-
sary now.12 Likewise the fact that .NET doesn’t have any notion similar to const in C++
is a source of pain whenever you want to return a read-only view of an object to a
caller, or declare that you won’t mutate the state of any incoming objects. Code Con-
tracts doesn’t address this latter issue yet, but I wouldn’t be surprised to hear that engi-
neers were thinking hard about it.

 Contracts become more helpful the more widely used they are, particularly in
terms of static checking. There’s no guarantee that Code Contracts will become an
industry-wide expectation—that in two years’ time you’d be considered mad to ship a

12 Admittedly non-nullable reference types come with their own set of design difficulties (see http://mng.bz/
fVfI). It’s not like this was a simple oversight in the design of .NET.
Licensed to Devon Greenway <devon.greenway@gmail.com>

489Summary
commercial component library without a contracts reference assembly. Microsoft is
effectively bootstrapping the ecosystem by adding contracts to the BCL, and we can
hope that leading library vendors (both free and commercial) will adopt them over
time. Until then, you can still benefit from them within your own code, in terms of
simple execution-time checking, autogenerated documentation, automatic contract
inheritance, possibly static analysis, and above all the encouragement to just stop and
think about what you need and what you’re prepared to guarantee.

 At a deep level, all code is about communication: expressing ideas about what you
want to achieve. It’s no coincidence that if you look at the features C# has gained over
the years, almost all of them involve communicating common and useful ideas in a
simple manner. It’s one of the ways our industry is attempting to manage the increas-
ing complexity we’re all faced with. Code Contracts is another weapon in the armory.
Don’t just think of it as a way of making sure that your code isn’t faced with inappro-
priate values at execution time. Think of it as a means of letting your code speak with
clarity and precision—whether that’s to the tools, the code maintainer, other develop-
ers using your API, or even yourself.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Whither now?
So that’s C#—as far as version 4, anyway. Rather than leave you with an abrupt con-
text switch from Code Contracts to the appendixes, I wanted to wind down with a
few thoughts about how far we’ve come and where we might be going.

 Of course, any forward-looking statements expressed in this chapter should be
taken with a large bucket of salt. Please don’t try to return this book for a refund if
I’m completely wrong. Retrospective statements are likely—but not guaranteed—
to be more accurate.

 These musings cover more than just C#, but that’ll be our starting point. From
there we’ll work outward, through the .NET ecosystem to the whole computing
industry.

16.1 C#—mixing tradition and modernity
C# has come a really long way—and in a short space of time, for a mainstream lan-
guage. The more users a language has, and the less tolerant they are of pain, the

This chapter covers
 The evolution of C#

 .NET meets computer science

 How you can make a difference

 The wider world of computing
490

Licensed to Devon Greenway <devon.greenway@gmail.com>

harder it is to introduce change. Banks and other large enterprises aren’t likely to be
overjoyed if they hear that your latest and greatest release is incompatible with earlier
versions. As such, the C# team is extremely cautious about breaking changes: they do
exist, but they’re rare and usually provoke a compile-time warning.

 Within that restrictive environment, C# has taken its Java-like roots and raced away,
developing features that massively increase productivity and maintainability. I know, I
sound like a complete fanboy... but if you’ve been reading this book from the start and
I haven’t yet convinced you about the truth of this statement, then frankly I’ve failed.

 Despite being in its fourth major version, C# feels like a lean language to me.
Admittedly this is entirely in terms of the code you end up writing: C# has inevitably
gained weight in terms of language complexity, and the designers will need to be wary
of just how many more features they can add before they end up with a language
that’s too big for anyone to know well. But the efficiency of expression is appealing—
as I mentioned in chapter 1, C# has learned some lessons from dynamic languages
while remaining almost entirely statically typed.

 So what’s coming next? At the time of this writing, little is known about C# 5. The
concept of a “compiler as a service” has been discussed, but it’s not clear exactly what
that means or when it’ll come. Will it allow custom code to be injected into the com-
piler pipeline? Will it allow small sections of code to be compiled and executed with-
out requiring whole class definitions? Will it actually change the language itself at all?
We’ll have to wait to find out.

 There’s more that C# could take from functional languages, mind you. The Mono
team have already implemented more support for .NET 4’s Tuple types within the C#
language, and options for pattern matching and better support for immutable types
would be welcome, too. Though languages such as F# have advanced type inference
(going well beyond what C# provides with implicitly typed local variables), I’d person-
ally be surprised to see this make it into C#. But then again, I was surprised by the sup-
port for dynamic typing in C# 4.

 What’s becoming increasingly clear is that we’re living in a heterogeneous world.
Web developers already have to know HTML, CSS, and JavaScript as well as whatever
backend technologies they’re using—and the same theme is taking hold on the server
and desktop too. Let’s think about what else is happening in .NET, and the effect on
C# developers.

16.2 Computer science and .NET
It feels to me like the nature of development is changing. It’s hard to measure—at
least as an individual—but it seems that computer science is having something of a
revival. After years of some developers complaining that nobody ever seems to know
about fundamental data structures, the community is talking about monads, proving
code correctness, patterns of asynchronous computation, and any number of other
topics that were previously the realm of the academic computer scientist.
Licensed to Devon Greenway <devon.greenway@gmail.com>

492 CHAPTER 16 Whither now?
 Of course this is a slight exaggeration—there have always been pockets of industry
doing interesting work like this—but Microsoft is bringing more of these theories and
technologies into the mainstream. Whether by design or coincidence, .NET has
become a wonderful experimental playground for advanced technology with its roots
in old computer science.

 In this book I’ve given you a taste of technologies such as Code Contracts, Parallel
Extensions, and Reactive Extensions. There are many other projects though, at vari-
ous stages of completion:

 Pex tries to “explore” your code, generating automated tests to take every possi-
ble path by passing in different data, generated through intelligent code analy-
sis (see http://mng.bz/0iAW).

 CHESS finds bugs in concurrent code that could be hard to spot by inspection,
hard to test for with normal unit tests, and hard to spot in production (see
http://mng.bz/FM55).

 F# is a functional language that aims to bridge the functional/object-oriented
divide, and which is now fully supported in Visual Studio.

 Axum is a new language for parallel programs, based on actors and message
passing (see http://mng.bz/Zyus).

This isn’t an exhaustive list, and each of these projects is ambitious with a lot of poten-
tial. But it’s not at all obvious which ones will make a lasting impression on the devel-
oper community. In five years, will contracts be as common as unit tests? Will we think
back on synchronous RPCs and shudder in horror? Will we switch effortlessly between
Python, C#, and F# (or something even newer) without needing a coffee break to
change mental gears?

 I’m convinced of one truth: the future of these projects will depend on the alpha
geeks of the .NET world as much as anyone else. The fact that you’re reading a fairly
advanced C# book suggests you probably belong in that set, so I’d urge you to con-
sider picking up one of these technologies and running with it. Blog about it. Show it
to your colleagues. Speak about it at a user group.1 Be passionate about it, and change
the world.

16.3 The world of computing
In fact, the world is going to change whether you do something or not. I finished
drafting the first edition of this book in late 2007... around the same time that
Android was announced, and I saw an iPhone and a netbook for the first time. Google
AppEngine and Windows Azure hadn’t been announced; Amazon EC2 was still in
beta.

 We live in a different world today. Perhaps this hasn’t impacted your daily work yet,
in an obvious way, but it will. Even if you don’t write mobile applications or use cloud

1 Public speaking isn’t as terrifying as it sounds. Or rather, it’s terrifying and exhilarating in equal measure. I
advise the use of a sock puppet as a prop: if the whole thing falls apart, you can blame the puppet.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/0iAW
http://mng.bz/FM55
http://mng.bz/Zyus

493Farewell
computing, the APIs, standards, and engineering techniques will affect how you write
code... and maybe when you do need your code to scale to hundreds or thousands of
servers, it won’t be quite as hard as it would’ve been without these changes.

 The shift to parallel processing continues unabated, with even netbooks gaining
multicore processors. Projects such as Parallel Extensions and Reactive Extensions will
certainly help, but they’re no free lunch. Moving beyond the imperative model will be
painful, but fascinating at the same time.

 Meanwhile, the performance trade-offs we’ve always had to make are changing
too. Solid state drives are becoming increasingly affordable and networks are becom-
ing more diverse, ranging from ulta-fast connections in data centers to “occasionally
connected” mobile broadband connections—which themselves vary immensely in
terms of bandwidth. Software engineering has to account for the environment in
which the code will run, which can affect all aspects of the design and implementa-
tion. As developers we need to be receptive to different ideas and approaches—and
with the staggering pace of technological change, we have to be able to learn at speed
too.

16.4 Farewell
It’s my fond hope that this book has shaken you up a bit. If most of the material has
been new to you, then I hope it’s made sense—and that the bits which didn’t quite
sink in on a first read are more comprehensible next time you look at them. If you’re
already an experienced C# developer and this was a refresher, I hope you’ve still
found something new—whether that’s an aspect of the language you weren’t aware of,
or perhaps a different approach to thinking about a problem.

 Beyond that, I hope I’ve helped to nurture a sense of excitement—not through
screaming exclamation points and shiny examples, but through a sense that C# can
help you to express your ideas more clearly and concisely than ever before. This
doesn’t have to be a passion about the language itself—it’s really just a tool, after all—
but about what it’ll let you achieve. Don’t think of the vehicle in isolation; imagine
where you want to go, and be glad that C# will make the journey that bit easier. With
any luck, this book will have helped you to steer in the right direction and get the
most out of the language. It’s time we parted, so farewell and bon voyage, wherever C#
takes you.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

appendix A
LINQ standard
query operators

There are many standard query operators in LINQ, only some of which are supported
directly in C# query expressions—the others have to be called manually as normal
methods. Some of the standard query operators are demonstrated in the main text of
the book, but they’re all listed in this appendix. Most of the examples use the follow-
ing two sample sequences:

string[] words = {"zero", "one", "two", "three", "four"};
int[] numbers = {0, 1, 2, 3, 4};

For completeness I’ve included the operators we’ve already seen, although in most
cases chapter 11 contains more detail on them than I’ve provided here. The behavior
specified here is that of LINQ to Objects; other providers may work differently. For each
operator, I’ve specified whether it uses deferred or immediate execution. If an operator
uses deferred execution, I've also indicated whether it streams or buffers its data.

A.1 Aggregation
The aggregation operators (see table A.1) all result in a single value rather than a
sequence. Average and Sum all operate either on a sequence of numbers (any of the
built-in numeric types) or on a sequence of elements with a delegate to convert from
each element to one of the built-in numeric types. Min and Max have overloads for
numeric types, but can also operate on any sequence either using the default com-
parer for the element type or using a conversion delegate. Count and LongCount are
equivalent to each other, just with different return types. Both of these have two over-
loads—one that just counts the length of the sequence, and one that takes a predi-
cate: only elements matching the predicate are counted.

Table A.1 Examples of aggregation operators

Expression Result

numbers.Sum() 10

numbers.Count() 5

numbers.Average() 2
495

Licensed to Devon Greenway <devon.greenway@gmail.com>

496 APPENDIX A LINQ standard query operators
The most generalized aggregation operator (shown in the bottom row of table A.1) is
just called Aggregate. All the other aggregation operators could be expressed as calls
to Aggregate, although it’d be relatively painful to do so. The basic idea is that there’s
always a “result so far,” starting with an initial seed. An aggregation delegate is applied
for each element of the input sequence: the delegate takes the result so far and the
input element, and produces the next result. As a final optional step, a conversion is
applied from the aggregation result to the return value of the method. This conver-
sion may result in a different type, if necessary. It’s not quite as complicated as it
sounds, but you’re still unlikely to use it often.

 All of the aggregation operators use immediate execution. The overload for Count
that doesn’t use a predicate is optimized for implementations of ICollection and
ICollection<T>; in that situation it’ll use the Count property of the collection without
reading any data.1

A.2 Concatenation
There’s a single concatenation operator: Concat (see table A.2). As you might expect,
this operates on two sequences, and returns a single sequence consisting of all the ele-
ments of the first sequence followed by all the elements of the second. The two input
sequences must be of the same type, execution is deferred, and all data is streamed.

A.3 Conversion
The conversion operators cover a fair range of uses, but they all come in pairs.

 The examples in table A.3 use two additional sequences to demonstrate Cast and
OfType:

numbers.LongCount(x => x % 2 == 0) 3 (as a long; there are three even numbers)

words.Min(word => word.Length) 3 ("one" and "two")

words.Max(word => word.Length) 5 ("three")

numbers.Aggregate("seed",
 (current, item) => current + item,

result => result.ToUpper())

SEED01234

1 There’s no such shortcut for LongCount. I’ve personally never seen this method used in LINQ to Objects.

Table A.2 Concat example

Expression Result

numbers.Concat(new[] {2, 3, 4, 5, 6}) 0, 1, 2, 3, 4, 2, 3, 4, 5, 6

Table A.1 Examples of aggregation operators (continued)

Expression Result
Licensed to Devon Greenway <devon.greenway@gmail.com>

497Conversion
object[] allStrings = {"These", "are", "all", "strings"};
object[] notAllStrings = {"Number", "at", "the", "end", 5};

ToArray and ToList are fairly self-explanatory: they read the whole sequence into
memory, returning it either as an array or as a List<T>. Both use immediate execution.

 Cast and OfType convert an untyped sequence into a typed one, either throwing
an exception (for Cast) or ignoring (for OfType) elements of the input sequence
that aren’t implicitly convertible to the output sequence element type using an
unboxing or reference conversion. This may also be used to convert typed sequences
into more specifically typed sequences, such as converting IEnumerable<object> to
IEnumerable<string>. These use deferred execution and stream their input data.

 ToDictionary and ToLookup both take delegates to obtain the key for any particu-
lar element; ToDictionary returns a dictionary mapping the key to the element type,
whereas ToLookup returns an appropriately typed ILookup<,>. A lookup is like a dic-
tionary where the value associated with a key isn’t one element but a sequence of ele-
ments. Lookups are generally used when duplicate keys are expected as part of
normal operation, whereas a duplicate key will cause ToDictionary to throw an

Table A.3 Conversion examples

Expression Result

allStrings.Cast<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

allStrings.OfType<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

notAllStrings.Cast<string>() Exception is thrown while iterating, at point
of failing conversion

notAllStrings.OfType<string>() "Number", "at", "the", "end"
(as IEnumerable<string>)

numbers.ToArray() 0, 1, 2, 3, 4 (as int[])

numbers.ToList() 0, 1, 2, 3, 4 (as List<int>)

words.ToDictionary(w => w.Substring(0, 2)) Dictionary contents:
"ze": "zero"
"on": "one"
"tw": "two"
"th": "three"
"fo": "four"

// Key is first character of word
words.ToLookup(word => word[0])

Lookup contents:
'z': "zero"
'o': "one"
't': "two", "three"
'f': "four"

words.ToDictionary(word => word[0]) Exception: can only have one entry per key,
so fails on 't'
Licensed to Devon Greenway <devon.greenway@gmail.com>

498 APPENDIX A LINQ standard query operators
exception. More complicated overloads of both methods allow a custom IEquality-
Comparer<T> to be used to compare keys, and a conversion delegate to be applied to
each element before it is put into the dictionary or lookup. Both of these methods use
immediate execution.

 There are two additional operators that I haven’t provided examples for:
AsEnumerable or AsQueryable. They don’t affect the results in an immediately obvi-
ous way, so they can’t really be demonstrated here. Instead, they affect the manner in
which the query is executed. Queryable.AsQueryable is an extension method on
IEnumerable that returns an IQueryable (both types being generic or nongeneric,
depending on which overload you pick). If the IEnumerable you call it on is already
an IQueryable, it just returns the same reference—otherwise it creates a wrapper
around the original sequence. The wrapper allows you to use all the normal Query-
able extension methods, passing in expression trees, but when the query is executed
the expression tree is compiled into normal IL and executed directly, using the
LambdaExpression.Compile method shown in section 9.3.2.

 Enumerable.AsEnumerable is an extension method on IEnumerable<T> and has a
trivial implementation, simply returning the reference it was called on. No wrappers
are involved—it just returns the same reference. This forces the Enumerable extension
methods to be used in subsequent LINQ operators. Consider the following query
expressions:

// Filter the users in the database with LIKE
from user in context.Users
where user.Name.StartsWith("Tim")
select user;

// Filter the users in memory
from user in context.Users.AsEnumerable()
where user.Name.StartsWith("Tim")
select user;

The second query expression forces the compile-time type of the source to be
IEnumerable<User> instead of IQueryable<User>, so all the processing is done in
memory instead of at the database. The compiler will use the Enumerable extension
methods (taking delegate parameters) instead of the Queryable extension methods
(taking expression tree parameters). Normally you want to do as much processing as
possible in SQL, but when there are transformations that require local code, you
sometimes have to force LINQ to use the appropriate Enumerable extension methods.
Of course this isn’t specific to databases: the theme of forcing the tail of a query to
use Enumerable is applicable for other providers too, if they’re based on IQueryable
or something similar.

A.4 Element operators
This is another selection of query operators that are grouped in pairs (see table A.4).
This time, the pairs all work the same way. There’s a simple version that picks a single
element if it can or throws an exception if the specified element doesn’t exist, and a
Licensed to Devon Greenway <devon.greenway@gmail.com>

499Element operators
version with OrDefault at the end of the name. All of these operators use immediate
execution.

The operator names are easily understood: First and Last return the first and last
elements of the sequence respectively, throwing an InvalidOperationException if
the sequence is empty. Single returns the only element in a sequence, throwing an
exception if the sequence is empty or has more than one element. ElementAt returns
a specific element by index—the fifth element, for example. An ArgumentOutOf-
RangeException is thrown if the index is negative or too large for the actual number
of elements in the collection. In addition, there’s an overload for all of the operators
other than ElementAt to filter the sequence first—for example, First can return the
first element that matches a given condition.

 The OrDefault versions of these methods suppress the exceptions I’ve just
described (returning the default value for the element type instead) except in one
case: SingleOrDefault will return a default value if the sequence is empty, but if
there’s more than one element it’ll still throw an exception, just like Single. This is
designed for situations where if everything’s correct, the sequence will have zero or
one element. If you want to cope with sequences that may have more elements, use
FirstOrDefault instead.

 All of the overloads that don’t have a predicate parameter are optimized for
instances of IList<T>, as they can access the correct element without iterating.

Table A.4 Single element selection examples

Expression Result

words.ElementAt(2) "two"

words.ElementAtOrDefault(10) null

words.First() "zero"

words.First(w => w.Length == 3) "one"

words.First(w => w.Length == 10) Exception: no matching elements

words.FirstOrDefault
(w => w.Length == 10)

null

words.Last() "four"

words.Single() Exception: more than one element

words.SingleOrDefault() Exception: more than one element

words.Single(word => word.Length == 5) "three"

words.Single(word => word.Length == 10) Exception: no matching elements

words.SingleOrDefault
(w => w.Length == 10)

null
Licensed to Devon Greenway <devon.greenway@gmail.com>

500 APPENDIX A LINQ standard query operators
There’s no optimisation when a predicate is involved—it wouldn't make sense for
most calls, although it could make a big difference when finding the last matching ele-
ment in a list, by moving backward from the end. At the time of this writing that case
isn’t optimized, but it could change in a future version.

A.5 Equality
There’s only one standard equality operator: SequenceEqual (see table A.5). This just
compares two sequences for element-by-element equality, including order. For
instance, the sequence 0, 1, 2, 3, 4 isn’t equal to 4, 3, 2, 1, 0. An overload allows a spe-
cific IEqualityComparer<T> to be used when comparing elements. The return value
is just a Boolean, and is computed with immediate execution.

Again, LINQ to Objects misses a trick here in terms of optimization: if both sequences
have an efficient way of retrieving their counts, it would make sense to check whether
those are equal before comparing the elements themselves. As it is, the implementa-
tion just walks through both sequences until it reaches the end or finds an inequality.

A.6 Generation
Out of all the generation operators (see table A.6), only one acts on an existing
sequence: DefaultIfEmpty. This returns either the original sequence if it’s not empty,
or a sequence with a single element otherwise. The element is normally the default
value for the sequence type, but an overload allows you to specify which value to use.

 There are three other generation operators that are just static methods in
Enumerable:

 Range generates a sequence of integers, with the parameters specifying the first
value and how many values to generate.

 Repeat generates a sequence of any type by repeating a specified single value
for a specified number of times.

 Empty generates an empty sequence of any type.

Expression Result

words.SequenceEqual
(new[]{"zero","one",

"two","three","four"})

True

words.SequenceEqual
(new[]{"ZERO","ONE",

"TWO","THREE","FOUR"})

False

words.SequenceEqual
(new[]{"ZERO","ONE",

"TWO","THREE","FOUR"},
StringComparer.OrdinalIgnoreCase)

True

Table A.5 Sequence
equality examples
Licensed to Devon Greenway <devon.greenway@gmail.com>

501Grouping
All of the generation operators use deferred execution and stream their output—in
other words, they don’t just prepopulate a collection and return that. The exception is
Empty, which returns an empty array of the correct type. An empty array is completely
immutable, so the same array can be returned for every call for the same element type.

A.7 Grouping
There are two grouping operators, but one of them is ToLookup, which we’ve already
seen in section A.3 as a conversion operator. That just leaves GroupBy, which we exam-
ined in section 11.6.1 in the form of the group ... by clause in query expressions. It
uses deferred execution, but buffers its results: when you start iterating over the result-
ing sequence of groups, the whole of the input is consumed.

 The result of GroupBy is a sequence of appropriately typed IGrouping<,> ele-
ments. Each element has a key and a sequence of elements that match that key. In
many ways, this is just a different way of looking at a lookup—instead of having ran-
dom access to the groups by key, the groups are enumerated in turn. The order in
which the groups are returned is the order in which their respective keys are discov-
ered. Within a group, the order is the same as in the original sequence.

 GroupBy has a daunting number of overloads, allowing you to specify not only how
a key is derived from an element (which is always required) but also optionally the fol-
lowing:

 How to compare keys.
 A projection from an original element to the element within a group.
 A projection that takes both a key and a sequence of matching elements. The

overall result in this case is just a sequence of elements of the result type of the
projection.

Table A.7 contains examples of the second and third options, as well as the simplest
form. Custom key comparisons are slightly more long-winded to demonstrate, but
they work in the obvious way.

Table A.6 Generation examples

Expression Result

numbers.DefaultIfEmpty() 0, 1, 2, 3, 4

new int[0].DefaultIfEmpty() 0 (within an IEnumerable<int>)

new int[0].DefaultIfEmpty(10) 10 (within an IEnumerable<int>)

Enumerable.Range(15, 2) 15, 16

Enumerable.Repeat(25, 2) 25, 25

Enumerable.Empty<int>() An empty IEnumerable<int>
Licensed to Devon Greenway <devon.greenway@gmail.com>

502 APPENDIX A LINQ standard query operators

The option specified by the last bullet point is rarely used in my experience.

A.8 Joins
Two operators are specified as join operators: Join and GroupJoin, both of which we
saw in section 11.5 using the join and join ... into query expression clauses respec-
tively. Each method takes several parameters: two sequences, a key selector for each
sequence, a projection to apply to each matching pair of elements, and optionally a
key comparison.

