
this print for content only—size & color not accurate spine = 1.635" 872 page count

Books for professionals by professionals®

SQL Server 2008 Transact-SQL Recipes
Dear Reader,

Transact-SQL is SQL Server’s built-in database programming and query lan-
guage. You use it for writing everything from simple SELECT statements to
complex stored procedures and functions. Transact-SQL is the key to unlocking
all of SQL Server’s rich functionality. Newly updated for SQL Server 2008, the
Transact-SQL language includes support for grouping sets, compound assign-
ment operators, row constructors, inline variable initialization, table-valued
parameters, sparse columns, the MERGE command, change tracking, granular
auditing, data and backup compression, filtered indexes, Resource Governor,
several new data types, and more.

I wrote this book in a problem/solution format in order to establish an
immediate understanding of a task and its associated Transact-SQL solution.
Look up the task you want to perform, read how to do it, and then perform the
task on your own system—it’s that simple. My end goal is to allow you to quickly
find the information you need in order to get the job done. You can read this book
in sequential order or out of order, skipping around to topics that interest you.

Although you can perform many tasks by using GUI tools such as SQL Server
Management Studio, Transact-SQL flows beneath the majority of SQL Server’s
features. Becoming proficient with Transact-SQL improves your understanding
of the SQL Server engine, enhances troubleshooting skills, and bolsters your
ability to support and maintain your SQL Server environment.

The problem/solution format in this book allows you to quickly get familiar
with a range of features and apply them right away in your own environment.
Using this book, my hope is that you’ll discover new and effective approaches
to solving business problems using Transact-SQL, which will lead you to using
SQL Server 2008 to its maximum potential.

Best Regards,

Joseph Sack, MCDBA, MCITP (DD), MCITP (DA)

Author of

SQL Server 2005
T-SQL Recipes

SQL Server 2000 Fast
Answers for DBAs and
Developers

US $59.99

Shelve in
SQL Server

User level:
Beginner–Intermediate

Sack
SQL Server 2008
Transact-SQL Recipes

The EXPERT’s VOIce® in SQL Server

SQL Server 2008
Transact-SQL
Recipes

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Joseph Sack

Companion
eBook Available

THE APRESS ROADMAP

Accelerated
SQL Server 2008

Beginning SQL Server
2008 for Developers

Pro T-SQL 2008
Programmer’s Guide

SQL Server 2008
Transact-SQL Recipes

SQL Server Query
Performance Tuning Distilled,

Second Edition

Expert SQL Server 2008
Development

www.apress.com

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-980-8
ISBN-10: 1-59059-980-2

9 781590 599808

55999

Get the job done with SQL Server’s powerful
database programming and query language

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Joseph Sack

SQL Server 2008
Transact-SQL Recipes

9802FM.qxd 6/25/08 11:40 AM Page i

SQL Server 2008 Transact-SQL Recipes

Copyright © 2008 by Joseph Sack

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-980-8

ISBN-10 (pbk): 1-59059-980-2

ISBN-13 (electronic): 978-1-4302-0626-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Evan Terry
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Susannah Davidson Pfalzer
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

9802FM.qxd 6/25/08 11:40 AM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

9802FM.qxd 6/25/08 11:40 AM Page iii

Contents at a Glance

About the Author . xxv

About the Technical Reviewer. xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 SELECT. 1

■CHAPTER 2 Perform, Capture, and Track Data Modifications . 63

■CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 115

■CHAPTER 4 Tables . 143

■CHAPTER 5 Indexes . 197

■CHAPTER 6 Full-Text Search . 217

■CHAPTER 7 Views . 239

■CHAPTER 8 SQL Server Functions . 257

■CHAPTER 9 Conditional Processing, Control-of-Flow, and Cursors 307

■CHAPTER 10 Stored Procedures . 325

■CHAPTER 11 User-Defined Functions and Types . 343

■CHAPTER 12 Triggers . 373

■CHAPTER 13 CLR Integration . 401

■CHAPTER 14 XML, Hierarchies, and Spatial Data. 419

■CHAPTER 15 Hints . 449

■CHAPTER 16 Error Handling . 459

■CHAPTER 17 Principals . 475

■CHAPTER 18 Securables, Permissions, and Auditing . 501

■CHAPTER 19 Encryption. 547

■CHAPTER 20 Service Broker . 579

iv

9802FM.qxd 6/25/08 11:40 AM Page iv

■CHAPTER 21 Configuring and Viewing SQL Server Options . 615

■CHAPTER 22 Creating and Configuring Databases . 621

■CHAPTER 23 Database Integrity and Optimization. 669

■CHAPTER 24 Maintaining Database Objects and Object Dependencies 687

■CHAPTER 25 Database Mirroring . 697

■CHAPTER 26 Database Snapshots . 717

■CHAPTER 27 Linked Servers and Distributed Queries . 723

■CHAPTER 28 Query Performance Tuning . 739

■CHAPTER 29 Backup and Recovery . 789

■INDEX . 823

v

9802FM.qxd 6/25/08 11:40 AM Page v

9802FM.qxd 6/25/08 11:40 AM Page vi

Contents

About the Author . xxv

About the Technical Reviewer. xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 SELECT . 1

The Basic SELECT Statement . 1

Selecting Specific Columns from a Table . 2

Selecting Every Column for Every Row . 3

Selective Querying Using a Basic WHERE Clause. 3

Using the WHERE Clause to Specify Rows Returned in the Result Set 4

Combining Search Conditions . 4

Negating a Search Condition . 6

Keeping Your WHERE Clause Unambiguous . 6

Using Operators and Expressions. 7

Using BETWEEN for Date Range Searches . 9

Using Comparisons . 9

Checking for NULL Values. 10

Returning Rows Based on a List of Values . 11

Using Wildcards with LIKE . 11

Declaring and Assigning Values to Variables . 12

Grouping Data. 14

Using the GROUP BY Clause . 14

Using GROUP BY ALL. 15

Selectively Querying Grouped Data Using HAVING. 16

Ordering Results. 17

Using the ORDER BY Clause . 17

Using the TOP Keyword with Ordered Results . 19

SELECT Clause Techniques . 21

Using DISTINCT to Remove Duplicate Values . 21

Using DISTINCT in Aggregate Functions . 22

Using Column Aliases . 22

Using SELECT to Create a Script . 23

Performing String Concatenation . 24

Creating a Comma-Delimited List Using SELECT. 25

Using the INTO Clause. 26

vii

9802FM.qxd 6/25/08 11:40 AM Page vii

Subqueries . 27

Using Subqueries to Check for Matches . 27

Querying from More Than One Data Source . 28

Using INNER Joins . 29

Using OUTER Joins . 30

Using CROSS Joins . 31

Referencing a Single Table Multiple Times in the Same Query 32

Using Derived Tables. 33

Combining Result Sets with UNION . 33

Using APPLY to Invoke a Table-Valued Function for Each Row. 35

Using CROSS APPLY . 35

Using OUTER APPLY . 37

Advanced Techniques for Data Sources . 38

Using the TABLESAMPLE to Return Random Rows 38

Using PIVOT to Convert Single Column Values into Multiple Columns
and Aggregate Data . 39

Normalizing Data with UNPIVOT. 42

Returning Distinct or Matching Rows Using EXCEPT and INTERSECT 44

Summarizing Data . 46

Summarizing Data Using CUBE . 46

Summarizing Data Using ROLLUP . 48

Creating Custom Summaries Using Grouping Sets 49

Revealing Rows Generated by GROUPING. 51

Advanced Group-Level Identification with GROUPING_ID 53

Common Table Expressions . 56

Using a Non-Recursive Common Table Expression 56

Using a Recursive Common Table Expression . 59

■CHAPTER 2 Perform, Capture, and Track Data Modifications 63

INSERT . 63

Inserting a Row into a Table . 64

Inserting a Row Using Default Values . 65

Explicitly Inserting a Value into an IDENTITY Column. 66

Inserting a Row into a Table with a uniqueidentifier Column 67

Inserting Rows Using an INSERT...SELECT Statement. 68

Inserting Data from a Stored Procedure Call . 70

Inserting Multiple Rows with VALUES . 71

Using VALUES As a Table Source. 72

UPDATE . 73

Updating a Single Row . 74

Updating Rows Based on a FROM and WHERE Clause 75

Updating Large Value Data Type Columns . 76

Inserting or Updating an Image File Using OPENROWSET and BULK 78

■CONTENTSviii

9802FM.qxd 6/25/08 11:40 AM Page viii

Storing Unstructured Data on the File System While Maintaining
SQL Server Transactional Control. 80

Assigning and Modifying Database Values “in Place” 84

DELETE . 86

Deleting Rows . 86

Truncating a Table. 88

Advanced Data Modification Techniques . 89

Chunking Data Modifications with TOP . 89

Executing INSERTs, UPDATEs, and DELETEs in a Single Statement 90

Capturing and Tracking Data Modification Changes . 93

Returning Rows Affected by a Data Modification Statement. 93

Asynchronously Capturing Table Data Modifications. 96

Querying All Changes from CDC Tables . 99

Querying Net Changes from CDC Tables. 103

Translating the CDC Update Mask . 104

Working with LSN Boundaries . 105

Disabling Change Data Capture from Tables and the Database. 107

Tracking Net Data Changes with Minimal Disk Overhead. 107

■CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 115

Transaction Control . 115

Using Explicit Transactions . 117

Displaying the Oldest Active Transaction with DBCC OPENTRAN. 119

Querying Transaction Information by Session . 120

Locking . 122

Viewing Lock Activity. 124

Controlling a Table’s Lock Escalation Behavior . 126

Transaction, Locking, and Concurrency . 128

Configuring a Session’s Transaction Locking Behavior 129

Blocking . 134

Identifying and Resolving Blocking Issues . 134

Configuring How Long a Statement Will Wait for a Lock
to Be Released . 136

Deadlocking . 137

Identifying Deadlocks with a Trace Flag . 138

Setting Deadlock Priority. 141

■CHAPTER 4 Tables . 143

Table Basics . 143

Creating a Table. 147

Adding a Column to an Existing Table . 147

Changing an Existing Column Definition . 148

■CONTENTS ix

9802FM.qxd 6/25/08 11:40 AM Page ix

Creating a Computed Column. 149

Reducing Storage for Null Columns . 150

Dropping a Table Column . 153

Reporting Table Information . 154

Dropping a Table . 154

Collation Basics . 155

Viewing Collation Metadata . 155

Designating a Column’s Collation . 156

Keys. 157

Creating a Table with a Primary Key . 158

Adding a Primary Key Constraint to an Existing Table 159

Creating a Table with a Foreign Key Reference . 160

Adding a Foreign Key to an Existing Table . 161

Creating Recursive Foreign Key References . 162

Allowing Cascading Changes in Foreign Keys . 163

Surrogate Keys . 165

Using the IDENTITY Property During Table Creation 165

Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed Values . 166

Using the ROWGUIDCOL Property . 168

Constraints . 168

Creating a Unique Constraint . 169

Adding a UNIQUE Constraint to an Existing Table. 170

Using CHECK Constraints . 171

Adding a CHECK Constraint to an Existing Table . 172

Disabling and Enabling a Constraint . 173

Using a DEFAULT Constraint During Table Creation. 174

Adding a DEFAULT Constraint to an Existing Table 175

Dropping a Constraint from a Table. 176

Temporary Tables and Table Variables . 176

Using a Temporary Table for Multiple Lookups Within a Batch 177

Creating a Table Variable to Hold a Temporary Result Set 178

Manageability for Very Large Tables . 180

Implementing Table Partitioning . 181

Determining the Location of Data in a Partition . 184

Adding a New Partition . 186

Removing a Partition . 188

Moving a Partition to a Different Table . 189

Removing Partition Functions and Schemes. 190

Easing VLDB Manageability with Filegroups . 191

Reducing Disk Space Usage with Data Compression 192

■CONTENTSx

9802FM.qxd 6/25/08 11:40 AM Page x

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■CHAPTER 5 Indexes . 197

Index Overview. 197

Creating a Table Index. 199

Enforcing Uniqueness on Non-Key Columns. 201

Creating an Index on Multiple Columns. 202

Defining Index Column Sort Direction . 203

Viewing Index Meta Data . 203

Disabling an Index . 205

Dropping Indexes . 206

Changing an Existing Index with DROP_EXISTING 206

Controlling Index Build Performance and Concurrency . 207

Intermediate Index Creation in Tempdb . 207

Controlling Parallel Plan Execution for Index Creation 208

Allowing User Table Access During Index Creation 208

Index Options . 209

Using an Index INCLUDE . 209

Using PAD_INDEX and FILLFACTOR. 210

Disabling Page and/or Row Index Locking . 211

Managing Very Large Indexes . 212

Creating an Index on a Filegroup . 212

Implementing Index Partitioning. 213

Indexing a Subset of Rows . 214

Reducing Index Size . 215

■CHAPTER 6 Full-Text Search . 217

Full-Text Indexes and Catalogs . 217

Creating a Full-Text Catalog . 217

Creating a Full-Text Index. 219

Modifying a Full-Text Catalog. 221

Modifying a Full-Text Index . 222

Retrieving Full-Text Catalog and Index Metadata. 225

Discarding Common Strings from a Full-Text Index 226

Dropping a Full-Text Index . 229

Dropping a Full-Text Catalog . 230

Basic Searching . 230

Using FREETEXT to Search Full-Text Indexed Columns. 231

Using CONTAINS for Word Searching . 232

Advanced Searching . 232

Using CONTAINS to Search with Wildcards. 233

Using CONTAINS to Search for Inflectional Matches 233

Using CONTAINS for Searching Results by Term Proximity. 234

■CONTENTS xi

9802FM.qxd 6/25/08 11:40 AM Page xi

Ranked Searching . 235

Returning Ranked Search Results by Meaning. 235

Returning Ranked Search Results by Weighted Value. 236

■CHAPTER 7 Views . 239

Regular Views. 240

Creating a Basic View . 240

Querying the View Definition . 242

Displaying Views and Their Structures . 243

Refreshing a View’s Definition . 244

Modifying a View . 245

Dropping a View. 245

Modifying Data Through a View . 246

View Encryption . 247

Encrypting a View . 247

Indexed Views . 248

Creating an Indexed View . 248

Forcing the Optimizer to Use an Index for an Indexed View 251

Partitioned Views . 251

Creating a Distributed-Partitioned View . 252

■CHAPTER 8 SQL Server Functions . 257

Aggregate Functions . 257

Returning the Average of Values . 258

Returning Row Counts. 259

Finding the Lowest and Highest Values from an Expression. 259

Returning the Sum of Values . 260

Using Statistical Aggregate Functions . 260

Mathematical Functions . 261

Performing Mathematical Operations . 262

String Functions . 263

Converting a Character Value to ASCII and Back to Character 264

Returning Integer and Character Unicode Values. 265

Finding the Start Position of a String Within Another String 266

Finding the Start Position of a String Within Another String
Using Wildcards . 266

Determining the Similarity of Strings. 267

Taking the Leftmost or Rightmost Part of a String 268

Determining the Number of Characters or Bytes in a String. 269

Replacing a Part of a String . 269

Stuffing a String into a String . 270

Changing Between Lower- and Uppercase. 270

■CONTENTSxii

9802FM.qxd 6/25/08 11:40 AM Page xii

Removing Leading and Trailing Blanks . 271

Repeating an Expression N Number of Times . 272

Repeating a Blank Space N Number of Times . 272

Outputting an Expression in Reverse Order . 273

Returning a Chunk of an Expression . 273

Working with NULLs . 274

Replacing a NULL Value with an Alternative Value. 274

Performing Flexible Searches Using ISNULL. 275

Returning the First Non-NULL Value in a List of Expressions 276

Returning a NULL Value When Two Expressions Are Equal: Otherwise
Returning the First Expression . 277

Date Functions . 277

Returning the Current Date and Time . 278

Converting Between Time Zones . 279

Incrementing or Decrementing a Date’s Value . 280

Finding the Difference Between Two Dates . 281

Displaying the String Value for Part of a Date. 282

Displaying the Integer Representation for Parts of a Date. 282

Displaying the Integer Value for Part of a Date Using YEAR, MONTH,
and DAY. 283

Type Conversion. 284

Converting Between Data Types . 284

Converting Dates to Their Textual Representation 285

Representing Binary Data in String Literals . 286

Evaluating the Data Type Returned by an Expression 287

Ranking Functions . 288

Generating an Incrementing Row Number . 289

Returning Rows by Rank. 290

Returning Rows by Rank Without Gaps . 292

Using NTILE . 292

Probing Server, Database, and Connection-Level Settings Using
System Functions . 293

Determining the First Day of the Week . 293

Viewing the Language Used in the Current Session 294

Viewing and Setting Current Connection Lock Timeout Settings 295

Displaying the Nesting Level for the Current Stored
Procedure Context . 295

Returning the Current SQL Server Instance Name and
SQL Server Version . 296

Returning the Current Connection’s Session ID (SPID) 296

Returning the Number of Open Transactions . 297

Retrieving the Number of Rows Affected by the
Previous Statement . 297

Retrieving System Statistics . 298

■CONTENTS xiii

9802FM.qxd 6/25/08 11:40 AM Page xiii

Displaying Database and SQL Server Settings . 299

Returning the Current Database ID and Name . 300

Returning a Database Object Name and ID. 301

Returning the Application and Host for the Current User Session 301

Reporting Current User and Login Context . 302

Viewing User Connection Options . 303

IDENTITY and uniqueidentifier Functions. 303

Returning the Last Identity Value . 304

Returning an Identity Column’s Seed and Incrementing Value 305

Creating a New uniqueidentifier Value . 305

■CHAPTER 9 Conditional Processing, Control-of-Flow, and Cursors 307

Conditional Processing . 307

Using CASE to Evaluate a Single Input Expression. 308

Using CASE to Evaluate Boolean Expressions. 309

Using IF...ELSE . 310

Control-of-Flow . 312

Using RETURN . 313

Using WHILE . 314

Using GOTO . 316

Using WAITFOR . 318

Cursors . 319

Creating and Using Transact-SQL Cursors . 321

■CHAPTER 10 Stored Procedures . 325

Stored Procedure Basics . 325

Creating a Basic Stored Procedure . 326

Creating a Parameterized Stored Procedure. 328

Using OUTPUT Parameters . 330

Modifying a Stored Procedure . 332

Dropping Stored Procedures. 332

Executing Stored Procedures Automatically at SQL Server Startup 333

Reporting Stored Procedure Metadata . 334

Documenting Stored Procedures . 335

Stored Procedure Security . 335

Encrypting a Stored Procedure. 336

Using EXECUTE AS to Specify the Procedure’s Security Context 337

Recompilation and Caching . 340

RECOMPILE(ing) a Stored Procedure Each Time It Is Executed 341

Flushing the Procedure Cache . 342

■CONTENTSxiv

9802FM.qxd 6/25/08 11:40 AM Page xiv

■CHAPTER 11 User-Defined Functions and Types . 343

UDF Basics . 343

Creating Scalar User-Defined Functions . 344

Creating Inline User-Defined Functions. 349

Creating Multi-Statement User-Defined Functions 351

Modifying User-Defined Functions. 354

Viewing UDF Metadata . 356

Dropping User-Defined Functions . 356

Benefitting from UDFs . 357

Maintaining Reusable Code . 357

Cross-Referencing Natural Key Values . 359

Replacing Views with Multi-Statement UDFs . 362

UDT Basics . 365

Creating and Using User-Defined Types . 365

Identifying Columns and Parameters with Dependencies
on User-Defined Types . 367

Dropping User-Defined Types . 368

Passing Table-Valued Parameters . 369

■CHAPTER 12 Triggers . 373

DML Triggers . 374

Creating an AFTER DML Trigger. 375

Creating an INSTEAD OF DML Trigger . 378

Handling Transactions Within DML Triggers. 381

Controlling DML Triggers Based on Modified Columns 384

Viewing DML Trigger Metadata . 385

DDL Triggers. 386

Creating a DDL Trigger That Audits Database-Level Events 387

Creating a DDL Trigger That Audits Server-Level Events 389

Using a Logon Trigger . 390

Viewing DDL Trigger Metadata. 392

Managing Triggers. 393

Modifying a Trigger . 393

Enabling and Disabling Table Triggers . 394

Limiting Trigger Nesting . 395

Controlling Trigger Recursion . 396

Setting Trigger Firing Order . 397

Dropping a Trigger . 399

■CONTENTS xv

9802FM.qxd 6/25/08 11:40 AM Page xv

■CHAPTER 13 CLR Integration . 401

CLR Overview . 402

When (and When Not) to Use Assemblies . 402

CLR Objects Overview . 404

Creating CLR Database Objects . 404

Enabling CLR Support in SQL Server . 405

Writing an Assembly for a CLR Stored Procedure 405

Compiling an Assembly into a DLL File . 408

Loading the Assembly into SQL Server . 409

Creating the CLR Stored Procedure . 410

Creating a CLR Scalar User-Defined Function . 412

Creating a CLR Trigger . 415

Administering Assemblies. 417

Viewing Assembly Metadata. 417

Modifying an Assembly’s Permissions . 417

Removing an Assembly from the Database . 418

■CHAPTER 14 XML, Hierarchies, and Spatial Data . 419

Working with Native XML . 419

Creating XML Data Type Columns . 419

Inserting XML Data into a Column . 421

Validating XML Data Using Schemas. 422

Retrieving XML Data . 424

Modifying XML Data . 427

Indexing XML Data. 428

Converting Between XML Documents and Relational Data 430

Formatting Relational Data As XML . 430

Converting XML to a Relational Form . 433

Working with Native Hierarchical Data . 435

Storing Hierarchical Data . 435

Returning a Specific Ancestor . 438

Returning Child Nodes. 439

Returning a Node’s Depth. 440

Returning the Root Node. 440

Determining Whether a Node Is a Child of the Current Node 441

Changing Node Locations . 441

Native Spatial Data . 442

Storing Spatial Data. 442

Querying Spatial Data . 445

■CONTENTSxvi

9802FM.qxd 6/25/08 11:40 AM Page xvi

■CHAPTER 15 Hints . 449

Using Join Hints . 449

Forcing a HASH Join . 450

Using Query Hints. 451

Forcing a Statement Recompile . 452

Using Table Hints . 454

Executing a Query Without Locking . 456

Forcing a SEEK over a SCAN. 456

■CHAPTER 16 Error Handling . 459

System-Defined and User-Defined Error Messages. 459

Viewing System Error Information . 459

Creating a User-Defined Error Message . 460

Dropping a User-Defined Error Message. 462

Manually Raising an Error . 462

Invoking an Error Message . 463

Trapping and Handling Application Errors . 465

Old-Style Error Handling . 466

Error Handling with TRY...CATCH . 468

Applying Error Handling Without Recoding a Stored Procedure 470

Nesting Error Handling . 471

■CHAPTER 17 Principals . 475

Windows Principals . 475

Creating a Windows Login . 476

Viewing Windows Logins . 477

Altering a Windows Login . 478

Dropping a Windows Login . 479

Denying SQL Server Access to a Windows User or Group. 480

SQL Server Principals . 480

Creating a SQL Server Login. 482

Viewing SQL Server Logins. 482

Altering a SQL Server Login . 483

Managing a Login’s Password . 484

Dropping a SQL Login . 485

Managing Server Role Members . 485

Reporting Fixed Server Role Information. 486

Database Principals . 488

Creating Database Users. 489

Reporting Database User Information . 490

Modifying a Database User. 490

■CONTENTS xvii

9802FM.qxd 6/25/08 11:40 AM Page xvii

Removing a Database User from the Database . 491

Fixing Orphaned Database Users . 491

Reporting Fixed Database Roles Information . 493

Managing Fixed Database Role Membership . 494

Managing User-Defined Database Roles. 495

Managing Application Roles . 497

■CHAPTER 18 Securables, Permissions, and Auditing . 501

Permissions Overview . 502

Reporting SQL Server Assignable Permissions. 503

Server-Scoped Securables and Permissions . 505

Managing Server Permissions . 507

Querying Server-Level Permissions. 508

Database-Scoped Securables and Permissions . 509

Managing Database Permissions. 510

Querying Database Permissions. 511

Schema-Scoped Securables and Permissions . 514

Managing Schemas . 516

Managing Schema Permissions . 517

Object Permissions . 519

Managing Object Permissions . 521

Managing Permissions Across Securable Scopes . 522

Determining a Current Connection’s Permissions to a Securable 522

Reporting the Permissions for a Principal by Securable Scope 523

Changing Securable Ownership . 527

Allowing SQL Logins to Access Non-SQL Server Resources. 528

Auditing SQL Instance and Database-Level Activity of Principals
Against Securables. 529

Defining Audit Data Sources. 530

Capturing SQL Instance–Scoped Events . 533

Capturing Database-Scoped Events . 535

Querying Captured Audit Data . 539

Managing, Modifying, and Removing Audit Objects. 543

■CHAPTER 19 Encryption . 547

Encryption by Passphrase . 547

Using a Function to Encrypt by Passphrase . 548

Master Keys . 550

Backing Up and Restoring a Service Master Key . 550

Creating, Regenerating, and Dropping a Database Master Key 551

■CONTENTSxviii

9802FM.qxd 6/25/08 11:40 AM Page xviii

Backing Up and Restoring a Database Master Key 553

Removing Service Master Key Encryption from the Database
Master Key . 554

Asymmetric Key Encryption . 555

Creating an Asymmetric Key . 555

Viewing Asymmetric Keys in the Current Database 556

Modifying the Asymmetric Key’s Private Key Password 557

Encrypting and Decrypting Data Using an Asymmetric Key 557

Dropping an Asymmetric Key . 560

Symmetric Key Encryption . 560

Creating a Symmetric Key . 560

Viewing Symmetric Keys in the Current Database 562

Changing How a Symmetric Key Is Encrypted . 562

Using Symmetric Key Encryption and Decryption 563

Dropping a Symmetric Key . 567

Certificate Encryption . 567

Creating a Database Certificate . 567

Viewing Certificates in the Database . 568

Backing Up and Restoring a Certificate . 569

Managing a Certificate’s Private Key . 570

Using Certificate Encryption and Decryption. 571

Automatically Opening and Decrypting via a Symmetric Key 573

Transparent Data Encryption . 575

Enabling Transparent Data Encryption . 575

Managing and Removing TDE . 576

■CHAPTER 20 Service Broker . 579

Example Scenario: Online Bookstore . 580

Creating a Basic Service Broker Application . 580

Enabling Databases for Service Broker Activity . 581

Creating the Database Master Key for Encryption 582

Managing Message Types . 582

Creating Contracts . 584

Creating Queues . 585

Creating Services. 587

Initiating a Dialog . 589

Querying the Queue for Incoming Messages . 591

Receiving and Responding to a Message . 591

Ending a Conversation. 594

Prioritizing Service Broker Conversations . 596

■CONTENTS xix

9802FM.qxd 6/25/08 11:40 AM Page xix

Creating a Stored Procedure to Process Messages . 598

Creating the Bookstore Stored Procedure. 598

Remote-Server Service Broker Implementations . 601

Enabling Transport Security . 603

Enabling Dialog Security . 606

Creating Routes and Remote Service Bindings . 608

Event Notifications . 612

Capturing Login Commands . 612

■CHAPTER 21 Configuring and Viewing SQL Server Options 615

Viewing SQL Server Configurations . 615

Changing SQL Server Configurations. 617

■CHAPTER 22 Creating and Configuring Databases . 621

Creating, Altering, and Dropping Databases . 621

Creating a Database with a Default Configuration 622

Viewing Database Information . 622

Creating a Database Using File Options . 624

Creating a Database with a User-Defined Filegroup 627

Setting Database User Access . 628

Renaming a Database . 631

Dropping a Database. 632

Detaching a Database . 632

Attaching a Database . 634

Configuring Database Options . 635

Viewing Database Options . 636

Configuring ANSI SQL Options . 636

Configuring Automatic Options. 638

Creating or Modifying a Database to Allow External Access. 640

Creating or Changing a Database to Use a Non-Server
Default Collation . 641

Configuring Cursor Options. 642

Enabling Date Correlation Optimization. 643

Modifying Database Parameterization Behavior . 644

Enabling Read Consistency for a Transaction. 647

Configuring Database Recovery Models . 649

Configuring Page Verification . 650

Controlling Database Access and Ownership . 651

Changing a Database State to Online, Offline, or Emergency 652

Changing a Database Owner . 653

■CONTENTSxx

9802FM.qxd 6/25/08 11:40 AM Page xx

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Managing Database Files and Filegroups . 654

Adding a Data File or Log File to an Existing Database 654

Removing a Data or Log File from a Database . 656

Relocating a Data or Transaction Log File. 657

Changing a File’s Logical Name. 658

Increasing a Database’s File Size and Modifying Its
Growth Options. 659

Adding a Filegroup to an Existing Database . 660

Setting the Default Filegroup . 660

Removing a Filegroup . 661

Making a Database or Filegroup Read-Only . 662

Viewing and Managing Database Space Usage . 663

Viewing Database Space Usage. 663

Shrinking the Database or a Database File . 665

■CHAPTER 23 Database Integrity and Optimization . 669

Database Integrity Checking. 669

Checking Consistency of the Disk Space Allocation Structures
with DBCC CHECKALLOC. 670

Checking Allocation and Structural Integrity with DBCC CHECKDB 672

Tables and Constraints . 674

Checking Allocation and Structural Integrity of All Tables in
a Filegroup Using DBCC CHECKFILEGROUP. 675

Checking Data Integrity for Tables and Indexed Views Using
DBCC CHECKTABLE . 676

Checking Table Integrity with DBCC CHECKCONSTRAINTS. 679

Checking System Table Consistency with DBCC CHECKCATALOG. 681

Index Maintenance. 682

Rebuilding Indexes. 682

Defragmenting Indexes . 685

Rebuilding a Heap . 686

■CHAPTER 24 Maintaining Database Objects and
Object Dependencies. 687

Database Object Maintenance . 687

Changing the Name of a User-Created Database Object. 687

Changing an Object’s Schema . 689

Object Dependencies. 690

Identifying Object Dependencies . 690

Identifying Referencing and Referenced Entities . 692

Viewing an Object’s Definition . 694

■CONTENTS xxi

9802FM.qxd 6/25/08 11:40 AM Page xxi

■CHAPTER 25 Database Mirroring. 697

Database Mirroring in Context . 697

Database Mirroring Architecture . 698

Setting Up Database Mirroring . 700

Creating Mirroring Endpoints . 700

Backing Up and Restoring Principal Databases . 705

Creating a Database Mirroring Session . 707

Setup Summary . 709

Operating Database Mirroring . 710

Changing Operating Modes . 711

Performing Failovers . 712

Pausing or Resuming a Mirroring Session . 713

Stopping Mirroring Sessions and Removing Endpoints 714

Monitoring and Configuring Options . 714

Monitoring Mirror Status . 714

Configuring the Connection Timeout Period . 715

■CHAPTER 26 Database Snapshots . 717

Snapshot Basics. 717

Creating and Querying Database Snapshots. 718

Removing a Database Snapshot . 719

Recovering Data with a Database Snapshot . 720

■CHAPTER 27 Linked Servers and Distributed Queries . 723

Linked Server Basics . 723

Creating a Linked Server to Another SQL Server Instance 724

Configuring Linked Server Properties . 725

Viewing Linked Server Information . 727

Dropping a Linked Server . 727

Linked Server Logins . 728

Adding a Linked Server Login Mapping. 728

Viewing Linked Logins. 729

Dropping a Linked Server Login Mapping . 730

Executing Distributed Queries . 730

Executing Distributed Queries Against a Linked Server. 730

Creating and Using an Alias to Reference Four-Part Linked
Server Names . 732

Executing Distributed Queries Using OPENQUERY 733

Executing Ad Hoc Queries Using OPENROWSET. 733

Reading Data from a File Using OPENROWSET BULK Options 735

■CONTENTSxxii

9802FM.qxd 6/25/08 11:40 AM Page xxii

■CHAPTER 28 Query Performance Tuning . 739

Query Performance Tips . 740

Capturing and Evaluating Query Performance . 742

Capturing Executing Queries Using sys.dm_exec_requests 742

Viewing Estimated Query Execution Plans Using
Transact-SQL Commands . 743

Viewing Execution Runtime Information . 746

Viewing Performance Statistics for Cached Query Plans. 748

Viewing Aggregated Performance Statistics Based on Query
or Plan Patterns . 750

Identifying the Top Bottleneck . 752

Identifying I/O Contention by Database and File. 753

Index Tuning . 754

Displaying Index Fragmentation. 756

Displaying Index Usage . 759

Statistics . 760

Manually Creating Statistics . 760

Creating Statistics on a Subset of Rows . 761

Updating Statistics. 762

Generating and Updating Statistics Across All Tables 763

Viewing Statistics Details . 765

Removing Statistics . 766

Miscellaneous Techniques . 766

Using an Alternative to Dynamic SQL . 767

Forcing SQL Server to Use a Query Plan . 769

Applying Hints Without Modifying Application SQL 771

Creating Plan Guides from Cache . 775

Checking the Validity of a Plan Guide . 777

Parameterizing a Non-parameterized Query Using Plan Guides. 778

Limiting Competing Query Resource Consumption 781

■CHAPTER 29 Backup and Recovery . 789

Creating a Backup and Recovery Plan. 789

Making Backups. 791

Performing a Basic Full Backup . 793

Compressing Your Backups . 794

Naming and Describing Your Backups and Media 796

Configuring Backup Retention . 797

Striping Backup Sets . 799

Using a Named Backup Device . 799

Mirroring Backup Sets. 801

■CONTENTS xxiii

9802FM.qxd 6/25/08 11:40 AM Page xxiii

Performing a Transaction Log Backup . 803

Create Backups Without Breaking the Backup Sequence 804

Performing a Differential Backup . 805

Backing Up Individual Files or Filegroups . 805

Performing a Partial Backup. 807

Viewing Backup Metadata . 808

Restoring a Database . 810

Restoring a Database from a Full Backup. 810

Restoring a Database from a Transaction Log Backup 812

Restoring a Database from a Differential Backup 815

Restoring a File or Filegroup. 816

Performing a Piecemeal (PARTIAL) Restore . 818

Restoring a Page . 819

Identifying Databases with Multiple Recovery Paths 820

■INDEX . 823

■CONTENTSxxiv

9802FM.qxd 6/25/08 11:40 AM Page xxiv

About the Author

■JOSEPH SACK is a dedicated support engineer in the Microsoft Premier Field
Engineering organization and has worked with SQL Server since 1997. He is
the author of SQL Server 2005 T-SQL Recipes (Apress, 2005) and SQL Server
2000 Fast Answers for DBAs and Developers (Apress, 2005). He coauthored
Pro SQL Server 2005 (Apress, 2005) and Beginning SQL Server 2000 DBA: From
Novice to Professional (Apress, 2004). Joseph graduated with an associate’s
degree in arts from Bard College at Simon’s Rock and earned a bachelor’s
degree in psychology from the University of Minnesota. You can reach Joseph
on his blog, www.joesack.com.

xxv

9802FM.qxd 6/25/08 11:40 AM Page xxv

http://www.joesack.com

9802FM.qxd 6/25/08 11:40 AM Page xxvi

About the Technical Reviewer

■EVAN TERRY is the chief technical consultant for The Clegg Company,
specializing in data management and information architecture. His past
and current clients include the State of Idaho, Albertsons, American Honda
Motors, Toyota Motor Sales, The Polk Company, and General Motors. He is
the coauthor of Apress’s Beginning Relational Data Modeling, has published
articles in DM Review, and has presented at the IAIDQ and DAMA Interna-
tional conferences. For questions or consulting needs, Evan can be contacted
at evan_terry@cleggcompany.com.

xxvii

9802FM.qxd 6/25/08 11:40 AM Page xxvii

mailto:terry@cleggcompany.com

9802FM.qxd 6/25/08 11:40 AM Page xxviii

Acknowledgments

This book is dedicated to David Hatch, and to the family members, friends, and coworkers who
helped us get through a very challenging year. From Guillain-Barré syndrome to a broken foot—you
were there for us, and we are very lucky to have you in our lives.

During the 9-month writing process, the Apress team helped facilitate a very positive and
smooth experience. I want to thank the lead editor, Jonathan Gennick, who was responsive, collab-
orative, and an all-around great guy to work with. I also appreciate Evan Terry’s astute and detailed
technical editing—thanks for coming back for a second round!

I also want to thank the amazing Susannah Davidson Pfalzer for her excellent project manage-
ment skills and positive voice. Thank you also to the keen-eyed Ami Knox, who put the critical
finishing touches on this work, and also to Laura Cheu, for the production editing and patience
with my last-minute changes.

Lastly—thank you to the rest of the behind-the-scenes Apress team who I may not have met
over e-mail or the phone, but who still deserve credit for bringing this book to the market.

xxix

9802FM.qxd 6/25/08 11:40 AM Page xxix

9802FM.qxd 6/25/08 11:40 AM Page xxx

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction

The purpose of this book is to quickly provide you with the skills you need to solve problems and
perform tasks using the Transact-SQL language. I wrote this book in a problem/solution format in
order to establish an immediate understanding of a task and its associated Transact-SQL solution.
You can use this book to look up the task you want to perform, read how to do it, and then perform
the task on your own system. While writing this book, I followed a few key tenets:

• Keep it brief, providing just enough information needed to get the job done.

• Allow recipes and chapters to stand alone—keeping cross-references and distractions to a
tolerable minimum.

• Focus on features that are typically implemented entirely using Transact-SQL. For example,
I cover the new Resource Governor feature because it will typically be deployed by DBAs
using Transact-SQL—whereas I do not cover Policy-Based Management due to its underlying
dependencies on SQL Server Agent, SQL Server Management Objects (SMO), and SQL Server
Management Studio. Fortunately, most of the new SQL Server engine improvements are
entirely Transact-SQL based, and therefore are included in this book.

• Write recipes that help a range of skill sets, from novice to professional. I begin each chapter
with basic recipes and progressively work up to more advanced topics.

Regarding new SQL Server 2008 features, I have interwoven them throughout the book in the
chapters where they apply. If you are just looking for a refresh on new Transact-SQL features, I
specifically call them out at the beginning of each chapter in which they exist.

Although a key tenet of this book is to keep things brief, you’ll notice that this book is still quite
large. This is a consequence of the continually expanding SQL Server feature set; however, rest
assured that the recipes contained within are still succinct and constructed in such a way as to
quickly give you the answers you need to get the job done.

I’ve written this book for SQL Server developers, administrators, application developers, and IT
generalists who are tasked with developing databases or administering a SQL Server environment.
You can read this book from start to finish or jump around to topics that interest you. You can use
this book to brush up on topics before a job interview or an exam. Even for the more experienced
SQL Server professionals, memory fades—and this book can help quickly refresh your memory on
the usage of a command or technique.

Thanks for reading!

xxxi

9802FM.qxd 6/25/08 11:40 AM Page xxxi

9802FM.qxd 6/25/08 11:40 AM Page xxxii

SELECT

In this chapter, I include recipes for returning data from a SQL Server database using the SELECT
statement. At the beginning of each chapter, you’ll notice that most of the basic concepts are cov-
ered first. This is for those of you who are new to the SQL Server 2008 Transact-SQL query language.
In addition to the basics, I’ll also provide recipes that can be used in your day-to-day development
and administration. These recipes will also help you learn about the new functionality introduced
in SQL Server 2008.

A majority of the examples in this book use the AdventureWorks database (SQL Server 2008
OLTP version), which can be downloaded online from the CodePlex site (www.codeplex.com),
under the “Microsoft SQL Server Product Samples: Database” project. Look for the file named
AdventureWorks2008.msi. Also, if you do decide to follow along with the recipe examples, I strongly
recommend that you do so with a non-production learning environment. This will give you the
freedom to experiment without negative consequences.

Brevity and simplicity is a key tenet of this book, so when initially describing a new T-SQL
concept, I’ll distill syntax blocks down to only the applicable code required. If an example doesn’t
require a syntax block in order to illustrate a concept or task, I won’t include one. For full syntax, you
can always reference Books Online, so instead of rehashing what you’ll already have access to, I’ll
focus only on the syntax that applies to the recipe. Regarding the result sets returned from the
recipes in this book, I’ll often pare down the returned columns and rows shown on the page.

SQL Server 2008 new features will be interwoven throughout the book. For those more signifi-
cant improvements, I’ll call them out at the beginning of the chapter so that you know to look out
for them. The new SQL Server 2008 features I cover in this chapter include

• New extensions to the GROUP BY clause that allow you to generate multiple grouping result
sets within the same query without having to use UNION ALL

• A new method of initializing a variable on declaration, allowing you to reduce the code
needed to set a variable’s value

You can read the recipes in this book in almost any order. You can skip to the topics that inter-
est you or read it through sequentially. If you see something that is useful to you, perhaps a code
chunk or example that you can modify for your own purposes or integrate into a stored procedure
or function, then this book has been successful.

The Basic SELECT Statement
The SELECT command is the cornerstone of the Transact-SQL language, allowing you to retrieve data
from a SQL Server database (and more specifically from database objects within a SQL Server data-
base). Although the full syntax of the SELECT statement is enormous, the basic syntax can be
presented in a more boiled-down form:

1

C H A P T E R 1

9802CH01.qxd 4/11/08 9:55 AM Page 1

http://www.codeplex.com

SELECT select_list
FROM table_list

The select_list argument shown in the previous code listing is the list of columns that you
wish to return in the results of the query. The table_list arguments are the actual tables and or
views that the data will be retrieved from.

The next few recipes will demonstrate how to use a basic SELECT statement.

Selecting Specific Columns from a Table
This example demonstrates a very simple SELECT query against the AdventureWorks database,
whereby three columns are returned, along with several rows from the HumanResources.Employee
table. Explicit column naming is used in the query:

USE AdventureWorks
GO

SELECT NationalIDNumber,
LoginID,
JobTitle

FROM HumanResources.Employee

The query returns the following abridged results:

NationalIDNumber LoginID JobTitle
295847284 adventure-works\ken0 Chief Executive Officer
245797967 adventure-works\terri0 Vice President of Engineering
509647174 adventure-works\roberto0 Engineering Manager
112457891 adventure-works\rob0 Senior Tool Designer
...
954276278 adventure-works\rachel0 Sales Representative
668991357 adventure-works\jae0 Sales Representative
134219713 adventure-works\ranjit0 Sales Representative

(290 row(s) affected)

How It Works
The first line of code sets the context database context of the query. Your initial database context,
when you first log in to SQL Server Management Studio (SSMS), is defined by your login’s default
database. USE followed by the database name changes your connection context:

USE AdventureWorks
GO

The SELECT query was used next. The few lines of code define which columns to display in the
query results:

SELECT NationalIDNumber,
LoginID,
JobTitle

The next line of code is the FROM clause:

FROM HumanResources.Employee

CHAPTER 1 ■ SELECT2

9802CH01.qxd 4/11/08 9:55 AM Page 2

The FROM clause is used to specify the data source, which in this example is a table. Notice the
two-part name of HumanResources.Employee. The first part (the part before the period) is the schema,
and the second part (after the period) is the actual table name. A schema contains the object, and
that schema is then owned by a user. Because users own a schema, and the schema contains the
object, you can change the owner of the schema without having to modify object ownership.

Selecting Every Column for Every Row
If you wish to show all columns from the data sources in the FROM clause, you can use the following
query:

USE AdventureWorks
GO
SELECT *
FROM HumanResources.Employee

The abridged column and row output is shown here:

BusinessEntityID NationalIDNumber LoginID OrganizationNode
1 295847284 adventure-works\ken0 0x
2 245797967 adventure-works\terri0 0x58
3 509647174 adventure-works\roberto0 0x5AC0
4 112457891 adventure-works\rob0 0x5AD6
...

How It Works
The asterisk symbol (*) returns all columns for every row of the table or view you are querying. All
other details are as explained in the previous recipe.

Please remember that, as good practice, it is better to explicitly reference the columns you
want to retrieve instead of using SELECT *. If you write an application that uses SELECT *, your
application may expect the same columns (in the same order) from the query. If later on you add a
new column to the underlying table or view, or if you reorder the table columns, you could break
the calling application, because the new column in your result set is unexpected. Using SELECT *
can also negatively impact performance, as you may be returning more data than you need over the
network, increasing the result set size and data retrieval operations on the SQL Server instance. For
applications requiring thousands of transactions per second, the number of columns returned in
the result set can have a non-trivial impact.

Selective Querying Using a Basic WHERE Clause
In a SELECT query, the WHERE clause is used to restrict rows returned in the query result set. The sim-
plified syntax for including the WHERE clause is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]

The WHERE clause uses search conditions that determine the rows returned by the query. Search
conditions use predicates, which are expressions that evaluate to TRUE, FALSE, or UNKNOWN.

CHAPTER 1 ■ SELECT 3

9802CH01.qxd 4/11/08 9:55 AM Page 3

UNKNOWN values can make their appearance when NULL data is accessed in the search condition.
A NULL value doesn’t mean that the value is blank or zero—only that the value is unknown. Also, two
NULL values are not equal and cannot be compared without producing an UNKNOWN result.

The next few recipes will demonstrate how to use the WHERE clause to specify which rows are
and aren’t returned in the result set.

Using the WHERE Clause to Specify Rows Returned in the
Result Set
This basic example demonstrates how to select which rows are returned in the query results:

SELECT Title,
FirstName,
LastName

FROM Person.Person
WHERE Title = 'Ms.'

This example returns the following (abridged) results:

Title FirstName LastName
Ms. Gail Erickson
Ms. Janice Galvin
Ms. Jill Williams
Ms. Catherine Abel
...
Ms. Abigail Coleman
Ms. Angel Gray
Ms. Amy Li

(415 row(s) affected)

How It Works
In this example, you can see that only rows where the person’s title was equal to Ms. were returned.
This search condition was defined in the WHERE clause of the query:

WHERE Title = 'Ms.'

Only one search condition was used in this case; however, an almost unlimited number of
search conditions can be used in a single query, as you’ll see in the next recipe.

Combining Search Conditions
This recipe will demonstrate connecting multiple search conditions by utilizing the AND, OR, and NOT
logical operators. The AND logical operator joins two or more search conditions and returns the row
or rows only when each of the search conditions is true. The OR logical operator joins two or more
search conditions and returns the row or rows in the result set when any of the conditions are true.

In this first example, two search conditions are used in the WHERE clause, separated by the AND
operator. The AND means that for a given row, both search conditions must be true for that row to be
returned in the result set:

SELECT Title,
FirstName,
LastName

CHAPTER 1 ■ SELECT4

9802CH01.qxd 4/11/08 9:55 AM Page 4

FROM Person.Person
WHERE Title = 'Ms.' AND

LastName = 'Antrim'

This returns the following results:

Title FirstName LastName
Ms. Ramona Antrim

(1 row(s) affected)

In this second example, an OR operator is used for the two search conditions instead of an AND,
meaning that if either search condition evaluates to TRUE for a row, that row will be returned:

SELECT Title,
FirstName,
LastName

FROM Person.Person
WHERE Title = 'Ms.' OR

LastName = 'Antrim'

This returns the following (abridged) results:

Title FirstName LastName
Ms. Gail Erickson
Ms. Janice Galvin
...
Ms. Ramona Antrim
...
Ms. Abigail Coleman
Ms. Angel Gray
Ms. Amy Li

(415 row(s) affected)

How It Works
In the first example, two search conditions were joined using the AND operator:

WHERE Title = 'Ms.' AND
LastName = 'Antrim'

As you add search conditions to your query, you join them by the logical operators AND and OR.
For example, if both the Title equals Ms. and the LastName equals Antrim, any matching row or rows
will be returned. The AND operator dictates that both joined search conditions must be true in order
for the row to be returned.

The OR operator, on the other hand, returns rows if either search condition is TRUE, as the third
example demonstrated:

WHERE Title = 'Ms.' OR
LastName = 'Antrim'

So instead of a single row as the previous query returned, rows with a Title of Ms. or a LastName
of Antrim were returned.

CHAPTER 1 ■ SELECT 5

9802CH01.qxd 4/11/08 9:55 AM Page 5

Negating a Search Condition
The NOT logical operator, unlike AND and OR, isn’t used to combine search conditions, but instead is
used to negate the expression that follows it.

This next example demonstrates using the NOT operator for reversing the result of the following
search condition and qualifying the Title to be equal to Ms. (reversing it to anything but Ms.):

SELECT Title,
FirstName,
LastName

FROM Person.Person
WHERE NOT Title = 'Ms.'

This returns the following (abridged) results:

Title FirstName LastName
Mr. Jossef Goldberg
Mr. Hung-Fu Ting
Mr. Brian Welcker
Mr. Tete Mensa-Annan
Mr. Syed Abbas
Mr. Gustavo Achong
Sr. Humberto Acevedo
Sra. Pilar Ackerman
...

How It Works
This example demonstrated the NOT operator:

WHERE NOT Title = 'Ms.'

NOT specifies the reverse of a search condition, in this case specifying that only rows that don’t
have the Title equal to Ms. be returned.

Keeping Your WHERE Clause Unambiguous
You can use multiple operators (AND, OR, NOT) in a single WHERE clause, but it is important to make
your intentions clear by properly embedding your ANDs and ORs in parentheses. The AND operator
limits the result set, and the OR operator expands the conditions for which rows will be returned.
When multiple operators are used in the same WHERE clause, operator precedence is used to deter-
mine how the search conditions are evaluated (similar to order of operations used in arithmetic and
algebra). For example, the NOT operator takes precedence (is evaluated first) before AND. The AND
operator takes precedence over the OR operator. Using both AND and OR operators in the same WHERE
clause without using parentheses can return unexpected results.

For example, the following query may return unintended results:

SELECT Title,
FirstName,
LastName

FROM Person.Person
WHERE Title = 'Ms.' AND

FirstName = 'Catherine' OR
LastName = 'Adams'

CHAPTER 1 ■ SELECT6

9802CH01.qxd 4/11/08 9:55 AM Page 6

This returns the following (abridged) results:

Title FirstName LastName
NULL Jay Adams
Ms. Catherine Abel
Ms. Frances Adams
Ms. Carla Adams
Mr. Jay Adams
Mr. Ben Adams
Ms. Catherine Whitney
...

Was the intention of this query to return results for all rows with a Title of Ms., and of those
rows, only include those with a FirstName of Catherine or a LastName of Adams? Or did the query
author wish to search for all people named Ms. with a FirstName of Catherine, as well as anyone
with a LastName of Adams?

A query that uses both AND and OR should always use parentheses to clarify exactly what
rows should be returned. For example, this next query returns anyone with a Title of Ms. and a
FirstName equal to Catherine. It also returns anyone else with a LastName of Adams—regardless of
Title and FirstName:

SELECT Title,
FirstName,
MiddleName,
LastName

FROM Person.Person
WHERE (Title = 'Ms.' AND

FirstName = 'Catherine') OR
LastName = 'Adams'

How It Works
Use parentheses to clarify multiple operator WHERE clauses. Parentheses assist in clarifying a query
as they help SQL Server identify the order that expressions should be evaluated. Search conditions
enclosed in parentheses are evaluated in an inner-to-outer order, so in the example from this
recipe, the following search conditions were evaluated first:

(Title = 'Ms.' AND
FirstName = 'Catherine')

before evaluating the outside OR search expression:

LastName = 'Adams'

Using Operators and Expressions
So far, this chapter has used the = (equals) operator to designate what the value of a column in the
result set should be. The = comparison operator tests the equality of two expressions. An expression
is a combination of values, identifiers, and operators evaluated by SQL Server in order to return a
result (for example, return TRUE or FALSE or UNKNOWN).

Table 1-1 lists some of the operators you can use in a search condition.

CHAPTER 1 ■ SELECT 7

9802CH01.qxd 4/11/08 9:55 AM Page 7

Table 1-1. Operators

Operator Description

!= Tests two expressions not being equal to each other.

!> Tests that the left condition is not greater than the expression to the right.

!< Tests that the right condition is not greater than the expression to the right.

< Tests the left condition as less than the right condition.

<= Tests the left condition as less than or equal to the right condition.

<> Tests two expressions not being equal to each other.

= Tests equality between two expressions.

> Tests the left condition being greater than the expression to the right.

>= Tests the left condition being greater than or equal to the expression to the right.

ALL When used with a comparison operator and subquery, retrieves rows if all
retrieved values satisfy the search condition.

ANY When used with a comparison operator and subquery, retrieves rows if any
retrieved values satisfy the search condition.

BETWEEN Designates an inclusive range of values. Used with the AND clause between the
beginning and ending values. This operator is useful for data comparisons.

CONTAINS Does a fuzzy search for words and phrases.

ESCAPE Allows you to designate that a wildcard character be interpreted as a literal value
instead. This is used in conjunction with the LIKE operator. For example, the
percentage (%), underscore (_), and square brackets ([]) all have wildcard
meanings within the context of a pattern search using LIKE. If you would like
to find the actual percentage character explicitly, you must define the ESCAPE
character that will precede the wildcard value, indicating that it is a literal
character.

EXISTS When used with a subquery, tests for the existence of rows in the subquery.

FREETEXT Searches character-based data for words using meaning, rather than literal values.

IN Provides an inclusive list of values for the search condition.

IS NOT NULL Evaluates whether the value is NOT NULL.

IS NULL Evaluates whether the value is NULL.

LIKE Tests character string for pattern matching.

NOT BETWEEN Specifies a range of values NOT to include. Used with the AND clause between the
beginning and ending values.

NOT IN Provides a list of values for which NOT to return rows.

NOT LIKE Tests character string, excluding those with pattern matches.

SOME When used with a comparison operator and subquery, retrieves rows if any
retrieved values satisfy the search condition.

As you can see from Table 1-1, SQL Server 2008 includes several operators that can be used
within query expressions. Specifically, in the context of a WHERE clause, operators can be used to
compare two expressions, and also check whether a condition is TRUE, FALSE, or UNKNOWN.

■Note SQL Server 2008 also introduces new assignment operators, which I’ll discuss in Chapter 2.

CHAPTER 1 ■ SELECT8

9802CH01.qxd 4/11/08 9:55 AM Page 8

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The next few recipes will demonstrate how the different operators are used within search
expressions.

Using BETWEEN for Date Range Searches
This example demonstrates the BETWEEN operator, used to designate sales orders that occurred
between the dates 7/28/2002 and 7/29/2002:

SELECT SalesOrderID,
ShipDate

FROM Sales.SalesOrderHeader
WHERE ShipDate BETWEEN '7/28/2002 00:00:00' AND '7/29/2002 23:59:59'

The query returns the following results:

SalesOrderID ShipDate
46845 2002-07-28 00:00:00.000
46846 2002-07-28 00:00:00.000
46847 2002-07-28 00:00:00.000
46848 2002-07-28 00:00:00.000
46849 2002-07-28 00:00:00.000
46850 2002-07-28 00:00:00.000
46851 2002-07-28 00:00:00.000
46852 2002-07-28 00:00:00.000
46853 2002-07-28 00:00:00.000
46854 2002-07-28 00:00:00.000
46855 2002-07-29 00:00:00.000
46856 2002-07-29 00:00:00.000
46857 2002-07-29 00:00:00.000
46858 2002-07-29 00:00:00.000
46859 2002-07-29 00:00:00.000
46860 2002-07-29 00:00:00.000
46861 2002-07-29 00:00:00.000

(17 row(s) affected)

How It Works
The exercise demonstrated the BETWEEN operator, which tested whether or not a column’s ShipDate
value fell between two dates:

WHERE ShipDate BETWEEN '7/28/2002 00:00:00' AND '7/29/2002 23:59:59'

Notice that I designated the specific time in hours, minutes, and seconds as well. Had I just
designated 7/29/2002, I would have only included 00:00:00 in the range.

Using Comparisons
This next example demonstrates the < (less than) operator, which is used in this query to show only
products with a standard cost below $110.00:

SELECT ProductID,
Name,
StandardCost

FROM Production.Product
WHERE StandardCost < 110.0000

CHAPTER 1 ■ SELECT 9

9802CH01.qxd 4/11/08 9:55 AM Page 9

This query returns the following (abridged) results:

ProductID Name StandardCost
1 Adjustable Race 0.00
2 Bearing Ball 0.00
3 BB Ball Bearing 0.00
4 Headset Ball Bearings 0.00
...
994 LL Bottom Bracket 23.9716
995 ML Bottom Bracket 44.9506
996 HL Bottom Bracket 53.9416

(317 row(s) affected)

How It Works
This example demonstrated the < operator, returning all rows with a StandardCost less than
110.0000:

WHERE StandardCost < 110.0000

Checking for NULL Values
This next query tests for the NULL value of a specific column. A NULL value does not mean that the
value is blank or zero—only that the value is unknown. This query returns any rows where the value
of the product’s weight is unknown:

SELECT ProductID,
Name,
Weight

FROM Production.Product
WHERE Weight IS NULL

This query returns the following (abridged) results:

ProductID Name Weight
1 Adjustable Race NULL
2 Bearing Ball NULL
3 BB Ball Bearing NULL
4 Headset Ball Bearings NULL
...
(299 row(s) affected)

How It Works
This example demonstrated the IS NULL operator, returning any rows where the Weight value was
unknown:

WHERE Weight IS NULL

CHAPTER 1 ■ SELECT10

9802CH01.qxd 4/11/08 9:55 AM Page 10

Returning Rows Based on a List of Values
In this example, the IN operator validates the equality of the Color column to a list of expressions:

SELECT ProductID,
Name,
Color

FROM Production.Product
WHERE Color IN ('Silver', 'Black', 'Red')

This returns the following (abridged) results:

ProductID Name Color
317 LL Crankarm Black
318 ML Crankarm Black
319 HL Crankarm Black
...
725 LL Road Frame - Red, 44 Red
739 HL Mountain Frame - Silver, 42 Silver
(174 row(s) affected)

How It Works
This example demonstrated the IN operator, returning all products that had a Silver, Black, or Red
color:

WHERE Color IN ('Silver', 'Black', 'Red')

Using Wildcards with LIKE
Wildcards are used in search expressions to find pattern matches within strings. In SQL Server 2008,
you have the wildcard options described in Table 1-2.

Table 1-2. Wildcards

Wildcard Usage

% Represents a string of zero or more characters

_ Represents a single character

[] Specifies a single character, from a selected range or list

[^] Specifies a single character not within the specified range

This example demonstrates using the LIKE operation with the % wildcard, searching for any
product with a name starting with the letter B:

SELECT ProductID,
Name

FROM Production.Product
WHERE Name LIKE 'B%'

This returns the following results:

CHAPTER 1 ■ SELECT 11

9802CH01.qxd 4/11/08 9:55 AM Page 11

ProductID Name
3 BB Ball Bearing
2 Bearing Ball
877 Bike Wash - Dissolver
316 Blade

(4 row(s) affected)

What if you want to search for the literal value of the % (percentage sign) or an _ (underscore) in
your character column? For this, you can use the ESCAPE operator (first described earlier in Table 1-1).

This next query searches for any product name with a literal _ underscore value in it. The
ESCAPE operator allows you to search for the wildcard symbol as an actual character. I’ll first modify
a row in the Production.ProductDescription table, adding a percentage sign to the Description
column:

UPDATE Production.ProductDescription
SET Description = 'Chromoly steel. High % of defects'
WHERE ProductDescriptionID = 3

Next, I’ll query the table, searching for any descriptions containing the literal value of the per-
centage sign:

SELECT ProductDescriptionID,Description
FROM Production.ProductDescription
WHERE Description LIKE '%/%%' ESCAPE '/'

This returns

ProductDescriptionID Description
3 Chromoly steel. High % of defects

How It Works
Wildcards allow you to search for patterns in character-based columns. In the example from this
recipe, the % percentage sign was used to represent a string of zero or more characters:

WHERE Name LIKE 'B%'

If searching for a literal value that would otherwise be interpreted by SQL Server as a wildcard,
you can use the ESCAPE keyword. The example from this recipe searched for a literal percentage sign
in the Description column:

WHERE Description LIKE '%/%%' ESCAPE '/'

A backslash embedded in single quotes was put after the ESCAPE command. This designates the
backslash symbol as the escape character for the preceding LIKE expression string. If an escape
character precedes the underscore within a search condition, it is treated as a literal value instead
of a wildcard.

Declaring and Assigning Values to Variables
Throughout the book, you’ll see examples of variables being used within queries and module-based
SQL Server objects (stored procedures, triggers, and more). Variables are objects you can create to

CHAPTER 1 ■ SELECT12

9802CH01.qxd 4/11/08 9:55 AM Page 12

temporarily contain data. Variables can be defined across several different data types and then ref-
erenced within the allowable context of that type.

In this recipe, I’ll demonstrate using a variable to hold a search string. You’ll see two different
methods for creating and assigning the value of the variable. The first query demonstrates the
pre–SQL Server 2008 method:

DECLARE @AddressLine1 nvarchar(60)
SET @AddressLine1 = 'Heiderplatz'

SELECT AddressID, AddressLine1
FROM Person.Address
WHERE AddressLine1 LIKE '%' + @AddressLine1 + '%'

The query in this example returns all rows with an address containing the search string value:

AddressID AddressLine1
20333 Heiderplatz 268
17062 Heiderplatz 268
24962 Heiderplatz 662
...
19857 Heiderplatz 948
25583 Heiderplatz 948
28939 Heiderplatz 948
16799 Heiderplatz 978

(18 row(s) affected)

Now in SQL Server 2008, you can reduce the required T-SQL code by removing the SET instruc-
tion and instead just assigning the value within the DECLARE statement:

DECLARE @AddressLine1 nvarchar(60) = 'Heiderplatz'

SELECT AddressID, AddressLine1
FROM Person.Address
WHERE AddressLine1 LIKE '%' + @AddressLine1 + '%'

At face value, this enhancement doesn’t seem groundbreaking; however, if you are declaring
and setting hundreds of variables, the amount of code you’ll be saved from having to write could be
significant.

How It Works
The first query began by declaring a new variable that is prefixed by the @ symbol and followed by
the defining data type that will be used to contain the search string:

DECLARE @AddressLine1 nvarchar(60)

After declaring the variable, a value could be assigned to it by using the SET command (this
could have been done with SELECT as well):

SET @AddressLine1 = 'Heiderplatz'

After that, the populated search value could be used in the WHERE clause of a SELECT query,
embedding it between the % wildcards to find any row with an address containing the search string:

WHERE AddressLine1 LIKE '%' + @AddressLine1 + '%'

CHAPTER 1 ■ SELECT 13

9802CH01.qxd 4/11/08 9:55 AM Page 13

In the next query, I issued the same query, only this time taking advantage of the SQL Server
2008 ability to assign a variable within the DECLARE statement:

DECLARE @AddressLine1 nvarchar(60) = 'Heiderplatz'

■Note In Chapter 2, I’ll show you how this assignment can be coupled with new assignment operators added to
SQL Server 2008, which allows for an inline data value modification.

Grouping Data
The GROUP BY clause is used in a SELECT query to determine the groups that rows should be put in.
The simplified syntax is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]

GROUP BY follows the optional WHERE clause and is most often used when aggregate functions
are referenced in the SELECT statement (aggregate functions are reviewed in more detail in
Chapter 8).

Using the GROUP BY Clause
This example uses the GROUP BY clause to summarize total amount due by order date from the
Sales.SalesOrderHeader table:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'
GROUP BY OrderDate

This returns the following (abridged) results:

OrderDate TotalDueByOrderDate
2001-07-01 00:00:00.000 665262.9599
2001-07-02 00:00:00.000 15394.3298
2001-07-03 00:00:00.000 16588.4572
...
2001-07-30 00:00:00.000 15914.584
2001-07-31 00:00:00.000 16588.4572

(31 row(s) affected)

How It Works
In this recipe’s example, the GROUP BY clause was used in a SELECT query to determine the groups
that rows should be put in. Stepping through the first line of the query, the SELECT clause designated
that the OrderDate should be returned, as well as the SUM total of values in the TotalDue column. SUM

CHAPTER 1 ■ SELECT14

9802CH01.qxd 4/11/08 9:55 AM Page 14

is an aggregate function. An aggregate function performs a calculation against a set of values (in this
case TotalDue), returning a single value (the total of TotalDue by OrderDate):

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

Notice that a column alias for the SUM(TotalDue) aggregation was used. A column alias returns
a different name for a calculated, aggregated, or regular column. In the next part of the query, the
Sales.SalesOrderHeader table was referenced in the FROM clause:

FROM Sales.SalesOrderHeader

Next, the OrderDate was qualified to return rows for the month of July and the year 2001:

WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'

The result set was grouped by OrderDate (note that grouping can occur against one or more
combined columns):

GROUP BY OrderDate

Had the GROUP BY clause been left out of the query, using an aggregate function in the SELECT
clause would have raised the following error:

Msg 8120, Level 16, State 1, Line 1
Column 'Sales.SalesOrderHeader.OrderDate' is invalid in the select list because
it is not contained in either an aggregate function or the GROUP BY clause.

This error is raised because any column that is not used in an aggregate function in the SELECT
list must be listed in the GROUP BY clause.

Using GROUP BY ALL
By adding the ALL keyword after GROUP BY, all row values are used in the grouping, even if they were
not qualified to appear via the WHERE clause.

This example executes the same query as the previous recipe’s example, except it includes the
ALL clause:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'
GROUP BY ALL OrderDate

This returns the following (abridged) results:

OrderDate TotalDueByOrderDate
2002-08-12 00:00:00.000 NULL
2003-07-25 00:00:00.000 NULL
2004-06-21 00:00:00.000 NULL
2001-07-22 00:00:00.000 42256.626
Warning: Null value is eliminated by an aggregate or other SET operation.

(1124 row(s) affected)

CHAPTER 1 ■ SELECT 15

9802CH01.qxd 4/11/08 9:55 AM Page 15

How It Works
In the results returned by the GROUP BY ALL example, notice that TotalDueByOrderDate was NULL for
those order dates not included in the WHERE clause. This does not mean they have zero rows, but
instead, that data is not returned for them.

This query also returned a warning along with the results:

Warning: Null value is eliminated by an aggregate or other SET operation.

This means the SUM aggregate encountered NULL values and didn’t include them in the total. For
the SUM aggregate function, this was okay; however, NULL values in other aggregate functions can
cause undesired results. For example, the AVG aggregate function ignores NULL values, but the COUNT
function does not. If your query uses both these functions, you may think that the NULL value
included in COUNT helps make up the AVG results—but it doesn’t.

Selectively Querying Grouped Data Using HAVING
The HAVING clause of the SELECT statement allows you to specify a search condition on a query using
GROUP BY and/or an aggregated value. The syntax is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]
[HAVING search_conditions]

The HAVING clause is used to qualify the results after the GROUP BY has been applied. The WHERE
clause, in contrast, is used to qualify the rows that are returned before the data is aggregated or
grouped. HAVING qualifies the aggregated data after the data has been grouped or aggregated.

This example queries two tables, Production.ScrapReason and Production.WorkOrder. The
Production.ScrapReason is a lookup table that contains manufacturing failure reasons, while the
Production.WorkOrder table contains the manufacturing work orders that control which products
are manufactured in the quantity and time period, in order to meet inventory and sales needs.

This example reports to management which “failure reasons” have occurred 50 or more times:

SELECT s.Name,
COUNT(w.WorkOrderID) Cnt

FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON

s.ScrapReasonID = w.ScrapReasonID
GROUP BY s.Name
HAVING COUNT(*)>50

This query returns

Name Cnt
Gouge in metal 54
Stress test failed 52
Thermoform temperature too low 63
Trim length too long 52
Wheel misaligned 51
(5 row(s) affected)

CHAPTER 1 ■ SELECT16

9802CH01.qxd 4/11/08 9:55 AM Page 16

How It Works
In this recipe, the SELECT clause requested a count of WorkOrderIDs by failure name:

SELECT s.Name,
COUNT(w.WorkOrderID)

Two tables were joined by the ScrapReasonID column:

FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON

s.ScrapReasonID = w.ScrapReasonID

Since an aggregate function was used in the SELECT clause, the non-aggregated columns must
appear in the GROUP BY clause:

GROUP BY s.Name

Lastly, using the HAVING query determines that, of the selected and grouped data, only those
rows in the result set with a count of 50 or higher will be returned:

HAVING COUNT(*)>50

Ordering Results
The ORDER BY clause orders the results of a query based on designated columns or expressions. The
basic syntax for ORDER BY is as follows:

SELECT select_list
FROM table_list
[WHERE search_conditions]
[GROUP BY group_by_list]
[HAVING search_conditions]
[ORDER BY order_list [ASC | DESC]]

ORDER BY must appear after the required FROM clause, as well as the optional WHERE, GROUP BY,
and HAVING clauses.

Using the ORDER BY Clause
This example demonstrates ordering the query results by columns ProductID and EndDate:

SELECT p.Name,
h.EndDate,
h.ListPrice

FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON

p.ProductID = h.ProductID
ORDER BY p.Name, h.EndDate

This query returns

Name EndDate ListPrice
All-Purpose Bike Stand NULL 159.00
AWC Logo Cap NULL 8.99
AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap 2003-06-30 00:00:00.000 8.6442
Bike Wash – Dissolver NULL 7.95

CHAPTER 1 ■ SELECT 17

9802CH01.qxd 4/11/08 9:55 AM Page 17

Cable Lock 2003-06-30 00:00:00.000 25.00
Chain NULL 20.24
...
(395 row(s) affected)

The default sorting order of ORDER BY is ascending order, which can be explicitly designated as
ASC too. The NULL values for each EndDate are sorted to the top for each change in the name.

In this next example, DESC is used to return the results in reverse (descending) order:

SELECT p.Name,
h.EndDate,
h.ListPrice

FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON

p.ProductID = h.ProductID
ORDER BY p.Name DESC, h.EndDate DESC

This returns the following abridged results:

Name EndDate ListPrice
Women's Tights, S 2003-06-30 00:00:00.000 74.99
Women's Tights, M 2003-06-30 00:00:00.000 74.99
...
AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap NULL 8.99
All-Purpose Bike Stand NULL 159.00

(395 row(s) affected)

This third example demonstrates ordering results based on a column that is not used in the
SELECT clause:

SELECT p.Name
FROM Production.Product p
ORDER BY p.Color

This returns the following abridged results:

name
Guide Pulley
LL Grip Tape
ML Grip Tape
HL Grip Tape
Thin-Jam Hex Nut 9
...

How It Works
Although queries sometimes appear to return data properly without an ORDER BY clause, the natural
ordering of results is determined by the physical key column order in the clustered index (see Chap-
ter 5 for more information on clustered indexes). If the row order of your result sets is critical, you
should never depend on the implicit physical order. Always use an ORDER BY if result set ordering is
required.

CHAPTER 1 ■ SELECT18

9802CH01.qxd 4/11/08 9:55 AM Page 18

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

In the first example, the Production.Product and Production.ProductListPriceHistory tables
were queried to view the history of product prices over time.

■Note The full details of INNER JOIN are provided later in the chapter in the section “Using INNER Joins.”

The following line of code sorted the results first alphabetically by product name, and then by
the end date:

ORDER BY p.Name, h.EndDate

You can designate one or more columns in your ORDER BY clause, so long as the columns do not
exceed 8,060 bytes in total.

The second example demonstrated returning results in descending order (ascending is the
default order). The DESC keyword was referenced behind each column that required the descending
sort:

ORDER BY p.Name DESC, h.EndDate DESC

The third example demonstrated ordering the results by a column that was not used in the
SELECT statement:

ORDER BY p.Color

One caveat when ordering by unselected columns is that ORDER BY items must appear in the
select list if SELECT DISTINCT is specified.

Using the TOP Keyword with Ordered Results
The TOP keyword allows you to return the first n number of rows from a query based on the number
of rows or percentage of rows that you define. The first rows returned are also impacted by how your
query is ordered.

■Note SQL Server also provides ranking functions, which can be used to rank each row within the partition of a
result set. For a review of ranking functions, see Chapter 8.

In this example, the top ten rows are retrieved from the Purchasing.Vendor table for those rows
with the highest value in the CreditRating column:

SELECT TOP 10 v.Name,
v.CreditRating

FROM Purchasing.Vendor v
ORDER BY v.CreditRating DESC, v.Name

This returns

Name CreditRating
Merit Bikes 5
Victory Bikes 5
Proseware, Inc. 4
Recreation Place 4
Consumer Cycles 3
Continental Pro Cycles 3

CHAPTER 1 ■ SELECT 19

9802CH01.qxd 4/11/08 9:55 AM Page 19

Federal Sport 3
Inner City Bikes 3
Northern Bike Travel 3
Trey Research 3

(10 row(s) affected)

The next example demonstrates limiting the percentage of rows returned in a query using a
local variable:

DECLARE @Percentage float

SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT
Name

FROM Production.Product
ORDER BY Name

This returns the top 1 percent of rows from the Production.Product table, ordered by product
name:

Name
Adjustable Race
All-Purpose Bike Stand
AWC Logo Cap
BB Ball Bearing
Bearing Ball
Bike Wash - Dissolver
(6 row(s) affected)

How It Works
In previous versions of SQL Server, developers used SET ROWCOUNT to limit how many rows the query
would return or impact. In SQL Server 2005 and 2008, you should use the TOP keyword instead of SET
ROWCOUNT, as the TOP will usually perform faster. Also, not having the ability to use local variables in
the TOP clause was a major reason why people still used SET ROWCOUNT over TOP in previous versions
of SQL Server. With these functionality barriers removed, there is no reason not to start using TOP.

■Tip The TOP keyword can also now be used with INSERT, UPDATE, and DELETE statements—something that
will not be supported with SET ROWCOUNT in future versions of SQL Server. For more information about TOP used
in conjunction with data modifications, see Chapter 2.

The key to the first example was the TOP keyword, followed by the number of rows to be
returned:

SELECT TOP 10 v.Name

Also important was the ORDER BY clause, which ordered the results prior to the TOP n rows being
returned:

ORDER BY v.CreditRating DESC, v.Name

CHAPTER 1 ■ SELECT20

9802CH01.qxd 4/11/08 9:55 AM Page 20

The second example demonstrated how to use the new local variable assignment functionality
with TOP PERCENT:

DECLARE @Percentage float

SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT

The new local variable functionality allows you to create scripts, functions, or procedures that
can determine the number of rows returned by a query based on the value set by the caller, instead
of having to hard-code a set TOP number or percentage of rows.

SELECT Clause Techniques
The SELECT clause is primarily used to define which columns are returned in the result set, but its
functionality isn’t limited to just that. This next set of queries will detail a number of SELECT clause
techniques, including the following:

• Using the DISTINCT keyword to remove duplicate values

• Renaming columns using column aliases

• Concatenating string values into a single column

• Creating a SELECT statement that itself creates an executable Transact-SQL script

• Creating a comma-delimited array list of values

Using DISTINCT to Remove Duplicate Values
The default behavior of a SELECT statement is to use the ALL keyword (although because it is the
default, you’ll rarely see this being used in a query), meaning that all rows will be retrieved and dis-
played if they exist. Using the DISTINCT keyword instead of ALL allows you to return only unique
rows (across columns selected) in your results.

This example shows you how to use the DISTINCT keyword to remove duplicate values from a
set of selected columns, so that only unique rows appear:

SELECT DISTINCT HireDate
FROM HumanResources.Employee

The results show all unique hire dates from the HumanResources.Employee table:

HireDate
1996-07-31 00:00:00.000
1997-02-26 00:00:00.000
1997-12-12 00:00:00.000
1998-01-05 00:00:00.000
...
2002-11-01 00:00:00.000
2003-04-15 00:00:00.000
2003-07-01 00:00:00.000

(164 row(s) affected)

CHAPTER 1 ■ SELECT 21

9802CH01.qxd 4/11/08 9:55 AM Page 21

How It Works
Use the DISTINCT keyword to return distinct values in the result set. In this recipe, DISTINCT was used
to return unique HireDate column values.

■Caution Be sure to use DISTINCT only when actually needed or necessary, as it can slow the query down on
larger result sets.

Using DISTINCT in Aggregate Functions
You can also use DISTINCT for a column that is used within an aggregate function (aggregate func-
tions are reviewed in more detail in Chapter 8). You may wish to do this in order to perform
aggregations on only the unique values of a column.

For example, if you wanted to calculate the average product list price, you could use the follow-
ing query:

SELECT AVG(ListPrice)
FROM Production.Product

This returns

438.6662

But the previous query calculated the average list price across all products. What if some prod-
uct types are more numerous than others? What if you are only interested in the average price of
unique price points?

In this case, you would write the query as follows:

SELECT AVG(DISTINCT ListPrice)
FROM Production.Product

This returns the unique set of price points first, and then averages them (although the differ-
ence doesn’t end up being that large):

437.4042

How It Works
DISTINCT can be used to return unique rows from a result set, as well as force unique column values
within an aggregate function. In this example, the DISTINCT keyword was put within the parentheses
of the aggregate function.

Using Column Aliases
For column computations or aggregate functions, you can use a column alias to explicitly name the
columns of your query output. You can also use column aliases to rename columns that already
have a name, which helps obscure the underlying column from the calling application (allowing
you to swap out underlying columns without changing the returned column name). You can desig-
nate a column alias by using the AS keyword, or by simply following the column or expression with
the column alias name.

CHAPTER 1 ■ SELECT22

9802CH01.qxd 4/11/08 9:55 AM Page 22

This example demonstrates producing column aliases using two different techniques:

SELECT Color AS 'Grouped Color',
AVG(DISTINCT ListPrice) AS 'Average Distinct List Price',
AVG(ListPrice) 'Average List Price'

FROM Production.Product
GROUP BY Color

This returns the following abridged results:

Grouped Color Average Distinct List Price Average List Price
NULL 65.9275 16.8641
Black 527.5882 725.121
Blue 825.2985 923.6792
Grey 125.00 125.00
Multi 49.6566 59.865
Red 1332.6425 1401.95
Silver 726.2907 850.3053
Silver/Black 61.19 64.0185
White 9.245 9.245
Yellow 991.7562 959.0913
(10 row(s) affected)

How It Works
This recipe shows three examples of using column aliasing. The first example demonstrated how to
rename an existing column using the AS clause. The AS clause is used to change a column name in
the results, or add a name to a derived (calculated or aggregated) column:

SELECT Color AS 'Grouped Color',

The second example demonstrated how to add a column name to an aggregate function:

AVG(DISTINCT ListPrice) AS 'Average Distinct List Price',

The third example demonstrated how to add a column alias without using the AS keyword
(it can simply be omitted):

AVG(ListPrice) 'Average List Price'

Using SELECT to Create a Script
As a DBA or developer, you sometimes need a Transact-SQL script to run against several objects
within a database or against several databases across a SQL Server instance. For example, you may
want to show how many rows exist in every user table in the database. Or perhaps you have a very
large table with several columns, which you need to validate in search conditions, but you don’t
want to have to manually type each column.

This next recipe offers a time-saving technique, using SELECT to write out Transact-SQL for you.
You can adapt this recipe to all sorts of purposes.

In this example, assume that you wish to check for rows in a table where all values are NULL.
There are many columns in the table, and you want to avoid hand-coding them. Instead, you can
create a script to do the work for you:

CHAPTER 1 ■ SELECT 23

9802CH01.qxd 4/11/08 9:55 AM Page 23

SELECT column_name + ' IS NULL AND '
FROM INFORMATION_SCHEMA.columns
WHERE table_name = 'Employee'
ORDER BY ORDINAL_POSITION

This returns code that you can integrate into a WHERE clause (after you remove the trailing AND at
the last WHERE condition):

EmployeeID IS NULL AND
NationalIDNumber IS NULL AND
ContactID IS NULL AND
LoginID IS NULL AND
ManagerID IS NULL AND
Title IS NULL AND
BirthDate IS NULL AND
MaritalStatus IS NULL AND
Gender IS NULL AND
HireDate IS NULL AND
SalariedFlag IS NULL AND
VacationHours IS NULL AND
SickLeaveHours IS NULL AND
CurrentFlag IS NULL AND
rowguid IS NULL AND
ModifiedDate IS NULL AND

(16 row(s) affected)

How It Works
The example used string concatenation and the INFORMATION_SCHEMA.columns system view to gener-
ate a list of columns from the Employee table. For each column, IS NULL AND was concatenated to its
name. The results can then be copied to the WHERE clause of a query, allowing you to query for rows
where each column has a NULL value.

This general technique of concatenating SQL commands to various system data columns can
be used in numerous ways, including for creating scripts against tables or other database objects.

■Caution Do be careful when scripting an action against multiple objects or databases—make sure that the
change is what you intended, and that you are fully aware of the script’s outcome.

Performing String Concatenation
String concatenation is performed by using the + operator to join two expressions, as this example
demonstrates:

SELECT 'The ' +
p.name +
' is only ' +
CONVERT(varchar(25),p.ListPrice) +
'!'

FROM Production.Product p
WHERE p.ListPrice between 100 AND 120
ORDER BY p.ListPrice

CHAPTER 1 ■ SELECT24

9802CH01.qxd 4/11/08 9:55 AM Page 24

3

This returns

The ML Bottom Bracket is only 101.24!
The ML Headset is only 102.29!
The Rear Brakes is only 106.50!
The Front Brakes is only 106.50!
The LL Road Rear Wheel is only 112.57!
The Hitch Rack - 4-Bike is only 120.00!

How It Works
When used with character data types, the + operator is used to concatenate expressions together. In
this example, literal values were concatenated to columns from the Production.Product table. Each
row formed a sentence celebrating the low price of each row’s product. You can also concatenate
dates, so long as these are converted to a character or variable character data type using CAST or
CONVERT.

String concatenation is often used when generating end-user reports that require denormaliza-
tion (such as displaying the first and last name in a single column) or when you need to combine
multiple data columns into a single column (as you’ll see in the next recipe).

Creating a Comma-Delimited List Using SELECT
This next recipe demonstrates how to create a comma-delimited list using a SELECT query. You can
use this recipe in several ways. For example, you could integrate it into a user-defined function that
returns a comma-delimited list of the regions that a salesperson sells to into a single column (see
Chapter 11).

This example demonstrates returning one-to-many table data into a single presentable string:

DECLARE @Shifts varchar(20) = ''

SELECT @Shifts = @Shifts + s.Name + ','
FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT @Shifts

This query returns

Night,Day,Evening,

(1 row(s) affected)

How It Works
In the first part of this script, a local variable was created to hold a comma-delimited list. Because
you cannot concatenate NULL values with strings, the variable should be set to an initial blank value
instead, as was done in the recipe:

DECLARE @Shifts varchar(20) = ''

CHAPTER 1 ■ SELECT 25

9802CH01.qxd 4/11/08 9:55 AM Page 25

In the query itself, a list of shifts are gathered from the HumanResources.Shift table, ordered by
EndTime. At the core of this example, you see that the local variable is assigned to the value of itself
concatenated to the shift name, and then concatenated to a comma. The query loops through each
value ordered by EndTime, appending each one to the local variable:

SELECT @Shifts = @Shifts + s.Name + ','
FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT is then used to display the final contents of the local variable:

SELECT @Shifts

Using the INTO Clause
The INTO clause of the SELECT statement allows you to create a new table based on the columns and
rows of the query results. Ideally you should be creating your tables using the CREATE TABLE com-
mand: however, using INTO provides a quick method of creating a new table without having to
explicitly define the column names and data types.

The INTO clause allows you to create a table in a SELECT statement based on the columns and
rows the query returns. The syntax for INTO is as follows:

SELECT select_list
[INTO new_table_name]
FROM table_list

The INTO clause comes after the SELECT clause but before the FROM clause, as the next recipe will
demonstrate.

In this first example, a new table is created based on the results of a query:

SELECT BusinessEntityID,
Name,
SalesPersonID,
Demographics

INTO Store_Archive
FROM Sales.Store

The query returns the number of rows inserted into the new Store_Archive table, but does not
return query results:

(701 row(s) affected)

In the second example, a table is created without inserting rows into it:

SELECT BusinessEntityID,
Name,
SalesPersonID,
Demographics

INTO Store_Archive_2
FROM Sales.Store
WHERE 1=0

This returns the number of rows inserted into your new Store_Archive_2 table (which in this
case is zero):

(0 row(s) affected)

CHAPTER 1 ■ SELECT26

9802CH01.qxd 4/11/08 9:55 AM Page 26

How It Works
This recipe’s example looked like a regular SELECT query, only between the SELECT and FROM clauses
the following instructions were inserted:

INTO Store_Archive

The INTO clause is followed by the new table name (which must not already exist). This can be
a permanent, temporary, or global temporary table (see Chapter 4 for more information on these
object types). The columns you select determine the structure of the table.

This is a great technique for quickly “copying” the base table structure and data of an existing
table. Using INTO, you are not required to predefine the new table’s structure explicitly (for example,
you do not need to issue a CREATE TABLE statement).

■Caution Although the structure of the selected columns is reproduced, the constraints, indexes, and other sep-
arate objects dependent on the source table are not copied.

In the second example, a new table was created without also populating it with rows. This was
achieved by using a WHERE clause condition that always evaluates to FALSE:

WHERE 1=0

Since the number 1 will never equal the number 0, no rows will evaluate to TRUE, and therefore
no rows will be inserted into the new table. However, the new table is created anyway.

Subqueries
A subquery is a SELECT query that is nested within another SELECT, INSERT, UPDATE, or DELETE state-
ment. A subquery can also be nested inside another subquery. Subqueries can often be rewritten
into regular JOINs; however, sometimes an existence subquery (demonstrated in this recipe) can
perform better than equivalent non-subquery methods.

A correlated subquery is a subquery whose results depend on the values of the outer query.

Using Subqueries to Check for Matches
This first example demonstrates checking for the existence of matching rows within a correlated
subquery:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
WHERE EXISTS (SELECT SalesOrderID

FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000 AND

SalesOrderID = s.SalesOrderID)

This returns the following abridged results:

PurchaseOrderNumber
PO8410140860
PO12325137381
PO1160166903
PO1073122178
...

CHAPTER 1 ■ SELECT 27

9802CH01.qxd 4/11/08 9:55 AM Page 27

PO15486173227
PO14268145224

(1989 row(s) affected)

This second example demonstrates a regular non-correlated subquery:

SELECT BusinessEntityID,
SalesQuota CurrentSalesQuota

FROM Sales.SalesPerson
WHERE SalesQuota =

(SELECT MAX(SalesQuota)
FROM Sales.SalesPerson)

This returns the three salespeople who had the maximum sales quota of 300,000:

BusinessEntityID CurrentSalesQuota
275 300000.00
279 300000.00
287 300000.00
Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

How It Works
The critical piece of the first example was the subquery in the WHERE clause, which checked for the
existence of SalesOrderIDs that had products with a UnitPrice between 1000 and 2000. A JOIN was
used in the WHERE clause of the subquery, between the outer query and the inner query, by stating
SalesOrderID = s.SalesOrderID. The subquery used the SalesOrderID from each returned row in the
outer query.

In the second example, there is no WHERE clause in the subquery used to join to the outer table.
It is not a correlated subquery. Instead, a value is retrieved from the query to evaluate against in the
= operator of the WHERE clause.

Querying from More Than One Data Source
The JOIN keyword allows you to combine data from multiple tables and/or views into a single result
set. It joins a column or columns from one table to another table, evaluating whether there is a
match.

With the JOIN keyword, you join two tables based on a join condition. Most often you’ll see a
join condition testing the equality of one column in one table compared to another column in the
second table (joined columns do not need to have the same name, only compatible data types).

■Tip As a query performance best practice, try to avoid having to convert data types of the columns in your join
clause (using CONVERT or CAST, for example). Opt instead for modifying the underlying schema to match data
types (or convert the data beforehand in a separate table, temp table, table variable, or Common Table Expression
[CTE]). Also, allowing implicit data type conversions to occur for frequently executed queries can cause significant
performance issues (for example, converting nchar to char).

CHAPTER 1 ■ SELECT28

9802CH01.qxd 4/11/08 9:55 AM Page 28

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

SQL Server 2005 join types fall into three categories: inner, outer, and cross. Inner joins use the
INNER JOIN keywords. INNER JOIN operates by matching common values between two tables. Only
table rows satisfying the join conditions are used to construct the result set. INNER JOINs are the
default JOIN type, so if you wish, you can use just the JOIN keyword in your INNER JOIN operations.

Outer joins have three different join types: LEFT OUTER, RIGHT OUTER, and FULL OUTER joins. LEFT
OUTER and RIGHT OUTER JOINs, like INNER JOINs, return rows that match the conditions of the join
condition. Unlike INNER JOINs, LEFT OUTER JOINs return unmatched rows from the first table of the
join pair, and RIGHT OUTER JOINs return unmatched rows from the second table of the join pair. The
FULL OUTER JOIN clause returns unmatched rows on both the left and right tables.

An infrequently used join type is CROSS JOIN. A CROSS JOIN returns a Cartesian product when a
WHERE clause isn’t used. A Cartesian product produces a result set based on every possible combina-
tion of rows from the left table, multiplied against the rows in the right table. For example, if the
Stores table has 7 rows, and the Sales table has 22 rows, you would receive 154 rows (or 7 times 22)
in the query results (each possible combination of row displayed).

The next few recipes will demonstrate the different join types.

Using INNER Joins
This inner join joins three tables in order to return discount information on a specific product:

SELECT p.Name,
s.DiscountPct

FROM Sales.SpecialOffer s
INNER JOIN Sales.SpecialOfferProduct o ON

s.SpecialOfferID = o.SpecialOfferID
INNER JOIN Production.Product p ON

o.ProductID = p.ProductID
WHERE p.Name = 'All-Purpose Bike Stand'

The results of this query are as follows:

Name DiscountPct
All-Purpose Bike Stand 0.00

(1 row(s) affected)

How It Works
A join starts after the first table in the FROM clause. In this example, three tables were joined together:
Sales.SpecialOffer, Sales.SpecialOfferProduct, and Production.Product. Sales.SpecialOffer, the
first table referenced in the FROM clause, contains a lookup of sales discounts:

FROM Sales.SpecialOffer s

Notice the letter s which trails the table name. This is a table alias. Once you begin using more
than one table in a query, it is important to explicitly identify the data source of the individual
columns. If the same column names exist in two different tables, you could get an error from the
SQL compiler asking you to clarify which column you really wanted to return.

As a best practice, it is a good idea to use aliases whenever column names are specified in a
query. For each of the referenced tables, a character was used to symbolize the table name—saving
you the trouble of spelling it out each time. This query used a single character as a table alias, but
you can use any valid identifier. A table alias, aside from allowing you to shorten or clarify the origi-
nal table name, allows you to swap out the base table name if you ever have to replace it with a

CHAPTER 1 ■ SELECT 29

9802CH01.qxd 4/11/08 9:55 AM Page 29

different table or view, or if you need to self-join the tables. Table aliases are optional, but recom-
mended when your query has more than one table. A table alias follows the table name in the
statement FROM clause. Because table aliases are optional, you could specify the entire table name
every time you refer to the column in that table.

Getting back to the example . . . the INNER JOIN keywords followed the first table reference, and
then the table being joined to it, followed by its alias:

INNER JOIN Sales.SpecialOfferProduct o

After that, the ON keyword prefaces the column joins:

ON

This particular INNER JOIN is based on the equality of two columns—one from the first table
and another from the second:

s.SpecialOfferID = o.SpecialOfferID

Next, the Production.Product table is INNER JOINed too:

INNER JOIN Production.Product p ON
o.ProductID = p.ProductID

Lastly, a WHERE clause is used to filter rows returned in the final result set:

WHERE Name = 'All-Purpose Bike Stand'

Using OUTER Joins
This recipe compares the results of an INNER JOIN versus a LEFT OUTER JOIN. This first query
displays the tax rates states and provinces using the Person.StateProvince table and the
Sales.SalesTaxRate table. The following query uses an INNER JOIN:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
INNER JOIN Sales.SalesTaxRate t ON

s.StateProvinceID = t.StateProvinceID

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
CA AB 1 14.00
CA ON 1 14.25
CA QC 1 14.25
...
FR FR 3 19.60
GB ENG 3 17.50

(29 row(s) affected)

But with the INNER JOIN, you are only seeing those records from Person.StateProvince that
have rows in the Sales.SalesTaxRate table. In order to see all rows from Person.StateProvince,
whether or not they have associated tax rates, LEFT OUTER JOIN is used:

CHAPTER 1 ■ SELECT30

9802CH01.qxd 4/11/08 9:55 AM Page 30

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
LEFT OUTER JOIN Sales.SalesTaxRate t ON

s.StateProvinceID = t.StateProvinceID

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
CA AB 1 14.00
CA AB 2 7.00
US AK NULL NULL
US AL NULL NULL
US AR NULL NULL
AS AS NULL NULL
US AZ 1 7.75
...
FR 94 NULL NULL
FR 95 NULL NULL

(184 row(s) affected)

How It Works
This recipe’s example demonstrated an INNER JOIN query versus a LEFT OUTER JOIN query. The LEFT
OUTER JOIN query returned unmatched rows from the first table of the join pair. Notice how this
query returned NULL values for those rows from Person.StateProvince that didn’t have associated
rows in the Sales.SalesTaxRate table.

Using CROSS Joins
In this example, the Person.StateProvince and Sales.SalesTaxRate tables are CROSS JOINed:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s
CROSS JOIN Sales.SalesTaxRate t

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate
CA AB 1 14.00
US AK 1 14.00
US AL 1 14.00
US AR 1 14.00
AS AS 1 14.00
...
FR 94 3 17.50
FR 95 3 17.50

(5249 row(s) affected)

CHAPTER 1 ■ SELECT 31

9802CH01.qxd 4/11/08 9:55 AM Page 31

How It Works
A CROSS JOIN without a WHERE clause returns a Cartesian product. The results of this CROSS JOIN
show StateProvince and SalesTaxRate information that doesn’t logically go together. Since the
Person.StateProvince table had 181 rows, and the Sales.SalesTaxRate had 29 rows, the query
returned 5249 rows.

Referencing a Single Table Multiple Times in the Same Query
Sometimes you may need to treat the same table as two separate tables. This may be because the
table contains nested hierarchies of data (for example, a table containing employee records has a
manager ID that is a foreign key reference to the employee ID), or perhaps you wish to reference the
same table based on different time periods (comparing sales records from the year 2007 versus the
year 2008).

You can achieve this joining of a table with itself through the use of table aliases.
In this example, the Sales.SalesPersonQuotaHistory table is referenced twice in the FROM

clause, with one referencing 2004 sales quota data and the other 2003 sales quota data:

SELECT s.BusinessEntityID,
SUM(s2004.SalesQuota) Total_2004_SQ,

SUM(s2003.SalesQuota) Total_2003_SQ
FROM Sales.SalesPerson s
LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2004 ON

s.BusinessEntityID = s2004.BusinessEntityID AND
YEAR(s2004.QuotaDate)= 2004

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2003 ON
s.BusinessEntityID = s2003.BusinessEntityID AND
YEAR(s2003.QuotaDate)= 2003

GROUP BY s.BusinessEntityID

This returns the following (abridged) results:

BusinessEntityID Total_2004_SQ Total_2003_SQ
274 1084000.00 1088000.00
275 6872000.00 9432000.00
276 8072000.00 9364000.00
...
289 8848000.00 10284000.00
290 6460000.00 5880000.00

(17 row(s) affected)

How It Works
This recipe queried the year 2004 and year 2003 sales quota results. The FROM clause included an
anchor to all salesperson identifiers:

...
FROM Sales.SalesPerson s

I then left outer joined the first reference to the sales quota data, giving it an alias of s2004:

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2004 ON
s.BusinessEntityID = s2004.BusinessEntityID AND
YEAR(s2004.QuotaDate)= 2004

CHAPTER 1 ■ SELECT32

9802CH01.qxd 4/11/08 9:55 AM Page 32

Next, another reference was created to the same sales quota table—however, this time aliasing
the table as s2003:

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2003 ON
s.BusinessEntityID = s2003.BusinessEntityID AND
YEAR(s2003.QuotaDate)= 2003

GROUP BY s.BusinessEntityID

As demonstrated here, you can reference the same table multiple times in the same query so
long as that table has a unique table alias to differentiate it from other referenced objects.

Using Derived Tables
Derived tables are SELECT statements that act as tables in the FROM clause. Derived tables can
sometimes provide better performance than using temporary tables (see Chapter 4 for more on
temporary tables). Unlike temporary tables, derived tables don’t require persisted data to be
populated beforehand.

This example demonstrates how to use a derived table in the FROM clause of a SELECT statement:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
INNER JOIN (SELECT SalesOrderID

FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000) d ON

s.SalesOrderID = d.SalesOrderID

This returns the following abridged results:

PurchaseOrderNumber
PO8410140860
PO12325137381
PO1160166903
PO1073122178
...
PO15486173227
PO14268145224

(1989 row(s) affected)

How It Works
This example’s query searches for the PurchaseOrderNumber from the Sales.SalesOrderHeader table
for any order containing products with a UnitPrice between 1000 and 2000.

The query joins a table to a derived table using INNER JOIN. The derived table query is encapsu-
lated in parentheses and followed by a table alias. The derived table is a separate query in itself, and
doesn’t require the use of a temporary table to store the results. Thus, queries that use derived tables
can sometimes perform significantly better than temporary tables, as you eliminate the steps
needed for SQL Server to create and allocate the temporary table prior to use.

Combining Result Sets with UNION
The UNION operator is used to append the results of two or more SELECT statements into a single
result set. Each SELECT statement being merged must have the same number of columns, with the
same or compatible data types in the same order, as this example demonstrates:

CHAPTER 1 ■ SELECT 33

9802CH01.qxd 4/11/08 9:55 AM Page 33

SELECT BusinessEntityID, GETDATE() QuotaDate, SalesQuota
FROM Sales.SalesPerson
WHERE SalesQuota > 0

UNION
SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0
ORDER BY BusinessEntityID DESC, QuotaDate DESC

This returns the following (abridged) results:

SalesPersonID QuotaDate SalesQuota
290 2007-09-01 14:26:28.870 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
290 2003-10-01 00:00:00.000 389000.00
...
268 2001-10-01 00:00:00.000 7000.00
268 2001-07-01 00:00:00.000 28000.00
(177 row(s) affected)

How It Works
This query appended two result sets into a single result set. The first result set returned the
BusinessEntityID, the current date function (see Chapter 8 for more information on this), and
the SalesQuota. Since GETDATE() is a function, it doesn’t naturally return a column name—so a
QuotaDate column alias was used in its place:

SELECT BusinessEntityID, GETDATE() QuotaDate, SalesQuota
FROM Sales.SalesPerson

The WHERE clause filtered data for those salespeople with a SalesQuota greater than zero:

WHERE SalesQuota > 0

The next part of the query was the UNION operator, which appended the distinct results with the
second query:

UNION

The second query pulled data from the Sales.SalesPersonQuotaHistory, which keeps history
for a salesperson’s sales quota as it changes through time:

SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0

The ORDER BY clause sorted the result set by BusinessEntityID and QuotaDate, both in descend-
ing order. The ORDER BY clause, when needed, must appear at the bottom of the query and cannot
appear after queries prior to the final UNIONed query. The ORDER BY clause should also only refer to
column names from the first result set:

ORDER BY BusinessEntityID DESC, QuotaDate DESC

Looking at the results again, for a single salesperson, you can see that the current QuotaDate of
2005-02-27 is sorted at the top. This was the date retrieved by the GETDATE() function. The other
rows for SalesPersonID 290 are from the Sales.SalesPersonQuotaHistory table:

CHAPTER 1 ■ SELECT34

9802CH01.qxd 4/11/08 9:55 AM Page 34

SalesPersonID QuotaDate SalesQuota
290 2005-02-27 10:10:12.587 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
290 2003-10-01 00:00:00.000 389000.00

Keep in mind that the default behavior of the UNION operator is to remove all duplicate rows
and display column names based on the first result set. For large result sets, this can be a very costly
operation, so if you don’t need to de-duplicate the data, or if the data is naturally distinct, you can
add the ALL keyword to the UNION:

UNION ALL

With the ALL clause added, duplicate rows are NOT removed.

■Caution Similar to using DISTINCT—using UNION instead of UNION ALL can lead to additional query
resource overhead. If you do not need to remove duplicate rows, use UNION ALL.

Using APPLY to Invoke a Table-Valued Function for
Each Row
APPLY is used to invoke a table-valued function for each row of an outer query. A table-valued
function returns a result set based on one or more parameters. Using APPLY, the input of these
parameters are the columns of the left referencing table. This is useful if the left table contains
columns and rows that must be evaluated by the table-valued function and to which the results
from the function should be attached.

CROSS APPLY works like an INNER JOIN in that unmatched rows between the left table and the
table-valued function don’t appear in the result set. OUTER APPLY is like an OUTER JOIN, in that non-
matched rows are still returned in the result set with NULL values in the function results.

The next two recipes will demonstrate both CROSS APPLY and OUTER APPLY.

■Note This next example covers both the FROM and JOIN examples and user-defined table-valued functions.
Table-valued functions are reviewed in more detail in Chapter 11.

Using CROSS APPLY
In this recipe, a table-valued function is created that returns work order routing information based
on the WorkOrderID passed to it:

CREATE FUNCTION dbo.fn_WorkOrderRouting
(@WorkOrderID int) RETURNS TABLE

AS
RETURN
SELECT WorkOrderID,

ProductID,
OperationSequence,
LocationID

CHAPTER 1 ■ SELECT 35

9802CH01.qxd 4/11/08 9:55 AM Page 35

FROM Production.WorkOrderRouting
WHERE WorkOrderID = @WorkOrderID

GO

Next, the WorkOrderID is passed from the Production.WorkOrder table to the new function:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

ORDER BY w.WorkOrderID,
w.OrderQty,
r.ProductID

This returns the following (abridged) results:

WorkOrderID OrderQty ProductID OperationSequence
13 4 747 1
13 4 747 2
13 4 747 3
13 4 747 4
13 4 747 6
...
72586 1 803 6
72587 19 804 1
72587 19 804 6

(67131 row(s) affected)

How It Works
The first part of this recipe was the creation of a table-valued function. The function accepts a
single parameter, @WorkOrderID, and when executed, returns the WorkOrderID, ProductID,
OperationSequence, and LocationID from the Production.WorkOrderRouting table for the specified
WorkOrderID.

The next query in the example returned the WorkOrderID and OrderQty from the Production.
WorkOrder table. In addition to this, two columns from the table-valued function were selected:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

The key piece of this recipe comes next. Notice that in the FROM clause, the Production.
WorkOrder table is joined to the new table-valued function using CROSS APPLY, only unlike a JOIN
clause, there isn’t an ON followed by join conditions. Instead, in the parentheses after the function
name, the w.WorkOrderID is passed to the table-valued function from the left Production.WorkOrder
table:

FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

The function was aliased like a regular table, with the letter r.

CHAPTER 1 ■ SELECT36

9802CH01.qxd 4/11/08 9:55 AM Page 36

Lastly, the results were sorted:

ORDER BY w.WorkOrderID,
w.OrderQty,
r.ProductID

In the results for WorkOrderID 13, each associated WorkOrderRouting row was returned next to
the calling tables WorkOrderID and OrderQty. Each row of the WorkOrder table was duplicated for
each row returned from fn_WorkOrderRouting—all were based on the WorkOrderID.

Using OUTER APPLY
In order to demonstrate OUTER APPLY, I’ll insert a new row into Production.WorkOrder (see Chapter 2
for a review of the INSERT command):

INSERT INTO [AdventureWorks].[Production].[WorkOrder]
([ProductID]
,[OrderQty]
,[ScrappedQty]
,[StartDate]
,[EndDate]
,[DueDate]
,[ScrapReasonID]
,[ModifiedDate])

VALUES
(1,
1,
1,
GETDATE(),
GETDATE(),
GETDATE(),
1,
GETDATE())

Because this is a new row, and because Production.WorkOrder has an IDENTITY column for the
WorkOrderID, the new row will have the maximum WorkOrderID in the table. Also, this new row will
not have an associated value in the Production.WorkOrderRouting table, because it was just added.

Next, a CROSS APPLY query is executed, this time qualifying it to only return data for the newly
inserted row:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder AS w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns nothing, because the left table’s new row is unmatched:

WorkOrderID OrderQty ProductID OperationSequence

(0 row(s) affected)

CHAPTER 1 ■ SELECT 37

9802CH01.qxd 4/11/08 9:55 AM Page 37

Now an OUTER APPLY is tried instead, which then returns the row from WorkOrder in spite of
there being no associated value in the table-valued function:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.OperationSequence

FROM Production.WorkOrder AS w
OUTER APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns

WorkOrderID OrderQty ProductID OperationSequence
72592 1 NULL NULL

(1 row(s) affected)

How It Works
CROSS and OUTER APPLY provide a method for applying lookups against columns using a table-valued
function. CROSS APPLY was demonstrated against a row without a match in the table-valued func-
tion results. Since CROSS APPLY works like an INNER JOIN, no rows were returned. In the second
query of this example, OUTER APPLY was used instead, this time returning unmatched NULL rows
from the table-valued function, similar to an OUTER JOIN.

Advanced Techniques for Data Sources
This next set of recipes shows you a few advanced techniques for sampling, manipulating, and
comparing data sources (a data source being any valid data source reference in a FROM clause),
including the following:

• Returning a sampling of rows using TABLESAMPLE

• Using PIVOT to convert values into columns, and using an aggregation to group the data by
the new columns

• Using UNPIVOT to normalize repeating column groups

• Using INTERSECT and EXCEPT operands to return distinct rows that only exist in either the left
query (using EXCEPT), or only distinct rows that exist in both the left and right queries (using
INTERSECT)

Using the TABLESAMPLE to Return Random Rows
TABLESAMPLE allows you to extract a sampling of rows from a table in the FROM clause. This sampling
can be based on a percentage of number of rows. You can use TABLESAMPLE when only a sampling of
rows is necessary for the application instead of a full result set. TABLESAMPLE also provides you with a
somewhat randomized result set.

CHAPTER 1 ■ SELECT38

9802CH01.qxd 4/11/08 9:55 AM Page 38

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

This example demonstrates a query that returns a percentage of random rows from a specific
data source using TABLESAMPLE:

SELECT FirstName,LastName
FROM Person.Person
TABLESAMPLE SYSTEM (2 PERCENT)

This returns the following (abridged) results:

FirstName LastName
Andre Suri
Adam Turner
Eric Turner
Jackson Turner
Meghan Rowe
...
(232 row(s) affected)

Executing it again returns a new set of (abridged) results:

FirstName LastName
Robert King
Ricardo Raje
Jose King
Ricardo Chande
...
Martin Perez
Carlos Collins

(198 row(s) affected)

How It Works
TABLESAMPLE works by extracting a sample of rows from the query result set. In this example, 2 per-
cent of rows were sampled from the Person.Person table. However, don’t let the “percent” fool you.
That percentage is the percentage of the table’s data pages. Once the sample pages are selected, all
rows for the selected pages are returned. Since the fill state of pages can vary, the number of rows
returned will also vary—you’ll notice that the first time the query is executed in this example there
were 232 rows, and the second time there were 198 rows. If you designate the number of rows, this is
actually converted by SQL Server into a percentage, and then the same method used by SQL Server
to identify the percentage of data pages is used.

Using PIVOT to Convert Single Column Values into Multiple
Columns and Aggregate Data
The PIVOT operator allows you to create cross-tab queries that convert values into columns, using
an aggregation to group the data by the new columns.

PIVOT uses the following syntax:

FROM table_source
PIVOT (aggregate_function (value_column)

FOR pivot_column
IN (<column_list>)

) table_alias

CHAPTER 1 ■ SELECT 39

9802CH01.qxd 4/11/08 9:55 AM Page 39

The arguments of PIVOT are described in Table 1-3.

Table 1-3. PIVOT Arguments

Argument Description

table_source The table where the data will be pivoted

aggregate_function (value_column) The aggregate function that will be used against the
specified column

pivot_column The column that will be used to create the column
headers

column_list The values to pivot from the pivot column

table_alias The table alias of the pivoted result set

This next example shows you how to PIVOT and aggregate data similar to the pivot features in
Microsoft Excel—shifting values in a single column into multiple columns, with aggregated data
shown in the results.

The first part of the example displays the data prepivoted. The query results show employee
shifts, as well as the departments that they are in:

SELECT s.Name ShiftName,
h.BusinessEntityID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')
ORDER BY ShiftName

Notice that the varying departments are all listed in a single column:

ShiftName BusinessEntityID DepartmentName
Day 3 Engineering
Day 9 Engineering
...
Day 2 Marketing
Day 6 Marketing
...
Evening 25 Production
Evening 18 Production
Night 14 Production
Night 27 Production
...
Night 252 Production

(194 row(s) affected)

The next query pivots the department values into columns, along with a count of employees by
shift:

CHAPTER 1 ■ SELECT40

9802CH01.qxd 4/11/08 9:55 AM Page 40

SELECT ShiftName,
Production,
Engineering,
Marketing

FROM
(SELECT s.Name ShiftName,

h.BusinessEntityID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')) AS a
PIVOT
(

COUNT(BusinessEntityID)
FOR DepartmentName IN ([Production], [Engineering], [Marketing])

) AS b
ORDER BY ShiftName

This returns

ShiftName Production Engineering Marketing
Day 79 6 9
Evening 54 0 0
Night 46 0 0

(3 row(s) affected)

How It Works
The result of the PIVOT query returned employee counts by shift and department. The query began
by naming the fields to return:

SELECT ShiftName,
Production,
Engineering,
Marketing

Notice that these fields were actually the converted rows, but turned into column names.
The FROM clause referenced the subquery (the query used at the beginning of this example). The

subquery was aliased with an arbitrary name of a:

FROM
(SELECT s.Name ShiftName,

h. BusinessEntityID,
d.Name DepartmentName

FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON

h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON

h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND

d.Name IN ('Production', 'Engineering', 'Marketing')) AS a

CHAPTER 1 ■ SELECT 41

9802CH01.qxd 4/11/08 9:55 AM Page 41

Inside the parentheses, the query designated which columns would be aggregated (and how).
In this case, the number of employees would be counted:

PIVOT
(COUNT(BusinessEntityID)

After the aggregation section, the FOR statement determined which row values would be con-
verted into columns. Unlike regular IN clauses, single quotes aren’t used around each string
character, instead using square brackets. DepartmentName was the data column where values are
converted into pivoted columns:

FOR DepartmentName IN ([Production], [Engineering], [Marketing]))

■Note The list of pivoted column names cannot already exist in the base table or view query columns being
pivoted.

Lastly, a closed parenthesis closed off the PIVOT operation. The PIVOT operation was then
aliased like a table with an arbitrary name (in this case b):

AS b

The results were then ordered by ShiftName:

ORDER BY ShiftName

The results took the three columns fixed in the FOR part of the PIVOT operation and aggregated
counts of employees by ShiftName.

Normalizing Data with UNPIVOT
The UNPIVOT command does almost the opposite of PIVOT by changing columns into rows. It also
uses the same syntax as PIVOT, only UNPIVOT is designated instead.

This example demonstrates how UNPIVOT can be used to remove column-repeating groups
often seen in denormalized tables. For the first part of this recipe, a denormalized table is created
with repeating, incrementing phone number columns:

CREATE TABLE dbo.Contact
(EmployeeID int NOT NULL,
PhoneNumber1 bigint,
PhoneNumber2 bigint,
PhoneNumber3 bigint)

GO

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(1, 2718353881, 3385531980, 5324571342)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(2, 6007163571, 6875099415, 7756620787)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(3, 9439250939, NULL, NULL)

CHAPTER 1 ■ SELECT42

9802CH01.qxd 4/11/08 9:55 AM Page 42

Now using UNPIVOT, the repeating phone numbers are converted into a more normalized form
(reusing a single PhoneValue field instead of repeating the phone column multiple times):

SELECT EmployeeID,
PhoneType,
PhoneValue

FROM
(SELECT EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) c
UNPIVOT

(PhoneValue FOR PhoneType IN ([PhoneNumber1], [PhoneNumber2], [PhoneNumber3])
) AS p

This returns

EmployeeID PhoneType PhoneValue
1 PhoneNumber1 2718353881
1 PhoneNumber2 3385531980
1 PhoneNumber3 5324571342
2 PhoneNumber1 6007163571
2 PhoneNumber2 6875099415
2 PhoneNumber3 7756620787
3 PhoneNumber1 9439250939

(7 row(s) affected)

How It Works
This UNPIVOT example began by selecting three columns. The EmployeeID came from the subquery.
The other two columns, PhoneType and PhoneValue, were defined later on in the UNPIVOT statement:

SELECT EmployeeID,
PhoneType,
PhoneValue

Next, the FROM clause referenced a subquery. The subquery selected all four columns from the
contact table. The table was aliased with the letter c (table alias name was arbitrary):

FROM
(SELECT EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) c

A new column called PhoneValue (referenced in the SELECT) holds the individual phone num-
bers across the three denormalized phone columns:

UNPIVOT
(PhoneValue FOR PhoneType IN ([PhoneNumber1], [PhoneNumber2], [PhoneNumber3])

FOR references the name of the pivot column, PhoneType, which holds the column names of the
denormalized table. The IN clause following PhoneType lists the columns from the original table to
be narrowed into a single column.

Lastly, a closing parenthesis is used, and then aliased with an arbitrary name, in this case p:

) AS p

This query returned the phone data merged into two columns, one to describe the phone type,
and another to hold the actual phone numbers. Also notice that there are seven rows, instead of

CHAPTER 1 ■ SELECT 43

9802CH01.qxd 4/11/08 9:55 AM Page 43

nine. This is because for EmployeeID 3, only non-NULL values were returned. UNPIVOT does not return
NULL values from the pivoted result set.

Returning Distinct or Matching Rows Using EXCEPT and
INTERSECT
The INTERSECT and EXCEPT operands allow you to return either distinct rows that exist only in the left
query (using EXCEPT) or distinct rows that exist in both the left and right queries (using INTERSECT).

INTERSECT and EXCEPT are useful in dataset comparison scenarios; for example, if you need to
compare rows between test and production tables, you can use EXCEPT to easily identify and popu-
late rows that existed in one table and not the other. These operands are also useful for data
recovery, because you could restore a database from a period prior to a data loss, compare data
with the current production table, and then recover the deleted rows accordingly.

For this recipe, demonstration tables are created that are partially populated from the
Production.Product table:

-- First two new tables based on ProductionProduct will be
-- created, in order to demonstrate EXCEPT and INTERSECT.
-- See Chapter 8 for more on ROW_NUMBER

-- Create TableA
SELECT prod.ProductID,

prod.Name
INTO dbo.TableA
FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum

FROM Production.Product) prod
WHERE RowNum BETWEEN 1 and 20

-- Create TableB
SELECT prod.ProductID,

prod.Name
INTO dbo.TableB
FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum

FROM Production.Product) prod
WHERE RowNum BETWEEN 10 and 29

This returns

(20 row(s) affected)

(20 row(s) affected)

Now the EXCEPT operator will be used to determine which rows exist only in the left table of the
query, TableA, and not in TableB:

SELECT ProductID,
Name

FROM dbo.TableA
EXCEPT

CHAPTER 1 ■ SELECT44

9802CH01.qxd 4/11/08 9:55 AM Page 44

SELECT ProductID,
Name

FROM dbo.TableB

This returns

ProductID Name
1 Adjustable Race
2 Bearing Ball
3 BB Ball Bearing
4 Headset Ball Bearings
316 Blade
317 LL Crankarm
318 ML Crankarm
319 HL Crankarm
320 Chainring Bolts

(9 row(s) affected)

To show distinct values from both result sets that match, use the INTERSECT operator:

SELECT ProductID,
Name

FROM dbo.TableA
INTERSECT
SELECT ProductID,

Name
FROM dbo.TableB

This returns

ProductID Name
321 Chainring Nut
322 Chainring
323 Crown Race
324 Chain Stays
325 Decal 1
326 Decal 2
327 Down Tube
328 Mountain End Caps
329 Road End Caps
330 Touring End Caps
331 Fork End

(11 row(s) affected)

How It Works
The example started off by creating two tables (using INTO) that contain overlapping sets of rows.

■Note The ROW_NUMBER function used to populate the tables in this recipe is described in more detail in
Chapter 8.

CHAPTER 1 ■ SELECT 45

9802CH01.qxd 4/11/08 9:55 AM Page 45

The first table, TableA, contained the first 20 rows (ordered by ProductID) from the Production.
Product table. The second table, TableB, also received another 20 rows, half of which overlapped
with TableA’s rows.

To determine which rows exist only in TableA, the EXCEPT operand was placed after the FROM
clause of the first query and before the second query:

SELECT ProductID,
Name

FROM dbo.TableA
EXCEPT
SELECT ProductID,

Name
FROM dbo.TableB

In order for EXCEPT to be used, both queries must have the same number of columns. Those
columns also need to have compatible data types (it’s not necessary that the column names from
each query match). The advantages of EXCEPT is that all columns are evaluated to determine
whether there is a match, which is much more efficient than using INNER JOIN (which would
require explicitly joining the tables on each column in both data sources).

The results of the EXCEPT query show the first nine rows from TableA that were not also popu-
lated into TableB.

In the second example, INTERSECT was used to show rows that overlap between the two tables.
Like EXCEPT, INTERSECT is placed between the two queries:

SELECT ProductID,
Name

FROM dbo.TableA
INTERSECT
SELECT ProductID,

Name
FROM dbo.TableB

The query returned the 11 rows that overlapped between both tables. The same rules about
compatible data types and number of columns apply to INTERSECT as for EXCEPT.

Summarizing Data
In these next three recipes, I will demonstrate summarizing data within the result set using the fol-
lowing operators:

• Use CUBE to add summarizing total values to a result set based on columns in the GROUP BY
clause.

• Use ROLLUP with GROUP BY to add hierarchical data summaries based on the ordering of
columns in the GROUP BY clause.

• Use the GROUPING SETS operator to define custom aggregates in a single result set without
having to use UNION ALL.

I’ll start this section off by demonstrating how to summarize data with CUBE.

Summarizing Data Using CUBE
CUBE adds rows to your result set, summarizing total values based on the columns in the GROUP BY
clause.

CHAPTER 1 ■ SELECT46

9802CH01.qxd 4/11/08 9:55 AM Page 46

This example demonstrates a query that returns the total quantity of a product, grouped by the
shelf the product is kept on:

SELECT i.Shelf,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
GROUP BY CUBE (i.Shelf)

This returns the following results:

Shelf Total
A 26833
B 12672
C 19868
D 17353
E 31979
F 21249
G 40195
H 20055
J 12154
K 16311
L 13553
M 3567
N 5254
N/A 30582
R 23123
S 5912
T 10634
U 18700
V 2635
W 2908
Y 437
NULL 335974

(22 row(s) affected)

In this next query, I’ll modify the SELECT and GROUP BY clauses by adding LocationID:

SELECT i.Shelf,
i.LocationID,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
GROUP BY CUBE (i.Shelf,i.LocationID)

This returns a few levels of totals, the first being by location (abridged):

Shelf LocationID Total
A 1 2727
C 1 13777
D 1 6551
...
K 1 6751
L 1 7537
NULL 1 72899

CHAPTER 1 ■ SELECT 47

9802CH01.qxd 4/11/08 9:55 AM Page 47

In the same result set, later on you also see totals by shelf, and then across all shelves and
locations:

Shelf LocationID Total
...
T NULL 10634
U NULL 18700
V NULL 2635
W NULL 2908
Y NULL 437
NULL NULL 335974

How It Works
Because the first query groups by shelf, and because I used GROUP BY CUBE, an extra row was added
to the bottom of the result set that shows the total for all shelves:

GROUP BY CUBE (i.Shelf)

■Caution When using CUBE, you must be careful not to accidentally double-count your aggregated values.

This is slightly different syntax from previous versions of SQL Server. In SQL Server 2008, CUBE is
after the GROUP BY, instead of trailing the GROUP BY clause with a WITH CUBE. Notice also that the col-
umn lists are contained within parentheses:

GROUP BY CUBE (i.Shelf,i.LocationID)

Adding additional columns to the query, included in the GROUP BY CUBE clause, you saw aggre-
gate values for each grouping combination. CUBE is often used for reporting purposes, providing a
simple way to return totals by grouped column.

■Note In earlier versions of SQL Server, you may have used COMPUTE BY to also provide similar aggregations for
your query. Microsoft has deprecated COMPUTE BY functionality for backward compatibility. Unlike WITH CUBE,
COMPUTE BY created an entirely new summarized result set after the original query results, which were often diffi-
cult for calling applications to consume.

Summarizing Data Using ROLLUP
GROUP BY ROLLUP is used to add hierarchical data summaries based on the ordering of columns in
the GROUP BY clause.

This example retrieves the shelf, product name, and total quantity of the product:

SELECT i.Shelf,
p.Name,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
INNER JOIN Production.Product p ON

i.ProductID = p.ProductID
GROUP BY ROLLUP (i.Shelf, p.Name)

CHAPTER 1 ■ SELECT48

9802CH01.qxd 4/11/08 9:55 AM Page 48

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

This returns the following (abridged) results:

Shelf Name Total
A Adjustable Race 761
A BB Ball Bearing 909
...
A NULL 26833
B Adjustable Race 324
B BB Ball Bearing 443
B Bearing Ball 318
...
B Touring Front Wheel 304
B NULL 12672
C Chain 236
C Chain Stays 585
Y LL Spindle/Axle 209
Y NULL 437
NULL NULL 335974

How It Works
The order you place the columns in the GROUP BY ROLLUP impacts how data is aggregated. ROLLUP in
this query aggregated total quantity for each change in Shelf. Notice the row with shelf A and the
NULL name; this holds the total quantity for shelf A. Also notice that the final row was the grand total
of all product quantities. Whereas CUBE creates a result set that aggregates all combinations for the
selected columns, ROLLUP generates the aggregates for a hierarchy of values.

GROUP BY ROLLUP (i.Shelf, p.Name)

ROLLUP aggregated a grand total and totals by shelf. Totals were not generated for the product
name but would have been had I designated CUBE instead.

Just like CUBE, ROLLUP uses slightly different syntax from previous versions of SQL Server. In SQL
Server 2008, ROLLUP is after the GROUP BY, instead of trailing the GROUP BY clause with a WITH ROLLUP.
Notice also that the column lists are contained within parentheses.

Creating Custom Summaries Using Grouping Sets
SQL Server 2008 introduces the ability to define your own grouping sets within a single query result
set without having to resort to multiple UNION ALLs. Grouping sets also provides you with more con-
trol over what is aggregated, compared to the previously demonstrated CUBE and ROLLUP operations.
This is performed by using the GROUPING SETS operator.

First, I’ll demonstrate by defining an example business requirement for a query. Let’s assume I
want a single result set to contain three different aggregate quantity summaries. Specifically, I
would like to see quantity totals by shelf, quantity totals by shelf and product name, and then also
quantity totals by location and name.

To achieve this in previous versions of SQL Server, you would need to have used UNION ALL:

SELECT
NULL,
i.LocationID,
p.Name,
SUM(i.Quantity) Total

FROM Production.ProductInventory i

CHAPTER 1 ■ SELECT 49

9802CH01.qxd 4/11/08 9:55 AM Page 49

INNER JOIN Production.Product p ON
i.ProductID = p.ProductID

WHERE Shelf IN ('A','C') AND
Name IN ('Chain', 'Decal', 'Head Tube')

GROUP BY i.LocationID, p.Name
UNION ALL
SELECT

i.Shelf,
NULL,
NULL,

SUM(i.Quantity) Total
FROM Production.ProductInventory i
INNER JOIN Production.Product p ON

i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND

Name IN ('Chain', 'Decal', 'Head Tube')
GROUP BY i.Shelf
UNION ALL
SELECT

i.Shelf,
NULL,
p.Name,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
INNER JOIN Production.Product p ON

i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND

Name IN ('Chain', 'Decal', 'Head Tube')
GROUP BY i.Shelf, p.Name

This returns

LocationID Name Total
NULL 1 Chain 236
NULL 5 Chain 192
NULL 50 Chain 161
NULL 20 Head Tube 544
A NULL NULL 897
C NULL NULL 236
A NULL Chain 353
C NULL Chain 236
A NULL Head Tube 544

(9 row(s) affected)

In SQL Server 2008, you can save yourself all that extra code by using the GROUPING SETS opera-
tor instead to define the various aggregations you would like to have returned in a single result set:

SELECT
i.Shelf,
i.LocationID,
p.Name,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
INNER JOIN Production.Product p ON

i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND

CHAPTER 1 ■ SELECT50

9802CH01.qxd 4/11/08 9:55 AM Page 50

Name IN ('Chain', 'Decal', 'Head Tube')
GROUP BY GROUPING SETS

((i.Shelf), (i.Shelf, p.Name), (i.LocationID, p.Name))

This returns the same result set as the previous query (only ordered a little differently):

Shelf LocationID Name Total
NULL 1 Chain 236
NULL 5 Chain 192
NULL 50 Chain 161
NULL 20 Head Tube 544
A NULL Chain 353
A NULL Head Tube 544
A NULL NULL 897
C NULL Chain 236
C NULL NULL 236

(9 row(s) affected)

How It Works
The new GROUPING SETS operator allows you to define varying aggregate groups in a single query,
while avoiding the use of multiple queries attached together using UNION ALL. The core of this
recipe’s example is the following two lines of code:

GROUP BY GROUPING SETS
((i.Shelf), (i.Shelf, p.Name), (i.LocationID, p.Name))

Notice that unlike a regular aggregated query, the GROUP BY clause is not followed by a list of
columns. Instead, it is followed by GROUPING SETS. GROUPING SETS is then followed by parentheses
and the groupings of column names, each also encapsulated in parentheses.

Revealing Rows Generated by GROUPING
You may have noticed that those rows that were grouped in the previous recipes had NULL values in
the columns that weren’t participating in the aggregate totals. For example, when shelf C was totaled
up, the location and product name columns were NULL:

C NULL NULL 236

The NULL values are acceptable if your data doesn’t explicitly contain NULLs—however, what if it
does? How can you differentiate “stored” NULLs from those generated in the rollups, cubes, and
grouping sets?

In order to address this issue, you can use the GROUPING and GROUPING_ID functions. I’ll discuss
GROUPING in this recipe and GROUPING_ID in the next. GROUPING was available in previous versions of
SQL Server, and it allowed simple evaluation of whether or not a row is a product of aggregation. For
example, the following query uses a CASE statement to evaluate whether each row is a total by shelf,
total by location, grand total, or regular non-cubed row:

SELECT
i.Shelf,
i.LocationID,
CASE
WHEN GROUPING(i.Shelf) = 0 AND

CHAPTER 1 ■ SELECT 51

9802CH01.qxd 4/11/08 9:55 AM Page 51

GROUPING(i.LocationID) = 1 THEN 'Shelf Total'
WHEN GROUPING(i.Shelf) = 1 AND

GROUPING(i.LocationID) = 0 THEN 'Location Total'
WHEN GROUPING(i.Shelf) = 1 AND

GROUPING(i.LocationID) = 1 THEN 'Grand Total'
ELSE 'Regular Row'

END RowType,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
WHERE LocationID = 2
GROUP BY CUBE (i.Shelf,i.LocationID)

This returns

Shelf LocationID RowType Total
B 2 Regular Row 900
C 2 Regular Row 1557
D 2 Regular Row 3092
NULL 2 Location Total 5549
NULL NULL Grand Total 5549
B NULL Shelf Total 900
C NULL Shelf Total 1557
D NULL Shelf Total 3092
(8 row(s) affected)

How It Works
The GROUPING function allows you to differentiate and act upon those rows that are generated auto-
matically for aggregates using CUBE, ROLLUP, and GROUPING SETS. In this example, I started off the
SELECT statement as normal, with the Shelf and Location columns:

SELECT
i.Shelf,
i.LocationID,

Following this, I then began a CASE statement that would evaluate the combinations of return
values for the GROUPING statement.

■Tip For more on CASE, see Chapter 9.

When GROUPING returns a 1 value (true), it means the column NULL is not an actual data value,
but is a result of the aggregate operation, standing in for the value “all”. So for example, if the shelf
value is not NULL and the location ID is null due to the CUBE aggregation process and not the data
itself, the string Shelf Total is returned:

CASE
WHEN GROUPING(i.Shelf) = 0 AND

GROUPING(i.LocationID) = 1 THEN 'Shelf Total'

This continues with similar logic, only this time if the shelf value is NULL due to the CUBE aggre-
gation process, but the location is not null, a location total is provided:

WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 0 THEN 'Location Total'

CHAPTER 1 ■ SELECT52

9802CH01.qxd 4/11/08 9:55 AM Page 52

The last WHEN defines when both shelf and location are NULL due to the CUBE aggregation
process, which means the row contains the grand total for the result set:

WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 1 THEN 'Grand Total'

GROUPING only returns a 1 or a 0; however, in SQL Server 2008, you also have the option of using
GROUPING_ID to compute grouping at a finer grain, as I’ll demonstrate in the next recipe.

Advanced Group-Level Identification with GROUPING_ID

■Note This recipe assumes an understanding of the binary/base-2 number system.

Identifying which rows belong to which type of aggregate becomes progressively more difficult for
each new column you add to GROUP BY and each unique data value that can be grouped and aggre-
gated. For example, assume that I have a non-aggregated report showing the quantity of products
that exist in location 3 within bins 1 and 2:

SELECT
i.Shelf,
i.LocationID,
i.Bin,
i.Quantity

FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)

This query returns only two rows:

Shelf LocationID Bin Quantity
A 3 2 41
A 3 1 49

Now what if I wanted to report aggregations based on the various combinations of shelf, loca-
tion, and bin? I could use CUBE to give summaries of all these potential combinations:

SELECT
i.Shelf,
i.LocationID,
i.Bin,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)
GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BY i.Shelf, i.LocationID, i.Bin

Although the query returns the various aggregations expected from CUBE, the results are diffi-
cult to decipher:

Shelf LocationID Bin Total
NULL NULL NULL 90
NULL NULL 1 49
NULL NULL 2 41

CHAPTER 1 ■ SELECT 53

9802CH01.qxd 4/11/08 9:55 AM Page 53

NULL 3 NULL 90
NULL 3 1 49
NULL 3 2 41
A NULL NULL 90
A NULL 1 49
A NULL 2 41
A 3 NULL 90
A 3 1 49
A 3 2 41

(12 row(s) affected)

This is where GROUPING_ID comes in handy. Using this function, I can determine the level of
grouping for the row. This function is more complicated than GROUPING, however, because
GROUPING_ID takes one or more columns as its input and then returns the integer equivalent of the
base-2 (binary) number calculation on the columns.

This is best described by example, so I’ll demonstrate taking the previous query and adding
CASE logic to return proper row descriptors:

SELECT
i.Shelf,
i.LocationID,
i.Bin,
CASE GROUPING_ID(i.Shelf,i.LocationID, i.Bin)

WHEN 1 THEN 'Shelf/Location Total'
WHEN 2 THEN 'Shelf/Bin Total'
WHEN 3 THEN 'Shelf Total'
WHEN 4 THEN 'Location/Bin Total'
WHEN 5 THEN 'Location Total'
WHEN 6 THEN 'Bin Total'
WHEN 7 THEN 'Grand Total'

ELSE 'Regular Row'
END,
SUM(i.Quantity) Total

FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)
GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BY i.Shelf, i.LocationID, i.Bin

I’ll explain what each of the integer values mean in the “How It Works” section. The results
returned from this query give descriptions of the various aggregations CUBE resulted in:

Shelf LocationID Bin Total
NULL NULL NULL Grand Total 90
NULL NULL 1 Bin Total 49
NULL NULL 2 Bin Total 41
NULL 3 NULL Location Total 90
NULL 3 1 Location/Bin Total 49
NULL 3 2 Location/Bin Total 41
A NULL NULL Shelf Total 90
A NULL 1 Shelf/Bin Total 49
A NULL 2 Shelf/Bin Total 41
A 3 NULL Shelf/Location Total 90
A 3 1 Regular Row 49

CHAPTER 1 ■ SELECT54

9802CH01.qxd 4/11/08 9:55 AM Page 54

A 3 2 Regular Row 41
(12 row(s) affected)

How It Works
GROUPING_ID takes a column list and returns the integer value of the base-2 binary column list calcu-
lation (I’ll step through this).

The query started off with the list of the three non-aggregated columns to be returned in the
result set:

SELECT
i.Shelf,
i.LocationID,
i.Bin,

Next, I defined a CASE statement that evaluated the return value of GROUPING_ID for the list of
the three columns:

CASE GROUPING_ID(i.Shelf,i.LocationID, i.Bin)

In order to illustrate the base-2 conversion to integer concept, I’ll focus on a single row, the row
that shows the grand total for shelf A generated automatically by CUBE:

Shelf LocationID Bin Total
A NULL NULL 90

Now envision another row beneath it that shows the bit values being enabled or disabled based
on whether the column is not a grouping column. Both Location and Bin from GROUPING_ID’s per-
spective have a bit value of 1 because neither of them are a grouping column for this specific row.
For this row, Shelf is the grouping column:

Shelf LocationID Bin
A NULL NULL
0 1 1

Converting the binary 011 to integer, I’ll add another row that shows the integer value beneath
the flipped bits:

Shelf LocationID Bin
A NULL NULL
0 1 1
4 2 1

Because only location and bin have enabled bits, I add 1 and 2 to get a summarized value of 3,
which is the value returned for this row by GROUPING_ID. So the various combinations of grouping
are calculated from binary to integer. In the CASE statement that follows, 3 translates to a shelf total.

Since I have three columns, the various potential aggregations are represented in the following
WHEN/THENs:

CASE GROUPING_ID(i.Shelf,i.LocationID, i.Bin)
WHEN 1 THEN 'Shelf/Location Total'
WHEN 2 THEN 'Shelf/Bin Total'
WHEN 3 THEN 'Shelf Total'

CHAPTER 1 ■ SELECT 55

9802CH01.qxd 4/11/08 9:55 AM Page 55

WHEN 4 THEN 'Location/Bin Total'
WHEN 5 THEN 'Location Total'
WHEN 6 THEN 'Bin Total'
WHEN 7 THEN 'Grand Total'

ELSE 'Regular Row'
END,

Each potential combination of aggregations is handled in the CASE statement. The rest of the
query involves using an aggregate function on quantity, and then using CUBE to find the various
aggregation combinations for shelf, location, and bin:

SUM(i.Quantity) Total
FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)
GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BYi.Shelf, i.LocationID, i.Bin

Common Table Expressions
A Common Table Expression, or CTE, is similar to a view or derived query, allowing you to create a
temporary query that can be referenced within the scope of a SELECT, INSERT, UPDATE, or DELETE
query. Unlike a derived query, you don’t need to copy the query definition multiple times each time
it is used. You can also use local variables within a CTE definition—something you can’t do in a view
definition.

The basic syntax for a CTE is as follows:

WITH expression_name [(column_name [,...n])]
AS (CTE_query_definition)

The arguments of a CTE are described in the Table 1-4.

Table 1-4. CTE Arguments

Argument Description

expression_name The name of the common table expression

column_name [,...n] The unique column names of the expression

CTE_query_definition The SELECT query that defines the common table expression

A non-recursive CTE is one that is used within a query without referencing itself. It serves as a
temporary result set for the query. A recursive CTE is defined similarly to a non-recursive CTE, only
a recursive CTE returns hierarchical self-relating data. Using a CTE to represent recursive data can
minimize the amount of code needed compared to other methods.

The next two recipes will demonstrate both non-recursive and recursive CTEs.

Using a Non-Recursive Common Table Expression
This example of a common table expression demonstrates returning vendors in the
Purchasing.Vendor table—returning the first five and last five results ordered by name:

CHAPTER 1 ■ SELECT56

9802CH01.qxd 4/11/08 9:55 AM Page 56

WITH VendorSearch (RowNumber, VendorName, AccountNumber)
AS
(
SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,

Name,
AccountNumber

FROM Purchasing.Vendor
)

SELECT RowNumber,
VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5
UNION
SELECT RowNumber,

VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 100 AND 104

This returns

RowNumber VendorName AccountNumber
1 A. Datum Corporation ADATUM0001
2 Advanced Bicycles ADVANCED0001
3 Allenson Cycles ALLENSON0001
4 American Bicycles and Wheels AMERICAN0001
5 American Bikes AMERICAN0002
100 Vista Road Bikes VISTARO0001
101 West Junction Cycles WESTJUN0001
102 WestAmerica Bicycle Co. WESTAMER0001
103 Wide World Importers WIDEWOR0001
104 Wood Fitness WOODFIT0001

(10 row(s) affected)

The previous example used UNION; however, non-recursive CTEs can be used like any other
SELECT query too:

WITH VendorSearch (VendorID, VendorName)
AS
(
SELECT BusinessEntityID,

Name
FROM Purchasing.Vendor
)

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice

FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON

v.VendorID = p.VendorID
ORDER BY v.VendorName

CHAPTER 1 ■ SELECT 57

9802CH01.qxd 4/11/08 9:55 AM Page 57

This returns the following (abridged) results:

VendorID VendorName ProductID StandardPrice
32 Advanced Bicycles 359 45.41
32 Advanced Bicycles 360 43.41
32 Advanced Bicycles 361 47.48
32 Advanced Bicycles 362 43.41
32 Advanced Bicycles 363 41.41
...

(460 row(s) affected)

How It Works
In the first example of the recipe, WITH defined the CTE name and the columns it returned. This was
a non-recursive CTE because CTE data wasn’t being joined to itself. The CTE in this example was
only using a query that UNIONed two data sets:

WITH VendorSearch (RowNumber, VendorName, AccountNumber)

The column names defined in the CTE can match the actual names of the query within—or
you can create your own alias names. For example, here the Purchasing.Vendor column Name has
been referenced as VendorName in the CTE.

Next in the recipe, AS marked the beginning of the CTE query definition:

AS
(

Inside the parentheses, the query used a function that returned the sequential row number of
the result set—ordered by the vendor name (see Chapter 8 for a review of ROW_NUMBER):

SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,
Name,
AccountNumber

FROM Purchasing.Vendor
)

The vendor name and AccountNumber from the Purchasing.Vendor table were also returned. The
CTE definition finished after marking the closing parentheses.

Following the CTE definition was the query that used the CTE. Keep in mind that a SELECT,
INSERT, UPDATE, or DELETE statement that references some or all the CTE columns must follow the
definition of the CTE:

SELECT RowNumber,
VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5

The SELECT column names were used from the new VendorSearch CTE. In the WHERE clause, the
first query returns rows 1 through 5. Next the UNION operator was used prior to the second query:

UNION

This second query displayed the last five rows. The VendorSearch CTE was referenced twice—
but the full query definition only had to be defined a single time (unlike using derived queries)—
thus reducing code.

CHAPTER 1 ■ SELECT58

9802CH01.qxd 4/11/08 9:55 AM Page 58

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

In the second example of the recipe, a simple CTE was defined without using any functions,
just BusinessEntityID and VendorName from the Purchasing.Vendor table:

WITH VendorSearch (VendorID, VendorName)
AS
(
SELECT BusinessEntityID,

Name
FROM Purchasing.Vendor
)

In the query following this CTE definition, the CTE VendorSearch was joined just like a regular
table (only without specifying the owning schema):

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice

FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON

v.VendorID = p.BusinessEntityID
ORDER BY v.VendorName

■Caution If the CTE is part of a batch of statements, the statement before its definition must be followed by a
semicolon.

■Note You can use a semicolon as a SQL Server statement terminator. Doing so isn’t mandatory in most areas,
but it is ANSI compliant, and you’ll see it being used in some of the documentation coming from Microsoft.

Using a Recursive Common Table Expression
In this example, the new Company table will define the companies in a hypothetical giant mega con-
glomerate. Each company has a CompanyID and an optional ParentCompanyID. The example will
demonstrate how to display the company hierarchy in the results using a recursive CTE. First, the
table is created:

CREATE TABLE dbo.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL)

Next, rows are inserted into the new table (using new SQL Server 2008 syntax that I’ll be
demonstrating in Chapter 2):

INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES

(1, NULL, 'Mega-Corp'),
(2, 1, 'Mediamus-Corp'),
(3, 1, 'KindaBigus-Corp'),
(4, 3, 'GettinSmaller-Corp'),
(5, 4, 'Smallest-Corp'),
(6, 5, 'Puny-Corp'),
(7, 5, 'Small2-Corp')

CHAPTER 1 ■ SELECT 59

9802CH01.qxd 4/11/08 9:55 AM Page 59

Now the actual example:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel)
AS
(

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel

FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanyLevel + 1

FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)
SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree

This returns

ParentCompanyID CompanyID CompanyName CompanyLevel
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2
4 5 Smallest-Corp 3
5 6 Puny-Corp 4
5 7 Small2-Corp 4

(7 row(s) affected)

How It Works
In this example, the CTE name and columns are defined first:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel)

The CTE query definition began with AS and an open parenthesis:

AS
(

The SELECT clause began with the “anchor” SELECT statement. The anchor definition has to be
defined first. When using recursive CTEs, “anchor” refers to the fact that it defines the base of the
recursion—in this case the top level of the corporate hierarchy (the parentless Mega-Corp). This
SELECT also includes a CompanyLevel column alias, preceded with the number zero. This column will
be used in the recursion to display how many levels deep a particular company is in the company
hierarchy:

CHAPTER 1 ■ SELECT60

9802CH01.qxd 4/11/08 9:55 AM Page 60

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel

FROM dbo.Company
WHERE ParentCompanyID IS NULL

Next was the UNION ALL, to join the second, recursive query to the anchor member (UNION ALL,
and not just UNION, is required for the last anchor member and the first recursive member in a recur-
sive CTE):

UNION ALL

After that was the recursive query. Like the anchor, the SELECT clause references the
ParentCompanyID, CompanyID, and CompanyName from the dbo.Company table. Unlike the anchor, the
CTE column references p.CompanyLevel (from the anchor query), adding 1 to its total at each level
of the hierarchy:

SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanyLevel + 1

The dbo.Company table was joined to the CompanyTree CTE, joining the CTE’s recursive query’s
ParentCompanyID to the CTE’s CompanyID:

FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)

After the closing of the CTE’s definition, the query selected from the CTE based on the columns
defined in the CTE definition.

SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree

In the results, for each level in the company hierarchy, the CTE increased the CompanyLevel
column.

With this useful new feature come some cautions, however. If you create your recursive CTE
incorrectly, you could cause an infinite loop. While testing, to avoid infinite loops, use the
MAXRECURSION hint mentioned earlier in the chapter.

For example, you can stop the previous example from going further than two levels by adding
the OPTION clause with MAXRECURSION at the end of the query:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanyLevel) AS
(

SELECT ParentCompanyID, CompanyID, CompanyName, 0 AS CompanyLevel
FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID, c.CompanyID, c.CompanyName, p.CompanyLevel + 1
FROM dbo.Company c

INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

)
SELECT ParentCompanyID, CompanyID, CompanyName, CompanyLevel
FROM CompanyTree
OPTION (MAXRECURSION 2)

CHAPTER 1 ■ SELECT 61

9802CH01.qxd 4/11/08 9:55 AM Page 61

This returns

ParentCompanyID CompanyID CompanyName CompanyLevel
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2
Msg 530, Level 16, State 1, Line 2
The statement terminated. The maximum recursion 2 has
been exhausted before statement completion.

As a best practice, set the MAXRECURSION based on your understanding of the data. If you know
that the hierarchy cannot go more than ten levels deep, for example, then set MAXRECURSION to that
value.

■Tip You can also use the new HierarchyID data type to more easily traverse data hierarchies. For more infor-
mation on this new SQL Server 2008 data type, see Chapter 14.

CHAPTER 1 ■ SELECT62

9802CH01.qxd 4/11/08 9:55 AM Page 62

Perform, Capture, and Track Data
Modifications

In this chapter, I review how to modify data using the Transact-SQL INSERT, UPDATE, and DELETE
commands. I’ll review the basics of each command and cover specific techniques such as inserting
data from a stored procedure and importing an image file into a table using OPENROWSET BULK func-
tionality.

The new SQL Server 2008 features I cover in this chapter include the following:

• Inserting multiple rows from a single INSERT statement. I’ll also demonstrate using the
multiple-row technique to create a query data source in a SELECT clause (without having to
create a permanent or temporary table).

• New assignment operators that allow you to modify a passed data value with minimal
coding.

• The new MERGE command, which allows you to consolidate and apply data modification
commands using a single block of code.

• Storing unstructured data on the file system while maintaining SQL Server transactional
control using the new FILESTREAM attribute.

• Two new options for tracking table data changes using Change Data Capture (CDC) and
Change Tracking built-in functionality.

Before going into the new features, however, I’ll start the chapter off by reviewing basic INSERT
concepts.

INSERT
The simplified syntax for the INSERT command is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
VALUES (({DEFAULT | NULL | expression } [,...n]) [,...n])

The arguments of this command are described in Table 2-1.

63

C H A P T E R 2

9802CH02.qxd 4/30/08 9:59 AM Page 63

Table 2-1. INSERT Command Arguments

Argument Description

table_or_view_name The name of the table or updateable view that you
are inserting a row into.

column_list The explicit comma-separated list of columns on
the insert table that will be populated with values.

(DEFAULT | NULL | expression }[,...n]) The comma-separated list of values to be inserted
as a row into the table. In SQL Server 2008, you can
insert multiple rows in a single statement. Each
value can be an expression, NULL value, or DEFAULT
value (if a default was defined for the column).

Inserting a Row into a Table
In this recipe, I demonstrate the use of INSERT to add new rows into a table (as specified by
table_name), specifying a column_list of columns into which the data should be inserted, and a
corresponding comma-separated list of values to be inserted, [,....n], in the VALUES clause. Specif-
ically, here I demonstrate inserting a single row into the AdventureWorks Production.Location table:

USE AdventureWorks
GO

INSERT Production.Location
(Name, CostRate, Availability)
VALUES ('Wheel Storage', 11.25, 80.00)

This returns

(1 row(s) affected)

This next query then searches for any row with the name Wheel Storage:

SELECT Name,
CostRate,
Availability

FROM Production.Location
WHERE Name = 'Wheel Storage'

This returns

Name CostRate Availability
Wheel Storage 11.25 80.00

(1 row(s) affected)

How It Works
In this recipe, a new row was inserted into the Production.Location table.

The query began with the INSERT command and the name of the table that will receive the
inserted data (the INTO keyword is optional):

INSERT Production.Location

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS64

9802CH02.qxd 4/30/08 9:59 AM Page 64

The next line of code explicitly listed the columns of the destination table that I wish to insert
the data into:

(Name, CostRate, Availability)

A comma must separate each column. Columns don’t need to be listed in the same order as
they appear in the base table—as long as the values in the VALUES clause exactly match the order of
the column list. Column lists are not necessary if the values are all provided and are in the same
order. However, using column lists should be required for your production code, particularly if the
base schema undergoes periodic changes. This is because explicitly listing columns allows you to
add new columns to the base table without changing the referencing code (assuming the new col-
umn has a default value).

The next line of code was the VALUES clause and a comma-separated list of values (expressions)
to insert:

VALUES ('Wheel Storage', 11.25, 80.00)

As I’ve noted previously, the values in this list must be provided in the same order as the listed
columns or, if no columns are listed, the same order of the columns in the table.

Inserting a Row Using Default Values
In this recipe, I’ll show you how to load a row into a table such that it takes a default value for a
certain column (or columns), using the DEFAULT keyword. In the previous recipe, the Production.
Location table had a row inserted into it. The Production.Location table has two other columns
that were not explicitly referenced in the INSERT statement. If you look at the column definition
of Table 2-2, you’ll see that there is also a LocationID and a ModifiedDate column that were not
included in the previous example’s INSERT.

Table 2-2. Production.Location Table Definition

Column Name Data Type Nullability Default Value Identity Column?

LocationID smallint NOT NULL Yes

Name dbo.Name (user-defined NOT NULL No
data type)

CostRate smallmoney NOT NULL 0.00 No

Availability decimal(8,2) NOT NULL 0.00 No

ModifiedDate datetime NOT NULL GETDATE() (function No
to return the current
date and time)

■Note See Chapter 4 for more information on the CREATE TABLE command, IDENTITY columns, and DEFAULT
values.

The ModifiedDate column has a default value that populates the current date and time for new
rows if the column value wasn’t explicitly inserted. The INSERT could have been written to update
this column too. For example:

INSERT Production.Location
(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 2', 11.25, 80.00, '1/1/2005')

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 65

9802CH02.qxd 4/30/08 9:59 AM Page 65

When a column has a default value specified in a table, you can use the DEFAULT keyword in the
VALUES clause, in order to explicitly trigger the default value.

For example:

INSERT Production.Location
(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 3', 11.25, 80.00, DEFAULT)

If each column in the table uses defaults for all columns, you can trigger an insert that inserts a
row using only the defaults by including the DEFAULT VALUES option. For example:

INSERT dbo.ExampleTable
DEFAULT VALUES

How It Works
The DEFAULT keyword allows you to explicitly set a column’s default value in an INSERT statement.
The DEFAULT VALUES keywords can be used in your INSERT statement to explicitly set all the column’s
default values (assuming the table is defined with a default on each column).

The LocationID column from the Production.Location table, however, is an IDENTITY column
(not a defaulted column). An IDENTITY property on a column causes the value in that column to
automatically populate with an incrementing numeric value. Because LocationID is an IDENTITY
column, the database manages inserting the values for this row, so an INSERT statement cannot nor-
mally specify a value for an IDENTITY column. If you want to specify a certain value for an IDENTITY
column, you need to follow the procedure outlined in the next recipe.

Explicitly Inserting a Value into an IDENTITY Column
In this recipe, I’ll demonstrate how to explicitly insert values into an IDENTITY property column. A
column using an IDENTITY property automatically increments based on a numeric seed value and
incrementing value for every row inserted into the table. IDENTITY columns are often used as
surrogate keys (a surrogate key is a unique primary key generated by the database that holds no
business-level significance other than to ensure uniqueness within the table).

In data load or recovery scenarios, you may find that you need to manually insert explicit val-
ues into an IDENTITY column. For example, if a row with the key value of 4 were deleted accidentally,
and you needed to manually reconstruct that row, preserving the original value of 4 with the old
business information, you would need to be able to explicitly insert this value into the table.

To explicitly insert a numeric value into a column using an IDENTITY property, you must use the
SET IDENTITY_INSERT command. The syntax is as follows:

SET IDENTITY_INSERT [database_name . [schema_name] .] table { ON | OFF }

The arguments of this command are described in Table 2-3.

Table 2-3. SET IDENTITY_INSERT Command

Argument Description

[database_name . [schema_name] .] These specify the optional database name, optional
schema name, and required table name for which
explicit values will be allowed to be inserted into
table an IDENTITY property column.

ON | OFF When set ON, explicit value inserts are allowed. When
OFF, explicit value inserts are not allowed.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS66

9802CH02.qxd 4/30/08 9:59 AM Page 66

In this recipe, I’ll demonstrate how to explicitly insert the value of an IDENTITY column into a
table. The following query first demonstrates what happens if you try to do an explicit insert into an
identity column without first using IDENTITY_INSERT:

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

This returns an error, keeping you from inserting an explicit value for the identity column:

Msg 544, Level 16, State 1, Line 2
Cannot insert explicit value for identity column in table 'Department' when
IDENTITY_INSERT is set to OFF.

Using SET IDENTITY_INSERT removes this barrier, as this next example demonstrates:

SET IDENTITY_INSERT HumanResources.Department ON

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

SET IDENTITY_INSERT HumanResources.Department OFF

How It Works
In the recipe, this property was set ON prior to the insert:

SET IDENTITY_INSERT HumanResources.Department ON

The INSERT was then performed using a value of 17. When inserting into an identity column,
you must also explicitly list the column names after the INSERT table_name clause:

INSERT HumanResources.D epartment
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

For inserted values greater than the current identity value, new inserts to the table will auto-
matically use the new value as the identity seed.

IDENTITY_INSERT should be set OFF once you are finished explicitly inserting values:

SET IDENTITY_INSERT HumanResources.Department OFF

You should set this OFF once you are finished, as only one table in the session (your database
connection session) can have IDENTITY_INSERT ON at the same time (assuming that you wish to
insert explicit values for multiple tables). Closing your session will remove the ON property, setting it
back to OFF.

Inserting a Row into a Table with a uniqueidentifier Column
In this recipe, I’ll show you how to insert data into a table that uses a uniqueidentifier column.
This data type is useful in scenarios where your identifier must be unique across several SQL Server
instances. For example, if you have ten remote SQL Server instances generating records that are
then consolidated on a single SQL Server instance, using an IDENTITY value generates the risk of pri-
mary key conflicts. Using a uniqueidentifier data type would allow you to avoid this.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 67

9802CH02.qxd 4/30/08 9:59 AM Page 67

A uniqueidentifier data type stores a 16-byte globally unique identifier (GUID) that is often
used to ensure uniqueness across tables within the same or a different database. GUIDs offer an
alternative to integer value keys, although their width compared to integer values can sometimes
result in slower query performance for bigger tables.

To generate this value for a new INSERT, the NEWID system function is used. NEWID generates a
unique uniqueidentifier data type value, as this recipe demonstrates:

INSERT Purchasing.ShipMethod
(Name, ShipBase, ShipRate, rowguid)
VALUES('MIDDLETON CARGO TS1', 8.99, 1.22, NEWID())

SELECT rowguid, name
FROM Purchasing.ShipMethod
WHERE Name = 'MIDDLETON CARGO TS1'

This returns the following (if you are following along, note that your Rowguid value will be dif-
ferent from mine):

Rowguid name
174BE850-FDEA-4E64-8D17-C019521C6C07 MIDDLETON CARGO TS1

How It Works
The rowguid column in the Purchasing.ShipMethod table is a uniqueidentifier data type column.
Here is an excerpt from the table definition:

rowguid uniqueidentifier ROWGUIDCOL NOT NULL DEFAULT (newid()),

To generate a new uniqueidentifier data type value for this inserted row, the NEWID() function
was used in the VALUES clause:

VALUES('MIDDLETON CARGO TS1', 8.9 9, 1.2 2, NEWID())

Selecting the new row that was just created, the rowguid was given a uniqueidentifier value of
174BE850-FDEA-4E64-8D17-C019521C6C07 (although when you test it yourself, you’ll get a different
value because NEWID creates a new value each time it is executed).

Inserting Rows Using an INSERT...SELECT Statement
The previous recipes showed you how to insert a single row of data. In this recipe, I’ll show you
how to insert multiple rows into a table using INSERT..SELECT. The syntax for performing an
INSERT..SELECT operation is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
SELECT column_list FROM data_source

The syntax for using INSERT...SELECT is almost identical to inserting a single row, only instead
of using the VALUES clause, you designate a SELECT query that will populate the columns and rows
into the table or updateable view. The SELECT query can be based on one or more data sources, so
long as the column list conforms to the expected data types of the destination table.

For the purposes of this example, a new table will be created for storing the rows. The example
populates values from the HumanResources.Shift table into the new dbo.Shift_Archive table:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS68

9802CH02.qxd 4/30/08 9:59 AM Page 68

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CREATE TABLE [dbo]. [Shift_Archive](
[ShiftID] [tinyint] NOT NULL,
[Name] [dbo]. [Name] NOT NULL,
[StartTime] [datetime] NOT NULL,
[EndTime] [datetime] NOT NULL,
[ModifiedDate] [datetime] NOT NULL DEFAULT (getdate()),
CONSTRAINT [PK_Shift_ShiftID] PRIMARY KEY CLUSTERED
([ShiftID] ASC)
)
GO

Next, an INSERT..SELECT is performed:

INSERT dbo.Shift_Archive
(ShiftID, Name, StartTime, EndTime, ModifiedDate)
SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift
ORDER BY ShiftID

The results show that three rows were inserted:

(3 row(s) affected)

Next, a query is executed to confirm the inserted rows in the Shift_Archive table:

SELECT ShiftID, Name
FROM Shift_Archive

This returns

ShiftID Name
1 Day
2 Evening
3 Night

(3 row(s) affected)

How It Works
Using the INSERT...SELECT statement, you can insert multiple rows into a table based on a SELECT
query. Just like regular, single-value INSERTs, you begin by using INSERT table_name and the list of
columns to be inserted into the table (in parentheses):

INSERT Shift_Archive
(ShiftID, Name, StartTime, EndTime, ModifiedDate)

Following this is the query used to populate the table. The SELECT statement must return
columns in the same order as the columns appear in the INSERT column list. The columns list must
also have data type compatibility with the associated INSERT column list:

SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift
ORDER BY ShiftID

When the column lists aren’t designated, the SELECT statement must provide values for all the
columns of the table into which the data is being inserted.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 69

9802CH02.qxd 4/30/08 9:59 AM Page 69

Inserting Data from a Stored Procedure Call
In this recipe, I demonstrate how to insert table data by using a stored procedure. A stored procedure
groups one or more Transact-SQL statements into a logical unit and stores it as an object in a SQL
Server database. Stored procedures allow for more sophisticated result set creation (for example,
you can use several intermediate result sets built in temporary tables before returning the final
result set). Reporting system stored procedures that return a result set can also be used for
INSERT...EXEC, which is useful if you wish to retain SQL Server information in tables.

This recipe also teaches you how to add rows to a table based on the output of a stored proce-
dure. A stored procedure can only be used in this manner if it returns data via a SELECT command
from within the procedure definition and the result set (or even multiple result sets) match the
required number of supplied values to the INSERT.

■Note For more information on stored procedures, see Chapter 10.

The syntax for inserting data from a stored procedure is as follows:

INSERT
[INTO]
table_or_view_name
[(column_list)]
EXEC stored_procedure_name

The syntax is almost identical to the previously demonstrated INSERT examples, only this time
the data is populated via an executed stored procedure.

In this example, a stored procedure is created that returns rows from the Production.
TransactionHistory table based on the begin and end dates passed to the stored procedure.
These results returned by the procedure also only return rows that don’t exist in the Production.
TransactionHistoryArchive:

CREATE PROCEDURE dbo.usp_SEL_Production_TransactionHistory
@ModifiedStartDT datetime,
@ModifiedEndDT datetime

AS

SELECT TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate
FROM Production.TransactionHistory
WHERE ModifiedDate BETWEEN @ModifiedStartDT AND @ModifiedEndDT AND

TransactionID NOT IN
(SELECT TransactionID

FROM Production.TransactionHistoryArchive)

GO

Next, this example tests the stored procedures to precheck which rows will be inserted:

EXEC dbo.usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

This returns 568 rows based on the date range passed to the procedure. In the next example,
this stored procedure is used to insert the 568 rows into the Production.TransactionHistoryArchive
table:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS70

9802CH02.qxd 4/30/08 9:59 AM Page 70

INSERT Production.TransactionHistoryArchive
(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate,
TransactionType, Quantity, ActualCost, ModifiedDate)
EXEC dbo.usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

How It Works
This example demonstrated using a stored procedure to populate a table using INSERT and EXEC.
The INSERT began with the name of the table to be inserted into:

INSERT Production.TransactionHistoryArchive

Next was the list of columns to be inserted into:

(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate)

Last was the EXEC statement, which executed the stored procedures. Any parameters the stored
procedure expects follow the stored procedure name:

EXEC usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

Inserting Multiple Rows with VALUES
SQL Server 2008 introduces the ability to insert multiple rows using a single INSERT command with-
out having to issue a subquery or stored procedure call. This allows the application to reduce the
code required to add multiple rows and also reduce the number of individual commands executed.
Essentially, you use the VALUES to group and specify one or more rows and their associated column
values, as the following recipe demonstrates:

-- Create a lookup table
CREATE TABLE HumanResources.Degree

(DegreeID int NOT NULL IDENTITY(1,1) PRIMARY KEY,
DegreeNM varchar(30) NOT NULL,
DegreeCD varchar(5) NOT NULL,
ModifiedDate datetime NOT NULL)

GO

INSERT HumanResources.Degree
(DegreeNM, DegreeCD, ModifiedDate)
VALUES
('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())
GO

This returns the following query output:

(5 row(s) affected)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 71

9802CH02.qxd 4/30/08 9:59 AM Page 71

How It Works
In this recipe, I demonstrated inserting multiple rows from a single INSERT statement. I started off
by creating a new table to hold information on college degree types. I then used the INSERT in a typi-
cal fashion, showing the column names that would have values passed to it for each row:

INSERT HumanResources.Degree
(DegreeNM, DegreeCD, ModifiedDate)

Next, in the VALUES clause, I designated a new row for each degree type. Each row had three
columns, and these columns were encapsulated in parentheses:

VALUES
('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())
GO

This new feature allowed me to insert multiple rows without having to retype the initial INSERT
table name and column list. An example of where this may be useful would be for custom applica-
tions that include a database schema along with a set of associated lookup values. Rather than
hand-code 50 INSERT statements in your setup script, you can create a single INSERT with multiple
rows designated. This also allows you to bypass importing a rowset from an external source.

Using VALUES As a Table Source
The previous recipe demonstrated how to insert multiple rows without having to retype the initial
INSERT table name and column list. Using this same new feature in SQL Server 2008, you can also
reference the VALUES list in the FROM clause of a SELECT statement.

This recipe will demonstrate how to reference a result set without having to use a permanent or
temporary table. The following query demonstrates listing various college degrees in a five-row
result set—without having to persist the rows in a table or reference in a subquery:

SELECT DegreeNM, DegreeCD, ModifiedDT
FROM
(VALUES
('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE()))
Degree (DegreeNM, DegreeCD, ModifiedDT)

This returns

DegreeNM DegreeCD ModifiedDT
Bachelor of Arts B.A. 2007-08-21 19:10:34.667
Bachelor of Science B.S. 2007-08-21 19:10:34.667
Master of Arts M.A. 2007-08-21 19:10:34.667
Master of Science M.S. 2007-08-21 19:10:34.667
Associate's Degree A.A. 2007-08-21 19:10:34.667

(5 row(s) affected)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS72

9802CH02.qxd 4/30/08 9:59 AM Page 72

How It Works
This recipe demonstrated using a new SQL Server 2008 technique for returning a result set to persist
the rows in storage. Breaking down the query, the first row in the SELECT clause listed the column
names:

SELECT DegreeNM, DegreeCD, ModifiedDT

These are not actual column names from a referenced table—but instead are aliased names I
defined later on in the query itself.

The next line defined the FROM clause for the data source, followed by a parenthesis encapsulat-
ing the VALUES keyword:

FROM
(VALUES

The next few lines of code listed rows I wished to return from this query (similar to how I
inserted multiple rows in a single INSERT in the previous recipe):

('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())
)

Lastly, after the final closing parenthesis for the row list, I defined a name for this data source
and the associated column names to be returned for each column (and to be referenced in the
SELECT clause):

Degree (DegreeNM, DegreeCD, ModifiedDT)

This new technique allowed me to specify rows of a table source without having to actually
create a temporary or permanent table.

UPDATE
The following is basic syntax for the UPDATE statement:

UPDATE <table_or_view_name>
SET column_name = {expression | DEFAULT | NULL} [,...n]
WHERE <search_condition>

The arguments of this command are described in Table 2-4.

Table 2-4. UPDATE Command Arguments

Argument Description

table_or_view_name The table or updateable view containing data to be updated.

column_name = {expression | The name of the column or columns to be updated. The
DEFAULT | NULL} column can be set to an expression, the DEFAULT value of the

column, or a NULL.

search_condition The search condition that defines what rows are modified. If
this isn’t included, all rows from the table or updateable view
will be modified.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 73

9802CH02.qxd 4/30/08 9:59 AM Page 73

Updating a Single Row
In this recipe, I’ll demonstrate how to use the UPDATE statement to modify data. With the UPDATE
statement, you can apply changes to single or multiple columns, as well as to single or multiple
rows.

In this example, a single row is updated by designating the SpecialOfferID, which is the pri-
mary key of the table (for more on primary keys, see Chapter 4). Before performing the update, I’ll
first query the specific row that I plan on modifying:

SELECT DiscountPct
FROM Sales.SpecialOffer
WHERE SpecialOfferID = 10

This returns

DiscountPct
0.50

Now I’ll perform the modification:

UPDATE Sales.SpecialOffer
SET DiscountPct = 0.15
WHERE SpecialOfferID = 10

Querying that specific row after the update confirms that the value of DiscountPct was indeed
modified:

SELECT DiscountPct
FROM Sales.SpecialOffer
WHERE SpecialOfferID = 10

This returns

DiscountPct
0.15

How It Works
In this example, the query started off with UPDATE and the table name Sales.SpecialOffer:

UPDATE Sales.SpecialOffer

Next, SET was used, followed by the column name to be modified, and an equality operator to
modify the DiscountPct to a value of 0.15. Relating back to the syntax at the beginning of the recipe,
this example is setting the column to an expression value, and not a DEFAULT or NULL value:

SET DiscountPct = 0.15

Had this been the end of the query, all rows in the Sales.SpecialOffer table would have been
modified, because the UPDATE clause works at the table level, not the row level. But the intention of
this query was to only update the discount percentage for a specific product. The WHERE clause was
used in order to achieve this:

WHERE SpecialOfferID = 10

After executing this query, only one row is modified. Had there been multiple rows that met the
search condition in the WHERE clause, those rows would have been modified too.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS74

9802CH02.qxd 4/30/08 9:59 AM Page 74

■Tip Performing a SELECT query with the FROM and WHERE clauses of an UPDATE, prior to the UPDATE, allows you
to see what rows you will be updating (an extra validation that you are updating the proper rows). This is also a
good opportunity to use a transaction to allow for rollbacks in the event that your modifications are undesired. For
more on transactions, see Chapter 3.