 For Join the projection takes one element from each sequence and produces a
result; for GroupJoin the projection takes an element from the left sequence (in the
chapter 11 terminology—the first one specified, usually as the sequence the extension
method appears to be called on) and a sequence of matching elements from the right
sequence. Both use deferred execution, and stream the left sequence but read the
right sequence in its entirety when the first result is requested.

 For the join examples in table A.8, we’ll match a sequence of names (Robin, Ruth,
Bob, Emma) against a sequence of colors (Red, Blue, Beige, Green) by looking at the
first character of both the name and the color, so Robin will join with Red and Bob
will join with both Blue and Beige, for example.

Table A.7 GroupBy examples

Expression Result

words.GroupBy(word => word.Length) Key: 4; Sequence: "zero", "four"
Key: 3; Sequence: "one", "two"
Key: 5; Sequence: "three"

words.GroupBy
(word => word.Length, // Key
word => word.ToUpper() // Group element

)

Key: 4; Sequence: "ZERO", "FOUR"
Key: 3; Sequence: "ONE", "TWO"
Key: 5; Sequence: "THREE"

// Project each (key, group) pair to string
words.GroupBy

(word => word.Length,
(key, g) => key + ": " + g.Count())

"4: 2", "3: 2", "5: 1"

Table A.8 Join examples

Expression Result

names.Join // Left sequence
(colors, // Right sequence
name => name[0], // Left key selector
color => color[0], // Right key selector
// Projection for result pairs
(name, color) => name + " - " + color

)

"Robin - Red",
"Ruth - Red",
"Bob - Blue",
"Bob - Beige"
Licensed to Devon Greenway <devon.greenway@gmail.com>

503Projection
Note that Emma doesn’t match any of the colors—the name doesn’t appear at all in
the results of the first example, but it does appear in the second, with an empty
sequence of colors.

A.9 Partitioning
The partitioning operators either skip an initial part of the sequence, returning only
the rest, or take only the initial part of a sequence, ignoring the rest. In each case, you
can either specify how many elements are in the first part of the sequence or specify a
condition—the first part of the sequence continues until the condition fails. After the
condition fails for the first time, it isn’t tested again—it doesn’t matter whether later
elements in the sequence match. All of the partitioning operators use deferred execu-
tion and stream their data

 Partitioning effectively divides the sequence into two distinct parts, either by posi-
tion or by predicate. In each case if you concatenate the results of Take or TakeWhile
with the results of the corresponding Skip or SkipWhile, providing the same argu-
ment to both calls, you’ll end up with the original sequence: each element will occur
exactly once, in the original order. This is demonstrated by the calls in table A.9.

A.10 Projection
We’ve seen two projection operators (Select and SelectMany) in chapter 11. Select
is a simple one-to-one projection from source element to a result element. Select-
Many is used when there are multiple from clauses in a query expression: each element

names.GroupJoin
(colors,
name => name[0],
color => color[0],
// Projection for key/sequence pairs
(name, matches) => name + ": " +

string.Join("/", matches.ToArray())
)

"Robin: Red",
"Ruth: Red",
"Bob: Blue/Beige",
"Emma: "

Table A.9 Partitioning examples

Expression Result

words.Take(2) "zero", "one"

words.Skip(2) "two", "three", "four"

words.TakeWhile(word => word.Length <= 4) "zero", "one", "two"

words.SkipWhile(word => word.Length <= 4) "three", "four"

Table A.8 Join examples (continued)

Expression Result
Licensed to Devon Greenway <devon.greenway@gmail.com>

504 APPENDIX A LINQ standard query operators
in the original sequence is used to generate a new sequence. Both projection opera-
tors (see table A.10) use deferred execution.

There are additional overloads we didn’t see in chapter 11. Both methods have over-
loads that allow the index within the original sequence to be used in the projection,
and SelectMany either flattens all of the generated sequences into a single sequence
without including the original element at all, or uses a projection to generate a result
element for each pair of elements. Multiple from clauses always use the overload that
takes a projection. (Examples of this are long-winded, and not included here. See
chapter 11 for more details.)

 .NET 4 introduces a new operator called Zip. This isn’t officially a standard query
operator according to MSDN, but it’s worth knowing about anyway. It takes two
sequences and applies the specified projection to each pair: the first element from
each sequence, then the second element from each sequence, and so on. The result-
ing sequence finishes when either of the source sequences does. Table A.11 shows two
examples of Zip, using the names and colors from section A.8. Zip uses deferred exe-
cution and streams its data.

Table A.10 Projection examples

Expression Result

words.Select(word => word.Length) 4, 3, 3, 5, 4

words.Select
((word, index) =>
index.ToString() + ": " +word)

"0: zero", "1: one", "2: two",
"3: three", "4: four"

words.SelectMany
(word => word.ToCharArray())

'z', 'e', 'r', 'o', 'o', 'n', 'e', 't',
'w', 'o', 't', 'h', 'r', 'e', 'e', 'f',
'o', 'u', 'r'

words.SelectMany
((word, index) =>
Enumerable.Repeat(word, index))

"one", "two", "two",
"three", "three", "three",
"four", "four", "four", "four"

Table A.11 Zip examples

Expression Result

names.Zip(colors, (x, y) => x + "-" + y) "Robin-Red",
"Ruth-Blue",
"Bob-Beige",
"Emma-Green"

// Second sequence stops early
names.Zip(colors.Take(3),

(x, y) => x + "-" + y)

"Robin-Red",
"Ruth-Blue",
"Bob-Beige"
Licensed to Devon Greenway <devon.greenway@gmail.com>

505Filtering
A.11 Quantifiers
The quantifier operators shown in table A.12 all return a Boolean value, using imme-
diate execution:

 All checks whether all the elements in the sequence satisfy the given predicate.
 Any checks whether any of the elements in the sequence satisfy the given predi-

cate, or whether there are any elements at all for the parameterless overload.
 Contains checks whether the sequence contains a particular element, option-

ally specifying a comparison to use.

Any is a particularly useful operator that’s often forgotten. If you’re trying to find out
whether a sequence contains any items (or any items matching a predictate) it’s much
better to use source.Any(...) than source.Count(...) > 0. They should give the
same results, but Any can stop as soon as it’s found the first item, whereas Count has to
count all the items, even though you only need to know whether the result is nonzero.

 The overload for Contains that doesn’t specify a custom comparison is optimized
if the source implements ICollection<T> by delegating to the interface implementa-
tion. This means Enumerable.Contains() will still be fast when called on a Hash-
Set<T>, for example.

A.12 Filtering
The two filtering operators are OfType and Where. For details and examples of the
OfType operator, see the conversion operators section (A.3). The Where operator
returns a sequence containing all the elements matching the given predicate. It has
an overload to allow the predicate to take account of the element’s index. It’s unusual
to require the index, and the where clause in query expressions doesn’t use this over-
load. Where always uses deferred execution and streams its data. Table A.13 demon-
strates both overloads.

Table A.12 Quantifier examples

Expression Result

words.All(word => word.Length > 3) false ("one" and "two" have
exactly three letters)

words.All(word => word.Length > 2) True

words.Any() true (the sequence isn’t empty)

words.Any(word => word.Length == 6) false (no six-letter words)

words.Any(word => word.Length == 5) true ("three" satisfies the condition)

words.Contains("FOUR") False

words.Contains("FOUR",
StringComparer.OrdinalIgnoreCase)

True
Licensed to Devon Greenway <devon.greenway@gmail.com>

506 APPENDIX A LINQ standard query operators

A.13 Set-based operators
It’s natural to be able to consider two sequences as sets of elements. The four set-
based operators all have two overloads, one using the default equality comparison for
the element type, and one where the comparison is specified in an extra parameter.
All of them use deferred execution.

 The Distinct operator is the simplest—it acts on a single sequence, and just
returns a new sequence of all the distinct elements, discarding duplicates. The other
operators also make sure they only return distinct values, but they act on two
sequences:

 Intersect returns elements that appear in both sequences.
 Union returns the elements that are in either sequence.
 Except returns elements that are in the first sequence but not in the second.

(Elements that are in the second sequence but not the first are not returned.)

For the examples of these operators in table A.14, we’ll use two new sequences: abbc
("a", "b", "b", "c") and cd ("c", "d").

All of these operators use deferred execution, but the buffering/streaming distinction
is slightly more complicated. Distinct and Union both stream their input sequences,
whereas Intersect and Except read the whole of the right input sequence to start
with, but then stream the left input sequence in a similar way to the join operators. All
these operators keep a set of the elements they’ve already returned so as not to return
duplicates. This means that even Distinct and Union are unsuitable for sequences
that are too large to fit into memory—unless you know that there will be a limited set
of distinct elements.

Table A.13 Filtering examples

Expression Result

words.Where(word => word.Length > 3) "zero", "three", "four"

words.Where
((word, index) => index < word.Length)

"zero", // index=0, length=4
"one", // index=1, length=3
"two", // index=2, length=2
"three", // index=3, length=5
// Not "four", index=4, length=4

Expression Result

abbc.Distinct() "a", "b", "c"

abbc.Intersect(cd) "c"

abbc.Union(cd) "a", "b", "c", "d"

abbc.Except(cd) "a", "b"

cd.Except(abbc) "d" Table A.14 Set-based examples
Licensed to Devon Greenway <devon.greenway@gmail.com>

507Sorting
A.14 Sorting
We’ve seen all the sorting operators before: OrderBy and OrderByDescending provide
a primary ordering, whereas ThenBy and ThenByDescending provide subsequent
orderings for elements that aren’t differentiated by the primary one. In each case a
projection is specified from an element to its sorting key, and a comparison (between
keys) can also be specified. Unlike some other sorting algorithms in the framework
(such as List<T>.Sort), the LINQ orderings are stable—in other words, if two ele-
ments are regarded as equal in terms of their sorting key, they’ll be returned in the
order they appeared in the original sequence.

 The final sorting operator is Reverse, which simply reverses the order of the
sequence. All of the sorting operators (see table A.15) use deferred execution, but
buffer their data.

Table A.15 Sorting examples

Expression Result

words.OrderBy(word => word) "four", "one", "three",
"two", "zero"

// Order words by second character
words.OrderBy(word => word[1])

"zero", "three", "one",
"four", "two"

// Order words by length;
// equal lengths returned in original
// order
words.OrderBy(word => word.Length)

"one", "two", "zero",
"four", "three"

words.OrderByDescending
(word => word.Length)

"three", "zero",
"four", "one", "two"

// Order words by length and then
// alphabetically
words.OrderBy(word => word.Length)

.ThenBy(word => word)

"one", "two", "four",
"zero", "three"

// Order words by length and then
// alphabetically backwards
words.OrderBy(word => word.Length)

.ThenByDescending(word => word)

"two", "one", "zero",
"four", "three"

words.Reverse() "four", "three", "two",
"one", "zero"
Licensed to Devon Greenway <devon.greenway@gmail.com>

appendix B
Generic collections

in .NET
There are many generic collections in .NET, and the list has grown over time. This
appendix covers the most important generic collection interfaces and classes to know
about. There are additional nongeneric collections in System.Collections, System.
Collections.Specialized, and System.ComponentModel, but I won’t be covering
those here. Likewise I won’t be mentioning the LINQ interfaces, such as
ILookup<TKey, TValue>. This appendix is more reference than guidance—think of it
as an alternative to navigating around MSDN while you’re coding. Obviously MSDN will
provide more details in most cases, but the aim here is to allow you to quickly skim
over the various interfaces and implementations available when choosing a particular
collection to use in your code.

 I haven’t indicated the thread safety of each collection, but MSDN can provide
more details. None of the normal collections support multiple concurrent writers;
some support a single writer with concurrent readers. Section B.6 lists the concurrent
collections that have been added to .NET 4.

B.1 Interfaces
Almost all the interfaces you need to know about are in the System.Collections.
Generic namespace. Figure B.1 shows how the major interfaces are related; I’ve
included the nongeneric IEnumerable as the interface root as well.

 As we’ve already seen several times, the most fundamental generic collection inter-
face is IEnumerable<T>, representing a sequence of items that can be iterated over.
IEnumerable<T> allows you to ask for an iterator of type IEnumerator<T>. The separa-
tion between the iterable sequence and the iterator enables multiple iterators to run
independently over the same sequence at the same time. If you want to think in data-
base terms, a table is an IEnumerable<T>, whereas a cursor is an IEnumerator<T>.
These are the only variant collection interfaces covered in this chapter, becoming
IEnumerable<out T> and IEnumerator<out T> in .NET 4; all the other interfaces
involve values of the element type going both in and out of members, so they have to
be invariant.
508

Licensed to Devon Greenway <devon.greenway@gmail.com>

509Interfaces
Next comes ICollection<T>—this extends IEnumerable<T>, but adds two properties
(Count and IsReadOnly), mutation methods (Add, Remove, Clear), CopyTo (which
copies the contents to an array), and Contains (which determines if the collection
contains a particular element). All the standard generic collection implementations
implement this interface.

 IList<T> is all about positioning: it provides an indexer, InsertAt and RemoveAt
(to match Add/Remove but with positions), and IndexOf (to determine the position of
an element within the collection). Iterating over an IList<T> will generally return the
item at index 0, then index 1, and so on. This isn’t thoroughly documented, but it’s a
reasonable assumption to make. Likewise, it’s usually expected that random access to
an IList<T> by index is efficient.

 IDictionary<TKey, TValue> represents a mapping from a unique key to a value
for that key. The values don’t have to be unique, and may be null; keys can’t be null.
Dictionaries can be regarded as collections of key/value pairs, which is why
IDictionary<TKey, TValue> extends ICollection<KeyValuePair<TKey, TValue>>.
Values can be retrieved with the indexer or TryGetValue; unlike the nongeneric
IDictionary type, if you attempt to fetch the value for a missing key, the indexer of
IDictionary<TKey, TValue> throws KeyNotFoundException. The purpose of Try-
GetValue is to allow you to detect missing keys in situations where it’s expected in
normal operation.

Figure B.1 Interfaces in System.Collections.Generic
Licensed to Devon Greenway <devon.greenway@gmail.com>

510 APPENDIX B Generic collections in .NET
 ISet<T> is a new interface to .NET 4, representing a distinct set of values. It’s been
retrospectively applied to HashSet<T> from .NET 3.5, as well as a new implementa-
tion—SortedSet<T>—being introduced in .NET 4.

 Usually it’s fairly clear which interface (and even implementation) you want to use
when implementing functionality. It can be significantly harder to decide how to expose
that collection as part of an API: the more specific you are in what you return, the more
your callers will be able to rely on additional functionality specified by those types. This
may make the caller’s life easier, at the expense of future flexibility within your imple-
mentation. I usually prefer to use interfaces for the return types of methods and prop-
erties, rather than guaranteeing a particular implementation class. You should also
think carefully before exposing a mutable collection in an API, particularly if that col-
lection represents part of the state of the object or type. Returning either a copy or a
read-only wrapper around the collection is usually preferable, unless the whole pur-
pose of the method is to allow mutation via the returned collection.

B.2 Lists
In many ways lists are the simplest and most natural type of collection. There are
many implementations in the framework, with different abilities and performance
characteristics. A few big-hitters are used all over the place, and some more esoteric
ones are used for specialist situations.

B.2.1 List<T>

List<T> is the default choice for lists in most cases. It implements IList<T> and
therefore ICollection<T>, IEnumerable<T>, and IEnumerable. Additionally, it imple-
ments the nongeneric ICollection and IList interfaces, boxing and unboxing as
required, and performing execution-time type checks to make sure that new elements
are always of a type that’s compatible with T.

 Internally List<T> stores an array, and it keeps track of both the logical size of the
list and the size of the backing array. Adding an element is either a simple case of set-
ting the next value in the array, or (if the array is already full) copying the existing
contents into a new, bigger array and then setting the value. This means the operation
has complexity of O(1) or O(n) depending on whether the values need to be copied.
The expansion strategy isn’t documented—and therefore isn’t guaranteed—but in
practice the approach has always been to expand to double the newly required size.
This results in an amortized complexity of O(1) for appending an item to the end of the
list: sometimes it’ll be more, but that becomes increasingly rare as the list grows larger.

 You can explicitly manage the size of the backing array by getting and setting the
Capacity property; the TrimExcess method has the effect of making the capacity
exactly equal to the current size. In practice this is rarely necessary, but if you already
know the eventual size of the list when you create it, you can pass an initial capacity
into the constructor, which can avoid unnecessary copying.

 Removing an element from a List<T> requires all the later elements to be copied
down, so its complexity is O(n – k) where k is the index of the element you’re
Licensed to Devon Greenway <devon.greenway@gmail.com>

511Lists
removing; trimming the tail of a list is cheaper than removing the head. On the other
hand, if you’re trying to remove an element by value instead of by index (Remove
rather than RemoveAt), you’ll effectively end up with an O(n) operation wherever the
element is: each element either has to be checked for equality or shuffled down.

 Various methods on List<T> act as a sort of precursor to LINQ. ConvertAll proj-
ects one list into another; FindAll filters the original list into a new list containing
only the values that match the specified predicate. Sort performs a sort using either
the default equality comparer for the type or one specified as an argument. There’s a
big difference between Sort and the OrderBy of LINQ, though: Sort modifies the con-
tents of the original list, rather than yielding an ordered copy. Also, Sort is unstable,
whereas OrderBy is stable: equal elements in the original list may be reordered when
using Sort. One aspect of List<T> which isn’t supported by LINQ is binary search: if
you have a list that’s already sorted in the right way for the value you’re looking for,
the BinarySearch method is more efficient than using the linear IndexOf search.1

 One somewhat controversial aspect of List<T> is the ForEach method. This does
exactly what it sounds like—it iterates over the list and executes a delegate (specified as
an argument to the method) for each value. Many developers have requested that this
be added as an extension method for IEnumerable<T>, but this has been resisted so
far; Eric Lippert makes the case for it being philosophically troubling on his blog (see
http://mng.bz/Rur2). Calling ForEach using a lambda expression seems overkill to
me; on the other hand, if you already have a delegate you want to execute on each ele-
ment on the list, you might as well get ForEach to do that for you, as it’s already there.

B.2.2 Arrays

Arrays are in some senses the lowest level of collection in .NET. All arrays derive
directly from System.Array, and they’re the only collections with direct support in the
CLR. Single-dimensional arrays implement IList<T> (and the interfaces it extends)
and the nongeneric IList and ICollection interfaces; rectangular arrays only sup-
port the nongeneric interfaces. Arrays are always mutable in terms of their elements,
but always fixed in terms of their size. All the mutating methods of the collection
interfaces (such as Add and Remove) are explicitly implemented, and throw Not-
SupportedException.

 Arrays of reference types are always covariant: there’s an implicit conversion from
a Stream[] reference to Object[], for example, and an explicit conversion the other
way round.2 This means that changes to the array have to be verified at execution
time—the array itself knows what type it is, so if you try to store a non-Stream refer-
ence in a Stream[] by converting the array reference to an Object[] first, an Array-
TypeMismatchException will be thrown.

1 Binary search is O(log n) complexity; a linear search is O(n).
2 Somewhat confusingly, this also means there’s an implicit conversion from Stream[] to IList<Object>,

even though IList<T> itself is invariant.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/Rur2

512 APPENDIX B Generic collections in .NET
 There are two different flavors of array as far as the CLR is concerned. A vector is a
single-dimensional array with a lower bound of 0; anything else just counts as an array.
Vectors perform better, and are what you almost always use in C#. An array of the form
T[][] is still a vector, but with an element type of T[]; only rectangular arrays in C#
such as new string[10, 20] end up as arrays in CLR terminology. You can’t create an
array with a nonzero lower bound directly in C#—you have to use Array.Create-
Instance, which allows you to specify lower bounds, lengths, and the element type
individually. If you create a single-dimensional array with a nonzero lower bound, you
then can’t successfully cast it to T[]—the compiler will allow the cast, but it will fail at
execution time.

 The C# compiler has built-in support for arrays in a number of ways. Not only does
it know about how to create and index them, but it also supports them directly in
foreach loops: if you iterate using an expression that’s known to be an array at com-
pile time, that iteration will use the Length property and the array indexer, rather
than creating an iterator object. This is more efficient, but the performance differ-
ence is usually negligible.

 Like List<T>, arrays support methods such as ConvertAll, FindAll, and Binary-
Search—although in the case of arrays, these are static methods of the Array class,
taking the array as the first parameter.

 To come back to my first point, arrays are pretty low-level data structures. They’re
important as the building blocks for many other collections, and they’re efficient in
appropriate situations, but you should think twice before using them too heavily.
Again, Eric has blogged on this topic, labeling them “somewhat harmful” (see http://
mng.bz/3jd5). I don’t want to overstate this point, but it’s worth at least being aware
of the shortcomings of arrays when choosing a collection type.

B.2.3 LinkedList<T>

When is a list not a list? When it’s a linked list. LinkedList<T> is a list in many ways—
in particular, it’s a collection that maintains the order in which you add items—but it
doesn’t implement IList<T>. This is because it doesn’t obey the implied contract of
efficient access by index. It’s a classical computer science doubly linked list: it main-
tains a head node and a tail node; each node has a reference to the next and previous
node within the list. Each node is exposed as a LinkedListNode<T>, which is handy if
you want to maintain an insertion/removal point somewhere in the middle of the list.
The list explicitly maintains a size, so accessing the Count property is efficient.

 Linked lists are inefficient in terms of space compared with array-backed lists, as
well as not supporting indexed operations—but they’re fast at inserting or removing
elements at arbitrary points in the list, so long as you have a reference to the node at
the relevant point. These operations have O(1) complexity, as all that’s required is fix-
ing up the next/previous references in the surrounding nodes. Inserting or removing
from the head or tail of the list is just a special case of this where there’s always imme-
diate access to the node you need to change. Iterating (either forward or backward) is
also efficient, as it’s just a matter of following the chain of references.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/3jd5
http://mng.bz/3jd5

513Lists
 Although LinkedList<T> implements the standard methods such as Add (which
adds to the tail of the list), I’d suggest using the explicit AddFirst and AddLast meth-
ods to make it clear exactly what’s going on. There are matching RemoveFirst and
RemoveLast methods, and First and Last properties. All of these return the nodes
within the list rather than the values of those nodes; the properties return a null refer-
ence if the list is empty.

B.2.4 Collection<T>, BindingList<T>, ObservableCollection<T>,
and KeyedCollection<TKey, TItem>

Collection<T> is a member of the System.Collections.ObjectModel namespace, as
are all the remaining lists we’re going to look at. Like List<T>, it implements both the
generic and nongeneric collection interfaces.

 Though you can use Collection<T> on its own, it’s more commonly used as a base
class. It always acts as a wrapper to another list: you either specify one in the construc-
tor, or a new List<T> will be created behind the scenes. All mutating actions on the
collection go through protected virtual methods (InsertItem, SetItem, RemoveItem,
and ClearItems); derived classes can intercept these methods, raising events or pro-
viding other custom behavior. The wrapped list is accessible to derived classes via the
Items property. If this list is read-only, the public mutating methods throw an excep-
tion rather than calling the virtual methods; you don’t need to recheck this when you
override them.

 BindingList<T> and ObservableCollection<T> derive from Collection<T> in
order to provide binding capabilities. BindingList<T> has been available since
.NET 2.0, but ObservableCollection<T> was introduced with Windows Presentation
Foundation (WPF). Of course you don’t have to use them for data binding in user
interfaces—you may have your own reasons to be interested in changes to a list. In
that case, you should see which collection provides notifications in a more useful form
in order to decide which to use. Of course, you’ll only be notified of changes that
occur through the wrapper: if the underlying list is shared with other code that may
modify it on its own, that won’t raise any events in the wrapper.

 KeyedCollection<TKey, TItem> is a sort of hybrid between a list and a dictionary,
allowing an item to be fetched by key as well as by index. Unlike normal dictionaries,
the key should be effectively embedded within the item, rather than being indepen-
dent. In many cases this is natural—for example, you might have a Customer type with
a CustomerID property. KeyedCollection<,> is an abstract class: derived classes imple-
ment the GetKeyForItem method to provide a way of extracting a key from any item
added to the collection. In our customer scenario, the GetKeyForItem method would
just return the ID for the given customer. Just like a dictionary, the key must be unique
within the collection—attempting to add another item with the same key will fail with
an exception. Though null keys aren’t permitted, GetKeyForItem can return null (if
the key type is a reference type), in which case the key will be ignored (and the item
won’t be fetchable by its key).
Licensed to Devon Greenway <devon.greenway@gmail.com>

514 APPENDIX B Generic collections in .NET
B.2.5 ReadOnlyCollection<T>and ReadOnlyObservableCollection<T>

Our final two lists are more wrappers, providing read-only access even when the
underlying list is mutable. Again, both generic and nongeneric collection interfaces
are implemented. A mixture of explicit and implicit interface implementation is used
so that callers using a compile-time expression of the concrete type will be discour-
aged from using mutating operations that will fail.

 ReadOnlyObservableCollection<T> derives from ReadOnlyCollection<T> and
implements the same INotifyCollectionChanged and INotifyPropertyChanged
interfaces as ObservableCollection<T>. A ReadOnlyObservableCollection<T>

instance can only be constructed with an Observable<T> backing list. Even though
the collection is still read-only for callers, they can observe changes made elsewhere to
the backing list.

 Though usually I’d advise using an interface when deciding the return type of
methods in an API, it can be useful to deliberately expose ReadOnlyCollection<T> to
provide a clear indication to callers that they won’t be able to modify the returned col-
lection. But you’ll still need to document whether the underlying collection may be
changed elsewhere, or whether it’s effectively constant.

B.3 Dictionaries
The choices for dictionaries in the framework are much more limited than that of
lists. There are only three mainstream nonconcurrent implementations of
IDictionary<TKey, TValue>, although it’s also implemented by ExpandoObject (as
we saw in chapter 14), ConcurrentDictionary (which we’ll look at along with the
other concurrent collections), and RouteValueDictionary (used for routing web
requests, particularly in ASP.NET MVC).

 Just as a reminder after all those lists, the primary purpose of a dictionary is to pro-
vide an efficient lookup from a key to a value.

B.3.1 Dictionary<TKey, TValue>

Unless you have specialist requirements, Dictionary<TKey, TValue> is the default
choice of dictionary in much the same way that List<T> is the default list implementa-
tion. It uses a hash table to implement an efficient lookup (see http://mng.bz/
qTdH)—although of course this means that the efficiency of the dictionary depends
on how good your hashing function is. You can either use the default hashing and
equality functions (calls to Equals and GetHashCode within the key objects themselves)
or specify an IEqualityComparer<TKey> as a constructor argument. The simplest use
case for this is to implement a dictionary with string keys, which uses the keys in a case-
insensitive way as shown in the following listing.

var comparer = StringComparer.OrdinalIgnoreCase;
var dict = new Dictionary<String, int>(comparer);
dict["TEST"] = 10;
Console.WriteLine(dict["test"]);

Listing B.1 Demonstration of custom key comparisons in a dictionary

Prints 10
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/qTdH
http://mng.bz/qTdH

515Dictionaries
Although the keys within a dictionary have to be unique, the hash codes don’t. It’s
perfectly acceptable for two unequal keys to have the same hash: this is known as a
hash collision, and although it reduces the efficiency of the dictionary slightly, it’ll still
function correctly. The dictionary will fail if the keys are mutable and change their
hash code after they’ve been inserted into the dictionary. Mutable dictionary keys are
almost always a bad idea, but if you absolutely have to use one, make sure you don’t
change it after insertion.

 The exact details of the implementation of the hash table are unspecified and may
change over time, but one important aspect can cause confusion: there’s no ordering guar-
antee within Dictionary<TKey, TValue>, even though it might appear that way. If you add
items to a dictionary and then iterate over it, you may see the items come out in the
insertion order, but please don’t rely on it. It’s somewhat unfortunate that as a quirk of the
implementation, just adding entries tends to preserve order—an implementation
which happened to scramble the order naturally would probably cause less confusion.

 Like List<T>, Dictionary<TKey, TValue> keeps its entries in an array and
expands this when it needs to, leading to amortized O(1) expansion. Access by key is
also O(1) assuming a reasonable hash: if all the keys have the same hash code, you’ll
end up with O(n) access as the dictionary has to check each key in turn for equality. In
most practical scenarios this isn’t an issue.

B.3.2 SortedList<TKey, TValue>and SortedDictionary<TKey, TValue>

A casual observer might imagine that a class named SortedList<,> would be a list...
but no. Both of these types are actually dictionaries, and neither implements
IList<T> at all. It might be more informative for them to be named ListBacked-
SortedDictionary and TreeBackedSortedDictionary, but it’s too late to change now.

 There’s a lot of commonality between these two classes: both use an IComparer
<TKey> instead of an IEqualityComparer<TKey> to compare keys, and both maintain
the keys in a sorted fashion, based on that comparison. Both have O(log n) perfor-
mance when finding values, effectively performing a binary search. But their internal
data structures are very different: SortedList<,> maintains an array of entries which
is kept sorted, whereas SortedDictionary<,> uses a red-black tree structure (see
http://mng.bz/K1S4). This leads to significant differences in insertion and removal
times as well as memory efficiency. If you’re creating a dictionary from mostly sorted
data, a SortedList<,> will populate efficiently: if you imagine the steps involved in
keeping a List<T> sorted, you can see that adding a single item to the end of the list
is cheap (O(1) if you ignore expansion), whereas adding items randomly is expen-
sive, as it involves copying existing items (O(n) in the worst case). Adding items to
the balanced tree in a SortedDictionary<,> is always fairly cheap (O(log n) com-
plexity) but it involves a separate tree node on the heap for each entry, leading to
more overhead and memory fragmentation than the array of key/value entry struc-
tures in a SortedList<,>.

 Both collections expose their keys and values as separate collections, and in both
cases the returned collection is live in that it’ll change as the underlying dictionary
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/K1S4

516 APPENDIX B Generic collections in .NET
changes. But the collections exposed by a SortedList<,> implement IList<T>—so
you can effectively access entries by sorted key index if you really want to.

 I don’t want to put you off too much with all this talk of complexity: unless you
have a very large amount of data, you probably don’t need to worry much about which
implementation you use. If you are likely to have vast numbers of entries in your dic-
tionary, you should carefully analyze the performance characteristics of both collec-
tions to work out which one to use.

B.4 Sets
Prior to .NET 3.5, there was no public set collection in the framework at all. When
developers needed something to represent a set in .NET 2.0, they’d typically use a
Dictionary<,>, using the set items as keys and providing dummy values. This situa-
tion was improved somewhat with HashSet<T> in .NET 3.5, and now .NET 4 has added
a SortedSet<T> and a common ISet<T> interface. Although logically a set interface
could consist merely of Add/Remove/Contains operations, ISet<T> specifies a number
of other operations to manipulate the set (ExceptWith, IntersectWith, Symmetric-
ExceptWith, UnionWith) and to test for various more complex conditions (SetEquals,
Overlaps, IsSubsetOf, IsSupersetOf, IsProperSubsetOf, IsProperSupersetOf).
The parameters for all of these methods are expressed in terms of IEnumerable<T>
rather than ISet<T>, which is initially surprising, but means that sets interact with
LINQ in a natural way.

B.4.1 HashSet<T>

A HashSet<T> is effectively a Dictionary<,> without the values. It has the same per-
formance characteristics, and again you can specify an IEqualityComparer<T> to cus-
tomise how items are compared. Once more, you must not rely on a HashSet<T>
maintaining the order in which you add values.

 One additional feature supported by HashSet<T> is the RemoveWhere method,
which removes any entry that matches a given predicate. This allows you to prune a set
without worrying about the normal prohibition against modifying a collection while
you iterate over it.

B.4.2 SortedSet<T> (.NET 4)

Just like our HashSet<T> comparison with Dictionary<,>, a SortedSet<T> is like a
valueless SortedDictionary<,>. It maintains a red-black tree of values, providing
O(log n) complexity for addition, removal, and containment checking. When you
iterate over the set, the values will be yielded in a sorted order.

 It provides the same RemoveWhere method as HashSet<T> (despite this not being in
the interface) and additionally provides properties (Min and Max) to return the mini-
mum and maximum values. A more intriguing method is GetViewBetween, which
returns another SortedSet<T> offering a view on the original set between a lower and
upper bound, both of which are inclusive. This is a mutable, live view—changes to the
view are reflected in the original set, and vice versa. Listing B.2 demonstrates this.
Licensed to Devon Greenway <devon.greenway@gmail.com>

517Queue<T> and Stack<T>

var baseSet = new SortedSet<int> { 1, 5, 12, 20, 25 };
var view = baseSet.GetViewBetween(10, 20);
view.Add(14);
Console.WriteLine(baseSet.Count);
foreach (int value in view)
{

Console.WriteLine(value);
}

Although GetViewBetween is convenient, it’s not entirely free: operations on the view
may be more expensive than expected, in order to keep internal consistency. In par-
ticular, accessing the Count property of a view is an O(n) operation if the underlying
set has changed since the last tree walk. Like all powerful tools, this should be used
with care.

 One final feature of SortedSet<T>: it exposes a Reverse() method that allows you
to iterate over it in reverse order. This isn’t used by Enumerable.Reverse(), which
buffers the contents of the sequence it’s called on; if you know you’ll want to access a
sorted set in reverse order, it may be useful to keep an expression of type Sorted-
Set<T> instead of using a more general interface type, just so that you can access this
more efficient implementation.

B.5 Queue<T> and Stack<T>
Queues and stacks are staples of every computer science course. They’re sometimes
referred to as FIFO (first in, first out) and LIFO (last in, first out) structures respec-
tively. The basic idea is the same for both data structures: you add items to the collec-
tion, and at some other point you remove them. The difference is the order in which
they’re removed: a queue acts like a queue in a shop, where the first person to join the
queue is the first to be served; a stack acts like a stack of plates where the last plate
placed on the top is the first to be taken off it. One common use for queues and stacks
is to maintain a list of work items still to process.

 Just as with LinkedList<T>, though you can use the normal collection interface
methods to access queues and stacks, I’d recommend using the class-specific ones to
make your code clearer.

B.5.1 Queue<T>

Queue<T> is implemented with a circular buffer (see http://mng.bz/mKeq): essen-
tially it maintains an array, with an index remembering the next slot to add an item
into, and another index remembering the next slot to take an item from. If the add
index catches up with the remove index, the contents are copied into a larger array.

 Queue<T> provides the Enqueue and Dequeue methods to add and remove items; a
Peek method allows you to see what item will be dequeued next, without actually
removing it. Both Dequeue and Peek throw InvalidOperationException if they’re
called on an empty queue. Iterating over the queue yields values in the order they’d
be dequeued.

Listing B.2 Observing changes in a sorted set via a view

Prints 6

Prints 12, 14, 20
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/mKeq

518 APPENDIX B Generic collections in .NET
B.5.2 Stack<T>

The Stack<T> implementation is even simpler than Queue<T>—you can think of it as
being just like a List<T>, but with a Push method to add a new item to the end of the
list, Pop to remove the final item, and Peek to look at the final item without removing
it. Again, Pop and Peek throw InvalidOperationException when called on an empty
stack. Iterating over the stack yields values in the order they’d be popped—so the
most recently added value is yielded first.

B.6 Concurrent collections (.NET 4)
As part of Parallel Extensions in .NET 4, there are several new collections in a new
System.Collections.Concurrent namespace. These are designed to be safe in the
face of concurrent operations from multiple threads, with relatively little locking. The
namespace also contains three classes that are used for partitioning collections for
parallel operations, but we won’t be looking at those here.

B.6.1 IProducerConsumerCollection<T> and BlockingCollection<T>

Three of the new collections implement the new IProducerConsumerCollection<T>
interface, which is designed to be used with BlockingCollection<T>. When describ-
ing queues and stacks, I mentioned that they’re often used to store work items for
later processing; the producer/consumer pattern is a way of executing these work
items concurrently. Sometimes there’s a single producer thread creating work and
multiple consumer threads executing the work items. In other cases the consumers
can also be producers—for example, a web crawler may process a web page and dis-
cover more links to be crawled later.

 IProducerConsumerCollection<T> acts as an abstraction for the data storage of
the producer/consumer pattern, and BlockingCollection<T> wraps this in an easy-
to-use form and also provides the ability to limit how many items can be buffered at
any one time. BlockingCollection<T> assumes that nothing else will be adding to the
wrapped collection directly; all the interested parties should use the wrapper for both
adding and removing work items. The constructor overloads that don’t take an
IProducerConsumerCollection<T> parameter use a ConcurrentQueue<T> for backing
storage.

 The IProducerConsumerCollection<T> only provides three particularly interest-
ing methods: ToArray, TryAdd, and TryTake. ToArray copies the current contents of
the collection to a new array; this is a snapshot of the collection at the point when the
method is called. TryAdd and TryTake both follow the normal TryXXX pattern, return-
ing a Boolean value to indicate success or failure, and they do what you’d expect:
attempt to add an item to the collection, or attempt to remove one from the collec-
tion. Allowing an efficient failure mode reduces the need for locking. In a Queue<T>
for example, you’d want to hold a lock in order to combine the operations of “test
whether there are any items in the queue” and “dequeue an item if there is one”—
otherwise Dequeue could throw an exception.
Licensed to Devon Greenway <devon.greenway@gmail.com>

519Summary
 BlockingCollection<T> layers blocking behavior on top of these nonblocking
methods, with a host of overloads to allow timeouts and cancellation tokens to be
specified. Usually you won’t need to use BlockingCollection<T> or IProducer-
ConsumerCollection<T> directly; you’ll call other parts of Parallel Extensions that’ll
use them for you. It’s worth knowing they’re there, though, in case you need your own
custom behavior.

B.6.2 ConcurrentBag<T>, ConcurrentQueue<T>, ConcurrentStack<T>

The framework comes with three implementations of IProducerConsumer-

Collection<T>. Essentially they differ in terms of the order in which items are
retrieved: the queue and stack act as you’d expect them to from their nonconcurrent
equivalents, whereas ConcurrentBag<T> doesn’t guarantee any ordering.

 All three implement IEnumerable<T> in a thread-safe way. The iterator returned
by GetEnumerator() will iterate over a snapshot of the collection; you can modify the
collection while you’re iterating, and the changes won’t be seen within the iterator. All
three also offer a TryPeek method which is similar to TryTake, but which doesn’t
remove a value from the collection. Unlike TryTake, this method isn’t specified in
IProducerConsumerCollection<T>.

B.6.3 ConcurrentDictionary<TKey, TValue>

ConcurrentDictionary<TKey, TValue> implements the standard IDictionary<TKey,
TValue> interface (whereas none of the concurrent collections implements
IList<T>) and is essentially a thread-safe hash-based dictionary. It supports multiple
threads reading and writing concurrently, and also allows thread-safe iteration—
although unlike the three collections from the previous section, modifications made
to the dictionary while iterating may or may not be reflected in the iterator.

 There’s more to it than just thread-safe access. Whereas normal dictionary imple-
mentations basically offer add-or-update via the indexer, and add-or-throw via the Add
method, ConcurrentDictionary<TKey, TValue> offers a veritable smörgåsbord of
options. You can update the value associated with a key based on its previous value, get
a value based on a key or add it if the key wasn’t present beforehand, conditionally
update a value only if it was what you expected it to be before, and many other possi-
bilities, all of which act atomically. It’s all bewildering to start with, but Stephen Toub
of the Parallel Extensions team has a blog post giving details of when you should use
which method (see http://mng.bz/WMdW).

B.7 Summary
The .NET framework contains a rich set of collections (although not a particularly rich
collection of sets). These have been gradually growing along with the rest of the
framework, although the most commonly used collections are likely to be List<T>
and Dictionary<TKey, TValue> for some time to come. There are certainly data
structures that could be added in the future, but the benefit always has to be weighed
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/WMdW

520 APPENDIX B Generic collections in .NET
against the cost of adding something to the core framework. Maybe we’ll see explicitly
tree-based APIs in the future, rather than them being an implementation detail of
existing collections. Maybe we’ll see Fibonacci heaps, weak-reference caches, and the
like—but as we’ve seen, there’s already a lot for developers to take in, and there’s a
risk of information overload. If there’s a particular data structure you need for your
project, it’s worth looking online for an open source implementation; Wintellect’s
Power Collections have a particularly strong history as an alternative to the built-in
collections (see http://mng.bz/plaM). But in most cases, the framework is likely to be
adequate for your needs: hopefully this appendix has expanded your horizons slightly
in terms of what’s available out of the box.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/plaM

appendix C
Version summaries

The version numbers in .NET can be confusing sometimes. The framework, runtime,
Visual Studio, and C# are all numbered separately. This appendix is a quick guide to
how they fit together and the major features in each release. In each case I’ve
described the features from releases 2.0 and upward; listing all the features of .NET 1.0
and 1.1 would be fairly pointless.

C.1 Desktop framework major releases
When developers refer to releases of .NET, they usually mean the major releases of
the desktop framework. In most cases, a framework release has been accompanied by
a release of Visual Studio (or Visual Studio .NET, as it was named for the 2002 and
2003 releases). The exception to this was .NET 3.0, which was essentially only a set of
libraries (although those libraries were pretty significant). A set of Visual Studio 2005
extensions was made available for the new features, but Visual Studio 2008 contained
more support. Table C.1 shows which version of which aspect of the framework was
released when.

 When .NET 3.5 was released, .NET 2.0 SP1 and .NET 3.0 SP1 were also released;
these contained the 2.0 SP1 CLR and BCL. Similarly, .NET 3.5 SP1’s release coincided
with .NET 2.0 SP2 and .NET 3.0 SP2.

 Visual Studio 2008 was the first release to support multitargeting: you can choose
which version of the framework you want to build for. In many cases you can use new
features of C# while targeting an earlier release—this is basically the case if the

Table C.1 Desktop framework releases and their components

Date Framework Visual Studio C# CLR

February 2002 1.0 2002 1.0 1.0

April 2003 1.1 2003 1.2 1.1

November 2005 2.0 2005 2.0 2.0

November 2006 3.0 (Extensions to 2005) n/a 2.0

November 2007 3.5 2008 3.0 2.0 SP1

April 2010 4 2010 4.0 4.0
521

Licensed to Devon Greenway <devon.greenway@gmail.com>

522 APPENDIX C Version summaries
feature is implemented solely by compiler magic, without any support from the CLR
or libraries. More information on how to do this is available on the book’s website
(see http://mng.bz/YpRB)—in some cases there are workarounds if a feature
doesn’t quite work out of the box. It’s worth noting that if you target .NET 2.0 (you
can’t target 1.0 or 1.1) from Visual Studio 2008 or 2010, you’ll actually be targeting
the relevant service pack (2.0 SP1 or 2.0 SP2); this means it’s possible to build code
that uses new features from a service pack (one notable introduction was
System.DateTimeOffset in 2.0 SP1) and then find it fails if you try to run it on a
machine that genuinely has the original release of .NET 2.0. Personally I’d try to
update machines to at least run the latest service pack—and ideally a more recent full
framework release.

C.2 C# language features
If you’ve read the whole book, you should be able to write this section yourself. (It’s
tempting to leave a bunch of blank lines for you to fill in, but I’m not quite that lazy.)
One trivial fact: the version number of 1.2 in table C.1 isn’t a typo; looking at the spec-
ifications, Microsoft really did skip 1.1 in order to release a C# 1.2 compiler with
.NET 1.1. The changes in version 1.2 were mostly minor, but there was one significant
change in the long term: it’s only from C# 1.2 and onward that the translated code for
a foreach loop tests whether the iterator implements IDisposable and disposes of it
accordingly. As we’ve seen, this change is crucial for iterator blocks that have
resources to clean up.

 Anyway, for the sake of completeness, here are the language features, along with
the chapter references for more details.

C.2.1 C# 2.0

The major features of C# 2 were generics (see chapter 3), nullable types (chapter 4),
anonymous methods and other delegate-related enhancements (chapter 5), and itera-
tor blocks (chapter 6). Additionally, several smaller features were introduced: partial
types, static classes, properties with different access modifiers for getters and setters,
namespace aliases, pragma directives, and fixed-sized buffers. See chapter 7 for more
details.

C.2.2 C# 3.0

C# 3 primarily built toward LINQ, although many features are useful elsewhere. Auto-
matic properties, implicit typing of arrays and local variables, object and collection ini-
tializers, and anonymous types are all covered in chapter 8. Lambda expressions and
expression trees (chapter 9) extended the delegate-related progress made in version
2.0, and extension methods (chapter 10) provided the last ingredient for query
expressions (chapter 11). Partial methods were only added in C# 3, but are covered
with the inclusion of partial types in chapter 7.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/YpRB

523Framework library features
C.2.3 C# 4.0

C# 4.0 has some features aimed at interoperability, but doesn’t have the same single-
mindedness of C# 3.0. Again there’s a reasonably clear divide between the small fea-
tures shown in chapter 13 (named arguments, optional parameters, better COM
interop, generic variance) and the huge feature of dynamic typing (chapter 14).

C.3 Framework library features
It’d be impossible to list all of the new features in the framework in a sensible fashion
here. In particular, each area of the framework (Windows Forms, ASP.NET, and so on)
gets extra features in each release—not just the core base class library. I’ve included
the features I believe are the most important highlights. MSDN has a far more compre-
hensive list at http://mng.bz/6tiZ.

C.3.1 .NET 2.0

The biggest features in the 2.0 libraries supported those of the CLR and languages:
generics and nullable types. Whereas nullable types didn’t require many changes,
many of the generic collections we’re used to now have been present since .NET 2.0—
and the reflection API had to be updated accordingly.

 Many areas received relatively minor updates, such as support for compression,
multiple active result sets (MARS) over a single connection to SQL Server, and many
static helper I/O methods such as File.ReadAllText. It’s probably fair to say that
these weren’t as significant as the changes to user interface frameworks.