Updating Rows Based on a FROM and WHERE Clause
In this recipe, I’ll show you how to use the UPDATE statement to modify rows based on a FROM clause
and associated WHERE clause search conditions. The basic syntax, elaborating from the last example,
is as follows:

UPDATE <table_or_view_name>
SET column_name = {expression | DEFAULT | NULL} [,...n]
FROM <table_source>
WHERE <search_condition>

The FROM and WHERE clauses are not mandatory; however, you will find that they are almost
always implemented in order to specify exactly which rows are to be modified, based on joins
against one or more tables.

In this example, assume that a specific product, “Full-Finger Gloves, M,” from the Production.
Product table has a customer purchase limit of two units per customer. For this query’s require-
ment, any shopping cart with a quantity of more than two units for this product should
immediately be adjusted back to the required limit:

UPDATE Sales.ShoppingCartItem
SET Quantity =2,
ModifiedDate = GETDATE()

FROM Sales.ShoppingCartItem c
INNER JOIN Production.Product p ON
c.ProductID = p.ProductID

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

How It Works
Stepping through the code, the first line showed the table to be updated:

UPDATE Sales.ShoppingCartItem

Next, the columns to be updated were designated in the SET clause:

SET Quantity =2,
ModifiedDate = GETDATE()

Next came the optional FROM clause where the Sales.ShoppingCartItem and Production.
Product tables were joined by ProductID. As you can see, the object being updated can also be refer-
enced in the FROM clause. The reference in the UPDATE and in the FROM were treated as the same table:

FROM Sales.ShoppingCartItem c
INNER JOIN Production.Product p ON
c.ProductID = p.P roductID

Using the updated table in the FROM clause allows you to join to other tables. Presumably, those
other joined tables will be used to filter the updated rows or to provide values for the updated rows.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 75

9802CH02.qxd 4/30/08 9:59 AM Page 75

If you are self-joining to more than one reference of the updated table in the FROM clause, at least
one reference to the object cannot specify a table alias. All the other object references, however,
would have to use an alias.

The WHERE clause specified that only the “Full-Finger Gloves, M” product in the Sales.
ShoppingCartItem should be modified, and only if the Quantity is greater than 2 units:

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

Updating Large Value Data Type Columns
In this recipe, I’ll show you how to modify large-value data type column values. SQL Server intro-
duced new large-value data types in the previous version, which were intended to replace the
deprecated text, ntext, and image data types. These data types include

• varchar(max), which holds non-Unicode variable-length data

• nvarchar(max), which holds Unicode variable-length data

• varbinary(max), which holds variable-length binary data

These data types can store up to 2^31–1 bytes of data (for more information on data types, see
Chapter 4).

One of the major drawbacks of the old text and image data types is that they required you to
use separate functions such as WRITETEXT and UPDATETEXT in order to manipulate the image/text
data. Using the new large-value data types, you can now use regular INSERT and UPDATEs instead.

The syntax for inserting a large-value data type is no different from a regular insert. For updat-
ing large-value data types, however, the UPDATE command now includes the .WRITE method:

UPDATE <table_or_view_name>
SET column_name = .WRITE (expression , @Offset , @Length)
FROM <table_source>
WHERE <search_condition>

The parameters of the .WRITE method are described in Table 2-5.

Table 2-5. UPDATE Command with .WRITE Clause

Argument Description

expression The expression defines the chunk of text to be placed in the column.

@Offset @Offset determines the starting position in the existing data the new text should be
placed. If @Offset is NULL, it means the new expression will be appended to the end
of the column (also ignoring the second @Length parameter).

@Length @Length determines the length of the section to overlay.

This example starts off by creating a table called RecipeChapter:

CREATE TABLE dbo.RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)

GO

Next, a row is inserted into the table. Notice that there is nothing special about the string being
inserted into the Chapter varchar(max) column:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS76

9802CH02.qxd 4/30/08 9:59 AM Page 76

INSERT dbo.RecipeChapter
(ChapterID, Chapter)
VALUES
(1, 'At the beginning of each chapter you will notice
that basic concepts are covered first.')

This next example updates the newly inserted row, adding a sentence to the end of the existing
sentence:

UPDATE RecipeChapter
SET Chapter .WRITE (' In addition to the basics, this chapter will also provide
recipes that can be used in your day to day development and administration.' ,
NULL, NULL)
WHERE ChapterID = 1

Next, for that same row, the phrase “day to day” is replaced with the single word “daily”:

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 181, 10)
WHERE ChapterID = 1

Lastly, the results are returned for that row:

SELECT Chapter
FROM RecipeChapter
WHERE ChapterID = 1

This returns

Chapter
At the beginning of each chapter you will notice that basic concepts
are covered first.
In addition to the basics, this chapter will also provide recipes
that can be used in your daily development and administration.

How It Works
The recipe began by creating a table where book chapter descriptions would be held. The Chapter
column used a varchar(max) data type:

CREATE TABLE RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)

Next, a new row was inserted. Notice that the syntax for inserting a large-object data type
doesn’t differ from inserting data into a regular non-large-value data type:

INSERT RecipeChapter
(ChapterID, Chapter)
VALUES
(1, 'At the beginning of each chapter you will
notice that basic concepts are covered first.')

Next, an UPDATE was performed against the RecipeChapter table to add a second sentence after
the end of the first sentence:

UPDATE RecipeChapter

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 77

9802CH02.qxd 4/30/08 9:59 AM Page 77

The SET command was followed by the name of the column to be updated (Chapter) and the
new .WRITE command. The .WRITE command was followed by an open parenthesis, a single quote,
and the sentence to be appended to the end of the column:

SET Chapter .WRITE(' In addition to the basics,
this chapter will also provide recipes that can be
used in your day to day development and administration.' ,
NULL, NULL)

The WHERE clause specified that the Chapter column for a single row matching ChapterID = 1 be
modified:

WHERE ChapterID = 1

The next example of .WRITE demonstrated replacing data within the body of the column. In the
example, the expression day to day was replaced with daily. The bigint value of @Offset and
@Length are measured in bytes for varbinary(max) and varchar(max) data types. For nvarchar(max),
these parameters measure the actual number of characters. For the example, the .WRITE had a value
for @Offset (181 bytes into the text) and @Length (10 bytes long):

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 181, 10)
WHERE ChapterID = 1

Inserting or Updating an Image File Using OPENROWSET
and BULK
In this recipe, I demonstrate how to insert or update an image file from the file system into a
SQL Server table. Adding images to a table in earlier versions of SQL Server usually required the
use of external application tools or scripts. There was no elegant way to insert images using just
Transact-SQL.

As of SQL Server 2005 and 2008, UPDATE and OPENROWSET can be used together to import an
image into a table. OPENROWSET can be used to import a file into a single-row, single-column value.
The basic syntax for OPENROWSET as it applies to this recipe is as follows:

OPENROWSET
(BULK 'data_file' ,

SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB)

The parameters for this command are described in Table 2-6.

Table 2-6. The OPENROWSET Command Arguments

Parameter Description

data_file This specifies the name and path of the file to read.

SINGLE_BLOB |SINGLE_CLOB | Designate the SINGLE_BLOB object for importing into a
SINGLE_NCLOB varbinary(max) data type. Designate SINGLE_CLOB for ASCII data

into a varchar(max) data type and SINGLE_NCLOB for importing into
a nvarchar(max) Unicode data type.

■Note See Chapter 27 for a detailed review of the syntax of OPENROWSET.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS78

9802CH02.qxd 4/30/08 9:59 AM Page 78

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The first part of the recipe creates a new table that will be used to store image files:

CREATE TABLE dbo.StockBmps
(StockBmpID int NOT NULL,
bmp varbinary(max) NOT NULL)

GO

Next, a row containing the image file will be inserted into the table:

INSERT dbo.StockBmps
(StockBmpID, bmp)
SELECT 1,

BulkColumn
FROM OPENROWSET(BULK
'C:\Apress\StockPhotoOne.bmp', SINGLE_BLOB) AS x

This next query selects the row from the table:

SELECT bmp
FROM StockBmps
WHERE StockBmpID = 1

This returns the following (abridged) results:

bmp
0x424D365600000000000036040000280000007D000000A400000001000800000000000052000000000
0000000000000010000000100001B71900057575E00EFEFEF000F0B0C0023A7D30028D2FF001A5B7
1005473A1008C8C8C00B3B3B300208BB00031303100D1D1D1005896B20018425600112C3500777D
7B00474F9100A089660078CDDD0071AFC6009D9D9D0045444A00686B6F00728FAD0077998C001
C1D1E0009040500080304000501000026C4FF

The last example in this recipe updates an existing BMP file, changing it to a different BMP file:

UPDATE dbo.StockBmps
SET bmp =
(SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Apress\StockPhotoTwo.bmp', SINGLE_BLOB) AS x)
WHERE StockBmpID =1

How It Works
In this recipe, I’ve demonstrated using OPENROWSET with the BULK option to insert a row containing a
BMP image file, and then the way to update it to a different GIF file.

First, a table was created to hold the GIF files using a varbinary(max) data type:

CREATE TABLE dbo.StockBmps
(StockBmpID int NOT NULL,
bmp varbinary(max) NOT NULL)

Next, a new row was inserted using INSERT:

INSERT dbo.StockBmps
(StockBmpID, bmp)

The INSERT was populated using a SELECT query against the OPENROWSET function to bring in the
file data. The BulkColumn referenced in the query represents the varbinary value to be inserted into
the varbinary(max) row from the OPENROWSET data source:

SELECT 1,
BulkColumn

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 79

9802CH02.qxd 4/30/08 9:59 AM Page 79

In the FROM clause, OPENROWSET was called. OPENROWSET allows you to access remote data from a
data source:

FROM OPENROWSET(BULK
'C:\Apress\StockPhotoOne.bmp', SINGLE_BLOB) AS x

The BULK option was used inside the function, followed by the file name and the SINGLE_BLOB
keyword. The BULK option within OPENROWSET means that data will be read from a file (in this case,
the BMP file specified after BULK). The SINGLE_BLOB switch tells OPENROWSET to return the contents of
the data file as a single-row, single-column varbinary(max) rowset.

This recipe also demonstrates an UPDATE of the varbinary(max) column from an external file.
The UPDATE designated the StockBmps table and used SET to update the bmp column:

UPDATE StockBmps
SET bmp =

The expression to set the new image to StockPhotoTwo.bmp from the previous StockPhotoOne.
bmp occurred in a subquery. It used almost the same syntax as the previous INSERT; only this time the
only value returned in the SELECT is the BulkColumn column:

(SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Apress\StockPhotoTwo.bmp', SINGLE_BLOB) AS x)

The image file on the machine was then stored in the column value for that row as
varbinary(max) data.

Storing Unstructured Data on the File System While
Maintaining SQL Server Transactional Control
SQL Server 2008 introduces the new FILESTREAM attribute, which can be applied to the
varbinary(max) data type. Using FILESTREAM, you can exceed the 2GB limit on stored values and take
advantage of relational handling of files via SQL Server, while actually storing the files on the file
system. BACKUP and RESTORE operations maintain both the database data as well as the files saved on
the file system, thus handling end-to-end data recoverability for applications that store both struc-
tured and unstructured data. FILESTREAM marries the transactional consistency capabilities of SQL
Server with the performance advantages of NT file system streaming.

T-SQL is used to define the FILESTREAM attribute and can be used to handle the data; however,
Win32 streaming APIs are the preferred method from the application perspective when performing
actual read and write operations (specifically using the OpenSqlFilestream API). Although demon-
strating Win32 and the implementation of applicable APIs is outside of the scope of this book, I will
use this recipe to walk you through how to set up a database and table with the FILESTREAM attrib-
ute, INSERT a new row, and use a query to pull path and transaction token information that is
necessary for the OpenSqlFilestream API call.

■Tip FILESTREAM must be configured at both the Windows and SQL Server scope. To enable FILESTREAM for
the Windows scope and define the associated file share, use SQL Server Configuration Manager. To enable
FILESTREAM at the SQL Server instance level, use sp_configure with the filestream_access_level option.

To confirm whether FILESTREAM is configured for the SQL Server instance, I can validate the set-
ting using the SERVERPROPERTY function and three different properties that describe the file share
name of the filestream share and the associated effective and actual configured values:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS80

9802CH02.qxd 4/30/08 9:59 AM Page 80

SELECT SERVERPROPERTY('FilestreamShareName') ShareName,
SERVERPROPERTY('FilestreamEffectiveLevel') EffectiveLevel,
SERVERPROPERTY('FilestreamConfiguredLevel') ConfiguredLevel

This returns

ShareName EffectiveLevel ConfiguredLevel
AUGUSTUS 3 3

Next, I will create a new database that will have a filegroup containing FILESTREAM data.

■Tip See Chapter 22 for more on the CREATE DATABASE command.

Unlike regular file/filegroup assignments in CREATE DATABASE, I will associate a filegroup with a
specific path, and also designate the name of the folder that will be created by SQL Server on the file
system and will contain all FILESTREAM files associated with the database:

USE master
GO

CREATE DATABASE PhotoRepository ON PRIMARY
(NAME = N'PhotoRepository',
FILENAME = N'C:\Apress\MDF\PhotoRepository.mdf' ,
SIZE = 3048KB ,
FILEGROWTH = 1024KB),
FILEGROUP FS_PhotoRepository CONTAINS FILESTREAM
(NAME = 'FG_PhotoRepository',
FILENAME = N'C:\Apress\FILESTREAM')

LOG ON
(NAME = N'PhotoRepository_log',
FILENAME = N'C:\Apress\LDF\PhotoRepository_log.ldf' ,
SIZE = 1024KB ,
FILEGROWTH = 10%)

GO

Now I can create a new table that will be used to store photos for book covers. I will designate
the BookPhotoFile column as a varbinary(max) data type, followed by the FILESTREAM attribute:

USE PhotoRepository
GO

CREATE TABLE dbo.BookPhoto
(BookPhotoID uniqueidentifier ROWGUIDCOL NOT NULL PRIMARY KEY,
BookPhotoNM varchar(50) NOT NULL,
BookPhotoFile varbinary(max) FILESTREAM)

GO

Now that the table is created, I can INSERT a new row using the regular INSERT command and
importing a file using OPENROWSET (demonstrated in the previous recipe):

INSERT dbo.BookPhoto
(BookPhotoID, BookPhotoNM, BookPhotoFile)
SELECT NEWID(),

'SQL Server 2008 Transact-SQL Recipes cover',

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 81

9802CH02.qxd 4/30/08 9:59 AM Page 81

BulkColumn
FROM OPENROWSET(BULK
'C:\Apress\TSQL2008Recipes.bmp', SINGLE_BLOB) AS x

If I look under the C:\Apress\FILESTREAM directory, I will see a new subdirectory and a new file.
In this case, on my server, I see a new file called 00000012-000000e1-0002 under the path C:\Apress\
FILESTREAM\33486315-2ca1-43ea-a50e-0f84ad8c3fa6\e2f310f3-cd21-4f29-acd1-a0a3ffb1a681. Files
created using FILESTREAM should only be accessed within the context of T-SQL and the associated
Win32 APIs.

After inserting the value, I will now issue a SELECT to view the contents of the table:

SELECT BookPhotoID, BookPhotoNM, BookPhotoFile
FROM dbo.BookPhoto

This returns

BookPhotoID BookPhotoNM BookPhotoFile
236E5A69-53B3-4CB6-9F11- SQL Server 2008 T-SQL 0x424D36560000000000003604000028000
EF056082F542 Recipes cover 0007D000000A40000000100080000000000

005200000000000000000000000100000001
0000276B8E0026B0ED005B5D6900EEEEEE00
528CA2000E0A0B001C597900B3B3B3008B8A
8D00D1D1D1002AC6FF002394C7002280AB00
2C2A2B00193F560066ADBD0025A4DC001128
34005E

Now assuming I have an application that uses OLEDB to query the SQL Server instance, I need
to now collect the appropriate information about the file system file in order to stream it using my
application.

I’ll begin by opening up a transaction and using the new PathName() method of the varbinary
column to retrieve the logical path name of the file:

BEGIN TRAN

SELECT BookPhotoFile.PathName()
FROM dbo.BookPhoto
WHERE BookPhotoNM = 'SQL Server 2008 Transact-SQL Recipes cover'

This returns

\\CAESAR\AUGUSTUS\v1\PhotoRepository\dbo\BookPhoto\BookPhotoFile\
236E5A69-53B3-4CB6-9F11-EF056082F542

Next, I need to retrieve the transaction token, which is also needed by the Win 32 API:

SELECT GET_FILESTREAM_TRANSACTION_CONTEXT()

This returns

0x57773034AFA62746966EE30DAE70B344

After I have retrieved this information, the application can use the OpenSQLFileStream API with
the path and transaction token to perform functions such as ReadFile and WriteFile and then close
the handle to the file.

After the application is finished with its work, I can either roll back or commit the transaction:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS82

9802CH02.qxd 4/30/08 9:59 AM Page 82

COMMIT TRAN

If I wish to delete the file, I can set the column value to NULL:

UPDATE dbo.BookPhoto
SET BookPhotoFile = NULL
WHERE BookPhotoNM = 'SQL Server 2008 Transact-SQL Recipes cover'

You may not see the underlying file on the file system removed right away; however, it will be
removed eventually by the garage collector process.

How It Works
In this recipe, I demonstrated how to use the new SQL Server 2008 FILESYSTEM attribute of the
varbinary(max) data type to store unstructured data on the file system. This enables SQL Server
functionality to control transactions within SQL Server and recoverability (files get backed up with
BACKUP and restored with RESTORE), while also being able to take advantage of high-speed streaming
performance using Win 32 APIs.

In this recipe, I started off by checking whether FILESTREAM was enabled on the SQL Server
instance. After that, I created a new database, designating the location of the FILESTREAM filegroup
and file name (which is actually a path and not a file):

...
FILEGROUP FS_PhotoRepository CONTAINS FILESTREAM
(NAME = 'FG_PhotoRepository',
FILENAME = N'C:\Apress\FILESTREAM')

...

Keep in mind that the path up to the last folder has to exist, but the last folder referenced can-
not exist. For example, C:\Apress\ existed on my server; however, FILESTREAM can’t exist prior to the
database creation.

After creating the database, I then created a new table to store book cover images. For the
BookPhotoFile column, I designated the varbinary(max) type followed by the FILESTREAM attribute:

...
BookPhotoFile varbinary(max) FILESTREAM)

...

Had I left off the FILESTREAM attribute, any varbinary data stored would have been contained
within the database data file, and not stored on the file system. The column maximum size would
also have been capped at 2GB.

Next, I inserted a new row into the table that held the BMP file of the SQL Server 2008 Transact-
SQL Recipes book cover. The varbinary(max) value was generated using the OPENROWSET technique I
demonstrated in the previous recipe:

INSERT dbo.BookPhoto
(BookPhotoID, BookPhotoNM, BookPhotoFile)
SELECT NEWID(),

'SQL Server 2008 Transact-SQL Recipes cover',
BulkColumn

FROM OPENROWSET(BULK
'C:\Apress\TSQL2008Recipes.bmp', SINGLE_BLOB) AS x

From an application perspective, I needed a couple of pieces of information in order to
take advantage of streaming capabilities using Win 32 APIs. I started off by opening up a new
transaction:

BEGIN TRAN

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 83

9802CH02.qxd 6/16/08 4:10 PM Page 83

After that, I referenced the path name of the stored file using the PathName() method:

SELECT BookPhotoFile.PathName()
...

This function returned a path as a token, which the application can then use to grab a Win32
handle and perform operations against the value.

Next, I called the GET_FILESTREAM_TRANSACTION_CONTEXT function to return a token representing
the current session’s transaction context:

SELECT GET_FILESTREAM_TRANSACTION_CONTEXT()

This was a token used by the application to bind file system operations to an actual
transaction.

After that, I committed the transaction and then demonstrated how to “delete” the file by
updating the BookPhotoFile column to NULL for the specific row I had added earlier. Keep in mind
that deleting the actual row would serve the same purpose (deleting the file on the file system).

Assigning and Modifying Database Values “in Place”
SQL Server 2008 introduces new compound assignment operators beyond the standard equality (=)
operator that allow you to both assign and modify the outgoing data value. These operators are sim-
ilar to what you would see in the C and Java languages. New assignment operators include the
following:

• += (add, assign)

• -= (subtract, assign)

• *= (multiply, assign)

• /= (divide, assign)

• |= (bitwise |, assign)

• ^= (bitwise exclusive OR, assign)

• &= (bitwise &, assign)

• %= (modulo, assign)

This recipe will demonstrate modifying base pay amounts using assignment operators. I’ll start
by creating a new table and populating it with a few values:

USE AdventureWorks
GO

CREATE TABLE HumanResources.EmployeePayScale
(EmployeePayScaleID int NOT NULL PRIMARY KEY IDENTITY(1,1),
BasePayAMT numeric(9,2) NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

-- Using new multiple-row insert functionality
INSERT HumanResources.EmployeePayScale
(BasePayAMT)
VALUES

(30000.00),
(40000.00),
(50000.00),
(60000.00)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS84

9802CH02.qxd 4/30/08 9:59 AM Page 84

Next, I’ll double-check the initial value of a specific pay scale row:

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE EmployeePayScaleID = 4

This returns

BasePayAMT
60000.00

Before SQL Server 2008, if I wanted to modify a value within an UPDATE based on the row’s
existing value, I would need to do something like the following:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT = BasePayAMT + 10000
WHERE EmployeePayScaleID = 4

Querying that row, I see that the base pay amount has increased by 10,000:

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE EmployeePayScaleID = 4

This returns

BasePayAMT
70000.00

Now I’ll start experimenting with the assignment operators. This new feature allows me to sim-
plify my code—assigning values in place without having to include another column reference in the
value expression.

In this example, the base pay amount is increased by another 10,000 dollars:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT += 10000
WHERE EmployeePayScaleID = 4

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE EmployeePayScaleID = 4

This returns

BasePayAMT
80000.00

Next, the base pay amount is multiplied by 2:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT *= 2
WHERE EmployeePayScaleID = 4

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE EmployeePayScaleID = 4

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 85

9802CH02.qxd 4/30/08 9:59 AM Page 85

This returns

BasePayAMT
160000.00

How It Works
Assignment operators help you modify values with a minimal amount of coding. In this recipe, I
demonstrated using the add/assign operator:

SET BasePayAMT += 10000

and the multiply/assign operator:

SET BasePayAMT *= 2

The expressions designated the column name to be modified on the left, followed by the
assignment operator, and then associated data value to be used with the operator. Keep in mind
that this functionality isn’t limited to UPDATE statements; you can use this new functionality when
assigning values to variables.

DELETE
The simple syntax for DELETE is as follows:

DELETE [FROM] table_or_view_name
WHERE search_condition

The arguments of this command are described in Table 2-7.

Table 2-7. The DELETE Command Arguments

Argument Description

table_or_view_name This specifies the name of the table or updateable view that you are
deleting rows from.

search_condition The search condition(s) in the WHERE clause defines which rows will be
deleted from the table or updateable view.

Deleting Rows
In this recipe, I show you how to use the DELETE statement to remove one or more rows from a table.
First, take an example table that is populated with rows:

SELECT *
INTO Production.Example_ProductProductPhoto
FROM Production.ProductProductPhoto

This returns

(504 row(s) affected)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS86

9802CH02.qxd 4/30/08 9:59 AM Page 86

Next, all rows are deleted from the table:

DELETE Production.Example_ProductProductPhoto

This returns

(504 row(s) affected)

This next example demonstrates using DELETE with a WHERE clause. Let’s say that the relation-
ship of keys between two tables gets dropped, and the users were able to delete data from the
primary key table and not the referencing foreign key tables (see Chapter 4 for a review of primary
and foreign keys). Only rows missing a corresponding entry in the Product table are deleted from
the example product photo table. In this example, no rows meet this criteria:

-- Repopulate the Example_ProductProductPhoto table
INSERT Production.Example_ProductProductPhoto
SELECT *
FROM Production.ProductProductPhoto

DELETE Production.Example_ProductProductPhoto
WHERE ProductID NOT IN

(SELECT ProductID
FROM Production.Product)

This third example demonstrates the same functionality of the previous example, only the
DELETE has been rewritten to use a FROM clause instead of a subquery:

DELETE Production.ProductProductPhoto
FROM Production.Example_ProductProductPhoto ppp
LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

WHERE p.ProductID IS NULL

How It Works
In the first example of the recipe, all rows were deleted from the Example_ProductProductPhoto
table:

DELETE Production.Example_ProductProductPhoto

This is because there was no WHERE clause to specify which rows would be deleted.
In the second example, the WHERE clause was used to specify rows to be deleted based on a sub-

query lookup to another table:

WHERE ProductID NOT IN
(SELECT ProductID
FROM Production.Product)

The third example used a LEFT OUTER JOIN instead of a subquery, joining the ProductID of the
two tables:

FROM Production.Example_ProductProductPhoto ppp
LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

Because the same object that is being deleted from Production.ProductProductPhoto is also the
same object in the FROM clause, and since there is only one reference to that table in the FROM clause,

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 87

9802CH02.qxd 4/30/08 9:59 AM Page 87

it is assumed that rows identified in the FROM and WHERE clause will be one and the same—it will be
associated to the rows deleted from the Production.ProductProductPhoto table.

Because a LEFT OUTER JOIN was used, if any rows did not match between the left and right
tables, the fields selected from the right table would be represented by NULL values. Thus, to show
rows in Production.Example_ProductProductPhoto that don’t have a matching ProductID in the
Production.Product table, you can qualify the Production.Product as follows:

WHERE p.ProductID IS NULL

Any rows without a match to the Production.Product table will be deleted from the
Production.Example_ProductProductPhoto table.

Truncating a Table
In this recipe, I show you how to delete rows from a table in a minimally logged fashion (hence,
much quicker if you have very large tables). Generally, you should use DELETE for operations that
should be fully logged; however, for test or throwaway data, this is a fast technique for removing the
data. “Minimal logging” references how much recoverability information is written to the database’s
transaction log (see Chapter 22). To achieve this, use the TRUNCATE command.

The syntax is as follows:

TRUNCATE TABLE table_name

This command takes just the table name to truncate. Since it always removes all rows from a
table, there is no FROM or WHERE clause, as this recipe demonstrates:

-- First populating the example
SELECT *
INTO Sales.Example_Store
FROM Sales.Store

-- Next, truncating ALL rows from the example table
TRUNCATE TABLE Sales.Example_Store

Next, the table’s row count is queried:

SELECT COUNT(*)
FROM Sales.Example_Store

This returns

0

How It Works
The TRUNCATE TABLE statement, like the DELETE statement, can delete rows from a table. TRUNCATE
TABLE deletes rows faster than DELETE, because it is minimally logged. Unlike DELETE however, the
TRUNCATE TABLE removes ALL rows in the table (no WHERE clause).

Although TRUNCATE TABLE is a faster way to delete rows, you can’t use it if the table columns are
referenced by a foreign key constraint (see Chapter 4 for more information on foreign keys), if the
table is published using transactional or merge replication, or if the table participates in an indexed
view (see Chapter 7 for more information). Also, if the table has an IDENTITY column, keep in mind
that the column will be reset to the seed value defined for the column (if no seed was explicitly set,
it is set to 1).

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS88

9802CH02.qxd 4/30/08 9:59 AM Page 88

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Advanced Data Modification Techniques
These next two recipes will demonstrate more advanced data modification techniques. Specifically,
I’ll demonstrate how to improve the throughput of data modifications by “chunking” them into
smaller sets.

I’ll also demonstrate the new SQL Server 2008 MERGE command, which you can use to efficiently
apply changes to a target table based on the data in a table source without having to designate mul-
tiple DML statements.

Chunking Data Modifications with TOP
I demonstrated using TOP in Chapter 1. TOP can also be used in DELETE, INSERT, or UPDATE statements
as well. This recipe further demonstrates using TOP to “chunk” data modifications, meaning instead
of executing a very large operation in a single statement call, you can break the modification into
smaller pieces, potentially increasing performance and improving database concurrency for larger,
frequently accessed tables. This technique is often used for large data loads to reporting or data
warehouse applications.

Large, single-set updates can cause the database transaction log to grow considerably. When
processing in chunks, each chunk is committed after completion, allowing SQL Server to potentially
reuse that transaction log space. In addition to transaction log space, on a very large data update, if
the query must be cancelled, you may have to wait a long time while the transaction rolls back. With
smaller chunks, you can continue with your update more quickly. Also, chunking allows more con-
currency against the modified table, allowing user queries to jump in, instead of waiting several
minutes for a large modification to complete.

In this recipe, I show you how to modify data in blocks of rows in multiple executions, instead
of an entire result set in one large transaction. First, I create an example deletion table for this
recipe:

USE AdventureWorks
GO

SELECT *
INTO Production.Example_BillOfMaterials
FROM Production.BillOfMaterials

Next, all rows will be deleted from the table in 500-row chunks:

WHILE (SELECT COUNT(*)FROM Production.Example_BillOfMaterials)> 0
BEGIN

DELETE TOP(500)
FROM Production.Example_BillOfMaterials

END

This returns

(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(179 row(s) affected)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 89

9802CH02.qxd 4/30/08 9:59 AM Page 89

How It Works
In this example, I used a WHILE condition to keep executing the DELETE while the count of rows in the
table was greater than zero (see Chapter 9 for more information on WHILE):

WHILE (SELECT COUNT(*)FROM Production.Example_BillOfMaterials)> 0
BEGIN

Next was the DELETE, followed by the TOP clause, and the row limitation in parentheses:

DELETE TOP(500)
FROM Production.BillOfMaterials

This recipe didn’t use a WHERE clause, so no filtering was applied, and all rows were deleted from
the table—but only in 500-row chunks. Once the WHILE condition no longer evaluated to TRUE, the
loop ended. After executing, the row counts affected in each batch were displayed. The first five
batches deleted 500 rows, and the last batch deleted the remaining 179 rows.

This “chunking” method can be used with INSERTs and UPDATEs too. For INSERT and UPDATE, the
TOP clause follows right after the INSERT and UPDATE keyword, for example:

INSERT TOP(100)
...

UPDATE TOP(25)
...

The expanded functionality of TOP (beyond just SELECT) adds a new technique for managing
large data modifications against a table. By reducing the size of large modifications, you can
improve database concurrency by reducing the time that locks are held during the operation
(leaving small windows for other sessions), and also help manage the size of the transaction log
(more commits, instead of one single commit for a gigantic transaction).

Executing INSERTs, UPDATEs, and DELETEs in a
Single Statement
SQL Server 2008 introduces the MERGE command to efficiently apply changes to a target table based
on the data in a table source. If you’ve ever had to load and incrementally modify relational data
warehouses or operational data stores based on incoming data from external data sources, you’ll
find this technique to be a big improvement over previous methods.

Rather than create multiple data modification statements, you can instead point MERGE to your
target and source tables, defining what actions to take when search conditions find a match, when
the target table does not have a match, or when the source table does not have a match. Based on
these matching conditions, you can designate whether or not a DELETE, INSERT, or UPDATE operation
takes place (again, within the same statement).

This recipe will demonstrate applying changes to a production table based on data that exists
in a staging table (presumably staged data from an external data source). I’ll start off by creating a
production table that tells me whether or not a corporate housing unit is available for renting. If the
IsRentedIND is 0, the unit is not available. If it is 1, it is available:

CREATE TABLE HumanResources.CorporateHousing
(CorporateHousingID int NOT NULL PRIMARY KEY IDENTITY(1,1),
UnitNBR int NOT NULL,
IsRentedIND bit NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS90

9802CH02.qxd 4/30/08 9:59 AM Page 90

-- Insert existing units
INSERT HumanResources.CorporateHousing
(UnitNBR, IsRentedIND)
VALUES
(1, 0),
(24, 1),
(39, 0),
(54, 1)

In this scenario, I receive periodic data feeds that inform me of rental status changes for corpo-
rate units. Units can shift from rented to not rented. New units can be added based on contracts
signed, and existing units can be removed due to contract modifications or renovation require-
ments. So for this recipe, I’ll create a staging table that will receive the current snapshot of corporate
housing units from the external data source. I’ll also populate it with the most current information:

CREATE TABLE dbo.StagingCorporateHousing
(UnitNBR int NOT NULL,
IsRentedIND bit NOT NULL)

GO

INSERT dbo.StagingCorporateHousing
(UnitNBR, IsRentedIND)
VALUES
-- UnitNBR "1" no longer exists
(24, 0), -- UnitNBR 24 has a changed rental status
(39, 1), -- UnitNBR 39 is the same
(54, 0), -- UnitNBR 54 has a change status
(92, 1) -- UnitNBR 92 is a new unit, and isn't in production yet

Now my objective is to modify the target production table so that it reflects the most current
data from our data source. If a new unit exists in the staging table, I want to add it. If a unit number
exists in the production table but not the staging table, I want to delete the row. If a unit number
exists in both the staging and production tables, but the rented status is different, I want to update
the production (target) table to reflect the changes.

I’ll start by looking at the values of production before the modification:

-- Before the MERGE
SELECT CorporateHousingID, UnitNBR, IsRentedIND
FROM HumanResources.CorporateHousing

This returns

CorporateHousingID UnitNBR IsRentedIND
1 1 0
2 24 1
3 39 0
4 54 1

Next, I’ll modify the production table per my business requirements:

MERGE INTO HumanResources.CorporateHousing p
USING dbo.StagingCorporateHousing s
ON p.UnitNBR = s.UnitNBR
WHEN MATCHED AND s.IsRentedIND <> p.IsRentedIND THEN
UPDATE SET IsRentedIND = s.IsRentedIND
WHEN NOT MATCHED BY TARGET THEN

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 91

9802CH02.qxd 6/16/08 4:10 PM Page 91

INSERT (UnitNBR, IsRentedIND) VALUES (s.UnitNBR, s.IsRentedIND)
WHEN NOT MATCHED BY SOURCE THEN
DELETE;

This returns

(5 row(s) affected)

Next, I’ll check the “after” results of the production table:

-- After the MERGE
SELECT CorporateHousingID, UnitNBR, IsRentedIND
FROM HumanResources.CorporateHousing

This returns

CorporateHousingID UnitNBR IsRentedIND
2 24 0
3 39 1
4 54 0
5 92 1

How It Works
In this recipe, I demonstrated how to apply INSERT/UPDATE/DELETE modifications using a MERGE state-
ment. The MERGE command allowed me to modify a target table based on the expression validated
against a source staging table.

In the first line of the MERGE command, I designated the target table where I will be applying the
data modifications:

MERGE INTO HumanResources.CorporateHousing p

On the second line, I identified the data source that will be used to compare the data against
the target table. This source could have also been based on a derived or linked server table:

USING dbo.StagingCorporateHousing s

Next, I defined how I am joining these two data sources. In this case, I am using what is essen-
tially a natural key of the data. This natural key is what uniquely identifies the row both in the
source and target tables:

ON p.UnitNBR = s.UnitNBR

Next, I defined what happens when there is a match between the unit numbers by designating
WHEN MATCHED. I also added an addition search condition, which indicates that if the rental indicator
doesn’t match, the rental indicator should be changed to match the staging data:

WHEN MATCHED AND s.IsRentedIND <> p.IsRentedIND THEN
UPDATE SET IsRentedIND = s.IsRentedIND

Next, I evaluated what happens when there is not a match from the source to the target table—
for example, if the source table has a value of 92 for the unit number, but the target table does not
have such a row. When this occurs, I directed this command to add the missing row to the target
table:

WHEN NOT MATCHED BY TARGET THEN
INSERT (UnitNBR, IsRentedIND) VALUES (s.UnitNBR, s.IsRentedIND)

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS92

9802CH02.qxd 6/16/08 4:10 PM Page 92

Lastly, if there are rows in the target table that aren’t in the source staging table, I directed the
command to remove the row from the target production table:

WHEN NOT MATCHED BY SOURCE THEN
DELETE;

Notice that this is one of those commands that require termination with a semicolon. You
should also note that not every MERGE command requires an associated INSERT/UPDATE/DELETE. You
may decide that you wish to only add new rows and update existing ones. Or you may decide that,
rather than remove a row from production, you want to “logically” delete it instead by updating
a flag.

Using MERGE will allow you to apply data modifications to target tables with less code than in
previous versions, as well as realize some performance benefits when applying data modifications
incrementally, as you’ll be making a single pass over the source and target data rather than multiple
passes for each modification type.

Capturing and Tracking Data Modification
Changes
The last few recipes in this chapter will demonstrate how to capture and track data modification
activity.

In the first recipe, I’ll show you how to use the OUTPUT clause to show impacted rows from an
INSERT, UPDATE, or DELETE operation. After that, I’ll demonstrate two new features introduced in
SQL Server 2008: Change Data Capture (CDC) and Change Tracking.

Change Data Capture (CDC for short) has minimal performance overhead and can be used for
incremental updates of other data sources, for example, migrating changes made in the OLTP data-
base to your data warehouse database.

While CDC was intended to be used for asynchronous tracking of incremental data changes for
data stores and warehouses and also provides the ability to detect intermediate changes to data,
Change Tracking is a synchronous process that is part of the transaction of a DML operation itself
(INSERT/UPDATE/DELETE) and is intended to be used for detecting net row changes with minimal disk
storage overhead.

Returning Rows Affected by a Data Modification Statement
In this recipe, I show you how to return information about rows that are impacted by an INSERT,
UPDATE, or DELETE operation using the OUTPUT clause (MERGE can also be captured). In this first exam-
ple, an UPDATE statement modifies the name of a specific product. OUTPUT is then used to return
information on the original and updated column names:

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

UPDATE Production.Product
SET Name = 'HL Spindle/Axle XYZ'
OUTPUT DELETED.Name,

INSERTED.Name
INTO @ProductChanges
WHERE ProductID = 524

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 93

9802CH02.qxd 6/16/08 4:10 PM Page 93

SELECT DeletedName,
InsertedName

FROM @ProductChanges

This query returns

DeletedName InsertedName
HL Spindle/Axle HL Spindle/Axle XYZ

This next example uses OUTPUT for a DELETE operation. First, I’ll create a demonstration table to
hold the data:

SELECT *
INTO Sales.Example_SalesTaxRate
FROM Sales.SalesTaxRate

Next, I create a table variable to hold the data, delete rows from the table, and then select from
the table variable to see which rows were deleted:

DECLARE @SalesTaxRate TABLE(
[SalesTaxRateID] [int] NOT NULL,
[StateProvinceID] [int] NOT NULL,
[TaxType] [tinyint] NOT NULL,
[TaxRate] [smallmoney] NOT NULL,
[Name] [dbo]. [Name] NOT NULL,
[rowguid] [uniqueidentifier] ,
[ModifiedDate] [datetime] NOT NULL)

DELETE Sales.Example_SalesTaxRate
OUTPUT DELETED.*
INTO @SalesTaxRate

SELECT SalesTaxRateID,
Name

FROM @SalesTaxRate

This returns the following abridged results:

SalesTaxRateID Name
1 Canadian GST + Alberta Provincial Tax
2 Canadian GST + Ontario Provincial Tax
3 Canadian GST + Quebec Provincial Tax
4 Canadian GST
...
27 Washington State Sales Tax
28 Taxable Supply
29 Germany Output Tax
30 France Output Tax
31 United Kingdom Output Tax

(29 row(s) affected)

In the third example, I’ll demonstrate using an INSERT with OUTPUT. A new row is inserted into a
table, and the operation is captured to a table variable table:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS94

9802CH02.qxd 4/30/08 9:59 AM Page 94

DECLARE @NewDepartment TABLE
(DepartmentID smallint NOT NULL,
Name nvarchar(50) NOT NULL,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL)

INSERT HumanResources.Department
(Name, GroupName)
OUTPUT INSERTED.*
INTO @NewDepartment
VALUES ('Accounts Receivable', 'Accounting')

SELECT DepartmentID,
ModifiedDate

FROM @NewDepartment

This returns

DepartmentID ModifiedDate
18 2007-09-15 08:38:28.833

How It Works
The first example used a temporary table variable to hold the OUTPUT results (see Chapter 4 for more
information on temporary table variables):

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

Next, the first part of the UPDATE changed the product name to HL Spindle/Axle XYZ:

UPDATE Production.Product
SET Name = 'HL Spindle/Axle XYZ'

After the SET clause, but before the WHERE clause, the OUTPUT defined which columns to return:

OUTPUT DELETED.Name,
INSERTED.Name

Like DML triggers (covered in Chapter 12), two “virtual” tables exist for the OUTPUT to use—
INSERTED and DELETED—both of which hold the original and modified values for the updated table.
The INSERTED and DELETED virtual tables share the same column names of the modified table—in
this case returning the original name (DELETED.Name) and the new name (INSERTED.Name).

The values of this OUTPUT were placed into the temporary table variable by using INTO, followed
by the table name:

INTO @ProductChanges

The UPDATE query qualified that only ProductID 524 would be modified to the new name:

WHERE ProductID = 524

After the update, a query was executed against the @ProductChanges temporary table variable to
show the before/after changes:

SELECT DeletedName,
InsertedName

FROM @ProductChanges

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 95

9802CH02.qxd 4/30/08 9:59 AM Page 95

The DELETE and INSERT examples using OUTPUT were variations on the first example, where
OUTPUT pushes the deleted rows (for DELETE) or the inserted rows (for INSERT) into a table variable.

Asynchronously Capturing Table Data Modifications
SQL Server 2008 provides a built-in method for asynchronously tracking all data modifications that
occur against your user tables without your having to code your own custom triggers or queries.
Change Data Capture has minimal performance overhead and can be used for incremental updates
of other data sources, for example, migrating changes made in the OLTP database to your data
warehouse database. The next set of recipes will demonstrate how to use this new functionality.

To begin with, I’ll create a new database that will be used to demonstrate this functionality:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQLRecipe_CDC_Demo')

BEGIN
CREATE DATABASE TSQLRecipe_CDC_Demo

END
GO

In this first recipe, I’ll demonstrate adding CDC to a table in the TSQLRecipe_CDC_Demo database.
The first step is to validate whether the database is enabled for Change Data Capture:

SELECT is_cdc_enabled
FROM sys.databases
WHERE name = 'TSQLRecipe_CDC_Demo'

This returns

is_cdc_enabled
0

Change Data Capture is configured and managed using various stored procedures. In order to
enable the database, I’ll execute the sys.dp_cdc_enable_db stored procedure in the context of the
TSQLRecipe_CDC_Demo database:

USE TSQLRecipe_CDC_Demo
GO

EXEC sys.sp_cdc_enable_db
GO

This returns

Command(s) completed successfully.

Next, I’ll revalidate that Change Data Capture is enabled:

SELECT is_cdc_enabled
FROM sys.databases
WHERE name = 'TSQLRecipe_CDC_Demo'

This returns

is_cdc_enabled
1

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS96

9802CH02.qxd 4/30/08 9:59 AM Page 96

Now that Change Data Capture is enabled, I can proceed with capturing changes for tables in
the database by using the sys.sp_cdc_enable_table system stored procedure. The parameters of
this stored procedure are described in Table 2-8.

Table 2-8. sp_cdc_enable_table Parameters

Parameter Description

@source_schema This parameter defines the schema of the object.

@source_name This parameter specifies the table name.

@role_name This option allows you to select the name of the user-defined role that
will have permissions to access the CDC data.

@capture_instance You can designate up to two capture instances for a single table. This
comes in handy if you plan on altering the schema of a table already
captured by CDC. You can alter the schema without affecting the
original CDC (unless it is a data type change), create a new capture
instance, track changes in two tables, and then drop the original
capture instance once you are sure the new schema capture fits your
requirements. If you don’t designate the name, the default value is
schema_source.

@supports_net_changes When enabled, this option allows you to show just the latest change to
the data within the LSN range selected. This option requires a primary
key be defined on the table. If no primary key is defined, you can also
designate a unique key in the @index_name option.

@index_name This parameter allows you to designate the unique key on the table to
be used by CDC if a primary key doesn’t exist.

@captured_column_list If you aren’t interested in tracking all column changes, this option
allows you to narrow down the list.

@filegroup_name This option allows you to designate where the CDC data will be stored.
For very large data sets, isolation on a separate filegroup may yield
better manageability and performance.

@partition_switch This parameter takes a TRUE or FALSE value designating whether or not a
ALTER TABLE...SWITCH PARTITION command will be allowed against the
CDC table (default is FALSE).

In this recipe, I would like to track all changes against the following new table:

USE TSQLRecipe_CDC_Demo
GO

CREATE TABLE dbo.Equipment
(EquipmentID int NOT NULL PRIMARY KEY IDENTITY(1,1),
EquipmentDESC varchar(100) NOT NULL,
LocationID int NOT NULL)

GO

I would like to be able to capture all changes made to rows, as well as return just the net
changes for a row. For other options, I’ll be going with the default:

EXEC sys.sp_cdc_enable_table
@source_schema = 'dbo',
@source_name = 'Equipment',
@role_name = NULL,
@capture_instance = NULL,
@supports_net_changes = 1,

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 97

9802CH02.qxd 4/30/08 9:59 AM Page 97

@index_name = NULL,
@captured_column_list = NULL,
@filegroup_name = default

The results of this procedure call indicate that two SQL Server Agent jobs were created (SQL
Server Agent has to be running):

Job 'cdc.TSQLRecipe_CDC_Demo_capture' started successfully.
Job 'cdc.TSQLRecipe_CDC_Demo_cleanup' started successfully.

Two jobs, a capture and a cleanup, are created for each database that has CDC enabled for
tables.

■Tip Had CDC already been enabled for a table in the same database, the jobs would not have been re-created.

I can confirm that this table is now tracked by executing the following query:

SELECT is_tracked_by_cdc
FROM sys.tables
WHERE name = 'Equipment' and

schema_id = SCHEMA_ID('dbo')

This returns

is_tracked_by_cdc
1

I can also validate the settings of your newly configured capture instance using the
sys.sp_cdc_help_change_data_capture stored procedure:

EXEC sys.sp_cdc_help_change_data_capture 'dbo', 'Equipment'

This returns the following result set (presented in name/value pairs for formatting purposes):

source_schema dbo
source_table Equipment
capture_instance dbo_ Equipment
object_id 357576312
source_object_id 293576084
start_lsn NULL
end_lsn NULL
supports_net_changes 1
has_drop_pending NULL
role_name NULL
index_name PK__Equipmen__344745994707859D
filegroup_name NULL
create_date 2008-03-16 09:27:52.990
index_column_list [EquipmentID]
captured_column_list [EquipmentID], [EquipmentDESC], [LocationID]

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS98

9802CH02.qxd 6/16/08 4:10 PM Page 98

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
In this recipe, I started off by enabling CDC capabilities for the database using sp_cdc_enable_db.
Behind the scenes, enabling CDC for the database creates a new schema called cdc and a few new
tables in the database, detailed in Table 2-9. You shouldn’t need to query these tables directly, as
there are system stored procedures and functions that can return the same data in a cleaner format.

Table 2-9. CDC System Tables

Table Description

cdc.captured_columns Returns the columns tracked for a specific capture instance.

cdc.change_tables Returns tables created when CDC is enabled for a table. Use
sys.sp_cdc_help_change_data_capture to query this information
rather than query this table directly.

cdc.ddl_history Returns rows for each DDL change made to the table, once CDE is
enabled. Use sys.sp_cdc_get_ddl_history instead of querying this
table directly.

cdc.index_columns Returns index columns associated with the CDC-enabled table. Query
sys.sp_cdc_help_change_data_capture to retrieve this information
rather than querying this table directly.

cdc.lsn_time_mapping Helps you map the log sequence number to transaction begin and end
times. Again, avoid querying the table directly, and instead use the
functions sys.fn_cdc_map_lsn_to_time and sys.fn_cdc_map_time_
to_lsn.

I’ll review how some of the more commonly used functions and procedures are used in
upcoming recipes.

After enabling the database for CDC, I then added CDC tracking to a user table in the database
using the sp_cdc_enable_table procedure. I designated the schema, name, and the net changes flag.
All other options were left to the default values.

Once sp_cdc_enable_table was executed, because this was the first source table to be enabled
in the database, two new SQL Agent jobs were created. One job was called cdc.TSQLRecipe_CDC_
Demo_capture. This job is responsible for capturing changes made using replication log reader tech-
nology and is scheduled to start automatically when SQL Server starts and run continuously. The
second job, cdc.TSQLRecipe_CDC_Demo_cleanup, is scheduled by default to run daily at 2 a.m. and
cleans up data older than three days (72 hours) by default.

Executing sys.sp_cdc_help_change_data_capture allowed me to validate various settings of the
capture instance, including the support of net changes, tracking columns, creation date, and pri-
mary key used to determine uniqueness of the rows.

Enabling CDC for a table also causes a new table to be created in the CDC schema. In this
case, a new table called cdc.dbo_Equipment_CT was created automatically. This table has the same
columns as the base table, along with five additional columns added to track LSN, operation, and
updated column information. You shouldn’t query this directly, but instead use functions as I’ll
demonstrate in the next recipe.

Querying All Changes from CDC Tables
Now that CDC is enabled for the database and a change capture instance is created for a table, I’ll
go ahead and start making changes to the table in order to demonstrate the functionality:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 99

9802CH02.qxd 4/30/08 9:59 AM Page 99

USE TSQLRecipe_CDC_Demo
GO

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES ('Projector A', 22)

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES ('HR File Cabinet', 3)

UPDATE dbo.Equipment
SET EquipmentDESC = 'HR File Cabinet 1'
WHERE EquipmentID = 2

DELETE dbo.Equipment
WHERE EquipmentID = 1

After making the changes, I can now view a history of what was changed using the CDC func-
tions. Data changes are tracked at the log sequence number (LSN) level. An LSN is a record in the
transaction log that uniquely identifies activity.

I will now pull the minimum and maximum LSN values based on the time range I wish to pull
changes for. To determine LSN, I’ll use the sys.fn_cdc_map_time_to_lsn function, which takes two
input parameters, the relational operator, and the tracking time (there are other ways to do this,
which I demonstrate later on in the chapter). The relational operators are as follows:

• Smallest greater than

• Smallest greater than or equal

• Largest less than

• Largest less than or equal

These operators are used in conjunction with the Change Tracking time period you specify to
help determine the associated LSN value. For this recipe, I want the minimum and maximum LSN
values between two time periods:

SELECT sys.fn_cdc_map_time_to_lsn
('smallest greater than or equal' , '2008-03-16 09:34:11') as BeginLSN

SELECT sys.fn_cdc_map_time_to_lsn
('largest less than or equal' , '2008-03-16 23:59:59') as EndLSN

This returns the following results (your actual LSN if you are following along will be different):

BeginLSN
0x0000001C000001020001

(1 row(s) affected)

EndLSN
0x0000001C000001570001

(1 row(s) affected)

I now have my LSN boundaries to detect changes that occurred during the desired time range.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS100

9802CH02.qxd 4/30/08 9:59 AM Page 100

My next decision is whether or not I wish to see all changes or just net changes. I can call the
same functions demonstrated in the previous query in order to generate the LSN boundaries and
populate them into variables for use in the cdc.fn_cdc_get_all_changes_dbo_Equipment function.
As the name of that function suggests, I’ll demonstrate showing all changes first:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('smallest greater than or equal' , '2008-03-16 09:34:11')

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
__$operation,
__$update_mask,
EquipmentID,
EquipmentDESC,
LocationID

FROM cdc.fn_cdc_get_all_changes_dbo_Equipment
(@FromLSN, @ToLSN, 'all')

This returns the following result set:

__$operation __$update_mask EquipmentID EquipmentDESC LocationID
2 0x07 1 Projector A 22
2 0x07 2 HR File Cabinet 3
4 0x02 2 HR File Cabinet 1 3
1 0x07 1 Projector A 22

This result set revealed all modifications made to the table. Notice that the function name,
cdc.fn_cdc_get_all_changes_dbo_Equipment, was based on my CDC instance capture name for the
source table. Also notice the values of __$operation and __$update_mask. The __$operation values
are interpreted as follows:

• 1 is a delete.

• 2 is an insert.

• 3 is the “prior” version of an updated row (use all update old option to see—I didn’t use this
in the prior query).

• 4 is the “after” version of an updated row.

The update mask uses bits to correspond to the capture column modified for an operation.
I’ll demonstrate how to translate these values in a separate recipe.

Moving forward in this current recipe, I could have also used the all update old option to
show previous values of an updated row prior to the modification. I can also add logic to translate
the values seen in the result set for the operation type. For example:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('smallest greater than or equal' , '2008-03-16 09:34:11')

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('largest less than or equal' , '2008-03-16 23:59:59')

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 101

9802CH02.qxd 4/30/08 9:59 AM Page 101

SELECT
CASE __$operation

WHEN 1 THEN 'DELETE'
WHEN 2 THEN 'INSERT'
WHEN 3 THEN 'Before UPDATE'
WHEN 4 THEN 'After UPDATE'

END Operation,
__$update_mask,
EquipmentID,
EquipmentDESC,
LocationID

FROM cdc.fn_cdc_get_all_changes_dbo_Equipment
(@FromLSN, @ToLSN, 'all update old')

This returns

Operation __$update_mask EquipmentID EquipmentDESC LocationID
INSERT 0x07 1 Projector A 22
INSERT 0x07 2 HR File Cabinet 3
Before UPDATE 0x02 2 HR File Cabinet 3
After UPDATE 0x02 2 HR File Cabinet 1 3
DELETE 0x07 1 Projector A 22

How It Works
In this recipe, modifications were made against the CDC tracked table. Because the underlying CDC
data is actually tracked by LSN, I needed to translate my min/max time range to the minimum and
maximum LSNs that would include the data changes I was looking for. This was achieved using
sys.fn_cdc_map_time_to_lsn.

■Tip There is also a sys.fn_cdc_map_lsn_to_time function available to convert your tracked LSNs to
temporal values.

Next, I executed the cdc.fn_cdc_get_all_changes_dbo_Equipment function, which allowed me
to return all changes made for the LSN range I passed:

SELECT
__$operation,
__$update_mask,
EquipmentID,
EquipmentDESC,
LocationID

FROM cdc.fn_cdc_get_all_changes_dbo_Equipment
(@FromLSN, @ToLSN, 'all')

For an ongoing incremental load, it may also make sense to store the beginning and ending
LSN values for each load, and then use the sys.fn_cdc_increment_lsn function to increment the old
upper bound LSN value to be your future lower bound LSN value for the next load (I’ll demonstrate
this in a later recipe).

In the last example of this recipe, I used the all update old parameter to return both before
and after versions of rows from UPDATE statements, and also encapsulated the operation column in
a CASE statement for better readability.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS102

9802CH02.qxd 4/30/08 9:59 AM Page 102

Querying Net Changes from CDC Tables
In the original CDC setup recipe, sp_cdc_enable_table_change_data_capture was executed with
@supports_net_changes = 1 for the source table. This means that I also have the option of executing
the net changes version of the CDC procedure. The fn_cdc_get_net_changes_ version of the stored
procedure also takes a beginning and ending LSN value; however, the third parameter differs in the
row filter options:

• all, which returns the last version of a row without showing values in the update mask.

• all with mask, which returns the last version of the row along with the update mask value
(the next recipe details how to interpret this mask).

• all with merge, which returns the final version of the row as either a delete or a merge oper-
ation (either an insert or update). Inserts and updates are not broken out.

The following recipe demonstrates showing net changes without displaying the update mask.
I’ll start by issuing a few new data modifications:

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES
('Portable White Board', 18)

UPDATE dbo.Equipment
SET LocationID = 1
WHERE EquipmentID = 3

Next, I track the net effect of my changes using the following query:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('smallest greater than or equal' , '2008-03-16 09:45:00')

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
CASE __$operation

WHEN 1 THEN 'DELETE'
WHEN 2 THEN 'INSERT'
WHEN 3 THEN 'Before UPDATE'
WHEN 4 THEN 'After UPDATE'
WHEN 5 THEN 'MERGE'

END Operation,
__$update_mask,
EquipmentID,
EquipmentDESC,
LocationID

FROM cdc.fn_cdc_get_net_changes_dbo_Equipment
(@FromLSN, @ToLSN, 'all with mask')

This returns

Operation __$update_mask EquipmentID EquipmentDESC LocationID
INSERT NULL 3 Portable White Board 1

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 103

9802CH02.qxd 4/30/08 9:59 AM Page 103

How It Works
In this recipe, I used cdc.fn_cdc_get_net_changes_dbo_Equipment to return the net changes of rows
between the specific LSN range. I first inserted a new row and then updated it. I queried cdc.fn_
cdc_get_net_changes_dbo_Equipment to show the net change based on the LSN range. Although two
changes were made, only one row was returned to reflect the final change needed, an INSERT opera-
tion that would produce the final state of the row.

Translating the CDC Update Mask
The update mask returned by the cdc.fn_cdc_get_all_changes_ and cdc.fn_cdc_get_net_changes_
functions allows you to determine which columns were affected by a particular operation. In order
to interpret this value, however, you need the help of a couple of other CDC functions:

• sys.fn_cdc_is_bit_set is used to check whether a specific bit is set within the mask. Its first
parameter is the ordinal position of the bit to check, and the second parameter is the update
mask itself.

• sys.fn_cdc_get_column_ordinal is the function you can use in conjunction with sys.fn_
cdc_is_bit_set to determine the ordinal position of the column for the table. This function’s
first parameter is the name of the capture instance. The second parameter is the name of the
column.

In this recipe, I’ll use both of these functions to help identify which columns were updated
within the specific LSN boundary. First, I’ll make two updates against two different rows:

UPDATE dbo.Equipment
SET EquipmentDESC = 'HR File Cabinet A1'
WHERE EquipmentID = 2

UPDATE dbo.Equipment
SET LocationID = 35
WHERE EquipmentID = 3

Now I’ll issue a query to determine which columns have been changed using the update mask:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('smallest greater than or equal' , '2008-03-16 10:02:00')

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
sys.fn_cdc_is_bit_set (
sys.fn_cdc_get_column_ordinal (

'dbo_Equipment' , 'EquipmentDESC'),
__$update_mask) EquipmentDESC_Updated,

sys.fn_cdc_is_bit_set (
sys.fn_cdc_get_column_ordinal (

'dbo_Equipment' , 'LocationID'),
__$update_mask) LocationID_Updated,

EquipmentID,
EquipmentDESC,
LocationID

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS104

9802CH02.qxd 4/30/08 9:59 AM Page 104

FROM cdc.fn_cdc_get_all_changes_dbo_Equipment
(@FromLSN, @ToLSN, 'all')

WHERE __$operation = 4

This returns

EquipmentDESC_Updated LocationID_Updated EquipmentID EquipmentDESC LocationID
1 0 2 HR File Cabinet A1 3
0 1 3 Portable White Board 35

How It Works
In this recipe, I updated two rows. One update involved changing only the equipment description,
and the second update involved changing the location ID.

In order to identify whether or not a bit is set, I used the following function call:

SELECT sys.fn_cdc_is_bit_set (

The first parameter of this function call is the ordinal position of the column I wish to check.
In order to return this information, I used the following function call:

sys.fn_cdc_get_column_ordinal ('dbo_Equipment' , 'EquipmentDESC')

The second parameter of sys.fn_cdc_is_bit_set is the update mask column name to be
probed. I referenced this, along with an aliased name of the column in the query:

, __$update_mask) EquipmentDESC_Updated,

I repeated this code for the LocationID in the next line of the query:

sys.fn_cdc_is_bit_set (sys.fn_cdc_get_column_ordinal
('dbo_Equipment' , 'LocationID'), __$update_mask) LocationID_Updated,

The rest of the query was standard, returning the change column values and querying the “all
changes” CDC function:

DepartmentID,
Name,
GroupName

FROM cdc.fn_cdc_get_all_changes_dbo_Department
(@FromLSN, @ToLSN, 'all')

Lastly, I qualified the query to only return type 4 rows, which are after versions of rows for an
update operation:

WHERE __$operation = 4

Working with LSN Boundaries
I’ve demonstrated how to determine the minimum and maximum LSN boundaries using sys.fn_
cdc_map_time_to_lsn. However, you aren’t limited to just using this function to define your bound-
aries. The following functions in this recipe can also be used to generate LSN values:

• sys.fn_cdc_increment_lsn allows you to return the next LSN number based on the input
LSN number. So, for example, you could use this function to convert your last loaded upper
bound LSN into your next lower bound LSN.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 105

9802CH02.qxd 4/30/08 9:59 AM Page 105

• sys.fn_cdc_decrement_lsn returns the prior LSN based on the input LSN number.

• sys.fn_cdc_get_max_lsn returns the largest LSN from the CDC data collected for your cap-
ture instance.

• sys.fn_cdc_get_min_lsn returns the oldest LSN from the CDC data collected for your cap-
ture instance.

The following recipe demonstrates retrieving LSN values from the CDC data collected for the
dbo.Equipment table:

SELECT sys.fn_cdc_get_min_lsn ('dbo_Equipment') Min_LSN

SELECT sys.fn_cdc_get_max_lsn () Max_LSN

SELECT sys.fn_cdc_increment_lsn (sys.fn_cdc_get_max_lsn()) New_Lower_Bound_LSN

SELECT sys.fn_cdc_decrement_lsn (sys.fn_cdc_get_max_lsn())
New_Lower_Bound_Minus_one_LSN

This returns the following (note that your results will be different):

Min_LSN
0x0000001C000001040014

(1 row(s) affected)

Max_LSN
0x0000001E0000008B0001

(1 row(s) affected)

New_Lower_Bound_LSN
0x0000001E0000008B0002

(1 row(s) affected)

New_Lower_Bound_Minus_one_LSN
0x0000001E0000008B0000

(1 row(s) affected)

How It Works
The new CDC functionality provides built-in methods for tracking changes to target tables in your
database; however, you must still consider what logic you will use to capture time ranges for your
Change Tracking. This recipe demonstrated methods you can use to retrieve the minimum and
maximum available LSNs from the CDC database.

The sys.fn_cdc_get_min_lsn function takes the capture instance name as its input parameter,
whereas sys.fn_cdc_get_max_lsn returns the maximum LSN at the database scope. The sys.fn_
cdc_increment_lsn and sys.fn_cdc_decrement_lsn functions are used to increase and decrease the
LSN based on the LSN you pass it. These functions allow you to create new boundaries for queries
against the CDC data.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS106

9802CH02.qxd 4/30/08 9:59 AM Page 106

Disabling Change Data Capture from Tables and the Database
This recipe demonstrates how to remove Change Data Capture from a table. To do so, I’ll execute
the sys.sp_cdc_disable_table stored procedure. In this example, I will disable all Change Tracking
from the table that may exist:

EXEC sys.sp_cdc_disable_table
'dbo', 'Equipment', 'all'

I can then validate that the table is truly disabled by executing the following query:

SELECT is_tracked_by_cdc
FROM sys.tables
WHERE name = 'Equipment' and

schema_id = SCHEMA_ID('dbo')

This returns

is_tracked_by_cdc
0

(1 row(s) affected)

To disable CDC for the database itself, I execute the following stored procedure:

EXEC sys.sp_cdc_disable_db

This returns

Command(s) completed successfully.

How It Works
The stored procedure sys.sp_cdc_disable_table is used to remove CDC from a table. The first
parameter of this stored procedure designates the schema name, and the second parameter desig-
nates the table name. The last parameter designates whether you wish to remove all Change
Tracking by designating all or instead specify the name of the capture instance.

To entirely remove CDC abilities from the database itself, I executed the sys.sp_cdc_
disable_db procedure, which also removes the CDC schema and associated SQL Agent jobs.

Tracking Net Data Changes with Minimal Disk Overhead
CDC was intended to be used for asynchronous tracking of incremental data changes for data stores
and warehouses and also provides the ability to detect intermediate changes to data. Unlike CDC,
Change Tracking is a synchronous process that is part of the transaction of a DML operation itself
(INSERT/UPDATE/DELETE) and is intended to be used for detecting net row changes with minimal disk
storage overhead.

The synchronous behavior of Change Tracking allows for a transactionally consistent view of
modified data, as well as the ability to detect data conflicts. Applications can use this functionality
with minimal performance overhead and without the need to add supporting database object mod-
ifications (no custom change-detection triggers or table timestamps needed).

In this recipe, I’ll walk through how to use the new Change Tracking functionality to detect
DML operations. To begin with, I’ll create a new database that will be used to demonstrate this
functionality:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 107

9802CH02.qxd 4/30/08 9:59 AM Page 107

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQLRecipeChangeTrackDemo')

BEGIN
CREATE DATABASE TSQLRecipeChangeTrackDemo

END
GO

To enable Change Tracking functionality for the database, I have to configure the CHANGE_
TRACKING database option. I also can configure how long changes are retained in the database and
whether or not automatic cleanup is enabled. Configuring your retention period will impact how
much Change Tracking is maintained for the database. Setting this value too high can impact stor-
age. Setting it too low could cause synchronization issues with the other application databases if the
remote applications do not synchronize often enough:

ALTER DATABASE TSQLRecipeChangeTrackDemo
SET CHANGE_TRACKING = ON
(CHANGE_RETENTION = 36 HOURS,
AUTO_CLEANUP = ON)

A best practice when using Change Tracking is to enable the database for Snapshot Isolation.
For databases and tables with significant DML activity, it will be important that you capture Change
Tracking information in a consistent fashion—grabbing the latest version and using that version
number to pull the appropriate data.

■Caution Enabling Snapshot Isolation will result in additional space usage in tempdb due to row versioning
generation. This can also increase overall I/O overhead.

Not using Snapshot Isolation can result in transactionally inconsistent change information:

ALTER DATABASE TSQLRecipeChangeTrackDemo
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

I can confirm that I have properly enabled the database for Change Tracking by querying
sys.change_tracking_databases:

SELECT DB_NAME(database_id) DBNM,is_auto_cleanup_on,
retention_period,retention_period_units_desc

FROM sys.change_tracking_databases

This returns

DBNM is_auto_cleanup_on retention_period retention_period_units_desc
TSQLRecipeChangeTrackDemo 1 36 HOURS

Now I will create a new table that will be used to demonstrate Change Tracking:

USE TSQLRecipeChangeTrackDemo
GO

CREATE TABLE dbo.BookStore
(BookStoreID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
BookStoreNM varchar(30) NOT NULL,
TechBookSection bit NOT NULL)
GO

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS108

9802CH02.qxd 4/30/08 9:59 AM Page 108

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Next, for each table that I wish to track changes for, I need to use the ALTER TABLE command
with the CHANGE_TRACKING option. If I also want to track which columns were updated, I need to
enable the TRACK_COLUMNS_UPDATED option, as demonstrated next:

ALTER TABLE dbo.BookStore
ENABLE CHANGE_TRACKING
WITH (TRACK_COLUMNS_UPDATED = ON)

I can validate which tables are enabled for Change Tracking by querying the sys.change_
tracking_tables catalog view:

SELECT OBJECT_NAME(object_id) ObjNM,is_track_columns_updated_on
FROM sys.change_tracking_tables

This returns

ObjNM is_track_columns_updated_on
BookStore 1

Now I will demonstrate Change Tracking by doing an initial population of the table with three
new rows:

INSERT dbo.BookStore
(BookStoreNM, TechBookSection)
VALUES
('McGarnicles and Bailys', 1),
('Smith Book Store', 0),
('University Book Store',1)

One new function I can use for ongoing synchronization is the CHANGE_TRACKING_CURRENT_
VERSION function, which returns the version number from the last committed transaction for the
table. Each DML operation that occurs against a change-tracked table will cause the version num-
ber to increment. I’ll be using this version number later on to determine changes:

SELECT CHANGE_TRACKING_CURRENT_VERSION ()

This returns

1

Also, I can use the CHANGE_TRACKING_MIN_VALID_VERSION function to check the minimum ver-
sion available for the change-tracked table. If a disconnected application is not synchronized for a
period of time exceeding the Change Tracking retention period, a full refresh of the application data
would be necessary:

SELECT CHANGE_TRACKING_MIN_VALID_VERSION
(OBJECT_ID('dbo.BookStore'))

This returns

0

To detect changes, I can use the CHANGETABLE function. This function has two varieties of usage,
using the CHANGES keyword to detect changes as of a specific synchronization version and using the
VERSION keyword to return the latest Change Tracking version for a row.

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 109

9802CH02.qxd 4/30/08 9:59 AM Page 109

I’ll start off by demonstrating how CHANGES works. The following query demonstrates returning
the latest changes to the BookStore table as of version 0. The first parameter is the name of the
Change Tracking table, and the second parameter is the version number:

SELECT BookStoreID,SYS_CHANGE_OPERATION,
SYS_CHANGE_VERSION

FROM CHANGETABLE
(CHANGES dbo.BookStore, 0) AS CT

This returns the primary key of the table, followed by the DML operation type (I for INSERT,
U for UPDATE, and D for DELETE), and the associated row version number (since all three rows were
added for a single INSERT, they all share the same version number):

BookStoreID SYS_CHANGE_OPERATION SYS_CHANGE_VERSION
1 I 1
2 I 1
3 I 1

■Caution When gathering synchronization information, use SET TRANSACTION ISOLATION LEVEL SNAPSHOT
and BEGIN TRAN...COMMIT TRAN to encapsulate gathering of change information and associated current Change
Tracking versions and minimum valid versions. Using Snapshot Isolation will allow for a transactionally consistent
view of the Change Tracking data.

Now I’ll modify the data a few more times in order to demonstrate Change Tracking further:

UPDATE dbo.BookStore
SET BookStoreNM = 'King Book Store'
WHERE BookStoreID = 1

UPDATE dbo.BookStore
SET TechBookSection = 1
WHERE BookStoreID = 2

DELETE dbo.BookStore
WHERE BookStoreID = 3

I’ll check the latest version number:

SELECT CHANGE_TRACKING_CURRENT_VERSION ()

This is now incremented by three (there were three operations that acted against the data):

4

Now let’s assume that an external application gathered information as of version 1 of the data.
The following query demonstrates how to detect any changes that have occurred since version 1:

SELECT BookStoreID,
SYS_CHANGE_VERSION,
SYS_CHANGE_OPERATION,
SYS_CHANGE_COLUMNS

FROM CHANGETABLE
(CHANGES dbo.BookStore, 1) AS CT

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS110

9802CH02.qxd 4/30/08 9:59 AM Page 110

This returns information on the rows that were modified since version 1, displaying the pri-
mary keys for the two updates I performed earlier and the primary key for the row I deleted:

BookStoreID SYS_CHANGE_VERSION SYS_CHANGE_OPERATION SYS_CHANGE_COLUMNS
1 2 U 0x0000000002000000
2 3 U 0x0000000003000000
3 4 D NULL

The SYS_CHANGE_COLUMNS column is a varbinary value that contains the columns that changed
since the last version. To interpret this, I can use the CHANGE_TRACKING_IS_COLUMN_IN_MASK function,
as I’ll demonstrate next. This function takes two arguments, the column ID of the table column and
the varbinary value to be evaluated. The following query uses this function to check whether the
columns BookStoreNM and TechBookSection were modified:

SELECT BookStoreID,
CHANGE_TRACKING_IS_COLUMN_IN_MASK(

COLUMNPROPERTY(
OBJECT_ID('dbo.BookStore'),'BookStoreNM', 'ColumnId') ,
SYS_CHANGE_COLUMNS) IsChanged_BookStoreNM,

CHANGE_TRACKING_IS_COLUMN_IN_MASK(
COLUMNPROPERTY(
OBJECT_ID('dbo.BookStore'), 'TechBookSection', 'ColumnId') ,
SYS_CHANGE_COLUMNS) IsChanged_TechBookSection

FROM CHANGETABLE
(CHANGES dbo.BookStore, 1) AS CT
WHERE SYS_CHANGE_OPERATION = 'U'

This returns bit values of 1 for true and 0 for false regarding what columns were modified:

BookStoreID IsChanged_BookStoreNM IsChanged_TechBookSection
1 1 0
2 0 1

Next, I’ll demonstrate that the VERSION argument of CHANGETABLE can be used to return the lat-
est change version for each row. This version value can be stored and tracked by the application in
order to facilitate Change Tracking synchronization:

SELECT bs.BookStoreID, bs.BookStoreNM, bs.TechBookSection,
ct.SYS_CHANGE_VERSION

FROM dbo.BookStore bs
CROSS APPLY CHANGETABLE
(VERSION dbo.BookStore, (BookStoreID), (bs.BookStoreID)) as ct

This returns the SYS_CHANGE_VERSION column along with the current column values for each row:

BookStoreID BookStoreNM TechBookSection SYS_CHANGE_VERSION
1 King Book Store 1 2
2 Smith Book Store 1 3

Now I’ll perform another UPDATE to demonstrate the version differences:

UPDATE dbo.BookStore
SET BookStoreNM = 'Kingsly Book Store',

TechBookSection = 0
WHERE BookStoreID = 1

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 111

9802CH02.qxd 4/30/08 9:59 AM Page 111

Next, I’ll execute another query using CHANGETABLE:

SELECT bs.BookStoreID, bs.BookStoreNM, bs.TechBookSection,
ct.SYS_CHANGE_VERSION

FROM dbo.BookStore bs
CROSS APPLY CHANGETABLE
(VERSION BookStore, (BookStoreID), (bs.BookStoreID)) as ct

This shows that the row version of the row I just modified is now incremented to 5—but the
other row that I did not modify remains at a version number of 2:

BookStoreID BookStoreNM TechBookSection SYS_CHANGE_VERSION
1 Kingsly Book Store 0 5
2 Smith Book Store 1 3

I’ll now check the current version number:

SELECT CHANGE_TRACKING_CURRENT_VERSION ()

This returns

5

The version number matches the latest change made to the table for the last committed trans-
action.

For the final part of this recipe, I will also demonstrate how to provide Change Tracking appli-
cation context information with your DML operations. This will allow you to track which applica-
tion made data modifications to which rows—which is useful information if you are synchronizing
data across several data sources. In order to apply this data lineage, I can use the CHANGE_TRACKING_
CONTEXT function. This function takes a single input parameter of context, which is a varbinary data
type value representing the calling application.

I start off by declaring a variable to hold the application context information. I then use the
variable within the CHANGE_TRACKING_CONTEXT function prior to an INSERT of a new row to the
change-tracked table:

DECLARE @context varbinary(128) = CAST('Apress_XYZ' as varbinary(128));

WITH CHANGE_TRACKING_CONTEXT (@context)
INSERT dbo.BookStore
(BookStoreNM, TechBookSection)
VALUES
('Capers Book Store', 1)

Next, I will check for any changes that were made since version 5 (what I retrieved earlier on
using CHANGE_TRACKING_CURRENT_VERSION):

SELECT BookStoreID,
SYS_CHANGE_OPERATION,
SYS_CHANGE_VERSION,
CAST(SYS_CHANGE_CONTEXT as varchar) ApplicationContext

FROM CHANGETABLE
(CHANGES dbo.BookStore, 5) AS CT

This returns the new row value that was inserted, along with the application context informa-
tion that I converted from the SYS_CHANGE_CONTEXT column:

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS112

9802CH02.qxd 4/30/08 9:59 AM Page 112

BookStoreID SYS_CHANGE_OPERATION SYS_CHANGE_VERSION ApplicationContext
4 I 6 Apress_XYZ

How It Works
In this recipe, I demonstrated how to use Change Tracking in order to detect net row changes with
minimal disk storage overhead. I started off by creating a new database and then using ALTER
DATABASE...SET CHANGE_TRACKING to enable Change Tracking in the database. I also designated a
36-hour Change Tracking retention using the CHANGE_RETENTION and AUTO_CLEANUP options. I used
the sys.change_tracking_databases catalog view to check the status of the change-tracked data-
base.

I also enabled Snapshot Isolation for the database. This is a best practice, as you’ll want to use
Snapshot Isolation–level transactions when retrieving row change versions and the associated data
from the change-tracked table.

Next, I created a new table and then used ALTER TABLE...ENABLE CHANGE_TRACKING. I designated
that column-level changes also be tracked by enabling TRACK_COLUMNS_UPDATED. I validated the
change-tracked status of the table by querying the sys.change_tracking_tables catalog view.

After that, I demonstrated several different functions that are used to retrieve Change Tracking
data, including

• CHANGE_TRACKING_CURRENT_VERSION, which returns the version number from the last commit-
ted transaction for the table

• CHANGE_TRACKING_MIN_VALID_VERSION, which returns the minimum version available for the
change-tracked table

• CHANGETABLE with CHANGES, to detect changes as of a specific synchronization version

• CHANGE_TRACKING_IS_COLUMN_IN_MASK, to detect which columns were updated from a change-
tracked table

• CHANGETABLE with VERSION, to return the latest change version for a row

• CHANGE_TRACKING_CONTEXT, to store change context with a DML operation so you can track
which application modified what data

Change Tracking as a feature set allows you to avoid having to custom-code your own net
Change Tracking solution. This feature has minimal overhead and doesn’t require schema modifica-
tion in order to implement (no triggers or timestamps).

CHAPTER 2 ■ PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS 113

9802CH02.qxd 4/30/08 9:59 AM Page 113

9802CH02.qxd 4/30/08 9:59 AM Page 114

Transactions, Locking, Blocking,
and Deadlocking

In the last two chapters, I covered Data Modification Language and provided recipes for SELECT,
INSERT, UPDATE, and DELETE statements. Before moving on to Data Definition Language (creating/
altering/dropping tables, indexes, views, and more), in this chapter I’ll review recipes for handling
transactions, lock monitoring, blocking, and deadlocking. I’ll review the new SQL Server 2008 table
option that allows you to disable lock escalation or enable it for a partitioned table. I’ll demonstrate
the snapshot isolation level, as well as Dynamic Management Views that are used to monitor and
troubleshoot blocking and locking.

Transaction Control
Transactions are an integral part of a relational database system, and they help define a single unit
of work. This unit of work can include one or more Transact-SQL statements, which are either com-
mitted or rolled back as a group. This all-or-none functionality helps prevent partial updates or
inconsistent data states. A partial update occurs when one part of an interrelated process is rolled
back or cancelled without rolling back or reversing all of the other parts of the interrelated
processes.

A transaction is bound by the four properties of the ACID test. ACID stands for Atomicity,
Consistency, Isolation (or Independence), and Durability:

• Atomicity means that the transactions are an all-or-nothing entity—carrying out all steps or
none at all.

• Consistency ensures that the data is valid both before and after the transaction. Data
integrity must be maintained (foreign key references, for example), and internal data
structures need to be in a valid state.

• Isolation is a requirement that transactions not be dependent on other transactions that may
be taking place concurrently (either at the same time or overlapping). One transaction can’t
see another transaction’s data that is in an intermediate state, but instead sees the data as it
was either before the transaction began or after the transaction completes.

• Durability means that the transaction’s effects are fixed after the transaction has committed,
and any changes will be recoverable after system failures.

In this chapter, I’ll demonstrate and review the SQL Server mechanisms and functionality that
are used to ensure ACID test compliance, namely locking and transactions.

There are three possible transaction types in SQL Server: autocommit, explicit, or implicit.

115

C H A P T E R 3

9802CH03.qxd 4/22/08 3:44 PM Page 115

Autocommit is the default behavior for SQL Server, where each separate Transact-SQL state-
ment you execute is automatically committed after it is finished. For example, if you have two
INSERT statements, with the first one failing and the second one succeeding, the second change is
maintained because each INSERT is automatically contained in its own transaction. Although this
mode frees the developer from having to worry about explicit transactions, depending on this mode
for transactional activity can be a mistake. For example, if you have two transactions, one that cred-
its an account and another that debits it, and the first transaction failed, you’ll have a debit without
the credit. This may make the bank happy, but not necessarily the customer, who had his account
debited. Autocommit is even a bit dangerous for ad hoc administrative changes—for example, if
you accidentally delete all rows from a table, you don’t have the option of rolling back the transac-
tion after you’ve realized the mistake.

Implicit transactions occur when the SQL Server session automatically opens a new transac-
tion when one of the following statements is first executed: ALTER TABLE, FETCH, REVOKE, CREATE,
GRANT, SELECT, DELETE, INSERT, TRUNCATE TABLE, DROP, OPEN, and UPDATE.

A new transaction is automatically created (opened) once any of the aforementioned state-
ments are executed, and remains open until either a ROLLBACK or COMMIT statement is issued. The
initiating command is included in the open transaction. Implicit mode is activated by executing
the following command in your query session:

SET IMPLICIT_TRANSACTIONS ON

To turn this off (back to explicit mode), execute the following:

SET IMPLICIT_TRANSACTIONS OFF

Implicit mode can be very troublesome in a production environment, as application designers
and end users could forget to commit transactions, leaving them open to block other connections
(more on blocking later in the chapter).

Explicit transactions are those that you define yourself. This is by far the recommended mode
of operation when performing data modifications for your database application. This is because
you explicitly control which modifications belong to a single transaction, as well as the actions that
are performed if an error occurs. Modifications that must be grouped together are done using your
own instruction.

Explicit transactions use the Transact-SQL commands and keywords described in Table 3-1.

Table 3-1. Explicit Transaction Commands

Command Description

BEGIN TRANSACTION Sets the starting point of an explicit transaction.

ROLLBACK TRANSACTION Restores original data modified by a transaction and brings
data back to the state it was in at the start of the transaction.
Resources held by the transaction are freed.

COMMIT TRANSACTION Ends the transaction if no errors were encountered and makes
changes permanent. Resources held by the transaction are
freed.

BEGIN DISTRIBUTED TRANSACTION Allows you to define the beginning of a distributed transaction
to be managed by Microsoft Distributed Transaction
Coordinator (MS DTC). MS DTC must be running locally
and remotely.

SAVE TRANSACTION Issues a savepoint within a transaction, which allows one to
define a location to which a transaction can return if part of the
transaction is cancelled. A transaction must be rolled back or
committed immediately after rolling back to a savepoint.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING116

9802CH03.qxd 4/22/08 3:44 PM Page 116

Command Description

@@TRANCOUNT Returns the number of active transactions for the connection.
BEGIN TRANSACTION increments @@TRANCOUNT by 1, and ROLLBACK
TRANSACTION and COMMIT TRANSACTION decrements @@TRANCOUNT
by 1. ROLLBACK TRANSACTION to a savepoint has no impact.

Using Explicit Transactions
This recipe’s example demonstrates how to use explicit transactions to commit or roll back a data
modification depending on the return of an error in a batch of statements:

USE AdventureWorks
GO

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

-- Variable to hold the latest error integer value
DECLARE @Error int

BEGIN TRANSACTION

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

SET @Error = @@ERROR
IF (@Error<> 0) GOTO Error_Handler

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

COMMIT TRAN

Error_Handler:
IF @Error <> 0
BEGIN

ROLLBACK TRANSACTION
END

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

This returns

BeforeCount
16

(1 row(s) affected)

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 117

9802CH03.qxd 4/22/08 3:44 PM Page 117

(1 row(s) affected)

Msg 2601, Level 14, State 1, Line 14
Cannot insert duplicate key row in object 'HumanResources.Department'
with unique index 'AK_Department_Name'.
The statement has been terminated.

AfterCount
16

(1 row(s) affected)

How It Works
The first statement in this example validated the count of rows in the HumanResources.Department
table, returning 16 rows:

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

A local variable was created to hold the value of the @@ERROR function (which captures the latest
error state of a SQL statement):

-- Variable to hold the latest error integer value
DECLARE @Error int

Next, an explicit transaction was started:

BEGIN TRANSACTION

The next statement attempted an INSERT into the HumanResources.Department table. There was
a unique key on the department name, but because the department name didn’t already exist in the
table, the insert succeeded:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

Next was an error handler for the INSERT:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

This line of code evaluates the @@ERROR function. The @@ERROR system function returns the last
error number value for the last executed statement within the scope of the current connection. The
IF statement says that if an error occurs, the code should jump to the Error_Handler section of the
code (using GOTO).

■Note For a review of GOTO, see Chapter 9. For a review of @@Error, see Chapter 16. Chapter 16 also intro-
duces a new error handling command, TRY...CATCH.

GOTO is a keyword that helps you control the flow of statement execution. The identifier after
GOTO, Error_Handler, is a user-defined code section.

Next, another insert is attempted, this time for a department that already exists in the table.
Because the table has a unique constraint on the Name column, this insert will fail:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING118

9802CH03.qxd 4/22/08 3:44 PM Page 118

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

The failure will cause the @@ERROR following this INSERT to be set to a non-zero value. The IF
statement will then evaluate to TRUE, which will invoke the GOTO, thus skipping over the COMMIT TRAN
to the Error_Handler section:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error_Handler

COMMIT TRAN

Following the Error_Handler section is a ROLLBACK TRANSACTION:

Error_Handler:
IF @Error <> 0
BEGIN

ROLLBACK TRANSACTION
END

Another count is performed after the rollback, and again, there are only 16 rows in the data-
base. This is because both INSERTs were in the same transaction, and one of the INSERTs failed. Since
a transaction is all-or-nothing, no rows were inserted:

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

Some final thoughts and recommendations regarding how to handle transactions in your
Transact-SQL code or through your application:

• Keep transaction time as short as possible for the business process at hand. Transactions
that remain open can hold locks on resources for an extended period of time, which can
block other users from performing work or reading data.

• Minimize resources locked by the transaction. For example, update only tables that are
related to the transaction at hand. If the data modifications are logically dependent on each
other, they belong in the same transaction. If not, the unrelated updates belong in their own
transaction.

• Add only relevant Transact-SQL statements to a transaction. Don’t add extra lookups or
updates that are not germane to the specific transaction. Executing a SELECT statement
within a transaction can create locks on the referenced tables, which can in turn block other
users/sessions from performing work or reading data.

• Do not open new transactions that require user or external feedback within the transaction.
Open transactions can hold locks on resources, and user feedback can take an indefinite
amount of time to receive. Instead, gather user feedback before issuing an explicit trans-
action.

Displaying the Oldest Active Transaction with DBCC
OPENTRAN
If a transaction remains open in the database, whether intentionally or not, this transaction can
block other processes from performing activity against the modified data. Also, backups of the
transaction log can only truncate the inactive portion of a transaction log, so open transactions can
cause the log to grow (or reach the physical limit) until that transaction is committed or rolled back.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 119

9802CH03.qxd 4/22/08 3:44 PM Page 119

In order to identify the oldest active transactions in a database, you can use the DBCC OPENTRAN
command. This example demonstrates using DBCC OPENTRAN to identify the oldest active transaction
in the database:

BEGIN TRANSACTION

DELETE Production.ProductProductPhoto
WHERE ProductID = 317

DBCC OPENTRAN('AdventureWorks')

ROLLBACK TRAN

This returns

(1 row(s) affected)
Transaction information for database 'AdventureWorks'.

Oldest active transaction:
SPID (server process ID): 54
UID (user ID) : -1
Name : user_transaction
LSN : (41:1021:39)
Start time : Sep 15 2008 10:45:53:780AM
SID : 0x010500000000000515000000a065cf7e784b9b5fe77c8770375a2900

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
The recipe started off by opening up a new transaction, and then deleting a specific row from the
Production.ProductProductPhoto table. Next, the DBCC OPENTRAN was executed, with the database
name in parentheses:

DBCC OPENTRAN(AdventureWorks)

These results showed information regarding the oldest active transaction, including the server
process ID, user ID, and start time of the transaction. The key pieces of information from the results
are the SPID (server process ID) and Start time.

Once you have this information, you can validate the Transact-SQL being executed using
Dynamic Management Views, figure out how long the process has been running for, and if neces-
sary, shut down the process. DBCC OPENTRAN is useful for troubleshooting orphaned connections
(connections still open in the database but disconnected from the application or client), and the
identification of transactions missing a COMMIT or ROLLBACK.

This command also returns the oldest distributed and undistributed replicated transactions,
if any exist within the database. If there are no active transactions, no session-level data will be
returned.

Querying Transaction Information by Session
This recipe demonstrates how to find out more information about an active transaction. To demon-
strate, I’ll describe a common scenario: your application is encountering a significant number of
blocks with a high duration. You’ve been told that this application always opens up an explicit
transaction prior to each query.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING120

9802CH03.qxd 4/22/08 3:44 PM Page 120

To illustrate this scenario, I’ll execute the following SQL (representing the application code
causing the concurrency issue):

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

BEGIN TRAN

SELECT *
FROM HumanResources.Department

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Test', 'QA')

In a separate/new SQL Server Management Studio query window, I would like to identify all
open transactions by querying the sys.dm_tran_session_transactions Dynamic Management View
(DMV):

SELECT session_id, transaction_id, is_user_transaction, is_local
FROM sys.dm_tran_session_transactions
WHERE is_user_transaction = 1

This returns the following (your actual session IDs and transaction IDs will vary):

session_id transaction_id is_user_transaction is_local
54 145866 1 1

Now that I have a session ID to work with, I can dig into the details about the most recent query
executed by querying sys.dm_exec_connections and sys.dm_exec_sql_text:

SELECT s.text
FROM sys.dm_exec_connections c
CROSS APPLY sys.dm_exec_sql_text(c.most_recent_sql_handle) s
WHERE session_id = 54

This returns the last statement executed. (I could have also used the sys.dm_exec_requests
DMV for an ongoing and active session; however, nothing was currently executing for my example
transaction, so no data would have been returned.)

text
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

BEGIN TRAN

SELECT *
FROM HumanResources.Department

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Test', 'QA')

Since I also have the transaction ID from the first query against sys.dm_tran_session_
transactions, I can use the sys.dm_tran_active_transactions to learn more about the transaction
itself:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 121

9802CH03.qxd 4/22/08 3:44 PM Page 121

SELECT transaction_begin_time,
CASE transaction_type

WHEN 1 THEN 'Read/write transaction'
WHEN 2 THEN 'Read-only transaction'
WHEN 3 THEN 'System transaction'
WHEN 4 THEN 'Distributed transaction'

END tran_type,
CASE transaction_state

WHEN 0 THEN 'not been completely initialized yet'
WHEN 1 THEN 'initialized but has not started'
WHEN 2 THEN 'active'
WHEN 3 THEN 'ended (read-only transaction)'
WHEN 4 THEN 'commit initiated for distributed transaction'
WHEN 5 THEN 'transaction prepared and waiting resolution'
WHEN 6 THEN 'committed'
WHEN 7 THEN 'being rolled back'
WHEN 8 THEN 'been rolled back'

END tran_state
FROM sys.dm_tran_active_transactions
WHERE transaction_id = 145866

This returns information about the transaction begin time, the type of transaction, and the
state of the transaction:

transaction_begin_time tran_type tran_state
2008-08-26 10:03:26.520 Read/write transaction active

How It Works
This recipe demonstrated how to use various DMVs to troubleshoot and investigate a long-running,
active transaction. The columns you decide to use depend on the issue you are trying to trouble-
shoot. In this scenario, I used the following troubleshooting path:

• I queried sys.dm_tran_session_transactions in order to display a mapping between the ses-
sion ID and the transaction ID (identifier of the individual transaction).

• I queried sys.dm_exec_connections and sys.dm_exec_sql_text in order to find the latest
command executed by the session (referencing the most_recent_sql_handle column).

• Lastly, I queried sys.dm_tran_active_transactions in order to determine how long the trans-
action was opened, the type of transaction, and the state of the transaction.

Using this troubleshooting technique allows you to go back to the application and pinpoint
query calls for abandoned transactions (opened but never committed), and transactions that are
inappropriate because they run too long or are unnecessary from the perspective of the application.

Locking
Locking is a normal and necessary part of a relational database system, ensuring the integrity of the
data by not allowing concurrent updates to the same data or viewing of data that is in the middle
of being updated. Locking can also prevent users from reading data while it is being updated. SQL
Server manages locking dynamically; however, it is still important to understand how Transact-SQL
queries impact locking in SQL Server. Before proceeding on to the recipe, I’ll briefly describe SQL
Server locking fundamentals.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING122

9802CH03.qxd 4/22/08 3:44 PM Page 122

Locks help prevent concurrency problems from occurring. Concurrency problems (discussed
in detail in the next section, “Transaction, Locking, and Concurrency”) can happen when one user
attempts to read data that another is modifying, modify data that another is reading, or modify data
that another transaction is trying to modify.

Locks are placed against SQL Server resources. How a resource is locked is called its lock mode.
Table 3-2 reviews the main lock modes that SQL Server has at its disposal.

Table 3-2. SQL Server Lock Modes

Name Description

Shared lock Shared locks are issued during read-only, non-modifying queries. They
allow data to be read, but not updated by other processes while being
held.

Intent lock Intent locks effectively create a lock queue, designating the order of
connections and their associated right to update or read resources. SQL
Server uses intent locks to show future intention of acquiring locks on a
specific resource.

Update lock Update locks are acquired prior to modifying the data. When the row is
modified, this lock is escalated to an exclusive lock. If not modified, it is
downgraded to a shared lock. This lock type prevents deadlocks if two
connections hold a shared lock on a resource and attempt to convert to
an exclusive lock, but cannot because they are each waiting for the other
transaction to release the shared lock.

Exclusive lock This type of lock issues a lock on the resource that bars any kind of
access (reads or writes). It is issued during INSERT, UPDATE, or DELETE
statements.

Schema modification This type of lock is issued when a DDL statement is executed.

Schema stability This type of lock is issued when a query is being compiled. It keeps DDL
operations from being performed on the table.

Bulk update This type of lock is issued during a bulk-copy operation. Performance is
increased for the bulk copy operation, but table concurrency is reduced.

Key-range Key-range locks protect a range of rows (based on the index key)—for
example, protecting rows in an UPDATE statement with a range of dates
from 1/1/2005 to 12/31/2005. Protecting the range of data prevents row
inserts into the date range that would be missed by the current data
modification.

You can lock all manner of objects in SQL Server, from a single row in a database, to a table, to
the database itself. Lockable resources vary in granularity, from small (at the row level) to large (the
entire database). Small-grain locks allow for greater database concurrency, because users can exe-
cute queries against specified unlocked rows. Each lock placed by SQL Server requires memory,
however, so thousands of individual row locks can also affect SQL Server performance. Larger-
grained locks reduce concurrency, but take up fewer resources. Table 3-3 details the resources SQL
Server can apply locks to.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 123

9802CH03.qxd 4/22/08 3:44 PM Page 123

Table 3-3. SQL Server Lock Resources

Resource Name Description

Allocation unit A set of related pages grouped by data type, for example, data rows, index rows,
and large object data rows.

Application An application-specified resource.

DB An entire database lock.

Extent Allocation unit of eight 8KB data or index pages.

File The database file.

HOBT A heap (table without a clustered index) or B-tree.

Metadata System metadata.

Key Index row lock, helping prevent phantom reads. Also called a key-range lock,
this lock type uses both a range and a row component. The range represents the
range of index keys between two consecutive index keys. The row component
represents the lock type on the index entry.

Object A database object (for example a view, stored procedure, function).

Page An 8KB data or index page.

RID Row identifier, designating a single table row.

Table A resource that locks entire table, data, and indexes.

Not all lock types are compatible with each other. For example, no other locks can be placed
on a resource that has already been locked by an exclusive lock. The other transaction must wait or
time out until the exclusive lock is released. A resource locked by an update lock can only have a
shared lock placed on it by another transaction. A resource locked by a shared lock can have other
shared or update locks placed on it.

Locks are allocated and escalated automatically by SQL Server. Escalation means that finer-
grain locks (row or page locks) are converted into coarse-grain table locks. SQL Server will attempt
to initialize escalation when a single Transact-SQL statement has more than 5,000 locks on a single
table or index, or if the number of locks on the SQL Server instance exceeds the available memory
threshold. Locks take up system memory, so converting many locks into one larger lock can free
up memory resources. The drawback to freeing up the memory resources, however, is reduced
concurrency.

■Note SQL Server 2008 has a new table option that allows you to disable lock escalation or enable lock escala-
tion at the partition (instead of table) scope. I’ll demonstrate this in the “Controlling a Table’s Lock Escalation
Behavior” recipe.

Viewing Lock Activity
This recipe shows you how to monitor locking activity in the database using the SQL Server
sys.dm_tran_locks Dynamic Management View. The example query being monitored by this DMV
will use a table locking hint.

In the first part of this recipe, a new query editor window is opened, and the following com-
mand is executed:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING124

9802CH03.qxd 4/22/08 3:44 PM Page 124

USE AdventureWorks

BEGIN TRAN
SELECT ProductID, ModifiedDate
FROM Production.ProductDocument
WITH (TABLOCKX)

In a second query editor window, the following query is executed:

SELECT request_session_id sessionid,
resource_type type,
resource_database_id dbid,
OBJECT_NAME(resource_associated_entity_id, resource_database_id) objectname,
request_mode rmode,
request_status rstatus

FROM sys.dm_tran_locks
WHERE resource_type IN ('DATABASE', 'OBJECT')

■Tip This recipe narrows down the result set to two SQL Server resource types of DATABASE and OBJECT for
clarity. Typically, you’ll monitor several types of resources. The resource type determines the meaning of the
resource_associated_entity_id column, as I’ll explain in the “How It Works” section.

The query returned information about the locking session identifier (server process ID, or
SPID), the resource being locked, the database, object, resource mode, and lock status:

sessionid type dbid objectname rmode rstatus
53 DATABASE 8 NULL S GRANT
52 DATABASE 8 NULL S GRANT
52 OBJECT 8 ProductDocument X GRANT

How It Works
The example began by starting a new transaction and executing a query against the Production.
ProductDocument table using a TABLOCKX locking hint (this hint places an exclusive lock on the table).
In order to monitor what locks are open for the current SQL Server instance, the sys.dm_tran_locks
Dynamic Management View was queried. It returned a list of active locks in the AdventureWorks
database. The exclusive lock on the ProductDocument table could be seen in the last row of the
results.

The first three columns define the session lock, resource type, and database ID:

SELECT request_session_id sessionid,
resource_type type,
resource_database_id dbid,

The next column uses the OBJECT_NAME function. Notice that it uses two parameters (object ID
and database ID) in order to specify which name to access (this second database ID parameter was
introduced in SP2 of SQL Server 2005 to allow you to specify which database you are using in order
to translate the object name):

OBJECT_NAME(resource_associated_entity_id, resource_database_id) objectname,

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 125

9802CH03.qxd 4/22/08 3:44 PM Page 125

I also query the locking request mode and status:

request_mode rmode,
request_status rstatus

Lastly, the FROM clause references the DMV, and the WHERE clause designates two resource types:

FROM sys.dm_tran_locks
WHERE resource_type IN ('DATABASE', 'OBJECT')

The resource_type column designates what the locked resource represents (for example,
DATABASE, OBJECT, FILE, PAGE, KEY, RID, EXTENT, METADATA, APPLICATION, ALLOCATION_UNIT, or HOBT type).
The resource_associated_entity_id depends on the resource type, determining whether the ID is
an object ID, allocation unit ID, or Hobt ID:

• If the resource_associated_entity_id column contains an object ID (for a resource type of
OBJECT), you can translate the name using the sys.objects catalog view.

• If the resource_associated_entity_id column contains an allocation unit ID (for a resource
type of ALLOCATION_UNIT), you can reference sys.allocation_units and reference the
container_id. Container_id can then be joined to sys.partitions where you can then
determine the object ID.

• If the resource_associated_entity_id column contains a Hobt ID (for a resource type of KEY,
PAGE, ROW, or HOBT), you can directly reference sys.partitions and look up the associated
object ID.

• For resource types such as DATABASE, EXTENT, APPLICATION, or METADATA, the resource_
associated_entity_id column will be 0.

Use sys.dm_tran_locks to troubleshoot unexpected concurrency issues, such as a query ses-
sion that may be holding locks longer than desired, or issuing a lock resource granularity or lock
mode that you hadn’t expected (perhaps a table lock instead of a finer-grained row or page lock).
Understanding what is happening at the locking level can help you troubleshoot query concurrency
more effectively.

Controlling a Table’s Lock Escalation Behavior
Each lock that is created in SQL Server consumes memory resources. When the number of locks
increases, memory decreases. If the percentage of memory being used for locks exceeds a certain
threshold, SQL Server can convert fine-grained locks (page or row) into coarse-grained locks (table
locks). This process is called lock escalation. Lock escalation reduces the overall number of locks
being held on the SQL Server instance, reducing lock memory usage.

While finer-grained locks do consume more memory, they also can improve concurrency, as
multiple queries can access unlocked rows. Introducing table locks may reduce memory consump-
tion, but they also introduce blocking, because a single query holds an entire table. Depending on
the application using the database, this behavior may not be desired, and you may wish to exert
more control over when SQL Server performs lock escalations.

SQL Server 2008 introduces the ability to control lock escalation at the table level using the
ALTER TABLE command. You are now able to choose from the following three settings:

• TABLE, which is the default behavior used in SQL Server 2005. When configured, lock escala-
tion is enabled at the table level for both partitioned and non-partitioned tables.

• AUTO enables lock escalation at the partition level (heap or B-tree) if the table is partitioned.
If it is not partitioned, escalation will occur at the table level.

• DISABLE removes lock escalation at the table level. Note that you still may see table locks due
to TABLOCK hints or for queries against heaps using a serializable isolation level.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING126

9802CH03.qxd 4/22/08 3:44 PM Page 126

This recipe demonstrates modifying a table across the two new SQL Server 2008 settings:

ALTER TABLE Person.Address
SET (LOCK_ESCALATION = AUTO)

SELECT lock_escalation,lock_escalation_desc
FROM sys.tables
WHERE name='Address'

This returns

lock_escalation lock_escalation_desc
2 AUTO

Next, I’ll disable escalation:

ALTER TABLE Person.Address
SET (LOCK_ESCALATION = DISABLE)

SELECT lock_escalation,lock_escalation_desc
FROM sys.tables
WHERE name='Address'

This returns

lock_escalation lock_escalation_desc
1 DISABLE

How It Works
This recipe demonstrated enabling two new SQL Server 2008 table options that control locking
escalation. The command began with a standard ALTER TABLE designating the table name to
modify:

ALTER TABLE Person.Address

The second line designated the SET command along with the LOCK_ESCALATION configuration to
be used:

SET (LOCK_ESCALATION = AUTO)

After changing the configuration, I was able to validate the option by querying the lock_
escalation_desc column from the sys.tables catalog view.

Once the AUTO option is enabled, if the table is partitioned, lock escalation will occur at the par-
titioned level, which improves concurrency if there are multiple sessions acting against separate
partitions.

■Note For further information on partitioning, see Chapter 4.

If the table is not partitioned, table-level escalation will occur as usual. If you designate the
DISABLE option, table-level lock escalation will not occur. This can help improve concurrency, but
could result in increased memory consumption if your requests are accessing a large number of
rows or pages.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 127

9802CH03.qxd 4/22/08 3:44 PM Page 127

Transaction, Locking, and Concurrency
One of the listed ACID properties was Isolation. Transaction isolation refers to the extent to which
changes made by one transaction can be seen by other transactions occurring in the database (i.e.,
under conditions of concurrent database access). At the highest possible degree of isolation, each
transaction occurs as if it were the only transaction taking place at that time. No changes made by
other transactions are visible to it. At the lowest level, anything done in one transaction, whether
committed or not, can been seen by another transaction.

The ANSI/ISO SQL standard defines four types of interactions between concurrent transac-
tions. These are

• Dirty reads: These occur while a transaction is updating a row, and a second transaction
reads the row before the first transaction is committed. If the original update rolls back, the
uncommitted changes will be read by the second transaction, even though they are never
committed to the database. This is the definition of a dirty read.

• Non-repeatable reads: These occur when one transaction is updating data, and a second is
reading the same data while the update is in progress. The data retrieved before the update
will not match data retrieved after the update.

• Phantom reads: These occur when a transaction issues two reads, and between the two reads
the underlying data is updated with data being inserted or deleted. This causes the results of
each query to differ. Rows returned in one query that do not appear in the other are called
phantom rows.

• Lost updates: This occurs when two transactions update a row’s value, and the transaction to
last update the row “wins.” Thus the first update is lost.

SQL Server uses locking mechanisms to control the competing activity of simultaneous trans-
actions. In order to avoid the concurrency issues such as dirty reads, non-repeatable reads, and so
on, it implements locking to control access to database resources and to impose a certain level of
transaction isolation. Table 3-4 describes the available isolation levels in SQL Server.

Table 3-4. SQL Server Isolation Levels

Isolation Level Description

READ COMMITTED (this is the default While READ COMMITTED is used, uncommitted data
behavior of SQL Server) modifications can’t be read. Shared locks are used during a

query, and data cannot be modified by other processes
while the query is retrieving the data. Data inserts and
modifications to the same table are allowed by other
transactions, so long as the rows involved are not locked
by the first transaction.

READ UNCOMMITTED This is the least restrictive isolation level, issuing no locks
on the data selected by the transaction. This provides the
highest concurrency but the lowest amount of data integrity,
as the data that you read can be changed while you read it
(as mentioned previously, these reads are known as dirty
reads), or new data can be added or removed that would
change your original query results. This option allows you to
read data without blocking others but with the danger of
reading data “in flux” that could be modified during the read
itself (including reading data changes from a transaction
that ends up getting rolled back). For relatively static and
unchanging data, this isolation level can potentially improve
performance by instructing SQL Server not to issue
unnecessary locking on the accessed resources.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING128

9802CH03.qxd 4/22/08 3:44 PM Page 128

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Isolation Level Description

REPEATABLE READ When enabled, dirty and non-repeatable reads are not
allowed. This is achieved by placing shared locks on all read
resources. New rows that may fall into the range of data
returned by your query can, however, still be inserted by
other transactions.

SERIALIZABLE When enabled, this is the most restrictive setting. Range
locks are placed on the data based on the search criteria
used to produce the result set. This ensures that actions such
as insertion of new rows, modification of values, or deletion
of existing rows that would have been returned within the
original query and search criteria are not allowed.

SNAPSHOT This isolation level allows you to read a transactionally
consistent version of the data as it existed at the beginning of
a transaction. Data reads do not block data modifications—
however, the SNAPSHOT session will not detect changes being
made.

Transactions and locking go hand in hand. Depending on your application design, your trans-
actions can significantly impact database concurrency and performance. Concurrency refers to
how many people can query and modify the database and database objects at the same time. For
example, the READ UNCOMMITTED isolation level allows the greatest amount of concurrency since it
issues no locks—with the drawback that you can encounter a host of data isolation anomalies (dirty
reads, for example). The SERIALIZABLE mode, however, offers very little concurrency with other
processes when querying a larger range of data.

Configuring a Session’s Transaction Locking Behavior
This recipe demonstrates how to use the SET TRANSACTION ISOLATION LEVEL command to set the
default transaction locking behavior for Transact-SQL statements used in a connection. You can
have only one isolation level set at a time, and the isolation level does not change unless explicitly
set. SET TRANSACTION ISOLATION LEVEL allows you to change the locking behavior for a specific
database connection. The syntax for this command is as follows:

SET TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ
| SNAPSHOT
| SERIALIZABLE
}

In this first example, SERIALIZABLE isolation is used to query the contents of a table. In the first
query editor window, the following code is executed:

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

BEGIN TRAN

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 129

9802CH03.qxd 4/22/08 3:44 PM Page 129

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

This returns the following results (while still leaving a transaction open for the query session):

AddressTypeID Name
1 Billing
2 Home
3 Main Office
4 Primary
5 Shipping
6 Archive

In a second query editor, the following query is executed to view the kinds of locks generated by
the SERIALIZABLE isolation level:

SELECT resource_associated_entity_id, resource_type,
request_mode, request_session_id

FROM sys.dm_tran_locks

This shows several key locks being held for request_session_id 52 (which is the other session’s
ID):

resource_associated_entity_id resource_type request_mode request_session_id
0 DATABASE S 52
0 DATABASE S 53
72057594043039744 PAGE IS 52
101575400 OBJECT IS 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52

Back in the first query editor window, execute the following code to end the transaction and
remove the locks:

COMMIT TRAN

In contrast, the same query is executed again in the first query editor window, this time using
the READ UNCOMMITTED isolation level to read the range of rows:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

In a second query editor, the following query is executed to view the kinds of locks generated
by the READ UNCOMMITTED isolation level:

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING130

9802CH03.qxd 4/22/08 3:44 PM Page 130

SELECT resource_associated_entity_id, resource_type,
request_mode, request_session_id
FROM sys.dm_tran_locks

This returns (abridged results)

resource_associated_entity_id resource_type request_mode request_session_id
0 DATABASE S 52
0 DATABASE S 53

Unlike SERIALIZABLE, the READ UNCOMMITTED isolation level creates no additional locks on the
keys of the Person.AddressType table.

Returning back to the first query editor with the READ UNCOMMITTED query, the transaction is
ended for cleanup purposes:

COMMIT TRAN

I’ll demonstrate the SNAPSHOT isolation level next. In the first query editor window, the following
code is executed:

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

BEGIN TRAN

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

This returns

CurrencyRateID EndOfDayRate
8317 0.6862

In a second query editor window, the following query is executed:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Now back to the first query editor, the following query is reexecuted:

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 131

9802CH03.qxd 4/22/08 3:44 PM Page 131

This returns

CurrencyRateID EndOfDayRate
8317 0.6862

The same results are returned as before, even though the row was updated by the second query
editor query. The SELECT was not blocked from reading the row, nor was the UPDATE blocked from
making the modification.

Now I am going to commit the transaction and reissue the query:

COMMIT TRAN

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

This returns the updated value:

CurrencyRateID EndOfDayRate
8317 1.00

How It Works
In this recipe, I demonstrated how to change the locking isolation level of a query session by using
the SET TRANSACTION ISOLATION LEVEL. Executing this command isn’t necessary if you wish to use
the default SQL Server isolation level, which is READ COMMITTED. Otherwise, once you set an isolation
level, it remains in effect for the connection until explicitly changed again.

The first example in the recipe demonstrated using the SERIALIZABLE isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

An explicit transaction was then started, and a query was executed against the Person.
AddressType table for all rows that fell between a specific range of AddressTypeID values:

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

In a separate connection, a query was then executed against the sys.dm_tran_locks Dynamic
Management View, which returned information about active locks being held for the SQL Server
instance. In this case, we saw a number of key range locks, which served the purpose of prohibiting
other connections from inserting, updating, or deleting data that would cause different results in
the query’s search condition (WHERE AddressTypeID BETWEEN 1 AND 6).

In the second example, the isolation level was set to READ UNCOMMITTED:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING132

9802CH03.qxd 4/22/08 3:44 PM Page 132

Querying sys.dm_tran_locks again, we saw that this time no row, key, or page locks were held
at all on the table, allowing the potential for other transactions to modify the queried rows while
the original transaction remained open. With this isolation level, the query performs dirty reads,
meaning that the query could read data with in-progress modifications, whether or not the actual
modification is committed or rolled back later on.

In the third example from the recipe, the database setting ALLOW_SNAPSHOT_ISOLATION was
enabled for the database (see Chapter 22 for more information on ALTER DATABASE):

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

This option had to be ON in order to start a snapshot transaction. In the next line of code, the
database context was changed, and SET TRANSACTION ISOLATION LEVEL was set to SNAPSHOT:

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

A transaction was then opened and a query against Sales.CurrencyRate was performed:

BEGIN TRAN

SELECT CurrencyRateID,
EndOfDayRate

FROM Sales.CurrencyRate
WHERE CurrencyRateID = 8317

In the second query editor session, the same Sales.CurrencyRate row being selected in the first
session query was modified:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Back at the first query editor session, although the EndOfDayRate was changed to 1.0 in the sec-
ond session, executing the query again in the SNAPSHOT isolation level shows that the value of that
column was still 0.6862. This new isolation level provided a consistent view of the data as of the
beginning of the transaction. After committing the transaction, reissuing the query against Sales.
CurrencyRate revealed the latest value.

What if you decide to UPDATE a row in the snapshot session that was updated in a separate
session? Had the snapshot session attempted an UPDATE against CurrencyRateID 8317 instead of a
SELECT, an error would have been raised, warning you that an update was made against the original
row while in snapshot isolation mode:

Msg 3960, Level 16, State 1, Line 2
Cannot use snapshot isolation to access table 'Sales.CurrencyRate'
directly or indirectly in database 'AdventureWorks'.
Snapshot transaction aborted due to update conflict.
Retry transaction.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 133

9802CH03.qxd 4/22/08 3:44 PM Page 133

Blocking
Blocking occurs when one transaction in a database session is locking resources that one or more
other session transactions wants to read or modify. Short-term blocking is usually OK and expected
for busy applications. However, poorly designed applications can cause long-term blocking, unnec-
essarily keeping locks on resources and blocking other sessions from reading or updating them.

In SQL Server, a blocked process remains blocked indefinitely or until it times out (based on
SET LOCK_TIMEOUT), the server goes down, the process is killed, the connection finishes its updates,
or something happens to the original transaction to cause it to release its locks on the resource.

Some reasons why long-term blocking can happen:

• Excessive row locks on a table without an index can cause SQL Server to acquire a table lock,
blocking out other transactions.

• Applications open a transaction and then request user feedback or interaction while the
transaction stays open. This is usually when an end user is allowed to enter data in a GUI
while a transaction remains open. While open, any resources referenced by the transaction
may be held with locks.

• Transactions BEGIN and then look up data that could have been referenced prior to the trans-
action starting.

• Queries use locking hints inappropriately, for example, if the application uses only a few
rows, but uses a table lock hint instead (for an overview of locking hints, see the recipes in
the section “Using Table Hints” in Chapter 15, which include a list of the available locking
hints).

• The application uses long-running transactions that update many rows or many tables
within one transaction (chunking large updates into smaller update transactions can help
improve concurrency).

Identifying and Resolving Blocking Issues
In this recipe, I’ll demonstrate how to identify a blocking process, view the Transact-SQL being exe-
cuted by the process, and then forcibly shut down the active session’s connection (thus rolling back
any open work not yet committed by the blocking session). First, however, let’s go to a quick back-
ground on the commands used in this example.

This recipe demonstrates how to identify blocking processes with the SQL Server Dynamic
Management View sys.dm_os_waiting_tasks. This view is intended to be used instead of the sp_who
system stored procedure, which was used in previous versions of SQL Server.

After identifying the blocking process, this recipe will then use the sys.dm_exec_sql_text
dynamic management function and sys.dm_exec_connections DMV used earlier in the chapter to
identify the SQL text of the query that is being executed—and then as a last resort, forcefully end the
process.

To forcefully shut down a wayward active query session, the KILL command is used. KILL
should only be used if other methods are not available, including waiting for the process to stop on
its own or shutting down or canceling the operation via the calling application. The syntax for KILL
is as follows:

KILL {spid | UOW} [WITH STATUSONLY]

The arguments for this command are described in Table 3-5.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING134

9802CH03.qxd 4/22/08 3:44 PM Page 134

Table 3-5. KILL Command Arguments

Argument Description

spid This indicates the session ID associated with the active database connection to
be shut down.

UOW This is the unit-of-work identifier for a distributed transaction, which is the
unique identifier of a specific distributed transaction process.

WITH STATUSONLY Some KILL statements take longer to roll back a transaction than others
(depending on the scope of updates being performed by the session). In order
to check the status of a rollback, you can use WITH STATUSONLY to get an
estimate of rollback time.

Beginning the example, the following query is executed in the first query editor session in order
to set up a blocking process:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1 AND
LocationID = 1

Next, in a second query editor window, the following query is executed:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 406
WHERE ProductID = 1 AND
LocationID = 1

Now in a third query editor window, I’ll execute the following query:

SELECT blocking_session_id, wait_duration_ms, session_id
FROM sys.dm_os_waiting_tasks
WHERE blocking_session_id IS NOT NULL

This returns

blocking_session_id wait_duration_ms session_id
54 27371 55

This query identified that session 54 is blocking session 55.
To see what session 54 is doing, I execute the following query in the same window as the previ-

ous query:

SELECT t.text
FROM sys.dm_exec_connections c
CROSS APPLY sys.dm_exec_sql_text (c.most_recent_sql_handle) t
WHERE c.session_id = 54

This returns

text
BEGIN TRAN

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 135

9802CH03.qxd 4/22/08 3:44 PM Page 135

UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1 AND
LocationID = 1

Next, to forcibly shut down the session, execute this query:

KILL 54

This returns

Command(s) completed successfully.

The second session’s UPDATE is then allowed to proceed once the other session’s connection is
removed.

How It Works
The recipe demonstrated blocking by executing an UPDATE against the Production.ProductInventory
table with a transaction that was opened but not committed. In a different session, a similar query
was executed against the same table and the same row. Because the other connection’s transaction
never committed, the second connection must wait in line indefinitely before it has a chance to
update the record.

In a third Query Editor window, the sys.dm_os_waiting_tasks Dynamic Management View was
queried, returning information on the session being blocked by another session.

When troubleshooting blocks, you’ll want to see exactly what the blocking session_id is doing.
To view this, the recipe used a query against sys.dm_exec_connections and sys.dm_exec_sql_text.
The sys.dm_exec_connections DMV was used to retrieve the most_recent_sql_handle column for
session_id 53. This is a pointer to the SQL text in memory, and was used as an input parameter for
the sys.dm_exec_sql_text dynamic management function. The text column is returned from
sys.dm_exec_sql_text displaying the SQL text of the blocking process.

■Note Often blocks chain, and you must work your way through each blocked process up to the original block-
ing process using the blocking_session_id and session_id columns.

KILL was then used to forcibly end the blocking process, but in a production scenario, you’ll
want to see whether the process is valid, and if so, whether it should be allowed to complete or if it
can be shut down or cancelled using the application (by the application end user, for example).
Prior to stopping the process, be sure that you are not stopping a long-running transaction that is
critical to the business, like a payroll update, for example. If there is no way to stop the transaction
(for example, the application that spawned it cannot commit the transaction), you can use the KILL
command (followed by the SPID to terminate).

Configuring How Long a Statement Will Wait for a Lock to
Be Released
When a transaction or statement is being blocked, this means it is waiting for a lock on a resource to
be released. This recipe demonstrates the SET LOCK_TIMEOUT option, which specifies how long the
blocked statement should wait for a lock to be released before returning an error.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING136

9802CH03.qxd 4/22/08 3:44 PM Page 136

The syntax is as follows:

SET LOCK_TIMEOUT timeout_period

The timeout period is the number of milliseconds before a locking error will be returned. In
order to set up this recipe’s demonstration, I will execute the following batch:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400
WHERE ProductID = 1 AND
LocationID = 1

In a second query window, this example demonstrates setting up a lock timeout period of one
second (1000 milliseconds):

SET LOCK_TIMEOUT 1000

UPDATE Production.ProductInventory
SET Quantity = 406
WHERE ProductID = 1 AND
LocationID = 1

After one second (1000 milliseconds), I receive the following error message:

Msg 1222, Level 16, State 51, Line 3
Lock request time out period exceeded.
The statement has been terminated.

How It Works
In this recipe, the lock timeout is set to 1000 milliseconds (1 second). This setting doesn’t impact
how long a resource can be held by a process, only how long it has to wait for another process to
release access to the resource.

Deadlocking
Deadlocking occurs when one user session (let’s call it Session 1) has locks on a resource that
another user session (let’s call it Session 2) wants to modify, and Session 2 has locks on resources
that Session 1 needs to modify. Neither Session 1 nor Session 2 can continue until the other releases
the locks, so SQL Server chooses one of the sessions in the deadlock as the deadlock victim.

■Note A deadlock victim has its session killed and transactions rolled back.

Some reasons why deadlocks can happen:

• The application accesses tables in different order. For example, Session 1 updates Customers
and then Orders, whereas Session 2 updates Orders and then Customers. This increases the
chance of two processes deadlocking, rather than them accessing and updating a table in a
serialized (in order) fashion.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 137

9802CH03.qxd 4/22/08 3:44 PM Page 137

• The application uses long-running transactions, updating many rows or many tables within
one transaction. This increases the surface area of rows that can cause deadlock conflicts.

• In some situations, SQL Server issues several row locks, which it later decides must be esca-
lated to a table lock. If these rows exist on the same data pages, and two sessions are both
trying to escalate the lock granularity on the same page, a deadlock can occur.

Identifying Deadlocks with a Trace Flag
If you are having deadlock trouble in your SQL Server instance, this recipe demonstrates how to
make sure deadlocks are logged to the SQL Server Management Studio SQL log appropriately using
the DBCC TRACEON, DBCC TRACEOFF, and DBCC TRACESTATUS commands. These functions enable, dis-
able, and check the status of trace flags.

■Tip There are other methods in SQL Server for troubleshooting deadlocks, such as using SQL Profiler, but since
this book is Transact-SQL focused, I don’t cover them here.

Trace flags are used within SQL Server to enable or disable specific behaviors for the SQL
Server instance. By default, SQL Server doesn’t return significant logging when a deadlock event
occurs. Using trace flag 1222, information about locked resources and types participating in a
deadlock are returned in an XML format, helping you troubleshoot the event.

The DBCC TRACEON command enables trace flags. The syntax is as follows:

DBCC TRACEON (trace# [,...n][,-1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-6.

Table 3-6. DBCC TRACEON Command Arguments

Argument Description

trace# This specifies one or more trace flag numbers to enable.

-1 When -1 is designated, the specified trace flags are enabled globally.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

The DBCC TRACESTATUS command is used to check on the status (enabled or disabled) for a spe-
cific flag or flags. The syntax is as follows:

DBCC TRACESTATUS ([[trace# [,...n]] [,] [-1]]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-7.

Table 3-7. DBCC TRACESTATUS Command Arguments

Argument Description

trace# This specifies one or more trace flag numbers to check the status of.

-1 This shows globally enabled flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING138

9802CH03.qxd 4/22/08 3:44 PM Page 138

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The DBCC TRACEOFF command disables trace flags. The syntax is as follows:

DBCC TRACEOFF (trace# [,...n] [, -1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-8.

Table 3-8. DBCC TRACEOFF Command Arguments

Argument Description

trace# This indicates one or more trace flag numbers to disable.

-1 This disables the globally set flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

In order to demonstrate this recipe, a deadlock will be simulated. In a new query editor win-
dow, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 1494

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID = 1492

COMMIT TRAN
END

In a second query editor window, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID = 1492

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 1494

COMMIT TRAN
END

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 139

9802CH03.qxd 4/22/08 3:44 PM Page 139

After a few seconds, check each query editor window until the following error message appears
on one of the query editors:

Msg 1205, Level 13, State 51, Line 9
Transaction (Process ID 53) was deadlocked on lock resources
with another process and has been chosen as the deadlock victim.
Rerun the transaction.

Looking at the SQL log in SQL Server Management Studio, the deadlock event was not logged.
I’ll now open a third query editor window and execute the following command:

DBCC TRACEON (1222, -1)
GO
DBCC TRACESTATUS

DBCC TRACESTATUS shows the active traces running for both the local session and globally:

TraceFlag Status Global Session
1222 1 1 0

To simulate another deadlock, I’ll restart the “winning” connection query (the one that wasn’t
killed in the deadlock), and then the deadlock losing session, causing another deadlock after a few
seconds.

After the deadlock has occurred, I stop the other executing query. Now the SQL log in SQL
Server Management Studio contains a detailed error message from the deadlock event, including
the database and object involved, the lock mode, and the Transact-SQL statements involved in the
deadlock.

For example, when deadlocks occur, you’ll want to make sure to find out the queries that are
involved in the deadlock, so you can troubleshoot them accordingly. The following excerpt from the
log shows a deadlocked query:

09/15/2008 20:20:00,spid15s,Unknown,
UPDATE [Purchasing].[Vendor] set [CreditRating] = @1
WHERE [BusinessEntityID]=@2

From this we can tell which query was involved in the deadlocking, which is often enough to
get started with a solution. Other important information you can retrieve by using trace 1222
includes the login name of the deadlocked process, the client application used to submit the query,
and the isolation level used for its connection (letting you know whether that connection is using an
isolation level that doesn’t allow for much concurrency):

... clientapp=Microsoft SQL Server Management Studio - Query hostname=CAESAR
hostpid=2388 loginname=CAESAR\Administrator isolationlevel=serializable (4)
xactid=1147351 currentdb=8 lockTimeout=4294967295
clientoption1=673187936 clientoption2=390200

After examining the SQL log, disable the trace flag in the query editor:

DBCC TRACEOFF (1222, -1)
GO
DBCC TRACESTATUS

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING140

9802CH03.qxd 4/22/08 3:44 PM Page 140

How It Works
In this recipe, I simulated a deadlock using two separate queries that updated the same rows
repeatedly: updating two rows in the opposite order. When a deadlock occurred, the error message
was logged to the query editor window, but nothing was written to the SQL log.

To enable deadlock logging to the SQL log, the recipe enabled the trace flag 1222. Trace 1222
returns detailed deadlock information to the SQL log. The -1 flag indicated that trace flag 1222
should be enabled globally for all SQL Server connections. To turn on a trace flag, DBCC TRACEON was
used, with the 1222 flag in parentheses:

DBCC TRACEON (1222, -1)

To verify that the flag was enabled, DBCC TRACESTATUS was executed:

DBCC TRACESTATUS

After encountering another deadlock, the deadlock information was logged in the SQL log.
The flag was then disabled using DBCC TRACEOFF:

DBCC TRACEOFF (1222, -1)

Setting Deadlock Priority
You can increase a query session’s chance of being chosen as a deadlock victim by using the SET
DEADLOCK_PRIORITY command. The syntax for this command is as follows:

SET DEADLOCK_PRIORITY { LOW | NORMAL | HIGH | <numeric-priority> }

The arguments for this command are described in Table 3-9.

Table 3-9. SET DEADLOCK_PRIORITY Command Arguments

Argument Description

LOW LOW makes the current connection the likely deadlock victim.

NORMAL NORMAL lets SQL Server decide based on which connection seems least
expensive to roll back.

HIGH HIGH lessens the chances of the connection being chosen as the victim,
unless the other connection is also HIGH or has a numeric priority greater
than 5.

<numeric-priority> The numeric priority allows you to use a range of values from -10 to 10,
where -10 is the most likely deadlock victim, up to 10 being the least likely
to be chosen as a victim. The higher number between two participants in a
deadlock wins.

For example, had the first query from the previous recipe used the following deadlock priority
command, it would almost certainly have been chosen as the victim (normally, the default deadlock
victim is the connection SQL Server deems least expensive to cancel and roll back):

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
SET DEADLOCK_PRIORITY LOW

BEGIN TRAN

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING 141

9802CH03.qxd 4/22/08 3:44 PM Page 141

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 2

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID = 1

COMMIT TRAN

How It Works
You can also set the deadlock priority to HIGH and NORMAL. HIGH means that unless the other session
is of the same priority, it will not be chosen as the victim. NORMAL is the default behavior and will be
chosen if the other session is HIGH, but not chosen if the other session is LOW. If both sessions have
the same priority, the least expensive transaction to roll back will be chosen.

CHAPTER 3 ■ TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING142

9802CH03.qxd 4/22/08 3:44 PM Page 142

Tables

In this chapter, I’ll present recipes that demonstrate table creation and manipulation. Tables are
used to store data in the database and make up the central unit upon which most SQL Server data-
base objects depend. Tables are uniquely named within a database and schema and contain one or
more columns. Each column has an associated data type that defines the kind of data that can be
stored within it.

■Tip SQL Server 2008 includes new date types for handling date and time, hierarchy, space (geography and
geometry), and the FILESTREAM attribute. I’ll discuss the hierarchical and spatial data types in Chapter 14 and
cover the FILESTREAM attribute in this chapter.

As I’ve done in the previous chapters, I’ll provide basic table recipes throughout, and break
them up with walkthroughs of more complex functionality. Regarding new features introduced in
SQL Server 2008, I’ll demonstrate the sparse column improvement in the “Reducing Storage for Null
Columns” recipe. Also, in the “Manageability for Very Large Tables” section, I’ll introduce the new
data compression functionality available in the Enterprise Edition and Developer Edition of SQL
Server 2008.

■Caution If you decide to follow along with some of these recipes, consider backing up the AdventureWorks
database beforehand, so that you can restore it to a clean version once you are finished.

Table Basics
You can create a table using the CREATE TABLE command. The full syntax is quite extensive, so this
chapter will build upon the different areas of the command as the chapter progresses. The simpli-
fied syntax is as follows:

CREATE TABLE
[database_name . [schema_name] . | schema_name .] table_name

(column_name <data_type> [NULL | NOT NULL] [,...n])

The arguments of this command are described in Table 4-1.

143

C H A P T E R 4

9802CH04.qxd 4/22/08 3:47 PM Page 143

Table 4-1. CREATE TABLE Arguments

Argument Description

[database_name . [schema_name] . This argument indicates that you can qualify the
| schema_name .] table_name new table name using the database, schema, and table

name, or just the schema and table name.

column_name This argument defines the name of the column.

data_type This argument specifies the column’s data type (data
types are described next).

NULL | NOT NULL The NULL | NOT NULL option refers to the column
nullability. Nullability defines whether a column can
contain a NULL value. A NULL value means that the
value is unknown. It does not mean that the column
is zero, blank, or empty.

Each column requires a defined data type. The data type defines and restricts the type of data
the column can hold.

Table 4-2 details the system data types available in SQL Server.

Table 4-2. SQL Server Data Types

Data Type Value Range

bigint This specifies a whole number from –2^63
(–9,223,372,036,854,775,808) through 2^63 –1
(9,223,372,036,854,775,807).

binary This specifies fixed-length binary data with a maximum of
8000 bytes.

bit This specifies a whole number, either 0 or 1.

char This specifies fixed-length character data with maximum
length of 8000 characters.

date This stores dates to an accuracy of 1 day, ranging from
1-01-01 through 9999-12-31.

datetime This provides date and time storage with an accuracy of
0.333 seconds, ranging from January 1, 1753, through
December 31, 9999. (1753 was the year following the
adoption of the Gregorian calendar, which produced a
difference in days to the previous calendar of 12 days.
Beginning with the year 1753 sidesteps all sorts of
calculation problems.)

datetime2 This stores date and time to an accuracy of 100
nanoseconds, ranging from 1-01-01 00:00:00.0000000
through 9999-12-31 23:59:59.9999999.

datetimeoffset The time zone offset is the difference in time between a
specific time zone and Coordinated Universal Time (UTC).
You can use this new data type with the SYSDATETIMEOFFSET
system function to store the current system timestamp
along with the database time zone. You can also use this
data type with the SWITCHOFFSET function to change the time
zone offset by a specific increment/decrement. This data
type is stored within an accuracy of 100 nanoseconds,
ranging from 1-01-01 00:00:00.0000000 through 9999-12-31
23:59:59.9999999.

CHAPTER 4 ■ TABLES144

9802CH04.qxd 4/22/08 3:47 PM Page 144

Data Type Value Range

decimal or numeric (no difference This stores data ranging from –10^38 +1 through 10^38 –1.
between the two) decimal uses precision and scale. Precision determines

maximum total number of decimal digits, both left and right
of the decimal point. Scale determines maximum decimal
digits to the right of the decimal point.

float This specifies a floating-precision number from –1.79E + 308
to –2.23E – 308, 0, and 2.23E – 308 to 1.79E + 308.

geography and geometry These specify native storage of spatial data. The geometry
data type represents flat-earth (Euclidean) coordinate
spatial data and also allows for storage of points, polygons,
curves, and collections. The geography data type is used for
round-earth spatial storage, allowing for latitude and
longitude coordinates and storage of points, polygons,
curves, and collections. These data types are new to SQL
Server 2008 and are discussed in Chapter 14.

hierarchyid This natively stores a position within a tree hierarchy. This
data type is new to SQL Server 2008 and is discussed in
Chapter 14.

int This specifies a whole number from –2^31 (–2,147,483,648)
through 2^31–1 (2,147,483,647).

money This specifies a monetary value between –2^63
(–922,377,203,685,477.5808) through 2^63–1
(+922,337,203,685,477.5807).

nchar This specifies a fixed-length Unicode character data with a
maximum length of 4000 characters.

nvarchar This specifies variable-length Unicode character data with a
maximum length of 4000 characters. SQL Server also has the
max option, which allows you to store up to 2^31–1bytes.
This option allows you to use the regular data types instead
of SQL Server 2000’s text, ntext, and image.

real This specifies a floating-precision number from –3.40E + 38
to –1.18E – 38, 0, and 1.18E – 38 to 3.40E + 38.

smalldatetime This indicates the date and time from January 1, 1900,
through June 6, 2079.

smallint This specifies a whole number from –32,768 through 32,767.

smallmoney This specifies a monetary value between –214,748.3648
through +214,748.3647.

sql_variant This data type can store all data types except text, ntext,
timestamp, varchar(max), nvarchar(max), varbinary(max),
xml, image, user-defined types, and another sql_variant.

table The table data type can’t be used in CREATE TABLE as a
column type. Instead, it is used for table variables or for
storage of rows for a table-valued function.

time This stores the time to an accuracy of 100 nanoseconds,
ranging from 00:00:00.0000000 to 23:59:59.9999999.

timestamp This specifies a database-wide unique number that is
updated when a row is modified.

tinyint This specifies a whole number from 0 through 255.

Continued

CHAPTER 4 ■ TABLES 145

9802CH04.qxd 4/22/08 3:47 PM Page 145

Table 4-2. Continued

Data Type Value Range

uniqueidentifier This stores a 16-byte globally unique identifier (GUID).

varbinary This specifies variable-length data with a maximum of 8000
bytes. SQL Server also has the max value, which allows you to
store up to 2^31 –1bytes. This option allows you to use the
regular data types instead of SQL Server 2000’s text, ntext,
and image.

varchar This specifies variable-length character data with a
maximum length of 8,000 characters. SQL Server also has
the max value, which allows you to store up to 2^31 –1bytes.
This option allows you to use the regular data types instead
of SQL Server 2000’s text, ntext, and image.

xml This data type stores native XML data.

Following are some basic guidelines when selecting data types for your columns:

• Store character data types in character type columns (char, nchar, varchar, nvarcht),
numeric data in numeric type columns (int, bigint, tinyint, smallmoney, money,
decimal\numeric, float), and date and/or time data in smalldate, date, datetime2, time,
datetimeoffset, or datetime data types. For example, although you can store numeric and
datetime information in character-based fields, doing so may slow down your performance
when attempting to utilize the column values within mathematical or other Transact-SQL
functions.

• If your character data type columns use the same or a similar number of characters consis-
tently, use fixed-length data types (char, nchar). Fixed-length columns consume the same
amount of storage for each row, whether or not they are fully utilized. If, however, you expect
that your character column’s length will vary significantly from row to row, use variable-
length data types (varchar, nvarchar). Variable-length columns have some storage overhead
tacked on; however, they will only consume storage for characters used. Only use char or
nchar if you are sure that you will have consistent lengths in your strings, and that most of
your string values will be present.

• Choose the smallest numeric or character data type required to store the data. You may be
tempted to select data types for columns that use more storage than is necessary, resulting in
wasted storage. Conserving column space, particularly for very large tables, can increase the
number of rows that can fit on an 8KB data page, reduce total storage needed in the data-
base, and potentially improve index performance (smaller index keys).

A table can have up to 1024 columns (with the exception of sparse columns as of SQL Server
2008 RTM), but can’t exceed a total of 8060 actual used bytes per row. A data page size is 8KB,
including the header, which stores information about the page. This byte limit is not applied to
the large object data types varchar(max), nvarchar(max), varbinary(max), text, image, or xml.

Another exception to the 8060-byte limit rule is SQL Server’s row overflow functionality for reg-
ular varchar, nvarchar, varbinary, and sql_variant data types. If the lengths of these individual
data types do not exceed 8,000 bytes, but the combined width of more than one of these columns
together in a table exceeds the 8060-byte row limit, the column with the largest width will be
dynamically moved to another 8KB page and replaced in the original table with a 24-byte pointer.
Row overflow provides extra flexibility for managing large row sizes, but you should still limit your
potential maximum variable data type length in your table definition when possible, as reliance on

CHAPTER 4 ■ TABLES146

9802CH04.qxd 4/22/08 3:47 PM Page 146

page overflow may decrease query performance, as more data pages need to be retrieved by a single
query.

Creating a Table
In this recipe, I will create a simple table called EducationType owned by the Person schema:

USE AdventureWorks
GO

CREATE TABLE Person.EducationType
(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

How It Works
In this example, a very simple, two-column table was created within the AdventureWorks database
using the Person schema. The first line of code shows the schema and table name:

CREATE TABLE Person.EducationType

The column definition follows on the second line of code within the parentheses:

(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

The first column name, EducationTypeID, was defined with an integer data type and NOT NULL
specified (meaning that NULL values are not allowed for this column). The second column was the
EducationTypeNM column name with a data type of varchar(40) and the NOT NULL option.

In the next recipe, you’ll learn how to add additional columns to an existing table.

Adding a Column to an Existing Table
After a table is created, you can modify it using the ALTER TABLE command. Like CREATE TABLE, this
chapter will demonstrate the ALTER TABLE and CREATE TABLE functionality in task-based parts. In
this recipe, I demonstrate how to add a column to an existing table.

The specific syntax for adding a column is as follows:

ALTER TABLE table_name
ADD { column_name data_type } NULL

Table 4-3 details the arguments of this command.

Table 4-3. ALTER TABLE ADD Column Arguments

Argument Description

table_name The table name you are adding the column to

column_name The name of the column

data_type The column’s data type

This example demonstrates adding a column to an existing table (note that using this method
adds the column to the last column position in the table definition):

ALTER TABLE HumanResources.Employee
ADD Latest_EducationTypeID int NULL

CHAPTER 4 ■ TABLES 147

9802CH04.qxd 4/22/08 3:47 PM Page 147

How It Works
ALTER TABLE was used to make modifications to an existing table. The first line of code designated
the table to have the column added to:

ALTER TABLE HumanResources.Employee

The second line of code defined the new column and data type:

ADD Latest_EducationTypeID int NULL

When adding columns to a table that already has data in it, you will be required to add the col-
umn with NULL values allowed. You can’t specify that the column be NOT NULL, because you cannot
add the column to the table and simultaneously assign values to the new column. By default, the
value of the new column will be NULL for every row in the table.

Changing an Existing Column Definition
In addition to adding new columns to a table, you can also use ALTER TABLE to modify an existing
column’s definition.

The syntax for doing this is as follows:

ALTER TABLE table_name
ALTER COLUMN column_name
[type_name] [NULL | NOT NULL] [COLLATE collation_name]

Table 4-4 details the arguments of this command.

Table 4-4. ALTER TABLE...ALTER COLUMN Arguments

Argument Description

table_name The table name containing the column to be modified.

column_name The name of the column to modify.

type_name The column’s data type to modify.

NULL | NOT NULL The nullability option to modify.

COLLATE collation_name The column collation (for character-based data types) to modify.
Collations define three settings: a code page used to store non-
Unicode character data types, the sort order for non-Unicode
character data types, and the sort order for Unicode data types.
Collations are reviewed later on in the chapter in the section
“Collation Basics.”

This example demonstrates how to change an existing table column’s nullability and data type.
The Gender column in the HumanResources.Employee table is originally NOT NULL, and the original
data type of the LoginID column is nvarchar(256):

-- Make it Nullable
ALTER TABLE HumanResources.Employee
ALTER COLUMN Gender nchar(1) NULL

-- Expanded nvarchar(256) to nvarchar(300)
ALTER TABLE HumanResources.Employee
ALTER COLUMN LoginID nvarchar(300) NOT NULL

CHAPTER 4 ■ TABLES148

9802CH04.qxd 4/22/08 3:47 PM Page 148

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
In this recipe, two columns were modified in the HumanResources.Employee table. The ALTER COLUMN
modified the Gender column to allow NULL values, although the data type remained the same:

ALTER COLUMN Gender nchar(1) NULL

In the second ALTER TABLE, the LoginID column’s data type of nvarchar(256) was expanded to
nvarchar(300):

ALTER COLUMN LoginID nvarchar(300) NOT NULL

There are limitations to the kind of column changes that can be made. For example, you
can’t alter a column that is used in an index unless the column data type is varchar, nvarchar, or
varbinary—and even then, the new size of that data type must be larger than the original size. You
also can’t use ALTER COLUMN on columns referenced in a primary key or foreign key constraint. The
full list of other column modification limitations (and there are quite a few) are documented in
SQL Server Books Online.

Creating a Computed Column
A column defined within a CREATE TABLE or ALTER TABLE statement can be derived from a freestand-
ing or column-based calculation. Computed columns are sometimes useful when a calculation
must be recomputed on the same data repeatedly in referencing queries. A computed column is
based on an expression defined when you create or alter the table, and is not physically stored in
the table unless you use the PERSISTED keyword.

In this recipe, I’ll give a demonstration of creating a computed column, as well as presenting
ways to take advantage of SQL Server 2005’s PERSISTED option. The syntax for adding a computed
column either by CREATE or ALTER TABLE is as follows:

column_name AS computed_column_expression
[PERSISTED]

The column_name is the name of the new column. The computed_column_expression is the
calculation you wish to be performed in order to derive the column’s value. Adding the PERSISTED
keyword actually causes the results of the calculation to be physically stored.

In this example, a new, calculated column is added to an existing table:

ALTER TABLE Production.TransactionHistory
ADD CostPerUnit AS (ActualCost/Quantity)

The previous example created a calculated column called CostPerUnit. This next query takes
advantage of it, returning the highest CostPerUnit for quantities over 10:

SELECT TOP 1 CostPerUnit, Quantity, ActualCost
FROM Production.TransactionHistory
WHERE Quantity > 10
ORDER BY ActualCost DESC

This returns

CostPerUnit Quantity ActualCost
132.0408 13 1716.5304

The next example creates a PERSISTED calculated column, which means the calculated data will
actually be physically stored in the database (but still automatically calculated by SQL Server):

CHAPTER 4 ■ TABLES 149

9802CH04.qxd 4/22/08 3:47 PM Page 149

CREATE TABLE HumanResources.CompanyStatistic
(CompanyID int NOT NULL,
StockTicker char(4) NOT NULL,
SharesOutstanding int NOT NULL,
Shareholders int NOT NULL,
AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED)

How It Works
The first example added a new, non-persisted column called CostPerUnit to the Production.
TransactionHistory table, allowing it to be referenced in SELECT queries like a regular table column:

ADD CostPerUnit AS (ActualCost/Quantity)

Computed columns can’t be used within a DEFAULT or FOREIGN KEY constraint. A calculated col-
umn can’t be explicitly updated or inserted into (since its value is always derived).

Computed columns can be used within indexes, but must meet certain requirements, such as
being deterministic (always returning the same result for a given set of inputs) and precise (not con-
taining float values).

The second example demonstrated using a computed column in a CREATE TABLE command:

AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED

Unlike the first example, adding the PERSISTED keyword means that the data is actually physi-
cally stored in the database. Any changes made to columns that are used in the computation will
cause the stored value to be updated again. The stored data still can’t be modified directly—the data
is still computed. Storing the data does mean, however, that the column can be used to partition a
table (see the “Implementing Table Partitioning” recipe later in the chapter), or can be used in an
index with an imprecise (float-based) value—unlike its non-persisted version.

Reducing Storage for Null Columns
SQL Server 2008 introduces sparse columns, a storage optimization improvement that enables zero-
byte storage of NULL values. Consequently, this allows a large number of sparse columns to be
defined for a table (as of this writing, 30,000 sparse columns are allowed). This improvement is ideal
for database designs and applications requiring a high number of infrequently populated columns
or for tables having sets of columns related only with a subset of the data stored in the table.

To define a sparse column, you need only add the SPARSE storage attribute after the column
definition within a CREATE or ALTER TABLE command, as the following query demonstrates:

CREATE TABLE dbo.WebsiteProduct
(WebsiteProductID int NOT NULL PRIMARY KEY IDENTITY(1,1),
ProductNM varchar(255) NOT NULL,
PublisherNM varchar(255) SPARSE NULL,
ArtistNM varchar(150) SPARSE NULL,
ISBNNBR varchar(30) SPARSE NULL,
DiscsNBR int SPARSE NULL,
MusicLabelNM varchar(255) SPARSE NULL)

The previous table takes a somewhat denormalized approach to creating columns that apply
only to specific product types. For example, the PublisherNM and ISBNNBR columns apply to a book
product, whereas DiscsNBR, ArtistNM, and MusicLabelNM will more often apply to a music product.
When a product row is stored, the sparse columns that do not apply to it will not incur a storage cost
for each NULL value.

CHAPTER 4 ■ TABLES150

9802CH04.qxd 4/22/08 3:47 PM Page 150

Continuing the demonstration, I’ll insert two new rows into the table (one representing a book
and one a music album):

INSERT dbo.WebsiteProduct
(ProductNM, PublisherNM, ISBNNBR)
VALUES
('SQL Server 2008 Transact-SQL Recipes',
'Apress',
'1590599802')

INSERT dbo.WebsiteProduct
(ProductNM, ArtistNM, DiscsNBR, MusicLabelNM)
VALUES
('Etiquette',
'Casiotone for the Painfully Alone',
1,
'Tomlab')

Sparse columns can be queried using a couple of methods. The following is an example of
using a standard method of querying:

SELECT ProductNM, PublisherNM,ISBNNBR
FROM dbo.WebsiteProduct
WHERE ISBNNBR IS NOT NULL

This returns

ProductNM PublisherNM ISBNNBR
SQL Server 2008 Transact-SQL Recipes Apress 1590599802

The second method is to use a column set. A column set allows you to logically group all sparse
columns defined for the table. This xml data type calculated column allows for SELECTs and data
modification and is defined by designating COLUMN_SET FOR ALL_SPARSE_COLUMNS after the column
definition. You can only have one column set for a single table, and you also can’t add one to a table
that already has sparse columns defined in it. In this next example, I’ll re-create the previous table
with a column set included:

DROP TABLE dbo.WebsiteProduct

CREATE TABLE dbo.WebsiteProduct
(WebsiteProductID int NOT NULL PRIMARY KEY IDENTITY(1,1),
ProductNM varchar(255) NOT NULL,
PublisherNM varchar(255) SPARSE NULL,
ArtistNM varchar(150) SPARSE NULL,
ISBNNBR varchar(30) SPARSE NULL,
DiscsNBR int SPARSE NULL,
MusicLabelNM varchar(255) SPARSE NULL,
ProductAttributeCS xml COLUMN_SET FOR ALL_SPARSE_COLUMNS)

-- Re-insert data
INSERT dbo.WebsiteProduct
(ProductNM, PublisherNM, ISBNNBR)
VALUES
('SQL Server 2008 Transact-SQL Recipes',
'Apress',
'1590599802')

CHAPTER 4 ■ TABLES 151

9802CH04.qxd 4/22/08 3:47 PM Page 151

INSERT dbo.WebsiteProduct
(ProductNM, ArtistNM, DiscsNBR, MusicLabelNM)
VALUES
('Etiquette',
'Casiotone for the Painfully Alone',
1,
'Tomlab')

Now that the column set is defined, I can reference it instead of the individual sparse columns:

SELECT ProductNM, ProductAttributeCS
FROM dbo.WebsiteProduct
WHERE ProductNM IS NOT NULL

This returns

ProductNM ProductAttributeCS
SQL Server 2008 Transact-SQL Recipes <PublisherNM>Apress</PublisherNM><ISBNNBR>

1590599802</ISBNNBR>
Etiquette <ArtistNM>Casiotone for the Painfully Alone

</ArtistNM><DiscsNBR>1</DiscsNBR>< MusicLabelNM>
Tomlab</ MusicLabelNM>

As you can see from the previous results, each row shows untyped XML data that displays ele-
ments for each non-NULL column value.

I can use both an INSERT and UPDATE to modify the values across all sparse columns. The follow-
ing query demonstrates adding a new row:

INSERT dbo.WebsiteProduct
(ProductNM,ProductAttributeCS)
VALUES
('Roots & Echoes',
'<ArtistNM>The Coral</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusicLabelNM>Deltasonic</ MusicLabelNM>')

Any sparse columns not referenced in my DML operation will be set to a NULL value. Once a
column set is defined for a table, performing a SELECT * query no longer returns each individual
sparse column, as the following query demonstrates (only non-sparse columns and then the
column set):

SELECT *
FROM dbo.WebsiteProduct

WebsiteProductID ProductNM ProductAttributeCS
1 SQL Server 2008 Transact-SQL Recipes <PublisherNM>Apress

</PublisherNM><ISBNNBR>
1590599802</ISBNNBR>

2 Etiquette <ArtistNM>Casiotone for the
Painfully Alone</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusicLabelNBR>Tomlab
</MusicLabelNBR>

3 Roots & Echoes <ArtistNM>The Coral</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusicLabelNM>Deltasonic
</MusicLabelNNM>

CHAPTER 4 ■ TABLES152

9802CH04.qxd 4/22/08 3:47 PM Page 152

You still, however, have the option of explicitly naming each sparse column you wish to see,
rather than viewing the entire sparse column:

SELECT ProductNM, ArtistNM
FROM dbo.WebsiteProduct
WHERE ArtistNM IS NOT NULL

This returns

ProductNM ArtistNM
Etiquette Casiotone for the Painfully Alone
Roots & Echoes The Coral

How It Works
The sparse column storage attribute allows you to store up to 30,000 infrequently populated
columns on a single table. As demonstrated in this recipe, defining a column as SPARSE is as simple
as adding the name within the column definition:

CREATE TABLE dbo.WebsiteProduct
...
ArtistNM varchar(150) SPARSE NULL,
...

Most data types are allowed for a sparse column, with the exception of the image, ntext, text,
timestamp, geometry, geography, or user-defined data types.

■Caution Sparse columns also add more required space for non-null values than for regular non-sparse,
non-null columns.

This recipe also demonstrated the use of a column set, which was defined within the column
definition during the CREATE TABLE (but can also be added using ALTER TABLE if no other column set
or sparse columns exist):

CREATE TABLE dbo.WebsiteProduct
...
ProductAttributeCS xml COLUMN_SET FOR ALL_SPARSE_COLUMNS)

The column set becomes particularly useful when a table has thousands of sparse tables, as it
allows you to avoid directly referencing each sparse column name in your query. The column set
allows querying and DML operations. When performing an INSERT or UPDATE, all unreferenced
sparse columns are set to NULL and have zero-byte storage.

Dropping a Table Column
You can use ALTER TABLE to drop a column from an existing table.

The syntax for doing so is as follows:

ALTER TABLE table_name
DROP COLUMN column_name

Table 4-5 details the arguments of this command.

CHAPTER 4 ■ TABLES 153

9802CH04.qxd 4/22/08 3:47 PM Page 153

Table 4-5. ALTER TABLE...DROP COLUMN Arguments

Argument Description

table_name The table name containing the column to be dropped

column_name The name of the column to drop from the table

This recipe demonstrates how to drop a column from an existing table:

ALTER TABLE HumanResources.Employee
DROP COLUMN Latest_EducationTypeID

How It Works
The first line of code designated the table for which the column would be dropped:

ALTER TABLE HumanResources.Employee

The second line designated the column to be dropped from the table (along with any data
stored in it):

DROP COLUMN Latest_EducationTypeID

You can drop a column only if it isn’t being used in a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK
CONSTRAINT (these constraint types are all covered in this chapter). You also can’t drop a column
being used in an index or that has a DEFAULT value bound to it.

Reporting Table Information
The system stored procedure sp_help returns information about the specified table, including the
column definitions, IDENTITY column, ROWGUIDCOL, filegroup location, indexes (and keys), CHECK,
DEFAULT, and FOREIGN KEY constraints, and referencing views.

The syntax for this system stored procedure is as follows:

sp_help [[@objname =] ' name ']

This example demonstrates how to report detailed information about the object or table (the
results aren’t shown here as they include several columns and multiple result sets):

EXEC sp_help 'HumanResources.Employee'

How It Works
The sp_help system stored procedure returns several different result sets with useful information
regarding the specific object (in this example, it returns data about the table HumanResources.
Employee). This system stored procedure can be used to gather information regarding other data-
base object types as well.

Dropping a Table
In this recipe, I’ll demonstrate how to drop a table. The DROP command uses the following syntax:

DROP TABLE schema.tablename

CHAPTER 4 ■ TABLES154

9802CH04.qxd 4/22/08 3:47 PM Page 154

The DROP TABLE takes a single argument, the name of the table. In this example, the Person.
EducationType table is dropped:

DROP TABLE Person.EducationType

How It Works
The DROP command removes the table definition and its data permanently from the database. In
this example, the DROP command would have failed had another table been referencing the table’s
primary key in a foreign key constraint. If there are foreign key references, you must drop them first
before dropping the primary key table.

Collation Basics
If your database requires international or multilingual data storage, your default SQL Server
instance settings may not be sufficient for the task. This recipe describes how to view and manipu-
late code pages and sort order settings using collations. SQL Server collations determine how data is
sorted, compared, presented, and stored.

SQL Server allows two types of collations: Windows or SQL. Windows collations are the pre-
ferred selection, as they offer more options and match the same support provided with Microsoft
Windows locales. SQL collations are used in earlier versions of SQL Server and are maintained for
backward compatibility.

In addition to SQL Server and database-level collation settings, you can also configure individ-
ual columns with their own collation settings. If you need to store character data in a column that
uses a different default collation than your database or server-level collation, you use the COLLATE
command within the column definition.

The Windows or SQL collation can be explicitly defined during a CREATE TABLE or ALTER TABLE
operation for columns that use the varchar, char, nchar, and nvarchar data types.

Collations define three settings:

• A code page used to store non-Unicode character data types

• The sort order for non-Unicode character data types

• The sort order for Unicode data types

Your SQL Server instance’s default collation was determined during the install, where you
either used the default-selected collation or explicitly changed it. The next two recipes will demon-
strate how to view information about the collations on your SQL Server instance, as well as define
an explicit collation for a table column.

Viewing Collation Metadata
You can determine your SQL Server instance’s default collation by using the SERVERPROPERTY func-
tion and the Collation option. For example:

SELECT SERVERPROPERTY('Collation')

This returns (for this example’s SQL Server instance)

SQL_Latin1_General_CP1_CI_AS

CHAPTER 4 ■ TABLES 155

9802CH04.qxd 4/22/08 3:47 PM Page 155

In addition to the SQL Server instance’s default collation settings, your database can also have
a default collation defined for it. You can use the DATABASEPROPERTYEX system function to determine
a database’s default collation. For example, this next query determines the default database colla-
tion for the AdventureWorks database (first parameter is database name, second is the Collation
option to be viewed):

SELECT DATABASEPROPERTYEX ('AdventureWorks' , 'Collation')

This returns the following collation information for the database (which in this example is
going to be the same as the SQL Server instance default until explicitly changed):

SQL_Latin1_General_CP1_CI_AS

■Note See Chapter 8 for more information on the SERVERPROPERTY and DATABASEPROPERTYEX functions.

But what do the results of these collation functions mean? To determine the actual settings
that a collation applies to the SQL Server instance or database, you can query the table function
fn_helpcollations for a more user-friendly description. In this example, the collation description
is returned from the SQL_Latin1_General_CP1_CI_AS collation:

SELECT description
FROM sys.fn_helpcollations()
WHERE name = 'SQL_Latin1_General_CP1_CI_AS'

This returns the collation description:

description
Latin1-General, case-insensitive, accent-sensitive, kanatype-insensitive, width-
insensitive for Unicode Data, SQL Server Sort Order 52 on Code Page 1252 for non-
Unicode Data

The results show a more descriptive breakdown of the collation’s code page, case sensitivity,
sorting, and Unicode options.

How It Works
This recipe demonstrated how to view the default collation for a SQL Server instance and for spe-
cific databases. You also saw how to list the collation’s code page, case sensitivity, sorting, and
Unicode options using fn_helpcollations. Once you know what settings your current database
environment is using, you may decide to apply different collations to table columns when interna-
tionalization is required. This is demonstrated in the next recipe.

Designating a Column’s Collation
In this recipe, I’ll demonstrate how to designate the collation of a table column using the ALTER
TABLE command:

ALTER TABLE Production.Product
ADD IcelandicProductName nvarchar(50) COLLATE Icelandic_CI_AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian_CI_AS

CHAPTER 4 ■ TABLES156

9802CH04.qxd 4/22/08 3:47 PM Page 156

How It Works
In this recipe, two new columns were added to the Production.Product table. The query began by
using ALTER TABLE and the table name:

ALTER TABLE Production.Product

After that, ADD was used, followed by the new column name, data type, COLLATE keyword, and
collation name (for a list of collation names, use the fn_helpcollations function described earlier):

ADD IcelandicProductName nvarchar(50) COLLATE Icelandic_CI_AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian_CI_AS

Be aware that when you define different collations within the same database or across data-
bases in the same SQL Server instance, you can sometimes encounter compatibility issues.
Cross-collation joins don’t always work, and data transfers can result in lost or misinterpreted data.

Keys
A primary key is a special type of constraint that identifies a single column or set of columns, which
in turn uniquely identifies all rows in the table.

Constraints place limitations on the data that can be entered into a column or columns. A pri-
mary key enforces entity integrity, meaning that rows are guaranteed to be unambiguous and
unique. Best practices for database normalization dictate that every table should have a primary
key. A primary key provides a way to access the record and ensures that the key is unique. A primary
key column can’t contain NULL values.

Only one primary key is allowed for a table, and when a primary key is designated, an underly-
ing table index is automatically created, defaulting to a clustered index (index types are reviewed in
Chapter 5). You can also explicitly designate a nonclustered index be created when the primary key
is created instead, if you have a better use for the single clustered index allowed for a table. An index
created on primary key counts against the total indexes allowed for a table.

To designate a primary key on a single column, use the following syntax in the column
definition:

(column_name <data_type> [NULL | NOT NULL] PRIMARY KEY)

The key words PRIMARY KEY are included at the end of the column definition.
A composite primary key is the unique combination of more than one column in the table. In

order to define a composite primary key, you must use a table constraint instead of a column con-
straint. Setting a single column as the primary key within the column definition is called a column
constraint. Defining the primary key (single or composite) outside of the column definition is
referred to as a table constraint.

The syntax for a table constraint for a primary key is as follows:

CONSTRAINT constraint_name PRIMARY KEY
(column [ASC | DESC] [,...n])

Table 4-6 details the arguments of this command.

CHAPTER 4 ■ TABLES 157

9802CH04.qxd 4/22/08 3:47 PM Page 157

Table 4-6. Table Constraint, Primary Key Arguments

Argument Description

constraint_name This specifies the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The column or columns that make up the primary key must
uniquely identify a single row in the table (no two rows can
have the same values for all the specified columns). The
ASC (ascending) and DESC (descending) options define the
sorting order of the columns within the clustered or
nonclustered index.

Foreign key constraints establish and enforce relationships between tables and help maintain
referential integrity, which means that every value in the foreign key column must exist in the
corresponding column for the referenced table. Foreign key constraints also help define domain
integrity, in that they define the range of potential and allowed values for a specific column or
columns. Domain integrity defines the validity of values in a column.

The basic syntax for a foreign key constraint is as follows:

CONSTRAINT constraint_name
FOREIGN KEY (column_name)
REFERENCES [schema_name.] referenced_table_name [(ref_column)]

Table 4-7 details the arguments of this command.

Table 4-7. Foreign Key Constraint Arguments

Argument Description

constraint_name The name of the foreign key constraint

column_name The column in the current table referencing the
primary key column of the primary key table

[schema_name.] referenced_table_name The table name containing the primary key being
referenced by the current table

ref_column The primary key column being referenced

The next few recipes will demonstrate primary and foreign key usage in action.

Creating a Table with a Primary Key
In this recipe, I’ll create a table with a single column primary key:

CREATE TABLE Person.CreditRating(
CreditRatingID int NOT NULL PRIMARY KEY,
CreditRatingNM varchar(40) NOT NULL)

GO

In the previous example, a primary key was defined on a single column. You can, however,
create a composite primary key.

In this example, a new table is created with a PRIMARY KEY table constraint formed from two
columns:

CHAPTER 4 ■ TABLES158

9802CH04.qxd 4/22/08 3:47 PM Page 158

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CREATE TABLE Person.EmployeeEducationType (
EmployeeID int NOT NULL,
EducationTypeID int NOT NULL,
CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

How It Works
In the first example of the recipe, I created the Person.CreditRating table with a single-column pri-
mary key. The column definition had the PRIMARY KEY keywords following the column definition:

CreditRatingID int NOT NULL PRIMARY KEY,

The primary key column was defined at the column level, whereas the second example defines
the primary key at the table level:

CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

The constraint definition followed the column definitions. The constraint was named, and
then followed by the constraint type (PRIMARY KEY) and the columns forming the primary key in
parentheses.

Adding a Primary Key Constraint to an Existing Table
In this recipe, I’ll demonstrate how to add a primary key to an existing table using ALTER TABLE and
ADD CONSTRAINT:

CREATE TABLE Person.EducationType
(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

ALTER TABLE Person.EducationType
ADD CONSTRAINT PK_EducationType
PRIMARY KEY (EducationTypeID)

How It Works
In this recipe, ALTER TABLE was used to add a new primary key to an existing table that doesn’t
already have one defined. The first line of code defined the table to add the primary key to:

ALTER TABLE Person.EducationType

The second line of code defined the constraint name:

ADD CONSTRAINT PK_EducationType

On the last line of code in the previous example, the constraint type PRIMARY KEY was declared,
followed by the column defining the key column in parentheses:

PRIMARY KEY (EducationTypeID)

CHAPTER 4 ■ TABLES 159

9802CH04.qxd 4/22/08 3:47 PM Page 159

Creating a Table with a Foreign Key Reference
In this recipe, I’ll demonstrate how to create a table with a foreign key. In this example, I define two
foreign key references within the definition of a CREATE TABLE statement:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,
CreditRatingID int NOT NULL,
CONSTRAINT FK_EmployeeCreditRating_Employee
FOREIGN KEY(BusinessEntityID)
REFERENCES HumanResources.Employee(BusinessEntityID),
CONSTRAINT FK_EmployeeCreditRating_CreditRating
FOREIGN KEY(CreditRatingID)
REFERENCES Person.CreditRating(CreditRatingID)

)

How It Works
In this example, a table was created with two foreign key references. The first four lines of code
defined the table name and its three columns:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,
CreditRatingID int NOT NULL,

On the next line, the name of the first foreign key constraint is defined (must be a unique name
in the current database):

CONSTRAINT FK_EmployeeCreditRating_Employee

The constraint type is defined, followed by the table’s column (which will be referencing an
outside primary key table):

FOREIGN KEY(BusinessEntityID)

The referenced table is defined, with that table’s primary key column defined in parentheses:

REFERENCES HumanResources.Employee(BusinessEntityID),

A second foreign key is then created for the CreditRatingID column, which references the pri-
mary key of the Person.CreditRating table:

CONSTRAINT FK_EmployeeCreditRating_CreditRating
FOREIGN KEY(CreditRatingID)
REFERENCES Person.CreditRating(CreditRatingID)

)

As I demonstrated in this example, a table can have multiple foreign keys—and each foreign
key can be based on a single or multiple (composite) key that references more than one column
(referencing composite primary keys or unique indexes). Also, although the column names needn’t
be the same between a foreign key reference and a primary key, the primary key/unique columns
must have the same data type. You also can’t define foreign key constraints that reference tables
across databases or servers.

CHAPTER 4 ■ TABLES160

9802CH04.qxd 4/22/08 3:47 PM Page 160

Adding a Foreign Key to an Existing Table
Using ALTER TABLE and ADD CONSTRAINT, you can add a foreign key to an existing table. The syntax
for doing so is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
FOREIGN KEY (column_name)
REFERENCES [schema_name.] referenced_table_name [(ref_column)]

Table 4-8 details the arguments of this command.

Table 4-8. ALTER TABLE...ADD CONSTRAINT Arguments

Argument Description

table_name The name of the table receiving the new foreign key
constraint

constraint_name The name of the foreign key constraint

column_name The column in the current table referencing the
primary key column of the primary key table

[schema_name.] referenced_table_name The table name containing the primary key being
referenced by the current table

ref_column The primary key column being referenced

This example adds a foreign key constraint to an existing table:

CREATE TABLE Person.EmergencyContact (
EmergencyContactID int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,
ContactFirstNM varchar(50) NOT NULL,
ContactLastNM varchar(50) NOT NULL,
ContactPhoneNBR varchar(25) NOT NULL)

ALTER TABLE Person.EmergencyContact
ADD CONSTRAINT FK_EmergencyContact_Employee
FOREIGN KEY (BusinessEntityID)
REFERENCES HumanResources.Employee (BusinessEntityID)

How It Works
This example demonstrated adding a foreign key constraint to an existing table. The first line of
code defined the table where the foreign key would be added:

ALTER TABLE Person.EmergencyContact

The second line defined the constraint name:

ADD CONSTRAINT FK_EmergencyContact_Employee

The third line defined the column from the table that will reference the primary key of the pri-
mary key table:

FOREIGN KEY (BusinessEntityID)

CHAPTER 4 ■ TABLES 161

9802CH04.qxd 4/22/08 3:47 PM Page 161

The last line of code defined the primary key table and primary key column name:

REFERENCES HumanResources.Employee (BusinessEntityID)

Creating Recursive Foreign Key References
A foreign key column in a table can be defined to reference its own primary/unique key. This tech-
nique is often used to represent recursive relationships, as I’ll demonstrate. In this example, a table
is created with a foreign key reference to its own primary key:

CREATE TABLE HumanResources.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL,
CONSTRAINT FK_Company_Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company(CompanyID))

A row specifying CompanyID and CompanyName is added to the table:

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

A second row is added, this time referencing the ParentCompanyID, which is equal to the previ-
ously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp')

A third row insert is attempted, this time specifying a ParentCompanyID for a CompanyID that
does not exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

The following error message is returned:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY SAME TABLE constraint
"FK_Company_Company". The conflict occurred in database "AdventureWorks", table

"Company", column 'CompanyID'.
The statement has been terminated.