 ASP.NET gained master pages, precompilation abilities, and various new controls.
Windows Forms took a big leap in terms of layout abilities with TableLayoutPanel
and similar classes, as well as better support for performance enhancements such as
double buffering, a new data binding model, and ClickOnce deployment. Back-
groundWorker was introduced in .NET 2.0 to make it easier to update a UI safely in
multithreaded applications; it’s not strictly part of Windows Forms, although that was
its primary use case until Windows Presentation Foundation arrived in .NET 3.0.
Speaking of which...

C.3.2 .NET 3.0

.NET 3.0 was somewhat curious as a “major” release with no CLR changes, no language
changes, and no changes to existing libraries. Instead, it consisted of four new libraries:

 Windows Presentation Foundation (WPF) is the next-generation user interface
framework; this was a revolution rather than an evolution of Windows Forms,
although the two can live side by side. It has a very different model to Windows
Forms, being much more compositional in nature. Silverlight’s user interface is
based on WPF.

 Windows Communication Foundation (WCF) is an architecture for building
service-oriented applications; it’s extensible rather than being limited to a sin-
gle protocol, and aims to unify the existing RPC-like communication channels
such as remoting.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/6tiZ

524 APPENDIX C Version summaries
 Windows Workflow Foundation (WF) is a system for building workflow
applications.

 Windows CardSpace is a secure identity system.

Of these four areas, WPF and WCF have flourished whereas WF and CardSpace appear
not to have taken off so well. That’s not to say that the latter technologies aren’t being
used, or that they won’t become more important in the future—but they’re not nearly
as widespread at the time of this writing.

C.3.3 .NET 3.5

The big new feature in .NET 3.5 was LINQ, supported by C# 3.0 and VB 9. This
included LINQ to Objects, LINQ to SQL, LINQ to XML, and expression tree support
underlying it.

 Other areas also gained important features: it became a lot easier to use AJAX in
ASP.NET; WCF and WPF each gained a whole host of improvements; an add-in frame-
work (System.AddIn) was introduced; various new cryptography algorithms were
included, and much more. As a developer interested in both concurrency and time-
related APIs, I feel obliged to draw your attention to the introduction of Reader-
WriterLockSlim and the much-needed TimeZoneInfo and DateTimeOffset types. If
you’re using .NET 3.5 or higher but still relying on DateTime everywhere, you should
be aware that there are better options available.1

 .NET 3.5 SP1’s most notable library feature was the introduction of the Entity
Framework and related ADO.NET technologies, but again other technologies had
minor improvements as well. Also importantly, .NET 3.5 SP1 introduced the Client
Profile—a smaller version of the desktop .NET framework which doesn’t include a lot
of the libraries aimed at server-side development. This allows a smaller deployment
footprint for client-only applications.

C.3.4 .NET 4

A lot of work has been going into the .NET 4 libraries for a long time, in various guises.
The DLR is a huge addition, and we’ve also looked at Parallel Extensions and Code
Contracts in other chapters—two of the areas I find most exciting, looking to the
future. As usual, the user interface technologies have a raft of improvements,
although notably the focus for rich client changes is WPF rather than Windows Forms.
A lot of tweaks have been made to existing core APIs to just make them that much eas-
ier to use—such as String.Join accepting an IEnumerable<T> instead of insisting on
a string array. These aren’t earth-shattering improvements ready to revolutionize the
world—but if they make every developer’s life just a little bit simpler, that can have a
large cumulative impact. We’ve already seen how some of the existing generic

1 My personal feeling is that this still isn’t enough support for the complex and intriguing world of dates and
times, which is why I started the Noda Time project (see http://mng.bz/S8e0), but at least with
TimeZoneInfo there’s finally a clean way of representing a time zone other than the local one.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/S8e0

525Runtime (CLR) features
interfaces and delegates have become covariant or contravariant (IEnumerable<T>
becoming IEnumerable<out T> and Action<T> becoming Action<in T>, for example)
but there are new types to explore as well.

 There’s a new namespace for numerical calculations, System.Numeric. At the time
of this writing it only contains the BigInteger and Complex types, but I wouldn’t be
surprised to see BigDecimal join them in the future. There are other new types within
the System namespace, such as Lazy<T> for lazily initialized values and a Tuple family
of generic classes that provide the same sort of functionality as our Pair<T1, T2> class
from chapter 3, but for up to eight type parameters.2 Tuple also supports structural com-
parisons as represented by the new IStructuralEquatable and IStructural-
Comparable interfaces in the System.Collections namespace. Although the full
Reactive Extensions classes we used in chapter 12 aren’t in .NET 4, the core interfaces
IObserver<T> and IObservable<T> are in the System namespace. I’ve brought up
these specific items because though new areas like the Managed Extensibility Frame-
work (MEF) get a lot of attention, it’s easy to overlook simple types like these. It’s good
to see that time is being spent all over the framework, not just on shiny new cool stuff.

C.4 Runtime (CLR) features
CLR changes are often less visible to many developers than new library and language
features. Obviously there are some particularly shiny features such as generics that’ll
catch everyone’s attention, but others are less obvious. The CLR has also changed less
frequently than either the language or the framework libraries, at least in terms of
major releases.

C.4.1 CLR 2.0

In addition to generics, the CLR required one extra change to support the new lan-
guage features of C# 2: the behavior of boxing and unboxing nullable value types that
we explored in chapter 4.

 CLR 2.0 had other major changes. The most significant ones were support for 64-
bit processors (both x86 and IA64) and the ability to host the CLR within SQL Server
2005. The SQL Server integration required new hosting APIs to be designed, so that
the host could have a lot more control over the CLR, including how it allocates mem-
ory and threads. This allows a diligent host to make sure that code running in the CLR
won’t compromise other aspects of a critical process, such as a database.

 .NET 3.5 included CLR 2.0 SP1, and .NET 3.5 SP1 included CLR 2.0 SP2; these had
relatively minor changes such as tweaks to the access that code in a DynamicMethod
has to private members of another type. Of course, the CLR team is always looking for
ways to improve performance as well, with improvements in garbage collection, the
JIT, startup times, and so on.

2 The Mono C# compiler has experimental support for Tuple at the language level, allowing multiple variables
to be assigned from one tuple. I’m sure the Microsoft C# team has considered this too—it’ll be interesting to
see whether anything similar shows up in C# 5.
Licensed to Devon Greenway <devon.greenway@gmail.com>

526 APPENDIX C Version summaries
C.4.2 CLR 4.0

Although the CLR didn’t need to change in order to accommodate the DLR, the team
has still been hard at work. The highlights include

 Interop marshalling performance and consistency improvements with IL stubs
everywhere (see http://mng.bz/56H6)

 A background garbage collector to replace the concurrent collector in CLR 2.0
 An improved security model based around transparency, which is the successor

to Code Access Security (CAS)
 Type equivalence, used to support the embedded PIA feature of C# 4
 Side-by-side execution of different CLRs within the same process

More details of all of these features are available on the CLR team blog (http://
blogs.msdn.com/clrteam/).

C.5 Related frameworks
It’s rare for anything in computing to do well with a one-size-fits-all model, and .NET is
no exception. Even the desktop framework isn’t just a single version really: there’s the
client profile, the 32-bit and 64-bit JITs, and the server and workstation CLRs tuned for
different tasks. Beyond that, there are separate frameworks that have their own ver-
sion history, tailored to different environments.

C.5.1 Compact Framework

The Compact Framework (see http://mng.bz/6880) was originally aimed at mobile
devices running Windows Mobile. Since then it has been retargeted for Xbox 360,
Windows Phone 7, and Symbian S60.

 The Compact Framework major release schedule has traditionally mirrored that of
the desktop framework, although there’s no release corresponding to .NET 3.0. Just to
keep things interesting, the most up-to-date release (used by some Windows Mobile
devices and WP7) is version 3.7.

 Early versions of the Compact Framework were missing some fairly core function-
ality, which was largely filled by community efforts; later releases have plugged many
of the more significant gaps, although obviously it’s still a subset of the desktop frame-
work. The GUI layer depends on the exact platform; for example, on the Xbox 360
you’d use XNA, Windows Mobile supports Windows Forms, and WP7 supports both
XNA and Silverlight. Code running on the Compact Framework is JIT-compiled and
garbage collected, although the Compact Framework collector isn’t generational like
the ones in the desktop framework.

C.5.2 Silverlight

Silverlight (http://silverlight.net/) is aimed at running applications either within
browsers, or (as of Silverlight 3) in a sandboxed environment, usually originally
installed from a browser. As such, it’s a natural competitor to Flash—but as a C#
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.net/
http://mng.bz/56H6
http://blogs.msdn.com/clrteam/
http://blogs.msdn.com/clrteam/
http://mng.bz/6880

527Related frameworks
developer, it has the obvious advantage of allowing you to write applications in a famil-
iar language against a familiar library. Silverlight installs a streamlined CLR (called
CoreCLR—see http://mng.bz/G32M) and class library—for example, the nongeneric
collections aren’t supported, and neither is Windows Forms. The presentation layer of
Silverlight is based on WPF, but they’re not identical. It has particularly strong support
for media, with features such as deep zoom and adaptive video streaming.

 Silverlight 1 was released in September 2007, although it was restricted to a mix-
ture of XAML to construct the UI and JavaScript for logic. It wasn’t until Silverlight 2
was released in October 2008 that the full experience of delivering Silverlight applica-
tions built with C# became a reality. Some of the features from CoreCLR (side-by-side
CLR hosting within a single process, and the declarative transparency security model)
are now features in the desktop CLR for version 4.0. It also included an early version of
the Dynamic Language Runtime.

 Progress continued unabated, with Silverlight 3 being released in July 2009 with
more controls, more video codecs, as well as offline and out-of-browser applications.
The Silverlight team repeated the nine-month release cycle, releasing Silverlight 4 in
the same week as .NET 4 with another long list of new features. Windows Phone 7 sup-
ports Silverlight 3 and some features of Silverlight 4.

 Microsoft has cooperated with the Mono team on the Moonlight project (see
http://mng.bz/FGd4), an open source implementation of Silverlight running on
Linux.

C.5.3 Micro Framework

The Micro Framework (see http://mng.bz/D9qy) is a tiny implementation of .NET,
designed to run on very constrained devices. It doesn’t support generics, it’s inter-
preted rather than JIT-compiled, and only ships with a limited set of classes—but it
does include a presentation layer, built around WPF. In order to save space, you only
need to deploy the parts of the framework you actually need—at its smallest, it can
take up a mere 390 KB. Obviously this is a somewhat niche area, but the ability to write
managed code for embedded devices has great appeal. It won’t be suitable for all situ-
ations—it’s not a real-time system, for example—but where it’s applicable, it’s likely to
drastically improve developer productivity.

 The release history hasn’t followed that of the desktop framework at all: it was first
seen in the SPOT watch in 2004, but version 1.0 was released in 2006. Since then it has
iterated several times in rapid succession. Version 4.0 of the Micro Framework
shipped on November 19, 2009—and in a move that still delights and surprises me,
the majority of this version was released open source under the Apache 2.0 license.
Some libraries such as the TCP/IP stack and cryptography implementations are still
closed for various reasons; these companion libraries can be downloaded in binary
form for specific architectures.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://mng.bz/G32M
http://mng.bz/FGd4
http://mng.bz/D9qy

528 APPENDIX C Version summaries
C.6 Summary
With so many versions of so many different components, it’s easy to get confused—
and even easier to confuse someone else. As a final piece of advice (and I mean
final—it's hard to sneak anything deep and meaningful into an index), I recommend
that you try to be as clear as possible on this topic when communicating with others. If
you’re using anything other than the desktop framework, say so. If you’re going to
quote a version number, specify exactly what you mean—“3.0” could mean using
C# 2.0 and .NET 3.0, or it could mean using C# 3.0 and .NET 3.5. Aside from anything
else, after you’ve read this book, you have absolutely no excuse for claiming you’re using
“C# 3.5”—unless you’re deliberately trying to wind me up.

PS—You can stop reading now. Go and have some fun with C# instead of trawling
through the index looking for Easter eggs.
Licensed to Devon Greenway <devon.greenway@gmail.com>

index
Symbols

:: namespace alias
qualifier 191

? modifier 113
?? 121

See also null coalescing
operator

.aspx 195

.Contracts, suffix for contract
reference assemblies 469

.ini, configuration files 414

.NET 21
2.0 52

extension methods 262
3.5

attribute supporting
extension
methods 262

extension methods in the
framework 265

introduction of Func and
Action 50

SP1 293
4, observable interfaces 351
Passport 21

‘ generics 89
* transparent identifiers 300
/l 385, 409
/link 385
/r 385
/reference 385
& operator 117
#pragma 194

checksum 195
warning 194

== operator

overloading and
generics 77

reference type
constraints 70

unconstrained type
parameters 77

value type constraints 70
=> 230
| operator 117

Numerics

64-bit processors 525

A

aborting threads 398
about:blank, comparison with

null references 104
abstract base class compared

with duck typing 418
abstract methods 467
abstract modifier, static

classes 188
abstraction 62
abuse

class inheritance 467
general-purpose extension

methods 455
academic license, Code

Contracts 472
access from nested types 159
access modifiers

automatic properties 205
defaults 189
partial types 182
properties 189

accessors 205
Action 139
Action delegate types 229
action delegates 133
Active Record 3
ActiveSheet 409
actual type

dynamic binding 430
adapter pattern 94, 96
Add 509

collection initializers 289
method 216–217
method on XContainer 340

add/remove blocks,
events 399

AddFirst 513
addition, implicit conversion

of operands 417
AddLast 513
AddRange 390
ADO.NET 106, 524
Aggregate 496
aggregation 273, 336

operators 495
ahead-of-time compilation 22
AJAX 524
Albahari, Joe 24
aliases 128

alternative to implicit
typing 209

for namespaces and
types 190

aliasing, out parameters 395
All 505
AllDefects (and related

properties) 285
alpha geeks 492
529

Licensed to Devon Greenway <devon.greenway@gmail.com>

530 INDEX
Amazon EC2 492
ambiguity

dynamic conversions 427
dynamic typing 420
overloading 379
terminology 205

amortized complexity
510, 515

analysis
argument types 367
query translations 329

Ancestors 342
AncestorsAndSelf 342
Android 492
angle brackets 62, 88

unspeakable names 140
annotated specification 25
Annotations 342
anonymous functions 208,

229, 429
better conversions 254
inferred return types 247
overloading 253

anonymous methods 11–12,
50, 138, 172

ambiguity 144
anonymous types 224
as typeless expressions 219
capturing variables 144

See also captured variables
compared with lambda

expressions 229
dynamic code 433
ignoring parameters 143
lack of contravariance 140
prohibition on iterator

blocks 161
readability 227
returning values 141
type inference 246

anonymous object
initializers 51, 221

anonymous types 51, 220
conversion to XElement

and XAttribute 341
inner join keys 301
keys for grouping 311
projections 270
ToString 271
used for transparent

identifiers 299
Any 505
Apache 2.0 license 527
API design 484, 514
API querying 243

APIs 453
designing to work with

LINQ 345
parameter names 379

applicable methods
overload resolution 378
overloading 253, 379

application domains 81
Application, Word 381
Arbiter 177
architecture 279
AreaComparer 391
ArgumentException 397, 469
ArgumentNullException 265,

277, 455, 457, 483
ArgumentOutOfRange-

Exception 499
arguments 8, 20

comparing type and method
arguments 63

conversions to parameter
types 252

dynamic values 426
evaluation of partial

methods 186
evaluation order 374
terminology 366
type inference 74
validation 173, 276

iterator blocks 164, 174
validation in LINQ

operators 357
arithmetic obligations 477
arithmetic, generics 245
array bounds obligations 476
ArrayList 5, 40, 53, 84, 292
arrays 22, 40, 43, 197, 280, 511

CLR terminology 512
covariance 40, 92
implicit typing 219
populating with object

initializers 214
ArrayTypeMismatchException

40, 511
as operator 120

breaking changes 396
dynamic types 427

ASCII 39
AsEnumerable 498
AsOrdered 349
ASP.NET 23, 195, 399, 523–524
AsParallel 347
AsQueryable 498
assemblies

anonymous types 221

COM 385
contract reference

assemblies 469
extern aliases 193
references 23
rewriting, Code

Contracts 464
signing 200

AssemblyInfo.cs 200
Assert method, Code

Contracts 458, 461
assertions 458, 486

Code Contracts 461
error windows 470
failures 485, 487

assignment
expression trees 239
field-like events 399
lambda expressions 234
unaffected by type

inference 74
associations, LINQ to SQL 323
Assume method, Code

Contracts 458, 461
assumptions 149, 486

Code Contracts 461
asterisk, transparent

identifiers 300
AsUnordered 349
asynchronous

computation 491
delegate invocation 31
I/O 356
operations 76
service access 175

atomicity, locking 398
Attributes 342
attributes 437

extension methods 262
LINQ to XML 18, 338

automatic properties 7, 204–
205

builder pattern
implementation 219

encouraging mutability 376
lambda expression

examples 233
automatic variance 396
Average 495
axis methods, LINQ to

XML 342
Axum 492
Licensed to Devon Greenway <devon.greenway@gmail.com>

531INDEX
B

back tick, generics 89
back-end technologies 491
BackgroundWorker 35, 523
backing fields

automatically implemented
properties 7

field-like events 399
trivial properties 205

backward compatibility 491
balance, using implicitly typed

local variables 209
base types

partial types 181
static classes 188

base, anonymous methods 140
baselines 478
basic multilingual plane 25
BCL 52
BeginInvoke, delegate

method 31
BeginXXX 76
behavior 448

adding with inheritance 256
changes to optional parame-

ter defaults 371
DLR rules 424
encapsulated in delegates 28

behavioral patterns 156
benchmarks 121, 347, 488
best accessible type 430
best practices 469
better conversions 253

extension methods 263
BigInteger 525
binary data 104
binary operators 117
binary representations 395
binary rewriter 456, 458, 463–

464, 470
BinaryExpression 237
BinarySearch 511–512
binders 424–425

parameters to TryXXX
methods 444

BindGetMember 447
binding 52, 403, 406, 513

explicit interface
implementation 419

expression tree
parameters 241

BindingList 513
black magic, COM 380
Bloch, Joshua 80

block, as a lambda expression
body 231

blocking, parallelism 176
BlockingCollection 518
blocks, expression trees in

.NET 4 239
blogs 492
blood spatter pattern 375
blueprints 62
body of a lambda

expression 231
boilerplate code 170
bool?, behavior of & and |

operators 119
Boolean, flag indicating

nullity 106
bottlenecks 46, 488
bounds, type inference 249
boxing 47, 59, 84, 106, 510

avoiding in C# 1 85
Hashtable 61
Nullable 110
using type constraints to

avoid 128
boxing conversions 71

invalid in generic
variance 395

braces 141, 455
removing in lambda

expressions 231
breaking changes 379, 491

capturing loop variables 151
caused by generic

variance 396
delegate variance 137
field-like events 399

brevity 13
bridging

fluent interfaces 275
static and dynamic code 448

browser 43
buffering 282, 495

custom LINQ operators 358
group joins 306
grouping 312
inner joins 302
Parallel LINQ 350

buffering data 267
bugs 42, 370, 407, 437, 483

mutability 108
side effects and argument

ordering 375
build configurations 487
builder pattern 218
building blocks, concurrency

with Parallel LINQ 346

Burrows, Chris 399
business logic 174
business rules 413
Button, unqualified name

ambiguity 190
by, contextual keyword 311
byte arrays 258
byte, non-nullability 104
bytecode 100

C

C 28, 38
C 455
C# 1 27

pain of sorting and
filtering 234

C# team 25, 396
C++ 38, 78, 91

compilation model 99
const 488
templates 99

C++0x 99
caching 441

DLR 422
expression trees 237, 244
lambda expressions 235
multi-level 425

Call 242, 450
call site validation 488
call sites 425, 429

DLR 423
precondition checking 473

callbacks 467
iterator execution flow 177

callers, affected by variance
changes 396

caller-specified variance 397
CallSite 423
Call-site Requires

Checking 469
cancellation tokens 349, 519
Capacity 510
captured variables 145, 229,

288
behavior 146
generating extra classes 149,

152
guidelines 153
lifetime 148
motivation 147
See also anonymous methods

Cartesian product 308
CAS 526
Licensed to Devon Greenway <devon.greenway@gmail.com>

532 INDEX
case sensitivity 445
LINQ queries 318

Cast 95, 391, 497
casting 10, 39, 209

anonymous methods 144
COM 402
dynamic types 413, 417, 433
generics 58, 96, 393
is and as operators 121
Java generics 100
nullable types 113, 119
Office APIs 404
overload resolution 379
reduced by PIA linking 386
reference conversions 389
to resolve overload

ambiguity 379
with Hashtable 61

catching contract
violations 471

Catchphrase 274
cccheck 456, 472
ccdocgen 456
CCR. See Concurrency and

Coordination Runtime
ccrefgen 456, 469
ccrewrite 456
CDATA, LINQ to XML 338
Cells 409
ceremony 3, 5, 216
chaining 272–273

extension methods 257, 268
iterators 267

change tracking, LINQ to
SQL 325

Channel 9 351
Chars 383
checked context 478
checksum pragmas 195
CHESS 492
child content, LINQ to

XML 338
child elements 437
circular buffers 158, 517
Civilization IV 411
clarity 451
class

keyword 43
reference type constraints 69

class hierarchy 58
class libraries 487
classes, lack of generic

variance 394
Clear 509
ClearItems 513

CLI 22, 71, 112, 383
Click event 132
ClickOnce 523
Client Profile 524
cloning 223

LINQ to XML content 340
closed constructed types, speci-

fying in reflection 90
closed types 63

generics 89
static fields 82

closures 144–145, 155, 170
cloud computing 493
CLR 20, 22, 50, 84, 196, 203,

511, 525
generic variance 52, 394
handling thread aborts 398
non-involvement in lifted

operators 120
parameterized

properties 383
size of references 45
support for nullable value

types 110
support for ref and out

parameters 395
CLR types, conversions to/

from dynamic 427
CLS compliance 455
clutter 215

code with explicit typing 209
CoClass 386
Code Access Security 526
code as data 236
Code Contracts 453, 472, 524

assertions 461
assumptions 461
automatic

documentation 480
baselines 478
contract inheritance 466
contract reference

assemblies 469
implicit obligations 475
invariants 459
legacy contracts 462
postconditions 458
preconditions 456
static checker 472

code generators 106, 179–180,
183, 192

code smells 129
CodeChecksumPragma 195
CodeDOM 236, 239, 242, 403
CodeDomProvider 421

coding standards 178
cold observables 353
collation, results in Parallel

LINQ 346
collection initializers 7, 211,

215, 289, 401
encouraging mutability 376
lambda expression

examples 233
method 216–217
requirements 216
within object initializers 217

Collection<T> 513
CollectionBase 41
collections 6, 58, 68, 280

populating with collection
initializers 215

sorting with custom
comparisons 142

colon, named arguments 372
columns, selecting in SQL

queries 225
COM 19, 207, 380, 402

handling in C# binder 424
parameterized

properties 383
Primary Interop

Assemblies 385
Combine 33, 131

generic variance 396
combining delegates 33
combining type constraints 73
ComImport 386
command line 193
command line options, linking

PIAs 385
commas

separating type
parameters 62

used to indicate number of
type parameters 88

comments 42, 372
Common Language Infrastruc-

ture. See CLI
Common Language Runtime.