How It Works
In this example, the HumanResources.Company table was created with the CompanyID column defined
as the primary key, and with a foreign key column defined on ParentCompanyID that references
CompanyID:

CONSTRAINT FK_Company_Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company(CompanyID)

CHAPTER 4 ■ TABLES162

9802CH04.qxd 4/22/08 3:47 PM Page 162

The foreign key column ParentCompanyID must be nullable in order to handle a parent-child
hierarchy. A company with a NULL parent is at the top of the company hierarchy (which means it
doesn’t have a parent company). After the table was created, three new rows were inserted.

The first row inserted a company without designating the ParentCompanyID (which means the
value for the ParentCompanyID column for this company is NULL):

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

The second insert created a company that references the first company, MegaCorp, defined in
the previous INSERT statement. The value of 1 was valid in the ParentCompanyID column, as it refers
to the previously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp')

The third insert tries to create a new company with a ParentCompanyID of 8, which does not
exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

Because there is no company with a CompanyID of 8 in the table, the foreign key constraint pre-
vents the row from being inserted and reports an error. The row is not inserted.

Allowing Cascading Changes in Foreign Keys
Foreign keys restrict the values that can be placed within the foreign key column or columns. If the
associated primary key or unique value does not exist in the reference table, the INSERT or UPDATE to
the table row fails. This restriction is bidirectional in that if an attempt is made to delete a primary
key, but a row referencing that specific key exists in the foreign key table, an error will be returned.
All referencing foreign key rows must be deleted prior to deleting the targeted primary key or
unique value; otherwise, an error will be raised.

SQL Server provides an automatic mechanism for handling changes in the primary key/unique
key column, called cascading changes. In previous recipes, cascading options weren’t used. You can
allow cascading changes for deletions or updates using ON DELETE and ON UPDATE. The basic syntax
for cascading options is as follows:

[ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[NOT FOR REPLICATION]

Table 4-9 details the arguments of this command.

Table 4-9. Cascading Change Arguments

Argument Description

NO ACTION The default setting for a new foreign key is NO ACTION, meaning if an
attempt to delete a row on the primary key/unique column occurs when
there is a referencing value in a foreign key table, the attempt will raise an
error and prevent the statement from executing.

CASCADE For ON DELETE, if CASCADE is chosen, foreign key rows referencing the
deleted primary key are also deleted. For ON UPDATE, foreign key rows
referencing the updated primary key are also updated.

Continued

CHAPTER 4 ■ TABLES 163

9802CH04.qxd 4/22/08 3:47 PM Page 163

Table 4-9. Continued

Argument Description

SET NULL If the primary key row is deleted, the foreign key referencing row(s) can
also be set to NULL (assuming NULL values are allowed for that foreign key
column).

SET DEFAULT If the primary key row is deleted, the foreign key referencing row(s) can
also be set to a DEFAULT value. The new cascade SET DEFAULT option
assumes the column has a default value set for a column. If not, and the
column is nullable, a NULL value is set.

NOT FOR REPLICATION The NOT FOR REPLICATION option is used to prevent foreign key constraints
from being enforced by SQL Server Replication Agent processes (allowing
data to arrive via replication potentially out-of-order from the primary
key data).

In this example, a table is created using cascading options:

-- Drop old version of table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,
EducationTypeID int NULL,
CONSTRAINT FK_EmployeeEducationType_Employee
FOREIGN KEY(BusinessEntityID)
REFERENCES HumanResources.Employee(BusinessEntityID)
ON DELETE CASCADE,
CONSTRAINT FK_EmployeeEducationType_EducationType
FOREIGN KEY(EducationTypeID)
REFERENCES Person.EducationType(EducationTypeID)
ON UPDATE SET NULL)

How It Works
In this recipe, one of the foreign key constraints uses ON DELETE CASCADE in a CREATE TABLE
definition:

CONSTRAINT FK_EmployeeEducationType_Employee
FOREIGN KEY(BusinessEntityID)
REFERENCES HumanResources.Employee(BusinessEntityID)
ON DELETE CASCADE

Using this cascade option, if a row is deleted on the HumanResources.Employee table, any refer-
encing BusinessEntityID in the Person.EmployeeEducationType table will also be deleted.

A second foreign key constraint was also defined in the CREATE TABLE using ON UPDATE:

CONSTRAINT FK_EmployeeEducationType_EducationType
FOREIGN KEY(EducationTypeID)
REFERENCES Person.EducationType(EducationTypeID)
ON UPDATE SET NULL

If an update is made to the primary key of the Person.EducationType table, the
EducationTypeID column in the referencing Person.EmployeeEducationType table will
be set to NULL.

CHAPTER 4 ■ TABLES164

9802CH04.qxd 4/22/08 3:47 PM Page 164

Surrogate Keys
Surrogate keys, also called artificial keys, can be used as primary keys and have no inherent busi-
ness/data meaning. Surrogate keys are independent of the data itself and are used to provide a
single unique record locator in the table. A big advantage to surrogate primary keys is that they
don’t need to change. If you use business data to define your key (natural key), such as first name
and last name, these values can change over time and change arbitrarily. Surrogate keys don’t have
to change, as their only meaning is within the context of the table itself.

The next few recipes will demonstrate methods for generating and managing surrogate keys
using IDENTITY property columns and uniqueidentifier data type columns.

The IDENTITY column property allows you to define an automatically incrementing numeric
value for a single column in a table. An IDENTITY column is most often used for surrogate primary
key columns, as they are more compact than non-numeric data type natural keys. When a new row
is inserted into a table with an IDENTITY column property, the column is inserted with a unique
incremented value. The data type for an IDENTITY column can be int, tinyint, smallint, bigint,
decimal, or numeric. Tables may only have one identity column defined, and the defined IDENTITY
column can’t have a DEFAULT or rule settings associated with it.

The basic syntax for an IDENTITY property column is as follows:

[IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]]

The IDENTITY property takes two values: seed and increment. seed defines the starting number
for the IDENTITY column, and increment defines the value added to the previous IDENTITY column
value to get the value for the next row added to the table. The default for both seed and increment is
1. The NOT FOR REPLICATION option preserves the original values of the publisher IDENTITY column
data when replicated to the subscriber, retaining any values referenced by foreign key constraints
(preventing the break of relationships between tables that may use the IDENTITY column as a pri-
mary key and foreign key reference).

Unlike the IDENTITY column, which guarantees uniqueness within the defined table, the
ROWGUIDCOL property ensures a very high level of uniqueness (Microsoft claims that it can be unique
for every database networked in the world). This is important for those applications that merge
data from multiple sources, where the unique values cannot be duplicated across tables. This
unique ID is stored in a uniqueidentifier data type and is generated by the NEWID system function.
The ROWGUIDCOL is a marker designated in a column definition, allowing you to query a table not
only by the column’s name, but also by the ROWGUIDCOL designator, as this recipe demonstrates.

Which surrogate key data type is preferred? Although using a uniqueidentifier data type with
a NEWID value for a primary key may be more unique, it takes up more space than an integer-based
IDENTITY column. If you only care about unique values within the table, you may be better off using
an integer surrogate key, particularly for very large tables. However, if uniqueness is an absolute
requirement, with the expectation that you may be merging data sources in the future,
uniqueidentifier with NEWID may be your best choice.

The next set of recipes will demonstrate IDENTITY and ROWGUIDCOL properties in action.

Using the IDENTITY Property During Table Creation
In this example, I’ll demonstrate how to create a new table with a primary key IDENTITY column.
The IDENTITY keyword is placed after the nullability option but before the PRIMARY KEY keywords:

CREATE TABLE HumanResources.CompanyAuditHistory
(CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY,
CompanyID int NOT NULL ,
AuditReasonDESC varchar(50) NOT NULL,
AuditDT datetime NOT NULL DEFAULT GETDATE())

CHAPTER 4 ■ TABLES 165

9802CH04.qxd 4/22/08 3:47 PM Page 165

Two rows are inserted into the new table:

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)
VALUES
(1, 'Bad 1099 numbers.', '6/1/2009')

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)
VALUES
(1, 'Missing financial statement.', '7/1/2009')

Even though the CompanyAuditHistory column wasn’t explicitly populated with the two inserts,
querying the table shows that the IDENTITY property on the column caused the values to be popu-
lated:

SELECT CompanyAuditHistory, AuditReasonDESC
FROM HumanResources.CompanyAuditHistory

This returns

CompanyAuditHistory AuditReasonDESC
1 Bad 1099 numbers.
2 Missing financial statement.

How It Works
In this example, an IDENTITY column was defined for a new table. The IDENTITY property was desig-
nated after the column definition, but before the PRIMARY KEY definition:

CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY

After creating the table, two rows were inserted without explicitly inserting the
CompanyAuditHistory column value. After selecting from the table, these two rows were automati-
cally assigned values based on the IDENTITY property, beginning with a seed value of 1, and
incrementing by 1 for each new row.

Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed Values
In this recipe, I’ll show you how to check the current IDENTITY value of a column for a table by using
the DBCC CHECKIDENT command. DBCC CHECKIDENT checks the current maximum value for the speci-
fied table. The syntax for this command is as follows:

DBCC CHECKIDENT
('table_name' [, {NORESEED | { RESEED [, new_reseed_value] }}])
[WITH NO_INFOMSGS]

Table 4-10 details the arguments of this command.

CHAPTER 4 ■ TABLES166

9802CH04.qxd 4/22/08 3:47 PM Page 166

Table 4-10. CHECKIDENT Arguments

Argument Description

table_name This indicates the name of the table to check IDENTITY values for.

NORESEED | RESEED NORESEED means that no action is taken other than to report the maximum
identity value. RESEED specifies what the current IDENTITY value should be.

new_reseed_value This specifies the new current IDENTITY value.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

In this example, the current table IDENTITY value is checked:

DBCC CHECKIDENT('HumanResources.CompanyAuditHistory', NORESEED)

This returns

Checking identity information: current identity value '2',
current column value '2'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

This second example resets the seed value to a higher number:

DBCC CHECKIDENT ('HumanResources.CompanyAuditHistory', RESEED, 50)

This returns

Checking identity information: current identity value '2',
current column value '50'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
The first example demonstrated checking the current IDENTITY value using the DBCC CHECKIDENT and
the NORESEED option. The second example demonstrated actually resetting the IDENTITY value to a
higher value. Any future inserts will begin from that value.

Why make such a change? DBCC CHECKIDENT with RESEED is often used to fill primary key gaps. If
you deleted rows from the table that had the highest value for the IDENTITY column, the used iden-
tity values will not be reused the next time records are inserted into the table. For example, if the
last row inserted had a value of 22, and you deleted that row, the next inserted row would be 23. Just
because the value is deleted doesn’t mean the SQL Server will backfill the gap. If you need to reuse
key values (which is generally OK to do in the test phase of your database—in production you really
shouldn’t reuse primary key values), you can use DBCC CHECKIDENT to reuse numbers after a large
row deletion.

CHAPTER 4 ■ TABLES 167

9802CH04.qxd 4/22/08 3:47 PM Page 167

Using the ROWGUIDCOL Property
First, a table is created using ROWGUIDCOL, identified after the column data type definition but before
the default definition (populated via the NEWID system function):

CREATE TABLE HumanResources.BuildingAccess
(BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),
EmployeeID int NOT NULL,
AccessTime datetime NOT NULL,
DoorID int NOT NULL)

Next, a row is inserted into the table:

INSERT HumanResources.BuildingAccess
(EmployeeID, AccessTime, DoorID)
VALUES (32, GETDATE(), 2)

The table is then queried, using the ROWGUIDCOL designator instead of the original
BuildingEntryExitID column name (although the original name can be used too—ROWGUIDCOL
just offers a more generic means of pulling out the identifier in a query):

SELECT ROWGUIDCOL,
EmployeeID,
AccessTime,
DoorID

FROM HumanResources.BuildingAccess

This returns

BuildingEntryExitID EmployeeID AccessTime DoorID
92ED29C7-6CE4-479B-8E47-30F6D7B2AD4F 32 2008-09-15 16:45:04.553 2

How It Works
The recipe started by creating a new table with a uniqueidentifier data type column:

BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),

The column was bound to a default of the function NEWID—which returns a uniqueidentifier
data type value. In addition to this, the ROWGUIDCOL property was assigned. Only one ROWGUIDCOL col-
umn can be defined for a table. You can still, however, have multiple uniqueidentifier columns in
the table.

A SELECT query then used ROWGUIDCOL to return the uniqueidentifier column, although the col-
umn name could have been used instead.

Constraints
Constraints are used by SQL Server to enforce column data integrity. Both primary and foreign keys
are forms of constraints. Other forms of constraints used for a column include the following:

• UNIQUE constraints, which enforce uniqueness within a table on non-primary key columns

• DEFAULT constraints, which can be used when you don’t know the value of a column in a row
when it is first inserted into a table, but still wish to populate that column with an antici-
pated value

• CHECK constraints, which are used to define the data format and values allowed for a column

CHAPTER 4 ■ TABLES168

9802CH04.qxd 4/22/08 3:47 PM Page 168

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The next few recipes will discuss how to create and manage these constraint types.

Creating a Unique Constraint
You can only have a single primary key defined on a table. If you wish to enforce uniqueness on
other non-primary key columns, you can use a UNIQUE constraint. A unique constraint, by defini-
tion, creates an alternate key. Unlike a PRIMARY KEY constraint, you can create multiple UNIQUE
constraints for a single table and are also allowed to designate a UNIQUE constraint for columns that
allow NULL values (although only one NULL value is allowed for a single-column key per table). Like
primary keys, UNIQUE constraints enforce entity integrity by ensuring that rows can be uniquely
identified.

The UNIQUE constraint creates an underlying table index when it is created. This index can be
CLUSTERED or NONCLUSTERED, although you can’t create the index as CLUSTERED if a clustered index
already exists for the table.

As with PRIMARY KEY constraints, you can define a UNIQUE constraint when a table is created
either on the column definition or at the table constraint level. The syntax for defining a UNIQUE
constraint during a table’s creation is as follows:

(column_name <data_type> [NULL | NOT NULL] UNIQUE)

This example demonstrates creating a table with both a PRIMARY KEY and UNIQUE key defined:

CREATE TABLE HumanResources.EmployeeAnnualReview(
EmployeeAnnualReviewID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE)

You can apply a unique constraint across multiple columns by creating a table constraint:

CONSTRAINT constraint_name UNIQUE
(column [ASC | DESC] [,...n])

Table 4-11 details the arguments of this command.

Table 4-11. UNIQUE Constraint Arguments

Argument Description

constraint_name This specifies the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify a
single row in the table (i.e., no two rows can have the same
values for all the specified columns). The ASC (ascending)
and DESC (descending) options define the sorting order of
the columns within the clustered or nonclustered index.

In this example, a new table is created with a UNIQUE constraint based on three table columns:

-- Drop the old version of the table
DROP TABLE Person.EmergencyContact

CREATE TABLE Person.EmergencyContact (
EmergencyContactID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
ContactFirstNM varchar(50) NOT NULL,
ContactLastNM varchar(50) NOT NULL,

CHAPTER 4 ■ TABLES 169

9802CH04.qxd 4/22/08 3:47 PM Page 169

ContactPhoneNBR varchar(25) NOT NULL,
CONSTRAINT UNQ_EmergencyContact_FirstNM_LastNM_PhoneNBR
UNIQUE (ContactFirstNM, ContactLastNM, ContactPhoneNBR))

How It Works
In the first example, a UNIQUE constraint was defined in the CREATE TABLE for a specific column:

AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE

The UNIQUE keyword follows the column definition and indicates that a UNIQUE constraint is to
be created on the column AnnualReviewSummaryDESC.

In the second example, a UNIQUE constraint is created based on three table columns defined in
CREATE TABLE. The constraint is defined after the column definitions. The first line of code defines
the constraint name:

CONSTRAINT UNQ_EmergencyContact_FirstNM_LastNM_PhoneNBR

The second line of code defines the constraint type (UNIQUE) and a list of columns that make up
the constraint in parentheses:

UNIQUE (ContactFirstNM, ContactLastNM, ContactPhoneNBR)

Adding a UNIQUE Constraint to an Existing Table
Using ALTER TABLE, you can add a UNIQUE constraint to an existing table. The syntax is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
UNIQUE (column [ASC | DESC] [,...n])

Table 4-12 details the arguments of this command.

Table 4-12. ALTER TABLE...ADD CONSTRAINT (Unique) Arguments

Argument Description

table_name This specifies the name of the table receiving the new
unique key index.

constraint_name This indicates the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify a
single row in the table (i.e., no two rows can have the same
values for all the specified columns). The ASC (ascending)
and DESC (descending) options define the sorting order of
the columns within the clustered or nonclustered index.

This example demonstrates adding a UNIQUE key to the Production.Culture table:

ALTER TABLE Production.Culture
ADD CONSTRAINT UNQ_Culture_Name
UNIQUE (Name)

CHAPTER 4 ■ TABLES170

9802CH04.qxd 4/22/08 3:47 PM Page 170

How It Works
In this example, the first line of code defined the table to be modified:

ALTER TABLE Production.Culture

The second line of code defined the name of the constraint:

ADD CONSTRAINT UNQ_Culture_Name

The third line of code defined the constraint type, followed by the column name it will apply to:

UNIQUE (Name)

The columns specified in the UNIQUE constraint definition can’t have duplicate values occurring
in the table; otherwise, the operation will fail with an error that a duplicate key value was found.

Using CHECK Constraints
The CHECK constraint is used to define what format and values are allowed for a column. The syntax
of the CHECK constraint is as follows:

CHECK (logical_expression)

If the logical expression of CHECK evaluates to TRUE, the row will be inserted. If the CHECK con-
straint expression evaluates to FALSE, the row insert will fail. This example demonstrates adding a
CHECK constraint to a CREATE TABLE definition. The GPA column’s values will be restricted to a specific
numeric range:

-- Drop old version of the table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NULL,
GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0))

In the previous example, the CHECK constraint expression was defined at the column constraint
level. A CHECK constraint can also be defined at the table constraint level—where you are allowed to
reference multiple columns in the expression, as this next example demonstrates:

-- Drop old version of the table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NULL,
GPA numeric(4,3) NOT NULL,
CONSTRAINT CK_EmployeeEducationType
CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0))

How It Works
In the first example, a CHECK column constraint was placed against the GPA column in the Person.
EmployeeEducationType table:

GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0)

CHAPTER 4 ■ TABLES 171

9802CH04.qxd 4/22/08 3:47 PM Page 171

Only a GPA column value greater than 2.5 or less than/equal to 4.0 is allowed in the table—
anything else out of that range will cause any INSERT or UPDATE to fail.

In the second example, the CHECK table constraint evaluated two table columns:

CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0)

This CHECK constraint requires that the EducationTypeID value be greater than 1, in addition to
the GPA requirements.

Adding a CHECK Constraint to an Existing Table
Like other constraint types, you can add a CHECK constraint to an existing table using ALTER TABLE
and ADD CONSTRAINT. The syntax is as follows:

ALTER TABLE table_name
WITH CHECK | WITH NOCHECK
ADD CONSTRAINT constraint_name
CHECK (logical_expression)

Table 4-13 details the arguments of this command.

Table 4-13. ALTER TABLE...ADD CONSTRAINT (Check) Arguments

Argument Description

table_name This specifies the name of the table receiving the new CHECK constraint.

CHECK | WITH NOCHECK With the CHECK option (the default), existing data is validated against
the new CHECK constraint. NOCHECK skips validation of new data, limiting
the constraint to validation of new values (inserted or updated).

constraint_name This defines the name of the CHECK constraint.

logical_expression This specifies the logical expression to use to restrict values that are
allowed in the column.

In this example, a new CHECK request is added to the Person.ContactType table:

ALTER TABLE Person.ContactType WITH NOCHECK
ADD CONSTRAINT CK_ContactType
CHECK (Name NOT LIKE '%assistant%')

How It Works
A new constraint was added to the Person.ContactType table to not allow any name like “assistant.”
The first part of the ALTER TABLE statement included WITH NOCHECK:

ALTER TABLE Person.ContactType WITH NOCHECK

Had this statement been executed without WITH NOCHECK, it would have failed because there
are already rows in the table with “assistant” in the name. Adding WITH NOCHECK means that existing
values are ignored going forward, and only new values are validated against the CHECK constraint.

■Caution Using WITH NOCHECK may cause problems later on, as you cannot depend on the data in the table
conforming to the constraint.

CHAPTER 4 ■ TABLES172

9802CH04.qxd 4/22/08 3:47 PM Page 172

The next part of the statement defined the new constraint name:

ADD CONSTRAINT CK_ContactType

The constraint type CHECK was used followed by the logical expression to limit the Name col-
umn’s contents:

CHECK (Name NOT LIKE '%assistant%')

Disabling and Enabling a Constraint
The previous exercise demonstrated using NOCHECK to ignore existing values that disobey the new
constraints rule when adding a new constraint to the table. Constraints are used to maintain data
integrity, although sometimes you may need to relax the rules while performing a one-off data
import or non-standard business operation. NOCHECK can also be used to disable a CHECK or FOREIGN
KEY constraint, allowing you to insert rows that disobey the constraints rules.

In the setup of this example, an insert is attempted to the Sales.PersonCreditCard table:

INSERT Sales.PersonCreditCard
(BusinessEntityID, CreditCardID)
VALUES (14425, 924533)

The insert fails, returning the following error message:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY constraint
"FK_PersonCreditCard_CreditCard_CreditCardID". The conflict occurred in database
"AdventureWorks", table "Sales.CreditCard", column 'CreditCardID'.
The statement has been terminated.

Next, the foreign key constraint that caused the previous error message will be disabled using
NOCHECK:

ALTER TABLE Sales.PersonCreditCard
NOCHECK CONSTRAINT FK_PersonCreditCard_CreditCard_CreditCardID

The insert is then attempted again:

INSERT Sales.PersonCreditCard
(BusinessEntityID, CreditCardID)
VALUES (14425, 924533)

This time it succeeds:

(1 row(s) affected)

I can then DELETE the newly inserted row, so as not to leave data integrity issues once the con-
straint is reenabled:

DELETE Sales.PersonCreditCard
WHERE BusinessEntityID = 14425 AND

CreditCardID = 924533

To reenable checking of the foreign key constraint, CHECK is used in an ALTER TABLE statement:

ALTER TABLE Sales.PersonCreditCard
CHECK CONSTRAINT FK_PersonCreditCard_CreditCard_CreditCardID

CHAPTER 4 ■ TABLES 173

9802CH04.qxd 4/22/08 3:47 PM Page 173

To disable or enable all CHECK and FOREIGN KEY constraints for the table, you should use the ALL
keyword, as this example demonstrates:

-- disable checking on all constraints
ALTER TABLE Sales.PersonCreditCard
NOCHECK CONSTRAINT ALL

-- enable checking on all constraints
ALTER TABLE Sales.PersonCreditCard
CHECK CONSTRAINT ALL

■Caution Disabling all CHECK and FOREIGN KEY constraints for a table should only be performed when
absolutely necessary. Reenable all constraints when you are finished.

How It Works
In this recipe, an insert was attempted against Sales.PersonCreditCard with a CreditCardID that
didn’t exist in the primary key table. The insert causes a conflict with the FK_PersonCreditCard_
CreditCard_CreditCardID foreign key constraint.

To disable the constraint from validating new values, ALTER TABLE and NOCHECK CONSTRAINT
were used. After disabling the constraint with NOCHECK, the CreditCardID value was then allowed to
be inserted, even though it doesn’t exist in the primary key table. The scenario was completed by
reenabling the constraint again and deleting the value just inserted.

The next example demonstrated disabling all foreign key and check constraints on a table
using the ALL keyword:

NOCHECK CONSTRAINT ALL

All constraints for the table were then reenabled using the following code:

CHECK CONSTRAINT ALL

Using a DEFAULT Constraint During Table Creation
If you don’t know the value of a column in a row when it is first inserted into a table, you can use a
DEFAULT constraint to populate that column with an anticipated or non-NULL value. The syntax for
designating the default value in the column definition of a CREATE TABLE is as follows:

DEFAULT constant_expression

The constant_expression is the default value you wish to populate into the column when the
column’s value isn’t explicitly specified in an INSERT. This example demonstrates setting the default
value of the EducationTypeID column to 1:

-- Drop old table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,
EducationTypeID int NOT NULL DEFAULT 1,
GPA numeric(4,3) NOT NULL)

CHAPTER 4 ■ TABLES174

9802CH04.qxd 4/22/08 3:47 PM Page 174

How It Works
In this example, the default value of EducationTypeID was set to a default of 1. The keyword DEFAULT
was placed after the column definition and followed by the default value (which must match the
data type of the column):

EducationTypeID int NOT NULL DEFAULT 1

Since this column has a DEFAULT value, if the value isn’t explicitly inserted with an INSERT state-
ment, the value 1 will be inserted instead of a NULL value.

Adding a DEFAULT Constraint to an Existing Table
Like other constraint types, you can add a default constraint to an existing table column using ALTER
TABLE and ADD CONSTRAINT. The syntax for doing this is as follows:

ALTER TABLE table_name
ADD CONSTRAINT constraint_name
DEFAULT default_value
FOR column_name

Table 4-14 details the arguments of this command.

Table 4-14. ALTER TABLE...ADD CONSTRAINT (Default) Arguments

Argument Description

table_name The name of the table receiving the new DEFAULT constraint

constraint_name The name of the DEFAULT constraint

default_value The default value to be used for the column

column_name The name of the column the default is being applied to

This example demonstrates adding a default to an existing table column:

ALTER TABLE HumanResources.Company
ADD CONSTRAINT DF_Company_ParentCompanyID
DEFAULT 1 FOR ParentCompanyID

How It Works
In this example, a new default was applied to an existing table column. The first line of ALTER TABLE
defined the impacted table:

ALTER TABLE HumanResources.Company

The second line of the statement added a constraint and defined the constraint name:

ADD CONSTRAINT DF_Company_ParentCompanyID

The third line of code defined the constraint type, DEFAULT, followed by the value to use for the
default:

DEFAULT 1

Lastly, the column that the default was applied to was used in the FOR clause:

FOR ParentCompanyID

CHAPTER 4 ■ TABLES 175

9802CH04.qxd 4/22/08 3:47 PM Page 175

Dropping a Constraint from a Table
Now that I’ve reviewed several constraints that can be added to a table, in this recipe I’ll demon-
strate how to now drop a constraint using ALTER TABLE and DROP CONSTRAINT. The basic syntax for
dropping a constraint is as follows:

ALTER TABLE table_name
DROP CONSTRAINT constraint_name

The table_name designates the table you are dropping the constraint from, and the constraint_
name designates the name of the constraint to be dropped. In this example, a default constraint is
dropped from the HumanResources.Company table:

ALTER TABLE HumanResources.Company
DROP CONSTRAINT DF_Company_ParentCompanyID

How It Works
In the first line of code in this example, the table to drop the constraint from was designated:

ALTER TABLE HumanResources.Company

In the second line of code, the name of the constraint to drop was designated:

DROP CONSTRAINT DF_Company_ParentCompanyID

Notice that the constraint type wasn’t needed, and that only the constraint name was used. To
find out the constraints present on a table, use the sp_help system stored procedure.

Temporary Tables and Table Variables
Temporary tables are defined just like regular tables, only they are automatically stored in the
tempdb database (no matter which database context you create them in). Temporary tables are often
used in the following scenarios:

• As an alternative to cursors: For example, instead of using a Transact-SQL cursor to loop
through a result set, performing tasks based on each row, you can populate a temporary
table instead. Using a WHILE loop, you can loop through each row in the table, perform the
action for the specified row, and then delete the row from the temp table.

• As an incremental storage of result sets: For example, let’s say you have a single SELECT query
that performs a join against ten tables. Sometimes queries with several joins can perform
badly. One technique to try is to break down the large query into smaller, incremental
queries. Using temporary tables, you can create intermediate result sets based on smaller
queries, instead of trying to execute a single, very large, multi-joined query.

• As a temporary, low-overhead lookup table: For example, imagine that you are using a query
that takes several seconds to execute but only returns a small result set. You wish to use the
small result set in several areas of your stored procedure, but each time you reference it, you
incur the query execution time overhead. To resolve this, you can execute the query just
once within the procedure, populating the temporary table. Then you can reference the tem-
porary table in multiple places in your code, without incurring the extra overhead.

There are two different temporary table types: global and local. Local temporary tables are pre-
fixed with a single # sign, and global temporary tables with a double ## sign.

CHAPTER 4 ■ TABLES176

9802CH04.qxd 4/22/08 3:47 PM Page 176

Local temporary tables are available for use by the current user connection that created them.
Multiple connections can create the same-named temporary table for local temporary tables with-
out encountering conflicts. The internal representation of the local table is given a unique name, so
as not to conflict with other temporary tables with the same name created by other connections in
the tempdb database. Local temporary tables are dropped by using the DROP statement or are auto-
matically removed from memory when the user connection is closed.

Global temporary tables have a different scope from local temporary tables. Once a connection
creates a global temporary table, any user with proper permissions to the current database he is in
can access the table. Unlike local temporary tables, you can’t create simultaneous versions of a
global temporary table, as this will generate a naming conflict. Global temporary tables are removed
from SQL Server if explicitly dropped by DROP TABLE. They are also automatically removed after the
connection that created it disconnects and the global temporary table is no longer referenced by
other connections. As an aside, I rarely see global temporary tables used in the field. When a table
must be shared across connections, a real table is created, instead of a global temporary table.
Nonetheless, SQL Server offers this as a choice.

Temporary tables are much maligned by the DBA community due to performance issues—
some of these complaints are valid, and some aren’t. It is true that temporary tables may cause
unwanted disk overhead in tempdb, locking of tempdb during their creation, as well as stored proce-
dure recompilations, when included within a stored procedure’s definition (a recompilation is when
an execution plan of the stored procedure is re-created instead of reused).

A table variable is a data type that can be used within a Transact-SQL batch, stored procedure,
or function—and is created and defined similarly to a table, only with a strictly defined lifetime
scope. Table variables are often good replacements of temporary tables when the data set is small.
Statistics are not maintained for table variables like they are for regular or temporary tables, so
using too large a table variable may cause query optimization issues. Unlike regular tables or tem-
porary tables, table variables can’t have indexes or FOREIGN KEY constraints added to them. Table
variables do allow some constraints to be used in the table definition (PRIMARY KEY, UNIQUE, CHECK).

Reasons to use table variables include the following:

• Well scoped. The lifetime of the table variable only lasts for the duration of the batch, func-
tion, or stored procedure.

• Shorter locking periods (because of the tighter scope).

• Less recompilation when used in stored procedures.

As stated earlier, there are drawbacks to using table variables. Table variable performance suf-
fers when the result set becomes too large or when column data cardinality is critical to the query
optimization process. When encountering performance issues, be sure to test all alternative solu-
tions, and don’t necessarily assume that one option (temporary tables) is less desirable than others
(table variables).

Using a Temporary Table for Multiple Lookups Within a Batch
In this example, I’ll demonstrate creating a local temporary table that is then referenced multiple
times in a batch of queries. This technique can be helpful if the query used to generate the lookup
values takes several seconds to execute. Rather than execute the SELECT query multiple times, I can
query the pre-aggregated temp table instead:

CREATE TABLE #ProductCostStatistics
(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

CHAPTER 4 ■ TABLES 177

9802CH04.qxd 4/22/08 3:47 PM Page 177

INSERT #ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,

AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt

FROM Production.ProductCostHistory
GROUP BY ProductID

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost ASC

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost DESC

SELECT AVG(AvgStandardCost) Average_of_AvgStandardCost
FROM #ProductCostStatistics

DROP TABLE #ProductCostStatistics

This returns three result sets from the temporary table:

ProductID AvgStandardCost ProductCount
873 0.8565 1
922 1.4923 1
870 1.8663 1

ProductID AvgStandardCost ProductCount
749 2171.2942 1
750 2171.2942 1
751 2171.2942 1

Average_of_AvgStandardCost
423.0001

How It Works
In this recipe, a temporary table called #ProductCostStatistics was created. The table had rows
inserted into it like a regular table, and then the temporary table was queried three times (again,
just like a regular table), and then dropped. The table was created and queried with the same syntax
as a regular table, only the temporary table name was prefixed with a # sign. In situations where the
initial population query execution time takes too long to execute, this is one technique to consider.

Creating a Table Variable to Hold a Temporary Result Set
Table variables were first demonstrated in Chapter 2, in the “Returning Rows Affected by a Data
Modification Statement” recipe. There you learned to use them to hold the results of the OUTPUT
command.

CHAPTER 4 ■ TABLES178

9802CH04.qxd 4/22/08 3:47 PM Page 178

k

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■Note SQL Server 2008 introduces table-valued parameters and user-defined types, which you can use to pass
temporary result sets between modules. These topics are covered in Chapter 11.

The syntax to creating a table variable is similar to creating a table, only the DECLARE keyword is
used and the table name is prefixed with an @ symbol:

DECLARE @TableName TABLE
(column_name <data_type> [NULL | NOT NULL] [,...n])

In this example, a table variable is used in a similar fashion to the temporary table of the previ-
ous recipe. This example demonstrates how the implementation differs (including how you don’t
explicitly DROP the table):

DECLARE @ProductCostStatistics TABLE
(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

INSERT @ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,

AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt

FROM Production.ProductCostHistory
GROUP BY ProductID

SELECT TOP 3 *
FROM @ProductCostStatistics
ORDER BY ProductCount

This returns

ProductID AvgStandardCost ProductCount
710 3.3963 1
709 3.3963 1
731 352.1394 1

How It Works
This recipe used a table variable in much the same way as the previous recipe did with temporary
tables. There are important distinctions between the two recipes, however.

First, this time a table variable was defined using DECLARE @Tablename TABLE instead of CREATE
TABLE. Secondly, unlike the temporary table recipe, there isn’t a GO after each statement, as tempo-
rary tables can only be scoped within the batch, procedure, or function.

In the next part of the recipe, I used inserts and selects from the table variable as you would a
regular table, only this time using the @tablename format:

INSERT @ProductCostStatistics
...

SELECT TOP 3 *
FROM @ProductCostStatistics
...

CHAPTER 4 ■ TABLES 179

9802CH04.qxd 4/22/08 3:47 PM Page 179

No DROP TABLE was necessary at the end of the example, as the table variable is eliminated from
memory after the end of the batch/procedure/function execution.

Manageability for Very Large Tables
These next few recipes will demonstrate methods for managing very large tables (with millions of
rows, for example). Specifically, I’ll discuss SQL Server table-partitioning functionality, and then
filegroup placement.

Table partitioning provides you with a built-in method of horizontally partitioning data within
a table and/or index while still maintaining a single logical object. Horizontal partitioning involves
keeping the same number of columns in each partition, but reducing the number of rows. Partition-
ing can ease management of very large tables and/or indexes, decrease load time, improve query
time, and allow smaller maintenance windows. These next few recipes in this section will demon-
strate how to use Transact-SQL commands to create, modify, and manage partitions and partition
database objects.

■Tip SQL Server 2008 introduces partitioned table query processing improvements, including partition-aware
seek operations, better visibility of accessed partitions in the execution plan, and the new trace flag 2440, which
enables the assignment of multiple threads of execution per partition in a parallel query plan.

I’ll also cover filegroup placement. Database data files belong to filegroups. Every database has
a primary filegroup, and you can add additional filegroups as needed. Adding new filegroups to a
database is often used for very large databases (VLDB), as they can ease backup administration and
potentially improve performance by distributing data over multiple arrays. I’ll demonstrate placing
a table on a specific filegroup in the last recipe of this chapter.

Before diving into the partitioning-related recipes, I’ll discuss the two new commands CREATE
PARTITION FUNCTION and CREATE PARTITION SCHEME. The CREATE PARTITION FUNCTION maps columns
to partitions based on the value of a specified column. For example, if you are evaluating a column
with a datetime data type, you can partition data to separate filegroups based on the year or month.

The basic syntax for CREATE PARTITION FUNCTION is as follows:

CREATE PARTITION FUNCTION partition_function_name(input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])

Table 4-15 details the arguments of this command.

Table 4-15. CREATE PARTITION FUNCTION Arguments

Argument Description

partition_function_name This specifies the partition function name.

input_parameter_type This indicates the data type of the partitioning column. You
cannot use large value data types (text, ntext, image, xml,
timestamp, varchar(max), varbinary(max), nvarchar(max)), CLR
user-defined data types, or aliased data types. If you wished to
partition table data by a datetime column, you would designate
datetime for the input_parameter_type.

LEFT | RIGHT You also have a choice of LEFT or RIGHT, which defines which
boundary the defined values in the boundary_value argument
belong to (see the upcoming “How It Works” section for a review
of LEFT versus RIGHT).

CHAPTER 4 ■ TABLES180

9802CH04.qxd 4/22/08 3:47 PM Page 180

Argument Description

[boundary_value [,...n]] This argument defines the range of values in each partition.
You can define up to 999 partitions (however, that many isn’t
recommended due to potential performance concerns). The
number of values you choose in this argument amounts to a
total of n + 1 partitions (again, see the upcoming “How It Works”
section for a more in-depth explanation).

Once a partition function is created, it can be used with one or more partition schemes.
A partition scheme maps partitions defined in a partition function to actual filegroups.

The basic syntax for CREATE PARTITION SCHEME is as follows:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])

Table 4-16 details the arguments of this command.

Table 4-16. CREATE PARTITION SCHEME Arguments

Argument Description

partition_scheme_name This specifies the name of the partition scheme.

partition_function_name This indicates the name of the partition function
that the scheme will bind to.

ALL If ALL is designated, all partitions will map to the
filegroup designated in the file_group_name
argument.

{ file_group_name | [PRIMARY] } [,...n] This defines the filegroup or filegroups assigned to
each partition. When PRIMARY is designated, the
partition will be stored on the primary filegroup.

Implementing Table Partitioning
In this recipe, I’ll demonstrate how to

• Create a filegroup or filegroups to hold the partitions.

• Add files to each filegroup used in the partitioning.

• Use the CREATE PARTITION FUNCTION command to determine how the table’s data will be
partitioned.

• Use the CREATE PARTITION SCHEME command to bind the PARTITION FUNCTION to the specified
filegroups.

• Create the table, binding a specific partitioning column to a PARTITION SCHEME.

The recipe creates a table called Sales.WebSiteHits, which is used to track each hit to a hypo-
thetical web site. In this scenario, the table is expected to grow large quickly. Because of the
potential size, queries may not perform as well as they could, and backup operations against the
entire database take longer than the current maintenance window allows.

To address this application scenario, the data from this table will be partitioned horizontally,
which means that groups of rows based on a selected column (in this case HitDate) will be mapped

CHAPTER 4 ■ TABLES 181

9802CH04.qxd 4/22/08 3:47 PM Page 181

into separate underlying physical files on the disk. The first part of this example demonstrates
adding the new filegroups to the AdventureWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg1

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg2

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg3

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg4

Next, for each new filegroup created, a new database file is added to it:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg1,

FILENAME = 'c:\Apress\aw_hitfg1.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfg1
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg2,

FILENAME = 'c:\Apress\aw_hitfg2.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfg2
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg3,

FILENAME = 'c:\Apress\aw_hitfg3.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfg3
GO

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = awhitfg4,

FILENAME = 'c:\Apress\aw_hitfg4.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfg4
GO

Now that the filegroups are ready for their partitioned data, the partition function will be
created, which determines how the table will have its data horizontally partitioned (in this case, by
date range):

CHAPTER 4 ■ TABLES182

9802CH04.qxd 4/22/08 3:47 PM Page 182

CREATE PARTITION FUNCTION HitDateRange (datetime)
AS RANGE LEFT FOR VALUES ('1/1/2006', '1/1/2007', '1/1/2008')
GO

After creating the partition function, I create the partition scheme in order to bind the partition
function to the new filegroups:

CREATE PARTITION SCHEME HitDateRangeScheme
AS PARTITION HitDateRange
TO (hitfg1, hitfg2, hitfg3, hitfg4)

Lastly, I create a table that uses the partition scheme on the HitDate column in the ON clause of
the CREATE TABLE statement:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHits
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

How It Works
In the first part of the recipe, four new filegroups were added to the AdventureWorks database. After
that, a database file was added to each filegroup.

Next, a partition function was created that defined the partition boundaries for the partition
function and the expected partition column data type. On the first line of the CREATE PARTITION
FUNCTION command, the datetime data type was selected:

CREATE PARTITION FUNCTION HitDateRange (datetime)

The next line defined the ranges for values for the partition function, creating partitions
by year:

AS RANGE LEFT FOR VALUES ('1/1/2006', '1/1/2007', '1/1/2008')

You can define up to 999 partitions (however, that many isn’t recommended due to potential
performance concerns). The number of values you choose amounts to a total of n + 1 partitions. You
also have a choice of LEFT or RIGHT, which defines the boundary that the defined values belong to. In
this recipe, LEFT was chosen. Table 4-17 shows the partition boundaries (or partitions where rows
will be placed) in this case.

Table 4-17. LEFT Boundaries

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2007 00:00:00

3 1/1/2007 00:00:01 1/1/2008 00:00:00

4 1/1/2008 00:00:01 Highest allowed datetime

Had RIGHT been chosen instead, the partition boundaries would have been as shown in
Table 4-18.

CHAPTER 4 ■ TABLES 183

9802CH04.qxd 4/22/08 3:47 PM Page 183

Table 4-18. RIGHT Boundaries

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 12/31/2005 12:59:59

2 1/1/2006 00:00:00 12/31/2006 12:59:59

3 1/1/2007 00:00:00 12/31/2007 12:59:59

4 1/1/2008 00:00:00 Highest allowed datetime

Once a partition function is created, it can be used with one or more partition schemes. A par-
tition scheme maps the partitions defined in a partition function to actual filegroups. The first line
of the new partition scheme defined the partition scheme name:

CREATE PARTITION SCHEME HitDateRangeScheme

The second line of code defined the partition function of the partition scheme it is bound to
(the function created in the previous step):

AS PARTITION HitDateRange

The TO clause defines which filegroups map to the four partitions defined in the partition func-
tion, in order of partition sequence:

TO (hitfg1, hitfg2, hitfg3, hitfg4)

After a partition scheme is created, it can then be bound to a table. In the CREATE TABLE state-
ment’s ON clause (last row of the table definition), the partition scheme is designated with the
column to partition in parentheses:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHits
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

Notice that the primary key is made up of both the WebSiteHitID and HitDate. The partitioned
key column (HitDate) must be part of the primary key.

The Sales.WebSiteHits table is now partitioned—and can be worked with just like a single reg-
ular table. You needn’t do anything special to your SELECT, INSERT, UPDATE, or DELETE statements. In
the background, as data is added, rows are inserted into the appropriate filegroups based on the
partition function and scheme.

Determining the Location of Data in a Partition
Because partitioning happens in the background, you don’t actually query the individual partitions
directly. In order to determine which partition a row belongs to, you can use the $PARTITION func-
tion.

The syntax for $PARTITION is as follows:

$PARTITION.partition_function_name(expression)

Table 4-19 details the arguments of this command.

CHAPTER 4 ■ TABLES184

9802CH04.qxd 4/22/08 3:47 PM Page 184

Table 4-19. $PARTITION Function Arguments

Argument Description

partition_function_name The name of the partition function used to partition the table

expression The column used as the partitioning key

This example demonstrates how to use this function. To begin with, four rows are inserted into
the Sales.WebSiteHits partitioned table:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Home Page', '10/22/2007')

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Home Page', '10/2/2006')

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '5/9/2008')

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2000')

The table is then queried using SELECT and the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

This returns

HitDate Partition
2000-03-04 00:00:00.000 1
2006-10-02 00:00:00.000 2
2007-10-22 00:00:00.000 3
2008-05-09 00:00:00.000 4

How It Works
The recipe started out by inserting four rows into the partitioned Sales.WebSiteHits table. Each
insert is for a row with a different HitDate year (in order to demonstrate the function).

Next, a query was executed against the table using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

The partition_function_name is the name of the function created in the last recipe. The expres-
sion in parentheses is the HitDate, which is the column used to partition the data.

The $PARTITION function evaluates each HitDate and determines what partition it is stored in
based on the partition function. This allows you to see how data is distributed across the different
partitions. If one partition is uneven with the rest, you can explore creating or removing existing
partitions—both functions of which are demonstrated next.

CHAPTER 4 ■ TABLES 185

9802CH04.qxd 4/22/08 3:47 PM Page 185

Adding a New Partition
Over time, you may decide that your partitioned table needs additional partitions (for example, you
can create a new partition for each new year). To add a new partition, the ALTER PARTITION SCHEME
and ALTER PARTITION FUNCTION commands are used.

Before a new partition can be created on an existing partition function, you must first prepare a
filegroup for use in holding the new partition data (a new or already used filegroup can be used).
The first step is designating the next partition filegroup to use with ALTER PARTITION SCHEME.

The syntax for ALTER PARTITION SCHEME is as follows:

ALTER PARTITION SCHEME partition_scheme_name
NEXT USED [filegroup_name]

Table 4-20 details the arguments of this command.

Table 4-20. ALTER PARTITION SCHEME Arguments

Argument Description

partition_scheme_name This specifies the name of the partition scheme to modify.

NEXT USED [filegroup_name] The NEXT USED keywords queues the next filegroup to be used by
any new partition.

After adding a reference to the next filegroup, ALTER PARTITION FUNCTION is used to create
(split) the new partition (and also remove/merge a partition). The syntax for ALTER PARTITION
FUNCTION is as follows:

ALTER PARTITION FUNCTION partition_function_name()
{

SPLIT RANGE (boundary_value)
| MERGE RANGE (boundary_value)

}

Table 4-21 details the arguments of this command.

Table 4-21. ALTER PARTITION FUNCTION Arguments

Argument Description

partition_function_name This specifies the name of the partition function to add or
remove a partition from.

SPLIT RANGE (boundary_value) | SPLIT RANGE is used to create a new partition by defining
MERGE RANGE (boundary_value) a new boundary value. MERGE RANGE is used to remove an

existing partition.

This example demonstrates how to create (split) a new partition. The first step is creating a new
filegroup to be used by the new partition. In this example, the PRIMARY filegroup is used:

ALTER PARTITION SCHEME HitDateRangeScheme
NEXT USED [PRIMARY]

Next, the partition function is modified to create a new partition, defining a boundary of
January 1, 2009:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2009')

CHAPTER 4 ■ TABLES186

9802CH04.qxd 4/22/08 3:47 PM Page 186

After the new partition is created, a new row is inserted to test the new partition:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2009')

The table is queried using $PARTITION:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

This shows the newly inserted row has been stored in the new partition (partition number 5):

HitDate Partition
2000-03-04 00:00:00.000 1
2006-10-02 00:00:00.000 2
2007-10-22 00:00:00.000 3
2008-05-09 00:00:00.000 4
2009-03-04 00:00:00.000 5

How It Works
In this recipe’s example, the HitDateRangeScheme was altered using ALTER PARTITION SCHEME and the
NEXT USED keywords. The NEXT USED keywords queue the next filegroup to be used by any new parti-
tion. In this example, the default PRIMARY filegroup was selected as the destination for the new
partition:

ALTER PARTITION SCHEME HitDateRangeScheme
NEXT USED [PRIMARY]

ALTER PARTITION FUNCTION was then used with SPLIT RANGE in order to add a new partition
boundary:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2006')

Only one value was used to add the new partition, which essentially splits an existing partition
range into two, using the original boundary type (LEFT or RIGHT). You can only use SPLIT RANGE for a
single split at a time—and you can’t add multiple partitions in a statement.

This example’s split added a new partition, partition 5, as shown in Table 4-22.

Table 4-22. New Partition Layout

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2007 00:00:00

3 1/1/2007 00:00:01 1/1/2008 00:00:00

4 1/1/2008 00:00:01 1/1/2009 00:00:00

5 1/1/2009 00:00:01 Highest allowed datetime

A new row was inserted into the Sales.WebSiteHits table, which used the partition function. A
query was executed to view the partitions that each row belongs in, and it is confirmed that the new
row was inserted into the fifth partition.

CHAPTER 4 ■ TABLES 187

9802CH04.qxd 4/22/08 3:47 PM Page 187

Removing a Partition
The previous recipe showed the syntax for ALTER PARTITION FUNCTION, including a description of the
MERGE RANGE functionality, which is used to remove an existing partition. Removing a partition
essentially merges two partitions into one, with rows relocating to the resulting merged partition.

This example demonstrates removing the 1/1/2007 partition from the HitDateRange partition
function:

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2007')

Next, the partitioned table is queried using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition

FROM Sales.WebSiteHits

This returns the following results:

HitDate Partition
2000-03-04 00:00:00.000 1
2007-10-22 00:00:00.000 2
2006-10-02 00:00:00.000 2
2008-05-09 00:00:00.000 3
2009-03-04 00:00:00.000 4

How It Works
ALTER PARTITION FUNCTION is used for both splitting and merging partitions. In this case, the MERGE
RANGE keywords were used to eliminate the 1/1/2007 partition boundary:

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2007')

A query was executed to view which rows belong to which partitions. Table 4-23 lists the
boundaries after the MERGE.

Table 4-23. New Partition Layout

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2008 00:00:00

3 1/1/2008 00:00:01 1/1/2009 00:00:00

4 1/1/2009 00:00:01 Highest allowed datetime

Partition 2 now encompasses the data for two years instead of one. You can only merge one
partition per ALTER PARTITION FUNCTION execution, and you can’t convert a partitioned table into a
non-partitioned table using ALTER PARTITION FUNCTION—you can only reduce the number of parti-
tions down to a single partition.

CHAPTER 4 ■ TABLES188

9802CH04.qxd 4/22/08 3:47 PM Page 188

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Moving a Partition to a Different Table
With SQL Server’s partitioning functionality, you can transfer partitions between different tables
with a minimum of effort or overhead. You can transfer partitions between tables using ALTER
TABLE... SWITCH. Transfers can take place in three different ways: switching a partition from a parti-
tioned table to another partitioned table (both needing to be partitioned on the same column),
transferring an entire table from a non-partitioned table to a partitioned table, or moving a parti-
tion from a partitioned table to a non-partitioned table.

■Tip In SQL Server 2005, partitioned tables couldn’t be referenced in a view with schema binding, a restriction
that prevented the use of indexed views. SQL Server 2008 now supports schema binding and partition-aligned
indexed views.

The basic syntax for switching partitions between tables is as follows:

ALTER TABLE tablename
SWITCH [PARTITION source_partition_number_expression]
TO [schema_name.] target_table
[PARTITION target_partition_number_expression]

Table 4-24 details the arguments of this command.

Table 4-24. ALTER TABLE...SWITCH Arguments

Argument Description

tablename The source table to move the partition from

source_partition_number_expression The partition number being relocated

[schema_name.] target_table The target table to receive the partition

partition.target_partition_number_expression The destination partition number

This example demonstrates moving a partition between Sales.WebSiteHits and a new table
called Sales.WebSiteHitsHistory. In the first step, a new table is created to hold historical web site
hit information:

CREATE TABLE Sales.WebSiteHitsHistory
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,
HitDate datetime NOT NULL,
CONSTRAINT PK_WebSiteHitsHistory
PRIMARY KEY (WebSiteHitID, HitDate))
ON [HitDateRangeScheme] (HitDate)

Next, ALTER TABLE is used to move partition 3 from Sales.WebSiteHits to partition 3 of the new
Sales.WebSiteHitsHistory table:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3
TO Sales.WebSiteHitsHistory PARTITION 3

Next, a query is executed using $PARTITION to view the transferred data in the new table:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHitsHistory

CHAPTER 4 ■ TABLES 189

9802CH04.qxd 4/22/08 3:47 PM Page 189

This returns

HitDate Partition
2008-05-09 00:00:00.000 3

How It Works
The first part of the recipe created a new table called Sales.WebSiteHitsHistory and used the same
partition scheme as the Sales.WebSiteHits table.

The source table and partition number to transfer was referenced in the first line of the ALTER
TABLE command:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3

The TO keyword designated the destination table and partition to move the data to:

TO Sales.WebSiteHitsHistory PARTITION 3

Moving partitions between tables is much faster than performing a manual row operation
(INSERT..SELECT, for example) because you aren’t actually moving physical data. Instead, you are
only changing the metadata regarding where the partition is currently stored. Also, keep in mind
that the target partition of any existing table needs to be empty for the destination partition. If it is
a non-partitioned table, it must also be empty.

Removing Partition Functions and Schemes
If you try to drop a partition function or scheme while it is still bound to an existing table or index,
you’ll get an error message. You also can’t directly remove a partition scheme or function while it is
bound to a table (unless you drop the entire table as will be done in this recipe). If you had origi-
nally created the table as a heap (a table without a clustered index), and then created a clustered
index bound to a partition scheme, you can use the CREATE INDEX DROP_EXISTING option (see
Chapter 5) to rebuild the index without the partition scheme reference.

Dropping a partition scheme uses the following syntax:

DROP PARTITION SCHEME partition_scheme_name

This command takes the name of the partition scheme to drop.
Dropping a partition function uses the following syntax:

DROP PARTITION FUNCTION partition_function_name

Again, this command only takes the partition function name that should be dropped.
This example demonstrates how to drop a partition function and scheme, assuming that it is

okay in this scenario to drop the source tables (which oftentimes in a production scenario will not
be acceptable!):

DROP TABLE Sales.WebSiteHitsHistory
DROP TABLE Sales.WebSiteHits

-- Dropping the partition scheme and function
DROP PARTITION SCHEME HitDateRangeScheme
DROP PARTITION FUNCTION HitDateRange

CHAPTER 4 ■ TABLES190

9802CH04.qxd 4/22/08 3:47 PM Page 190

How It Works
This example demonstrated dropping a partition scheme and function; for this example, this
required that the source tables be dropped beforehand. One alternative solution is to copy out the
results to an external table, drop the tables, drop the partition scheme and partition function, and
then rename the tables that you copied the data to. If your goal is just to get the table down to a
single partition, you can merge all partitions, while still keeping the partition scheme and function.
A single partitioned table is functionally equivalent to a regular, non-partitioned table.

Easing VLDB Manageability with Filegroups
Filegroups are often used for very large databases because they can ease backup administration and
potentially improve performance by distributing data over disk LUNs or arrays. When creating a
table, you can specify that it be created on a specific filegroup. For example, if you have a table that
you know will become very large, you can designate that it be created on a specific filegroup.

■Note This recipe includes filegroup techniques and concepts covered in more detail in Chapter 22.

The basic syntax for designating a table’s filegroup is as follows:

CREATE TABLE ...
[ON {filegroup | "default" }]

[{ TEXTIMAGE_ON { filegroup | "default" }]

Table 4-25 details the arguments of this command.

Table 4-25. Arguments for Creating a Table on a Filegroup

Argument Description

filegroup This specifies the name of the filegroup on which the
table will be created.

"DEFAULT" This sets the table to be created on the default
filegroup defined for the database.

TEXTIMAGE_ON { filegroup | "DEFAULT" } This option stores in a separate filegroup the data
from text, ntext, image, xml, varchar(max),
nvarchar(max), and varbinary(max) data types.

This example demonstrates how to place a table on a non-default, user-created filegroup. The
first step involves creating a new filegroup in the AdventureWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP AW_FG2
GO

Next, a new file is added to the filegroup:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = AW_F2,

FILENAME = 'C:\Apress\aw_f2.ndf',
SIZE = 1MB

)
TO FILEGROUP AW_FG2
GO

CHAPTER 4 ■ TABLES 191

9802CH04.qxd 4/22/08 3:47 PM Page 191

I’ll then create a new table on the new filegroup (causing its data to be stored in the new file,
contained within the filegroup):

CREATE TABLE HumanResources.AWCompany(
AWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentAWCompanyID int NULL,
AWCompanyNM varchar(25) NOT NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())

) ON AW_FG2

In the second example, a table is created by specifying that large object data columns be stored
on a separate filegroup (AW_FG2) from the regular data (on the PRIMARY filegroup):

CREATE TABLE HumanResources.EWCompany(
EWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentEWCompanyID int NULL,
EWCompanyName varchar(25) NOT NULL,
HeadQuartersImage varbinary(max) NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())

) ON [PRIMARY]
TEXTIMAGE_ON AW_FG2

How It Works
The recipe started by creating a new filegroup called AW_FG2. This was done using the ALTER
DATABASE command. After that, a new database file was added to the AdventureWorks database,
which was placed into the new filegroup.

CREATE TABLE was then executed normally, only in the last part of the table definition ON AW_FG2
was used in order to place it into the AW_FG2 filegroup:

ON AW_FG2

If an ON filegroup clause isn’t used in a CREATE TABLE, it’s assumed that the table will be placed
on the default filegroup (which, if you haven’t changed it, is called PRIMARY).

If this table becomes very large, and you’ve placed it on its own filegroup, a filegroup backup
can be used to specifically back up the table and any other tables or indexes that are placed in it
(see Chapter 5 for more on placing an index into a filegroup and Chapter 29 for a review of filegroup
backups).

For the second example, a table was created with filegroup options placing regular data on the
PRIMARY filegroup and text/image data on the AW_FG2 filegroup (doing so requires that your table
actually have a large value data type):

ON [PRIMARY]
TEXTIMAGE_ON AW_FG2

Separating out large object data may ease database maintenance and improve performance,
depending on your database design and physical hardware, the types of queries accessing it, and
the location of the file(s) in the filegroup.

Reducing Disk Space Usage with Data Compression
SQL Server 2008 Enterprise Edition and Developer Edition introduce row- and page-level compres-
sion for tables, indexes, and associated partitions.

Row compression applies variable-length storage to numeric data types (for example, int,
bigint, and decimal) and fixed-length types such as money and datetime. Row compression also

CHAPTER 4 ■ TABLES192

9802CH04.qxd 4/22/08 3:47 PM Page 192

applies variable-length format to fixed-character strings and doesn’t store trailing blank characters,
NULL, and 0 values.

Page compression includes row compression, and also adds prefix and dictionary compres-
sion. Prefix compression involves the storage of column prefix values that are stored multiple times
in a column across rows and replaces the redundant prefixes with references to the single value.
Dictionary compression occurs after prefix compression and involves finding repeated data values
anywhere on the data page (not just prefixes) and then replacing the redundancies with a pointer to
the single value.

■Tip Chapter 5 reviews how to use CREATE INDEX and ALTER INDEX to enable compression for nonclustered
indexes.

This recipe will show how to use CREATE TABLE and ALTER TABLE to enable row and page com-
pression. In the first example, I will enable row compression for a new table. To do so, I designate
the DATA_COMPRESSION table option and select either NONE, ROW, or PAGE:

CREATE TABLE dbo.ArchiveJobPosting
(JobPostingID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
CandidateID int NOT NULL,
JobDESC char(2000) NOT NULL
)
WITH (DATA_COMPRESSION = ROW)

To reconfigure compression on an existing table, I can execute ALTER TABLE...REBUILD WITH
with the DATA_COMPRESSION table option. For example, the following command turns off compres-
sion for the table I just created:

ALTER TABLE dbo.ArchiveJobPosting
REBUILD WITH
(DATA_COMPRESSION = NONE)

Next, I will populate the table with garbage data in order to demonstrate the benefits of com-
pression. The following query inserts a row, choosing a random integer value for the CandidateID,
and then repeating the letter “a” 50 times for the JobDESC. The GO command followed by 100000
means that the INSERT will execute 100,000 times, resulting in 100,000 new rows into this table (this
may take a few minutes for you to execute if you are following along on your own test SQL Server
instance):

INSERT dbo.ArchiveJobPosting
(CandidateID, JobDESC)
VALUES (CAST(RAND() * 10 as int),

REPLICATE('a',50))
GO 100000

Now that the data is populated, I can execute the sp_estimate_data_compression_savings sys-
tem stored procedure to get an estimate of how much disk savings I can expect to see when using
either row or page compression. The sp_estimate_data_compression_savings stored procedure
takes five arguments: the schema name of the table to be compressed, object name, index ID, parti-
tion number, and data compression method (NONE, ROW, or PAGE). In the following example, I will first
check to see how much space can be saved by using row compression:

EXEC sys.sp_estimate_data_compression_savings
@schema_name = 'dbo',
@object_name = 'ArchiveJobPosting',

CHAPTER 4 ■ TABLES 193

9802CH04.qxd 4/22/08 3:47 PM Page 193

@index_id = NULL,
@partition_number = NULL,
@data_compression = 'ROW'

This returns the following information (reformatted for readability):

object_name ArchiveJobPosting
schema_name dbo
index_id 1
partition_number 1
size_with_current_compression_setting(KB) 200752
size_with_requested_compression_setting(KB) 6536
sample_size_with_current_compression_setting(KB) 39776
sample_size_with_requested_compression_setting(KB) 1296

As you can see from the stored procedure results, adding row compression would save
194,216KB with the current data set. The sample size data is based on the stored procedure loading
sample data into a cloned table in tempdb and validating the compression ratio accordingly.

Now I will test to see whether there are benefits to using page-level compression:

EXEC sys.sp_estimate_data_compression_savings
@schema_name = 'dbo',
@object_name = 'ArchiveJobPosting',
@index_id = NULL,
@partition_number = NULL,
@data_compression = 'PAGE'

This returns

object_name ArchiveJobPosting
schema_name dbo
index_id 1
partition_number 1
size_with_current_compression_setting(KB) 200752
size_with_requested_compression_setting(KB) 1200
sample_size_with_current_compression_setting(KB) 40144
sample_size_with_requested_compression_setting(KB) 240

Sure enough, the page-level compression shows additional benefits beyond just row-level
compression.

■Caution The trade-off for compression is some increased CPU utilization. You must consider and test your
current application to determine whether the trade-off of disk space to ongoing CPU overhead is beneficial.

Next, I will go ahead and turn on page-level compression for the table using ALTER TABLE:

ALTER TABLE dbo.ArchiveJobPosting
REBUILD WITH
(DATA_COMPRESSION = PAGE)

Compression can also be configured at the partition level. In the next set of commands, I will
create a new partitioning function and scheme, and apply it to a new table. The table will use vary-
ing compression levels based on the partition. I first start off by creating the partition function and
scheme:

CHAPTER 4 ■ TABLES194

9802CH04.qxd 4/22/08 3:47 PM Page 194

CREATE PARTITION FUNCTION pfn_ArchivePart(int)
AS RANGE LEFT FOR VALUES (50000, 100000, 150000)
GO

-- This command assumes your db has these filegroups
CREATE PARTITION SCHEME psc_ArchivePart
AS PARTITION pfn_ArchivePart
TO (hitfg1, hitfg2, hitfg3, hitfg4) ;
GO

Next, I create the table referencing the partition scheme on the JobPostingID integer column. I
also designate which partitions will have PAGE compression and which partitions will have row com-
pression:

CREATE TABLE dbo.ArchiveJobPosting_V2
(JobPostingID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
CandidateID int NOT NULL,
JobDESC char(2000) NOT NULL)
ON psc_ArchivePart(JobPostingID)
WITH (DATA_COMPRESSION = PAGE ON PARTITIONS (1 TO 3),

DATA_COMPRESSION = ROW ON PARTITIONS (4))

If I want to change the compression level for any of the partitions, I can use ALTER TABLE, as
demonstrated next, by changing partition 4 from row to page compression:

ALTER TABLE dbo.ArchiveJobPosting_V2
REBUILD PARTITION = 4
WITH (DATA_COMPRESSION = PAGE)

How It Works
This recipe demonstrated how to apply page- and row-level compression to a table by using CREATE
TABLE and ALTER TABLE. SQL Server 2008 Enterprise Edition and Developer Edition introduce the
compression feature, which is used to reduce overall disk usage for database tables. Depending on
the type of data stored in your table, overall compression ratios will vary in significance. Also note
that the benefit of compression comes with an overall CPU cost, which you’ll want to thoroughly
test prior to deploying in a production environment.

Enabling compression only involves using the DATA_COMPRESSION clause in conjunction with
the CREATE TABLE or ALTER TABLE command (I’ll demonstrate nonclustered index compression in
Chapter 5). This compression can take place against a heap (no clustered index), clustered index,
nonclustered index, indexed view, or specific partitions on a table or index. To validate the benefits
of adding row or page compression, use the sp_estimate_data_compression_savings system stored
procedure as was demonstrated in this recipe.

CHAPTER 4 ■ TABLES 195

9802CH04.qxd 4/22/08 3:47 PM Page 195

9802CH04.qxd 4/22/08 3:47 PM Page 196

Indexes

Indexes assist with query processing by speeding up access to the data stored in tables and views.
Indexes allow for ordered access to data based on an ordering of data rows. These rows are ordered
based upon the values stored in certain columns. These columns comprise the index key columns,
and their values (for any given row) are a row’s index key.

This chapter contains recipes for creating, altering, and dropping different types of indexes. I’ll
demonstrate how indexes can be created, including a syntax for index options, support for partition
schemes, the INCLUDE command, page and row lock disabling, index disabling, and the ability to
perform online operations.

I’ll also cover a couple of new features in SQL Server 2008, including filtered indexes and index
compression. For exercises performed in this chapter, you may wish to back up the AdventureWorks
database beforehand, so that you can restore it to its original state after going through the recipes.

■Note For coverage of index maintenance, reindexing, and rebuilding (ALTER INDEX), see Chapter 23. Indexed
views are covered in Chapter 7. For coverage of index performance troubleshooting and fragmentation, see
Chapter 28.

Index Overview
An index is a database object that, when created on a table, can provide faster access paths to data
and can facilitate faster query execution. Indexes are used to provide SQL Server with a more effi-
cient method of accessing the data. Instead of always searching every data page in a table, an index
facilitates retrieving specific rows without having to read a table’s entire content.

By default, rows in a regular unindexed table aren’t stored in any particular order. A table in an
orderless state is called a heap. In order to retrieve rows from a heap based on a matching set of
search conditions, SQL Server would have to read through all the rows in the table. Even if only one
row matched the search criteria and that row just happened to be the first row the SQL Server data-
base engine read, SQL Server would still need to evaluate every single table row since there is no
other way for it to know if other matching rows exist. Such a scan for information is known as a full
table scan. For a large table, that might mean reading hundreds or thousands or millions and bil-
lions of rows just to retrieve a single row. However, if SQL Server knows that there is an index on a
column (or columns) of a table, then it may be able to use that index to search for matching records
more efficiently.

In SQL Server, a table is contained in one or more partitions. A partition is a unit of organiza-
tion that allows you to horizontally separate allocation of data within a table and/or index, while
still maintaining a single logical object. When a table is created, by default, all of its data is

197

C H A P T E R 5

9802CH05.qxd 4/22/08 3:49 PM Page 197

contained within a single partition. A partition contains heaps, or, when indexes are created, B-tree
structures.

When an index is created, its index key data is stored in a B-tree structure. A B-tree structure
starts with a root node, which is the beginning of the index. This root node has index data that con-
tains a range of index key values that point to the next level of index nodes, called the intermediate
leaf level. The bottom level of the node is called the leaf level. The leaf level differs based on whether
the actual index type is clustered or nonclustered. If it is a clustered index, the leaf level is the actual
data pages itself. If a nonclustered index, the leaf level contains pointers to the heap or clustered
index data pages.

A clustered index determines how the actual table data is physically stored. You can only desig-
nate one clustered index. This index type stores the data according to the designated index key
column or columns. Figure 5-1 demonstrates the B-tree structure of the clustered index. Notice that
the leaf level consists of the actual data pages.

Figure 5-1. B-tree structure of a clustered index

Clustered index selection is a critical choice, as you can only have one clustered index for a
single table. In general, good candidates for clustered indexes include columns that are queried
often in range queries because the data is then physically organized in a particular order. Range
queries use the BETWEEN keyword and the greater than (>) and less than (<) operators. Other columns
to consider are those used to order large result sets, those used in aggregate functions, and those
that contain entirely unique values. Frequently updated columns and non-unique columns are usu-
ally not a good choice for a clustered index key, because the clustered index key is contained in the
leaf level of all dependent nonclustered indexes, causing excessive reordering and modifications.
For this same reason, you should also avoid creating a clustered index with too many or very wide
(many bytes) index keys.

Nonclustered indexes store index pages separately from the physical data, with pointers to the
physical data located in the index pages and nodes. Nonclustered index columns are stored in the
order of the index key column values. You can have up to 249 nonclustered indexes on a table or
indexed view. For nonclustered indexes, the leaf node level is the index key coupled to a row locater
that points to either the row of a heap or the clustered index row key, as shown in Figure 5-2.

When selecting columns to be used for nonclustered indexes, look for those columns that are
frequently referenced in WHERE, JOIN, and ORDER BY clauses. Search for highly selective columns that
would return smaller result sets (less than 20 percent of all rows in a table). Selectivity refers to how
many rows exist for each unique index key value. If a column has poor selectivity, for example, only
containing zeros or ones, it is unlikely that SQL Server will take advantage of that query when creat-
ing the query execution plan, because of its poor selectivity.

CHAPTER 5 ■ INDEXES198

9802CH05.qxd 4/22/08 3:49 PM Page 198

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 5-2. B-tree structure of a nonclustered index

An index, either clustered or nonclustered, is based on one or more key values. The index key
refers to columns used to define the index itself. SQL Server also has a feature that allows the addi-
tion of non-key columns to the leaf level of the index by using the new INCLUDE clause demonstrated
later on in the chapter. This feature allows more of your query’s selected columns to be returned or
“covered” by a single nonclustered index, thus reducing total I/O, as SQL Server doesn’t have to
access the clustered leaf level data pages at all.

You can use up to 16 key columns in a single index, so long as you don’t exceed 900 bytes of all
index key columns combined. You can’t use large object data types within the index key, including
varchar(max), nvarchar(max), varbinary(max), xml, ntext, text, and the image data types.

A clustered or nonclustered index can either be specified as unique or non-unique. Choosing a
unique index makes sure that the data values inserted into the key column or columns are unique.
For unique indexes using multiple keys (called a composite index), the combination of the key val-
ues have to be unique for every row in the table.

As noted earlier, indexes can be massively beneficial in terms of your query performance, but
there are also costs associated with them. You should only add indexes based on expected query
activity, and you should continually monitor whether or not indexes are still being used over time. If
not, they should be removed. Too many indexes on a table can cause performance overhead when-
ever data modifications are performed to the table, as SQL Server must maintain the index changes
alongside the data changes. Ongoing maintenance activities such as index rebuilding and reorgani-
zations will also be prolonged with excessive indexing.

These next few recipes will demonstrate how to create, modify, disable, view, and drop indexes.

■Note See Chapter 28 to learn how to view which indexes are being used for a query. This chapter also covers
how to view index fragmentation and identify whether or not an index is being used over time. To learn how to
rebuild or reorganize indexes, see Chapter 23.

Creating a Table Index
In this recipe, I’ll show you how to create two types of indexes, one clustered and the other nonclus-
tered. An index is created by using the CREATE INDEX command. This chapter will review the many
facets of this command; however, the basic syntax used in this upcoming example is as follows:

CHAPTER 5 ■ INDEXES 199

9802CH05.qxd 4/22/08 3:49 PM Page 199

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON {
[database_name. [schema_name] . | schema_name.]

table_or_view_name}
(column [ASC | DESC] [,...n])

The arguments of this command are described in Table 5-1.

Table 5-1. CREATE INDEX Command Arguments

Argument Description

[UNIQUE] You can only have one primary key on each table.
However, if you wish to enforce uniqueness in other
non-key columns, you can designate that the index be
created with the UNIQUE constraint. You can create
multiple UNIQUE indexes for a single table and can
include columns that contain NULL values (although
only one NULL value is allowed per column combo).

[CLUSTERED | NONCLUSTERED] This specifies the index type, either CLUSTERED or
NONCLUSTERED. You can only have one CLUSTERED index,
but up to 249 NONCLUSTERED indexes.

index_name This defines the name of the new index.

[database_name. [schema_name] . This indicates the table or view to be indexed.
| schema_name.] table_or_view_name}

Column This specifies the column or columns to be used as
part of the index key.

[ASC | DESC] This defines specific column order of indexing, either
ASC for ascending order or DESC for descending order.

I’ll also show you a few examples of modifying an existing index using the ALTER INDEX
command:

ALTER INDEX index_name
ON object_name
...

This command includes many of the same options of CREATE INDEX, only you cannot use it to
change which columns are used and their ordering. This command is also used to rebuild or reor-
ganize an index (which is covered in Chapter 23).

Starting off the recipe, I’ll create a new table in the AdventureWorks database for demonstration
purposes. I will intentionally leave off a PRIMARY KEY in the table definition:

USE AdventureWorks
GO

CREATE TABLE HumanResources.TerminationReason(
TerminationReasonID smallint IDENTITY(1,1) NOT NULL,
TerminationReason varchar(50) NOT NULL,
DepartmentID smallint NOT NULL,

CONSTRAINT FK_TerminationReason_DepartmentID
FOREIGN KEY (DepartmentID) REFERENCES
HumanResources.Department(DepartmentID)

)
GO

CHAPTER 5 ■ INDEXES200

9802CH05.qxd 4/22/08 3:49 PM Page 200

Before I demonstrate how to use CREATE INDEX, it is important to remember that when a
primary key is created on a column using CREATE TABLE or ALTER TABLE, that primary key also cre-
ates an index. Instead of defining this up front, in this example, I will create a CLUSTERED index on
the TerminationReasonID using ALTER TABLE with ADD CONSTRAINT:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Next, I’ll create a nonclustered index on the DepartmentID column:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

How It Works
In this exercise, the TerminationReason table was created without a primary key defined, meaning
that initially, the table was a “heap.” The primary key was then added afterward using ALTER TABLE.
The word CLUSTERED follows the PRIMARY KEY statement, thus designating a clustered index with the
new constraint:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Had the TerminationReasonID column not been chosen as the primary key, you could have still
defined a clustered index on it by using CREATE INDEX:

CREATE CLUSTERED INDEX CI_TerminationReason_TerminationReasonID ON
HumanResources.TerminationReason (TerminationReasonID)

Had a nonclustered index already existed for the table, the creation of the new clustered index
would have caused the nonclustered index to be rebuilt, in order to swap the nonclustered leaf level
row identifier with the clustered key.

The nonclustered index in the example was created as follows:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

The only difference in syntax between the two index types was that the word NONCLUSTERED is
designated between CREATE and INDEX.

Enforcing Uniqueness on Non-Key Columns
In this recipe, I’ll show you how to enforce uniqueness for non-key table columns. The syntax for
CREATE INDEX in the previous recipe showed the UNIQUE keyword. This example shows you how to
create a unique index on the HumanResources.TerminationReason table’s TerminationReason column:

CREATE UNIQUE NONCLUSTERED INDEX UNI_TerminationReason ON
HumanResources.TerminationReason (TerminationReason)

Now, I’ll insert two new rows into the table with success:

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (1, 'Bad Engineering Skills')

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Breaks Expensive Tools')

CHAPTER 5 ■ INDEXES 201

9802CH05.qxd 4/22/08 3:49 PM Page 201

If I attempt to insert a row with a duplicate TerminationReason value, an error will be raised:

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Bad Engineering Skills')

This returns

Msg 2601, Level 14, State 1, Line 9
Cannot insert duplicate key row in object 'HumanResources.TerminationReason'
with unique index 'UNI_TerminationReason'.
The statement has been terminated.

Selecting the current rows from the table shows that only the first two rows were inserted:

SELECT TerminationReasonID, TerminationReason, DepartmentID
FROM HumanResources.TerminationReason

This returns

TerminationReasonID TerminationReason DepartmentID
1 Bad Engineering Skills 1
2 Breaks Expensive Tools 2

How It Works
A unique index was created on the TerminationReason column, which means that each row must
have a unique value. You can choose multiple unique constraints for a single table. NULL values are
permitted in a unique index; however, they must only occur once. Like a primary key, unique
indexes enforce entity integrity by ensuring that rows can be uniquely identified.

Creating an Index on Multiple Columns
In this recipe, I’ll show you how to create a multiple-column index. In previous recipes, I’ve shown
you how to create an index on a single column; however, many times you will want more than one
column to be used in a single index. Use composite indexes when two or more columns are often
searched within the same query, or are often used in conjunction with one another.

In this example, we’re assuming that TerminationReason and the DepartmentID will often be
used in the same WHERE clause of a SELECT query. With that in mind, I’ll create the following multi-
column NONCLUSTERED INDEX:

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason(TerminationReason, DepartmentID)

How It Works
Choosing which columns to index is a bit of an art. You’ll want to add indexes to columns that you
know will be commonly queried; however, you must always keep a column’s selectivity in mind. If a
column has poor selectivity, for example, only containing a few unique values across thousands of
rows, it is unlikely that SQL Server will take advantage of that query when creating the query execu-
tion plan. One general rule of thumb when creating a composite index is to put the most selective
columns at the beginning, followed by the other less-selective columns. In this recipe’s example, the

CHAPTER 5 ■ INDEXES202

9802CH05.qxd 4/22/08 3:49 PM Page 202

TerminationReason was chosen as the first column, followed by the DepartmentID. Both are guaran-
teed to be totally unique in the table, and therefore are equally selective.

■Tip Use the Database Tuning Advisor to help make index suggestions for you based on a query or batch of
queries. See Chapter 28 for more information on index usage and performance.

Defining Index Column Sort Direction
In this recipe, I’ll show you how to set the sort direction of an index column. The default sort for an
indexed column is ascending order. You can explicitly set the ordering using ASC or DESC in the col-
umn definition of CREATE INDEX:

(column [ASC | DESC] [,...n])

In this example, I’ll add a new column to a table and then index the column using a descending
order:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeverityLevel smallint
GO

CREATE NONCLUSTERED INDEX NI_TerminationReason_ViolationSeverityLevel
ON HumanResources.TerminationReason (ViolationSeverityLevel DESC)

How It Works
In this recipe’s example, a new column, ViolationSeverityLevel, was added to the
TerminationReason table:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeverityLevel smallint
GO

Query authors may want to most commonly sort on this value, showing
ViolationSeverityLevel from highest to lowest. Matching index order to how you think users will
use ORDER BY in the query can improve query performance, as SQL Server isn’t then required to
re-sort the data when the query is processed. The index is created with the DESC instruction after
the column name:

(ViolationSeverityLevel DESC)

If you have multiple key columns in your index, each can have its own separate sort order.

Viewing Index Meta Data
In this recipe, I’ll show you how to view helpful information about indexes. Once you’ve created
indexes on your tables, you’ll need some mechanism for tracking where they are, what their names
are, types, and the columns that define them. For this, use the sp_helpindex system stored proce-
dure to view the index names, descriptions, and keys for indexes on a specific table. This system
stored procedure only takes a single argument, the name of the table whose indexes you want to
view.

CHAPTER 5 ■ INDEXES 203

9802CH05.qxd 4/22/08 3:49 PM Page 203

This example demonstrates viewing all indexes on the Employee table:

EXEC sp_helpindex 'HumanResources.Employee'

This returns the following results:

index_name index_description index_keys
AK_Employee_LoginID nonclustered, unique located on PRIMARY LoginID
AK_Employee_NationalIDNumber nonclustered, unique located on PRIMARY NationalIDNumber
AK_Employee_rowguid nonclustered, unique located on PRIMARY rowguid
IX_Employee_ManagerID nonclustered located on PRIMARY ManagerID
PK_Employee_EmployeeID clustered, unique, primary key located on PRIMARY EmployeeID

For more in-depth index analysis of indexes, you can use the sys.indexes system catalog view.
For example, the following query shows index options (which will be discussed later in the chapter)
for the HumanResources.Employee table:

SELECT SUBSTRING(name, 1,30) index_name,
allow_row_locks,
allow_page_locks,
is_disabled,
fill_factor,
has_filter

FROM sys.indexes
WHERE object_id = OBJECT_ID('HumanResources.Employee')

This returns

index_name allow_row_locks allow_page_locks is_disabled fill_factor has_filter
PK_Employee_EmployeeID 1 1 0 0 0
AK_Employee_LoginID 1 1 0 0 0
AK_Employee_NationalIDNumber 1 1 0 0 0
AK_Employee_rowguid 1 1 0 0 0
IX_Employee_ManagerID 1 1 0 0 0

How It Works
You can use the system stored procedure sp_helpindex call to list the indexes on a specific table.
The output also returns a description of the indexes, including the type and filegroup location. The
key columns defined for the index are also listed.

The sys.indexes system catalog view can also be used to find out more about the configured
settings of a specific index.

■Tip For related index keys and included columns, use the sys.index_columns catalog view.

Several of the options shown in this system catalog view haven’t been covered yet, but some of
them that I’ve discussed are described in Table 5-2.

CHAPTER 5 ■ INDEXES204

9802CH05.qxd 4/22/08 3:49 PM Page 204

Table 5-2. A Subset of the sys.indexes System Catalog Columns

Column Description

object_id This is the object identifier of the table or view for which the index
belongs. You can use the OBJECT_NAME function to show the table or view
name, or OBJECT_ID to convert a table or view name into its database
object identifier.

name This indicates the index name.

index_id When index_id is 0, the index is a heap. When index_id is 1, the index is a
clustered index. When index_id is greater than 1, it is a nonclustered
index.

type This specifies the index type, which can be 0 for heap, 1 for clustered
index, 2 for nonclustered, 3 for an XML index, and 4 for spatial.

type_desc This defines the index type description.

is_unique When is_unique is 1, the index is a unique index.

is_primary_key When is_primary_key is 1, the index is the result of a primary key
constraint.

is_unique_constraint When is_unique_constraint is 1, the index is the result of a unique
constraint.

Disabling an Index
In this recipe, I’ll show you how to disable an index from being used in SQL Server queries. Dis-
abling an index retains the metadata definition data in SQL Server but makes the index unavailable
for use. Consider disabling an index as an index troubleshooting technique or if a disk error has
occurred and you would like to defer the index’s re-creation.

■Caution If you disable a clustered index, keep in mind that the table index data will no longer be accessible.
This is because the leaf level of a clustered index is the actual table data itself. Also, reenabling the index means
either re-creating or rebuilding it (see the “How It Works” section for more information).

An index is disabled by using the ALTER INDEX command. The syntax is as follows:

ALTER INDEX index_name ON
table_or_view_name DISABLE

The command takes two arguments, the name of the index, and the name of the table or view
that the index is created on.

In this example, I will disable the UNI_TerminationReason index on the TerminationReason table:

ALTER INDEX UNI_TerminationReason ON
HumanResources.TerminationReason DISABLE

How It Works
This recipe demonstrated how to disable an index. If an index is disabled, the index definition
remains in the system tables, although the user can no longer use the index. For nonclustered
indexes on a table, the index data is actually removed from the database. For a clustered index on a

CHAPTER 5 ■ INDEXES 205

9802CH05.qxd 4/22/08 3:49 PM Page 205

table, the data remains on disk, but because the index is disabled, you can’t query it. For a clustered
or nonclustered index on the view, the index data is removed from the database.

To reenable the index, you can use either the CREATE INDEX with DROP_EXISTING command (see
later in this chapter) or ALTER INDEX REBUILD (described in Chapter 23). Rebuilding a disabled non-
clustered index reuses the existing space used by the original index.

Dropping Indexes
In this recipe, I’ll show you how to drop an index from a table or view. When you drop an index, it is
physically removed from the database. If this is a clustered index, the table’s data remains in an
unordered (heap) form. You can remove an index entirely from a database by using the DROP INDEX
command. The basic syntax is as follows:

DROP INDEX <table_or_view_name>.<index_name> [,...n]

In this example, I’ll demonstrate dropping a single index from a table:

DROP INDEX HumanResources.TerminationReason.UNI_TerminationReason

How It Works
You can drop one or more indexes for a table using the DROP INDEX command. Dropping an index
frees up the space taken up by the index and removes the index definition from the database. You
can’t use DROP INDEX to remove indexes that result from the creation of a PRIMARY KEY or UNIQUE
CONSTRAINT. If you drop a clustered index that has nonclustered indexes on it, those nonclustered
indexes will also be rebuilt in order to swap the clustered index key for a row identifier of the heap.

Changing an Existing Index with DROP_EXISTING
In this recipe, I’ll show you how to drop and re-create an index within a single execution, as well as
change the key column definition of an existing index. The ALTER INDEX can be used to change
index options, rebuild and reorganize indexes (reviewed in Chapter 23), and disable an index, but it
is not used to actually add, delete, or rearrange columns in the index.

You can, however, change the column definition of an existing index by using CREATE
INDEX...DROP_EXISTING. This option also has the advantage of dropping and re-creating an index
within a single command (instead of using both DROP INDEX and CREATE INDEX). Also, using
DROP_EXISTING on a clustered index will not cause existing nonclustered indexes to be automatically
rebuilt, unless the index column definition has changed.

This first example demonstrates just rebuilding an existing nonclustered index (no change in
the column definition):

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason
(DepartmentID ASC)
WITH (DROP_EXISTING = ON)
GO

Next, a new column is added to the existing nonclustered index:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason
(ViolationSeverityLevel, DepartmentID DESC)
WITH (DROP_EXISTING = ON)
GO

CHAPTER 5 ■ INDEXES206

9802CH05.qxd 4/22/08 3:49 PM Page 206

How It Works
In the first example, the CREATE INDEX didn’t change anything about the existing index definition,
but instead just rebuilds it by using the DROP_EXISTING clause. Rebuilding an index can help defrag-
ment the data, something which is discussed in more detail in Chapter 23.

In the second statement, a new column was added to the existing index and placed right before
the DepartmentID. The index was re-created with the new index key column, making it a composite
index.

You can’t use DROP_EXISTING to change the name of the index, however. For that, use DROP INDEX
and CREATE INDEX with the new index name.

Controlling Index Build Performance and
Concurrency
So far in this chapter, I’ve reviewed how an index is defined, but note that you can also determine
under what circumstances an index is built. For example, when creating an index in SQL Server, in
order to improve the performance, you can designate that a parallel plan of execution is used,
instantiating multiple processors to help complete a time-consuming build. In addition to this, you
could also direct SQL Server to create the index in tempdb, instead of causing file growth operations
in the index’s home database. If you are using Enterprise Edition, you can also allow concurrent
user query access to the underlying table during the index creation by using the ONLINE option.

The next three recipes will demonstrate methods for improving the performance of the index
build, as well as improving user concurrency during the operation.

Intermediate Index Creation in Tempdb
In this recipe, I’ll show you how to push index creation processing to the tempdb system database.
The tempdb system database is used to manage user connections, temporary tables, temporary
stored procedures, or temporary work tables needed to process queries on the SQL Server instance.
Depending on the database activity on your SQL Server instance, you can sometimes reap perform-
ance benefits by isolating the tempdb database on its own disk array, separate from other databases.
If index creation times are taking too long for what you expect, you can try to use the index option
SORT_IN_TEMPDB to improve index build performance (for larger tables). This option pushes the
intermediate index build results to the tempdb database instead of using the user database where
the index is housed.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as
follows:

WITH (SORT_IN_TEMPDB = { ON | OFF })

The default for this option is OFF. In this example, I’ll create a new nonclustered index with the
SORT_IN_TEMPDB option enabled:

CREATE NONCLUSTERED INDEX NI_Address_PostalCode ON
Person.Address (PostalCode)
WITH (SORT_IN_TEMPDB = ON)

How It Works
The SORT_IN_TEMPDB option enables the use of the tempdb database for intermediate index results.
This option may decrease the amount of time it takes to create the index for a large table, but with

CHAPTER 5 ■ INDEXES 207

9802CH05.qxd 4/22/08 3:49 PM Page 207

the trade-off that the tempdb system database will need additional space to participate in this
operation.

Controlling Parallel Plan Execution for Index Creation
In this recipe, I’ll show you how to control the number of processors used to process a single query.
If using SQL Server Enterprise Edition with a multiprocessor server, you can control/limit the num-
ber of processors potentially used in an index creation operation by using the MAXDOP index option.
Parallelism, which in this context is the use of two or more processors to fulfill a single query state-
ment, can potentially improve the performance of the index creation operation.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as
follows:

MAXDOP = max_degree_of_parallelism

The default value for this option is 0, which means that SQL Server can choose any or all of
the available processors for the operation. A MAXDOP value of 1 disables parallelism on the index
creation.

■Tip Limiting parallelism for index creation may improve concurrency for user activity running during the build,
but may also increase the time it takes for the index to be created.

This example demonstrates how to control the number of processors used in parallel plan exe-
cution (parallelism) during an index creation:

CREATE NONCLUSTERED INDEX NI_Address_AddressLine1 ON
Person.Address (AddressLine1)
WITH (MAXDOP = 4)

How It Works
In this recipe, the index creation was limited to 4 processors:

WITH (MAXDOP = 4)

Just because you set MAXDOP doesn’t make any guarantee that SQL Server will actually use the
number of processors that you designate. It only ensures that SQL Server will not exceed the MAXDOP
threshold.

Allowing User Table Access During Index Creation
In this recipe, I’ll show you how to allow query activity to continue to access the index even while an
index creation process is executing. If you are using SQL Server Enterprise Edition, you can allow
concurrent user query access to the underlying table during the index creation by using the new
ONLINE option, which is demonstrated in this next recipe:

CREATE NONCLUSTERED INDEX NCI_ProductVendor_MinOrderQty ON
Purchasing.ProductVendor(MinOrderQty)
WITH (ONLINE = ON)

CHAPTER 5 ■ INDEXES208

9802CH05.qxd 4/22/08 3:49 PM Page 208

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
With the new ONLINE option in the WITH clause of the index creation, long-term table locks are not
held during the index creation. This can provide better concurrency on larger indexes that contain
frequently accessed data. When the ONLINE option is set ON, only intent share locks are held on the
source table for the duration of the index creation, instead of the default behavior of a longer-term
table lock held for the duration of the index creation.

Index Options
The next three recipes cover options that impact performance, although each in their own different
ways. For example, the INCLUDE keyword allows you to add non-key columns to a nonclustered
index. This allows you to create a covering index that can be used to return data to the user without
having to access the clustered index data.

The second recipe will discuss how the PAD_INDEX and FILLFACTOR options determine how to set
the initial percentage of rows to fill the index leaf level pages and intermediate levels of an index.
The recipe will discuss how the fill factor impacts the performance of not only queries, but also
insert, update, and delete operations.

The third recipe will cover how to disable certain locking types for a specific index. As will be
discussed in the recipe, using these options allows you to control both concurrency and resource
usage when queries access the index.

Using an Index INCLUDE
In this recipe, I’ll show you how to include non-key columns within a nonclustered index. A
covering query is a query whose referenced columns are found entirely within a nonclustered index.
This scenario often results in better query performance, as SQL Server does not have to retrieve
the actual data from the clustered index or heap—it only needs to read the data stored in the non-
clustered index. The drawback, however, is that you can only include up to 16 columns or up to
900 bytes for an index key.

One solution to this problem is the INCLUDE keyword, which allows you to add up to 1023 non-
key columns to the nonclustered index, helping you improve query performance by creating a
covered index. These non-key columns are not stored at each level of the index, but instead are
only found in the leaf level of the nonclustered index. The syntax for using INCLUDE with CREATE
NONCLUSTERED INDEX is as follows:

CREATE NONCLUSTERED INDEX index_name
ON table_or_view_name (column [ASC | DESC] [,...n])

INCLUDE (column [,... n])

Whereas the first column list is for key index columns, the column list after INCLUDE is for
non-key columns. In this example, I’ll create a new large object data type column to the
TerminationReason table. I’ll drop the existing index on DepartmentID and re-create it with
the new non-key value in the index:

ALTER TABLE HumanResources.TerminationReason
ADD LegalDescription varchar(max)

DROP INDEX
HumanResources.TerminationReason.NI_TerminationReason_TerminationReason_DepartmentID

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason (TerminationReason, DepartmentID)
INCLUDE (LegalDescription)

CHAPTER 5 ■ INDEXES 209

9802CH05.qxd 4/22/08 3:49 PM Page 209

How It Works
This recipe demonstrated a technique for enhancing a nonclustered index’s usefulness. The exam-
ple started off by creating a new varchar(max) data type column. Because of its data type, it cannot
be used as a key value in the index; however, using it within the INCLUDE keyword will allow you to
reference the new large object data types. The existing index on the TerminationReason table was
then dropped and re-created using INCLUDE with the new non-key column.

You can use INCLUDE only with a nonclustered index (where a covered query comes in handy),
and you still can’t include the deprecated image, ntext, and text data types. Also, if the index size
increases too significantly because of the additional non-key values, you may lose some of the
query benefits that a covering query can give you, so be sure to test comparative before/after per-
formance.

Using PAD_INDEX and FILLFACTOR
In this recipe, I’ll show you how to set the initial percentage of rows to fill the index leaf level pages
and intermediate levels of an index. The fill factor percentage of an index refers to how full the leaf
level of the index pages should be when the index is first created. The default fill factor, if not explic-
itly set, is 0, which equates to filling the pages as full as possible (SQL Server does leave some space
available—enough for a single index row). Leaving some space available, however, allows new rows
to be inserted without resorting to page splits. A page split occurs when a new row is added to a full
index page. In order to make room, half the rows are moved from the existing full page to a new
page. Numerous page splits can slow down INSERT operations. On the other hand, however, fully
packed data pages allow for faster read activity, as the database engine can retrieve more rows from
less data pages.

The PAD_INDEX option, used only in conjunction with FILLFACTOR, specifies that the specified
percentage of free space be left open on the intermediate level pages of an index.

These options are set in the WITH clause of the CREATE INDEX and ALTER INDEX commands. The
syntax is as follows:

WITH (PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor)

In this example, an index is dropped and re-created with a 50% fill factor and PAD_INDEX
enabled:

DROP INDEX
HumanResources.TerminationReason.NI_TerminationReason_TerminationReason_DepartmentID

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason
(TerminationReason ASC, DepartmentID ASC)
WITH (PAD_INDEX=ON, FILLFACTOR=50)

How It Works
In this recipe, the fill factor was configured to 50%, leaving 50% of the index pages free for new rows.
PAD_INDEX was also enabled, so the intermediate index pages will also be left half free. Both options
are used in the WITH clause of the CREATE INDEX syntax:

WITH (PAD_INDEX=ON, FILLFACTOR=50)

Using FILLFACTOR can be a balancing act between reads and writes. For example, a 100% fill fac-
tor can improve reads, but slow down write activity, causing frequent page splitting as the database
engine must continually shift row locations in order to make space in the data pages. Having too

CHAPTER 5 ■ INDEXES210

9802CH05.qxd 4/22/08 3:49 PM Page 210

low of a fill factor can benefit row inserts, but it can also slow down read operations, as more data
pages must be accessed in order to retrieve all required rows. If you’re looking for a general rule of
thumb, use a 100% fill factor for tables with almost no data modification activity, 80–90% for low
activity, 60–70% for medium activity, and 50% or lower for high activity on the index key.

Disabling Page and/or Row Index Locking
In this recipe, I’ll show you how to change the lock resource types that can be locked for a specific
index. In Chapter 3, I discussed various lock types and resources within SQL Server. Specifically, var-
ious resources can be locked by SQL Server from small (row and key locks) to medium (page locks,
extents) to large (table, database). Multiple, smaller-grained locks help with query concurrency,
assuming there are a significant number of queries simultaneously requesting data from the same
table and associated indexes. Numerous locks take up memory, however, and can lower perform-
ance for the SQL Server instance as a whole. The trade-off is larger-grained locks, which increase
memory resource availability but also reduce query concurrency.

You can create an index that restricts certain locking types when it is queried. Specifically, you
can designate whether page or row locks are allowed.

In general you should allow SQL Server to automatically decide which locking type is best;
however, there may be a situation where you wish to temporarily restrict certain resource locking
types, for troubleshooting or a severe performance issue.

The syntax for configuring these options for both CREATE INDEX and ALTER INDEX is as follows:

WITH (ALLOW_ROW_LOCKS = { ON | OFF }
| ALLOW_PAGE_LOCKS = { ON | OFF })

This recipe shows you how to disable the database engine’s ability to place row or page locks on
an index, forcing it to use table locking instead:

-- Disable page locks. Table and row locks can still be used.
CREATE INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory (Rate)
WITH (ALLOW_PAGE_LOCKS=OFF)

-- Disable page and row locks. Only table locks can be used.
ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=OFF,ALLOW_ROW_LOCKS=OFF)

-- Allow page and row locks.
ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=ON,ALLOW_ROW_LOCKS=ON)

How It Works
This recipe demonstrated three variations. The first query created a new index on the table, config-
ured so that the database engine couldn’t issue page locks against the index:

WITH (ALLOW_PAGE_LOCKS=OFF)

In the next statement, both page and row locks were turned OFF (the default for an index is for
both to be set to ON):

ALTER INDEX NI_EmployeePayHistory_Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=OFF,ALLOW_ROW_LOCKS=OFF)

CHAPTER 5 ■ INDEXES 211

9802CH05.qxd 4/22/08 3:49 PM Page 211

In the last statement, page and row locking is reenabled:

SET (ALLOW_PAGE_LOCKS=ON,ALLOW_ROW_LOCKS=ON)

Removing locking options should only be done if you have a good reason to do so—for exam-
ple, you may have activity that causes too many row locks, which can eat up memory resources.
Instead of row locks, you may wish to have SQL Server use larger-grained page or table locks
instead.

Managing Very Large Indexes
This next set of recipes for this chapter cover methods for managing very large indexes; however,
the features demonstrated here can be applied to smaller and medium-sized indexes as well. For
example, you can designate that an index is created on a separate filegroup. Doing so can provide
benefits from both the manageability and performance sides, as you can then perform separate
backups by filegroup, as well as improving I/O performance of a query if the filegroup has files that
exist on a separate array.

As was initially reviewed in Chapter 4, you can also implement index partitioning. Partitioning
allows you to break down the index data set into smaller subsets of data. As will be discussed in the
recipe, if large indexes are separated onto separate partitions, this can positively impact the per-
formance of a query (particularly for very large indexes).

SQL Server 2008 also introduces the filtered index feature and the ability to compress data at
the page and row level. The filtered index feature allows you to create an index and associated sta-
tistics for a subset of values. If incoming queries only hit a small percentage of values within a
column, for example, you can create a filtered index that will only target those common values—
thus reducing the overall index size compared to a full table index, and also improving the accuracy
of the underlying statistics.

As for the new compression feature, available in the Enterprise and Developer Editions, you
can now designate row or page compression for an index or specified partitions. I originally demon-
strated this feature for CREATE TABLE and ALTER TABLE in Chapter 4. In this chapter, I’ll continue this
discussion with how to enable compression using CREATE INDEX and ALTER INDEX.

Creating an Index on a Filegroup
In this recipe, I’ll show you how to create an index on a specific filegroup. If not explicitly desig-
nated, an index is created on the same filegroup as the underlying table. This is accomplished using
the ON clause of the CREATE INDEX command:

ON filegroup_name | default

This option can take an explicit filegroup name or the database default filegroup (for more
information on filegroups, see Chapter 22).

This example demonstrates how to explicitly define which filegroup an index is stored on. First,
I’ll create a new filegroup on the AdventureWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP FG2

Next, I’ll add a new file to the database and the newly created filegroup:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = AW2,

FILENAME = 'c:\Apress\aw2.ndf',

CHAPTER 5 ■ INDEXES212

9802CH05.qxd 4/22/08 3:49 PM Page 212

SIZE = 1MB
)
TO FILEGROUP FG2

Lastly, I’ll create a new index, designating that it be stored on the newly created filegroup:

CREATE INDEX NI_ProductPhoto_ThumnailPhotoFileName ON
Production.ProductPhoto (ThumbnailPhotoFileName)
ON [FG2]

How It Works
The first part of the recipe creates a new filegroup in the AdventureWorks database called FG2 using
the ALTER DATABASE command. After that, a new database data file is created on the new filegroup.
Lastly, a new index is created on the FG2 filegroup. The ON clause designated the filegroup name for
the index in square brackets:

ON [FG2]

Filegroups can be used to help manage very large databases, both by allowing separate back-
ups by filegroup, as well as improving I/O performance if the filegroup has files that exist on a
separate array.

Implementing Index Partitioning
In this recipe, I’ll show you how to apply partitioning to a nonclustered index. In Chapter 4, I
demonstrated table partitioning. Partitioning can provide manageability, scalability, and perform-
ance benefits for large tables. This is because partitioning allows you to break down the data set into
smaller subsets of data. Depending on the index key(s), an index on a table can also be quite large.
Applying the partitioning concept to indexes, if large indexes are separated onto separate partitions,
this can positively impact the performance of a query. Queries that target data from just one parti-
tion will benefit because SQL Server will target just the selected partition, instead of accessing all
partitions for the index.

This recipe will now demonstrate index partitioning using the HitDateRangeScheme partition
scheme that was created in Chapter 4 on the Sales.WebSiteHits table:

CREATE NONCLUSTERED INDEX NI_WebSiteHits_WebSitePage ON
Sales.WebSiteHits (WebSitePage)
ON [HitDateRangeScheme] (HitDate)

How It Works
The partition scheme is applied using the ON clause.

ON [HitDateRangeScheme] (HitDate)

Notice that although the HitDate column wasn’t a nonclustered index key, it was included in
the partition scheme, matching that of the table. When the index and table use the same partition
scheme, they are said to be “aligned.”

You can choose to use a different partitioning scheme for the index than the table; however,
that scheme must use the same data type argument, number of partitions, and boundary values.
Unaligned indexes can be used to take advantage of collocated joins—meaning if you have two
columns from two tables that are frequently joined that also use the same partition function,
same data type, number of partitions, and boundaries, you can potentially improve query join

CHAPTER 5 ■ INDEXES 213

9802CH05.qxd 4/22/08 3:49 PM Page 213

performance. However, the common approach will most probably be to use aligned partition
schemes between the index and table, for administration and performance reasons.

Indexing a Subset of Rows
SQL Server 2008 introduces the ability to create filtered, nonclustered indexes in support of queries
that require only a small percentage of table rows. The CREATE INDEX command now includes a filter
predicate that can be used to reduce index size by indexing only rows that meet certain conditions.
That reduced index size saves on disk space and potentially improves the performance of queries
that now need only read a fraction of the index entries that they would otherwise have to process.

The filter predicate allows for several comparison operators to be used, including IS, IS NOT, =,
<>, >, <, and more. In this recipe, I will demonstrate how to add filtered indexes to one of the larger
tables in the AdventureWorks database, Sales.SalesOrderDetail. To set up my example, let’s assume
that I have the following common query against the UnitPrice column:

SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 150.00 AND 175.00

Let’s also assume that the person executing this query is the only one who typically uses the
UnitPrice column in the search predicate, and when she does query it, she is only concerned with
values between $150 and $175. Creating a full index on this column may be considered to be waste-
ful. If this query is executed often, and a full clustered index scan is performed against the base
table each time, this may cause performance issues.

I have just described an ideal scenario for a filtered index on the UnitPrice column. You can
create that filtered index as follows:

CREATE NONCLUSTERED INDEX NCI_UnitPrice_SalesOrderDetail
ON Sales.SalesOrderDetail(UnitPrice)
WHERE UnitPrice >= 150.00 AND UnitPrice <= 175.00

Queries that search against UnitPrice that also search in the defined filter predicate range will
likely use the filtered index instead of performing a full index scan or using full-table index alterna-
tives.

In this second example, let’s assume that it is common to query products with two distinct IDs.
In this case, I am also querying anything with an order quantity greater than ten; however, this is
not my desired filtering scenario—just the product ID filtering:

SELECT SalesOrderDetailID
FROM Sales.SalesOrderDetail
WHERE ProductID IN (776, 777) AND

OrderQty > 10

This query performs a clustered index scan. I can improve performance of the query by adding
a filtered index, which will result in an index seek against that nonclustered index instead of the
clustered index scan. Here’s how to create that filtered index:

CREATE NONCLUSTERED INDEX NCI_ProductID_SalesOrderDetail
ON Sales.SalesOrderDetail(ProductID,OrderQty)
WHERE ProductID IN (776, 777)

The result will be less I/O, as the query can operate against the much smaller, filtered index.

How It Works
This recipe demonstrates how to use the filtered index feature to create a fine-tuned index that
requires less storage than the full-table index alternative. Filtered indexes require that you

CHAPTER 5 ■ INDEXES214

9802CH05.qxd 4/22/08 3:49 PM Page 214

understand the nature of incoming queries against the tables in your database. If you have a high
percentage of queries that consistently query a small percentage of data in a set of tables, filtered
indexes will allow you to improve I/O performance while also minimizing on-disk storage.

The CREATE INDEX statement isn’t modified much from its original format. In order to imple-
ment the filter, I used a WHERE clause after the ON clause (if using an INCLUDE, the WHERE should appear
after it):

CREATE NONCLUSTERED INDEX NCI_UnitPrice_SalesOrderDetail
ON Sales.SalesOrderDetail(UnitPrice)
WHERE UnitPrice >= 150.00 AND UnitPrice <= 175.00

The filter predicate allows for simple logic using operators such as IN, IS, IS NOT, =, <>, >, >=, !>,
<, <=, and !<. You should also be aware that filtered indexes have filtered statistics created along with
them. These statistics use the same filter predicate and can result in more accurate results because
the sampling is against a smaller rowset.

Reducing Index Size
As I covered in Chapter 4, the SQL Server 2008 Enterprise and Developer Editions introduce page-
and row-level compression for tables, indexes, and the associated partitions. In that chapter, I
demonstrated how to enable compression using the DATA_COMPRESSION clause in conjunction with
the CREATE TABLE and ALTER TABLE commands. That covered how you compress clustered indexes
and heaps. For nonclustered indexes, you use CREATE INDEX and ALTER INDEX to implement com-
pression. The syntax remains the same, designating the DATA_COMPRESSION option along with a value
of either NONE, ROW, or PAGE. The following example demonstrates adding a nonclustered index with
PAGE-level compression (based on the example table ArchiveJobPosting that I created in Chapter 4):

CREATE NONCLUSTERED INDEX NCI_SalesOrderDetail_CarrierTrackingNumber
ON Sales.SalesOrderDetail (CarrierTrackingNumber)
WITH (DATA_COMPRESSION = PAGE)

I can modify the compression level after the fact by using ALTER INDEX. In this example, I use
ALTER INDEX to change the compression level to row-level compression:

ALTER INDEX NCI_SalesOrderDetail_CarrierTrackingNumber
ON Sales.SalesOrderDetail
REBUILD
WITH (DATA_COMPRESSION = ROW)

How It Works
This recipe demonstrated enabling row and page compression for a nonclustered index. The
process for adding compression is almost identical to that of adding compression for the clustered
index or heap, using the DATA_COMPRESSION index option. When creating a new index, the WITH clause
follows the index key definition. When modifying an existing index, the WITH clause follows the
REBUILD keyword.

CHAPTER 5 ■ INDEXES 215

9802CH05.qxd 4/22/08 3:49 PM Page 215

9802CH05.qxd 4/22/08 3:49 PM Page 216

Full-Text Search

Full-text search functionality allows you to issue intelligent word—and phrase—searches against
character and binary data, using full-text enabled operators, which can perform significantly better
than a regular LIKE operator search.

With SQL Server 2008, full-text search functionality is now integrated into the database. Full-
text catalogs are no longer stored separately on the file system and are now integrated with the
database itself. Full-text indexing and querying support functionality is also no longer dependent
on the separate MSFTESQL service as it was in earlier versions of SQL Server.

■Tip SQL Server 2008 also fully integrates stopwords (formerly called noise words) into the database, allowing
you to create your own stoplists and associated stopwords. The previous version used noise-word files external to
the database. I’ll review this functionality in the “Discarding Common Strings from a Full-Text Index” recipe.

In the first part of this chapter, I’ll present recipes that teach you how to enable full-text search
capabilities in your database using Transact-SQL. In the second half of this chapter, I’ll demonstrate
how to query the full-text indexes using basic and advanced Transact-SQL predicates.

Full-Text Indexes and Catalogs
Full-text indexes allow you to search against unstructured textual data using more sophisticated
functions and a higher level of performance than using just the LIKE operator. Unlike regular B-tree
clustered or nonclustered indexes, full-text indexes are compressed index structures comprised of
tokens from the indexed textual data. Tokens are words or character strings that SQL Server has
identified in the indexing process. Using special full-text functions, you can extend word or phrase
searches beyond the character pattern, and search based on inflection, synonyms, wildcards, and
proximity to other words.

Full-text catalogs are used to contain zero or more full-text indexes and, starting with SQL
Server 2008, are stored within the database. (In previous versions, they were stored on the local hard
drive of the SQL Server instance server.) A full-text catalog can contain full-text indexes that index
one or more tables in a single database.

SQL Server uses a number of Transact-SQL commands to create, modify, and remove full-text
catalog and full-text index objects, which the next set of recipes will demonstrate.

Creating a Full-Text Catalog
In its simplest form, you can create a new catalog just by defining its name. There are other options
however, and the extended syntax for CREATE FULLTEXT CATALOG is as follows:

217

C H A P T E R 6

9802CH06.qxd 4/22/08 3:51 PM Page 217

CREATE FULLTEXT CATALOG catalog_name
[ON FILEGROUP 'filegroup']
[IN PATH 'rootpath']
[WITH ACCENT_SENSITIVITY = {ON|OFF}]
[AS DEFAULT]
[AUTHORIZATION owner_name]

The arguments of this command are described in Table 6-1.

Table 6-1. CREATE FULLTEXT CATALOG Arguments

Argument Description

catalog_name This option specifies the name of the new full-text catalog.

filegroup This argument designates that the catalog will be placed on a
specific filegroup. If this isn’t designated, the default filegroup
for the database is used.

rootpath This is a deprecated option as of SQL Server 2008 and is no
longer used.

ACCENT_SENSITIVITY = {ON|OFF} This option allows you to choose whether the indexes will be
created within the catalog as accent sensitive or accent
insensitive. Accent sensitivity defines whether or not SQL
Server will distinguish between accented and unaccented
characters.

AS DEFAULT This option sets the catalog as the default catalog for all full-
text indexes that are created in the database without explicitly
defining an owning full-text catalog.

owner_name The AUTHORIZATION option determines the owner of the new
full-text catalog, allowing you to choose either a database user
or a role.

In this first example, a new full-text catalog is created in the AdventureWorks database (note
that a full-text catalog only belongs to a single database):

USE AdventureWorks
GO
CREATE FULLTEXT CATALOG cat_Production_Document

In the second example, a new full-text catalog is created with accent sensitivity enabled:

USE AdventureWorks
GO
CREATE FULLTEXT CATALOG cat_Production_Document_EX2
WITH ACCENT_SENSITIVITY = ON

How It Works
In this recipe, I demonstrated how to create a new full-text catalog using the CREATE FULLTEXT
CATALOG command. This command creates an instance logical entity that can be used to group one
or more full-text indexes.

Once a full-text catalog is created, you can then proceed with full-text indexes, which are
reviewed in the next recipe.

CHAPTER 6 ■ FULL-TEXT SEARCH218

9802CH06.qxd 4/22/08 3:51 PM Page 218

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Creating a Full-Text Index
In this recipe, I’ll demonstrate how to create a full-text index on columns in a table, so that you can
then take advantage of the more sophisticated search capabilities shown later on in the chapter.

The command for creating a full-text index is CREATE FULLTEXT INDEX. The abridged syntax is as
follows:

CREATE FULLTEXT INDEX ON table_name
[({ column_name

[TYPE COLUMN type_column_name]
[LANGUAGE language_term]

} [,...n]
)]

KEY INDEX index_name
[ON fulltext_catalog_name]
[WITH [(] <with_option> [,...n] [)]]

[;]

<with_option>::=
{
CHANGE_TRACKING [=] { MANUAL | AUTO | OFF [, NO POPULATION] }

| STOPLIST [=] { OFF | SYSTEM | stoplist_name }
}

The arguments of this command are described in Table 6-2.

Table 6-2. CREATE FULLTEXT INDEX Arguments

Argument Description

table_name This specifies the name of the table that you are creating the
full-text index on. There can only be one full-text index on a
single table.

column_name This indicates the listed column or columns to be indexed,
which can be of the data types varchar, nvarchar, char,
nchar, xml, varbinary, text, ntext, and image.

type_column_name The TYPE COLUMN keyword token is used to designate a
column in the table that tells the full-text index what type of
data is held in the varbinary(max) or image data type
column. SQL Server can interpret different file types, but
must know exactly how to do so.

language_term The optional LANGUAGE keyword can also be used within the
column list to indicate the language of the data stored in the
column. Specifying the language will help SQL Server
determine how the data is parsed in the full-text indexing
process and how it will be linguistically interpreted. For a list
of available languages, query the sys.fulltext_languages
table.

index_name In order for the full-text index to be created on a table, that
table must have a single-key, unique, non-nullable column.
This can be, for example, a single column primary key or a
column defined with a UNIQUE constraint that is also non-
nullable. The KEY INDEX clause in the CREATE FULLTEXT INDEX
command identifies the required unique key column on the
specified table.

Continued

CHAPTER 6 ■ FULL-TEXT SEARCH 219

9802CH06.qxd 4/22/08 3:51 PM Page 219

Table 6-2. Continued

Argument Description

fulltext_catalog_name The ON clause designates the catalog where the full-text
index will be stored. If a default catalog was identified before
creation of the index, and this option isn’t used, the index
will be stored on the default catalog. However, if no default
was defined, the index creation will fail.

CHANGE_TRACKING {MANUAL | AUTO This argument determines how user data changes will be
| OFF [, NO POPULATION]} detected by the full-text service. Based on this configuration,

indexes can be automatically updated as data is changed in
the table. You also have the option of only manually
repopulating the indexes at a time or on a schedule of your
choosing. The AUTO option is designated to automatically
update the full-text index as table data is modified. The
MANUAL option means that changes will be either propagated
manually by the user or initiated via a SQL Server Agent
schedule. The OFF option means that SQL Server will not
keep a list of user changes. Using OFF with NO POPULATION
means that SQL Server will not populate the index after it is
created. Under this option, full-text index population will
only occur after someone executes ALTER FULLTEXT INDEX,
which is reviewed in the next recipe.

STOPLIST [=] { OFF | SYSTEM Stoplists contain a list of stopwords, which are strings that
| stoplist_name } should be ignored by the search. The default option is

SYSTEM, meaning that the default system stoplist will be
used. When this option is set to OFF, no stoplist is used.
Otherwise, designating stoplist_name allows you to use a
user-defined stoplist.

In this recipe’s example, a new full-text index is created on the AdventureWorks database’s
Production.Document table (I’ll demonstrate how to query the index in future recipes).
DocumentSummary is the column to be indexed, and FileExtension is the column that contains a
pointer to the column’s document type:

USE AdventureWorks
GO

CREATE FULLTEXT INDEX ON Production.Document
(DocumentSummary, Document TYPE COLUMN FileExtension)
KEY INDEX PK_Document_DocumentNode
ON cat_Production_Document
WITH CHANGE_TRACKING AUTO,

STOPLIST = SYSTEM

How It Works
In this recipe, I created a new full-text index for the Production.Document table, on the
DocumentSummary column (which has a varchar(max) data type) and Document column (which has a
varbinary(max) data type). Stepping through the code, the first line designated the table the full-text
index would be based on:

CREATE FULLTEXT INDEX ON Production.Document

CHAPTER 6 ■ FULL-TEXT SEARCH220

9802CH06.qxd 4/22/08 3:51 PM Page 220

9

The second line of code designated the column or columns to be indexed, and then a pointer
to the column that tells SQL Server what document type is stored in the column. In this case, I am
indexing both the DocumentSummary and Document columns. Since Document is varbinary(max), I des-
ignate the column that will contain the file type contained within the Document column:

(DocumentSummary, Document TYPE COLUMN FileExtension)

Keep in mind that the TYPE COLUMN clause is only necessary if you are indexing a
varbinary(max) or image type column, as you’ll be assisting SQL Server with interpreting the stored
data. Regular text data types such as char, varchar, nchar, nvarchar, text, ntext, and xml don’t
require the TYPE COLUMN clause.

Next, the name of the key, non-null, unique column for the table was identified:

KEY INDEX PK_Document_DocumentNode

The ON clause designates which full-text catalog the full-text index will be stored in (created in
the previous recipe):

ON cat_Production_Document

Next, the method of ongoing index population was designated for the index:

WITH CHANGE_TRACKING AUTO

Lastly, the option for the STOPLIST was designated—using the system default stoplist:

STOPLIST = SYSTEM

Once the full-text index is created, you can begin querying it. Before you get to this, however,
there are other commands used for modifying or removing indexes and catalogs you should be
aware of.

Modifying a Full-Text Catalog
In this recipe, I’ll demonstrate ALTER FULLTEXT CATALOG, which you can use to do the following:

• Change accent-sensitive settings. Accent sensitivity defines whether or not SQL Server will
distinguish between accented and unaccented characters, or treat them as equivalent char-
acters in the search.

• Set the catalog as the default database catalog.

• REBUILD the entire catalog with all indexes in it.

• REORGANIZE the catalog, which optimizes internal index and catalog full-text structures. This
process is called a master merge, which means that smaller indexes are physically processed
(not logically, however) into one large index in order to improve performance.

The syntax for ALTER FULLTEXT CATALOG is as follows:

ALTER FULLTEXT CATALOG catalog_name
{ REBUILD [WITH ACCENT_SENSITIVITY = {ON|OFF}]

| REORGANIZE
| AS DEFAULT

}

The arguments for this command are described in Table 6-3.

CHAPTER 6 ■ FULL-TEXT SEARCH 221

9802CH06.qxd 4/22/08 3:51 PM Page 221

Table 6-3. ALTER FULLTEXT CATALOG Arguments

Argument Description

REBUILD The REBUILD option rebuilds the catalog.

[WITH ACCENT_SENSITIVITY = {ON|OFF}] The ACCENT_SENSITIVITY option can only be configured
when used in conjunction with a REBUILD.

REORGANIZE This option causes SQL Server to optimize catalog
structures and internal indexes.

AS DEFAULT This option sets the catalog as the default database
catalog.

In this first example in the recipe, a full-text catalog is optimized using the REORGANIZE keyword:

ALTER FULLTEXT CATALOG cat_Production_Document
REORGANIZE

In this second example, a full-text catalog is set to be the default full-text catalog for the
database:

ALTER FULLTEXT CATALOG cat_Production_Document
AS DEFAULT

In this example, a full-text catalog (and all indexes within) is rebuilt along with disabling accent
sensitivity:

ALTER FULLTEXT CATALOG cat_Production_Document
REBUILD WITH ACCENT_SENSITIVITY = OFF

How It Works
In this recipe, ALTER FULLTEXT CATALOG was used to optimize the indexes and internal data struc-
tures, set the catalog to the default database, and rebuild the catalog and indexes within. This
command is used to maintain existing catalogs and keep them performing at their best as data
modifications are made to the underlying indexed tables.

Modifying a Full-Text Index
The ALTER FULLTEXT INDEX command can be used both to change the properties of an index and to
control/initiate index population. The syntax is as follows:

ALTER FULLTEXT INDEX ON table_name
{ ENABLE
| DISABLE
| SET CHANGE_TRACKING { MANUAL | AUTO | OFF }
| ADD (column_name

[TYPE COLUMN type_column_name]
[LANGUAGE language_term] [,...n])
[WITH NO POPULATION]

| DROP (column_name [,...n])
[WITH NO POPULATION]

| START { FULL | INCREMENTAL | UPDATE } POPULATION
| {STOP | PAUSE | RESUME } POPULATION
| SET STOPLIST { OFF| SYSTEM | stoplist_name }
[WITH NO POPULATION] }

CHAPTER 6 ■ FULL-TEXT SEARCH222

9802CH06.qxd 4/22/08 3:51 PM Page 222

The arguments of this command are described in Table 6-4.

Table 6-4. ALTER FULLTEXT INDEX Arguments

Argument Description

table_name This argument specifies the name of the table of the
index to be modified.

ENABLE | DISABLE The ENABLE option activates the full-text index. DISABLE
deactivates a full-text index. Deactivating a full-text
index means that changes to the table columns are no
longer tracked and moved to the full-text index
(however, full-text search conditions are still allowed
against the index).

SET CHANGE TRACKING {MANUAL|AUTO|OFF} MANUAL specifies that change tracking on the source
indexed data will be enabled on a schedule or
manually executed basis. AUTO specifies that the full-
text index is modified automatically when the indexed
column(s) values are modified. OFF disables change
tracking from occurring on the full-text index.

ADD (column_name [,...n]) This argument indicates the name of the column or
columns to add to the existing full-text index.

type_column_name This option specifies the column used to designate the
full-text index file type of the data stored in the
varbinary(max) or image data type column.

language_term This indicates the optional LANGUAGE keyword used
within the column list to indicate the language of the
data stored in the column.

WITH NO POPULATION When designated, the full-text index isn’t populated
after the addition or removal of a table column.

DROP (column_name [,...n]) This argument gives the name of the column or
columns to remove from the existing full-text index.

START {FULL|INCREMENTAL|UPDATE} This option initiates the population of the full-text
POPULATION index based on the option of FULL, INCREMENTAL, and

UPDATE. FULL refreshes every row from the table into the
index. INCREMENTAL only refreshes the index for those
rows that were modified since the last population, and
in order for INCREMENTAL to be used, the indexed table
requires a column with a timestamp data type. The
UPDATE token refreshes the index for any rows that were
inserted, updated, or deleted since the last index
update.

{STOP | PAUSE | RESUME} POPULATION For very large tables, full-text index population can
consume significant system resources. Because of this,
you may need to stop a population process while it is
in progress. For indexes created with the MANUAL or OFF
change tracking setting, you can use the STOP
POPULATION option. PAUSE and RESUME are used when
full populations are underway.

SET STOPLIST { OFF| SYSTEM | Designating SYSTEM means that the default system
stoplist_name } stoplist will be used. When this option is set to OFF, no

stoplist is used. Otherwise, designating stoplist_name
allows you to use a user-defined stoplist.

CHAPTER 6 ■ FULL-TEXT SEARCH 223

9802CH06.qxd 4/22/08 3:51 PM Page 223

In this first example, a new column is added to the existing full-text index on the
Production.Document table:

ALTER FULLTEXT INDEX ON Production.Document
ADD (Title)

Next, a full-text index population is initiated:

ALTER FULLTEXT INDEX ON Production.Document
START FULL POPULATION

This returns a warning because the full-text index population was already underway for the
table (I didn’t designate the WITH NO POPULATION option when adding the new column to the full-
text index):

Warning: Request to start a full-text index population on table or indexed view
'Production.Document' is ignored because a population is currently active for
this table or indexed view.

This next example demonstrates disabling change tracking for the table’s full-text index:

ALTER FULLTEXT INDEX ON Production.Document
SET CHANGE_TRACKING OFF

This returns the following warning:

Warning: Request to stop change tracking has deleted all changes tracked on table or
indexed view 'Production'.

In this last example for the recipe, the Title column is dropped from the full-text index:

ALTER FULLTEXT INDEX ON Production.Document
DROP (Title)

How It Works
In this recipe, ALTER FULLTEXT INDEX was used to perform the following actions:

• Add a new column to an existing full-text index. This is useful if you wish to add additional
columns to the full-text index that would benefit from more advanced searching
functionality.

• Start a full-text index population (which works if the population isn’t already set to automati-
cally update). For very large tables, you may wish to manually control when the full-text
index is populated, instead of allowing SQL Server to manually populate the index over time.

• Disable change tracking. This removes a log of any changes that have occurred to the
indexed data.

• Drop a column from a full-text index. For example, if you have a column that isn’t benefitting
from the full-text index functionality, it is best to remove it in order to conserve space (from
the stored indexing results) and resources (from the effort it takes SQL Server to update the
data).

Other actions ALTER FULLTEXT INDEX can perform include disabling an enabled index using the
DISABLE option, thus making it unavailable for us (but keeping the metadata in the system tables).
You can then enable a disabled index using the ENABLE keyword.

CHAPTER 6 ■ FULL-TEXT SEARCH224

9802CH06.qxd 4/22/08 3:51 PM Page 224

Retrieving Full-Text Catalog and Index Metadata
This recipe shows you how to retrieve useful information regarding the full-text catalogs and
indexes in your database by using system catalog views.

The sys.fulltext_catalogs system catalog view returns information on all full-text catalogs in
the current database. For example:

SELECT name, path, is_default, is_accent_sensitivity_on
FROM sys.fulltext_catalogs

This returns

name path is_default is_accent_sensitivity_on
cat_Production_Document NULL 1 0
cat_Production_Document_EX2 NULL 0 1

The sys.fulltext_indexes system catalog view lists all full-text indexes in the database. For
example:

SELECT object_name(object_id) table_name,
change_tracking_state_desc, stoplist_id

FROM sys.fulltext_indexes

This returns

table_name change_tracking_state_desc stoplist_id
Document OFF 0

The sys.fulltext_index_columns system catalog view lists all full-text indexed columns in the
database. For example:

SELECT object_name(ic.object_id) tblname, c.name
FROM sys.fulltext_index_columns ic
INNER JOIN sys.columns c ON

ic.object_id = c.object_id AND
ic.column_id = c.column_id

This returns the table name and the indexed column names:

tblname name
Document DocumentSummary
Document Document

Also, the FULLTEXTCATALOGPROPERTY system function can be used to return information about a
specific catalog. The syntax is as follows:

FULLTEXTCATALOGPROPERTY ('catalog_name' ,'property')

The function takes two arguments, the name of the catalog and the name of the property to
evaluate. Some of the more useful options for the property option are described in Table 6-5.

CHAPTER 6 ■ FULL-TEXT SEARCH 225

9802CH06.qxd 4/22/08 3:51 PM Page 225

Table 6-5. FULLTEXTCATALOGPROPERTY Property Options (Abridged)

Property Description

AccentSensitivity Returns 1 for accent sensitive, 0 for insensitive

IndexSize Returns the size of the full-text catalog in megabytes

MergeStatus Returns 1 when a reorganization is in process, and 0 when it is not

PopulateStatus Returns a numeric value representing the current population status of a
catalog—for example, 0 for idle, 1 for an in-progress population, 2 for paused,
7 for building an index, and 8 for a full disk

In this example, the full-text catalog population status is returned:

SELECT FULLTEXTCATALOGPROPERTY ('cat_Production_Document','PopulateStatus')
PopulationStatus

This returns 0 for idle:

PopulationStatus
0

How It Works
This recipe used three different catalog views and a system function to return information about
full-text catalogs and indexes in the current database. You’ll need this information in order to keep
track of their existence, as well as to track the current state of activity and settings.

Discarding Common Strings from a Full-Text Index
SQL Server 2008 introduces the ability to identify common strings that are unhelpful for a full-text
index search. These unhelpful strings are called stopwords (called noise words in previous versions
of SQL Server) and are contained within stoplists. A stoplist contains one or more stopwords and is
used in conjunction with a full-text index. SQL Server includes a system default stoplist containing
common stopwords across all supported languages.

To create your own custom stoplist, you use the CREATE FULLTEXT STOPLIST command. The syn-
tax is as follows:

CREATE FULLTEXT STOPLIST stoplist_name
[FROM { [database_name.] source_stoplist_name } | SYSTEM STOPLIST]
[AUTHORIZATION owner_name];

The arguments of this command are described in Table 6-6.

Table 6-6. CREATE FULLTEXT STOPLIST Arguments

Argument Description

stoplist_name Supplies the name of the new user-defined stoplist

{ [database_name.] Allows you to reference the database name and source stoplist
source_stoplist_name } name from which to copy an already existing stoplist

SYSTEM STOPLIST Allows you to copy the system default stoplist

AUTHORIZATION owner_name Defines the database principal stoplist owner

CHAPTER 6 ■ FULL-TEXT SEARCH226

9802CH06.qxd 4/22/08 3:51 PM Page 226

In this example, I will create a new stoplist that is not copied from a preexisting stoplist (note
that a full-text stoplist statement must be terminated by a semicolon [;]):

CREATE FULLTEXT STOPLIST TSQLRecipes;

To confirm the details of my new stoplist, I can query the sys.full_text_stoplists system cat-
alog view:

SELECT stoplist_id,name,principal_id
FROM sys.fulltext_stoplists

This returns

stoplist_id name principal_id
5 TSQLRecipes 1

Once I have created the stoplist, I can now start populating it with stopwords by using the
ALTER FULLTEXT STOPLIST command. The syntax for this command is as follows:

ALTER FULLTEXT STOPLIST stoplist_name
{ ADD 'stopword' LANGUAGE language_term
| DROP
{

'stopword' LANGUAGE language_term
| ALL LANGUAGE language_term

| ALL };

The arguments of this command are described in Table 6-7.

Table 6-7. ALTER FULLTEXT STOPLIST Arguments

Argument Description

stoplist_name Specifies the name of the new user-defined stoplist.

ADD 'stopword' Defines the string value of the stopword. Up to
64 characters can be added.

LANGUAGE language_term Defines the language term associated with the
stopword—which can be the string (alias from
sys.syslanguages), integer (LCID), or hexadecimal
representation (hex value of LCID).

DROP 'stopword' LANGUAGE language_term Specifies that a specific stopword for a specific
language should be dropped.

DROP ALL LANGUAGE language_term Removes all stopwords for a language.

DROP ALL Specifies that all stopwords be removed from the
stoplist.

In this example, assume that I am indexing tables containing references to SQL Server docu-
mentation. In this case, the terms “SQL” and “Server” are not very helpful in the context of a search
(almost every entry would contain it). So in this example, I will add two new stopwords to my
stoplist created earlier:

ALTER FULLTEXT STOPLIST TSQLRecipes
ADD 'SQL' LANGUAGE 'English';

ALTER FULLTEXT STOPLIST TSQLRecipes
ADD 'Server' LANGUAGE 'English';

CHAPTER 6 ■ FULL-TEXT SEARCH 227

9802CH06.qxd 4/22/08 3:51 PM Page 227

After adding the two new stopwords to my stoplist, I can validate the list by querying the
sys.fulltext_stopwords system catalog view:

SELECT stoplist_id,stopword,language
FROM sys.fulltext_stopwords

This returns

stoplist_id stopword language
5 SQL English
5 Server English

In the next query, I’ll demonstrate binding my new stoplist to a full-text index:

--Example table
CREATE TABLE dbo.SQLTopic
(SQLTopic int IDENTITY PRIMARY KEY,
SQLTopicHeaderNM varchar(255) NOT NULL,
SQLTopicBody varchar(max) NOT NULL)

GO

-- Create example catalog
CREATE FULLTEXT CATALOG ftcat_SQLDocumentation
AS DEFAULT
GO

-- Create full-text index binding to our new stoplist
-- Look up your actual PK constraint name using sp_help 'dbo.sqltopic'
CREATE FULLTEXT INDEX ON dbo.SQLTopic(SQLTopicBody)

KEY INDEX PK__SQLTopic__AD5554EC442B18F2
WITH STOPLIST = TSQLRecipes

GO

I can confirm the stoplist binding using the sys.fulltext_indexes system catalog view:

SELECT stoplist_id
FROM sys.fulltext_indexes
WHERE object_id = object_id('dbo.SQLTopic')

This returns

stoplist_id
5

I can test whether or not my new stop words are recognized by the Full-Text Engine by using
the sys.dm_fts_parser Dynamic Management View. The syntax for this DMV is as follows:

sys.dm_fts_parser('query_string', lcid, stoplist_id, accent_sensitivity)

The first parameter, query_string, is the query string you may use within a full-text index
search. The lcid is the locale identifier, and stoplist_id is the unique ID for the stoplist (which you
can retrieve from sys.fulltext_stoplists). The accent_sensitivity argument has a 1 or 0 value,
indicating whether your search should be accent sensitive or insensitive. To demonstrate using this
DMV, the following query tests searching on the phase SQL Server 2008 Transact-SQL Recipes
using the stoplist created earlier:

CHAPTER 6 ■ FULL-TEXT SEARCH228

9802CH06.qxd 4/22/08 3:51 PM Page 228

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

SELECT display_term, special_term
FROM sys.dm_fts_parser
('"SQL Server 2008 Transact-SQL Recipes"', 1033, 5, 0)

This returns return a list of each keyword, along with how they are treated (noise word/stop-
word or exact match):

display_term special_term
sql Noise Word
server Noise Word
2008 Exact Match
nn2008 Exact Match
transact Exact Match
sql Noise Word
transactsql Exact Match
recipes Exact Match

As you can see from the results, both SQL and Server are recognized as noise words (stop-
words).

In this next query, I demonstrate removing a stopword from the stoplist (this is allowed even
while the stoplist is actively bound to a full-text index):

ALTER FULLTEXT STOPLIST TSQLRecipes
DROP 'Server' LANGUAGE 'English';

To remove a stoplist, I use the DROP FULLTEXT STOPLIST command. Before I can drop it, it must
be unbound from the full-text indexes using it. The last query of this recipe demonstrates removing
the stoplist settings from the full-text index and then dropping the stoplist:

ALTER FULLTEXT INDEX ON dbo.SQLTopic
SET STOPLIST SYSTEM
GO

DROP FULLTEXT STOPLIST TSQLRecipes;

How It Works
This recipe demonstrated how to discard common strings from a full-text index by creating a user-
defined stoplist that contained a list of stopwords. To create the stoplist, I used the CREATE FULLTEXT
STOPLIST command. After creating the stoplist, I was then able to use ALTER FULLTEXT STOPLIST to
add and remove stopword strings to the stoplist. I used the sys.fulltext_stoplists and sys.
fulltext_stopwords system catalog views to confirm my settings. I then created a new table and
full-text catalog, and then created a new full-text index that used the new stoplist by designating
WITH STOPLIST = TSQLRecipes. I was able to test whether my stopwords in the stoplist would be
properly ignored by using sys.dm_fts_parser. To remove the stoplist from the full-text index, I used
ALTER FULLTEXT INDEX with SET STOPLIST, followed by the DROP FULLTEXT STOPLIST command.

Dropping a Full-Text Index
In this recipe, I’ll demonstrate how to remove a full-text index from the full-text catalog using the
DROP FULLTEXT INDEX command. The syntax is as follows:

DROP FULLTEXT INDEX ON table_name

CHAPTER 6 ■ FULL-TEXT SEARCH 229

9802CH06.qxd 4/22/08 3:51 PM Page 229

This command only takes a single argument, the name of the table on which the full-text index
should be dropped. For example:

DROP FULLTEXT INDEX ON Production.Document

How It Works
The DROP FULLTEXT INDEX ON command references the full-text indexed table. Since only one index
is allowed on a single table, no other information is required to drop the full-text index.

Dropping a Full-Text Catalog
In this recipe, I demonstrate how to remove a full-text catalog from the database using the DROP
FULLTEXT CATALOG command. The syntax is as follows:

DROP FULLTEXT CATALOG catalog_name

This command takes a single argument, the name of the catalog to drop. For example:

DROP FULLTEXT CATALOG cat_Production_Document

How It Works
The DROP FULLTEXT CATALOG references the catalog name and doesn’t require any further informa-
tion to remove it from the database. If the full-text catalog was set as the DEFAULT catalog, you’ll see
the following warning:

Warning: The fulltext catalog 'cat_Production_Document'
is being dropped and is currently set as default.

Basic Searching
Once you’ve created the full-text catalog and full-text indexes, you can get down to the business of
querying the data with more sophisticated Transact-SQL predicates. Predicates are used in expres-
sions in the WHERE or HAVING clauses, or join conditions of the FROM clause. Predicates return a TRUE,
FALSE, or UNKNOWN response.

Beginning with the more simple commands, the FREETEXT command is used to search unstruc-
tured text data based on inflectional, literal, or synonymous matches. It is more intelligent than
using LIKE because the text data is searched by meaning and not necessarily the exact wording.

The CONTAINS predicate is used to search unstructured textual data for precise or less-precise
word and phrase matches. This command can also take into consideration the proximity of words
to one another, allowing for weighted results.

These next two recipes will demonstrate basic searches using the FREETEXT and CONTAINS
predicates. The examples depend on a full-text index on the Production.Document table’s
DocumentSummary column. I’ll create that index here, before proceeding with the recipes:

USE AdventureWorks
GO
CREATE FULLTEXT CATALOG cat_Production_Document

CHAPTER 6 ■ FULL-TEXT SEARCH230

9802CH06.qxd 4/22/08 3:51 PM Page 230

CREATE FULLTEXT INDEX ON Production.Document
(DocumentSummary)
KEY INDEX PK_Document_DocumentNode
ON cat_Production_Document
WITH CHANGE_TRACKING AUTO,

STOPLIST = SYSTEM

Using FREETEXT to Search Full-Text Indexed Columns
The FREETEXT predicate is used to search full-text columns based on inflectional, literal, or synony-
mous matches. The syntax is as follows:

FREETEXT ({ column_name | (column_list) | * }
, 'freetext_string' [, LANGUAGE language_term])

The arguments for this predicate are described in Table 6-8.

Table 6-8. FREETEXT Arguments

Argument Description

column_name | column_list | * Indicates the name of the column or columns that are full-text
indexed and that you wish to be searched. Specifying *
designates that all searchable columns are used.

freetext_string Defines the text to search for.

language_term Directs SQL Server to use a specific language for performing the
search, accessing thesaurus information, and removing
stopwords.

In this example, I’ll use FREETEXT to search data based on the meaning of the search term. SQL
Server looks at the individual words and searches for exact matches, inflectional forms, or exten-
sions/replacements based on the specific language’s thesaurus:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE FREETEXT (DocumentSummary, 'change pedal')

This returns

DocumentNode DocumentSummary
0x7BC0 Detailed instructions for replacing pedals with Adventure Works Cycles

replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

How It Works
In this recipe, FREETEXT was used to search the DocumentSummary column for the phrase “change
pedal.” Though neither the exact word “change” nor “pedal” exists in the data, a row was returned
because of a match on the plural form of pedal (“pedals”).

FREETEXT is, however, a less-precise way of searching full-text indexes compared to CONTAINS,
which is demonstrated in the next few recipes.

CHAPTER 6 ■ FULL-TEXT SEARCH 231

9802CH06.qxd 4/22/08 3:51 PM Page 231

Using CONTAINS for Word Searching
In this recipe, I demonstrate using the CONTAINS command to perform word searches. CONTAINS
allows for more sophisticated full-text term searches than the FREETEXT predicate. The abridged
syntax is as follows:

CONTAINS
({ column_name | (column_list) | * } ,

'< contains_search_condition >' [, LANGUAGE language_term])

The arguments are identical to FREETEXT, only CONTAINS allows for a variety of search conditions
(some demonstrated later on in the “Advanced Searching” section of this chapter).

This example demonstrates a simple search of rows, with a DocumentSummary searching for the
words “replacing” or “pedals”:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"replacing" OR "pedals"')

This returns

DocumentNode DocumentSummary
0x7BC0 Detailed instructions for replacing pedals with Adventure Works Cycles

replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

0x7C20 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works Cycles
parts when replacing worn or broken components.

How It Works
In this recipe, I performed a search against the DocumentSummary, finding any summary that con-
tained either the words “replacing” OR “pedals.” Unlike FREETEXT, the literal words are searched, and
not the synonyms or inflectional form.

OR was used to search for rows with either of the words, but AND could also have been used to
return rows only if both words existed for the DocumentSummary value.

■Tip For a term consisting of a single word, double quotes are not necessary, just the outer single quotes.

Advanced Searching
So far, this chapter has demonstrated examples of fairly straightforward word searches. However,
using CONTAINS, you can perform more advanced searches against words or phrases. Some examples
of this include the following:

• Using a wildcard search to find words or phrases that match a specific text prefix

• Searching for words or phrases based on inflections of a specific word

• Searching for words or phrases based on the proximity of words to one another

CHAPTER 6 ■ FULL-TEXT SEARCH232

9802CH06.qxd 4/22/08 3:51 PM Page 232

These next three recipes will demonstrate these more advanced searches using the CONTAINS
predicate.

Using CONTAINS to Search with Wildcards
In this recipe, I demonstrate how to use wildcards within a CONTAINS search. A prefix term is desig-
nated, followed by the asterisk symbol:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"import*"')

This returns

DocumentNode DocumentSummary
0x5B40 It is important that you maintain your bicycle and keep it in good repair.

Detailed repair and service guidelines are provided along with instructions
for adjusting the tightness of the suspension fork.

How It Works
This recipe uses the asterisk symbol to represent a wildcard of one or more characters. This is simi-
lar to using LIKE, only you can benefit from the inherent performance of full-text indexing. Any
match on a word that starts with “import” will be returned. In this case, one row that matches on
the word “important” was returned.

When using a wildcard, the term must be embedded in double quotes; otherwise, SQL Server
interprets the asterisk as a literal value to be searched for. For example, searching for 'import*'
without the embedded quotes looks for the literal asterisk value as part of the search term.

Using CONTAINS to Search for Inflectional Matches
In this recipe, I’ll demonstrate how to search for rows that match a search term based on inflec-
tional variations. The syntax for searching for inflectional variations is as follows:

FORMSOF ({ INFLECTIONAL | THESAURUS } , < simple_term > [,...n])

In this example, the inflectional variation of “replace” is searched:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, ' FORMSOF (INFLECTIONAL, replace) ')

This returns

DocumentNode DocumentSummary
0x7B40 Reflectors are vital safety components of your bicycle. Always ensure your

front and back reflectors are clean and in good repair. Detailed
instructions and illustrations are included should you need to replace the
front reflector or front reflector bracket of your Adventure Works Cycles
bicycle.

0x7BC0 Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

CHAPTER 6 ■ FULL-TEXT SEARCH 233

9802CH06.qxd 4/22/08 3:51 PM Page 233

q

0x7C20 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works Cycles
parts when replacing worn or broken components.

How It Works
This recipe searches for any rows with the inflectional version of “replace.” Although the literal
value is not always found in that column, a row will also be returned that contains “replaced” or
“replacing.”

THESAURUS is the other option for the FORMSOF clause, allowing you to search based on synony-
mous terms (which are maintained in XML files in the $SQL_Server_Install_Path\Microsoft SQL
Server\<InstancePath>\MSSQL\FTDATA\ directory). For example, the French thesaurus XML file is
called tsFRA.xml. These XML files are updateable, so you can customize them according to your
own application requirements.

Using CONTAINS for Searching Results by Term Proximity
This recipe demonstrates how CONTAINS is used to find rows with specified words that are near one
another. The abridged syntax is as follows:

{ < simple_term > | < prefix_term > }
{ NEAR | ~ }

{ < simple_term > | < prefix_term > }

In this example, rows are returned where the word “oil” is near to “grease”:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease')

This returns

DocumentSummary
Guidelines and recommendations for lubricating the required components of your
Adventure Works Cycles bicycle. Component lubrication is vital to ensuring a smooth
and safe ride and should be part of your standard maintenance routine. Details
instructions are provided for each bicycle component requiring regular lubrication
including the frequency at which oil or grease should be applied.

How It Works
This recipe looked for any text that had the word “grease” near the word “oil.” This example
searched for proximity between two words, although you can also test for proximity between multi-
ple words, for example:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease AND frequency')

In this case, all three words should be in near proximity to one another.

CHAPTER 6 ■ FULL-TEXT SEARCH234

9802CH06.qxd 4/22/08 3:51 PM Page 234

Ranked Searching
The previous examples demonstrated full-text index searches conducted in the WHERE clause of a
SELECT query. SQL Server also has ranking functions available, which are referenced in the FROM
clause of a query instead. Instead of just returning those rows that meet the search condition, the
ranking functions CONTAINSTABLE and FREETEXTTABLE are used to return designated rows by rele-
vance. The closer the match, the higher the system-generated rank, as these next two recipes will
demonstrate.

Returning Ranked Search Results by Meaning
In this recipe, I demonstrate FREETEXTTABLE, which can be used to return search results ordered by
rank, based on a search string.

The syntax and functionality between FREETEXT and FREETEXTTABLE is still very similar:

FREETEXTTABLE (table , { column_name | (column_list) | * }
, 'freetext_string'

[, LANGUAGE language_term]
[,top_n_by_rank])

The two additional arguments that differentiate FREETEXTTABLE from FREETEXT are the table
and top_n_by_rank arguments. The table argument is the name of the table containing the full-text
indexed column or columns. The top_n_by_rank argument, when designated, takes an integer value
that represents the top matches in order of rank.

In this example, rows are returned from Production.Document in order of closest rank to the
search term “bicycle seat”:

SELECT f.RANK, DocumentNode, DocumentSummary
FROM Production.Document d
INNER JOIN FREETEXTTABLE(Production.Document, DocumentSummary, 'bicycle seat') f

ON d.DocumentNode = f.[KEY]
ORDER BY RANK DESC

This returns

RANK DocumentNode DocumentSummary
61 0x7C20 Worn or damaged seats can be easily replaced following these simple

instructions. Instructions are applicable to these Adventure Works
Cycles models: Mountain 100 through Mountain 500. Use only Adventure
Works Cycles parts when replacing worn or broken c

37 0x6B40 Guidelines and recommendations for lubricating the required
components of your Adventure Works Cycles bicycle. Component
lubrication is vital to ensuring a smooth and safe ride and should
be part of your standard maintenance routine. Details instructions a

37 0x7B40 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good repair.
Detailed instructions and illustrations are included should you need
to replace the front reflector or front reflector bracke

21 0x7BC0 Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement pedals. Use
only Adventure Works Cycles parts when replacing worn or broken

21 0x5B40 It is important that you maintain your bicycle and keep it in good
repair. Detailed repair and service guidelines are provided along
with instructions for adjusting the tightness of the suspension
fork.

CHAPTER 6 ■ FULL-TEXT SEARCH 235

9802CH06.qxd 4/22/08 3:51 PM Page 235

How It Works
FREETEXTTABLE is similar to FREETEXT in that it searches full-text indexed columns by meaning, and
not literal value. FREETEXTTABLE is different from FREETEXT, however, in that it is referenced like a
table in the FROM clause, allowing you to join data by its KEY. KEY and RANK are two columns that the
FREETEXTTABLE returns in the result set. KEY is the unique/primary key defined for the full index, and
RANK is the measure of how relevant a search result the row is estimated to be.

In this recipe, the FREETEXTTABLE result set searched the DocumentSummary column for “bicycle
seat,” joined by its KEY value to the Production.Document table’s DocumentNode column:

INNER JOIN FREETEXTTABLE(Production.Document,
DocumentSummary,
'bicycle seat') f

ON d.DocumentNode = f.[KEY]

RANK was returned sorted by descending order, based on the strength of the match:

ORDER BY RANK DESC

Returning Ranked Search Results by Weighted Value
In this recipe, I demonstrate returning search results based on a weighted pattern match value
using the CONTAINSTABLE command. CONTAINSTABLE is equivalent to FREETEXTTABLE in that it acts as a
table and can be referenced in the FROM clause. CONTAINSTABLE also has the same search capabilities
and variations as CONTAINS.

Both CONTAINS and CONTAINSTABLE can be used to designate a row match’s “weight,” giving one
term more importance than another, thus impacting result rank. This is achieved by using ISABOUT
in the command, which assigns a weighted value to the search term.

The basic syntax for this is as follows:

ISABOUT { <search term> } [WEIGHT (weight_value)]

This example demonstrates querying Production.Document by rank, giving the term “bicycle” a
higher weighting than the term “seat”:

SELECT f.RANK, d.DocumentNode, d.DocumentSummary
FROM Production.Document d
INNER JOIN CONTAINSTABLE(Production.Document, DocumentSummary,
'ISABOUT (bicycle weight (.9), seat weight (.1))') f

ON d.DocumentNode = f.[KEY]
ORDER BY RANK DESC

This returns

RANK DocumentNode DocumentSummary
23 0x6B40 Guidelines and recommendations for lubricating the required

components of your Adventure Works Cycles bicycle. Component
lubrication is vital to ensuring a smooth and safe ride and should
be part of your standard maintenance routine. Details instructions a

23 0x7B40 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good repair.
Detailed instructions and illustrations are included should you need
to replace the front reflector or front reflector bracke

11 0x7BC0 Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement pedals. Use
only Adventure Works Cycles parts when replacing worn or broken

CHAPTER 6 ■ FULL-TEXT SEARCH236

9802CH06.qxd 4/22/08 3:51 PM Page 236

11 0x5B40 It is important that you maintain your bicycle and keep it in good
repair. Detailed repair and service guidelines are provided along
with instructions for adjusting the tightness of the suspension
fork.

How It Works
The CONTAINSTABLE is a result set, joining to Production.Document by KEY and DocumentID. RANK was
returned in the SELECT clause, and sorted in the ORDER BY clause. CONTAINSTABLE can perform the
same kinds of searches as CONTAINS, including wildcard, proximity, inflectional, and thesaurus
searches.

In this example, a weighted term search was performed, meaning that words are assigned
values that impact their weight within the result ranking.

In this recipe, two words were searched, “bicycle” and “seat,” with “bicycle” getting a higher
rank than “seat”:

'ISABOUT (bicycle weight (.9), seat weight (.1))'

The weight value, which can be a number from 0.0 through 1.0, impacts how each row’s
matching will be ranked within CONTAINSTABLE. ISABOUT is put within the single quotes, and the col-
umn definition is within parentheses. Each term was followed by the word “weight” and the value
0.0 to 1.0 value in parentheses. Although the weight does not affect the rows returned from the
query, it will impact the ranking value.

CHAPTER 6 ■ FULL-TEXT SEARCH 237

9802CH06.qxd 4/22/08 3:51 PM Page 237

9802CH06.qxd 4/22/08 3:51 PM Page 238

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Views

Views allow you to create a virtual representation of table data defined by a SELECT statement. The
defining SELECT statement can join one or more tables and can include one or more columns. Once
created, a view can be referenced in the FROM clause of a query.

Views can be used to simplify data access for query writers, obscuring the underlying complex-
ity of the SELECT statement. Views are also useful for managing security and protecting sensitive
data. If you wish to restrict direct table access by the end user, you can grant permissions exclu-
sively to views, rather than to the underlying tables. You can also use views to expose only those
columns that you wish the end user to see, including just the necessary columns in the view defini-
tion. Views can even allow direct data updates, under specific circumstances that I’ll describe later
in the chapter recipe “Modifying Data Through a View.” Views also provide a standard interface to
the back-end data, which shouldn’t need to change unless there are significant changes to the
underlying table structures.

In addition to regular views, you can also create indexed views, which are views that actually
have index data persisted within the database (regular views do not actually store physical data).
Also available are distributed-partitioned views, which allow you to represent one logical table
made up of horizontally partitioned tables, each located across separate SQL Server instances.
Table 7-1 shows the three types of views used in SQL Server.

Table 7-1. SQL Server View Types

View Type Description

Regular view This view is defined by a Transact-SQL query. No data is actually
stored in the database, only the view definition.

Indexed view This view is first defined by a Transact-SQL query, and then, after
certain requirements are met, a clustered index is created on it in
order to materialize the index data similar to table data. Once a
clustered index is created, multiple nonclustered indexes can be
created on the indexed view as needed.

Distributed partitioned view This is a view that uses UNION ALL to combine multiple, smaller
tables separated across two or more SQL Server instances into a
single, virtual table for performance purposes and scalability
(expansion of table size on each SQL Server instance, for example).

In this chapter, I’ll present recipes that create each of these types of views, and I’ll also provide
methods for reporting view metadata.

239

C H A P T E R 7

9802CH07.qxd 4/22/08 3:55 PM Page 239

Regular Views
Views are a great way to filter data and columns before presenting it to end users. Views can be used
to obscure numerous table joins and column selections and can also be used to implement security
by only allowing users authorization access to the view, and not to the actual underlying tables.

For all the usefulness of views, there are still some performance shortcomings to watch out for.
When considering views for your database, consider the following best practices:

• Performance-tune your views as you would performance-tune a SELECT query, because a reg-
ular view is essentially just a “stored” query. Poorly performing views can have a significant
impact on server performance.

• Don’t nest your views more than one level deep. Specifically, do not define a view that calls
another view, and so on. This can lead to confusion when you attempt to tune inefficient
queries and can degrade performance with each level of view nesting.

• When possible, use stored procedures instead of views. Stored procedures can offer a per-
formance boost, as the execution plan can reuse them. Stored procedures can also reduce
network traffic, allow for more sophisticated business logic, and have fewer coding restric-
tions than a view (see Chapter 10 for more information).

When a view is created, its definition is stored in the database, but the actual data that the view
returns is not stored separately from the underlying tables. The next few recipes will demonstrate
how to create and manage views.

Creating a Basic View
A view is created using the CREATE VIEW command. The syntax is as follows:

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] [,...n]]
AS select_statement
[WITH CHECK OPTION]

The arguments of this command are described in Table 7-2. Some of these arguments will also
be reviewed in more detail later on in the chapter.

Table 7-2. CREATE VIEW Arguments

Argument Description

[schema_name .] view_name This specifies the schema and name of the new view.

(column [,...n]) This is the optional list of column names to be used for the view.
If not designated, the names used in the SELECT query will be
used instead (unless there is no name specified for the column,
and then there is an error).

ENCRYPTION This encrypts the Transact-SQL view definition in the system
tables so that it cannot be viewed without a saved copy of the
original CREATE VIEW command.

SCHEMABINDING SCHEMABINDING binds the view to the schema of the underlying
tables, restricting any changes in the base table that would
impact the view definition.

CHAPTER 7 ■ VIEWS240

9802CH07.qxd 4/22/08 3:55 PM Page 240

Argument Description

VIEW_METADATA When designated, APIs accessing information about the view will
see view information instead of metadata from the underlying
table or tables.

select_statement This specifies the SELECT query used to return the rows and
columns of the view.

The SELECT statement allows a view to have up to 1,024 defined columns. You cannot use cer-
tain SELECT elements in a view definition, including INTO, OPTION, COMPUTE, COMPUTE BY, or references
to table variables or temporary tables. You also cannot use ORDER BY, unless used in conjunction
with the TOP keyword.

This example demonstrates how to create a view that accesses data from both the
Production.TransactionHistory and the Production.Product tables:

USE AdventureWorks
GO

CREATE VIEW dbo.v_Product_TransactionHistory
AS

SELECT p.Name ProductName,
p.ProductNumber,
c.Name ProductCategory,
s.Name ProductSubCategory,
m.Name ProductModel,
t.TransactionID,
t.ReferenceOrderID,
t.ReferenceOrderLineID,
t.TransactionDate,
t.TransactionType,
t.Quantity,
t.ActualCost

FROM Production.TransactionHistory t
INNER JOIN Production.Product p ON

t.ProductID = p.ProductID
INNER JOIN Production.ProductModel m ON

m.ProductModelID = p.ProductModelID
INNER JOIN Production.ProductSubcategory s ON

s.ProductSubcategoryID = p.ProductSubcategoryID
INNER JOIN Production.ProductCategory c ON

c.ProductCategoryID = s.ProductCategoryID
WHERE c.Name = 'Bikes'
GO

Next, I will query the new view to show transaction history for products by product name and
model:

SELECT ProductName, ProductModel, ReferenceOrderID, ActualCost
FROM dbo.v_Product_TransactionHistory
ORDER BY ProductName

This returns the following abridged results:

CHAPTER 7 ■ VIEWS 241

9802CH07.qxd 4/22/08 3:55 PM Page 241

ProductName ProductModel ReferenceOrderID ActualCost
Mountain-200 Black, 38 Mountain-200 53457 1652.3928
Mountain-200 Black, 38 Mountain-200 53463 1652.3928
…
Touring-3000 Yellow, 62 Touring-3000 71818 534.492
Touring-3000 Yellow, 62 Touring-3000 71822 534.492

(25262 row(s) affected)

How It Works
In this recipe, I define a view by using a SELECT query that referenced multiple tables in the FROM
clause and qualified a specific product category of “Bikes.” In this case, the view benefits anyone
needing to write a query to access this data, as the user doesn’t need to specify the many table joins
each time she writes the query.

The view definition also used column aliases, using ProductName instead of just Name—making
the column name unambiguous and reducing the possible confusion with other columns called
Name. Qualifying what data is returned from the view in the WHERE clause also allows you to restrict
the data that the query writer can see—in this case only letting the query writer reference products
of a specific product category.

Querying the View Definition
You can view the Transact-SQL definition of a view by querying the sys.sql_modules system catalog
view.

This example shows you how to query a view’s SQL definition:

SELECT definition FROM sys.sql_modules
WHERE object_id = OBJECT_ID('v_Product_TransactionHistory')

This returns

definition
CREATE VIEW dbo.v_Product_TransactionHistory AS
SELECT p.Name ProductName,

p.ProductNumber,
c.Name ProductCategory,
s.Name ProductSubCategory,
m.Name
ProductModel,
t.TransactionID,
t.ReferenceOrderID,
t.ReferenceOrderLineID,
t.TransactionDate,
t.TransactionType,
t.Quantity,
t.ActualCost

FROM Production.TransactionHistory t
INNER JOIN Production.Product p ON

t.ProductID = p.ProductID
INNER JOIN Production.ProductModel m ON

m.ProductModelID = p.ProductModelID
INNER JOIN Production.ProductSubcategory s ON

CHAPTER 7 ■ VIEWS242

9802CH07.qxd 4/22/08 3:55 PM Page 242

s.ProductSubcategoryID = p.ProductSubcategoryID
INNER JOIN Production.ProductCategory c ON

c.ProductCategoryID = s.ProductCategoryID
WHERE c.Name = 'Bikes'

The T-SQL object definition can also be returned using the OBJECT_DEFINITION function, as the
next query demonstrates:

SELECT OBJECT_DEFINITION (OBJECT_ID('v_Product_TransactionHistory'))

This returns the same results as the previous query to sys.sql_modules.

How It Works
As you just saw, the sys.sql_modules system catalog view and OBJECT_DEFINITION function allow you
to view the SQL text of a view. If the view has been encrypted (see the section “View Encryption”
later in the chapter for a review of encryption), the definition column will return a NULL value. This
sys.sql_modules system catalog view can also be used to view other procedural code object types
described in later chapters, such as triggers, functions, and stored procedures.

Displaying Views and Their Structures
In this recipe, I use three different queries to return information about views in the current data-
base.

The first query shows all views in the current database:

SELECT s.name SchemaName,
v.name ViewName

FROM sys.views v
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id
ORDER BY s.name,

v.name

This returns the following (abridged) results:

SchemaName ViewName
dbo v_Product_TransactionHistory
HumanResources vEmployee
HumanResources vEmployeeDepartment
...
Sales vStoreWithAddresses
Sales vStoreWithContacts
Sales vStoreWithDemographics

(21 row(s) affected)

This second query displays the columns exposed by each view in the current database:

SELECT v.name ViewName,
c.name ColumnName

FROM sys.columns c
INNER JOIN sys.views v ON

c.object_id = v.object_id
ORDER BY v.name,

c.name

CHAPTER 7 ■ VIEWS 243

9802CH07.qxd 4/22/08 3:55 PM Page 243

This returns the following (abridged) results:

ViewName ColumnName
v_Product_TransactionHistory ActualCost
v_Product_TransactionHistory ProductCategory
v_Product_TransactionHistory ProductModel
v_Product_TransactionHistory ProductName
...
vVendorWithContacts PhoneNumberType
vVendorWithContacts Suffix
vVendorWithContacts Title

(270 row(s) affected)

How It Works
The first query in the recipe references the object catalog views sys.views and sys.schemas to return
all views in the database:

FROM sys.views v
INNER JOIN sys.schemas s ON

v.schema_id = s.schema_id

The second query reports on all columns returned by each view by querying the object catalog
views sys.columns and sys.views:

FROM sys.columns c
INNER JOIN sys.views v ON

c.object_id = v.object_id

■Tip Views can reference other views or tables within the view definition. These referenced objects are object
dependencies (the view depends on them to return data). If you would like to query object dependencies for views,
use the sys.sql_expression_dependencies catalog view. This catalog view is new in SQL Server 2008, and I
cover it in Chapter 24.

Refreshing a View’s Definition
When table objects referenced by the view are changed, the view’s metadata can become outdated.
For example, if you change the column width for a column referenced in a view definition, the new
size may not be reflected until the metadata is refreshed. In this recipe, I’ll show you how to refresh
a view’s metadata if the dependent objects referenced in the view definition have changed:

EXEC sp_refreshview 'dbo.v_Product_TransactionHistory'

You can also use the system stored procedure sp_refreshsqlmodule, which can be used not
only for views, but also for stored procedures, triggers, and user-defined functions:

EXEC sys.sp_refreshsqlmodule @name = 'dbo.v_Product_TransactionHistory'

CHAPTER 7 ■ VIEWS244

9802CH07.qxd 4/22/08 3:55 PM Page 244

How It Works
If the underlying object references for the view’s SELECT query definition changes, you can use the
sp_refreshview or sys.sp_refreshsqlmodule stored procedure to refresh the view’s metadata. These
system stored procedures take only one parameter, the view schema and name.

Modifying a View
The ALTER VIEW command is used to modify the definition of an existing view. The syntax is as
follows:

ALTER VIEW [schema_name .] view_name [(column [,...n])]
[WITH [ENCRYPTION] [SCHEMABINDING] [VIEW_METADATA] [,...n]]
AS select_statement
[WITH CHECK OPTION]

ALTER VIEW uses the same arguments as CREATE VIEW. This example demonstrates modifying an
existing view:

-- Add a WHERE clause and remove
-- the ReferenceOrderID and ReferenceOrderLineID columns

ALTER VIEW dbo.v_Product_TransactionHistory
AS

SELECT p.Name,
p.ProductNumber,
t.TransactionID,
t.TransactionDate,
t.TransactionType,
t.Quantity,
t.ActualCost

FROM Production.TransactionHistory t
INNER JOIN Production.Product p ON

t.ProductID = p.ProductID
WHERE Quantity > 10

GO

How It Works
This recipe was used to remove two columns from the original view and add a WHERE clause—both
by just redefining the SELECT statement after the AS keyword in the ALTER VIEW command. Note that
if you alter an indexed view (reviewed later in the chapter), all indexes will be dropped and will need
to be manually re-created.

Dropping a View
You can drop a view by using the DROP VIEW command. The syntax is as follows:

DROP VIEW [schema_name .] view_name [...,n]

The command just takes one argument, containing the name or names of the views to drop
from the database.

This example demonstrates dropping a view:

DROP VIEW dbo.v_Product_TransactionHistory

CHAPTER 7 ■ VIEWS 245

9802CH07.qxd 4/22/08 3:55 PM Page 245

How It Works
Dropping a view will remove its definition from the system catalogs, as well as remove any indexes
created for it if it were an indexed view.

Modifying Data Through a View
As I mentioned at the beginning of the chapter, you can perform inserts, updates, and deletes
against a view, just like you would a regular table. In order to do this, any INSERT/UPDATE/DELETE
operations can reference columns only from a single table. Also, the columns being referenced in
the INSERT/UPDATE/DELETE cannot be derived—for example, they can’t be calculated, based on an
aggregate function, or be affected by a GROUP BY, DISTINCT, or HAVING clause.

As a real-world best practice, view updates may be appropriate for situations where the under-
lying data tables must be obscured from the query author. For example, if you are building a
shrink-wrapped software application that allows users to directly update the data, providing views
will allow you to filter the underlying columns that are viewed or provide more user-friendly col-
umn names than what you find used in the base tables.

In this example, a view is created that selects from the Production.Location table. A calculated
column is also used in the query definition:

CREATE VIEW Production.vw_Location
AS
SELECT LocationID,

Name LocationName,
CostRate,
Availability,
CostRate/Availability CostToAvailabilityRatio

FROM Production.Location
GO

The following insert is attempted:

INSERT Production.vw_Location
(LocationName, CostRate, Availability, CostToAvailabilityRatio)
VALUES ('Finishing Cabinet', 1.22, 75.00, 0.01626)

This returns the following error:

Msg 4406, Level 16, State 1, Line 1
Update or insert of view or function 'Production.vw_Location' failed
because it contains a derived or constant field.

This next insert is attempted, this time only referencing the columns that exist in the base
table:

INSERT Production.vw_Location
(LocationName, CostRate, Availability)
VALUES ('Finishing Cabinet', 1.22, 75.00)

The results show that the insert succeeded:

(1 row(s) affected)

CHAPTER 7 ■ VIEWS246

9802CH07.qxd 4/22/08 3:55 PM Page 246

How It Works
In this recipe, I demonstrated performing an insert operation against a view. You can perform data
modifications against views as long as your data modification and view meet the requirements. If
your view can’t meet these requirements, you can use an INSTEAD OF trigger to perform updates
instead (an example of creating a view on a trigger is demonstrated in Chapter 12).

View Encryption
The ENCRYPTION OPTION in the CREATE VIEW and ALTER VIEW commands allows you to encrypt the
Transact-SQL of a view. Once encrypted, you can no longer view the definition in the sys.
sql_modules system catalog view. Software vendors who use SQL Server in the back end often
encrypt their views or stored procedures in order to prevent tampering or reverse-engineering from
clients or competitors. If you use encryption, be sure to save the original, unencrypted definition.

Encrypting a View
This example demonstrates encrypting the Transact-SQL definition of a new view:

CREATE VIEW dbo.v_Product_TopTenListPrice
WITH ENCRYPTION
AS

SELECT TOP 10
p.Name,
p.ProductNumber,
p.ListPrice

FROM Production.Product p
ORDER BY p.ListPrice DESC
GO

Next, the sys.sql_modules system catalog view is queried for the new view’s Transact-SQL
definition:

SELECT definition
FROM sys.sql_modules
WHERE object_id = OBJECT_ID('v_Product_TopTenListPrice')

This returns

definition
NULL

How It Works
In this recipe, a new view was created using the WITH ENCRYPTION option. If you’re using this option,
be sure to retain your source code in a safe location, or use a version control program such as Visual
SourceSafe. In general, if you must encrypt a view’s definition, it should be performed just prior to
deployment.

CHAPTER 7 ■ VIEWS 247

9802CH07.qxd 4/22/08 3:55 PM Page 247

Indexed Views
A view is no more efficient than the underlying SELECT query that you use to define it. However, one
way you can improve the performance of a frequently accessed view is to add an index to it. To do
so, you must first create a unique, clustered index on the view. Once this index has been built, the
data used to materialize the view is stored in much the same way as a table’s clustered index. After
creating the unique clustered index on the view, you can also create additional nonclustered
indexes. The underlying (base) tables are not impacted physically by the creation of these view
indexes, as they are separate underlying objects.

Indexed views can be created across all editions of SQL Server, although they require SQL
Server Enterprise Edition in order for the Query Optimizer to automatically consider using an
indexed view in a query execution plan. In SQL Server Enterprise Edition, an indexed view can
automatically be used by the Query Optimizer when it is deemed useful, even if the SQL statement
explicitly references the view’s underlying base tables and not the view itself. In editions other than
Enterprise Edition, you can manually force an indexed view to be used by the Query Optimizer by
using the NOEXPAND table hint (reviewed later in the chapter in the “Forcing the Optimizer to Use an
Index for an Indexed View” recipe).

Indexed views are particularly ideal for view definitions that aggregate data across many rows,
as the aggregated values remain updated and materialized, and can be queried without continuous
recalculation. Indexed views are ideal for queries referencing infrequently updated base tables, but
creating them on highly volatile tables may result in degraded performance due to constant updat-
ing of the indexes. Base tables with frequent updates will trigger frequent index updates against the
view, meaning that update speed will suffer at the expense of query performance.

Creating an Indexed View
In this recipe, I’ll demonstrate how to create an indexed view. First, I will create a new view, and
then create indexes (clustered and nonclustered) on it. In order to create an indexed view, you are
required to use the WITH SCHEMABINDING option, which binds the view to the schema of the underly-
ing tables. This prevents any changes in the base table that would impact the view definition. The
WITH SCHEMABINDING option also adds additional requirements to the view’s SELECT definition.
Object references in a schema-bound view must include the two-part schema.object naming con-
vention, and all referenced objects have to be located in the same database.

■Note There are also several other requirements that can determine whether or not an index can be created on
top of a view. The exhaustive list won’t be rehashed in this chapter, so be sure to check out the complete require-
ments in SQL Server Books Online.

The recipe begins by creating a new view with the SCHEMABINDING option:

CREATE VIEW dbo.v_Product_Sales_By_LineTotal
WITH SCHEMABINDING
AS

SELECT p.ProductID, p.Name ProductName,
SUM(LineTotal) LineTotalByProduct,
COUNT_BIG(*) LineItems

FROM Sales.SalesOrderDetail s
INNER JOIN Production.Product p ON

CHAPTER 7 ■ VIEWS248

9802CH07.qxd 4/22/08 3:55 PM Page 248

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

s.ProductID = p.ProductID
GROUP BY p.ProductID, p.Name

GO

Before creating an index, we’ll demonstrate querying the regular view, returning the query
I/O cost statistics using the SET STATISTICS IO command (see Chapter 28 for more info on this
command):

SET STATISTICS IO ON
GO

SELECT TOP 5 ProductName, LineTotalByProduct
FROM v_Product_Sales_By_LineTotal
ORDER BY LineTotalByProduct DESC

This returns the following results:

ProductName LineTotalByProduct
Mountain-200 Black, 38 4400592.800400
Mountain-200 Black, 42 4009494.761841
Mountain-200 Silver, 38 3693678.025272
Mountain-200 Silver, 42 3438478.860423
Mountain-200 Silver, 46 3434256.941928

This also returns I/O information reporting the various scanning activities against the under-
lying base tables used in the view (if you are following along with this recipe, keep in mind that your
actual stats may vary):

Table 'Product'. Scan count 0, logical reads 10, physical reads 0, read-ahead reads
0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads
0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'SalesOrderDetail'. Scan count 1, logical reads 1241, physical reads 7,
read-ahead reads 1251, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

Next, I’ll add a clustered index that will be created on the regular view, based on the unique
value of the ProductID view column:

CREATE UNIQUE CLUSTERED INDEX UCI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductID)

GO

Once the clustered index is created, I can then start creating nonclustered indexes as needed:

CREATE NONCLUSTERED INDEX NI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductName)

GO

Next, I’ll execute the query I executed earlier against the regular view:

SELECT TOP 5 ProductName, LineTotalByProduct
FROM v_Product_Sales_By_LineTotal
ORDER BY LineTotalByProduct DESC

CHAPTER 7 ■ VIEWS 249

9802CH07.qxd 4/22/08 3:55 PM Page 249

This returns the same results as before, but this time the I/O activity is different. Instead of two
base tables being accessed, along with a worktable (tempdb used temporarily to process results),
only a single object is accessed to retrieve results:

Table 'v_Product_Sales_By_LineTotal'. Scan count 1, logical reads 5, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob
read-ahead reads 0

How It Works
Indexed views allow you to materialize the results of the view as a physical object, similar to a regu-
lar table and associated indexes. This allows the SQL Server Query Optimizer to retrieve results from
a single physical area instead of having to process the view definition query each time it is called.

In this example, a view was created using the SCHEMABINDING option:

CREATE VIEW dbo.v_Product_Sales_By_LineTotal
WITH SCHEMABINDING
AS

The remainder of the view was a regular SELECT query that aggregated the sum total of sales by
product:

SELECT p.ProductID, p.Name ProductName,
SUM(LineTotal) LineTotalByProduct,
COUNT_BIG(*) LineItems

FROM Sales.SalesOrderDetail s
INNER JOIN Production.Product p ON

s.ProductID = p.ProductID
GROUP BY p.ProductID, p.Name

GO

Notice that the query referenced the COUNT_BIG aggregate function. COUNT_BIG is required in
order for SQL Server to maintain the number of rows in each group within the indexed view. Once
the view was successfully created with SCHEMABINDING, a unique clustered index was then created
on it:

CREATE UNIQUE CLUSTERED INDEX UCI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductID)

GO

In order to index a view, you must first create a unique clustered index on it. Once this index
has been built, the view data is stored in much the same way as a clustered index for a table is
stored. After a clustered index is created, you can also create additional nonclustered indexes, as
you would for a regular table. In the example, a nonclustered index was created on the ProductName
column of the indexed view:

CREATE NONCLUSTERED INDEX NI_v_Product_Sales_By_LineTotal
ON dbo.v_Product_Sales_By_LineTotal (ProductName)

GO

Once a view is indexed, view indexes can then be used by SQL Server Enterprise Edition when-
ever the view or underlying tables are referenced in a query. The SET STATISTICS IO command was
used to demonstrate how SQL Server performs the data page retrieval both before and after the
view was indexed.

CHAPTER 7 ■ VIEWS250

9802CH07.qxd 4/22/08 3:55 PM Page 250

Indexed views can provide performance benefits for relatively static data. Frequently updated
base tables, on the other hand, are not an ideal choice for being referenced in an indexed view, as
the updates will also cause frequent updates to the view’s indexes, potentially reducing the benefit
of any query performance gained. This is a trade-off between data modification speed and query
speed.

Also, although indexed views can be created using any edition of SQL Server, they will be auto-
matically considered during queries if you are using Enterprise Edition. To make sure SQL Server
uses it in other editions, you need to use the view hint NOEXPAND, which is reviewed in the next
recipe.

Forcing the Optimizer to Use an Index for an Indexed View
Once you’ve created an indexed view, if you’re running on SQL Server Enterprise Edition, the Query
Optimizer will automatically decide whether or not to use the indexed view in a query. For other
editions, however, in order to make SQL Server use a specific indexed view, you must use the
NOEXPAND keyword.

By adding the WITH (NOEXPAND) view hint after the FROM clause, SQL Server is directed only to
use view indexes.

The view hint syntax is as follows:

{ NOEXPAND [, INDEX (index_val [,...n])] }

This recipe demonstrates how to force an indexed view’s index to be used for a query:

SELECT ProductID
FROM dbo.v_Product_Sales_By_LineTotal
WITH (NOEXPAND)
WHERE ProductName = 'Short-Sleeve Classic Jersey, L'

NOEXPAND also allows you to specify one or more indexes to be used for the query, using the
INDEX option. For example:

SELECT ProductID
FROM dbo.v_Product_Sales_By_LineTotal
WITH (NOEXPAND, INDEX(NI_v_Product_Sales_By_LineTotal))
WHERE ProductName = 'Short-Sleeve Classic Jersey, L'

How It Works
For those using non–Enterprise Edition versions of SQL Server, you can still take advantage of
indexed views through the use of the NOEXPAND keyword. The drawback is that you must explicitly
use hints whenever the indexed view must be utilized. Another drawback is that your hint usage
could nullify a better SQL Server Query Optimizer choice that would have been made had the hint
not been used.

Partitioned Views
Distributed partitioned views allow you to create a single logical representation (view) of two or
more horizontally partitioned tables that are located across separate SQL Server instances.

In order to set up a distributed partitioned view, a large table is split into smaller tables based
on a range of values defined in a CHECK constraint. This CHECK constraint ensures that each smaller
table holds unique data that cannot be stored in the other tables. The distributed partitioned view is
then created using a UNION ALL to join each smaller table into a single result set.

CHAPTER 7 ■ VIEWS 251

9802CH07.qxd 4/22/08 3:55 PM Page 251

The performance benefit is realized when a query is executed against the distributed parti-
tioned view. If the view is partitioned by a date range, for example, and a query is used to return
rows that are only stored in a single table of the partition, SQL Server is smart enough to only search
that one partition instead of all tables in the distributed-partitioned view.

Creating a Distributed-Partitioned View
In this recipe, I’ll demonstrate how to create a distributed-partitioned view that spans two SQL
Server instances. It’s based on the following business scenario. There are two sibling corporations—
MegaCorp and MiniCorp. Each has their own SQL Server instance to house website data, and each
wants a table to track website hits. The numbers of hits are voluminous—and would require more
storage than a single SQL Server instance could handle. The requirement is to create a unified view
that references both tables in a single view. The business wants to be able to query either server and
return either the same data or data just for its own company.

Since more than one SQL Server instance will be accessed in a distributed-partitioned view
recipe, linked servers are added to both participating SQL Server instances (see Chapter 27 for more
information on linked servers).

I’ll begin this recipe by creating a linked server on the first SQL Server instance:

USE master
GO
EXEC sp_addlinkedserver

'JOEPROD',
N'SQL Server'

GO

-- skip schema checking of remote tables
EXEC sp_serveroption 'JOEPROD', 'lazy schema validation', 'true'
GO

On the second SQL Server instance, a linked server is created to the first SQL Server instance:

USE master
GO
EXEC sp_addlinkedserver

'JOEPROD\SQL2008',
N'SQL Server'

GO

-- skip schema checking of remote tables
EXEC sp_serveroption 'JOEPROD\SQL2008', 'lazy schema validation', 'true'
GO

Back on the first SQL Server instance, the following table is created to hold rows for MegaCorp
website hits:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQLRecipeTest')

BEGIN
CREATE DATABASE TSQLRecipeTest

END
GO

Use TSQLRecipeTest
GO

CHAPTER 7 ■ VIEWS252

9802CH07.qxd 4/22/08 3:55 PM Page 252

CREATE TABLE dbo.WebHits_MegaCorp
(WebHitID uniqueidentifier NOT NULL,
WebSite varchar(20) NOT NULL ,
HitDT datetime NOT NULL,
CHECK (WebSite = 'MegaCorp'),
CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

On the second SQL Server instance, the following table is created to hold rows for MiniCorp
website hits:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQLRecipeTest')

BEGIN
CREATE DATABASE TSQLRecipeTest

END
GO

USE TSQLRecipeTest
GO

CREATE TABLE dbo.WebHits_MiniCorp
(WebHitID uniqueidentifier NOT NULL ,
WebSite varchar(20) NOT NULL ,
HitDT datetime NOT NULL,
CHECK (WebSite = 'MiniCorp') ,
CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

Back on the first SQL Server instance, the following distributed partitioned view that references
the local WebHits_MegaCorp table and the remote WebHits.MiniCorp table is created:

CREATE VIEW dbo.v_WebHits AS
SELECT WebHitID,

WebSite,
HitDT

FROM TSQLRecipeTest.dbo.WebHits_MegaCorp
UNION ALL
SELECT WebHitID,

WebSite,
HitDT

FROM JOEPROD.TSQLRecipeTest.dbo.WebHits_MiniCorp
GO

On the second SQL Server instance, the following distributed partitioned view is created—this
time referencing the local WebHits_MiniCorp table and the remote WebHits_MegaCorp table:

CREATE VIEW dbo.v_WebHits AS
SELECT WebHitID,

WebSite,
HitDT

FROM TSQLRecipeTest.dbo.WebHits_MiniCorp
UNION ALL
SELECT WebHitID,

WebSite,
HitDT

FROM [JOEPROD\SQL2008].TSQLRecipeTest.dbo.WebHits_MegaCorp
GO

CHAPTER 7 ■ VIEWS 253

9802CH07.qxd 4/22/08 3:55 PM Page 253

On the second SQL Server instance, the following batch of queries is executed to insert new rows:

-- For these inserts to work the setting XACT_ABORT must be ON and
-- the Distributed Transaction Coordinator service must be running

SET XACT_ABORT ON

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MegaCorp', GETDATE())

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MiniCorp', GETDATE())

This returns

(1 row(s) affected)

(1 row(s) affected)

Querying from the distributed-partitioned view returns the two newly inserted rows (from both
underlying tables):

SET XACT_ABORT ON

SELECT WebHitID, WebSite, HitDT
FROM dbo.v_WebHits

This returns

WebHitID WebSite HitDT
E5994678-6066-45F4-8AE4-9F10CE412D1A MegaCorp 2008-08-06 16:56:29.253
E1444A3F-7A2E-4A54-A156-C04FE742B453 MiniCorp 2008-08-06 16:56:29.353

Querying the MiniCorp table directly returns just the one MiniCorp row, as expected:

SELECT WebHitID, WebSite, HitDT
FROM JOEPROD.AdventureWorks.dbo.WebHits_MiniCorp

This returns

WebHitID WebSite HitDT
E1444A3F-7A2E-4A54-A156-C04FE742B453 MiniCorp 2005-08-06 16:56:29.353

Querying the MegaCorp table also returns the expected, single row:

SELECT WebHitID, WebSite, HitDT
FROM [JOEPROD\SQL2008].AdventureWorks.dbo.WebHits_MegaCorp

This returns

WebHitID WebSite HitDT
E5994678-6066-45F4-8AE4-9F10CE412D1A MegaCorp 2005-08-06 16:56:29.253

CHAPTER 7 ■ VIEWS254

9802CH07.qxd 4/22/08 3:55 PM Page 254

How It Works
Distributed-partitioned views allow you to partition data across more than one SQL Server
instance. This design option can be beneficial for very large databases and SQL Server instances
with high volumes of transactions and read activity.

There’s a lot going on in this recipe, so I’ll walk through each step of the process. First, linked
server references were created on each SQL Server instance so that both instances could use distrib-
uted queries to communicate with one another. Also, the linked server option lazy schema
validation was enabled for performance reasons. This setting ensures that schema lookups are
skipped prior to query execution.

Next, the table dbo.WebHits_MegaCorp was created on SQL Server Instance 1 (JOEPROD\SQL2008)
and dbo.WebHits_MiniCorp on SQL Server Instance 2 (JOEPROD). Each was created with a CHECK con-
straint that restricted what values could be added to it. So that distributed-partitioned view updates
are allowed, the CHECK constraints must be defined on the same column and cannot allow overlap-
ping values in the member tables. In addition to this, only the operators <,>, =, >=, <=, AND, OR, and
BETWEEN can be used in the CHECK constraint.

Other requirements you’ll need to remember in order to allow view updates: the partitioning
column, in this case WebSite, cannot allow null values; be a computed column; or be an identity,
default, or timestamp column. The partition key, WebSite, also needed to be part of the primary key.
Since WebSite wasn’t unique by itself, it was added as a composite key with the uniqueidentifier
data type WebHitID. Both partitioned tables were required to have primary keys on an identical
number of columns:

CONSTRAINT PK_WebHits PRIMARY KEY (WebHitID, WebSite))

In the next step, the distributed partitioned views were created on each of the SQL Server
instances. On the instance with the dbo.WebHits_MegaCorp table, the view referenced that table
using the three-part database.schema.viewname format (because the table is local):

SELECT WebHitID,
WebSite,
HitDT

FROM AdventureWorks.dbo.WebHits_MegaCorp

The table was then joined with UNION ALL (another requirement if you wish to perform data
modifications against the distributed partitioned view):

UNION ALL

The columns defined in the SELECT list can’t be referenced more than once in a single list, and
should be in the same ordinal position for each SELECT that is UNIONed. Columns across each SELECT
should also have the same data types and collations, as this recipe did.

In the FROM clause for the remote dbo.WebHits_MiniCorp table, the four-part name linked-
servername.database.schema.viewname was used (since it is a remote table):

SELECT WebHitID,
WebSite,
HitDT

FROM JOEPROD.AdventureWorks.dbo.WebHits_MiniCorp
GO

In the last batches in the recipe, SET XACT_ABORT was set ON in order to allow for the insert of
rows into the distributed partitioned view. This option terminates and rolls back a transaction if a
runtime error is encountered:

SET XACT_ABORT ON

CHAPTER 7 ■ VIEWS 255

9802CH07.qxd 4/22/08 3:55 PM Page 255

As noted in the script comments, the Distributed Transaction Coordinator also needs to be
running in order to invoke the distributed transaction of inserting a row across SQL Server
instances. Two inserts were performed against the new distributed partitioned view—the first for
a hit to MegaCorp, and the second for MiniCorp:

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MegaCorp', GETDATE())

INSERT dbo.v_WebHits
(WebHitID, WebSite, HitDT)
VALUES(NEWID(), 'MiniCorp', GETDATE())

Querying the new distributed partitioned views, two rows are returned:

SELECT WebHitID, WebSite, HitDT
FROM dbo.v_WebHits

Querying the underlying horizontally partitioned tables, one row was automatically routed to
the dbo.WebHits_MegaCorp table, and the other to the dbo.WebHits_MiniCorp table.

Based on which view is queried (for example, Instance 1 or Instance 2), SQL Server can deter-
mine whether a particular query request can be fulfilled from just querying the local partitioned
table, or whether the remote table need also be queried. The end result is that SQL Server mini-
mizes the amount of data needing to be transferred between the SQL Server instances.

CHAPTER 7 ■ VIEWS256

9802CH07.qxd 4/22/08 3:55 PM Page 256

SQL Server Functions

In this chapter, I’ll demonstrate how to use SQL Server built-in functions in your Transact-SQL
code. SQL Server built-in functions, not to be confused with the user-defined functions covered in
Chapter 11, allow you to perform aggregations, mathematical operations, string manipulation, row
ranking, and much more. SQL Server 2008 has added new functions as well, including GROUPING,
SYSDATETIME, SYSDATETIMEOFFSET, SYSUTCDATETIME, SWITCHOFFSET, and TODATETIMEOFFSET—all of
which I’ll demonstrate. I’ll also cover the new SQL Server 2008 improvement that allows you to
return binary data in a string hexadecimal literal format.

Aggregate Functions
Aggregate functions are used to perform a calculation on one or more values, resulting in a single
value. An example of a commonly used aggregate function is SUM, which is used to return the total
value of a set of numeric values. Table 8-1 lists some of the more commonly used aggregate func-
tions available in SQL Server.

Table 8-1. Aggregate Functions

Function Name Description

AVG The AVG aggregate function calculates the average of non-NULL values in a group.

CHECKSUM_AGG The CHECKSUM_AGG function returns a checksum value based on a group of rows,
allowing you to potentially track changes to a table. For example, adding a new
row or changing the value of a column that is being aggregated will usually result
in a new checksum integer value. The reason why I say “usually” is that there is a
possibility that the checksum value does not change even if values are modified.

COUNT The COUNT aggregate function returns an integer data type showing the count of
rows in a group.

COUNT_BIG The COUNT_BIG function works the same as COUNT, only it returns a bigint data
type value.

GROUPING The GROUPING function returns 1 (True) or 0 (False) depending on whether a NULL
value is due to a CUBE, ROLLUP, or GROUPING SETS operation. If False, the column
expression NULL value is from the natural data. See Chapter 1’s recipe “Revealing
Rows Generated by GROUPING.”

MAX The MAX aggregate function returns the highest value in a set of non-NULL values.

MIN The MIN aggregate function returns the lowest value in a group of non-NULL
values.

Continued

257

C H A P T E R 8

9802CH08.qxd 4/22/08 3:57 PM Page 257

Table 8-1. Continued

Function Name Description

SUM The SUM aggregate function returns the summation of all non-NULL values in an
expression.

STDEV The STDEV function returns the standard deviation of all values provided in the
expression based on a sample of the data population.

STDEVP The STDEVP function also returns the standard deviation for all values in the
provided expression, only it evaluates the entire data population.

VAR The VAR function returns the statistical variance of values in an expression based
on a sample of the provided population.

VARP The VARP function also returns the variance of the provided values for the entire
data population of the expression.

The next few recipes will demonstrate these aggregate functions.

Returning the Average of Values
The AVG aggregate function calculates the average of non-NULL values in a group. For example:

-- Average Product Review by Product
SELECT ProductID,

AVG(Rating) AvgRating
FROM Production.ProductReview
GROUP BY ProductID

This returns

ProductID AvgRating
709 5
798 5
937 3

This second example demonstrates averaging the DISTINCT values in the StandardCost
column—meaning that only unique StandardCost values are averaged:

-- Average DISTINCT Standard Cost
SELECT AVG(DISTINCT StandardCost) AvgDistinctStandardCost
FROM Production.ProductCostHistory

This returns

AvgDistinctStandardCost
287.7111

How It Works
In this recipe, the first example returned the average product rating grouped by ProductID. The
second example took an average of the DISTINCT StandardCost—meaning that only unique
StandardCost values were averaged. Without the DISTINCT keyword, the default behavior of the
AVG aggregate function is to average all values, duplicate values included.

CHAPTER 8 ■ SQL SERVER FUNCTIONS258

9802CH08.qxd 4/22/08 3:57 PM Page 258

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Returning Row Counts
The COUNT aggregate function returns an integer showing the count of the rows in a group. For
example, the following query groups rows by shelving assignment and returns the count of items
on each shelf:

SELECT Shelf,
COUNT(ProductID) ProductCount

FROM Production.ProductInventory
GROUP BY Shelf
ORDER BY Shelf

This returns the following (abridged) results:

Shelf ProductCount
A 81
B 36
C 55
D 50
E 85
F 59
...
S 17
T 28
U 38
V 7
W 14
Y 2

If you include the DISTINCT keyword within the COUNT function parentheses, you’ll get the count
of distinct values for that column. For example:

SELECT COUNT(DISTINCT Shelf) ShelfCount
FROM Production.ProductInventory

This returns

ShelfCount
21

How It Works
In the first example of this recipe, the number of products per shelf was counted. COUNT is the only
aggregate function that does not ignore NULL values, so had ProductID been NULL, it would have still
been included in the count. The second example demonstrated counting the number of DISTINCT
shelf values from the Production.ProductInventory table. If you need to count a value larger than
the integer data type can hold, use the COUNT_BIG aggregate function, which returns a bigint data
type value.

Finding the Lowest and Highest Values from an Expression
The MAX aggregate function returns the highest value and the MIN aggregate function returns the
lowest value in a group of non-NULL values. MIN and MAX can be used with numeric, character, and
datetime columns. The minimum and maximum values for character data types are determined by

CHAPTER 8 ■ SQL SERVER FUNCTIONS 259

9802CH08.qxd 4/22/08 3:57 PM Page 259

using an ASCII alphabetical sort. MIN and MAX for datetime values are based on the earliest date to
the most recent date.

In this example, I’ll demonstrate how to use the MIN and MAX functions to find the lowest and
highest value in the Rating numeric column from the Production.ProductReview table:

SELECT MIN(Rating) MinRating,
MAX(Rating) MaxRating

FROM Production.ProductReview

This returns

MinRating MaxRating
2 5

How It Works
This recipe demonstrated retrieving the minimum and maximum Rating values from the Product.
ProductReview table. As with other aggregate functions, had there also been non-aggregated column
references in the SELECT clause, they would have been included in a GROUP BY clause.

Returning the Sum of Values
The SUM aggregate function returns the summation of all non-NULL values in an expression. This
example demonstrates how to use the SUM aggregate function to total the value of the TotalDue col-
umn for each AccountNumber:

SELECT AccountNumber,
SUM(TotalDue) TotalDueBySalesOrderID

FROM Sales.SalesOrderHeader
GROUP BY AccountNumber
ORDER BY AccountNumber

This returns the following abridged results:

AccountNumber TotalDueBySalesOrderID
10-4020-000001 113098.7351
10-4020-000002 32733.9695
10-4020-000003 479506.3256
...

How It Works
In this recipe, the sum of TotalDue by AccountNumber was calculated. Since AccountNumber wasn’t
aggregated itself, it was included in the GROUP BY clause. It was also included in the ORDER BY clause
to order the grouped results.

Using Statistical Aggregate Functions
In this recipe, I’ll demonstrate using the statistical functions VAR, VARP, STDEV, and STDEVP.

The VAR function returns the statistical variance of values in an expression based on a sample
of the provided population (the VARP function also returns the variance of the provided values for
the entire data population of the expression).

CHAPTER 8 ■ SQL SERVER FUNCTIONS260

9802CH08.qxd 4/22/08 3:57 PM Page 260

This first example returns the statistical variance of the TaxAmt value for all rows in the Sales.
SalesOrderHeader table:

SELECT VAR(TaxAmt) Variance_Sample,
VARP(TaxAmt) Variance_EntirePopulation

FROM Sales.SalesOrderHeader

This returns

Variance_Sample Variance_EntirePopulation
1177342.57277401 1177305.15524429

The STDEV function returns the standard deviation of all the values provided in the expression,
based on a sample of the data population. The STDEVP function also returns the standard deviation
for all values in the provided expression, only it evaluates the entire data population instead. This
example returns the statistical standard deviation of the UnitPrice value for all rows in the
Sales.SalesOrderDetail table:

SELECT STDEV(UnitPrice) StandDevUnitPrice,
STDEVP(UnitPrice)StandDevPopUnitPrice

FROM Sales.SalesOrderDetail

This returns

StandDevUnitPrice StandDevPopUnitPrice
751.885080772954 751.881981921885

How It Works
Although the use of each statistical function varies, the implementation is similar. Specifically, in
this example, each function took a value expression, using a column name from the table. The func-
tion then acted on the set of data (zero or more rows) using the column specified in the SELECT
clause, returning a single value.

Mathematical Functions
SQL Server offers several mathematical functions that can be used in your Transact-SQL code, as
described in Table 8-2.

Table 8-2. Mathematical Functions

Function Description

ABS Calculates the absolute value

ACOS Calculates the angle, the cosine of which is the specified argument, in radians

ASIN Calculates the angle, the sine of which is the specified argument, in radians

ATAN Calculates the angle, the tangent of which is the specified argument, in radians

ATN2 Calculates the angle, the tangent of which is between two float expressions, in radians

CEILING Calculates the smallest integer greater than or equal to the provided argument

COS Calculates the cosine

Continued

CHAPTER 8 ■ SQL SERVER FUNCTIONS 261

9802CH08.qxd 4/22/08 3:57 PM Page 261

Table 8-2. Continued

Function Description

COT Calculates the cotangent

DEGREES Converts radians to degrees

EXP Calculates the exponential value of a provided argument

FLOOR Calculates the largest integer less than or equal to the provided argument

LOG Calculates the natural logarithm

LOG10 Calculates the Base-10 logarithm

PI Returns the PI constant

POWER Returns the value of the first argument to the power of the second argument

RADIANS Converts degrees to radians

RAND Produces a random float-type value ranging from 0 to 1

ROUND Rounds a provided argument’s value to a specified precision

SIGN Returns -1 for negative values, 0 for zero values, and 1 if the provided argument is
positive

SIN Calculates the sine for a given angle in radians

SQUARE Calculates the square of a provided expression

SQRT Calculates the square root

TAN Calculates the tangent

This next recipe will demonstrate mathematical functions in action.

Performing Mathematical Operations
This recipe will demonstrate four different mathematical functions, including POWER, SQRT, ROUND,
and RAND.

This first example calculates 10 to the 2nd power:

SELECT POWER(10,2) Result

This returns

Result
100

This next example calculates the square root of 100:

SELECT SQRT(100) Result

This returns

Result
10

This example rounds a number to the third digit right of the decimal place:

SELECT ROUND(3.22245, 3) RoundedNumber

CHAPTER 8 ■ SQL SERVER FUNCTIONS262

9802CH08.qxd 4/22/08 3:57 PM Page 262

This returns

RoundedNumber
3.22200

This example returns a random float data type value between 0 and 1 (your result will vary from
mine):

SELECT RAND() RandomNumber

This returns

RandomNumber
0.497749897248417

This last example in the recipe returns a fixed float data type value based on the provided inte-
ger value:

SELECT RAND(22) Result

This returns

Result
0.713983285609346

How It Works
In this recipe, I demonstrated four different mathematical functions, including POWER, SQRT, ROUND,
and RAND. Each function takes different parameters based on the operation it performs. For some
mathematical functions, such as RAND, an input value is optional.

String Functions
This next set of recipes demonstrates SQL Server’s string functions. String functions provide a mul-
titude of uses for your Transact-SQL programming, allowing for string cleanup, conversion between
ASCII and regular characters, pattern searches, removal of trailing blanks, and much more.

Table 8-3 lists the different string functions available in SQL Server.

Table 8-3. String Functions

Function Name(s) Description

ASCII and CHAR The ASCII function takes the leftmost character of a character
expression and returns the ASCII code. The CHAR function converts an
integer value for an ASCII code to a character value instead.

CHARINDEX and PATINDEX The CHARINDEX function is used to return the starting position of a string
within another string. The PATINDEX function is similar to CHARINDEX,
except that PATINDEX allows the use of wildcards when specifying the
string for which to search.

Continued

CHAPTER 8 ■ SQL SERVER FUNCTIONS 263

9802CH08.qxd 4/22/08 3:57 PM Page 263

Table 8-3. Continued

Function Name(s) Description

DIFFERENCE and SOUNDEX The two functions DIFFERENCE and SOUNDEX both work with character
strings to evaluate those that sound similar. SOUNDEX assigns a string a
four-digit code, and DIFFERENCE evaluates the level of similarity
between the SOUNDEX outputs for two separate strings.

LEFT and RIGHT The LEFT function returns a part of a character string, beginning at the
specified number of characters from the left. The RIGHT function is like
the LEFT function, only it returns a part of a character string beginning
at the specified number of characters from the right.

LEN and DATALENGTH The LEN function returns the number of characters in a string
expression, excluding any blanks after the last character (trailing
blanks). DATALENGTH, on the other hand, returns the number of bytes
used for an expression.

LOWER and UPPER The LOWER function returns a character expression in lowercase, and the
UPPER function returns a character expression in uppercase.

LTRIM and RTRIM The LTRIM function removes leading blanks, and the RTRIM function
removes trailing blanks.

NCHAR and UNICODE The UNICODE function returns the Unicode integer value for the first
character of the character or input expression. The NCHAR function takes
an integer value designating a Unicode character and converts it to its
character equivalent.

QUOTENAME The QUOTENAME function adds delimiters to a Unicode input string in
order to make it a valid delimited identifier.

REPLACE The REPLACE function replaces all instances of a provided string within a
specified string with a new string.

REPLICATE The REPLICATE function repeats a given character expression a
designated number of times.

REVERSE The REVERSE function takes a character expression and outputs the
expression with each character position displayed in reverse order.

SPACE The SPACE function returns a string of repeated blank spaces, based on
the integer you designate for the input parameter.

STR The STR function converts numeric data into character data.

STUFF The STUFF function deletes a specified length of characters and inserts a
designated string at the specified starting point.

SUBSTRING The SUBSTRING function returns a defined chunk of a specified
expression.

The next few recipes will demonstrate examples of how string functions are used.

Converting a Character Value to ASCII and Back to Character
The ASCII function takes the leftmost character of a character expression and returns the ASCII
code, while the CHAR function converts an integer value for an ASCII code to a character value
instead. Again, it should be stressed that ASCII only uses the first character of the string. If the string
is empty or NULL, ASCII will return a NULL value (although a blank, single-space value is represented
by a value of 32).

This first example demonstrates how to convert characters into the integer ASCII value:

SELECT ASCII('H'), ASCII('e'), ASCII('l'), ASCII('l'), ASCII('o')

CHAPTER 8 ■ SQL SERVER FUNCTIONS264

9802CH08.qxd 4/22/08 3:57 PM Page 264

This returns

72 101 108 108 111

Next, the CHAR function is used to convert the integer values back into characters again:

SELECT CHAR(72), CHAR(101), CHAR(108), CHAR(108), CHAR(111)

This returns

H e l l o

How It Works
In this recipe, the word “Hello” was deconstructed one character at a time and then converted into
the numeric ASCII value, using the ASCII function. In the second T-SQL statement, the ASCII value
was reversed back into character form using the CHAR function.

Returning Integer and Character Unicode Values
The UNICODE function returns the Unicode integer value for the first character of the character or
input expression. The NCHAR function takes an integer value designating a Unicode character and
converts it to its character equivalent. These functions are useful if you need to exchange data with
external processes using the Unicode standard.

This first example converts single characters into an integer value representing the Unicode
standard character code:

SELECT UNICODE('G'), UNICODE('o'), UNICODE('o'), UNICODE('d'), UNICODE('!')

This returns

71 111 111 100 33

Next, the Unicode integer values are converted back into characters:

SELECT NCHAR(71), NCHAR(111), NCHAR(111), NCHAR(100), NCHAR(33)

This returns

G o o d !

How It Works
In this recipe, the word “Good!” was deconstructed one character at a time and then converted into
an integer value using the UNICODE function. In the second T-SQL statement, the integer value was
reversed back into character form using the NCHAR function.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 265

9802CH08.qxd 4/22/08 3:57 PM Page 265

Finding the Start Position of a String Within Another String
The CHARINDEX function is used to return the starting position of a string within another string. The
syntax is as follows:

CHARINDEX (expression1 ,expression2 [, start_location])

The expression1 argument is the string to be searched for. The expression2 argument is the
string in which you are searching. The optional start_location value indicates the character posi-
tion where you wish to begin looking.

This example demonstrates how to find the starting position of a string within another string:

SELECT CHARINDEX('String to Find',
'This is the bigger string to find something in.')

This returns

20

How It Works
This function returned the starting character position, in this case the 20th character, where the first
argument expression was found in the second expression. You can’t use wildcards with this func-
tion. Also, note that search matches are based on the rules of your SQL Server instance’s collation.

Finding the Start Position of a String Within Another String
Using Wildcards
The PATINDEX function is similar to CHARINDEX, except that PATINDEX allows the use of wildcards in
the string you are searching for. The syntax for PATINDEX is as follows:

PATINDEX ('%pattern%' ,expression)

PATINDEX returns the start position of the first occurrence of the search pattern, but unlike
CHARINDEX, it doesn’t have a starting position option. In this example, rows are returned from
Person.Address, where AddressLine1 contains the word fragment “olive” and has a street address
beginning with the numbers 3 and 5:

SELECT AddressID,
AddressLine1

FROM Person.Address
WHERE PATINDEX('[3][5]%olive%', AddressLine1) > 0

This returns the following results:

AddressID AddressLine1
26857 3507 Olive Dr.
12416 3507 Olive Dr.
12023 3538 Olivewood Ct.
27157 3538 Olivewood Ct.

(4 row(s) affected)

CHAPTER 8 ■ SQL SERVER FUNCTIONS266

9802CH08.qxd 4/22/08 3:57 PM Page 266

How It Works
This example returned any row where the AddressLine1 column contained the word “Olive” that
was also prefixed by a street number starting with 35 (using the wildcard pattern [3] and [5]). With
the wildcard % on both the left and right of the word (without spaces between), the word “Olive”
could also have been embedded within another word. The pattern can use different wildcard char-
acters too.

Determining the Similarity of Strings
The two functions, DIFFERENCE and SOUNDEX, both work with character strings in order to evaluate
those that sound similar, based on English phonetic rules. SOUNDEX assigns a string a four-digit code,
and then DIFFERENCE evaluates the level of similarity between the SOUNDEX outputs for two separate
strings. DIFFERENCE returns a value of 0 to 4, with 4 indicating the closest match in similarity.

This example demonstrates how to identify strings that sound similar—first by evaluating
strings individually, and then comparing them in pairs:

SELECT SOUNDEX('Fleas'),
SOUNDEX('Fleece'),
SOUNDEX('Peace'),
SOUNDEX('Peas')

This returns

F420 F420 P200 P200

Next, string pairs are compared using DIFFERENCE:

SELECT DIFFERENCE ('Fleas', 'Fleece')

This returns

4

Next, another string pair is compared:

SELECT DIFFERENCE ('Fleece', 'Peace')

This returns

2

How It Works
In the first example, SOUNDEX was used to evaluate four similar-sounding words. The query results
showed four codes, with “Fleas” and “Fleece” equal to F420, and “Peace” and “Peas” equal to P200. In
the second example, DIFFERENCE was used to evaluate “Fleas” and “Fleece” and “Fleece” and “Peace.”
“Fleas” and “Fleece” were shown to be more similar, with a value of 4, than “Fleece” and “Peace,”
which have a comparison value of 2.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 267

9802CH08.qxd 4/22/08 3:57 PM Page 267

Taking the Leftmost or Rightmost Part of a String
The LEFT function returns a part of a character string, starting at the beginning and taking the speci-
fied number of characters from the leftmost side of the string. The RIGHT function is like the LEFT
function, only it returns a part of a character string beginning at the specified number of characters
from the right.

This recipe demonstrates how to return a subset of the leftmost and rightmost parts of a string.
Also, a common string padding trick is demonstrated using these functions.

In the first example, the leftmost 10 characters are taken from a string:

SELECT LEFT('I only want the leftmost 10 characters.', 10)

This returns

I only wan

Next, the rightmost characters of a string:

SELECT RIGHT('I only want the rightmost 10 characters.', 10)

This returns

haracters.

This next example demonstrates zero-padding the ListPrice column’s value:

-- Padding a number for business purposes
SELECT TOP 3

ProductID, RIGHT('0000000000' + CONVERT(varchar(10), ListPrice),10)
FROM Production.Product
WHERE ListPrice > 0

This returns

ProductID (No column name)
514 0000133.34
515 0000147.14
516 0000196.92

How It Works
This recipe demonstrated three examples of using LEFT and RIGHT. The first two examples demon-
strated returning the leftmost or the rightmost characters of a string value. The third example
demonstrated the padding of a string in order to conform to some expected business format. When
presenting data to end users or exporting data to external systems, you may sometimes need to
preserve or add leading values, such as leading zeros to fixed-length numbers or spaces to varchar
fields. ListPrice was zero-padded by first concatenating ten zeros in a string to the converted
varchar(10) value of the ListPrice. Then, outside of this concatenation, RIGHT was used to grab
the last 10 characters of the concatenated string (thus taking leading zeros from the left side with it,
when the ListPrice fell short of ten digits).

CHAPTER 8 ■ SQL SERVER FUNCTIONS268

9802CH08.qxd 4/22/08 3:57 PM Page 268

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Determining the Number of Characters or Bytes in a String
The LEN function returns the number of characters in a string expression, excluding any blanks after
the last character (trailing blanks). DATALENGTH, on the other hand, returns the number of bytes used
for an expression. In this recipe, I’ll demonstrate how to measure the number of characters and
bytes in a string.

This first example returns the number of characters in the Unicode string (Unicode data takes
two bytes for each character, whereas non-Unicode takes only one):

SELECT LEN(N'She sells sea shells by the sea shore.')

This returns

38

This next example returns the number of bytes in the Unicode string:

SELECT DATALENGTH(N'She sells sea shells by the sea shore.')

This returns

76

How It Works
This recipe used a Unicode string, which is defined by prefixing the string with an N as follows:

N'She sells sea shells by the sea shore.'

The number of characters for this string is 38 according to LEN, but since it is a Unicode string,
DATALENGTH returns 76 bytes. SQL Server uses the Unicode UCS-2 encoding form, which consumes
2 bytes per character stored.

Replacing a Part of a String
The REPLACE function replaces all instances of a provided string within a specified string, and
replaces it with a new string. One real strength of REPLACE is that, unlike PATINDEX and CHARINDEX,
which return a specific location where a pattern is found, REPLACE can find multiple instances of a
pattern within a specific character string.

The syntax for REPLACE is as follows:

REPLACE ('string_expression1' , 'string_expression2' , 'string_expression3')

The first string expression argument is the string that will be modified. The second string
expression is the string to be removed from the first string argument. The third string expression
is the string to insert into the first argument.

This example demonstrates how to replace all instances of a provided string with a new string:

SELECT REPLACE('Zenon is our major profit center. Zenon leads the way.',
'Zenon',
'Xerxes')

CHAPTER 8 ■ SQL SERVER FUNCTIONS 269

9802CH08.qxd 4/22/08 3:57 PM Page 269

This returns

Xerxes is our major profit center. Xerxes leads the way.

How It Works
In this recipe, the first string expression was the string to be searched, “Zenon is our major profit
center. Zenon leads the way.” The second expression was the expression to replace (Zenon), and
the third expression was the value to substitute Zenon with, Xerxes. I used the REPLACE function to
replace all occurrences of Zenon with Xerxes. Even though Zenon appeared twice in the original
string, REPLACE substituted both occurrences of Xerxes with a single function call.

Stuffing a String into a String
The STUFF function deletes a specified length of characters and inserts a designated string at the
specified starting point. The syntax is as follows:

STUFF (character_expression, start, length, character_expression)

The first argument of this function is the character expression to be modified. The second
argument is the starting position of the inserted string. The third argument is the number of
characters to delete within the character expression. The fourth argument is the actual character
expression that you want to insert. This example replaces a part of a string and inserts a new
expression into the string body:

SELECT STUFF ('My cat''s name is X. Have you met him?',
18,
1,
'Edgar')

This returns

My cat's name is Edgar. Have you met him?

How It Works
The character expression in this recipe was “My cat’s name is X. Have you met him?”. The start value
was 18, which means that the replacement will occur at the 18th position within the string (which
is “X,” in this case). The length value was 1, meaning only one character at position 18 would be
deleted. The last character expression was Edgar, which is the value to stuff into the string.

Changing Between Lower- and Uppercase
The LOWER function returns a character expression in lowercase, and the UPPER function returns a
character expression in uppercase.

■Tip There isn’t a built-in proper case function, so in Chapter 11 I demonstrate creating a scalar user-defined
function that allows you to do this.

CHAPTER 8 ■ SQL SERVER FUNCTIONS270

9802CH08.qxd 4/22/08 3:57 PM Page 270

Before showing the different functions in action, the following query I’ve presented will show
the value of DocumentSummary for a specific row in the Production.Document table:

SELECT DocumentSummary
FROM Production.Document
WHERE FileName = 'Installing Replacement Pedals.doc'

This returns the following sentence-case value:

DocumentSummary
Detailed instructions for replacing pedals with Adventure Works Cycles replacement
pedals. Instructions are applicable to all Adventure Works Cycles bicycle models
and replacement pedals. Use only Adventure Works Cycles parts when replacing worn or
broken

This first example demonstrates setting values to lowercase:

SELECT LOWER(DocumentSummary)
FROM Production.Document
WHERE FileName = 'Installing Replacement Pedals.doc'

This returns

detailed instructions for replacing pedals with adventure works cycles replacement
pedals. instructions are applicable to all adventure works cycles bicycle models
and replacement pedals. use only adventure works cycles parts when replacing worn or
broken

Now for uppercase:

SELECT UPPER(DocumentSummary)
FROM Production.Document
WHERE FileName = 'Installing Replacement Pedals.doc'

This returns

DETAILED INSTRUCTIONS FOR REPLACING PEDALS WITH ADVENTURE WORKS CYCLES REPLACEMENT
PEDALS. INSTRUCTIONS ARE APPLICABLE TO ALL ADVENTURE WORKS CYCLES BICYCLE MODELS
AND REPLACEMENT PEDALS. USE ONLY ADVENTURE WORKS CYCLES PARTS WHEN REPLACING WORN OR
BROKEN

How It Works
The first example demonstrated the LOWER function, which returned a character expression in lower-
case. The second example demonstrated the UPPER function, which returned a character expression
in uppercase. In both cases, the function takes a single argument, the character expression contain-
ing the case to be converted to either upper- or lowercase.

Removing Leading and Trailing Blanks
The LTRIM function removes leading blanks, and the RTRIM function removes trailing blanks.

This first example demonstrates removing leading blanks from a string:

SELECT LTRIM(' String with leading blanks.')

CHAPTER 8 ■ SQL SERVER FUNCTIONS 271

9802CH08.qxd 4/22/08 3:57 PM Page 271

This returns

String with leading blanks.

This second example demonstrates removing trailing blanks from a string:

SELECT RTRIM('"' + 'String with trailing blanks ') + '"'

This returns

"String with trailing blanks"

How It Works
Both LTRIM and RTRIM take a single argument—a character expression that is to be trimmed. The
function then trims the leading or trailing blanks. Note that there isn’t a TRIM function (as seen in
other programming languages) that can be used to remove both leading and trailing characters. To
do this, you must use both LTRIM and RTRIM in the same expression.

Repeating an Expression N Number of Times
The REPLICATE function repeats a given character expression a designated number of times.

The syntax is as follows:

REPLICATE (character_expression ,integer_expression)

The first argument is the character expression to be repeated. The second argument is the
integer value of the number of times the character expression is to be repeated. This example
demonstrates how to use the REPLICATE function to repeat a character expression a set number
of times:

SELECT REPLICATE ('Z', 30)

This returns

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

How It Works
In this recipe’s example, the letter “Z” in the character expression was repeated 30 times. Use
REPLICATE to repeat values rather than having to code the characters manually. The maximum
return value is 8,000 bytes.

Repeating a Blank Space N Number of Times
The SPACE function returns a string of repeated blank spaces, based on the integer you designate for
the input parameter. This is the same functionality as the REPLICATE function—only for a specific
character constant.

This example demonstrates how to repeat a blank space a defined number of times:

SELECT 'Give me some' + SPACE(6) + 'space.'

CHAPTER 8 ■ SQL SERVER FUNCTIONS272

9802CH08.qxd 4/22/08 3:57 PM Page 272

This returns

Give me some space.

How It Works
In this recipe, six blank spaces were concatenated into the middle of the string using the space
function. The maximum return value for the SPACE function is 8,000 bytes.

Outputting an Expression in Reverse Order
The REVERSE function takes a character expression and outputs the expression with each character
position displayed in reverse order.

This example demonstrates how to reverse a string expression:

SELECT TOP 1
GroupName,
REVERSE(GroupName) GroupNameReversed

FROM HumanResources.Department
ORDER BY GroupName

This returns

GroupName GroupNameReversed
Executive General and Administration noitartsinimdA dna lareneG evitucexE

How It Works
This recipe demonstrated using the REVERSE function to output a string’s characters in reverse order.

Returning a Chunk of an Expression
The SUBSTRING function returns a defined chunk of a specified expression.

The syntax is as follows:

SUBSTRING (expression, start, length)

The first argument of this function is the character expression that you should use to return a
defined chunk. The second argument defines the character starting position of the chunk. The third
argument is the length of the character chunk that you want to extract.

In this example, assume your application receives a bank account number from a customer. It
is your company’s policy to store only a masked representation of the bank number, retaining the
middle four digits only:

DECLARE @BankAccountNumber char(14)
SET @BankAccountNumber = '1424-2342-3536'

SELECT 'XXXX-' + SUBSTRING(@BankAccountNumber, 6,4) + '-XXXX'
Masked_BankAccountNumber

CHAPTER 8 ■ SQL SERVER FUNCTIONS 273

9802CH08.qxd 4/22/08 3:57 PM Page 273

This returns

Masked_BankAccountNumber
XXXX-2342-XXXX

How It Works
In this recipe, the SUBSTRING function was used to get the middle four digits from a longer bank
account number. The first parameter was the bank account number from which the middle four
characters are to be taken. The second parameter was the starting position of the string, which was
the sixth position (corresponding with the first 2), and the third parameter indicated how many
characters to extract (in this case, four). The result was that the value 2342 was extracted from the
bank account number and inserted into the masked string.

Working with NULLs
A NULL value can be tricky to code around because its value is unknown. SQL Server provides func-
tions used to handle NULLs in your code, as described in Table 8-4.

Table 8-4. NULL Functions

Function Description

ISNULL ISNULL validates whether an expression is NULL, and if so, replaces the NULL value with
an alternate value.

COALESCE The COALESCE function returns the first non-NULL value from a provided list of
expressions.

NULLIF NULLIF returns a NULL value when the two provided expressions have the same value.
Otherwise, the first expression is returned.

These next few recipes will demonstrate these functions in action.

Replacing a NULL Value with an Alternative Value
ISNULL validates whether an expression is NULL, and if so, replaces the NULL value with an alternate
value.

In this example, any NULL value will be replaced with a different value:

SELECT JobCandidateID,
BusinessEntityID,
ISNULL(BusinessEntityID, 0) Cleaned_BusinessEntityID

FROM HumanResources.JobCandidate

This returns the following (abridged) results:

JobCandidateID BusinessEntityID Cleaned_BusinessEntityID
1 NULL 0
2 NULL 0
...
13 NULL 0
8 212 212
4 274 274

CHAPTER 8 ■ SQL SERVER FUNCTIONS274

9802CH08.qxd 4/22/08 3:57 PM Page 274

How It Works
In this example, the BusinessEntityID column contained NULL values for some rows. I displayed the
original row values in the second column of the query. In the third column of the query, I wrapped
the BusinessEntityID in the ISNULL function. In the second argument of this function, I designated
that NULL values be replaced with a 0 value.

Performing Flexible Searches Using ISNULL
In this recipe, I’ll demonstrate how to perform flexible, dynamic searches in a query when the vari-
ables may or may not be populated. This recipe declares three local search variables for ProductID,
StartDate, and StandardCost. By using this technique, your query can return results based on all,
some, or none of the parameters being used. In this example, only a ProductID is supplied:

-- Local variables used for searches
DECLARE @ProductID int
DECLARE @StartDate datetime
DECLARE @StandardCost money

-- Only @ProductID is used
SET @ProductID = 711

SELECT ProductID, StartDate, StandardCost
FROM Production.ProductCostHistory
WHERE ProductID = ISNULL(@ProductID, ProductID) AND

StartDate = ISNULL(@StartDate, StartDate) AND
StandardCost = ISNULL(@StandardCost, StandardCost)

This returns

ProductID StartDate StandardCost
711 2001-07-01 00:00:00.000 12.0278
711 2002-07-01 00:00:00.000 13.8782
711 2003-07-01 00:00:00.000 13.0863

In this second example, a search is performed by a minimum and maximum StandardCost
range:

-- Local variables used for searches
DECLARE @ProductID int
DECLARE @MinStandardCost money
DECLARE @MaxStandardCost money

SET @MinStandardCost = 3.3963
SET @MaxStandardCost = 10.0000

SELECT ProductID, StartDate, StandardCost
FROM Production.ProductCostHistory
WHERE ProductID = ISNULL(@ProductID, ProductID) AND
StandardCost BETWEEN ISNULL(@MinStandardCost, StandardCost) AND

ISNULL(@MaxStandardCost, StandardCost)
ORDER BY StandardCost

CHAPTER 8 ■ SQL SERVER FUNCTIONS 275

9802CH08.qxd 4/22/08 3:57 PM Page 275

This returns the following (abridged) results:

ProductID StartDate StandardCost
709 2001-07-01 00:00:00.000 3.3963
710 2001-07-01 00:00:00.000 3.3963
871 2003-07-01 00:00:00.000 3.7363
712 2002-07-01 00:00:00.000 5.2297
...
932 2003-07-01 00:00:00.000 9.3463
860 2002-07-01 00:00:00.000 9.7136
859 2002-07-01 00:00:00.000 9.7136
858 2002-07-01 00:00:00.000 9.7136

How It Works
The benefit of the method demonstrated in this recipe is that your code will be more flexible, allow-
ing for data to be searched in myriad ways, and keeping each search condition optional. The key to
this recipe is in the WHERE clause. Each search condition uses ISNULL and the local variable name,
followed by the column name itself:

WHERE ProductID = ISNULL(@ProductID, ProductID) AND
StartDate = ISNULL(@StartDate, StartDate) AND
StandardCost = ISNULL(@StandardCost, StandardCost)

If a parameter is not SET, it will remain NULL, and thus the search condition for each column
will evaluate the column value against itself—always returning TRUE. Only the parameters that have
been specified will be used to filter the results.

Returning the First Non-NULL Value in a List of Expressions
The COALESCE function returns the first non-NULL value from a provided list of expressions. The syn-
tax is as follows:

COALESCE (expression [,...n])

This recipe demonstrates how to use COALESCE to return the first occurrence of a non-NULL
value:

DECLARE @Value1 int
DECLARE @Value2 int
DECLARE @Value3 int

SET @Value2 = 22
SET @Value3 = 955

SELECT COALESCE(@Value1, @Value2, @Value3)

This returns

22

CHAPTER 8 ■ SQL SERVER FUNCTIONS276

9802CH08.qxd 4/22/08 3:57 PM Page 276

How It Works
In this recipe, three local variables were created: @Value1, @Value2, and @Value3. Only @Value2 and
@Value3 were SET to actual integer values. The variable not SET to a value, @Value1, is NULL. In
COALESCE, the three values were checked, from @Value1 to @Value3. Since the @Value2 variable was
the first variable with a non-NULL value, 22 was returned.

Returning a NULL Value When Two Expressions Are Equal:
Otherwise Returning the First Expression
NULLIF returns a NULL value when the two provided expressions have the same value; otherwise, the
first expression is returned.

This example demonstrates how to use NULLIF to evaluate two expressions. If the two expres-
sions are equal, a NULL value will be returned; otherwise, the first evaluated expression is returned:

DECLARE @Value1 int
DECLARE @Value2 int

SET @Value1 = 55
SET @Value2 = 955

SELECT NULLIF(@Value1, @Value2)

This returns

55

The next example tests the values when both are equal:

DECLARE @Value1 int
DECLARE @Value2 int

SET @Value1 = 55
SET @Value2 = 55

SELECT NULLIF(@Value1, @Value2)

This returns

NULL

How It Works
In this recipe, the first batch had two differing values: 55 and 955. Since the values were different,
the NULLIF condition is FALSE, and the first evaluated value is returned. In the second batch, both
@Value1 and @Value2 were equal, so NULLIF returned a NULL value.

Date Functions
As I reviewed earlier in the book, SQL Server has several data types used to store date and time data:
datetime, datetime2, date, time, datetimeoffset, and smalldatetime. SQL Server offers several func-
tions used to manipulate and work with these data types, described in Table 8-5.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 277

9802CH08.qxd 4/22/08 3:57 PM Page 277

Table 8-5. Date Functions

Function(s) Description

DATEADD DATEADD returns a new date that is incremented or decremented
based on the interval and number specified.

DATEDIFF DATEDIFF subtracts the first date from the second date to produce
a value in the format of the datepart code specified.

DATENAME DATENAME returns a string value for the part of a date specified in
the datepart code.

DATEPART DATEPART returns an integer value for the part of a date specified
in the datepart code.

DAY, MONTH, and YEAR DAY returns an integer value for the day, MONTH returns the integer
representing the month, and YEAR returns the integer
representing the year of the evaluated date.

GETDATE, GETUTCDATE, and GETDATE and CURRENT_TIMESTAMP both return the current date
CURRENT_TIMESTAMP and time. GETUTCDATE returns the Coordinated Universal Time

(UTC).

ISDATE ISDATE returns a 1 (true) when an expression is a valid date or
time and 0 (false) if not.

SYSDATETIME, SYSUTCDATETIME, SYSDATETIME returns the current date and time in datetime2
and SYSDATETIMEOFFSET format, and SYSUTCDATETIME returns the UTC in datetime2

format. SYSDATETIMEOFFSET returns the current date and time
along with the hour and minute offset between the current time
zone and UTC in datetimeoffset format. These functions return
timing accurate to 10 milliseconds.

SWITCHOFFSET SWITCHOFFSET allows you to modify the existing time zone offset
to a new offset in datetimeoffset data type format.

TODATETIMEOFFSET TODATETIMEOFFSET allows you to modify a date and time value to a
specific time zone offset, returning a value in datetimeoffset
data type format.

The next few recipes will demonstrate these date functions.

Returning the Current Date and Time
GETDATE and CURRENT_TIMESTAMP both return the current date and time. GETUTCDATE returns the Coor-
dinated Universal Time. The new SQL Server 2008 date functions SYSDATETIME and SYSUTCDATETIME
provide date and time with accuracy to the nearest 10 milliseconds. SYSDATETIMEOFFSET also pro-
vides that level of accuracy, but also includes the hour and minute offset from UTC.

This example demonstrates how to return the current date and time, as well as the Coordinated
Universal Time and associated offsets:

SET NOCOUNT ON

SELECT 'CurrDateAndTime_HighPrecision', SYSDATETIME()

SELECT 'UniversalTimeCoordinate_HighPrecision', SYSUTCDATETIME()

SELECT 'CurrDateAndTime_HighPrecision _UTC_Adjust', SYSDATETIMEOFFSET()

This returns

CHAPTER 8 ■ SQL SERVER FUNCTIONS278

9802CH08.qxd 4/22/08 3:57 PM Page 278

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CurrDateAndTime_HighPrecision 2008-03-09 08:10:12.0861608

UniversalTimeCoordinate_HighPrecision 2008-03-09 14:10:12.0861608

CurrDateAndTime_HighPrecision _UTC_Adjust 2008-03-09 08:10:12.0861608 -06:00

How It Works
This recipe demonstrated methods for retrieving the current date and time. All functions can also
be used as a DEFAULT value for date data types within a table column definition.

Converting Between Time Zones
The following recipe demonstrates using functions to adjust and convert datetimeoffset and
datetime data type values to datetimeoffset data type values. In the first query, the SWITCHOFFSET
function converts an existing datetimeoffset value from -05:00 to +03:00.

Values in the datetimeoffset data type represent date and time values in specific time zones
that are referenced to UTC time. For example, the U.S. Eastern Standard time zone is defined as
UTC –5:00 (UTC minus five hours). You can convert datetimeoffset values between time zones by
invoking the SWITCHOFFSET function. In the following example, an input value is converted from
UTC –5:00 to UTC +3:00:

SELECT SWITCHOFFSET ('2007-08-12 09:43:25.9783262 -05:00', '+03:00')

The effect of the conversion is to change the datetime portion of the value such that the
new, combined datetime and offset represent the exact same UTC time as before. In this case,
the result is

2007-08-12 17:43:25.9783262 +03:00

Both 2007-08-12 09:43:25.9783262 -05:00 (the input) and 2007-08-12 17:43:25.9783262
+03:00 (the output) represent the same moment in time. Both work out to 2007-08-12
14:43:25.9783262 in UTC time (offset 0:00).

In this second query, TODATETIMEOFFSET takes a regular datatime data type value (no time zone
associated with it) and converts it to a datetimeoffset data type value:

SELECT TODATETIMEOFFSET ('2007-08-12 09:43:25' , '-05:00')

This returns

2007-08-12 09:43:25.0000000 -05:00

How It Works
This recipe used two new functions introduced in SQL Server 2008 to manipulate and convert val-
ues to the datetimeoffset data type. In the first example, the SWITCHOFFSET function took two input
parameters: the datetimeoffset value to be adjusted, and the offset value to adjust the value to.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 279

9802CH08.qxd 4/22/08 3:57 PM Page 279

Whatever the original value’s offset was, it gets converted to the offset value designated in the sec-
ond argument.

In the second example, the TODATETIMEOFFSET function also took two input parameters:
the datetime value to be converted and the offset value to use when converting the value to a
datetimeoffset data type.

Incrementing or Decrementing a Date’s Value
DATEADD returns a new date, which is the result of having incremented or decremented another date
expression. The syntax is as follows:

DATEADD (datepart , number, date)

The datepart code, used to designate which unit of time the date will be modified by, is
described in Table 8-6.

Table 8-6. Datepart Codes

Code Description

yy or yyyy Year

qq or q Quarter

mm or m Month

dy or y Day of Year

dd or d Day

wk or ww Week

dw or w Weekday

hh Hour

mi or n Minute

ss or s Second

ms Millisecond

The second argument of the DATEADD function is the numeric value to increment or decrement
the date (negative or positive number). The third argument is the date to be modified.

This first example decreases the date by a year:

SELECT DATEADD(yy, -1, '4/2/2009')

This returns

2008-04-02 00:00:00.000

This next example increases the date by a quarter:

SELECT DATEADD(q, 1, '4/2/2009')

This returns

2009-07-02 00:00:00.000

CHAPTER 8 ■ SQL SERVER FUNCTIONS280

9802CH08.qxd 4/22/08 3:57 PM Page 280

This example decreases a date by six months:

SELECT DATEADD(mm, -6, '4/2/2009')

This returns

2008-10-02 00:00:00.000

This example increases a date by 50 days:

SELECT DATEADD(d, 50, '4/2/2009')

This returns

2009-05-22 00:00:00.000

This example decreases the date and time by 30 minutes:

SELECT DATEADD(mi, -30, '2009-09-01 23:30:00.000')

This returns

2009-09-01 23:00:00.000

How It Works
This recipe demonstrated using the DATEADD function to modify a date based on several granulari-
ties. The third argument of DATEADD for each of these examples was a literal date value. However, you
can also reference a datetime data type table column or valid date expression. The first argument,
datepart, is also used in different date functions, as you’ll see in the next recipe.

Finding the Difference Between Two Dates
DATEDIFF subtracts one date from another to produce a value in the format of the datepart code
specified. The syntax for DATEDIFF is as follows:

DATEDIFF (datepart , startdate , enddate)

The first datepart code uses the same datepart codes as DATEADD. The second and third argu-
ments are the date values that are part of the subtraction.

This example demonstrates how to use the DATEDIFF function to find the difference between
two dates:

-- Find difference in months between now and EndDate
SELECT ProductID,

GETDATE() Today,
EndDate,
DATEDIFF(m, EndDate, GETDATE()) MonthsFromNow

FROM Production.ProductCostHistory
WHERE EndDate IS NOT NULL

CHAPTER 8 ■ SQL SERVER FUNCTIONS 281

9802CH08.qxd 4/22/08 3:57 PM Page 281

This returns the following (abridged) results:

ProductID Today EndDate MonthsFromNow
707 2008-02-12 19:07:14.073 2002-06-30 00:00:00.000 68
707 2008-02-12 19:07:14.073 2003-06-30 00:00:00.000 56
708 2008-02-12 19:07:14.073 2002-06-30 00:00:00.000 68
708 2008-02-12 19:07:14.073 2003-06-30 00:00:00.000 56
...

How It Works
In this recipe, the difference was calculated between the ProductCostHistory table’s EndDate and
today’s current date, returning the difference by month. The next recipe demonstrates another
function that also uses the datepart argument.

Displaying the String Value for Part of a Date
DATENAME returns a string value for the part of a date specified in the datepart code. The syntax is as
follows:

DATENAME (datepart , date)

The second parameter designates the date to base the string value on.
In this recipe, I’ll demonstrate how to use DATENAME to return the day of the week for the date

specified:

-- Show the EndDate's day of the week
SELECT ProductID,

EndDate,
DATENAME(dw, EndDate) WeekDay

FROM Production.ProductCostHistory
WHERE EndDate IS NOT NULL

This returns the following (abridged) results:

ProductID EndDate WeekDay
707 2002-06-30 00:00:00.000 Sunday
707 2003-06-30 00:00:00.000 Monday
708 2002-06-30 00:00:00.000 Sunday
708 2003-06-30 00:00:00.000 Monday
709 2002-06-30 00:00:00.000 Sunday

How It Works
In this recipe, the datepart argument was set to dw (weekday) and was based on the EndDate column
date, resulting in the day of the week name to be returned.

Displaying the Integer Representation for Parts of a Date
This function returns an integer value for the part of a date specified in the date part selection. The
syntax for DATEPART is as follows:

CHAPTER 8 ■ SQL SERVER FUNCTIONS282

9802CH08.qxd 4/22/08 3:57 PM Page 282

DATEPART (datepart , date)

The second parameter, date, designates the date for which the integer value is calculated.
This example demonstrates how to return the integer value from a date based on the date part

selected. The first example returns the year value:

SELECT DATEPART(yy, GETDATE())

This returns

2008

The next example shows the current month integer value:

SELECT DATEPART(m, GETDATE())

This returns

2

How It Works
In this recipe, the year, month, and day integer values were extracted from the current date and
time using the DATEPART function. You can also show these values by using canned functions that
don’t require the datepart argument, as you’ll see in the next recipe.

Displaying the Integer Value for Part of a Date Using YEAR,
MONTH, and DAY
There are single parameter functions that you can also use to display the integer values for day,
month, and year.

This example returns the current year:

SELECT YEAR(GETDATE())

This returns

2008

This example returns the current month:

SELECT MONTH(GETDATE())

This returns

9

This example returns the current day:

SELECT DAY(GETDATE())

CHAPTER 8 ■ SQL SERVER FUNCTIONS 283

9802CH08.qxd 4/22/08 3:57 PM Page 283

This returns

30

How It Works
In this recipe, I demonstrated single argument date functions. DAY returns an integer value for the
day, MONTH returns the integer representing the month, and YEAR returns the integer representing the
year of the evaluated date.

Type Conversion
The CONVERT and CAST functions are both used to convert from one data type to another. The syntax
for CAST is as follows:

CAST (expression AS data_type [(length)])

The first argument is the expression to convert (a table column or literal value, for example).
The second argument is the data type to convert the expression to.

The syntax for CONVERT is as follows:

CONVERT (data_type [(length)] ,expression [,style])

The first argument is the data type that you wish to convert the expression to. The second argu-
ment is the expression that you want to be converted. The third argument, style, allows you to
configure specific date presentation formats. This third argument is not available using the CAST
function.

Converting Between Data Types
In this recipe, I’ll demonstrate how to convert the data type of an integer to a char(4) data type.
In the first example, an integer value is concatenated to a character string:

SELECT 2000 + 'Cannot be concatenated'
GO

This returns the following error:

Msg 245, Level 16, State 1, Line 1

Conversion failed when converting a value of type varchar to type int. Ensure that
all values of the expression being converted can be converted to the target type, or
modify query to avoid this type conversion.

In the next example, CONVERT is used to change the integer value into the char data type:

SELECT CONVERT(char(4), 2008) + ' Can now be concatenated!'

This returns

2008 Can now be concatenated!

CHAPTER 8 ■ SQL SERVER FUNCTIONS284

9802CH08.qxd 4/22/08 3:57 PM Page 284

u

This example demonstrates performing the same type of conversion, this time using CAST:

SELECT BusinessEntityID, CAST(SickLeaveHours AS char(4)) +
' Sick Leave Hours Left' SickTime

FROM HumanResources.Employee

This returns the following (abridged) results:

BusinessEntityID SickTime
1 30 Sick Leave Hours Left
2 41 Sick Leave Hours Left
3 21 Sick Leave Hours Left
4 80 Sick Leave Hours Left
5 24 Sick Leave Hours Left

How It Works
The first query attempts to concatenate an integer and string value together. This results in an
error, as the two data types must be compatible or of the same data type. The second attempt used
CONVERT to change the data type of the expression to char(4) before concatenating it to the other
string. CAST was also used to convert the data type of the smallint column so that it could be con-
catenated to a string.

Converting Dates to Their Textual Representation
As I mentioned earlier, CONVERT has an optional style parameter that allows you to convert datetime
or smalldatetime to specialized character formats. Many people confuse how the date and time is
stored with the actual presentation of the date in the query results. When using the style parameter,
keep in mind that you are only affecting how the date is presented in its character-based form, and
not how it is stored (unless, of course, you choose to store the presented data in a non-datetime
data type column).

Some examples of available style formats using the CONVERT function are shown in Table 8-7.

Table 8-7. CONVERT Style Formats

Style Code Format

101 mm/dd/yyyy

102 yy.mm.dd

103 dd/mm/yy

108 hh:mm:ss

110 mm-dd-yy

112 yymmdd

For example, the command

SELECT CONVERT(varchar(20), GETDATE(), 101)

returns today’s date formatted as

02/12/2008

CHAPTER 8 ■ SQL SERVER FUNCTIONS 285

9802CH08.qxd 4/22/08 3:57 PM Page 285

When a function like GETDATE() is executed and stored in a datetime column, both the specific
date and time data are stored with it. If, however, you only wish to store data at the date level (stor-
ing no specific time of day), a common trick is to use CONVERT with a style designated to scrub all
dates to the 00:00:00.000 time.

The following example converts a datetime value to a character value, and then reconverts it
back to the datetime data type:

SELECT CONVERT(datetime, CONVERT(varchar(11), '2008-08-13 20:37:22.570', 101))

This returns

2008-08-13 00:00:00.000

Of course, now in SQL Server 2008, you can do the following datetime to date data type conver-
sion instead if no time need be stored at all:

SELECT CONVERT(date,'2008-08-13 20:37:22.570')

This returns

2008-08-13 00:00:00.000

How It Works
In the first query of the recipe, I used the 101 value in the style option for CONVERT to return a date in
an mm/dd/yyyy format. Query authors are usually concerned with the style option when presenting
data back to the end user. This presentation is used when a datetime or smalldatetime is converted
into a character data type. Keep in mind that if you convert the data type back to datetime and store
the reconverted date, you can lose the precision of the original hour, minute, second, etc., depend-
ing on the style you chose for the character data!

In the second query, I demonstrated using CONVERT with the 101 style option to scrub the time
out of a datetime value and setting it to a 00:00:00.000 value. In the last query of this recipe, I
demonstrated another example of scrubbing out the time value by converting the datetime value
to a date data type.

Representing Binary Data in String Literals
SQL Server 2008 introduces a new method for returning binary data in a string hexadecimal literal
format. The CONVERT command allows for three binary styles: 0, 1, and 2. I’ll demonstrate the usage
of each value here.

Binary style 0 converts binary bytes to ASCII characters and ASCII characters to binary bytes.
This is the behavior of previous versions of SQL Server. In this query, I’ll demonstrate binary style 0:

SELECT CONVERT(char(29),
0x53514C20536572766572203230303820542D53514C2052656369706573,
0) ReturnValue

This returns

ReturnValue
SQL Server 2008 T-SQL Recipes

CHAPTER 8 ■ SQL SERVER FUNCTIONS286

9802CH08.qxd 4/22/08 3:57 PM Page 286

Next, I’ll reverse the previous example by converting ASCII to varbinary:

SELECT CONVERT(varbinary, 'SQL Server 2008 T-SQL Recipes', 0) ReturnValue

This returns

ReturnValue
0x53514C20536572766572203230303820542D53514C2052656369706573

Using the new SQL Server 2008 functionality, binary style 1 and 2 are used to convert binary
bytes to a character expression representing the hexadecimal value. Style 1 prefixes a value of 0x,
and style 2 does not. The following query demonstrates style 1:

SELECT CONVERT(char(60),
0x53514C20536572766572203230303820542D53514C2052656369706573,
1) ReturnValue_Style_1

This returns

ReturnValue_Style_1
0x53514C20536572766572203230303820542D53514C2052656369706573

The next query demonstrates style 2:

SELECT CONVERT(char(60),
0x53514C20536572766572203230303820542D53514C2052656369706573,
2) ReturnValue_Style_2

This returns the following (notice that there is no 0x prefix):

ReturnValue_Style_2
53514C20536572766572203230303820542D53514C2052656369706573

You can also convert the character expression to binary; however, both style 1 and 2 will return
the varbinary data type data with the 0x prefix (native to the data type).

How It Works
SQL Server 2008 introduces the ability to convert binary data into a string hexadecimal literal
format. In previous versions, doing a CONVERT would translate the binary data into the ASCII
format—and not an actual representation of the hexadecimal literal format. For maintaining this
previous behavior, you use binary style 0. Otherwise, you can use style 1 or 2 to preserve the string
hexadecimal literal format.

Evaluating the Data Type Returned by an Expression
When converting data types, it is sometimes useful to figure out what SQL Server thinks an expres-
sion’s data type is. In this recipe, I’ll demonstrate using ISDATE and ISNUMERIC functions to test the
data type of an expression:

-- Returns 0
SELECT ISDATE('1/1/20000')

-- Returns 1
SELECT ISDATE('1/1/2008')

CHAPTER 8 ■ SQL SERVER FUNCTIONS 287

9802CH08.qxd 4/22/08 3:57 PM Page 287

-- Returns 0
SELECT ISNUMERIC('123ABC')

-- Returns 1
SELECT ISNUMERIC('123')

This returns

0

(1 row(s) affected)

1

(1 row(s) affected)

0

(1 row(s) affected)

1

(1 row(s) affected)

How It Works
ISDATE determines whether an expression is a valid datetime value. ISNUMERIC determines whether
or not an expression is a valid numeric data type value. Both ISNUMERIC and ISDATE return a 1 if the
expression evaluates to TRUE and 0 if it is FALSE.

Ranking Functions
Ranking functions allow you to return ranking values associated to each row in a result set. Table 8-8
describes the four ranking functions.

Table 8-8. Ranking Functions

Function Description

ROW_NUMBER ROW_NUMBER returns an incrementing integer for each row in a set.

RANK Similar to ROW_NUMBER, RANK increments its value for each row in the set. The key
difference is if rows with tied values exist, they will receive the same rank value.

DENSE_RANK DENSE_RANK is almost identical to RANK, only DENSE_RANK doesn’t return gaps in the
rank values when there are tied values.

NTILE NTILE divides the result set into a specified number of groups, based on the
ordering and optional partition clause.

The next four recipes will demonstrate the use of these four ranking functions.

CHAPTER 8 ■ SQL SERVER FUNCTIONS288

9802CH08.qxd 4/22/08 3:57 PM Page 288

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Generating an Incrementing Row Number
The ROW_NUMBER function returns an incrementing integer for each row in a set. The syntax for
ROW_NUMBER is as follows:

ROW_NUMBER () OVER ([<partition_by_clause>] <order_by_clause>)

The first optional argument, partition_by_clause, allows you to restart row numbering for
each change in the partitioned column. The second argument, order_by_clause, determines the
order in which the ROW_NUMBER is applied to the results.

This first example returns the six rows from the middle of the result set, ordered by name:

-- Select the rows 255 through 260 in the middle of the result set
SELECT p.ProductID,

p.Name,
p.RowNumber

FROM
(SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY Name) RowNumber

FROM Production.Product) p
WHERE p.RowNumber BETWEEN 255 AND 260

This returns

ProductID Name RowNumber
713 Long-Sleeve Logo Jersey, S 255
716 Long-Sleeve Logo Jersey, XL 256
462 Lower Head Race 257
857 Men's Bib-Shorts, L 258
856 Men's Bib-Shorts, M 259
855 Men's Bib-Shorts, S 260

The optional partition_by_clause allows you to restart row numbering for each change in the
partitioned column. In this example, the results are partitioned by Shelf and ordered by ProductID:

SELECT Shelf,
ProductID,
ROW_NUMBER() OVER

(PARTITION BY Shelf ORDER BY ProductID) RowNumber
FROM Production.ProductInventory

In the returned results, row numbering is incremented by ProductID, but with each change in
Shelf, the row numbering is restarted at 1:

Shelf ProductID RowNumber
A 1 1
A 1 2
A 2 3
...
Shelf ProductID RowNumber
B 1 1
B 2 2
B 3 3
...

CHAPTER 8 ■ SQL SERVER FUNCTIONS 289

9802CH08.qxd 4/22/08 3:57 PM Page 289

Shelf ProductID RowNumber
C 317 1
C 318 2
C 319 3
...

How It Works
In the first example, ROW_NUMBER was used to order the results by product name and then add an
incrementing value for each row. ROW_NUMBER was referenced as the third column of the subquery
(snipped out of main query):

...
SELECT ProductID,

Name,
ROW_NUMBER() OVER (ORDER BY Name) RowNumber

FROM Production.Product
...

The ORDER BY clause in parentheses ordered the results by name, which impacted in which
order the rows were returned, as well as each row’s associated row number. Each row in the record
set is given a number, incremented by 1 for each row. Since the query sorts the results by name, the
first product will have a row number of 1. This query appeared as a subquery so that the ROW_NUMBER
column could be referenced in the WHERE clause of the outer query, returning rows 255 through 260.

The second example demonstrated using the partition_by_clause argument. For each change
in Shelf, the row numbering was restarted with 1. With the ROW_NUMBER ranking function, you can
page through data (for example, “show me rows 25 through 50”) without having to create excessive
amounts of code that was necessary in pre-2005 versions of SQL Server.

Returning Rows by Rank
In this recipe, I’ll demonstrate using the RANK function to apply rank values based on a SalesQuota
value. RANK returns the rank of a row within a result set (or rank of row within a partition within a
result set, if you designate the optional partition clause). The syntax for RANK is as follows:

RANK () OVER ([< partition_by_clause >] < order_by_clause >)

The key difference is if rows with tied values exist, they will receive the same rank value, as this
example demonstrates:

SELECT BusinessEntityID,
QuotaDate,
SalesQuota,
RANK() OVER (ORDER BY SalesQuota DESC) as RANK

FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns

BusinessEntityID QuotaDate SalesQuota RANK
280 2003-07-01 00:00:00.000 319000.00 1
284 2003-04-01 00:00:00.000 304000.00 2
280 2002-04-01 00:00:00.000 301000.00 3
282 2003-01-01 00:00:00.000 288000.00 4
283 2003-04-01 00:00:00.000 284000.00 5

CHAPTER 8 ■ SQL SERVER FUNCTIONS290

9802CH08.qxd 4/22/08 3:57 PM Page 290

284 2003-01-01 00:00:00.000 281000.00 6
278 2004-01-01 00:00:00.000 280000.00 7
283 2002-01-01 00:00:00.000 280000.00 7
283 2002-04-01 00:00:00.000 267000.00 9
278 2002-01-01 00:00:00.000 266000.00 10

The OVER clause contains an optional partition_by_clause and a required order_by_clause,
just like ROW_NUMBER. The order_by_clause determines the order that RANK values are applied to each
row, and the optional partition_by_clause is used to further divide the ranking groups, as demon-
strated in the next example:

SELECT h.BusinessEntityID,
s.TerritoryID,
h.QuotaDate,

h.SalesQuota,
RANK() OVER (PARTITION BY s.TerritoryID ORDER BY h.SalesQuota DESC) as RANK
FROM Sales.SalesPersonQuotaHistory h
INNER JOIN Sales.SalesPerson s ON

h.BusinessEntityID = s.BusinessEntityID
WHERE s.TerritoryID IN (5,6,7)

This returns ranking of SalesQuota partitioned by the salesperson’s TerritoryID:

SalesPersonID TerritoryID QuotaDate SalesQuota RANK
279 5 2003-07-01 00:00:00.000 950000.00 1
279 5 2001-10-01 00:00:00.000 917000.00 2
...
282 6 2003-07-01 00:00:00.000 1051000.00 1
282 6 2004-04-01 00:00:00.000 830000.00 2
282 6 2001-10-01 00:00:00.000 767000.00 3
282 6 2003-10-01 00:00:00.000 707000.00 4
282 6 2002-01-01 00:00:00.000 583000.00 5
282 6 2002-04-01 00:00:00.000 583000.00 5
282 6 2004-01-01 00:00:00.000 569000.00 7
...

How It Works
RANK increments its values based on the ordered column, only unlike ROWNUMBER, which increments
on each row, RANK will return the same value for matching ordered values.

For example, in this recipe, the query specified a RANK ordered by SalesQuota with a descending
sort. Because two SalesQuota values were equal at 280000.00, they both received a rank of 7:

278 280000.00 7
283 280000.00 7

Also, you should notice that the next SalesQuota value had a rank of 9 (not 8). The RANK function
didn’t use the 8th position because there were two rows tied for 7th, meaning that the next rank
value is 9. If the three rows had been tied, the next rank value would be 10, and so on.

9

CHAPTER 8 ■ SQL SERVER FUNCTIONS 291

9802CH08.qxd 4/22/08 3:57 PM Page 291

In the second example, RANK was partitioned by TerritoryID, causing the RANK value to restart
at 1 for each change in TerritoryID.

Returning Rows by Rank Without Gaps
In this recipe, I’ll demonstrate DENSE_RANK, which is almost identical to RANK, only DENSE_RANK doesn’t
return gaps in the rank values:

SELECT BusinessEntityID,
SalesQuota,

DENSE_RANK() OVER (ORDER BY SalesQuota DESC) as DENSE_RANK
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns

BusinessEntityID SalesQuota DENSE_RANK
280 319000.00 1
287 304000.00 2
280 301000.00 3
282 288000.00 4
283 284000.00 5
287 281000.00 6
278 280000.00 7
283 280000.00 7
283 267000.00 8
278 266000.00 9

How It Works
The syntax and usage is identical to RANK, only DENSE_RANK doesn’t create a gap in the rank value
when there are tied records. In this recipe’s example, two values were tied with a value of 7 due to
the same SalesQuota of 280000.00:

278 280000.00 7
283 280000.00 7
283 267000.00 8

The next DENSE_RANK value after 7 was 8.

Using NTILE
NTILE divides the result set into a specified number of groups based on the ordering and optional
partition. The syntax is very similar to the other ranking functions, only it also includes an
integer_expression:

NTILE (integer_expression) OVER ([< partition_by_clause >] < order_by_clause >)

The integer_expression is used to determine the number of groups to divide the results into.
This example demonstrates the NTILE ranking function against the Sales.SalePersonQuotaHistory
table:

CHAPTER 8 ■ SQL SERVER FUNCTIONS292

9802CH08.qxd 4/22/08 3:57 PM Page 292

SELECT BusinessEntityID,
SalesQuota,

NTILE(4) OVER (ORDER BY SalesQuota DESC) as NTILE
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota BETWEEN 266000.00 AND 319000.00

This returns

BusinessEntityID SalesQuota NTILE
280 319000.00 1
287 304000.00 1
280 301000.00 1
282 288000.00 2
283 284000.00 2
287 281000.00 2
278 280000.00 3
283 280000.00 3
283 267000.00 4
278 266000.00 4

How It Works
In this example, the result set was divided into four percentile groups. The results were ordered by
SalesQuota (descending order) and determined the order of NTILE group assignment. Notice that
the first two groups, 1 and 2, both had three rows each, whereas groups 3 and 4 had two rows each.
If the number of rows isn’t divisible by the number of groups, the first few groups will have more
rows than the latter groups. Otherwise, if the rows are divisible by the number of groups, each group
will have the same number of rows.

Probing Server, Database, and Connection-Level
Settings Using System Functions
SQL Server includes several system configuration functions that can be used to determine system
settings for the SQL Server instance. Some of these functions are prefixed with @@ and were called
variables in previous versions of SQL Server. Other system functions don’t have the @@ prefix, and
these accept parameters that help gather information about the SQL Server instance or database.

The next few recipes will demonstrate these system functions in action.

Determining the First Day of the Week
The @@DATEFIRST function returns the value of the specified first day of the week for the SQL Server
instance. This is important to note because this value defines the calculation for the weekday
datepart used in other date functions such as DATEPART and DATEADD. In this example, I’ll demon-
strate returning the current first day of the week setting for the SQL Server instance:

SELECT @@DATEFIRST 'First Day of the Week'

CHAPTER 8 ■ SQL SERVER FUNCTIONS 293

9802CH08.qxd 4/22/08 3:57 PM Page 293

This returns

First Day of the Week
7

How It Works
The @@DATEFIRST function shows the first day of the week setting. To change the first day value, you
can use the SET DATEFIRST command. For example:

SET DATEFIRST 7

When changing this value, 7 is Sunday and 1 is Monday, and so on. This directly impacts the
returned value for the dw (day of week) code for DATEPART and DATEADD functions.

Viewing the Language Used in the Current Session
The @@LANGID system function returns a smallint data type value representing the local language
identifier for the current user session, and the @@LANGUAGE system function returns the language
name.

This example returns the local language setting currently used in the current query session:

SELECT @@LANGID LanguageID,
@@LANGUAGE Language

This query returns

LanguageID Language
0 us_english

In this next query, I’ll use the SET LANGUAGE command to configure a new session default lan-
guage in conjunction with a check of the language ID and name:

SET LANGUAGE 'Español'

SELECT @@LANGID LanguageID,
@@LANGUAGE Language

This returns

Se cambió la configuración de idioma a Español.

LanguageID Language
5 Español

How It Works
This recipe demonstrated returning the language for the SQL Server instance. Your default will
vary based on the locale and collation used to set up the SQL Server instance. I also executed SET
LANGUAGE to change the default language for my session, which ends up impacting the language of
system messages and also the format of datetime data type data.

CHAPTER 8 ■ SQL SERVER FUNCTIONS294

9802CH08.qxd 4/22/08 3:57 PM Page 294

Viewing and Setting Current Connection Lock Timeout Settings
The SET LOCK_TIMEOUT command configures the number of milliseconds a statement will wait in the
current session for locks to be released by other connections. The @@LOCK_TIMEOUT function is used
to display the current connection lock timeout setting in milliseconds.

This example demonstrates setting and viewing the current session’s lock timeout value:

-- 1000 milliseconds, 1 second
SET LOCK_TIMEOUT 1000

SELECT @@LOCK_TIMEOUT

-- Unlimited
SET LOCK_TIMEOUT -1

This returns

1000

How It Works
In this example, I started off by setting the lock timeout to 1000 milliseconds. To view the change,
I used @@LOCK_TIMEOUT. After that, I changed the lock timeout back again to -1, which specified an
unlimited wait time. A lock timeout value tells us how long a statement will wait on a blocked
resource, canceling the statement automatically if the threshold has been exceeded, and then
returning an error message.

Displaying the Nesting Level for the Current Stored
Procedure Context
@@NESTLEVEL returns the current nesting level for the stored procedure context. A stored procedure
nesting level indicates how many times a stored procedure has called another stored procedure.
SQL Server allows stored procedures to make up to a maximum of 32 nested (incomplete) calls.

This recipe demonstrates how to capture the current nesting level for the stored procedure
context (see Chapter 10):

-- First procedure
CREATE PROCEDURE dbo.usp_QuickAndDirty
AS
SELECT @@NESTLEVEL
GO

-- Second procedure
CREATE PROCEDURE dbo.usp_Call_QuickAndDirty
AS
SELECT @@NESTLEVEL
EXEC dbo.usp_QuickAndDirty
GO

After creating the two stored procedures, I use the @@NESTLEVEL function prior to calling the
usp_Call_QuickAndDirty stored procedure:

CHAPTER 8 ■ SQL SERVER FUNCTIONS 295

9802CH08.qxd 4/22/08 3:57 PM Page 295

-- Returns 0 nest level
SELECT @@NESTLEVEL

-- Returns 1 and 2 nest level
EXEC dbo.usp_Call_QuickAndDirty

This returns three result sets:

0
1
2

How It Works
In this recipe, I created two stored procedures. The first stored procedure, in this case
usp_QuickAndDirty, executed @@NESTLEVEL. The second stored procedure also called @@NESTLEVEL,
and then executed the first stored procedure. Before calling the procedure, @@NESTLEVEL returned 0.
At each execution nesting, the value of @@NESTLEVEL is incremented.

Returning the Current SQL Server Instance Name and
SQL Server Version
@@SERVERNAME displays the local server name, and @@VERSION returns the SQL Server instance version,
date, and processor information.

This example returns the current SQL Server instance’s name and version information:

SELECT @@SERVERNAME ServerName,
@@VERSION VersionInformation

How It Works
In this recipe, I demonstrated returning the current SQL Server instance name and version informa-
tion. Like the system configuration functions before it, no parameters were required.

Returning the Current Connection’s Session ID (SPID)
@@SPID returns the current connection’s session ID, which you can use to identify additional infor-
mation in the sp_who system-stored procedure or via Dynamic Management Views such as
sys.dm_exec_sessions.

This recipe returns the current SQL connection’s server process identifier:

SELECT @@SPID SPID

This returns

SPID
53

How It Works
In this recipe, I demonstrated returning the session ID of the current connection’s query session.

CHAPTER 8 ■ SQL SERVER FUNCTIONS296

9802CH08.qxd 4/22/08 3:57 PM Page 296

Returning the Number of Open Transactions
The @@TRANCOUNT system function displays active transactions for the current connection. You can
use this function to determine the number of open transactions within the current session, and
based on that information, either COMMIT or ROLLBACK the transactions accordingly. This recipe
demonstrates how to return the number of active transactions in the current connection:

BEGIN TRAN t1

SELECT @@TRANCOUNT -- Returns 1

BEGIN TRAN t2

SELECT @@TRANCOUNT -- Returns 2

BEGIN TRAN t3

SELECT @@TRANCOUNT -- Returns 3

COMMIT TRAN

SELECT @@TRANCOUNT -- Returns 2

ROLLBACK TRAN

SELECT @@TRANCOUNT -- After ROLLBACK, always Returns 0!

This returns

1
2
3
2
0

How It Works
In this recipe, each time a BEGIN TRAN was issued, the value of @@TRANCOUNT was incremented. Each
time a COMMIT TRAN occurred, @@TRANCOUNT was decremented. When ROLLBACK TRAN was executed,
@@TRANCOUNT was set to 0. ROLLBACK TRAN rolls back all open transactions for the session, no matter
how many levels deep the transactions are nested.

Retrieving the Number of Rows Affected by the
Previous Statement
@@ROWCOUNT returns the integer value of the number of rows affected by the last Transact-SQL state-
ment in the current scope. @@ROWCOUNT_BIG returns the bigint value.

In this example, I’ll demonstrate how to return the rows affected by the previous Transact-SQL
statement:

SELECT TOP 3 ScrapReasonID
FROM Production.ScrapReason

SELECT @@ROWCOUNT Int_RowCount, ROWCOUNT_BIG() BigInt_RowCount

CHAPTER 8 ■ SQL SERVER FUNCTIONS 297

9802CH08.qxd 4/22/08 3:57 PM Page 297

This returns two result sets:

ScrapReasonID
1
2
4

Int_RowCount BigInt_RowCount
3 3

How It Works
In this example, the first statement returned three rows from the Production.ScrapReason table—
so @@ROWCOUNT is set to 3 in order to indicate that three rows were returned. The ROWCOUNT_BIG
function is just like @@ROWCOUNT, only it is capable of returning bigint data type counts, instead of
@@ROWCOUNT’s integer data type. @@ROWCOUNT and @@ROWCOUNT_BIG are often used for error handling;
for example, checking to make sure the expected number of rows were impacted by the previous
statement (see Chapter 16).

Retrieving System Statistics
SQL Server has several built-in system statistical functions, which are described in Table 8-9.

Table 8-9. System Statistical Functions

Function Description

@@CONNECTIONS Returns the number of connections made to the SQL Server instance since it
was last started.

@@CPU_BUSY Shows the number of busy CPU milliseconds since the SQL Server instance
was last started.

@@IDLE Displays the total idle time of the SQL Server instance in milliseconds since
the instance was last started.

@@IO_BUSY Displays the number of milliseconds spent performing I/O operations since
the SQL Server instance was last started.

@@PACKET_ERRORS Displays the total network packet errors that have occurred since the SQL
Server instance was last started.

@@PACK_RECEIVED Returns the total input packets read from the network since the SQL Server
instance was last started. You can monitor whether the number increments or
stays the same, thus surmising whether there is a network availability issue.

@@PACK_SENT Returns the total output packets sent to the network since the SQL Server
instance was last started.

@@TIMETICKS Displays the number of microseconds per tick. A tick is a unit of
measurement designated by a specified number of milliseconds (31.25
milliseconds for the Windows OS).

@@TOTAL_ERRORS Displays read/write errors encountered since the SQL Server instance was last
started.

@@TOTAL_READ Displays the number of non-cached disk reads by the SQL Server instance
since it was last started.

@@TOTAL_WRITE Displays the number of disk writes by the SQL Server instance since it was last
started.

CHAPTER 8 ■ SQL SERVER FUNCTIONS298

9802CH08.qxd 4/22/08 3:57 PM Page 298

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

This example demonstrates using system statistical functions in a query:

SELECT 'Connections' FunctionNM, @@CONNECTIONS Value
UNION
SELECT 'CPUBusy', @@CPU_BUSY
UNION
SELECT 'IDLE', @@IDLE
UNION
SELECT 'IOBusy', @@IO_BUSY
UNION
SELECT 'PacketErrors', @@PACKET_ERRORS
UNION
SELECT 'PackReceived', @@PACK_RECEIVED
UNION
SELECT 'PackSent', @@PACK_SENT
UNION
SELECT 'TimeTicks', @@TIMETICKS
UNION
SELECT 'TotalErrors', @@TOTAL_ERRORS
UNION
SELECT 'TotalRead', @@TOTAL_READ
UNION
SELECT 'TotalWrite', @@TOTAL_WRITE

This returns

FunctionNM Value
Connections 369
CPUBusy 3333
IDLE 6374793
IOBusy 1916
PacketErrors 2
PackReceived 3606
PackSent 6592
TimeTicks 31250
TotalErrors 0
TotalRead 4688
TotalWrite 5542

How It Works
This recipe demonstrated a SELECT query referencing multiple system statistical functions. You can
use them to track various statistics in your SQL Server instance.

Displaying Database and SQL Server Settings
The DATABASEPROPERTYEX system function allows you to retrieve information about database
options. DATABASEPROPERTYEX uses the following syntax:

DATABASEPROPERTYEX (database , property)

The first argument is the database name you want to probe. The second argument is the data-
base property you want to look up.

This example demonstrates how to report the collation, status, and recovery mode for the
AdventureWorks database:

CHAPTER 8 ■ SQL SERVER FUNCTIONS 299

9802CH08.qxd 4/22/08 3:57 PM Page 299

SELECT DATABASEPROPERTYEX('AdventureWorks', 'Collation'),
DATABASEPROPERTYEX('AdventureWorks', 'Recovery'),
DATABASEPROPERTYEX('AdventureWorks', 'Status')

This returns

SQL_Latin1_General_CP1_CI_AS SIMPLE ONLINE

The SERVERPROPERTY system function allows you to retrieve information about your SQL Server
instance. Its syntax, since not database specific, only requires the property name:

SERVERPROPERTY (propertyname)

This example demonstrates returning the instance’s edition and default collation:

SELECT SERVERPROPERTY ('Collation'),
SERVERPROPERTY ('Edition')

This returns

SQL_Latin1_General_CP1_CI_AS Enterprise Edition

How It Works
Both DATABASEPROPERTYEX and SERVERPROPERTY can be used to retrieve important system configura-
tion settings. In both examples, the function was referenced in the SELECT clause of a query.

■Note I show how these functions are used in this book, but I don’t rehash the list of available properties. For a
complete list, see SERVERPROPERTY and DATABASEPROPERTYEX topics in SQL Server Books Online.

Returning the Current Database ID and Name
This DB_ID function returns the database integer ID, and DB_NAME returns the database name for the
current database (unless there are parameters supplied).

This example demonstrates how to retrieve the current database system ID and name:

SELECT DB_ID() DatabaseID, DB_NAME() DatabaseNM

This returns

DatabaseID DatabaseNM
8 AdventureWorks

How It Works
In this example, the internal database ID (assigned by SQL Server when the database was created) is
returned along with the database name. The functions will return information based on the current
database context.

CHAPTER 8 ■ SQL SERVER FUNCTIONS300

9802CH08.qxd 4/22/08 3:57 PM Page 300

Both also accept parameters, for example:

SELECT DB_ID('master') DatabaseID, DB_NAME(1) DatabaseNM

This returns

DatabaseID DatabaseNM
1 master

Using parameters of these functions allow you to look up an explicit database ID or name value
without switching the database context to the actual database.

■Tip You can also just query sys.databases to retrieve name and database_id.

Returning a Database Object Name and ID
OBJECT_ID returns the database object identifier number, as assigned internally within the database.
OBJECT_NAME returns the object’s name based on its object identifier number.

In this example, I’ll demonstrate how to return a database object’s name and ID:

SELECT OBJECT_ID('AdventureWorks.HumanResources.Department'),
OBJECT_NAME(773577794, DB_ID('AdventureWorks'))

This returns

757577737 DF_Department_ModifiedDate

How It Works
Both OBJECT_NAME and OBJECT_ID are often used in conjunction with system catalog views or system
functions that reference a database object’s identifier. The OBJECT_ID function is used to find the
internal database identifier of a specific object (note that object IDs are only unique within a speci-
fied database). Its first argument is the name of the object. The second optional argument is the
object type; for example, U for user-defined table, V for view, PK for primary key, and other values
that you can reference in the type column of the sys.objects catalog view.

OBJECT_NAME is used to return the object name given the object identifier. The first argument is
the object ID. The second optional argument is the database ID—which is useful when there are
identical IDs across databases for different objects.

Returning the Application and Host for the Current
User Session
In this recipe, I’ll demonstrate the different functions used to return information about the current
connection’s context. APP_NAME returns the name of the application for the current SQL Server con-
nection. HOST_ID returns the workstation identification number for the current connection, and
HOST_NAME returns the workstation name for the current connection.

This example shows how to show the current application and host used to connect to the SQL
Server instance:

CHAPTER 8 ■ SQL SERVER FUNCTIONS 301

9802CH08.qxd 4/22/08 3:57 PM Page 301

SELECT APP_NAME() as 'Application',
HOST_ID() as 'Host ID',
HOST_NAME() as 'Host Name'

This returns

Application Host ID Host Name
Microsoft SQL Server Management Studio - Query 3388 CAESAR

How It Works
All three functions used in this example were used within a SELECT clause and didn’t require any
arguments. This information is useful for tracking information on a client and application connec-
tion, and thus helping you establish identity.

Reporting Current User and Login Context
The SYSTEM_USER function returns the Windows or SQL login name, and the USER function returns
the current user’s database user name.

In this first example, I’ll demonstrate how to return the current user and login context:

SELECT SYSTEM_USER, -- Login
USER -- Database User

This returns

CAESAR\Administrator dbo

These two functions can also be used as table DEFAULT values, as this next example demon-
strates:

CREATE TABLE #TempExample
(ExampleColumn varchar(10) NOT NULL,
ModifiedByLogin varchar(55) NOT NULL DEFAULT SYSTEM_USER,

ModifiedByUser varchar(55) NOT NULL DEFAULT USER)
GO

INSERT #TempExample
(ExampleColumn)
VALUES ('Value A')

SELECT ExampleColumn, ModifiedByLogin, ModifiedByUser
FROM #TempExample

This returns the following results:

ExampleColumn ModifiedByLogin ModifiedByUser
Value A CAESAR\Administrator dbo

CHAPTER 8 ■ SQL SERVER FUNCTIONS302

9802CH08.qxd 4/22/08 3:57 PM Page 302

How It Works
In this recipe, the SYSTEM_USER and USER functions were used within a regular query, and also as the
DEFAULT value for a table. These functions are ideal for database change auditing—capturing the
current user when a data modification occurs, for example.

Viewing User Connection Options
In this recipe, I’ll demonstrate how to view the SET properties for the current user connection using
the SESSIONPROPERTY function (for information on SET options, see Chapter 22):

SELECT SESSIONPROPERTY ('ANSI_NULLS') ANSI_NULLS,
SESSIONPROPERTY ('ANSI_PADDING') ANSI_PADDING,
SESSIONPROPERTY ('ANSI_WARNINGS') ANSI_WARNINGS,
SESSIONPROPERTY ('ARITHABORT') ARITHABORT,
SESSIONPROPERTY ('CONCAT_NULL_YIELDS_NULL') CONCAT_NULL_YIELDS_NULL,
SESSIONPROPERTY ('NUMERIC_ROUNDABORT') NUMERIC_ROUNDABORT,
SESSIONPROPERTY ('QUOTED_IDENTIFIER') QUOTED_IDENTIFIER

This returns the following results (modified for readability):

ANSI_NULLS ANSI_PADDING ANSI_WARNINGS
1 1 1

ARITHABORT CONCAT_NULL_YIELDS_NULL
1 1

NUMERIC_ROUNDABORT QUOTED_IDENTIFIER
0 1

How It Works
SESSIONPROPERTY allows you to see the various database connection settings for the current user. It
takes one argument, the name of the property to check. The function returned a 1 when the option
was ON and 0 when it is OFF.

IDENTITY and uniqueidentifier Functions
With the last three recipes of this chapter, I’ll review how to work with IDENTITY values for a table
and how to generate new uniqueidentifier values.

As you may recall from Chapter 4, the IDENTITY column property is defined on a specific col-
umn of a table and allows you to define an automatically incrementing numeric value for a single
column in a table.

Unlike the IDENTITY column, which guarantees uniqueness within the defined table, the
ROWGUIDCOL property ensures a very high level of uniqueness. This unique ID is stored in a
uniqueidentifier data type and is generated by the NEWID system function. You can also use the
NEWSEQUENTIALID system function, which also produces a uniqueidentifier return type; however,
it differs from NEWID because each newly generated GUID will be a greater value than any GUID pre-
viously generated on the scoped server. Because NEWSEQUENTIALID produces greater values on each
execution, this behavior can reduce page splitting on the key, as well as random page lookups.

CHAPTER 8 ■ SQL SERVER FUNCTIONS 303

9802CH08.qxd 4/22/08 3:57 PM Page 303

Returning the Last Identity Value
In this recipe, I’ll demonstrate three methods for returning last generated identity values. In the first
example, the IDENT_CURRENT function is used to return the last generated identity value for a specific
table. This command takes a single argument: the name of the table to evaluate:

SELECT IDENT_CURRENT('Production.Product') LastIdentityValue

This returns

LastIdentityValue
999

Next, a new row is inserted into a table that has an IDENTITY column defined within it. Immedi-
ately after the INSERT, the last identity value generated is retrieved using the SCOPE_IDENTITY and
@@IDENTITY functions (the difference is described after the example):

-- Example insert, generates IDENTITY value in the table
INSERT HumanResources.Department
(Name, GroupName)
VALUES ('TestDept', 'TestGroup')

-- Last identity value generated for any table
-- in the current session, for the current scope
SELECT SCOPE_IDENTITY()

This returns the last identity value generated from a table INSERT in the current session, for the
current scope. Scope means that if this INSERT caused a trigger to fire that inserted another row into
a different IDENTITY-based table, you would still only see the last IDENTITY value for the current ses-
sion (not from the trigger sessions outside your scope):

17

Executing @@IDENTITY generates the last IDENTITY value generated for any table in the current
session, but for any scope:

-- Last identity value generated for any table
-- in the current session, in any scope
SELECT @@IDENTITY

This returns

17

Although it is the same value for this example query, had a trigger fired off of the INSERT that in
turn caused an INSERT into another IDENTITY-based table, you would see the latest identity value for
the other table in the trigger’s scope.

How It Works
This recipe demonstrated three methods of returning the last identity value generated. The first
query used IDENT_CURRENT, which specified the last generated identity value for a specific table.

The next function demonstrated, SCOPE_IDENTITY, is specific to the current user session, and
returns the last generated value for the current scope. The current scope, for example, refers to the
current batch of SQL statements, current procedure, or current trigger.

CHAPTER 8 ■ SQL SERVER FUNCTIONS304

9802CH08.qxd 4/22/08 3:57 PM Page 304

In contrast, @@IDENTITY returns the last generated value for any table in the current session,
across any scope. So if an INSERT in the current scope fires a trigger, which in turn inserts a record
into a different table, @@IDENTITY will return the latest value from the inserted row impacted by the
trigger, and not the original insert you may have intended to capture.

In short, use IDENT_CURRENT if you care about retrieving the latest IDENTITY value for a specific
table, across any session or scope. Use SCOPE_IDENTITY if you wish to retrieve the latest IDENTITY
value for any table in the current scope and session. Use @@IDENTITY if you want the last IDENTITY
value for any table in the current session, regardless of scope.

Returning an Identity Column’s Seed and Incrementing Value
The IDENT_INCR function displays the original increment value for the IDENTITY column of a specific
table or referencing view. The IDENT_SEED function displays the originally defined seed value for the
IDENTITY column of a specific table or referencing view. These functions are useful to determine at
what increment and seed an IDENTITY column’s value will progress as rows are inserted.

This example demonstrates returning the identity increment and seed for a specific table:

SELECT IDENT_INCR('Production.Product') IdentIncr,
IDENT_SEED('Production.Product') IdentSeed

This returns

IdentIncr IdentSeed
1 1

How It Works
In this recipe, the increment and seed for the Production.Product table was returned using
IDENT_INCR and IDENT_SEED.

Creating a New uniqueidentifier Value
The NEWID function is used to create a uniqueidentifier data type value. The first example returns a
new uniqueidentifier value in a SELECT statement:

SELECT NEWID()

This returns a value similar to the following (you’ll see a different value from what I show here):

D04ED24F-671E-4559-A205-F6864B9C59A7

Next, a new temporary table is created that uses the NEWID function as a default:

CREATE TABLE #T4
(MyValue uniqueidentifier NOT NULL DEFAULT NEWID())

Next, a new value is inserted into the table:

INSERT #T4 DEFAULT VALUES

Last, the value is retrieved from the table:

SELECT MyValue
FROM #T4

CHAPTER 8 ■ SQL SERVER FUNCTIONS 305

9802CH08.qxd 4/22/08 3:57 PM Page 305

This returns

MyValue
2DD54CE0-5D26-42F9-A68D-7392DB89D0EF

The NEWSEQUENTIALID can also be used to generate new GUID values; only in this case, each
new value generated on the computer will be greater than any value previously generated.

To demonstrate, first I’ll create a new temporary table and populate it with five rows:

CREATE TABLE #T5
(MyValue uniqueidentifier NOT NULL DEFAULT NEWSEQUENTIALID(),
InsertDT datetime2 NOT NULL DEFAULT SYSDATETIME())

GO

INSERT #T5 DEFAULT VALUES
INSERT #T5 DEFAULT VALUES
INSERT #T5 DEFAULT VALUES
INSERT #T5 DEFAULT VALUES
INSERT #T5 DEFAULT VALUES

Next, I’ll query the table ordering by the uniqueidentifier value:

SELECT MyValue, InsertDT
FROM #T5
ORDER BY MyValue

Notice that the ordering of the values also matches the order of date when they were inserted:

MyValue InsertDT
EE78AB60-E548-DC11-A195-00188B28C9C5 2007-08-12 10:04:53.0833262
EF78AB60-E548-DC11-A195-00188B28C9C5 2007-08-12 10:04:53.8033262
F078AB60-E548-DC11-A195-00188B28C9C5 2007-08-12 10:04:54.3603262
F178AB60-E548-DC11-A195-00188B28C9C5 2007-08-12 10:04:54.9103262
F278AB60-E548-DC11-A195-00188B28C9C5 2007-08-12 10:04:55.3903262

How It Works
As this recipe shows, NEWID and NEWSEQUENTIALID can be used within a SELECT statement or as a
DEFAULT column value in a CREATE or ALTER TABLE statement. Whereas NEWID provides random
values, NEWSEQUENTIALID allows for incremental uniqueidentifier values. This behavior reduces
page splitting on the key, as well as random page lookups.

■Caution Unlike with NEWID, the increment of values for NEWSEQUENTIALID can be derived based on existing
values. For example, if a GUID is exposed on a URL, and a person wants to see someone else’s data, she could
potentially increment her own value to view consecutive records.

Also note, if your SQL Server instance doesn’t have a network card (not a common configuration), unique
values are generated within the contact of the server scope—meaning that duplicate values could be generated
on other SQL instances.

CHAPTER 8 ■ SQL SERVER FUNCTIONS306

9802CH08.qxd 4/22/08 3:57 PM Page 306

Conditional Processing, Control-of-
Flow, and Cursors

In this chapter, I’ll present recipes that demonstrate SQL Server Transact-SQL for

• Conditional processing: You’ll learn how to use the CASE and IF...ELSE statements to evalu-
ate conditions and return values accordingly. I’ll review how to use the CASE function to
evaluate a single input expression and return a value, and also how to evaluate one or more
Boolean expressions. Finally, I’ll demonstrate returning a value when the expressions are
TRUE.

• Control-of-flow functionality: This recipe demonstrates how to control the execution of
Transact-SQL statements or batches based on commands such as RETURN, WHILE, WAITFOR,
and GOTO. RETURN is used to exit the current Transact-SQL batch immediately, and doesn’t
allow any code in the batch that executes after it. The WHILE command is used to repeat a
specific operation or batch of operations while a condition remains TRUE. The WAITFOR com-
mand is used to delay the execution of Transact-SQL code for a specified length of time or
until a specific time. GOTO is used to jump to a label in your Transact-SQL batch, passing over
the code that follows it.

• Creating and using cursors: Here, I’ll demonstrate Transact-SQL cursors, which allow you
to work with one row at a time. Based on my experiences in the field, I’m not a big fan of
cursors. Cursors can cause significant performance problems due to excessive singleton row
calls, memory consumption, and code bloat issues when not implemented correctly. How-
ever, there still may be rare occasions when the use of a cursor is a better choice than a
set-based solution.

An understanding of how and when (and when not) to use these techniques will allow you to
create flexible and intelligent Transact-SQL code.

Conditional Processing
Conditional processing allows you to return a value, based on the value of an expression or group of
expressions. The next few recipes will demonstrate SQL Server’s conditional processing commands,
including CASE and IF...ELSE.

The CASE function is used to return a value based on the value of an expression. It is most often
used to translate codes into descriptive values or evaluate multiple conditions in order to return a
value. (For example, “If the row is from the year 2008 and less than or equal to Current Quarter,
return the Total Sales amount.”)

307

C H A P T E R 9

9802CH09.qxd 4/24/08 4:08 PM Page 307

The IF...ELSE construct evaluates a Boolean expression, and if TRUE, executes a Transact-SQL
statement or batch. The uses for this command are many, allowing you to conditionally return
result sets, update data, or execute stored procedures based on one or more search conditions.

The next three recipes will demonstrate conditional processing in action.

Using CASE to Evaluate a Single Input Expression
The CASE function is used to return a value based on the value of an expression. It can also be used
to return a value based on the result of one or more Boolean expressions. The syntax for this usage
of CASE is as follows:

CASE input_expression
WHEN when_expression THEN result_expression
[...n]
[
ELSE else_result_expression
]

END

The arguments of this command are described in Table 9-1.

Table 9-1. Input Expression CASE Arguments

Argument Description

input_expression The input value to be evaluated in the CASE statement.

when_expression The expression to compare to the input_expression. For example, if the
input_expression is the Gender column, the when_expression could be 'F'
or 'M'. If there is a match between the input_expression and the
when_expression, the result_expression is returned.

result_expression The value to be returned if the input_expression is equal to the
when_expression.

This example demonstrates how to use CASE to evaluate one or more conditions, returning a
result based on those conditions that evaluate to TRUE:

USE AdventureWorks
GO

-- Determine Conference Rooms Based on Department
SELECT DepartmentID,

Name,
GroupName,
CASE GroupName

WHEN 'Research and Development' THEN 'Room A'
WHEN 'Sales and Marketing' THEN 'Room B'
WHEN 'Manufacturing' THEN 'Room C'
ELSE 'Room D'

END ConferenceRoom
FROM HumanResources.Department

This returns the following (abridged) results:

DepartmentID Name GroupName ConferenceRoom
1 Engineering Research and Development Room A
2 Tool Design Research and Development Room A

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS308

9802CH09.qxd 4/24/08 4:09 PM Page 308

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

3 Sales Sales and Marketing Room B
4 Marketing Sales and Marketing Room B
5 Purchasing Inventory Management Room D
...

How It Works
In this recipe’s example, CASE was used to assign a conference room based on the GroupName value.
The CASE statement followed the Name column in the SELECT clause:

SELECT DepartmentID,
Name,
GroupName,
CASE GroupName

The column to evaluate, GroupName, followed the CASE keyword. Next, a set of WHEN expressions
were evaluated. Each department was assigned a different room, based on the value of GroupName:

WHEN 'Research and Development' THEN 'Room A'
WHEN 'Sales and Marketing' THEN 'Room B'
WHEN 'Manufacturing' THEN 'Room C'

The optional ELSE clause is used as a catch-all, assigning a default result expression if none of
the WHEN expressions evaluated to TRUE:

ELSE 'Room D'

The END keyword is used to mark the end of the CASE statement, and in this recipe, it was fol-
lowed by the aliased column name:

END ConferenceRoom

Using CASE to Evaluate Boolean Expressions
CASE offers an alternative syntax that doesn’t use an initial input expression. Instead, one or more
Boolean expressions are evaluated, returning a result expression when TRUE. The syntax is as
follows:

CASE
WHEN Boolean_expression THEN result_expression
[...n]
[
ELSE else_result_expression
]

END

The additional argument in this syntax, compared to the previous recipe, is the boolean_
expression, which is the expression being evaluated. Instead of an input expression, each WHEN eval-
uates a Boolean expression, and if TRUE, returns a result expression. This flavor of CASE allows for
additional expressions above and beyond just evaluating the value of one input expression.

If none of the expressions evaluates to TRUE, the result_expression of the ELSE clause is
returned, or a NULL value is returned if no ELSE clause was specified. If a row match is made against
more than one Boolean expression, the first Boolean expression to evaluate to TRUE determines the
result expression. In this example, the department name is evaluated in addition to other expres-
sions, such as the department identifier and the room name starting with the letter “T”:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 309

9802CH09.qxd 4/24/08 4:09 PM Page 309

SELECT DepartmentID,
Name,
CASE

WHEN Name = 'Research and Development'
THEN 'Room A'

WHEN (Name = 'Sales and Marketing' OR
DepartmentID = 10)

THEN 'Room B'
WHEN Name LIKE 'T%'

THEN 'Room C'
ELSE 'Room D'

END ConferenceRoom
FROM HumanResources.Department

This returns the following (abridged) results:

DepartmentID Name ConferenceRoom
12 Document Control Room D
1 Engineering Room D
16 Executive Room D
14 Facilities and Maintenance Room D
10 Finance Room B
9 Human Resources Room D
...
6 Research and Development Room A
3 Sales Room D
15 Shipping and Receiving Room D
17 TestDept Room C
2 Tool Design Room C

How It Works
In this example, three Boolean expressions were used. If the department name was Research and
Development, Room A would be returned:

WHEN Name = 'Research and Development'
THEN 'Room A'

The second Boolean expression stated that if the department name was Sales and Marketing OR
the DepartmentID was equal to 10, then Room B would be returned:

WHEN (Name = 'Sales and Marketing' OR
DepartmentID = 10)

THEN 'Room B'

The third Boolean expression looks for any department name that starts with the letter “T”,
causing Room C to be returned if there is a match:

WHEN Name LIKE 'T%'
THEN 'Room C'

Using IF...ELSE
IF...ELSE evaluates a Boolean expression, and if TRUE, executes a Transact-SQL statement or batch.
The syntax is as follows:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS310

9802CH09.qxd 4/24/08 4:09 PM Page 310

IF Boolean_expression
{ sql_statement | statement_block }

[ELSE
{ sql_statement | statement_block }]

The ELSE clause is invoked if the Boolean expression evaluates to FALSE, executing the Transact-
SQL statement or batch that follows the ELSE.

This example recipe demonstrates executing a query conditionally based on the value of a local
variable:

DECLARE @QuerySelector int
SET @QuerySelector = 3

IF @QuerySelector = 1
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product
WHERE Color = 'Silver'
ORDER BY Name

END
ELSE
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product
WHERE Color = 'Black'
ORDER BY Name

END

This returns

ProductID Name Color
322 Chainring Black
863 Full-Finger Gloves, L Black
862 Full-Finger Gloves, M Black

How It Works
In this recipe, an integer local variable was created called @QuerySelector, which was set to the
value of 3:

DECLARE @QuerySelector int
SET @QuerySelector = 3

The IF statement began by evaluating whether @QuerySelector was equal to 1:

IF @QuerySelector = 1

If the evaluation determined that @QuerySelector was indeed 1, the next block of code (starting
with the BEGIN statement) would have been executed:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 311

9802CH09.qxd 4/24/08 4:09 PM Page 311

BEGIN
SELECT TOP 3

ProductID, Name, Color
FROM Production.Product
WHERE Color = 'Silver'
ORDER BY Name

END

BEGIN is optional for single statements following IF, but for multiple statements that must be
executed as a group, BEGIN and END must be used. As a best practice, it is easier to use BEGIN...END
for single statements too, so that you don’t forget to do so if/when the code is changed at a later
time.

The optional ELSE clause is used as a catch-all, executing a search on black-colored products if
the previous IF condition evaluated to FALSE:

ELSE
BEGIN

SELECT TOP 3
ProductID, Name, Color

FROM Production.Product
WHERE Color = 'Black'
ORDER BY Name

END

Because the @QuerySelector variable was 3, the second block of T-SQL code was executed,
returning products with Color = 'Black'.

Control-of-Flow
In the next few recipes, I’ll demonstrate how to use the following SQL Server control-of-flow func-
tions and commands.

• RETURN: This function is used to unconditionally exit the existing scope and return control to
the calling scope. RETURN can also be used to communicate integer values back to the caller.
This technique is often used to communicate business logic errors back to the calling proce-
dure, or to confirm that everything in the batch/query/scope executed without error.

• WHILE: You can use this to repeatedly execute the same batch of Transact-SQL code while a
Boolean condition evaluates to TRUE. WHILE is often used as an alternative to cursors (also
reviewed in this chapter), as you can use it to loop through a result set one row at a time, per-
forming actions for each row until the result set is empty. For example, you could populate a
temporary table with a list of the names of indexes that have a fragmentation level greater
than 50%. A WHILE statement can be invoked to keep looping for as long as there are rows in
this table. For each iteration, you would grab the TOP 1 index row and perform an index
rebuild on the first index name grabbed from the table. After that, you could delete that row
from the table, and then keep looping through the indexes until the table is empty, ending
the WHILE loop.

• GOTO: This function can be used to jump to a label in your Transact-SQL batch. It is often
used to jump to a special error handler when an error occurs, or to skip over code if a certain
business condition is or isn’t met. GOTO has a reputation, which is duly earned, for being used
in spaghetti code. This is because you have to jump between code blocks in order to fully
understand what the batch or procedure is actually doing. Although use of GOTO should be
minimal, it is still supported, and thus presented in a recipe here.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS312

9802CH09.qxd 4/24/08 4:09 PM Page 312

• WAITFOR: You can use this function to defer processing of consecutive Transact-SQL com-
mands that follow it—for either a fixed period of time or until a specific time. This is useful in
situations where activities are synchronous. For example, if your code cannot finish until an
external task has completed in a set number of seconds/minutes/hours, or if you cannot
perform an action until a specific time (non-business hours, for example).

Using RETURN
RETURN is used to exit the current Transact-SQL batch, query, or stored procedure immediately, and
doesn’t execute any code in the batch/query/procedure scope that follows after it. RETURN exits only
the code executing in the current scope; if you have called stored procedure B from stored proce-
dure A, and stored procedure B issues a RETURN, stored procedure B stops immediately, but stored
procedure A continues as though B had completed successfully.

This example demonstrates how to use RETURN to unconditionally stop a query:

IF NOT EXISTS
(SELECT ProductID FROM Production.Product WHERE Color = 'Pink')
BEGIN

RETURN
END

-- Won't execute
SELECT ProductID
FROM Production.Product
WHERE Color = 'Pink'

This returns

Command(s) completed successfully.

RETURN also allows for an optional integer expression:

RETURN [integer_expression]

This integer value can be used in a stored procedure to communicate issues to the calling
application. For example:

-- Create a temporary Stored Procedure that raises a logical error
CREATE PROCEDURE #usp_TempProc
AS
SELECT 1/0
RETURN @@ERROR
GO

Next, the stored procedure is executing, capturing the RETURN code in a local variable:

DECLARE @ErrorCode int

EXEC @ErrorCode = #usp_TempProc
PRINT @ErrorCode

This returns the divide-by-zero error, followed by the error number that was printed:

Msg 8134, Level 16, State 1, Procedure #usp_TempProc________00000B72,
Line 4
Divide by zero error encountered.
8134

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 313

9802CH09.qxd 4/24/08 4:09 PM Page 313

How It Works
In this recipe, an IF condition checked for the existence of a pink-colored product:

IF NOT EXISTS
(SELECT ProductID FROM Production.Product WHERE Color = 'Pink')

If it evaluated to TRUE (no pink products exist), the RETURN statement is executed:

BEGIN
RETURN

END

-- Won't execute
SELECT ProductID
FROM Production.Product
WHERE Color = 'Pink'

Since there are no pink products, RETURN is called, and the SELECT query following the IF state-
ment is never executed.

The second example demonstrated creating a temporary stored procedure containing
Transact-SQL that creates a divide-by-zero error. RETURN was used to capture the @@ERRORCODE value
of 8134, which was passed back to the caller and printed in the @ErrorCode local variable. If an inte-
ger value isn’t explicitly plugged into the RETURN call, a 0 value is sent by default.

Using WHILE
In this recipe, I demonstrate the WHILE command, which allows you to repeat a specific operation or
batch of operations while a condition remains TRUE.

The syntax for WHILE is as follows:

WHILE Boolean_expression
{ sql_statement | statement_block }
[BREAK]
{ sql_statement | statement_block }
[CONTINUE]
{ sql_statement | statement_block }

WHILE will keep the Transact-SQL statement or batch processing while the Boolean expression
remains TRUE. The BREAK keyword allows you to exit from the innermost WHILE loop, and the
CONTINUE keyword causes the loop to restart.

In this example, the system stored procedure sp_spaceused is used to return the table space
usage for each table in the @AWTables table variable:

-- Declare variables
DECLARE @AWTables TABLE (SchemaTable varchar(100))
DECLARE @TableName varchar(100)

-- Insert table names into the table variable
INSERT @AWTables
(SchemaTable)
SELECT TABLE_SCHEMA + '.' + TABLE_NAME
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'
ORDER BY TABLE_SCHEMA + '.' + TABLE_NAME

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS314

9802CH09.qxd 4/24/08 4:09 PM Page 314

-- Report on each table using sp_spaceused
WHILE (SELECT COUNT(*) FROM @AWTables)>0
BEGIN

SELECT TOP 1 @TableName = SchemaTable
FROM @AWTables
ORDER BY SchemaTable

EXEC sp_spaceused @TableName

DELETE @AWTables
WHERE SchemaTable = @TableName

END

This returns multiple result sets (one for each table). Three result sets are shown here:

name rows reserved data index_size unused
Shift 3 48 KB 8 KB 40 KB 0 KB

name rows reserved data index_size unused
Department 20 32 KB 8 KB 24 KB 0 KB

name rows reserved data index_size unused
EmployeeAddress 290 48 KB 16 KB 32 KB 0 KB

As described earlier in the summary of the WHILE command, you can also use the keywords
BREAK and CONTINUE in your code. BREAK is used to exit the WHILE loop, whereas CONTINUE is used to
resume a WHILE loop. For example:

WHILE (1=1)
BEGIN

PRINT 'Endless While, because 1 always equals 1'
IF 1=1
BEGIN

PRINT 'But we didn''t let the endless loop happen'
BREAK

END
ELSE
BEGIN

CONTINUE
END

END

This returns

Endless While, because 1 always equals 1
But we didn't let the endless loop happen

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 315

9802CH09.qxd 4/24/08 4:09 PM Page 315

How It Works
In this recipe, WHILE is used to loop through each table in the AdventureWorks database, reporting
information using the sp_spaceused system stored procedure.

This recipe began by declaring two variables:

DECLARE @AWTables TABLE (SchemaTable varchar(100))
DECLARE @TableName varchar(100)

The table variable @AWTables was used to hold all the table names, and the @TableName variable
to hold a single table name’s value.

The table variable was populated with all the table names in the AdventureWorks database
(populating a schema.table_name value):

INSERT @AWTables
(SchemaTable)
SELECT TABLE_SCHEMA + '.' + TABLE_NAME
FROM INFORMATION_SCHEMA.tables
WHERE TABLE_TYPE = 'BASE TABLE'
ORDER BY TABLE_SCHEMA + '.' + TABLE_NAME

The WHILE loop was then started, looping as long as there were rows in the @AWTables table
variable:

WHILE (SELECT COUNT(*) FROM @AWTables)>0
BEGIN

Within the WHILE, the @TableName local variable was populated with the TOP 1 table name from
the @AWTables table variable:

SELECT TOP 1 @TableName = SchemaTable
FROM @AWTables
ORDER BY SchemaTable

Using the @TableName variable, EXEC sp_spaceused was executed:

EXEC sp_spaceused @TableName

Lastly, the row for the reported table was deleted from the table variable:

DELETE @AWTables
WHERE SchemaTable = @TableName

END

WHILE will continue to execute sp_spaceused until all rows are deleted from the @AWTables table
variable.

In the second example of the recipe, BREAK was used to exit a loop if a certain condition is met
(or threshold tripped). Use BREAK as an extra precaution against endless loops.

Using GOTO
This recipe demonstrates GOTO, which is used to jump to a label in your Transact-SQL batch, passing
over the code that follows it. The syntax is

GOTO label
label definition: code

In this example, I check to see whether a department name is already in use by an existing
department. If so, the INSERT is bypassed using GOTO. If not, the INSERT is performed:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS316

9802CH09.qxd 4/24/08 4:09 PM Page 316

DECLARE @Name nvarchar(50) = 'Engineering'
DECLARE @GroupName nvarchar(50) = 'Research and Development'
DECLARE @Exists bit = 0

IF EXISTS (SELECT Name
FROM HumanResources.Department
WHERE Name = @Name)

BEGIN
SET @Exists = 1
GOTO SkipInsert

END

INSERT HumanResources.Department
(Name, GroupName)
VALUES(@Name , @GroupName)

SkipInsert:
IF @Exists = 1
BEGIN

PRINT @Name + ' already exists in HumanResources.Department'
END
ELSE
BEGIN

PRINT 'Row added'
END

This returns

Engineering already exists in HumanResources.Department

How It Works
In this recipe’s example, two local variables were declared and set to values in preparation for being
inserted into the HumanResources.Department table:

DECLARE @Name nvarchar(50) = 'Engineering'
DECLARE @GroupName nvarchar(50) = 'Research and Development'

Another variable was also defined to hold a bit value. This value acted as a flag to mark whether
a row already existed in the table (used later on in the recipe):

DECLARE @Exists bit = 0

Next, an IF statement was used to check for the existence of any row with the same department
name as the local variable. If such a row exists, the bit variable is set to 1 and the GOTO command is
invoked. GOTO references the label name that you want to skip to, in this case called SkipInsert:

IF EXISTS (SELECT Name
FROM HumanResources.Department
WHERE Name = @Name)

BEGIN
SET @Exists = 1
GOTO SkipInsert

END

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 317

9802CH09.qxd 4/24/08 4:09 PM Page 317

An INSERT follows the IF statement; however, in this example, it is skipped over because the
department Engineering does already exist in the HumanResources.Department table:

INSERT HumanResources.Department
(Name, GroupName)
VALUES(@Name , @GroupName)

The label to be skipped to is then defined, suffixed with a colon:

SkipInsert:

Following the label is another IF statement. If the bit flag was enabled, a PRINT statement desig-
nates that the row already exists:

IF @Exists = 1
BEGIN

PRINT @Name + ' already exists in HumanResources.Department'
END

Otherwise, a message is printed that the row was successfully added:

ELSE
BEGIN

PRINT 'Row added'
END

As a best practice, when given a choice between using GOTO and other control-of-flow methods,
you should choose something other than GOTO. GOTO can decrease the clarity of the code, as you’ll
have to jump around the batch or stored procedure code in order to understand the original inten-
tion of the query author.

Using WAITFOR
In this recipe, I demonstrate the WAITFOR command, which delays the execution of Transact-SQL
code for a specified length of time.

The syntax for WAITFOR is as follows:

WAITFOR
{

DELAY 'time_to_pass'
| TIME 'time_to_execute'
| (receive_statement) [, TIMEOUT timeout]

}

The time_to_pass parameter for WAITFOR DELAY is the number of seconds, minutes, and hours
to wait before executing the command. The WAITFOR TIME time_to_execute parameter is used to
designate an actual time (hour, minute, second) to execute the batch. The receive_statement and
TIMEOUT options are used in conjunction with Service Broker (see Chapter 20).

In this first example, a 10-second delay is created by WAITFOR before a SELECT query is executed:

WAITFOR DELAY '00:00:10'
BEGIN

SELECT TransactionID, Quantity
FROM Production.TransactionHistory

END

In this second example, a query is not executed until a specific time, in this case 7:01 p.m.:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS318

9802CH09.qxd 4/24/08 4:09 PM Page 318

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

WAITFOR TIME '19:01:00'
BEGIN

SELECT COUNT(*)
FROM Production.TransactionHistory

END

How It Works
In this recipe, two different versions of WAITFOR were used to delay processing of a Transact-SQL
batch.

The first query waited 10 seconds before executing the batch:

WAITFOR DELAY '00:00:10'

Waiting for a certain amount of time is useful when you know another operation must execute
asynchronously while your current batch process must wait. For example, if you have kicked off an
asynchronous SQL Server Agent job using the sp_start_job system stored procedure, control is
returned immediately to the batch after the job starts to execute. If you know that the job you just
kicked off takes at least 5 minutes to run, and your consecutive tasks are dependent on the comple-
tion of the job, WAITFOR can be used to delay processing until the job is complete.

The second query waited until the next instance of the specified time:

WAITFOR TIME '19:01:00'

WAITFOR TIME is useful for when certain operations must occur at specific time periods in the
day. For example, say you have a stored procedure which performs data warehouse aggregations
from transaction processing tables. The aggregations may take a couple of hours to complete, but
you don’t want to load the finished data from the staging to the production tables until after busi-
ness hours. Using WAITFOR TIME in the procedure, you can stop the final load of the tables until
non-business hours.

Cursors
Query authors with a programming background are often more comfortable using Transact-SQL
cursors than the set-based alternatives for retrieving or updating rows. For example, a programmer
may decide he wishes to loop through one row at a time, updating rows in a singleton fashion,
instead of updating an entire set of rows in a single operation. Unfortunately, cursors can eat up a
SQL Server instance’s memory, reduce concurrency, decrease network bandwidth, lock resources,
and can often require an excessive amount of code compared to a set-based alternative. Transact-
SQL is a set-based language, meaning that it excels at manipulating and retrieving sets of rows,
rather than performing single row-by-row processing.

Nevertheless, your application or business requirements may require the single, row-by-row
processing that Transact-SQL cursors can provide. In general, you should only consider using
cursors after exhausting other methods for doing row-level processing, such as WHILE loops, sub-
queries, temporary tables, or table variables, to name a few.

The general life cycle of a Transact-SQL cursor is as follows:

• A cursor is defined via a SQL statement that returns a valid result set.

• The cursor is then populated (opened).

• Once opened, rows can be fetched from the cursor, one at a time or in a block. The rows can
also be fetched moving forward or backward, depending on the original cursor definition.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 319

9802CH09.qxd 4/24/08 4:09 PM Page 319

• Depending on the cursor type, the data can be modified while scrolling through the rows, or
read and used with other operations.

• Finally, after the cursor has been used, it should then be explicitly closed and de-allocated
from memory.

The DECLARE CURSOR command is used to create a cursor, and has many options that impact the
flexibility and locking behavior of the cursor. The basic syntax is as follows:

DECLARE cursor_name CURSOR
[LOCAL | GLOBAL]
[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement[FOR UPDATE [OF column_name [,...n]]]

There are several options that can impact whether or not the cursor data can be updated, and
whether or not you can move backward and forward within the rows populated within the cursor.
Table 9-2 briefly describes the available options.

Table 9-2. Cursor Options

Option Description

LOCAL or GLOBAL If LOCAL is selected, the cursor is only available within the scope
of the SQL batch, trigger, or stored procedure. If GLOBAL is
selected, the cursor is available to the connection itself (for
example, a connection that executes a stored procedure that
creates a cursor can use the cursor that was created in the stored
procedure execution).

FORWARD_ONLY or SCROLL The FORWARD_ONLY option only allows you to move forward from
the first row of the cursor and onward. SCROLL, on the other hand,
allows you to move backward and forward through the cursor
result set using all fetch options (FIRST, LAST, NEXT, PRIOR,
ABSOLUTE, and RELATIVE). If performance is a consideration, stick
to using FORWARD_ONLY—as this cursor type incurs less overhead
than the SCROLL.

STATIC or KEYSET or DYNAMIC When STATIC is specified, a snapshot of the cursor data is held
or FAST_FORWARD in the DYNAMIC or FAST_FORWARD tempdb database, and any changes

made at the original data source aren’t reflected in the cursor
data. KEYSET allows you to see changes to rows made outside of
the cursor, although you can’t see inserts that would have met
the cursor’s SELECT query or deletes after the cursor has been
opened. DYNAMIC allows you to see updates, inserts, and deletes
in the underlying data source while the cursor is open.
FAST_FORWARD defines two behaviors: setting the cursor to read-
only and forward-only status (this is usually the best-performing
cursor option, but the least flexible). When faced with a
performance decision, and your desired functionality is not
complicated, use this option.

READ_ONLY or SCROLL_LOCKS The READ_ONLY option means that updates cannot be made
or OPTIMISTIC through the cursor. If performance and concurrency are

considerations, use this option. SCROLL_LOCKS places locks on
rows so that updates or deletes are guaranteed to be made after
the cursor is closed. The OPTIMISTIC option places no locks on
updated or deleted rows, and will only maintain modifications if
an update has not occurred outside of the cursor since the last
data read.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS320

9802CH09.qxd 4/24/08 4:09 PM Page 320

Option Description

TYPE_WARNINGS When TYPE_WARNINGS is specified, a warning will be sent to the
client if the cursor is implicitly converted from one type to a
different type.

The select_statement argument is the query used to define the data within the cursor. Avoid
using a query that has more columns and rows than will actually be used, because cursors, while
open, are kept in memory. The UPDATE [OF column_name [,...n]] is used to specify those columns
that are allowed to be updated by the cursor.

Once a cursor is declared using DECLARE CURSOR, the next step is to open it up and populate it
using the OPEN command. The syntax is as follows:

OPEN { [GLOBAL] cursor_name }

A cursor can be opened locally (the default) or globally. Once opened, you can begin using the
FETCH command to navigate through rows in the cursor. The syntax for FETCH NEXT is as follows:

FETCH [[NEXT | PRIOR | FIRST | LAST
| ABSOLUTE { n | @nvar }
| RELATIVE { n | @nvar }]

FROM]
{ [GLOBAL] cursor_name }
[INTO @variable_name [,...n]]

FETCH provides several options for navigating through rows in the cursor, by populating the
results into local variables for each column in the cursor definition (this is demonstrated in the next
recipe).

The @@FETCH_STATUS function is used after a FETCH operation to determine the FETCH status,
returning 0 if successful, -1 for unsuccessful, or -2 for missing.

Once you are finished with the opened cursor, execute the CLOSE command to release the result
set from memory. The syntax is as follows:

CLOSE { [GLOBAL] cursor_name }

At this point, you can still reopen the cursor if you want to. If you are finished, however, you
should remove internal system references to the cursor by using the DEALLOCATE command. This
frees up any resources used by the cursor. For example, if scroll locks are held on the cursor refer-
enced in the table, these locks are then released after a DEALLOCATE. The syntax is as follows:

DEALLOCATE { [GLOBAL] cursor_name }

This next recipe will demonstrate each of these commands in action.

Creating and Using Transact-SQL Cursors
Although I recommend avoiding cursors whenever possible, using cursors for ad hoc, periodic
database administration information gathering, as I demonstrate in this next example, is usually
perfectly justified.

This recipe demonstrates a cursor that loops through each session ID currently active on the
SQL Server instance, and executes DBCC OUTPUTBUFFER to see the ASCII and hexadecimal output
buffer of each session (if it is executing anything at that moment):

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 321

9802CH09.qxd 4/24/08 4:09 PM Page 321

-- I won't show rowcounts in the results
SET NOCOUNT ON

DECLARE @session_id smallint

-- Declare the cursor
DECLARE session_cursor CURSOR
FORWARD_ONLY READ_ONLY
FOR SELECT session_id

FROM sys.dm_exec_requests
WHERE status IN ('runnable', 'sleeping', 'running')

-- Open the cursor
OPEN session_cursor

-- Retrieve one row at a time from the cursor
FETCH NEXT
FROM session_cursor
INTO @session_id

-- Keep retrieving rows while the cursor has them
WHILE @@FETCH_STATUS = 0
BEGIN

PRINT 'Spid #: ' + STR(@session_id)
EXEC ('DBCC OUTPUTBUFFER (' + @session_id + ')')

-- Grab the next row
FETCH NEXT
FROM session_cursor
INTO @session_id

END

-- Close the cursor
CLOSE session_cursor

-- Deallocate the cursor
DEALLOCATE session_cursor

This returns the output buffer for any active requests on the SQL Server instance.

How It Works
The recipe started off by setting SET NOCOUNT ON, which suppresses the SQL Server row count mes-
sages in order to provide cleaner output:

-- Don't show rowcounts in the results
SET NOCOUNT ON

Next, a local variable was defined to hold the individual value of the server process ID to be
fetched from the cursor:

DECLARE @session_id smallint

The cursor was then defined using DECLARE CURSOR. The cursor contained the session_id col-
umn from the sys.dm_exec_requests Dynamic Management View:

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS322

9802CH09.qxd 4/24/08 4:09 PM Page 322

-- Declare the cursor
DECLARE session_cursor CURSOR
FORWARD_ONLY READ_ONLY
FOR SELECT session_id

FROM sys.dm_exec_requests
WHERE status IN ('runnable', 'sleeping', 'running')

After the cursor was defined, it was then opened (populated):

OPEN session_cursor

Once opened, the first row value was retrieved into the @session_id local variable using
FETCH NEXT:

FETCH NEXT
FROM session_cursor
INTO @session_id

FETCH NEXT was used to retrieve the first row. After the first fetch, a WHILE condition was defined
that told SQL Server to continue the loop of statements until the cursor’s fetch status was no longer
successful (meaning no more rows could be retrieved):

WHILE @@FETCH_STATUS = 0
BEGIN

@@FETCH_STATUS was used to return the status of the cursor FETCH statement last issued against
the open cursor, returning 0 if the last FETCH was successful, -1 for unsuccessful, or -2 for missing.

Within the WHILE statement, the @session_id variable is printed and used with EXEC command
to create a dynamic query:

PRINT 'Spid #: ' + STR(@session_id)
EXEC ('DBCC OUTPUTBUFFER (' + @session_id + ')')

The dynamic query executes DBCC OUTPUTBUFFER for each individual session_id. After this,
another FETCH NEXT was run to populate the next @SPID value:

-- Grab the next row
FETCH NEXT
FROM session_cursor
INTO @session_id

END

After all session_ids are retrieved, the WHILE loop exits (because @@FETCH_STATUS will return -1).
The cursor was then closed using the CLOSE command:

-- Close the cursor
CLOSE session_cursor

At this point, the cursor can still be opened with the OPEN command; however, to completely
remove the cursor from memory, DEALLOCATE was used:

-- Deallocate the cursor
DEALLOCATE session_cursor

Although useful, cursors should be handled with care, as they can consume excessive resources
and often don’t perform as well as set-based equivalents. Be sure to explore all set-based alterna-
tives before considering cursors in your Transact-SQL development.

CHAPTER 9 ■ CONDITIONAL PROCESSING, CONTROL-OF-FLOW, AND CURSORS 323

9802CH09.qxd 4/24/08 4:09 PM Page 323

9802CH09.qxd 4/24/08 4:09 PM Page 324

Stored Procedures

A stored procedure groups one or more Transact-SQL statements into a logical unit, stored as an
object in a SQL Server database. After the stored procedure is created, its T-SQL definition is acces-
sible from the sys.sql_module catalog view.

When a stored procedure is executed for the first time, SQL Server creates an execution plan
and stores it in the plan memory cache. SQL Server can then reuse the plan on subsequent execu-
tions of this stored procedure. Plan reuse allows stored procedures to provide fast and reliable
performance compared to non-compiled and unprepared ad hoc query equivalents.

■Note It is also possible to create a stored procedure that utilizes a .NET Common Language Runtime (CLR)
assembly. This is discussed in Chapter 13.

This chapter contains recipes for creating and manipulating stored procedures. I’ll begin the
chapter with a basic overview of when stored procedures can be used and what benefits they offer.

Stored Procedure Basics
Over the years, I have developed a strong bias toward the use of stored procedures whenever possi-
ble. There are many good reasons to use stored procedures, and in my experience, very few bad
ones. Usually, reasons against using stored procedures come from application developers who are
more comfortable using ad hoc SQL within the application tier, and may not be trained in the use
of stored procedures. In companies with a separate application and database administration staff,
stored procedures also imply a loss of control over the Transact-SQL code from the application
developer to the database administration staff. Assuming your database administration team is
competent and willing to assist with a move to stored procedures in a timely fashion, the benefits
of using them should far outweigh any loss of control.

Some of the benefits of using stored procedures:

• Stored procedures help centralize your Transact-SQL code in the data tier. Web sites or
applications that embed ad hoc SQL are notoriously difficult to modify in a production envi-
ronment. When ad hoc SQL is embedded in an application, you may spend too much time
trying to find and debug the embedded SQL. Once you’ve found the bug, chances are you’ll
need to recompile the program executable, causing unnecessary application outages or
application distribution nightmares. If you centralize your Transact-SQL code in stored
procedures, you’ll have a centralized place to look for SQL code or SQL batches. If you docu-
ment and standardize the code properly, your stored procedures will improve overall
supportability of the application.

325

C H A P T E R 1 0

9802CH10.qxd 4/24/08 4:10 PM Page 325

• Stored procedures can help reduce network traffic for larger ad hoc queries. Programming
your application call to execute a stored procedure, rather than push across a 500-line SQL
call, can have a positive impact on your network and application performance, particularly
if the call is repeated thousands of times a minute.

• Stored procedures encourage code reusability. For example, if your web application uses a
drop-down menu containing a list of cities, and this drop-down is used in multiple web
pages, you can call the stored procedure from each web page rather than embed the same
SQL in multiple places.

• Stored procedures allow you to obscure the method of data retrieval. If you change the
underlying tables from which the source data is pulled, stored procedures (similar to views)
can obscure this change from the application. This allows you to make changes without forc-
ing a code change at the application tier. You can swap in new tables for the old, and so long
as the same columns and data types are sent back to the application, the application is none
the wiser.

• Unlike views, stored procedures can take advantage of control-of-flow techniques, tempo-
rary tables, table variables, and much more.

• Stored procedures have a stabilizing influence on query response time. If you’ve worked
extensively with ad hoc queries, you may have noticed that sometimes the amount of time it
takes to return results from a query can vary wildly. This may be due to external factors, such
as concurrent activity against the table (locking) or resource issues (memory, CPU). On the
other hand, an ad hoc query may be performing erratically because SQL Server periodically
chooses less-efficient execution plans. With stored procedures, you gain more reliable query-
plan caching, and hence reuse. Notice that I use the word “reliable” here, rather than “faster.”
Ad hoc queries can sometimes perform better than their stored procedure counterparts, but
it all depends on the circumstances in which the execution plan was cached (which parame-
ters were “sniffed”) and how you have tested, tuned, and then implemented the code within.

If none of these previous reasons convinced you that stored procedures are largely beneficial,
let’s review the security benefits. Direct table access (or worse, sysadmin access) to the SQL Server
instance and its database poses a security risk. Inline ad hoc code is more vulnerable to SQL
injection attacks. A SQL injection occurs when harmful Transact-SQL is inserted into an existing
application’s Transact-SQL code prior to being sent to the SQL Server instance. Aside from SQL
injection attacks, if someone gets ahold of the inline code, he’ll be able to glean information about
the underlying schema of your database and direct his hacking attempts accordingly. Keeping all
SQL within stored procedures keeps only the stored procedure reference in the application—
instead of each individual column and table name.

Another security benefit to stored procedures is that you can grant database users and/or data-
base roles access to them specifically instead of having to grant direct access to tables. The stored
procedure can act as a control layer, allowing you to choose which columns and rows can and can-
not be modified by the stored procedure (and also by the caller).

Creating a Basic Stored Procedure
Stored procedures can be used for many different activities including simple SELECTs, INSERTs,
UPDATEs, DELETEs, and much more. Many of the features or statements reviewed in the chapters of
this book can be used within the body of a stored procedure. Transact-SQL activities can be mixed
within a single procedure, or you can create stored procedures in a modular fashion, creating
multiple stored procedures for each task or set of tasks.

The basic syntax for non-parameterized stored procedures is as follows:

CHAPTER 10 ■ STORED PROCEDURES326

9802CH10.qxd 4/24/08 4:10 PM Page 326

CREATE PROCEDURE [schema_name.] procedure_name
AS { <sql_statement> [...n] }

The first arguments of the command are the schema and new procedure name. The
sql_statement argument is the Transact-SQL body of your stored procedure. This argument con-
tains one or more tasks that you wish to accomplish. In this example, I demonstrate how to create
a basic stored procedure that queries data from the AdventureWorks database:

USE AdventureWorks
GO

CREATE PROCEDURE dbo.usp_SEL_ShoppingCartDisplay
AS

SELECT sc.ShoppingCartID,
sc.ShoppingCartItemID,
sc.Quantity,
sc.ProductID,
p.Name ProductName,
p.ListPrice

FROM Sales.ShoppingCartItem sc
INNER JOIN Production.Product p ON

sc.ProductID = p.ProductID

GO

Next, the new stored procedure is executed using the EXEC command:

EXEC dbo.usp_SEL_ShoppingCartDisplay

This returns the following results:

ShoppingCartID ShoppingCartItemID Quantity ProductID ProductName ListPrice

14951 2 3 862 Full-Finger Gloves, M 37.99

20621 4 4 881 Short-Sleeve Classic Jersey, S 53.99

20621 5 7 874 Racing Socks, M 8.99

How It Works
In this recipe, I demonstrated creating a stored procedure that queried the contents of two tables,
returning a result set. This stored procedure works like a view, only it will now have a cached query
plan when executed for the first time, which will also make its runtime consistent in consecutive
executions.

The example started off by creating a stored procedure called usp_SEL_ShoppingCartDisplay:

CREATE PROCEDURE dbo.usp_SEL_ShoppingCartDisplay
AS

The Transact-SQL query definition then followed the AS keyword:

SELECT sc.ShoppingCartID,
sc.ShoppingCartItemID,
sc.Quantity,
sc.ProductID,
p.Name ProductName,
p.ListPrice

CHAPTER 10 ■ STORED PROCEDURES 327

9802CH10.qxd 4/24/08 4:10 PM Page 327

FROM Sales.ShoppingCartItem sc
INNER JOIN Production.Product p ON

sc.ProductID = p.ProductID

GO

The GO keyword was used to mark the end of the stored procedure.
After the procedure in this recipe was created, it was then executed using the EXEC command:

EXEC dbo.usp_SEL_ShoppingCartDisplay

During the stored procedure creation process, SQL Server checks that the SQL syntax is correct,
but it doesn’t check for the existence of referenced tables. This means that you can reference a table
name incorrectly, and the name will not cause an error until runtime. This is called deferred name
resolution, and it allows you to create or reference the objects in the database that don’t exist yet.
This also means that you can drop, alter, or modify the objects referenced in the stored procedure
without invalidating it.

Creating a Parameterized Stored Procedure
In the previous recipe, I demonstrated a non-parameterized stored procedure, meaning that no
external parameters were passed to it. The ability to pass parameters to them is part of why stored
procedures are one of the most important database objects in SQL Server. Using parameters, you
can pass information into the body of the procedure in order to return customized search informa-
tion, or use parameters to influence or execute INSERT, UPDATE, or DELETE statements against tables.
A procedure can have up to 2,100 parameters (although it’s unlikely you’ll want to use nearly that
many).

The syntax for creating a stored procedure is as follows:

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
[{ @parameter [type_schema_name.] data_type }

[VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]

[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { <sql_statement> [;][...n] | <method_specifier> }

A parameter is prefixed by the @ sign, followed by the data type and optional default value.
Parameters come in two flavors: input and output. Where input parameters are used to pass infor-
mation into the stored procedure for processing, OUTPUT parameters are used to return information
back to the stored procedure caller.

In this example, a new stored procedure is created that can accept three parameters. Based on
the values of these parameters, either an existing row in a table will be updated or a new row will be
inserted:

CREATE PROCEDURE dbo.usp_UPD_ShoppingCartItem
(@ShoppingCartID nvarchar(50),
@Quantity int = 1, -- defaulted to quantity of 1
@ProductID int)
AS
-- If the same ShoppingCartID and ProductID is sent
-- in the parameters, update the new quantity

IF EXISTS(SELECT *
FROM Sales.ShoppingCartItem
WHERE ShoppingCartID = @ShoppingCartID AND

CHAPTER 10 ■ STORED PROCEDURES328

9802CH10.qxd 4/24/08 4:10 PM Page 328

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ProductID = @ProductID)
BEGIN

UPDATE Sales.ShoppingCartItem
SET Quantity = @Quantity
WHERE ShoppingCartID = @ShoppingCartID AND

ProductID = @ProductID

PRINT 'UPDATE performed. '
END
ELSE
BEGIN

-- Otherwise insert a new row
INSERT Sales.ShoppingCartItem
(ShoppingCartID, ProductID, Quantity)
VALUES (@ShoppingCartID, @ProductID, @Quantity)

PRINT 'INSERT performed. '
END

GO

Next, the new stored procedure is called, passing three values for each expected parameter:

EXEC usp_UPD_ShoppingCartItem '1255', 2, 316

This returns

(1 row(s) affected)
INSERT performed.

How It Works
This recipe demonstrated the creation of a stored procedure that could accept parameters. In the
example, three parameters were defined for the procedure:

CREATE PROCEDURE usp_UPD_ShoppingCartItem
(@ShoppingCartID nvarchar(50),
@Quantity int = 1, -- defaulted to quantity of 1
@ProductID int)
AS

The first parameter and third parameter were required parameters, as neither designated a
default value. The second parameter was optional, however, because it defined a default @Quantity
value of 1.

The body of the stored procedure followed the AS keyword, starting with the first block of code,
which checks for the existence of rows in an IF statement:

IF EXISTS(SELECT *
FROM Sales.ShoppingCartItem
WHERE ShoppingCartID = @ShoppingCartID AND

ProductID = @ProductID)
BEGIN

If the row already existed for that specific ProductID and ShoppingCartID, its quantity would be
updated based on the new @Quantity value:

CHAPTER 10 ■ STORED PROCEDURES 329

9802CH10.qxd 4/24/08 4:10 PM Page 329

UPDATE Sales.ShoppingCartItem
SET Quantity = @Quantity
WHERE ShoppingCartID = @ShoppingCartID AND

ProductID = @ProductID

PRINT 'UPDATE performed. '
END

Otherwise, if a row didn’t already exist, a new INSERT would be performed:

ELSE
BEGIN

-- Otherwise insert a new row
INSERT Sales.ShoppingCartItem
(ShoppingCartID, ProductID, Quantity)
VALUES (@ShoppingCartID, @ProductID, @Quantity)

PRINT 'INSERT performed. '

END

GO

After the procedure was created, it was then executed along with the required parameter
values:

EXEC usp_UPD_ShoppingCartItem '1255', 2, 316

In this case, since the specific ShoppingCartID and ProductID combination didn’t exist in the
table yet, a new row was inserted into Sales.ShoppingCartItem.

Using OUTPUT Parameters
In the previous recipe, you saw that there was syntax for including OUTPUT parameters in your stored
procedure definition. OUTPUT parameters allow you to pass information back to the caller of the
stored procedure, whether it’s another stored procedure making the call or an ad hoc call made by
an application.

In this example, I create a stored procedure that returns the list of departments for a specific
group. In addition to returning the list of departments, an OUTPUT parameter is defined to store the
number of departments returned for the specific group:

CREATE PROCEDURE dbo.usp_SEL_Department
@GroupName nvarchar(50),
@DeptCount int OUTPUT

AS

SELECT Name
FROM HumanResources.Department
WHERE GroupName = @GroupName
ORDER BY Name

SELECT @DeptCount = @@ROWCOUNT

GO

Next, the new stored procedure is called. A local variable is defined to hold the OUTPUT
parameter value:

CHAPTER 10 ■ STORED PROCEDURES330

9802CH10.qxd 4/24/08 4:10 PM Page 330

DECLARE @DeptCount int

EXEC dbo.usp_SEL_Department 'Executive General and Administration',
@DeptCount OUTPUT

PRINT @DeptCount

This returns the following result set:

Name
Executive
Facilities and Maintenance
Finance
Human Resources
Information Services

In addition to the results, the result row count is also returned via the PRINT command:

5

How It Works
I started off this recipe by creating a stored procedure with a defined parameter called @DeptCount,
followed by the data type and OUTPUT keyword:

@DeptCount int OUTPUT

Within the definition of the stored procedure, the parameter was then assigned to the row
count value, based on the previous SELECT statement that was executed before it.

SELECT @DeptCount = @@ROWCOUNT

To use the OUTPUT value in Transact-SQL code, a local variable was declared and used within the
EXEC statement:

DECLARE @DeptCount int

Notice that the OUTPUT keyword followed the second parameter, in order to designate that it was
receiving and not sending an actual value:

EXEC dbo.usp_SEL_Department 'Executive General and Administration',
@DeptCount OUTPUT

You can use OUTPUT parameters as an alternative or additional method for returning informa-
tion back to the caller of the stored procedure. Capturing the OUTPUT results allows you to then pass
the variable’s value into another stored procedure or process. If you’re using OUTPUT just to commu-
nicate information back to the calling application, it’s usually just as easy to create a second result
set containing the information you need. This is because .NET applications, for example, can easily
consume the multiple result sets that are returned from a stored procedure. The technique of using
OUTPUT parameters versus using an additional result set to return information is often just a matter
of preference.

CHAPTER 10 ■ STORED PROCEDURES 331

9802CH10.qxd 4/24/08 4:10 PM Page 331

Modifying a Stored Procedure
The ALTER PROCEDURE command is used to modify the definition of a stored procedure, allowing you
to change everything but the original stored procedure name. The syntax is almost identical to
CREATE PROCEDURE.

In this recipe, I’ll demonstrate modifying the existing stored procedure created in the previous
recipe, in order to return the number of departments returned by the query as a separate result set,
instead of using an OUTPUT parameter:

ALTER PROCEDURE dbo.usp_SEL_Department
@GroupName nvarchar(50)

AS

SELECT Name
FROM HumanResources.Department
WHERE GroupName = @GroupName
ORDER BY Name

SELECT @@ROWCOUNT DepartmentCount
GO

Next, the modified stored procedure is executed:

EXEC dbo.usp_SEL_Department 'Research and Development'

This returns two result sets:

Name
Engineering
Research and Development
Tool Design

and

DepartmentCount
3

How It Works
In this recipe, ALTER PROCEDURE was used to modify the definition of an existing stored procedure—
both removing a parameter and adding a second result set. Using this command, you can change
everything but the procedure name itself. Using ALTER PROCEDURE also preserves any existing per-
missions on the stored procedure without having to explicitly redefine them after the change.

Dropping Stored Procedures
You can drop a stored procedure from the database using the DROP PROCEDURE command.

The syntax for dropping a stored procedure is

DROP PROCEDURE { [schema_name.] procedure } [,...n]

This command takes one argument; the name of the procedure or procedures to drop. For
example:

DROP PROCEDURE dbo.usp_SEL_Department

CHAPTER 10 ■ STORED PROCEDURES332

9802CH10.qxd 4/24/08 4:10 PM Page 332

How It Works
Once a stored procedure is dropped, its definition information is removed from the database’s sys-
tem tables. Any cached query execution plans are also removed for that stored procedure. Code
references to the stored procedure by other stored procedures or triggers will fail upon execution
once the stored procedure has been dropped.

Executing Stored Procedures Automatically at
SQL Server Startup
You can designate a stored procedure to be executed whenever the SQL Server service is started.
You may wish to do this to perform any cleanup tasks your SQL Server instance requires (for exam-
ple, documenting when the service started or clearing out work tables).

This automatic execution of a stored procedure is achieved using the sp_procoption system
stored procedure. The command looks like it takes several different options, but in SQL Server, it
really only performs a single task, which is setting a stored procedure to execute automatically
when the SQL Server service restarts.

In this example, a stored procedure is set to execute automatically whenever SQL Server is
started. First, the database context is set to the master database (which is the only place that auto-
executable stored procedures can be placed):

USE master
GO

Next, for the example, a startup logging table is created:

CREATE TABLE dbo.SQLStartupLog
(SQLStartupLogID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
StartupDateTime datetime NOT NULL)
GO

Now, a new stored procedure is created to insert a value into the new table (so you can see
whenever SQL Server was restarted using the table):

CREATE PROCEDURE dbo.usp_INS_TrackSQLStartups
AS

INSERT dbo.SQLStartupLog
(StartupDateTime)
VALUES (GETDATE())

GO

Next, the sp_procoption stored procedure is used to set this new procedure to execute when
the SQL Server service restarts:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',
@OptionValue = 'true'

Once the service restarts, a new row is inserted into the table. To disable the stored procedure
again, the following command would need to be executed:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',
@OptionValue = 'false'

CHAPTER 10 ■ STORED PROCEDURES 333

9802CH10.qxd 4/24/08 4:10 PM Page 333

How It Works
In this recipe, a new table was created in the master database that tracks SQL Server startups. A
stored procedure was also created in the master database to insert a row into the table with the cur-
rent date and time of execution.

■Caution I’m not espousing the creation of objects in the system databases, as it isn’t generally a good idea.
However, if you must use auto-execution functionality as discussed in this recipe, you have no choice but to do it
(for example, if your IT department requires a log of SQL Server service start times for tracking purposes).

Next, sp_procoption was called to set the startup value of the stored procedure:

EXEC sp_procoption @ProcName = 'usp_INS_TrackSQLStartups',
@OptionName = 'startup',
@OptionValue = 'true'

After sp_procoption was used, whenever the SQL Server service is restarted, a new row will be
inserted into the dbo.SQLStartupLog table. The stored procedure must be created in the master data-
base; otherwise you’ll see the following error message when trying to use sp_procoption:

Msg 15398, Level 11, State 1, Procedure sp_procoption, Line 73
Only objects in the master database owned by dbo
can have the startup setting changed.

Reporting Stored Procedure Metadata
You can use the sys.sql_modules catalog view to explore stored procedure metadata (useful for
other object types as well), as I demonstrate in this recipe:

SELECT definition,
execute_as_principal_id,
is_recompiled,
uses_ansi_nulls,
uses_quoted_identifier

FROM sys.sql_modules m
INNER JOIN sys.objects o ON

m.object_id = o.object_id
WHERE o.type = 'P'

How It Works
The sys.sql_modules view is used to view the definition and settings of stored procedures, triggers,
views, and other SQL-defined objects. In this recipe, sys.sql_modules was joined to sys.objects so
that only sys.objects rows of type P (stored procedures) will be returned.

The query returns the stored procedure definition (if not encrypted), the EXECUTE AS security
context ID, whether or not the stored procedure has WITH RECOMPILE set, and a 1 if the ANSI NULL or
QUOTED IDENTIFIER options were ON when it was created.

■Tip Encryption, EXECUTE AS, and WITH RECOMPILE will all be discussed in this chapter.

CHAPTER 10 ■ STORED PROCEDURES334

9802CH10.qxd 4/24/08 4:10 PM Page 334

Documenting Stored Procedures
This next recipe is more of a best practice, rather than a review of a command or function. It is
important to comment your stored procedure code very well, so that future support staff, authors,
and editors will understand the business rules and intents behind your Transact-SQL code.
Although some code may seem “self-evident” at the time of authoring, the original logic may not
seem so clear a few months after it was written. Business logic is often transient and difficult to
understand over time, so including this in the body of the code can often save hours of trou-
bleshooting and investigation.

For brevity, the stored procedure examples in this chapter have not included extensive com-
ments or headers. However, in your production database, you should at the very least define
headers for each stored procedure created in a production database.

The following is an example of a standard stored procedure header:

CREATE PROCEDURE dbo.usp_IMP_DWP_FactOrder
AS

-- Purpose: Populates the data warehouse, Called by Job
--
-- Maintenance Log
--
-- Update By Update Date Description
-- ----------- --------- ----------------------------
-- Joe Sack 8/15/2008 Created
-- Joe Sack 8/16/2008 A new column was added to
--the base table, so it was added here as well.
... Transact-SQL code here

How It Works
This example demonstrated how to include header information within the body of a new stored
procedure. It tracks the purpose, the application where it will be called, and a maintenance log.

■Caution One drawback of self-documenting is that other developers who edit your code may not include doc-
umentation of their own changes. You may end up being blamed for code you didn’t write, just because you were
the last person to log a change. This is where your company should strongly consider a source control system
to track all check-in and check-out activities, as well as be able to compare changes between procedure
versions.

No doubt you’ll see other procedure headers out in the field with much more information. I’m
a firm believer in not demanding too much documentation. Include enough to bring clarity, but not
so much that you introduce redundancy. For example, if you include the stored procedure name in
the header, in addition to the actual CREATE PROCEDURE, you’ll soon start seeing code where the
header name doesn’t match the stored procedure name. Why not just document the information
that isn’t already included in the stored procedure definition?

Stored Procedure Security
I mentioned at the beginning of the chapter that stored procedures have inherent security benefits,
and I’ll go over that again now.

CHAPTER 10 ■ STORED PROCEDURES 335

9802CH10.qxd 4/24/08 4:10 PM Page 335

Inline ad hoc code is more susceptible to SQL injection attacks, allowing the hacker to see the
embedded SQL calls and search for words like “Social Security Number” or “Credit Card,” for exam-
ple. Embedding your SQL code in a stored procedure allows you to obscure the schema from any
external influences.

Also, using stored procedures instead of direct table access provides greater security for the
base tables. You can control how modifications are made and the data that is retrieved (both at the
column and row level). Instead of granting table access, you can grant EXECUTE permissions to the
user in order to execute the stored procedure instead. This is also the only call that travels to the
database server, so any snooping elements won’t see your SELECT statement.

In addition to these inherent benefits (all you have to do is use stored procedures in order to
benefit from them), there are also a couple of features you should be aware of. The next recipe
shows you how to encrypt your stored procedure so that the query definition can’t be viewed.

After that recipe, I’ll demonstrate how to define a custom security context for your stored
procedure.

Encrypting a Stored Procedure
Just like a view, stored procedure Transact-SQL definitions can have their contents encrypted in the
database, removing the ability to read the procedure’s definition. Software vendors who use SQL
Server in their back end often encrypt stored procedures in order to prevent tampering or reverse-
engineering from clients or competitors. If you use encryption, be sure to save the original T-SQL
definition, as it can’t easily be decoded later (legally and reliably, anyhow). It should also be
encrypted only prior to a push to production.

In order to encrypt the stored procedure, WITH ENCRYPTION is designated after the name of the
new stored procedure, as this next example demonstrates:

CREATE PROCEDURE dbo.usp_SEL_EmployeePayHistory
WITH ENCRYPTION
AS

SELECT EmployeeID, RateChangeDate, Rate, PayFrequency, ModifiedDate
FROM HumanResources.EmployeePayHistory

GO

Once you’ve created WITH ENCRYPTION, you’ll be unable to view the procedure’s text definition:

-- View the procedure's text
EXEC sp_helptext usp_SEL_EmployeePayHistory

This returns

The text for object 'usp_SEL_EmployeePayHistory' is encrypted.

How It Works
Encryption can be defined using either CREATE PROCEDURE or ALTER PROCEDURE, but be sure to save
your source code, as the existing encrypted text cannot be decrypted easily.