See CLR
communication 489

Code Contracts 453
named arguments 373

community 54, 180, 420
debate over extension

methods 275
influence over CLR boxing

behavior 110
scientific developers 97
uptake of LINQ 361
Licensed to Devon Greenway <devon.greenway@gmail.com>

533INDEX
Compact Framework 526
compact profile 22
compactness 140
Compare 126
CompareExchange 399
Comparer 78, 394
Comparer.Default 112, 358
CompareTo 76, 235
Comparison 142, 233

purity 463
comparisons 126

for sorting 271
LINQ query operators 318
nullable types 14
reference type constrained

values 70
compatibility

delegate types and
methods 29, 137

generic variance 93
method group

conversions 133
method signatures and

delegates 49
compilation errors 105

invalid casts 39
compilation, expression

trees 238, 244
Compile 238, 498
Compile method,

LambdaExpression 238
compile time 38

binding 403
contract checking 453

compiler 22, 167, 392
binding with dynamic types

in C# 4 52
code generated using nul-

lable types 115
combining source for partial

types 181
command line for linking

PIAs 385
creating strongly typed

expression trees 239
detecting key selector

reversal 303
embedded for dynamic

typing 408
errors on dynamic code 432
extern aliases 193
ignorance of Enumerable

and Queryable 334
implementation of anony-

mous methods 149

implementation of fixed-size
buffers 196

importance in C# 3
features 204

inability to verify
comments 372

pipeline 491
providing more information

via casts 58
removing unimplemented

partial methods 185
role in delegate features 49
shortcut for obtaining a

MethodInfo 242
support for object

initializers 213
translations

demonstration with a
dummy provider 288

query expressions 280,
287

verifying variance 396
warnings 138, 140

compiler as a service 491
CompilerGeneratedAttribute

386
compile-time checking

generics and static typing 59
limitations 244
LINQ queries 243

compile-time duck typing 289
compile-time efficiency 87
compile-time errors 431
compile-time type safety 40
compile-time types 5, 37, 208

dynamic binding 431
implicitly typed arrays 219

Complex 97, 525
complexity 154, 465, 491

language design choices 92,
220

new C# features 284
reducing with LINQ to

Rx 356
ComplexNumber 97
compliance, C# 4

specification 380
Component Object Model.

See COM
component vendors 487
composition 16, 244, 272
compound contracts 462
compression 523
computer science 145, 491

defining pass by
reference 46

formal specification and
verification 454

Concat 390, 496
(strings) comparison with

Delegate.Combine 33
concatenation 44
concatenation operator 496
concepts, C++ 99
concurrency 175

collections 508, 519
programming 346

Concurrency and Coordina-
tion Runtime 175

ConcurrentDictionary 514, 519
conditional code 263
conditional logical

operators 119
conditional operator 113, 122,

127
confidence 403
configuration 411, 413

active via the DLR 414
connection management,

LINQ to SQL 325
consistency 7, 141, 182, 396,

484
LINQ 16, 265, 284
naming conventions 318

console 286
const 369

C++ 488
Constant 332
constant expressions, C++ tem-

plate arguments 99
Constant, method of

Expression 332
constants 15

default parameter values 368
unchanging collections 218

constrained type
parameters 70

constraints
dynamic 434
generic type constraints 69

constructed types 62, 88
construction, preconditions for

immutable types 484
constructor type constraints 70
constructors 211, 441

anonymous types 223
default provided by

compiler 187
discrepancy between C# and

CLI 71
dynamic code 434
Licensed to Devon Greenway <devon.greenway@gmail.com>

534 INDEX
constructors (continued)
dynamic invocation 428
generic type constraints 70
generic types 64
immutable types 376
implicitly typed local

variables 210
multiple parameters causing

confusion 214
of Nullable 107
shorthand with object

initializers 213
using arguments for

initialization 211
utility classes 187
XElement 340

Contains 505, 509
context

in anonymous methods 145
propagated with range

variables 290
contextual keywords 16, 290

dynamic 406
partial 181
type constraints 69

continuation-passing style 176
continuations

multiple 316
query continuations 314

ContinueWith 175
continuous build 479
Contract class

Code Contracts 456
last reference marking end of

contracts 458
contract classes, abstract classes

and interfaces 467
contract failure handlers 457
contract inheritance 466
contract reference

assemblies 456, 463, 469,
486

contract section 464
ContractClass 467
ContractClassFor 467
ContractException 457, 465,

470, 482, 485
catching in unit tests 485

ContractFailed 471, 485
ContractFailedEventArgs 471
ContractInvariantMethod-

Attribute 460
ContractPublicPropertyName-

Attribute 457
contracts runtime 472

CONTRACTS_FULL 464
CONTRACTS_

PRECONDITIONS 464
__ContractsRuntime 465
ContractVerificationAttribute

479
contradictory behavior, opera-

tors on nullable types 120
contravariance 52, 95, 388

anonymous methods 140
delegates 50, 131, 134

See also delegates, contra-
variance

IObserver 351
nesting 394
parameters 41
See also generic variance

contravariance, C# 2 134
controversy, extension

methods 273
convenience 391
conventions

class contract names 468
event handling 136
lambda expression

parameters 317
namespaces and extension

methods 276
type parameter names 65
unspeakable names 140

conversion operators 496
conversion type constraints 71

restrictions 72
working around

invariance 96
conversions

"better than" other
conversions 253

argument types to parameter
types 379

generic type constraints 71
generic variance support in

the CLR 394
GetVariable 413
involving anonymous

functions 253
LINQ to XML 343
method groups and

overloading 246
Nullable<T> See Nullable
projections in LINQ 282

Convert 450
ConvertAll 65, 67, 94, 224, 270,

511–512
Converter<TInput, TOutput>

variance 393

coordination 175–176
copying collections, work-

around for limitations in
generics 94

copying values, boxing 47
copying, value type and refer-

ence type behavior 43
copyright 43
CopyTo 258, 509
CoreCLR 527
corner cases 21, 170, 469, 485
coroutines 178
correctness 59

Code Contracts 453
contracts 473

Count 307, 358, 495, 509
property of ICollection and

ICollection<T> 418
count with SQL for joins 328
covariance 52, 92, 388

arrays 511
delegates 50, 131, 134
IObservable 351
of arrays 40
return types 41
See also generic variance; del-

egates, covariance
CPU, cost of JIT

compilation 83
CPU-bounded tasks 350
CreateInstance 512
CreateQuery, method of

IQueryProvider 330
cross joins 308
CSharpArgumentInfo 430
CSharpCodeProvider 403
CSS 491
cultural issues 275
culture 321
Current 85, 157, 162, 164, 168,

282, 352
cursor iterators 157
custom comparisons 358

LINQ query operators 318
custom iteration types 85
custom rewriter methods 485

Code Contracts 472
cyclic relationships 217

D

data binding 286, 415, 513, 523
Data Connections, Visual

Studio 323
Licensed to Devon Greenway <devon.greenway@gmail.com>

535INDEX
data contexts, LINQ to
SQL 325

data extraction, XML 18
data grids 286
data integrity 296
data models, LINQ 280
data pipelines 156

lambda expressions 230
data processing, pipelines of

extension methods 268
data sources

consistency 284
LINQ 16, 228

data structures 491
data transfer types 45
databases 17–18, 175, 225, 228,

272, 320, 322
joins 301
nullable fields 14, 53, 105
rules engines 411

DataContext 325
DataReader 267
DataSet 267
dates, LINQ to XML

content 340
DateTime 45, 76, 108, 343

non-nullability 104
DateTime.MinValue 76

magic value pattern 105
DateTimeOffset 522, 524
DateTimeRange 306
DBNull 106
deadlocks 398
debug builds, assertions 455
Debug.Assert 455, 461, 483
debugger 195, 446, 485
debugging 213, 411, 470
decimal 14
declarations

implicitly typed local
variables 208

out parameters 124
partial methods 186
using dynamic 434
var and dynamic 408

declarative style 320
contracts 455
LINQ to XML construction

pattern 340
programming 16

decompilation 428
deep zoom 527
Default (Equality-

Comparer<T>
property) 112, 358

default constructors 187
Nullable<T> 107

default members 383
default operator 417

contract classes 468
optional parameters 368

default properties 383
default value expressions 75
default values 14–15, 368

fields in structs 206
optional parameters 366
restrictions 368
specifying for

parameters 367
default(T) 75
DefaultIfEmpty 500
defaulting

null coalescing operator 123
defaults

private access modifiers 189
defect tracking 273, 285
defensive code 488
deferred execution 282, 495

custom LINQ operators 358
definite assignment 60, 395

output parameters 76
degenerate query

expressions 295
degree of parallelism 349
Delegate 29
delegate

ambiguity of term 29
keyword 11, 43, 140, 143

delegate creation
expressions 133

variance 137
delegate instances 28

caching 235
LINQ 288
referring to captured

variables 148
delegate parameters 143
delegate types 28, 43

Action<...> 229
conversions involving anony-

mous functions 254
expression trees 238
Func<...> 229

delegates 10, 22, 28, 334
action 30
alternative approach to

iteration 170
anonymous methods. See

anonymous methods
asynchronous invocation 31

C# 2 130
combining 33
compatibility 137

in C# 1 30
in C# 2 49

compiling from expression
trees 238

constructing with lambda
expressions 50

contravariance, C# 2 131,
134–135

covariance, C# 2 131, 134,
136

exceptions 34
ExpandoObject 436
field-like events 34
garbage collection 30
generic 66
generic variance 387, 392
immutability 33
in process data

processing 228
increased use in .NET

2.0 154
invocation 28, 31, 131
invocation list 33
invoking asynchronously 31
LINQ 282
meaning of combining

null 33
method group

conversions 67, 133
See also method group con-

versions
motivation 32
option for iteration

pattern 170
order of execution 34
removing 33
summary of C# 1 35
target 30, 32

delegates, contravariance
C# 2 131, 135

delegates, covariance
C# 2 131, 134, 136

Dependency Injection 414
deployment 20
deprecation 277
Dequeue 517
derivation, reference types and

value types 45
derived data, anonymous

types 225
DescendantNodes 343
DescendantNodesAndSelf 343
Licensed to Devon Greenway <devon.greenway@gmail.com>

536 INDEX
Descendants 342
DescendantsAndSelf 342
descending, contextual

keyword 296
deserialization 415
design 108, 161

class inheritance 467
LINQ 173
LINQ to XML 345
named indexers 384
static classes 188
variance 400

Design by Contract 483
design patterns 156
designers

code generation 180
LINQ to SQL 323

desktop framework 521
development platforms 23
DevLabs 350, 456
diagrams, LINQ to SQL

models 323
dictionaries, using nullable

keys 111
Dictionary 60
Dictionary<TKey, TValue> 514

collection initializers 216
DictionaryEntry 61
dir, Python 445
disabling warnings 195
dispatch, single and

multiple 419
Dispose 22, 87, 167, 171

invariants 460
Distinct 506
distribution, tasks in Parallel

LINQ 346
division by zero 477
DLR 19, 53, 402, 421

interoperability 410
using expression trees 244

document model, LINQ to
XML 339

Document Object Model 436
documentation 445

Code Contracts 480
collection mutability 514
custom LINQ operators 358
for weakly typed collection

usage 40
informal contracts 454
joins 301
null first parameters for

extension methods 277
type safety 59

DocumentElement 338
documents, LINQ to XML 338
DOM 338, 436
domain specific languages 274,

405
dot notation 317, 326, 341

advantages over query
expressions 318

double buffering 523
double, special values 106
doubly linked list 512
drill down 446
DSLs. See domain specific

languages
duality, LINQ to Rx 351
duck typing 3, 210, 289, 404,

418
Duffy, Joe 346
duplicate keys 497
duplicates 506
duplication 126

overloading 367
Dyer, Wes 274
dynamic 20, 401, 405

COM variants 409
compiler behavior 426
contextual keyword 52

dynamic behavior 435
dynamic calls,

DynamicObject 440
dynamic code restrictions 432
dynamic contextual

keyword 20
dynamic expressions,

conversions 427
Dynamic Language Runtime.

See DLR
dynamic languages 3, 19, 491

interoperating with C# 4 410
dynamic methods 98
dynamic typing 3, 20, 37, 52,

207, 244
alternative to reflection 91
benefits 404
expression tree support 239
gotchas 419
responding dynamically 435
working around limitations

in generics 98
Dynamic View, Visual Studio

debugger 446
DynamicAttribute 405, 435
DynamicMetaObject 445–446
DynamicMethod 421, 525
DynamicObject 440

E

eager evaluation 267
early out, iterator blocks 165
ECMA 25, 81
e-commerce 4
Effective Java 80
efficiency 282

generic variance 389
standard query

operators 357
Eiffel 454
Eini, Oren 275
elegance 42, 357, 420
element operators 498
ElementAt 499
Elements 343
elements 437

LINQ to XML 338
ElementsAfterSelf 343
ElementsBeforeSelf 343
ElementType, property of

IQueryable 330
ellipsis in code snippets 23
embarrassingly parallel

tasks 346
Embed Interop Types 409
embedded collections 217
embedded objects 214

with collection
initializers 217

embedded sequences, group
joins 306

embedding
languages within C# 411
Primary Interop

Assemblies 385
emphasis 125

"what" vs "how" 210
Empty 44, 500
empty arrays 501
empty sequences, group joins

matching no elements 306
encapsulation 4, 125, 171, 189

delegates 28
events 35

enclosing types 189
encodings 171

reading files 366
EndContractBlock 463
EndInvoke, delegate

method 31
EndXXX 76
enforcement

preconditions 484
Licensed to Devon Greenway <devon.greenway@gmail.com>

537INDEX
Enqueue 517
Ensures 458, 486
EnsuresOnThrow 486
Enter 398
entities 183, 323

change tracking 325
See also partial types

Entity Framework 322, 524
entry point, Code

Contracts 477
enum 43

restriction on type
constraints 72

Enumerable 265, 280, 334
enumeration 43

mapping in LINQ to
SQL 323

terminology clash 157
enumerators 22
environment 271

adapting via extension
methods 274

closures 145, 155
Environment.GetCommandLin

eArgs 209
equality 78

joins 301
Nullable 111

equality operators 117, 500
EqualityComparer<T> 78
Equals 48, 79, 126

anonymous types 223
Nullable

implementation 111
equals, contextual keyword 302
Equals() 440
equijoins 308
erasure, transparent

identifiers 300
errata 25
errors

checking 258
dynamic code 431
messages 392
pragma directives 194

escaping string literals 412
eval 403
evaluation order

named arguments 374
null coalescing operator 121

Evans, Eric 274
event handlers 30, 50, 131, 352

conventions 136
lambda expression

examples 233
lambda expressions 235

EventArgs 135–136, 236
EventHandler 131, 135
events 34, 185, 230, 352

avoiding nullity checks 143
changes to field-like events in

C# 4 399
subscription 34
subscriptions 50, 136

everything Code Contracts
retention option 486

evil uses of dynamic typing 420
evolution 8, 12–13, 15
Excel 19, 409
Except 506
Exception 485

catching
ContractException 470

exceptions 105, 231
documentation 454
during delegate

invocation 34
dynamic responses 448
handling postconditions 459
preconditions 456
specified in

preconditions 470
thrown by Cast 293
thrown by invalid casts 39
thrown for invalid

conversions 45
TryXXX pattern 76
while iterating over a

sequence 352
ExceptWith 516
exclusive OR operator 119
executable caches 425
Execute 412

aggregation operators 336
method of

IQueryProvider 330
ExecuteFile 412
execution model, abstracted by

expression trees 243
execution modes, Parallel

LINQ 350
execution order, clarity with

extension methods 268
execution patterns

finally blocks 165
sequential appearance of

iterator blocks 161
execution plans 327
execution time

array access checks 40
contract checking 454

execution-time types, virtual
dispatch 403

Exists 461
exit points 142

invariant and postcondition
checking 473

ExpandoObject 435, 514
experimental style 405
experimentation 60
experiments with code from

the book 23
explicit conversions

LINQ to XML 343
method groups 134
Nullable<T> 108

See also Nullable<T>,
explicit conversions

explicit interface
implementation 41, 86

dynamic typing 419
explicit typing 38, 211
explicitly typed parameter lists,

lambda expressions 230
explicitly typed range

variables 292
Expression class 237–238, 288
expression evaluator 413

Watch and Immediate
windows 403

expression trees 98, 228, 236,
334

behavior in DLR rules 425
compiling 238
conversion from lambda

expressions 239
dynamic typing 405, 429,

447
enhancements in .NET 4

239, 421
LINQ 288
restrictions on lambda

expression
conversions 240

used outside LINQ 244
visualizer in Visual Studio

2010 242
Expression, property of

IQueryable 330
expressions

in object initializers 213
static typing 37, 403
value as a reference type or

value type 43
ExpressionType 237
expressive code 14, 91, 272,

489
Licensed to Devon Greenway <devon.greenway@gmail.com>

538 INDEX
extended types
of an extension method 260
options around

namespaces 276
Extensible Application Markup

Language 183
extension methods 11, 51–52,

134, 257, 455
calling 261
compile-time discovery 262
creating TimeSpan

values 418
declaring 259
dynamic code 433
extending LINQ to

Objects 357
guidance 276
LINQ to Rx 353
LINQ to XML 344
restrictions 275
used by query

expressions 280
ExtensionAttribute 262
Extensions class

LINQ to XML 344
extern aliases 192
extra classes, generated to hold

captured variables 149

F

F# 473, 491
F# Interactive 403
factory methods 333, 376, 441

expression trees 237
factory pattern 71, 172, 434
FakeQuery 332
FakeQueryProvider 332
false operator 117
field-like events 34–35

changes in C# 4 399
fields

automatically implemented
properties 7

backing trivial
properties 205

dynamic 408
field-like events 399
in Nullable<T> 107
lack of implicit typing 208
object initializers 213

FIFO 517
file handles 87
files, iterating over lines

elegantly 170
FileStream 258

filtering 9, 141, 173, 267, 273,
281, 294

before joins 303
lambda expressions 234
LINQ to Rx 354
operators 505

finalizers 98
invariants 460

finally 87, 161, 171
FindAll 13, 148, 173–174, 233,

511–512
First 499

LinkedList<T> 513
first edition, Range class 170
first phase, type inference 249
FirstOrDefault 499
fixed 196
fixed type variables 249
FixedBufferAttribute 196
fixed-size buffers 196
flags

for nullable values 106
indicating missing values 14

Flash 526
flattening

LINQ to Rx 355
LINQ to XML 344

flattening sequences 308
flexibility 182, 371, 391, 487

LINQ 16, 19
options for Code

Contracts 485
float, special values 106
floating-point numbers 106
flow chart, type inference in

C# 3 250
flow control 399
flow of execution, iterators 162
fluent interfaces 274
fluent notation 317
fluff 3, 5, 126, 216
Foord, Michael 411
for statements

capturing the loop
variable 151

implicitly typed local
variables 209

ForAll 461
ForEach 13, 140, 233, 511
foreach 10, 12, 157, 163

capturing the loop
variable 151

disposal of iterator 87, 167,
358, 522

generics 85
implicit casting 58

foreach statements
anonymous types 222
implicitly typed local

variables 209
foreign keys 304
formal parameters 366
formal specification 454
forward references 181
Fowler, Martin 274
framework 521

non-involvement in lifted
operators 120

support for LINQ 280
uses of dynamic typing 408

framework libraries 21
frequently asked questions,

nullity 104
friend assemblies 198
from

contextual keyword 286
multiple from clauses 308

FromEvent 356
fsi, F# Interactive 403
fully qualified names 190
Func<...> delegate types 50,

229, 393
function 145
function names, C++ template

arguments 99
function pointers 28
functional programming 4,

129, 228, 233, 243, 272,
376

declarative style 320
languages 491

functionality, adding to existing
types 258

functions, interoperability 413
fundamental units, value

types 45
future changes 151

G

garbage collection 22, 106,
197, 421

captured variables 148
delegates 30
effect of excessive boxing 48
iterators 168

garbage collector, generics 84
generated code 185, 190

equivalence of dot notation
and query expressions 319

iterators 168
Licensed to Devon Greenway <devon.greenway@gmail.com>

539INDEX
generated files 183
generation operators 500
generic collections 292, 508
generic delegate types 66

Action 229
Func 229

generic helper class 95
generic method definitions,

retrieving through
reflection 91

generic methods 62, 65, 74, 96
reflection 90
type inference 246

generic type definition 88
specifying in reflection 90

generic type inference. See type
inference

generic types 62
example with Dictionary

<TKey, TValue> 60
reflection 415
unaided by type

inference 74
generic variance 12, 52, 92, 525

C# 4 387
explicit declaration

requirement 396
Java 397
restrictions 394

generics 10, 51, 53, 57
anonymous types 222
closed types 63, 89
constructed types 62
Java 100
lack of generic properties

etc 98
limitations 91
open types 63, 89
operators 245
pronunciation 64
reflection 88
type constraints 69
type parameter

substitution 63
ubiquity within language

specification 81
unbound types 62

get_, avoided by named
indexers 384

GetConsoleScreenBufferEx
196

GetDynamicMemberNames()
440, 445

GetEnumerator 85, 157–158,
160, 162, 172, 351

GetGenericArguments 90
GetGenericTypeDefinition 89
GetHashCode 48, 79, 440

anonymous types 223
Nullable<T>

implementation 108
GetInvocationList 34
GetKeyForItem 513
GetMemberBinder 444
GetMetaObject 424, 440
GetMethods 91
getters 189, 205
GetType 48, 90
GetUnderlyingType 112
GetValueOrDefault 108
GetVariable 413
GetViewBetween 516
global namespace alias 192
global scope, IronPython 412
glue, Queryable methods 335
gmcs 195
goes to, lambda

expressions 230
Google 93, 183

AppEngine 492
gotchas, dynamic typing 53
grammar, domain specific

languages 274
graphing 413
Gravell, Marc 98, 245
Groovy 3, 275
group ... by 311
group joins 305
group, contextual keyword 311
GroupBy 273, 313, 501
grouping 273

LINQ to Rx 354
order of results 312

grouping expressions 311
grouping operators 501
GroupJoin 307, 502
GTK# 23
guarantees, Code