CHAPTER 10 ■ STORED PROCEDURES336

9802CH10.qxd 4/24/08 4:10 PM Page 336

Using EXECUTE AS to Specify the Procedure’s Security Context
The WITH EXECUTE AS clause allows you to specify the security context that a stored procedure exe-
cutes under, overriding the default security of the stored procedure caller. In this case, security
context refers to the permissions of the user executing the stored procedure.

■Note This recipe discusses several security features and concepts that I also cover in Chapters 17 and 18.

You have the option to execute a stored procedure under

• The security context of the caller

• The person who authored or last altered the procedure

• A specific login (if you have IMPERSONATE permissions for that person’s login)

• The owner of the stored procedure

First, let me present you with a quick aside about caller permissions and ownership chaining.
An ownership chain occurs when an object, such a stored procedure or view, is created and used to
perform an INSERT, UPDATE, DELETE, or SELECT against another database object. If the schema of the
stored procedure object is the same as the schema of the object referenced within, SQL Server only
checks that the stored procedure caller has EXECUTE permissions to the stored procedure. Again, this
ownership chaining only applies to the INSERT, UPDATE, DELETE, or SELECT commands. This is why
stored procedures are excellent for securing the database—as you can grant a user access to execute
a stored procedure without giving her access to the underlying tables.

An issue arises, however, when you are looking to execute commands that are not INSERT,
UPDATE, DELETE, or SELECT. In those situations, even if a caller has EXECUTE permissions to a stored
procedure that, for example, truncates a table using the TRUNCATE TABLE command, he must still
have permissions to use the TRUNCATE TABLE command in the first place. For example, the following
stored procedure is created, which deletes all data from a table:

USE AdventureWorks
GO

CREATE PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
AS

-- Deletes all rows prior to the data feed
DELETE dbo.EmployeeSalary

GO

To set up this scenario, I’ll create and populate the dbo.EmployeeSalary table:

CREATE TABLE dbo.EmployeeSalary
(EmployeeID int NOT NULL PRIMARY KEY CLUSTERED,
SalaryAMT money NOT NULL)
GO

INSERT dbo.EmployeeSalary (EmployeeID, SalaryAMT)
VALUES (1,45000.00), (343, 100000.00),(93, 3234993.00)

CHAPTER 10 ■ STORED PROCEDURES 337

9802CH10.qxd 4/24/08 4:10 PM Page 337

Next, EXECUTE permission on this new stored procedure is granted to your employee BrianG:

USE master
GO

CREATE LOGIN BrianG WITH PASSWORD = '1301C636F9D'

USE AdventureWorks
GO

CREATE USER BrianG
GO
GRANT EXEC ON usp_DEL_ALLEmployeeSalary to BrianG

Now, if BrianG attempts to execute this procedure, ownership chaining has got him covered:

EXECUTE dbo.usp_DEL_ALLEmployeeSalary

BrianG has no other permissions in the database except to the new stored procedure, but it still
works:

(3 row(s) affected)

But now the procedure is changed to use the TRUNCATE TABLE command instead of DELETE:

ALTER PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
AS

-- Deletes all rows prior to the data feed
TRUNCATE TABLE dbo.EmployeeSalary

GO

Now, if BrianG attempts to execute this procedure again, SQL Server will check BrianG’s ability
to use the TRUNCATE TABLE command and will return the following error (since he only has permis-
sions to execute the procedure):

Msg 1088, Level 16, State 7, Procedure usp_DEL_ALLEmployeeSalary, Line 5
Cannot find the object "EmployeeSalary" because it does not exist
or you do not have permissions.

Now consider the use of the EXECUTE AS option for stored procedures. Using EXECUTE AS, you
can designate that any caller of the stored procedure run under your security context. For example,
suppose the previous stored procedure was written as follows:

ALTER PROCEDURE dbo.usp_DEL_ALLEmployeeSalary
WITH EXECUTE AS OWNER
AS

-- Deletes all rows prior to the data feed
TRUNCATE TABLE dbo.EmployeeSalary

GO

With the added WITH EXECUTE AS OWNER, BrianG only needs EXECUTE permissions on the stored
procedure and can execute the procedure under the stored procedure owner’s security context.

CHAPTER 10 ■ STORED PROCEDURES338

9802CH10.qxd 4/24/08 4:10 PM Page 338

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Assuming the owner has permission to TRUNCATE a table, the stored procedure execution will be
successful.

The same “gotcha” goes for dynamic SQL within a stored procedure. SQL Server will ensure
that the caller has both EXECUTE and the appropriate permissions in order to perform the task the
dynamic SQL is attempting to perform, even if that dynamic SQL is performing an INSERT, UPDATE,
DELETE, or SELECT.

For example, the following procedure contains dynamic SQL, allowing you to select the row
count from any table based on the schema and table name designated in the @SchemaAndTable input
parameter:

CREATE PROCEDURE dbo.usp_SEL_CountRowsFromAnyTable
@SchemaAndTable nvarchar(255)
AS

EXEC ('SELECT COUNT(*) FROM ' + @SchemaAndTable)

GO

If you have the permissions to EXECUTE this procedure and have access to the designated table,
SQL Server will allow you to return the row count:

EXEC dbo.usp_SEL_CountRowsFromAnyTable 'HumanResources.Department'

This returns

17

However, granting the EXECUTE permission isn’t enough. Because this is dynamic SQL, if the
user doesn’t have SELECT permission to the underlying table, SQL Server will check both EXECUTE
permissions on the procedure and SELECT permissions on the table. If the user BrianG didn’t have
SELECT permissions, he’d see the following error:

Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object 'Department',
database 'AdventureWorks', schema 'HumanResources'.

Again, this is a situation that can be remedied using EXECUTE AS (if you are comfortable with
BrianG having these permissions, of course). This time, an explicit user name will be designated as
the security context for the procedure (I also create the user SteveP, who has permission to read
from the HumanResources.Employee table):

USE master
GO

CREATE LOGIN SteveP WITH PASSWORD = '533B295A-D1F0'

USE AdventureWorks
GO

CREATE USER SteveP

GRANT SELECT ON OBJECT::HumanResources.Employee TO SteveP
GO

CHAPTER 10 ■ STORED PROCEDURES 339

9802CH10.qxd 4/24/08 4:10 PM Page 339

ALTER PROCEDURE dbo.usp_SEL_CountRowsFromAnyTable
@SchemaAndTable nvarchar(255)

WITH EXECUTE AS 'SteveP'
AS

-- Will work for any tables that SteveP can SELECT from
EXEC ('SELECT COUNT(*) FROM ' + @SchemaAndTable)

GO

Assuming SteveP had the proper permissions to any tables passed as dynamic SQL in the pro-
cedure, now if BrianG has permission to the procedure and executes it, he will see results returned
as though BrianG were SteveP. SQL Server will not check BrianG’s permissions, but will use SteveP’s
security context instead.

How It Works
In this recipe, EXECUTE AS was demonstrated within a stored procedure, allowing you to define the
security context under which a stored procedure is executed, regardless of the caller.

The options for EXECUTE AS in a stored procedure are as follows:

EXECUTE AS { CALLER | SELF | OWNER | 'user_name' }

The default behavior for EXECUTE AS is the CALLER option, which means that the permissions of
the executing user are used (and if the user doesn’t have proper access, that execution will fail). If
the SELF option is used, the execution context of the stored procedure will be that of the user who
created or last altered the stored procedure. When the OWNER option is designated, the owner of the
stored procedure’s schema is used. The user_name option is an explicit reference to a database user
whose security context the stored procedure will be executed under.

Recompilation and Caching
Stored procedures can provide performance benefits due to the cached query execution plan,
allowing SQL Server to reuse an existing plan instead of generating a new one. Stored procedures
also have a stabilizing effect on query response time compared to the sometimes varying response
times of ad hoc queries.

■Note For more information on assessing query performance and the procedure cache, see Chapter 28.

With that said, stored procedures are not the magic bullet for query performance. You still need
to account for the performance of individual statements within the body of your stored procedure
and to make sure that the tables are indexed properly and that the database is designed efficiently.
Several of the features discussed in other chapters of this book can be utilized within the body of a
stored procedure, but you must use them with the same consideration as you would had they been
used outside of a stored procedure.

In the next two recipes, I’ll discuss situations where you may not want a query execution plan
to be cached, the first covering the RECOMPILE option and the second the DBCC FREEPROCCACHE
command.

CHAPTER 10 ■ STORED PROCEDURES340

9802CH10.qxd 4/24/08 4:10 PM Page 340

RECOMPILE(ing) a Stored Procedure Each Time It Is Executed
A recompilation occurs when a stored procedure’s plan is re-created either automatically or explic-
itly. Recompilations occur automatically during stored procedure execution when underlying table
or other object changes occur to objects that are referenced within a stored procedure. They can
also occur with changes to indexes used by the plan or after a large number of updates to table keys
referenced by the stored procedure. The goal of an automatic recompilation is to make sure the SQL
Server execution plan is using the most current information and not using out-of-date assumptions
about the schema and data.

SQL Server also uses statement-level recompiles within the stored procedure, instead of
recompiling the entire stored procedure. Since recompiles cause extra overhead in generating new
plans, statement-level recompiles help decrease this overhead by correcting only what needs to be
corrected.

Although recompilations are costly and should be avoided most of the time, there may some-
times be reasons why you would want to force a recompilation. For example, your procedure may
produce wildly different query results based on the application calling it due to varying selectivity of
qualified columns—so much so that the retained execution plan causes performance issues when
varying input parameters are used.

For example, if one parameter value for City returns a match of one million rows, while
another value for City returns a single row, SQL Server may not necessarily cache the correct execu-
tion plan. SQL Server may end up caching a plan that is optimized for the single row instead of the
million rows, causing a long query execution time. If you’re looking to use stored procedures for
benefits other than caching, you can use the WITH RECOMPILE command.

In this example, I demonstrate how to force a stored procedure to recompile each time it is
executed:

CREATE PROCEDURE dbo.usp_SEL_BackupMBsPerSecond
(@BackupStartDate datetime,
@BackupFinishDate datetime)
WITH RECOMPILE -- Plan will never be saved
AS

-- Procedure measure db backup throughput
SELECT (SUM(backup_size)/1024)/1024 as 'MB',

DATEDIFF (ss , MIN(backup_start_date),
MAX(backup_finish_date)) as 'seconds',
((SUM(backup_size)/1024)/1024)/

DATEDIFF (ss , MIN(backup_start_date) ,
MAX(backup_finish_date)) as 'MB per second'

FROM msdb.dbo.backupset
WHERE backup_start_date >= @BackupStartDate AND
backup_finish_date < @BackupFinishDate AND
type = 'd'
GO

Now whenever this procedure is called, a new execution plan will be created by SQL Server.

How It Works
This procedure used WITH RECOMPILE to ensure that a query plan is not cached for the procedure
during creation or execution.

You will no doubt only have need to use WITH RECOMPILE under rare circumstances, as generally
the cached plan chosen by SQL Server will suffice. Use this option if you still wish to take advantage
of a stored procedure’s other benefits (such as security and modularization), but don’t want SQL
Server to store an inefficient plan (“parameter sniff”) based on wildly varying result sets.

CHAPTER 10 ■ STORED PROCEDURES 341

9802CH10.qxd 4/24/08 4:10 PM Page 341

■Note See Chapter 28 for more information on query execution plans.

Flushing the Procedure Cache
In this recipe, I’ll demonstrate how to remove all plans from the procedure cache. This technique
is often used in order to test procedure performance in a “cold” cache, reproducing the cache as
though SQL Server had just been restarted. This is an option for you on a development SQL Server
instance, if you want to make sure existing cached query plans don’t have an impact on your stored
procedure performance testing.

■Caution Don’t use this command in a production environment, as you could be knocking out several cached
query plans that are perfectly fine.

In this example, a count of cached query plans is executed prior to executing DBCC
FREEPROCCACHE:

SELECT COUNT(*) 'CachedPlansBefore'
FROM sys.dm_exec_cached_plans

This returns

CachedPlansBefore
42

Next, the procedure cache for the entire SQL Server instance is cleared:

DBCC FREEPROCCACHE

SELECT COUNT(*) 'CachedPlansAfter'
FROM sys.dm_exec_cached_plans

This returns

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.
CachedPlansAfter
0

(1 row(s) affected)

How It Works
DBCC FREEPROCCACHE was used in this recipe to clear out the procedure cache. If you try this yourself,
the count of cached plans will vary based on the activity on your SQL Server instance. This includes
any background processes or jobs that may be running before or after the clearing of the cache. The
dynamic management view sys.dm_exec_cached_plans was used to demonstrate the impact of this
DBCC command, showing an original count of 42 plans versus 0 afterward (although your results
may vary depending on the ongoing activity of your SQL Server instance).

CHAPTER 10 ■ STORED PROCEDURES342

9802CH10.qxd 4/24/08 4:10 PM Page 342

User-Defined Functions and Types

In this chapter, I’ll present recipes for user-defined functions and types. User-defined functions
(UDFs) allow you to encapsulate both logic and subroutines into a single function that can then be
used within your Transact-SQL queries and programmatic objects. User-defined types (UDTs) allow
you to create an alias type based on an underlying system data type, enforcing a specific data type,
length, and nullability.

At the end of this chapter, I’ll also cover the SQL Server 2008 user-defined table type, which can
be used as a user-defined table parameter for passing table result sets within your T-SQL code.

■Note This chapter covers how to create both user-defined functions and types using Transact-SQL. However,
Chapter 13 briefly discusses how to create these objects using the new Common Language Runtime (CLR) func-
tionality. As of SQL Server 2008, a CLR-based UDT is no longer limited to 8000 bytes.

UDF Basics
Transact-SQL user-defined functions fall into three categories; scalar, inline table-valued, and
multi-statement table-valued.

A scalar user-defined function is used to return a single value based on zero or more parame-
ters. For example, you could create a scalar UDF that accepts a CountryID as a parameter and
returns the CountryNM.

■Caution If you use a scalar user-defined function in the SELECT clause, the function will be executed for each
row in the FROM clause, potentially resulting in poor performance, depending on the design of your function.

An inline table-valued UDF returns a table data type based on a single SELECT statement that is
used to define the returned rows and columns. Unlike a stored procedure, an inline UDF can be ref-
erenced in the FROM clause of a query, as well as be joined to other tables. Unlike a view, an inline
UDF can accept parameters.

A multi-statement table-valued UDF also returns a tabular result set and is referenced in the
FROM clause. Unlike inline table-valued UDFs, they aren’t constrained to use a single SELECT state-
ment within the function definition and instead allow multiple Transact-SQL statements in the
body of the UDF definition in order to define a single, final result set to be returned.

UDFs can also be used in places where a stored procedure can’t, like in the FROM and SELECT
clause of a query. UDFs also encourage code reusability. For example, if you create a scalar UDF
that returns the CountryNM based on a CountryID, and the same function is needed across several 343

C H A P T E R 1 1

9802CH11.qxd 4/24/08 4:12 PM Page 343

different stored procedures, rather than repeat the 20 lines of code needed to perform the lookup,
you can call the UDF function instead.

In the next few recipes, I’ll demonstrate how to create, drop, modify, and view metadata for
each of these UDF types.

Creating Scalar User-Defined Functions
A scalar user-defined function accepts zero or more parameters and returns a single value. Scalar
UDFs are often used for converting or translating a current value to a new value, or performing
other sophisticated lookups based on specific parameters. Scalar functions can be used within
search, column, and join expressions.

The simplified syntax for a scalar UDF is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type

[= default] [READONLY] }
[,...n]

]
)
RETURNS return_data_type

[WITH <function_option> [,...n]]
[AS]
BEGIN

function_body
RETURN scalar_expression

END

■Note The full syntax for CREATE FUNCTION can be found in SQL Server Books Online.

Table 11-1 gives a brief description of each argument’s intended use.

Table 11-1. Scalar UDF Arguments

Argument Description

[schema_name.] function_name This argument defines the optional schema name and
required function name of the new scalar UDF.

@parameter_name This is the name of the parameter to pass to the UDF, and it
must be prefixed with an @ sign.

[type_schema_name.] This is the optional schema of parameter data type and the
scalar_parameter_data_type associated parameter data type.

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined
(up to 1024).

return_data_type This specifies the data type the user-defined function will
return.

function_body This function body contains one or more of the Transact-
SQL statements that are used to produce and evaluate a
scalar value.

scalar_expression This is the actual value that will be returned by the scalar
function (notice that it is defined after the function body).

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES344

9802CH11.qxd 4/24/08 4:12 PM Page 344

This example creates a scalar UDF that accepts a varchar(max) data type parameter. It returns a
bit value (1 or 0) based on whether the passed parameter contains suspicious values (as defined by
the function). So if the input parameter contains a call to a command such as DELETE or SHUTDOWN,
the flag is set to 1:

-- Create a function to check for any suspicious behaviors
-- from the application
CREATE FUNCTION dbo.udf_CheckForSQLInjection

(@TSQLString varchar(max))
RETURNS BIT
AS

BEGIN

DECLARE @IsSuspect bit

-- UDF assumes string will be left padded with a single space
SET @TSQLString = ' ' + @TSQLString

IF (PATINDEX('% xp_%' , @TSQLString) <> 0 OR
PATINDEX('% sp_%' , @TSQLString) <> 0 OR
PATINDEX('% DROP %' , @TSQLString) <> 0 OR
PATINDEX('% GO %' , @TSQLString) <> 0 OR
PATINDEX('% INSERT %' , @TSQLString) <> 0 OR
PATINDEX('% UPDATE %' , @TSQLString) <> 0 OR
PATINDEX('% DBCC %' , @TSQLString) <> 0 OR
PATINDEX('% SHUTDOWN %' , @TSQLString)<> 0 OR
PATINDEX('% ALTER %' , @TSQLString)<> 0 OR
PATINDEX('% CREATE %' , @TSQLString) <> 0OR
PATINDEX('%;%' , @TSQLString)<> 0 OR
PATINDEX('% EXECUTE %' , @TSQLString)<> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR
PATINDEX('% BEGIN %' , @TSQLString)<> 0 OR
PATINDEX('% CHECKPOINT %' , @TSQLString)<> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR
PATINDEX('% COMMIT %' , @TSQLString)<> 0 OR
PATINDEX('% TRANSACTION %' , @TSQLString)<> 0 OR
PATINDEX('% CURSOR %' , @TSQLString)<> 0 OR
PATINDEX('% GRANT %' , @TSQLString)<> 0 OR
PATINDEX('% DENY %' , @TSQLString)<> 0 OR
PATINDEX('% ESCAPE %' , @TSQLString)<> 0 OR
PATINDEX('% WHILE %' , @TSQLString)<> 0 OR
PATINDEX('% OPENDATASOURCE %' , @TSQLString)<> 0 OR
PATINDEX('% OPENQUERY %' , @TSQLString)<> 0 OR
PATINDEX('% OPENROWSET %' , @TSQLString)<> 0 OR
PATINDEX('% EXEC %' , @TSQLString)<> 0)

BEGIN
SELECT @IsSuspect = 1

END
ELSE
BEGIN

SELECT @IsSuspect = 0
END

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 345

9802CH11.qxd 4/24/08 4:12 PM Page 345

RETURN (@IsSuspect)
END

GO

Next, you should test the function by evaluating three different string input values. The first
contains a SELECT statement:

SELECT dbo.udf_CheckForSQLInjection
('SELECT * FROM HumanResources.Department')

This returns

0

The next string contains the SHUTDOWN command:

SELECT dbo.udf_CheckForSQLInjection
(';SHUTDOWN')

This returns

1

The last string tested contains the DROP command:

SELECT dbo.udf_CheckForSQLInjection
('DROP HumanResources.Department')

This returns

1

In this next example, I will create a user-defined function that can be used to set a string to
proper case:

CREATE FUNCTION dbo.udf_ProperCase(@UnCased varchar(max))
RETURNS varchar(max)
AS
BEGIN

SET @UnCased = LOWER(@UnCased)

DECLARE @C int
SET @C = ASCII('a')

WHILE @C <= ASCII('z')
BEGIN

SET @UnCased = REPLACE(@UnCased, ' ' + CHAR(@C), ' ' + CHAR(@C-32))
SET @C = @C + 1

END

SET @UnCased = CHAR(ASCII(LEFT(@UnCased, 1))-32) + RIGHT(@UnCased,
LEN(@UnCased)-1)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES346

9802CH11.qxd 4/24/08 4:12 PM Page 346

RETURN @UnCased
END

GO

Once the user-defined function is created, the string to modify to proper case can be used as
the function parameter:

SELECT dbo.udf_ProperCase(DocumentSummary)
FROM Production.Document
WHERE FileName = 'Installing Replacement Pedals.doc'

This returns

Detailed Instructions For Replacing Pedals With Adventure Works Cycles Replacement
Pedals. Instructions Are Applicable To All Adventure Works Cycles Bicycle Models
And Replacement Pedals. Use Only Adventure Works Cycles Parts When Replacing Worn Or
Broken Components.

How It Works
This recipe demonstrated a scalar UDF, which in this case accepted one parameter and returned a
single value. Some of the areas where you can use a scalar function in your Transact-SQL code
include

• A column expression in a SELECT or GROUP BY clause

• A search condition for a JOIN in a FROM clause

• A search condition of a WHERE or HAVING clause

The recipe began by defining the UDF name and parameter:

CREATE FUNCTION dbo.udf_CheckForSQLInjection
(@TSQLString varchar(max))

The @TSQLString parameter held the varchar(max) string to be evaluated.
In the next line of code, the scalar_return_data_type was defined as bit. This means that the

single value returned by the function will be the bit data type:

RETURNS BIT
AS

The BEGIN marked the start of the function_body, where the logic to return the bit value was
formulated:

BEGIN

A local variable was created to hold the bit value. Ultimately, this is the parameter that will be
passed as the function’s output:

DECLARE @IsSuspect bit

Next, the string passed to the UDF has a space concatenated to the front of it:

-- UDF assumes string will be left padded with a single space
SET @TSQLString = ' ' + @TSQLString

The @TSQLString was padded with an extra space in order to make the search of suspicious
words or patterns easier to do. For example, if the suspicious word is at the beginning of the

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 347

9802CH11.qxd 4/24/08 4:12 PM Page 347

@TSQLString, and you were searching for the word DROP, you would have to use PATINDEX to search
for both '%DROP %' and '% DROP %'. Of course, searching '%DROP %' could give you false positives,
such as the word “gumdrop,” so you should prevent this confusion by padding the beginning of the
string with a space.

In the IF statement, @TSQLString is evaluated using PATINDEX. For each evaluation, if a match is
found, the condition will evaluate to TRUE:

IF (PATINDEX('% xp_%' , @TSQLString) <> 0 OR
PATINDEX('% sp_%' , @TSQLString) <> 0 OR
PATINDEX('% DROP %' , @TSQLString) <> 0 OR
PATINDEX('% GO %' , @TSQLString) <> 0 OR
PATINDEX('% BREAK %' , @TSQLString)<> 0 OR

...

If any of the conditions evaluate to TRUE, the @IsSuspect bit flag will be set to 1:

BEGIN
SELECT @IsSuspect = 1

END
ELSE
BEGIN

SELECT @IsSuspect = 0
END

The RETURN keyword is used to pass the scalar value of the @IsSuspect variable back to the
caller:

RETURN (@IsSuspect)

The END keyword is then used to close the UDF, and GO is used to end the batch:

END

GO

The new scalar UDF created in this recipe was then used to check three different string values.
The first string, SELECT * FROM HumanResources.Department, comes up clean, but the second strings,
;SHUTDOWN and DROP HumanResources.Department, both return a bit value of 1 because they match
the suspicious word searches in the function’s IF clause.

SQL Server doesn’t provide a built-in proper case function, so in my second example, I demon-
strate creating a user-defined function that performs this action. The first line of the CREATE
FUNCTION definition defines the name and parameter expected—in this case, a varchar(max) data
type parameter:

CREATE FUNCTION dbo.udf_ProperCase(@UnCased varchar(max))

The RETURNS keyword defined what data type would be returned by the function after the logic
has been applied:

RETURNS varchar(max)
AS
BEGIN

Next, the variable passed to the function was first modified to lowercase using the LOWER
function:

SET @UnCased = LOWER(@UnCased)

A new integer local variable, @C, was set to the ASCII value of the letter “a”:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES348

9802CH11.qxd 4/24/08 4:12 PM Page 348

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DECLARE @C int
SET @C = ASCII('a')

A WHILE loop was initiated to go through every letter in the alphabet, and for each, search for a
space preceding that letter, and then replace each occurrence of a letter preceded by a space with
the uppercase version of the character:

WHILE @C <= ASCII('z')
BEGIN
SET @UnCased = REPLACE(@UnCased, ' ' + CHAR(@C), ' ' + CHAR(@C-32))

SET @C = @C + 1
END

The conversion to uppercase is performed by subtracting 32 from the ASCII integer value of
the lowercase character. For example, the ASCII value for a lowercase “a” is 97, while the uppercase
“A” is 65.

SET @UnCased = CHAR(ASCII(LEFT(@UnCased, 1))-32) + RIGHT(@UnCased, LEN(@UnCased)-1)

The final proper case string value of @UnCased is then returned from the function:

RETURN @UnCased
END
GO

Next, I used the new scalar UDF in the SELECT clause of a query to convert the DocumentSummary
text to proper case:

SELECT dbo.udf_ProperCase(DocumentSummary)
...

Creating Inline User-Defined Functions
An inline UDF returns a table data type. In the UDF definition, you do not explicitly define the
returned table, but use a single SELECT statement for defining the returned rows and columns
instead. An inline UDF uses one or more parameters and returns data using a single SELECT state-
ment. Inline UDFs are very similar to views, in that they are referenced in the FROM clause. However,
unlike views, UDFs can accept parameters that can then be used in the function’s SELECT statement.

The basic syntax is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS]

[type_schema_name.] scalar_parameter_data_type [= default]
} [,...n]

]
)

RETURNS TABLE
[AS]
RETURN [(] select_stmt [)]

■Note The full syntax for CREATE FUNCTION can be found in SQL Server Books Online.

Table 11-2 details the arguments of this command.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 349

9802CH11.qxd 4/24/08 4:12 PM Page 349

Table 11-2. Inline UDF Arguments

Argument Description

[schema_name.] function_name This defines the optional schema name and required
function name of the new inline UDF.

@parameter_name This is the name of the parameter to pass to the UDF. It must
be prefixed with an @ sign.

[type_schema_name.] This is the @parameter_name data type and the optional
scalar_parameter_data_type scalar_parameter_data_type owning schema (used if you

are employing a user-defined type).

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined
(up to 1024).

select_stmt This is the single SELECT statement that will be returned by
the inline UDF.

This example demonstrates creating an inline table UDF that accepts an integer parameter and
returns the associated addresses of a business entity:

CREATE FUNCTION dbo.udf_ReturnAddress
(@BusinessEntityID int)

RETURNS TABLE
AS

RETURN (
SELECT t.Name AddressTypeNM,

a.AddressLine1,
a.City,
a.StateProvinceID,
a.PostalCode

FROM Person.Address a
INNER JOIN Person.BusinessEntityAddress e ON

a.AddressID = e.AddressID
INNER JOIN Person.AddressType t ON

e.AddressTypeID = t.AddressTypeID
WHERE e.BusinessEntityID = @BusinessEntityID)

GO

Next, the new function is tested in a query, referenced in the FROM clause for business entity 332:

SELECT AddressTypeNM, AddressLine1, City, PostalCode
FROM dbo.udf_ReturnAddress(332)

This returns

AddressTypeNM AddressLine1 City PostalCode
Shipping 26910 Indela Road Montreal H1Y 2H5
Main Office 25981 College Street Montreal H1Y 2H5

How It Works
In this recipe, I created an inline table UDF to retrieve the addresses of a business entity based on
the @BusinessEntityID value passed. The UDF started off just like a scalar UDF, only the RETURNS
command used a TABLE data type (which is what distinguishes it from a scalar UDF):

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES350

9802CH11.qxd 4/24/08 4:12 PM Page 350

CREATE FUNCTION dbo.udf_ReturnAddress
(@BusinessEntityID int)

RETURNS TABLE
AS

After the AS keyword, the RETURN statement was issued with a single SELECT statement in
parentheses:

RETURN (
SELECT t.Name AddressTypeNM,

a.AddressLine1,
a.City,
a.StateProvinceID,
a.PostalCode

FROM Person.Address a
INNER JOIN Person.BusinessEntityAddress e ON

a.AddressID = e.AddressID
INNER JOIN Person.AddressType t ON

e.AddressTypeID = t.AddressTypeID
WHERE e.BusinessEntityID = @BusinessEntityID)

GO

After it was created, the new inline UDF was then used in the FROM clause of a SELECT query. The
@BusinessEntityID value of 332 was passed into the function in parentheses:

SELECT AddressTypeNM, AddressLine1, City, PostalCode
FROM dbo.udf_ReturnAddress(332)

This function then returns a result set, just like when you are querying a view or a table. Also,
just like a view or stored procedure, the query you create to define this function must be tuned as
you would a regular SELECT statement. Using an inline UDF offers no inherent performance benefits
over using a view or stored procedure.

Creating Multi-Statement User-Defined Functions
Multi-statement table UDFs are referenced in the FROM clause just like inline UDFs, but unlike inline
UDFs, they are not constrained to use a single SELECT statement within the function definition.
Instead, multi-statement UDFs can use multiple Transact-SQL statements in the body of the UDF
definition in order to define that a single, final result set be returned.

The basic syntax of a multi-statement table UDF is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type

[= default] [READONLY] }
[,...n]

]
)
RETURNS @return_variable TABLE <table_type_definition>

[WITH <function_option> [,...n]]
[AS]
BEGIN

function_body
RETURN

END

Table 11-3 describes the arguments of this command.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 351

9802CH11.qxd 4/24/08 4:12 PM Page 351

Table 11-3. Multi-Statement UDF Arguments

Argument Description

[schema_name.] function_name This specifies the optional schema name and required
function name of the new inline UDF.

@parameter_name This is the name of the parameter to pass to the UDF. It must
be prefixed with an @ sign.

[type_schema_name.] This is the data type of the @parameter_name and the
scalar_parameter_data_type scalar_parameter_data_type optional owning schema

(used if you are using a user-defined type).

[,...n] Although not an actual argument, this syntax element
indicates that one or more parameters can be defined
(up to 1024).

@return_variable This is the user-defined name of the table variable that will
hold the results to be returned by the UDF.

< table_type_definition > This argument contains one or more column definitions for
the table variable. Each column definition contains the name
and data type, and can optionally define a PRIMARY KEY,
UNIQUE, NULL, or CHECK constraint.

function_body The function body contains one or more Transact-SQL
statements that are used to populate and modify the table
variable that will be returned by the UDF.

Notice the RETURNS keyword, which defines a table variable definition. Also notice the RETURN
keyword at the end of the function, which doesn’t have any parameter or query after it, as it is
assumed that the defined table variable will be returned.

In this example, a multi-statement UDF will be created that accepts two parameters: one to
hold a string, and the other to define how that string will be delimited. The string is then broken
apart into a result set based on the defined delimiter:

-- Creates a UDF that returns a string array as a table result set
CREATE FUNCTION dbo.udf_ParseArray

(@StringArray varchar(max),
@Delimiter char(1))

RETURNS @StringArrayTable TABLE (Val varchar(50))
AS
BEGIN

DECLARE @Delimiter_position int

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN
SELECT @Delimiter_position =

CHARINDEX(@Delimiter, @StringArray)

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

SELECT @StringArray = STUFF(@StringArray, 1,
@Delimiter_position, '')

END

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES352

9802CH11.qxd 4/24/08 4:12 PM Page 352

RETURN
END

GO

Now it will be used to break apart a comma-delimited array of values:

SELECT Val
FROM dbo.udf_ParseArray('A,B,C,D,E,F,G', ',')

This returns the following results:

Val
A
B
C
D
E
F
G

How It Works
The multi-statement table UDF in this recipe was created using two parameters, the first to hold a
string and the second to define the character that delimits the string:

CREATE FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),

@Delimiter char(1))

Next, a table variable was defined after the RETURNS token. The @StringArrayTable was used to
hold the values of the string array after being shredded into the individual values:

RETURNS @StringArrayTable TABLE (Val varchar(50))

The function body started after AS and BEGIN:

AS
BEGIN

A local variable was created to hold the delimiter position in the string:

DECLARE @Delimiter_position int

If the last character of the string array wasn’t the delimiter value, then the delimiter value was
concatenated to the end of the string array:

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

A WHILE loop was created, looping until there were no remaining delimiters in the string array:

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN

Within the loop, the position of the delimiter was identified using CHARINDEX:

SELECT @Delimiter_position =
CHARINDEX(@Delimiter, @StringArray)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 353

9802CH11.qxd 4/24/08 4:12 PM Page 353

The LEFT function was used with the delimiter position to extract the individual-delimited
string part into the table variable:

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

The inserted chunk was then removed from the string array using the STUFF function:

SELECT @StringArray = STUFF(@StringArray, 1, @Delimiter_position, '')

STUFF is used to delete a chunk of characters and insert another character string in its place.
This first parameter of the STUFF function is the character expression, which in this example is the
string array. The second parameter is the starting position of the deleted and inserted text, and in
this case I am removing text from the string starting at the first position and stopping at the first
delimiter. The third parameter is the length of the characters to be deleted, which for this example
is the delimiter-position variable value. The last argument is the string to be inserted, which in this
case was a blank string represented by two single quotes. The net effect is that the first comma-
separated entry was replaced by an empty string—the same result as if the first entry had been
deleted.

This process of inserting values continued until there were no longer delimiters in the string
array. After this, the WHILE loop ended, and RETURN was called to return the table variable result set.

END
RETURN
END
GO

The new UDF was then referenced in the FROM clause. The first parameter of the UDF was a
comma-delimited list of letters. The second parameter was the delimiting parameter (a comma):

-- Now use it to break apart a comma-delimited array
SELECT Val
FROM dbo.udf_ParseArray('A,B,C,D,E,F,G', ',')

The list was then broken into a result set, with each individual letter as its own row. As you can
see, multi-statement table UDFs allow for much more sophisticated programmability than an inline
table value, which can only use a single SELECT statement.

Modifying User-Defined Functions
A function can be modified by using the ALTER FUNCTION command, as I demonstrate in this next
recipe:

ALTER FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),

@Delimiter char(1) ,
@MinRowSelect int,
@MaxRowSelect int)
RETURNS @StringArrayTable TABLE (RowNum int IDENTITY(1,1), Val
varchar(50))
AS
BEGIN

DECLARE @Delimiter_position int

IF RIGHT(@StringArray,1) != @Delimiter
SET @StringArray = @StringArray + @Delimiter

WHILE CHARINDEX(@Delimiter, @StringArray) <> 0
BEGIN

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES354

9802CH11.qxd 4/24/08 4:12 PM Page 354

SELECT @Delimiter_position =
CHARINDEX(@Delimiter, @StringArray)

INSERT @StringArrayTable
VALUES (left(@StringArray, @Delimiter_position - 1))

SELECT @StringArray = stuff(@StringArray, 1,
@Delimiter_position, '')

END

DELETE @StringArrayTable
WHERE RowNum < @MinRowSelect OR

RowNum > @MaxRowSelect

RETURN
END

GO

-- Now use it to break apart a comma delimited array
SELECT RowNum, Val
FROM dbo.udf_ParseArray('A,B,C,D,E,F,G', ',', 3, 5)

This returns

RowNum Val
3 C
4 D
5 E

How It Works
ALTER FUNCTION allows you to modify an existing UDF by using syntax that is almost identical to that
of CREATE FUNCTION, with some limitations:

• You can’t change the name of the function using ALTER FUNCTION. What you’re doing is
replacing the code of an existing function—therefore the function needs to exist first.

• You can’t convert a scalar UDF to a table UDF (either inline or multi-statement), nor can you
convert a table UDF to a scalar UDF.

In this recipe, the udf_ParseArray from the previous recipe was modified to add two new
parameters, @MinRowSelect and @MaxRowSelect:

ALTER FUNCTION dbo.udf_ParseArray
(@StringArray varchar(max),

@Delimiter char(1) ,
@MinRowSelect int,
@MaxRowSelect int)

The @StringArrayTable table variable also had a new column added to it called RowNum, which
was given the IDENTITY property (meaning that it will increment an integer value for each row in the
result set):

RETURNS @StringArrayTable TABLE (RowNum int IDENTITY(1,1), Val varchar(50))

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 355

9802CH11.qxd 4/24/08 4:12 PM Page 355

The other modification came after the WHILE loop was finished. Any RowNum values below the
minimum or maximum values were deleted from the @StringArrayTable table array:

DELETE @StringArrayTable
WHERE RowNum < @MinRowSelect OR

RowNum > @MaxRowSelect

After altering the function, the function was called using the two new parameters to define the
row range to view (in this case rows 3 through 5):

SELECT RowNum, Val
FROM udf_ParseArray('A,B,C,D,E,F,G', ',', 3, 5)

This returned the third, fourth, and fifth characters from the string array passed to the UDF.

Viewing UDF Metadata
In this recipe, I demonstrate how to view a list of UDFs in the current database (I don’t show the
results because this query includes the actual UDF T-SQL definition):

SELECT name, type_desc, definition
FROM sys.sql_modules s
INNER JOIN sys.objects o

ON s.object_id = o.object_id
WHERE TYPE IN ('IF', -- Inline Table UDF

'TF', -- Multistatement Table UDF
'FN') -- Scalar UDF

How It Works
The sys.sql_modules and sys.objects system views are used to return the UDF name, type descrip-
tion, and SQL definition in a query result set:

FROM sys.sql_modules s
INNER JOIN sys.objects o

ON s.object_id = o.object_id

Because sys.sql_modules contains rows for other object types, sys.objects must also be quali-
fied to only return UDF rows:

WHERE TYPE IN ('IF', -- Inline Table UDF
'TF', -- Multistatement Table UDF
'FN') -- Scalar UDF

Dropping User-Defined Functions
In this recipe, I demonstrate how to drop a user-defined function. The syntax, like other DROP com-
mands, is very straightforward:

DROP FUNCTION { [schema_name.] function_name } [,...n]

Table 11-4 details the arguments of this command.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES356

9802CH11.qxd 4/24/08 4:12 PM Page 356

Table 11-4. DROP FUNCTION Arguments

Argument Description

[schema_name.] function_name This defines the optional schema name and required
function name of the user-defined function.

[,...n] Although not an actual argument, this syntax element
indicates that one or more user-defined functions can be
dropped in a single statement.

This recipe demonstrates how to drop the dbo.udf_ParseArray function created in earlier
recipes:

DROP FUNCTION dbo.udf_ParseArray

How It Works
Although there are three different types of user-defined functions (scalar, inline, and multi-
statement), you need only drop them using the single DROP FUNCTION command.

You can also drop more than one UDF in a single statement, for example:

DROP FUNCTION dbo.udf_ParseArray, dbo.udf_ReturnEmployeeAddress,
dbo.udf_CheckForSQLInjection

Benefitting from UDFs
User-defined functions are useful for both the performance enhancements they provide because of
their cached execution plans and their ability to encapsulate reusable code. In this next section, I’ll
discuss some of the benefits of UDFs. For example, scalar functions in particular can be used to
help make code more readable and allow you to apply lookup rules consistently across an applica-
tion rather than repeating the same code multiple times throughout different stored procedures or
views.

Table-valued functions are also useful for allowing you to apply parameters to results, for
example, using a parameter to define row-level security for a data set (demonstrated later on).

■Caution When designing user-defined functions, consider the multiplier effect. For example, if you create a
scalar user-defined function that performs a lookup against a million-row table in order to return a single value,
and a single lookup with proper indexing takes 30 seconds, chances are you are going to see a significant per-
formance hit if you use this UDF to return values based on each row of another large table. If scalar user-defined
functions reference other tables, make sure that the query you use to access the table information performs well,
and doesn’t return a result set that is too large.

The next few recipes will demonstrate some of the more common and beneficial ways in which
user-defined functions are used in the field.

Maintaining Reusable Code
Scalar UDFs allow you to reduce code bloat by encapsulating logic within a single function, rather
than repeating the logic multiple times wherever it happens to be needed.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 357

9802CH11.qxd 4/24/08 4:12 PM Page 357

For example, the following scalar, user-defined function is used to determine the kind of per-
sonal computer that an employee will receive. There are several lines of code that evaluate different
input parameters, including the title of the employee, the employee’s hire date, and salaried status.
Rather than include this logic in multiple areas across your database application, you can encapsu-
late the logic in a single function:

CREATE FUNCTION dbo.udf_GET_AssignedEquipment
(@Title nvarchar(50), @HireDate datetime, @SalariedFlag bit)
RETURNS nvarchar(50)
AS
BEGIN

DECLARE @EquipmentType nvarchar(50)

IF @Title LIKE 'Chief%' OR
@Title LIKE 'Vice%' OR
@Title = 'Database Administrator'

BEGIN
SET @EquipmentType = 'PC Build A'

END

IF @EquipmentType IS NULL AND @SalariedFlag = 1
BEGIN
SET @EquipmentType = 'PC Build B'

END

IF @EquipmentType IS NULL AND @HireDate < '1/1/2002'
BEGIN
SET @EquipmentType = 'PC Build C'

END

IF @EquipmentType IS NULL
BEGIN
SET @EquipmentType = 'PC Build D'

END

RETURN @EquipmentType
END

GO

Once you’ve created it, you can use this scalar function in many areas of your Transact-SQL
code without having to recode the logic within. For example, the new scalar function is used in the
SELECT, GROUP BY, and ORDER BY clauses of a query:

SELECT dbo.udf_GET_AssignedEquipment
(JobTitle, HireDate, SalariedFlag) PC_Build,

COUNT(*) Employee_Count
FROM HumanResources.Employee
GROUP BY dbo.udf_GET_AssignedEquipment

(JobTitle, HireDate, SalariedFlag)
ORDER BY dbo.udf_GET_AssignedEquipment

(JobTitle, HireDate, SalariedFlag)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES358

9802CH11.qxd 4/24/08 4:12 PM Page 358

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

This returns

PC_Build Employee_Count
PC Build A 7
PC Build B 45
PC Build C 238

This second query uses the scalar function in both the SELECT and WHERE clauses, too:

SELECT JobTitle,
BusinessEntityID,
dbo.udf_GET_AssignedEquipment

(JobTitle, HireDate, SalariedFlag) PC_Build
FROM HumanResources.Employee
WHERE dbo.udf_GET_AssignedEquipment

(JobTitle, HireDate, SalariedFlag) IN
('PC Build A', 'PC Build B')

This returns the following (abridged) results:

JobTitle BusinessEntityID PC_Build
Chief Executive Officer 1 PC Build A
Vice President of Engineering 2 PC Build A
Engineering Manager 3 PC Build B
Design Engineer 5 PC Build B
Design Engineer 6 PC Build B
...

How It Works
Scalar, user-defined functions can help you encapsulate business logic so that it isn’t repeated
across your code, providing a centralized location for you to make a single modification to a single
function when necessary. This also provides consistency, so that you and other database developers
are consistently using and writing the same logic in the same way. One other benefit is code read-
ability, particularly with large queries that perform multiple lookups or evaluations.

Cross-Referencing Natural Key Values
Recall from Chapter 1 that a surrogate key is an artificial primary key, as opposed to a natural key,
which represents a unique descriptor of data (for example, a Social Security Number is an example
of a natural key, but an IDENTITY property column is a surrogate key). IDENTITY values are often used
as surrogate primary keys but are also referenced as foreign keys.

In my own OLTP and star schema database designs, I assign each table a surrogate key by
default, unless there is a significant reason not to do so. Doing this helps you abstract your own
unique key from any external legacy natural keys. If you are using, for example, an EmployeeNumber
that comes from the HR system as your primary key instead, you could run into trouble later on if
that HR system decides to change its data type (forcing you to change the primary key, any foreign
key references, and composite primary keys). Surrogate keys help protect you from changes like this
because they are under your control, and so they make good primary keys. You can keep your natu-
ral keys’ unique constraints without worrying about external changes impacting your primary or
foreign keys.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 359

9802CH11.qxd 4/24/08 4:12 PM Page 359

When importing data from legacy systems into production tables, you’ll often still need to ref-
erence the natural key in order to determine which rows get inserted, updated, or deleted. This isn’t
very tricky if you’re just dealing with a single column (for example, EmployeeID, CreditCardNumber,
SSN, UPC). However, if the natural key is made up of multiple columns, the cross-referencing to the
production tables may not be quite so easy.

The following demonstrates a scalar, user-defined function that can be used to simplify natural
key lookups, by checking for their existence prior to performing an action. To set up the example, I’ll
execute a few objects and commands.

First, I’ll create a new table that uses its own surrogate keys, along with three columns that
make up the composite natural key (these three columns form the unique value that received from
the legacy system):

CREATE TABLE dbo.DimProductSalesperson
(DimProductSalespersonID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ProductCD char(10) NOT NULL,
CompanyNBR int NOT NULL,
SalespersonNBR int NOT NULL
)
GO

■Caution This recipe doesn’t add indexes to the tables; however, in a real-life scenario, you’ll want to add
indexes for key columns used for join operations or qualified in the WHERE clause of a query.

Next, I’ll create a staging table that holds rows from the external legacy data file. For example,
this table could be populated from an external text file that is dumped out of the legacy system.
This table doesn’t have a primary key, as it is just used to hold data prior to being moved to the
dbo.DimProductSalesperson table:

CREATE TABLE dbo.Staging_PRODSLSP
(ProductCD char(10) NOT NULL,
CompanyNBR int NOT NULL,
SalespersonNBR int NOT NULL
)
GO

Next, I’ll insert two rows into the staging table:

INSERT dbo.Staging_PRODSLSP
(ProductCD, CompanyNBR, SalespersonNBR)
VALUES ('2391A23904', 1, 24)

INSERT dbo.Staging_PRODSLSP
(ProductCD, CompanyNBR, SalespersonNBR)
VALUES ('X129483203', 1, 34)

Now, these two rows can be inserted into the DimProductSalesperson table using the following
query, which doesn’t use a scalar UDF:

INSERT dbo.DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR)
SELECT s.ProductCD, s.CompanyNBR, s.SalespersonNBR
FROM dbo.Staging_PRODSLSP s
LEFT OUTER JOIN dbo.DimProductSalesperson d ON

s.ProductCD = d.ProductCD AND

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES360

9802CH11.qxd 4/24/08 4:12 PM Page 360

s.CompanyNBR = d.CompanyNBR AND
s.SalespersonNBR = d.SalespersonNBR

WHERE d.DimProductSalespersonID IS NULL

Because each column forms the natural key, I must LEFT join each column from the inserted
table against the staging table, and then check to see whether the row does not already exist in the
destination table using IS NULL.

An alternative to this, allowing you to reduce the code in each INSERT/UPDATE/DELETE, is to
create a scalar UDF like the following:

CREATE FUNCTION dbo.udf_GET_Check_NK_DimProductSalesperson
(@ProductCD char(10), @CompanyNBR int, @SalespersonNBR int)

RETURNS bit
AS
BEGIN

DECLARE @Exists bit

IF EXISTS (SELECT DimProductSalespersonID
FROM dbo.DimProductSalesperson
WHERE @ProductCD = @ProductCD AND

@CompanyNBR = @CompanyNBR AND
@SalespersonNBR = @SalespersonNBR)

BEGIN
SET @Exists = 1

END
ELSE
BEGIN

SET @Exists = 0
END

RETURN @Exists
END

GO

The UDF certainly looks like more code up front, but you’ll obtain the benefit later during the
data import process. For example, now you can rewrite the INSERT operation demonstrated earlier,
as follows:

INSERT dbo.DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR)
SELECT ProductCD, CompanyNBR, SalespersonNBR
FROM dbo.Staging_PRODSLSP
WHERE dbo.udf_GET_Check_NK_DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR) = 0

How It Works
In this recipe, I demonstrated how to create a scalar UDF that returned a bit value based on three
parameters. If the three values already existed for a row in the production table, a 1 was returned;
otherwise a 0 was returned. Using this function simplifies the INSERT/UPDATE/DELETE code that you
must write in situations where a natural key spans multiple columns.

Walking through the UDF code, the first lines defined the UDF name and parameters. Each of
these parameters is for the composite natural key in the staging and production table:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 361

9802CH11.qxd 4/24/08 4:12 PM Page 361

CREATE FUNCTION dbo.udf_GET_Check_NK_DimProductSalesperson
(@ProductCD char(10), @CompanyNBR int, @SalespersonNBR int)

Next, a bit data type was defined to be returned by the function:

RETURNS bit
AS
BEGIN

A local variable was created to hold the bit value:

DECLARE @Exists bit

An IF was used to check for the existence of a row matching all three parameters for the natural
composite key. If there is a match, the local variable is set to 1. If not, it is set to 0:

IF EXISTS (SELECT DimProductSalespersonID
FROM dbo.DimProductSalesperson
WHERE @ProductCD = @ProductCD AND

@CompanyNBR = @CompanyNBR AND
@SalespersonNBR = @SalespersonNBR)

BEGIN
SET @Exists = 1

END
ELSE
BEGIN

SET @Exists = 0
END

The local variable was then passed back to the caller:

RETURN @Exists
END

GO

The function was then used in the WHERE clause, extracting from the staging table those rows
that returned a 0 from the scalar UDF, and therefore do not exist in the DimProductSalesperson
table:

WHERE dbo.udf_GET_Check_NK_DimProductSalesperson
(ProductCD, CompanyNBR, SalespersonNBR) = 0

Replacing Views with Multi-Statement UDFs
Multi-statement UDFs allow you to return data in the same way you would from a view, only with
the ability to manipulate data like a stored procedure.

In this example, a multi-statement UDF is created to apply row-based security based on the
caller of the function. Only rows for the specified salesperson will be returned. In addition to this,
the second parameter is a bit flag that controls whether rows from the SalesPersonQuotaHistory
table will be returned in the results:

CREATE FUNCTION dbo.udf_SEL_SalesQuota
(@BusinessEntityID int,

@ShowHistory bit)
RETURNS @SalesQuota TABLE

(BusinessEntityID int,
QuotaDate datetime,
SalesQuota money)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES362

9802CH11.qxd 4/24/08 4:12 PM Page 362

AS
BEGIN

INSERT @SalesQuota
(BusinessEntityID, QuotaDate, SalesQuota)
SELECT BusinessEntityID, ModifiedDate, SalesQuota
FROM Sales.SalesPerson
WHERE BusinessEntityID = @BusinessEntityID

IF @ShowHistory = 1
BEGIN

INSERT @SalesQuota
(BusinessEntityID, QuotaDate, SalesQuota)
SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE BusinessEntityID = @BusinessEntityID

END

RETURN
END

GO

After the UDF is created, the following query is executed to show sales quota data for a specific
salesperson from the SalesPerson table:

SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,0)

This returns

BusinessEntityID QuotaDate SalesQuota
275 2001-06-24 00:00:00.000 300000.00

Next, the second parameter is switched from a 0 to a 1, in order to display additional rows for
SalespersonID 275 from the SalesPersonQuotaHistory table:

SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,1)

This returns the following (abridged) results:

BusinessEntityID QuotaDate SalesQuota
275 2001-06-24 00:00:00.000 300000.00
275 2001-07-01 00:00:00.000 367000.00
275 2001-10-01 00:00:00.000 556000.00
275 2002-01-01 00:00:00.000 502000.00
275 2002-04-01 00:00:00.000 550000.00
275 2002-07-01 00:00:00.000 1429000.00
275 2002-10-01 00:00:00.000 1324000.00
...

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 363

9802CH11.qxd 4/24/08 4:12 PM Page 363

How It Works
This recipe demonstrated a multi-statement table-valued UDF to return sales quota data based on
the BusinessEntityID value that was passed. It also included a second bit flag that controlled
whether or not history was also returned.

Walking through the function, you’ll notice that the first few lines defined the input parameters
(something that a view doesn’t allow):

CREATE FUNCTION dbo.udf_SEL_SalesQuota
(@BusinessEntityID int,

@ShowHistory bit)

After this, the table columns that are to be returned by the function were defined:

RETURNS @SalesQuota TABLE
(BusinessEntityID int,
QuotaDate datetime,
SalesQuota money)

The function body included two separate batch statements, the first being an INSERT into the
table variable of rows for the specific salesperson:

AS
BEGIN

INSERT @SalesQuota
(BusinessEntityID, QuotaDate, SalesQuota)
SELECT BusinessEntityID, ModifiedDate, SalesQuota
FROM Sales.SalesPerson
WHERE BusinessEntityID = @BusinessEntityID

Next, an IF statement (another construct not allowed in views) evaluated the bit parameter.
If equal to 1, quota history will also be inserted into the table variable:

IF @ShowHistory = 1
BEGIN

INSERT @SalesQuota
(BusinessEntityID, QuotaDate, SalesQuota)
SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE BusinessEntityID = @BusinessEntityID

END

Lastly, the RETURN keyword signaled the end of the function (and, unlike a scalar function, no
local variable is designated after it):

RETURN
END

GO

Although the UDF contained Transact-SQL not allowed in a view, it was still able to be refer-
enced in the FROM clause:

SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM dbo.udf_SEL_SalesQuota (275,0)

The results could be returned in a view using a UNION statement, but with that you wouldn’t be
able to have the control logic to either show or not show history in a single view.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES364

9802CH11.qxd 4/24/08 4:12 PM Page 364

In this recipe, I demonstrated a method to create your own parameter-based result sets. This
can be used to implement row-based security. Row-level security is not built natively into the SQL
Server security model. You can use functions to return only the rows that are allowed to be viewed
by designating input parameters that are used to filter the data.

UDT Basics
User-defined types are useful for defining a consistent data type that is named after a known busi-
ness or application-centric attribute, such as PIN, PhoneNBR, or EmailAddress. Once a user-defined
type is created in the database, it can be used within columns, parameters, and variable definitions,
providing a consistent underlying data type. The next two recipes will show you how to create and
drop user-defined types. Note that unlike some other database objects, there isn’t a way to modify
an existing type using an ALTER command.

Creating and Using User-Defined Types
This recipe demonstrates how to create a user-defined type (also called an alias data type), which is
a specific configuration of a data type that is given a user-specified name, data type, length, and
nullability. You can use all base data types except the new xml data type.

■Caution One drawback when using user-defined data types is their inability to be changed without cascading
effects, as you’ll see in the last recipe of this chapter.

The basic syntax for creating a user-defined type is as follows:

CREATE TYPE [schema_name.] type_name
{

FROM base_type
[(precision [,scale])]
[NULL | NOT NULL] }

Table 11-5 details the arguments of these commands.

Table 11-5. CREATE TYPE Arguments

Argument Description

[schema_name.] type_name This specifies the optional schema name and required type name
of the new user-defined type.

base_type This is the base data type used to define the new user-defined
type. You are allowed to use all base system data types except the
xml data type.

(precision [,scale]) If using a numeric base type, precision is the maximum number
of digits that can be stored both left and right of the decimal
point. scale is the maximum number of digits to be stored right
of the decimal point.

NULL | NOT NULL This defines whether or not your new user-defined type allows
NULL values.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 365

9802CH11.qxd 4/24/08 4:12 PM Page 365

■Note This chapter covers how to create user-defined types using Transact-SQL. Chapter 13 briefly discusses
how to create these using the new Common Language Runtime (CLR) functionality.

In this recipe, I’ll create a new type based on a 14-character string:

-- In this example, we assume the company's Account number will
-- be used in multiple tables, and that it will always have a fixed
-- 14 character length and will never allow NULL values

CREATE TYPE dbo.AccountNBR
FROM char(14) NOT NULL
GO

Next, I’ll use the new type in the column definition of two tables:

-- The new data type is now used in two different tables

CREATE TABLE dbo.InventoryAccount
(InventoryAccountID int NOT NULL,
InventoryID int NOT NULL,
InventoryAccountNBR AccountNBR)

GO

CREATE TABLE dbo.CustomerAccount
(CustomerAccountID int NOT NULL,
CustomerID int NOT NULL,
CustomerAccountNBR AccountNBR)

GO

This type can also be used in the definition of a local variable or input parameter. For example,
the following stored procedure uses the new data type to define the input parameter for a stored
procedure:

CREATE PROCEDURE dbo.usp_SEL_CustomerAccount
@CustomerAccountNBR AccountNBR

AS

SELECT CustomerAccountID, CustomerID, CustomerAccountNBR
FROM dbo.CustomerAccount
WHERE CustomerAccountNBR = CustomerAccountNBR
GO

Next, a local variable is created using the new data type and is passed to the stored procedure:

DECLARE @CustomerAccountNBR AccountNBR
SET @CustomerAccountNBR = '1294839482'

EXEC dbo.usp_SEL_CustomerAccount @CustomerAccountNBR

To view the underlying base type of the user-defined type, you can use the sp_help system
stored procedure:

EXEC sp_help 'dbo.AccountNBR'

This returns the following results (only a few columns are displayed for presentation purposes):

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES366

9802CH11.qxd 4/24/08 4:12 PM Page 366

Type_name Storage_type Length Nullable
AccountNbr char 14 no

How It Works
In this recipe, a new user-defined type called dbo.AccountNBR was created with a char(14) data type
and NOT NULL. Once the user-defined type was created, it was then used in the column definition of
two different tables:

CREATE TABLE dbo.InventoryAccount
(InventoryAccountID int NOT NULL,
InventoryID int NOT NULL,
InventoryAccountNBR AccountNBR)

Because NOT NULL was already inherent in the data type, it wasn’t necessary to explicitly define
it in the column definition.

After creating the tables, a stored procedure was created that used the new data type in the
input parameter definition. The procedure was then called using a local variable that also used the
new type.

Although Transact-SQL types may be an excellent convenience for some developers, creating
your application’s data dictionary and abiding by the data types may suit the same purpose. For
example, if an AccountNBR is always 14 characters, as a DBA/developer, you can communicate and
check to make sure that new objects are using a consistent name and data type.

Identifying Columns and Parameters with Dependencies on
User-Defined Types
Before showing you how to remove a user-defined data type, you’ll need to know how to identify all
database objects that depend on that type. As you’ll see later on, removing a UDT doesn’t automati-
cally cascade changes to the dependent table.

This example shows you how to identify which database objects are using the specified user-
defined type. This first query in the recipe displays all columns that use the AccountNBR user-defined
type:

SELECT OBJECT_NAME(c.object_id) Table_Name, c.name Column_Name
FROM sys.columns c
INNER JOIN sys.types t ON

c.user_type_id = t.user_type_id
WHERE t.name = 'AccountNBR'

This returns

Table_Name Column_Name
InventoryAccount InventoryAccountNBR
CustomerAccount CustomerAccountNBR

This next query shows any procedures or functions that have parameters defined using the
AccountNBR user-defined type:

-- Now see what parameters reference the AccountNBR data type
SELECT OBJECT_NAME(p.object_id) Table_Name, p.name Parameter_Name
FROM sys.parameters p
INNER JOIN sys.types t ON

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 367

9802CH11.qxd 4/24/08 4:12 PM Page 367

p.user_type_id = t.user_type_id
WHERE t.name = 'AccountNBR'

This returns

Table_Name Parameter_Name
usp_SEL_CustomerAccount @CustomerAccountNBR

How It Works
In order to report which table columns use the user-defined type, the system catalog views
sys.columns and sys.types are used:

FROM sys.columns c
INNER JOIN sys.types t ON

c.user_type_id = t.user_type_id

The sys.columns view contains a row for each column defined for a table-valued function,
table, and view in the database. The sys.types view contains a row for each user and system
data type.

To identify which function or procedure parameters reference the user-defined type, the
system catalog views sys.parameters and sys.types are used:

FROM sys.parameters p
INNER JOIN sys.types t ON

p.user_type_id = t.user_type_id

The sys.parameters view contains a row for each database object that can accept a parameter,
including stored procedures, for example.

Identifying which objects reference a user-defined type is necessary if you plan on dropping
the user-defined type, as the next recipe demonstrates.

Dropping User-Defined Types
In this recipe, I demonstrate how to remove a user-defined type (also called an alias data type) from
the database. As with most DROP commands, the syntax for removing a user-defined type is very
straightforward:

DROP TYPE [schema_name.] type_name

The DROP TYPE command uses the schema and type name, as this recipe will demonstrate.
First, however, any references to the user-defined type need to be removed beforehand. In this
example, the AccountNBR type is changed to the base equivalent for two tables and a stored
procedure:

ALTER TABLE dbo.InventoryAccount
ALTER COLUMN InventoryAccountNBR char(14)
GO

ALTER TABLE dbo.CustomerAccount
ALTER COLUMN CustomerAccountNBR char(14)
GO

ALTER PROCEDURE dbo.usp_SEL_CustomerAccount
@CustomerAccountNBR char(14)

AS

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES368

9802CH11.qxd 4/24/08 4:12 PM Page 368

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

SELECT CustomerAccountID, CustomerID, CustomerAccountNBR
FROM dbo.CustomerAccount
WHERE CustomerAccountNBR = CustomerAccountNBR
GO

With the referencing objects now converted, it is okay to go ahead and drop the type:

DROP TYPE dbo.AccountNBR

How It Works
In order to remove a type, you must first change or remove any references to the type in a database
table. If you are going to change the definition of a UDT, you need to remove all references to that
UDT everywhere in all database objects that use that UDT. That means changing tables, views,
stored procedures, etc., first before dropping the type. This can be very cumbersome if your data-
base objects depend very heavily on them. Also, if any schema-bound stored procedures, functions,
or triggers use the data type as parameters or variables, these references must be changed or
removed. In this recipe, ALTER TABLE... ALTER COLUMN was used to change the data type to the
system data type:

ALTER TABLE dbo.InventoryAccount
ALTER COLUMN InventoryAccountNBR char(14)

A stored procedure parameter was also modified using ALTER PROCEDURE:

ALTER PROCEDURE usp_SEL_CustomerAccount
(@CustomerAccountNBR char(14))
...

Passing Table-Valued Parameters
SQL Server 2008 introduces table-valued parameters that can be used to pass rowsets to stored
procedures and user-defined functions. This functionality allows you to encapsulate multi-rowset
capabilities within stored procedures and functions without having to make multiple row-by-row
calls to data modification procedures or create multiple input parameters that inelegantly translate
to multiple rows.

For example, the following stored procedure has several input parameters that are used to
insert rows into the Department table:

CREATE PROCEDURE dbo.usp_INS_Department_Oldstyle
@Name_1 nvarchar(50),
@GroupName_1 nvarchar(50),
@Name_2 nvarchar(50),
@GroupName_2 nvarchar(50),
@Name_3 nvarchar(50),
@GroupName_3 nvarchar(50),
@Name_4 nvarchar(50),
@GroupName_4 nvarchar(50),
@Name_5 nvarchar(50),
@GroupName_5 nvarchar(50)

AS

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name_1, @GroupName_1)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 369

9802CH11.qxd 4/24/08 4:12 PM Page 369

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name_2, @GroupName_2)

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name_3, @GroupName_3)

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name_4, @GroupName_4)

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name_5, @GroupName_5)

GO

This previous example procedure has several limitations. First of all, it assumes that each call
will contain five rows. If you have ten rows, you must call the procedure twice. If you have three
rows, you need to modify the procedure to test for NULL values in the parameters and skip inserts
accordingly. If NULL values are allowed in the underlying table, you would also need a method to
indicate when a NULL should be stored, and when a NULL represents a value not to be stored.

A more common technique is to create a singleton insert procedure:

CREATE PROCEDURE dbo.usp_INS_Department_Oldstyle_V2
@Name nvarchar(50),
@GroupName nvarchar(50)

AS

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@Name, @GroupName)

GO

If you have five rows to be inserted, you would call this procedure five times. This may be
acceptable in many circumstances—however, if you will always be inserting multiple rows in a
single batch, SQL Server 2008 provides a better alternative. Instead of performing singleton calls,
you can pass the values to be inserted into a single parameter that represents a table of values.
Such a parameter is called a table-valued parameter.

In order to use a table-valued parameter, the first step is to define a user-defined table data
type as I demonstrate here:

CREATE TYPE Department_TT AS TABLE
(Name nvarchar(50),
GroupName nvarchar(50))
GO

Once the new table type is created in the database, I can now reference it in module definitions
and within the code:

CREATE PROCEDURE dbo.usp_INS_Department_NewStyle
@DepartmentTable as Department_TT READONLY

AS

INSERT HumanResources.Department
(Name, GroupName)

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES370

9802CH11.qxd 4/24/08 4:12 PM Page 370

SELECT Name, GroupName
FROM @DepartmentTable

GO

Let’s assume that an external process is used to populate a list of values, which I will then pass
to the procedure. In your own applications, the data source that you pass in can be generated from
a populated staging table, directly from an application rowset, or from a constructed rowset, as
demonstrate next:

-- I can declare our new type for use within a T-SQL batch
DECLARE @StagingDepartmentTable as Department_TT

-- Insert multiple rows into this table-type variable
INSERT @StagingDepartmentTable
(Name, GroupName)
VALUES ('Archivists', 'Accounting')

INSERT @StagingDepartmentTable
(Name, GroupName)
VALUES ('Public Media', 'Legal')

INSERT @StagingDepartmentTable
(Name, GroupName)
VALUES ('Internal Admin', 'Office Administration')

-- Pass this table-type variable to the procedure in a single call
EXEC dbo.usp_INS_Department_NewStyle @StagingDepartmentTable

How It Works
In order to pass result sets to modules, I must first define a user-defined table type within the data-
base. I used the CREATE TYPE command and defined it AS TABLE:

CREATE TYPE Department_TT AS TABLE

Next, I defined the two columns that made up the table, just as one would for a regular table:

(Name nvarchar(50),
GroupName nvarchar(50))
GO

I could have also defined the table type with PRIMARY KEY, UNIQUE, and CHECK constraints. I can
also designate nullability, as well as define whether or not the column was computed.

Next, I created a new procedure that uses the newly created table type. In the input parameter
argument list, I created an input parameter with a type of Department_TT:

CREATE PROCEDURE dbo.usp_INS_Department_NewStyle
@DepartmentTable as Department_TT READONLY

AS

Notice the READONLY keyword after the data type designation. This is a requirement for stored
procedure and user-defined function input parameters, as you are not allowed to modify the table-
valued result set in this version of SQL Server.

The next block of code handled the INSERT to the table, using the input parameter as the data
source of the multiple rows:

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES 371

9802CH11.qxd 4/24/08 4:12 PM Page 371

INSERT HumanResources.Department
(Name, GroupName)
SELECT Name, GroupName
FROM @DepartmentTable

GO

After that, I demonstrated declaring a local variable that would contain multiple rows that will
be passed to the procedure. The DECLARE statement defines the variable name, followed by the name
of the table user-defined type defined earlier in the recipe:

DECLARE @StagingDepartmentTable as Department_TT

Once declared, I inserted multiple rows into this table, and then passed it as a parameter to the
stored procedure call:

INSERT @StagingDepartmentTable
(Name, GroupName)
VALUES ('Archivists', 'Accounting')
...

EXEC dbo.usp_INS_Department_NewStyle @StagingDepartmentTable

The benefits of this new functionality come into play when you consider procedures that handle
business processes. For example, if you have a web site that handles product orders, you can now
pass result sets to a single procedure that includes the general header information, along with mul-
tiple rows representing the products that were ordered. This application process can be constructed
as a single call versus having to issue several calls for each unique product line item ordered. For
extremely busy systems, using table-valued parameters allows you to reduce the chatter between
the application and the database server, resulting in increased network bandwidth and more effi-
cient batching of transactions on the SQL Server side.

CHAPTER 11 ■ USER-DEFINED FUNCTIONS AND TYPES372

9802CH11.qxd 4/24/08 4:12 PM Page 372

Triggers

In this chapter, I’ll present recipes for creating and using Data Manipulation Language (DML) and
Data Definition Language (DDL) triggers. DML triggers contain Transact-SQL code that is used to
respond to an INSERT, UPDATE, or DELETE operation against a table or view. DDL triggers respond to
server or database events instead of data modifications. For example, you can create a DDL trigger
that writes to an audit table whenever a database user issues the CREATE TABLE or DROP TABLE
command.

■Tip In SQL Server 2008, system stored procedures that perform DDL operations will now fire DDL triggers.

Triggers, when used properly, can provide a convenient automatic response to specific actions.
They are appropriate for situations where you must create a business-level response to an action.
Triggers should not be used in place of constraints (for example, primary key or unique constraints)
because constraints will perform better and are better suited to these operations. You should also
be cognizant of the Transact-SQL used to define the trigger, being careful to ensure that the code is
properly optimized. If a trigger takes several seconds to execute for each UPDATE, overall perfor-
mance can suffer.

In my experience, triggers always seem to be the forgotten database object when it comes to
troubleshooting performance issues. I’ll hear complaints about a poorly performing data modifica-
tion and spend time trying to optimize it, only to find out that it was a poorly tuned trigger that
caused the performance issue. It’s one of the major reasons that I use DML triggers sparingly—and
when I do use them, I take extra care to make sure they are fast and bug-free. Nonetheless, applica-
tion requirements may dictate that a DML trigger be used. Not to mention that SQL Server DDL
triggers open up a whole new range of functionality not available in previous versions, providing
features that can’t easily be replaced by other database object types.

In this chapter, I’ll review the following topics:

• How to create an AFTER DML trigger

• How to create an INSTEAD OF DML trigger

• How to create a DDL trigger

• How to modify or drop an existing trigger

• How to enable or disable triggers

• How to limit trigger nesting, set the firing order, and control recursion

• How to view trigger metadata

• How to use triggers to respond to logon events

First, however, I’ll start off with a background discussion of DML triggers. 373

C H A P T E R 1 2

9802CH12.qxd 4/24/08 4:14 PM Page 373

■Note This chapter covers how to create triggers using Transact-SQL. However, Chapter 13 covers how to
create triggers using the new Common Language Runtime (CLR) functionality.

DML Triggers
DML triggers respond to user INSERT, UPDATE, or DELETE operations against a table or a view. When a
data modification event occurs, the trigger performs a set of actions defined within the trigger. Sim-
ilar to stored procedures, triggers are defined in Transact-SQL and allow a full range of activities to
be performed.

A DML trigger can be defined specifically as FOR UPDATE, FOR INSERT, FOR DELETE, or any combi-
nation of the three. UPDATE triggers respond to modifications against one or more columns within
the table, INSERT triggers respond to new data being added to the database, and DELETE triggers
respond to data being deleted from the database. There are two types of DML triggers: AFTER and
INSTEAD OF.

AFTER triggers are only allowed for tables, and they execute after the data modification has been
completed against the table. INSTEAD OF triggers execute instead of the original data modification
and can be created for both tables and views.

DML triggers allow you to perform actions in response to data modifications in a table. For
example, you can create a trigger that populates an audit table based on the operation performed,
or perhaps use the trigger to decrement the value of a quantity. Although this ability to trigger
actions automatically is a powerful feature, there are a few things to keep in mind before your use
of triggers proliferates:

• Triggers can often become a hidden and hence forgotten problem. When troubleshooting
performance or logical issues, DBAs can forget that triggers are executing in the background.
Make sure that your use of triggers is “visible” in your data documentation.

• If you can ensure that all your data modifications flow through a stored procedure, I would
strongly recommend you perform all activities within the stored procedure, rather than use a
trigger. For example, if you need to update a quantity in a related table, after inserting a sales
record, why not put this logic in the stored procedure instead? The advantages are manage-
ability (one place to look) and supportability (one place to troubleshoot), when the
procedure needs modifications or performs unexpected actions.

• Always keep performance in mind, and this means writing triggers that execute quickly.
Long-running triggers can significantly slow down data modification operations. Take par-
ticular care in putting triggers into databases with frequent data modifications.

• Non-logged updates do not cause a DML trigger to fire (for example WRITETEXT, TRUNCATE
TABLE, and bulk insert operations).

• Constraints usually run faster than a DML trigger, so if your business requirements can be
fulfilled by a constraint, use constraints instead. AFTER triggers run after the data modifica-
tion has already occurred, so they cannot be used to prevent a constraint violation.

• Don’t allow result sets from a SELECT statement to be returned within your trigger. Most
applications can’t consume these in an elegant fashion, and embedded queries can hurt the
trigger’s performance.

As long as you keep these general guidelines in mind and use them properly, triggers are an
excellent means of enforcing business rules in your database.

CHAPTER 12 ■ TRIGGERS374

9802CH12.qxd 4/24/08 4:14 PM Page 374

■Caution Some of the triggers demonstrated in the chapter may interfere with existing triggers on the SQL
instance and database. If you are following along with the code, be sure to test this functionality only on a develop-
ment SQL Server environment.

Creating an AFTER DML Trigger
An AFTER DML trigger executes after an INSERT, UPDATE, and/or DELETE modification has been com-
pleted successfully against a table. The specific syntax for an AFTER DML trigger is as follows:

CREATE TRIGGER [schema_name .]trigger_name
ON table
[WITH <dml_trigger_option> [...,n]]
AFTER
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [...n]}

Table 12-1 details the arguments of this command.

Table 12-1. CREATE TRIGGER Arguments

Argument Description

[schema_name .]trigger_name Defines the optional schema owner and
required user-defined name of the new
trigger.

table Defines the table name that the trigger
applies to.

<dml_trigger_option> [...,n] Allows you to specify the ENCRYPTION and/or
EXECUTE AS clause. ENCRYPTION will encrypt the
Transact-SQL definition of the trigger, making
it unviewable within the system tables.
EXECUTE AS allows you to define the security
context that the trigger will be executed under.

[INSERT] [,] [UPDATE] [,] [DELETE] Defines which DML event or events the trigger
will react to, including INSERT, UPDATE, and
DELETE. A single trigger can react to one or
more of these actions against the table.

NOT FOR REPLICATION Designates that the trigger should not be
executed when a replication modification is
performed against the table.

sql_statement [...n] Allows one or more Transact-SQL statements,
which can be used to carry out actions such
as performing validations against the DML
changes or performing other table DML
actions.

Before proceeding to the recipe, it is important to note that SQL Server creates two “virtual”
tables that are available specifically for triggers, called the deleted and inserted tables. These two
tables capture the before and after pictures of the modified rows. Table 12-2 shows the tables that
each DML operation impacts.

CHAPTER 12 ■ TRIGGERS 375

9802CH12.qxd 4/24/08 4:14 PM Page 375

Table 12-2. Inserted and Deleted Virtual Tables

DML Operation Inserted Table Holds . . . Deleted Table Holds . . .

INSERT Inserted rows

UPDATE New rows (rows with updates) Old rows (pre-update)

DELETE Deleted rows

The inserted and deleted tables can be used within your trigger to access the data both before
and after the data modifications that caused the trigger to fire. These tables will store data for both
single and multi-row updates. Be sure to program your triggers with both types of updates (single
and multi-row) in mind. For example, a DELETE operation can impact either a single row or 50
rows—so make sure that the trigger is programmed to handle this accordingly.

In this recipe, I demonstrate using a trigger to track row inserts or deletes from the Production.
ProductInventory table:

USE AdventureWorks
GO

-- Track all Inserts, Updates, and Deletes
CREATE TABLE Production.ProductInventoryAudit

(ProductID int NOT NULL ,
LocationID smallint NOT NULL ,
Shelf nvarchar(10) NOT NULL ,
Bin tinyint NOT NULL ,
Quantity smallint NOT NULL ,
rowguid uniqueidentifier NOT NULL ,
ModifiedDate datetime NOT NULL ,
InsOrUPD char(1) NOT NULL)

GO

-- Create trigger to populate Production.ProductInventoryAudit table
CREATE TRIGGER Production.trg_uid_ProductInventoryAudit
ON Production.ProductInventory
AFTER INSERT, DELETE
AS

SET NOCOUNT ON

-- Inserted rows
INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'
FROM inserted i

-- Deleted rows

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

CHAPTER 12 ■ TRIGGERS376

9802CH12.qxd 4/24/08 4:14 PM Page 376

GO

-- Insert a new row
INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

-- Delete a row

DELETE Production.ProductInventory
WHERE ProductID = 316 AND

LocationID = 6

-- Check the audit table
SELECT ProductID, LocationID, InsOrUpd
FROM Production.ProductInventoryAudit

This returns

ProductID LocationID InsOrUpd
316 6 I
316 6 D

How It Works
This recipe started off by having you create a new table for holding inserted or deleted rows from
the Production.ProductInventory table. The new table’s schema matches the original table, only
this time a new column was added called InsOrUPD to indicate whether the row was an INSERT or
UPDATE operation:

CREATE TABLE Production.ProductInventoryAudit
(ProductID int NOT NULL ,

LocationID smallint NOT NULL ,
Shelf nvarchar(10) NOT NULL ,
Bin tinyint NOT NULL ,
Quantity smallint NOT NULL ,
rowguid uniqueidentifier NOT NULL ,
ModifiedDate datetime NOT NULL ,
InsOrUPD char(1) NOT NULL)

GO

Next, an AFTER DML trigger is created using CREATE TRIGGER. The owning schema and new
trigger name is designated in the first line of the statement:

CREATE TRIGGER Production.trg_uid_ProductInventoryAudit

The table (which when updated will cause the trigger to fire) is designated in the ON clause:

ON Production.ProductInventory

Two types of DML activity will be monitored, inserts and deletes:

AFTER INSERT, DELETE

The body of the trigger begins after the AS keyword:

AS

CHAPTER 12 ■ TRIGGERS 377

9802CH12.qxd 4/24/08 4:14 PM Page 377

The SET NOCOUNT is set ON in order to suppress the “rows affected” messages from being
returned back to the calling application whenever the trigger is fired:

SET NOCOUNT ON

The first statement inserts a new row into the new audit table for rows that exist in the virtual
inserted table:

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'
FROM inserted i

The second statement inserts a new row into the new audit table for rows that exist in the vir-
tual deleted table, but not the inserted table:

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

GO

After creating the trigger, in order to test it, a new row was inserted into the Production.
ProductInventory table and then deleted right afterwards:

-- Insert a new row
INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

-- Delete a row

DELETE Production.ProductInventory
WHERE ProductID = 316 AND

LocationID = 6

As you can see, a query was executed against the audit table, and there were two rows tracking
the insert and delete activities against the Production.ProductInventory table:

SELECT ProductID, LocationID, InsOrUpd
FROM Production.ProductInventoryAudit

Creating an INSTEAD OF DML Trigger
INSTEAD OF DML triggers execute instead of the original data modification that fired the trigger and
are allowed for both tables and views. INSTEAD OF triggers are often used to handle data modifica-
tions to views that do not allow for data modifications (see Chapter 7 for a review of what rules a
view must follow in order to be updateable).

DML triggers use the following syntax:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [...,n]]
INSTEAD OF

CHAPTER 12 ■ TRIGGERS378

9802CH12.qxd 4/24/08 4:14 PM Page 378

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [...n] }

Table 12-3 details the arguments of this command.

Table 12-3. INSTEAD OF Trigger Arguments

Argument Description

[schema_name .]trigger_name Defines the optional schema owner and
required user-defined name of the new trigger.

table | view Defines the name of the table or view that the
trigger applies to.

<dml_trigger_option> [...,n] Allows you to specify the ENCRYPTION and/or
EXECUTE AS clause. ENCRYPTION will encrypt the
Transact-SQL definition of the trigger. EXECUTE
AS allows you to define the security context
under which the trigger will be executed.

[INSERT] [,] [UPDATE] [,] [DELETE] Defines which DML event or events the trigger
will react to, including INSERT, UPDATE, and
DELETE. A single trigger can react to one or
more of these actions against the table.

NOT FOR REPLICATION Designates that the trigger should not be
executed when a replication modification is
performed against the table.

sql_statement [...n] Allows one or more Transact-SQL statements,
which can be used to carry out actions such
as performing validations against the DML
changes or performing other table DML
actions. These statements perform actions
instead of the specified DML operation that
fired the trigger code.

In this recipe, I’ll create a new table that will hold “pending approval” rows for the
HumanResources.Department table. These are new departments that require manager approval
before being added to the actual table. A view will be created to display all “approved” and
“pending approval” departments from the two tables, and an INSTEAD OF trigger will be created on
the view for inserts, causing inserts to be routed to the new approval table, instead of the actual
HumanResources.Department table:

USE AdventureWorks
GO

-- Create Department "Approval" table
CREATE TABLE HumanResources.DepartmentApproval

(Name nvarchar(50) NOT NULL UNIQUE,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

-- Create view to see both approved and pending approval departments
CREATE VIEW HumanResources.vw_Department
AS

CHAPTER 12 ■ TRIGGERS 379

9802CH12.qxd 4/24/08 4:14 PM Page 379

SELECT Name, GroupName, ModifiedDate, 'Approved' Status
FROM HumanResources.Department
UNION
SELECT Name, GroupName, ModifiedDate, 'Pending Approval' Status
FROM HumanResources.DepartmentApproval

GO

-- Create an INSTEAD OF trigger on the new view
CREATE TRIGGER HumanResources.trg_vw_Department
ON HumanResources.vw_Department
INSTEAD OF
INSERT
AS

SET NOCOUNT ON
INSERT HumanResources.DepartmentApproval
(Name, GroupName)
SELECT i.Name, i.GroupName
FROM inserted i
WHERE i.Name NOT IN (SELECT Name FROM HumanResources.DepartmentApproval)

GO

-- Insert into the new view, even though view is a UNION
-- of two different tables
INSERT HumanResources.vw_Department
(Name, GroupName)
VALUES ('Print Production', 'Manufacturing')

-- Check the view's contents
SELECT Status, Name
FROM HumanResources.vw_Department
WHERE GroupName = 'Manufacturing'

This returns the following result set:

Status Name
Approved Production
Approved Production Control
Pending Approval Print Production

How It Works
The recipe began by creating a separate table to hold “pending approval” department rows:

CREATE TABLE HumanResources.DepartmentApproval
(Name nvarchar(50) NOT NULL UNIQUE,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

Next, a view was created to display both “approved” and “pending approval” departments:

CHAPTER 12 ■ TRIGGERS380

9802CH12.qxd 4/24/08 4:14 PM Page 380

CREATE VIEW HumanResources.vw_Department
AS

SELECT Name, GroupName, ModifiedDate, 'Approved' Status
FROM HumanResources.Department
UNION
SELECT Name, GroupName, ModifiedDate, 'Pending Approval' Status
FROM HumanResources.DepartmentApproval

GO

The UNION in the CREATE VIEW prevents this view from being updateable, as any inserts against
it will be ambiguous. INSTEAD OF triggers allow you to enable data modifications against non-
updateable views.

A trigger was created to react to INSERTs, routing them to the approval table so long as the
department name was unique:

CREATE TRIGGER HumanResources.trg_vw_Department
ON HumanResources.vw_Department
INSTEAD OF
INSERT
AS

SET NOCOUNT ON
INSERT HumanResources.DepartmentApproval
(Name, GroupName)
SELECT i.Name, i.GroupName
FROM inserted i
WHERE i.Name NOT IN (SELECT Name FROM HumanResources.DepartmentApproval)

A new INSERT was tested against the view to see if it would be inserted in the approval table:

INSERT HumanResources.vw_Department
(Name, GroupName)
VALUES ('Print Production', 'Manufacturing')

The view was then queried, showing that the row was inserted, and displayed a “pending
approval status.”

Handling Transactions Within DML Triggers
In this recipe, I’ll demonstrate the use of DML triggers and their interactions with transactions—
both within the trigger and within the initiating event that caused the trigger to fire. For these
examples, we’ll be working with the objects created in the “Creating an AFTER DML Trigger” recipe.

When a trigger is fired, SQL Server always creates a transaction around it, allowing any changes
made by the firing trigger, or the caller, to roll back to the previous state. For example, the trg_uid_
ProductInventoryAudit trigger has been rewritten to fail if certain Shelf or Quantity values are
encountered. If they are, ROLLBACK is used to cancel the trigger and undo any changes:

USE AdventureWorks
GO

-- Remove trigger if one already exists with same name
IF EXISTS
(SELECT 1
FROM sys.triggers
WHERE object_id =

OBJECT_ID(N'[Production].[trg_uid_ProductInventoryAudit]'))

CHAPTER 12 ■ TRIGGERS 381

9802CH12.qxd 4/24/08 4:14 PM Page 381

DROP TRIGGER [Production].[trg_uid_ProductInventoryAudit]
GO

CREATE TRIGGER Production.trg_uid_ProductInventoryAudit
ON Production.ProductInventory
AFTER INSERT, DELETE
AS

SET NOCOUNT ON

IF EXISTS
(SELECT Shelf
FROM inserted
WHERE Shelf = 'A')
BEGIN

PRINT 'Shelf ''A'' is closed for new inventory.'
ROLLBACK

END

-- Inserted rows
INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT DISTINCT i.ProductID, i.LocationID, i.Shelf, i.Bin, i.Quantity,
i.rowguid, GETDATE(), 'I'
FROM inserted i

-- Deleted rows

INSERT Production.ProductInventoryAudit
(ProductID, LocationID, Shelf, Bin, Quantity,
rowguid, ModifiedDate, InsOrUPD)
SELECT d.ProductID, d.LocationID, d.Shelf, d.Bin, d.Quantity,
d.rowguid, GETDATE(), 'D'
FROM deleted d

IF EXISTS
(SELECT Quantity
FROM deleted
WHERE Quantity > 0)
BEGIN

PRINT 'You cannot remove positive quantity rows!'
ROLLBACK

END

GO

Now I’ll attempt an insert of a row using Shelf “A”:

INSERT Production.ProductInventory
(ProductID, LocationID, Shelf, Bin, Quantity)
VALUES (316, 6, 'A', 4, 22)

Because this is not allowed based on the trigger logic, the trigger neither inserts a row into the
audit table nor allows the calling INSERT:

CHAPTER 12 ■ TRIGGERS382

9802CH12.qxd 4/24/08 4:14 PM Page 382

Shelf 'A' is closed for new inventory.
Msg 3609, Level 16, State 1, Line 2
The transaction ended in the trigger. The batch has been aborted.

In the previous example, the INSERT that caused the trigger to fire didn’t use an explicit transac-
tion; however, the operation was still rolled back. This next example demonstrates two deletions,
one that is allowed (according to the rules of the trigger) and another that is not allowed. Both
inserts are embedded within an explicit transaction:

BEGIN TRANSACTION

-- Deleting a row with a zero quantity
DELETE Production.ProductInventory
WHERE ProductID = 853 AND

LocationID = 7

-- Deleting a row with a non-zero quantity
DELETE Production.ProductInventory
WHERE ProductID = 999 AND

LocationID = 60

COMMIT TRANSACTION

This returns the following output:

(1 row(s) affected)
You cannot remove positive quantity rows!
Msg 3609, Level 16, State 1, Line 9
The transaction ended in the trigger. The batch has been aborted.

Because the trigger issued a rollback, the outer transaction is also invalidated (meaning that it
doesn’t remain open). Also, even though the first row was a valid deletion, because they were in the
same calling transaction, neither row was deleted:

SELECT ProductID, LocationID
FROM Production.ProductInventory
WHERE (ProductID = 853 AND

LocationID = 7) OR
(ProductID = 999 AND

LocationID = 60)

This returns

ProductID LocationID
853 7
999 60

How It Works
This recipe demonstrated the interaction between triggers and transactions. In a nutshell, if your
trigger issues a ROLLBACK command, any data modifications performed by the trigger or the rest of
the statements in the transaction are undone. The Transact-SQL query or batch that invoked the
trigger in the first place will also be cancelled and rolled back. If the invoking caller was embedded

CHAPTER 12 ■ TRIGGERS 383

9802CH12.qxd 4/24/08 4:14 PM Page 383

in an explicit transaction, the entire calling transaction is cancelled and rolled back. If you use
explicit transactions within a trigger, SQL Server will treat it like a nested transaction. As I men-
tioned in Chapter 3, a ROLLBACK rolls back all transactions, no matter how many levels deep they
may be nested.

Controlling DML Triggers Based on Modified Columns
When a trigger is fired, you can determine which columns have been modified by using the UPDATE
function.

UPDATE, not to be confused with the DML command, returns a TRUE value if an INSERT or DML
UPDATE has occurred against a column. For example, the following DML UPDATE trigger checks to see
whether a specific column has been modified, and if so, returns an error and rolls back the modifi-
cation:

USE AdventureWorks
GO

CREATE TRIGGER HumanResources.trg_U_Department
ON HumanResources.Department
AFTER UPDATE
AS

IF UPDATE(GroupName)
BEGIN

PRINT 'Updates to GroupName require DBA involvement.'
ROLLBACK

END
GO

An attempt is made to update a GroupName value in this next query:

UPDATE HumanResources.Department
SET GroupName = 'Research and Development'
WHERE DepartmentID = 10

This returns the warning message and error telling us that the batch has been aborted (no
updates made):

Updates to GroupName require DBA involvement.
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.

How It Works
When your trigger logic is aimed at more granular, column-based changes, use the UPDATE function
and conditional processing to ensure that code is only executed against specific columns. Embed-
ding the logic in conditional processing can help reduce the overhead each time the trigger fires—at
least for columns that may be unrelated to the purpose of the trigger.

CHAPTER 12 ■ TRIGGERS384

9802CH12.qxd 4/24/08 4:14 PM Page 384

Viewing DML Trigger Metadata
This next recipe demonstrates how to view information about the triggers in the current database.

The first example queries the sys.triggers catalog view, returning the name of the view or
table, the associated trigger name, whether the trigger is INSTEAD OF, and whether the trigger is
disabled:

-- Show the DML triggers in the current database
SELECT OBJECT_NAME(parent_id) Table_or_ViewNM,

name TriggerNM,
is_instead_of_trigger,
is_disabled

FROM sys.triggers
WHERE parent_class_desc = 'OBJECT_OR_COLUMN'
ORDER BY OBJECT_NAME(parent_id), name

This returns the following (abridged) results:

Table_or_ViewNM TriggerNM is_instead_of_trigger is_disabled
Department trg_U_Department 0 0
Employee dEmployee 1 0
Person iuPerson 0 0
…
Vendor dVendor 1 0
vw_Department trg_vw_Department 1 0
WorkOrder iWorkOrder 0 0
WorkOrder uWorkOrder 0 0

To display a specific trigger’s Transact-SQL definition, you can query the sys.sql_modules
system catalog view:

-- Displays the trigger SQL definition
--(if the trigger is not encrypted)
SELECT o.name, m.definition
FROM sys.sql_modules m
INNER JOIN sys.objects o ON

m.object_id = o.object_id
WHERE o.type = 'TR'

How It Works
The first query in this recipe queried the sys.triggers catalog view to show all the DML triggers in
the current database. There are DDL triggers in the sys.triggers catalog view too, so to prevent
them from being displayed in the results, the parent_class_desc was qualified to OBJECT_OR_COLUMN.
This is because DDL triggers, as you’ll see in the next section, are scoped at the database or SQL
Server instance level—and not at the schema scope.

The second query showed the actual Transact-SQL trigger name and definition of each trigger
in the database. If the trigger was encrypted (similar to an encrypted view or stored procedure, for
example), the trigger definition will display a NULL value in this query.

CHAPTER 12 ■ TRIGGERS 385

9802CH12.qxd 4/24/08 4:14 PM Page 385

DDL Triggers
DDL triggers respond to server or database events, rather than table data modifications. For exam-
ple, you can create a DDL trigger that writes to an audit table whenever a database user issues the
CREATE TABLE or DROP TABLE command. Or, at the server level, you can create a DDL trigger that
responds to the creation of a new login (for example, preventing a certain login from being created).

■Tip In SQL Server 2008, system stored procedures that perform DDL operations will now fire DDL triggers. For
example, sp_create_plan_guide and sp_control_plan_guide will fire the CREATE_PLAN_GUIDE event.

Database DDL triggers are stored as objects within the database they were created in, whereas
Server DDL triggers, which track changes at the server level, are stored in the master database.

The syntax for a DDL trigger is as follows:

CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [...,n]]
FOR { event_type | event_group } [,...n]
AS { sql_statement [...n]}

Table 12-4 details the arguments of this command.

Table 12-4. CREATE TRIGGER (DDL) Arguments

Argument Description

trigger_name This argument is the user-defined name of the new DDL
trigger (notice that a DDL trigger does not have an owning
schema, since it isn’t related to an actual database table or
view).

ALL SERVER | DATABASE This argument designates whether the DDL trigger will
respond to server-scoped (ALL SERVER) or DATABASE-scoped
events.

<ddl_trigger_option> [...,n] This argument allows you to specify the ENCRYPTION and/or
EXECUTE AS clause. ENCRYPTION will encrypt the Transact-SQL
definition of the trigger. EXECUTE AS allows you to define the
security context under which the trigger will be executed.

{ event_type | event_group } An event_type indicates a single DDL server or database
[,...n] event that can be reacted to by the trigger: for example,

CREATE_TABLE, ALTER_TABLE, DROP_INDEX, and more. An
event_group is a logical grouping of event_type events. A
single DDL trigger can be created to react against one or more
event types or groups. For example, the DDL_PARTITION_
FUNCTION_EVENTS group reacts to the following individual
events: CREATE_PARTITION_FUNCTION, ALTER_PARTITION_
FUNCTION, and DROP_PARTITION_FUNCTION. You can find a
complete list of trigger event types in the SQL Server Books
Online topic “DDL Events for Use with DDL Triggers” and a
complete list of trigger event groups in the SQL Server Books
Online topic “Event Groups for Use with DDL Triggers.”

sql_statement [...n] This argument defines one or more Transact-SQL statements
that can be used to carry out actions in response to the DDL
database or server event.

CHAPTER 12 ■ TRIGGERS386

9802CH12.qxd 4/24/08 4:14 PM Page 386

Creating a DDL Trigger That Audits Database-Level Events
This recipe demonstrates creating an audit table that can contain information on any attempts at
the creation, alteration, or dropping of indexes in the AdventureWorks database.

First, I’ll create the audit table:

USE master
GO

CREATE TABLE dbo.ChangeAttempt
(EventData xml NOT NULL,

AttemptDate datetime NOT NULL DEFAULT GETDATE(),
DBUser char(50) NOT NULL)

GO

Next, I’ll create a database DDL trigger to track index operations, inserting the event data to the
newly created table:

CREATE TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE
FOR CREATE_INDEX, ALTER_INDEX, DROP_INDEX
AS

SET NOCOUNT ON

INSERT dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

Now I’ll attempt an actual index creation in the database:

CREATE NONCLUSTERED INDEX ni_ChangeAttempt_DBUser ON
dbo.ChangeAttempt(DBUser)

GO

Next, I’ll query the ChangeAttempt audit table to see whether the new index creation event was
captured by the trigger:

SELECT EventData
FROM dbo.ChangeAttempt

This returns the actual event information, stored in XML format (see Chapter 14 for more
information on XML in SQL Server):

<EVENT_INSTANCE>
<EventType>CREATE_INDEX</EventType>
<PostTime>2008-02-26T11:29:38.480</PostTime>
<SPID>53</SPID>
<ServerName>CAESAR\AUGUSTUS</ServerName>
<LoginName>CAESAR\Administrator</LoginName>
<UserName>dbo</UserName>
<DatabaseName>AdventureWorks</DatabaseName>
<SchemaName>dbo</SchemaName>
<ObjectName>ni_ChangeAttempt_DBUser</ObjectName>
<ObjectType>INDEX</ObjectType>
<TargetObjectName>ChangeAttempt</TargetObjectName>
<TargetObjectType>TABLE</TargetObjectType>
<TSQLCommand>

CHAPTER 12 ■ TRIGGERS 387

9802CH12.qxd 4/24/08 4:14 PM Page 387

<SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON"
ANSI_PADDING="ON" QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
<CommandText>CREATE NONCLUSTERED INDEX ni_ChangeAttempt_DBUser ON
dbo.ChangeAttempt(DBUser)

</CommandText>
</TSQLCommand>

</EVENT_INSTANCE>

How It Works
The recipe began with creating a table that could contain audit information on index modification
and login creation attempts. The EventData column uses SQL Server’s xml data type, which was pop-
ulated by the new EVENTDATA function (described later on in this recipe):

CREATE TABLE dbo.ChangeAttempt
(EventData xml NOT NULL,
AttemptDate datetime NOT NULL DEFAULT GETDATE(),
DBUser char(50) NOT NULL)

GO

The first trigger created in the recipe applied to the current database. The new DDL trigger
responded to CREATE INDEX, ALTER INDEX, or DROP INDEX commands:

CREATE TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE
FOR CREATE_INDEX, ALTER_INDEX, DROP_INDEX
AS

The SET NOCOUNT command was used in the trigger to suppress the number of row-affected
messages from SQL Server (otherwise every time you make an index modification, you’ll see a
“1 row affected” message):

SET NOCOUNT ON

An INSERT was then made to the new audit table, populating it with the event data and user:

INSERT dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

The EVENTDATA function returns server and data event information in an XML format, and is
also used for SQL Server’s SQL Service Broker functionality.

■Note See Chapter 20 for more information on event notifications.

The XML data captured by the EVENTDATA function included useful information such as the
event, the login name that attempted the CREATE INDEX, the target object name, and the time that it
occurred.

CHAPTER 12 ■ TRIGGERS388

9802CH12.qxd 4/24/08 4:14 PM Page 388

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Creating a DDL Trigger That Audits Server-Level Events
In this recipe, I demonstrate using a server-level DDL trigger to restrict users from creating new
logins on the SQL Server instance.

I’ll start by creating the DDL trigger:

USE master
GO

-- Disallow new Logins on the SQL instance
CREATE TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS
PRINT 'No login creations without DBA involvement.'

ROLLBACK
GO

Next, an attempt is made to add a new SQL login:

CREATE LOGIN JoeS WITH PASSWORD = 'A235921'
GO

This returns

No login creations without DBA involvement.
Msg 3609, Level 16, State 2, Line 1
The transaction ended in the trigger. The batch has been aborted.

I discuss the DROP TRIGGER command in the “Dropping a Trigger” recipe later in the chapter;
however, following is the cleanup code to remove this trigger:

DROP TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER

How It Works
This recipe demonstrated using a server-level DDL trigger to restrict a SQL login from being
created. The FOR statement of the trigger was set to the CREATE LOGIN event:

CREATE TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS

The body of the trigger used a PRINT statement to warn end users that their attempt was not
allowed:

PRINT 'No login creations without DBA involvement.'

This was followed by a ROLLBACK, which cancels the CREATE LOGIN attempt from the trigger:

ROLLBACK
GO

CHAPTER 12 ■ TRIGGERS 389

9802CH12.qxd 4/24/08 4:14 PM Page 389

Using a Logon Trigger
Logon triggers fire synchronously in response to a logon event to the SQL Server instance. You can
use logon triggers to create reactions to specific logon events or simply to track information about a
logon event.

■Caution Be very careful about how you design your logon trigger. Test it out in a development environment
first before deploying to production. If you are using a logon trigger to restrict entry to the SQL Server instance, be
careful that you do not restrict all access.

In this recipe, I’ll demonstrate creating a logon trigger that restricts a login from accessing SQL
Server during certain time periods. I’ll also log the logon attempt in a separate table.

First, I’ll create the new login:

CREATE LOGIN nightworker WITH PASSWORD = 'E74A53C6'
GO

Next, I’ll create an audit database and a table to track the logon attempts:

CREATE DATABASE ExampleAuditDB
GO

USE ExampleAuditDB
GO

CREATE TABLE dbo.RestrictedLogonAttempt
(LoginNM sysname NOT NULL,
AttemptDT datetime NOT NULL)

GO

I’ll now create the logon trigger to restrict the new login from logon from 7:00 a.m. to 5:00 p.m:

USE master
GO

CREATE TRIGGER trg_logon_attempt
ON ALL SERVER
WITH EXECUTE AS 'sa'
FOR LOGON
AS
BEGIN

IF ORIGINAL_LOGIN()='nightworker' AND
DATEPART(hh,GETDATE()) BETWEEN 7 AND 17
BEGIN

ROLLBACK
INSERT ExampleAuditDB.dbo.RestrictedLogonAttempt
(LoginNM, AttemptDT)
VALUES (ORIGINAL_LOGIN(), GETDATE())

END
END
GO

Now attempt to log on as the nightworker login during the specified time range, and you will
see the following error message:

CHAPTER 12 ■ TRIGGERS390

9802CH12.qxd 4/24/08 4:14 PM Page 390

Logon failed for login 'nightworker' due to trigger execution.

After the attempt, I’ll query the audit table to see if the logon was tracked:

SELECT LoginNM, AttemptDT
FROM ExampleAuditDB.dbo.RestrictedLogonAttempt

This returns the following (results will vary based on when you execute this recipe yourself):

LoginNM AttemptDT
nightworker 2008-2-26 11:37:15.127

How It Works
Logon triggers allow you to restrict and track logon activity after authentication to the SQL Server
instance but before an actual session is generated. If you wish to apply custom business rules to
logons above and beyond what is offered within the SQL Server feature set, you can implement
them using the logon trigger.

In this recipe, I created a test login, a new auditing database, and an auditing table to track
attempts. In the master database, I created a logon trigger. Stepping through the code, note that ALL
SERVER is used to set the scope of the trigger execution:

CREATE TRIGGER trg_logon_attempt
ON ALL SERVER

The EXECUTE AS clause is used to define the permissions under which the trigger will execute. I
could have used a lesser login—for example, a login that had permissions to write to the audit table:

WITH EXECUTE AS 'sa'

The FOR LOGON keywords designated the type of trigger I am creating:

FOR LOGON
AS

The body of the trigger logic then started at the BEGIN keyword:

BEGIN

The original security context of the logon attempt was then evaluated. In this case, I am only
interested in enforcing logic if the login is for nightworker:

IF ORIGINAL_LOGIN()='nightworker' AND

Included in this logic is an evaluation of the hour of the day. If the current time is between
7 a.m. and 5 p.m., two actions will be performed:

DATEPART(hh,GETDATE()) BETWEEN 7 AND 17
BEGIN

The first action is to roll back the logon attempt:

ROLLBACK

The second action is to track the attempt to the audit table:

INSERT ExampleAuditDB.dbo.RestrictedLogonAttempt
(LoginNM, AttemptDT)
VALUES (ORIGINAL_LOGIN(), GETDATE())

CHAPTER 12 ■ TRIGGERS 391

9802CH12.qxd 4/24/08 4:14 PM Page 391

END
END
GO

Again, it is worthwhile to remind you that how you code the logic of a logon trigger is very
important. Improper logging can cause unexpected results. Also, if your logon trigger isn’t perform-
ing the actions you expect, be sure to check out your latest SQL log for clues. Logon trigger attempts
that are rolled back also get written to the SQL log. If something was miscoded in the trigger, for
example, if I hadn’t designated the proper fully qualified table name for RestrictedLogonAttempt,
the SQL log would have shown the error message “Invalid object name ‘dbo.RestrictedLogon-
Attempt’.”

■Note Don’t forget about removing this recipe’s trigger when you are finished testing it out. To drop it, execute
DROP TRIGGER trg_logon_attempt ON ALL SERVER in the master database.

Viewing DDL Trigger Metadata
In this recipe, I demonstrate the retrieval of DDL trigger metadata.

The first example queries the sys.triggers catalog view, returning the associated database-
scoped trigger name and trigger enabled/disabled status:

USE AdventureWorks
GO

-- Show the DML triggers in the current database
SELECT name TriggerNM, is_disabled
FROM sys.triggers
WHERE parent_class_desc = 'DATABASE'
ORDER BY OBJECT_NAME(parent_id), name

This returns the following (abridged) results:

TriggerNM is_disabled
ddlDatabaseTriggerLog 1

This next example queries the sys.server_triggers and sys.server_trigger_events system
catalog views to retrieve a list of server-scoped DDL triggers. This returns the name of the DDL trig-
ger, the type of trigger (Transact-SQL or CLR), the disabled state of the trigger, and the events the
trigger is fired off of (you’ll see one row for each event a trigger is based on):

SELECT name, s.type_desc SQL_or_CLR,
is_disabled, e.type_desc FiringEvents
FROM sys.server_triggers s
INNER JOIN sys.server_trigger_events e ON

s.object_id = e.object_id

This returns data based on the previous server-level trigger created earlier:

name SQL_or_CLR is_disabled FiringEvents
trg_logon_attempt SQL_TRIGGER 0 LOGON

To display database-scoped DDL trigger Transact-SQL definitions, you can query the
sys.sql_modules system catalog view:

CHAPTER 12 ■ TRIGGERS392

9802CH12.qxd 4/24/08 4:14 PM Page 392

SELECT t.name, m.Definition
FROM sys.triggers AS t
INNER JOIN sys.sql_modules m ON
t.object_id = m.object_id
WHERE t.parent_class_desc = 'DATABASE'

To display server-scoped DDL triggers, you can query the sys.server_sql_modules and
sys.server_triggers system catalog views:

SELECT t.name, m.definition
FROM sys.server_sql_modules m
INNER JOIN sys.server_triggers t ON

m.object_id = t.object_id

How It Works
The first query in this recipe returns a list of database-scoped triggers using the sys.triggers
system catalog view. In order to only display DDL database-scoped triggers, I had to qualify the
parent_class_desc value to DATABASE. The second query was written to return a list of server-scoped
triggers and their associated triggering events. In that situation, the sys.server_triggers and
sys.server_trigger_events system catalogs were queried.

The third query was used to return the Transact-SQL definitions of database-scoped triggers by
qualifying sys.triggers to sys.sql_modules. To return server-scoped trigger Transact-SQL defini-
tions, the sys.server_sql_modules and sys.server_triggers system catalog views were queried.

Managing Triggers
The next set of recipes demonstrate how to modify, drop, enable, disable, and control trigger
options. Some of the commands I’ll be demonstrating include ALTER TRIGGER to modify a trigger’s
definition, DROP TRIGGER to remove it from the database, ALTER DATABASE to set trigger recursion
options, sp_configure to control trigger nesting, and sp_settriggerorder to set the firing order of a
trigger.

Modifying a Trigger
You can modify an existing DDL or DML trigger by using the ALTER TRIGGER command. ALTER
TRIGGER takes the same arguments as the associated DML or DDL CREATE TRIGGER syntax does.

In this example, I modify a trigger created in the previous recipe (that trigger was dropped ear-
lier in the chapter for cleanup purposes, so you can re-create it for demonstration purposes here).
Instead of restricting users from creating new logins, the login event will be allowed, followed by a
warning and an INSERT into an auditing table:

USE master
GO

ALTER TRIGGER srv_trg_RestrictNewLogins
ON ALL SERVER
FOR CREATE_LOGIN
AS

SET NOCOUNT ON

PRINT 'Your login creation is being monitored.'

CHAPTER 12 ■ TRIGGERS 393

9802CH12.qxd 4/24/08 4:14 PM Page 393

INSERT AdventureWorks.dbo.ChangeAttempt
(EventData, DBUser)
VALUES (EVENTDATA(), USER)

GO

How It Works
ALTER TRIGGER allows you to modify existing DDL or DML triggers. The arguments for ALTER
TRIGGER are the same as for CREATE TRIGGER. You can’t use it to change the actual trigger name, how-
ever, so in this example, the trigger name is no longer applicable to the actual actions the DDL
trigger will take (in this case just monitoring, no longer restricting new logins).

Enabling and Disabling Table Triggers
Sometimes triggers must be disabled if they are causing problems that you need to troubleshoot, or
if you need to import or recover data that shouldn’t fire the trigger. In this recipe, I demonstrate how
to disable a trigger from firing using the DISABLE TRIGGER command, as well as how to re-enable a
trigger using ENABLE TRIGGER.

The syntax for DISABLE TRIGGER is as follows:

DISABLE TRIGGER [schema .] trigger_name
ON { object_name | DATABASE | SERVER }

The syntax for enabling a trigger is as follows:

ENABLE TRIGGER [schema_name .] trigger_name
ON { object_name | DATABASE | SERVER }

Table 12-5 details the arguments of this command.

Table 12-5. ENABLE and DISABLE Trigger Arguments

Argument Description

[schema_name .]trigger_name The optional schema owner and required user-defined
name of the trigger you want to disable.

object_name | DATABASE | SERVER object_name is the table or view that the trigger was bound
to (if it’s a DML trigger). Use DATABASE if the trigger was a
DDL database-scoped trigger and SERVER if the trigger was a
DDL server-scoped trigger.

This example starts off by creating a trigger (which is enabled by default) that prints a message
back to a connection that is performing an INSERT against the HumanResources.Department table:

USE AdventureWorks
GO

CREATE TRIGGER HumanResources.trg_Department
ON HumanResources.Department
AFTER INSERT
AS

PRINT 'The trg_Department trigger was fired'

GO

CHAPTER 12 ■ TRIGGERS394

9802CH12.qxd 4/24/08 4:14 PM Page 394

The trigger is then disabled using the DISABLE TRIGGER command:

DISABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

Because the trigger was disabled, no printed message will be returned when the following
INSERT is executed:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Construction', 'Building Services')

This returns

(1 row(s) affected)

Next, the trigger is enabled using the ENABLE TRIGGER command:

ENABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

Now when another INSERT is attempted, the trigger will fire, returning a message back to the
connection:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Cleaning', 'Building Services')

This returns

The trg_Department trigger was fired

(1 row(s) affected)

How It Works
This recipe started by creating a new trigger that printed a statement whenever a new row was
inserted into the HumanResources.Department table.

After creating the trigger, the DISABLE TRIGGER command was used to keep it from firing
(although the trigger’s definition still stays in the database):

DISABLE TRIGGER HumanResources.trg_Department
ON HumanResources.Department

An insert was then performed that did not fire the trigger. The ENABLE TRIGGER command was
then executed, and then another insert was attempted, this time firing off the trigger.

Limiting Trigger Nesting
Trigger nesting occurs when a trigger is fired, which performs an action (for example, inserting into
a different table), which in turn fires another trigger, which then initiates the firing of other triggers.
An infinite loop firing of triggers is prevented by SQL Server’s maximum level of nesting, which is
32 levels deep.

You can also modify the SQL Server instance to not allow trigger nesting at all. Disabling the
nested triggers option prevents any AFTER trigger from causing the firing of another trigger.

This example demonstrates how to disable or enable this behavior:

CHAPTER 12 ■ TRIGGERS 395

9802CH12.qxd 4/24/08 4:14 PM Page 395

USE master
GO

-- Disable nesting
EXEC sp_configure 'nested triggers', 0
RECONFIGURE WITH OVERRIDE
GO

-- Enable nesting
EXEC sp_configure 'nested triggers', 1
RECONFIGURE WITH OVERRIDE
GO

This returns

Configuration option 'nested triggers' changed from 1 to 0.
Run the RECONFIGURE statement to install.
Configuration option 'nested triggers' changed from 0 to 1.
Run the RECONFIGURE statement to install.

How It Works
This recipe used the sp_configure system stored procedure to change the nested trigger behavior at
the server level. To disable nesting altogether, sp_configure was executed for the “nested trigger”
server option, followed by the parameter 0, which disables nesting:

EXEC sp_configure 'nested triggers', 0
RECONFIGURE WITH OVERRIDE
GO

Because server options contain both a current configuration versus an actual runtime configu-
ration value, the RECONFIGURE WITH OVERRIDE command was used to update the runtime value so
that it takes effect right away.

In order to enable nesting again, this server option is set back to 1 in the second batch of the
recipe.

■Note For more information on configuring server options, see Chapter 21.

Controlling Trigger Recursion
Trigger nesting is considered to be recursive if the action performed when a trigger fires causes the
same trigger to fire again. Recursion can also occur when a trigger’s fire impacts a different table,
which also has a trigger that impacts the original table, thus causing the trigger to fire again.

You can control whether recursion is allowed by configuring the RECURSIVE_TRIGGERS database
option. If you allow recursion, your AFTER triggers will still be impacted by the 32-level nesting limit,
preventing an infinite looping situation.

This example demonstrates enabling and disabling this option:

-- Allows recursion
ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS ON

CHAPTER 12 ■ TRIGGERS396

9802CH12.qxd 4/24/08 4:14 PM Page 396

-- View the db setting
SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

-- Prevents recursion
ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS OFF

-- View the db setting
SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_recursive_triggers_on
1

is_recursive_triggers_on
0

How It Works
ALTER DATABASE was used to configure database-level options, including whether or not triggers
were allowed to fire recursively within the database. The option was enabled by setting
RECURSIVE_TRIGGERS ON:

ALTER DATABASE AdventureWorks
SET RECURSIVE_TRIGGERS ON

The option was then queried by using the sys.databases system catalog view, which showed
the current database option in the is_recursive_triggers_on field (1 for on, 0 for off):

SELECT is_recursive_triggers_on
FROM sys.databases
WHERE name = 'AdventureWorks'

The recipe then disabled trigger recursion by setting the option OFF, and then confirming it
again in a sys.databases query.

■Note For more information on ALTER DATABASE and database options, see Chapter 22.

Setting Trigger Firing Order
In general, you should try to consolidate triggers that react to the same event (or events) by placing
all their business logic into just one trigger. This improves manageability and supportability of the
triggers, because you’ll have an easier time finding the code you are looking for, and be able to
troubleshoot accordingly. You’ll also avoid the issue of trying to figure out which trigger ran first.
Instead, you can define multiple triggers on the same table, referencing the same DML types (for
example multiple INSERT triggers). DDL triggers can also be set on the same database or server
scope events or event groups.

CHAPTER 12 ■ TRIGGERS 397

9802CH12.qxd 4/24/08 4:14 PM Page 397

If you find that you must have separate triggers referencing the same database objects (per-
haps you’ve added triggers so as not to overlap a third party’s code), and if the order in which they
are fired is important to you, you should configure it using the sp_settriggerorder system stored
procedure.

The syntax for sp_settriggerorder is as follows:

sp_settriggerorder [@triggername =] '[triggerschema.] triggername'
, [@order =] 'value'
, [@stmttype =] 'statement_type'
[, [@namespace =] { 'DATABASE' | 'SERVER' | NULL }]

Table 12-6 details the arguments of this command.

Table 12-6. sp_settriggerorder Arguments

Argument Description

'[triggerschema.] triggername' This defines the optional schema owner
and required user-defined name of the
trigger to be ordered.

[@order =] 'value' This can be either First, None, or Last.
Any triggers in between these will be fired
in a random order after the first and last
firings.

[@stmttype =] 'statement_type' This designates the type of trigger to be
ordered, for example, INSERT, UPDATE,
DELETE, CREATE_INDEX, ALTER_INDEX, and
so forth.

[@namespace =] { 'DATABASE' | 'SERVER' | NULL} This designates whether this is a DDL
trigger, and if so, whether it is database-
or server-scoped.

This recipe will create a test table and add three DML INSERT triggers to it. The
sp_settriggerorder will then be used to define the firing order:

CREATE TABLE dbo.TestTriggerOrder
(TestID int NOT NULL)

GO

CREATE TRIGGER dbo.trg_i_TestTriggerOrder
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I will be fired first.'
GO

CREATE TRIGGER dbo.trg_i_TestTriggerOrder2
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I will be fired last.'
GO

CHAPTER 12 ■ TRIGGERS398

9802CH12.qxd 4/24/08 4:14 PM Page 398

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CREATE TRIGGER dbo.trg_i_TestTriggerOrder3
ON dbo.TestTriggerOrder
AFTER INSERT
AS
PRINT 'I won''t be first or last.'
GO

EXEC sp_settriggerorder 'trg_i_TestTriggerOrder', 'First', 'INSERT'
EXEC sp_settriggerorder 'trg_i_TestTriggerOrder2', 'Last', 'INSERT'

INSERT dbo.TestTriggerOrder
(TestID)
VALUES (1)

This returns

I will be fired first.
I won't be first or last.
I will be fired last.

How It Works
This recipe started off by creating a single column test table. Three DML INSERT triggers were then
added to it. Using sp_settriggerorder, the first and last triggers to fire were defined:

EXEC sp_settriggerorder 'trg_i_TestTriggerOrder', 'First', 'INSERT'
EXEC sp_settriggerorder 'trg_i_TestTriggerOrder2', 'Last', 'INSERT'

An INSERT was then performed against the table, and the trigger messages were returned in the
expected order.

To reiterate this point, if you can, use a single trigger on a table when you can. If you must cre-
ate multiple triggers of the same type, and your trigger contains ROLLBACK functionality if an error
occurs, be sure to set the trigger that has the most likely chance of failing as the first trigger to exe-
cute. This way only the first-fired trigger need execute, preventing the other triggers from having to
fire and roll back transactions unnecessarily.

Dropping a Trigger
The syntax for dropping a trigger differs by trigger type (DML or DDL).

The syntax for dropping a DML trigger is as follows:

DROP TRIGGER schema_name.trigger_name [,...n]

Table 12-7 details the argument of this command.

Table 12-7. DROP TRIGGER Argument (DML)

Argument Description

schema_name.trigger_name The owning schema name of the trigger and the DML trigger name
to be removed from the database.

CHAPTER 12 ■ TRIGGERS 399

9802CH12.qxd 4/24/08 4:14 PM Page 399

The syntax for dropping a DDL trigger is as follows:

DROP TRIGGER trigger_name [,...n]
ON { DATABASE | ALL SERVER }

Table 12-8 details the arguments of this command.

Table 12-8. DROP TRIGGER Arguments (DDL)

Argument Description

trigger_name Defines the DDL trigger name to be removed from the database (for a
database-level DDL trigger) or SQL Server instance (for a server-scoped
trigger)

DATABASE | ALL SERVER Defines whether you are removing a DATABASE-scoped DDL trigger or a
server-scoped trigger (ALL SERVER)

In the case of both DDL and DML syntax statements, the [,...n] syntax block indicates that
more than one trigger can be dropped at the same time.

This example demonstrates dropping a DML and a DDL trigger:

-- Drop a DML trigger
DROP TRIGGER dbo.trg_i_TestTriggerOrder

-- Drop multiple DML triggers
DROP TRIGGER dbo.trg_i_TestTriggerOrder2, dbo.trg_i_TestTriggerOrder3

-- Drop a DDL trigger
DROP TRIGGER db_trg_RestrictINDEXChanges
ON DATABASE

How It Works
In this recipe, DML and DDL triggers were explicitly dropped using the DROP TRIGGER command.
You will also drop all DML triggers when you drop the table or view that they are bound to. You can
also remove multiple triggers in the same DROP command if each of the triggers were created using
the same ON clause.

CHAPTER 12 ■ TRIGGERS400

9802CH12.qxd 4/24/08 4:14 PM Page 400

CLR Integration

Although this book focuses on the Transact-SQL language, there are significant areas of overlap
between Common Language Runtime (CLR) and Transact-SQL, which I’ll discuss in this chapter,
along with a few recipes to get you started.

In some people’s eyes, the inclusion of the CLR within the database is the major advancement
in SQL Server. As a result of the inclusion, developers don’t always have to use Transact-SQL to cre-
ate procedural database objects such as stored procedures, functions, and triggers. They can now
create these objects using any of the .NET languages (VB .NET, C#, C++ and so on) and compile
them into .NET assemblies. These assemblies are deployed inside the database and run by the CLR,
which in turn is hosted inside the SQL Server memory space.

T-SQL, the traditional programming language for the SQL Server database, is a powerful lan-
guage for data-intensive operations, but is limited in its computational complexity. For these
complex operations in the database, the developer traditionally had to resort to the notoriously dif-
ficult extended procedures written in C++, or create hideously long and awkward stored procedure
code.

In theory, CLR integration offers the “best of both worlds.” Your code can be hosted in the
secure environment of the database, delegating memory management, garbage collection, and
thread support to the robust database engine, while exploiting .NET’s computational power,
advanced data type support, and rich array of built-in classes.

Although this book is focused on Transact-SQL functionality, I’ll still be introducing the basic
methods for creating assemblies, importing them into the database, and then associating them to
database objects. I’ll start off by describing the basic end-to-end steps, and then going into the vari-
ations that exist for the different CLR database object types. Discussions and recipes in this chapter
include the following:

• A discussion of both when and when not to use assemblies in SQL Server

• Available SQL Server CLR database objects, and how to create them

• A recipe-by-recipe walk-through of creating a CLR stored procedure

• Creating a CLR scalar user-defined function

• Creating a CLR trigger

• Viewing, modifying, and removing assemblies from the database

First, however, I’ll begin the chapter with a brief overview of the Common Language Runtime
(CLR).

401

C H A P T E R 1 3

9802CH13.qxd 4/24/08 4:15 PM Page 401

CLR Overview
Before getting too far into the discussion of SQL Server integration, I need to cover some of the
basics for those of you who are new to the .NET Framework. First of all, the .NET Framework is a
programmatic platform that is used to build Microsoft Windows applications and services. This
framework can be used to create Windows forms, web services, and ASP.NET applications (to name
a few). The major parts of the framework include the CLR, the framework classes and libraries (con-
taining reusable functionality and programming models for your applications to use), and ASP.NET
(which allows the creation of web-based applications).

■Note Programming in .NET requires the actual Microsoft .NET Framework. This is why Microsoft Windows .NET
Framework is a software prerequisite to installing SQL Server.

The Common Language Runtime is the environment where .NET programs are actually exe-
cuted and managed. The CLR is used to execute .NET programs, manage memory, and maintain
program metadata. As of SQL Server 2005 and continuing into SQL Server 2008, the CLR is hosted
within the SQL Server process. This means that reserved space within the SQL Server process han-
dles memory management, security, and execution context.

When you write managed .NET code (code that is executed and managed within the CLR),
assemblies are the packaged DLL or executable file that is used to deploy the functionality. You can
then associate this assembly with various database objects, such as triggers, types, procedures,
user-defined functions (UDFs), and so on. Using CLR-based database objects opens up a wide
range of functionality, allowing you to perform complex calculations, access data from external
sources, integrate with other business applications, and solve problems that cannot be addressed
using Transact-SQL.

You can write your assemblies in the .NET language with which you are most comfortable—the
two most common being Visual Basic .NET and C# (“c-sharp”). One reason why you can choose
your preferred .NET language is because the code is compiled into an intermediate language (IL)
form first. It’s the IL form that is read and executed by the CLR. Code written in C# or VB .NET (short
for Visual Basic .NET) that performs the same tasks usually ends up with intermediate language
instructions that look almost identical to one another.

Aside from the programming language, you also have your choice in how you actually develop
your code. One obvious choice is Visual Studio, which includes templates that can ease the creation
of SQL Server database CLR objects. You don’t have to use Visual Studio, however, as there are other
free open source .NET development environments that you can download off the Web. You can also
hand-code your .NET applications in Windows Notepad. Although not ideal for development proj-
ects, this method requires no additional software, and it is the method I’ll use in this chapter. I’m
using this low-tech method in order to keep the focus on CLR integration with Transact-SQL and
not get too deeply into the many features and considerations of Visual Studio.

When (and When Not) to Use Assemblies
The announcement of the CLR and .NET Framework integration with SQL Server caused a great
deal of conflicting emotions among seasoned SQL Server professionals and developers. At one
extreme, people had the vision of an all .NET database environment usurping Transact-SQL
entirely. At the other end were the anxious, hardcore database administrators and developers, some
without any .NET programming background, many of whom vowed early on to keep this feature
locked away indefinitely.

CHAPTER 13 ■ CLR INTEGRATION402

9802CH13.qxd 4/24/08 4:15 PM Page 402

The first and most obvious thing to note is that .NET-based database objects are not a replace-
ment for T-SQL-created database objects. Transact-SQL is still very much alive. There are major
units of functionality that would be impossible to implement without Transact-SQL, and several
.NET constructs and programming models that end up using Transact-SQL under the covers
anyway.

There are two main reasons to consider using CLR database objects:

• You have “data-specific” logic that was previously impossible to implement in the database,
using existing functionality and T-SQL. Therefore you have created extended stored proce-
dures or modules in the middle tier or client layers.

• You have forced T-SQL to perform a highly complex or calculation intensive task, resulting in
complex and inelegant/inefficient Transact-SQL code.

In some ways, the replacement of extended stored procedures with .NET CLR counterparts is
the most clear-cut case for using assemblies. In previous versions of SQL Server, if you needed to
add functionality to SQL Server that didn’t already exist, or needed to access external resources, a
common option was to use extended stored procedures. Database users called extended stored pro-
cedures and optionally passed parameters to them, just as with regular stored procedures. Extended
stored procedures could be written in the programming language (such as C++), resulting in a DLL
file. The sp_addextendedproc system stored procedure was used to create a new procedure and bind
it to the DLL file (which had to exist on the SQL Server instance). The DLL file was not imported into
the SQL Server database, so it needed to exist on the SQL Server instance machine. Because a DLL
was loaded and used within SQL Server without any special management or protection, there was
an increased risk of memory leaks or performance issues, depending on how the DLL code was
written. If the DLL misbehaved, SQL Server could crash.

CLR integration addresses several of the inherent issues of extended stored procedures. When
using managed code, memory leaks are not possible, and security is fully integrated with the SQL
Server environment. In short, assemblies are generally safer to use than extended stored proce-
dures. So if you have

• A database application that must perform very complex calculations that cannot be per-
formed (or are very difficult to perform) using Transact-SQL

• A database application that needs access to functionality that exists in the .NET Framework,
but not in Transact-SQL

• A database application that needs access to external data sources (web services, files, system
settings), that you cannot access using Transact-SQL

then you may well want to consider assemblies as a potential solution. If you have already deployed
such functionality using extended stored procedures in your system, then these should be the first
candidates for conversion to CLR.

If you have complex business logic that exists in other tiers of the system (whether client or
middle tier), then you need to assess and test on a case-by-case basis whether it would be wise to
move that functionality into an assembly in the database. Database applications, integration with
other applications, and ad hoc reporting against the same database are all common components of
today’s applications. If there are business rules central to the data itself, then it may well make sense
to encapsulate this logic within the database so that each different data consumer does not have to
duplicate these rules.

One thing is for sure, though: CLR database objects should not be used to replace functionality
that already exists in Transact-SQL. Set-based processing using SELECT/INSERT/UPDATE/DELETE will
always be the preferred and best-performing method for data-intensive retrieval and modification.
If an action can be performed efficiently within the database using Transact-SQL, you should use
Transact-SQL over CLR methods.

CHAPTER 13 ■ CLR INTEGRATION 403

9802CH13.qxd 4/24/08 4:15 PM Page 403

CLR Objects Overview
In order to use CLR within SQL Server, you must create and compile an assembly into a DLL, and
then import the new assembly (using CREATE ASSEMBLY) into a SQL Server database. Once integrated
in the database, it is backed up along with your tables, data, and other database objects—since it is
a database object just like any other. Once an assembly is added, you can then associate it to differ-
ent database objects, including user-defined functions, stored procedures, triggers, user-defined
types, and aggregate functions:

• User-defined functions: These create scalar or table-valued functions that can access .NET
Framework calculation classes and access external resources. Later on in the chapter, you’ll
see an example of using regular expressions functionality within a scalar function (some-
thing you could not do using Transact-SQL).

• Stored procedures: This is probably the SQL Server database object with the most creative
potential. You can use CLR-stored procedures to replace extended stored procedures, utilize
.NET Framework classes, and perform calculation-heavy or external resource activities that
aren’t possible using Transact-SQL.

• Triggers: These allow you to create .NET programmatic responses to data manipulation lan-
guage (INSERT/UPDATE/DELETE) or data definition language (CREATE, ALTER, DROP).

• User-defined types: These allow you to create new complex data types (unlike Transact-SQL
user-defined types, which are based on predefined data types). CLR user-defined types
include methods and properties along the lines of a .NET object/class. This may be one of
the more controversial additions to SQL Server, because the multiple properties for a single
type can fly in the face of basic relational database design principles. CLR user-defined types
do allow you to implement data verification and string formatting, which isn’t possible for
Transact-SQL user-defined types.

• User-defined aggregate functions: You cannot create aggregate functions using Transaction-
SQL. To create new aggregate functions in SQL Server, you can create a CLR-based
user-defined aggregate function. User-defined aggregate functions can be used to create
your own complex statistical analysis aggregates not available natively in SQL Server, or to
collect multiple string values into a single business-defined result.

The rest of this chapter will focus on creating CLR stored procedures, user-defined functions,
and triggers, as these are the most directly analogous to their T-SQL counterparts (in terms of the
way that they are accessed and executed) and therefore are the most relevant for this book.

Creating CLR Database Objects
The recipes in this section walk through the creation of three CLR-based objects, namely a CLR
stored procedure, a CLR UDF, and a CLR trigger. In the case of the CLR stored procedure, I’ll actually
present a series of four subrecipes that describe each of the following steps:

1. Use the system stored procedure sp_configure to enable CLR functionality for the SQL
Server instance. Set the database where you will be using CLR database objects to
TRUSTWORTHY if you plan on using CLR database objects with EXTERNAL_ACCESS or UNSAFE
permissions.

2. Create the assembly code using your .NET language of choice, and your tool of choice. For
example, you can use C# or VB .NET to create the assembly. Using Visual Studio makes the
process of creating CLR assemblies easier; however, you can use something as simple as
Notepad and the vsc.exe compiler.

CHAPTER 13 ■ CLR INTEGRATION404

9802CH13.qxd 4/24/08 4:15 PM Page 404

3. Compile the code into a DLL file.

4. Use the CREATE ASSEMBLY Transact-SQL command to load the new assembly into the data-
base. Choose the safety level based on the functionality of the assembly. Try to build code
that is covered by either SAFE or EXTERNAL_ACCESS safety levels. These levels offer more stabil-
ity for the SQL Server instance and help avoid the potential issues that unsafe code may
incur.

After that, I’ll demonstrate how to create a CLR scalar user-defined function, following the simi-
lar steps (in a single recipe), but with a new assembly and a few twists on the code. Finally, I’ll take a
look at a CLR trigger.

Enabling CLR Support in SQL Server
When SQL Server is installed, CLR functionality is disabled by default. To enable the use of CLR
database objects, the system stored procedure sp_configure must be used to configure the 'clr
enabled' option (see Chapter 21 for a full review of this system stored procedure):

EXEC sp_configure 'clr enabled', 1
RECONFIGURE WITH OVERRIDE
GO

This returns

Configuration option 'clr enabled' changed from 0 to 1.
Run the RECONFIGURE statement to install.

If you plan on using CLR database objects that require EXTERNAL_ACCESS or UNSAFE security per-
missions, you must enable the TRUSTWORTHY database option to ON. For example:

IF NOT EXISTS (SELECT 1 FROM sys.databases WHERE name = 'BookStore')
BEGIN

CREATE DATABASE BookStore
END
GO

ALTER DATABASE BookStore
SET TRUSTWORTHY ON

How It Works
This example demonstrated enabling CLR functionality for the SQL Server instance. After executing
the command, CLR functionality is enabled immediately without having to restart the SQL Server
instance. I then enabled the TRUSTWORTHY option for the BookStore database, in order to allow
EXTERNAL_ACCESS and UNSAFE security permissions later on (although I’ll only be demonstrating a
CLR database object that requires external access, and not demoing anything that is unsafe!).

In the next recipe, I’ll demonstrate creating an assembly using VB .NET.

Writing an Assembly for a CLR Stored Procedure
In this recipe, I’ll demonstrate creating the code for an assembly. Specifically, VB .NET code is used
to read data from an external text file and then output the text file data in a result set.

Before getting to the actual code, I first need to discuss a few new concepts regarding assem-
blies themselves.

CHAPTER 13 ■ CLR INTEGRATION 405

9802CH13.qxd 4/24/08 4:15 PM Page 405

So far I’ve discussed CLR assemblies as though they are used on a one-for-one basis with data-
base objects. Assemblies, however, can contain code for use by one or more CLR database objects.
For example, the code I’ll be using in this recipe is intended for a single stored procedure. You can,
however, put several subroutines or types within a single assembly, for use in different CLR data-
base objects. As a best practice, try to group related functionality within a single assembly. This is
important (if not necessary) if your various functions or methods have dependencies on one
another. Take a situation where you have a set of functionalities that will all cross-reference with an
external mapping application. For example, your assembly could contain code that can be used by
a CLR stored procedure to return driving directions, a CLR user-defined function to return mapping
coordinates based on address input information, and a new user-defined CLR type that contains
the varying address details.

Another important concept to understand is assembly security. When you use managed code,
you must consider how much access to specific resources that your code requires. In the “Loading
the Assembly into SQL Server” recipe, you’ll see that when an assembly is added to SQL Server,
you’ll need to indicate the level of permissions that the assembly requires. You’ll have three choices,
SAFE, EXTERNAL_ACCESS, and UNSAFE, which I’ll describe in more detail later on in the chapter.

This assembly example demonstrates creating a class and function using VB .NET, which then
takes a file and path name as an input value, opens the file for reading, and, finally, returns the
results back to the SQL Server connection context that made the call. I’ll discuss the elements of this
script in the “How It Works” section:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.IO

Public Class ReadFiles

Public Shared Sub Main(ByVal sFile As SqlString)

Dim sReader As StreamReader = New StreamReader(sFile)
Dim sLine As String
Dim sPipe As SqlPipe = SqlContext.Pipe

Do
sLine = sReader.ReadLine()

If Not sLine Is Nothing Then
sPipe.Send(sLine)

End If
Loop Until sLine Is Nothing

sReader.Close()

End Sub
End Class

How It Works
This current recipe’s example contains a class and function that will be associated specifically to a
CLR stored procedure. CLR database objects require specific namespaces to exist within the assem-
bly so that SQL Server can reference built-in CLR assemblies in your assembly code. For example,
the code included the following namespaces:

CHAPTER 13 ■ CLR INTEGRATION406

9802CH13.qxd 4/24/08 4:15 PM Page 406

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

You can also include other namespaces, depending on the required functionality of the assem-
bly. For example, the System.IO namespace contains the functions needed to read and write from
file system files:

Imports System.IO

The example continued declaring a public class called ReadFiles:

Public Class ReadFiles

Next, a public, shared subroutine included a single parameter string value (in this case expect-
ing the name and path of the file to be read):

Public Shared Sub Main(ByVal sFile As SqlString)

Notice that the sFile input parameter was defined as the SqlString type. As you work with CLR
assemblies, you’ll need to understand the SQL Server data types that associate to specific SQL CLR
.NET data types. Table 13-1 lists some of the available data types and their CLR versus SQL Server
translations (notice that with some types you can pick and choose, due to overlap).

Table 13-1. Converting SQL Server to CLR Data Types

CLR Data Type(s) SQL Server Data Type(s)

SqlBytes varbinary, binary

SqlBinary varbinary, binary

SqlChars (ideal for data access and retrieval) nvarchar, nchar

SqlString (ideal for string operation) nvarchar, nchar

SqlGuid uniqueidentifier

SqlBoolean bit

SqlByte tinyint

SqlInt16 smallint

SqlInt32 int

SqlInt64 bigint

SqlMoney smallmoney, money

SqlDecimal decimal, numeric

SqlSingle real

SqlDouble float

SqlDateTime smalldatetime, datetime, date, datetime2

TimeSpan time

SqlXml xml

Continuing the walk-through of the example, you’ll note that a StreamReader object was
declared and set to the passed file name and path. The StreamReader class is used to read text data
from a file. Because it is not a Transact-SQL function, you would not normally be able to reference

CHAPTER 13 ■ CLR INTEGRATION 407

9802CH13.qxd 4/24/08 4:15 PM Page 407

this function in your code. CLR assemblies allow you to use these .NET commands from your SQL
Server database:

Dim sReader As StreamReader = New StreamReader(sFile)

A string variable is created to hold a single line of data from the file:

Dim sLine As String

Next, I use two classes, SqlPipe and SqlContext:

Dim sPipe As SqlPipe = SqlContext.Pipe

The SqlPipe object is used to send zero or more rows back to the connected caller’s connec-
tion. So, if I execute a CLR stored procedure that I expect will return a list of results (similar to a
SELECT query), the Send method of the SqlPipe object is used. This SqlContext class maintains and
accesses the SQL Server caller’s context, meaning if I execute a stored procedure, SqlContext knows
that it is my action and that the results belong to my client. A SqlPipe is spawned based on the
SqlContext of a user’s connection using the Pipe method of SqlContext.

Next, a Do loop (similar to a Transact-SQL WHILE) is created to read through each line of the file
until there are no longer any rows:

Do

The sLine variable is set to the first line of the file using the ReadLine method of the
StreamReader object:

sLine = sReader.ReadLine()

If something exists in the line from the file, the values of that line are sent back to the SQL
Server connection using the Send method of the SqlPipe object:

If Not sLine Is Nothing Then
sPipe.Send(sLine)

End If

Once the file is complete, however, the Do loop is finished and the connection to the file is
closed:

Loop Until sLine Is Nothing

sReader.Close()

Finishing off the assembly, I ended the sub, and then the class definition.

End Sub
End Class

Now that you have seen how to write the assembly in VB .NET, you can move to the next step,
which is compiling the assembly code into a DLL file, which can then be imported into SQL Server.
In preparation for this exercise, I’ll create a file directory called C:\Apress\Recipes\CLR\ and then
save this file as ReadFiles.vb.

Compiling an Assembly into a DLL File
Use vbc.exe to compile the assembly file without the use of Visual Studio. The vbc.exe compiler can
be found on the SQL Server instance machine under the latest version of C:\WINDOWS\MICROSOFT.
NET\framework\ directory.

In this example, I’ll execute the following command to create the DLL assembly file based on
the ReadFiles.vb code using the vbc executable at the command prompt (notice that the reference

CHAPTER 13 ■ CLR INTEGRATION408

9802CH13.qxd 4/24/08 4:15 PM Page 408

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

to sqlaccess.dll will vary based on your SQL instance directory path):

vbc /t:library /out:C:\Apress\Recipes\CLR\ReadFiles.DLL /r:"C:\Program
Files\Microsoft SQL Server\MSSQL10.AUGUSTUS\MSSQL\Binn\sqlaccess.dll"

"C:\Apress\Recipes\CLR\ReadFiles.vb"

How It Works
Executing the vbc.exe executable in this recipe creates a DLL file under the C:\Apress\Recipes\CLR
directory, which can then be used to create an assembly in SQL Server. I’ll review how to do that
next.

Loading the Assembly into SQL Server
To load the new assembly into a SQL Server 2008 database, use the CREATE ASSEMBLY command.

The basic syntax, as used in this example, is as follows:

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { '[\\computer_name\]share_name\[path\]manifest_file_name'
| '[local_path\]manifest_file_name'|

{ varbinary_literal | varbinary_expression }}
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

Table 13-2 describes this command’s arguments.

Table 13-2. CREATE ASSEMBLY Arguments

Argument Description

assembly_name This defines the name of the
new database assembly.

owner_name This defines the user or role
owner of the assembly.

'[\\computer_name\]share_name\[path\]manifest_file_name' | This defines the path and file
'[local_path\]manifest_file_name'| name of the assembly to be

loaded.

varbinary_literal | varbinary_expression Instead of an actual file, the
binary values that make up the
assembly can be passed to the
command.

SAFE | EXTERNAL_ACCESS | UNSAFE This references the safety
permission level for the
assembly, per the discussion
earlier in this section.

The safety permission levels for the assembly require special consideration. SAFE permissions
allow you to run code that only requires access to the local SQL Server instance. Using this default
mode, your assembly won’t be able to access the network, external files (even files on the same
machine as the SQL Server instance), the registry, or environment variables. EXTERNAL_ACCESS per-
missions permit access to the network, external files, the registry, environment variables, and web
services. Both the SAFE and EXTERNAL_ACCESS modes have a specific level of internal safety. These
internal measures include the protection of the memory space of other applications, as well as a
restriction from any action that could hurt the SQL Server instance.

CHAPTER 13 ■ CLR INTEGRATION 409

9802CH13.qxd 4/24/08 4:15 PM Page 409

UNSAFE permissions are most similar to the extended stored procedures discussed earlier in
the chapter. This level of permission doesn’t put any restrictions on how the assembly accesses
resources, allowing for the potential of memory space violations or performing actions that could
hurt the stability of the SQL Server instance. As you may suspect, this is the permission level you
should avoid unless necessary, and only under conditions where you can ensure the assembly is
thoroughly tested and free of negative side effects.

Continuing with this section’s example of creating a CLR stored procedure, a new assembly is
created based on the ReadFiles.DLL, using the EXTERNAL_ACCESS option, since the assembly needs to
read from the file system:

USE BookStore
GO

CREATE ASSEMBLY ReadFiles FROM 'C:\Apress\Recipes\CLR\ReadFiles.DLL'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

How It Works
When creating a new assembly, the actual assembly contents are loaded into the database. This
means that database backups will also back up the assemblies contained within. In our example, a
new assembly called ReadFiles was created based on the assembly DLL file. The permission was set
to EXTERNAL_ACCESS because the assembly is used to read data from a file and return it back as a
result set to the SQL Server caller.

Importing an assembly into SQL Server isn’t enough to start using its functionality. You must
then associate that assembly to a CLR database object. The next recipe demonstrates how to do this.

Creating the CLR Stored Procedure
CLR database objects are created similarly to their regular Transact-SQL equivalents, only the pro-
cedural definition references an assembly instead. The following commands each have the CLR
option of EXTERNAL NAME:

• CREATE PROCEDURE

• CREATE FUNCTION

• CREATE TRIGGER

• CREATE TYPE

As a side note, the CREATE AGGREGATE command, which creates a user-defined SQL Server
aggregate function, can’t be written in Transact-SQL and is only used in conjunction with a .NET
assembly.

■Tip In SQL Server 2008, CLR user-defined types are no longer restricted to 8,000 bytes in size.

The specific extension syntax for creating a CLR-based stored procedure, user-defined func-
tion, or trigger is as follows:

EXTERNAL NAME assembly_name.class_name.method_name

For creating a new CLR data type or aggregate, only the assembly and class name are refer-
enced:

CHAPTER 13 ■ CLR INTEGRATION410

9802CH13.qxd 4/24/08 4:15 PM Page 410

EXTERNAL NAME assembly_name [.class_name]

This example demonstrates creating a new CLR stored procedure using the EXTERNAL NAME
extension of the CREATE PROCEDURE command to map to your new assembly, created in the previous
recipe:

CREATE PROCEDURE dbo.usp_FileReader
(@FileName nvarchar(1024))
AS EXTERNAL NAME ReadFiles.ReadFiles.Main
GO

ReadFiles appears twice because it is the CLR assembly name and the class within the VB .NET
code block.

Once created, the CLR stored procedure is executed like a normal Transact-SQL defined stored
procedure. Continuing this example, the contents of a SQL Server error log file are returned in the
results of the stored procedure (looking at an error log that is not currently being used by the SQL
Server instance):

EXEC dbo.usp_FileReader
N'C:\Program Files\Microsoft SQL Server\MSSQL10.AUGUSTUS\MSSQL\LOG\ERRORLOG.1'

This returns the contents of the ERRORLOG file as a result set (abridged here):

...
2007-10-14 08:09:18.91 Server Using locked pages for buffer pool.
2007-10-14 08:09:18.92 Server Using dynamic lock allocation.
Initial allocation of 2500 Lock blocks and 5000 Lock Owner blocks per node.
This is an informational message only. No user action is required.
2007-10-14 08:09:19.16 Server Node configuration: node 0: CPU mask:
0x0000000000000003 Active CPU mask: 0x0000000000000003.
This message provides a description of the NUMA configuration for this computer.
This is an informational message only. No user action is required.
2007-10-14 08:09:19.27 Server FILESTREAM: effective level = 0, configured level
= 0, file system access share name = 'CAESAR'.
2007-10-14 08:09:19.27 Server Attempting to initialize
Microsoft Distributed Transaction Coordinator (MS DTC).
This is an informational message only. No user action is required.
2007-10-14 08:09:20.65 Server Attempting to recover in-doubt distributed
transactions involving Microsoft Distributed Transaction Coordinator (MS DTC).
This is an informational message only. No user action is required.
2007-10-14 08:09:20.65 Server Database mirroring has been enabled on this
instance of SQL Server.
2007-10-14 08:09:20.67 spid7s Starting up database 'master'
....

Once created, database CLR objects can be altered or dropped using the normal ALTER or DROP
commands for the database object type.

How It Works
This recipe demonstrated how to create a CLR stored procedure. The parameters required for the
stored procedure depend on the parameters expected by the .NET assembly methods. In this case,
the Main method of the ReadFiles assembly expected a string parameter for the file and path name
to be read, so a @FileName nvarchar data type parameter is used in the stored procedure reference.
In the EXTERNAL NAME clause, the ReadFiles assembly was referenced, followed by the ReadFiles
class, and Main method.

CHAPTER 13 ■ CLR INTEGRATION 411

9802CH13.qxd 4/24/08 4:15 PM Page 411

Using the .NET Framework, the procedure was able to access external resources and iterate
through the contents of a file. With CLR integration, the functional scope of SQL Server now extends
out to the capabilities of the .NET Framework.

Creating a CLR Scalar User-Defined Function
As explained in the introduction at the beginning of the chapter, you’ll benefit most from CLR when
using it to execute high-complexity computational operations. Using CLR for scalar UDF functions
that don’t focus on data retrieval from SQL Server may often perform quite well over a Transact-SQL
equivalent. CLR scalar UDFs are also useful for operations that simply aren’t possible using
Transact-SQL (for example, accessing external data or using .NET library functionality that doesn’t
exist in Transact-SQL).

In this example, an assembly is created that contains a class and method intended for use
with a CLR user-defined scalar function. I’m going to take advantage of the System.Text.
RegularExpressions .NET Framework namespace. This contains a class called Regex, which will
allow us to break apart a single string into an array of values based on a specific delimiter. Regular
expression functionality, which is often used for pattern matching, isn’t built into SQL Server 2008,
but now, with CLR integration, you can safely and efficiently use the regular expression libraries
written for VB .NET.

The goal of this example is to create a scalar UDF that takes three parameters. The first param-
eter is a delimited string of values. The second parameter is the delimiter character used to separate
the string. The third parameter is the value from the array that I would like to select. I’ll walk
through the code in more detail in the “How It Works” section, but in the meantime, this example
compiles the following code using vbc.exe:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Text.RegularExpressions

Public Class SQLArrayBuilder

Public Shared Function ChooseValueFromArray(ArrayString as String,
ArrayDelimiter as String, ArrayItemSelection as SqlInt16) as SqlString

Dim NewArrayString as String() = Regex.Split(ArrayString, ArrayDelimiter)

Dim NewArrayItemSelection as SqlInt16=ArrayItemSelection-1

Dim ReturnString as SQLString = NewArrayString(NewArrayItemSelection)

Return ReturnString

End Function

End Class

After saving the VB file SQLArrayBuilder.vb and compiling this assembly using vbc, it can then
be imported into the database. Because nothing in the assembly accesses external resources, I can
use a SAFE permission level:

CREATE ASSEMBLY SQLArrayBuilder FROM 'C:\Apress\Recipes\CLR\SQLArrayBuilder.DLL'
WITH PERMISSION_SET = SAFE
GO

CHAPTER 13 ■ CLR INTEGRATION412

9802CH13.qxd 4/24/08 4:15 PM Page 412

Next, I’ll associate the new assembly to a scalar user-defined function. Notice that the syntax is
the same as if it were a Transact-SQL command, except that after AS, the EXTERNAL NAME keywords
are used to designate the assembly, class, and function:

CREATE FUNCTION dbo.CountSalesOrderHeader
(@ArrayString nvarchar(4000), @ArrayDelimiter nchar(1),
@ArrayItemSelection smallint)
RETURNS nvarchar(4000)
AS
EXTERNAL NAME SQLArrayBuilder.SQLArrayBuilder.ChooseValueFromArray
GO

Now to test the function, the first parameter will include three comma-separated values. The
second parameter designates a comma as the delimiter, and the third value indicates the value you
would like to choose from the array:

SELECT dbo.CountSalesOrderHeader
('Brian,Steve,Boris,Tony,Russ', ',', 3) Choice

This returns

Choice
Boris

This time the second value is selected from the array:

SELECT dbo.CountSalesOrderHeader
('Brian,Steve,Boris,Tony,Russ', ',', 2) Choice

This returns

Choice
Steve

How It Works
This recipe shares the same general setup steps as the CLR stored procedure example. Once again,
an assembly was created and then compiled. Next, the assembly was added to the database using
CREATE ASSEMBLY. A new user-defined function was then created, using the expected three input
parameters and the appropriate output parameter data type. The UDF also included a reference to
the assembly, class, and function name.

Walking through the code, you’ll see that I included the core namespaces also seen in the
stored procedure example:

Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

The reference to the regular expressions namespace was also included, so that you could use
the functionality of the Regex object, which is a collection of library classes created and shipped
with .NET:

Imports System.Text.RegularExpressions

CHAPTER 13 ■ CLR INTEGRATION 413

9802CH13.qxd 4/24/08 4:15 PM Page 413

Our class name was then declared, which will be the reference that is used during the creation
of the CLR function:

Public Class SQLArrayBuilder

The function was declared, including the three input parameters in parentheses, followed by
the expected return data type (SqlString) of the function:

Public Shared Function ChooseValueFromArray(ArrayString as String,
ArrayDelimiter as String, ArrayItemSelection as SqlInt16) as SqlString

Next, a new string array variable was declared and populated with the array generated from the
Regex.Split method, which is used to split an array of strings at the positions defined by a regular
expression match (in this case, our delimiter):

Dim NewArrayString as String() =
Regex.Split(ArrayString, ArrayDelimiter)

VB .NET arrays are zero-based—meaning the first value in the array is indexed at 0, followed by
1, 2, and so on. Because the SQL Server caller of the scalar UDF will want to pass an array selection
value based on a one-based value, I take the input array item selection and subtract “1” from it, so
as to select the appropriate value from the array:

Dim NewArrayItemSelection as SqlInt16=ArrayItemSelection-1

After the array is populated, a new string variable is created to hold the selected value:

Dim ReturnString as SQLString = NewArrayString(NewArrayItemSelection)

This value is the passed back using the Return command, followed by the end of the function
and class definition:

Return ReturnString

End Function

End Class

After that, the assembly was compiled, and then imported into the database using CREATE
ASSEMBLY. The function was then created using CREATE FUNCTION referencing the assembly, class, and
function:

SQLArrayBuilder.SQLArrayBuilder.ChooseValueFromArray

The function was then tested, parsing out a comma-delimited string and returning the desired
scalar value.

■Caution The examples in this chapter are written in order to introduce the core concepts and functionality of
CLR integration with SQL Server 2008. Although this function works properly when the appropriate values are
passed to the function, it does not contain error trapping code to handle unexpected values. Using SAFE and
EXTERNAL_ACCESS limits the damage surface area, although bad input values may cause rather unfriendly error
messages returned to the end user. In your production .NET code, be sure to add error handling.

CHAPTER 13 ■ CLR INTEGRATION414

9802CH13.qxd 4/24/08 4:15 PM Page 414

Creating a CLR Trigger
In this next recipe, I’ll demonstrate creating a CLR trigger, which is used to generate an external
“control file” that can in turn be used to notify an outside hypothetical application that a process is
finished.

In this example scenario, I have a table called dbo.DataWarehouseLoadHistory. This table con-
tains a row inserted whenever the daily data warehouse load finishes. When a row is inserted, the
trigger will output a control file to an external directory, notifying the legacy system (and I’m assum-
ing this is a system that cannot access SQL Server 2008 programmatically).

First, I’ll create the new demonstration table in a user-defined database:

USE BookStore
GO

CREATE TABLE dbo.DataWarehouseLoadHistory
(DataWarehouseLoadHistoryID int

NOT NULL IDENTITY(1,1) PRIMARY KEY ,
LoadDT datetime NOT NULL)
GO

Next, the following assembly code is compiled using vbc.exe:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports System.Data.SqlClient
Imports Microsoft.SqlServer.Server
Imports System.IO

Public Class DW_Trigger

Public Shared Sub ExportFile()

Dim DWTrigger As SqlTriggerContext
DWTrigger = SqlContext.TriggerContext

If (DWTrigger.TriggerAction = _
TriggerAction.Insert) Then

Dim DWsw As StreamWriter = New _
StreamWriter("C:\DataWarehouseLoadTrigger.txt")

DWsw.WriteLine(Now())
DWsw.Close()

End If

End Sub

End Class

After compiling the assembly into a DLL, it is then imported into SQL Server using CREATE
ASSEMBLY:

CHAPTER 13 ■ CLR INTEGRATION 415

9802CH13.qxd 4/24/08 4:15 PM Page 415

CREATE ASSEMBLY DataWarehouseLoadNotification
FROM 'C:\Apress\Recipes\CLR\DataWarehouseLoadNotification.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO

Next, I’ll create a trigger that is mapped to the assembly subroutine:

CREATE TRIGGER dbo.trg_i_DWNotify
ON dbo.DataWarehouseLoadHistory AFTER INSERT
AS
EXTERNAL NAME DataWarehouseLoadNotification.DW_Trigger.ExportFile

To demonstrate the new trigger, I’ll insert a new row into the DataWarehouseLoadHistory table:

INSERT dbo.DataWarehouseLoadHistory
(LoadDT)
VALUES(GETDATE())

This INSERT causes the CLR trigger to fire and then create a notification file under the C:\ drive
of the SQL Server instance machine (of course in a production scenario, I’d be putting this file
someplace else for the legacy system to pick up). The file contains the current date and time that
the trigger was fired:

2/17/2008 2:43:47 PM

How It Works
This recipe demonstrated creating a CLR trigger that created a text file in response to an INSERT into
a table. Of course, this CLR database object would not have been a good idea to create for a table
that receives numerous new rows each day (continually overlaying a file non-stop)! But in this
scenario, I’m assuming that the data is only updated periodically, and that the external legacy appli-
cation is monitoring any changes in the file.

The steps to creating this CLR trigger were similar to creating a user-defined function and
stored procedure: a new assembly was compiled, added to SQL Server, and then associated to a
database object using CREATE TRIGGER.

Something to point out, however, is the SqlTriggerContext class, which was used to define the
context information for the trigger within SQL Server:

Dim DWTrigger As SqlTriggerContext
DWTrigger = SqlContext.TriggerContext

Once the object was created, it was then used to find out the actions that cause the trigger to
fire or determine which columns were modified. In this example, the SqlTriggerContext object was
used to determine whether the trigger firing event was an INSERT, and if so, the external file would
be written:

If (DWTrigger.TriggerAction = _
TriggerAction.Insert) Then

...

After compiling the DLL, an assembly was created and then bound to a trigger on the
DataWarehouseLoadHistory table. An INSERT was tested, causing a notification file under the C:\
drive to be created.

CHAPTER 13 ■ CLR INTEGRATION416

9802CH13.qxd 4/24/08 4:15 PM Page 416

Administering Assemblies
The next three recipes will demonstrate how to administer database assemblies. I’ll demonstrate
how to view assembly metadata, modify an assembly’s permissions, and remove an assembly from
the database.

Viewing Assembly Metadata
To view all assemblies in the current database, you can query the sys.assemblies system catalog
view. For example:

SELECT name, permission_set_desc
FROM sys.assemblies

This returns

name permission_set_desc
Microsoft.SqlServer.Types UNSAFE_ACCESS
ReadFiles EXTERNAL_ACCESS
SQLArrayBuilder SAFE_ACCESS
DataWarehouseLoadNotification EXTERNAL_ACCESS

How It Works
The system catalog view sys.assemblies can be used to view the name of the assemblies and the
security profile assigned to it.

Modifying an Assembly’s Permissions
You can use the ALTER ASSEMBLY command (which uses many of the same options as CREATE
ASSEMBLY) to modify specific configurations of an existing assembly permissions.

In this example, the permissions of an assembly are set from EXTERNAL_ACCESS to SAFE:

ALTER ASSEMBLY ReadFiles
WITH PERMISSION_SET = SAFE

After executing this command, an attempt is made to execute the stored procedure associated
to this assembly:

EXEC dbo.usp_FileReader
N'C:\Program Files\Microsoft SQL Server\MSSQL10.AUGUSTUS\MSSQL\LOG\ERRORLOG.1'

This returns the following (abridged) error:

Msg 6522, Level 16, State 1, Procedure usp_FileReader, Line 0
A .NET Framework error occurred during execution of
user defined routine or aggregate 'usp_FileReader':
System.Security.SecurityException: Request for the permission of type
'System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' failed.

CHAPTER 13 ■ CLR INTEGRATION 417

9802CH13.qxd 4/24/08 4:15 PM Page 417

How It Works
Although SQL Server allowed me to change the permission level of the assembly, external opera-
tions (reading from a file) attempted by the assembly were now no longer allowed. This means that
when you write your assembly, you must think about what level of permissions it will need. If you
think your assembly only needs SAFE access, but it actually needs access to external resources, you
can use ALTER ASSEMBLY to change the permissions.

Removing an Assembly from the Database
To remove an assembly from the database, use the DROP ASSEMBLY command. The abridged syntax is
as follows:

DROP ASSEMBLY assembly_name [,...n]

The first argument is the name or comma-delimited list of assembly names to be dropped
from the database. For example:

DROP ASSEMBLY ReadFiles

How It Works
This example demonstrated dropping an assembly. Any existing CLR object references (stored pro-
cedure, for example) must be dropped prior to removing the assembly from the database. If you
don’t drop referencing objects first, you’ll see an error message like the following:

Msg 6590, Level 16, State 1, Line 1
DROP ASSEMBLY failed because 'ReadFiles' is referenced by object 'usp_FileReader'.

CHAPTER 13 ■ CLR INTEGRATION418

9802CH13.qxd 4/24/08 4:15 PM Page 418

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

XML, Hierarchies, and Spatial Data

In this chapter, I’ll present recipes discussing and demonstrating the various integration points
between XML and SQL Server. I’ll also introduce the new hierarchyid, geometry, and geography data
types, which are now native to SQL Server 2008.

Working with Native XML
In SQL Server 2000, if you wanted to store XML data within the database, you had to store it in a
character or binary format. This wasn’t too troublesome if you just used SQL Server for XML docu-
ment storage, but attempts to query or modify the stored document within SQL Server were not so
straightforward. Introduced in SQL Server 2005, the SQL Server native xml data type helps address
this issue.

Relational database designers may be concerned about this data type, and rightly so. The nor-
malized database provides performance and data integrity benefits that put into question why we
would need to store XML documents in the first place. Having an xml data type allows you to have
your relational data stored alongside your unstructured data. By providing this data type, Microsoft
isn’t suggesting that you run your high-speed applications based on XML documents. Rather, you
may find XML document storage is useful when data must be “somewhat” structured. For example,
let’s say your company’s web site offers an online contract. This contract is available over the Web
for your customer to fill out and then submit. The submitted data is stored in an xml data type. You
might choose to store the submitted data in an XML document because your legal department is
always changing the document’s fields. Also, since this document is only submitted a few times a
day, throughput is not an issue. Another good reason to use native xml data type is for “state” stor-
age. For example, if your .NET applications use XML configuration files, you can store them in a
SQL Server database in order to maintain a history of changes and as a backup/recovery option.

These next few recipes will demonstrate xml data type columns in action.

Creating XML Data Type Columns
Native xml data types can be used as a data type for columns in a table, local variables, or parame-
ters. Data stored in the xml data type can contain an XML document or XML fragments. An XML
fragment is an XML instance without a single top-level element for the contents to nest in. Creating
an XML data type column is as easy as just using it in the table definition. For example, the
ChapterDESC column uses an XML data type in the following table:

419

C H A P T E R 1 4

9802CH14.qxd 6/17/08 10:42 AM Page 419

IF NOT EXISTS (SELECT name FROM sys.databases
WHERE name = 'TestDB')

BEGIN
CREATE DATABASE TestDB

END
GO

USE TestDB
GO

CREATE TABLE dbo.Book
(BookID int IDENTITY(1,1) PRIMARY KEY,
ISBNNBR char(10) NOT NULL,
BookNM varchar(250) NOT NULL,
AuthorID int NOT NULL,
ChapterDESC XML NULL)
GO

In this second example, a local variable called @Book is given an xml data type and is set to an
xml value (in the next recipe, I’ll demonstrate how that value can be used):

DECLARE @Book XML

SET @Book =
CAST('<Book name="SQL Server 2000 Fast Answers">
<Chapters>
<Chapter id="1"> Installation, Upgrades... </Chapter>
<Chapter id="2"> Configuring SQL Server </Chapter>
<Chapter id="3"> Creating and Configuring Databases </Chapter>
<Chapter id="4"> SQL Server Agent and SQL Logs </Chapter>
</Chapters>
</Book>' as XML)

In the third example, an xml data type input parameter is used for a stored procedure:

CREATE PROCEDURE dbo.usp_INS_Book
@ISBNNBR char(10),
@BookNM varchar(250),
@AuthorID int,
@ChapterDESC xml

AS

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES (@ISBNNBR, @BookNM, @AuthorID, @ChapterDESC)

GO

How It Works
This recipe demonstrated how to use the xml data type in the column definition of a table, a local
variable, and the input parameter for a stored procedure. The syntax is not different from what
you’d use with other SQL Server data types. The next recipe demonstrates how to INSERT XML data
into a table using Transact-SQL.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA420

9802CH14.qxd 6/17/08 10:42 AM Page 420

Inserting XML Data into a Column
In this recipe, I’ll demonstrate inserting an XML document into the table created in the previous
recipe. The INSERT command is used, and the XML document is embedded in single quotes (as a
string would be) but is also CAST explicitly into the xml data type:

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES ('570X000000',

'SQL Server 2008 T-SQL Recipes',
55,

CAST('<Book name="SQL Server 2008 T-SQL Recipes">
<Chapters>
<Chapter id="1"> SELECT </Chapter>
<Chapter id="2"> INSERT,UPDATE,DELETE </Chapter>
<Chapter id="3"> Transactions, Locking, Blocking, and Deadlocking </Chapter>
<Chapter id="4"> Tables </Chapter>
<Chapter id="5"> Indexes </Chapter>
<Chapter id="6"> Full-text search </Chapter>
</Chapters>
</Book>' as XML))

This returns

(1 row(s) affected)

In this second example, a local variable called @Book is given an xml data type and is set to an
xml value. That value is then used in a table INSERT:

DECLARE @Book XML

SET @Book =
CAST('<Book name="SQL Server 2000 Fast Answers">
<Chapters>
<Chapter id="1"> Installation, Upgrades... </Chapter>
<Chapter id="2"> Configuring SQL Server </Chapter>
<Chapter id="3"> Creating and Configuring Databases </Chapter>
<Chapter id="4"> SQL Server Agent and SQL Logs </Chapter>
</Chapters>
</Book>' as XML)

INSERT dbo.Book
(ISBNNBR, BookNM, AuthorID, ChapterDESC)
VALUES ('1590591615',

'SQL Server 2000 Fast Answers',
55,
@Book)

This returns

(1 row(s) affected)

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 421

9802CH14.qxd 6/17/08 10:42 AM Page 421

How It Works
In both the INSERT examples, the XML data for the ChapterDESC column was converted explicitly to
xml using the CAST function and was checked by SQL Server to ensure that it was well formed (well
formed, in this case, means that it follows the general rules of an XML document). For example, if
the document fragment had been missing the closing </Book> element, the following error would
have been raised:

Msg 9400, Level 16, State 1, Line 1
XML parsing: line 9, character 12, unexpected end of input

The xml column defined in the example, however, was untyped. When an xml column is
untyped, it means that the contents inserted into the column are not validated against an XML
schema. An XML schema is used to define the allowed elements and attributes for an XML docu-
ment, and is discussed in the next recipe.

Validating XML Data Using Schemas
An XML Schema (also referred to as XML Schema Definition, or XSD) defines the elements, attrib-
utes, data types, and allowed values for an XML document. Using CREATE XML SCHEMA COLLECTION,
you can add XML Schema definitions to SQL Server and use them in constraining XML data type
columns, local variables, or parameters.

■Tip For a review of XML Schema fundamentals, visit the World Wide Web Consortium (W3C) standards site at
http://www.w3.org/TR/XMLschema-0/.

The CREATE XML SCHEMA COLLECTION command is used to add new XML schemas and uses the
following syntax:

CREATE XML SCHEMA COLLECTION [<relational_schema>.]sql_identifier
AS Expression

The command takes two arguments, the first being the unique name of the new XML Schema,
while the second is the body of the XML Schema or Schemas.

To add additional XML Schemas to an existing collection, you can use the ALTER XML SCHEMA
COLLECTION. The syntax is as follows:

ALTER XML SCHEMA COLLECTION [relational_schema.]sql_identifier
ADD 'Schema Component'

To remove the entire XML Schema collection from the database, use the DROP XML SCHEMA
command. The syntax is as follows:

DROP XML SCHEMA COLLECTION [relational_schema.]sql_identifier

The only argument for dropping an existing XML Schema collection is the name of the
collection.

In this example, a new XML Schema collection is created called BookStoreCollection, which
contains a single XML Schema defined within:

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA422

9802CH14.qxd 6/17/08 10:42 AM Page 422

http://www.w3.org/TR/XMLschema-0

CREATE XML SCHEMA COLLECTION BookStoreCollection
AS
N'<xsd:schema targetNamespace="http://JOEPROD/BookStore"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
elementFormDefault="qualified">
<xsd:import namespace=
"http://schemas.microsoft.com/sqlserver/2004/sqltypes" />
<xsd:element name="Book">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="BookName" minOccurs="0">
<xsd:simpleType>

<xsd:restriction base="sqltypes:varchar">
<xsd:maxLength value="50" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="ChapterID" type="sqltypes:int"
minOccurs="0" />

<xsd:element name="ChapterNM" minOccurs="0">
<xsd:simpleType>

<xsd:restriction base="sqltypes:varchar">
<xsd:maxLength value="50" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>'

This returns

Command(s) completed successfully.

Once created, you can verify an XML Schema’s existence using the system catalog views
sys.XML_schema_collections and sys.XML_schema_namespaces. This first query shows all schema
collections defined in the database:

SELECT name
FROM sys.XML_schema_collections
ORDER BY create_date

This returns

name
sys
BookStoreCollection

This second query shows namespaces found in a specific XML Schema collection (namespaces
uniquely identify the scope of elements and attributes, helping uniquely identify these components):

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 423

9802CH14.qxd 6/17/08 10:42 AM Page 423

http://JOEPROD/BookStore
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/sqltypes
http://schemas.microsoft.com/sqlserver/2004/sqltypes

SELECT n.name
FROM sys.XML_schema_namespaces n
INNER JOIN sys.XML_schema_collections c ON

c.XML_collection_id = n.XML_collection_id
WHERE c.name = 'BookStoreCollection'

This returns

name
http://JOEPROD/BookStore

Once a schema collection is available, you can bind it to an xml column in a table by referenc-
ing it in parentheses after the data type definition. For example, the ChapterDESC column is bound
to the BookStoreCollection XML Schema collection:

CREATE TABLE dbo.BookInfoExport
(BookID int IDENTITY(1,1) PRIMARY KEY,
ISBNNBR char(10) NOT NULL,
BookNM varchar(250) NOT NULL,
AuthorID int NOT NULL,
ChapterDESC xml (BookStoreCollection) NULL)

This xml column will now only allow typed xml values (XML documents that conform to the
defined XML Schema collection). Attempting to assign XML values that do not conform to the XSD
specified for the column will raise an error (for example, if expected elements or attributes are
missing). Using the keyword DOCUMENT or CONTENT with the schema collection reference lets you
determine whether the allowed XML will allow only a full XML document (DOCUMENT) or XML frag-
ments (CONTENT) instead.

For example, the following local variable requires a full XML document that conforms to the
XML Schema collection:

DECLARE @Book XML (DOCUMENT BookStoreCollection)

How It Works
This recipe provided a quick tour through the XML Schema functionality built into SQL Server.
Using an XML Schema collection, you can validate and constrain the content of XML data within
the xml data type. Untyped XML data will still be validated for general XML structure, but by using
XML Schema collections, you can apply more sophisticated validation and constraints.

■Tip SQL Server 2008 now allows lax validation for wildcard content. SQL Server 2005 supported strict and
skip. The strict value meant that all contents were fully validated; otherwise, skip designated that contents
would not be validated. The new lax value directs SQL Server to validate attributes and elements defined in the
schema but skip validation of undefined attributes and elements.

Retrieving XML Data
The xml data type column can be queried using XQuery methods. XQuery is a query language that is
used to search XML documents. These XQuery methods described in Table 14-1 are integrated into
SQL Server and can be used in regular Transact-SQL queries.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA424

9802CH14.qxd 6/17/08 10:42 AM Page 424

http://JOEPROD/BookStore

Table 14-1. XQuery Methods

Method Description

exist Returns 1 for an XQuery expression when it evaluates to TRUE; otherwise, it returns 0
for FALSE.

modify Performs updates against XML data (demonstrated after this recipe).

nodes Shreds XML data to relational data, identifying nodes-to-row mapping.

query Returns XML results based on an XQuery expression.

value Returns a scalar SQL data type value based on an XQuery expression.

■Tip For an in-depth review of XQuery fundamentals, visit the World Wide Web Consortium (W3C) standards site
at http://www.w3.org/TR/xquery/. XQuery supports iteration syntax using the for, let, where, order by,
and return clauses (acronym FLWOR). In SQL Server 2005, let was not supported. SQL Server 2008 now
supports let.

To demonstrate each of these methods, I’ll create a new table with an xml data type column
and insert three rows:

CREATE TABLE dbo.BookInvoice
(BookInvoiceID int IDENTITY(1,1) PRIMARY KEY,
BookInvoiceXML XML NOT NULL)
GO

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="22" orderdate="7/1/2008">
<OrderItems>
<Item id="22" qty="1" name="SQL Fun in the Sun"/>
<Item id="24" qty="1" name="T-SQL Crossword Puzzles"/>
</OrderItems>
</BookInvoice>')

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="40" orderdate="7/11/2008">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes"/>
</OrderItems>
</BookInvoice>')

INSERT dbo.BookInvoice
(BookInvoiceXML)
VALUES ('<BookInvoice invoicenumber="1" customerid="9" orderdate="7/22/2008">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes"/>
<Item id="24" qty="1" name="T-SQL Crossword Puzzles"/>
</OrderItems>
</BookInvoice>')

In the first example, the exists method is used to find all rows from the table for purchases of
the item with an ID of 11:

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 425

9802CH14.qxd 6/17/08 10:42 AM Page 425

http://www.w3.org/TR/xquery

SELECT BookInvoiceID
FROM dbo.BookInvoice
WHERE BookInvoiceXML.exist
('/BookInvoice/OrderItems/Item[@id=11]') = 1

This returns

BookInvoiceID
2
3

This next example demonstrates the nodes method, which shreds a document into a relational
rowset. A local variable is used to populate a single XML document from the BookInvoice table,
which is then referenced using the nodes method. This query retrieves a document and lists out
the ID element of each BookInvoice/OrderItems/Item node:

DECLARE @BookInvoiceXML xml

SELECT @BookInvoiceXML = BookInvoiceXML
FROM dbo.BookInvoice
WHERE BookInvoiceID = 2

SELECT BookID.value('@id','integer') BookID
FROM @BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item')
AS BookTable(BookID)

The last query returns the item ID values in the virtual BookTable table:

BookID
11

The next example demonstrates the query method, which is used to return the two item ele-
ments from a specific XML document:

DECLARE @BookInvoiceXML XML

SELECT @BookInvoiceXML = BookInvoiceXML
FROM dbo.BookInvoice
WHERE BookInvoiceID = 3

SELECT @BookInvoiceXML.query('/BookInvoice/OrderItems')

This returns

<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes" />
<Item id="24" qty="1" name="T-SQL Crossword Puzzles" />

</OrderItems>

The last example of this recipe demonstrates the value method, which is used to find the dis-
tinct book names from the first and second items within the BookInvoiceXML xml column:

SELECT DISTINCT
BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[1]', 'varchar(30)') as BookTitles
FROM dbo.BookInvoice

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA426

9802CH14.qxd 6/17/08 10:42 AM Page 426

mailto:@BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item
mailto:@BookInvoiceXML.query('/BookInvoice/OrderItems

UNION
SELECT DISTINCT
BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[2]', 'varchar(30)')
FROM dbo.BookInvoice

Two result sets were combined together using UNION, as two levels of the /BookInvoice/
OrderItems/Item node were explored in two separate queries (the NULL value is from the stored
XML fragment that only had a single item):

BookTitles
NULL
MCDBA Cliff Notes
SQL Fun in the Sun
T-SQL Crossword Puzzles

How It Works
XQuery methods enable you to query and modify data (modifications demonstrated later in this
chapter) within an xml data type. Most of the examples in this recipe used a similar format of
XMLColumn.MethodName.

For example, the exist method was used on the BookInvoiceXML xml column to show items
with an ID of 11. The XQuery expression followed the method name in parentheses:

BookInvoiceXML.exist ('/BookInvoice/OrderItems/Item[@id=11]') = 1

The nodes function example included an XQuery expression to define the results to return in a
shredded format, followed by the name of the new result table and column name in parentheses:

@BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item')
AS BookTable(BookID)

The query method example used a simple XQuery expression in order to return item elements
in the results:

@BookInvoiceXML.query('/BookInvoice/OrderItems/Item')

The value method included the XQuery expression that returns a scalar value for each row,
defined by the data type in the second parameter:

BookInvoiceXML.value
('(/BookInvoice/OrderItems/Item/@name)[2]', 'varchar(30)')

Modifying XML Data
The xml data type column can be modified using the modify method in conjunction with UPDATE,
allowing you to insert, update, or delete an XML node in the xml data type column.

This example demonstrates the modify method by inserting a new item into an existing XML
document (specifically, a new item into the /BookInvoice/OrderItems node):

UPDATE dbo.BookInvoice
SET BookInvoiceXML.modify
('insert <Item id="920" qty="1" name="SQL Server 2008 Transact-SQL Recipes"/>
into (/BookInvoice/OrderItems)[1]')
WHERE BookInvoiceID = 2

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 427

9802CH14.qxd 6/17/08 10:42 AM Page 427

mailto:@BookInvoiceXML.nodes('/BookInvoice/OrderItems/Item
mailto:@BookInvoiceXML.query('/BookInvoice/OrderItems/Item

Checking the BookInvoice XML document for this row confirms that the new item was added:

SELECT BookInvoiceXML
FROM dbo.BookInvoice
WHERE BookInvoiceID = 2

This returns

<BookInvoice invoicenumber="1" customerid="40" orderdate="7/11/2008">
<OrderItems>
<Item id="11" qty="1" name="MCDBA Cliff Notes" />
<Item id="920" qty="1" name="SQL Server 2008 Transact-SQL Recipes" />

</OrderItems>
</BookInvoice>

How It Works
The modify function also used the XMLColumn.MethodName format and an XQuery insert expression in
parentheses to insert a new item element into an existing document:

BookInvoiceXML.modify
('insert <Item id="920" qty="1" name="SQL Server 2008 T-SQL Recipes"/>
into (/BookInvoice/OrderItems)[1]')

The insert command used to add a new item element is an extension to the XQuery language
and is called XML DML. Other XML DML commands include the replace statement, which updates
XML data, and the delete statement, which removes a node from an XML document or fragment.

Indexing XML Data
You can improve performance of queries against XML data type columns by using XML indexes. To
create an XML index, the table must first already have a clustered index defined on the primary key
of the table.

XML columns can only have one primary XML index defined, and then up to three secondary
indexes (of different types described in a bit). The CREATE INDEX command is used to define XML
indexes. The abridged syntax is as follows:

CREATE [PRIMARY] XML INDEX index_name
ON <object> (xml_column_name)
[USING XML INDEX xml_index_name

[FOR { VALUE | PATH | PROPERTY }]]
[WITH (<xml_index_option> [,...n])][;]

Creating an index for an XML column uses several of the same arguments as a regular table
index (see Chapter 5 for more information). The XML-specific arguments of this command are
described in Table 14-2.

Table 14-2. CREATE XML INDEX Arguments

Argument Description

Object This specifies the name of the table the index is being added to.

XML_column_name This defines the name of the XML data type column.

XML_index_name This is the unique name of the XML index.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA428

9802CH14.qxd 6/17/08 10:42 AM Page 428

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Argument Description

VALUE | PATH | PROPERTY These are arguments for secondary indexes only and relate to
XQuery optimization. A VALUE secondary index is used for indexing
based on imprecise paths. A PATH secondary index is used for
indexing via a path and value. A PROPERTY secondary index is used
for indexing based on a querying node values based on a path.

In this first example, a primary XML index is created on an xml data type column:

CREATE PRIMARY XML INDEX idx_XML_Primary_Book_ChapterDESC
ON dbo.Book(ChapterDESC)

GO

Next, a secondary VALUE index is created on the same xml column, but with a different name.
The USING clause is added for secondary indexes, specifying in the FOR clause that the xml data type
column be given a VALUE index in addition to the existing primary index:

CREATE XML INDEX idx_XML_Value_Book_ChapterDESC
ON dbo.Book(ChapterDESC)
USING XML INDEX idx_XML_Primary_Book_ChapterDESC

FOR VALUE
GO

You can use the sys.XML_indexes system catalog view to view the XML indexes used in a data-
base. In this query, all XML indexes are listed for a specific table:

SELECT name, secondary_type_desc
FROM sys.XML_indexes
WHERE object_id = OBJECT_ID('dbo.Book')

This query returns the name of the XML indexes, and if the index is a secondary index, the
type:

name secondary_type_desc
idx_XML_Primary_Book_ChapterDESC NULL
idx_XML_Value_Book_ChapterDESC VALUE

Once created, XML indexes can be modified or removed just like regular indexes using the
ALTER INDEX and DROP INDEX commands.

How It Works
Because XML documents can store up to 2GB for a single column and row, query performance can
suffer when you are trying to query the data stored in the XML column. Make use of XML indexes if
you plan on frequently querying XML data type data. Indexing xml data types internally persists the
tabular form of the XML data, allowing for more efficient querying of hierarchical data.

XML indexes may look a little odd at first because you are adding secondary indexes to the
same xml data type column. Adding the different types of secondary indexes helps benefit perform-
ance, based on the different types of XQuery queries you plan to execute. All in all, you can have up
to four indexes on a single xml data type column: one primary and three secondary. A primary XML
index must be created prior to being able to create secondary indexes. A secondary PATH index is
used to enhance performance for queries that specify a path and value from the xml column using
XQuery. A secondary PROPERTY index is used to enhance performance of queries that retrieve spe-
cific node values by specifying a path using XQuery. The secondary VALUE index is used to enhance

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 429

9802CH14.qxd 6/17/08 10:42 AM Page 429

performance of queries that retrieve data using an imprecise path (for example, for an XPath
expression that employs //, which can be used to find nodes in a document no matter where
they exist).

Converting Between XML Documents and
Relational Data
In the next recipe, I’ll demonstrate how to convert relational data sets into a hierarchical XML for-
mat using FOR XML. After that, I’ll demonstrate how to use OPENXML to convert an XML format into a
relational data set.

Formatting Relational Data As XML
Introduced in SQL Server 2000, FOR XML extends a SELECT statement by returning the relational
query results in an XML format. FOR XML operates in four different modes: RAW, AUTO, EXPLICIT,
and PATH.

In RAW mode, a single row element is generated for each row in the result set, with each column
in the result converted to an attribute within the element.

In this example, FOR XML RAW is used to return the results of the HumanResources.Shift table in
an XML format. The TYPE option is used to return the results in the XML data type, and ROOT is used
to define a top-level element where the results will be nested:

USE AdventureWorks
GO

SELECT ShiftID, Name
FROM HumanResources.Shift
FOR XML RAW('Shift'), ROOT('Shifts'), TYPE

This returns

<Shifts>
<Shift ShiftID="1" Name="Day" />
<Shift ShiftID="2" Name="Evening" />
<Shift ShiftID="3" Name="Night" />

</Shifts>

The FOR XML AUTO mode creates XML elements in the results of a SELECT statement, and also
automatically nests the data, based on the columns in the SELECT clause. AUTO shares the same
options as RAW.

In this example, Employee, Shift, and Department information is queried from
AdventureWorks—with XML AUTO automatically arranging the hierarchy of the results:

SELECT TOP 3 BusinessEntityID,
Shift.Name,
Department.Name

FROM HumanResources.EmployeeDepartmentHistory Employee
INNER JOIN HumanResources.Shift Shift ON

Employee.ShiftID = Shift.ShiftID
INNER JOIN HumanResources.Department Department ON

Employee.DepartmentID = Department.DepartmentID
ORDER BY BusinessEntityID
FOR XML AUTO, TYPE

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA430

9802CH14.qxd 6/17/08 10:42 AM Page 430

This returns

<Employee BusinessEntityID="1">
<Shift Name="Day">

<Department Name="Executive" />
</Shift>

</Employee>
<Employee BusinessEntityID="2">
<Shift Name="Day">

<Department Name="Engineering" />
</Shift>

</Employee>
<Employee BusinessEntityID="3">
<Shift Name="Day">

<Department Name="Engineering" />
</Shift>

</Employee>

Notice that the third INNER JOIN caused the values from the Department table to be children of
the Shift table’s values. The Shift element was then included as a child of the Employee element.
Rearranging the order of the columns in the SELECT clause, however, impacts how the hierarchy is
returned. For example:

SELECT TOP 3
Shift.Name,
Department.Name,
BusinessEntityID

FROM HumanResources.EmployeeDepartmentHistory Employee
INNER JOIN HumanResources.Shift Shift ON

Employee.ShiftID = Shift.ShiftID
INNER JOIN HumanResources.Department Department ON

Employee.DepartmentID = Department.DepartmentID
ORDER BY Shift.Name, Department.Name, BusinessEntityID
FOR XML AUTO, TYPE

This time the top of the hierarchy is the Shift, with the child element of Department, and
Employees children of the Department elements:

<Shift Name="Day">
<Department Name="Document Control">

<Employee BusinessEntityID="217" />
<Employee BusinessEntityID="219" />
<Employee BusinessEntityID="220" />

</Department>
</Shift>

The FOR XML EXPLICIT mode allows you more control over the XML results, letting you define
whether columns are assigned to elements or attributes. The EXPLICIT parameters have the same
use and meaning as for RAW and AUTO; however, EXPLICIT also makes use of directives, which are
used to define the resulting elements and attributes. For example, the following query displays the
VendorID and CreditRating columns as attributes, and the VendorName column as an element. The
column is defined after the column alias using an element name, tag number, attribute, and
directive:

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 431

9802CH14.qxd 6/17/08 10:42 AM Page 431

SELECT TOP 3
1 AS Tag,
NULL AS Parent,
BusinessEntityID AS [Vendor!1!VendorID],
Name AS [Vendor!1!VendorName!ELEMENT],
CreditRating AS [Vendor!1!CreditRating]

FROM Purchasing.Vendor
ORDER BY CreditRating
FOR XML EXPLICIT, TYPE

This returns

<Vendor VendorID="1496" CreditRating="1">
<VendorName>Advanced Bicycles</VendorName>

</Vendor>
<Vendor VendorID="1492" CreditRating="1">
<VendorName>Australia Bike Retailer</VendorName>

</Vendor>
<Vendor VendorID="1500" CreditRating="1">
<VendorName>Morgan Bike Accessories</VendorName>

</Vendor>

The Tag column in the SELECT clause is required in EXPLICIT mode in order to produce the XML
document output. Each tag number represents a constructed element. The Parent column alias is
also required, providing the hierarchical information about any parent elements. The Parent col-
umn references the tag of the parent element. If the Parent column is NULL, this indicates that the
element has no parent and is top-level.

The TYPE directive in the FOR XML clause of the previous query was used to return the results as
a true SQL Server native xml data type, allowing you to store the results in XML or query it using
XQuery.

Next, the FOR XML PATH option defines column names and aliases as XPath expressions. XPath
is a language used for searching data within an XML document.

■Tip For information on XPath, visit the World Wide Web Consortium (W3C) standards site at http://www.w3.
org/TR/xpath.

FOR XML PATH uses some of the same arguments and keywords as other FOR XML variations.
Where it differs, however, is in the SELECT clause, where XPath syntax is used to define elements,
subelements, attributes, and data values.

For example:

SELECT Name as "@Territory",
CountryRegionCode as "@Region",
SalesYTD

FROM Sales.SalesTerritory
WHERE SalesYTD > 6000000
ORDER BY SalesYTD DESC
FOR XML PATH('TerritorySales'), ROOT('CompanySales'), TYPE

This returns

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA432

9802CH14.qxd 6/17/08 10:42 AM Page 432

http://www.w3

<CompanySales>
<TerritorySales Territory="Southwest" Region="US">

<SalesYTD>8351296.7411</SalesYTD>
</TerritorySales>
<TerritorySales Territory="Canada" Region="CA">

<SalesYTD>6917270.8842</SalesYTD>
</TerritorySales>

</CompanySales>

This query returned results with a root element of CompanySales and a subelement of
TerritorySales. The TerritorySales element was then attributed based on the territory and region
code (both prefaced with ampersands [@] in the SELECT clause). The SalesYTD, which was unmarked
with XPath directives, became a subelement to TerritorySales.

How It Works
The FOR XML command is included at the end of a SELECT query in order to return data in an XML
format. The AUTO and RAW modes allow for a quick and semi-automated formatting of the results,
whereas EXPLICIT and PATH provide more control over the hierarchy of data and the assignment of
elements versus attributes. FOR XML PATH, on the other hand, is an easier alternative to EXPLICIT
mode for those developers who are more familiar with the XPath language.

The FOR XML options I demonstrated in this recipe were the most common variations you will
see when trying to create XML from a result set. Generating XML document fragments using FOR
XML eases the process of having to create the hierarchy using other manual methods in Transact-
SQL. Keep in mind that you always have the option of programmatic XML document creation too
(using .NET, for example).

Converting XML to a Relational Form
Whereas FOR XML converts relational query results to an XML format, OPENXML converts XML format to a
relational form. To perform this conversion, the sp_XML_preparedocument system stored procedure is
used to create an internal pointer to the XML document, which is then used with OPENXML in order to
return the rowset data.

The syntax for the OPENXML command is as follows:

OPENXML(idoc ,rowpattern, flags)
[WITH (SchemaDeclaration | TableName)]

The arguments for this command are described in Table 14-3.

Table 14-3. OPENXML Arguments

Argument Description

idoc This is the internal representation of the XML document as
represented by the sp_XML_preparedocument system stored
procedure.

rowpattern This defines the XPath pattern used to return nodes from the
XML document.

Continued

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 433

9802CH14.qxd 6/17/08 10:42 AM Page 433

Table 14-3. Continued

Argument Description

flags When the flag 0 is used, results default to attribute-centric
mappings. When flag 1 is used, attribute-centric mapping is
applied first, and then element-centric mapping for columns
that are not processed. Flag 2 uses element-centric mapping.
Flag 8 specifies that consumed data should not be copied to
the overflow property.

SchemaDeclaration | TableName SchemaDeclaration defines the output of the column name
(rowset name), column type (valid data type), column pattern
(optional XPath pattern), and optional metadata properties
(about the XML nodes). If Tablename is used instead, a table
must already exist for holding the rowset data.

In this example, an XML document is stored in a local variable and is then passed to a stored
procedure that uses OPENXML in order to convert it into a relational rowset. First, I’ll create the stored
procedure:

CREATE PROCEDURE dbo.usp_SEL_BookXML_Convert_To_Relational
@XMLDoc xml

AS

DECLARE @docpointer int

EXEC sp_XML_preparedocument @docpointer OUTPUT, @XMLdoc

SELECT Chapter, ChapterNM
FROM OPENXML (@docpointer, '/Book/Chapters/Chapter',0)

WITH (Chapter int '@id',
ChapterNM varchar(50) '@name')

GO

Next, I’ll populate a local xml data type variable and send it to the new stored procedure:

DECLARE @XMLdoc XML
SET @XMLdoc =
'<Book name="SQL Server 2000 Fast Answers">

<Chapters>
<Chapter id="1" name="Installation, Upgrades"/>
<Chapter id="2" name="Configuring SQL Server"/>
<Chapter id="3" name="Creating and Configuring Databases"/>
<Chapter id="4" name="SQL Server Agent and SQL Logs"/>

</Chapters>
</Book>'

EXEC dbo.usp_SEL_BookXML_Convert_To_Relational @XMLdoc

This returns

Chapter ChapterNM
1 Installation, Upgrades
2 Configuring SQL Server
3 Creating and Configuring Databases
4 SQL Server Agent and SQL Logs

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA434

9802CH14.qxd 6/17/08 10:42 AM Page 434

How It Works
The example started off by creating a stored procedure that would be used to convert an XML docu-
ment fragment into a relational data set. The procedure had a single input parameter defined of an
xml data type:

CREATE PROCEDURE dbo.usp_SEL_BookXML_Convert_To_Relational
@XMLDoc xml

AS

A local variable was declared for use as an output parameter in the sp_XML_preparedocument
system stored procedure to hold the value of the internal document pointer:

DECLARE @docpointer int

Next, the system stored procedure is called with the OUTPUT parameter, the second argument
being the input xml data type parameter:

EXEC sp_XML_preparedocument @docpointer OUTPUT, @XMLdoc

Next, a SELECT statement referenced the OPENXML function in the FROM clause, with the name of
the two columns to be returned in the results:

SELECT Chapter, ChapterNM
FROM OPENXML

The first argument in the OPENXML command was the internal pointer variable. The second
argument was the XPath expression of the node to be used in the XML document. The third argu-
ment was the flag, which designated an attribute-centric mapping:

(@docpointer, '/Book/Chapters/Chapter',0)

The WITH clause defined the actual result output. Two columns were defined, one for the
Chapter and the other for the ChapterNM. The @id designated the ID attribute to be mapped to the
Chapter column and the @name attribute designated the name mapped to the ChapterNM column:

WITH (Chapter int '@id',
ChapterNM varchar(50) '@name')

After creating the stored procedure, a local variable was then populated with an XML fragment,
and then passed to the stored procedure, returning two columns and four rows.

Working with Native Hierarchical Data
SQL Server 2008 introduces the new hierarchyid data type, which can be used to natively store and
manage a position within a tree hierarchy. This new data type allows you to compactly represent a
position of a node within a hierarchy, and similar to the xml data type, hierarchyid includes several
built-in methods that you can use to manipulate or traverse hierarchies. This new improvement
helps facilitate simplified storage and querying of hierarchical data without having to produce your
own methods.

The next few recipes will demonstrate how to store, manipulate, and query hierarchical data
using the hierarchyid data type.

Storing Hierarchical Data
This recipe demonstrates storing a web page layout hierarchy. In this example, I want to represent a
root web page followed by two levels of pages and associated siblings.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 435

9802CH14.qxd 6/17/08 10:42 AM Page 435

I’ll start by creating a table that will store the web page hierarchy. The first column in the table
definition, WebpageLayoutID, will contain the hierarchyid data type data. The second column,
PositionDESC, is a calculated column that uses the GetLevel method of a hierarchyid data type col-
umn to show the position of the specific row in the tree. The final column, PageURL, will just contain
the actual web page URL.

■Note The hierarchyid data type includes several methods that can be used to manipulate and traverse node
values. These will be explained and demonstrated in more detail in the next recipe.

USE TestDB
GO

CREATE TABLE dbo.WebpageLayout
(WebpageLayoutID hierarchyid NOT NULL,
PositionDESC as WebpageLayoutID.GetLevel(),
PageURL nvarchar(50) NOT NULL)

GO

Continuing with the recipe, I’ll insert a new row representing the root of the web site hierarchi-
cal structure:

INSERT dbo.WebpageLayout
(WebpageLayoutID, PageURL)
VALUES
('/', 'http://joesack.com')

Notice that the string version representing the root of the hierarchy is /. This is automatically
converted upon insert into the native hierarchyid format (binary format). Next, I’ll query the data
to see how it is stored:

SELECT WebpageLayoutID, PositionDESC, PageURL
FROM dbo.WebpageLayout

This returns

WebpageLayoutID PositionDESC PageURL
0x 0 http://joesack.com

Notice that the original / value was redefined as the hex value of 0x. Hierarchy paths are repre-
sented using the slash character. A single slash is used to represent the root of a tree. Consecutive
levels are formed using integer values separated by slashes.

Next, I’ll insert two new rows representing children of the root web page. These two web pages
are on the same level (so they are siblings):

INSERT dbo.WebpageLayout
(WebpageLayoutID, PageURL)
VALUES
('/1/', 'http://joesack.com/WordPress/')

INSERT dbo.WebpageLayout
(WebpageLayoutID, PageURL)
VALUES
('/2/', 'http://joesack.com/SQLFastTOC.htm')

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA436

9802CH14.qxd 6/17/08 10:42 AM Page 436

http://joesack.com
http://joesack.com
http://joesack.com/WordPress
http://joesack.com/SQLFastTOC.htm

Again, I’ll query the results so far:

SELECT WebpageLayoutID, PositionDESC, PageURL
FROM dbo.WebpageLayout

This returns

WebpageLayoutID PositionDESC PageURL
0x 0 http://joesack.com
0x58 1 http://joesack.com/WordPress/
0x68 1 http://joesack.com/SQLFastTOC.htm

Notice that the PositionDESC shows the root web page as a position of 0 and the two children as
a position of 1.

Next, I’ll demonstrate adding two new web pages that are children for the http://joesack.
com/WordPress/ page. Unlike with previous examples, I’ll use the GetDescendant method of the
hierarchyid data type to populate the WebpageLayoutID:

DECLARE @ParentWebpageLayoutID hierarchyid
SELECT @ParentWebpageLayoutID = CONVERT(hierarchyid, '/1/')

INSERT dbo.WebpageLayout
(WebpageLayoutID, PageURL)
VALUES
(@ParentWebpageLayoutID.GetDescendant(NULL,NULL),
'http://joesack.com/WordPress/?page_id=2')

INSERT dbo.WebpageLayout
(WebpageLayoutID, PageURL)
VALUES
(@ParentWebpageLayoutID.GetDescendant(NULL,NULL),
'http://joesack.com/WordPress/?page_id=9')

This returns

(1 row(s) affected)

(1 row(s) affected)

Instead of showing the native format of WebpageLayoutID, this next query shows the string rep-
resentation of the hierarchyid data type using the ToString method:

SELECT WebpageLayoutID.ToString() as WebpageLayoutID, PositionDESC, PageURL
FROM dbo.WebpageLayout

Notice that the newly inserted row was placed beneath the proper parent by using the
GetDescendant method rather than having to hard-code the value into the INSERT:

WebpageLayoutID PositionDESC PageURL
/ 0 http://joesack.com
/1/ 1 http://joesack.com/WordPress/
/1/1/ 2 http://joesack.com/WordPress/?page_id=2
/1/1/ 2 http://joesack.com/WordPress/?page_id=9
/2/ 1 http://joesack.com/SQLFastTOC.htm

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 437

9802CH14.qxd 6/17/08 10:42 AM Page 437

http://joesack.com
http://joesack.com/WordPress
http://joesack.com/SQLFastTOC.htm
http://joesack
mailto:(@ParentWebpageLayoutID.GetDescendant
http://joesack.com/WordPress/?page_id=2
mailto:(@ParentWebpageLayoutID.GetDescendant
http://joesack.com/WordPress/?page_id=9
http://joesack.com
http://joesack.com/WordPress
http://joesack.com/WordPress/?page_id=2
http://joesack.com/WordPress/?page_id=9
http://joesack.com/SQLFastTOC.htm

How It Works
This recipe introduced the SQL Server 2008 hierarchyid data type and started off by demonstrating
how to create a table with the hierarchyid data type. After that, I inserted a new row for the root
web page. Hierarchy paths are represented using the slash character. A single slash is used to repre-
sent the root of a tree. Consecutive levels are formed using integer values separated by slashes:

/
/1/
/1/1/
/2/
/2/1/
/2/2/

■Tip Node ordering on the same level can also be designated by using dots—for example, /1/1.5/.

After inserting the root node, I queried the table to show that the slash had been converted to
a hex value. I then inserted two new pages that were children of the root node. For one of the child
nodes, I then created two new children, but instead of manually designating the node path, I used
the GetDescendant function to define the path for me. Querying the table after the INSERT revealed
that the proper position and path had been used.

Returning a Specific Ancestor
The previous recipe introduced how to get started with using the native hierarchyid data type.
The hierarchyid data type includes a set of methods that you can use to retrieve and traverse data
values. I’ll walk you through examples of how each is used over the next few recipes.

The GetAncestor method allows you return a position in the hierarchy by moving up a certain
number of levels from a specific position. The input parameter defines the number of levels to
move up. In this example, I create two local variables to hold the original node value and then the
value of the ancestor one level above:

DECLARE @WebpageLayoutID hierarchyid
DECLARE @New_WebpageLayoutID hierarchyid
SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/1/')

SELECT @New_WebpageLayoutID = @WebpageLayoutID.GetAncestor(1)
SELECT @New_WebpageLayoutID.ToString()

This returns the parent of the 1/1 node, which is /1/:

/1/

How It Works
This recipe demonstrated how to work with the various methods available with the hierarchyid
data type. These methods are referenced using the dot notation off of the data value contained in
the local variable, which is similar to methods used with the xml data type demonstrated earlier
in the chapter (for example, the modify method).

The technique used to prep the value prior to using the method was to declare the hierarchyid
variable first:

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA438

9802CH14.qxd 6/17/08 10:42 AM Page 438

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

mailto:@WebpageLayoutID.GetAncestor
mailto:@New_WebpageLayoutID.ToString

DECLARE @WebpageLayoutID hierarchyid

A second variable was defined to hold the new hierarchyid value:

DECLARE @New_WebpageLayoutID hierarchyid

After that, the variable value was assigned using a SELECT:

SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/1/')

This could also have been configured using a SET command, or from retrieving a single
hierarchyid value from a table.

Next, the GetAncestor method is used to populate the second declared hierarchyid variable:

SELECT @New_WebpageLayoutID = @WebpageLayoutID.GetAncestor(1)

In order to print the populated value of the variable, I used the ToString method:

SELECT @New_WebpageLayoutID.ToString()

ToString converts the native hierarchyid node value into the string representation.
If you wanted to reverse the string back into the actual hierarchyid node value, you could use

the Parse method. For example:

SELECT hierarchyid::Parse ('/1/1/')

This returns

0x5AC0

Notice that Parse is bound to the general class of hierarchyid and not an actual local variable
itself.

Returning Child Nodes
The GetDescendant returns the child of a specific hierarchical position. It takes two inputs, which
can be NULL, or specifies children of the specific node in order to define the boundaries of which
child is returned of that parent. In this case, I am looking for the descendant node of the path /1/:

DECLARE @WebpageLayoutID hierarchyid
DECLARE @New_WebpageLayoutID hierarchyid
SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/')

SELECT @New_WebpageLayoutID = @WebpageLayoutID.GetDescendant(NULL,NULL)
SELECT @New_WebpageLayoutID.ToString()

This returns

/1/1/

How It Works
Similar to the last recipe, the GetDescendant method was used in conjunction with the hierarchyid
local variable using a variable.method format:

SELECT @New_WebpageLayoutID = @WebpageLayoutID.GetDescendant(NULL,NULL)

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 439

9802CH14.qxd 6/17/08 10:42 AM Page 439

mailto:@WebpageLayoutID.GetAncestor
mailto:@New_WebpageLayoutID.ToString
mailto:@WebpageLayoutID.GetDescendant
mailto:@New_WebpageLayoutID.ToString
mailto:@WebpageLayoutID.GetDescendant

This function returned the child node of the local variable’s parent, /1/1/.

Returning a Node’s Depth
The GetLevel method returns the depth of the specified node in the tree. The following example
returns the level integer value for /1/1/1/1/:

DECLARE @WebpageLayoutID hierarchyid
SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/1/1/1/')

SELECT @WebpageLayoutID.GetLevel()

This returns

4

How It Works
The GetLevel method is used in conjunction with the hierarchyid local variable using a
variable.method format:

SELECT @WebpageLayoutID.GetLevel()

This function returned the integer-valued depth of the local variable’s node.

Returning the Root Node
The GetRoot method returns the hierarchyid root value of the tree. This function is not used in con-
junction with a user-defined hierarchyid local variable. To demonstrate, I’ll use GetRoot to help me
get the root row from the table I created in the previous recipe:

SELECT PageURL
FROM dbo.WebpageLayout
WHERE WebpageLayoutID = hierarchyid::GetRoot()

This returns

PageURL
http://joesack.com

How It Works
In this recipe, the query returned the root web page by using the GetRoot method:

WHERE WebpageLayoutID = hierarchyid::GetRoot()

Notice that GetRoot was bound to the general class of hierarchyid and not an actual local vari-
able itself.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA440

9802CH14.qxd 6/17/08 10:42 AM Page 440

mailto:@WebpageLayoutID.GetLevel
mailto:@WebpageLayoutID.GetLevel
http://joesack.com

Determining Whether a Node Is a Child of the Current Node
The IsDescendantOf method returns a Boolean value with true (1) or false (0) designating whether or
not a node is a child of the current node. This method takes one input parameter that defines the
child node to be evaluated, as the next query demonstrates:

DECLARE @WebpageLayoutID hierarchyid
SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/')

SELECT @WebpageLayoutID.IsDescendantOf('/')
SELECT @WebpageLayoutID.IsDescendantOf('/1/1/')

This returns

1

(1 row(s) affected)

0

(1 row(s) affected)

How It Works
This recipe demonstrated using the IsDescendantOf method to evaluate whether a node is a child of
the current node. The first evaluation by IsDescendantOf checked to see whether the root node was
a descendant of /1/. Since it was, a 1 was returned. The second use of IsDescendantOf checked to
see whether 1/1 is a descendant of /1/. Since it is not, a 0 was returned.

Changing Node Locations
The GetReparentedValue method returns the node value of the new path given two input parame-
ters, the old root and the new root, as the following query demonstrates:

DECLARE @WebpageLayoutID hierarchyid
DECLARE @New_WebpageLayoutID hierarchyid
SELECT @WebpageLayoutID = CONVERT(hierarchyid, '/1/1/')

SELECT @New_WebpageLayoutID = @WebpageLayoutID.GetReparentedValue('/1/', '/2/')
SELECT @New_WebpageLayoutID.ToString()

This returns

/2/1/

How It Works
This recipe demonstrated changing the node parent of an existing node using the
GetReparentedValue method. The hierarchyid value of 1/1 contained in the @WebpageLayoutID
local variable was reparented from /1/ to /2 to become /2/1/.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 441

9802CH14.qxd 6/17/08 10:42 AM Page 441

mailto:@WebpageLayoutID.IsDescendantOf
mailto:@WebpageLayoutID.IsDescendantOf('/1/1
mailto:@WebpageLayoutID.GetReparentedValue('/1
mailto:@New_WebpageLayoutID.ToString

Native Spatial Data
Prior to SQL Server 2008, database storage of spatial data required use of non-native methods
including the creation of custom CLR assemblies. SQL Server 2008 introduces native storage of spa-
tial data, providing two new data types, geography and geometry. Fundamentally, these data types
provide built-in capabilities for location and mapping applications (such as Microsoft Virtual Earth)
and representation of geometric shapes.

The geometry data type represents flat-earth (Euclidean) coordinate spatial data, and also
allows for storage of points, polygons, curves, and collections.

■Tip Polygons within geography or geometry data type context can be used to define regions and areas refer-
encing locations on the earth. Note that the data that is of the geography data type is still two-dimensional in SQL
Server 2008.

The geography data type is used for round-earth spatial storage, allowing for latitude and longi-
tude coordinates and storage of points, polygons, curves, and collections. This will likely be a more
commonly used data type for mapping/location-aware applications.

SQL Server 2008 supports the Well-Known Text (WKT), Well-Known Binary (WKB), and
Geography Markup Language (GML) XML transport formats for representing vector geometry map-
ping objects. These formats are regulated by the Open Geospatial Consortium (OGC), and I’ll be
using the WKT format in this recipe in conjunction with the geography data type.

■Tip For more on OGC and the WKT/WKB/GML XML transport formats, visit http://www.opengeospatial.
org/standards/sfa and http://www.opengeospatial.org/standards/sfs for standards documentation.

The next two recipes will demonstrate how to store and query native spatial data type data.

Storing Spatial Data
In this recipe, I’ll demonstrate how to store spatial data within the geography data type. Specifically,
I will create a table that will be used to contain the location and shapes of lakes found in Minneapo-
lis. Once stored, I’ll demonstrate how to use various functions to work with the geography data. SQL
Server 2008 provides several built-in functions for performing geometric and geographic calcula-
tions. Examples of computational capabilities include the ability to define intersections between
points, distances, and areas.

I’ll begin by creating a new table that will contain the geography data type data that represents
the polygon shape and location of lakes in Minneapolis:

USE TestDB
GO

CREATE TABLE dbo.MinneapolisLake
(MinneapolisLakeID int NOT NULL IDENTITY(1,1) PRIMARY KEY,
LakeNM varchar(50) NOT NULL,
LakeLocationGEOG Geography NOT NULL,
LakeLocationWKT AS LakeLocationGEOG.STAsText())

GO

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA442

9802CH14.qxd 6/17/08 10:42 AM Page 442

http://www.opengeospatial
http://www.opengeospatial.org/standards/sfs

Notice that the LakeLocationWKT column is actually a calculated column based on the
LakeLocationGEOG Geography column. The STAsText method of the geography data type returns the
WKT representation of the geometry column (I’ll demonstrate the difference later on in this recipe).

Now that the table is created, I’ll insert three rows representing three lakes. I’ll use the Parse
method of the geography instance in order to input the WKT value for the polygons representing
each lake.

■Caution Community Technical Preview (CTP) versions of SQL Server 2008 used a coordinate order of latitude-
longitude for WKT and WKB formats employed against the geography data type. As of RTM, the order has been
reversed, using longitude-latitude ordering. Using the incorrect ordering will raise an error upon INSERT or
UPDATE.

Lake Calhoun and Lake Harriet both are relatively round/oval shapes, so the polygon is defined
with four longitude and latitude pairs—as well as a repeat of the first longitude and latitude pair in
order to complete the polygon ring:

-- Lake Calhoun
INSERT dbo.MinneapolisLake
(LakeNM, LakeLocationGEOG)
VALUES ('Lake Calhoun',
geography::Parse('POLYGON((-93.31593 44.94821 , -93.31924 44.93603 ,
-93.30666 44.93577 , -93.30386 44.94321 , -93.31593 44.94821))'))

-- Lake Harriet
INSERT dbo.MinneapolisLake
(LakeNM, LakeLocationGEOG)
VALUES ('Lake Harriet',
geography::Parse('POLYGON((-93.30776 44.92774 , -93.31379 44.91889 ,
-93.30122 44.91702 , -93.29739 44.92624 ,-93.30776 44.92774))'))

If I had not repeated the start and end points of the polygon ring, I would have gotten this error
message:

The Polygon input is not valid because the start and end points of the exterior
ring are not the same. Each ring of a polygon must have the same start and end
points.

Next, I’ll insert the polygon representing Lake of the Isles, which has a more unusual shape
than the previous two lakes and is therefore represented with seven distinct polygon longitude and
latitude pairs (and an eighth pair to close the polygon ring):

-- Lake of the Isles (notice several points, as this lake has an odd shape)
INSERT dbo.MinneapolisLake
(LakeNM, LakeLocationGEOG)
VALUES ('Lake of the Isles',
geography::Parse(

'POLYGON((-93.30924 44.95847,
-93.31291 44.95360,
-93.30607 44.95178,
-93.30158 44.95543,
-93.30349 44.95689,
-93.30372 44.96261,
-93.3068 44.95720 8,
-93.30924 44.95847))'))

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 443

9802CH14.qxd 6/17/08 10:42 AM Page 443

I’ll now query the table to demonstrate what the stored data looks like:

SELECT LakeNM, LakeLocationGEOG, LakeLocationWKT
FROM dbo.MinneapolisLake

This returns

LakeNM LakeLocationGEOG LakeLocationWKT
Lake Calhoun 0xE6100000010405000000BEDEFDF15E794640 POLYGON ((44.94821

D1747632385457C09609BFD4CF774640CDE49B -93.31593, 44.93603
6D6E5457C0F949B54FC777464072BF4351A053 -93.31924, 44.93577
57C04DA1F31ABB78464001A43671725357C0BE -93.30666, 44.94321
DEFDF15E794640D1747632385457C001000000 -93.30386, 44.94821
020000000001000000FFFFFFFF0000000003 -93.31593))

Lake Harriet 0xE610000001040500000074982F2FC0764640 POLYGON ((44.92774
16C1FF56B25357C08B4F01309E754640F5F3A6 -93.30776, 44.91889
22155457C093E34EE960754640AC3940304753 -93.31379, 44.91702
57C09F1F46088F764640130A1170085357C074 -93.30122, 44.92624
982F2FC076464016C1FF56B25357C001000000 -93.29739, 44.92774
020000000001000000FFFFFFFF0000000003 -93.30776))

Lake of the Isles 0xE61000000104080000003B191C25AF7A4640 POLYGON ((44.95847
5DA79196CA5357C099BB96900F7A4640D925AA -93.30924, 44.9536
B7065457C0527E52EDD37946405A12A0A69653 -93.31291, 44.95178
57C003CFBD874B7A46402C4833164D5357C04A -93.30607, 44.95543
EF1B5F7B7A46406F2A52616C5357C0BA66F2CD -93.30158, 44.95689
367B464008C90226705357C098DD9387857A46 -93.30349, 44.96261
40FAF202ECA35357C03B191C25AF7A46405DA7 -93.30372, 44.9572
9196CA5357C001000000020000000001000000 -93.30688, 44.95847
FFFFFFFF0000000003 -93.30924))

Notice that the native geography data in LakeLocationGEOG was not human readable—which is
why I defined the LakeLocationWKT calculated column using the STAsText method to show the WKT
human-readable text instead.

How It Works
This recipe demonstrated how to store native spatial data in the geography data type. I started off by
creating a table that would hold one row for each lake. The LakeLocationGEOG column was defined
with the geography data type:

LakeLocationGEOG Geography NOT NULL,

I also defined a calculated column that referenced my geography column and the method call
to STAsText—in order to show the human-readable WKT format of the geography instance:

LakeLocationWKT AS LakeLocationGEOG.STAsText())

Next, I started inserting rows for three different lakes. In the VALUES argument of the INSERT, I
used the Parse command (prefixed by geography::, and then followed by the WKT definition of the
polygon and associated longitude and latitude points that defined the boundaries of the lake):

VALUES ('Lake Calhoun',
geography::Parse('POLYGON((-93.31593 44.94821, -93.31924 44.93603, -93.30666
44.93577, -93.30386 44.94321, -93.31593 44.94821))'))

The POLYGON keyword represented the type of object (other types can be instantiated in SQL
Server 2008, including line strings, multi-line strings, multi-polygons, points, and multi-points.).

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA444

9802CH14.qxd 6/17/08 10:42 AM Page 444

Also notice that the each longitude and latitude pair in the previous code snippet was separated
with a comma for the POLYGON instantiated type.

■Note Geography data types can also be used to store elevation and measure values; however, these values are
not used in any computations and are just stored as metadata. Stored data is treated as two-dimensional.

The Parse method is functionally equivalent to the STGeomFromText method, only it makes
some assumptions about the spatial reference ID (SRID). A SRID defines the reference system
used for the geometry and geography data types. In this case, Parse maps to a SRID of 4326 for the
geography data type, which translates to WGS 84 (World Geodetic System 1984) as a reference for
geographic mapping. If I had used the STGeomFromText method instead of Parse, I could have
designated a second SRID parameter to be a different spatial reference type. The sys.spatial_
reference_systems catalog view contains all SRIDs recognized by SQL Server 2008.

Querying Spatial Data
Now that I have the geography values stored in the table, I can take advantage of SQL Server 2008’s
native computational functionality to reveal a variety of data points.

■Tip SQL Server 2008 provides several methods for working with geography and geometry data types. This
chapter demonstrates some of them, but for a complete list, reference SQL Server Books Online.

For example, I can determine the internal areas in square meters of each lake using the STArea
method and total length in meters using the STLength method:

SELECT LakeNM,
LakeLocationGEOG.STLength() Length,
LakeLocationGEOG.STArea() Area

FROM dbo.MinneapolisLake

This returns

LakeNM Length Area
Lake Calhoun 4330.60504437253 1131010.52091503
Lake Harriet 4010.50193580554 982158.281167269
Lake of the Isles 3473.37155877733 448936.179574728

Now, let’s say that the Twin Cities marathon plans on running from downtown Minneapolis all
the way to one of the lakes in my table. If I have the longitude and latitude of my starting position
(represented by a point), I can use the STDistance method to determine the shortest distance
between downtown Minneapolis and each lake, as I demonstrate next (I’ll walk through each line
in the “How It Works” section):

DECLARE @DowntownStartingPoint geography
SET @DowntownStartingPoint = geography::Parse('POINT(-93.26319 44.97846)')

SELECT LakeNM,
LakeLocationGEOG.STDistance(@DowntownStartingPoint) Distance

FROM dbo.MinneapolisLake
ORDER BY LakeLocationGEOG.STDistance(@DowntownStartingPoint)

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 445

9802CH14.qxd 6/17/08 10:42 AM Page 445

This returns the distance in meters from downtown to each lake:

LakeNM Distance
Lake of the Isles 3650.39170324889
Lake Calhoun 5063.86366294861
Lake Harriet 6400.09741657171

Continuing the example of the marathon, let’s assume that a small plane will be flying over-
head with a banner cheering on the runners as they head from downtown to the lakes.

So far, I have demonstrated the point and polygon geography types; however, the flight path in
this case will be represented by a Linestring. In this next query, I will use the STIntersects method
of the geography data type to determine whether or not the flight path will intersect any of the lakes
(fly over any of the lakes):

DECLARE @FlightPath geography
SET @FlightPath = geography::Parse('LINESTRING(-93.26319 44.97846, -93.30862
44.91695)')

SELECT LakeNM,
LakeLocationGEOG.STIntersects(@FlightPath) IntersectsWithFlightPath

FROM dbo.MinneapolisLake

The results show that the flight path from Minneapolis downtown will intersect only with
Lake Harriet:

LakeNM IntersectsWithFlightPath
Lake Calhoun 0
Lake Harriet 1
Lake of the Isles 0

So far, I have not used any of the geography data type methods within the context of a WHERE
clause. Assuming a much larger result set than what I’m demonstrating here, there can be a signifi-
cant computational performance overhead with using some of the spatial methods within the
context of a search condition. To address this, SQL Server 2008 provides spatial index support of
your geometry and geography data types.

Methods such as STDistance and STIntersects are supported by spatial indexes when used
within the WHERE clause of a query. Spatial indexes improve the performance of spatial data type
searches by filtering the underlying grid representation of the area. Creating a spatial index involves
decomposing the spatial plain into a four-level grid hierarchy, which allows for faster data filtering
by the SQL Server.

A spatial index is created with the command CREATE SPATIAL INDEX. The syntax for CREATE
SPATIAL INDEX has overlap with that of a regular clustered or nonclustered index (there are several
index options in common such as PAD_INDEX, FILLFACTOR, DROP_EXISTING, and more). If you plan on
indexing a geometry data type, you have different indexing considerations regarding the boundaries
of the index (geography boundaries are already predefined) as defined by a BOUNDING_BOX option.
You can also use the GRIDS option to define the density of each level of grid (four-level grid) and
associated cells per defined spatial object using the CELLS_PER_OBJECT option.

Continuing with the recipe, I’ll now create a spatial index for the geography column in the
MinneapolisLake table created earlier:

CREATE SPATIAL INDEX Spatial_Index_MinneapolisLake_LakeLocationGEOG
ON dbo.MinneapolisLake(LakeLocationGEOG)

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA446

9802CH14.qxd 6/17/08 10:42 AM Page 446

Currently the number of rows in the table hardly justifies the index; however, as the table scales
up, having an index can help the internal filtering process significantly, improving the performance
of queries such as the following.

■Note The final query in this recipe will likely produce a clustered index scan against the table because there
are very few rows populated in it. If you add 1000 additional rows (representing lakes) to the table, it will switch to
a clustered index seek on the spatial index.

In this last example of this recipe, I would like to determine which lake my boat is floating in by
providing the latitude and longitude:

DECLARE @LocationOfMyBoat geography
SET @LocationOfMyBoat= geography::Parse('POINT(-93.31329 44.94088)')

SELECT LakeNM
FROM dbo.MinneapolisLake
WHERE LakeLocationGEOG.STIntersects(@LocationOfMyBoat) = 1

This returns

LakeNM
Lake Calhoun

How It Works
This recipe demonstrated how to use built-in methods to evaluate and perform calculations against
the data. The first demonstration was of calculating the length of each polygon (in meters) and
associated polygon area in square meters. The syntax in the SELECT clause just required a reference
to the geography data type column, followed by a dot, and then the method name (notice that nei-
ther of the functions took input parameters, so they were suffixed with empty parentheses):

LakeLocationGEOG.STLength() Length,
LakeLocationGEOG.STArea() Area

Next, I demonstrated how to calculate the distance of each lake from a designated point. I
started off by declaring a variable to hold the geography data type point:

DECLARE @DowntownStartingPoint geography

Next, I set the variable using the geography::Parse method, defining a point with a single lati-
tude and longitude pair:

SET @DowntownStartingPoint = geography::Parse('POINT(-93.26319 44.97846)')

Once the variable was populated, I used it as an input parameter to the STDistance method to
calculate the shortest distance between the lake and the input parameter point:

LakeLocationGEOG.STDistance(@DowntownStartingPoint) Distance

Next, I demonstrated how to calculate the intersection of a line representing a flight path over
the three lakes. I started off by first declaring a geography type variable to contain the line string
type:

DECLARE @FlightPath geography

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA 447

9802CH14.qxd 6/17/08 10:42 AM Page 447

Like the previous example, I used the Parse method to define the line string using two longi-
tude and latitude pairs to represent the two endpoints of the line:

SET @FlightPath = geography::Parse('LINESTRING
(-93.26319 44.97846, -93.30862 44.91695)')

Once the variable was populated, I then used it as an input parameter to the STIntersects
method, which returned a 1 if the lake intersected with the line string or 0 if it did not:

LakeLocationGEOG.STIntersects(@FlightPath) IntersectsWithFlightPath

Next, I discussed the use of spatial indexes to improve the performance of searches when using
spatial methods in the WHERE clause. The CREATE SPATIAL INDEX command was used, followed by the
user-defined name of the index:

CREATE SPATIAL INDEX Spatial_Index_MinneapolisLake_LakeLocationGEOG

The second line of the index defined the name of the table, and the name of the spatial data
type column in parentheses:

ON dbo.MinneapolisLake(LakeLocationGEOG)

I didn’t use the GRIDS option with this statement. This option allows you to define the density of
each level of the internal index grid structure that is used to filter the data. The options are LOW (4✕4
grid), MEDIUM (8✕8 grid), and HIGH (16✕16 grid). The default is MEDIUM, so by default my index uses an
8✕8 grid on all four levels of the internal index grid structure.

Once an index is mapped to a four-level grid hierarchy, SQL Server reads the spatial column
data and performs a process called tessellation. The tessellation process defines how many grid
cells the spatial object touches—which allows the index to locate objects more efficiently within the
defined space. CREATE SPATIAL INDEX has a CELLS_PER_OBJECT option, which defines the limit on the
number of internal cells per spatial object (allowed between 1 and 8192). The default is 16, which is
what my index uses. The more cells you allow per object, the more space required by the spatial
index.

After creating the index, I demonstrated using the STIntersects method in the WHERE clause of
a SELECT query. I started off by defining a spatial point type that represented the location of my boat
in a lake:

DECLARE @LocationOfMyBoat geography
SET @LocationOfMyBoat= geography::Parse('POINT(-93.31329 44.94088)')

Once the variable was populated, I provided it as the input of the STIntersects method—
requesting any rows where my boat intersected with a lake:

WHERE LakeLocationGEOG.STIntersects(@LocationOfMyBoat) = 1

This query returned the name of the lake where my boat intersected, Lake Calhoun. Had my
table been populated with 10,000 lakes, the existence of a spatial index would have proven benefi-
cial for performance.

CHAPTER 14 ■ XML, HIERARCHIES, AND SPATIAL DATA448

9802CH14.qxd 6/17/08 10:42 AM Page 448

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Hints

SQL Server’s query optimization process is responsible for producing a query execution plan
when a SELECT query is executed. Typically SQL Server will choose an efficient plan over an ineffi-
cient one. When this doesn’t happen, you will want to examine the query execution plan, table
statistics, supporting indexes, and other factors that are discussed in more detail in Chapter 28.

Ultimately, after researching the query performance, you may decide to override the decision-
making process of the SQL Server query optimizer by using hints.

■Caution You should almost always let SQL Server’s Query Optimization process formulate the query execution
plan without the aid of hints. Even if your hint works for the short term, keep in mind that in the future there may
be more efficient query plans that could be used as the contents of the database change, but won’t be, because
you have overridden the optimizer with the specified hint. Also, the validity of or effectiveness of a hint may change
when new service packs or editions of SQL Server are released.

I will review examples of the different kinds of hints available in SQL Server, including the new
SQL Server 2008 hint, FORCESEEK, which you can use to replace index scans with index seeks. In most
cases, this new hint will not be necessary; however, under some conditions you may encounter sce-
narios where the Query Optimizer simply doesn’t choose to use an index seek on an index when you
would otherwise expect it to.

Using Join Hints
A join “hint” is a misnomer in this case, as a join hint will force the query optimizer to join the tables
in the way you command. Join hints force the internal JOIN operation used to join two tables in a
query. Available join hints are described in Table 15-1.

449

C H A P T E R 1 5

9802CH15.qxd 4/24/08 4:16 PM Page 449

Table 15-1. Join Hints

Hint Name Description

LOOP LOOP joins operate best when one table is small and the other is large, with indexes on
the joined columns.

HASH HASH joins are optimal for large unsorted tables.

MERGE MERGE joins are optimal for medium or large tables that are sorted on the joined
column.

REMOTE REMOTE forces the join operation to occur at the site of the table referenced on the right
(the second table referenced in a JOIN clause). For performance benefits, the left table
should be the local table and should have fewer rows than the remote right table.

Forcing a HASH Join
Before showing how the join hint works, the example starts off with the original, non-hinted query:

-- (More on SHOWPLAN_XML in Chapter 28)
SET SHOWPLAN_XML ON
GO

SELECT p.Name,
r.ReviewerName,
r.Rating

FROM Production.Product p
INNER JOIN Production.ProductReview r ON

r.ProductID = p.ProductID
GO

SET SHOWPLAN_XML OFF
GO

This returns the following excerpt (SHOWPLAN_XML returns information about how the query may
be processed, but it doesn’t actually execute the query):

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join"
EstimateRows="4" EstimateIO="0" EstimateCPU="1.672e-005" AvgRowSize="82"
EstimatedTotalSubtreeCost="0.0115181" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

The next example submits the same query, only this time using a join hint:

SET SHOWPLAN_XML ON
GO

SELECT p.Name,
r.ReviewerName,
r.Rating

FROM Production.Product p
INNER HASH JOIN Production.ProductReview r ON

r.ProductID = p.ProductID
GO

SET SHOWPLAN_XML OFF
GO

CHAPTER 15 ■ HINTS450

9802CH15.qxd 4/24/08 4:16 PM Page 450

This returns the following excerpt:

<RelOp NodeId="0" PhysicalOp="Hash Match" LogicalOp="Inner Join" EstimateRows="4"
EstimateIO="0" EstimateCPU="0.0350031" AvgRowSize="82"
EstimatedTotalSubtreeCost="0.0443511" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

How It Works
In the first, non-hinted, query, SET SHOWPLAN_XML was used to view how the query may be executed
by SQL Server.

SET SHOWPLAN_XML returned an XML rendering of the query execution plan. The excerpt for
the RelOp fragment for logical join (INNER JOIN) operation showed a nested loop physical join
operation.

In the second query, a hint was added to force the nested loop join to perform a hash join oper-
ation instead. To do this, HASH was added between the INNER and JOIN keywords:

INNER HASH JOIN Production.ProductReview r ON
r.ProductID = p.ProductID

Now in the second SHOWPLAN_XML result set, the query execution switched to using a hash join to
join the two tables.

Using Query Hints
Some query hints, like the join hints discussed in the previous recipe, are instructions sent with the
query to override SQL Server’s query optimizer decision making. Using query hints may provide a
short-term result that satisfies your current situation, but may not always be the most efficient
result over time. Nonetheless, there are times when you may decide to use them, if only to further
understand the choices that the query optimizer automatically makes.

Query hints can be used in SELECT, INSERT, UPDATE, and DELETE statements, described in
Table 15-2.

Table 15-2. Query Hints

Hint Name Description

{HASH | ORDER} GROUP When used in conjunction with the GROUP BY clause,
specifies whether hashing or ordering is used for GROUP
BY and COMPUTE aggregations.

{CONCAT | HASH | MERGE} UNION Designates the strategy used to join all result sets for
UNION operations.

{LOOP | MERGE | HASH} JOIN Forces all join operations to perform the loop, merge,
or hash join in the entire query.

FAST integer Speeds up the retrieval of rows for the top integer value
designated.

FORCE ORDER When designated, performs table joins in the order in
which the tables appear.

MAXDOP number_of_processors Overrides the “max degree of parallelism” server
configuration option for the query.

Continued

CHAPTER 15 ■ HINTS 451

9802CH15.qxd 4/24/08 4:16 PM Page 451

Table 15-2. Continued

Hint Name Description

OPTIMIZE FOR (@variable_name = Directs SQL Server to use a particular variable value or
literal_constant) [,...n] values for a variable when the query is compiled and

optimized. You could, for example, plug in a literal
constant that returns the best performance across the
range of expected parameters.

ROBUST PLAN Creates a query plan with the assumption that the row
size of a table will be at maximum width.

KEEP PLAN “Relaxes” the recompile threshold for the query.

KEEPFIXED PLAN Forces the query optimizer NOT to recompile due to
statistics or indexed column changes. Only schema
changes or sp_recompile will cause the query plan to
be recompiled.

EXPAND VIEWS Keeps the query optimizer from using indexed views
when the base table is referenced.

MAXRECURSION number Designates the maximum number of recursions (1 to
32757) allowed for the query. If 0 is chosen, no limit is
applied. The default recursion limit is 100. This option
is used in conjunction with Common Table
Expressions (CTEs).

USE PLAN 'xml_plan' USE PLAN directs SQL SERVER to use a potentially better
performing query plan (provided in the xml_plan literal
value) that you know can cause the query to perform
better. See Chapter 28 for more details.

PARAMETERIZATION { SIMPLE | FORCED } Relates to the new PARAMETERIZATION database setting,
which controls whether or not all queries are
parameterized (literal values contained in a query get
substituted with parameters in the cached query plan).
When PARAMETERIZATION SIMPLE is chosen, SQL Server
decides which queries are parameterized or not. When
PARAMETERIZATION FORCED is used, all queries in the
database will be parameterized. For more information
on this database setting, see Chapter 28.

RECOMPILE Forces SQL Server to throw out the query execution
plan after it is executed, meaning that the next time
the query executes, it will be forced to recompile a
new query plan. Although usually SQL Server reuses
effective query plans, sometimes a less efficient query
plan is reused. Recompiling forces SQL Server to come
up with a fresh plan (but with the overhead of a
recompile).

Forcing a Statement Recompile
This example uses the RECOMPILE query hint to recompile the query, forcing SQL Server to discard
the plan generated for the query after it executes. With the RECOMPILE query hint, a new plan will be
generated the next time the same or similar query is executed. You may decide you wish to do this
for volatile query plans, where differing search condition values for the same plan cause extreme
fluctuations in the number of rows returned. In that scenario, using a compiled query plan may

CHAPTER 15 ■ HINTS452

9802CH15.qxd 4/24/08 4:16 PM Page 452

hurt, not help, the query performance. The benefit of a cached and reusable query execution plan
(the avoided cost of compilation) may occasionally be outweighed by the actual performance of
the query.

■Note SQL Server uses statement-level recompilation. Instead of an entire batch recompiling when indexes are
added or data is changed to the referenced tables, only individual statements within the batch impacted by the
change are recompiled.

Typically, you will want to use this RECOMPILE query hint within a stored procedure—so that you
can control which statements automatically recompile—instead of having to recompile the entire
stored procedure.

To begin this recipe, I will execute the following query without a query hint:

DECLARE @CarrierTrackingNumber nvarchar(25) = '5CE9-4D75-8F'

SELECT SalesOrderID,
ProductID,
UnitPrice,
OrderQty

FROM Sales.SalesOrderDetail
WHERE CarrierTrackingNumber = @CarrierTrackingNumber
ORDER BY SalesOrderID,

ProductID

This returns

SalesOrderID ProductID UnitPrice OrderQty
47964 760 469.794 1
47964 789 1466.01 1
47964 819 149.031 4
47964 843 15.00 1
47964 844 11.994 6

(5 row(s) affected)

Now I can query the Dynamic Management View sys.dm_exec_cached_plans (see Chapter 22
for a review of this DMV) to see whether this query produced a compiled plan in memory that can
potentially be reused:

SELECT cacheobjtype, objtype, usecounts
FROM sys.dm_exec_cached_plans
CROSS APPLY sys.dm_exec_sql_text(plan_handle)
WHERE text LIKE 'DECLARE @CarrierTrackingNumber%'

This returns the cache object type and number of times the object has been used for query
execution:

cacheobjtype objtype usecounts
Compiled Plan Adhoc 1

(1 row(s) affected)

CHAPTER 15 ■ HINTS 453

9802CH15.qxd 4/24/08 4:16 PM Page 453

Next, I will execute the original query again to test whether the cached plan is reused. After
executing the original query and then querying sys.dm_exec_cached_plans, I will see the following
incremented count, meaning that the compiled ad hoc plan was reused:

cacheobjtype objtype usecounts
Compiled Plan Adhoc 2

Now I’ll demonstrate the RECOMPILE hint. Before doing this, I’ll clear the procedure cache (don’t
try this in a production SQL Server instance—only use this in a test environment):

DBCC FREEPROCCACHE

This clears out the cache, and now I will direct SQL Server not to create or reuse an existing
plan:

DECLARE @CarrierTrackingNumber nvarchar(25) = '5CE9-4D75-8F'

SELECT SalesOrderID,
ProductID,
UnitPrice,
OrderQty

FROM Sales.SalesOrderDetail
WHERE CarrierTrackingNumber = @CarrierTrackingNumber
ORDER BY SalesOrderID,

ProductID
OPTION (RECOMPILE)

Querying sys.dm_exec_cached_plans again, I don’t see a plan generated for reuse:

cacheobjtype objtype usecounts

(0 row(s) affected)

How It Works
This query demonstrated using a query hint, which was referenced in the OPTION clause at the end
of the query:

OPTION (RECOMPILE)

Without the hint, the original query generated a cached query plan that could then be reused
for consecutive executions. By adding this hint, I have overridden the behavior by forcing the query
to compile a new plan each time it is executed.

It bears repeating that SQL Server should be relied upon most of the time to make the correct
decisions when processing a query. Query hints can provide you with more control for those excep-
tions when you need to override SQL Server’s choices.

Using Table Hints
Table hints, like query hints, can be used to override SELECT, INSERT, UPDATE, and DELETE default pro-
cessing behavior. You can use multiple table hints for one query, separated by commas, so long as
they do not belong to the same category grouping. Be sure to test the performance of your queries
with and without the query hints (see Chapter 28 for more details on examining query performance).

CHAPTER 15 ■ HINTS454

9802CH15.qxd 4/24/08 4:16 PM Page 454

Table 15-3 lists available table hints. Some hints cannot be used together, so they have been
grouped in the table accordingly. You can’t, for example, use both NOLOCK and HOLDLOCK for the same
query.

Table 15-3. Table Hints

Hint Name Description

FASTFIRSTROW This hint is deprecated and will be removed in future
versions of SQL Server.

FORCESEEK New in SQL Server 2008, this hint allows you to force a
query to only consider clustered or nonclustered
index seek access paths for a specified table or view
instead of a scan. You can leave it to the optimizer to
select the index to seek, or optionally you can also
couple FORCESEEK with an INDEX hint (described next).

INDEX (index_val [,... n]) This hint overrides SQL Server’s index choice and
forces a specific index for the table to be used.

NOEXPAND When an indexed view is referenced, the query
optimizer will not access the data structures of the
data objects used to define the view. Only indexes on
the indexed view are used for the purposes of the
query.

HOLDLOCK, SERIALIZABLE, REPEATABLEREAD, Selecting one of these hints determines the isolation
READCOMMITTED, READCOMMITTEDLOCK, level for the table. For example, designating NOLOCK
READUNCOMMITTED, NOLOCK means that the operation (SELECT for example) will

place no locking on the table.

ROWLOCK, PAGLOCK, TABLOCK, TABLOCKX This hint designates the granularity of locking for the
table, for example, selecting ROWLOCK to force only row
locks for a query.

READPAST This hint skips locked rows and does not read them.

UPDLOCK This hint will force update locks instead of shared
locks to be generated (not compatible with NOLOCK or
XLOCK).

XLOCK This hint forces exclusive locks on the resources being
referenced (not compatible with NOLOCK or UPDLOCK).

KEEPIDENTITY This option applies to the OPENROWSET function’s BULK
insert functionality (see Chapter 27) and impacts
how rows are inserted into a table with an IDENTITY
column. If you use this hint, SQL Server will use the
identity values from the data file, instead of
generating its own. For more on the IDENTITY
column, see Chapter 4.

KEEPDEFAULTS Like KEEPIDENTITY, this table hint applies to the
OPENROWSET function. Using this hint specifies that
columns not included in the bulk-load operation
will be assigned to the column default. For more on
default columns, see Chapter 4.

IGNORE_CONSTRAINTS Another OPENROWSET hint, IGNORE_CONSTRAINTS directs
SQL Server to ignore CHECK constraints when
importing data. See Chapter 4 for more on CHECK
constraints.

IGNORE_TRIGGERS This query hint directs INSERT triggers not to fire
when importing using the BULK option of OPENROWSET.

CHAPTER 15 ■ HINTS 455

9802CH15.qxd 4/24/08 4:16 PM Page 455

Executing a Query Without Locking
This example returns the DocumentID and Title from the Production.Document table where the
Status column is equal to 1. It uses the NOLOCK table hint, which means the query will not place
shared locks on the Production.Document table:

SELECT DocumentID,
Title

FROM Production.Document
WITH (NOLOCK)
WHERE Status = 1

How It Works
The crux of this example is the WITH keyword, which uses the NOLOCK table hint in parentheses:

WITH (NOLOCK)

NOLOCK causes the query not to place shared locks on the impacted rows/data pages—allowing
you to read without being blocked or blocking others (although you are now subject to “dirty
reads”).

Forcing a SEEK over a SCAN
SQL Server 2008 introduces the new FORCESEEK table hint, which you can use to replace index scans
with index seeks. In most cases, this hint will not be necessary; however, under some conditions,
you may encounter scenarios where the Query Optimizer simply doesn’t choose to use an index
seek on an index when you would otherwise expect it to.

Bad query plans can happen for several reasons. For example, if your table data is highly
volatile and your statistics are no longer accurate, a bad plan could be produced. Another example
would be a query with a poorly constructed WHERE clause that doesn’t provide sufficient or useful
information to the query optimization process.

If the intent of your query is to perform a singleton lookup against a specific value, and instead
you see that the query scans the entire index before retrieving your single row, the I/O costs of the
scan can be significant (particularly for very large tables). In situations where you have done due
diligence (updated statistics, optimized the query), you may then consider using the new FORCESEEK
table hint.

The following example uses SET SHOWPLAN XML to return the estimated query execution plan.
I cover SET SHOWPLAN XML in more detail in Chapter 28. In this recipe, I start by setting SHOWPLAN XML
on, and then execute the query that will perform a clustered index scan against the Production.
TransactionHistory table:

SET SHOWPLAN_XML ON
GO

SELECT DISTINCT TransactionID, TransactionDate
FROM Production.TransactionHistory
WHERE ReferenceOrderID BETWEEN 1000 AND 100000
GO

SET SHOWPLAN_XML OFF

This returns the estimated execution plan of the query. You can see from the following frag-
ment embedded in the XML results that a clustered index scan operation will be used:

CHAPTER 15 ■ HINTS456

9802CH15.qxd 4/24/08 4:16 PM Page 456

<RelOp NodeId="0" PhysicalOp="Clustered Index Scan" LogicalOp="Clustered Index Scan"
EstimateRows="112121" EstimateIO="0.586088" EstimateCPU="0.124945" AvgRowSize="23"

EstimatedTotalSubtreeCost="0.711033" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

The referenced table, Production.TransactionHistory, has one clustered index on the
TransactionID column, a nonclustered index on ProductID, and then a composite index on
ReferenceOrderID and ReferenceOrderLineID. In this situation, the range of ReferenceOrderID val-
ues probably justifies a scan, but let’s say for the purposes of the example you would like to have it
use a seek operation instead. For example, if the actual table values between the range of 1000 and
100000 should return only a few rows, but for some reason the statistics of the indexes indicate
something different, you can use the FORCESEEK to help push a different data access method.

■Caution This example is for illustrative purposes only. The forced seek in this next query is non-optimal.

SET SHOWPLAN_XML ON
GO

SELECT DISTINCT TransactionID, TransactionDate
FROM Production.TransactionHistory WITH (FORCESEEK)
WHERE ReferenceOrderID BETWEEN 1000 AND 100000
GO

SET SHOWPLAN_XML OFF

This time you see from the estimated query plan XML output that an index seek operation will
be used:

<RelOp NodeId="3" PhysicalOp="Index Seek" LogicalOp="Index Seek"
EstimateRows="112121" EstimateIO="0.15794" EstimateCPU="0.0617452" AvgRowSize="11"
EstimatedTotalSubtreeCost="0.219685" Parallel="1" EstimateRebinds="0"
EstimateRewinds="0">

You also see within the XML output that the specific indexed used was the nonclustered index
made up of the ReferenceOrderID and ReferenceOrderLineID columns:

<Object Database="[AdventureWorks]" Schema="[Production]"
Table="[TransactionHistory]"
Index="[IX_TransactionHistory_ReferenceOrderID_ReferenceOrderLineID]" />

In the previous query, I allowed SQL Server to choose which index to seek; however, I also have
the option to force a seek operation and also designate which index should be used. For example:

SELECT DISTINCT TransactionID, TransactionDate
FROM Production.TransactionHistory WITH (FORCESEEK, INDEX
(IX_TransactionHistory_ReferenceOrderID_ReferenceOrderLineID))
WHERE ReferenceOrderID BETWEEN 1000 AND 100000

CHAPTER 15 ■ HINTS 457

9802CH15.qxd 4/24/08 4:16 PM Page 457

How It Works
The FORCESEEK command is a query hint that should be infrequently used, but can be extremely
useful in situations where you are sure a non-optimal access path is being chosen by SQL Server.
FORCESEEK can be used in the FROM clause of a SELECT, UPDATE, or DELETE.

In this recipe, I referenced the table hint by placing the WITH keyword followed by the hint
name in parentheses:

FROM Production.TransactionHistory WITH (FORCESEEK)

This overrides the query’s original clustered index scan access path. If you have multiple
indexes on a table, using this hint alone will tell SQL Server to choose the best seek across the
choice of indexes. However, you can further narrow down the instructions by designating the INDEX
hint as well, which I included as follows:

FROM Production.TransactionHistory WITH (FORCESEEK, INDEX
(IX_TransactionHistory_ReferenceOrderID_ReferenceOrderLineID))

The INDEX hint was followed by the name of the index within parentheses. You could have also
used the index number. As with FORCESEEK, in general you should not designate the INDEX hint if you
don’t have to—as SQL Server will choose the most optimal seek path available at that moment.

CHAPTER 15 ■ HINTS458

9802CH15.qxd 4/24/08 4:16 PM Page 458

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Error Handling

In this chapter, I’ll present recipes for creating, raising, and handling SQL Server errors using
Transact-SQL.

System-Defined and User-Defined Error Messages
This first batch of recipes is concerned with the viewing and raising of system and user-defined
error messages. The sys.messages table contains one row for each user-defined and built-in error
message on the SQL Server instance. Built-in error messages are those that are raised in response to
standard SQL Server errors. User-defined error messages are often used in third-party applications
that define a set of error messages for use within an application. User-defined error messages allow
for parameterization, meaning that you can create custom messages that allow for customizable
messages based on parameters (as you’ll see demonstrated later on in the chapter when I discuss
RAISERROR).

Viewing System Error Information
You can use the sys.messages system catalog view to see all system and user-defined error messages
in the SQL Server instance, as this example demonstrates:

SELECT message_id, severity, is_event_logged, text
FROM sys.messages
ORDER BY severity DESC, text

This returns the following abridged results (the output has been truncated and formatted for
clarity):

message_id severity is_event_logged text
832 24 1 A page that should have been constant has

changed (expected checksum: %08x, actual
checksum: %08x, database %d, file '%ls', page
%S_PGID). This usually indicates a memory
failure or other hardware or OS corruption.

1459 24 1 An error occurred while accessing the database
mirroring metadata. Drop mirroring (ALTER
DATABASE database_name SET PARTNER OFF) and
reconfigure it.

17405 24 1 An image corruption/hotpatch detected while
reporting exceptional situation. This may be a
sign of a hardware problem. Check
SQLDUMPER_ERRORLOG.log for details.

459

C H A P T E R 1 6

9802CH16.qxd 4/23/08 11:38 AM Page 459

How It Works
In this recipe, a simple SELECT query returned the following information about both SQL Server
built-in error messages and the custom error messages defined for this particular instance of
SQL Server:

• message_id: This is the error message identifier.

• severity: This is the severity level.

• is_event_logged: This is used if the error writes to the Windows event log.

• text: This is the text of the message.

The severity level ranges from 1 to 25, with the following implied categorizations:

• Severity levels 0 through 10 denote informational messages.

• Severity levels 11 through 16 are database engine errors that can be corrected by the user
(database objects that are missing when the query is executed, incompatible locking hints,
transaction deadlocks, denied permissions, and syntax errors). For example, a PRIMARY KEY
violation will return a level 14 severity-level error. A divide-by-zero error returns a level 16
severity-level error.

• Severity levels 17 through 19 are for errors needing sysadmin attention (for instance, if SQL
Server has run out of memory resources, or if database engine limits have been reached).

• Severity levels 20 through 25 are fatal errors and system issues (hardware or software damage
that impacts the database, integrity problems, and media failures).

The text column in sys.messages contains the actual error message to be presented to the user
from the database engine. Notice that the first message in the recipe’s results had percentage signs
and other symbols combined within it:

A page that should have been constant has changed (expected checksum: %08x, actual
checksum: %08x, database %d, file '%ls', page %S_PGID). This usually indicates a
memory failure or other hardware or OS corruption.

The % sign is a substitution parameter that allows the database engine to customize error mes-
sage output based on the current database context and error event. The values concatenated to the
% sign indicate the data type and length of the substitution parameter.

Creating a User-Defined Error Message
In this recipe, I demonstrate how to create a new user-defined error message using the
sp_addmessage system stored procedure. You may wish to create user-defined, custom messages for
your application to use, ensuring consistency across your application-specific error handling rou-
tines. Creating a new error message adds it to the sys.messages system catalog view and allows you
to invoke it with the RAISERROR command (reviewed in the next recipe).

The syntax for this system stored procedure is as follows:

sp_addmessage [@msgnum =] msg_id ,
[@severity =] severity ,
[@msgtext =] 'msg'
[, [@lang =] 'language']
[, [@with_log =] 'with_log']
[, [@replace =] 'replace']

CHAPTER 16 ■ ERROR HANDLING460

9802CH16.qxd 4/23/08 11:38 AM Page 460

The parameters are briefly described in Table 16-1.

Table 16-1. sp_addmessage Arguments

Parameter Description

msg_id This is the user-supplied error ID, which can be between 50,001 and 2,147,483,647.
The message ID is not the unique key or primary key of this table; rather, the unique
composite key is the combination of the message ID and the language ID.

severity This defines the severity level of your message (1 through 25).

msg This represents the actual error message, which uses a data type of nvarchar(255).

language This specifies the language in which the error message is written.

with_log This defines whether or not the message will be written to the Windows Application
error log when the error is invoked.

Replace When specified, the existing user-defined error (based on message ID and language)
is overwritten with the new parameters passed to the system stored procedure.

In this recipe, a new error message will be created to warn the user that his group can’t update
a specific table (which you might use if you were building your own application-based security
system in a database, for example):

-- Creating the new message
USE master
GO

EXEC sp_addmessage
100001,
14,

N'The current table %s is not updateable by your group!'
GO

-- Using the new message (RAISERROR reviewed in the next recipe)
RAISERROR (100001, 14, 1, N'HumanResources.Employee')

This returns

Msg 100001, Level 14, State 1, Line 3
The current table HumanResources.Employee is not updateable by your group!

How It Works
In this recipe, a new message was created using sp_addmessage:

EXEC sp_addmessage
100001,
14,

N'The current table %s is not updateable by your group!'

The first parameter, 100001, was the new message ID. You can use an integer value between
50,001 and 2,147,483,647. The second parameter value of 14 indicated the severity level, and the
third parameter was the actual error message.

A substitution parameter value was included within the body of the message, %s, where the s
tells you that the parameter is a string value. You can also designate a parameter as a signed integer
(d or i), unsigned octal (o), unsigned integer (u), or unsigned hexadecimal (x or X).

CHAPTER 16 ■ ERROR HANDLING 461

9802CH16.qxd 4/23/08 11:38 AM Page 461

The other optional parameters such as language, with_log, and replace were not used. The last
command in this recipe, RAISERROR, was used to raise an instance of the newly created error:

RAISERROR (100001, 14, 1, N'HumanResources.Employee')

RAISERROR is often used to return errors related to application or business logic—for example,
errors based on conditions that are syntactically correct, yet violate some condition or requirement
of the application or business.

In this example, the first parameter was the new error message ID, the second parameter was
the severity level, the third parameter was the state (a number you can use to identify which part of
your code throws the error), and the fourth was the Unicode substitution parameter that passes to
the error message. The argument can take substitution parameters for the int, tinyint, smallint,
varchar, char, nchar, nvarchar, varbinary, and binary data types. The new error message was then
returned to the SQL user with the value HumanResources.Employee plugged into the substitution
parameter value.

Dropping a User-Defined Error Message
In this recipe, I demonstrate how to remove a user-defined error message from the sys.messages
table. The syntax is as follows:

sp_dropmessage [@msgnum =] message_number
[, [@lang =] 'language']

The parameters are briefly described in Table 16-2.

Table 16-2. sp_dropmessage Arguments

Parameter Description

message_number This is the message number of the user-defined error message.

language This is the language of the message to drop. If you designate ALL and a message
exists with the same message number but in different languages, all messages
for that number will be dropped.

This recipe drops the user-defined error message created in the previous recipe:

EXEC sp_dropmessage 100001

How It Works
This recipe dropped the user-defined error message created in the previous recipe by using the sys-
tem stored procedure sp_dropmessage. This system stored procedure can only be used to drop
user-added messages, which have message IDs greater than 49,999.

Manually Raising an Error
The RAISERROR command allows you to invoke either a user-defined error message from the
sys.messages system catalog view or an error message produced from a string or string variable.
The syntax of RAISERROR is as follows:

RAISERROR ({ msg_id | msg_str | @local_variable }
{ ,severity ,state }
[,argument [,...n]])
[WITH option [,...n]]

CHAPTER 16 ■ ERROR HANDLING462

9802CH16.qxd 4/23/08 11:38 AM Page 462

The parameters are briefly described in Table 16-3.

Table 16-3. RAISERROR Arguments

Parameter Description

msg_id | msg_str | @local_variable When using RAISERROR, you can choose one of three
options for this parameter. The msg_id option is a user-
defined error message number from the sys.messages
table. The msg_str option is a user-defined message with
up to 2,047 characters. The @local_variable option is a
string variable used to pass this message string.

severity This defines the severity level of your message
(1 through 25).

state This specifies a user-defined number between 1 and 127
that can be used for identifying the location of the failing
code (if your code is divided into multiple sections, for
example).

argument [,...n] This defines one or more substitution parameters to be
used within the error message.

WITH option [,...n] Three options are allowed in the WITH clause: LOG, NOWAIT,
and SETERROR. LOG writes to the SQL Server error log and
Windows Application error log. NOWAIT sends the
messages immediately to the client. SETERROR sets the
@@ERROR and ERROR_NUMBER values to the error message ID
(or 50,000 if not using an error from sys.messages).

Invoking an Error Message
In this recipe, I create a stored procedure to INSERT a new row into the HumanResources.Department
table. When an attempt is made to insert a new department into the HumanResources.Department
table, the group name will be evaluated first to see whether it is Research and Development. If it isn’t,
the insert will not occur, and an error using RAISERROR will be invoked:

USE AdventureWorks
GO

CREATE PROCEDURE dbo.usp_INS_Department
@DepartmentName nvarchar(50),
@GroupName nvarchar(50)

AS
IF @GroupName = 'Research and Development'
BEGIN

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@DepartmentName, @GroupName)

END
ELSE
BEGIN
RAISERROR('%s group is being audited
for the next %i days.
No new departments for this group can be added
during this time.',

16,

CHAPTER 16 ■ ERROR HANDLING 463

9802CH16.qxd 4/23/08 11:38 AM Page 463

1,
@GroupName,
23)

END

GO

Next, the new procedure is executed:

EXEC dbo.usp_INS_Department 'Mainframe Accountant', 'Accounting'

This returns

Msg 50000, Level 16, State 1, Procedure usp_INS_Department, Line 13
Accounting group is being audited
for the next 23 days.
No new departments for this group can be added during this time.

An alternative to creating the error message within the stored procedure is to create it as a
user-defined message (as discussed earlier in the chapter). For example:

EXEC sp_addmessage
100002,
14,

N'%s group is being audited for the next %i
days. No new departments for this group can be added
during this time.'
GO

Then, by rewriting the previous RAISERROR example, you can reference the user-defined error
message number instead:

...
ELSE
BEGIN

RAISERROR(100002,
16,
1,
@GroupName,
23)

END

How It Works
This recipe used RAISERROR to return an error if a specific IF condition was not met. RAISERROR is
often used to send errors to the calling application from Transact-SQL batches, stored procedures,
and triggers—especially for data or logical conditions that wouldn’t normally cause a syntactic error
to be raised.

Within the body of the stored procedure, the value of the group name was evaluated. If it had
been equal to Research and Development, the insert would have happened:

IF @GroupName = 'Research and Development'
BEGIN

INSERT HumanResources.Department
(Name, GroupName)
VALUES (@DepartmentName, @GroupName)

END

CHAPTER 16 ■ ERROR HANDLING464

9802CH16.qxd 4/23/08 11:38 AM Page 464

Because the group was not equal to Research and Development, the ELSE clause initiates the
RAISERROR command instead:

ELSE
BEGIN

RAISERROR('%s group is being audited for the next %i
days. No new departments for this group can be added
during this time.',

16,
1,
@GroupName,
23)

END

The first parameter of the RAISERROR command was the error message text, which used two
substitution parameters: one for the group name, and the second for the number of days the group
will be audited. The second parameter, 16, was the severity level. The third parameter, 1, was the
state. The last two parameters, @GroupName and 23, were the substitution parameters to be plugged
into the error message when it was invoked.

This recipe also demonstrated adding a user-defined message and then invoking it with
RAISERROR, instead of creating the text on the fly. This technique is useful for error messages that
must be used in multiple areas of your database, and it prevents you from having to retype the mes-
sage in each referencing procedure or script. It also ensures the consistency of the error message.

Trapping and Handling Application Errors
The TRY...CATCH command can be used to capture execution errors within your Transact-SQL code.
TRY...CATCH can catch any execution error with a severity level greater than 10 (so long as the raised
error doesn’t forcefully terminate the Transact-SQL user session). TRY...CATCH can also handle
severity-level errors (greater than 10) invoked using RAISERROR.

The syntax for TRY...CATCH is as follows:

BEGIN TRY
{ sql_statement | statement_block }

END TRY
BEGIN CATCH

{ sql_statement | statement_block }
END CATCH

The arguments used in both the TRY and CATCH sections are sql_statement and statement_
block. In a nutshell, statements within the TRY block are those you wish to execute. If errors are
raised within the TRY block, then the CATCH block of code is executed. The CATCH block is then used to
handle the error. Handling just means that you wish to take some action in response to the error,
whether it’s to report the error’s information, log information in an error table, or roll back an open
transaction.

The benefit of TRY...CATCH is in the ability to nest error handling inside code blocks, allowing
you to handle errors more gracefully and with less code than non-TRY...CATCH methods.
TRY...CATCH also allows you to use SQL Server error logging and transaction state functions that
capture granular error information about an error event. Table 16-4 details the use of each.

CHAPTER 16 ■ ERROR HANDLING 465

9802CH16.qxd 4/23/08 11:38 AM Page 465

Table 16-4. Error and Transaction State Functions

Function Description

ERROR_LINE This defines the error line number in the SQL statement or block where the
error was raised.

ERROR_MESSAGE This is the error message raised in the SQL statement or block.

ERROR_NUMBER This is the error number raised in the SQL statement or block.

ERROR_PROCEDURE This defines the name of the trigger or stored procedure where the error was
raised (assuming TRY...CATCH was used in a procedure or trigger).

ERROR_SEVERITY This indicates the severity level of the error raised in the SQL statement or
block.

ERROR_STATE This specifies the state of the error raised in the SQL statement or block.

XACT_STATE In the CATCH block, XACT_STATE reports on the state of open transactions from
the TRY block. If 0 is returned, there are no open transactions from the TRY
block. If 1 is returned, an active user transaction is currently open. If -1 is
returned, an error occurred in the TRY block, and the transaction must be rolled
back. XACT_STATE can also be used outside of a TRY...CATCH command.

If an error is encountered in a TRY batch, SQL Server will exit at the point of the error and move
to the CATCH block, without processing any of the other statements in the TRY batch (the exception to
the rule is if you’re using nested TRY...CATCH blocks, which I’ll demonstrate later on in the chapter).

TRY...CATCH can be used within a trigger or stored procedure or used to encapsulate the actual
execution of a stored procedure (capturing any errors that “bubble up” from the procedure execu-
tion and then handling them accordingly).

Warnings and most informational attention messages (severity level of 10 or less) are not
caught by TRY...CATCH, and neither are syntax and object name resolution errors. Nonetheless, this
new construct is now an ideal choice for capturing many other common error messages that in pre-
vious versions required bloated and inelegant Transact-SQL code.

In general, you’ll want to make sure that every block of non-anonymous Transact-SQL code
that modifies data in some way or participates in a transaction has an error handler. I’m not part of
the group that believes in going overboard with error handling, however. I’ve seen some coders put
error handling around each and every SELECT statement they write. I personally think this is overkill,
as any issues that would cause a SELECT statement to “break” will require manual intervention of
some sort. Also, with .NET error handling capabilities, wrappers around your SELECT queries often
redundantly handle errors that may already be handled in the application tier.

In the next two recipes, I demonstrate two different scripts: one that uses an outdated method
of trapping error messages, and one that demonstrates the TRY...CATCH syntax method for doing
the same thing. After those recipes, I’ll demonstrate how to apply TRY...CATCH to a stored procedure
and then how to use nested TRY...CATCH calls.

Old-Style Error Handling
Prior to SQL Server 2005, error handling generally involved checking the T-SQL @@ERROR function
after every statement was executed. You would then use GOTO statements to point to a centralized
error handling block where, if an error had occurred, the process would be terminated and the
transaction rolled back.

This is demonstrated by the following code:

CHAPTER 16 ■ ERROR HANDLING466

9802CH16.qxd 4/23/08 11:38 AM Page 466

DECLARE @ErrorNBR int

BEGIN TRAN

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

COMMIT TRAN

UndoTran:
IF @ErrorNBR <> 0
BEGIN
PRINT CAST(@ErrorNBR as varchar(6)) +
' occurred after an attempt to insert into Production.Location'
ROLLBACK TRAN
END

This returns

(1 row(s) affected)
Msg 2601, Level 14, State 1, Line 17
Cannot insert duplicate key row in object 'Production.Location'
with unique index 'AK_Location_Name'.
The statement has been terminated.
2601 occurred after an attempt to insert into Production.Location

How It Works
The first example in this recipe demonstrated an error trapping method used prior to SQL Server
2005. The first line of code created an integer variable to hold the value of @@ERRORNBR after each
statement was executed. @@ERRORNBR’s value changes after each statement’s execution, so a local
variable will allow you to retain the original value of the error number:

DECLARE @ErrorNBR int

Next, a transaction was begun:

BEGIN TRAN

CHAPTER 16 ■ ERROR HANDLING 467

9802CH16.qxd 4/23/08 11:38 AM Page 467

Two inserts were attempted against the Production.Location table. The first inserted a value
that doesn’t already exist in the table, and therefore succeeds:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

Immediately after this insert, the value of @@ERROR was captured and stored in @ErrorNBR:

SELECT @ErrorNBR = @@ERROR

Since the insert succeeded, the value is 0. Had the insert failed, the value would have been
equal to the appropriate error message ID as found in sys.messages.

Next, an IF statement evaluated the local variable value, and since it was 0, it didn’t invoke the
IF condition:

IF @ErrorNBR <> 0
GOTO UndoTran

Another insert was then attempted, this time using a location name that already exists in the
table. This insert failed this time due to a unique constraint on the location name:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

The error trapping logic from the first insert was repeated for the second insert, and when
executed, the GOTO section was invoked, since the value of @ErrorNBR is no longer equal to 0:

SELECT @ErrorNBR = @@ERROR
IF @ErrorNBR <> 0
GOTO UndoTran

Because the GOTO command was invoked, the COMMIT TRAN was skipped:

COMMIT TRAN

The UndoTran label code printed the error number and a message and rolled back the
transaction:

UndoTran:
IF @ErrorNBR <> 0
BEGIN
PRINT CAST(@ErrorNBR as varchar(6)) + ' occurred after an
attempt to insert into Production.Location'
ROLLBACK TRAN
END

It’s clear from this example that this method requires repetitive code to trap possible errors for
each and every statement. For larger procedures or batch scripts, this can significantly increase the
amount of Transact-SQL code required in order to achieve statement-level error trapping.

Error Handling with TRY...CATCH
In this recipe, I’ll demonstrate the same error handling functionality, this time using TRY...CATCH:

CHAPTER 16 ■ ERROR HANDLING468

9802CH16.qxd 4/23/08 11:38 AM Page 468

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

BEGIN TRY

BEGIN TRAN

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

COMMIT TRANSACTION

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

ROLLBACK TRANSACTION

END CATCH

This returns the following results:

ErrorNBR Severity ErrorLine Msg
2601 14 5 Cannot insert duplicate key row in object

'Production.Location' with unique index
'AK_Location_Name'.

How It Works
This recipe duplicates the previous recipe’s results, only this time using TRY...CATCH. The batch
started with the BEGIN TRY command, and the starting of a new transaction:

BEGIN TRY

BEGIN TRAN

Next, the two inserts used in the previous example were attempted again, this time without
individual error trapping blocks following each statement:

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Tool Verification', 0.00, 0.00)

INSERT Production.Location
(Name, CostRate, Availability)
VALUES
('Frame Forming', 0.00, 0.00)

CHAPTER 16 ■ ERROR HANDLING 469

9802CH16.qxd 4/23/08 11:38 AM Page 469

The TRY batch, which included the statements I wished to error-check, was completed with the
END TRY keywords:

END TRY

The BEGIN CATCH marked the beginning of the error handling code block:

BEGIN CATCH

Using some of the error functions described at the beginning of this recipe, information on the
first error that occurred within the TRY block was reported:

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

Next, the open transaction declared earlier in the batch was then rolled back:

ROLLBACK TRANSACTION

The END CATCH command was used to mark the ending of the error handling CATCH block.

Applying Error Handling Without Recoding a Stored Procedure
You don’t have to recode each of your database’s stored procedures in order to start benefiting from
the new TRY...CATCH construct. Instead, you can use TRY...CATCH to capture and handle errors from
outside a procedure’s code.

To demonstrate, I’ll create a stored procedure that by design will return an error when
executed:

CREATE PROCEDURE usp_SEL_DivideByZero
AS

SELECT 1/0

GO

The stored procedure included no error handling whatsoever, but this doesn’t pose a problem
if I use TRY...CATCH as follows:

BEGIN TRY
EXEC dbo.usp_SEL_DivideByZero

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

PRINT 'This stored procedure did not execute properly.'
END CATCH

This returns

ErrorNBR Severity ErrorLine Msg
8134 16 4 Divide by zero error encountered.

How It Works
Although the stored procedure created in this exercise didn’t include error handling, I was still able
to add a programmatic response to errors by using TRY...CATCH to execute the stored procedure.

CHAPTER 16 ■ ERROR HANDLING470

9802CH16.qxd 4/23/08 11:38 AM Page 470

The procedure was called from within the TRY block, and the error information and message caught
and handled by the CATCH block.

BEGIN TRY
EXEC dbo.usp_SEL_DivideByZero

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() ErrorNBR, ERROR_SEVERITY() Severity,
ERROR_LINE () ErrorLine, ERROR_MESSAGE() Msg

PRINT 'This stored procedure did not execute properly.'
END CATCH

Nesting Error Handling
TRY...CATCH statements can be nested, which means you can use the TRY...CATCH statements
within other TRY...CATCH blocks. This allows you to handle errors that may happen, even in your
error handling.

In this example, I’ll create a new stored procedure to handle INSERTs into the HumanResources.
Department table. This procedure includes two levels of error handling. If an error occurs when
attempting the first INSERT, a second attempt is made with a different department name:

CREATE PROCEDURE dbo.usp_INS_Department
@Name nvarchar(50),
@GroupName nvarchar(50)

AS

BEGIN TRY

INSERT HumanResources.Department (Name, GroupName)
VALUES (@Name, @GroupName)

END TRY
BEGIN CATCH

BEGIN TRY

PRINT 'The first department attempt failed.'

INSERT HumanResources.Department (Name, GroupName)
VALUES ('Misc', @GroupName)

END TRY
BEGIN CATCH

PRINT 'A Misc department for that group already exists.'
END CATCH

END CATCH

GO

Executing the code for the existing department Engineering causes the first INSERT to fail, but
the second INSERT of the Misc department for the Research and Development department succeeds:

EXEC dbo.usp_INS_Department 'Engineering', 'Research and Development'

CHAPTER 16 ■ ERROR HANDLING 471

9802CH16.qxd 4/23/08 11:38 AM Page 471

This returns

(0 row(s) affected)
The first department attempt failed.
(1 row(s) affected)

If this same exact department and group INSERT is attempted again, both INSERTs will fail,
causing the second nested CATCH to return a printed error too:

EXEC dbo.usp_INS_Department 'Engineering', 'Research and Development'

This returns

(0 row(s) affected)
The first department attempt failed.

(0 row(s) affected)
A Misc department for that group already exists.

How It Works
This recipe demonstrated nesting a TRY...CATCH within another TRY...CATCH. This allows you to add
error handling around your error handling, in cases where you anticipate that this is necessary.
Walking through the code, the first few lines of the stored procedure defined the input parameters
for use with inserting into the HumanResources.Department table:

CREATE PROCEDURE dbo.usp_INS_Department
@Name nvarchar(50),
@GroupName nvarchar(50)

AS

Next, the first level TRY block was begun with an attempt to INSERT the new row into the table:

BEGIN TRY

INSERT HumanResources.Department (Name, GroupName)
VALUES (@Name, @GroupName)

END TRY

In case this fails, the CATCH block contained another TRY block:

BEGIN CATCH

BEGIN TRY

A statement was printed, and then another attempt was made to INSERT into the table, this
time using a generic name of Misc instead of the original department name sent by the input
parameter:

PRINT 'The first department attempt failed.'

INSERT HumanResources.Department (Name, GroupName)
VALUES ('Misc', @GroupName)

END TRY

CHAPTER 16 ■ ERROR HANDLING472

9802CH16.qxd 4/23/08 11:38 AM Page 472

If this were to fail, the nested CATCH would print a second message telling the user that the Misc
department for the specified group already exists:

BEGIN CATCH
PRINT 'A Misc department for that group already exists.'

END CATCH

END CATCH

GO

The stored procedure was then tested, using a department that already existed in the table.
Because there is a UNIQUE constraint on the department name, the first INSERT failed, and control
was passed to the CATCH block. The TRY block within the CATCH then successfully inserted the Misc
department name into the table

On a second execution of the stored procedure, both INSERTs failed, but were handled by
returning a PRINT statement warning you about it.

CHAPTER 16 ■ ERROR HANDLING 473

9802CH16.qxd 4/23/08 11:38 AM Page 473

9802CH16.qxd 4/23/08 11:38 AM Page 474

Principals

Microsoft uses a set of terminology to describe SQL Server security functionality, which separates
the security architecture into

• Principals: These are objects (for example a user login, a role, or an application) that may be
granted permission to access particular database objects.

• Securables: These are objects (a table or view, for example) to which access can be controlled.

• Permissions: These are individual rights, granted (or denied) to a principal, to access a secur-
able object.

Principals are the topic of this chapter, and securables and permissions are discussed in the
next chapter.

Principals fall into three different scopes:

• Windows principals are principals based on Windows domain user accounts, domain
groups, local user accounts, and local groups. Once added to SQL Server and given permis-
sions to access objects, these types of principals gain access to SQL Server based on
Windows Authentication.

• SQL Server principals are SQL Server–level logins and fixed server roles. SQL logins are cre-
ated within SQL Server and have a login name and password independent of any Windows
entity. Server roles are groupings of SQL Server instance-level permissions that other princi-
pals can become members of, inheriting that server role’s permissions.

• Database principals are database users, database roles (fixed and user-defined), and applica-
tion roles—all of which I’ll cover in this chapter.

I’ll start this chapter off with a discussion of Windows principals.

Windows Principals
Windows principals allow access to a SQL Server instance using Windows Authentication. SQL
Server allows us to create Windows logins based on Windows user accounts or groups, which can
belong either to the local machine or to a domain. A Windows login can be associated with a
domain user, local user, or Windows group. When adding a Windows login to SQL Server, the name
of the user or group is bound to the Windows account. Windows logins added to SQL Server don’t
require separate password logins; in that case, Windows handles the login authentication process.

When users log on to SQL Server using Windows Authentication, their current user account
must be identified as a login to the SQL Server instance, or they must belong to a Windows user
group that exists as a login.

475

C H A P T E R 1 7

9802CH17.qxd 4/29/08 12:55 PM Page 475

Windows logins apply only at the server operating system level: you can’t grant Windows prin-
cipals access to specific database objects. To grant permissions based on Windows logins, you need
to create a database user and associate it with the login. You’ll see how to do this when I discuss
database principals.

When installing SQL Server, you are asked to decide between Windows-only and mixed
authentication modes. Whichever authentication method you choose, you can always change your
mind later. Microsoft Windows Authentication allows for tighter security than SQL Server logins,
because security is integrated with the Windows operating system, local machine, and domain, and
because no passwords are ever transmitted over the network. When using mixed authentication
mode, you can create your own database logins and passwords within SQL Server.

Use the CREATE LOGIN command to add a Windows group or login to the SQL Server instance.
The abridged syntax for creating a login from a Windows group or user login is as follows:

CREATE LOGIN login_name
FROM WINDOWS
[WITH DEFAULT_DATABASE = database

| DEFAULT_LANGUAGE = language
]

| CERTIFICATE certname
| ASYMMETRIC KEY asym_key_name

The arguments of this command are described in Table 17-1.

Table 17-1. CREATE LOGIN Arguments

Argument Description

login_name This option defines the name of the Windows user or group.

DEFAULT_DATABASE = database This option specifies the default database context of the
Windows login, with the master system database being the
default.

DEFAULT_LANGUAGE = language This option specifies the default language of the Windows
login, with the server default language being the login default
if this option isn’t specified.

CERTIFICATE certname This option allows you to bind a certificate to a Windows login.
See Chapter 19 for more information on certificates, and
Chapter 20 for an example of doing so.

ASYMMETRIC KEY asym_key_name This option binds a key to a Windows login. See Chapter 19 for
more information on keys.

Creating a Windows Login
In this recipe, I assume that you already have certain Windows accounts and groups on the local
machine or in your domain. This example creates a Windows login on the SQL Server instance,
which is internally mapped to a Windows user:

CREATE LOGIN [CAESAR\Livia]
FROM WINDOWS
WITH DEFAULT_DATABASE = AdventureWorks,
DEFAULT_LANGUAGE = English

In the second example, a new Windows login is created, based on a Windows group. This is
identical to the previous example, except that you are mapping to a Windows group instead of a
Windows user:

CHAPTER 17 ■ PRINCIPALS476

9802CH17.qxd 4/29/08 12:55 PM Page 476

CREATE LOGIN [CAESAR\Senators]
FROM WINDOWS
WITH DEFAULT_DATABASE= AdventureWorks

How It Works
This recipe demonstrated adding access for a Windows user and Windows group to the SQL Server
instance. In the first example, the CREATE LOGIN designated the Windows user in square brackets:

CREATE LOGIN [CAESAR\Livia]

On the next line, the WINDOWS keyword was used to designate that this is a new login associated
to a Windows account:

FROM WINDOWS

Next, the default database and languages were designated in the WITH clause:

WITH DEFAULT_DATABASE = AdventureWorks,
DEFAULT_LANGUAGE = English

In the second example, I demonstrated how to add a Windows group to SQL Server, which
again requires square brackets in the CREATE LOGIN command:

CREATE LOGIN [CAESAR\Senators]

The FROM WINDOWS clause designated that this was a Windows group, followed by the default
database:

FROM WINDOWS
WITH DEFAULT_DATABASE= AdventureWorks

When a Windows group is associated to a SQL Server login, it enables any member of the
Windows group to inherit the access and permissions of the Windows login. Therefore, any mem-
bers of this group will also have access to the SQL Server instance without explicitly having to add
each Windows account to the SQL Server instance separately.

Viewing Windows Logins
You can view Windows logins and groups by querying the sys.server_principals system catalog
view. This example shows the name of each Windows login and group with access to SQL Server,
along with the security identifier (sid). Each principal in the system catalog view has a sid, which
helps uniquely identify it on the SQL Server instance:

SELECT name, sid
FROM sys.server_principals
WHERE type_desc IN ('WINDOWS_LOGIN', 'WINDOWS_GROUP')
ORDER BY type_desc

This returns the following results (your own results will vary):

name sid
BUILTIN\Administrators 0x01020000000000052000000020020000
CAESAR\SQLServerMSSQLUser$caesar$AUGUSTUS 0x01050000000000051500000019B2983B6D2CB3A

E17D79646EE030000
CAESAR\SQLServerMSFTEUser$CAESAR$AUGUSTUS 0x01050000000000051500000019B2983B6D2CB3A

E17D79646EB030000

CHAPTER 17 ■ PRINCIPALS 477

9802CH17.qxd 4/29/08 12:55 PM Page 477

CAESAR\SQLServerSQLAgentUser$CAESAR$AUGUSTUS 0x01050000000000051500000019B2983B6D2CB3A
E17D79646EF030000

CAESAR\Senators 0x01050000000000051500000019B2983B6D2CB3A
E17D79646F1030000

NT AUTHORITY\SYSTEM 0x010100000000000512000000
CAESAR\Administrator 0x01050000000000051500000019B2983B6D2CB3A

E17D79646F4010000
CAESAR\Livia 0x01050000000000051500000019B2983B6D2CB3A

E17D79646F0030000

How It Works
In this recipe, I demonstrated how to query Windows logins on the SQL Server instance using the
sys.server_principals system catalog view. This view actually allows you to see other principal
types too, which will be reviewed later in the chapter.

Altering a Windows Login
Once a Windows login is added to SQL Server, it can be modified using the ALTER LOGIN command
(this command has several more options that are applicable to SQL logins, as you’ll see reviewed
later in the chapter). Using this command, you can perform tasks such as

• Changing the default database of the login

• Changing the default language of the login

• Enabling or disabling a login from being used

The abridged syntax is as follows (arguments similar to CREATE LOGIN):

ALTER LOGIN login_name
{
ENABLE | DISABLE
|

WITH
| DEFAULT_DATABASE = database
| DEFAULT_LANGUAGE = language }

In the first example, a Windows login (associated with a Windows user) is disabled from use in
SQL Server. This prevents the login from accessing SQL Server, and if connected, ceases any further
activity on the SQL Server instance:

ALTER LOGIN [CAESAR\Livia]
DISABLE

This next example demonstrates enabling this account again:

ALTER LOGIN [CAESAR\Livia]
ENABLE

In this example, the default database is changed for a Windows group:

ALTER LOGIN [CAESAR\Senators]
WITH DEFAULT_DATABASE = master

CHAPTER 17 ■ PRINCIPALS478

9802CH17.qxd 4/29/08 12:55 PM Page 478

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
In the first example, a Windows login was disabled using ALTER LOGIN and the login name:

ALTER LOGIN [CAESAR\Livia]

Following this was the DISABLE keyword, which removes this account’s access to the SQL Server
instance (it removes the account’s access, but still keeps the login in the SQL Server instance for the
later option of reenabling access):

DISABLE

The second example demonstrated reenabling access to the login by using the ENABLE keyword.
The third example changed the default database for a Windows group. The syntax for referenc-

ing Windows logins and groups is the same—both principal types are designated within square
brackets:

ALTER LOGIN [CAESAR\Senators]

The second line then designated the new default database context for the Windows group:

WITH DEFAULT_DATABASE = master

Dropping a Windows Login
In this recipe, I’ll demonstrate dropping a login from the SQL Server instance entirely by using the
DROP LOGIN command. This removes the login’s permission to access the SQL Server instance. If the
login is currently connected to the SQL Server instance when the login is dropped, any actions
attempted by the connected login will no longer be allowed.

The syntax is as follows:

DROP LOGIN login_name

The only parameter is the login name—which can be a Windows or SQL login (demonstrated
later in the chapter), as this recipe demonstrates:

-- Windows Group login
DROP LOGIN [CAESAR\Senators]

-- Windows user login
DROP LOGIN [CAESAR\Livia]

How It Works
This recipe demonstrated the simple DROP LOGIN command, which removes a login from SQL
Server. If a login owns any securables (see the next chapter for more information on securables), the
DROP attempt will fail. For example, if the CAESAR\Livia login had been a database owner, an error
like the following would have been raised:

Msg 15174, Level 16, State 1, Line 3
Login 'CAESAR\Livia' owns one or more database(s).
Change the owner of the database(s) before
dropping the login.

CHAPTER 17 ■ PRINCIPALS 479

9802CH17.qxd 4/29/08 12:55 PM Page 479

Denying SQL Server Access to a Windows User or Group
Use the DENY CONNECT SQL command to deny a Windows user or group access to SQL server. For
example:

USE [master]
GO
DENY CONNECT SQL TO [CAESAR\Helen]
GO

To allow access again, you can use GRANT:

USE [master]
GO
GRANT CONNECT SQL TO [CAESAR\Helen]
GO

How It Works
This section is a sneak preview of Chapter 18, where GRANT and DENY will be explained in more detail.
In a nutshell, the GRANT command grants permissions to securables, and DENY denies permissions to
them. Use DENY CONNECT to restrict the Windows User or Group login from accessing a SQL Server
instance the next time a login attempt is made. In both GRANT CONNECT and DENY CONNECT, it is
assumed that the Windows user or group already has a login in SQL Server. Keep in mind that there
are limitations to which logins you can deny permissions to. For example, if you try to DENY CONNECT
to your own login with the following code:

DENY CONNECT SQL TO [CAESAR\Administrator]

it returns the following warning:

Cannot grant, deny, or revoke permissions to sa, dbo, information_schema,
sys, or yourself.

SQL Server Principals
Windows Authentication relies on the underlying operating system to perform authentication
(determining who a particular user is), which means that SQL Server performs the necessary
authorization (determining what actions an authenticated user is entitled to perform). When work-
ing with SQL Server principals and SQL Server authentication, SQL Server itself performs both
authentication and authorization.

As noted earlier, when using mixed authentication mode, you can create your own login and
passwords within SQL Server. These SQL logins only exist in SQL Server and do not have an outside
Windows user/group mapping. With SQL logins, the passwords are stored within SQL Server. These
user credentials are stored in SQL Server and are used to authenticate the user in question and to
determine her appropriate access rights.

Because the security method involves explicit passwords, it is inherently less secure than using
Windows Authentication alone. However, SQL Server logins are still commonly used with third-
party and non-Windows operating system applications. SQL Server has improved the password
protection capabilities by enabling Windows-like password functionality, such as forced password
changes, expiration dates, and other password policies (e.g., password complexity), with Windows
2003 Server and higher.

CHAPTER 17 ■ PRINCIPALS480

9802CH17.qxd 4/29/08 12:55 PM Page 480

As with Windows logins, SQL Server logins apply only at the server level; you can’t grant per-
missions on these to specific database objects. Unless you are granted membership to a fixed server
role such as sysadmin, you must create database users associated to the login before you can begin
working with database objects.

As in previous versions of SQL Server, SQL Server supports principals based on both individual
logins and server roles, which multiple individual users can be assigned to.

To create a new SQL Server login, use the CREATE LOGIN command:

CREATE LOGIN login_name
[WITH PASSWORD = ' password ' [HASHED] [MUST_CHANGE],

SID = sid],
DEFAULT_DATABASE = database,
DEFAULT_LANGUAGE = language,
CHECK_EXPIRATION = { ON | OFF},
CHECK_POLICY = { ON | OFF},
CREDENTIAL = credential_name]

The arguments of this command are described in Table 17-2.

Table 17-2. CREATE LOGIN Arguments

Argument Description

login_name This is the login name.

' password ' [HASHED] This is the login’s password. Specifying the HASHED option
[MUST_CHANGE] means that the provided password is already hashed (made

into an unreadable and secured format). If MUST_CHANGE is
specified, the user is prompted to change the password the
first time the user logs in.

SID = sid This explicitly specifies the sid that will be used in the
system tables of the SQL Server instance. This can be based
on a login from a different SQL Server instance (if you’re
migrating logins). If this isn’t specified, SQL Server generates
its own sid in the system tables.

DEFAULT_DATABASE = database This option specifies the default database context of the SQL
login, with the master system database being the default.

DEFAULT_LANGUAGE = language This option specifies the default language of the login, with
the server default language being the login default if this
option isn’t specified.

CHECK_EXPIRATION = { ON | OFF}, When set to ON (the default), the SQL login will be subject to
a password expiration policy. A password expiration policy
affects how long a password will remain valid before it must
be changed. This functionality requires Windows 2003
Server or higher versions.

CHECK_POLICY = { ON | OFF}, When set to ON (the default), Windows password policies are
applied to the SQL login (for example, policies regarding
the password’s length, complexity, and inclusion of non-
alphanumeric characters). This functionality requires
Windows 2003 Server or higher versions.

CREDENTIAL = credential_name This option allows a server credential to be mapped to
the SQL login. See Chapter 18 for more information on
credentials.

CHAPTER 17 ■ PRINCIPALS 481

9802CH17.qxd 4/29/08 12:55 PM Page 481

Creating a SQL Server Login
This example first demonstrates how to create a SQL Server login with a password and a default
database designated:

CREATE LOGIN Veronica
WITH PASSWORD = 'InfernoII',
DEFAULT_DATABASE = AdventureWorks

Assuming you are using Windows 2003 Server or higher, as well as mixed authentication, the
recipe goes on to create a SQL login with a password that must be changed the first time the user
logs in. This login also is created with the CHECK_POLICY option ON, requiring it to comply with
Windows password policies:

CREATE LOGIN Trishelle
WITH PASSWORD = 'ChangeMe' MUST_CHANGE ,

CHECK_EXPIRATION = ON,
CHECK_POLICY = ON

How It Works
The first example in this recipe demonstrated creating a SQL login named Veronica. The login name
was designated after CREATE LOGIN:

CREATE LOGIN Veronica

The second line designated the login’s password:

WITH PASSWORD = 'InfernoII',

The last line of code designated the default database that the login’s context would first enter
after logging into SQL Server:

DEFAULT_DATABASE = AdventureWorks

The second SQL login example demonstrated how to force a password to be changed on the
first login by designating the MUST CHANGE token after the password:

CREATE LOGIN Trishelle
WITH PASSWORD = 'ChangeMe' MUST_CHANGE ,

This password policy integration requires Windows 2003 Server, as did the password expiration
and password policy options also designated for this login:

CHECK_EXPIRATION = ON,
CHECK_POLICY = ON

Viewing SQL Server Logins
Again, you can view SQL Server logins (and other principals) by querying the sys.server_
principals system catalog view:

SELECT name, sid
FROM sys.server_principals
WHERE type_desc IN ('SQL_LOGIN')
ORDER BY name

This returns the following results:

CHAPTER 17 ■ PRINCIPALS482

9802CH17.qxd 4/29/08 12:55 PM Page 482

name sid
Boris 0xC2692B07894DFD45913C5595C87936B9
BrianG 0x4EC3966D4E33844F89680AFD87D2D5BD
JoeSa 0xB64D3C39533CC648B581884EC143F2D4
Prageeta 0x00CACEF1F0E0CE429B7C808B11A624E7
sa 0x01
SteveP 0xAAA2CD258750C641BBE9584627CAA11F
Veronica 0xE08E462A75D8C047A4561D4E9292296D

How It Works
This recipe’s query returned the name and sid of each SQL login on the SQL Server instance by
querying the sys.server_principals catalog view.

Altering a SQL Server Login
Once a login is added to SQL Server, it can be modified using the ALTER LOGIN command. Using this
command, you can perform several tasks:

• Change the login’s password.

• Change the default database or language.

• Change the name of the existing login without disrupting the login’s currently assigned
permissions.

• Change the password policy settings (enabling or disabling them).

• Map or remove mapping from a SQL login credential.

• Enable or disable a login from being used.

• Unlock a locked login.

The syntax arguments are similar to CREATE LOGIN (I’ll demonstrate usage in this recipe):

ALTER LOGIN login_name
{
ENABLE | DISABLE
|

WITH PASSWORD = ' password '
[OLD_PASSWORD = ' oldpassword '

| [MUST_CHANGE | UNLOCK]]
| DEFAULT_DATABASE = database
| DEFAULT_LANGUAGE = language
| NAME = login_name
| CHECK_POLICY = { ON | OFF }
| CHECK_EXPIRATION = { ON | OFF }
| CREDENTIAL = credential_name
| NO CREDENTIAL
}

In the first example of this recipe, a SQL login’s password is changed from InfernoII to
InfernoIII:

ALTER LOGIN Veronica
WITH PASSWORD = 'InfernoIII'
OLD_PASSWORD = 'InfernoII'

CHAPTER 17 ■ PRINCIPALS 483

9802CH17.qxd 4/29/08 12:55 PM Page 483

The OLD_PASSWORD is the current password that is being changed; however, sysadmin fixed server
role members don’t have to know the old password in order to change it.

This second example demonstrates changing the default database of the Veronica SQL login:

ALTER LOGIN Veronica
WITH DEFAULT_DATABASE = [AdventureWorks]

This third example in this recipe demonstrates changing both the name and password of a SQL
login:

ALTER LOGIN Veronica
WITH NAME = Angela,
PASSWORD = 'BOS2004'

Changing the login name instead of just dropping and creating a new one offers one major
benefit—the permissions associated to the original login are not disrupted when the login is
renamed. In this case, the Veronica login is renamed to Angela, but the permissions remain the
same.

How It Works
In the first example of this recipe, ALTER LOGIN was used to change a password designating the old
password and the new password. If you have sysadmin fixed server role permissions, you only need
to designate the new password. The second example demonstrated how to change the default data-
base of a SQL login. The last example demonstrated how to change a login’s name from Veronica to
Angela, as well as change the login’s password.

Managing a Login’s Password
SQL Server provides the LOGINPROPERTY function to return information about login and password
policy settings and state. Using this function, you can determine the following qualities of a SQL
login:

• Whether the login is locked or expired

• Whether the login has a password that must be changed

• Bad password counts and the last time an incorrect password was given

• Login lockout time

• The last time a password was set and the length of time the login has been tracked using
password-policies

• The password hash for use in migration (to another SQL instance, for example)

This function takes two parameters; the name of the SQL login and the property to be checked.
In this example, I will list all available properties of a specific login:

SELECT LOGINPROPERTY('Angela', 'IsLocked') IsLocked,
LOGINPROPERTY('Angela', 'IsExpired') IsExpired,
LOGINPROPERTY('Angela', 'IsMustChange') IsMustChange,
LOGINPROPERTY('Angela', 'BadPasswordCount') BadPasswordCount,
LOGINPROPERTY('Angela', 'BadPasswordTime') BadPasswordTime,
LOGINPROPERTY('Angela', 'HistoryLength') HistoryLength,
LOGINPROPERTY('Angela', 'LockoutTime') LockoutTime,
LOGINPROPERTY('Angela', 'PasswordLastSetTime') PasswordLastSetTime,
LOGINPROPERTY('Angela', 'PasswordHash') PasswordHash

This returns

CHAPTER 17 ■ PRINCIPALS484

9802CH17.qxd 4/29/08 12:55 PM Page 484

IsLocked IsExpired IsMustChange BadPassword BadPassword HistoryLength LockoutTime PasswordLast PasswordHash

Count Time SetTime

0 0 0 0 1900-01-01 0 1900-01-01 2007-12-22 0x01000D175F71

00:00:00.000 00:00:00.000 07:07:33.590 610D24501843F3

F3E08E518B8DF7

73E9006C4DFA

CHAPTER 17 ■ PRINCIPALS 485

How It Works
LOGINPROPERTY allows you to validate the properties of a SQL login. You can use it to manage pass-
word rotation, for example, checking the last time a password was set and then modifying any
logins that haven’t changed within a certain period of time.

You can also use the password hash property in conjunction with CREATE LOGIN and the
hashed_password HASHED argument to re-create a SQL login with the preserved password on a new
SQL Server instance.

Dropping a SQL Login
This recipe demonstrates dropping a SQL login from a SQL Server instance by using the DROP LOGIN
command.

The syntax is as follows:

DROP LOGIN login_name

The only parameter is the login name—which can be a Windows or SQL login, as this recipe
demonstrates:

DROP LOGIN Angela

How It Works
This recipe demonstrated the simple DROP LOGIN command, which removes a login from SQL
Server. The process is simple; however, if a login owns any securables (see the next chapter for
information on securables), the DROP attempt will fail. For example, if the Angela login had been a
database owner, an error like the following would have been raised:

Msg 15174, Level 16, State 1, Line 3
Login 'Angela' owns one or more database(s).
Change the owner of the database(s) before dropping the
login.

Managing Server Role Members
Fixed server roles are predefined SQL groups that have specific SQL Server–scoped (as opposed to
database- or schema-scoped) permissions assigned to them. You cannot create new fixed server
roles; you can only add or remove membership to such a role from other SQL or Windows logins.

The sysadmin fixed server role is the role with the highest level of permissions in a SQL Server
instance. Although server roles are permissions based, they have members (SQL or Windows
logins/groups) and are categorized by Microsoft as principals.

To add a login to a fixed server role, use the sp_addsrvrolemember system stored procedure.

9802CH17.qxd 4/29/08 12:55 PM Page 485

The syntax is as follows:

sp_addsrvrolemember [@loginame=] 'login',
[@rolename =] 'role'

The first parameter of the system stored procedure is the login name to add to the fixed server
role. The second parameter is the fixed server role you are adding the login to.

In this example, the login Veronica is created and then added to the sysadmin fixed server role:

CREATE LOGIN Veronica
WITH PASSWORD = 'PalmTree1'
GO

EXEC master..sp_addsrvrolemember
'Veronica',
'sysadmin'
GO

To remove a login from a fixed server role, the system stored procedure sp_dropsrvrolemember
is used. The syntax is almost identical to sp_addsrvrolemember:

sp_dropsrvrolemember [@loginame=] 'login' ,
[@rolename=] 'role'

This example removes the Veronica login from the sysadmin fixed role membership:

EXEC master..sp_dropsrvrolemember
'Veronica',
'sysadmin'
GO

How It Works
Once a login is added to a fixed server role, that login receives the permissions associated with the
fixed server role. The sp_addsrvrolemember system stored procedure was used to add a new login to
a fixed role membership, and sp_dropsrvrolemember was used to remove a login from a fixed role
membership.

Adding SQL or Windows logins to a fixed server role should never be done lightly. Fixed server
roles contain far-reaching permissions—so as a rule of thumb, seek to grant only those permissions
that are absolutely necessary for the job at hand. For example, don’t give sysadmin membership to
someone who just needs SELECT permission on a table.

Reporting Fixed Server Role Information
Fixed server roles define a grouping of SQL Server-scoped permissions (such as backing up a
database or creating new logins). Like SQL or Windows logins, fixed server roles have a security
identifier and can be viewed in the sys.server_principals system catalog view. Unlike SQL or Win-
dows logins, fixed server roles can have members (SQL and Windows logins) defined within them
that inherit the permissions of the fixed server role.

To view fixed server roles, query the sys.server_principals system catalog view:

SELECT name
FROM sys.server_principals
WHERE type_desc = 'SERVER_ROLE'

This returns

CHAPTER 17 ■ PRINCIPALS486

9802CH17.qxd 4/29/08 12:55 PM Page 486

name
public
sysadmin
securityadmin
serveradmin
setupadmin
processadmin
diskadmin
dbcreator
bulkadmin

You can also view a list of fixed server roles by executing the sp_helpserverrole system stored
procedure:

EXEC sp_helpsrvrole

This returns

ServerRole Description
sysadmin System Administrators
securityadmin Security Administrators
serveradmin Server Administrators
setupadmin Setup Administrators
processadmin Process Administrators
diskadmin Disk Administrators
dbcreator Database Creators
bulkadmin Bulk Insert Administrators

(8 row(s) affected)

Table 17-3 details the permissions granted to each fixed server role.

Table 17-3. Server Role Permissions

Server Role Granted Permissions

sysadmin GRANT option (can GRANT permissions to others), CONTROL SERVER

setupadmin ALTER ANY LINKED SERVER

serveradmin ALTER SETTINGS, SHUTDOWN, CREATE ENDPOINT, ALTER SERVER STATE, ALTER ANY
ENDPOINT, ALTER RESOURCES

securityadmin ALTER ANY LOGIN

processadmin ALTER SERVER STATE, ALTER ANY CONNECTION

diskadmin ALTER RESOURCES

dbcreator CREATE DATABASE

bulkadmin ADMINISTER BULK OPERATIONS

To see the members of a fixed server role, you can execute the sp_helpsrvrolemember system
stored procedure:

EXEC sp_helpsrvrolemember 'sysadmin'

CHAPTER 17 ■ PRINCIPALS 487

9802CH17.qxd 4/29/08 12:55 PM Page 487

This returns the following results:

ServerRole MemberName MemberSID
sysadmin sa 0x01
sysadmin NT AUTHORITY\SYSTEM 0x010100000000000512000000
sysadmin BUILTIN\Administrators 0x01020000000000052000000020

020000
sysadmin CAESAR\SQLServerMSSQLUser$caesar$AUGUSTUS 0x01050000000000051500000019

B2983B6D2CB3AE17D79646EE0300
00

sysadmin CAESAR\SQLServerMSFTEUser$CAESAR$AUGUSTUS 0x01050000000000051500000019
B2983B6D2CB3AE17D79646EB0300
00

sysadmin CAESAR\Administrator 0x01050000000000051500000019
B2983B6D2CB3AE17D79646F40100
00

sysadmin CAESAR\SQLServerSQLAgentUser$CAESAR$AUGUSTUS 0x01050000000000051500000019
B2983B6D2CB3AE17D79646EF0300
00

How It Works
You can query the system catalog view sys.server_principals in order to view fixed server roles, or
you can use the sp_helpsrvrole system stored procedure to view descriptions for each of the roles.
To view members of a role (other principals), use the sp_helpsrvrolemember system stored procedure.

The next recipe will show you how to add or remove other principals to a fixed server role.

Database Principals
Database principals are the objects that represent users to which you can assign permissions to
access databases or particular objects within a database. Whereas logins operate at the server level
and allow you to perform actions such as connecting to a SQL Server, database principals operate
at the database level, and allow you to select or manipulate data, to perform DDL statements on
objects within the database, or to manage users’ permissions at the database level.

SQL Server recognizes four different types of database principals:

• Database users: Database user principals are the database-level security context under
which requests within the database are executed, and are associated with either SQL Server
or Windows logins.

• Database roles: Database roles come in two flavors, fixed and user-defined. Fixed database
roles are found in each database of a SQL Server instance, and have database-scoped per-
missions assigned to them (such as SELECT permission on all tables or the ability to CREATE
tables). User-defined database roles are those that you can create yourself, allowing you to
manage permissions to securables more easily than if you had to individually grant similar
permissions to multiple database users.

• Application roles: Application roles are groupings of permissions that don’t allow members.
Instead, you can “log in” as the application role. When you use an application role, it over-
rides all of the other permissions your login would otherwise have, giving you only those
permissions granted to the application role.

CHAPTER 17 ■ PRINCIPALS488

9802CH17.qxd 4/29/08 12:55 PM Page 488

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

In this section, I’ll review how to create, modify, report on, and drop database users. I’ll also
cover how to work with database roles (fixed and user-defined) and application roles.

Creating Database Users
Once a login is created, it can then be mapped to a database user. A login can be mapped to multi-
ple databases on a single SQL Server instance—but only one user for each database it has access to.
Users are granted access with the CREATE USER command.

The syntax is as follows:

CREATE USER user_name
[FOR

{ LOGIN login_name
| CERTIFICATE cert_name
| ASYMMETRIC KEY asym_key_name
}

]
[WITH DEFAULT_SCHEMA = schema_name]

The arguments of this command are described in Table 17-4.

Table 17-4. CREATE USER Arguments

Argument Description

user_name This defines the name of the user in the database.

login_name This defines the name of the SQL or Windows login that is mapping to the
database user.

cert_name When designated, this specifies a certificate that is bound to the database user.
See Chapter 19 for more information on certificates.

asym_key_name When designated, this specifies an asymmetric key that is bound to the database
user. See Chapter 19 for more information on keys.

schema_name This indicates the default schema that the user will belong to, which will
determine what schema is checked first when the user references database
objects. If this option is unspecified, the dbo schema will be used. This schema
name can also be designated for a schema not yet created in the database.

In this first example of the recipe, a new user called Veronica is created in the TestDB database:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TestDB')

BEGIN
CREATE DATABASE TestDB

END
GO

USE TestDB
GO
CREATE USER Veronica

In the second example, a Windows login is mapped to a database user called Joe with a default
schema specified:

CHAPTER 17 ■ PRINCIPALS 489

9802CH17.qxd 4/29/08 12:55 PM Page 489

USE TestDB
GO

CREATE USER Helen
FOR LOGIN [CAESAR\Helen]
WITH DEFAULT_SCHEMA = HumanResources

How It Works
In the first example of the recipe, a user named Veronica was created in the TestDB database. If you
don’t designate the FOR LOGIN clause of CREATE USER, it is assumed that the user maps to a login with
the same name (in this case, a login named Veronica). Notice that the default schema was not des-
ignated, which means Veronica’s default schema will be dbo.

In the second example, a new user named Helen was created in the AdventureWorks database,
mapped to a Windows login named [CAESAR\Helen] (notice the square brackets). The default
schema was also set for the Helen login to HumanResources. For any unqualified object references in
queries performed by Helen, SQL Server will first search for objects in the HumanResources schema.

Reporting Database User Information
You can report database user (and role) information for the current database connection by using
the sp_helpuser system stored procedure.

The syntax is as follows:

sp_helpuser [[@name_in_db=] ' security_account ']

The single, optional parameter is the name of the database user for which you wish to return
information. For example:

EXEC sp_helpuser 'Veronica'

This returns the following results:

UserName RoleName LoginName DefDBName DefSchemaName UserID SID
Veronica public Veronica master dbo 5 0x3057F4EEC4F07A46B

F126AB2434F104D

How It Works
The sp_helpuser system stored procedure returns the database users defined in the current data-
base. From the results, you can determine important information such as the user name, login
name, default database and schema, and the user’s security identifier. If a specific user isn’t desig-
nated, sp_helpuser returns information on all users in the current database you are connected to.

Modifying a Database User
You can rename a database user or change the user’s default schema by using the ALTER USER
command.

The syntax is as follows (argument usages are demonstrated in this recipe):

ALTER USER user_name
WITH NAME = new_user_name
| DEFAULT_SCHEMA = schema_name

CHAPTER 17 ■ PRINCIPALS490

9802CH17.qxd 4/29/08 12:55 PM Page 490

In this first example of this recipe, the default schema of the Joe database user is changed:

USE TestDB
GO

ALTER USER Helen
WITH DEFAULT_SCHEMA = Production

In the second example of this recipe, a database user name is changed:

USE TestDB
GO

ALTER USER Veronica
WITH NAME = VSanders

How It Works
The ALTER USER command allows you to perform one of two changes: renaming a database user or
changing a database user’s default schema. The first example changed the default schema of the
Helen login to the Production schema. The second example renamed the database user Veronica to
VSanders.

Removing a Database User from the Database
Use the DROP USER command to remove a user from the database.

The syntax is as follows:

DROP USER user_name

The user_name is the name of the database user, as this example demonstrates:

USE TestDB
GO

DROP USER VSanders

How It Works
The DROP USER command removes a user from the database, but does not impact the Windows or
SQL login that is associated to it. Like DROP LOGIN, you can’t drop a user that is the owner of database
objects. For example, if the database user Helen is the schema owner for a schema called Test, you’ll
get an error like the following:

Msg 15138, Level 16, State 1, Line 2
The database principal owns a schema in the database, and cannot be dropped.

Fixing Orphaned Database Users
When you migrate a database to a new server (by using BACKUP/RESTORE, for example) the relation-
ship between logins and database users can break. A login has a security identifier, which uniquely
identifies it on the SQL Server instance. This sid is stored for the login’s associated database user in
each database that the login has access to. Creating another SQL login on a different SQL Server

CHAPTER 17 ■ PRINCIPALS 491

9802CH17.qxd 4/29/08 12:55 PM Page 491

instance with the same name will not re-create the same sid unless you specifically designated it
with the sid argument of the CREATE LOGIN statement.

The following query demonstrates this link by joining the sys.database_principals system
catalog view to the sys.server_principals catalog view on the sid column in order to look for
orphaned database users in the database:

SELECT dp.name OrphanUser, dp.sid OrphanSid
FROM sys.database_principals dp
LEFT OUTER JOIN sys.server_principals sp ON

dp.sid = sp.sid
WHERE sp.sid IS NULL AND

dp.type_desc = 'SQL_USER' AND
dp.principal_id > 4

This returns

OrphanUser OrphanSid
Sonja 0x40C455005F34E44FB95622488AF48F75

If you RESTORE a database from a different SQL Server instance onto a new SQL Server
instance—and the database users don’t have associated logins on the new SQL Server instance—
the database users can become “orphaned.” If there are logins with the same name on the new
SQL Server instance that match the name of the database users, the database users still may be
orphaned in the database if the login sid doesn’t match the restored database user sid.

Beginning in the previous version of SQL Server, SQL Server 2005, Service Pack 2, you can use
the ALTER USER WITH LOGIN command to remap login/user associations. This applies to both SQL
and Windows accounts, which is very useful if the underlying Windows user or group has been re-
created in Active Directory and now has an identifier that no longer maps to the generated sid on
the SQL Server instance.

The following query demonstrates remapping the orphaned database user Sonja to the associ-
ated server login:

ALTER USER Sonja
WITH LOGIN = Sonja

The next example demonstrates mapping a database user, [Helen], to the login [CAESAR\Helen]
(assuming that the user became orphaned from the Windows account or the sid of the domain
account was changed due to a drop/re-create outside of SQL Server):

ALTER USER [Helen]
WITH LOGIN = [CAESAR\Helen]

This command also works with remapping a user to a new login—whether or not that user is
orphaned.

How It Works
In this recipe, I demonstrated querying the sys.database_principals and sys.server_principals
catalog views to view any database users with a sid that does not exist at the server scope (no asso-
ciated login sid). I then demonstrated using ALTER USER to map the database user to a login with the
same name (but different sid). I also demonstrated how to remap a Windows account in the event
that it is orphaned using ALTER USER.

CHAPTER 17 ■ PRINCIPALS492

9802CH17.qxd 4/29/08 12:55 PM Page 492

■Tip In previous versions of SQL Server, you could use the sp_change_users_login to perform and report on
sid remapping. This stored procedure has been deprecated in favor of ALTER USER WITH LOGIN.

Reporting Fixed Database Roles Information
Fixed database roles are found in each database of a SQL Server instance and have database-scoped
permissions assigned to them (such as SELECT permission on all tables or the ability to CREATE
tables). Like fixed server roles, fixed database roles have members (database users) that inherit the
permissions of the role.

A list of fixed database roles can be viewed by executing the sp_helpdbfixedrole system stored
procedure:

EXEC sp_helpdbfixedrole

This returns the following results:

DBFixedRole Description
db_owner DB Owners
db_accessadmin DB Access Administrators
db_securityadmin DB Security Administrators
db_ddladmin DB DDL Administrators
db_backupoperator DB Backup Operator
db_datareader DB Data Reader
db_datawriter DB Data Writer
db_denydatareader DB Deny Data Reader
db_denydatawriter DB Deny Data Writer

To see the database members of a fixed database role (or any user-defined or application role),
you can execute the sp_helprolemember system stored procedure:

EXEC sp_helprolemember

This returns the following results (the member sid refers to the sid of the login mapped to the
database user):

DbRole MemberName MemberSid
db_backupoperator Joe 0x010500000000000515000000527A777BF094B3850F
db_datawriter Joe 0x010500000000000515000000527A777BF094B3850FF83D0
db_owner dbo 0x01

How It Works
Fixed database roles are found in each database on a SQL Server instance. A fixed database role
groups important database permissions together. These permissions can’t be modified or removed.

In this recipe, I used sp_helpdbfixedrole to list the available fixed database roles:

EXEC sp_helpdbfixedrole

CHAPTER 17 ■ PRINCIPALS 493

9802CH17.qxd 4/29/08 12:55 PM Page 493

After that, the sp_helprolemember system stored procedure was used to list the members of
each fixed database role (database users), showing the role name, database user name, and
login sid:

EXEC sp_helprolemember

As with fixed server roles, it’s best not to grant membership to them without assurance that
all permissions are absolutely necessary for the database user. Do not, for example, grant a user
db_owner membership when only SELECT permissions on a table are needed.

The next recipe shows you how to add or remove database users to a fixed database role.

Managing Fixed Database Role Membership
To associate a database user or role with a database role (user-defined or application role), use the
sp_addrolemember system stored procedure.

The syntax is as follows:

sp_addrolemember [@rolename =] 'role',
[@membername =] 'security_account'

The first parameter of the system stored procedure takes the role name, and the second param-
eter the name of the database user.

To remove the association between a database user and role, use the sp_droprolemember system
stored procedure:

sp_droprolemember [@rolename=] 'role' ,
[@membername=] 'security_account'

Like sp_addrolemember, the first parameter of the system stored procedure takes the role name,
and the second parameter takes the name of the database user.

This first example demonstrates adding the database user Helen to the fixed db_datawriter and
db_datareader roles:

USE TestDB
GO
EXEC sp_addrolemember 'db_datawriter', 'Helen'
EXEC sp_addrolemember 'db_datareader', 'Helen'

This second example demonstrates how to remove the database user Helen from the
db_datawriter role:

USE TestDB
GO
EXEC sp_droprolemember 'db_datawriter', 'Helen'

How It Works
This recipe began by discussing sp_addrolemember, which allows you to add a database user to an
existing database role. The database user Helen was added to db_datawriter and db_datareader,
which gives her cumulative permissions to SELECT, INSERT, UPDATE, or DELETE from any table or view
in the AdventureWorks database:

EXEC sp_addrolemember 'db_datawriter', 'Helen'
EXEC sp_addrolemember 'db_datareader', 'Helen'

The first parameter of the stored procedure was the database role, and the second parameter
was the name of the database user (or role) that the database role is associated to.

CHAPTER 17 ■ PRINCIPALS494

9802CH17.qxd 4/29/08 12:55 PM Page 494

After that, the sp_droprolemember was used to remove Helen’s membership from the
db_datawriter role:

EXEC sp_droprolemember 'db_datawriter', 'Helen'

Managing User-Defined Database Roles
User-defined database roles allow you to manage permissions to securables more easily than if you
had to individually grant the same permissions to multiple database users over and over again.
Instead, you can create a database role, grant it permissions to securables, and then add one or
more database users as members to that database role. When permission changes are needed, you
only have to modify the permissions of the single database role, and the members of the role will
then automatically inherit those permission changes.

Use the CREATE ROLE command to create a user-defined role in a database.
The syntax is as follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]

The command takes the name of the new role and an optional role owner name. The owner
name is the name of the user or database role that owns the new database role (and thus can man-
age it).

You can list all database roles (fixed, user-defined, and application) by executing the
sp_helprole system stored procedure:

EXEC sp_helprole

This returns the following abridged results (the IsAppRole column shows as a 1 if the role is an
application role and 0 if not):

RoleName RoleId IsAppRole
public 0 0
db_owner 16384 0
...

Once a database role is created in a database, you can grant or deny it permissions as you
would a regular database user (see the next chapter for more on permissions). I’ll also demonstrate
granting permissions to a database role in a moment.

If you wish to change the name of the database role, without also disrupting the role’s current
permissions and membership, you can use the ALTER ROLE command, which has the following
syntax:

ALTER ROLE role_name WITH NAME = new_name

The command takes the name of the original role as the first argument and the new role name
in the second argument.

To drop a role, use the DROP ROLE command. The syntax is as follows:

DROP ROLE role_name

If a role owns any securables, you’ll need to transfer ownership to a new owner before you can
drop the role.

In this example, I’ll create a new role in the AdventureWorks database:

USE AdventureWorks
GO
CREATE ROLE HR_ReportSpecialist AUTHORIZATION db_owner

CHAPTER 17 ■ PRINCIPALS 495

9802CH17.qxd 4/29/08 12:55 PM Page 495

After being created, this new role doesn’t have any database permissions yet. In this next query,
I’ll grant the HR_ReportSpecialist database role permission to SELECT from the HumanResources.
Employee table:

GRANT SELECT ON HumanResources.Employee TO HR_ReportSpecialist

To add Veronica as a member of this new role, I execute the following:

EXEC sp_addrolemember 'HR_ReportSpecialist',
'Veronica'

GO

If, later on, I decide that the name of the role doesn’t match its purpose, I can change its name
using ALTER ROLE:

ALTER ROLE HR_ReportSpecialist WITH NAME = HumanResources_RS

Even though the role name was changed, Veronica remains a member of the role.
This last example demonstrates dropping a database role:

DROP ROLE HumanResources_RS

This returns an error message, because the role must be emptied of members before it can be
dropped:

Msg 15144, Level 16, State 1, Line 1
The role has members. It must be empty before it can be dropped.

So, the single member of this role is then dropped, prior to dropping the role:

EXEC sp_droprolemember 'HumanResources_RS',
'Veronica'

GO

DROP ROLE HumanResources_RS

How It Works
The CREATE ROLE command creates a new database role in a database. Once created, you can apply
permissions to the role as you would a regular database user. Roles allow you to administer permis-
sions at a group level—allowing individual role members to inherit permissions in a consistent
manner instead of applying permissions to individual users, which may or may not be identical.

This recipe demonstrated several commands related to managing user-defined database roles.
The sp_helprole system stored procedure was used to list all database roles in the current database.
CREATE ROLE was used to create a new user-defined role owned by the db_owner fixed database role:

CREATE ROLE HR_ReportSpecialist AUTHORIZATION db_owner

I then granted permissions to the new role to SELECT from a table:

GRANT SELECT ON HumanResources.Employee TO HR_ReportSpecialist

The Veronica user was then added as a member of the new role:

EXEC sp_addrolemember 'HR_ReportSpecialist',
'Veronica'

The name of the role was changed using ALTER ROLE (still leaving membership and permissions
intact):

CHAPTER 17 ■ PRINCIPALS496

9802CH17.qxd 4/29/08 12:55 PM Page 496

ALTER ROLE HR_ReportSpecialist WITH NAME = HumanResources_RS

The Veronica user was then dropped from the role (so that I could drop the user-defined role):

EXEC sp_droprolemember 'HumanResources_RS',
'Veronica'

Once emptied of members, the user-defined database role was then dropped:

DROP ROLE HumanResources_RS

Managing Application Roles
An application role is a hybrid between a login and a database role. You can assign permissions to
application roles in the same way that you can assign permissions to user-defined roles. Application
roles differ from database and server roles, however, in that application roles do not allow members.
Instead, an application role is activated using a password-enabled system stored procedure. When
you use an application role, it overrides all of the other permissions your login would otherwise
have.

Because an application role has no members, it requires a password for the permissions to be
enabled. In addition to this, once a session’s context is set to use an application role, any existing
user or login permissions are nullified. Only the application role’s permissions apply.

To create an application role, use the CREATE APPLICATION ROLE, which has the following syntax:

CREATE APPLICATION ROLE application_role_name
WITH PASSWORD = ' password ' [, DEFAULT_SCHEMA = schema_name]

The arguments of this command are described in Table 17-5.

Table 17-5. CREATE APPLICATON ROLE Arguments

Argument Description

application_role_name The name of the application role

password The password to enable access to the application role’s permissions

schema_name The default database schema of the application role that defines which
schema is checked for unqualified object names in a query

In this example, a new application role name, DataWareHouseApp, is created and granted per-
missions to a view in the AdventureWorks database:

USE AdventureWorks
GO
CREATE APPLICATION ROLE DataWareHouseApp
WITH PASSWORD = 'mywarehouse123!',
DEFAULT_SCHEMA = dbo

An application role by itself is useless without first granting it permissions to do something. So,
in this example, the application role is given SELECT permissions on a specific database view:

-- Now grant this application role permissions
GRANT SELECT ON Sales.vSalesPersonSalesByFiscalYears
TO DataWareHouseApp

The system stored procedure sp_setapprole is used to enable the permissions of the applica-
tion role for the current user session. In this next example, I activate an application role and query
two tables:

CHAPTER 17 ■ PRINCIPALS 497

9802CH17.qxd 4/29/08 12:55 PM Page 497

EXEC sp_setapprole 'DataWareHouseApp', -- App role name
'mywarehouse123!' -- Password

-- Works
SELECT COUNT(*)
FROM Sales.vSalesPersonSalesByFiscalYears

-- Doesn't work
SELECT COUNT(*)
FROM HumanResources.vJobCandidate

This returns

14

(1 row(s) affected)

Msg 229, Level 14, State 5, Line 7
SELECT permission denied on object 'vJobCandidate',
database 'AdventureWorks', schema
'HumanResources'.

Even though the original connection login was for a login with sysadmin permissions, using
sp_setapprole to enter the application permissions means that only that role’s permissions apply.
So, in this case, the application role had SELECT permission for the Sales.vSalesPersonSalesByFis-
calYears view, but not the HumanResources.vJobCandidate view queried in the example.

To revert back to the original login’s permissions, you must close out the connection and open
a new connection.

You can modify the name, password, or default database of an application role using the ALTER
APPLICATION ROLE command.

The syntax is as follows:

ALTER APPLICATION ROLE application_role_name
WITH NAME = new_application_role_name

| PASSWORD = ' password '
| DEFAULT_SCHEMA = schema_name

The arguments of the command are described in Table 17-6.

Table 17-6. ALTER APPLICATION ROLE Arguments

Parameter Description

new_application_role_name The new application role name

password The new application role password

schema_name The new default schema

In this example, the application role name and password are changed:

ALTER APPLICATION ROLE DataWareHouseApp
WITH NAME = DW_App, PASSWORD = 'newsecret!123'

CHAPTER 17 ■ PRINCIPALS498

9802CH17.qxd 4/29/08 12:55 PM Page 498

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

To remove an application role from the database, use DROP APPLICATION ROLE, which has the
following syntax:

DROP APPLICATION ROLE rolename

This command takes only one argument, the name of the application role to be dropped. For
example:

DROP APPLICATION ROLE DW_App

How It Works
This recipe demonstrated how to

• Create a new application role using CREATE APPLICATION ROLE.

• Activate the role permissions using sp_setapprole.

• Modify an application role using ALTER APPLICATION ROLE.

• Remove an application role from a database using DROP APPLICATION ROLE.

Application roles are a convenient solution for application developers who wish to grant users
access only through an application. Savvy end users may figure out that their SQL login can also be
used to connect to SQL Server with other applications such as Microsoft Access or SQL Server Man-
agement Studio. To prevent this, you can change the login account to have minimal permissions for
the databases, and then use an application role for the required permissions. This way, the user can
only access the data through the application, which is then programmed to use the application role.

CHAPTER 17 ■ PRINCIPALS 499

9802CH17.qxd 4/29/08 12:55 PM Page 499

9802CH17.qxd 4/29/08 12:55 PM Page 500

Securables, Permissions,
and Auditing

In the previous chapter, I discussed principals, which are security accounts that can access SQL
Server. In this chapter, I’ll discuss and demonstrate securables and permissions. Securables are
resources that SQL Server controls access to through permissions. Securables in SQL Server fall into
three nested hierarchical scopes. The top level of the hierarchy is the server scope, which contains
logins, databases, and endpoints. The database scope, which is contained within the server scope,
controls securables such as database users, roles, certificates, and schemas. The third and inner-
most scope is the schema scope, which controls securables such as the schema itself, and objects
within the schema such as tables, views, functions, and procedures.

Permissions enable a principal to perform actions on securables. Across all securable scopes,
the primary commands used to control a principal’s access to a securable are GRANT, DENY, and
REVOKE. These commands are applied in similar ways, depending on the scope of the securable that
you are targeting. GRANT is used to enable access to securables. DENY explicitly restricts access,
trumping other permissions that would normally allow a principal access to a securable. REVOKE
removes a specific permission on a securable altogether, whether it was a GRANT or DENY permission.

Once permissions are granted, you may still have additional business and compliance auditing
requirements that mandate tracking of changes or knowing which logins are accessing which
tables. To address this need, SQL Server 2008 introduces the SQL Server Audit object, which can be
used to collect SQL instance– and database-scoped actions that you are interested in monitoring.
This audit information can be set to a file, the Windows Application event log, or the Windows Secu-
rity event log.

In this chapter, I’ll discuss how permissions are granted to principals at all three securable
scopes. In addition to permissions, this chapter also presents the following related securable and
permissions recipes:

• How to manage schemas using CREATE, ALTER, and DROP SCHEMA

• How to report allocated permissions for a specific principal by using the fn_my_permissions
function

• How to determine a connection’s permissions to a securable using the system function
Has_perms_by_name, as well as using EXECUTE AS to define your connection’s security context
to a different login or user to see their permissions, too

• How to query all granted, denied, and revoked permissions using sys.database_permissions
and sys.server_permissions

• How to change a securable’s ownership using ALTER AUTHORIZATION

501

C H A P T E R 1 8

9802CH18.qxd 4/25/08 2:21 PM Page 501

• How to provide Windows external resource permissions to a SQL login using CREATE
CREDENTIAL and ALTER LOGIN

• How to audit SQL instance– and database-level actions using SQL Server 2008’s new SQL
Server Audit functionality

This chapter starts off with a general discussion of SQL Server permissions.

Permissions Overview
Permissions apply to SQL Server objects within the three securable scopes (server, database, and
schema). SQL Server uses a set of common permission names that are applied to different secur-
ables (and at different scopes) and imply different levels of authorization against a securable.
Table 18-1 shows those permissions that are used for multiple securables (however, this isn’t the
exhaustive list).

Table 18-1. Major Permissions

Permission Description

ALTER Enables the grantee the use of ALTER, CREATE, or DROP commands for the
securable. For example, using ALTER TABLE requires ALTER permissions on that
specific table.

AUTHENTICATE Enables the grantee to be trusted across database or SQL Server scopes.

CONNECT Enables a grantee the permission to connect to a SQL Server resources (such as
an endpoint or the SQL Server instance).

CONTROL Enables all available permissions on the specific securable to the grantee, as
well as any nested or implied permissions within (so if you CONTROL a schema,
for example, you also control any tables, views, or other database objects
within that schema).

CREATE Enables the grantee to create a securable (which can be at the server, database,
or schema scope).

IMPERSONATE Enables the grantee to impersonate another principal (login or user). For
example, using the EXECUTE AS command for a login requires IMPERSONATE
permissions. I demonstrated using EXECUTE AS in Chapter 10’s recipe, “Using
EXECUTE AS to Specify the Procedure’s Security Context.” In this chapter, I’ll also
go over how to use EXECUTE AS to set your security context outside of a module.

TAKE OWNERSHIP Enables the grantee to take ownership of a granted securable.

VIEW Enables the grantee to see system metadata regarding a specific securable.

To report available permissions in SQL Server, as well as view that specific permission’s place in
the permission hierarchy, use the sys.fn_builtin_permissions system catalog table function.

The syntax is as follows:

sys.fn_builtin_permissions
([DEFAULT | NULL] | empty_string |
APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY |
CERTIFICATE | CONTRACT | DATABASE |
ENDPOINT | FULLTEXT CATALOG| LOGIN |
MESSAGE TYPE | OBJECT | REMOTE SERVICE BINDING |
ROLE | ROUTE | SCHEMA | SERVER | SERVICE |
SYMMETRIC KEY | TYPE | USER | XML SCHEMA COLLECTION)

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING502

9802CH18.qxd 4/25/08 2:21 PM Page 502

The arguments of this command are described in Table 18-2.

Table 18-2. fn_builtin_permissions Arguments

Argument Description

DEFAULT | NULL | empty_string Designating any of these first three arguments results in
all permissions being listed in the result set.

APPLICATION ROLE | ASSEMBLY | Specify any one of these securable types in order to
ASYMMETRIC KEY | CERTIFICATE | return permissions for that type.
CONTRACT | DATABASE | ENDPOINT |
FULLTEXT CATALOG| LOGIN |
MESSAGE TYPE | OBJECT |
REMOTE SERVICE BINDING |ROLE |
ROUTE | SCHEMA | SERVER | SERVICE |
SYMMETRIC KEY | TYPE | USER |
XML SCHEMA COLLECTION

In addition to the permission name, you can determine the nested hierarchy of permissions by
looking at the covering_permission_name (a permission within the same class that is the superset of
the more granular permission), parent_class_desc (the parent class of the permission—if any), and
parent_covering_permission_name (the parent covering permission—if any) columns in the result
set, which you’ll see demonstrated in the next recipe.

Reporting SQL Server Assignable Permissions
In this recipe, I show you how to view the available permissions within SQL Server and explain their
place within the permissions hierarchy. In the first example, I’ll return all permissions, regardless of
securable scope:

SELECT class_desc, permission_name, covering_permission_name,
parent_class_desc, parent_covering_permission_name
FROM sys.fn_builtin_permissions(DEFAULT)
ORDER BY class_desc, permission_name

This returns the following (abridged) result set:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 503

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name
APPLICATION ROLE ALTER CONTROL DATABASE ALTER ANY APPLICATION ROLE
APPLICATION ROLE CONTROL DATABASE CONTROL
APPLICATION ROLE VIEW DEFINITION CONTROL DATABASE VIEW DEFINITION
...
SERVER ALTER ANY CONTROL SERVER

DATABASE
...
XML SCHEMA COLLECTION REFERENCES CONTROL SCHEMA REFERENCES
XML SCHEMA COLLECTION TAKE OWNERSHIP CONTROL SCHEMA CONTROL
XML SCHEMA COLLECTION VIEW DEFINITION CONTROL SCHEMA VIEW DEFINITION

This next example only shows permissions for the schema securable scope:

SELECT permission_name, covering_permission_name, parent_class_desc
FROM sys.fn_builtin_permissions('schema')
ORDER BY permission_name

9802CH18.qxd 4/25/08 2:21 PM Page 503

This returns the following result set:

permission_name covering_permission_name parent_class_desc
ALTER CONTROL DATABASE
CONTROL DATABASE
DELETE CONTROL DATABASE
EXECUTE CONTROL DATABASE
INSERT CONTROL DATABASE
REFERENCES CONTROL DATABASE
SELECT CONTROL DATABASE
TAKE OWNERSHIP CONTROL DATABASE
UPDATE CONTROL DATABASE
VIEW CHANGE TRACKING CONTROL DATABASE
VIEW DEFINITION CONTROL DATABASE

How It Works
The sys.fn_builtin_permissions system catalog function allows you to view available permissions
in SQL Server.

The first example in this recipe, sys.fn_builtin_permissions, was used to display all permis-
sions by using the DEFAULT option. The first line of code referenced the column names to be
returned from the function:

SELECT class_desc, permission_name, covering_permission_name,
parent_class_desc, parent_covering_permission_name

The second line referenced the function in the FROM clause, using the DEFAULT option to display
all permissions:

FROM sys.fn_builtin_permissions(DEFAULT)

The last line of code allowed me to order by the permission’s class and name:

ORDER BY class_desc, permission_name

The results displayed the securable class description, permission name, and covering permis-
sion name (the covering permission name is the name of a permission class that is higher in the
nested permission hierarchy). For example, for the APPLICATION ROLE class, you saw that the CONTROL
permission was a child of the DATABASE class and ALTER ANY APPLICATION permission, but was not
subject to any covering permission in the APPLICATION ROLE class (because CONTROL enables all
available permissions on the specific securable to the grantee, as well as any nested or implied per-
missions within):

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING504

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name
...
APPLICATION ROLE CONTROL DATABASE CONTROL
...

For the OBJECT class, you saw that the ALTER permission was a child of the SCHEMA parent class
and ALTER permission. Within the OBJECT class, the ALTER permissions was also a child of the cover-
ing CONTROL permission (as seen in the covering_permission_name column):

9802CH18.qxd 4/25/08 2:21 PM Page 504

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name
...
OBJECT ALTER CONTROL SCHEMA ALTER
...

For the SERVER class and ALTER ANY DATABASE permission, the covering permission for the
SERVER class was CONTROL SERVER. Notice that the SERVER class does not have a parent class and
permission:

class_desc permission_name covering_permission_name parent_class_desc parent_covering_permission_name
...
SERVER ALTER ANY DATABASE CONTROL SERVER
...

The second example in this recipe returned permissions for just the schema-securable class.
The first line of code included just three of the columns this time:

SELECT permission_name, covering_permission_name, parent_class_desc

The second line included the word “schema” in order to show permissions for the schema-
securable class:

FROM sys.fn_builtin_permissions('schema')

The results were then ordered by the permission name:

ORDER BY permission_name

Permissions that control database objects contained within a schema (such as views, tables,
etc.) were returned. For example, you saw that the DELETE permission is found within the schema
scope and is covered by the CONTROL permission. Its parent class is the DATABASE securable:

permission_name covering_permission_name parent_class_desc
...
DELETE CONTROL DATABASE
...

Server-Scoped Securables and Permissions
Server-scoped securables are objects that are unique within a SQL Server instance, including end-
points, logins, and databases. Permissions on server-scoped securables can be granted only to
server-level principals (SQL Server logins or Windows logins), and not to database-level principals
such as users or database roles.

At the top of the permissions hierarchy, server permissions allow a grantee to perform activities
such as creating databases, logins, or linked servers. Server permissions also give you the ability to
shut down the SQL Server instance (using SHUTDOWN) or use SQL Profiler (using the ALTER TRACE per-
mission). When allocating permissions on a securable to a principal, the person doing the allocating
is the grantor, and the principal receiving the permission is the grantee.

The abridged syntax for granting server permissions is as follows:

GRANT Permission [,...n]
TO grantee_principal [,...n]
[WITH GRANT OPTION]
[AS grantor_principal]

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 505

9802CH18.qxd 4/25/08 2:21 PM Page 505

The arguments of this command are described in Table 18-3.

Table 18-3. GRANT Arguments

Argument Description

Permission [,...n] You can grant one or more server permissions in a single GRANT
statement.

TO grantee_principal [,...n] This is the grantee, also known as the principal (SQL Server
login or logins), who you are granting permissions to.

WITH GRANT OPTION When designating this option, the grantee will then have
permission to grant the permission(s) to other grantees.

AS grantor_principal This optional clause specifies where the grantor derives its
right to grant the permission to the grantee.

To explicitly deny permissions on a securable to a server-level principal, use the DENY
command.

The syntax is as follows:

DENY permission [,...n]
TO grantee_principal [,...n]
[CASCADE]
[AS grantor_principal]

The arguments of this command are described in Table 18-4.

Table 18-4. DENY Arguments

Argument Description

permission [,...n] This specifies one or more server-scoped permissions to deny.

grantee_principal [,...n] This defines one or more logins (Windows or SQL) that you can
deny permissions to.

CASCADE When this option is designated, if the grantee principal granted
any of these permissions to others, those grantees will also have
their permissions denied.

AS grantor_principal This optional clause specifies where the grantor derives his right
to deny the permission to the grantee.

To revoke permissions on a securable to a principal, use the REVOKE command. Revoking a
permission means you’ll neither be granting nor denying that permission—revoke removes the
specified permission(s) that had previously been either granted or denied.

The syntax is as follows:

REVOKE [GRANT OPTION FOR] permission [,...n]
FROM < grantee_principal > [,...n]
[CASCADE]
[AS grantor_principal]

The arguments of this command are described in Table 18-5.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING506

9802CH18.qxd 4/25/08 2:21 PM Page 506

Table 18-5. REVOKE Arguments

Argument Description

GRANT OPTION FOR When specified, the right for the grantee to grant the permission
to other grantees is revoked.

permission [,...n] This specifies one or more server-scoped permissions to revoke.

grantee_principal [,...n] This defines one or more logins (Windows or SQL) to revoke
permissions from.

CASCADE When this option is designated, if the grantee principal granted
any of these permissions to others, those grantees will also have
their permissions revoked.

AS grantor_principal This optional clause specifies where the grantor derives its right
to revoke the permission to the grantee.

Managing Server Permissions
In this first example of this recipe, the SQL login Veronica is granted the ability to use the SQL Pro-
filer tool to monitor SQL Server activity. This permission is given with the WITH GRANT OPTION, so
Veronica can also GRANT the permission to others. Keep in mind that permissions at the server scope
can only be granted when the current database is master, so I start off the batch by switching data-
base context:

USE master
GO

-- Create recipe login if it doesn't exist
IF NOT EXISTS

(SELECT name
FROM sys.server_principals
WHERE name = 'Veronica')

BEGIN
CREATE LOGIN [Veronica]
WITH PASSWORD=N'test!#1',
DEFAULT_DATABASE=[master],
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF

END

GRANT ALTER TRACE TO Veronica
WITH GRANT OPTION

In this second example, the Windows login [JOEPROD\TestUser] is granted the permissions to
create and view databases on the SQL Server instance:

USE master
GO

GRANT CREATE ANY DATABASE, VIEW ANY DATABASE TO [JOEPROD\TestUser]

In this next example, the right to execute the SHUTDOWN command is denied the Windows login
[JOEPROD\TestUser]:

DENY SHUTDOWN TO [JOEPROD\TestUser]

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 507

9802CH18.qxd 4/25/08 2:21 PM Page 507

In the last example, the permission to use SQL Profiler is revoked from Veronica, including any
other grantees she may have given this permission to as well:

USE master
GO
REVOKE ALTER TRACE FROM Veronica CASCADE

How It Works
Permissions on server-scoped securables are granted using GRANT, denied with DENY, and removed
with REVOKE. Using these commands, one or more permissions can be assigned in the same com-
mand, as well as allocated to one or more logins (Windows or SQL).

This recipe dealt with assigning permissions at the server scope, although you’ll see in future
recipes that the syntax for assigning database and schema permissions are very similar.

Querying Server-Level Permissions
You can use the sys.server_permissions catalog view to identify permissions at the SQL instance
level. In this recipe, I will query all permissions associated with a login named TestUser2. To start,
I’ll create the new login:

USE master
GO
CREATE LOGIN TestUser2
WITH PASSWORD = 'abcde1111111!'

Next, I’ll grant another server-scoped permission and deny a server-scoped permission:

DENY SHUTDOWN TO TestUser2

GRANT CREATE ANY DATABASE TO TestUser2

Querying sys.server_permissions and sys.server_principals returns all server-scoped per-
missions for the new login created earlier:

SELECT p.class_desc,
p.permission_name,
p.state_desc

FROM sys.server_permissions p
INNER JOIN sys.server_principals s ON

p.grantee_principal_id = s.principal_id
WHERE s.name = 'TestUser2'

This returns

class_desc permission_name state_desc
SERVER CONNECT SQL GRANT
SERVER CREATE ANY DATABASE GRANT
SERVER SHUTDOWN DENY

Even though I only explicitly executed one GRANT and one DENY, just by virtue of creating the
login, I have implicitly granted the new login CONNECT permissions to the SERVER scope.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING508

9802CH18.qxd 4/25/08 2:21 PM Page 508

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
In this recipe, I queried sys.server_permissions and sys.server_principals in order to return the
server-scoped permissions associated with the new login I created. In the SELECT clause, I returned
the class of the permission, the permission name, and the associated state of the permission:

SELECT p.class_desc,
p.permission_name,
p.state_desc

In the FROM clause, I joined the two catalog views by the grantee’s principal ID. The grantee is
the target recipient of granted or denied permissions:

FROM sys.server_permissions p
INNER JOIN sys.server_principals s ON

p.grantee_principal_id = s.principal_id

In the WHERE clause, I designated the name of the login I wished to see permissions for:

WHERE s.name = 'TestUser2'

Database-Scoped Securables and Permissions
Database-level securables are unique to a specific database, and include several SQL Server objects
such as roles, assemblies, cryptography objects (keys and certificates), Service Broker objects, full-
text catalogs, database users, schemas, and more.

You can grant permissions on these securables to database principals (database users, roles).
The abridged syntax for granting database permissions is as follows:

GRANT permission [,...n]
TO database_principal [,...n]
[WITH GRANT OPTION]
[AS database_principal]

The arguments of this command are described in Table 18-6.

Table 18-6. GRANT Arguments

Argument Description

permission [,...n] This specifies one or more database permissions to be granted
to the principal(s).

database_principal [,...n] This defines grantees of the new permissions.