Contracts 453
guidance

anonymous types 225
captured variables 153
extending LINQ to

Objects 357
extension methods 276
implicit typing 211

GUIDs, checksum pragma
directives 195

gut feelings 211
implicit typing 210

H

hash collisions 515
hash tables 514
hashing

generic interfaces 78
joins 301

HashSet 516
Hashtable 40, 60–61, 124
HasValue 14, 107

See also Nullable, HasValue
property

heap 44, 46, 106, 149, 197
hello, world 4
helper classes 96
helper methods 187

initializing collections 218
method group

conversions 134
hierarchical structure, code

mirroring XML
document 340

higher-order functions 233,
393

hooks, partial methods 185
hosting languages

fluent interfaces 274
within C# 411

hot observables 353
HTML 491
hyperbole 279

I

ICloneable 41
ICollection<T> 216, 496, 509–

510
optimizing LINQ

operators 358
IComparable<T> 76
IComparer 10, 358, 477
IComparer and

IComparer<T> 9, 78, 95,
142, 389, 515

IDE 59, 181, 207, 445
identity 441

DataContext 325
identity conversions 71, 293
IDictionary 509

ExpandoObject 436
idioms 124

code 155, 453
delegates 230

IDispatch 424
Licensed to Devon Greenway <devon.greenway@gmail.com>

540 INDEX
IDisposable 22, 87, 157, 168,
171–172, 351

iterator block
implementation 167

iterator disposal in
foreach 522

IDynamicMetaObjectProvider
424, 446

ExpandoObject 436
IEEE-754 106
IEnumerable 52, 85, 93, 389,

418, 508
collection initializers 216
iterator blocks 156, 159, 168
LINQ 280, 292, 334
concurrent collections 519
returned from axis

methods 343
IEnumerator 156, 159, 168
IEqualityComparer 78, 498,

514
IEquatable 79
if/else blocks 128
IgnoreCase 445
IGroupedObservable 354
IGrouping 311, 501
IL 22, 236, 242, 245, 422

const and default parameter
values 369

faked ref arguments 382
generated for object

initializers 213
type system 37, 83, 89, 107,

263
See also Intermediate Lan-

guage
ildasm 115, 140, 167, 428
IList 358, 499, 509
IList<T> 40, 510
immediate execution 283, 495

custom LINQ operators 358
Immediate window, Visual

Studio 403
immutability 7, 108, 223, 376,

491
collections 501, 514
expression trees 237, 244
futility of invariants 484
method call chaining 268
See also mutability

impedance mismatch 280, 445
imperative model 320, 493
implementation

partial methods 186
revealing contracts 484

simplicity of LINQ to
Objects 173

implementation details 167
dynamic typing 428
generated names 140
transparent identifiers 300

implicit conversions 10, 58, 71,
248, 252

array covariance 40, 511
conditional operator 127
default parameter values 368
due to type constraints 96
dynamic 406
extension methods 262
for wrapper types 106
generic variance 389
method group

conversions 134
method groups 133
Nullable<T> 108
role in type inference 249
string to XName 338
string to XNamespace 338
to object 409

implicit conversions, Nullable<T>.
See Nullable<T>, implicit
conversions

implicit joins, LINQ to
SQL 329

implicit obligations 475
arithmetic 477
array bounds 476
non-nullity 475

implicit parameter lists, lambda
expressions 252

implicit typing 38, 51, 207, 215
projections 270
range variables 292

implicitly typed arrays 219
type inference 246

implicitly typed local
variables 16, 51, 207

anonymous types 221
lambda expression

examples 233
implicitly typed parameters

anonymous methods 231
lambda expressions 292
type inference 246

impure code 462
in keyword 286
in modifier,

contravariance 389
inclusive OR operator 119
inconsistency, naming

conventions 318

indentation 218
independence, multiple itera-

tors over one
collection 159

independent
responsibilities 13

index, overloads for Select and
Where 317

indexed properties 383
indexers

Dictionary<TKey,
TValue> 61

named 383
optional parameters and

named arguments 372
IndexOf 509, 511
indirection 28

delegates 33, 132
InDocumentOrder 344
-infer 474
inference

implicitly typed local
variables 16, 207

type parameters for generic
methods 74

inferred return types
anonymous functions

247
comparing anonymous func-

tion conversions 254
infinite loops 231
infinite sequences 280
infinity 106
infoof 245
inheritance 256, 356, 480

contracts 466
deriving from type parame-

ters in C++ 100
method group

conversions 137
overload resolution 378
variance 93, 387, 395

initialization 7, 211
arrays 219
immutable types 376
implicitly typed local

variables 208
partial types 182

initialization expressions 207–
210

inline initialization for
"constants" 218

inline specification of delegate
actions 139

inlining 465
Licensed to Devon Greenway <devon.greenway@gmail.com>

541INDEX
inner joins 301
use in object-oriented

code 304
inner sequence 301
INotifyCollectionChanged 514
INotifyPropertyChanged 514
input positions,

contravariance 388
InsertAt 509
InsertItem 513
instance members 205

capturing this reference 145
instance methods

calling on null
references 263

delegate example 32
preferred over extension

methods 262
using to create delegate

instances 30
instance variables, represent-

ing local variables in
iterators 162

instant messaging 285
instantiation of local

variables 149
instincts 277
integer literals, potential confu-

sion with implicit
typing 210

integration, with LINQ 342
IntelliSense 59, 379, 410, 482

extension methods 261, 276
intentions, communicating via

Code Contracts 453
interfaces 43, 172, 288, 395,

434
adding functionality 256
anonymous types 223
array covariance 92
breaking changes 396
collections 508
comparison with

contracts 454
comparison with

delegates 28
comparison with duck

typing 418
contract classes 467
extension methods 52
generic variance 387, 389
inherited contracts 466
interface keyword 43
out-of-process LINQ

providers 330
return type covariance 41

static classes 188
static members 98

Interlocked 206
intermediate computations, let

clauses 298
intermediate format, LINQ

queries 243
Intermediate Language. See IL
intermediate variable, method

group conversions 134
internal accessibility 198
internal classes, hiding imple-

mentation details 441
InternalsVisibleToAttribute

198
interoperability 19, 21, 380,

405
interpreters 22, 403, 405, 411
Intersect 506
IntersectWith 516
into, contextual keyword 314
introspection, LINQ

queries 329
InvalidCastException 47, 413
InvalidOperationException

107, 117, 499, 517–518
invariance 92, 388
Invariant method 460
invariants 459, 486

breaking via inheritance 467
inherited contracts 466

Inversion of Control 88, 414
invocation

delegates 28
field-like events 399

invocation list 33
Invoke 31, 134

delegate method 31–32
InvokeMemberBinder 444, 450
invoking methods,

reflection 91
IObservable 351, 525
IObserver 351, 525
IOrderedEnumerable 298
iPad 22
iPhone 22, 492
iPod Touch 22
IProducerConsumer-

Collection<T> 518
IQueryable 329–330, 334
IQueryProvider 329
IronPython 21, 53, 402

binder reuse 425
using from C# 4 410

IronRuby 402
binder reuse 425

is operator 121
breaking changes 396

ISet 510, 516
IsGenericMethod 91
IsGenericType 89
IsGenericTypeDefinition 90
IsInterned 244
IsNullOrEmpty 264
isolating dynamic typing 416
IsProperSubsetOf 516
IsProperSupersetOf 516
IsReadOnly 509
IsSubsetOf 516
IsSupersetOf 516
IStructuralComparable 525
IStructuralEquatable 525
ITask 176–177
Items 513
iterable 157
iteration pattern 156
iteration variables, foreach

loops 86
iterator blocks 160–161, 357,

429, 522
elegance 169

iterators 94, 156, 334
implementing in C# 1 157
real-life examples 169
yield type 161

J

Java 3, 92–93
generics 100, 397

JavaScript 350, 403, 491, 527
JIT compiler 22, 77, 421, 447

DLR caches 425
expression trees 236, 244–

245
generics 59, 77, 83, 99

Join 304, 502, 524
custom comparisons 318

join ... into, not a
continuation 316

join operators 502
join plans, LINQ to Rx 356
join-calculus 356
joins

LINQ to SQL 327
query expressions 301

Just-In-Time compilation 22
See also JIT compiler

just-in-time, iterator
behavior 266
Licensed to Devon Greenway <devon.greenway@gmail.com>

542 INDEX
K

kernel profile 22
Key modifier, VB anonymous

types 223
key selectors 301, 319
Key, property in

IGrouping<,> 311
KeyedCollection 513
KeyNotFoundException 509
KeyPress event 132
KeyPressEventArgs 135
KeyPressEventHandler 133,

135
keys

grouping 311
joins 301

keystrokes, saved by implicit
typing 209

KeyValuePair 64
KeyValuePair<TKey,

TValue> 216, 509
Knuth, Donald 115

L

L0, L1, L2 caches, DLR 425
Lambda 238, 242
lambda calculus 228
lambda expressions 11, 13, 50,

228, 230, 288, 334
caching 235
common uses in extension

methods 267
converting to delegates 229
converting to expression

trees 239
dynamic typing 433
event handlers 235
implicitly typed

parameters 246, 292
inferring parameter and

return types 249
restrictions when converting

to expression trees 240
static checking 480
timing of checking the

body 252
type inference 246

lambda. See lambda expression
LambdaExpression 238
Langer, Angelika 397
language complexity 284
language design 402

language designers 92, 130,
220, 410

Language Integrated Query 16
language integration 173
language specification 25, 113,

134, 194, 205
iterators 168
lack of guarantees of mem-

ory layout 46
object initializer

terminology 214
query continuations 314
query expressions 288
transparent identifiers 300
type inference 246
ubiquity of generics 81

languages 21
additional functionality for

nullable types 111
behavior with nullable

types 120
incorporating closures 145

Last 499
LinkedList<T> 513

layout of code, object
initializers 215

lazy evaluation 173–174, 267
Lazy<T> 525
LDAP 228
leaf expressions, expression

trees 237
learning 23
left outer joins

generated SQL 328
simulating with group

joins 306
left sequence 301
legacy contracts 462, 486
let

contextual keyword 298
LINQ to SQL 326

libraries 21–22, 76, 256, 274,
411

DLR 421
duck typing 418
generics 59

licensing 385
lifetime management 170
lifetime, captured variables 148
LIFO 517
lifted conversions 117
lifted operators 117
limitations

C# 1 type system 39
generics 91

line breaks 140
line count, bad measure of

complexity 154
LineReader 171
lines, iterating over a file 170
LinkedList 512
LinkedListNode 512
linking, Primary Interop

Assemblies 385
LINQ 16, 52, 170, 173, 203,

279, 322
anonymous types 225
data model 280
dynamic code 434
key enabling aspects 243
query styles 317, 319
standard query

operators 495
third party providers 322
without query

expressions 265
See also Language Integrated

Query
LINQ providers, building your

own 329
LINQ to Entities 322
LINQ to Objects 173, 228, 284,

288, 320, 343, 495
covariance in C# 4 391
execution path 243
extended in

System.Interactive 351
extending 357

LINQ to Rx 350
LINQ to SQL 18, 228, 284, 322

DataContext 325
execution path 243
queries 325

LINQ to XML 18, 337, 436
declarative construction 340
design decisions 345

LINQPad 24, 265
Lippert, Eric 30, 161, 245, 400,

511–512
Liskov’s Substitution

Principle 466
List<T> 6, 53, 65, 280, 510

collection initializers 215
lambda expression

examples 233
lists 280
literals 210

default parameter values 368
little-endian 39
local variable declarations,

anonymous methods 140
Licensed to Devon Greenway <devon.greenway@gmail.com>

543INDEX
local variables 46, 149, 212,
288, 375

autogenerated for fake pass-
by-value 382

captured by anonymous
methods 145

dynamic 435
for pass-by-reference

parameters 381
implicit typing 207
instantiation 149
iterator blocks 162
restrictions on var 408
traditional postcondition

testing 458
locking 189, 206, 398, 429, 518

field-like events 399
log files 225, 310
Log, DataContext 325
logging 189, 235, 335

configuration 414
fake LINQ provider 331

logic 170
nullable Booleans 119
represented in expression

trees 228
logical AND operator 119
logical negation operator 119
logically related conditions

combining in where
clauses 295

LongCount 495
loops, captured variables 150,

154
l-values 46

M

macros 99
magic value pattern 14, 105,

370
magic variables 232
Main method, snippets 23
mainstream languages 490
maintainability 4, 154, 256,

375, 491
maintenance 8, 445

cost of multiple
configurations 487

MakeGenericType 89
malformed contracts 458
managed code 46
Managed Extensibility

Framework 525
Mandelbrot 346

mapping, LINQ to SQL 323
MARS 523
marshalling 196, 421
master pages 523
matching 141
Math 97
mathematical code 97
Max 495

SortedSet<T> 516
maybe, nullable logic 120
MD5 195
meaning, clarifying

arguments 373
mechanisms, iteration 170
media player 285
MEF 525
Meier, Sid 411
member invocation 405
member resolution 430
members, obtaining without

reflection 244
memory

cost of JIT compilation 83
generics 59
limit on buffering

operations 283
overhead of extra

methods 46
overhead of objects 106
representation of null 104

memory fragmentation 515
memory leaks 30
MemoryStream 136, 258
messages, contract failures 471
metadata 100, 245

contracts 468
DynamicAttribute 435
LINQ to SQL 323

metaobjects 422, 440, 447–448
metaprogramming 414
MetaRumpelstiltskin 448
method arguments

compared with type
arguments 63

role in type inference 249
method calls, specifying arrays

as arguments 219
method group conversions 67,

133
ambiguity 134
breaking changes 137

method groups 133, 208
complexities in

overloading 246
dynamic code 433

method invocation,
ExpandoObject 436

method parameters, compared
with type parameters 63

method signatures 29
MethodInfo 91, 241, 244, 449

compiler shortcut 242
MethodInvoker 137, 145
methods

compatibility with delegate
types 29

delegate compatibility 134
generated by anonymous

methods 140
meaning of return

statements 164
using results with var 209
virtual dispatch 403

metrics 273
Meyer, Bertrand 454
Micro Framework 22, 527
micro-optimization 268
Microsoft 21–22, 167, 322, 380,

451, 492
anonymous type

implementation 222
CCR and DSS Toolkit 175
choices around

exceptions 265
event pattern guidelines 50
pragma directives 194
Reactive Extensions 350
Robotics Studio 175

Microsoft.Office.Interop.Excel
409

migrating, to use extension
methods 261

Min 495
SortedSet<T> 516

MinValue 478
miscellaneous utility

library 258
MiscUtil 170–171, 275, 341
misinformation 45
missing data 14
misuse of helper classes 188
ML 228
mocking 275, 408
model databases 323
modifiers

extension methods 260
out and ref with named

arguments 373
monads 491
Mondrian 93
Licensed to Devon Greenway <devon.greenway@gmail.com>

544 INDEX
monitors, locking changes in
C# 4 398

Mono 22–23, 195, 403, 422,
491, 525

MonoTouch 22
Monty Python 218
Moonlight 527
MoreLINQ 284, 357
MouseEventArgs 135
MouseEventHandler 135
MoveNext 85, 157, 162–168,

282, 352
msbuild 456
mscorlib 456
MSDN 284, 301, 343

expression tree
documentation 237

multicast delegates, generic
variance 396

MulticastDelegate 29
multiple active result sets 523
multiple criteria, sorting 126
multiple dispatch 419
multiple from clauses 308
multiple orderings, in one

orderby clause 298
multiple query

continuations 316
multiple type parameters

variance 394
multitargeting 521
mutability 7, 11, 108, 223

collections 510–511, 514
encouraged by C# 3 376
GetViewBetween 516
method call chaining 268

mutated state,
postconditions 458

myths, value types and refer-
ence types 45

N

name/value pairs 436
named arguments 8, 20, 214,

372
evaluation order 374
in tandem with optional

parameters 376
to resolve overload

ambiguity 379
named indexers 20, 383

design decisions 384
namespace alias qualifier 191

namespace aliases 190, 193
namespaces 190

extension methods 262, 276
LINQ to XML 338

naming 140, 373, 437
avoiding collisions 194
collisions 205, 440
compile-time duck

typing 401
extension methods 261, 265
generic reflection

methods 89
lambda expression

parameters 232
overloading and dynamic

typing 416
parameters 379
readability benefit of object

initializers 377
scope in the real world 190
variables used in

contracts 482
naming conventions

class contracts 468
extension methods 275
lambda expression

parameters 317
ObjectInvariant 460
type parameters 65, 89

NaN.See not a number
native code 22, 196, 408, 421

generics 83
natural language, fluent

interfaces 274
nested classes 448
nested subscriptions, LINQ to

Rx 354
nested types 159, 188–189

generics 82
in snippets 24
interfaces 468

nested variance 394
NetworkStream 258
new keyword, object

initializers 215
new style contracts 463
Ng, Sam 421
NGen 22
Noda Time 524
Nodes 343
nodes

LINQ to XML 338
of expression trees 237

NodeType property, expression
trees 237

none, Code Contracts reten-
tion option 486

nongeneric classes, require-
ment for extension
methods 260

nongeneric helper classes 80
non-nested classes, require-

ment for extension
methods 260

non-null obligations 475
non-nullable fields, generating

inner joins 329
non-nullable reference

types 455, 488
non-pointer types 409
nonrepeatable sequences 358
nonvirtual calls, instance

method calls on null
references 264

nonvoid return types, lambda
expressions 231

no-op select clauses 296
not a number 106
notation, transparent

identifiers 300
notes 512
NotificationSubscription, sam-

ple data model 285
NULL

database fields 105
SQL 120

null 14, 53, 208, 248, 417
as a typeless expression 219
comparisons with generic

values 77, 118
default parameter values 368
extension methods 277
ignored in LINQ to XML

construction 340
language support for

Nullable<T> 112
magic value for optional

parameters 370
meaning of 104
meaning when combining

delegates 33
nullable value types 114
parameter passing 47
reference type constraints 70
results of

CompareTo(null) 76
null coalescing operator 121,

126
used in comparisons 127

null literal 114
Licensed to Devon Greenway <devon.greenway@gmail.com>

545INDEX
null references
boxing Nullable 110
extension methods 263

null values 112
Hashtable 124

Nullable class 107, 111
nullable fields, generating

outer joins 329
nullable types

lifted conversions 117
meaning in the C#

specification 113
nullable value types 14, 53, 103

compared with "nullable
type" 113

conversions in LINQ to
XML 343

generic comparisons 77
optional parameters 370
underlying type 107

Nullable<T> 14
boxing 110
constructors 107
conversions 116
default constructor 107, 114
Equals method 111
explicit conversions 108, 116
GetHashCode method 108
GetValueOrDefault

method 108
HasValue property 107, 112
implicit conversions 108, 116
null value 112
operators 116
ToString method 108
unboxing 110
Value property 107

nullity 473
nullity check, events 143
NullReferenceException 77,

111, 263, 265, 407
unboxing 110

numbers, LINQ to XML
content 340

O

object
immediate base of helper

classes 187
LINQ to XML construction

pattern 340
use before generics 58

object initializers 7, 211–213,
285

encouraging mutability 376

object model, Office 409
Object Relational

Mapping 183
ObjectInvariant,

conventions 460
object-oriented code 259
object-oriented data models,

inner joins 304
object-oriented

programming 33
object-relational mapping 322
objects

distinguishing from
references 44

role in parameter passing 47
Observable<T> 353
ObservableCollection<T> 513
observables, hot and cold 353
observers 351
off-by-one errors 160
Office 380, 404, 409
office suite 285
OfType 95, 497, 505
OldValue 459
on, contextual keyword 302
OnCompleted 351
one-to-one correspondence,

group joins 306
OnException 351
OnNext 351
on-the-fly reconfiguration 414
open constructed types, reflec-

tion with generics 89
open source 322

DLR 421
libraries 487

open types 63
generics 89

OpenText 170, 209
operand types, operators or

nullable types 117
operator constraints 97
operators 117, 416

default value expression 76
generics 245
Nullable<T> 116

See also Nullable, operators
overloaded terminology 284
provided by languages for

nullable types 111
purity 463
static classes 188
type constraints 97

optimization 402, 415, 487
LINQ operators 357, 360,

496, 500, 505

optional parameters 14–15, 20,
366

declaring 367
in tandem with named

arguments 376
optional values 123
order of evaluation, null

coalescing operator 123
order of execution, multicast

delegates 34
OrderBy 11, 270, 297, 507, 511
OrderByDescending 270, 297,

507
OrderedParallelQuery 348
ordering 78, 296

arguments and
parameters 368

dictionaries 515
importance in anonymous

types 222
initialization 182
Parallel LINQ 348

OrdinalIgnoreCase 318
ORM. See Object Relational

Mapping
out modifier, covariance 389
out of process queries 228, 243
out parameters

forbidden in partial
methods 186

inability to capture 145
lambda expressions 231
named arguments 373
postconditions 458
prohibited in iterator

blocks 165
restrictions on extension

methods 260
restrictions on generic

variance 395
restrictions on optional

parameters 368
OutAttribute 395
outer joins 301

LINQ to SQL 328
outer sequence 301
outer variables 145
output parameters 76, 126

TryXXX pattern 124
output positions

covariance 388
out parameters 395

Output window, warning
numbers 194

overengineering 129
Licensed to Devon Greenway <devon.greenway@gmail.com>

546 INDEX
overflows 478
overhead, memory used by

objects 106
Overlaps 516
overload resolution 246, 289,

368, 403, 431
breaking changes due to

generic variance 396
extension methods 262
generic types 78
generics 78
lambda expressions and

dynamic typing 433
named arguments and

optional parameters 378
summary of changes in

C# 3 254
overloaded operators, nullable

types 117
overloading 86, 246

alternative to optional
parameters 366

changes in C# 3 252
complicated by

inheritance 379
custom LINQ operators 358
dynamic arguments 426
Func delegate types 172
GroupBy 314
method group

conversions 137
method groups 133
query expressions and dot

notation 317
single and multiple

dispatch 419
overloads, Execute and

CreateQuery 330
overriding 380, 419, 466

partial types 183
return type covariance 41

ownership 172

P

P/Invoke 196, 408
pain points 126
Pair<T1,T2> 78
Parallel Extensions 175, 346,

493, 518, 524
Parallel LINQ 346
ParallelEnumerable 347
parallelism 175, 346, 493
ParallelQuery 347–348

parameter array 340
optional parameters 368

parameter expressions 241
appearance in visualizer 242

parameter list 143
parameter names

from range variables 291
importance of names 379

parameter passing 46
parameter type

contravariance 41
parameter types

anonymous methods 140
conversion from argument

types 252
delegates 29

parameter wildcarding 144
ParameterExpression 241
parameterized properties 383
ParameterizedThreadStart 28,