WITH GRANT OPTION When designating this option, the grantee has permissions to
grant the permission(s) to other grantees.

AS database_principal This optional clause specifies where the grantor derives its right
to grant the permission to the grantee. For example, if your
current database user context does not have permission to GRANT
a specific permission, but you have an IMPERSONATE permission
on a database user that does, you can designate that user in the
AS clause.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 509

9802CH18.qxd 4/25/08 2:21 PM Page 509

To deny database-scoped permissions to a grantee, the DENY command is used. The abridged
syntax is as follows:

DENY permission [,...n]
TO database_principal [,...n] [CASCADE]
[AS database_principal]

The arguments of this command are described in Table 18-7.

Table 18-7. DENY Arguments

Argument Description

permission [,...n] This specifies one or more database-scoped permissions to
deny.

< database_principal > [,...n] This defines one or more database principals to deny
permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those grantees
will also have their permissions denied.

AS database_principal This optional clause specifies where the grantor derives its
right to deny the permission to the grantee.

To revoke database-scoped permissions to the grantee, the REVOKE command is used. The
abridged syntax is as follows:

REVOKE permission [,...n]
FROM < database_principal > [,...n]
[CASCADE]
[AS database_principal]

The arguments of this command are described in this Table 18-8.

Table 18-8. REVOKE Arguments

Argument Description

database_permission [,...n] This specifies one or more database-scoped permissions to
revoke.

< database_principal > [,...n] This defines one or more database principals to revoke
permissions from.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those grantees
will also have their permissions revoked.

AS database_principal This optional clause specifies where the grantor derives its
right to revoke the permission to the grantee.

Managing Database Permissions
Starting off this recipe, I’ll set up the logins and users if they don’t already exist or haven’t already
been created earlier in the chapter:

-- Create recipe login if it doesn't exist
IF NOT EXISTS (SELECT name FROM sys.server_principals WHERE name = 'Danny')
BEGIN

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING510

9802CH18.qxd 4/25/08 2:21 PM Page 510

CREATE LOGIN [Danny] WITH PASSWORD=N'test!#23',
DEFAULT_DATABASE=[master], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF

END

-- Create DB for recipe if it doesn't exist
IF NOT EXISTS (SELECT name FROM sys.databases WHERE name = 'TestDB')
BEGIN

CREATE DATABASE TestDB
END
GO

USE TestDB
GO

-- Create db users if they don't already exist
IF NOT EXISTS (SELECT name FROM sys.database_principals WHERE name = 'Veronica')
BEGIN

CREATE USER Veronica FROM LOGIN Veronica
END

IF NOT EXISTS (SELECT name FROM sys.database_principals WHERE name = 'Danny')
BEGIN

CREATE USER Danny FROM LOGIN Danny
END

This first example demonstrates granting database permissions to the Veronica database user
in the TestDB database:

USE TestDB
GO

GRANT ALTER ANY ASSEMBLY, ALTER ANY CERTIFICATE
TO VERONICA

This second example demonstrates denying permissions to the Danny database user:

DENY ALTER ANY DATABASE DDL TRIGGER TO Danny

The last example demonstrates revoking database permissions to connect to the TestDB data-
base from the Danny user:

REVOKE CONNECT FROM Danny

How It Works
This recipe demonstrated how to grant, revoke, or deny database-scoped permissions to database
principals. As you may have noticed, the syntax for granting database-scoped permissions is almost
identical to server-scoped permissions. Schema-scoped permissions are also managed with the
same commands, but with slight variations.

Before reviewing how to manage schema permissions, in this next recipe I’ll demonstrate how
to manage schemas in general.

Querying Database Permissions
You can use the sys.database_permissions catalog view to identify permissions in a database.
In this recipe, I will query all permissions associated with a user named TestUser in the
AdventureWorks database. To start, I’ll create the new login and user:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 511

9802CH18.qxd 4/25/08 2:21 PM Page 511

USE master
GO
CREATE LOGIN TestUser WITH PASSWORD = 'abcde1111111!'

USE AdventureWorks
GO
CREATE USER TestUser FROM LOGIN TestUser

Next, I’ll grant and deny various permissions:

GRANT SELECT ON HumanResources.Department TO TestUser
DENY SELECT ON Production.ProductPhoto TO TestUser
GRANT EXEC ON HumanResources.uspUpdateEmployeeHireInfo TO TestUser
GRANT CREATE ASSEMBLY TO TestUser
GRANT SELECT ON Schema::Person TO TestUser
DENY IMPERSONATE ON USER::dbo TO TestUser
DENY SELECT ON HumanResources.Employee(Birthdate) TO TestUser

I’ll now query the sys.database_principals to determine the identifier of the principal:

SELECT principal_id
FROM sys.database_principals
WHERE name = 'TestUser'

This returns the following results (if you are following along with this recipe, keep in mind that
your principal identifier may be different):

principal_id
5

Now I can use the principal ID of 5 with the grantee principal ID in the sys.database_
permissions table (I could have integrated the prior query into this next query, but I’ve separated
them in order to give a clearer picture of what each catalog view does):

SELECT
p.class_desc,
p.permission_name,
p.state_desc,
ISNULL(o.type_desc,'') type_desc,
CASE p.class_desc

WHEN 'SCHEMA'
THEN schema_name(major_id)

WHEN 'OBJECT_OR_COLUMN'
THEN CASE

WHEN minor_id = 0
THEN object_name(major_id)

ELSE (SELECT
object_name(object_id) +
'.'+
name

FROM sys.columns
WHERE object_id = p.major_id AND

column_id = p.minor_id) END
ELSE '' END AS object_name

FROM sys.database_permissions p
LEFT OUTER JOIN sys.objects o ON

o.object_id = p.major_id
WHERE grantee_principal_id = 5

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING512

9802CH18.qxd 4/25/08 2:21 PM Page 512

This returns

class_desc permission_name state_desc type_desc object_name
DATABASE CONNECT GRANT
DATABASE CREATE ASSEMBLY GRANT
OBJECT_OR_COLUMN SELECT GRANT USER_TABLE Department
OBJECT_OR_COLUMN SELECT DENY USER_TABLE Employee.BirthDate
OBJECT_OR_COLUMN EXECUTE GRANT SQL_STORED_PROCEDURE uspUpdateEmployee

HireInfo
OBJECT_OR_COLUMN SELECT DENY USER_TABLE ProductPhoto
SCHEMA SELECT GRANT Person
DATABASE_PRINCIPAL IMPERSONATE DENY

(8 row(s) affected)

How It Works
This recipe demonstrated querying system catalog views to determine the permissions of a specific
database user. I created the login and user, and then granted and denied various permissions for it.

After that, I queried sys.database_principals to determine the ID of this new user.
Walking through the last and more complicated query in the recipe, the first few columns of

the query displayed the class description, permission name, and state (for example, GRANT or DENY):

SELECT
p.class_desc,
p.permission_name,
p.state_desc,

The type description was actually taken from the sys.objects view, which I used to pull infor-
mation regarding the object targeted for the permission. If it is NULL, I return no characters in the
result set:

ISNULL(o.type_desc,'') type_desc,

The next expression was the CASE statement evaluating the class description. When the class is
a schema, I return the schema’s name:

CASE p.class_desc
WHEN 'SCHEMA'

THEN schema_name(major_id)

When the class is an object or column, I nest another CASE statement:

WHEN 'OBJECT_OR_COLUMN'
THEN CASE

If the minor ID is zero, I know that this is an object and not a column, and so I return the object
name:

WHEN minor_id = 0
THEN object_name(major_id)

Otherwise, I am dealing with a column name, so I perform a subquery to concatenate the
object name with the name of the column:

ELSE (SELECT
object_name(object_id) +
'.'+

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 513

9802CH18.qxd 4/25/08 2:21 PM Page 513

name
FROM sys.columns
WHERE object_id = p.major_id AND

column_id = p.minor_id) END
ELSE '' END AS object_name

I queried the permissions with a LEFT OUTER JOIN on sys.objects. I didn’t use an INNER join
because not all permissions are associated with objects—for example, the GRANT on the CREATE
ASSEMBLY permission:

FROM sys.database_permissions p
LEFT OUTER JOIN sys.objects o ON

o.object_id = p.major_id

Lastly, I qualified that the grantee is the ID of the user I created. The grantee is the recipient of
the permissions. The sys.database_permissions also has the grantor_principal_id, which is the
grantor of permissions for the specific row. I didn’t want to designate this—rather I just wanted the
rows of permissions granted to the specified user:

WHERE grantee_principal_id = 5

Schema-Scoped Securables and Permissions
Schema-scoped securables are contained within the database securable scope and include user-
defined data types, XML schema collections, and objects. The object securable also has other
securable object types within it, but I’ll review this later in the chapter.

As of SQL Server 2005 and 2008, users are separated from direct ownership of a database object
(such as tables, views, and stored procedures). This separation is achieved by the use of schemas,
which are basically containers for database objects. Instead of having a direct object owner, the
object is contained within a schema, and that schema is then owned by a user.

One or more users can own a schema or use it as their default schema for creating objects.
What’s more, you can apply security at the schema level. This means any objects within the schema
can be managed as a unit, instead of at the individual object level.

Every database comes with a dbo schema, which is where your objects go if you don’t specify
a default schema. But if you wish to create your own schemas, you can use the CREATE SCHEMA
command.

The abridged syntax is as follows:

CREATE SCHEMA schema_name [AUTHORIZATION owner_name]

The arguments of this command are described in Table 18-9.

Table 18-9. CREATE SCHEMA Arguments

Argument Description

schema_name This is the name of the schema and the schema owner.

owner_name The owner is a database principal that can own one or more schemas in the
database.

To remove an existing schema, use the DROP SCHEMA command.
The syntax is as follows:

DROP SCHEMA schema_name

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING514

9802CH18.qxd 4/25/08 2:21 PM Page 514

The command only takes a single argument: the name of the schema to drop from the data-
base. Also, you can’t drop a schema that contains objects, so the objects must either be dropped or
transferred to a new schema.

■Note See the topic “Changing an Object’s Schema” in Chapter 24 for a review of using ALTER SCHEMA to
transfer schema ownership of an object.

Like with server- and database-scoped permissions, permissions for schemas are managed
using the GRANT, DENY, and REVOKE commands.

The abridged syntax for granting permissions on a schema is as follows:

GRANT permission [,...n] ON SCHEMA :: schema_name
TO database_principal [,...n]
[WITH GRANT OPTION][AS granting_principal]

The arguments of this command are described in Table 18-10.

Table 18-10. GRANT Arguments

Argument Description

permission [,...n] This specifies one or more schema permissions to be granted to the
grantee.

schema_name This defines the name of the schema the grantee is receiving
permissions to.

database_principal This specifies the database principal permissions recipient.

WITH GRANT OPTION When designating this option, the grantee has permissions to grant the
schema permission(s) to other grantees.

AS granting_principal This optional clause specifies where the grantor derives its right to
grant the schema-scoped permission to the grantee.

To deny schema-scoped permissions to a grantee, the DENY command is used. The abridged
syntax is as follows:

DENY permission [,...n] ON SCHEMA :: schema_name
TO database_principal [,...n]
[CASCADE]
[AS denying_principal]

The arguments of this command are described in Table 18-11.

Table 18-11. DENY Arguments

Argument Description

permission [,...n] This specifies one or more schema-scoped permissions to
deny.

schema_name This defines the name of the schema where permissions will
be denied.

database_principal [,...n] This specifies one or more database principals to deny
permissions for.

Continued

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 515

9802CH18.qxd 4/25/08 2:21 PM Page 515

Table 18-11. Continued

Argument Description

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those grantees
will also have their permissions denied.

AS denying_principal This optional clause specifies where the grantor derives its
right to deny the permission to the grantee.

To revoke schema-scoped permissions to the grantee, the REVOKE command is used. The
abridged syntax is as follows:

REVOKE [GRANT OPTION FOR]
permission [,...n]
ON SCHEMA :: schema_name
{ TO | FROM } database_principal [,...n]
[CASCADE] [AS principal]

The arguments of this command are described in Table 18-12.

Table 18-12. REVOKE Arguments

Argument Description

permission [,...n] This specifies one or more schema-scoped permissions to
revoke.

schema_name This defines the name of the schema of which the
permissions will be revoked.

database_principal [,...n] This specifies one or more database principals to revoke
permissions for.

CASCADE When this option is designated, if the grantee principal
granted any of these permissions to others, those grantees
will also have their permissions revoked.

AS principal This optional clause specifies where the grantor derives its
right to revoke the permission to the grantee.

Managing Schemas
In this recipe, I’ll create a new schema in the TestDB database called Publishers:

USE TestDB
GO
CREATE SCHEMA Publishers AUTHORIZATION db_owner

I now have a schema called Publishers, which can be used to contain other database objects.
It can be used to hold all objects related to publication functionality, for example, or used to hold
objects for database users associated to publication activities.

To start using the new schema, use the schema.object_name two-part naming format:

CREATE TABLE Publishers.ISBN
(ISBN char(13) NOT NULL PRIMARY KEY,
CreateDT datetime NOT NULL DEFAULT GETDATE())
GO

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING516

9802CH18.qxd 4/25/08 2:21 PM Page 516

This next example demonstrates making the Publishers schema a database user’s default
schema. For this example, I’ll create a new SQL login in the master database:

USE master
GO
CREATE LOGIN Nancy
WITH PASSWORD=N'test123',

DEFAULT_DATABASE=TestDB,
CHECK_EXPIRATION=OFF,
CHECK_POLICY=OFF

GO

Next, I’ll create a new database user in the TestDB database:

USE TestDB
GO
CREATE USER Nancy FOR LOGIN Nancy
GO

Now I’ll change the default schema of the existing database user to the Publishers schema. Any
objects this database user creates by default will belong to this schema (unless the database user
explicitly uses a different schema in the object creation statement):

USE TestDB
GO
ALTER USER Nancy WITH DEFAULT_SCHEMA=Publishers
GO

Chapter 24 reviews how to transfer the ownership of an object from one schema to another
using ALTER SCHEMA. You’ll need to use this in situations where you wish to drop a schema. For
example, if I tried to drop the Publishers schema right now, with the Publishers.ISBN table still in
it, I would get an error warning me that there are objects referencing that schema. This example
demonstrates using ALTER SCHEMA to transfer the table to the dbo schema prior to dropping the
Publishers schema from the database:

ALTER SCHEMA dbo TRANSFER Publishers.ISBN
GO

DROP SCHEMA Publishers

How It Works
Schemas act as a container for database objects. Unlike when a database user owns objects directly,
a database user now can own a schema (or, in other words, have permissions to use the objects
within it).

In this recipe, CREATE SCHEMA was used to create a new schema called Publishers. A new table
was created in the new schema called Publishers.ISBN. After that, a new login and database user
was created for the TestDB database. ALTER USER was used to make that new schema the default
schema for the new user.

Since a schema cannot be dropped until all objects are dropped or transferred from it, ALTER
SCHEMA was used to transfer Publishers.ISBN into the dbo schema. DROP SCHEMA was used to remove
the Publishers schema from the database.

Managing Schema Permissions
In this next set of examples, I’ll show you how to manage schema permissions. Before showing
you this though, I would like to quickly point out how you can identify which schemas exist for a

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 517

9802CH18.qxd 4/25/08 2:21 PM Page 517

particular database. To view the schemas for a database, you can query the sys.schemas system cat-
alog view. This example demonstrates listing the schemas that exist within the AdventureWorks
database:

USE AdventureWorks
GO

SELECT s.name SchemaName, d.name SchemaOwnerName
FROM sys.schemas s
INNER JOIN sys.database_principals d ON

s.principal_id= d.principal_id
ORDER BY s.name

This returns a list of built-in database schemas (the fixed database roles, dbo, guest, sys, and
INFORMATION_SCHEMA) along with user-defined schemas (Person, Production, Purchasing, Sales,
HumanResources):

SchemaName SchemaOwnerName
db_accessadmin db_accessadmin
db_backupoperator db_backupoperator
db_datareader db_datareader
db_datawriter db_datawriter
db_ddladmin db_ddladmin
db_denydatareader db_denydatareader
db_denydatawriter db_denydatawriter
db_owner db_owner
db_securityadmin db_securityadmin
dbo dbo
guest guest
HumanResources dbo
INFORMATION_SCHEMA INFORMATION_SCHEMA
Person dbo
Production dbo
Purchasing dbo
Sales dbo
sys sys

Within the AdventureWorks database, I’ll now demonstrate assigning permissions on schemas
to database principals. In this example, the database user TestUser is granted TAKE OWNERSHIP per-
missions to the Person schema, which enables the grantee to take ownership of a granted securable:

GRANT TAKE OWNERSHIP
ON SCHEMA ::Person
TO TestUser

In the next example, I’ll grant the database user TestUser multiple permissions in the same
statement, including the ability to ALTER a schema, EXECUTE stored procedures within the schema, or
SELECT from tables or views in the schema. Using the WITH GRANT OPTION, TestUser can also grant
other database principals these permissions too:

GRANT ALTER, EXECUTE, SELECT
ON SCHEMA ::Production
TO TestUser
WITH GRANT OPTION

In this next example, the database user TestUser is denied the ability to INSERT, UPDATE, or
DELETE data from any tables within the Production schema:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING518

9802CH18.qxd 4/25/08 2:21 PM Page 518

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DENY INSERT, UPDATE, DELETE
ON SCHEMA ::Production
TO TestUser

In the last example of this recipe, TestUser’s right to ALTER the Production schema or SELECT
from objects within the Production schema is revoked, along with the permissions she may have
granted to others (using CASCADE):

REVOKE ALTER, SELECT
ON SCHEMA ::Production
TO TestUser
CASCADE

How It Works
Granting, denying, or revoking permissions occurs with the same commands that are used with
database- and server-level-scoped permissions. One difference, however, is the reference to ON
SCHEMA, where a specific schema name is the target of granted, denied, or revoked permissions.
Notice, also, that the name of the schema was prefixed with two colons (called a scope qualifier).
A scope qualifier is used to scope permissions to a specific object type.

Object Permissions
Objects are nested within the schema scope, and they can include tables, views, stored procedures,
functions, and aggregates. Defining permissions at the schema scope (such as SELECT or EXECUTE)
can allow you to define permissions for a grantee on all objects within a schema. You can also define
permissions at the object level. Object permissions are nested within schema permissions, schema
permissions within database-scoped permissions, and database-scoped permissions within server-
level permissions.

Like server-level, database-scoped, and schema-scoped permissions, you can use GRANT, DENY,
and REVOKE to define permissions on specific database objects.

The abridged syntax for granting object permissions is as follows:

GRANT permission ON
[OBJECT ::][schema_name]. object_name [(column [,...n])]
TO <database_principal> [,...n]
[WITH GRANT OPTION] [AS database_principal]

The arguments of this command are described in Table 18-13.

Table 18-13. GRANT Arguments

Argument Description

permission [,...n] This specifies one or more object permissions to
be granted to the grantee.

[OBJECT ::][schema_name]. object_name This defines the target object (and if applicable,
[(column [,...n])] columns) for which the permission is being

granted.

database_principal This specifies the database principal permissions
recipient.

Continued

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 519

9802CH18.qxd 4/25/08 2:21 PM Page 519

Table 18-13. Continued

Argument Description

WITH GRANT OPTION When designating this option, the grantee has
permissions to grant the permission(s) to other
grantees.

AS database_principal This optional clause specifies where the grantor
derives its right to grant the permission to the
grantee.

To deny object permissions to a grantee, the DENY command is used. The abridged syntax is as
follows:

DENY permission [,...n] ON
[OBJECT ::][schema_name]. object_name [(column [,...n])]
TO <database_principal> [,...n]
[CASCADE] [AS <database_principal>]

The arguments of this command are described in Table 18-14.

Table 18-14. DENY Arguments

Argument Description

[OBJECT ::][schema_name]. object_name This specifies the target object (and if applicable,
[(column [,...n])] columns) for which the permission is being

denied.

< database_principal > [,...n] This specifies one or more database principals to
deny permissions for.

CASCADE When this option is designated, if the grantee
principal granted any of these permissions to
others, those grantees will also have their
permissions denied.

AS database_principal This optional clause specifies where the grantor
derives its right to deny the permission to the
grantee.

To revoke object permissions to the grantee, the REVOKE command is used.
The abridged syntax is as follows:

REVOKE [GRANT OPTION FOR]
permission [,...n]
ON [OBJECT ::][schema_name]. object_name [(column [,...n])]
FROM <database_principal> [,...n]
[CASCADE] [AS <database_principal>]

The arguments of this command are described in Table 18-15.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING520

9802CH18.qxd 4/25/08 2:21 PM Page 520

Table 18-15. REVOKE Arguments

Argument Description

GRANT OPTION FOR When this option is used, the right to grant the
permission to other database principals is
revoked.

permission [,...n] This specifies one or more object permissions to
be revoked from the grantee.

[OBJECT ::][schema_name]. object_name This defines the target object (and if applicable,
[(column [,...n])] columns) for which the permission is being

revoked.

< database_principal > [,...n] This specifies one or more database principals to
revoke permissions from.

CASCADE When this option is designated, if the grantee
principal granted any of these permissions to
others, those grantees will also have their
permissions revoked.

AS database_principal This optional clause specifies where the grantor
derives its right to revoke the permission to the
grantee.

Managing Object Permissions
In this recipe, I grant the database user TestUser the permission to SELECT, INSERT, DELETE, and
UPDATE data in the HumanResources.Department table:

USE AdventureWorks
GO

GRANT DELETE, INSERT, SELECT, UPDATE
ON HumanResources.Department
TO TestUser

Here, the database role called ReportViewers is granted the ability to execute a procedure, as
well as view metadata regarding that specific object in the system catalog views:

CREATE ROLE ReportViewers

GRANT EXECUTE, VIEW DEFINITION
ON dbo.uspGetManagerEmployees
TO ReportViewers

In this next example, ALTER permission is denied to the database user TestUser for the
HumanResources.Department table:

DENY ALTER ON HumanResources.Department TO TestUser

In this last example, INSERT, UPDATE, and DELETE permissions are revoked from TestUser on the
HumanResources.Department table:

REVOKE INSERT, UPDATE, DELETE
ON HumanResources.Department
TO TestUser

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 521

9802CH18.qxd 4/25/08 2:21 PM Page 521

How It Works
This recipe demonstrated granting object permissions to specific database securables. Object
permissions are granted by designating the specific object name and the permissions that are appli-
cable to the object. For example, EXECUTE permissions can be granted to a stored procedure, but not
SELECT.

Permissions can be superseded by other types of permissions. For example, if the database
user TestUser has been granted SELECT permissions on the HumanResources.Department table, but
has been denied permissions on the HumanResources schema itself, TestUser will receive the follow-
ing error message when attempting to SELECT from that table, as the DENY overrides any GRANT
SELECT permissions:

Msg 229, Level 14, State 5, Line 2
SELECT permission denied on object 'Department', database 'AdventureWorks', schema
'HumanResources'.

Managing Permissions Across Securable Scopes
Now that I’ve reviewed the various securable scopes and the methods by which permissions can be
granted to principals, in the next set of recipes I’ll show you how to report and manage the permis-
sions a principal has on securables across the different scopes.

Determining a Current Connection’s Permissions to a Securable
With SQL Server’s nested hierarchy of securable permissions (server, database, and schema), per-
missions can be inherited by higher-level scopes. Figuring out what permissions your current
login/database connection has to a securable can become tricky, especially when you add server
or database roles to the equation.

Understanding what permissions your database connection has added to a securable can be
determined by using the Has_perms_by_name function. This system scalar function returns a 1 if the
current user has granted permissions to the securable and 0 if not.

The syntax for this function is as follows:

Has_perms_by_name (securable , securable_class , permission
[, sub-securable] [, sub-securable_class])

The arguments for this function are described in Table 18-16.

Table 18-16. Has_perms_by_name Arguments

Parameter Description

securable The name of the securable that you want to verify permissions for.

securable_class The name of the securable class that you want to check. Class names
(for example, DATABASE or SCHEMA) can be retrieved from the class_desc
column in the sys.fn_builtin_permissions function.

permission The name of the permission to check.

sub-securable The name of the securable subentity.

sub-securable_class The name of the securable subentity class.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING522

9802CH18.qxd 4/25/08 2:21 PM Page 522

This example demonstrates how to check whether the current connected user has permissions
to ALTER the AdventureWorks database:

USE AdventureWorks
GO

SELECT Has_perms_by_name ('AdventureWorks', 'DATABASE', 'ALTER')

This returns 0, which means the current connection does not have permission to ALTER the
AdventureWorks database:

0

This next query tests the current connection to see whether the Person.Address table can be
updated or selected from by the current connection:

SELECT CASE Has_perms_by_name ('Person.Address', 'OBJECT', 'UPDATE')
WHEN 1 THEN 'Yes'
ELSE 'No'

END UpdateTable,
CASE Has_perms_by_name ('Person.Address', 'OBJECT', 'SELECT')
WHEN 1 THEN 'Yes'
ELSE 'No'

END SelectFromTable

This returns

UpdateTable SelectFromTable
Yes No

How It Works
The Has_perms_by_name system function evaluates whether or not the current connection has
granted permissions to access a specific securable (granted permissions either explicitly or inher-
ently through a higher-scoped securable). In both examples in this recipe, the first parameter used
was the securable name (the database name or table name). The second parameter was the secur-
able class, for example, OBJECT or DATABASE. The third parameter used was the actual permission to
be validated, for example, ALTER, UPDATE, or SELECT (depending on which permissions are applicable
to the securable being checked).

Reporting the Permissions for a Principal by Securable Scope
In this recipe, I’ll demonstrate using the fn_my_permissions function to return the assigned permis-
sions for the currently connected principal. The syntax for this function is as follows:

fn_my_permissions (securable , 'securable_class')

The arguments for this command are described in Table 18-17.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 523

9802CH18.qxd 4/25/08 2:21 PM Page 523

Table 18-17. fn_my_permissions Arguments

Argument Description

securable The name of the securable to verify. Use NULL if you are checking permissions at
the server or database scope.

securable_class The securable class that you are listing permissions for.

In this first example, I demonstrate how to check the server-scoped permissions for the current
connection:

SELECT permission_name
FROM fn_my_permissions(NULL, N'SERVER')
ORDER BY permission_name

This returns the following results (this query example was executed under the context of
sysadmin, so in this case, all available server-scoped permissions are returned):

ADMINISTER BULK OPERATIONS
ALTER ANY CONNECTION
ALTER ANY CREDENTIAL
ALTER ANY DATABASE
ALTER ANY ENDPOINT
ALTER ANY EVENT NOTIFICATION
ALTER ANY LINKED SERVER
ALTER ANY LOGIN
ALTER RESOURCES
ALTER SERVER STATE
ALTER SETTINGS
ALTER TRACE
AUTHENTICATE SERVER
CONNECT SQL
CONTROL SERVER
CREATE ANY DATABASE
CREATE DDL EVENT NOTIFICATION
CREATE ENDPOINT
CREATE TRACE EVENT NOTIFICATION
EXTERNAL ACCESS ASSEMBLY
SHUTDOWN
UNSAFE ASSEMBLY
VIEW ANY DATABASE
VIEW ANY DEFINITION
VIEW SERVER STATE

If you have IMPERSONATE permissions on the login or database user, you can also check the per-
missions of another principal other than your own by using the EXECUTE AS command. In Chapter
10, I demonstrated how to use EXECUTE AS to specify a stored procedure’s security context. You can
also use EXECUTE AS in a stand-alone fashion, using it to switch the security context of the current
database session. You can then switch back to your original security context by issuing the REVERT
command.

The simplified syntax for EXECUTE AS is as follows:

EXECUTE AS { LOGIN | USER } = 'name'
[WITH { NO REVERT }]

The arguments of this command are described in Table 18-18.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING524

9802CH18.qxd 4/25/08 2:21 PM Page 524

Table 18-18. EXECUTE AS Abridged Syntax Arguments

Argument Description

{ LOGIN | USER } = 'name' Select LOGIN to impersonate a SQL or Windows login or USER to
impersonate a database user. The name value is the actual login
or user name.

NO REVERT If NO REVERT is designated, you cannot use the REVERT command to
switch back to your original security context.

To demonstrate EXECUTE AS’s power, the previous query is reexecuted, this time by using the
security context of the Veronica login:

USE master
GO

EXECUTE AS LOGIN = N'Veronica'
GO

SELECT permission_name
FROM fn_my_permissions(NULL, N'SERVER')
ORDER BY permission_name
GO

REVERT
GO

This returns a much smaller list of server permissions, as you are no longer executing the call
under a login with sysadmin permissions:

CONNECT SQL
VIEW ANY DATABASE

This next example demonstrates returning database-scoped permissions for the Veronica
database user:

USE TestDB
GO

EXECUTE AS USER = N'Veronica'
GO

SELECT permission_name
FROM fn_my_permissions(N'TestDB', N'DATABASE')
ORDER BY permission_name
GO

REVERT
GO

This returns

ALTER ANY ASSEMBLY
ALTER ANY CERTIFICATE
CONNECT
CREATE ASSEMBLY
CREATE CERTIFICATE

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 525

9802CH18.qxd 4/25/08 2:21 PM Page 525

In this next example, permissions are checked for the current connection on the Production.
Culture table, this time showing any subentities of the table (meaning any explicit permissions on
table columns):

USE AdventureWorks
GO

SELECT subentity_name, permission_name
FROM fn_my_permissions(N'Production.Culture', N'OBJECT')
ORDER BY permission_name, subentity_name

This returns the following results (when the subentity_name is populated, this is a column
reference):

subentity_name permission_name
ALTER
CONTROL
DELETE
EXECUTE
INSERT
RECEIVE
REFERENCES

CultureID REFERENCES
ModifiedDate REFERENCES
Name REFERENCES

SELECT
CultureID SELECT
ModifiedDate SELECT
Name SELECT

TAKE OWNERSHIP
UPDATE

CultureID UPDATE
ModifiedDate UPDATE
Name UPDATE

VIEW CHANGE TRACKING
VIEW DEFINITION

How It Works
This recipe demonstrated how to return permissions for the current connection using the
fn_my_permissions function. The first example used a NULL in the first parameter and SERVER in the
second parameter in order to return the server-scoped permissions of the current connection:

...
FROM fn_my_permissions(NULL, N'SERVER')

I then used EXECUTE AS to execute the same query, this time under the Veronica login’s context,
which returned server-scoped permissions for her login:

EXECUTE AS LOGIN = N'Veronica'
GO
...

REVERT
GO

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING526

9802CH18.qxd 4/25/08 2:21 PM Page 526

The next example showed database-scoped permissions by designating the database name in
the first parameter and DATABASE in the second parameter:

FROM fn_my_permissions(N'TestDB', N'DATABASE')

The last example checked the current connection’s permissions to a specific table:

...
FROM fn_my_permissions(N'Production.Culture', N'OBJECT')

This returned information at the table level and column level. For example, the ALTER and
CONTROL permissions applied to the table level, while those rows with a populated entity_name (for
example, CultureID and ModifiedDate) refer to permissions at the table’s column level.

Changing Securable Ownership
As described earlier in the chapter, objects are contained within schemas, and schemas are then
owned by a database user or role. Changing a schema’s owner does not require the objects to be
renamed. Aside from schemas, however, other securables on a SQL Server instance still do have
direct ownership by either a server- or database-level principal.

For example, schemas have database principal owners (such as database user) and endpoints
have server-level owners, such as a SQL login.

Assuming that the login performing the operation has the appropriate TAKE OWNERSHIP permis-
sion, you can use the ALTER AUTHORIZATION command to change the owner of a securable.

The abridged syntax for ALTER AUTHORIZATION is as follows:

ALTER AUTHORIZATION
ON [<entity_type> ::] entity_name
TO { SCHEMA OWNER | principal_name }

The arguments for this command are described in Table 18-19.

Table 18-19. ALTER AUTHORIZATION Arguments

Argument Description

entity_type This designates the class of securable being given a new owner.

entity_name This specifies the name of the securable.

SCHEMA OWNER | principal_name This indicates the name of the new schema owner, or the name
of the database or server principal taking ownership of the
securable.

In this example, the owner of the HumanResources schema is changed to the database user
TestUser:

USE AdventureWorks
GO

ALTER AUTHORIZATION ON Schema::HumanResources
TO TestUser

In this second example, the owner of an endpoint is changed to a SQL login. Before doing so,
the existing owner of the endpoint is verified using the sys.endpoints and sys.server_principals
system catalog views:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 527

9802CH18.qxd 4/25/08 2:21 PM Page 527

SELECT p.name OwnerName
FROM sys.endpoints e
INNER JOIN sys.server_principals p ON

e.principal_id = p.principal_id
WHERE e.name = 'ProductWebsite'

This returns

OwnerName
JOEPROD\Owner

Next, the owner is changed to a different SQL login:

ALTER AUTHORIZATION ON Endpoint::ProductWebSite TO TestUser

Reexecuting the query against sys.server_principals and sys.endpoints, the new owner is
displayed:

OwnerName
TestUser

How It Works
This recipe demonstrated how to change object ownership. You may wish to change ownership
when a login or database user needs to be removed. If that login or database user owns securables,
you can use ALTER AUTHORIZATION to change that securables owner prior to dropping the SQL login
or database user.

In this recipe, ALTER AUTHORIZATION was used to change the owner of a schema to a different
database user, and the owner of an endpoint to a different SQL login (associated to a Windows
account). In both cases, the securable name was prefixed by the :: scope qualifier, which designates
the type of object you are changing ownership of.

Allowing SQL Logins to Access Non-SQL Server Resources
In this chapter, I’ve discussed permissions and securables within a SQL Server instance; however,
sometimes a SQL login (not associated to a Windows user or group) may need permissions outside
of the SQL Server instance. A Windows principal (a Windows user or group) has implied permissions
outside of the SQL Server instance, but a SQL login does not, because a SQL login and password is
created inside SQL Server. To address this, you can bind a SQL login to a Windows credential, giving
the SQL login the implied Windows permissions of that credential. This SQL login can then use
more advanced SQL Server functionality, where outside resource access may be required. This cre-
dential can be bound to more than one SQL login (although one SQL login can only be bound to a
single credential).

To create a credential, use the CREATE CREDENTIAL command.
The syntax is as follows:

CREATE CREDENTIAL credential_name WITH IDENTITY = ' identity_name '
[, SECRET = ' secret ']

[FOR CRYPTOGRAPHIC_PROVIDER cryptographic_provider_name]

The arguments for this command are described in Table 18-20.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING528

9802CH18.qxd 4/25/08 2:21 PM Page 528

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Table 18-20. CREATE CREDENTIAL Arguments

Argument Description

credential_name The name of the new credential

identity_name The external account name (a Windows user, for example)

secret The credential’s password

cryptographic_provider_name The name of the Enterprise Key Management (EKM) provider
(used when associating an EKM provider with a credential)

In this example, a new credential is created that is mapped to the JOEPROD\OwnerWindows user
account:

USE master
GO

CREATE CREDENTIAL AccountingGroup
WITH IDENTITY = N'JOEPROD\AccountUser1',
SECRET = N'mypassword!'

Once created, the credential can be bound to existing or new SQL logins using the CREDENTIAL
keyword in CREATE LOGIN and ALTER LOGIN:

USE master
GO
ALTER LOGIN Veronica
WITH CREDENTIAL = AccountingGroup
GO

How It Works
A credential allows SQL authentication logins to be bound to Windows external permissions. In
this recipe, a new credential was created called AccountingGroup. It was mapped to the Windows
user JOEPROD\AccountUser1 and given a password in the SECRET argument of the command. After
creating the credential, it was then bound to the SQL login Veronica by using ALTER LOGIN and WITH
CREDENTIAL. Now the Veronica login, using credentials, has outside–SQL Server permissions equiva-
lent to the JOEPROD\AccountUser1Windows account.

Auditing SQL Instance and Database-Level
Activity of Principals Against Securables
SQL Server 2008 Enterprise Edition introduces the native capability to audit SQL Server instance–
and database-scoped activity. This activity is captured to a target data destination using a Server
Audit object, which defines whether the audit data is captured to a file, to the Windows Application
event log, or to the Windows Security event log. A Server Audit object also allows you to designate
whether or not the SQL Server instance should be shut down if it is unable to write to the target.

Once a Server Audit object is created, you can bind a Server Audit Specification or Database
Audit Specification object to it. A Server Audit Specification is used to define which events you wish
to capture at the SQL Server instance scope. A Database Audit Specification object allows you to
define which events you wish to capture at the database scope. Only one Server Audit Specification
can be bound to a Server Audit object, whereas one or more Database Audit Specifications can be

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 529

9802CH18.qxd 4/25/08 2:21 PM Page 529

bound to a Server Audit object. A single Server Audit object can be collocated with a Server Audit
Specification and one or more Database Audit Specifications.

In the next few recipes, I will demonstrate how to create a Server Audit object that writes event-
captured data to a target file. I will then demonstrate how to associate SQL instance-level and
database-scoped events to the audit file, and I’ll demonstrate how to read the audit data contained
in the binary file.

Defining Audit Data Sources
The first step in configuring auditing for SQL Server 2008 Enterprise Edition is to create a Server
Audit object. This is done by using the CREATE SERVER AUDIT command. The syntax for this com-
mand is as follows:

CREATE SERVER AUDIT audit_name
TO { [FILE (<file_options> [, ...n])] | APPLICATION_LOG | SECURITY_LOG }
[WITH (<audit_options> [, ...n])]

}
[;]
<file_options>::=
{

FILEPATH = 'os_file_path'
[, MAXSIZE = { max_size { MB | GB | TB } | UNLIMITED }]
[, MAX_ROLLOVER_FILES = integer]
[, RESERVE_DISK_SPACE = { ON | OFF }]

}

<audit_options>::=
{

[QUEUE_DELAY = integer]
[, ON_FAILURE = CONTINUE | SHUTDOWN]
[, AUDIT_GUID = uniqueidentifier]

}

The arguments for this command are described in Table 18-21.

Table 18-21. CREATE SERVER AUDIT Arguments

Argument Description

audit_name This specifies the user-defined name of the Server Audit
object.

FILE (<file_options> [, ...n])] | This designates that the Server Audit object will write
events to a file.

APPLICATION_LOG This designates that the Server Audit object will write
events to the Windows Application event log.

SECURITY_LOG This designates that the Server Audit object will write
events to the Windows Security event log.

FILEPATH If FILE was chosen, this designates the OS file path of the
audit log.

MAXSIZE If FILE was chosen, this argument defines the maximum
size in MB, GB, or TB. UNLIMITED can also be designated.

MAX_ROLLOVER_FILES If FILE was chosen, this designates the maximum number
of files to be retained on the file system. When 0 is
designated, no limit is enforced.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING530

9802CH18.qxd 4/25/08 2:21 PM Page 530

Argument Description

RESERVE_DISK_SPACE This argument takes a value of either ON or OFF. When
enabled, this option reserves the disk space designated in
MAXSIZE.

QUEUE_DELAY This value designates the milliseconds that can elapse
before audit actions are processed. The minimum and
default value is 1000 milliseconds.

ON_FAILURE This argument takes a value of either CONTINUE or
SHUTDOWN. If SHUTDOWN is designated, the SQL instance
will be shut down if the target can’t be written to.

AUDIT_GUID This option takes the unique identifier of a Server Audit
object. If you restore a database that contains a Database
Audit Specification, this object will be orphaned on the
new SQL instance unless the original Server Audit object
is re-created with the matching GUID.

In this recipe, I will create a new Server Audit object that will be configured to write to a local
file directory. The maximum size I’ll designate per log will be 500 megabytes, with a maximum
number of 10 rollover files. I won’t reserve disk space, and the queue delay will be 1 second (1000
milliseconds). If there is a failure for the audit to write, I will not shut down the SQL Server instance:

USE master
GO

CREATE SERVER AUDIT Caesar_Augustus_Server_Audit
TO FILE

(FILEPATH = 'C:\Apress\',
MAXSIZE = 500 MB,
MAX_ROLLOVER_FILES = 10,
RESERVE_DISK_SPACE = OFF)

WITH (QUEUE_DELAY = 1000,
ON_FAILURE = CONTINUE)

To validate the configurations of the new Server Audit object, I can check the
sys.server_audits catalog view:

SELECT audit_id,
type_desc,
on_failure_desc,
queue_delay,
is_state_enabled

FROM sys.server_audits

This returns

audit_id type_desc on_failure_desc queue_delay is_state_enabled
65536 FILE CONTINUE 1000 0

As you can see from the is_state_enabled column of sys.server_audits, the Server Audit
object is created in a disabled state. Later on, I’ll demonstrate how to enable it in the “Querying
Captured Audit Data” recipe, but in the meantime, I will leave it disabled until I define Server and
Database Audit Specifications associated with it.

In order to see more details around the file configuration of the Server Audit object I just
created, I can query the sys.server_file_audits catalog view:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 531

9802CH18.qxd 4/25/08 2:21 PM Page 531

SELECT name,
log_file_path,
log_file_name,
max_rollover_files,
max_file_size

FROM sys.server_file_audits

This returns the following result set (reformatted for presentation purposes):

Column Result
name Caesar_Augustus_Server_Audit
log_file_path C:\Apress\
log_file_name Caesar_Augustus_Server_Audit_1F55EE1E-1BD3-4112-B108-F453330AF279.

sqlaudit
max_rollover_files 10
max_file_size 500

How It Works
This recipe demonstrated how to create a Server Audit object that defines the target destination of
collected audit events. This is the first step in the process of setting up an audit. Walking through the
code, in the first line I designated the name of the Server Audit object:

CREATE SERVER AUDIT Caesar_Augustus_Server_Audit

Since the target of the collected audit events will be forwarded to a file, I designated TO FILE:

TO FILE

Next, I designated the file path where the audit files would be written (since there are rollover
files, each file is dynamically named—so I just used the path and not an actual file name):

(FILEPATH = 'C:\Apress\',

I then designated the maximum size of each audit file and the maximum number of rollover
files:

MAXSIZE = 500 MB,
MAX_ROLLOVER_FILES = 10,

I also chose not to prereserve disk space (as a best practice, you should write your audit files to
a dedicated volume or LUN where sufficient disk space can be ensured):

RESERVE_DISK_SPACE = OFF)

Lastly, I designated that the queue delay remain at the default level of 1000 milliseconds (1 sec-
ond) and that if there was a failure to write to the target, the SQL Server instance will continue to
run (for mission-critical auditing, where events must be captured, you may then consider shutting
down the SQL instance if there are issues writing to the target file):

WITH (QUEUE_DELAY = 1000,
ON_FAILURE = CONTINUE)

After creating the new Server Audit object, I used sys.server_audits to validate the primary
Server Audit object settings and sys.server_file_audits to validate the file options.

In the next recipe, I’ll demonstrate how to capture SQL instance–scoped events to the Server
Audit object created in this recipe.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING532

9802CH18.qxd 4/25/08 2:21 PM Page 532

Capturing SQL Instance–Scoped Events
A Server Audit Specification is used to define what SQL instance–scoped events will be captured to
the Server Audit object. The command to perform this action is CREATE SERVER AUDIT SPECIFICATION,
and the syntax is as follows:

CREATE SERVER AUDIT SPECIFICATION audit_specification_name
FOR SERVER AUDIT audit_name
{

{ ADD ({ audit_action_group_name })
} [, ...n]

[WITH (STATE = { ON | OFF })]
}

The arguments for this command are described in Table 18-22.

Table 18-22. CREATE SERVER AUDIT SPECIFICATION Arguments

Argument Description

audit_specification_name This specifies the user-defined name of the Server Audit
Specification object.

audit_name This defines the name of the preexisting Server Audit object (target
file or event log).

audit_action_group_name This indicates the name of the SQL instance–scoped action
groups. For a list of auditable action groups, you can query the
sys.dm_audit_actions catalog view.

STATE This argument takes a value of either ON or OFF. When ON, collection
of records begins.

In this recipe, I will create a new Server Audit Specification that will capture three different
audit action groups. To determine what audit action groups can be used, I can query the
sys.dm_audit_actions system catalog view:

SELECT name
FROM sys.dm_audit_actions
WHERE class_desc = 'SERVER' AND

configuration_level = 'Group'
ORDER BY name

This returns the following abridged results:

name
APPLICATION_ROLE_CHANGE_PASSWORD_GROUP
AUDIT_CHANGE_GROUP
BACKUP_RESTORE_GROUP
BROKER_LOGIN_GROUP
DATABASE_CHANGE_GROUP
DATABASE_MIRRORING_LOGIN_GROUP
DATABASE_OBJECT_ACCESS_GROUP
...
DBCC_GROUP
FAILED_LOGIN_GROUP
LOGIN_CHANGE_PASSWORD_GROUP
LOGOUT_GROUP
...

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 533

9802CH18.qxd 4/25/08 2:21 PM Page 533

SERVER_OBJECT_PERMISSION_CHANGE_GROUP
SERVER_OPERATION_GROUP
SERVER_PERMISSION_CHANGE_GROUP
SERVER_PRINCIPAL_CHANGE_GROUP
SERVER_PRINCIPAL_IMPERSONATION_GROUP
SERVER_ROLE_MEMBER_CHANGE_GROUP
SERVER_STATE_CHANGE_GROUP
SUCCESSFUL_LOGIN_GROUP
TRACE_CHANGE_GROUP

In this recipe scenario, I would like to track any time a DBCC command was executed, BACKUP
operation was taken, or server role membership was performed:

CREATE SERVER AUDIT SPECIFICATION Caesar_Augustus_Server_Audit_Spec
FOR SERVER AUDIT Caesar_Augustus_Server_Audit

ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP),
ADD (DBCC_GROUP),
ADD (BACKUP_RESTORE_GROUP)

WITH (STATE = ON)

Once the Server Audit Specification is created, I can validate the settings by querying the
sys.server_audit_specifications catalog view:

SELECT server_specification_id,
name,
is_state_enabled

FROM sys.server_audit_specifications

This returns

server_specification_id name is_state_enabled
65538 Caesar_Augustus_Server_Audit_Spec 1

I can also query the details of this specification by querying the sys.server_audit_
specification_details catalog view (I use the server specification ID returned from the previous
query to qualify the following result set):

SELECT server_specification_id,
audit_action_name

FROM sys.server_audit_specification_details
WHERE server_specification_id = 65538

This returns

server_specification_id audit_action_name
65538 SERVER_ROLE_MEMBER_CHANGE_GROUP
65538 BACKUP_RESTORE_GROUP
65538 DBCC_GROUP

The entire auditing picture is not yet complete since I have not yet enabled the Server Audit
object (Caesar_Augustus_Server_Audit). Before I turn the Server Audit object on, I will also add a
Database Audit Specification object, and then I’ll demonstrate actual audit event captures and how
to query the audit log.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING534

9802CH18.qxd 4/25/08 2:21 PM Page 534

How It Works
In this recipe, I demonstrated how to create a Server Audit Specification that defines which SQL
instance–scoped events will be captured and forwarded to a specific Server Audit object target (in
this case, a file under C:\Apress).

I started off the recipe first by querying sys.dm_audit_actions to get a list of action groups that
I could choose to audit for the SQL Server instance. The sys.dm_audit_actions catalog view actually
contains a row for all audit actions—at both the SQL instance and database scopes. So in the WHERE
clause of my query, I designated that the class of audit action should be for the SERVER and that the
configuration level should be for a group (I’ll demonstrate the non-group action-level configuration
level in the next recipe):

...
WHERE class_desc = 'SERVER' AND

configuration_level = 'Group'
...

Next, I used the CREATE SERVER AUDIT SPECIFICATION command to define which action groups
I wished to track. The first line of code designated the name of the new Server Audit Specification:

CREATE SERVER AUDIT SPECIFICATION Caesar_Augustus_Server_Audit_Spec

The next line of code designated the target of the event collection, the name of the Server Audit
object:

FOR SERVER AUDIT Caesar_Augustus_Server_Audit

After that, I designated each action group I wished to capture:

ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP),
ADD (DBCC_GROUP),
ADD (BACKUP_RESTORE_GROUP)

Lastly, I designated that the state of the Server Audit Specification should be enabled upon
creation:

WITH (STATE = ON)

In the next recipe, I’ll demonstrate how to create a Database Audit Specification to capture
database-scoped events. Once all of the specifications are created, I’ll then demonstrate actual
captures of actions and show you how to read the Server Audit log.

Capturing Database-Scoped Events
A Database Audit Specification is used to define what database-scoped events will be captured
to the Server Audit object. The command to perform this action is CREATE DATABASE AUDIT
SPECIFICATION, and the abridged syntax is as follows (it does not show action specification
syntax—however, I’ll demonstrate this within the recipe):

CREATE DATABASE AUDIT SPECIFICATION audit_specification_name
{

[FOR SERVER AUDIT audit_name]
[{ ADD (

{ <audit_action_specification> | audit_action_group_name }
)

} [, ...n]]
[WITH (STATE = { ON | OFF })]

}

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 535

9802CH18.qxd 4/25/08 2:21 PM Page 535

The arguments for this command are described in Table 18-23.

Table 18-23. CREATE DATABASE AUDIT SPECIFICATION Arguments

Argument Description

audit_specification_name This specifies the user-defined name of the Database Audit
Specification object.

audit_name This defines the name of the preexisting Server Audit object (target
file or event log).

audit_action_specification This indicates the name of a auditable database-scoped action.
For a list of auditable database-scoped actions, you can query the
sys.dm_audit_actions catalog view.

audit_action_group_name This defines the name of the database-scoped action group. For a
list of auditable action groups, you can query the sys.dm_audit_
actions catalog view.

STATE This argument takes a value of either ON or OFF. When ON, collection
of records begins.

In this recipe, I will create a new Database Audit Specification that will capture both audit
action groups and audit events. Audit action groups are related groups of actions at the database
scope, and audit events are singular events. For example, I can query the sys.dm_audit_actions sys-
tem catalog view to view specific audit events against the object securable scope (for example,
tables, views, stored procedures, and functions) by executing the following query:

SELECT name
FROM sys.dm_audit_actions
WHERE configuration_level = 'Action' AND

class_desc = 'OBJECT'
ORDER BY name

This returns a result set of atomic events that can be audited against an object securable scope:

name
DELETE
EXECUTE
INSERT
RECEIVE
REFERENCES
SELECT
UPDATE

I can also query the sys.dm_audit_actions system catalog view to see audit action groups at the
database scope:

SELECT name
FROM sys.dm_audit_actions
WHERE configuration_level = 'Group' AND

class_desc = 'DATABASE'
ORDER BY name

This returns the following abridged results:

name
APPLICATION_ROLE_CHANGE_PASSWORD_GROUP

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING536

9802CH18.qxd 4/25/08 2:21 PM Page 536

AUDIT_CHANGE_GROUP
BACKUP_RESTORE_GROUP
CONNECT
DATABASE_CHANGE_GROUP
DATABASE_OBJECT_ACCESS_GROUP
...
DBCC_GROUP
SCHEMA_OBJECT_ACCESS_GROUP
SCHEMA_OBJECT_CHANGE_GROUP
SCHEMA_OBJECT_OWNERSHIP_CHANGE_GROUP
SCHEMA_OBJECT_PERMISSION_CHANGE_GROUP

In this recipe scenario, I would like to track any time a INSERT, UPDATE, or DELETE is performed
against the HumanResources.Department table by any database user. I would also like to track when-
ever impersonation is used within the AdventureWorks database (for example, using the EXECUTE AS
command):

USE AdventureWorks
GO

CREATE DATABASE AUDIT SPECIFICATION AdventureWorks_DB_Spec
FOR SERVER AUDIT Caesar_Augustus_Server_Audit

ADD (DATABASE_PRINCIPAL_IMPERSONATION_GROUP),
ADD (INSERT, UPDATE, DELETE

ON HumanResources.Department
BY public)

WITH (STATE = ON)
GO

I can validate the settings of my Database Audit Specification by querying the sys.database_
audit_specifications system catalog view:

SELECT database_specification_id,name,is_state_enabled
FROM sys.database_audit_specifications

This returns

database_specification_id name is_state_enabled
65538 AdventureWorks_DB_Spec 1

For a detailed look at what I’m auditing for the new Database Audit Specification, I can query
the sys.database_audit_specification_details system catalog view (I’ll walk through the logic
in the “How It Works” section):

SELECT audit_action_name,
class_desc,
is_group,
CASE

WHEN major_id > 0 THEN OBJECT_NAME(major_id, DB_ID())
ELSE 'N/A'

END ObjectNM
FROM sys.database_audit_specification_details
WHERE database_specification_id = 65538

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 537

9802CH18.qxd 4/25/08 2:21 PM Page 537

This returns

audit_action_name class_desc is_group ObjectNM
DATABASE_PRINCIPAL_IMPERSONATION_GROUP DATABASE 1 N/A
DELETE OBJECT_OR_COLUMN 0 Department
INSERT OBJECT_OR_COLUMN 0 Department
UPDATE OBJECT_OR_COLUMN 0 Department

Although the Database Audit Specification is enabled, I have still not enabled the overall Server
Audit object. I’ll be demonstrating that in the next recipe, where you’ll also learn how to query the
captured audit data from a binary file.

How It Works
In this recipe, I demonstrated how to create a Database Audit Specification that designated which
database-scoped events would be captured to the Server Audit object. To perform this action, I used
the CREATE DATABASE AUDIT SPECIFICATION command. I started off by changing the context to the
database I wished to audit (since this is a database-scoped object):

USE AdventureWorks
GO

The first line of the CREATE DATABASE AUDIT SPECIFICATION command designated the user-
defined name, followed by a reference to the Server Audit object I would be forwarding the
database-scoped events to:

CREATE DATABASE AUDIT SPECIFICATION AdventureWorks_DB_Spec
FOR SERVER AUDIT Caesar_Augustus_Server_Audit

After that, I used the ADD keyword followed by an open parenthesis, defined the audit action
group I wished to monitor, and then entered a closing parenthesis and a comma (since I planned
on defining more than one action to monitor):

ADD (DATABASE_PRINCIPAL_IMPERSONATION_GROUP),

Next, I designated the ADD keyword again, followed by the three actions I wished to monitor for
the HumanResources.Department table:

ADD (INSERT, UPDATE, DELETE
ON HumanResources.Department

The object-scoped actions required a reference to the database principal that I wished to audit
actions for. In this example, I wished to view actions by all database principals. Since all database
principals are by default a member of public, this was what I designated:

BY public)

After that, I used the WITH keyword followed by the STATE argument, which I set to enabled:

WITH (STATE = ON)
GO

I then used the sys.database_audit_specifications to view the basic information of the new
Database Audit Specification. I queried the sys.database_audit_specification_details catalog
view to list the events that the Database Audit Specification captures. In the first three lines of code,
I looked at the audit action name, class description, and is_group field, which designates whether
or not the audit action is an audit action group or individual event:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING538

9802CH18.qxd 4/25/08 2:21 PM Page 538

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

SELECT audit_action_name,
class_desc,
is_group,

I used a CASE statement to evaluate the major_id column. If the major_id is a non-zero value,
this indicates that the audit action row is for a database object, and therefore I used the OBJECT_NAME
function to provide that object’s name:

CASE
WHEN major_id > 0 THEN OBJECT_NAME(major_id, DB_ID())
ELSE 'N/A'

END ObjectNM

In the last two lines of the SELECT, I designated the catalog view name, and specified the data-
base specification ID (important if you have more than one Database Audit Specification defined
for a database—which is allowed):

FROM sys.database_audit_specification_details
WHERE database_specification_id = 65538

Now that I have defined the Server Audit object, Server Audit Specification, and Database Audit
Specification, in the next recipe, I’ll demonstrate enabling the Server Audit object and creating
some auditable activity, and then show how to query the captured audit data.

Querying Captured Audit Data
The previous recipes have now built up to the actual demonstration of SQL Server 2008’s auditing
capabilities. To begin the recipe, I will enable the Server Audit object created a few recipes ago.
Recall that I had defined this Server Audit object to write to a binary file under the C:\Apress folder.

To enable the audit, I use the ALTER SERVER AUDIT command and configure the STATE option:

USE master
GO

ALTER SERVER AUDIT [Caesar_Augustus_Server_Audit] WITH (STATE = ON)

Now I will perform a few actions at both the SQL Server scope and within the AdventureWorks
database in order to demonstrate the audit collection process. I’ve added comments before each
group of statements so that you can follow what actions I’m trying to demonstrate:

USE master
GO

-- Create new login (not auditing this, but using it for recipe)
CREATE LOGIN TestAudit WITH PASSWORD = 'C83D7F50-9B9E'

-- Add to server role bulkadmin
EXEC sp_addsrvrolemember 'TestAudit', 'bulkadmin'
GO

-- Back up AdventureWorks database
BACKUP DATABASE AdventureWorks
TO DISK = 'C:\Apress\Example_AW.BAK'
GO

-- Perform a DBCC on AdventureWorks
DBCC CHECKDB('AdventureWorks')
GO

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 539

9802CH18.qxd 4/25/08 2:21 PM Page 539

-- Perform some AdventureWorks actions
USE AdventureWorks
GO

-- Create a new user and then execute under that
-- user's context
CREATE USER TestAudit FROM LOGIN TestAudit

EXECUTE AS USER = 'TestAudit'

-- Revert back to me (in this case a login with sysadmin perms)
REVERT

-- Perform an INSERT, UPDATE, and DELETE
-- from HumanResources.Department

INSERT HumanResources.Department
(Name, GroupName)
VALUES('Traffic', 'Advertising')

UPDATE HumanResources.Department
SET Name = 'Media Planning'
WHERE Name = 'Traffic'

DELETE HumanResources.Department
WHERE Name = 'Media Planning'

Now that I have performed several events that are covered by the Server Audit Specification
and Database Audit Specification created earlier, I can use the fn_get_audit_file table-valued
function to view the contents of my Server Audit binary file. The syntax for this function is as
follows:

fn_get_audit_file
(file_pattern,
{default | initial_file_name | NULL },
{default | audit_file_offset | NULL })

The arguments for this command are described in Table 18-24.

Table 18-24. fn_get_audit_file Arguments

Argument Description

file_pattern Designates the location of the audit file or files to be
read. You can use a drive letter or network share for
the path and use the single asterisk (*) wildcard to
designate multiple files.

{default | initial_file_name | NULL } Designates the name and path for a specific file you
would like to begin reading from. Default and NULL are
synonymous and indicate no selection for the initial file
name.

{default | audit_file_offset | NULL } Designates the buffer offset from the initial file (when
initial file is selected). Default and NULL are
synonymous and indicate no selection for the audit
file offset.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING540

9802CH18.qxd 4/25/08 2:21 PM Page 540

In this first call to the fn_get_audit_file function, I’ll look for any changes to server role mem-
berships. Notice that I am using the sys.dm_audit_actions catalog view in order to translate the
action ID into the actual action event name (you can use this view to find which event names you
need to filter by):

SELECT af.event_time,
af.succeeded,
af.target_server_principal_name,
object_name

FROM fn_get_audit_file
('C:\Apress\Caesar_Augustus_Server_Audit_*',
default, default) af

INNER JOIN sys.dm_audit_actions aa ON
af.action_id = aa.action_id

WHERE aa.name = 'ADD MEMBER' AND
aa.class_desc = 'SERVER ROLE'

This returns the event time, success flag, server principal name, and server role name:

event_time succeeded target_server_principal_name object_name
2008-09-02 15:06:54.702 1 TestAudit bulkadmin

In this next example, I’ll take a look at deletion events against the HumanResources.Department
table:

SELECT af.event_time,
af.database_principal_name

FROM fn_get_audit_file
('C:\Apress\Caesar_Augustus_Server_Audit_*',
default, default) af

INNER JOIN sys.dm_audit_actions aa ON
af.action_id = aa.action_id

WHERE aa.name = 'DELETE' AND
aa.class_desc = 'OBJECT' AND
af.schema_name = 'HumanResources' AND
af.object_name = 'Department'

This returns

event_time database_principal_name
2008-09-02 15:13:24.542 dbo

The fn_get_audit_file function also exposes the SQL statement when applicable to the
instantiating event. The following query demonstrates capturing the actual BACKUP DATABASE text
used for the audited event:

SELECT event_time, statement
FROM fn_get_audit_file

('C:\Apress\Caesar_Augustus_Server_Audit_*',
default, default) af

INNER JOIN sys.dm_audit_actions aa ON
af.action_id = aa.action_id

WHERE aa.name = 'BACKUP' AND
aa.class_desc = 'DATABASE'

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 541

9802CH18.qxd 4/25/08 2:21 PM Page 541

This returns the event time and associated BACKUP statement text:

event_time statement
2008-02-02 15:07:29.482 BACKUP DATABASE AdventureWorks TO DISK =

'C:\Apress\Example_AW.BAK'

The last query of this recipe demonstrates querying each distinct event and the associated
database principal that performed it, along with the target server principal name (when applicable)
or target object name:

SELECT DISTINCT
aa.name,
database_principal_name,
target_server_principal_name,
object_name

FROM fn_get_audit_file
('C:\Apress\Caesar_Augustus_Server_Audit_*',
default, default) af

INNER JOIN sys.dm_audit_actions aa ON
af.action_id = aa.action_id

This returns the various events I performed earlier that were defined in the Server and
Database Audit Specifications. It also includes audit events by default—for example, AUDIT SESSION
CHANGED:

name database_principal_name target_server_principal_name object_name
ADD MEMBER dbo TestAudit bulkadmin
AUDIT SESSION CHANGED
BACKUP dbo AdventureWorks
DBCC dbo
DELETE dbo EmployeePayHistory
IMPERSONATE dbo TestAudit
INSERT dbo EmployeePayHistory
UPDATE dbo EmployeePayHistory

How It Works
I started off this recipe by enabling the overall Server Audit object using the ALTER SERVER AUDIT
command. After that, I performed several SQL instance– and database-scoped activities—focusing
on events that I had defined for capture in the Server and Database Audit Specifications bound to
the Caesar_Augustus_Server_Audit audit. After that, I demonstrated how to use the fn_get_audit_
file function to retrieve the event data from the binary file created under the C:\Apress directory.

■Note I could have also defined the Server Audit object to write events to the Windows Application or Windows
Security event log instead, in which case I would not have used fn_get_audit_file to retrieve the data, as this
function only applies to the binary file format.

Each query to fn_get_audit_file I also joined to the sys.dm_audit_actions object in order to
designate the audit action name and, depending on the action, the class description as well. For
example:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING542

9802CH18.qxd 4/25/08 2:21 PM Page 542

...
FROM fn_get_audit_file

('C:\Apress\Caesar_Augustus_Server_Audit_*',
default, default) af

INNER JOIN sys.dm_audit_actions aa ON
af.action_id = aa.action_id

WHERE aa.name = 'ADD MEMBER' AND
aa.class_desc = 'SERVER ROLE'

...

In the next and last recipe of this chapter, I’ll demonstrate how to manage, modify, and remove
audit objects.

Managing, Modifying, and Removing Audit Objects
This recipe will demonstrate how to add and remove actions from existing Server and Database
Audit Specifications, disable Server and Database Audit Specifications, modify the Server Audit
object, and remove audit objects from the SQL instance and associated databases.

To modify an existing Server Audit Specification, I use the ALTER SERVER AUDIT SPECIFICATION
command. In this first query demonstration, I’ll remove one audit action type from the Server Audit
Specification I created in an earlier recipe and also add a new audit action.

Before I can modify the specification, however, I must first disable it:

USE master
GO

ALTER SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]
WITH (STATE = OFF)

Next, I will drop one of the audit actions:

ALTER SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]
DROP (BACKUP_RESTORE_GROUP)

Now I’ll demonstrate adding a new audit action group to an existing Server Audit Specification:

ALTER SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]
ADD (LOGIN_CHANGE_PASSWORD_GROUP)

To have these changes take effect and resume auditing, I must reenable the Server Audit Speci-
fication:

ALTER SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]
WITH (STATE = ON)

To modify the audit actions of a Database Audit Specification, I must use the ALTER DATABASE
AUDIT SPECIFICATION command. Similar to Server Audit Specifications, a Database Audit Specifica-
tion must have a disabled state prior to making any changes to it:

USE AdventureWorks
GO

ALTER DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]
WITH (STATE = OFF)

This next query demonstrates removing an existing audit event from the Database Audit Speci-
fication I created earlier:

ALTER DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]
DROP (INSERT ON [HumanResources].[Department] BY public)

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 543

9802CH18.qxd 4/25/08 2:21 PM Page 543

Next, I demonstrate how to add a new audit event to the existing Database Audit Specification:

ALTER DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]
ADD (DATABASE_ROLE_MEMBER_CHANGE_GROUP)

To have these changes go into effect, I need to reenable the Database Audit Specification:

ALTER DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]
WITH (STATE = ON)

To modify the Server Audit object itself, I use the ALTER SERVER AUDIT command. Similar to the
Server and Database Audit Specification objects, the Server Audit object needs to be disabled before
changes can be made to it. In this next example, I demonstrate disabling the Server Audit, making a
change to the logging target so that it writes to the Windows Application event log instead, and then
reenabling it:

USE master
GO

ALTER SERVER AUDIT [Caesar_Augustus_Server_Audit]
WITH (STATE = OFF)

ALTER SERVER AUDIT [Caesar_Augustus_Server_Audit]
TO APPLICATION_LOG

ALTER SERVER AUDIT [Caesar_Augustus_Server_Audit]
WITH (STATE = ON)

Once the target is changed, audit events are now forwarded to the Windows Application event
log. For example, if I execute a DBCC CHECKDB command again, I would see this reflected in the Win-
dows Application event log with an event ID of 33205. The following is an example of a Windows
Application event log entry:

Audit event: event_time:2008-09-02 18:17:49.4704464
sequence_number:1
action_id:DBCC
succeeded:true
permission_bitmask:0
is_column_permission:false
session_id:57
server_principal_id:263
database_principal_id:1
target_server_principal_id:0
target_database_principal_id:0
object_id:0
class_type:DB
session_server_principal_name:CAESAR\Administrator
server_principal_name:CAESAR\Administrator
server_principal_sid:0105000000000005150000006bb13b36a981eb9a2b3859a8f4010000
database_principal_name:dbo
target_server_principal_name:
target_server_principal_sid:
target_database_principal_name:
server_instance_name:CAESAR\AUGUSTUS
database_name:AdventureWorks
schema_name:
object_name:

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING544

9802CH18.qxd 4/25/08 2:21 PM Page 544

statement:DBCC CHECKDB('AdventureWorks')
additional_information:

To remove a Database Audit Specification, I need to disable it and then use the DROP DATABASE
AUDIT SPECIFICATION—as demonstrated next:

USE AdventureWorks
GO

ALTER DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]
WITH (STATE = OFF)

DROP DATABASE AUDIT SPECIFICATION [AdventureWorks_DB_Spec]

To remove a Server Audit Specification, I need to disable it and then use the DROP SERVER AUDIT
SPECIFICATION command:

USE master
GO

ALTER SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]
WITH (STATE = OFF)

DROP SERVER AUDIT SPECIFICATION [Caesar_Augustus_Server_Audit_Spec]

Finally, to drop a Server Audit object, I need to first disable it and then use the DROP SERVER
AUDIT command, as demonstrated next:

ALTER SERVER AUDIT [Caesar_Augustus_Server_Audit] WITH (STATE = OFF)

DROP SERVER AUDIT [Caesar_Augustus_Server_Audit]

Any binary log files created from the auditing will still remain after removing the Server Audit
object.

How It Works
This recipe demonstrated several commands used to manage audit objects. For each of these exist-
ing audit objects, I was required to disable the state prior to making changes. I used ALTER SERVER
AUDIT SPECIFICATION to add and remove audit events from the Server Audit Specification and DROP
SERVER AUDIT SPECIFICATION to remove the definition from the SQL Server instance.

I used ALTER DATABASE AUDIT SPECIFICATION to add and remove audit events from the Data-
base Audit Specification and DROP DATABASE AUDIT SPECIFICATION to remove the definition from the
user database. I used ALTER SERVER AUDIT to modify an existing Server Audit object—changing the
target logging method from a binary file to the Windows Application event log instead. Lastly, I used
DROP SERVER AUDIT to remove the Server Audit object from the SQL Server instance.

CHAPTER 18 ■ SECURABLES, PERMISSIONS, AND AUDITING 545

9802CH18.qxd 4/25/08 2:21 PM Page 545

9802CH18.qxd 4/25/08 2:21 PM Page 546

Encryption

Prior to SQL Server 2005 and 2008, if you wanted to encrypt sensitive data such as financial infor-
mation, salary, or personal identification numbers, you were forced to rely on outside application
programs and algorithms. SQL Server 2005 introduced built-in data encryption capabilities using a
combination of certificates, keys, and system functions.

Similar to a digital certificate that is issued by a certificate authority, a SQL Server certificate
contains a pair of keys: a public key as well as a private key, which is used to encrypt and decrypt
data. SQL Server also has the ability to create asymmetric and symmetric keys. An asymmetric key
is similar to a certificate, in that a public key is used to encrypt data, and the private key is used to
decrypt data. Both asymmetric keys and certificates provide powerful encryption strength, but with
more performance overhead due to the complexity of the encryption/decryption process. A lower-
overhead solution, which is more appropriate for the encryption of large amounts of data, is a
symmetric key, which is a single key that is used to both encrypt and decrypt the same data.

SQL Server allows you to layer these encryption capabilities into an encryption hierarchy.
When SQL Server is installed, a server-level certificate called the Service Master Key is created in
the master database and is bound to the SQL Server service account login by default. The Service
Master Key is used to encrypt all other database certificates and keys created within the SQL Server
instance. Additionally, you can also create a Database Master Key in a user database, which you can
use to encrypt database certificates and keys.

In SQL Server 2008, Microsoft introduces transparent data encryption (TDE), which enables the
entire database to be encrypted without requiring modification of any applications that access it.
The data, log files, and associated database backups are encrypted. If the database is stolen, the
data cannot be accessed without the Database Encryption Key (DEK). I’ll demonstrate in this chap-
ter how to enable this new feature.

■Tip SQL Server 2008 also introduces support for Extensible Key Management (EKM), meaning that SQL Server
can use Hardware Security Modules (HSM) for storing and managing encryption keys. HSM allows a decoupling of
the data from the actual encryption keys.

I’ll start the chapter by first discussing and then demonstrating how to encrypt data without
the use of certificates and keys.

Encryption by Passphrase
For a quick-and-dirty encryption of data that doesn’t involve certificates or keys, you can simply
encrypt/decrypt data based on a password supplied by the user. A passphrase is simply a password
that allows spaces in it. This passphrase is not stored in the database, which can be advantageous
because it means that internal passwords cannot be “cracked” using stored system data. Because 547

C H A P T E R 1 9

9802CH19.qxd 6/17/08 10:44 AM Page 547

the password can include spaces, you can create a long, easy-to-remember sentence that can be
used to encrypt and decrypt sensitive data.

In the next recipe, I’ll demonstrate how to encrypt and decrypt data using passphrase
functions.

Using a Function to Encrypt by Passphrase
To encrypt data with a user-supplied passphrase, you can call the EncryptByPassPhrase function.

The syntax is as follows:

EncryptByPassPhrase(
{ ' passphrase ' | @passphrase }
, { ' cleartext ' | @cleartext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

The arguments of this command are described in Table 19-1.

Table 19-1. EncryptByPassPhrase Arguments

Argument Description

' passphrase ' | @passphrase The passphrase that is used to encrypt the data

' cleartext ' | @cleartext The text to be encrypted

add_authenticator | @add_authenticator A Boolean value (1 or 0) determining whether an
authenticator will be used with the encrypted value

authenticator | @authenticator The data used for the authenticator

To decrypt the encrypted value, the DecryptByPassPhrase function is used, which includes the
same arguments as EncryptByPassPhrase except that it takes encrypted text instead of clear text:

DecryptByPassPhrase(
{ ' passphrase ' | @passphrase }
, { ' ciphertext ' | @ciphertext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

In this recipe, the “my secure secret text” string is encrypted using a passphrase:

-- Table used to store the encrypted data
-- for the purposes of this recipe
CREATE TABLE #SecretInfo
(Secret varbinary(8000) NOT NULL)
GO

INSERT #SecretInfo
(Secret)
SELECT EncryptByPassPhrase(

'My Password Used To Encrypt This String in 2008.',
'This is the text I need to secure.')

SELECT Secret
FROM #SecretInfo

This returns the following (your results may vary):

CHAPTER 19 ■ ENCRYPTION548

9802CH19.qxd 6/17/08 10:44 AM Page 548

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

0x0100000031AF7E0656FB1C3253AE708B4DB5F3F1EDEA48C832E5BE493E01655D8E7783D6C21E
2B94817636EAD39328D940B8BD4F9718081E6EB837BE

Taking the returned varbinary value from the #SecretInfo table, I can decrypt the text using
the same passphrase (using an incorrect passphrase will return a NULL value):

SELECT CAST(DecryptByPassPhrase(
'My Password Used To Encrypt This String in 2008.',
Secret) as varchar(50))
FROM #SecretInfo

This returns

This is the text I need to secure.

How It Works
In this recipe, a temporary table was used to hold the encrypted output of the EncryptByPassPhrase
function. I defined the column with a varbinary(8000) data type (8000 is the maximum size allowed
to be encrypted by this function):

CREATE TABLE #SecretInfo
(Secret varbinary(8000) NOT NULL)
GO

Next, I inserted a new row into the temporary table, using INSERT...SELECT:

INSERT #SecretInfo
(Secret)

The SELECT references the EncryptByPassPhrase function. The first parameter was the actual
password (in this case an entire sentence) that was used to encrypt the string. The second parame-
ter was the string to be encrypted:

SELECT EncryptByPassPhrase('My Password Used To Encrypt This String in 2008.',
'This is the text I need to secure.')

The next step queried the varbinary(8000) value that was inserted, returning an unintelligible
value:

SELECT Secret
FROM #SecretInfo

The data was then decrypted using the DecryptByPassPhrase function, which took the pass-
word as the first parameter (the one originally used to encrypt the data in the first place), and a
reference to the encrypted data in the Secret column of the #SecretInfo temporary table:

SELECT CAST(DecryptByPassPhrase(
'My Password Used To Encrypt This String in 2008.',
Secret) as varchar(50))
FROM #SecretInfo

Passphrase encryption functions allow you to encrypt data without fear of even sysadmin server
role members reading the data (sysadmin server role members, as you’ll see in this chapter, have
inherent permissions to read other forms of encrypted data).

CHAPTER 19 ■ ENCRYPTION 549

9802CH19.qxd 6/17/08 10:44 AM Page 549

The encrypted data will be protected from database backup theft or even the infiltration of the
database while on the SQL Server instance, assuming that you haven’t stored the password in a
table or used the password in any of your modules (stored procedures, triggers, and so on). If the
passphrase is improperly shared, the data can be decrypted.

Master Keys
Encryption in SQL Server is handled in a hierarchical manner in order to provide multi-level secu-
rity. SQL Server includes two key types that are used to encrypt data. The Service Master Key is at the
top of the hierarchy and is automatically created when SQL Server is installed. The Service Master
Key is also used to encrypt Database Master Keys below it. Database Master Keys are then used to
encrypt certificates and both asymmetric and symmetric keys. This layering of keys and certificates
provides stronger encryption. In this section, I’ll discuss these two different types of keys: the Ser-
vice Master Key and Database Master Key.

As stated before, the Service Master Key is at the top of the encryption hierarchy in SQL Server
and is responsible for encrypting system data, linked server logins, and Database Master Keys. The
Service Master Key is automatically generated the first time it is used by SQL Server to encrypt a
credential, Database Master Key, or linked server password, and it is generated using the Windows
credentials of the SQL Server service account. If you have to change the SQL Server service account,
Microsoft recommends that you use SQL Server Configuration Manager, because this tool will per-
form the appropriate decryptions and encryptions required to generate a new Service Master Key,
while keeping the encryption hierarchy intact.

The Database Master Key is an additional layer of SQL Server security in the encryption hierar-
chy that allows you to encrypt database certificates and asymmetric keys. Each database can
contain only a single Database Master Key, which, when created, is encrypted by the Service
Master Key.

When you’re creating an asymmetric key (reviewed later in the chapter in the “Asymmetric Key
Encryption” section), you can decide whether or not to include a password for encrypting the pri-
vate key of the asymmetric key pair. If a password is not included, the Database Master Key is then
used to encrypt the private key instead. This is a good example of using the Database Master Key to
encrypt other objects.

In this next group of recipes, I’ll demonstrate how to manage these two different key types.

Backing Up and Restoring a Service Master Key
Because of the Service Master Key’s critical role in SQL Server, it is very important for you to back up
this key to a safe location in the event that it is damaged or modified. This is performed by using the
BACKUP SERVICE MASTER KEY command.

The syntax is as follows:

BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'Password'

This command takes two arguments; the first argument is the name of the path and file name
where the key backup will be exported. The second argument is the password used to encrypt the
file containing the key backup. After backing up a Service Master Key, the backup file should then
be backed up to tape or copied off the server to a safe location.

In the event that a Service Master Key must be recovered from backup on the SQL Server
instance, the RESTORE SERVICE MASTER KEY command is used.

The syntax is as follows:

RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password' [FORCE]

CHAPTER 19 ■ ENCRYPTION550

9802CH19.qxd 6/17/08 10:44 AM Page 550

This command takes the name of the backup file and the encryption password. The FORCE
argument is used to force a replacement of the existing Service Master Key even in the event of data
loss (so it should only be used under dire circumstances and if you can afford to lose the encrypted
data that cannot be decrypted).

This recipe demonstrates backing up and then restoring the Service Master Key.
In the first example, BACKUP SERVICE MASTER KEY is used to back up to a file on the C:\Apress\

Recipes directory:

BACKUP SERVICE MASTER KEY
TO FILE = 'C:\Apress\Recipes\SMK.bak'
ENCRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

The following code demonstrates recovering the Service Master Key from a backup file:

RESTORE SERVICE MASTER KEY
FROM FILE = 'C:\Apress\Recipes\SMK.bak'
DECRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

How It Works
In the first example, the Service Master Key was backed up to a file. The second line of code desig-
nated the file name to back up the file to:

BACKUP SERVICE MASTER KEY
TO FILE = 'C:\Apress\Recipes\SMK.bak'

The third line of code designated the password used to protect the file (and is required in order
to initiate a restore):

ENCRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

In the second example, a Service Master Key restore was initiated. The second line of code
designated the file name to restore the Service Master Key from:

RESTORE SERVICE MASTER KEY
FROM FILE = 'C:\Apress\Recipes\SMK.bak'

The third line of code designated the password that was used to protect and generate the
Service Master Key backup:

DECRYPTION BY PASSWORD = 'MakeItAGoodOne!1AB'

If you are testing this example out yourself, you’ll see that if you perform a backup and restore
without any actual change in the Service Master Key, you’ll see the following message during a
RESTORE operation:

The old and new master keys are identical. No data re-encryption is required.

Creating, Regenerating, and Dropping a Database Master Key
The Database Master Key, when explicitly created, adds an extra layer of security by automatically
encrypting new certificates or asymmetric keys in the database, serving to further protect encrypted
data.

To create a Database Master Key, the CREATE MASTER KEY command is used. The syntax is as
follows:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'

CHAPTER 19 ■ ENCRYPTION 551

9802CH19.qxd 6/17/08 10:44 AM Page 551

Like the Service Master Key, the Database Master Key doesn’t have an explicit name, and uses a
single argument, the Database Master Key’s password. The Database Master Key can be regenerated
by using the ALTER MASTER KEY command. The syntax for regenerating the Database Master Key is as
follows:

ALTER MASTER KEY
[FORCE] REGENERATE WITH ENCRYPTION BY PASSWORD = 'password'

This command only takes a single argument, the password of the regenerated key. Regenerating
the key decrypts all objects encrypted by the key and reencrypts them using the newly regenerated
key. If there is an error during the decryption (for data that cannot be decrypted for various rea-
sons), the FORCE option forces the regeneration process, but, and this is important, with the danger
of rendering some encrypted data inaccessible.

To remove the Database Master Key entirely, the DROP MASTER KEY command is used (no addi-
tional arguments needed).

For example:

USE BookStore
GO
DROP MASTER KEY

You won’t be able to drop the Database Master Key, however, if it is still being used to encrypt
other database objects.

In this first example, I’ll create a Database Master Key for the BookStore database:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookStore')

BEGIN
CREATE DATABASE BookStore

END
GO

USE BookStore
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '99a555ac-cf60-472b-9c1e-ed735ffbb089'

Next, I’ll demonstrate regenerating the Database Master Key with a new password:

Use BookStore
GO
ALTER MASTER KEY
REGENERATE WITH ENCRYPTION BY PASSWORD = 'uglypassword1C3ED8CF'

Lastly, I will drop the Database Master Key (it isn’t being used to encrypt other keys, so I am
allowed to do this):

DROP MASTER KEY

How It Works
This example demonstrated creating a Database Master Key for the BookStore database. The only
user-provided information was the password used to encrypt the Database Master Key:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '99a555ac-cf60-472b-9c1e-ed735ffbb089'

The second example also only required a single user-provided argument; the password used to
regenerate the new Database Master Key:

CHAPTER 19 ■ ENCRYPTION552

9802CH19.qxd 6/17/08 10:44 AM Page 552

ALTER MASTER KEY
REGENERATE WITH ENCRYPTION BY PASSWORD = 'uglypassword1C3ED8CF'

The Database Master Key was then dropped using the following command:

DROP MASTER KEY

Backing Up and Restoring a Database Master Key
Like a Service Master Key, the Database Master Key can also be backed up to disk using the
BACKUresP MASTER KEY command. The syntax is as follows:

BACKUP MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'Password'

The command takes two arguments, the first being the path and file name (that the Database
Master Key will be backed up to), and the second being the password used to protect the backup
file.

To restore a Database Master Key from the file backup, the RESTORE MASTER KEY command is
used. The syntax is as follows:

RESTORE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password'
ENCRYPTION BY PASSWORD = 'password'
[FORCE]

This command takes the file name and path, the password used to decrypt the backup file, and
the new password to encrypt the new Database Master Key. The FORCE option forces the Database
Master Key restore, even if all dependent encrypted data in the database cannot be reencrypted
using the new key. This means dependent encrypted data would be unavailable because it cannot
be decrypted—so use this option with caution and as a last resort!

In this first example, I create a master key in the BookStore database and then back up the
Database Master Key to a file:

USE BookStore
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MagneticFields!'
GO

BACKUP MASTER KEY TO FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'
ENCRYPTION BY PASSWORD = '4D280837!!!'

Next, I demonstrate restoring the Database Master Key from file:

RESTORE MASTER KEY FROM FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'
DECRYPTION BY PASSWORD = '4D280837!!!'
ENCRYPTION BY PASSWORD = 'MagneticFields!'

How It Works
As you’ll see in upcoming recipes, the Database Master Key is used to encrypt other subordinate
encryption objects. Therefore, it’s a good idea for you to back up the Database Master Key immedi-
ately after it is first created.

In this recipe, I created a Database Master Key for the user database, and then I backed up the
Database Master Key to file, which was designated in the first argument of the BACKUP MASTER KEY
command:

CHAPTER 19 ■ ENCRYPTION 553

9802CH19.qxd 6/17/08 10:44 AM Page 553

BACKUP MASTER KEY TO FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'

The second line of code designated the password used to encrypt the backup file:

ENCRYPTION BY PASSWORD = '4D280837!!!'

The second example demonstrated restoring the Database Master Key from file. The first line
of code designated the name of the backup file:

RESTORE MASTER KEY FROM FILE = 'C:\Apress\Recipes\BookStore_Master_Key.BAK'

The second line designated the password used to originally encrypt the backup file:

DECRYPTION BY PASSWORD = '4D280837!!!'

The third line of code designated the password used to encrypt the Database Master Key once
it is restored:

ENCRYPTION BY PASSWORD = 'MagneticFields!'

If you tested this example out on your own SQL Server instance, and your Database Master Key
hadn’t changed between the backup and restore, you would see the following message:

The old and new master keys are identical. No data re-encryption is required.

Removing Service Master Key Encryption from the Database
Master Key
When a Database Master Key is created, it is encrypted using two methods by default: the Service
Master Key and the password used in the CREATE MASTER KEY command. If you don’t wish to have
the Database Master Key encrypted by the Service Master Key (so that SQL Server logins with
sysadmin permissions can’t access the encrypted data without knowing the Database Master Key
password), you can drop it using a variation of the ALTER MASTER KEY command.

The abridged syntax is as follows:

ALTER MASTER KEY
ADD ENCRYPTION BY SERVICE MASTER KEY |
DROP ENCRYPTION BY SERVICE MASTER KEY

Since the Service Master Key allows for automatic decryption of the Database Master Key by
users with appropriate permissions (sysadmin, for example), once you drop encryption by the
Service Master Key, you must use a new command to access the Database Master Key if you wish
to modify it. This command is OPEN MASTER KEY, which has the following syntax:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'password'

The CLOSE MASTER KEY command is used once the example is finished using the Database
Master Key (with no additional arguments).

In this example, encryption by the Service Master Key is dropped for the BookStore database:

USE BookStore
GO

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

CHAPTER 19 ■ ENCRYPTION554

9802CH19.qxd 6/17/08 10:44 AM Page 554

To reenable encryption by the Service Master Key, I must first open access to the Database
Master Key, Service Master Key encryption is re-added to the Database Master Key, and then the
Database Master Key is closed again:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'MagneticFields!'

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY

CLOSE MASTER KEY

Once the Service Master Key is used to encrypt the Database Master Key, the Database Master
Key no longer needs to be explicitly opened or closed.

How It Works
This recipe demonstrated removing encryption of the Database Master Key by the Service Master
Key using the ALTER MASTER KEY command:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

Once this is done, any modification of the Database Master Key requires password access using
OPEN MASTER KEY. This was used in order to reapply encryption by the Service Master Key:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'MagneticFieldS!'

The ALTER MASTER KEY was used then to add Service Master Key encryption back again:

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY

After finishing the ALTER MASTER KEY operation, the Database Master Key was closed:

CLOSE MASTER KEY

Asymmetric Key Encryption
An asymmetric key contains a database-side internal public and private key, which can be used to
encrypt and decrypt data in the SQL Server database. Asymmetric keys can be imported from an
external file or assembly, and can also be generated within the SQL Server database.

Unlike a certificate (which is discussed later in the chapter), asymmetric keys cannot be backed
up to a file. This means that if an asymmetric key is created within SQL Server, there isn’t an easy
mechanism for reusing that same key in other user databases.

Asymmetric keys are a highly secure option for data encryption, but they also require more
SQL Server resources when in use. In the next set of recipes, I’ll demonstrate how to create, manage,
and use asymmetric key encryption.

Creating an Asymmetric Key
In this recipe, I’ll demonstrate creating an asymmetric key, which will then be used for encrypting
and decrypting data. The abridged and simplified syntax for creating an asymmetric key is as follows:

CREATE ASYMMETRIC KEY Asym_Key_Name
[FROM PROVIDER Provider_Name]

[AUTHORIZATION database_principal_name]
{FROM <Asym_Key_Source>|

WITH ALGORITHM = <key_option>
[ENCRYPTION BY PASSWORD = 'password']

CHAPTER 19 ■ ENCRYPTION 555

9802CH19.qxd 6/17/08 10:44 AM Page 555

The arguments of this command are described in Table 19-2.

Table 19-2. CREATE ASYMMETRIC KEY Arguments

Argument Description

Asym_Key_Name The name of the asymmetric key.

Provider_Name The Extensible Key Management provider name.

database_principal_name The owner of the asymmetric key.

Asym_Key_Source Options that allow you to define external key sources (file, assembly,
EKM provider).

key_option Algorithm options used when generating a new key, allowing you to
select the security type (RSA_512, RSA_1024, RSA_2048). key_option
also allows you to designate the key name from an EKM provider
and either create or open a key on the EKM device.

Password The password used to encrypt the private key. When not used, the
private key is automatically encrypted by the Database Master Key.

In this example, I create a new asymmetric key in the BookStore database:

USE BookStore
GO

CREATE ASYMMETRIC KEY asymBookSellerKey
WITH ALGORITHM = RSA_512
ENCRYPTION BY PASSWORD = 'EEB0B4DD!!!'

How It Works
This example demonstrated creating an asymmetric key in the BookStore database. The first line of
code designated the name of the new key:

CREATE ASYMMETRIC KEY asymBookSellerKey

The second line of code designated the encryption security type:

WITH ALGORITHM = RSA_512

The third line of code designated the password used to encrypt the asymmetric key:

ENCRYPTION BY PASSWORD = 'EEB0B4DD!!!'

Viewing Asymmetric Keys in the Current Database
You can view all asymmetric keys in the current database by querying the sys.asymmetric_keys
system catalog view. For example:

SELECT name, algorithm_desc, pvt_key_encryption_type_desc
FROM sys.asymmetric_keys

This returns

name algorithm_desc pvt_key_encryption_type_desc
asymBookSellerKey RSA_512 ENCRYPTED_BY_PASSWORD

CHAPTER 19 ■ ENCRYPTION556

9802CH19.qxd 6/17/08 10:44 AM Page 556

How It Works
The sys.asymmetric_keys system catalog view was used to see asymmetric keys in the current data-
base. The first line of code designated the name, security type, and method by which the private key
was encrypted:

SELECT name, algorithm_desc, pvt_key_encryption_type_desc

The second line designated the system catalog view in the FROM clause:

FROM sys.asymmetric_keys

Modifying the Asymmetric Key’s Private Key Password
You can also modify the password of the private key by using the ALTER ASYMMETRIC KEY command
with the ENCRYPTION BY PASSWORD and DECRYPTION BY PASSWORD options.

This recipe’s example demonstrates giving the asymmetric key a new password:

ALTER ASYMMETRIC KEY asymBookSellerKey
WITH PRIVATE KEY
(ENCRYPTION BY PASSWORD = 'newpasswordE4D352F280E0',
DECRYPTION BY PASSWORD = 'EEB0B4DD!!!')

How It Works
In this recipe, I used ALTER ASYMMETRIC KEY to change the private key password. The first line of
code designated the asymmetric key name:

ALTER ASYMMETRIC KEY asymBookSellerKey

I designated the new password in the ENCRYPTION BY PASSWORD argument:

WITH PRIVATE KEY
(ENCRYPTION BY PASSWORD = 'newpasswordE4D352F280E0',

The old private key password was designated in the DECRYPTION BY PASSWORD argument:

DECRYPTION BY PASSWORD = 'EEB0B4DD!!!')

Encrypting and Decrypting Data Using an Asymmetric Key
Using an asymmetric key to encrypt data is a very secure method of maintaining the secrecy of the
data, because a public and private key pair are used.

■Caution Encryption by asymmetric key is a more costly operation when used in conjunction with large data
sets compared to the faster option of encrypting symmetric keys, which use a single key to both encrypt and
decrypt data.

Granted that encrypting data by an asymmetric key is not recommended, you do still have this
as an option. Once an asymmetric key is added to the database, it can be used to encrypt and
decrypt data. To encrypt data, the EncryptByAsmKey function is used.

The syntax is as follows:

EncryptByAsymKey (Asym_Key_ID , { 'plaintext' | @plaintext })

CHAPTER 19 ■ ENCRYPTION 557

9802CH19.qxd 6/17/08 10:44 AM Page 557

The arguments of this command are described in Table 19-3.

Table 19-3. EncryptByAsymKey Arguments

Argument Description

Asym_Key_ID The ID of the asymmetric key to be used to encrypt the data.
The AsymKey_ID function can be used to return the ID of the
asymmetric key.

'plaintext ' | @plaintext The unencrypted text to be encrypted (from a string or a local
variable).

As with encrypting data via a certificate, the EncryptByAsymKey function returns varbinary
encrypted data.

To decrypt data encrypted by a specific asymmetric key, the DecryptByAsymKey function is used.
The syntax is as follows:

DecryptByAsymKey (Asym_Key_ID ,
{ ' ciphertext ' | @ciphertext }
[, ' Asym_Key_Password '])

The arguments of this command are described in Table 19-4.

Table 19-4. DecryptByAsymKey Arguments

Argument Description

Asym_Key_ID The ID of the asymmetric key to be used to decrypt the data. The
Asym_Key_ID system function can be used to return the ID of the
asymmetric key.

'ciphertext' | @ciphertext The encrypted text to be decrypted.

'Asym_Key_Password ' The password of the asymmetric key’s private key (password used
when the asymmetric key was created).

In this example, I’ll create a table containing bank routing information for specific booksellers:

Use BookStore
GO

CREATE TABLE dbo.BookSellerBankRouting
(BookSellerID int NOT NULL PRIMARY KEY,
BankRoutingNBR varbinary(300) NOT NULL)

Next, a new row is inserted into the table using the EncryptByAsymKey on the yet-to-be-
encrypted bank routing number:

INSERT dbo.BookSellerBankRouting
(BookSellerID, BankRoutingNBR)
VALUES (22,
EncryptByAsymKey(AsymKey_ID('asymBookSellerKey'),

'137492837583249ABR'))

Querying the value of BankRoutingNBR for the newly inserted row returns cipher text:

SELECT CAST(BankRoutingNBR as varchar(100)) BankRoutingNBR
FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

CHAPTER 19 ■ ENCRYPTION558

9802CH19.qxd 6/17/08 10:44 AM Page 558

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

This returns

BankRoutingNBR
m(Ì_'dc`Ó«·"ÆöÖï2ö]Œ¡ìåß0'a8___.§6øovP¤îÎwñ@lÈ__µq–@'cda_?Lÿ<_3p'85íàj_{

Next, I’ll use the DecryptByAsymKey function to decrypt the BankRoutingNBR column value. I’ll
also use CAST to convert the varbinary data into varchar data type:

SELECT CAST(DecryptByAsymKey
(AsymKey_ID('asymBookSellerKey'),

BankRoutingNBR,
N'newpasswordE4D352F280E0') as varchar(100)) BankRoutingNBR

FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

This returns

BankRoutingNBR
137492837583249ABR

How It Works
I started this recipe off by creating a table to store encrypted bank routing numbers. The
BankRoutingNBR column was given a varbinary data type in order to stored the encrypted data.
I then performed an INSERT of a row into the table. The two columns to be inserted into were
designated:

INSERT dbo.BookSellerBankRouting
(BookSellerID, BankRoutingNBR)

The BookSellerID was set to a value of 22:

VALUES (22,

The BankRoutingNBR was populated using the EncryptByAsymKey function:

EncryptByAsymKey(

This function took a first parameter of the asymmetric key’s system ID, using the AsymKey_ID
function to convert the key name to the key ID integer value:

AsymKey_ID('asymBookSellerKey'),

The second parameter contained the bank routing number to be encrypted:

'137492837583249ABR'))

The data was then stored in the table in encrypted cipher text. To decrypt the data, the
DescryptByAsymKey function was used. The CAST function was wrapped around it in order to convert
the varbinary value into varchar:

SELECT CAST(

The first parameter of the DecryptByAsymKey function was the asymmetric key’s system ID,
again using the AsymKey_ID to convert the asymmetric key name into the ID:

DecryptByAsymKey
(AsymKey_ID('asymBookSellerKey'),

CHAPTER 19 ■ ENCRYPTION 559

9802CH19.qxd 6/17/08 10:44 AM Page 559

The second parameter was the BankRoutingNBR column from the dbo.BookSellerBankRouting
table:

BankRoutingNBR,

The third parameter was the password of the asymmetric key’s private key:

N'newpasswordE4D352F280E0')

The data type was then converted to varchar(100):

as varchar(100)) BankRoutingNBR
FROM dbo.BookSellerBankRouting
WHERE BookSellerID = 22

This returned the bank routing number in clear, decrypted text.

Dropping an Asymmetric Key
To drop an asymmetric key, use the DROP ASYMMETRIC KEY command. This command takes just one
argument—the name of the asymmetric key.

In this recipe, I drop the asymmetric key created in the previous recipe:

DROP ASYMMETRIC KEY asymBookSellerKey

How It Works
This example demonstrated the simple method of dropping an asymmetric key. Keep in mind that
an asymmetric key can’t be dropped if it was used to encrypt other keys or is mapped to a login.
If you used it to directly encrypt data (not recommended), you will be removing the decryption
method.

Symmetric Key Encryption
Certificates (reviewed later in the chapter) and asymmetric keys encrypt data using a database-side
internal public key and decrypt data using a database-side internal private key. Symmetric keys are
simpler. They contain a key that is used for both encryption and decryption. Consequently, sym-
metric keys encrypt data faster and are more suitable for use against large data sets. Although a
trade-off in terms of encryption complexity, symmetric keys are still considered to be a good option
for encrypting secret data within the database.

In the next set of recipes, I’ll demonstrate how to create, manage, and use symmetric key
encryption.

Creating a Symmetric Key
A symmetric key is a less resource-intensive method of encrypting large amounts of data. Unlike
certificates or asymmetric keys, a symmetric key both encrypts and decrypts the data with a single
internal key. The distinguishing feature of symmetric keys is that the key must be opened for use
within a database session, prior to the encrypting or decrypting of data.

To create a symmetric key, the CREATE SYMMETRIC KEY command is used. The abridged and sim-
plified syntax is as follows:

CHAPTER 19 ■ ENCRYPTION560

9802CH19.qxd 6/17/08 10:44 AM Page 560

CREATE SYMMETRIC KEY key_name [AUTHORIZATION owner_name]
[FROM PROVIDER Provider_Name]
WITH <key_options> [, ... n] |
ENCRYPTION BY <encrypting_mechanism> [, ... n]

The arguments of this command are described in Table 19-5.

Table 19-5. CREATE SYMMETRIC KEY Arguments

Argument Description

key_name Defines the name of the new symmetric key. If prefixed with a # sign, a
temporary key can be created for the current session and user.

owner_name Specifies the database user that owns the key.

Provider_Name Defines the Extensible Key Management provider name.

key_options Specifies options used to define the key source, algorithm (DES |
TRIPLE_DES | TRIPLE_DES_3KEY | RC2 | RC4 | DESX | AES_128 |
AES_192 | AES_256), and optional identity phrase (character-based
phrase is used to generate a GUID that tags data with a temporary key).

Encrypting_mechanism Defines how the symmetric key is protected (certificate, password,
asymmetric key, or another symmetric key).

In this recipe, a new symmetric key is created that is encrypted by an existing database asym-
metric key:

USE BookStore
GO

-- Create asymmetric key used to encrypt symmetric key
CREATE ASYMMETRIC KEY asymBookSellerKey
WITH ALGORITHM = RSA_512
ENCRYPTION BY PASSWORD = 'EEB0B4DD!!!'

-- Create symmetric key
CREATE SYMMETRIC KEY sym_BookStore
WITH ALGORITHM = TRIPLE_DES
ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

How It Works
In this recipe, I demonstrated the creation of a symmetric key, which will then be used to encrypt
data. It must be encrypted using a certificate, password, asymmetric key, or another symmetric key.
In this case, I used an asymmetric key to encrypt it.

After creating the asymmetric key, I used CREATE SYMMETRIC KEY. The first line of code for this
command designated the symmetric key name:

CREATE SYMMETRIC KEY sym_BookStore

The second line of code designated the encryption algorithm used to create the encrypting key:

WITH ALGORITHM = TRIPLE_DES

The last line of code defined the asymmetric key in the current database that would be used to
encrypt the symmetric key:

ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

CHAPTER 19 ■ ENCRYPTION 561

9802CH19.qxd 6/17/08 10:44 AM Page 561

Viewing Symmetric Keys in the Current Database
You can see the symmetric keys in the current database by querying the sys.symmetric_keys system
catalog view:

SELECT name, algorithm_desc
FROM sys.symmetric_keys

This returns

name algorithm_desc
##MS_DatabaseMasterKey## TRIPLE_DES
sym_BookStore TRIPLE_DES

How It Works
The sys.symmetric_keys system catalog view was used to return the name and encryption algo-
rithm of symmetric keys in the current database. Notice that this query against sys.symmetric_keys
also returned a row for the Database Master Key.

Changing How a Symmetric Key Is Encrypted
In this recipe, I’ll demonstrate how to change the way a symmetric key is encrypted using ALTER
SYMMETRIC KEY. Before doing this, however, I must first open it using the OPEN SYMMETRIC KEY
command.

The syntax for OPEN SYMMETRIC KEY is as follows:

OPEN SYMMETRIC KEY Key_name DECRYPTION BY < decryption_mechanism >

The decryption mechanism for opening the key depends on how the key was originally
encrypted. For example, the following symmetric key is opened using the private key password of
an encryption key:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY ASYMMETRIC KEY asymBookSellerKey
WITH PASSWORD = 'EEB0B4DD!!!'

Once opened for use, the key can be changed to use encryption by a password instead (adding
the password encryption first, and then removing the asymmetric key encryption):

ALTER SYMMETRIC KEY sym_BookStore
ADD ENCRYPTION BY PASSWORD = 'hushhush!123'

ALTER SYMMETRIC KEY sym_BookStore
DROP ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

Once finished with the operations, the CLOSE SYMMETRIC KEY command closes the key for use in
the database session:

CLOSE SYMMETRIC KEY sym_BookStore

How It Works
This example demonstrated ways to change how a symmetric key is encrypted, in this case from
using an asymmetric key to using a password instead.

CHAPTER 19 ■ ENCRYPTION562

9802CH19.qxd 6/17/08 10:44 AM Page 562

First, OPEN SYMMETRIC KEY was used to open the key up for modification. The first line of code
designated the symmetric key name:

OPEN SYMMETRIC KEY sym_BookStore

The second line of code designated the name of the asymmetric key used to encrypt the sym-
metric key:

DECRYPTION BY ASYMMETRIC KEY asymBookSellerKey

The third line of code designated the private key password of the asymmetric key:

WITH PASSWORD = 'EEB0B4DD!!!'

Once opened for use, the key was changed to use encryption by a password. The first line of
code designated the symmetric key to modify:

ALTER SYMMETRIC KEY sym_BookStore

The second line of code designated that the symmetric key would be encrypted by a password:

ADD ENCRYPTION BY PASSWORD = 'hushhush!123'

After that, ALTER SYMMETRIC KEY was called again to drop the asymmetric key encryption. The
first line of code designated the symmetric key to be modified:

ALTER SYMMETRIC KEY sym_BookStore

The second line of code designated the asymmetric key encryption to be dropped:

DROP ENCRYPTION BY ASYMMETRIC KEY asymBookSellerKey

Once I finished, the CLOSE SYMMETRIC KEY command was used to close the key for use in the
database session:

CLOSE SYMMETRIC KEY sym_BookStore

Using Symmetric Key Encryption and Decryption
To encrypt data using a symmetric key, the symmetric key must first be opened, and then the
EncryptByKey function used.

The syntax for this function is as follows:

EncryptByKey(key_GUID , { ' cleartext ' | @cleartext }
[, { add_authenticator | @add_authenticator }
, { authenticator | @authenticator }])

The arguments of this command are described in Table 19-6.

Table 19-6. EncryptByKey Arguments

Argument Description

key_GUID The symmetric key global unique identifier (GUID),
which can be derived by using the Key_GUID system
function.

'cleartext' | @cleartext The text to be encrypted.

Continued

CHAPTER 19 ■ ENCRYPTION 563

9802CH19.qxd 6/17/08 10:44 AM Page 563

Table 19-6. Continued

Argument Description

add_authenticator | @add_authenticator A Boolean value (1 or 0) determining whether an
authenticator will be used with the encrypted value.
The data being encrypted can be further encrypted
by using an additional binding value—for example,
the table’s primary key. If the authenticator is
modified (or tampered with), the encrypted data
will not be able to be decrypted.

authenticator | @authenticator The data column used for the authenticator. For
example, you can bind the encrypted data along
with the primary key of the table.

In this example, I will create a new table to hold password hints for customers. The answer to
the password hint is to be encrypted in the table:

USE BookStore
GO

CREATE TABLE dbo.PasswordHint
(CustomerID int NOT NULL PRIMARY KEY,
PasswordHintQuestion varchar(300) NOT NULL,
PasswordHintAnswer varbinary(200) NOT NULL)
GO

Next, I’ll insert a new row into the dbo.PasswordHint table that encrypts the PasswordHintAnswer
column using a symmetric key:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

INSERT dbo.PasswordHint
(CustomerID, PasswordHintQuestion, PasswordHintAnswer)
VALUES
(23, 'What is the name of the hospital you were born in?',
EncryptByKey(Key_GUID('sym_BookStore '), 'Mount Marie'))

CLOSE SYMMETRIC KEY sym_BookStore

To decrypt data that was encrypted by a symmetric key, I’ll use the DecryptByKey command.
Notice that unlike the EncryptByKey command, DecryptByKey doesn’t use the symmetric key GUID,
so the correct symmetric key session must be opened in order to decrypt the data:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

SELECT CAST(DecryptByKey(PasswordHintAnswer) as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 23

CLOSE SYMMETRIC KEY sym_BookStore

This returns

PasswordHintAnswer
Mount Marie

CHAPTER 19 ■ ENCRYPTION564

9802CH19.qxd 6/17/08 10:44 AM Page 564

If you attempted to query the value with the previous query without first opening the symmet-
ric key that was used to encrypt the data, a NULL value would have been returned instead:

PasswordHintAnswer
NULL

As was shown in the EncryptByKey syntax earlier, you can also include an extra authenticator
column value to be used in the encryption of the text data. This additional information helps fur-
ther obscure the cipher text from any meaningful value that could potentially be derived from the
cipher text and other non-encrypted columns in the table.

In this next example, I’ll use the primary key column from the dbo.PasswordHint table. To
demonstrate, I’ll create a new table and add an unencrypted row to it:

CREATE TABLE dbo.BookSellerLogins
(LoginID int NOT NULL PRIMARY KEY,
Password varbinary(256) NOT NULL)
GO

INSERT dbo.BookSellerLogins
(LoginID, Password)
VALUES(22, CAST('myeasypassword' as varbinary))

Next, I’ll open the symmetric key and encrypt the values of the password column in an UPDATE
statement using the symmetric key and the LoginID of the row:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

UPDATE dbo.BookSellerLogins
SET Password =

EncryptByKey(Key_GUID('sym_BookStore'),
Password,
1,
CAST(LoginID as varbinary))

CLOSE SYMMETRIC KEY sym_BookStore

Now, to decrypt the value of this updated row, the DecryptByKey must also include the authen-
ticator column in the function call:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

SELECT LoginID,
CAST(DecryptByKey(Password, 1,
CAST(LoginID as varbinary)) as varchar(30)) Password
FROM dbo.BookSellerLogins

CLOSE SYMMETRIC KEY sym_BookStore

This returns

LoginID Password
22 myeasypassword

CHAPTER 19 ■ ENCRYPTION 565

9802CH19.qxd 6/17/08 10:44 AM Page 565

How It Works
In this recipe, I demonstrated how to encrypt data using EncryptByKey and decrypt it using
DecryptByKey. Before using the function, the symmetric key first had to be opened. The first line
of OPEN SYMMETRIC KEY referenced the symmetric key name:

OPEN SYMMETRIC KEY sym_BookStore

The second line included the password used to access the symmetric key for use:

DECRYPTION BY PASSWORD = 'hushhush!123'

A new row was then inserted, with an encrypted value using EncryptByKey. The first argument
used the Key_GUID function to return the system ID of the symmetric key to be used. The second
argument was the text to be encrypted by the symmetric key:

...
EncryptByKey(Key_GUID('sym_BookStore '), 'Mount Marie'))

The key was then closed after finishing the encryption, referencing the symmetric key for the
argument:

CLOSE SYMMETRIC KEY sym_BookStore

To decrypt the data, the symmetric key was reopened:

OPEN SYMMETRIC KEY sym_BookStore
DECRYPTION BY PASSWORD = 'hushhush!123'

The DecryptByKey function was used, taking just the table column where the encrypted data
was stored as an argument:

SELECT CAST(DecryptByKey(PasswordHintAnswer) as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 23

After returning the decrypted data, the symmetric key was then closed:

CLOSE SYMMETRIC KEY sym_BookStore

Encrypting data using an authenticator was also demonstrated. In the example, the third
parameter was a flag indicating that an authenticator value would be used (1 for True), followed by
the column authenticator (LoginID):

EncryptByKey(Key_GUID('sym_BookStore'),
Password,
1,
CAST(LoginID as varbinary)

The LoginID was converted to varbinary prior to being included in the encrypted data. Using
an authenticator further secures the encrypted data. However, if the accompanying authenticator
LoginID value was changed for the specific row, the encrypted data can no longer be decrypted with
the modified LoginID value.

In the example, the symmetric key was opened, and the DecryptByKey function was used,
including the encrypted column in the first argument, the authenticator flag in the second argu-
ment, and the authenticator column in the third argument (CAST as a varbinary data type):

SELECT LoginID,
CAST(DecryptByKey(Password, 1,
CAST(LoginID as varbinary)) as varchar(30)) Password
FROM dbo.BookSellerLogins

CHAPTER 19 ■ ENCRYPTION566

9802CH19.qxd 6/17/08 10:44 AM Page 566

After returning the decrypted data, the symmetric key was then closed.

Dropping a Symmetric Key
You can remove a symmetric key from the database by using the DROP SYMMETRIC KEY command,
which takes the name of the symmetric key as its single argument.

For example:

DROP SYMMETRIC KEY sym_BookStore

How It Works
In this recipe, I demonstrated dropping a symmetric key from the database. It took a single argu-
ment—the name of the symmetric key. Keep in mind that if the key were open, the DROP command
would fail with an error.

Certificate Encryption
Certificates can be used to encrypt and decrypt data within the database. A certificate contains a
key pair, information about the owner of the certificate, and the valid start and end expiration dates
for the certificate in question. A certificate contains both a public and a private key. As you’ll see in
later recipes, the public key of the certificate is used to encrypt data, and the private key is used to
decrypt data. SQL Server can generate its own certificates, or, if you like, you can load one from an
external file or assembly. Certificates are more portable than asymmetric keys, because they can be
backed up and then loaded from files, whereas asymmetric keys cannot. This means that the same
certificate can easily be reused in multiple user databases. Once a certificate is created, certificate
encryption and decryption functions can then be used against database data.

■Tip Both certificates and asymmetric key database objects provide a very secure method for encrypting data.
This strong method of encryption comes with a performance cost, however. Encrypting very large data sets with a
certificate or asymmetric key may incur too much overhead for your environment. A lower overhead option (but a
less secure one as well) is using a symmetric key, which was reviewed earlier.

In the next set of recipes I’ll demonstrate how to create, manage, and use certificate-based
encryption.

Creating a Database Certificate
To create a new database certificate, the CREATE CERTIFICATE command is used. The simplified and
abridged syntax for creating a new certificate in the database is as follows:

CREATE CERTIFICATE certificate_name [AUTHORIZATION user_name]
{ FROM <existing_keys> | <generate_new_keys> }

The arguments of this command are described in Table 19-7.

CHAPTER 19 ■ ENCRYPTION 567

9802CH19.qxd 6/17/08 10:44 AM Page 567

Table 19-7. CREATE CERTIFICATE Arguments

Argument Description

certificate_name The name of the new database certificate

user_name The database user who owns the certificate

existing_keys The arguments for creating certificates from an existing assembly or
certificate file (and private key file)

generate_new_keys The arguments used for creating a new certificate, including the password,
certificate subject, start date, expiration date, and private key encryption
options

In this example, a new certificate is created in the BookStore database:

USE BookStore
GO

CREATE CERTIFICATE cert_BookStore
ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!'
WITH SUBJECT = 'BookStore Database Encryption Certificate',
START_DATE = '2/20/2008', EXPIRY_DATE = '10/20/2009'

How It Works
In this recipe, I created a new certificate that will be used to encrypt and decrypt data. The first line
of code included the name of the new certificate:

CREATE CERTIFICATE cert_BookStore

The second line included the password used to encrypt the certificate:

ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!'

The third line designated the subject of the certificate, followed by the start and expiration date
for the certificate:

WITH SUBJECT = 'BookStore Database Encryption Certificate',
START_DATE = '2/20/2008', EXPIRY_DATE = '10/20/2009'

Viewing Certificates in the Database
Once the certificate is created in the database, you can view it by querying the sys.certificates
system catalog view:

SELECT name, pvt_key_encryption_type_desc, issuer_name
FROM sys.certificates

This returns

name pvt_key_encryption_type_desc issuer_name
cert_BookStore ENCRYPTED_BY_PASSWORD BookStore ...

CHAPTER 19 ■ ENCRYPTION568

9802CH19.qxd 6/17/08 10:44 AM Page 568

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

How It Works
I queried the sys.certificates system catalog view to see certificates in the current database. The
name column returned the name of the certificate. The pvt_key_encryption_type_desc column in the
result set described how the private key of the certificate was encrypted. The issuer_name returned
the certificate subject.

Backing Up and Restoring a Certificate
Once a certificate is created, it can also be backed up to file for safekeeping or for use in restoring in
other databases using the BACKUP CERTIFICATE command.

The syntax is as follows:

BACKUP CERTIFICATE certname TO FILE = 'path_to_file'
[WITH PRIVATE KEY

(FILE = 'path_to_private_key_file' ,
ENCRYPTION BY PASSWORD = 'encryption_password'

[, DECRYPTION BY PASSWORD = 'decryption_password'])]

The arguments of this command are described in Table 19-8.

Table 19-8. BACKUP CERTIFICATE Arguments

Argument Description

path_to_file The file name and path that the certificate backup is written to

path_to_private_key_file The path and file name to the private key file

encryption_password The private key password used when the certificate was created

decryption_password The private key password used to decrypt the key prior to backup

This example demonstrates backing up the certificate (it assumes I have a matching path of
C:\Apress\Recipes\Certificates on the SQL Server instance):

BACKUP CERTIFICATE cert_BookStore
TO FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'
WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK' ,
ENCRYPTION BY PASSWORD = '3439F6A!!!',
DECRYPTION BY PASSWORD = 'AA5FA6AC!!!')

This backup creates two files, one for the certificate containing the public key (used to encrypt
data), and another containing the password-protected private key (used to decrypt data).

Once backed up, you can use the certificate in other databases, or drop the existing certificate
using the DROP CERTIFICATE command (which uses the certificate name as its argument) and restore
it from backup, as this example demonstrates:

DROP CERTIFICATE cert_BookStore
GO

CREATE CERTIFICATE cert_BookStore
FROM FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'
WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A!!!',
ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!')

CHAPTER 19 ■ ENCRYPTION 569

9802CH19.qxd 6/17/08 10:44 AM Page 569

How It Works
This recipe demonstrated backing up a certificate to external files using BACKUP CERTIFICATE, drop-
ping it using DROP CERTIFICATE, and then re-creating it from file using CREATE CERTIFICATE.

Walking through the code, the first line of the backup referenced the certificate name:

BACKUP CERTIFICATE cert_BookStore

The TO FILE clause included the file name where the public key of the certificate would be
backed up to:

TO FILE = 'C:\Apress\Recipes\Certificates\certBookStore.BAK'

The WITH PRIVATE KEY clause designated the file where the private key backup would be output
to, along with the encryption (the private key password used when the certificate was created) and
decryption (the private key password used to decrypt the key prior to back up) passwords:

WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK' ,
ENCRYPTION BY PASSWORD = '3439F6A!!!',
DECRYPTION BY PASSWORD = 'AA5FA6AC!!!')

After removing the existing certificate using DROP CERTIFICATE, the certificate was then re-
created from the backup files. The first line of CREATE CERTIFICATE referenced the certificate name:

CREATE CERTIFICATE cert_BookStore

The FROM FILE clause designated the location of the public key backup file:

FROM FILE =
'C:\Apress\Recipes\Certificates\certBookStore.BAK'

The WITH PRIVATE KEY clause designated the location of the private key file, followed by the
decryption and encryption passwords:

WITH PRIVATE KEY (FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',
DECRYPTION BY PASSWORD = '3439F6A!!!',
ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!')

Managing a Certificate’s Private Key
You can add or remove the private key of a certificate by using the ALTER CERTIFICATE command.
This command allows you to remove the private key (defaulting to encryption by the Database
Master Key), add the private key, or change the private key password.

The following example drops the private key from the certificate:

ALTER CERTIFICATE cert_BookStore
REMOVE PRIVATE KEY

As with CREATE CERTIFICATE, you can also re-add a private key from a backup file to an existing
certificate using ALTER CERTIFICATE:

ALTER CERTIFICATE cert_BookStore
WITH PRIVATE KEY
(FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A!!!',
ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!')

ALTER CERTIFICATE can also be used to change the password of an existing private key:

CHAPTER 19 ■ ENCRYPTION570

9802CH19.qxd 6/17/08 10:44 AM Page 570

ALTER CERTIFICATE cert_BookStore
WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'AA5FA6AC!!!',
ENCRYPTION BY PASSWORD = 'mynewpassword!!!Efsj')

The DECRYPTION BY PASSWORD was the old private key password, and the ENCRYPTION BY
PASSWORD the new private key password.

How It Works
This recipe demonstrated how to modify the way that a certificate is encrypted. The private key was
removed from the certificate using ALTER CERTIFICATE and REMOVE PRIVATE KEY:

ALTER CERTIFICATE cert_BookStore
REMOVE PRIVATE KEY

To add it back again, I also used ALTER CERTIFICATE. The first line referenced the certificate
name:

ALTER CERTIFICATE cert_BookStore

The WITH PRIVATE KEY clause designated the location of the private key file, along with the
decryption and encryption passwords:

WITH PRIVATE KEY
(FILE = 'C:\Apress\Recipes\Certificates\certBookStorePK.BAK',

DECRYPTION BY PASSWORD = '3439F6A!!!',
ENCRYPTION BY PASSWORD = 'AA5FA6AC!!!')

Finally, I modified the certificate’s private key password. The first line referenced the certificate
name:

ALTER CERTIFICATE cert_BookStore

The WITH PRIVATE KEY clause designated the decryption password and the new encryption
password:

WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'AA5FA6AC!!!',
ENCRYPTION BY PASSWORD = 'mynewpassword!!!Efsj')

Using Certificate Encryption and Decryption
Once you have a certificate in the database, you can use the EncryptByCert system function to
encrypt data using the certificate’s public key. Encryption allows you to protect sensitive table data.
Without the associated private key, the data will be unreadable.

The syntax for EncryptByCert is as follows:

EncryptByCert (certificate_ID , { ' cleartext ' | @cleartext })

The arguments of this command are described in Table 19-9.

Table 19-9. EncryptByCert Arguments

Argument Description

certificate_ID The certificate ID of the certificate used to encrypt the data

' cleartext ' | @cleartext The unencrypted text to be encrypted

CHAPTER 19 ■ ENCRYPTION 571

9802CH19.qxd 6/17/08 10:44 AM Page 571

In order to retrieve the certificate ID of a specific database certificate, you can use the Cert_ID
function, which takes the certificate name as its single argument:

Cert_ID (' cert_name ')

To decrypt data that has been encrypted by a certificate, use the DecryptByCert function. This
function uses the internal private key of the certificate to decrypt the data (the private key requires
the private key password defined when the certificate was created):

DecryptByCert (certificate_ID ,
{ ' ciphertext ' | @ciphertext }
[, { ' cert_password ' | @cert_password }])

The arguments of this command are described in Table 19-10.

Table 19-10. DecryptByCert Arguments

Argument Description

certificate_ID The certificate ID of the certificate used to decrypt
the data

' ciphertext ' | @ciphertext The encrypted text to be decrypted

' cert_password ' | @cert_password The private key password of the certificate used to
decrypt the data

In this example, I’ll perform an INSERT into the PasswordHintAnswer table with data that is
encrypted by the public key of the certificate:

USE BookStore
GO

INSERT dbo.PasswordHint
(CustomerID, PasswordHintQuestion, PasswordHintAnswer)
VALUES
(1, 'What is the name of the hospital you were born in?',

EncryptByCert(Cert_ID('cert_BookStore'), 'Hickman Hospital'))

The next query shows the newly inserted row:

SELECT CAST(PasswordHintAnswer as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 1

This returns unintelligible cipher text instead of the original text value:

PasswordHintAnswer
o‹_*_1/2bYy-X–_Î`'5BuÄ*n«ßR_.´jõÑ†£sÙ_"ùüÔ_ÄÆ7(c)±w__Àa_3U_'c9_›¨

This next example demonstrates querying the PasswordHintAnswer column, this time using the
private key of the certificate to view the decrypted results:

SELECT CAST(DecryptByCert(
Cert_ID('cert_BookStore'),
PasswordHintAnswer,
N'mynewpassword!!!Efsj')

as varchar(200)) PasswordHintAnswer
FROM dbo.PasswordHint
WHERE CustomerID = 1

CHAPTER 19 ■ ENCRYPTION572

9802CH19.qxd 6/17/08 10:44 AM Page 572

This returns

PasswordHintAnswer
Hickman Hospital

How It Works
In this recipe’s example, a table was created with a varbinary data type column that was used to
hold encrypted information. This data type was chosen because the EncryptByCert function returns
varbinary encrypted data. The first parameter of the EncryptByCert function took the certificate ID,
followed by the text to be encrypted:

EncryptByCert(Cert_ID('cert_BookStore'), 'Hickman Hospital')

This text to be encrypted can be of the nvarchar, varchar, char, or nchar data types. The data is
actually stored, however, in varbinary. If you attempt to convert the varbinary data to the original
text data type, without the DecryptByCert function and the appropriate certificate and password,
only encrypted garble is returned.

The encrypted string was then decrypted using the private key of the same certificate. The
function’s first parameter was the certificate ID, followed by the encrypted text in the second
parameter. The third parameter was the private key password used when the certificate was created:

DecryptByCert(Cert_ID('cert_BookStore'), PasswordHintAnswer,
N'mynewpassword!!!Efsj') PasswordHintAnswer

The results of the function were also CAST back into the varchar data type, in order to display
the original text.

Automatically Opening and Decrypting via a Symmetric Key
Earlier in the chapter, you saw a demonstration of opening a symmetric key that was encrypted by
an asymmetric key. This operation involved two steps, the first being an OPEN SYMMETRIC KEY com-
mand, followed by the actual DecryptByKey function call. SQL Server also provides two additional
decryption functions that allow you to combine the two aforementioned steps into a single opera-
tion: DecryptByKeyAutoAsymKey for symmetric keys encrypted by asymmetric keys and
DecryptByKeyAutoCert for symmetric keys encrypted by certificates.

DecryptByKeyAutoAsymKey and DecryptByKeyAutoCert both use similar syntax to their counter-
parts, only they also include an argument containing the asymmetric key or certificate password.

I’ll begin this recipe by creating a new asymmetric key, and then a symmetric key that will be
encrypted by the new asymmetric key (the asymmetric key in this scenario will be encrypted by the
Database Master Key, so no password is used). Here’s the code involved:

USE BookStore
GO
CREATE ASYMMETRIC KEY asymBookSell_V2
WITH ALGORITHM = RSA_512

CREATE SYMMETRIC KEY sym_BookStore_V2
WITH ALGORITHM = TRIPLE_DES
ENCRYPTION BY ASYMMETRIC KEY asymBookSell_V2

CHAPTER 19 ■ ENCRYPTION 573

9802CH19.qxd 6/17/08 10:44 AM Page 573

Next, I will insert a new row into the dbo.PasswordHint table:

OPEN SYMMETRIC KEY sym_BookStore_V2
DECRYPTION BY ASYMMETRIC KEY asymBookSell_V2

INSERT dbo.PasswordHint
(CustomerID, PasswordHintQuestion, PasswordHintAnswer)
VALUES
(45, 'What is the name of the hospital you were born in?',
EncryptByKey(Key_GUID('sym_BookStore_V2'), 'Sister Helen'))

CLOSE SYMMETRIC KEY sym_BookStore_V2

Now I will demonstrate the DecryptByKeyAutoAsymKey function, which allows me to avoid
having to use two separate operations to decrypt the table value:

SELECT CAST(
DecryptByKeyAutoAsymKey
(ASYMKEY_ID('asymBookSell_V2'),
NULL,
PasswordHintAnswer) as varchar)

FROM dbo.PasswordHint
WHERE CustomerID = 45

This returns

Sister Helen

How It Works
In this recipe, I created a new asymmetric key and then a symmetric key encrypted by the newly
created asymmetric key. After that, I opened up the key and inserted a new row, encrypting the
value of the PasswordHintAnswer column. To view the decrypted data, I did not have to reopen the
symmetric key. Instead, I called the DecryptByKeyAutoAsymKey function. The first argument of the
function call was the asymmetric key ID of the asymmetric key:

SELECT CAST(
DecryptByKeyAutoAsymKey
(ASYMKEY_ID('asymBookSell_V2'),

The second parameter was for the asymmetric key password. Since the asymmetric key I cre-
ated was by encrypted implicitly by the Database Master Key, I used a NULL value for the argument:

NULL,

The third parameter was the encrypted column to be decrypted:

PasswordHintAnswer) as varchar)
FROM dbo.PasswordHint
WHERE CustomerID = 45

The entire function call was wrapped in a CAST function in order to display the results in the
varchar data type.

CHAPTER 19 ■ ENCRYPTION574

9802CH19.qxd 6/17/08 10:44 AM Page 574

Transparent Data Encryption
SQL Server 2008 introduces Transparent Data Encryption, or TDE, which allows you to fully encrypt
the database files without modifying application code. When a user database is available and has
TDE enabled, encryption occurs at the page level when written to disk. Decryption takes place
when the data page is read into memory. If the database files or database backup are stolen, they
will not be accessible without the certificate originally used to encrypt it.

The following two recipes will demonstrate how to enable and maintain Transparent Data
Encryption.

Enabling Transparent Data Encryption
In this recipe, I’ll demonstrate how to enable Transparent Data Encryption for a user-defined data-
base. The first step in preparing a database for TDE is to create a master key and certificate in the
master system database:

USE master
GO

CREATE MASTER KEY ENCRYPTION
BY PASSWORD = '834BACDA-10E6-4BBC-A698-952533E54337'
GO

CREATE CERTIFICATE TDE_Server_Certificate
WITH SUBJECT = 'Server-level cert for TDE'
GO

Now that I have a server-level certificate, I will use it to encrypt the Database Encryption Key of
the database where I want to enable TDE. The DEK is the encryption key that will actually be used
to encrypt the entire database. The syntax is relatively straightforward, so I’ll continue with the
recipe and explain some of the options in more detail in the “How It Works” section. I execute the
following command in the context of the user database that I wish to encrypt:

USE BookStore
GO

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = TRIPLE_DES_3KEY
ENCRYPTION BY SERVER CERTIFICATE TDE_Server_Certificate
GO

Now that I have defined the DEK, the last step in this recipe is to actually encrypt the database.
This is set using the ALTER DATABASE command and the ENCRYPTION option:

ALTER DATABASE BookStore
SET ENCRYPTION ON
GO

To validate that the database is actually encrypted, I will execute the following query against
sys.databases:

SELECT is_encrypted
FROM sys.databases
WHERE name = 'BookStore'

CHAPTER 19 ■ ENCRYPTION 575

9802CH19.qxd 6/17/08 10:44 AM Page 575

This returns 1 for true:

is_encrypted
1

How It Works
This recipe demonstrated each of the steps required to enable TDE for a database. In the first step of
this recipe, I am assuming that the master key hasn’t already been created for the master system
database. Assuming not, I created it, along with a certificate that I would then use to encrypt the
DEK.

I then switched the database context to the user-defined database and created the DEK. The
first line of code is standard—I didn’t need to define a specific name for the key:

CREATE DATABASE ENCRYPTION KEY

In the second line of the command, I define the algorithm strength. My choices were AES_128,
AES_192, AES_256, and TRIPLE_DES_3KEY:

WITH ALGORITHM = TRIPLE_DES_3KEY

The last line of the command defined which server-level certificate (existing in the master
database) I would use to encrypt the DEK:

ENCRYPTION BY SERVER CERTIFICATE TDE_Server_Certificate
GO

After the DEK was created for the BookStore database, I was then able to enable TDE using the
ALTER DATABASE command. The first line defined the target database:

ALTER DATABASE BookStore

The second line defined that encryption should be set to ON:

SET ENCRYPTION ON
GO

Once enabled, your data files “at rest” are encrypted. Without the server certificate used to
encrypt the DEK, a stolen database cannot be restored or properly attached to another SQL Server
instance, nor can the files themselves be hacked.

If a DBA wishes to legitimately move the database from one SQL Server instance to another,
she can back up the server-level certificate and create it on the second server. This will allow the
TDE backup to be restored or data/log files to be attached.

Managing and Removing TDE
This next recipe will demonstrate common tasks for managing and also removing TDE from a data-
base.

In this first query, I will demonstrate regenerating the algorithm strength of the existing DEK.
Originally, the DEK was defined as TRIPLE_DES_3KEY, but in this next query I will change this to use
AES_128:

ALTER DATABASE ENCRYPTION KEY
REGENERATE WITH ALGORITHM = AES_128

CHAPTER 19 ■ ENCRYPTION576

9802CH19.qxd 6/17/08 10:44 AM Page 576

To validate my change, I can query the new catalog view sys.dm_database_encryption_keys:

SELECT DB_NAME(database_id) databasenm,
CASE encryption_state

WHEN 0 THEN 'No encryption'
WHEN 1 THEN 'Unencrypted'
WHEN 2 THEN 'Encryption in progress'
WHEN 3 THEN 'Encrypted'
WHEN 4 THEN 'Key change in progress'
WHEN 5 THEN 'Decryption in progress'

END encryption_state,
key_algorithm,
key_length

FROM sys.dm_database_encryption_keys

This returns information on all databases and associated DEK status. Notice that there are two
rows in the result set. The tempdb database is included in this, as it too must now encrypt data—
since the encryption processing for any user databases can involve tempdb processing as well:

Databasenm encryption_state key_algorithm key_length
Tempdb Encrypted AES 256
BookStore Encrypted AES 128

In addition to changing the algorithm of the DEK, I can also change the server-level certificate
that I can use to encrypt the DEK (in case you feel that the server certificate was compromised or
you must rotate it periodically):

USE master
GO

CREATE CERTIFICATE TDE_Server_Certificate_V2
WITH SUBJECT = 'Server-level cert for TDE V2'
GO

USE BookStore
GO

ALTER DATABASE ENCRYPTION KEY
ENCRYPTION BY SERVER CERTIFICATE TDE_Server_Certificate_V2

To remove TDE for the database, I execute the following command:

ALTER DATABASE BookStore
SET ENCRYPTION OFF
GO

At this point, I can clean up my work and drop the DEK (you may need to give SQL Server time
to decrypt the data before removing the key—particularly for larger databases):

USE BookStore
GO

DROP DATABASE ENCRYPTION KEY

CHAPTER 19 ■ ENCRYPTION 577

9802CH19.qxd 6/17/08 10:44 AM Page 577

How It Works
This recipe demonstrated how to manage a database that is configured with TDE, along with its
associated DEK. The DEK algorithm can be modified using the ALTER DATABASE ENCRYPTION KEY
command. This command is also used if you wish to modify which server-level certificate (in the
master database) is used to encrypt the DEK. To remove encryption, I used ALTER DATABASE and SET
ENCRYPTION OFF. At that point, I was then able to drop the database DEK. If this was the last user-
defined database using TDE on the SQL Server instance, the system database tempdb will revert to
unencrypted after the SQL Server instance is restarted.

CHAPTER 19 ■ ENCRYPTION578

9802CH19.qxd 6/17/08 10:44 AM Page 578

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Service Broker

Service Broker allows you to build asynchronous, database-driven messaging applications. Using
Service Broker, application tasks can keep moving forward while messages are handled in their own
required timeframe. Service Broker allows one database to send a message to another without wait-
ing for a response, so the sending database will continue to function, even if the remote database
cannot process the message immediately. Service Broker is reviewed in this book because it can be
managed entirely by using SQL Server Transact-SQL objects and commands.

Service Broker provides message queuing for SQL Server. It provides a means for you to send
an asynchronous, transactional message from within a database to a queue, where it will be picked
up and processed by another service, possibly running on another database or server. Again, with
asynchronous programs, a message is sent, and the application can proceed with other related
tasks without waiting for confirmation that the original message was received or processed. Once
the specific task is finished, the conversation between the two Service Broker services is explicitly
ended by both sides.

Service Broker includes several out-of-the-box features that address complex factors you may
often encounter when trying to build your own asynchronous messaging system. For example,
Service Broker messages are guaranteed to be received in the proper order, or in the order in which
they were initially sent. These messages are also only received once (the broker guarantees that
there will be no duplicate reads) and can be sent as part of the same conversation, correlated to the
same instance of a task. Another benefit of Service Broker is the guaranteed delivery of messages. If
the target database (the recipient of the first message) isn’t available when the first message trans-
mission is attempted, the message will be queued on the initiator database (the sender of the first
message), and an attempt will be made to send the message when the receiving database becomes
available. These messages are also recoverable in the event of a database failure, as Service Broker is
built within a SQL Server database and can be backed up along with the rest of the database.

This chapter will provide a high-level overview of Service Broker objects and commands by
setting up the BookStore/BookDistribution Service Broker application, using a stored procedure to
automatically process messages in a Service Broker queue, and enabling Service Broker applica-
tions to communicate remotely across SQL Server instances. For very active Service Broker
applications, SQL Server 2008 introduces the ability to prioritize conversations using the CREATE
BROKER PRIORITY command, which I will also demonstrate in this chapter. Using this functionality,
you can designate the priority of less or more important conversations in order to make sure mes-
sages flow appropriately.

I’ll finish the chapter with a review and demonstration of event notification functionality. Event
notifications work with Service Broker to allow you to track database and SQL Server instance
events, similar to SQL Trace—only unlike SQL Trace, the event notifications are asynchronous and
have a minimal impact on overall SQL Server instance performance.

579

C H A P T E R 2 0

9802CH20.qxd 6/17/08 4:12 PM Page 579

Example Scenario: Online Bookstore
In a hypothetical online bookstore, an order is placed by a customer for a book. The purchase is
made and recorded to the BookStore database, which uses built-in Service Broker functionality to
send a message to the BookDistribution database. The BookDistribution database is used by a sep-
arate application that handles warehouse stocking and distribution delivery. These two separate
databases can exist on the same or different SQL Server instances.

Continuing with the hypothetical example, the BookStore database starts a conversation with
the other database by submitting a book order message. This book order is sent to a queue on the
BookDistribution database, where the receiving service program can either pick up the message
right away or defer processing for a later time. The original transaction on the BookStore database
is not held up because the communication is being conducted asynchronously. For example, the
application can proceed with other tasks, such as sending an order confirmation to the customer
or updating other dependent tables used within the hypothetical application. When the
BookDistribution database is ready to process the order, Service Broker allows it to pluck the
message from the queue, extract the message information, and process it accordingly. The
BookDistribution program can then send a message back to the BookStore database confirming
that the order was received, and then take its own actions to get the book sent to the customer.

Creating a Basic Service Broker Application
In this next set of recipes, I’ll demonstrate setting up an application that places a book order in the
BookStore database. This book order is sent asynchronously to the BookDistribution database on
the same SQL Server instance. Once the BookDistribution database gets a chance to process it,
BookDistribution will send an order confirmation response. The task is then finished, and the con-
versation between Service Broker services is ended.

The following is a general list of steps used to put together a Service Broker application when
both databases reside on the same SQL Server instance:

1. Define the asynchronous tasks that you want your application to perform. Service Broker is
ideal for applications that perform loosely coupled actions, such as triggering messages and
responses that can span over several minutes, hours, or days, while still letting other appli-
cation tasks move ahead with other actions.

2. Determine whether the Service Broker initiator and target services will be created on the
same SQL Server instance or span two SQL Server instances. Multi-instance communica-
tion requires extra steps to establish authentication via certificates or NT security and to
create endpoints, routes, and dialog security.

3. If not already enabled, set the ENABLE_BROKER and TRUSTWORTHY database options for the par-
ticipating databases using ALTER DATABASE.

4. Create a Database Master Key for each participating database (see Chapter 19 for more on
the Database Master Key).

5. Create the message types that you wish to be sent between services. Message types define
the type of data contained within a message that is sent from a Service Broker endpoint (ini-
tiator service or target service). These should be added on both databases participating in
the Service Broker application.

6. Create a contract to define the kinds of message types that can be sent by the initiator and
the message types that can be sent by the target. Contracts define which message types
can be sent or received at a task level. This contract should be added to both participating
databases.

CHAPTER 20 ■ SERVICE BROKER580

9802CH20.qxd 6/17/08 4:12 PM Page 580

7. Create a queue on both participating databases to hold messages. A queue stores messages.
You can query a queue with the SELECT statement or use the RECEIVE command to retrieve
one or more messages from the queue. Each queue can also be defined with an activation
stored procedure or application, which will automatically handle messages when they are
received in the queue.

8. Create a service on both participating databases that binds the specific contract to a specific
queue. A service defines the endpoint, which is used to bind a message queue to one or
more contracts.

Once these steps are followed, you are ready to create new dialog conversations (a dialog con-
versation is the act of exchanging messages between services) and send/receive messages between
the Service Broker services. The first recipe in this section will demonstrate how to enable SQL
Server databases for Service Broker activity.

■Tip As you’ll see in this chapter, several Service Broker commands require that if the statement isn’t the first
statement in the batch, the preceding statement must be terminated with a semicolon statement terminator.

Enabling Databases for Service Broker Activity
The demonstration starts in the master database, where ALTER DATABASE is used to ensure that both
the ENABLE_BROKER and TRUSTWORTHY database setting are enabled for both participating databases:

USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookStore')

CREATE DATABASE BookStore
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookDistribution')

CREATE DATABASE BookDistribution
GO

ALTER DATABASE BookStore SET ENABLE_BROKER
GO
ALTER DATABASE BookStore SET TRUSTWORTHY ON
GO

ALTER DATABASE BookDistribution SET ENABLE_BROKER
GO
ALTER DATABASE BookDistribution SET TRUSTWORTHY ON
GO

CHAPTER 20 ■ SERVICE BROKER 581

9802CH20.qxd 6/17/08 4:12 PM Page 581

How It Works
This recipe used ALTER DATABASE to enable Service Broker activity for the database. To disable
Service Broker, you can use the DISABLE_BROKER database option.

Creating the Database Master Key for Encryption
Service Broker uses dialog security when conversations span multiple databases. In order for this
security to take effect, each participating database must have a Database Master Key.

In the BookStore database, a Database Master Key is created, in order to allow for encrypted
messages between the two local databases:

USE BookStore
GO

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = 'D4C86597'
GO

Now the same is done for the BookDistribution database:

USE BookDistribution
GO

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '50255686DDC5'
GO

How It Works
See Chapter 19 for details on how to create Database Master Keys for a database. In this case, I
created one for each database participating in the Service Broker application.

Managing Message Types
Message types define the type of data contained within a message sent from a Service Broker end-
point (initiator or target). Think of a message type as the message template (but not the actual
message), defining the name, owner, and type of message content.

The CREATE MESSAGE TYPE command is used to create a new message type. Its syntax is as
follows:

CREATE MESSAGE TYPE message_type_name
[AUTHORIZATION owner_name]
[VALIDATION =
{ NONE | EMPTY |
WELL_FORMED_XML |
VALID_XML WITH SCHEMA COLLECTION schema_collection_name }]

The arguments of this command are described in Table 20-1.

Table 20-1. CREATE MESSAGE TYPE Arguments

Argument Description

message_type_name This option defines the name of the message type.

owner_name This argument specifies the database owner of the message
type.

CHAPTER 20 ■ SERVICE BROKER582

9802CH20.qxd 6/17/08 4:12 PM Page 582

Argument Description

NONE |EMPTY |WELL FORMED XML | These settings define the message validation. When NONE,
VALID XML WITH SCHEMA COLLECTION no validation is performed. When EMPTY, the message body
schema_collection_name has to be NULL. When WELL FORMED XML is chosen, the body

has to contain well-formed XML. When VALID XML WITH
SCHEMA COLLECTION is chosen, the message body must
conform to a specific XML schema.

Continuing with the online bookstore example, the first Service Broker objects created are the
two message types that will be exchanged between the databases. The first is a message type that is
used to send the book order:

Use BookStore
GO

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

The second message type will be sent by the target database to confirm that it has received the
book order. Both message types will use a well-formed XML message body, which means that valid
XML must be supplied as message content, but no schema-based validation will be performed on
the message content:

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

Now I’ll change the database context to the BookDistribution database, and the same
message types and contract that were created in the BookStore database are also created in the
BookDistribution database. Without creating the same message types, the receiving database
would not be able to accept the incoming message. Communication structures are a two-way
street, with each side having to understand the messages to be exchanged in the dialog
conversation:

USE BookDistribution
GO

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

How It Works
In this recipe, two different recipe types were created in both databases that will participate in the
online bookstore example. In the first line of code in the CREATE MESSAGE TYPE, the name was desig-
nated in square brackets. This is the name of the message type that will be used to send a book
order message:

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]

CHAPTER 20 ■ SERVICE BROKER 583

9802CH20.qxd 6/17/08 4:12 PM Page 583

The message validation type was designated as well-formed XML:

VALIDATION = WELL_FORMED_XML
GO

Another message was created using the same validation type, this time with a different mes-
sage type name. This is the message type that will be used to respond to book order messages:

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

Notice that I don’t actually define the contents of the message. The actual message is an
instance of the message type and will be demonstrated in the “Initiating a Dialog” recipe.

Creating Contracts
Contracts define which message types can be sent or received at a task level. An example of a task
could be “place a book order to the distribution center.” Each task in your application should define
a separate contract, based on the type of messages exchanged between the initiator of the conver-
sation and the target. Contracts also define the intended direction of the message types (initiator to
target, target to initiator).

To create a new contract, use the CREATE CONTRACT command. The abridged syntax is as follows:

CREATE CONTRACT contract_name
[AUTHORIZATION owner_name]

({ message_type_name
SENT BY
{ INITIATOR | TARGET | ANY }
} [,...n])

The arguments of this command are described in Table 20-2.

Table 20-2. CREATE CONTRACT Arguments

Argument Description

contract_name This defines the name of the new contract.

owner_name This specifies the database owner of the contract.

message_type_name This defines the name of the message type included in the contract.

INITIATOR | TARGET | ANY The SENT BY options define which directions a message type can be
sent. When INITIATOR, only the service that starts the conversation
can send the specific message type. When TARGET, only the target of
the conversation can send the specific message type. ANY allows the
message to be sent by both the initiator and target.

[,...n] More than one message type can be defined within the contract
definition.

Continuing with the online bookstore example, a contract is created on the BookStore database
that defines which messages can be sent by the initiator (BookStore database) or the target
(BookDistribution database):

Use BookStore
GO
CREATE CONTRACT

[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

CHAPTER 20 ■ SERVICE BROKER584

9802CH20.qxd 6/17/08 4:12 PM Page 584

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

Now I’ll switch context to the BookDistribution database and create the same contract:

USE BookDistribution
GO

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

How It Works
This recipe demonstrated creating a new contract in both the BookStore and BookDistribution
databases. In order for the conversation to be successful, the contract definition must be identical
for both the initiator and the target. The first argument of the CREATE CONTRACT command included
the contract name:

CREATE CONTRACT
[//SackConsulting/BookOrderContract]

In parentheses, the allowed message types created in the previous recipe are designated, along
with a definition of which role can use a message type:

([//SackConsulting/SendBookOrder]
SENT BY INITIATOR,

[//SackConsulting/BookOrderReceived]
SENT BY TARGET

)
GO

The BookStore database is where the [//SackConsulting/SendBookOrder] message will be sent
from (the INITIATOR), and the BookDistribution database is from where the [//SackConsulting/
BookOrderReceived] message will be sent (the TARGET).

Creating Queues
A queue stores messages. You can query a queue with a SELECT statement or use the RECEIVE com-
mand to retrieve one or more messages from the queue.

Upon creation, a queue can be bound to a stored procedure that will handle messages when
they arrive (see the “Creating a Stored Procedure to Process Messages” section found later in the
chapter). Retrieval programs can also be external to SQL Server (such as .NET-based programs);
however, stored procedures provide an easy-to-implement solution.

To create a new queue, the CREATE QUEUE command is used. The syntax is as follows:

CREATE QUEUE <object>
[WITH
[STATUS = { ON | OFF } [,]]

CHAPTER 20 ■ SERVICE BROKER 585

9802CH20.qxd 6/17/08 4:12 PM Page 585

[RETENTION = { ON | OFF } [,]]
[ACTIVATION (

[STATUS = { ON | OFF } ,]
PROCEDURE_NAME = <procedure> ,
MAX_QUEUE_READERS = max_readers ,
EXECUTE AS { SELF | 'user_name' | OWNER }
)]

]
[ON { filegroup | [DEFAULT] }]

The arguments of this command are described in Table 20-3.

Table 20-3. CREATE QUEUE Arguments

Argument Description

object This defines the database, schema, and associated name of
the new queue.

STATUS = { ON | OFF } When STATUS is ON, the queue is available for use. When
OFF, messages can’t be added or removed from the queue.

RETENTION = { ON | OFF } When RETENTION is ON, received or sent messages for the
queue are kept until the conversation is done (allowing a
prolonged view of in-progress messages in the
conversation). When OFF (which is the default), messages
are not retained after being either sent or received (and
retrieved). Retained messages are available for reporting
within the queue, but without risk of duplicate sending or
receiving.

STATUS When ON, the designated stored procedure will be activated
to receive messages (up to the number designated in the
max_readers argument). When OFF, the stored procedure
isn’t activated for the queue.

PROCEDURE_NAME This indicates the name of the stored procedure that will
process [schema_name messages for the queue. This can be
fully qualified, using the database name, schema, and
stored procedure name.

MAX_QUEUE_READERS = max_readers Multiple instances of the queue reader stored procedure
can be activated at the same time, from 0 to 32767
instances.

EXECUTE AS EXECUTE AS defines what database user account the stored
procedure runs under. When SELF, it runs under the
context of the current user. Otherwise, a specific user
name can be designated.

ON { filegroup [DEFAULT] } Like a table, a queue can be placed on a specific filegroup.
If not explicitly designated, the queue is placed on the
DEFAULT filegroup.

Continuing with the online bookstore application example, a queue is created in the BookStore
database to hold incoming messages from the BookDistribution database. It is created with a status
of enabled:

CHAPTER 20 ■ SERVICE BROKER586

9802CH20.qxd 6/17/08 4:12 PM Page 586

Use BookStore
GO

CREATE QUEUE BookStoreQueue
WITH STATUS=ON
GO

The CREATE QUEUE command also has activation options that allow you to bind a program to it
for automatically processing messages. This will be demonstrated later on in the “Creating a Stored
Procedure to Process Messages” section. But in the meantime, message exchanges from queues will
be handled manually in this example.

Next, I’ll create a new queue to the BookDistribution database for messages that will be
received from the BookStore database:

USE BookDistribution
GO

CREATE QUEUE BookDistributionQueue
WITH STATUS=ON
GO

How It Works
In this example, a queue was created in both databases. The first queue created in BookStore was
called BookStoreQueue:

CREATE QUEUE BookStoreQueue

The second line of code designated that the queue is created in an enabled state:

WITH STATUS=ON

The second queue was created in the BookDistribution database and used a different name,
BookDistributionQueue. It too was created in an enabled state.

Creating Services
A service defines the endpoint, which is then used to bind a message queue to one or more con-
tracts. Services make use of queues and contracts to define a task or set of tasks.

A service is both the initiator and the receiver of messages, enforcing the rules of the contract
and routing the messages to the proper queue.

To create a new service, the CREATE SERVICE command is used. The abridged syntax is as
follows:

CREATE SERVICE service_name
[AUTHORIZATION owner_name]
ON QUEUE [schema_name.]queue_name
[(contract_name [,...n])]

The arguments of this command are described in Table 20-4.

CHAPTER 20 ■ SERVICE BROKER 587

9802CH20.qxd 6/17/08 4:12 PM Page 587

Table 20-4. CREATE SERVICE Arguments

Argument Description

service_name The name of the new service.

owner_name The owning database user or role of the service.

[schema_name.]queue_name The name of the queue that receives messages.

contract_name [,...n] The name of the contract(s) that can send messages to the new
service. If none is designated, the new service can only initiate
(and not receive) messages. If only an initiator, any contract can
be used to send messages.

Continuing with the online bookstore example, a service is created in the BookStore database
to bind the queue to a specific contract:

Use BookStore
GO

CREATE SERVICE [//SackConsulting/BookOrderService]
ON QUEUE dbo.BookStoreQueue
([//SackConsulting/BookOrderContract])

GO

Now context is switched to the BookDistribution database, and a service is created to bind the
queue to the contract:

USE BookDistribution
GO

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

How It Works
In this recipe, I created a service in both the BookStore and BookDistribution databases. The CREATE
SERVICE command was used to bind a specific queue to a contract.

The first argument used in CREATE SERVICE for the BookStore service was the service name:

CREATE SERVICE [//SackConsulting/BookOrderService]

The second line of code designated the queue for which the contract will be bound (will accept
messages from):

ON QUEUE dbo.BookStoreQueue

The third argument was the name of the contract bound to the queue and exposed by the
service:

([//SackConsulting/BookOrderContract])

In the BookDistribution database, a service was created with a different service name and
queue name, but was bound to the same contract as the service in the BookStore database:

CHAPTER 20 ■ SERVICE BROKER588

9802CH20.qxd 6/17/08 4:12 PM Page 588

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

Now that the messages, queues, contracts, and services have been created, you are ready to
start communication between the two databases using Service Broker commands.

Initiating a Dialog
A dialog conversation is the act of exchanging messages between services. A new conversation is
created using the BEGIN DIALOG CONVERSATION. Each new conversation generates a unique conversa-
tion handle of the uniqueidentifier data type.

The syntax is as follows:

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator_service_name
TO SERVICE 'target_service_name'

[, { 'service_broker_guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract_name]
[WITH
[{ RELATED_CONVERSATION = related_conversation_handle

| RELATED_CONVERSATION_GROUP = related_conversation_group_id }]
[[,] LIFETIME = dialog_lifetime]
[[,] ENCRYPTION = { ON | OFF }]]

The arguments of this command are described in Table 20-5.

Table 20-5. BEGIN DIALOG Arguments

Argument Description

@dialog_handle This specifies the uniqueidentifier data type local variable
that is used to hold the new dialog handle.

initiator_service_name This defines the service that initiates the conversation.

'target_service_name' This indicates the target service that the initiating service will
exchange messages with.

'service_broker_guid' | This specifies the service_broker_guid retrieved for the target
'CURRENT DATABASE' service database from sys.databases. If CURRENT DATABASE is

designated, the service_broker_guid is used from the current
database.

contract_name This defines the name of the contract that the conversation is
based on.

related_conversation_handle This indicates the uniqueidentifier value of the existing
conversation group that the dialog belongs to.

related_conversation_group_id This specifies the uniqueidentifier value of the existing
conversation group that the new dialog is added to.

dialog_lifetime This defines the number of seconds that the dialog is kept
open.

ENCRYPTION = { ON | OFF } When this is set to ON, encryption is used for messages sent
outside of the initiator SQL Server instance.

CHAPTER 20 ■ SERVICE BROKER 589

9802CH20.qxd 6/17/08 4:12 PM Page 589

The END CONVERSATION command finishes one side of the conversation. Messages can no longer
be sent or received for the service that ends the conversation. Both services (initiator and target)
must end the conversation in order for it to be completed.

The SEND command is used to send a message on a specific open conversation. In this com-
mand, the message type and message contents are also defined.

Continuing with the online bookstore example, and with the required objects established, I am
now ready to initiate a dialog between the two Service Broker services.

On the BookStore database, I execute the following commands in a batch:

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @Conv_Handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="7/15/2008">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="1" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

How It Works
In the previous batch of statements, two local variables were used to hold the dialog conversation
handle and the order message XML document:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

The BEGIN DIALOG CONVERSATION command was used to create a conversation between the two
services, based on the established contract. The first argument passed was the @Conv_Handler local
variable:

BEGIN DIALOG CONVERSATION @conv_handler

The initiator used to begin the dialog was designated in the second line and the target service
in the third:

FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'

The contract name was then designated:

ON CONTRACT [//SackConsulting/BookOrderContract];

The @OrderMsg local variable was set to an XML document containing order and line item infor-
mation:

CHAPTER 20 ■ SERVICE BROKER590

9802CH20.qxd 6/17/08 4:12 PM Page 590

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="7/15/2008">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="1" />
</order>';

The SEND ON CONVERSATION command used the conversation handler local variable to send a
message using the specified (and allowed) message type and the actual XML message content. The
first argument in the command was the @Conv_Handler value populated from the BEGIN DIALOG
CONVERSATION command:

SEND ON CONVERSATION @Conv_Handler

The second argument was the message type to be used, followed by the XML message in the
local variable:

MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

This message was then sent to the queue in the BookDistribution database.

Querying the Queue for Incoming Messages
Continuing with the online bookstore example, on the BookDistribution database, the queue is
queried to view incoming messages using SELECT:

USE BookDistribution
GO

SELECT message_type_name, CAST(message_body as xml) message,
queuing_order, conversation_handle, conversation_group_id
FROM dbo.BookDistributionQueue

This returns the following result set (formatted for presentation):

Column Value
Message_type_name //SackConsulting/SendBookOrder
Message <order id="3439" customer="22" orderdate="7/15/2008">

<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="1" />
</order>

Queuing_order 0
Conversation_handle 63558054-02EE-DC11-B4A4-0003FF25C9C5
Conversation_group_id 62558054-02EE-DC11-B4A4-0003FF25C9C5

How It Works
In this recipe, I demonstrated that you can SELECT from a queue the same way you would from a
table. The data returned showed the message type, message contents, queuing order, and the
uniqueidentifier values that designate the conversation’s handle and group.

Receiving and Responding to a Message
The RECEIVE statement is used to read rows (messages) from the queue. Unlike a SELECT statement,
RECEIVE can be used to remove the rows that have been read. The results of the RECEIVE can be pop-
ulated into regular tables or used in local variables to perform other actions or send other Service
Broker messages.

CHAPTER 20 ■ SERVICE BROKER 591

9802CH20.qxd 6/17/08 4:12 PM Page 591

If the message is an xml data type message, Transact-SQL XQuery methods can be used to
query the message contents by acting on the data according to your application needs (for example,
by extracting the order ID or quantity of the product ordered).

Continuing with the online bookstore example in the BookDistribution database, I will create a
new table to hold information about received book orders:

USE BookDistribution
GO

CREATE TABLE dbo.BookOrderReceived
(BookOrderReceivedID int IDENTITY (1,1) NOT NULL,
conversation_handle uniqueidentifier NOT NULL,
conversation_group_id uniqueidentifier NOT NULL,
message_body xml NOT NULL)

GO

To process the received message in the BookDistribution database, the RECEIVE command is
used. This batch of statements (which are executed together) performs several actions:

-- Declare the local variables needed to hold the incoming message data
DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @OrderID int;

-- Take the message from the queue, retrieving its values into the local variables
RECEIVE TOP(1) @OrderMsg = message_body,

@Conv_Handler = conversation_handle,
@Conv_Group = conversation_group_id

FROM dbo.BookDistributionQueue;

-- Insert the local variable values into the new table
INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES
(@Conv_Handler,@Conv_Group, @OrderMsg)

-- Use XQuery against the received message to extract
-- the order ID, for use in the response message

SELECT @OrderID = @OrderMsg.value('(/order/@id)[1]', 'int')

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

-- Send the response message back to the initiator, using
-- the existing conversation handle
SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

CHAPTER 20 ■ SERVICE BROKER592

9802CH20.qxd 6/17/08 4:12 PM Page 592

mailto:@OrderMsg.value('(/order/@id

How It Works
This recipe started off by creating a table to store the contents of the incoming Service Broker
message. After that, six local variables were created to hold the incoming message data:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @OrderID int;

The RECEIVE command was then used to return the message from the queue. The TOP clause in
the first line designated the maximum number of messages to be returned, which in this case was 1:

RECEIVE TOP(1)

The next few lines populated the local variables with data from the message, similar to the way
that you would perform a variable population using SELECT:

@OrderMsg = message_body,
@Conv_Handler = conversation_handle,

@Conv_Group = conversation_group_id

The last line of the RECEIVE command was the FROM clause referencing the queue where the
message is found:

FROM dbo.BookDistributionQueue;

After that, an INSERT was performed, inserting a row containing values from the message body
into a new table:

INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES
(@Conv_Handler,@Conv_Group, @OrderMsg)

An XQuery value method was used to retrieve the order ID from the stored xml data type data:

SELECT @OrderID = @OrderMsg.value
('(/order/@id)[1]', 'int')

The value taken from the XQuery was then used to populate a local variable, embedding the
value in an <orderreceived> XML element:

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

This variable was then converted to an xml data type in preparation for sending a response to
the BookStore database:

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

Using the existing conversation uniqueidentifier handle in the first line, a message is sent
using SEND ON CONVERSATION. The second line includes the message type to send, and the local vari-
able in parentheses the actual payload of the message:

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

CHAPTER 20 ■ SERVICE BROKER 593

9802CH20.qxd 6/17/08 4:12 PM Page 593

mailto:@OrderMsg.value

Ending a Conversation
A conversation involves both the sending and receiving of messages. This communication can con-
tinue for however many iterations are required by your application. Once a side is finished (initiator
or target), you can notify the other side that you are done with the conversation by using the END
CONVERSATION command.

In the previous recipe, an order confirmation was sent to BookStore based on an order message
BookStore had sent. Continuing with the online bookstore example, I’ll create a new table to store
order confirmation information from the target service:

USE BookStore
GO

-- Create an order confirmation table
CREATE TABLE dbo.BookOrderConfirmation

(BookOrderConfirmationID int IDENTITY (1,1) NOT NULL,
conversation_handle uniqueidentifier NOT NULL,
DateReceived datetime NOT NULL DEFAULT GETDATE(),
message_body xml NOT NULL)

In the BookStore database, RECEIVE TOP is used to receive the response message and store it in
the new table. Since the conversation for this particular BookOrder is complete once a response is
received (when a dialog conversation should end depends on your own real-world task require-
ments), the END CONVERSATION command is used to notify the target database that it is done with its
side of the conversation:

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000);

RECEIVE TOP(1) @Conv_Handler = conversation_handle,
@OrderMsg = message_body

FROM dbo.BookStoreQueue

INSERT dbo.BookOrderConfirmation
(conversation_handle, message_body)
VALUES (@Conv_Handler,@OrderMsg);

END CONVERSATION @Conv_Handler;
GO

On the BookDistribution database, the queue is checked again for new messages. When a
conversation dialog is ended, an empty message with a message type name of http://schemas.
microsoft.com/SQL/ServiceBroker/EndDialog is sent. This next batch of statements receives this
message, and ends the conversation on its side if the message type is a dialog-ending message type:

USE BookDistribution
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @message_type_name nvarchar(256);

RECEIVE TOP(1) @Conv_Handler = conversation_handle,
@OrderMsg = message_body,

CHAPTER 20 ■ SERVICE BROKER594

9802CH20.qxd 6/17/08 4:12 PM Page 594

http://schemas

@message_type_name = message_type_name
FROM dbo.BookDistributionQueue

-- Both sides (initiator and target) must end the conversation

IF
@message_type_name = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
BEGIN

END CONVERSATION @Conv_Handler;
END

I can check the status of conversations by querying the sys.conversation_endpoints view:

SELECT state_desc, conversation_handle
FROM sys.conversation_endpoints

This returns

state_desc conversation_handle
CLOSED 237A7DD6-86FB-D911-AAF4-000FB522BF5A

How It Works
In this recipe, I demonstrated how to end an open conversation dialog. I began by creating a table
to hold order confirmations in the BookStore database received by the BookDistribution database.
After that, RECEIVE TOP(1) was used to grab the latest message from BookDistribution from the
BookStoreQueue. The contents of the message were then inserted into the BookOrderConfirmation
table. The conversation was then ended using END CONVERSATION and the uniqueidentifier value for
the specific conversation:

END CONVERSATION @Conv_Handler;

Ending a conversation automatically sends a message type of http://schemas.microsoft.com/
SQL/ServiceBroker/EndDialog to the target database. Back on the BookDistribution database, the
queue was checked again for new messages. RECEIVE TOP(1) was used to retrieve the latest response
from the BookStore database. An IF statement was used to verify whether the message received was
an END DIALOG request:

IF
@message_type_name =
'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'

If it was, the conversation was also ended on the target database (BookDistribution):

BEGIN
END CONVERSATION @Conv_Handler;

END

The status of conversations was then checked by querying the sys.conversation_endpoints
view, which confirmed that the conversation was indeed CLOSED.

This entire section of recipes demonstrated a simple message exchange application used to
send a book order message to a book distribution handling database. A book order was sent from
the initiator, a response was sent back, and the conversation was ended using END CONVERSATION on
both databases. Of course, a real-world scenario will involve more tasks, which may in turn trans-
late to additional message types, contracts, services, and queues. Ideal tasks for Service Broker are
those that can benefit from the asynchronous capabilities that prevent application holdups and
bottlenecks.

CHAPTER 20 ■ SERVICE BROKER 595

9802CH20.qxd 6/17/08 4:12 PM Page 595

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog

Prioritizing Service Broker Conversations
For very active Service Broker applications, SQL Server 2008 introduces the ability to prioritize con-
versations using the CREATE BROKER PRIORITY command. Using this functionality, you can designate
the priority of less or more important conversations in order to make sure messages flow appro-
priately.

In order to take advantage of this functionality, the Service Broker databases involved in the
conversation must first have the new HONOR_BROKER_PRIORITY option enabled. In the first query of
this recipe, I’ll demonstrate enabling this option for both databases in my Service Broker appli-
cation:

ALTER DATABASE BookStore
SET HONOR_BROKER_PRIORITY ON

ALTER DATABASE BOOKDistribution
SET HONOR_BROKER_PRIORITY ON

I can confirm that the database changes were made by querying sys.databases:

SELECT name, is_honor_broker_priority_on
FROM sys.databases
WHERE name IN ('BookStore', 'BookDistribution')

This returns

name is_honor_broker_priority_on
BookStore 1
BookDistribution 1

Now I can use the CREATE BROKER PRIORITY command to define priorities for specified conver-
sations based on the local service name, remote service name (more on remote services later), and
the contract name. The priority level itself is a number between 1 and 10, where 1 is the lowest pri-
ority and 10 the highest. The default value for conversation priority is 5.

In this recipe, I’ll demonstrate setting the priority level of a conversation to 10 based on a speci-
fied contract and local service:

USE BookStore
GO

CREATE BROKER PRIORITY Conv_Priority_BookOrderContract_BookOrderService
FOR CONVERSATION
SET (CONTRACT_NAME = [//SackConsulting/BookOrderContract],

LOCAL_SERVICE_NAME = [//SackConsulting/BookOrderService],
REMOTE_SERVICE_NAME = ANY,
PRIORITY_LEVEL = 10)

Notice that I used the value of ANY for the REMOTE_SERVICE_NAME. ANY can be used as a value for
the contract, local service, or remote service, and in this case indicates that the priority should be
associated with any service or contract that is associated with the Service Broker endpoint.

Next, I can confirm the broker priority I just created by querying the
sys.conversation_priorities catalog view:

SELECT name, priority, service_contract_id,
local_service_id,remote_service_name

FROM sys.conversation_priorities cp

This returns

CHAPTER 20 ■ SERVICE BROKER596

9802CH20.qxd 6/17/08 4:12 PM Page 596

You can associate the service and contract IDs returned from sys.conversation_priorities to
the sys.service_contracts and sys.services catalog views, if you wish to also include the service
and contract names.

Next, I’ll also create a broker priority definition in the BookDistribution database in order to
cover the priority of bidirectional communication:

USE BookDistribution
GO

CREATE BROKER PRIORITY Conv_Priority_BookOrderContract_BookDistributionService
FOR CONVERSATION
SET (CONTRACT_NAME = [//SackConsulting/BookOrderContract],

LOCAL_SERVICE_NAME = [//SackConsulting/BookDistributionService],
REMOTE_SERVICE_NAME = ANY,
PRIORITY_LEVEL = 10)

I can modify an existing broker priority using the ALTER BROKER PRIORITY command. In this
next query, I will change the remote service setting from ANY to that of a specific remote service:

USE BookStore
GO

ALTER BROKER PRIORITY Conv_Priority_BookOrderContract_BookOrderService
FOR CONVERSATION
SET (REMOTE_SERVICE_NAME = '//SackConsulting/BookDistributionService')

I can also use the ALTER BROKER PRIORITY command to change the broker priority:

ALTER BROKER PRIORITY Conv_Priority_BookOrderContract_BookOrderService
FOR CONVERSATION
SET (PRIORITY_LEVEL = 9)

To remove a broker priority definition, I use the DROP BROKER PRIORITY command as demon-
strated here:

DROP BROKER PRIORITY Conv_Priority_BookOrderContract_BookOrderService

How It Works
In this recipe, I demonstrated how to define Service Broker conversation priorities. Before doing
this, I had to enable the HONOR_BROKER_PRIORITY database option in the participating databases.
When enabled, this option allows messages in Service Broker dialogs to be sent based on any broker
priority rules defined.