144, 147
parameterless

constructors 187, 206, 212
default parameter values 368
generic type constraints 70

parameters 8
anonymous methods 143
binding in expression

trees 241
captured by anonymous

methods 145
comparing type and method

parameters 63
contravariance 51
contravariance in

delegates 135
documentation 454
dynamic 408
dynamic type 426
implicit typing in lambda

expressions 231
initializing arrays 219
Invoke method on a delegate

type 31
iterator blocks 165
lambda expressions with a

single parameter 232
listing explicitly in

lambdas 230
optional 366
readability 214
required for extension

methods 260
terminology 366

type inference 74
using lambda expressions for

logging 236
ParamName 458
params 340

optional parameters 368
parent nodes, LINQ to XML

content 340
parentheses

constructor calls 213
query expressions and dot

notation 318
removing from lambda

expressions 232
parser 403
partial methods 181, 184
partial types 180

initialization 182
LINQ to SQL 324
restrictions 181

partial variance 397
partial, contextual

keyword 181
PartialComparer 127
partitioning operators 503
pass by reference 46
pathological cases 420
pattern matching 491
patterns 76, 124, 278

iterator 156
language support 177
nullability 105

pausing execution, iterator
blocks 162

pdb files 464
Peek

Queue<T> 517
Stack<T> 518

perfection 445
performance 197, 487, 523

as operator with nullable
value types 121

boxing 48
Code Contracts 465, 487–

488
cost of JIT compilation 83
dynamic typing 402, 424
generic comparisons with

null 77
generics 59, 91, 98
Java generics 101
LINQ 268, 290, 302
of value and reference

types 45
TryXXX pattern 76
Licensed to Devon Greenway <devon.greenway@gmail.com>

547INDEX
performance
characteristics 210

permissions 199
perspectives, viewing types and

objects 395
Pex 492
phases, type inference 248
PIA. See Primary Interop

Assemblies
pinning 197
pipelines 268

LINQ 228
piping data 267
placeholders

Result 459
type parameters 62

planning, generic variance 396
platform designers 92
PLINQ 346
Point structures, mutability 108
pointer types, restrictions on

extension methods 260
pointers 39, 196, 427
polymorphism 401, 434
Pop 518
portability 400
position, iterators 157
postconditions 458, 486

inherited contracts 466
Power Collections 520
power, language design

choices 92
practices 278
pragma directives 194

checksum 195
warnings 194

pragmatism 445
pre and post, Code Contracts

retention option 486
precompilation, ASP.NET 523
preconditions 456, 486

Code Contracts retention
option 486

contract reference
assemblies 470

inherited contracts 466
suggested by static

checker 477
variations in meaning 483

predefined conversions 116
predefined operators 117
Predicate 269

purity 463
predicates 141, 173, 282, 495
predictability 272

prefix, convention for type
parameter names 65

preprocessing directives 194
preprocessing, query

expressions 280
preprocessor symbols 263, 486

Code Contracts 464
primary constraints 73
Primary Interop Assemblies 20,

385, 409
primary keys 304
primary orderings 297
primitive types 196
private

access modifier 189
partial methods 186

private accessibility, from
nested types 159

private constructors, helper
methods 187

private fields 457
private members, access from

nested types 189
processing models, buffering

versus streaming 267
ProcessStartInfo 218
producer/consumer

pattern 518
production assemblies 199
productivity 410, 420, 491
profiles 22
program verifier, Spec# 455
project files

editing for
dependencies 184

project management 273
projection initializers 223
projection operators 503
projections 269, 282, 287

grouping 311
LINQ to Rx 354
sorting 273

Projects, sample data
model 285

promises 453
promotion, addition

operands 417
pronunciation

generics 64
lambda expressions 230

properties 204, 244
access modifiers 5–6
anonymous types 222
automatically

implemented 7

default 383
ExpandoObject 436
getter / setter access 189
mutability 377
navigation in object-oriented

models 304
projection initializers 224
purity 463
setting subproperties with

object initializers 214
setting with object

initializers 212
property descriptors 236
property names, anonymous

types 52
protected access, prohibited in

static classes 188
protected methods 180
Protocol Buffers 183
provider pattern 172
proxying, COM 386
public domain 43
public interface, unit

testing 199
public keys, friend

assemblies 199
public methods, invariants 467
publish/subscribe pattern 35
pull model, LINQ to

Objects 350
pure methods 482
PureAttribute 463
purity 463
Push 518
push model, LINQ to Rx 350
Python 3, 20, 405, 492

Q

quantifier operators 505
queries

LINQ to SQL 325
LINQ to XML 342
observables 354
parallelizing 348

query continuations 311, 314
multiple 316

query expression pattern 288,
356

query expressions 16, 173, 265,
269, 280, 495

compared to dot
notation 317, 319

consistency between LINQ
providers 284
Licensed to Devon Greenway <devon.greenway@gmail.com>

548 INDEX
query expressions (continued)
continuation

translations 314
degenerate queries 295
dynamic code 434
explicitly typed range

variables 292
order of clauses 290
select clauses 286
translation 19, 325, 334, 356
type inference example 291

query optimizer 327
Queryable 265, 330–331, 334
querying 12
QueryProvider, property of

IQueryable 330
Queue<T> 517

R

Rahien, Ayende 275
random numbers 280, 359
Random, using carefully 359
Range 266, 500

Excel 409
LINQ to Rx 353
ParallelEnumerable 350

range variables 290, 292
combined with transparent

identifiers 299
explicit typing 292
scope with query

continuations 315
Range<T> 170
raw types (Java) 100
reachability 474
Reactive Extensions 175, 284,

350, 493, 525
readability 74, 152, 215, 257,

272
argument reordering 375
captured variables 145
consistency 141
declarative code 320
extension method

naming 261
extra methods for

delegates 132
generics 59
implicit typing 204, 209–210
iterator blocks 170
LINQ 11, 13, 16, 232, 268
LINQ to XML namespace

support 339
measuring objectively 276

method group
conversions 133

multiple where clauses 295
named arguments 372, 380
naming 379
nullable types 114
query expressions and dot

notation 317
single exit point 455
transparent identifiers 319
using Word before C# 4 381

ReadAllLines 157, 174
ReadAllText 523
ReaderWriterLockSlim 524
read-evaluate-print loop 403
ReadFully 258
reading from streams 258
ReadLine 170
read-only fields, anonymous

types 223
read-only properties 8, 206

anonymous types 223
ReadOnlyCollection 218
ReadOnlyCollection<T> 94,

514
ReadOnlyObservableCollection

<T> 514
receivers 424
recompilation 371, 413

const and default values 369
reconfiguration, on the fly 414
rectangular arrays 476, 512
recursion 437

guard in Code Contracts 465
LINQ to XML

construction 341
red-black trees 515–516
redeployment 413
redirecting 448
redistribution 385
redundant computations 299
ref parameters

CLR support 395
COM 382
inability to capture 145
invariance 389
lambda expressions 231
named arguments 373
postconditions 458
prohibited in iterator

blocks 165
restrictions on extension

methods 260
restrictions on optional

parameters 368

refactoring 126, 183, 244, 357,
375

reference conversions 71, 135,
293

generic variance 389, 395
reference type constraints 69,

77
avoiding boxing 128

reference types 14, 22, 42
array covariance 92
null coalescing operator 123
nullability 104
type arguments and generic

variance 395
wrapper for nullable value

types 106
references 44

memory size 83
navigation in object-oriented

models 304
referencing, Primary Interop

Assemblies 385
reflection 199, 244, 426

generics 71, 88
invoking methods 91
obtaining a MethodInfo 236,

242
operators and expression

trees 245
retrieving generic method

definitions 91
side-stepping with dynamic

typing 91, 402–403, 415
Reflector 115, 140, 167, 296,

386, 428
reformatting 413
refreshingly minty code 23
regions 180
register optimizations 84
regular expressions 61
relational data models, inner

joins 304
relational operators 117
release builds 484, 486

assertions 455
release requires, Code Con-

tracts retention
option 486

releasing resources, foreach 87
Remove 33, 131, 509
RemoveAt 509
RemoveFirst 513
RemoveItem 513
RemoveLast 513
RemoveWhere 516
Licensed to Devon Greenway <devon.greenway@gmail.com>

549INDEX
removing delegates 33
Repeat 500
repetitive code 226
REPL 403, 445
Replace 267–268
required parameters 367–368
requirements 453
Requires 456, 486
research 454
Reset 168
resolution, dynamic calls 426
resource acquisition, timing in

iterators 172
resource management,

iterators 165
resources, released after

iterating 87
responding dynamically 448
Response.Redirect 399
RESTful services 408
restoring warnings 195
restrictions 368

default parameter values 368
documenting 445
dynamic code 432
generic variance 394
implicitly typed local

variables 208
nullable type operators 117
optional parameters 368
partial types 181

Result 459
return statements 164

implicit return types 248
lambda expressions 231
prohibited in iterator

blocks 161
return types

anonymous methods 142
compatibility with delegate

types 29
compatibility, covariance of

delegates in C# 2 50
covariance 41, 51
covariance in delegates 136
delegates 29
dynamic 408
Func and Action 229
implementing IDynamic-

MetaObjectProvider 448
inferred from anonymous

functions 247
lambda expressions 231
of Invoke method on a dele-

gate type 31
overloading 86

return values 126
covariance 388
indicators of success 124
postconditions 458

return, anonymous
methods 142

ReturnType 448
reuse, native code from JIT

compilation 84
Reverse 266, 282, 317, 507

missing from LINQ to
Rx 356

SortedSet 517
reversing strings 25
rewriting, Code Contracts 464
right associativity, null coalesc-

ing operators 123
right sequence 301
robustness 272, 451

aided by generics 59
dynamic typing 419
LINQ to XML queries 343
static checking 473

root element, LINQ to
XML 338

Root property,
XDocument 338

RouteValueDictionary 514
rows, joins 301
RPCs 492
RSS 341
Ruby 3, 405
rules

C# 2 type inference 75
DLR 424
dynamic typing 244

rules engines 411
Rumpelstiltskin 447
runtime 21–22, 521

behavior of casting 45
RuntimeBinderException 407

S

sample data model 285
SampleData 285
sandboxing 415, 526
Sandcastle 482
sanity checking 485

Java compiler 100
SaveAs, Word 381
scaling 493
schedulers

LINQ to Rx 355

schema 329
LINQ to SQL 323

Scheme 145
scientific community 97
scope 145–146, 152

captured variables 149
finally blocks 165
IronPython 412
query continuations 315
range variables in joins 302

ScriptEngine 411
ScriptHost 411
scripting 411
ScriptRuntime 411
ScriptScope 412
ScriptSource 411
sealed classes, adding

functionality 256
sealed modifier

static classes 188
utility classes 187

second phase, type
inference 249

secondary constraints 73
security 171, 199, 415
Select 269, 282, 317, 503
select, contextual keyword 287
SelectMany 310, 344, 503
semantics

clarifying with named
arguments 373

magic value pattern 105
value types and reference

types 45
semicolons, lambda

expressions 231, 234
separation of concerns 13
sequence diagrams 162
sequence of sequences 308
SequenceEqual 500
sequences 156, 280

generating in
SelectMany 310

joins 301
produced and consumed by

LINQ to XML 345
sequential execution, appear-

ance of iterator blocks 161
serialization 183, 223, 245
Server Explorer, Visual

Studio 323
service pack 1 293
service-oriented

applications 523
set-based operators 506
Licensed to Devon Greenway <devon.greenway@gmail.com>

550 INDEX
SetEquals 516
SetItem 513
setters 189, 205
SetUnwind 471
SetVariable 413
Seurat, George 93
SHA-1 195
Shakespeare 453
sharing, captured variables 152
short methods 461
short-circuiting 128
shortcomings, first edition

Range class 170
shorthand

delegate combination 33
delegate invocation 31

Show 372
shrink-wrapped

applications 487
side effects 11, 186, 455

argument evaluation 374
purity 463

side-by-side execution 526
side-effect-free code 271
signatures, custom rewriter

methods 472
signed assemblies 199
silver bullet 280
Silverlight 350, 526
simplicity 154
simplification, automatically

implemented properties 7
Single 326, 499
single dispatch 419
single exit point 455
single method interfaces,

delegates 172
single parameter lambda

expressions 232
single responsibility

principle 159
single threading, Mandelbrot

generation 347
single-class hierarchy 58
single-dimensional arrays 476
single-method interfaces 392

comparison with
delegates 28

SingleOrDefault 499
site containers 429
SkeetySoft 285
Skip 503
SkipWhile 503
sn 199
snapshots 518–519

snippets 23
Snippy 24, 138, 239, 428
sock puppets 492
software engineering 278
solid state drives 493
Solution Explorer 184, 194
Sondheim, Stephen 93
Sort 10, 142, 233, 271, 511

custom comparisons 95
SortedDictionary<TKey,

TValue> 210, 515
SortedList<TKey, TValue> 210,

515
SortedSet<T> 510
sorting 9, 142, 257, 270

implementing custom
comparisons 126

lambda expressions 234
stability 511

sorting operators 507
source code 23, 286
source files, checksums 195
Spec# 455, 473
specialization 187, 256
specification 22, 25, 205

C# 4 compliance 380
ubiquity of generics 81

SPOT 527
SQL 120, 290

converted from query
expressions 17, 19, 243,
322, 325

joins 301–302, 306, 328
SQL Server 523
SQL Server 2005 322, 525
SQL Server Management

Studio Express 327
square brackets, reflection over

generics 89
stack 44, 46, 149
stack frames 146
stack overflow, recursion in

Code Contracts 465
Stack<T> 518
standard query operators 284,

330, 357, 495
parallel equivalents 348

standards 71
Start 218
StartsWith 244
state

asynchronous web service
calls 176

invariants 459
iterators 158
utility classes 187

state machines, generated for
iterator blocks 161

statefulness 271
static checker 456, 461, 472,

487
restrictions on invariants 461

static classes 80, 186, 257
call site storage 429
extension methods and

dynamic code 433
Nullable 111
requirement for extension

methods 260
static constructors 82, 206, 218
static fields, generic types 81
static initializers 82
static interfaces 98
static members

automatic properties 205
thread safety 205

static methods 52, 256
chaining with extension

methods 268
custom rewriter methods

(Code Contracts) 472
delegate example 32
dynamic code 433–434
using to create delegate

instances 30
utility classes 187

static modifier, static
classes 188

static types
expressions 37
targets of method calls 380

static typing 21, 37, 134, 211,
401, 491

expression trees 238
implicitly typed local

variables 51
productivity 410

static variables,
initialization 182

Stream 136
streaming 174, 282, 495

custom LINQ operators 358
flattening and cross

joins 310
group joins 306
inner joins 302

streaming data 267
StreamReader 173
streams 258
StreamUtil 258
string literals, Python 412
Licensed to Devon Greenway <devon.greenway@gmail.com>

551INDEX
String, purity 463
StringCollection 40
StringComparer 78, 318
strings

immutability 33
reversing 25

strongly typed collections 6,
36, 40, 51, 293, 434

.NET 1.1 40
Stroustrup, Bjarne 100, 244
struct

automatically implemented
properties 206

keyword 43
value type constraints 70

structural comparisons 525
structures 196
style, query expressions and dot

notation 319
subclassing, reference types

and value types 45
subjective readability 204
subsequences, grouping 312
substitution of type parameters

with type arguments 63
suffixes

attributes 198
I...Contracts 468

-suggest (command line
option) 474

Sum 272, 495
dynamic

implementation 416
purity 463

super awesome code 23
supercomputers, string length

computations 299
surrogate pairs 25
switch statements, iterator

blocks 168
Symbian S60 526
SymmetricExceptWith 516
symmetry 128
synchronous delegate

invocation 31
synchronous service access 175
SynonymInfo 383
syntactic sugar, delegates 131
syntax

checking in dynamic
languages 403

consistency for queries in
LINQ 16

domain specific
languages 274

options for queries 317
query expressions 16

System.AddIn 524
System.Collections 40
System.Collections.Concurrent

518
System.Collections.Generic 78,

508
System.Collections.Object-

Model 513
System.Collections.Specialized

40
System.Delegate 134
System.Diagnostics.Contracts

456
System.Enum 70
System.Interactive 351
System.Linq, Parallel

LINQ 347
System.Linq.Expressions 237
System.Math 187
System.Nullable 111
System.Numeric 525
System.Reactive 351
System.ValueType 70
System.Xml.Linq 338

T

Table 325
TableLayoutPanel 523
tables

cross joins 308
LINQ to SQL 323
navigating via joins 304

table-valued functions 301
Take 503
TakeWhile 503
target, delegates 30, 32
Target, DLR cache 425
Tatham, Simon 178
team preferences 211, 219, 276

consistency in
formatting 141

tedious coding 153, 226
template

metaprogramming 99
templates 78, 91

code generation 106
temporary local variable, used

for object initializers 213
temporary values 212
temporary variable, let

clauses 326

terminology 44, 198, 260
ambiguity of "lazy" and

"eager" 267
CLR arrays and vectors 512
covariance and

contravariance 388
dot notation and query

expressions 317
generic type constraints 73
generics 62
nullable type and nullable

value type 113
parameters and

arguments 366
variable classifications 145
wrapping and

unwrapping 108
testable code 272
test-first coding 484
text encodings 171

reading files 366
text nodes, LINQ to XML 338
TextReader 170–171
ThenBy 270, 297, 507
ThenByDescending 270, 297,

507
thinking in sequences 281
third-party libraries 277

changing contract
behavior 472

third-party LINQ providers 322
this 145, 149

anonymous methods 140
constructor chaining 206
declaring extension

methods 260
delegate target 30
locking 399
meta-object

construction 448
thread pool 147, 176
thread safety 33, 205, 272, 399
threading 147, 176, 346, 429

immutability 108, 223
LINQ to Rx 355

ThreadPool (reactive
extensions) 355

threads 154, 175, 518
robust locking 398

thread-safety 508
ThreadStart 133, 137, 144
ThreadStatic 81
throwaway code 205, 211
timeouts 519
times, LINQ to XML

content 340
Licensed to Devon Greenway <devon.greenway@gmail.com>

552 INDEX
TimeSpan 108, 417
timestamp 370
TimeZoneInfo 524
TIME_ZONE_INFORMATION

196
tlbimp. See Type Library

Importer
ToArray 347, 497, 518
ToDictionary 317, 497
ToList 318, 497
ToLookup 497, 501
Tony the Pony 492
tools 183

Code Contracts 456, 464
tooltips 207

anonymous types 222
extension methods 261

ToString 48, 340, 440
anonymous types 223, 271
ExpandoObject 437
Nullable<T> 108

totals, calculating with
LINQ 272

Toub, Stephen 519
transaction management

LINQ to SQL 325
transformations

automatically implemented
properties 205

LINQ sequences 281
translations

query continuations 314
query expressions 280, 287

transparency 526
transparent identifiers 298

implementation 300
inner joins 305
query expression

readability 319
tree, LINQ to XML 338
trial and error 60
TrimExcess 510
triple quotes, Python string

literals 412
trivial properties 205, 225–226

formatting 141
true operator 117
truth tables 119
try/catch and try/finally, in

iterator blocks 161
TryAdd 518
TryGetMember 444
TryGetValue 509
TryInvokeMember() 444
TryParse 125

TryPeek 519
TryTake 518
TryXXX pattern 76, 125

DynamicObject 440, 443
T-SQL 323
Tuple 491, 525
Turing, Alan 115
two-phase type inference 248
type aliases 190
type arguments 62, 74, 98, 246,

391
dynamic 434
generic variance 395
GetVariable 413
preconditions 456

type constraints 69, 95
avoiding boxing 128
class 69
combining 73
conversion 71
new() 70
numeric 97
partial types 181
primary 73
secondary 73
struct 70
type parameter

constraints 71
type declarations

dynamic 434
partial 181

type equivalence 526
type erasure 101, 397
type inference 228, 246, 287,

391, 491
anonymous types 222, 224
C# 2 74
dynamic code compile-time

checking 432
generics 69, 80, 112
hiding variance

workarounds 96
implicitly typed local

variables 16, 38, 207, 408
query expressions 291
summary of changes in

C# 3 254
two-phase (C# 3) 248

type initializers 206
Type Library Importer 385
type parameters 62, 89

comparisons with null 118
constraints 71
covariance 389
covariance and

contravariance 95

dynamic 434
Func and Action delegate

types 229
generic methods 65
generic variance 387
naming conventions 65
tooltips 207

Type property, expression
trees 237

type safety 38, 59, 91–92, 106
compile time vs execution

time 59
contravariance 96
generic variance 387

type system 36, 488
improving robustness 59

type variables, bounds 249
Type, System.Type 89
Type.GetTypeFromCLSID 386
Type.Missing 381
typedef 97
TypedReference 427
TypeIdentifier 386
typeless expressions 219
typeof 48, 63, 76, 88, 90, 242,

244
dynamic 435
nullable types 113

U

uint 455
unary operators 117
unbound generic types 62, 88
unboxing 47, 59, 106, 413, 510

avoiding in C# 1 85
choice of nullable or non-

nullable target type 110
conversions 293

uncertainty, ? modifier 114
Unconstrained Melody 72
unconstrained type

parameters 69
underlying type 107
unfixed type variables 249
unimplemented partial

methods 185
uninitialized fields, default

values 75
Union 506
UnionWith 516
unit testing 275, 396

frameworks 472
unit tests 184, 199, 357

contracts 469, 478, 483, 485
Licensed to Devon Greenway <devon.greenway@gmail.com>

553INDEX
unit tests (continued)
dynamic typing 403, 407,

432
sample data 218

unknown values 14
UnmanagedType.ByValArray

197
unordered queries 349
unprovable contracts 479
unqualified names 190
unreachable code 474
unsafe code 36, 196, 408
unsigned types 455
unspeakable names 140, 205

invariants 460
iterators 167

untyped variables 38
unverifiable code 140
unwrapping 116

nullable value types 108
URI, XML namespaces 338
URLs 43

comparison with
references 104

user groups 492
user interfaces 180, 272
user-defined conversions 116,

427
default parameter values 368
invalid in generic

variance 395
Nullable 117

user-defined operators 117
Users, sample data model 285
using directives 23, 128, 173,

190, 193, 433
extension methods 262

using statements 170
implicitly typed local

variables 209
iterator blocks 165
iterator disposal 358

UTC 371
UTF-16 25
UTF-8 171, 366
UTF8 (encoding property) 370
utility code 52, 170, 186, 257,

274

V

validation 189, 205, 377
arguments 173, 276, 357

iterator blocks 164, 174
explicit vs implicit 455
partial methods 185

Value 107, 119
Excel 409
See also Nullable, Value prop-

erty
value type constraints 70, 77

Nullable<T> 107
value type conversions, invalid

in generic variance 395
value types 14, 22, 42, 101

adding functionality 256
immutability 108
null values 104
nullability 53
Nullable<T> 107
satisfying constructor type

constraints 70
type constraints 70

ValueAtReturn 459
var 16, 38, 51

anonymous types 221
comparison with

dynamic 408
contextual keyword 207
projections 270

variables
arrays 219
assigning values in expres-

sion trees 239
automatically implemented

properties 7
backing trivial

properties 205
behavior when captured 146
C++ template arguments 99
declarations for out

parameters 124
implicit typing 16
location in memory 46
naming 482
pass-by-reference

parameters 382
range variables 290
value type values 104

variance 92
API design 396
C# 4 387
different flavors 135
nesting 394

VARIANT 207, 404
variant conversions 395
variants 386
VB. See Visual Basic
VB.NET 23

See also Visual Basic
VB6 207

vector<T> 100
vectors 476

CLR terminology 512
verification 454
version numbers 521
versioning 23, 101, 369, 371

COM 385
extension methods 277

views 301
virtual machine, Java 101
virtual methods 37, 41, 180,

185, 403
Collection 513
contracts 467
partial types 183

visibility, preconditions 457
Visual Basic 64, 366, 380, 383,

445
COM support 19
VB 9 284

Visual Studio 24, 193–194, 265,
323, 385, 456, 521

Code Contracts 482, 492
hovering for more

information 207, 222, 261
Visual Studio 2010 446

expression tree
visualizer 242

Premium and Ultimate
editions 456

visualizer, expression trees 242
void 448

return type of Action 229
void return type, partial

methods 186
_VtblGap 386

W

warnings 194, 491
breaking changes 138
hidden extension

methods 263
nullable comparisons 118
pragma directives 194

Watch window, Visual
Studio 403

WCF 523
weak typing 36, 207

APIs 409
collections 40

web pages, reference type
analogy 43

web services 19–20, 175, 243,
272, 284, 487
Licensed to Devon Greenway <devon.greenway@gmail.com>

554 INDEX
WebRequest 259
WebResponse 259
WF 524
what versus how 210–211, 273
Where 13, 173, 267, 282, 294,

317, 505
where clause

combining 294
contextual keyword 288
type constraints 69

while 157
whitespace 141, 215

sensitivity of Python 413
wildcards, Java 101
Windows 23
Windows APIs 196
Windows Azure 492
Windows CardSpace 524
Windows Communication

Foundation 523
Windows Forms 23, 108, 135,

180, 523
Windows Live ID 21
Windows Mobile 526
Windows Phone 7 526
Windows Presentation

Foundation 108, 513, 523
Windows Workflow

Foundation 524
Wintellect 520
WithCancellation 349
WithDegreeOfParallelism 349

WithExecutionMode 350
WithMergeOptions 350
Word 380
word processor 403
workaround 397
Worksheet, Excel 409
WPF 513, 523
wrapper classes 14
wrapping, nullable value

types 108
WriteLine 407
WriteTo 259

X

X, prefix for LINQ to XML
types 338

XAML 183, 527
See also Extensible Applica-

tion Markup Language
XAttribute 338

explicit conversion 343
Xbox 360 526
XCData 338
XComment 338
XContainer 338
XDeclaration 338
XDocument 338
XElement 338, 436

conversions 343
XML 17, 218, 280, 337, 436

comments 23

configuration files 414
documentation 454, 480

generated by
ccdocgen 456

formatting of numbers and
other data types 340

XmlDocument 338
XmlReader.Create, overload-

ing complexity 367
XmlReaderSettings 367
XNA 526
XName 338
XNamespace 338
XNode 338
XObject 338
XPath 342, 344
XText 338

conversion from object 340

Y

yield return 160, 164, 171
restrictions 161

yield statements 160
yield type 161, 168

Z

zero 417
Zip 504
Licensed to Devon Greenway <devon.greenway@gmail.com>

C
4 is even more expressive and powerful than earlier
versions. You can do amazing things with generics, lamb-
da expressions, dynamic typing, LINQ, iterator blocks,

and other features—but you fi rst have to learn C# in depth.

C# in Depth, Second Edition is a thoroughly revised, up-to-date
book that covers the new features of C# 4 as well as Code
Contracts. In it, you’ll see the subtleties of C# programming
in action, learning how to work with high-value features that
you’ll be glad to have in your toolkit. Th e book helps readers
avoid hidden pitfalls of C# programming by understanding
“behind the scenes” issues.

What’s Inside
New features of C# 4
Underused features of C#
Guidance and practical experience

Th is book assumes its readers know the basics of C# and are
ready to sink their teeth into the good stuff !

Jon Skeet is a Google soft ware engineer working in London.
A C# MVP since 2003 and prominent C# community person-
ality, Jon’s heart belongs to C#.

For online access to the author and a free ebook for owners
of this book, go to manning.com/CSharpinDepthSecondEdition

$49.99 / Can $57.99 [INCLUDING eBOOK]

C# IN DEPTH Second Edition

PROGRAMMING LANGUAGES

“Th e defi nitive what, how,
 and why of C#.”
 —Eric Lippert, Microsoft

“To master C#, it’s a
 must-read.”
 —Tyson S. Maxwell, Raytheon

“Focuses on the chewy,
 new stuff .”
 —Keith Hill
 Agilent Technologies

“Highly focused...
 a master-level resource.”
 —Sean Reilly
 Point2 Technologies

“A C# masterpiece.”
 —Kirill Osenkov
 Microsoft C# Team

“Everything you didn’t
 realize you needed to
 know about C#.”
 —Jared Parsons, Microsoft

M A N N I N G

SEE INSERT

Jon Skeet Foreword by Eric Lippert

	brief contents
	contents
	foreword
	preface

	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Terminology and typography
	Source code downloads
	Author Online and the C# in Depth website
	About the author
	About the cover illustration

	Part 1 Preparing for the journey
	Chapter 1 The changing face of C# development
	1.1 Starting with a simple data type
	1.1.1 The Product type in C# 1
	1.1.2 Strongly typed collections in C# 2
	1.1.3 Automatically implemented properties in C# 3
	1.1.4 Named arguments in C# 4

	1.2 Sorting and filtering
	1.2.1 Sorting products by name
	1.2.2 Querying collections

	1.3 Handling an absence of data
	1.3.1 Representing an unknown price
	1.3.2 Optional parameters and default values

	1.4 Introducing LINQ
	1.4.1 Query expressions and in-process queries
	1.4.2 Querying XML
	1.4.3 LINQ to SQL

	1.5 COM and dynamic typing
	1.5.1 Simplifying COM interoperability
	1.5.2 Interoperating with a dynamic language

	1.6 Dissecting the .NET platform
	1.6.1 C#, the language
	1.6.2 Runtime
	1.6.3 Framework libraries

	1.7 Making your code super awesome
	1.7.1 Presenting full programs as snippets
	1.7.2 Didactic code isn’t production code
	1.7.3 Your new best friend: the language specification

	1.8 Summary

	Chapter 2 Core foundations: building on C# 1
	2.1 Delegates
	2.1.1 A recipe for simple delegates
	2.1.2 Combining and removing delegates
	2.1.3 A brief diversion into events
	2.1.4 Summary of delegates

	2.2 Type system characteristics
	2.2.1 C#’s place in the world of type systems
	2.2.2 When is C# 1’s type system not rich enough?
	2.2.3 Summary of type system characteristics

	2.3 Value types and reference types
	2.3.1 Values and references in the real world
	2.3.2 Value and reference type fundamentals
	2.3.3 Dispelling myths
	2.3.4 Boxing and unboxing
	2.3.5 Summary of value types and reference types

	2.4 Beyond C# 1: new features on a solid base
	2.4.1 Features related to delegates
	2.4.2 Features related to the type system
	2.4.3 Features related to value types

	2.5 Summary

	Part 2 C# 2: solving the issues of C# 1
	Chapter 3 Parameterized typing with generics
	3.1 Why generics are necessary
	3.2 Simple generics for everyday use
	3.2.1 Learning by example: a generic dictionary
	3.2.2 Generic types and type parameters
	3.2.3 Generic methods and reading generic declarations

	3.3 Beyond the basics
	3.3.1 Type constraints
	3.3.2 Type inference for type arguments of generic methods
	3.3.3 Implementing generics

	3.4 Advanced generics
	3.4.1 Static fields and static constructors
	3.4.2 How the JIT compiler handles generics
	3.4.3 Generic iteration
	3.4.4 Reflection and generics

	3.5 Limitations of generics in C# and other languages
	3.5.1 Lack of generic variance
	3.5.2 Lack of operator constraints or a “numeric” constraint
	3.5.3 Lack of generic properties, indexers, and other member types
	3.5.4 Comparison with C++ templates
	3.5.5 Comparison with Java generics

	3.6 Summary

	Chapter 4 Saying nothing with nullable types
	4.1 What do you do when you just don’t have a value?
	4.1.1 Why value type variables can’t be null
	4.1.2 Patterns for representing null values in C# 1

	4.2 System.Nullable<T>and System.Nullable
	4.2.1 Introducing Nullable<T>
	4.2.2 Boxing Nullable<T>and unboxing
	4.2.3 Equality of Nullable<T> instances
	4.2.4 Support from the nongeneric Nullable class

	4.3 C# 2’s syntactic sugar for nullable types
	4.3.1 The ? modifier
	4.3.2 Assigning and comparing with null
	4.3.3 Nullable conversions and operators
	4.3.4 Nullable logic
	4.3.5 Using the as operator with nullable types
	4.3.6 The null coalescing operator

	4.4 Novel uses of nullable types
	4.4.1 Trying an operation without using output parameters
	4.4.2 Painless comparisons with the null coalescing operator

	4.5 Summary

	Chapter 5 Fast-tracked delegates
	5.1 Saying goodbye to awkward delegate syntax
	5.2 Method group conversions
	5.3 Covariance and contravariance
	5.3.1 Contravariance for delegate parameters
	5.3.2 Covariance of delegate return types
	5.3.3 A small risk of incompatibility

	5.4 Inline delegate actions with anonymous methods
	5.4.1 Starting simply: acting on a parameter
	5.4.2 Returning values from anonymous methods
	5.4.3 Ignoring delegate parameters

	5.5 Capturing variables in anonymous methods
	5.5.1 Defining closures and different types of variables
	5.5.2 Examining the behavior of captured variables
	5.5.3 What’s the point of captured variables ?
	5.5.4 The extended lifetime of captured variables
	5.5.5 Local variable instantiations
	5.5.6 Mixtures of shared and distinct variables
	5.5.7 Captured variable guidelines and summary

	5.6 Summary

	Chapter 6 Implementing iterators the easy way
	6.1 C# 1: the pain of handwritten iterators
	6.2 C# 2: simple iterators with yield statements
	6.2.1 Introducing iterator blocks and yield return
	6.2.2 Visualizing an iterator’s workflow
	6.2.3 Advanced iterator execution flow
	6.2.4 Quirks in the implementation

	6.3 Real-life iterator examples
	6.3.1 Iterating over the dates in a timetable
	6.3.2 Iterating over lines in a file
	6.3.3 Filtering items lazily using an iterator block and a predicate

	6.4 Pseudo-synchronous code with the Concurrency and Coordination Runtime
	6.5 Summary

	Chapter 7 Concluding C# 2: the final features
	7.1 Partial types
	7.1.1 Creating a type with multiple files
	7.1.2 Uses of partial types
	7.1.3 Partial methods—C# 3 only!

	7.2 Static classes
	7.3 Separate getter/setter property access
	7.4 Namespace aliases
	7.4.1 Qualifying namespace aliases
	7.4.2 The global namespace alias
	7.4.3 Extern aliases

	7.5 Pragma directives
	7.5.1 Warning pragmas
	7.5.2 Checksum pragmas

	7.6 Fixed-size buffers in unsafe code
	7.7 Exposing internal members to selected assemblies
	7.7.1 Friend assemblies in the simple case
	7.7.2 Why use InternalsVisibleTo?
	7.7.3 InternalsVisibleTo and signed assemblies

	7.8 Summary

	Part 3 C# 3: revolutionizing how we code
	Chapter 8 Cutting fluff with a smart compiler
	8.1 Automatically implemented properties
	8.2 Implicit typing of local variables
	8.2.1 Using var to declare a local variable
	8.2.2 Restrictions on implicit typing
	8.2.3 Pros and cons of implicit typing
	8.2.4 Recommendations

	8.3 Simplified initialization
	8.3.1 Defining our sample types
	8.3.2 Setting simple properties
	8.3.3 Setting properties on embedded objects
	8.3.4 Collection initializers
	8.3.5 Uses of initialization features

	8.4 Implicitly typed arrays
	8.5 Anonymous types
	8.5.1 First encounters of the anonymous kind
	8.5.2 Members of anonymous types
	8.5.3 Projection initializers
	8.5.4 What’s the point?

	8.6 Summary

	Chapter 9 Lambda expressions and expression trees
	9.1 Lambda expressions as delegates
	9.1.1 Preliminaries: introducing the Func<...> delegate types
	9.1.2 First transformation to a lambda expression
	9.1.3 Using a single expression as the body
	9.1.4 Implicitly typed parameter lists
	9.1.5 Shortcut for a single parameter

	9.2 Simple examples using List<T> and events
	9.2.1 Filtering, sorting, and actions on lists
	9.2.2 Logging in an event handler

	9.3 Expression trees
	9.3.1 Building expression trees programmatically
	9.3.2 Compiling expression trees into delegates
	9.3.3 Converting C# lambda expressions to expression trees
	9.3.4 Expression trees at the heart of LINQ
	9.3.5 Expression trees beyond LINQ

	9.4 Changes to type inference and overload resolution
	9.4.1 Reasons for change: streamlining generic method calls
	9.4.2 Inferred return types of anonymous functions
	9.4.3 Two-phase type inference
	9.4.4 Picking the right overloaded method
	9.4.5 Wrapping up type inference and overload resolution

	9.5 Summary

	Chapter 10 Extension methods
	10.1 Life before extension methods
	10.2 Extension method syntax
	10.2.1 Declaring extension methods
	10.2.2 Calling extension methods
	10.2.3 Extension method discovery
	10.2.4 Calling a method on a null reference

	10.3 Extension methods in .NET 3.5
	10.3.1 First steps with Enumerable
	10.3.2 Filtering with Where and chaining method calls together
	10.3.3 Interlude: haven’t we seen the Where method before?
	10.3.4 Projections using the Select method and anonymous types
	10.3.5 Sorting using the OrderBy method
	10.3.6 Business examples involving chaining

	10.4 Usage ideas and guidelines
	10.4.1 “Extending the world” and making interfaces richer
	10.4.2 Fluent interfaces
	10.4.3 Using extension methods sensibly

	10.5 Summary

	Chapter 11 Query expressions and LINQ to Objects
	11.1 Introducing LINQ
	11.1.1 Fundamental concepts in LINQ
	11.1.2 Defining the sample data model

	11.2 Simple beginnings: selecting elements
	11.2.1 Starting with a source and ending with a selection
	11.2.2 Compiler translations as the basis of query expressions
	11.2.3 Range variables and nontrivial projections
	11.2.4 Cast, OfType, and explicitly typed range variables

	11.3 Filtering and ordering a sequence
	11.3.1 Filtering using a where clause
	11.3.2 Degenerate query expressions
	11.3.3 Ordering using an orderby clause

	11.4 Let clauses and transparent identifiers
	11.4.1 Introducing an intermediate computation with let
	11.4.2 Transparent identifiers

	11.5 Joins
	11.5.1 Inner joins using join clauses
	11.5.2 Group joins with join ... into clauses
	11.5.3 Cross joins and flattening sequences using multiple from clauses

	11.6 Groupings and continuations
	11.6.1 Grouping with the group ... by clause
	11.6.2 Query continuations

	11.7 Choosing between query expressions and dot notation
	11.7.1 Operations that require dot notation
	11.7.2 Query expressions where dot notation may be simpler
	11.7.3 Where query expressions shine

	11.8 Summary

	Chapter 12 LINQ beyond collections
	12.1 Querying a database with LINQ to SQL
	12.1.1 Getting started: the database and model
	12.1.2 Initial queries
	12.1.3 Queries involving joins

	12.2 Translations using IQueryable and IQueryProvider
	12.2.1 Introducing IQueryable<T> and related interfaces
	12.2.2 Faking it: interface implementations to log calls
	12.2.3 Gluing expressions together: the Queryable extension methods
	12.2.4 The fake query provider in action
	12.2.5 Wrapping up IQueryable

	12.3 LINQ-friendly APIs and LINQ to XML
	12.3.1 Core types in LINQ to XML
	12.3.2 Declarative construction
	12.3.3 Queries on single nodes
	12.3.4 Flattened query operators
	12.3.5 Working in harmony with LINQ

	12.4 Replacing LINQ to Objects with Parallel LINQ
	12.4.1 Plotting the Mandelbrot set with a single thread
	12.4.2 Introducing ParallelEnumerable, ParallelQuery, and AsParallel
	12.4.3 Tweaking parallel queries

	12.5 Inverting the query model with LINQ to Rx
	12.5.1 IObservable<T> and IObserver<T>
	12.5.2 Starting simply (again)
	12.5.3 Querying observables
	12.5.4 What’s the point?

	12.6 Extending LINQ to Objects
	12.6.1 Design and implementation guidelines
	12.6.2 Sample extension: selecting a random element

	12.7 Summary

	Part 4 C# 4: playing nicely with others
	Chapter 13 Minor changes to simplify code
	13.1 Optional parameters and named arguments
	13.1.1 Optional parameters
	13.1.2 Named arguments
	13.1.3 Putting the two together

	13.2 Improvements for COM interoperability
	13.2.1 The horrors of automating Word before C# 4
	13.2.2 The revenge of optional parameters and named arguments
	13.2.3 When is a ref parameter not a ref parameter?
	13.2.4 Calling named indexers
	13.2.5 Linking primary interop assemblies

	13.3 Generic variance for interfaces and delegates
	13.3.1 Types of variance: covariance and contravariance
	13.3.2 Using variance in interfaces
	13.3.3 Using variance in delegates
	13.3.4 Complex situations
	13.3.5 Restrictions and notes

	13.4 Teeny tiny changes to locking and field-like events
	13.4.1 Robust locking
	13.4.2 Changes to field-like events

	13.5 Summary

	Chapter 14 Dynamic binding in a static language
	14.1 What? When? Why? How?
	14.1.1 What is dynamic typing?
	14.1.2 When is dynamic typing useful, and why?
	14.1.3 How does C# 4 provide dynamic typing?

	14.2 The five-minute guide to dynamic
	14.3 Examples of dynamic typing
	14.3.1 COM in general, and Microsoft Office in particular
	14.3.2 Dynamic languages such as IronPython
	14.3.3 Dynamic typing in purely managed code

	14.4 Looking behind the scenes
	14.4.1 Introducing the Dynamic Language Runtime
	14.4.2 DLR core concepts
	14.4.3 How the C# compiler handles dynamic
	14.4.4 The C# compiler gets even smarter
	14.4.5 Restrictions on dynamic code

	14.5 Implementing dynamic behavior
	14.5.1 Using ExpandoObject
	14.5.2 Using DynamicObject
	14.5.3 Implementing IDynamicMetaObjectProvider

	14.6 Summary

	Chapter 15 Letting your code speak more clearly with Code Contracts
	15.1 Life before Code Contracts
	15.2 Introducing Code Contracts
	15.2.1 Preconditions
	15.2.2 Postconditions
	15.2.3 Invariants
	15.2.4 Assertions and assumptions
	15.2.5 Legacy contracts

	15.3 Rewriting binaries with ccrewrite and ccrefgen
	15.3.1 Simple rewriting
	15.3.2 Contract inheritance
	15.3.3 Contract reference assemblies
	15.3.4 Failure behavior

	15.4 Static checking
	15.4.1 Getting started with static checking
	15.4.2 Implicit obligations
	15.4.3 Selective checking

	15.5 Documenting contracts with ccdocgen
	15.6 Practical contracts
	15.6.1 Philosophy: what’s in a contract?
	15.6.2 How do I get started?
	15.6.3 Options, options everywhere

	15.7 Summary

	Chapter 16 Whither now?
	16.1 C#—mixing tradition and modernity
	16.2 Computer science and .NET
	16.3 The world of computing
	16.4 Farewell
	A.1 Aggregation
	A.2 Concatenation
	A.3 Conversion
	A.4 Element operators
	A.5 Equality
	A.6 Generation
	A.7 Grouping
	A.8 Joins
	A.9 Partitioning
	A.10 Projection
	A.11 Quantifiers
	A.12 Filtering
	A.13 Set-based operators
	A.14 Sorting
	B.1 Interfaces
	B.2 Lists
	B.2.1 List<T>
	B.2.2 Arrays
	B.2.3 LinkedList<T>
	B.2.4 Collection<T>, BindingList<T>, ObservableCollection<T>, and KeyedCollection<TKey, TItem>
	B.2.5 ReadOnlyCollection<T>and ReadOnlyObservableCollection<T>

	B.3 Dictionaries
	B.3.1 Dictionary<TKey, TValue>
	B.3.2 SortedList<TKey, TValue>and SortedDictionary<TKey, TValue>

	B.4 Sets
	B.4.1 HashSet<T>
	B.4.2 SortedSet<T> (.NET 4)

	B.5 Queue<T> and Stack<T>
	B.5.1 Queue<T>
	B.5.2 Stack<T>

	B.6 Concurrent collections (.NET 4)
	B.6.1 IProducerConsumerCollection<T> and BlockingCollection<T>
	B.6.2 ConcurrentBag<T>, ConcurrentQueue<T>, ConcurrentStack<T>
	B.6.3 ConcurrentDictionary<TKey, TValue>

	B.7 Summary
	C.1 Desktop framework major releases
	C.2 C# language features
	C.2.1 C# 2.0
	C.2.2 C# 3.0
	C.2.3 C# 4.0

	C.3 Framework library features
	C.3.1 .NET 2.0
	C.3.2 .NET 3.0
	C.3.3 .NET 3.5
	C.3.4 .NET 4

	C.4 Runtime (CLR) features
	C.4.1 CLR 2.0
	C.4.2 CLR 4.0

	C.5 Related frameworks
	C.5.1 Compact Framework
	C.5.2 Silverlight
	C.5.3 Micro Framework

	C.6 Summary

	Appendix A
	A.1 Aggregation
	A.2 Concatenation
	A.3 Conversion
	A.4 Element operators
	A.5 Equality
	A.6 Generation
	A.7 Grouping
	A.8 Joins
	A.9 Partitioning
	A.10 Projection
	A.11 Quantifiers
	A.12 Filtering
	A.13 Set-based operators
	A.14 Sorting

	Appendix B
	B.1 Interfaces
	B.2 Lists
	B.2.1 List<T>
	B.2.2 Arrays
	B.2.3 LinkedList<T>
	B.2.4 Collection<T>, BindingList<T>, ObservableCollection<T>, and KeyedCollection<TKey, TItem>
	B.2.5 ReadOnlyCollection<T>and ReadOnlyObservableCollection<T>

	B.3 Dictionaries
	B.3.1 Dictionary<TKey, TValue>
	B.3.2 SortedList<TKey, TValue>and SortedDictionary<TKey, TValue>

	B.4 Sets
	B.4.1 HashSet<T>
	B.4.2 SortedSet<T> (.NET 4)

	B.5 Queue<T> and Stack<T>
	B.5.1 Queue<T>
	B.5.2 Stack<T>

	B.6 Concurrent collections (.NET 4)
	B.6.1 IProducerConsumerCollection<T> and BlockingCollection<T>
	B.6.2 ConcurrentBag<T>, ConcurrentQueue<T>, ConcurrentStack<T>
	B.6.3 ConcurrentDictionary<TKey, TValue>

	B.7 Summary

	Appendix C
	C.1 Desktop framework major releases
	C.2 C# language features
	C.2.1 C# 2.0
	C.2.2 C# 3.0
	C.2.3 C# 4.0

	C.3 Framework library features
	C.3.1 .NET 2.0
	C.3.2 .NET 3.0
	C.3.3 .NET 3.5
	C.3.4 .NET 4

	C.4 Runtime (CLR) features
	C.4.1 CLR 2.0
	C.4.2 CLR 4.0

	C.5 Related frameworks
	C.5.1 Compact Framework
	C.5.2 Silverlight
	C.5.3 Micro Framework

	C.6 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