After enabling the database option, I used the CREATE BROKER PRIORITY command to define a
higher prioritization based on specific conversation qualities. Walking through the code I executed,
the first line defined the name of the broker priority object:

CREATE BROKER PRIORITY Conv_Priority_BookOrderContract_BookOrderService
FOR CONVERSATION

Next, the SET statement has open parenthesis followed by the contract, local service, remote
service, and priority arguments:

CHAPTER 20 ■ SERVICE BROKER 597

name priority service_contract_id local_service_id remote_service_name

Conv_Priority_BookOrderContract_ 10 65536 65536 NULL

BookOrderService

9802CH20.qxd 6/17/08 4:12 PM Page 597

SET (CONTRACT_NAME = [//SackConsulting/BookOrderContract],
LOCAL_SERVICE_NAME = [//SackConsulting/BookOrderService],
REMOTE_SERVICE_NAME = ANY,
PRIORITY_LEVEL = 10)

Once created, any message sent within a conversation dialog in the BookOrderContract con-
tract and BookOrderService local service would be given a priority level of 10 (higher than the
default value of 5).

I then created a second broker priority for the target service to handle conversation dialog traf-
fic back to the initiating service. Lastly, I demonstrated how to modify the existing broker priority
definition using ALTER BROKER PRIORITY and also demonstrated how to remove it using DROP BROKER
PRIORITY.

For very active Service Broker applications, conversation prioritization allows you to control
the importance of various conversations across contracts and services.

Creating a Stored Procedure to Process Messages
In the previous block of recipes, ad hoc Transact-SQL batches were used to process incoming mes-
sages from the queue. You can, however, create service programs using stored procedures or
external applications to automatically activate and process messages in the queue. Using the CREATE
QUEUE and ALTER QUEUE options, you can also designate the number of simultaneous and identical
service programs that can be activated to process incoming messages on the same queue.

Creating the Bookstore Stored Procedure
Using the previous recipe’s existing objects for setting up the stored procedure application,
this example creates a stored procedure used to process incoming messages on the dbo.
BookDistributionQueue. This procedure uses several of the RECEIVE and SEND commands
employed in the previous recipe, only tailored to a stored procedure implementation:

USE BookDistribution
GO

CREATE PROCEDURE dbo.usp_SB_ReceiveOrders
AS

DECLARE @Conv_Handler uniqueidentifier
DECLARE @Conv_Group uniqueidentifier
DECLARE @OrderMsg xml
DECLARE @TextResponseMsg varchar(8000)
DECLARE @ResponseMsg xml
DECLARE @Message_Type_Name nvarchar(256);
DECLARE @OrderID int;

-- XACT_ABORT automatically rolls back the transaction when a runtime error occurs
SET XACT_ABORT ON

BEGIN TRAN;

RECEIVE TOP(1) @OrderMsg = message_body,
@Conv_Handler = conversation_handle,
@Conv_Group = conversation_group_id,
@Message_Type_Name = message_type_name

FROM dbo.BookDistributionQueue;

CHAPTER 20 ■ SERVICE BROKER598

9802CH20.qxd 6/17/08 4:12 PM Page 598

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

IF @Message_Type_Name = '//SackConsulting/SendBookOrder'
BEGIN

INSERT dbo.BookOrderReceived
(conversation_handle, conversation_group_id, message_body)
VALUES
(@Conv_Handler,@Conv_Group, @OrderMsg)

SELECT @OrderID = @OrderMsg.value('(/order/@id)[1]', 'int')

SELECT @TextResponseMsg =
'<orderreceived id= "' +
CAST(@OrderID as varchar(10)) +
'"/>';

SELECT @ResponseMsg = CAST(@TextResponseMsg as xml);

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/BookOrderReceived]
(@ResponseMsg);

END

IF @Message_Type_Name = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'
BEGIN

END CONVERSATION @Conv_Handler;
END

COMMIT TRAN

GO

The procedure contains logic for processing the //SackConsulting/SendBookOrder and
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog message types. If the latter is sent,
the specific conversation for the specific conversation handle is ended. If a book order message
type is received, its information is inserted into a table, and an order confirmation is returned.

You can modify an existing queue by using the ALTER QUEUE command. This command uses the
same options as CREATE QUEUE, which allows you to change the status and retention of the queue,
the stored procedure to be activated, the maximum number of queue reader stored procedure
instances, and the security contact of the procedure.

ALTER QUEUE includes one additional parameter, DROP, which is used to drop all stored proce-
dure activation settings for the queue.

To bind our stored procedure to an existing queue, the ALTER QUEUE command is used:

ALTER QUEUE dbo.BookDistributionQueue
WITH ACTIVATION (STATUS = ON,

PROCEDURE_NAME = dbo.usp_SB_ReceiveOrders,
MAX_QUEUE_READERS = 2,
EXECUTE AS SELF)

I designated the procedure name, followed by the maximum number of simultaneous imple-
mentations of the same stored procedure that can independently process distinct messages from
the queue.

To test the new service program on the BookStore database, a new conversation is started and a
new order placed:

CHAPTER 20 ■ SERVICE BROKER 599

9802CH20.qxd 6/17/08 4:12 PM Page 599

mailto:@OrderMsg.value('(/order/@id
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialogmessage

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @conv_handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3490" customer="29" orderdate="7/22/2008">
<LineItem ItemNumber="1" ISBN="1-59059-592-0" Quantity="2" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

If the stored procedure on the target queue did its job and activated upon receipt of the new
message, there should already be an order confirmation returned back into the dbo.BookStoreQueue:

SELECT conversation_handle, CAST(message_body as xml) message
FROM dbo.BookStoreQueue

This returns the following results:

conversation_handle message
20E768EB-8EFB-D911-AAF4-000FB522BF5A <orderreceived id="3490" />

How It Works
In this recipe, a stored procedure was created to handle messages in the queue. That stored proce-
dure was bound to the queue using ALTER QUEUE. The first argument of this command was the name
of the queue to be modified:

ALTER QUEUE dbo.BookDistributionQueue

The WITH ACTIVATION clause first designated that the status of the new application (the stored
procedure) program is available to receive new messages:

WITH ACTIVATION (STATUS = ON,

Next, the name of the stored procedure bound to the queue is designated:

PROCEDURE_NAME = dbo.usp_SB_ReceiveOrders,

The MAX QUEUE READERS option is used to designate a maximum of two stored procedure appli-
cations executing simultaneously:

MAX_QUEUE_READERS = 2,

The EXECUTE AS argument was designated as SELF, meaning that the stored procedure will exe-
cute with the same permissions as the principal who executed the ALTER QUEUE command:

EXECUTE AS SELF)

CHAPTER 20 ■ SERVICE BROKER600

9802CH20.qxd 6/17/08 4:12 PM Page 600

When the queue STATUS = ON and a new message arrives in the queue, the stored procedure is
executed to handle the incoming message(s). You can use internal stored procedures or external
applications to handle incoming messages to a queue. The benefit of using stored procedures,
however, is that they provide a simple, encapsulated component for handling messages and auto-
matically performing any required responses and associated business tasks.

Remote-Server Service Broker Implementations
To demonstrate the basics of setting up a Service Broker program, the examples in this chapter have
involved two databases on the same SQL Server instance. In most cases, however, you’ll be setting
up Service Broker to work with multiple databases that exist on two or more SQL Server instances.
The core components from this chapter remain the same, but to achieve cross-server communica-
tion, a few extra steps are required. Cross-server communication can be achieved through using
either Windows authentication or certificate-based authentication (which is what you’ll see demon-
strated here in this chapter). These steps will be demonstrated in this next batch of recipes.

The following is a general list of tasks that I’ll go through in this section to enable Service
Broker communication across SQL Server instances:

1. Enable transport security: Transport security in Service Broker refers to the network connec-
tions between two SQL Server instances, enabling or restricting encrypted communication
between them. This is set up in the master system databases of both SQL Server instances
and, as you’ll see, involves creating endpoints, certificates, logins, and users.

2. Enable dialog security: Dialog security for Service Broker provides authentication, authori-
zation, and encryption for dialog conversations. On the actual databases used for the
Service Broker implementation, certificates are created and their public keys exchanged
between SQL Server instances. Users are created that are not associated to a login, but are
instead given authorization to the certificate created from the public key of the other SQL
Server instance.

3. Create routes: A route is used by Service Broker to determine where a service is located, be it
local or remote.

4. Create remote service bindings: A remote service binding is used to map the security creden-
tials used to open a conversation with a remote Service Broker service.

In this cross-server scenario, the online bookstore Service Broker program will use the
BookStore database on the JOEPROD SQL Server instance, and the BookDistribution database on the
JOEPROD\NODE2 SQL Server instance. Objects from the previous set of recipes will be used to demon-
strate this functionality. Starting from scratch (if you happen to be following along), the example
database is dropped and re-created with the BookStore database on JOEPROD and BookDistribution
on JOEPROD\NODE2. The following objects and settings are then created and configured on the
BookStore database of the JOEPROD instance:

USE master
GO

-- Enable Service Broker for the database

ALTER DATABASE BookStore SET ENABLE_BROKER
GO

ALTER DATABASE BookStore SET TRUSTWORTHY ON
GO

CHAPTER 20 ■ SERVICE BROKER 601

9802CH20.qxd 6/17/08 4:12 PM Page 601

USE BookStore
GO

-- Create the messages

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

-- Create the contract

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

-- Create the queue

CREATE QUEUE BookStoreQueue
WITH STATUS=ON
GO

-- Create the service

CREATE SERVICE [//SackConsulting/BookOrderService]
ON QUEUE dbo.BookStoreQueue
([//SackConsulting/BookOrderContract])

GO

On the BookDistribution database of the JOEPROD\NODE2 instance, the following objects are
set up:

USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookDistribution')

CREATE DATABASE BookDistribution
GO

-- Enable Service Broker for the database

ALTER DATABASE BookDistribution SET ENABLE_BROKER
GO

ALTER DATABASE BookDistribution SET TRUSTWORTHY ON
GO

CHAPTER 20 ■ SERVICE BROKER602

9802CH20.qxd 6/17/08 4:12 PM Page 602

USE BookDistribution
GO

-- Create the messages

CREATE MESSAGE TYPE [//SackConsulting/SendBookOrder]
VALIDATION = WELL_FORMED_XML
GO

CREATE MESSAGE TYPE [//SackConsulting/BookOrderReceived]
VALIDATION = WELL_FORMED_XML
GO

-- Create the contract

CREATE CONTRACT
[//SackConsulting/BookOrderContract]
([//SackConsulting/SendBookOrder]

SENT BY INITIATOR,
[//SackConsulting/BookOrderReceived]

SENT BY TARGET
)

GO

-- Create the queue

CREATE QUEUE BookDistributionQueue
WITH STATUS=ON
GO

-- Create the service

CREATE SERVICE [//SackConsulting/BookDistributionService]
ON QUEUE dbo.BookDistributionQueue
([//SackConsulting/BookOrderContract])

GO

Enabling Transport Security
Transport security in Service Broker refers to the network connections between two SQL Server
instances, and the enabling or restricting of encrypted communication between them. Transport
security is at the SQL Server instance level, and therefore this recipe demonstrates creating objects
in the master database of both SQL Server instances. You can choose from two forms of transport
security: Windows authentication or certificate-based security.

This recipe includes several steps that involve working with objects that should be familiar to
you from the previous chapters. Each of these steps requires activities on both SQL Server instances
(this example includes JOEPROD and JOEPROD\NODE2). For this recipe, I’ll only use the master system
database, not the actual user databases, because transport security applies to the SQL Server
instance itself.

I begin this recipe by creating a Database Master Key in the master system database of each of
the SQL Server instances. This is created in order to encrypt the certificate used for certificate-based
transport security:

CHAPTER 20 ■ SERVICE BROKER 603

9802CH20.qxd 6/17/08 4:12 PM Page 603

-- Executed on JOEPROD
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934A!'

-- Executed on JOEPROD\NODE2
USE master
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934B!'

Next, I will create a new certificate in the master system database of each of the SQL Server
instances:

-- Executed on JOEPROD
CREATE CERTIFICATE JOEPRODMasterCert

WITH SUBJECT = 'JOEPROD Transport Security SB',
EXPIRY_DATE = '10/1/2010'

GO

-- Executed on JOEPROD\NODE2
CREATE CERTIFICATE Node2MasterCert

WITH SUBJECT = 'Node 2 Transport Security SB',
EXPIRY_DATE = '10/1/2010'

GO

Next, I will back up each of these certificates to a file. The public key backup files will then be
copied over for use in creating a certificate in the master database of the other SQL Server instance
(this happens later in the recipe):

-- Executed on JOEPROD
BACKUP CERTIFICATE JOEPRODMasterCert
TO FILE = 'C:\Apress\JOEPRODMasterCert.cer'
GO

-- Executed on JOEPROD\NODE2
BACKUP CERTIFICATE Node2MasterCert
TO FILE = 'C:\Apress\Node2MasterCert.cer'
GO

On each SQL Server instance, I’ll create a Service Broker endpoint. Both endpoints will use
certificate-based authentication and will require encrypted communication.

-- Executed on JOEPROD

CREATE ENDPOINT SB_JOEPROD_Endpoint
STATE = STARTED
AS TCP
(LISTENER_PORT = 4020)
FOR SERVICE_BROKER
(AUTHENTICATION = CERTIFICATE JOEPRODMasterCert,
ENCRYPTION = REQUIRED)

GO

-- Executed on JOEPROD\NODE2

CHAPTER 20 ■ SERVICE BROKER604

9802CH20.qxd 6/17/08 4:12 PM Page 604

CREATE ENDPOINT SB_NODE2_Endpoint
STATE = STARTED
AS TCP
(LISTENER_PORT = 4021)
FOR SERVICE_BROKER
(AUTHENTICATION = CERTIFICATE Node2MasterCert,
ENCRYPTION = REQUIRED)

GO

On each SQL Server instance, I’ll create a new login and user in the master system database
that will be used for remote connections from the other SQL Server instance:

-- Executed on JOEPROD
CREATE LOGIN SBLogin

WITH PASSWORD = 'Used4TransSec'
GO

CREATE USER SBUser
FOR LOGIN SBLogin

GO

-- Executed on JOEPROD\NODE2

CREATE LOGIN SBLogin
WITH PASSWORD = 'Used4TransSec'

GO

CREATE USER SBUser
FOR LOGIN SBLogin

GO

Next, I will grant CONNECT permissions to the associated endpoint for each SQL Server instance’s
login:

-- Executed on JOEPROD

GRANT CONNECT ON Endpoint::SB_JOEPROD_Endpoint TO SBLogin
GO

-- Executed on JOEPROD\NODE2

GRANT CONNECT ON Endpoint::SB_NODE2_Endpoint TO SBLogin
GO

On each SQL Server instance, a new certificate is created based on the certificate backup cre-
ated in the other SQL Server instance. The newly created login and user created in the previous step
is given authorization permissions over this certificate:

-- Executed on JOEPROD

CREATE CERTIFICATE Node2MasterCert
AUTHORIZATION SBUser
FROM FILE = 'C:\Apress\Node2MasterCert.cer'
GO

-- Executed on JOEPROD\NODE2

CHAPTER 20 ■ SERVICE BROKER 605

9802CH20.qxd 6/17/08 4:12 PM Page 605

CREATE CERTIFICATE JOEPRODMasterCert
AUTHORIZATION SBUser
FROM FILE = 'C:\Apress\JOEPRODMasterCert.cer'
GO

How It Works
In this recipe, I walked through the various steps required to establish transport security through
certificates. The recipe started off by creating a Database Master Key that would be used to encrypt
the certificates (as a requirement for Service Broker endpoints—if using certificate-based security,
the certificate can’t be password encrypted).

A certificate was created on each SQL Server instance and was then backed up and copied to
the other SQL Server instance. This exchange of public keys will be used later on in this section. In
the meantime, Service Broker endpoints were created on each SQL Server instance, and were con-
figured to allow access from other servers based on certificate security.

After that, a login and user were created on both SQL Server instances. The login was granted
CONNECT permissions to the endpoint. This is not enough to enable connectivity though, because
that user must also have access to the public key of the certificate used on the other SQL Server
instance. This permission was granted in order to exchange the keys with the other server. The new
certificates were then bound to the newly created user on each instance. Because the user has per-
missions to the certificate of the other SQL Server instance, and because the endpoint is based on
that certificate, the SQL Server instances will have encrypted transport security access to one
another.

This is only half the requirement for allowing cross-server communication with Service Broker.
The next step is dialog security at the user database level, which I demonstrate in the next recipe.

Enabling Dialog Security
Whereas transport security handles communication at the SQL Server instance level, dialog security
for Service Broker provides authentication, authorization, and encryption for dialog conversations.
Like the previous recipe, setting up dialog security involves several small steps, many of which
involve commands that have been covered in previous chapters of this book.

These recipes will take place in the BookStore database on the JOEPROD SQL Server instance and
in the BookDistribution database on the NODE2 SQL Server instance. A certificate is created on each
SQL Server instance (which requires a Database Master Key in each database, which you created at
the beginning of this section). Later on, the certificates will be exchanged across SQL Server
instances similarly to the previous transport security recipe:

-- Executed on JOEPROD
USE BookStore
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934A!'
GO

CREATE CERTIFICATE BookStoreCert
WITH SUBJECT = 'BookStore SB cert',
EXPIRY_DATE = '10/1/2010'

GO

-- Executed on NODE2
USE BookDistribution
GO

CHAPTER 20 ■ SERVICE BROKER606

9802CH20.qxd 6/17/08 4:12 PM Page 606

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '1294934B!'
GO

CREATE CERTIFICATE BookDistributionCert
WITH SUBJECT = 'BookDistributionCert SB cert',
EXPIRY_DATE = '10/1/2010'

GO

Next, the certificates from each of the databases are backed up to file:

-- Executed on JOEPROD
USE BookStore
GO

BACKUP CERTIFICATE BookStoreCert
TO FILE = 'C:\Apress\BookStoreCert.cer'
GO

-- Executed on NODE2
USE BookDistribution
GO

BACKUP CERTIFICATE BookDistributionCert
TO FILE = 'C:\Apress\BookDistributionCert.cer'
GO

After that, I will create a user in each database. Neither user will be associated to a login.
Instead, later on, I’ll map each user to the public certificate of the other SQL Server instance:

-- Executed on JOEPROD
USE BookStore
GO

CREATE USER BookDistributionUser
WITHOUT LOGIN
GO

-- Executed on NODE2
USE BookDistribution
GO

CREATE USER BookStoreUser
WITHOUT LOGIN
GO

Next, I’ll create a new certificate in each database based on the other database’s certificate pub-
lic key. The newly created user in each database is given authorization to this certificate:

-- Executed on JOEPROD
USE BookStore
GO

CREATE CERTIFICATE BookDistributionCert
AUTHORIZATION BookDistributionUser
FROM FILE = 'C:\Apress\BookDistributionCert.cer'
GO

CHAPTER 20 ■ SERVICE BROKER 607

9802CH20.qxd 6/17/08 4:12 PM Page 607

-- Executed on NODE2
USE BookDistribution
GO

CREATE CERTIFICATE BookStoreCert
AUTHORIZATION BookStoreUser
FROM FILE = 'C:\Apress\BookStoreCert.cer'
GO

Lastly, the users for both databases need permissions to SEND rights on the associated Service
Broker services:

-- Executed on JOEPROD
USE BookStore
GO

GRANT SEND ON
SERVICE::[//SackConsulting/BookOrderService] TO BookDistributionUser
GO

-- Executed on NODE2
USE BookDistribution
GO

GRANT SEND ON
SERVICE::[//SackConsulting/BookDistributionService]
TO BookStoreUser

How It Works
In this recipe, I demonstrated setting up dialog security, which handles authentication, authoriza-
tion, and encryption between the two user-defined databases in a Service Broker application.

The first step included creating a Database Master Key in each database, which was then used
to implicitly encrypt the certificates created in the BookStore and BookDistribution databases. After
creating the certificates, a backup was made of each one, and the associated file was then copied to
the other server.

After that, a new user was created in each database without an associated login. A new certifi-
cate was then created in each database based on the other database’s certificate. The certificate
creation included an AUTHORIZATION clause, which designated the new user in each database.

Lastly, the two users were each granted permissions to SEND messages to their associated
Service Broker services.

This leaves only a couple more steps before the Service Broker application can begin commu-
nicating across SQL Server instances.

Creating Routes and Remote Service Bindings
Once the transport and dialog security objects are taken care of, the next step in this distributed
online bookstore example is to set up routes and remote service bindings.

A route is used by Service Broker to determine where a service is located, be it local or remote.
A route is created using the CREATE ROUTE command. The syntax is as follows:

CREATE ROUTE route_name
[AUTHORIZATION owner_name]
WITH

[SERVICE_NAME = 'service_name',]

CHAPTER 20 ■ SERVICE BROKER608

9802CH20.qxd 6/17/08 4:12 PM Page 608

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

[BROKER_INSTANCE = 'broker_instance_identifier' ,]
[LIFETIME = route_lifetime ,]
ADDRESS = 'next_hop_address'
[, MIRROR_ADDRESS = 'next_hop_mirror_address']

The arguments for this command are described in Table 20-6.

Table 20-6. CREATE ROUTE Arguments

Argument Description

route_name This option defines the new route name.

AUTHORIZATION owner_name This option specifies the database principal
owner of the route.

SERVICE_NAME = 'service_name' This option defines the name of the remote
service to be routed to.

BROKER_INSTANCE = 'broker_instance_identifier' This option specifies the service_broker_
guid (from sys.databases) of the database
hosting the target service.

LIFETIME = route_lifetime This option allows you to designate for how
many seconds a route is considered by SQL
Server before it expires.

ADDRESS = 'next_hop_address' This option defines the DNS, NetBios, or
TCP/IP address of SQL Server instance
housing the service. It also includes the port
number of the Service Broker endpoint
using a syntax of TCP://{ dns_name |
netbios_name | ip_address } :
port_number.

MIRROR_ADDRESS = 'next_hop_mirror_address' If using database mirroring, this option
allows you to specify the address for the
mirrored database using the syntax of
TCP://{ dns_name | netbios_name |
ip_address } : port_number.

In this recipe’s example, a route is created on JOEPROD that points to the NODE2 Service
Broker endpoint (listening on port 4021) and references the BookDistribution database’s
//SackConsulting/BookDistributionService service:

-- Executed on JOEPROD
USE BookStore
GO

CREATE ROUTE Route_BookDistribution
WITH SERVICE_NAME = '//SackConsulting/BookDistributionService',
ADDRESS = 'TCP://192.168.0.105:4021'
GO

On NODE2, a route is created that points to the JOEPROD Service Broker endpoint (listening on
port 4020), and referencing the BookStore database’s //SackConsulting/BookStoreService service:

-- Executed on NODE2
USE BookDistribution
GO

CHAPTER 20 ■ SERVICE BROKER 609

9802CH20.qxd 6/17/08 4:12 PM Page 609

TCP://192.168.0.105:4021

CREATE ROUTE Route_BookStore
WITH SERVICE_NAME = '//SackConsulting/BookOrderService',
ADDRESS = 'TCP://192.168.0.105:4020'
GO

A remote service binding is used to map the security credentials used to open a conversation
with a remote Service Broker service. Specifically, you use a remote service binding with the user
that you created in the previous recipe (the one mapped to a certificate). A remote service binding
is created using the CREATE REMOTE SERVICE BINDING command. The syntax is as follows:

CREATE REMOTE SERVICE BINDING binding_name
[AUTHORIZATION owner_name]
TO SERVICE 'service_name'
WITH USER = user_name [, ANONYMOUS = { ON | OFF }]

The arguments for this command are described in Table 20-7.

Table 20-7. CREATE REMOTE SERVICE BINDING Arguments

Argument Description

binding_name This option specifies the name of the new remote service binding.

AUTHORIZATION owner_name This option defines the database principal owner of the binding.

service_name This option indicates the name of the remote service to bind to.

USER = user_name This option designates the database user that is mapped to the
remote service’s certificate.

ANONYMOUS = { ON | OFF } When this option is ON, anonymous authentication under the
context of the public fixed database role is used to connect to the
remote database.

In this example on JOEPROD, a binding is made on BookStore to the //SackConsulting/
BookDistributionService service, using the BookStore user that was mapped to the
BookDistribution database’s public certificate:

USE BookStore
GO

CREATE REMOTE SERVICE BINDING BookDistributionBinding
TO SERVICE '//SackConsulting/BookDistributionService'
WITH USER = BookDistributionUser

GO

On NODE2, a similar binding is made in the BookDistribution database, only this time pointing
to the //SackConsulting/BookOrderService service:

USE BookDistribution
GO

CREATE REMOTE SERVICE BINDING BookStoreBinding
TO SERVICE '//SackConsulting/BookOrderService'
WITH USER = BookStoreUser

GO

With the routes and bindings set up, I am now ready to test sending a remote message from the
JOEPROD server’s BookStore database to the NODE2 server’s BookDistribution database:

CHAPTER 20 ■ SERVICE BROKER610

9802CH20.qxd 6/17/08 4:12 PM Page 610

TCP://192.168.0.105:4020

Use BookStore
GO

DECLARE @Conv_Handler uniqueidentifier
DECLARE @OrderMsg xml;

BEGIN DIALOG CONVERSATION @Conv_Handler
FROM SERVICE [//SackConsulting/BookOrderService]
TO SERVICE '//SackConsulting/BookDistributionService'
ON CONTRACT [//SackConsulting/BookOrderContract];

SET @OrderMsg =
'<order id="3439" customer="22" orderdate="9/25/2008">
<LineItem ItemNumber="22" ISBN="1-59059-592-0" Quantity="10" />
</order>';

SEND ON CONVERSATION @Conv_Handler
MESSAGE TYPE [//SackConsulting/SendBookOrder]
(@OrderMsg);

Moving over to the NODE2 server and the BookDistribution database, the queue is checked for
the incoming message:

USE BookDistribution
GO

SELECT message_type_name, CAST(message_body as xml) message,
queuing_order, conversation_handle, conversation_group_id
FROM dbo.BookDistributionQueue

This returns the following result set (abridged for readability):

Column Value
Message_type_name //SackConsulting/SendBookOrder
Message <order id="3439" customer="22" orderdate="9/25/2008">

<LineItem ItemNumber="22" ISBN="1-59059-592-0" Quantity="10" />
</order>

Queuing_order 0
Conversation_handle 8150EB31-07EE-DC11-B4A4-0003FF25C9C5
Conversation_group_id 8050EB31-07EE-DC11-B4A4-0003FF25C9C5

How It Works
This recipe started off by creating routes on both SQL Server instances. Each route included the
service name of the other SQL Server instance, the address for which to connect to it, and the port
number of the Service Broker endpoint.

After that, a remote service binding was created on both SQL Server instances that was used to
map the local database user (the one associated to the public key certificate of the other SQL Server
instance) to the remote service.

Once this was completed, a message was sent from the BookStore database that then arrived at
the remote NODE2 server’s BookDistribution database.

CHAPTER 20 ■ SERVICE BROKER 611

9802CH20.qxd 6/17/08 4:12 PM Page 611

Event Notifications
Event notification is a tie-in to Service Broker functionality, allowing you to asynchronously capture
SQL events on a SQL Server instance, routing the event information into a specified queue. With a
minimal of system overhead, you can track events that occur on the SQL Server instance such as
user logins, stored procedure recompiles, permission changes, object manipulation (for example,
CREATE/ALTER/DROP events on databases, assemblies, roles, or tables).

Unlike creating your own Service Broker applications, with event notification you need only
create the queue and Service Broker components, because the initiator components are handled for
you. The initiator components (message type and contract) that are used to capture and send the
event notifications are already built into SQL Server.

The next recipe will demonstrate this functionality in action.

Capturing Login Commands
In this recipe, I demonstrate how to capture any CREATE LOGIN, ALTER LOGIN, or DROP LOGIN com-
mands that are executed on the SQL Server instance using event notifications. The command for
creating an event notification is as follows:

CREATE EVENT NOTIFICATION event_notification_name
ON { SERVER | DATABASE | QUEUE queue_name }
[WITH FAN_IN]
FOR { event_type | event_group } [,...n]
TO SERVICE 'broker_service' , { 'broker_instance_specifier' |
'current database'}

The arguments of this command are described in Table 20-8.

Table 20-8. CREATE EVENT NOTIFICATION Arguments

Argument Description

event_notification_name This argument defines the name of the
new event notification.

SERVER | DATABASE | QUEUE queue_name These three arguments define the event
notification scope, causing notifications
to fire when an event occurs for the
specific SQL Server instance (SERVER),
current database (DATABASE), or specific
queue (QUEUE queue_name).

WITH FAN_IN This argument configures SQL Server to
send only one message per event for
event notifications that are created on
the same event with the same principal
and the same service and broker_
instance_specifier.

{ event_type | event_group } [,...n] The event_type is a Transact-SQL DDL,
Service Broker, or SQL Trace event type
to be monitored. The event_group is a
predefined group of event types—and
when designated, any member of the
group will cause an event notification to
be fired. An example of an event group
is DDL_LOGIN_EVENTS, which contains the
CREATE LOGIN, ALTER LOGIN, and DROP
LOGIN events.

CHAPTER 20 ■ SERVICE BROKER612

9802CH20.qxd 6/17/08 4:12 PM Page 612

Argument Description

'broker_service' , { 'broker_instance_specifier' | The broker_service argument is the
'current database' } name of the broker service receiving

event notification data. The broker_
instance_specifier is the service_
broker_guid (from sys.databases) of
the destination database, with 'current
database' used to specify the current
database guid.

The example starts off in a database called EventTracking, where I’ll create a new queue to hold
the event information:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'EventTracking')

CREATE DATABASE EventTracking
GO

USE EventTracking
GO

CREATE QUEUE SQLEventQueue
WITH STATUS=ON;
GO

Next, I’ll create a new service on the queue, associated to the built-in event notification con-
tract:

CREATE SERVICE [//JOEPROD/TrackLoginModificationService]
ON QUEUE SQLEventQueue
([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);
GO

Next, I’ll execute a query against the sys.databases system catalog view in order to retrieve
the EventTracking database service_broker_guid (which will be used in the CREATE EVENT
NOTIFICATION command):

select service_broker_guid
from sys.databases
WHERE name = 'EventTracking'

This returns the following (your GUID will vary):

service_broker_guid
C72069CD-ACBA-4EA8-80BB-5CC6FF3A40AA

Next, I’ll create an event notification using the SERVER scope to track any login creation, modifi-
cation, or drop from the SQL Server instance (your GUID will vary):

CREATE EVENT NOTIFICATION EN_LoginEvents
ON SERVER
FOR CREATE_LOGIN, ALTER_LOGIN, DROP_LOGIN
TO SERVICE '//JOEPROD/TrackLoginModificationService',
'C72069CD-ACBA-4EA8-80BB-5CC6FF3A40AA';

CHAPTER 20 ■ SERVICE BROKER 613

9802CH20.qxd 6/17/08 4:12 PM Page 613

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

I’ll test the new event notification by creating a new login:

CREATE LOGIN TrishelleN WITH PASSWORD = 'AR!3i2ou4'
GO

Next, I’ll query the queue using SELECT or RECEIVE (RECEIVE, unlike SELECT, will also remove the
event message from the queue):

SELECT CAST(message_body as xml) EventInfo
FROM dbo.SQLEventQueue

This returns XML-based information about the login event, including the added login name
and the login that added it:

<EVENT_INSTANCE>
<EventType>CREATE_LOGIN</EventType>
<PostTime>2008-03-09T12:39:09.493</PostTime>
<SPID>53</SPID>
<ServerName>CAESAR\AUGUSTUS</ServerName>
<LoginName>CAESAR\Administrator</LoginName>
<ObjectName>TrishelleN</ObjectName>
<ObjectType>LOGIN</ObjectType>
<DefaultLanguage>us_english</DefaultLanguage>
<DefaultDatabase>master</DefaultDatabase>
<LoginType>SQL Login</LoginType>
<SID>McTRGu1DYE2R8FTJYClN1w==</SID>
<TSQLCommand>
<SetOptions ANSI_NULLS="ON" ANSI_NULL_DEFAULT="ON" ANSI_PADDING="ON"

QUOTED_IDENTIFIER="ON" ENCRYPTED="FALSE" />
<CommandText>CREATE LOGIN TrishelleN WITH PASSWORD = '******'

</CommandText>
</TSQLCommand>

</EVENT_INSTANCE>

How It Works
In this recipe, I demonstrated creating an event notification by performing the following steps:

1. Create a new queue in an existing database.

2. Create a new service that is bound to the new queue and the built-in event notification
contract.

3. Use CREATE EVENT NOTIFICATION to track one or more events or event groups.

Event notification functionality provides a low-overhead method of tracking activities at the
SQL Server instance, database, or Service Broker application level. As you saw in the example, very
little coding was necessary in order to begin tracking events. This new functionality will be particu-
larly useful for IT security or business-level auditing requirements. For example, when capturing
the login creation event, the user that created it was also captured, along with the type of login
(SQL login), default database, language, and security identifier of the new login.

CHAPTER 20 ■ SERVICE BROKER614

9802CH20.qxd 6/17/08 4:12 PM Page 614

Configuring and Viewing SQL Server
Options

Although SQL Server automatically maintains and adjusts many settings and configurations
behind the scenes, there are still several options that the database administrator can configure.
In this brief chapter, I’ll show you recipes for viewing and configuring SQL Server settings using
Transact-SQL.

■Note For a review of the SERVERPROPERTY, @@SERVERNAME, and other SQL Server instance-level functions, see
Chapter 8.

Viewing SQL Server Configurations
SQL Server configuration settings control a variety of behaviors, from the way memory is managed
to the default fill factor of your indexes. Although the valid configuration values vary, based on the
option you are modifying, you can use the sp_configure system stored procedure to view or make
changes:

The syntax for sp_configure is as follows:

sp_configure [[@configname =] 'option_name'
[, [@configvalue =] 'value']]

The parameters are briefly described in Table 21-1.

Table 21-1. sp_configure Parameters

Parameter Description

[@configname =] 'option_name' The name of the SQL Server option to be configured

[@configvalue =] 'value' The desired new value to be set for the SQL Server option

The sp_configure stored procedure is used to both modify and query the SQL Server instance
configuration settings. You can also query configuration settings using the sys.configurations sys-
tem catalog view. The sys.configurations view can be queried like any normal view, and it returns
each configuration name, the value in use by the SQL Server instance, the configuration setting’s
description, whether the configuration requires a SQL Server instance restart, and whether the con-
figuration is an advanced option.

This recipe demonstrates three methods for viewing SQL Server configurations. The first
method, which follows immediately, shows basic options. The second method displays “advanced” 615

C H A P T E R 2 1

9802CH21.qxd 4/29/08 5:19 PM Page 615

options, or those that require extra consideration by an experienced database administrator before
modification. The third and last example shows how to query the sys.configurations system cata-
log view.

-- Display basic options
EXEC sp_configure
GO

This returns basic configurations and their current values:

name minimum maximum config_value run_value
allow updates 0 1 0 0
backup compression default 0 1 0 0
clr enabled 0 1 0 0
cross db ownership chaining 0 1 0 0
default language 0 9999 0 0
filestream access level 0 2 2 2
max text repl size (B) -1 2147483647 65536 65536
nested triggers 0 1 1 1
remote access 0 1 1 1
remote admin connections 0 1 0 0
remote login timeout (s) 0 2147483647 20 20
remote proc trans 0 1 0 0
remote query timeout (s) 0 2147483647 600 600
server trigger recursion 0 1 1 1
show advanced options 0 1 0 0
user options 0 32767 0 0

The next query shows advanced options (in addition to the basic options):

-- Display advanced options
EXEC sp_configure 'show advanced option', 1
RECONFIGURE
GO

EXEC sp_configure
GO

This returns both basic and advanced options (not all rows displayed):

name minimum maximum config_value run_value
Ad Hoc Distributed Queries 0 1 0 0
affinity I/O mask -2147483648 2147483647 0 0
affinity mask -2147483648 2147483647 0 0
Agent XPs 0 1 1 1
allow updates 0 1 0 0
...
user options 0 32767 0 0
Web Assistant Procedures 0 1 0 0
xp_cmdshell 0 1 0 0

Finally, the sys.configurations view is queried to show SQL Server configurations, ordered by
configuration name:

SELECT name, value, minimum, maximum, value_in_use, is_dynamic, is_advanced
FROM sys.configurations
ORDER BY name

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS616

9802CH21.qxd 4/29/08 5:19 PM Page 616

This returns all options, in addition to other useful information such as whether the option is
advanced and whether it’s dynamic. If the option has an is_dynamic value of 1, the configuration
change will take effect after the RECONFIGURE command is executed:

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS 617

name value minimum maximum value_in_use is_dynamic is_advanced

Ad Hoc Distributed Queries 0 0 1 0 1 1

affinity I/O mask 0 -2147483648 2147483647 0 0 1

affinity mask 0 -2147483648 2147483647 0 1 1

affinity64 I/O mask 0 -2147483648 2147483647 0 0 1

affinity64 mask 0 -2147483648 2147483647 0 1 1

...

Web Assistant Procedures 0 0 1 0 1 1

xp_cmdshell 0 0 1 0 1 1

How It Works
In the first part of the recipe, basic options were returned using the system stored procedure
sp_configure. Examples of basic options included the clr enabled and nested triggers configura-
tions. The clr enabled option shows you whether or not CLR-based objects are allowed in the SQL
Server instance. The nested triggers configuration determines whether or not triggers can be fired
that fire other triggers. These are basic settings that all SQL Server users can see by default.

The second part of the recipe demonstrated how to view all server options, including advanced
options. To do this, an actual SQL Server configuration change was necessary. The "show advanced
option" setting was configured from 0 (false) to 1 (true):

EXEC sp_configure 'show advanced option', 1
RECONFIGURE
GO

After executing sp_configure, the RECONFIGURE command was used. For those SQL Server
options that don’t require reboots, the RECONFIGURE command forces an update to the currently
configured value. If an invalid or not recommended value is used, RECONFIGURE will reject it. Using
RECONFIGURE WITH OVERRIDE will override this validation, in most cases. For example, take the
recovery interval option, which designates the maximum database recovery time (in minutes).
Setting the value of this option above 60 minutes using RECONFIGURE would raise a warning indicat-
ing that the value is not recommended. The warning, however, doesn’t stop you from making the
change. Using RECONFIGURE WITH OVERRIDE would force this option’s value to be changed.

After changing the show advanced option value to 1, all options were returned by sp_configure:

EXEC sp_configure
GO

Last in the recipe, the sys.configurations system catalog view was queried to return all SQL
Server options. It returned additional information for each setting, including whether the setting
was dynamic and if it was an advanced option.

Changing SQL Server Configurations
SQL Server does a remarkable job of maintaining itself out of the box, and in most cases, the default
settings will suffice. When you must change a default configuration value, you need to do so with
care, making sure that you understand exactly what it is you are changing. For example, the locks
configuration, which determines the maximum number of available locks SQL Server can issue,
should be left to SQL Server to manage, allowing SQL Server to allocate, de-allocate, and escalate
lock types as it sees fit.

9802CH21.qxd 4/29/08 5:19 PM Page 617

In this recipe, I’ll demonstrate using sp_configure to disable query parallelism, as well as to set
a cap on the maximum amount of memory (in MBs) that the SQL Server instance is permitted to
use. The max degree of parallelism option sets the limit on the number of processors used in a
parallel plan execution. The default value for this option is to use all available processors (with the
option equal to 0):

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max degree of parallelism')

This returns

name value_in_use
max degree of parallelism 0

In this example, the maximum degree of parallelism is set to a single CPU:

EXEC sp_configure 'max degree of parallelism', 1
RECONFIGURE
GO

This returns

Configuration option 'max degree of parallelism' changed from 0 to 1.
Run the RECONFIGURE statement to install.

Now the value is checked again:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max degree of parallelism')

This returns

name value_in_use
max degree of parallelism 1

The max server memory option designates the maximum amount of memory SQL Server is
allowed to use, measured in megabytes. The default value for this setting is no set maximum, as this
query will show:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max server memory (MB)')

This returns the default memory value (which is very large):

name value_in_use
max server memory (MB) 2147483647

In this example, a cap of 2500MB is put on the SQL Server instance:

EXEC sp_configure 'max server memory', 2500
RECONFIGURE
GO

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS618

9802CH21.qxd 4/29/08 5:19 PM Page 618
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

This returns

Configuration option 'max server memory (MB)' changed from 2147483647 to 2500.
Run the RECONFIGURE statement to install.

The new value is then verified:

SELECT name, value_in_use
FROM sys.configurations
WHERE name IN ('max server memory (MB)')

This returns

name value_in_use
max server memory (MB) 2500

How It Works
In this recipe, I demonstrated setting the max degree of parallelism to 1, which means that only a
single processor will be used on a single query (disabling SQL Server’s ability to use multiple CPUs
for executing a single query). This recipe also demonstrated limiting the maximum server memory
to 2500MB. As long as other options have not been configured to constrain SQL Server any further,
SQL Server will still dynamically manage memory, but only up to the limit specified using
sp_configure. Neither change in setting required a restart of the SQL Server instance, so the
RECONFIGURE command was enough to set the value during execution time.

CHAPTER 21 ■ CONFIGURING AND VIEWING SQL SERVER OPTIONS 619

9802CH21.qxd 4/29/08 5:19 PM Page 619

9802CH21.qxd 4/29/08 5:19 PM Page 620

Creating and Configuring Databases

In this chapter, you’ll see an assortment of recipes that revolve around creating and configuring a
SQL Server database. Some of the things you’ll learn to do with Transact-SQL include the following:

• Creating a new database

• Adding or removing files or filegroups from a database

• Viewing and modifying database settings

• Increasing or decreasing a database or database file size

• Removing a database from the SQL Server instance

• Detaching and reattaching a database from a SQL Server instance

I’ll also review the various “state” settings, such as configuring the database to be read-only, or
putting the database into single-user mode.

Creating, Altering, and Dropping Databases
In this first set of recipes, I cover how to create, modify, and drop databases in a SQL Server
instance. Specifically, I’ll be showing you how to

• Create a database based on the default configuration of the model system database.

• View information about a database’s configuration.

• Create a database using explicit file options (instead of depending on the model system
database).

• Create a database that uses a user-defined filegroup.

• Change the name of an existing database.

• Drop a database from the SQL Server instance.

• Detach a database from the SQL Server instance so that only the underlying data and log
files remain. Reattach the database using those same files.

The primary commands you’ll be using to create and modify databases are CREATE DATABASE
and ALTER DATABASE. Similar to my discussion in Chapter 1 about the SELECT statement, in this
chapter, each recipe will slice off the relevant components used to perform the specified task,
instead of presenting the syntax in one large block.

621

C H A P T E R 2 2

9802CH22.qxd 6/17/08 4:14 PM Page 621

Creating a Database with a Default Configuration
This recipe demonstrates how to create a database in its simplest form, by using the default config-
uration based on the model system database. The model database is a system database installed with
SQL Server that defines the template for all other databases created on the SQL Server instance. If
you create a database without specifying any options other than the database name, the options
will be based on the model system database.

The syntax for creating a database based on model is as follows:

CREATE DATABASE database_name

The CREATE DATABASE command, in its simplest form, can take just a single argument: the new
database name.

This recipe creates a new database called BookStore:

USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookStore')

CREATE DATABASE BookStore

GO

How It Works
In this recipe, a new database called BookStore was created, without any other options but the data-
base name. By omitting details such as file locations, size, and file growth options, the new database
is created based on the model system database. The database will include any user-defined objects
that you’ve placed in the model database and will use a file-naming convention based on the new
database name.

Although this is a quick way to create a new database, it doesn’t give you much control over
several of the options that I’ll describe throughout this chapter.

Viewing Database Information
This recipe demonstrates how to view database properties and file information using the system
stored procedure sp_helpdb:

EXEC sp_helpdb 'BookStore'
GO

This returns the following two result sets (albeit a bit packed due to the constraints of the
printed page):

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES622

9802CH22.qxd 6/17/08 4:14 PM Page 622

name db_size owner dbid created status compatibility_level

BookStore 1.62 MB CAESAR\Administrator 6 Dec 23 2007 Status=ONLINE, 100

Updateability=READ_WRITE,

UserAccess=MULTI_USER,

Recovery=FULL,

Version=639,

Collation=SQL_Latin1_

General_CP1_CI_AS,

SQLSortOrder=52,

IsAutoCreateStatistics,

IsAutoUpdateStatistics,

IsFullTextEnabled

name fileid filename filegroup size maxsize growth usage

BookStore 1 C:\Program Files\

Microsoft SQL Server\

MSSQL10.AUGUSTUS\

MSSQL\DATA\

BookStore.mdf PRIMARY 1152 KB Unlimited 1024 KB data only

BookStore_log 2 C:\Program Files\

Microsoft SQL Server\

MSSQL10.AUGUSTUS\

MSSQL\DATA\

BookStore_log.LDF NULL 504 KB 2147483648 KB 10% log only

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 623

How It Works
The system stored procedure sp_helpdb was used to view the properties of a database. This system
stored procedure takes a single optional parameter, which in this case is the database name:

EXEC sp_helpdb 'BookStore'

Had the database name been omitted from this stored procedure, information for all the data-
bases on the SQL Server instance would have been returned instead.

This system stored procedure returns information such as

• The database name and owner

• The date that the database was created

• The various database settings and options, such as the database’s default collation or
whether or not the database is configured to automatically update statistics (database
options are described later in the chapter).

• A list of individual files that make up the database, along with their size, filegroup, and
growth options

The output also includes the database’s compatibility level. For example, a SQL Server 2008
database by default will have a compatibility level of 100. SQL Server 2005 would be level 90, and
SQL Server 2000 level 80. Compatibility level allows you to keep databases in SQL Server 2008 that
remain compatible with prior versions of SQL Server. This also means that you cannot use Transact-
SQL extensions introduced in SQL Server 2008 with a SQL Server 2005–compatible database. In
previous versions, you set this level using the sp_dbcmptlevel system stored procedure. In SQL
Server 2008, you set the database compatibility using ALTER DATABASE. For example:

9802CH22.qxd 6/17/08 4:14 PM Page 623

ALTER DATABASE AdventureWorks
SET COMPATIBILITY_LEVEL = 100
GO

Creating a Database Using File Options
Using the default options from the model system database to create a new database is fine if you’re
simply looking to create a quick-and-dirty test database, but in a production environment, you’ll
usually want to put more thought into the location, size, and growth options of the database data
and log files. This recipe will demonstrate the use of specifying explicit file options when creating a
new database.

The abridged syntax for CREATE DATABASE, as presented in this recipe, is as follows:

CREATE DATABASE database_name
[ON

[<filespec> [,...n]]]
[[LOG ON { <filespec> [,...n] }]]

The arguments of this syntax are briefly described in Table 22-1.

Table 22-1. CREATE DATABASE File Arguments

Argument Description

database_name Defines the name of the database

[ON [<filespec> [,...n]]] Designates one or more explicitly defined data files for
the database

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction
log files for the database

The syntax for the filespec argument, used both in creating a data file and a log file, is as
follows:

[PRIMARY]
(

[NAME = logical_file_name ,]
FILENAME = 'os_file_name'

[, SIZE = size [KB | MB | GB | TB]]
[, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
[, FILEGROWTH = growth_increment [KB | MB | %]]

) [,...n]

The filespec arguments are described in Table 22-2.

Table 22-2. Filespec Arguments

Argument Description

PRIMARY This optional keyword designates the data file in the
filespec as the primary data file (entry point of the
database that contains pointers to other files and is
typically named with an .mdf file extension). Only one
primary file can exist for a database, and if it is not
explicitly designated, the first data file listed in CREATE
DATABASE is used as the primary file.

logical_file_name This defines the logical name of the database file.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES624

9802CH22.qxd 6/17/08 4:14 PM Page 624

Argument Description

os_file_name This specifies the physical path and file name of the
database file.

size [KB | MB | GB | TB] This defines the initial size of the file, based on the sizing
attribute of choice (kilobytes, megabytes, gigabytes,
terabytes).

MAXSIZE = { max_size [KB | MB | This specifies the maximum allowable size of the file.
GB | TB] | UNLIMITED } If UNLIMITED is chosen, the file can grow to the available

space of the physical drive.

FILEGROWTH = growth_increment This dictates the amount that the file size increases when
[KB | MB | %] space is required. You can either designate the number of

kilobytes or megabytes, or the percentage of existing file
size to grow. If you select 0, file growth will not occur.

[,...n] This indicates that you can have one or more files defined
(up to 32,767 files per database).

In this recipe, I’ll create a new database called BookStoreArchive using all the aforementioned
CREATE DATABASE options:

USE master
GO

CREATE DATABASE BookStoreArchive
ON PRIMARY
(NAME = 'BookStoreArchive',

FILENAME = 'F:\Apress\BookStoreArchive.mdf' ,
SIZE = 3MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10MB),

(NAME = 'BookStoreArchive2',
FILENAME = 'G:\Apress\BookStoreArchive2.ndf' ,
SIZE = 1MB ,
MAXSIZE = 30,
FILEGROWTH = 5%)

LOG ON
(NAME = 'BookStoreArchive_log',

FILENAME = 'H:\Apress\BookStoreArchive_log.LDF' ,
SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

GO

How It Works
In this recipe, a new database called BookStoreArchive was created. The PRIMARY keyword was used
to designate the first file as the primary data file:

CREATE DATABASE BookStoreArchive
ON PRIMARY

The first file definition followed in parentheses. The logical file name was called
BookStoreArchive:

(NAME = 'BookStoreArchive',

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 625

9802CH22.qxd 6/17/08 4:14 PM Page 625

The physical file name was designated on the F:\ drive. In production scenarios, you’ll likely be
putting your data files on different drive letters (which could support a RAID 5 or RAID 10 array):

FILENAME = 'F:\Apress\BookStoreArchive.mdf' ,

Next, the initial data file size was set to 3 megabytes:

SIZE = 3MB ,

The maximum size of the file was set to unlimited, meaning that it can keep growing as long as
there is free space on the C:\ drive:

MAXSIZE = UNLIMITED,

The growth increment was set to 10-megabyte chunks. Whenever more space is needed on the
file, the file size will expand in 10-megabyte increments:

FILEGROWTH = 10MB),

The previous file definition ended with a comma, followed by a second data file definition:

(NAME = 'BookStoreArchive2',
FILENAME = 'G:\Apress\BookStoreArchive2.ndf' ,

The second data file was given a different logical name and physical file name. The physical file
name ended in an .ndf file extension. Although that specific file extension isn’t required, it does
make it easier to identify the file type if you use .mdf for the primary file and .ndf for all secondary
data files. Adding multiple files that are spread out over different drive letters, assuming each drive
letter is RAID enabled and on a separate channel or controller, can allow you to spread out I/O
activity and potentially improve performance for larger, high-traffic databases.

The size of the second file was set to 1 megabyte, with a cap on the maximum size of 30 mega-
bytes. File growth was set to increment in 5% chunks, instead of in megabytes as the first data file
was defined:

SIZE = 1MB ,
MAXSIZE = 30,
FILEGROWTH = 5%)

After the two data files were defined, the LOG ON keywords marked the beginning of the trans-
action log file definition:

LOG ON
(NAME = 'BookStoreArchive_log',

The physical file name used an .ldf file extension, which is the standard for transaction log
files:

FILENAME = 'H:\Apress\BookStoreArchive_log.LDF' ,

The initial size was set to 504 kilobytes, with a maximum transaction log size of 100 megabytes
and a 10% file growth rate.

SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

Once the CREATE DATABASE command is executed, the associated files are automatically created
on the server, and the database is then available for use.

Later on in the chapter, there will be recipes showing you how to modify existing file proper-
ties, as well as how to add new data or transaction files to the database.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES626

9802CH22.qxd 6/17/08 4:14 PM Page 626

Creating a Database with a User-Defined Filegroup
A database must have, at a minimum, one data file and one transaction log file. These files belong to
a single database and therefore are not shared with other databases. By default, when a database is
created, the data files belong to the primary filegroup. A filegroup is a named grouping of files for
administrative and placement reasons. The primary filegroup contains the primary data file, as well
as other data files that have not been explicitly assigned to a different filegroup. Data files (but not
transaction log files) belong to filegroups.

In addition to the primary filegroup (which all SQL Server databases have), you can create sec-
ondary user-defined filegroups for placing your files. User-defined filegroups are often used in very
large databases (VLDB), allowing you to partition the database across several arrays and manage
backups at the filegroup level instead of the entire database.

■Note You can place tables or indexes on specific filegroups. See Chapter 4 for a review of filegroups and tables
and Chapter 5 for a review of filegroups and indexes.

In this recipe, I demonstrate how to create a database with files on a user-defined filegroup.
The syntax for doing so is as follows:

CREATE DATABASE database_name
[ON
FILEGROUP filegroup_name [CONTAINS FILESTREAM] [DEFAULT]

<filespec> [,...n]
]
[

[LOG ON { <filespec> [,...n] }]]

The syntax arguments are detailed in Table 22-3.

Table 22-3. CREATE DATABASE Arguments

Argument Description

database_name Defines the name of the database.

FILEGROUP filegroup_name Designates the logical name of the filegroup. If followed
[CONTAINS FILESTREAM] by the DEFAULT keyword, this filegroup will be the default
[DEFAULT] filegroup of the database (meaning all objects will by

default be created there); otherwise, if CONTAINS
FILESTREAM is designated, this will point to the directory
where filestream attribute files will be located.

<filespec> [,...n] Designates one or more explicitly defined data files for
the database.

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction
log files for the database.

This recipe creates a new database called BookStoreInternational, which uses two filegroups.
One is the required primary filegroup and the other, the new user-defined FG2 filegroup, is created
in the CREATE DATABASE command:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 627

9802CH22.qxd 6/17/08 4:14 PM Page 627

USE master
GO

CREATE DATABASE BookStoreInternational
ON PRIMARY
(NAME = 'BookStoreInternational',

FILENAME = 'C:\Apress\BookStoreInternational.mdf',
SIZE = 3MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 5MB),

FILEGROUP FG2 DEFAULT
(NAME = 'BookStoreInternational2',

FILENAME = 'C:\Apress\BookStoreInternational2.ndf',
SIZE = 1MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1MB)

LOG ON
(NAME = 'BookStoreInternational_log',

FILENAME = 'C:\Apress\BookStoreInternational.ldf',
SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

GO

How It Works
In this recipe, a new database was created with two data files and one transaction log file. The first
data file was created on the PRIMARY filegroup. The second database data file was created in a new
user-defined filegroup called FG2, using the FILEGROUP keyword. This filegroup was marked as the
default filegroup, so that any new database objects created in the database will be created in this
filegroup:

...
FILEGROUP FG2 DEFAULT
(NAME = 'BookStoreInternational2',

FILENAME = 'C:\Apress\BookStoreInternational2.ndf',
SIZE = 1MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1MB)

...

Since transaction logs are not placed in filegroups, the LOG ON keywords were used with the
standard filespec definition.

In this recipe, a single file was placed in the FG2 filegroup, though you can put multiple files in a
single filegroup. With multiple files in a filegroup, SQL Server will fill each in a proportional manner,
instead of filling up a single file before moving on to the next.

Setting Database User Access
SQL Server provides three database user access modes that affect which users (and how many)
can access a database: SINGLE_USER, RESTRICTED_USER, and MULTI_USER. The SINGLE_USER and
RESTRICTED_USER options are methods used to “shut the door” on other users performing activities
in the database. This is often useful if you need to perform database configuration changes that do
not allow other users to be in the database at the same time. These options are also used when you

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES628

9802CH22.qxd 6/17/08 4:14 PM Page 628

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

need to undo a data change, or force users out prior to a cutover to a new system or application
upgrade. The upcoming table describes each option in more detail.

The abridged syntax for modifying user access is as follows:

ALTER DATABASE database_name
SET { SINGLE_USER | RESTRICTED_USER | MULTI_USER }
[WITH { ROLLBACK AFTER integer [SECONDS]

| ROLLBACK IMMEDIATE
| NO_WAIT

}]

The arguments of this syntax are described in Table 22-4.

Table 22-4. ALTER DATABASE Arguments

Argument Description

database_name This defines the name of the existing database
to modify user access for.

SINGLE_USER | RESTRICTED_USER | MULTI_USER When SINGLE_USER is selected, only one user is
allowed to access the database at a time. When
this option is selected, unless the termination
options are used (see the next row for a
description of termination options), the
modification is blocked until all other users
disconnect from the database. With RESTRICTED_
USER selected, only members of the sysadmin,
dbcreator, or db_owner roles can access the
database. With MULTI_USER, all users with
permissions to the database are allowed access.

ROLLBACK AFTER integer [SECONDS] | These termination options allow you to roll
ROLLBACK IMMEDIATE | NO_WAIT back incomplete transactions for the database

during the ALTER DATABASE statement. If you
don’t use a termination option, your ALTER
DATABASE may have to wait for however long the
locking connection needs to complete its task.
Termination options can actually be used with
any SET clause; however, they are most often
used when changing a database to SINGLE_USER
or RESTRICTED_USER modes. ROLLBACK AFTER
integer [SECONDS] specifies that open database
transactions be rolled back after a specified
number of seconds. ROLLBACK IMMEDIATE rolls
back open transactions immediately. NO_WAIT,
when specified, causes the statement to fail if it
cannot complete immediately (using this option
requires that there are no open transactions in
the database in order to succeed).

This recipe demonstrates taking the AdventureWorks database into a SINGLE_USER mode, rolling
back any open transactions, and then putting the database back into MULTI_USER mode:

-- Turn off row count messages
SET NOCOUNT ON

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 629

9802CH22.qxd 6/17/08 4:14 PM Page 629

ALTER DATABASE AdventureWorks
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET MULTI_USER

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

user_access_desc
MULTI_USER

user_access_desc
SINGLE_USER

user_access_desc
MULTI_USER

How It Works
In this recipe, the system catalog view sys.databases was queried to check the current user access
mode. The database was then changed to SINGLE_USER mode and included a termination of all open
transactions in other database user sessions:

ALTER DATABASE AdventureWorks
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

The user access mode was then checked again via sys.databases, and the database was
changed back to MULTI_USER:

ALTER DATABASE AdventureWorks
SET MULTI_USER

After that, the access mode was checked again via sys.databases:

SELECT user_access_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

It is important to note that canceling open transactions in this manner may cause issues in
your application, depending on how your application handles incomplete processes. When possi-
ble, try to change user access during periods of inactivity or when no transactions are active. You
need to set the database to SINGLE_USER for certain operations, such as for the READ_ONLY and
READ_WRITE options. Another reason to close all current user connections may be, for example, to
put in an emergency object fix without having to deal with blocking or errors from the calling
application.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES630

9802CH22.qxd 6/17/08 4:14 PM Page 630

Renaming a Database
In this recipe, I demonstrate how to change the name of an existing database using ALTER DATABASE.

The syntax is as follows:

ALTER DATABASE database_name
MODIFY NAME = new_database_name

The two arguments for this command include the original database name and the new data-
base name.

This recipe demonstrates changing the name of the BookWarehouse database to the BookMart
database. ALTER DATABASE...SET SINGLE USER is also executed in order to clear out any other con-
current connections to the database:

USE master
GO

-- Create demo database
CREATE DATABASE BookWarehouse
GO

ALTER DATABASE BookWarehouse
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

ALTER DATABASE BookWarehouse
MODIFY NAME = BookMart
GO

ALTER DATABASE BookMart
SET MULTI_USER
GO

This returns the following (results may vary depending on activity in the database during the
termination of connections):

Nonqualified transactions are being rolled back.
Estimated rollback completion: 100%.
The database name 'BookMart' has been set.

How It Works
In this recipe, a database was renamed from BookWarehouse to BookMart. Before doing so, the query
session’s context was changed to the master database (because you can’t change the name of the
database using a connection to the database itself):

USE master
GO

I started off by creating a new database named BookWarehouse for demonstration purposes. The
new database was placed into single-user mode, and all active transactions against the database
were rolled back (except for transactions existing within the current session):

ALTER DATABASE BookWarehouse
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 631

9802CH22.qxd 6/17/08 4:14 PM Page 631

The database name was then changed using ALTER DATABASE and MODIFY NAME:

ALTER DATABASE BookWarehouse
MODIFY NAME = BookMart
GO

Even though the database was put in single-user mode under its original name, it will remain
in single-user mode until it is explicitly set back to MULTI_USER access:

ALTER DATABASE BookMart
SET MULTI_USER
GO

Dropping a Database
You can remove a user database from SQL Server using the DROP DATABASE command. DROP DATABASE
removes references to the database from SQL Server system tables. If the underlying files are online,
it also removes the physical files from the SQL Server machine.

The syntax is as follows:

DROP DATABASE database_name

In this recipe, the BookStoreArchive_Ukrainian database is dropped:

USE master
GO

-- Create demonstration database
CREATE DATABASE BookStoreArchive_Ukrainian
GO

ALTER DATABASE BookStoreArchive_Ukrainian
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

DROP DATABASE BookStoreArchive_Ukrainian
GO

How It Works
In this recipe, I started off by switching the current query session to the master database, because
you cannot drop a database while you are also connected to it. The recipe also set the database into
single-user mode and forced any open transactions to be rolled back immediately. Finally, within
the same query session, the database was dropped using the DROP DATABASE command.

Detaching a Database
When you drop a database, it is removed from the SQL Server instance along with its physical files.
If you wish to remove a database from a SQL Server instance, but still retain the physical files (for
archiving or to migrate the database to another SQL Server instance), you can detach the database
instead. You can also move a database from one SQL Server instance to another, by detaching it
from one instance and adding it to the other.

In order to detach a database, you use the system stored procedure sp_detach_db, which uses
the following syntax:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES632

9802CH22.qxd 6/17/08 4:14 PM Page 632

sp_detach_db [@dbname=] 'dbname'
[, [@skipchecks=] 'skipchecks']

The parameters for the procedure are described in Table 22-5.

Table 22-5. sp_detach_db Parameters

Parameter Description

dbname This option supplies the name of the database to detach.

skipchecks This option allows a true or false value. When this option is true, statistics are not
updated prior to detaching the database. By default, statistics are updated.

■Note This system stored procedure also takes a @keepfulltextindexfile parameter, which I have not
included here. It will be removed in a future edition of SQL Server, since full-text index metadata is maintained
within the database now.

In this recipe, I will create, and then detach, a database using sp_detach_db:

-- Create a default example database to detach
USE master
GO

CREATE DATABASE TestDetach
GO

-- Kick out any users currently in the database

ALTER DATABASE TestDetach
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

-- Detach the database

EXEC sp_detach_db 'TestDetach',
'false' -- don't skip checks

This returns the following abridged results:

Updating [sys].[queue_messages_1977058079]
[queue_clustered_index], update is not necessary...
[queue_secondary_index], update is not necessary...
0 index(es)/statistic(s) have been updated, 2 did not require update.

...

Updating [sys].[syscommittab]
[ci_commit_ts], update is not necessary...
[si_xdes_id], update is not necessary...
0 index(es)/statistic(s) have been updated, 2 did not require update.

Statistics for all tables have been updated.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 633

9802CH22.qxd 6/17/08 4:14 PM Page 633

How It Works
In this recipe, a new database called TestDetach was created. After that, I used ALTER DATABASE to set
the TestDetach database into single-user mode, while also kicking out any open database connec-
tions using the ROLLBACK IMMEDIATE option.

The system stored procedure sp_detach_db was then used to detach the database—but not
before updating statistics (designating false in the second parameter). The database has, for all
intents and purposes, been dropped. However, the data files still exist on the SQL Server instance’s
server, and can be re-created on the current or other SQL Server instance if you choose to do so.

Attaching a Database
The previous recipe demonstrated how to detach a database. In this next recipe, I’ll demonstrate
how to attach a database. Using the detach/attach method is a clean way to migrate a database
from one SQL Server instance to another, assuming that a copy of the database needn’t remain on
both SQL Server instances.

■Caution Detaching and attaching a database from one server to the other doesn’t also move the SQL Server
logins associated to users in the database. You must move logins to the new SQL Server instance as a separate
operation.

To attach a database to a SQL Server instance, you use the CREATE DATABASE FOR ATTACH
command.

The abridged syntax is as follows:

CREATE DATABASE database_name
ON <filespec> [,...n]
FOR { ATTACH

| ATTACH_REBUILD_LOG }

The arguments for this command are described in Table 22-6.

Table 22-6. CREATE DATABASE...FOR ATTACH Parameters

Parameter Description

database_name This specifies the name of the database to attach.

<filespec> [,...n] This defines the name of the primary data file and any other
database files. If the file locations of the originally detached
database match the existing file location, you only need to include
the primary data file reference. If file locations have changed,
however, you should designate the location of each database file.

ATTACH | ATTACH_REBUILD_LOG The ATTACH option designates that the database is created using
all original files that were used in the detached database. When
ATTACH_REBUILD_LOG is designated, and if the transaction log file or
files are unavailable, SQL Server will rebuild the transaction log
file or files.

In this recipe, the TestDetach database detached in the previous recipe will now be reattached
to the SQL Server instance using the same files and file paths. The database, however, will be
reattached with a new name of TestAttach:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES634

9802CH22.qxd 6/17/08 4:14 PM Page 634

CREATE DATABASE TestAttach
ON (FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL10.AUGUSTUS

\MSSQL\DATA\TestDetach.mdf')
FOR ATTACH

How It Works
In this recipe, a database was reattached by using CREATE DATABASE FOR ATTACH. The command ref-
erenced the primary data file name, which contained references to the location of the other files (in
this case, the transaction log file).

If you detach a database, and then relocate the secondary data files and/or transaction log files,
you will also need to explicitly reference the new location of each file in the CREATE DATABASE...FOR
ATTACH command. The new path of the files is designated in the filespec. If the transaction log or
logs had been unavailable, you could have used the ATTACH_REBUILD_LOG instead of ATTACH to rebuild
the transaction log file.

Configuring Database Options
This next set of recipes covers how to configure database options that impact the behavior of activi-
ties performed within the database. Specifically, I’ll be showing you how to

• View database options currently configured for the database.

• Configure ANSI SQL options.

• Configure automatic options. Automatic database options impact the behavior of the SQL
Server database engine, enabling or disabling automatic maintenance or metadata updates.

• Configure external access options, including DB_CHAINING and TRUSTWORTHY.

• Create or modify a database to use a specific collation.

• Configure cursor options.

• Enable date correlation optimization. Two tables that are related by a datetime foreign key
reference can benefit from enabling the DATE_CORRELATION_OPTIMIZATION option.

• Modify database parameterization behavior. The PARAMETERIZATION option is used with ALTER
DATABASE and controls whether all or some queries against the database are parameterized.

• Enable row versioning. SQL Server has two database options that allow for statement-level
and transaction-level read consistency: ALLOW_SNAPSHOT_ISOLATION and
READ_COMMITTED_SNAPSHOT.

• Configure database recovery models. SQL Server uses three different recovery models that
define whether or not transaction log backups can be made, and if so, what database activi-
ties will write to the transaction log.

• Configure page verification. SQL Server has three modes for handling and detecting incom-
plete I/O transactions caused by disk errors: CHECKSUM, TORN_PAGE_DETECTION, and NONE.

■Note Some of the database options have already been demonstrated in other chapters. For a discussion of the
ENCRYPTION database option, see Chapter 19. For a discussion on the AUTO_CLEANUP and CHANGE_RETENTION
database options, see Chapter 2. Service Broker database options are discussed in Chapter 20.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 635

9802CH22.qxd 6/17/08 4:14 PM Page 635

I’ll begin by reviewing how to see the current database options for a database using the
sys.databases system catalog view.

Viewing Database Options
This recipe demonstrates how to view database options using the sys.databases system catalog
view for the AdventureWorks database:

SELECT name, is_read_only, is_auto_close_on, is_auto_shrink_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

name is_read_only is_auto_close_on is_auto_shrink_on
AdventureWorks 0 0 0

How It Works
In this recipe, a query was used to view three database options: is_read_only, is_auto_close_on,
and is_auto_shrink_on. The sys.databases system catalog view can be used to view many other
database options for both user and system databases.

Configuring ANSI SQL Options
This recipe demonstrates how to set ANSI (American National Standards Institute) SQL-compliance
defaults for a database. These settings impact a number of behaviors, which are detailed in
Table 22-7.

Table 22-7. ANSI SQL Options

Option Description

ANSI_NULL_DEFAULT When this option is set to ON, columns not explicitly defined with a
NULL or NOT NULL in a CREATE or ALTER table statement will default to
allow NULL values. The default is OFF, which means a column will be
defined as NOT NULL if not explicitly defined.

ANSI_NULLS When this option is enabled, a comparison to a null value returns
UNKNOWN. The default for this setting is OFF, meaning that comparisons
to a null value will evaluate to TRUE when both values are NULL.

ANSI_PADDING This option pads strings to the same length prior to inserting into a
varchar or nvarchar data type column. The default setting is OFF,
meaning that strings will not be padded.

ANSI_WARNINGS This setting impacts a few different behaviors. When ON, any null
values used in an aggregate function will raise a warning message.
Also, divide-by-zero and arithmetic overflow errors will roll back the
statement and return an error message. This setting is OFF by default.

ARITHABORT When this option is set to ON, a query with an overflow or division by
zero will terminate the query and return an error. If this occurs within
a transaction, then that transaction gets rolled back. When this option
is OFF (the default), a warning is raised, but the statement continues
to process.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES636

9802CH22.qxd 6/17/08 4:14 PM Page 636

Option Description

CONCAT_NULL_YIELDS_NULL When this option is set to ON, concatenating a null value with a string
produces a NULL value. When OFF (the default), a null value is the
equivalent of an empty character string.

NUMERIC_ROUNDABORT When this option is set to ON, an error is produced when a loss of
precision occurs in an expression. When OFF (the default), no error
message is raised, but the result is rounded to the precision of the
destination column or variable.

QUOTED_IDENTIFIER When this option is set to ON, identifiers can be delimited by double
quotation marks and literals with single quotation marks. When OFF
(the default), only literals can be delimited with single or double
quotation marks.

RECURSIVE_TRIGGERS When this option is ON, triggers can fire recursively (trigger 1 fires
trigger 2, which fires trigger 1 again). When OFF (the default), trigger
recursion is not allowed.

The syntax for setting these options is as follows:

ALTER DATABASE database_name
SET <option> { ON | OFF }

This statement takes two arguments: the database name you want to modify and the name of
the ANSI SQL setting you wish to enable or disable.

■Note The default options for any newly created databases will depend on the values in the model database at
the time the new database is created. However, out of the box, SQL Server defaults are those that were underlined
in the syntax.

In this recipe, ALTER DATABASE is used to set the ANSI_NULLS option to OFF. This means that com-
parisons to a null value in a query will evaluate to TRUE when both values are NULL:

SET NOCOUNT ON

SELECT is_ansi_nulls_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET ANSI_NULLS OFF

SELECT is_ansi_nulls_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_ansi_nulls_on
1

is_ansi_nulls_on
0

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 637

9802CH22.qxd 6/17/08 4:14 PM Page 637

How It Works
This recipe demonstrated using ALTER DATABASE to change an ANSI SQL setting. The recipe started
by querying the sys.databases system catalog view to see the current setting of the database. After
that, the ANSI_NULLS setting was turned off, using ALTER DATABASE and SET ANSI_NULLS OFF, and then
the sys.databases system catalog view was queried again to confirm the change.

It is important to note that database ANSI options can still be overridden by SET statement
connection-level settings. For example, even though the AdventureWorks database has the
ANSI_NULLS setting OFF, using SET ANSI_NULLS ON in a query batch will override the database setting
behavior for the query session.

Also, some of the options reviewed here are required to be turned ON before manipulating
indexes on computed columns or indexed views. Those options include ARITHABORT, QUOTED_
IDENTIFIER, CONCAT_NULL_YIELDS_NULL, ANSI_NULLS, ANSI_WARNINGS, and ANSI_PADDING. The
NUMERIC_ROUNDABORT, however, must be OFF.

Configuring Automatic Options
Automatic database options impact the behavior of the SQL Server database engine, enabling or
disabling automatic maintenance or metadata updates. Table 22-8 describes each of the automatic
options.

Table 22-8. Automatic Options

Option Description

AUTO_CLOSE When this option is enabled, the database is closed and shut
down when the last user connection to the database exits and
all processes are completed.

AUTO_CREATE_STATISTICS When this option is enabled, SQL Server automatically
generates statistical information regarding the distribution
of values in a column. This information assists the query
processor with generating an acceptable query execution plan
(the internal plan for returning the result set requested by the
query).

AUTO_SHRINK When this option is enabled, SQL Server shrinks data and log
files automatically. Shrinking will only occur when more than
25 percent of the file has unused space. The database is then
shrunk to either 25 percent free, or the original data or log file
size. For example, if you defined your primary data file to be
100MB, a shrink operation would be unable to decrease the file
size smaller than 100MB.

AUTO_UPDATE_STATISTICS When this option is enabled, statistics already created for your
tables are automatically updated.

AUTO_UPDATE_STATISTICS_ASYNC When this option is ON, if a query initiates an automatic update
of old statistics, the query will not wait for the statistics to be
updated before compiling. When OFF (the default), a query that
initiates statistics updates will wait until the update is finished
before compiling a query plan.

The syntax for configuring automatic database options is as follows:

ALTER DATABASE database_name
SET AUTO_CLOSE { ON | OFF }
| AUTO_CREATE_STATISTICS { ON | OFF }

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES638

9802CH22.qxd 6/17/08 4:14 PM Page 638

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

| AUTO_SHRINK { ON | OFF }
| AUTO_UPDATE_STATISTICS { ON | OFF }
| AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

The first argument is the database name you want to modify. The second argument is the name
of the option you wish to either enable (ON) or disable (OFF). This recipe will demonstrate enabling
the AUTO_UPDATE_STATISTICS_ASYNC automatic database option for the AdventureWorks database:

SET NOCOUNT ON

SELECT is_auto_update_stats_async_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET AUTO_UPDATE_STATISTICS_ASYNC ON

SELECT is_auto_update_stats_async_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_auto_update_stats_async_on
0

is_auto_update_stats_async_on
1

How It Works
This recipe demonstrated using ALTER DATABASE to change the AUTO_UPDATE_STATS_ASYNC automatic
database setting. The recipe started by querying the sys.databases system catalog view to see the
current setting of the database. After that, the AUTO_UPDATE_STATS_ASYNC setting was turned ON using
ALTER DATABASE, and then the sys.databases system catalog view was queried again to confirm the
change.

Some automatic settings can have a negative impact on performance when set to ON—including
AUTO_CLOSE and AUTO_SHRINK. For AUTO_CLOSE, the overhead of opening the database after cleanly
shutting down can cause performance issues in a high-traffic database that has moments where no
user is currently logged in (the overhead of starting up and shutting down a database repeatedly).
For AUTO_SHRINK, SQL Server may initiate a database shrink operation during an inopportune
moment, slowing down query performance of regular end users. Also, database size may expand
and contract repeatedly when this option is on. AUTO_SHRINK also causes fragmentation, so allowing
this option to be enabled after index rebuilds or reorganizations can undo the positive effects of
these maintenance activities. When it’s possible, let the free space in the database remain, so that
SQL Server isn’t continually expanding and contracting the same files.

Other options should usually not be set OFF without a very good reason, including AUTO_CREATE_
STATISTICS and AUTO_UPDATE_STATISTICS. Statistics help SQL Server compile the best query opti-
mization plan, and the overhead of creating and maintaining statistics automatically is usually not
significant compared to the benefits they provide to query performance.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 639

9802CH22.qxd 6/17/08 4:14 PM Page 639

Creating or Modifying a Database to Allow External Access
The CREATE DATABASE command provides two external access database options: DB_CHAINING and
TRUSTWORTHY. Both of these options are OFF by default. The DB_CHAINING option, when enabled,
allows the new database to participate in a cross-database ownership chain. In its simplest form, an
ownership chain occurs when one object (such as a view or stored procedure) references another
object. If the owner of the schema that contains these objects is the same as the referenced object,
permissions on the referenced object are not checked. Cross-database chaining means that one
object references another object in a different database. Ownership chaining can result in inappro-
priate or unintended data access—for example, if a dbo-owned schema in a view references a
different database’s dbo-owned data table, security will not be checked if the DB_CHAINING option is
enabled.

The TRUSTWORTHY option is used to specify whether or not SQL Server will “trust” any modules
or assemblies within a given database. When this option is OFF, SQL Server will protect against cer-
tain malicious EXTERNAL_ACCESS or UNSAFE activities within that database’s assemblies, or from
malicious code executed under the context of high-privileged users.

The abridged syntax for creating a database with external access options enabled or disabled is
as follows:

CREATE DATABASE database_name
...

[WITH { DB_CHAINING { ON | OFF }
|TRUSTWORTHY { ON | OFF }]]

Both options appear in the WITH clause following the transaction log LOG ON option. They can be
enabled in the same statement, and both are OFF by default.

You can also set these options for an existing database using ALTER DATABASE:

ALTER DATABASE database_name
{SET DB_CHAINING { ON | OFF }
| TRUSTWORTHY { ON | OFF }}

This recipe demonstrates how to create a database with the database chaining option enabled,
and then modify the new database to also allow external database access within database objects:

USE master
GO
-- Create a database with the model database defaults
CREATE DATABASE BookData
WITH DB_CHAINING ON
GO

USE master
GO
-- Now modify the new database to also have the
-- TRUSTWORTHY option ON
ALTER DATABASE BookData
SET TRUSTWORTHY ON
GO

How It Works
In this recipe, database ownership chaining was enabled within the CREATE DATABASE statement.
The BookData database was created using default options (file name, size, growth) based on the
model system database. After that, the WITH clause was used to enable database ownership chaining:

WITH DB_CHAINING ON

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES640

9802CH22.qxd 6/17/08 4:14 PM Page 640

After that, the ALTER DATABASE command was used to enable the TRUSTWORTHY setting. Instead of
the WITH keyword, the SET keyword was used, followed by the external access option name and the
ON keyword:

ALTER DATABASE BookData
SET TRUSTWORTHY ON
GO

Creating or Changing a Database to Use a Non-Server
Default Collation
In this recipe, I demonstrate how to create or modify a database to use a specific collation. SQL
Server collations determine how data is sorted, compared, presented, and stored. The database col-
lation can be different from the server-level collation defined when the SQL Server instance was
installed, for those times that you may wish to store data with a differing code page or sort order
from the SQL Server instance default.

The syntax for designating the collation using CREATE DATABASE is as follows:

CREATE DATABASE database_name
[ON

[<filespec> [,...n]]
[, <filegroup> [,...n]]]

[[LOG ON { <filespec> [,...n] }]
[COLLATE collation_name]]

The COLLATE command is used after the transaction log definition to explicitly define the
default database collation.

To change the default collation for an existing database, the syntax for ALTER DATABASE is as
follows:

ALTER DATABASE database_name
{COLLATE collation_name}

This recipe demonstrates creating a new database with a default Ukrainian collation, with
case- and accent-insensitive settings. After creating the database, the database will then be altered
to use a case- and accent-sensitive collation instead:

CREATE DATABASE BookStoreArchive_Ukrainian
ON PRIMARY
(NAME = 'BookStoreArchive_UKR',

FILENAME = 'C:\Apress\BookStoreArchive_UKR.mdf',
SIZE = 3MB ,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10MB)

LOG ON
(NAME = 'BookStoreArchive_UKR_log',

FILENAME = 'C:\Apress\BookStoreArchive_UKR_log.ldf',
SIZE = 504KB ,
MAXSIZE = 100MB ,
FILEGROWTH = 10%)

COLLATE Ukrainian_CI_AI
GO

ALTER DATABASE BookStoreArchive_Ukrainian
COLLATE Ukrainian_CS_AS
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 641

9802CH22.qxd 6/17/08 4:14 PM Page 641

How It Works
Both the CREATE DATABASE and ALTER DATABASE examples used the COLLATE statement, followed by
the collation name, to designate the default collation of the database:

COLLATE Ukrainian_CI_AI

Once the database default collation is set, new tables containing character data type columns
(varchar, nvarchar, char, nchar, text, ntext) will use the database default collation as the column
collation.

■Caution Creating a user-defined database with a default collation different from the SQL Server instance
default (system database) can cause collation conflicts (cross-collation data cannot be converted or joined in a
query). For example, the tempdb system database uses the same collation as the model database, which may
cause temporary table data operations to fail in conjunction with a different collation. Always test cross-collation
operations thoroughly.

Configuring Cursor Options
In Chapter 9, I discussed how to create and use Transact-SQL cursors. SQL Server has two database
options that control the behavior of Transact-SQL cursors, as you can see in Table 22-9.

Table 22-9. Cursor Options

Option Description

CURSOR_CLOSE_ON_COMMIT When CURSOR_CLOSE_ON_COMMIT is enabled, Transact-SQL
cursors automatically close once a transaction is
committed.

CURSOR_DEFAULT { LOCAL | GLOBAL } If CURSOR_DEFAULT LOCAL is enabled, cursors created without
explicitly setting scope as GLOBAL will default to local access.
If CURSOR_DEFAULT GLOBAL is enabled, cursors created
without explicitly setting scope as LOCAL will default to
GLOBAL access.

The syntax for configuring cursor options is as follows:

ALTER DATABASE database_name
SET CURSOR_CLOSE_ON_COMMIT { ON | OFF }

| CURSOR_DEFAULT { LOCAL | GLOBAL }

The statement takes two arguments, the database name you want to modify and the option
that you want to configure on and off.

This recipe will demonstrate enabling the CURSOR_CLOSE_ON_COMMIT for the AdventureWorks
database:

SET NOCOUNT ON

SELECT is_cursor_close_on_commit_on
FROM sys.databases
WHERE name = 'AdventureWorks'

ALTER DATABASE AdventureWorks
SET CURSOR_CLOSE_ON_COMMIT ON

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES642

9802CH22.qxd 6/17/08 4:14 PM Page 642

SELECT is_cursor_close_on_commit_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_cursor_close_on_commit_on
0

is_cursor_close_on_commit_on
1

How It Works
This recipe demonstrated using ALTER DATABASE to change the CURSOR_CLOSE_ON_COMMIT automatic
database setting. The recipe started by querying the sys.databases system catalog view to see the
current setting of the database. After that, the CURSOR_CLOSE_ON_COMMIT setting was turned ON using
ALTER DATABASE, and then the sys.databases system catalog view was queried again to confirm the
change.

Enabling Date Correlation Optimization
Two tables that are related by a datetime foreign key reference can benefit from enabling the
DATE_CORRELATION_OPTIMIZATION option. When enabled, SQL Server collects additional statistics,
which in turn help improve the performance of queries that use a join between the two datetime
data type columns (foreign key and primary key pair).

The syntax for enabling this option is as follows:

ALTER DATABASE database_name
SET DATE_CORRELATION_OPTIMIZATION { ON | OFF }

The command takes two arguments: the database name you want to modify and whether to set
the DATE_CORRELATION_OPTIMIZATION ON or OFF. This option defaults to OFF, as having it ON adds extra
overhead for those tables that meet the criteria for date correlation optimization.

This option, when ON, can benefit queries that join two table datetime values, which are related
by a foreign key reference. SQL Server will then maintain additional correlation statistics, which
may allow, depending on your query, SQL Server to generate more efficient, less I/O intensive query
plans.

In order to take advantage of this database setting and for the statistics to be created automati-
cally, at least one of the datetime columns (primary key or foreign key) has to be the first key
column in a clustered index or the partitioning column in a partitioned table.

Be aware that there is extra overhead in updating the statistics, so you should monitor per-
formance for databases that have heavy updates to the primary key and foreign key datetime-
related tables, as the benefits of the query optimization may not outweigh the overhead of the
statistics updates.

In this recipe, the AdventureWorks database will have this option turned ON:

SET NOCOUNT ON

SELECT is_date_correlation_on
FROM sys.databases
WHERE name = 'AdventureWorks'

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 643

9802CH22.qxd 6/17/08 4:14 PM Page 643

ALTER DATABASE AdventureWorks
SET DATE_CORRELATION_OPTIMIZATION ON

SELECT is_date_correlation_on
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_date_correlation_on
0

is_date_correlation_on
1

How It Works
In this recipe, the sys.databases system catalog view was used to check the state of date correlation
of the AdventureWorks database. After that, ALTER DATABASE and SET DATE_CORRELATION_
OPTIMIZATION ON was issued. The sys.databases system catalog view was checked again,
confirming the new setting.

Modifying Database Parameterization Behavior
The PARAMETERIZATION option is used with ALTER DATABASE and controls whether all or just some
queries against the database are parameterized.

Parameterization occurs when a query is submitted to SQL Server. SQL Server looks at literal
values in a SELECT, INSERT, UPDATE, and DELETE statement and seeks to parameterize them (make a
placeholder) so that query execution plans can be reused when similar queries are executed,
instead of a new plan being made for each query. Execution plans are created for the parameterized
query at the statement level, so that each statement in a batch of statements can be individually
parameterized.

The syntax for enabling this option is as follows:

ALTER DATABASE database_name
SET PARAMETERIZATION { SIMPLE | FORCED }

The command takes two arguments: the database name and the parameterization option. You
have two choices with parameterization, SIMPLE (the default) or FORCED. With SIMPLE parameteriza-
tion (the default value), SQL statements are parameterized for a smaller population of queries (at
SQL Server’s discretion). Setting parameterization to FORCED increases the population of queries that
become parameterized, which can benefit query performance as more query execution plans are
created and potentially reused.

This recipe demonstrates how to enable this option using ALTER DATABASE, check the value in
sys.databases, and then show the results of parameterization using the sys.dm_exec_cached_plans
system catalog view and the sys.dm_exec_cached_plans Dynamic Management Function. First, the
AdventureWorks database is checked to see whether the parameterization option is set to forced:

SELECT is_parameterization_forced
FROM sys.databases
WHERE name = 'AdventureWorks'

The results of this query confirm that this option is not enabled:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES644

9802CH22.qxd 6/17/08 4:14 PM Page 644

is_parameterization_forced
0

Next, the parameterization option is changed to FORCED using ALTER DATABASE:

ALTER DATABASE AdventureWorks
SET PARAMETERIZATION FORCED

The change is then confirmed by querying sys.databases:

SELECT is_parameterization_forced
FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

is_parameterization_forced

1

Next, I’ll use the DBCC FREEPROCCACHE command to clear out the procedure cache, in order to
demonstrate the use of the FORCED option:

-- CAUTION! Don't run this on a production SQL Server instance.
-- This clears out the procedure cache and will cause all
-- new queries to recompile.
DBCC FREEPROCCACHE

I then execute the following query:

-- CAUTION! Don't run this on a production SQL Server instance.
-- This clears out the procedure cache and will cause all
-- new queries to recompile.
DBCC FREEPROCCACHE

USE AdventureWorks
GO

SELECT BirthDate
FROM HumanResources.Employee
WHERE BusinessEntityID IN

(SELECT TOP 3 BusinessEntityID
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota = 263000.00)

This returns

BirthDate
1941-11-17 00:00:00.000

Now I’ll query the sys.dm_exec_cached_plans system catalog view. This view returns informa-
tion about the query execution plans cached in the SQL Server instance. The view column
plan_handle contains an identifier that references the query plan in memory. To view this plan in
memory, the query uses the sys.dm_exec_query_plan Dynamic Management Function, which takes
the plan_handle as a parameter and returns the execution plan in XML format. This next query
searches for any reference to EmployeeID from the previous query, for prepared, cached plans:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 645

9802CH22.qxd 6/17/08 4:14 PM Page 645

SELECT query_plan
FROM sys.dm_exec_cached_plans p
CROSS APPLY sys.dm_exec_query_plan(p.plan_handle)
WHERE CAST(query_plan as varchar(max))

LIKE '%TOP 3 BusinessEntityID%' AND
objtype = 'Prepared'

This returns the following abridged results (I’m showing a small fragment of the XML format-
ted plan):

<StmtSimple StatementText="(@0 numeric(38,2))select BirthDate from HumanResources .
Employee
where BusinessEntityID in (select top 3 BusinessEntityID from Sales .
SalesPersonQuotaHistory where
SalesQuota = @0)" StatementId="1" StatementCompId="1" StatementType="SELECT"
StatementSubTreeCost="0.00756866" StatementEstRows="1" StatementOptmLevel="FULL"
StatementOptmEarlyAbortReason="GoodEnoughPlanFound">

■Tip As an alternative to sys.dm_exec_query_plan, you can also use sys.dm_exec_text_query_plan,
which returns the query plan in text format. This DMV doesn’t have the output size limitations of sys.dm_exec_
query_plan, and it also lets you narrow down the specific statements you would like to evaluate.

This example of parameterization could have also occurred in the SIMPLE parameterization set-
ting; however, only the FORCED setting increases the chances that the parameterization will occur.

To set the database option back to SIMPLE, ALTER DATABASE is used again:

ALTER DATABASE AdventureWorks
SET PARAMETERIZATION SIMPLE
GO

How It Works
This recipe demonstrated how to change a database to use forced parameterization and then go
back again to simple parameterization. I began the recipe by checking the parameterization state
of the AdventureWorks database using the sys.databases system catalog view. After that, ALTER
DATABASE and SET PARAMETERIZATION FORCED was used. The sys.databases system catalog view was
checked again to confirm that the option was changed. After that, DBCC FREEPROCCACHE was used to
clear out the procedure cache.

■Caution Only use DBCC FREEPROCCACHE on a test, non-production SQL instance, as it removes all plans from
the procedure cache, which can negatively impact performance.

Next, a query was executed against the HumanResources.Employee table, using a subquery
against the Sales.SalesPersonQuotaHistory table. I then executed a query against the sys.dm_exec_
cached_plans system catalog view and the sys.dm_exec_query_plan Dynamic Management Func-
tion. The results showed an XML-formatted SQL plan (your results may vary) with parameter
placeholders for use in the WHERE clause:

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES646

9802CH22.qxd 6/17/08 4:14 PM Page 646

where SalesQuota = @0

■Tip For more on looking at a SQL execution plan, see Chapter 28.

Enabling Read Consistency for a Transaction
SQL Server provides two database options that allow for statement-level and transaction-level read
consistency: ALLOW_SNAPSHOT_ISOLATION and READ_COMMITTED_SNAPSHOT (which will be demonstrated
after this recipe).

■Note Both of the database options are discussed in the same recipe because they both impact read consis-
tency. They do not, however, need to be used together; they are independent options. Use ALLOW_SNAPSHOT_
ISOLATION if you want transaction-level read consistency and READ_COMMITTED_SNAPSHOT if you are looking for
statement-level read consistency.

The ALLOW_SNAPSHOT_ISOLATION database option enables a snapshot of data at the transaction
level. When ALLOW_SNAPSHOT_ISOLATION is enabled, you can use the snapshot transaction isolation
level to read a transactional consistent version of the data as it existed at the beginning of a transac-
tion. Using this option, data reads don’t block data modifications. If data was changed while reading
the snapshot data and an attempt was made within the snapshot transaction to change the data,
the change attempt will not be allowed, and you will see a warning from SQL Server’s update con-
flict detection support. Once this database setting is enabled, snapshot isolation is initiated when
SET TRANSACTION ISOLATION LEVEL with SNAPSHOT isolation is specified before the start of the
transaction.

■Note For an example of ALLOW_SNAPSHOT_ISOLATION in action, see Chapter 3’s recipe “Configuring a
Session’s Transaction Locking Behavior.”

The READ_COMMITTED_SNAPSHOT setting enables row versioning at the individual statement level.
Row versioning retains the original copy of a row in tempdb whenever the row is modified, storing
the latest version of the row in the current database. For databases with a large amount of transac-
tional activity, you’ll want to make sure tempdb has enough space in order to hold row versions. The
READ_COMMITTED_SNAPSHOT setting enables row versioning at the individual statement level for the
query session. When enabling READ_COMMITTED_SNAPSHOT, locks are not held on the data. Row ver-
sioning is used to return the statement’s data as it existed at the beginning of the statement
execution. Data being read during the statement execution still allows updates by others, and unlike
snapshot isolation, there is no mandatory update conflict detection to warn you that the data has
been modified during the read. Once this database option is enabled, row versioning is then initi-
ated when executing a query in the default read-committed isolation level or when SET TRANSACTION
ISOLATION LEVEL with READ COMMITTED is used before the statement executes.

The main benefit of using these options is the reduction in locks for read operations. If your
application requires real-time data values, these two options are not the best choice. However, if
snapshots of data are acceptable to your application, setting these options may be appropriate.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 647

9802CH22.qxd 6/17/08 4:14 PM Page 647

The syntax for enabling these options is as follows:

ALTER DATABASE database_name
SET ALLOW_SNAPSHOT_ISOLATION {ON | OFF }
| READ_COMMITTED_SNAPSHOT {ON | OFF }

The command takes two arguments: the database name and the snapshot option of enabling
or disabling. This recipe will demonstrate enabling both row versioning options for the
AdventureWorks database. First, the current database settings are validated by querying sys.
databases:

SELECT snapshot_isolation_state_desc,
is_read_committed_snapshot_on

FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

snapshot_isolation_state_desc is_read_committed_snapshot_on
OFF 0

Next, ALTER DATABASE is used to enable both options (although both options needn’t be chosen,
because you can choose to enable one type of read consistency option and not another):

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON

ALTER DATABASE AdventureWorks
SET READ_COMMITTED_SNAPSHOT ON

Next, the database settings are validated again, post-change:

SELECT snapshot_isolation_state_desc,
is_read_committed_snapshot_on

FROM sys.databases
WHERE name = 'AdventureWorks'

This returns

snapshot_isolation_state_desc is_read_committed_snapshot_on
ON 1

To turn these options off again, I execute the following:

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION OFF

ALTER DATABASE AdventureWorks
SET READ_COMMITTED_SNAPSHOT OFF

How It Works
This recipe started off by checking the current state of row versioning in the AdventureWorks data-
base by querying sys.databases. After that, two separate ALTER DATABASE commands were executed
to enable snapshot isolation and read-committed isolation levels in the database. The system cata-
log view sys.databases was queried again to confirm the changes. Keep in mind that both options
do not need to be enabled—you can pick and choose whether or not you want statement- or
transaction-level read consistency, both, or neither.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES648

9802CH22.qxd 6/17/08 4:14 PM Page 648

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Configuring Database Recovery Models
A full database backup is a full copy of your database. Transaction log backups, on the other hand,
only back up the transaction log from the latest full backup or latest transaction log backup. When
the backup completes, SQL Server truncates the inactive portion of the log. Aside from allowing a
restore from the point that the transaction log backup completed, transaction log backups also
allow point-in-time and transaction mark recovery. Point-in-time recovery allows you to restore the
database as of a specific time period, for example, restoring a database prior to a database modifi-
cation or failure. Transaction mark recovery recovers to the first instance of a “marked” transaction
and includes the updates made within this transaction.

■Note For more information on transaction log backups, see Chapter 29.

SQL Server provides three different recovery models that define whether or not transaction log
backups can be made, and if so, what database activities will write to the transaction log. The three
recovery models are FULL, BULK_LOGGED, and SIMPLE:

• When using SIMPLE recovery, the transaction log is automatically truncated after a database
backup, removing the ability to perform transaction log backups. In this recovery mode, the
risk of data loss is dependent on your full or differential backup schedule—and you will not
be able to perform the point-in-time recovery that a transaction log backup offers.

• The BULK_LOGGED recovery model allows you to perform full, differential, and transaction log
backups; however, there is minimal logging to the transaction log for bulk operations. The
benefit of this recovery mode is reduced log space usage during bulk operations, but the
trade-off is that transaction log backups can only be used to recover from the end of the
transaction log backup (no point-in-time recovery or marked transactions allowed).

• The FULL recovery model fully logs all transaction activity, bulk operations included. In this
safest model, all restore options are available, including point-in-time transaction log
restores, differential backups, and full database backups.

The syntax for changing the database recovery mode is as follows:

ALTER DATABASE database_name
SET RECOVERY { FULL | BULK_LOGGED | SIMPLE }

In this recipe, the AdventureWorks database will be set to the FULL recovery model:

SELECT recovery_model_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

ALTER DATABASE AdventureWorks
SET RECOVERY FULL
GO

SELECT recovery_model_desc
FROM sys.databases
WHERE name = 'AdventureWorks'

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 649

9802CH22.qxd 6/17/08 4:14 PM Page 649

This returns

recovery_model_desc
SIMPLE

recovery_model_desc
FULL

How It Works
The initial recovery model when a database is created depends on the recovery mode of the model
database. After creating a database, you can always modify the recovery model using ALTER
DATABASE and SET RECOVERY.

In this recipe, the sys.databases system catalog view was used to check on the recovery model
of the AdventureWorks database. Once it was confirmed that it was currently using a SIMPLE model,
ALTER DATABASE and SET RECOVERY were used to change the database to FULL mode.

■Tip After changing a database’s recovery model, it is a good practice to perform a full backup of your database.

Configuring Page Verification
Disk errors can occur when a data page write to the physical disk is interrupted due to a power fail-
ure or other physical issue. SQL Server has three modes for handling and detecting incomplete I/O
transactions caused by disk errors: CHECKSUM, TORN_PAGE_DETECTION, and NONE.

• The CHECKSUM option (the model database default) writes a checksum value to the data page
header based on the contents of the entire data page. If a page is corrupted or partially writ-
ten, SQL Server will detect a difference between the header and the actual page contents.
This option offers the most protection.

• The TORN_PAGE_DETECTION option (the main option used in previous versions of SQL Server)
detects data page issues by reversing a bit for each 512-byte sector of the data page. When a
bit is in the incorrect state when read by SQL Server, a “torn” page is identified.

• When NONE is selected, neither CHECKSUM nor TORN_PAGE_DETECTION handling is used in allocat-
ing new data pages or identified by SQL Server during a read.

Unless you have a good reason for doing so (such as a requirement for unfettered query per-
formance for a benchmark test, for example), keeping the default option of CHECKSUM is a good idea.
Although CHECKSUM has more overhead than TORN_PAGE_DETECTION, it is also more comprehensive in
its ability to identify data page errors. The syntax for setting the page verification mode is as follows:

ALTER DATABASE database_name
SET PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

In this recipe, the AdventureWorks database is modified to not perform page verification:

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES650

9802CH22.qxd 6/17/08 4:14 PM Page 650

ALTER DATABASE AdventureWorks
SET PAGE_VERIFY NONE
GO

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

This returns

page_verify_option_desc
CHECKSUM

page_verify_option_desc
NONE

(1 row(s) affected)

Now it will be added back:

ALTER DATABASE AdventureWorks
SET PAGE_VERIFY CHECKSUM
GO

SELECT page_verify_option_desc
FROM sys.databases
WHERE name = 'AdventureWorks'
GO

This returns

page_verify_option_desc

CHECKSUM

How It Works
This recipe started off by validating the current page verification state in the AdventureWorks data-
base by querying the sys.databases system catalog view. After that, ALTER DATABASE and SET
PAGE_VERIFY were executed to disable page verification. The sys.databases system catalog view
was queried again, validating the change.

Controlling Database Access and Ownership
In these next two recipes, I’ll cover how to control the access and ownership of user databases. First
off, I’ll show you how to change a database’s accessibility using three different states: online, offline,
or emergency. The recipe after that demonstrates how to change the owner of the database using
the sp_changedbowner system stored procedure.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 651

9802CH22.qxd 6/17/08 4:14 PM Page 651

Changing a Database State to Online, Offline, or Emergency
A database can be in one of three states: online, offline, or emergency.

The online state is the default, meaning that the database is open and available to be used.
When in offline status, the database is “closed” and cannot be modified or queried by any user. You
may wish to take a database offline in situations where you need to move the data files to a new
physical location, and then use ALTER DATABASE to modify the metadata for that file’s new location
(demonstrated later in the chapter). Unlike detaching the database, the database is still kept in the
metadata of the SQL Server instance, and can then be taken back online later on.

Lastly, if the database is corrupted, setting a database to an emergency state allows read-only
access to the database for sysadmin server role logins, allowing you to query any database objects
that are still accessible (depending on the nature of the problem).

The syntax for configuring the database state is as follows:

ALTER DATABASE database_name
SET { ONLINE | OFFLINE | EMERGENCY }

This recipe demonstrates how to bring the database offline, attempt a read, and then bring it
online again. Keep in mind that if active connections are in the AdventureWorks database, your
command will have to wait for them to disconnect unless you force them out (using techniques dis-
cussed previously in the “Setting Database User Access” recipe):

USE master
GO

ALTER DATABASE AdventureWorks
SET OFFLINE
GO

-- Attempt a read against a table
SELECT COUNT(*)
FROM AdventureWorks.HumanResources.Department
GO

This returns

Msg 942, Level 14, State 4, Line 3
Database 'AdventureWorks' cannot be opened because it is offline.

Now to bring the database back online again:

ALTER DATABASE AdventureWorks
SET ONLINE
GO

How It Works
In this recipe, the AdventureWorks database was taken offline by using ALTER DATABASE and the SET
OFFLINE command. After taking the database offline, a query against a table in the database was
attempted, causing an error to be raised. The database was then brought back online using ALTER
DATABASE and the SET ONLINE option.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES652

9802CH22.qxd 6/17/08 4:14 PM Page 652

Changing a Database Owner
In this recipe, I demonstrate how to change the owner of an existing database using the
sp_changedbowner system stored procedure.

The syntax for this system stored procedure is as follows:

sp_changedbowner [@loginame =] 'login'
[, [@map=] remap_alias_flag]

The parameters for the procedure are described briefly in Table 22-10.

Table 22-10. sp_changedbowner Parameters

Parameter Description

'login' This specifies the new SQL Server login that will own the database. This login
cannot already be mapped to an existing database user (without dropping
this user first).

remap_alias_flag The optional flag references alias functionality, which was used in previous
versions of SQL Server and allowed you to map users to a database. Alias
functionality is going to be removed in a future version of SQL Server, so don’t
use it.

This recipe creates a new login and then makes the new login the database owner of the
BookWarehouse database:

CREATE LOGIN NewBossInTown WITH PASSWORD = 'HereGoesTheNeighborhood10'
GO

USE BookData
GO

EXEC sp_changedbowner 'NewBossInTown'
GO

SELECT p.name
FROM sys.databases d
INNER JOIN sys.server_principals p ON

d.owner_sid = p.sid
WHERE d.name = 'BookData'

This returns

name
NewBossInTown

How It Works
An owner is mapped from an existing SQL Server login to the dbo user in the database. Once this
happens, the new owner has permissions to perform all database-specific operations (for example,
creating tables, granting object permissions, deleting data, and so on).

In this recipe, a new login was created, and the database context was switched to the
BookWarehouse database. The sp_changedbowner system stored procedure was used to set the
new login as the owner:

EXEC sp_changedbowner 'NewBossInTown'

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 653

9802CH22.qxd 6/17/08 4:14 PM Page 653

The new owner was then mapped to the dbo database user. Once set, the sys.databases and
sys.server_principals system catalog views were queried in order to confirm that the owner was
actually changed.

Managing Database Files and Filegroups
This next set of recipes covers how to manage database files and filegroups. Specifically, I’ll be
showing you how to

• Add a data or log file to an existing database.

• Remove a data or log file from a database.

• Relocate a data or transaction log file on the operating system.

• Change a file’s logical name.

• Increase a database file size and modify growth options.

• Add a filegroup to an existing database.

• Set the default filegroup for a database.

• Remove a filegroup from a database.

• Make a database or filegroup read-only.

This next recipe demonstrates how to use ALTER DATABASE to add a data or log file to an existing
database.

Adding a Data File or Log File to an Existing Database
Once a database is created, assuming that you have available disk space, you can add additional
data or transaction logs to it as needed. This allows you to expand to new drives if the current physi-
cal drive/array is close to filled up, or if you are looking to improve performance by spreading I/O
across multiple drives. It usually only makes sense to add additional data and log files to a database
if you plan on putting these files on a separate drive/array. Putting multiple files on the same
drive/array doesn’t improve performance, and may only benefit you if you plan on performing
separate file or filegroup backups for a very large database.

Adding files doesn’t require you to bring the database offline. The syntax for ALTER DATABASE in
order to add a data or transaction log file is as follows:

ALTER DATABASE database_name
{ADD FILE <filespec> [,...n]

[TO FILEGROUP { filegroup_name | DEFAULT }]
| ADD LOG FILE <filespec> [,...n] }

The syntax arguments are described in Table 22-11.

Table 22-11. ALTER DATABASE...ADD FILE Arguments

Argument Description

database_name Defines the name of the existing database.

<filespec> [,...n] Designates one or more explicitly defined data files to
add to the database.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES654

9802CH22.qxd 6/17/08 4:14 PM Page 654

Argument Description

filegroup_name | DEFAULT Designates the logical name of the filegroup. If followed
by the DEFAULT keyword, this filegroup will be the default
filegroup of the database (meaning all objects will by
default be created there).

[LOG ON { <filespec> [,...n] }] Designates one or more explicitly defined transaction
log files for the database.

In this recipe, a new data and transaction log file will be added to the BookData database:

ALTER DATABASE BookData
ADD FILE
(NAME = 'BookData2',

FILENAME = 'C:\Apress\BD2.NDF' ,
SIZE = 1MB ,
MAXSIZE = 10MB,
FILEGROWTH = 1MB)

TO FILEGROUP [PRIMARY]
GO

ALTER DATABASE BookData
ADD LOG FILE
(NAME = 'BookData2Log',

FILENAME = 'C:\Apress\BD2.LDF' ,
SIZE = 1MB ,
MAXSIZE = 5MB,
FILEGROWTH = 1MB)

GO

How It Works
In this recipe, a new data and transaction log file were added to the BookData database. To add the
data file, ALTER DATABASE was used with the ADD FILE command, followed by the file specification:

ALTER DATABASE BookData
ADD FILE
...

The filegroup where the new file was added was specified using the TO FILEGROUP clause, fol-
lowed by the filegroup name in brackets:

TO FILEGROUP [PRIMARY]
GO

In the second query in the recipe, a new transaction log file was added using ALTER DATABASE
and the ADD LOG FILE command:

ALTER DATABASE BookData
ADD LOG FILE
...

Neither file addition required the database to be offline.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 655

9802CH22.qxd 6/17/08 4:14 PM Page 655

Removing a Data or Log File from a Database
This recipe demonstrates how to remove a data or transaction log file from an existing database. You
may wish to do this if you need to relocate files from one drive/array to a different drive/array by
creating a file on one drive and then dropping the old one.

The syntax for removing a file (data or transaction log) is as follows:

ALTER DATABASE database_name
REMOVE FILE logical_file_name

The syntax arguments are described in Table 22-12.

Table 22-12. ALTER DATABASE...REMOVE FILE Arguments

Argument Description

database_name The name of the existing database

logical_file_name The logical file name of the file to be removed from the database

This recipe will first check for the logical file names for the BookData database, empty the con-
tents of the file (which moves the data to the remaining data files), and, finally, drop the file from
the database:

USE BookData
GO

SELECT name
FROM sys.database_files

DBCC SHRINKFILE(BookData2, EMPTYFILE)

ALTER DATABASE BookData
REMOVE FILE BookData2

This returns

name
BookData
BookData_log
BookData2
BookData2Log

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
11 3 128 128 0 0

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.
The file 'BookData2' has been removed.

How It Works
The recipe started by switching to the BookData database so that the query against sys.database_
files would return all logical file names from the current connection’s database.

You can’t remove the primary data or primary transaction log file from the database, nor can
you remove a file that contains data or active transactions logging within it.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES656

9802CH22.qxd 6/17/08 4:14 PM Page 656

DBCC SHRINKFILE was used to remove existing data from the file to be dropped. This was done
by using the EMPTYFILE parameter (see later on in the chapter for a review of this command).

After that, ALTER DATABASE was used with the REMOVE FILE command to remove the file from the
database. Removing the file from the database also removes the underlying file from the file system.

Relocating a Data or Transaction Log File
Sometimes you may find it necessary to relocate a database file for an existing database. Your rea-
sons for doing this may vary—you might need to do this because a physical drive is running out of
space or to improve performance (placing files on separate RAID arrays).

This recipe demonstrates how to move a database file’s location using the ALTER DATABASE com-
mand. The syntax for changing the file’s location is as follows:

ALTER DATABASE database_name
MODIFY FILE
{NAME = logical_file_name , FILENAME = 'new_physical_file_name_and_path')

The arguments of this syntax are described in Table 22-13.

Table 22-13. ALTER DATABASE...MODIFY FILE Arguments

Argument Description

database_name The name of the existing database

logical_file_name The logical file name of the physical file to be relocated

new_physical_file_name_and_path The new file path and location

In this recipe, I’ll create a new database called BookWarehouse using the default settings. After
that, the database will be taken offline and then copied to the new location on the server. Once
moved, the file will be relocated using ALTER DATABASE:

USE master
GO

-- Create a default database for this example
CREATE DATABASE BookTransferHouse
GO

ALTER DATABASE BookTransferHouse
SET OFFLINE
GO

Next, I’ll manually move the file C:\Program Files\Microsoft SQL Server\MSSQL10.AUGUSTUS\
MSSQL\DATA\BookTransferHouse.mdf to the C:\Apress directory. After that, I’ll execute the following:

ALTER DATABASE BookTransferHouse
MODIFY FILE
(NAME = 'BookTransferHouse', FILENAME = 'C:\Apress\BookTransferHouse.mdf')
GO

This returns

The file "BookTransferHouse" has been modified in the system catalog.
The new path will be used the next time the database is started.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 657

9802CH22.qxd 6/17/08 4:14 PM Page 657

The database can then be brought back online:

ALTER DATABASE BookTransferHouse
SET ONLINE
GO

How It Works
The recipe started by creating a new database with default options. The database was then taken
offline. Once offline, the data file was copied manually to the new location.

Once the file was moved, SQL Server was informed of the change by using the ALTER DATABASE
and the MODIFY FILE statement. After that, the database was brought back online by using ALTER
DATABASE and SET ONLINE.

Changing a File’s Logical Name
You can change a database file’s logical name without having to bring the database offline. The logi-
cal name of a database doesn’t affect the functionality of the database itself, allowing you to change
the name for consistency and naming convention purposes. For example, if you restore a database
from backup using a new database name, you may wish for the logical name to match the new
database name.

The syntax for changing a logical file name is as follows:

ALTER DATABASE database_name
{NAME = logical_file_name

[, NEWNAME = new_logical_name] }

The arguments of this syntax are briefly described in Table 22-14.

Table 22-14. ALTER DATABASE...NEWNAME Arguments

Argument Description

database_name The name of the existing database

logical_file_name The logical file name to be renamed

new_logical_name The new logical file name

This recipe changes the logical data file name of the BookWarehouse data file in the BookWare-
house database:

ALTER DATABASE BookTransferHouse
MODIFY FILE
(NAME = 'BookTransferHouse', NEWNAME = 'BookTransferHouse_DataFile1')
GO

This returns

The file name 'BookTransferHouse_DataFile1' has been set.

How It Works
This recipe modified the BookTransferHouse logical file name to BookTransferHouse_DataFile1 by
using ALTER DATABASE with the MODIFY FILE command. The command used the original NAME value
and the NEWNAME value in order to make the change.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES658

9802CH22.qxd 6/17/08 4:14 PM Page 658

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Increasing a Database’s File Size and Modifying Its
Growth Options
The previous recipe demonstrated how to change the logical file name using ALTER DATABASE and
MODIFY FILE. With the MODIFY FILE command, you can also change the file sizing settings.

The syntax is as follows:

ALTER DATABASE database_name
MODIFY FILE
(
NAME = logical_file_name
[, SIZE = size [KB | MB | GB | TB]]
[, MAXSIZE = { max_size [KB | MB | GB | TB] |
UNLIMITED }]
[, FILEGROWTH = growth_increment [KB | MB | %]]
)

The arguments of this syntax are briefly described in Table 22-15.

Table 22-15. ALTER DATABASE...MODIFY FILE Arguments

Argument Description

database_name The name of the existing database.

logical_file_name The logical file name to change size or
growth options for.

size [KB | MB | GB | TB] The new size (must be larger than the
existing size) of the file based on the sizing
attribute of choice (kilobytes, megabytes,
gigabytes, terabytes).

{ max_size [KB | MB | GB | TB] | UNLIMITED }] The new maximum allowable size of the
file based on the chosen sizing attributes.
If UNLIMITED is chosen, the file can grow to
the available space of the physical drive.

growth_increment [KB | MB | %]] The new amount that the file size increases
when space is required. You can designate
either the number of kilobytes or mega-
bytes or the percentage of existing file size
to grow. If you select 0, file growth will not
occur.

In this recipe, a file is increased to 6MB in size and given a maximum allowable size of 10MB:

ALTER DATABASE BookTransferHouse
MODIFY FILE
(NAME='BookTransferHouse_DataFile1', SIZE=6MB, MAXSIZE=10MB)

How It Works
This recipe used ALTER DATABASE and MODIFY FILE to change a specific file’s existing size as well as its
maximum allowable size. The NAME option was referenced to specify which file was to be modified.
The other two options, SIZE and MAXSIZE, were used to configure the new file size and maximum file
size values.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 659

9802CH22.qxd 6/17/08 4:14 PM Page 659

Adding a Filegroup to an Existing Database
This recipe demonstrates how to add a filegroup to an existing database using ALTER DATABASE.
Once the filegroup is created, you can then add a file or files to it.

The syntax is as follows:

ALTER DATABASE database_name
ADD FILEGROUP filegroup_name

The arguments of this syntax are described in Table 22-16.

Table 22-16. ALTER DATABASE...ADD FILEGROUP Arguments

Argument Description

database_name The name of the existing database

filegroup_name The name of the new filegroup

This recipe adds a new filegroup to the BookWarehouse database:

ALTER DATABASE BookTransferHouse
ADD FILEGROUP FG2
GO

ALTER DATABASE BookTransferHouse
ADD FILE
(NAME = 'BW2',

FILENAME = 'C:\Apress\BW2.NDF' ,
SIZE = 1MB ,
MAXSIZE = 50MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG2]
GO

How It Works
This recipe used ALTER DATABASE and ADD FILEGROUP to add a new filegroup called FG2 to an existing
database. A new file was then added to the filegroup using ALTER DATABASE, ADD FILE, and the TO
FILEGROUP command.

Setting the Default Filegroup
This recipe demonstrates how to change a filegroup into the default filegroup, meaning that the
filegroup will contain all newly created database objects by default (unless database objects are
explicitly put in a different filegroup during their creation).

The syntax for setting a filegroup to the database default is as follows:

ALTER DATABASE database_name
MODIFY FILEGROUP filegroup_name
DEFAULT

This recipe sets the FG2 filegroup in the BookWarehouse database to the default filegroup:

ALTER DATABASE BookTransferHouse
MODIFY FILEGROUP FG2 DEFAULT

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES660

9802CH22.qxd 6/17/08 4:14 PM Page 660

This returns

The filegroup property 'DEFAULT' has been set.

How It Works
This recipe used ALTER DATABASE and MODIFY FILEGROUP to change an existing filegroup to the
default filegroup. The DEFAULT keyword was used after the name of the new default filegroup.

Removing a Filegroup
This recipe demonstrates how to remove a user-defined filegroup. You can remove an empty file-
group using the following syntax:

ALTER DATABASE database_name
REMOVE FILEGROUP filegroup_name

The arguments of this syntax are briefly described in Table 22-17.

Table 22-17. ALTER DATABASE...REMOVE FILEGROUP Arguments

Argument Description

database_name The name of the database to drop the user-defined filegroup from

filegroup_name The name of the user-defined filegroup to drop

In this recipe, I’ll add a new filegroup called FG3 to the BookTransferHouse database. A new file
will then be created within the filegroup. After that, the file will be removed, and then the user-
defined filegroup will be removed:

ALTER DATABASE BookTransferHouse
ADD FILEGROUP FG3
GO

ALTER DATABASE BookTransferHouse
ADD FILE
(NAME = 'BW3',

FILENAME = 'C:\Apress\BW3.NDF' ,
SIZE = 1MB ,
MAXSIZE = 10MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG3]
GO

-- Now, the file in the filegroup is removed
ALTER DATABASE BookTransferHouse
REMOVE FILE BW3
GO

-- Then the filegroup
ALTER DATABASE BookTransferHouse
REMOVE FILEGROUP FG3
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 661

9802CH22.qxd 6/17/08 4:14 PM Page 661

This returns

The file 'BW3' has been removed.
The filegroup 'FG3' has been removed.

How It Works
A user-defined filegroup can be removed once it is empty. In this recipe, ALTER DATABASE and REMOVE
FILE were used to first empty the FG3 user-defined filegroup of files. Once empty of files, ALTER
DATABASE and REMOVE FILEGROUP were used to remove the filegroup from the database.

Making a Database or Filegroup Read-Only
You can use ALTER DATABASE to set the database or specific user-defined filegroup to read-only
access. Making a database or filegroup read-only prevents data modifications from taking place and
is often used for static reporting databases. Using read-only options can improve query perform-
ance, because SQL Server no longer needs to lock objects queried within the database due to the
fact that data and object modification in the database or user-defined filegroup is not allowed
(although this isn’t a replacement for setting up appropriate security permissions for data and
object modifications).

The syntax for changing a database’s updateability is as follows:

ALTER DATABASE database_name
SET { READ_ONLY | READ_WRITE }

The arguments for this statement only require the database name and the updateability option
to be set.

The syntax for changing a filegroup’s updateability is as follows:

ALTER DATABASE database_name
MODIFY FILEGROUP filegroup_name
{ READ_ONLY | READ_WRITE }

All that is needed in this syntax block is the database name, filegroup, and updateability
option.

This recipe demonstrates setting the entire BookTransferHouse to read-only mode, and then
setting it back to read-write mode (where modifications can then be made again). After this, the
recipe demonstrates setting the updateability of a specific filegroup:

USE master
GO

-- Make the database read only
ALTER DATABASE BookTransferHouse
SET READ_ONLY
GO

-- Allow updates again
ALTER DATABASE BookTransferHouse
SET READ_WRITE
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES662

9802CH22.qxd 6/17/08 4:14 PM Page 662

-- Add a new filegroup
ALTER DATABASE BookTransferHouse
ADD FILEGROUP FG4
GO

-- Add a file to the filegroup
ALTER DATABASE BookTransferHouse
ADD FILE
(NAME = 'BW4',

FILENAME = 'C:\Apress\BW4.NDF' ,
SIZE = 1MB ,
MAXSIZE = 50MB,
FILEGROWTH = 5MB)

TO FILEGROUP [FG4]
GO

-- Make a specific filegroup read-only
ALTER DATABASE BookTransferHouse
MODIFY FILEGROUP FG4 READ_ONLY
GO

-- Allow updates again
ALTER DATABASE BookTransferHouse
MODIFY FILEGROUP FG4 READ_WRITE
GO

How It Works
This recipe demonstrated changing the updateability of both a database and a specific filegroup.
To modify the database, ALTER DATABASE and SET READ_ONLY were used. SET READ_WRITE was used to
allow updates again. The last two queries in the recipe updated a specific filegroup, using ALTER
DATABASE and MODIFY FILEGROUP to change updateability.

Viewing and Managing Database Space Usage
The last set of recipes in this chapter covers how to manage and view database disk storage usage.
You’ll learn how to shrink an entire database, or just the individual files within, depending on your
needs. This next recipe demonstrates how to view space usage with the sp_spaceused system stored
procedure.

Viewing Database Space Usage
This recipe demonstrates how to display database data disk space usage using the sp_spaceused
system stored procedure. To view transaction log usage, I’ll also demonstrate the DBCC SQLPERF
command.

The syntax for sp_spaceused is as follows:

sp_spaceused [[@objname =] 'objname']
[,[@updateusage =] 'updateusage']

The parameters of this procedure are briefly described in Table 22-18.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 663

9802CH22.qxd 6/17/08 4:14 PM Page 663

Table 22-18. sp_spaceused Parameters

Parameter Description

'objname' This parameter defines the optional object name (table, for example) to view
space usage. If not designated, the entire database’s space usage information is
returned.

'updateusage' This parameter is used with a specific object, and accepts either true or false. If
true, DBCC UPDATEUSAGE is used to update space usage information in the system
tables.

The syntax for DBCC SQLPERF is as follows:

DBCC SQLPERF (LOGSPACE)
[WITH NO_INFOMSGS]

This DBCC command’s arguments are briefly described in Table 22-19.

Table 22-19. DBCC SQLPERF Arguments

Parameter Description

LOGSPACE This is the only documented parameter allowed, and when designated, it
returns transaction log space information for the entire SQL Server instance.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses
informational messages from the DBCC output.

In this recipe, database and transaction log space will be viewed for the AdventureWorks
database:

USE AdventureWorks
GO

EXEC sp_spaceused

This returns

database_name database_size unallocated space
AdventureWorks 181.94 MB 48.32 MB

reserved data index_size unused
134776 KB 83872 KB 44912 KB 5992 KB

Next, transaction log information is displayed for the entire SQL Server instance:

DBCC SQLPERF (LOGSPACE)

This returns the following (your results may vary):

Database Name Log Size (MB) Log Space Used (%) Status
master 0.7421875 47.36842 0
tempdb 0.7421875 60.85526 0
model 0.4921875 81.74603 0
msdb 0.4921875 82.53968 0
AdventureWorks 1.992188 18.97059 0
BookStore 0.484375 44.75806 0

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES664

9802CH22.qxd 6/17/08 4:14 PM Page 664

BookStoreArchive 0.4921875 46.9246 0
BookStoreInternational 0.4921875 49.80159 0
BookMart 0.484375 45.66532 0
TestAttach 0.484375 48.18548 0
BookData 1.476563 43.02249 0
BookStoreArchive_Ukrainian 0.9921875 53.98622 0
BookTransferHouse 0.484375 87.70161 0

How It Works
In this recipe, space usage for the AdventureWorks database was returned using the system stored
procedure sp_spaceused and the DBCC SQLPERF command.

In the results of sp_spaceused, the database_size column showed the current size of the data-
base (including both the data and log files). The unallocated space column showed unused space
in the database, and the reserved column the amount of space used by database objects. The data
column showed the amount of space used by the object data, and index_size the amount of space
used by indexes.

The output of DBCC SQLPERF returned data for all databases on the SQL Server instance, show-
ing the log size in megabytes and the percentage of the log file currently being used with active or
inactive log information.

Shrinking the Database or a Database File
In this recipe, I demonstrate how to shrink an entire database using DBCC SHRINKDATABASE or a spe-
cific database file using DBCC SHRINKFILE. When following this recipe, keep in mind that shrinking
databases and database files is a relatively expensive operation, introduces fragmentation, and
should only be performed when necessary.

Database files, when auto-growth is enabled, can expand due to index rebuilds or data modifi-
cation activity. You may have extra space in the database due to data modifications and index
rebuilds. If you don’t need to free up the unused space, you should allow the database to keep it
reserved. However, if you do need the unused space and want to free it up, use DBCC SHRINKDATABASE
or DBCC SHRINKFILE.

The DBCC SHRINKDATABASE command is use to shrink data and log files in a database.

■Note This command will shrink data files (MDF, NDF) on an individual basis; however, it will shrink the trans-
action log file or files (LDF) as if the multiple transaction log files were one continuous file.

The syntax is as follows:

DBCC SHRINKDATABASE
('database_name' | database_id | 0

[,target_percent]
[, { NOTRUNCATE | TRUNCATEONLY }]

)
[WITH NO_INFOMSGS]

The arguments for this command are described in Table 22-20.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 665

9802CH22.qxd 6/17/08 4:14 PM Page 665

Table 22-20. DBCC SHRINKDATABASE Arguments

Argument Description

'database_name' | database_id | 0 You can designate a specific database name to shrink
the system database ID, or if 0 is specified, the current
database your query session is connected to.

target_percent The target percentage designates the free space
remaining in the database file after the shrinking event.

NOTRUNCATE | TRUNCATEONLY NOTRUNCATE performs the data movements needed to
create free space, but retains the freed space in the file
without releasing it to the operating system. If NOTRUNCATE
is not designated, the free file space is released to the
operating system. TRUNCATEONLY frees up space without
relocating data within the files. If not designated, data
pages are reallocated within the files to free up space,
which can lead to extensive I/O.

WITH NO_INFOMSGS This argument prevents informational messages from
being returned from the DBCC command.

The DBCC SHRINKFILE command is use to shrink a specific database file in a database. The syn-
tax is as follows:

DBCC SHRINKFILE
(

{ ' file_name ' | file_id }
{ [, EMPTYFILE]
| [[, target_size] [, { NOTRUNCATE | TRUNCATEONLY }]]
}

)
[WITH NO_INFOMSGS]

The arguments for this command are described in Table 22-21.

Table 22-21. DBCC SHRINKFILE Arguments

Argument Description

' file_name ' | file_id This option defines the specific logical file name or file ID to shrink.

EMPTYFILE This argument moves all data off the file so that it can be dropped
using ALTER DATABASE and REMOVE FILE.

target_size This option specifies the free space to be left in the database file (in
megabytes). Leaving this blank instructs SQL Server to free up space
to the default file size.

NOTRUNCATE | NOTRUNCATE relocates allocated pages from within the file to the front
TRUNCATEONLY of the file, but does not free the space to the operating system. Target

size is ignored when used with NOTRUNCATE. TRUNCATEONLY causes
unused space in the file to be released to the operating system, but
only does so with free space found at the end of the file. No pages
are rearranged or relocated. Target size is also ignored with the
TRUNCATEONLY option. Use this option if you must free up space on
the database file with minimal impact on database performance
(rearranging pages on an actively utilized production database can
cause performance issues, such as slow query response time).

WITH NO_INFOMSGS This argument prevents informational messages from being returned
from the DBCC command.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES666

9802CH22.qxd 6/17/08 4:14 PM Page 666

In this recipe, the AdventureWorks database will have its files expanded by allocating additional
space using ALTER DATABASE...MODIFY FILE and then shrunk using the two DBCC file and database
shrinking commands. In the first example, the AdventureWorks data and transaction log file are both
expanded to larger sizes and then shrunk using a single DBCC operation:

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks2008_Data , SIZE= 250MB)
GO

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks2008_Log , SIZE= 500MB)
GO

The sp_spaceused system stored procedure is then used to return the space usage for the
AdventureWorks database:

USE AdventureWorks
GO

EXEC sp_spaceused
GO

This returns

database_name database_size unallocated space
AdventureWorks 750.00 MB 118.38 MB

reserved data index_size unused
134776 KB 83872 KB 44912 KB 5992 KB

Next, the size is reduced using DBCC SHRINKDATABASE:

DBCC SHRINKDATABASE ('AdventureWorks', 10)

This returns the following (results may vary):

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
5 1 18664 15360 16752 16752
5 2 8224 256 8224 256

In the second example of this recipe, only the transaction log file is expanded, and then shrunk
using DBCC SHRINKFILE:

ALTER DATABASE AdventureWorks
MODIFY FILE (NAME = AdventureWorks2008_Log , SIZE= 150MB)
GO

The sp_spaceused system stored procedure is then used to return the space usage for the
AdventureWorks database:

USE AdventureWorks
GO

EXEC sp_spaceused
GO

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES 667

9802CH22.qxd 6/17/08 4:14 PM Page 667

This returns

database_name database_size unallocated space
AdventureWorks 295.81 MB 14.52 MB

reserved data index_size unused
134440 KB 83864 KB 44912 KB 5664 KB

Next, the size is reduced using DBCC SHRINKDATABASE:

DBCC SHRINKFILE ('AdventureWorks2008_Log', 100)

This returns

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
5 2 13696 256 13696 256

How It Works
DBCC SHRINKDATABASE shrinks the data and log files in your database. In this recipe, the
AdventureWorks data and log files were both increased to a larger size. After that, the DBCC
SHRINKDATABASE command was used to reduce it down to a target free-space size of 10%:

DBCC SHRINKDATABASE ('AdventureWorks', 10)

After execution, the command returned a result set showing the current size (in 8KB pages),
minimum size (in 8KB pages), currently used 8KB pages, and estimated 8KB pages that SQL Server
could shrink the file down to.

In the second part of the recipe, DBCC SHRINKFILE was demonstrated. DBCC SHRINKFILE is very
similar to DBCC SHRINKDATABASE, only it allows you to shrink the size of individual data and log files
instead of all files in the database. In this recipe, the AdventureWorks transaction log file was
expanded, and then shrunk down to a specific size (in megabytes):

DBCC SHRINKFILE ('AdventureWorks_Log', 100)

This command shrinks the physical file by removing inactive virtual log files. Virtual log files
(VLFs), which range in size from a minimum 256 kilobytes and larger, are the unit of truncation for
a transaction log and are created as records are written to the transaction log.

Within the transaction log is the “active” logical portion of the log. This is the area of the trans-
action log containing active transactions. This active portion does not usually match the physical
bounds of the file, but will instead “round-robin” from VLF to VLF. Once a VLF no longer contains
active transactions, it can be truncated through a BACKUP LOG operation or automated system trun-
cation. This truncation doesn’t reduce the size of the transaction log file; it only makes the VLFs
available for new log records.

DBCC SHRINKFILE or DBCC SHRINKDATABASE will make its best effort to remove inactive VLFs from
the end of the physical file. SQL Server will also attempt to add “dummy” rows to push the active
logical log toward the beginning of the physical file—so sometimes issuing a BACKUP LOG after the
first execution of the DBCC SHRINKFILE command, and then issuing the DBCC SHRINKFILE command
again, will allow you to free up the originally requested space.

CHAPTER 22 ■ CREATING AND CONFIGURING DATABASES668

9802CH22.qxd 6/17/08 4:14 PM Page 668

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Database Integrity and Optimization

In the previous chapter, I showed you how to create, configure, modify, and drop a database. In this
chapter, I’ll show you how to maintain your database using the Transact-SQL language, including
ways to use the ALTER INDEX command for rebuilding or defragmenting indexes and DBCC com-
mands for helping identify database integrity problems. I’ll also demonstrate a new technique
introduced in SQL Server 2008 for rebuilding a heap (a table without a clustered index).

In previous versions of SQL Server, DBCC commands such as DBCC CHECKDB were resource-
intensive and could adversely affect performance if executed on a busy SQL Server instance.
Microsoft has enhanced several of the DBCC commands to use internal database snapshots of target
data instead of using table or database locks. Several of the commands are also more thorough in
their checking routines than in previous versions of SQL Server.

■Caution Several of the DBCC commands reviewed in this chapter have REPAIR options. Microsoft recommends
that you solve data integrity issues by restoring the database from the last good backup rather than resorting to a
REPAIR option. If restoring from backup is not an option, the REPAIR option should be used only as a last resort.
Depending on the REPAIR option selected, data loss can occur, and the problem may still not be resolved.

This chapter contains recipes that you can run periodically to check for database integrity
issues. Running periodic checks (daily, weekly, and so on) will allow you to identify internal errors
that can occur in various areas of the database.

As data is modified in your databases, the tables and indexes can become fragmented. The
more fragmented a clustered or nonclustered index becomes, the more potential pages are required
to be returned by the database engine in order to fulfill the same query request. The last two recipes
in this chapter will address how to rebuild or defragment these indexes on a periodic basis using
Transact-SQL.

Database Integrity Checking
Database integrity errors are rare, but do occur. The next two recipes will review the commands
used to validate and check for issues within a database. You’ll learn how to check page usage and
allocation in the database by using DBCC CHECKALLOC. You’ll also learn how to check the integrity of
database objects using DBCC CHECKDB.

669

C H A P T E R 2 3

9802CH23.qxd 6/17/08 3:46 PM Page 669

Checking Consistency of the Disk Space Allocation Structures
with DBCC CHECKALLOC
DBCC CHECKALLOC checks page usage and allocation in the database, and will report on any errors
that are found (this command is automatically included in the execution of DBCC CHECKDB too—so
you if you are already running CHECKDB periodically, there is no need to also run CHECKALLOC).

The syntax is as follows:

DBCC CHECKALLOC
(

['database_name' | database_id | 0]
[, NOINDEX

|
{ REPAIR_ALLOW_DATA_LOSS
| REPAIR_FAST
| REPAIR_REBUILD
}]

)
[WITH { [ALL_ERRORMSGS]

[, NO_INFOMSGS]
[, TABLOCK]
[, ESTIMATEONLY]

}
]

The arguments of this command are described in Table 23-1.

Table 23-1. DBCC CHECKALLOC Arguments

Argument Description

'database_name' | database_id | 0 This defines the database name or database ID that
you want to check for errors. When 0 is selected, the
current database is used.

NOINDEX When NOINDEX used, nonclustered indexes are not
included in the checks. This is a backward-
compatible option that has no effect on DBCC
CHECKALLOC.

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | See the beginning of the chapter regarding a
REPAIR_REBUILD warning on using repair options. REPAIR_ALLOW_

DATA_LOSS attempts a repair of the table or indexed
view, with the risk of losing data in the process.
REPAIR_FAST and REPAIR_REBUILD are maintained
for backward compatibility only.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, every error found
will be displayed. If this option isn’t designated, a
maximum of 200 error messages can be displayed.

NO_INFOMSGS NO_INFOMSGS represses all informational messages
from the DBCC output.

TABLOCK When TABLOCK selected, an exclusive table lock is
placed on the table instead of using an internal
database snapshot, thus potentially decreasing
query concurrency in the database.

ESTIMATEONLY This provides the estimated space needed by the
tempdb database to execute the command.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION670

9802CH23.qxd 6/17/08 3:46 PM Page 670

In this brief recipe, data page usage and allocation will be checked for errors in the
AdventureWorks database:

DBCC CHECKALLOC ('AdventureWorks')

This returns the following results (abridged). It includes information about pages used and
extents for each index. The key piece of information is in the final line, where you can see the
reporting of the number of allocation errors and consistency errors encountered:

DBCC results for 'AdventureWorks'.

Table sys.sysrscols Object ID 3.
Index ID 1, partition ID 196608, alloc unit ID 196608 (type In-row data).
FirstIAM (1:86). Root (1:87). Dpages 0.
Index ID 1, partition ID 196608, alloc unit ID 196608 (type In-row data).
19 pages used in 2 dedicated extents.
Total number of extents is 2.

Table sys.sysrowsets Object ID 5.
Index ID 1, partition ID 327680, alloc unit ID 327680 (type In-row data).
FirstIAM (1:131). Root (1:234). Dpages 0.
Index ID 1, partition ID 327680, alloc unit ID 327680 (type In-row data).
5 pages used in 0 dedicated extents.
Total number of extents is 0.
...

Object ID 2105058535, index ID 0, partition ID 72057594038779904,
alloc unit ID 72057594039697408 (type In-row data), data extents 98,
pages 787, mixed extent pages 9.

Object ID 2105058535, index ID 2, partition ID 72057594044547072,
alloc unit ID 72057594046709760 (type In-row data), index extents 0,
pages 5, mixed extent pages 5.

Object ID 2117582582, index ID 1, partition ID 72057594045857792,
alloc unit ID 72057594048151552 (type In-row data), data extents 0, pages 2,
mixed extent pages 2.
The total number of extents = 2864, used pages = 22190, and reserved pages = 22904
in this database.

(number of mixed extents = 91, mixed pages = 720) in this database.
CHECKALLOC found 0 allocation errors and 0 consistency errors
in database 'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
In this brief recipe, the DBCC CHECKALLOC command was used to verify the allocation of all database
pages and internal structures in the AdventureWorks database with the exception of FILESTREAM data.
Informational data was returned, including the internal page information, number of extents, and
pages. At the end of the command, any allocation or consistency errors were reported (in this case,
none were found).

When DBCC CHECKALLOC is executed, an internal database snapshot is created to maintain trans-
actional consistency during the operation. If for some reason a database snapshot can’t be created,
or if TABLOCK is specified, an exclusive database lock is acquired during the execution of the com-
mand (thus potentially hurting database query concurrency). Unless you have a good reason not to,

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 671

9802CH23.qxd 6/17/08 3:46 PM Page 671

you should allow SQL Server to issue an internal database snapshot, so that concurrency in your
database is not impacted.

Checking Allocation and Structural Integrity with
DBCC CHECKDB
The DBCC CHECKDB command checks the integrity of objects in a database. Running DBCC CHECKDB
periodically against your databases is a good maintenance practice. Weekly execution is usually
sufficient; however, the optimal frequency all depends on the activity and size of the database in
question. If possible, DBCC CHECKDB should be executed during periods of light or no database activ-
ity. Doing it this way will allow DBCC CHECKDB to finish faster and keep other processes from being
slowed down by its overhead.

Like the other commands I’ve described in this chapter, an internal database snapshot is cre-
ated to maintain transactional consistency during the operation when this command is executed.
If for some reason a database snapshot cannot be created (or the TABLOCK option was specified),
shared table locks are held for table checks and exclusive database locks for allocation checks.

As part of its execution, DBCC CHECKDB executes other DBCC commands that are discussed else-
where in this chapter, including DBCC CHECKTABLE, DBCC CHECKALLOC, and DBCC CHECKCATALOG. In
addition to this, CHECKDB verifies the integrity of Service Broker data indexed views and FILESTREAM
link consistency for table and file system directories.

The syntax for DBCC CHECKDB is as follows:

DBCC CHECKDB
(

'database_name' | database_id | 0
[, NOINDEX
| { REPAIR_ALLOW_DATA_LOSS
| REPAIR_FAST
| REPAIR_REBUILD
}]

)
[WITH {

[ALL_ERRORMSGS]
[, [EXTENDED_LOGICAL_CHECKS]]
[, [NO_INFOMSGS]]
[, [TABLOCK]]
[, [ESTIMATEONLY]]
[, { PHYSICAL_ONLY | DATA_PURITY }]

}
]

The arguments of this command, which will look familiar based on previous commands
reviewed in this chapter, are described in Table 23-2.

Table 23-2. DBCC CHECKDB Arguments

Argument Description

'database_name' | database_id | 0 This defines the database name or database ID that
you want to check for errors. When 0 is selected, the
current database is used.

NOINDEX Nonclustered indexes are not included in the
integrity checks when this option is selected.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION672

9802CH23.qxd 6/17/08 3:46 PM Page 672

Argument Description

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | See the beginning of the chapter regarding a
REPAIR_REBUILD warning on using repair options. REPAIR_ALLOW_

DATA_LOSS attempts a repair of the table or indexed
view, with the risk of losing data in the process.
REPAIR_FAST is maintained for backward
compatibility only, and REPAIR_REBUILD performs
fixes without risk of data loss.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, every error found
will be displayed (instead of just the default 200
error message limit).

EXTENDED_LOGICAL_CHECKS When EXTENDED_LOGICAL_CHECKS is chosen, it enables
logical consistency checks on spatial and XML
indexes, as well as indexed views. This option can
impact performance significantly and should be
used sparingly.

NO_INFOMSGS NO_INFOMSGS represses all informational messages
from the DBCC output.

TABLOCK When TABLOCK is selected, an exclusive database lock
is used instead of an internal database snapshot.
Using this option decreases concurrency with other
queries being executed against objects in the
database.

ESTIMATEONLY This argument provides the estimated space needed
by the tempdb database to execute the command.

PHYSICAL_ONLY | DATA_PURITY The PHYSICAL_ONLY argument limits the integrity
checks to physical issues only, skipping logical
checks. If DATA_PURITY is selected, this is for use
on upgraded databases (pre–SQL Server 2005
databases); this instructs DBCC CHECKDB to detect
column values that do not conform to the data type
(for example, if an integer value has a bigint-sized
value stored in it). Once all bad values in the
upgraded database are cleaned up, SQL Server
maintains the column-value integrity moving
forward.

Despite all of these syntax options, the common form of executing this command is also most
likely the simplest. This brief recipe executes DBCC CHECKDB against the AdventureWorks database. For
thorough integrity and data checking of your database, the default is often suitable:

DBCC CHECKDB('AdventureWorks')

This returns the following informational results detailing the database objects evaluated within
the database, including the number of rows, pages, and—most importantly at the end—number of
allocation or consistency errors found:

DBCC results for 'AdventureWorks'.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
...
DBCC results for 'sys.sysrowsetcolumns'.
There are 1301 rows in 9 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 673

9802CH23.qxd 6/17/08 3:46 PM Page 673

...
There are 6 rows in 1 pages for object "Person.AddressType".
DBCC results for 'Production.ProductSubcategory'.
There are 37 rows in 1 pages for object "Production.ProductSubcategory".
DBCC results for 'AWBuildVersion'.
There are 1 rows in 1 pages for object "AWBuildVersion".
DBCC results for 'Production.TransactionHistoryArchive'.
There are 89253 rows in 620 pages for object "Production.TransactionHistoryArchive".
...
CHECKDB found 0 allocation errors and 0 consistency errors
in database 'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
In this recipe, a thorough integrity check was performed against the AdventureWorks database using
DBCC CHECKDB, including the name of the database within parentheses:

DBCC CHECKDB('AdventureWorks')

This command returned several hundred lines of information, including the final information
about the number of allocation or consistency errors.

■Caution As I warned in the beginning of this chapter, you should be aware that if DBCC encounters errors,
Microsoft now recommends that you solve data integrity issues by restoring the database from the last good
backup rather than resorting to REPAIR options. If restoring from backup is not an option, the REPAIR options
should be used only as a last resort. Depending on the REPAIR options selected, data loss can occur, and the
problem may still not be resolved.

Tables and Constraints
The next set of recipes demonstrates DBCC commands used to validate integrity at the constraint
and table level. Specifically, I’ll be demonstrating how to use the following:

• DBCC CHECKFILEGROUP, which is very similar to DBCC CHECKDB, but limits integrity and alloca-
tion checking to objects within a specified filegroup

• DBCC CHECKTABLE, which is used to identify any integrity issues for a specific table or indexed
view

• DBCC CHECKCONSTRAINTS, which alerts you to any CHECK or constraint violations found in a
specific table or constraint

Lastly, I’ll review how to check for consistency in and between system tables using the DBCC
CHECKCATALOG command.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION674

9802CH23.qxd 6/17/08 3:46 PM Page 674

Checking Allocation and Structural Integrity of All Tables in a
Filegroup Using DBCC CHECKFILEGROUP
The DBCC CHECKFILEGROUP command is very similar to DBCC CHECKDB, only it limits its integrity and
allocation checking to objects within a single filegroup. For very large databases (VLDB), perform-
ing a DBCC CHECKDB operation may be time prohibitive. If you use user-defined filegroups in your
database, you can employ DBCC CHECKFILEGROUP to perform your weekly (or periodic) checks
instead—spreading out filegroup checks across different days.

When this command is executed, an internal database snapshot is created to maintain transac-
tional consistency during the operation. If for some reason a database snapshot can’t be created (or
the TABLOCK option was specified), shared table locks are created by the command for table checks,
as well as an exclusive database lock for the allocation checks.

Again, if errors are found by DBCC CHECKDB, Microsoft recommends that you solve any discov-
ered issues by restoring from the last good database backup. Unlike other DBCC commands in this
chapter, DBCC CHECKFILEGROUP doesn’t have repair options (although repair options are no longer
recommended by Microsoft anyhow).

The syntax is as follows:

DBCC CHECKFILEGROUP
(
[{ 'filegroup' | filegroup_id | 0 }]
[, NOINDEX]
)

[WITH
{

[ALL_ERRORMSGS | NO_INFOMSGS]
[, [TABLOCK]]
[, [ESTIMATEONLY]]

}
]

The arguments of this command are described in Table 23-3.

Table 23-3. DBCC CHECKFILEGROUP Arguments

Argument Description

'filegroup' | filegroup_id | 0 This defines the filegroup name or filegroup ID that you want
to check. If 0 is designated, the primary filegroup is used.

NOINDEX When NOINDEX is designated, nonclustered indexes are not
included in the integrity checks.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, all errors are displayed in the
output, instead of the default 200 message limit.

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

TABLOCK When TABLOCK is selected, an exclusive database lock is used
instead of using an internal database snapshot (using this
option decreases concurrency with other database queries,
but speeds up the DBCC command execution).

ESTIMATEONLY ESTIMATEONLY provides the estimated space needed by the
tempdb database to execute the command.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 675

9802CH23.qxd 6/17/08 3:46 PM Page 675

In this recipe, the primary filegroup integrity will be checked in the AdventureWorks database:

USE AdventureWorks
GO
DBCC CHECKFILEGROUP('PRIMARY')

This returns the following abridged results:

DBCC results for 'AdventureWorks'.
DBCC results for 'sys.sysrowsetcolumns'.
There are 1301 rows in 9 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
There are 248 rows in 2 pages for object "sys.sysrowsets".
DBCC results for 'sysallocunits'.
...
There are 10 rows in 1 pages for object "Sales.SalesReason".
DBCC results for 'Sales.Individual'.
There are 18484 rows in 3082 pages for object "Sales.Individual".
DBCC results for 'Sales.SalesTaxRate'.
...
CHECKFILEGROUP found 0 allocation errors and 0 consistency
errors in database 'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
In this recipe, allocation and structural integrity were checked for all objects in the PRIMARY file-
group in the AdventureWorks database. The resulting output showed row and page counts for
filegroup objects and a sum total of the number of allocation and consistency errors found
(reported at the end). Like the other DBCC commands, the second-to-last line was most critical
for determining if there are any issues:

CHECKFILEGROUP found 0 allocation errors and 0 consistency errors
in database 'AdventureWorks'.

Checking Data Integrity for Tables and Indexed Views Using
DBCC CHECKTABLE
In order to identify issues in a specific table or indexed view, you can use the DBCC CHECKTABLE com-
mand. (If you want to run it for all tables and indexed views in the database, use DBCC CHECKDB
instead, which performs DBCC CHECKTABLE for each table in your database.)

When DBCC CHECKTABLE is executed, an internal database snapshot is created to maintain trans-
actional consistency during the operation. If for some reason a database snapshot can’t be created,
a shared table lock is applied to the target table or indexed view instead (thus potentially hurting
database query concurrency against the target objects).

The syntax is as follows:

DBCC CHECKTABLE
(

table_name | view_name
[, { NOINDEX | index_id }

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION676

9802CH23.qxd 6/17/08 3:46 PM Page 676

|, { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD }
]

)
[WITH

{ ALL_ERRORMSGS]
[, EXTENDED_LOGICAL_CHECKS]
[, NO_INFOMSGS]
[, TABLOCK]
[, ESTIMATEONLY]
[, { PHYSICAL_ONLY | DATA_PURITY }]

}
]

The arguments of this command are described in Table 23-4.

Table 23-4. DBCC CHECKTABLE Arguments

Argument Description

'table_name' | 'view_name' This defines the table or indexed view you want to
check.

NOINDEX This keyword instructs the command not to check
nonclustered indexes.

index_id This specifies the specific ID of the index to be
checked (if you are checking a specific index).

REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | See the warning at the beginning of the chapter
REPAIR_REBUILD regarding the use of REPAIR options. REPAIR_ALLOW_

DATA_LOSS attempts a repair of the table or indexed
view, with the risk of losing data in the process.
REPAIR_FAST is no longer used, and is kept for
backward compatibility only. REPAIR_REBUILD does
repairs and index rebuilds without any risk of data
loss.

ALL_ERRORMSGS When ALL_ERRORMSGS is chosen, every error found
during the command execution will be displayed.

EXTENDED_LOGICAL_CHECKS When EXTENDED_LOGICAL_CHECKS is designated, it
enables logical consistency checks on spatial and
XML indexes, as well as indexed views. This option
can impact performance significantly and should be
used sparingly.

NO_INFOMSGS NO_INFOMSGS represses all informational messages
from the DBCC output.

TABLOCK When TABLOCK is selected, a shared table lock is
placed on the table instead of using an internal
database snapshot. Using this option decreases
concurrency with other database queries accessing
the table or indexed view.

ESTIMATEONLY ESTIMATEONLY provides the estimated space needed
by the tempdb database to execute the command
(but doesn’t actually execute the integrity checking).

PHYSICAL_ONLY PHYSICAL_ONLY limits the integrity checks to physical
issues only, skipping logical checks.

Continued

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 677

9802CH23.qxd 6/17/08 3:46 PM Page 677

Table 23-4. Continued

Argument Description

DATA_PURITY This argument is used on upgraded databases
(pre–SQL Server 2005 databases); this instructs DBCC
CHECKTABLE to detect column values that do not
conform to the data type (for example, if an integer
value has a bigint-sized value stored in it). Once all
bad values in the upgraded database are cleaned up,
SQL Server maintains the column-value integrity
moving forward.

This recipe provides a few examples of using the command. In the first example, the integrity
of the Production.Product table will be checked in the AdventureWorks database:

DBCC CHECKTABLE ('Production.Product')
WITH ALL_ERRORMSGS

This returns the following (results vary based on your environment):

DBCC results for 'Production.Product'.
There are 504 rows in 13 pages for object "Production.Product".
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

In the next example in the recipe, we return an estimate of tempdb space required for a check on
the Sales.SalesOrderDetail table. This allows you to know ahead of time if a specific CHECKTABLE
operation requires more space than you have available:

DBCC CHECKTABLE ('Sales.SalesOrderDetail')
WITH ESTIMATEONLY

This returns the following (these results may differ from yours, since they are based in part on
the local environment):

Estimated TEMPDB space needed for CHECKTABLES (KB)
897

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

This last example executes DBCC CHECKTABLE for a specific index, checking for physical errors
only (no logical). First, however, the index ID needs to be determined:

SELECT index_id
FROM sys.indexes
WHERE object_id = OBJECT_ID('Sales.SalesOrderDetail')
AND name = 'IX_SalesOrderDetail_ProductID'

This returns

index_id
3

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION678

9802CH23.qxd 6/17/08 3:46 PM Page 678

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Next, the index_id will be used in the command:

DBCC CHECKTABLE ('Sales.SalesOrderDetail', 3)
WITH PHYSICAL_ONLY

This returns

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
In this recipe, the first example demonstrated how to check the integrity of a single table, showing
all error messages if they exist (instead of the 200 message maximum default). The name of the
table to check was included as the first argument:

DBCC CHECKTABLE ('Production.Product')

The second argument, ALL_ERRORMSGS, designated that any and all error messages found would
be returned:

WITH ALL_ERRORMSGS

DBCC CHECKTABLE checks for errors regarding data page linkages, pointers, verification that rows
in a partition are actually in the correct partition, and more.

In the second example, a tempdb size requirement estimate was returned for the Sales.
SalesOrderDetail table by designating the WITH ESTIMATEONLY argument:

DBCC CHECKTABLE ('Sales.SalesOrderDetail')
WITH ESTIMATEONLY

In the last example, the index ID of the IX_SalesOrderDetail_ProductID index on the Sales.
SalesOrderDetail table was retrieved from the sys.indexes system catalog view. After retrieving the
index ID, it was used in the DBCC CHECKTABLE command along with the PHYSICAL_ONLY argument,
which was used to skip logical integrity checks against that index.

Checking Table Integrity with DBCC CHECKCONSTRAINTS
DBCC CHECKCONSTRAINTS alerts you to any CHECK or foreign key constraint violations found in a spe-
cific table or constraint. This command allows you to return the violating data so that you can
correct the constraint violation accordingly (although this command does not catch constraints
that have been disabled using NOCHECK).

The syntax is as follows:

DBCC CHECKCONSTRAINTS
[('table_name' | table_id | 'constraint_name' |
constraint_id)]
[WITH
{ ALL_CONSTRAINTS | ALL_ERRORMSGS } [, NO_INFOMSGS]]

The arguments of this command are described in Table 23-5.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 679

9802CH23.qxd 6/17/08 3:46 PM Page 679

Table 23-5. DBCC CHECKCONSTRAINTS Arguments

Argument Description

'table_name' | table_id | This defines the table name, table ID, constraint name, or
'constraint_name' | constraint ID that you want to validate. If a specific object
constraint_id isn’t designated, all the objects in the database will be

evaluated.

ALL_CONSTRAINTS | ALL_ERRORMSGS When ALL_CONSTRAINTS is selected, all constraints (enabled
or disabled) are checked. When ALL_ERRORMSGS is selected,
all rows that violate constraints are returned in the result set
(instead of the default maximum of 200 rows).

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

In this recipe, I demonstrate how to check the constraints of a table after a CHECK constraint has
been violated:

ALTER TABLE Production.WorkOrder NOCHECK CONSTRAINT CK_WorkOrder_EndDate
GO

-- Set an EndDate to earlier than a StartDate
UPDATE Production.WorkOrder
SET EndDate = '1/1/2001'
WHERE WorkOrderID = 1
GO

ALTER TABLE Production.WorkOrder CHECK CONSTRAINT CK_WorkOrder_EndDate
GO

DBCC CHECKCONSTRAINTS ('Production.WorkOrder')

This returns the following results:

Table Constraint Where
[Production].[WorkOrder] [CK_WorkOrder_EndDate] [StartDate] = '2001-07-04

00:00:00.000' AND [EndDate] =
'2001-01-01 00:00:00.000'

How It Works
In this recipe, the check constraint called CK_WorkOrder on the Production.WorkOrder table was dis-
abled, using the ALTER TABLE...NOCHECK CONSTRAINT command:

ALTER TABLE Production.WorkOrder NOCHECK CONSTRAINT CK_WorkOrder_EndDate
GO

This disabled constraint restricted values in the EndDate column from being less than the date
in the StartDate column.

After disabling the constraint, a row was updated to violate this check constraint’s rule:

UPDATE Production.WorkOrder
SET EndDate = '1/1/2001'
WHERE WorkOrderID = 1
GO

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION680

9802CH23.qxd 6/17/08 3:46 PM Page 680

The constraint was then reenabled:

ALTER TABLE Production.WorkOrder
CHECK CONSTRAINT CK_WorkOrder_EndDate
GO

The DBCC CHECKCONSTRAINTS command was then executed against the table:

DBCC CHECKCONSTRAINTS('Production.WorkOrder')

The command returned the table name, constraint violated, and the reason why the constraint
was violated:

Table Constraint Where
[Production].[WorkOrder] [CK_WorkOrder_EndDate] [StartDate] = '2001-07-04

00:00:00.000' AND [EndDate] =
'2001-01-01 00:00:00.000'

■Note Unlike several other database integrity DBCC commands, DBCC CHECKCONSTRAINTS is not run within
DBCC CHECKDB, so you must execute it as a stand-alone process if you need to identify data constraint violations
in the database.

Checking System Table Consistency with DBCC
CHECKCATALOG
DBCC CHECKCATALOG checks for consistency in and between system tables (this is another command
that is automatically included in the execution of DBCC CHECKDB).

The syntax is as follows:

DBCC CHECKCATALOG
[('database_name' | database_id | 0)]

[WITH NO_INFOMSGS]

The arguments of this command are described in Table 23-6.

Table 23-6. DBCC CHECKCATALOG Arguments

Argument Description

'database_name' | database_id | 0 This defines the database name or database ID to be
checked for errors. When 0 is selected, the current
database is used.

NO_INFOMSGS NO_INFOMSGS represses all informational messages from the
DBCC output.

In this brief recipe, system table consistency checks are performed for the entire Adventure-
Works database:

DBCC CHECKCATALOG ('AdventureWorks')

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 681

9802CH23.qxd 6/17/08 3:46 PM Page 681

This returns the following (assuming no errors found):

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works
In this recipe, the system catalog data was checked in the AdventureWorks database. Had errors
been identified, they would have been returned in the command output. If errors are found, DBCC
CHECKCATALOG doesn’t have repair options, and a restore from the last good database backup may be
your only repair option.

Like the other commands I’ve described in this chapter, when DBCC CHECKCATALOG is executed,
an internal database snapshot is created to maintain transactional consistency during the opera-
tion. If for some reason a database snapshot cannot be created, an exclusive database lock is
acquired during the execution of the command (thus potentially hurting database query concur-
rency).

■Note CHECKCATALOG is already executed automatically within a DBCC CHECKDB command, so a separate exe-
cution is not necessary unless you wish to investigate only system table consistency issues.

Index Maintenance
Fragmentation is the natural byproduct of data modifications to a table. When data is updated in
the database, the logical order of indexes (based on the index key) gets out of sync with the actual
physical order of the data pages. As data pages become further and further out of order, more I/O
operations are required in order to return results requested by a query. Rebuilding or reorganizing
an index allows you to defragment the index by synchronizing the logical index order and reordering
the physical data pages to match the logical index order. In the next two recipes, I’ll demonstrate
two methods you can use to defragment your indexes.

■Tip See Chapter 28 to learn how to display index fragmentation. It is important that you rebuild only indexes
that require it. The rebuild process is resource intensive and has minimal impact if fragmentation is low, or if
querying is primarily for singleton lookups and not range scans.

Rebuilding Indexes
If you’ve used previous versions of SQL Server, you may be searching this chapter for the DBCC
DBREINDEX or DBCC INDEXDEFRAG commands, which were used to rebuild indexes and defragment
indexes, respectively. DBCC DBREINDEX has been deprecated in place of the ALTER INDEX REBUILD com-
mand. DBCC INDEXDEFRAG, used to defragment an index while allowing access to the data, has been
deprecated in place of ALTER INDEX REORGANIZE (covered in the next recipe).

Rebuilding an index serves many purposes, the most popular being the removal of fragmenta-
tion that occurs as data modifications are made to a table over time. As fragmentation increases,
query performance can slow. Rebuilding an index removes fragmentation of the index rows and
frees up physical disk space.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION682

9802CH23.qxd 6/17/08 3:46 PM Page 682

Large indexes that are quite fragmented can reduce query speed. The frequency of how often
you rebuild your indexes depends on your database size, how much data modification occurs, how
much activity occurs against your tables, and whether or not your queries typically perform ordered
scans or singleton lookups.

The syntax for ALTER INDEX in order to rebuild an index is as follows:

ALTER INDEX { index_name | ALL }
ON <object>
{ REBUILD
[[WITH (<rebuild_index_option> [,...n])]
| [PARTITION = partition_number

[WITH (<single_partition_rebuild_index_option>
[,...n])

]
]

]
}

The arguments of this command are described in Table 23-7.

Table 23-7. ALTER INDEX...REBUILD Arguments

Argument Description

index_name | ALL This defines the name of the index to rebuild. If ALL
is chosen, all indexes for the specified table or view
will be rebuilt.

<object> This specifies the name of the table or view that the
index is built on.

<rebuild_index_option> One or more index options can be applied during
a rebuild, including FILLFACTOR, PAD_INDEX,
SORT_IN_TEMPDB, IGNORE_DUP_KEY,
STATISTICS_NORECOMPUTE, ONLINE, ALLOW_ROW_LOCKS,
ALLOW_PAGE_LOCKS, DATA_COMPRESSION, and MAXDOP.

partition_number If using a partitioned index, partition_number
designates that only one partition of the index is
rebuilt.

<single_partition_rebuild_index_option> If designating a partition rebuild, you are limited to
using the following index options in the WITH
clause: SORT_IN_TEMPDB, DATA_COMPRESSION, and
MAXDOP.

This recipe demonstrates ALTER INDEX REBUILD, which drops and re-creates an existing index.
It demonstrates a few variations for rebuilding an index in the AdventureWorks database:

-- Rebuild a specific index

ALTER INDEX PK_ShipMethod_ShipMethodID
ON Purchasing.ShipMethod REBUILD

-- Rebuild all indexes on a specific table

ALTER INDEX ALL
ON Purchasing.PurchaseOrderHeader REBUILD

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 683

9802CH23.qxd 6/17/08 3:46 PM Page 683

-- Rebuild an index, while keeping it available
-- for queries (requires Enterprise Edition)

ALTER INDEX PK_ProductReview_ProductReviewID
ON Production.ProductReview REBUILD
WITH (ONLINE = ON)

-- Rebuild an index, using a new fill factor and
-- sorting in tempdb

ALTER INDEX PK_TransactionHistory_TransactionID
ON Production.TransactionHistory REBUILD
WITH (FILLFACTOR = 75,
SORT_IN_TEMPDB = ON)

-- Rebuild an index with page-level data compression enabled
ALTER INDEX PK_ShipMethod_ShipMethodID
ON Purchasing.ShipMethod REBUILD
WITH (DATA_COMPRESSION = PAGE)

How It Works
In this recipe, the first ALTER INDEX was used to rebuild the primary key index on the Purchasing.
ShipMethod table (rebuilding a clustered index does not cause the rebuild of any nonclustered
indexes for the table):

ALTER INDEX PK_ShipMethod_ShipMethodID
ON Purchasing.ShipMethod REBUILD

In the second example, the ALL keyword was used, which means that any indexes, whether
nonclustered or clustered (remember, only one clustered index exists on a table) will be rebuilt:

ALTER INDEX ALL
ON Purchasing.PurchaseOrderHeader REBUILD

The third example in the recipe rebuilt an index online, which means that user queries can
continue to access the data of the PK_ProductReview_ProductReviewID index while it’s being rebuilt:

WITH (ONLINE = ON)

The ONLINE option requires SQL Server Enterprise Edition, and it can’t be used with XML
indexes, disabled indexes, or partitioned indexes. Also, indexes using large object data types or
indexes made on temporary tables can’t take advantage of this option.

In the fourth example, two index options were modified for an index—the fill factor and a
directive to sort the temporary index results in tempdb:

WITH (FILLFACTOR = 75,
SORT_IN_TEMPDB = ON)

In the last example, an uncompressed index was rebuilt using page-level data compression:
WITH (DATA_COMPRESSION = PAGE)

■Tip You can validate whether an index/partition is compressed by looking at the data_compression_desc
column in sys.partitions.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION684

9802CH23.qxd 6/17/08 3:46 PM Page 684

Defragmenting Indexes
ALTER INDEX REORGANIZE reduces fragmentation in the leaf level of an index (clustered and nonclus-
tered), causing the physical order of the database pages to match the logical order. During this
reorganization process, the indexes are also compacted based on the fill factor, resulting in freed
space and a smaller index. ALTER TABLE REORGANIZE is automatically an online operation, meaning
that you can continue to query the target data during the reorganization process.

The syntax is as follows:

ALTER INDEX { index_name | ALL }
ON <object>
{ REORGANIZE

[PARTITION = partition_number]
[WITH (LOB_COMPACTION = { ON | OFF })]

}

The arguments of this command are described in Table 23-8.

Table 23-8. ALTER INDEX...REORGANIZE Arguments

Argument Description

index_name | ALL This defines the name of the index that you want to rebuild. If
ALL is chosen, all indexes for the table or view will be rebuilt.

<object> This specifies the name of the table or view that you want to
build the index on.

partition_number If using a partitioned index, the partition_number designates
that partition to reorganize.

LOB_COMPACTION = { ON | OFF } When this argument is enabled, large object data types
(varchar(max), navarchar(max), varbinary(max), xml, text,
ntext, and image data) are compacted.

This recipe demonstrates how to defragment a single index, as well as all indexes on a single
table:

-- Reorganize a specific index
ALTER INDEX PK_TransactionHistory_TransactionID
ON Production.TransactionHistory
REORGANIZE

-- Reorganize all indexes for a table
-- Compact large object data types
ALTER INDEX ALL
ON HumanResources.JobCandidate
REORGANIZE
WITH (LOB_COMPACTION=ON)

How It Works
In the first example of this recipe, the primary key index of the Production.TransactionHistory
table was reorganized (defragmented). The syntax was very similar to rebuilding an index, only
instead of REBUILD, the REORGANIZE keyword was used.

In the second example, all indexes (using the ALL keyword) were defragmented for the
HumanResources.Jobcandidate column. Using the WITH clause, large object data type columns
were also compacted.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION 685

9802CH23.qxd 6/17/08 3:46 PM Page 685

Use ALTER INDEX REORGANIZE if you cannot afford to take the index offline during an index
rebuild (and if you cannot use the ONLINE option in ALTER INDEX REBUILD because you aren’t running
SQL Server Enterprise Edition). Reorganization is always an online operation, meaning that an
ALTER INDEX REORGANIZE operation doesn’t block database traffic for significant periods of time,
although it may be a slower process than a REBUILD.

Rebuilding a Heap
In SQL Server 2008, you can now rebuild a heap (a table without a clustered index) using the ALTER
TABLE command. In previous versions, rebuilding a heap required adding and removing a tempo-
rary clustered index, or performing a data migration or table re-creation.

In this example, I will create a heap table (using SELECT INTO) and then rebuild it:

USE AdventureWorks
GO

-- Create an unindexed table based on another table
SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
INTO dbo.Heap_Shift
FROM HumanResources.Shift

I can validate whether the new table is a heap by querying sys.indexes:

SELECT type_desc
FROM sys.indexes
WHERE object_id = OBJECT_ID('Heap_Shift')

This returns

type_desc
HEAP

If I wish to rebuild the heap, I can issue the following ALTER TABLE command:

ALTER TABLE dbo.Heap_Shift REBUILD

How It Works
In this recipe, I created a heap table, and then rebuilt it using ALTER TABLE...REBUILD. Using ALTER
TABLE...REBUILD, you can rebuild a table, even if it does not have a clustered index (heap). If the
table is partitioned, this command also rebuilds all partitions on a table and rebuilds the clustered
index if one exists.

CHAPTER 23 ■ DATABASE INTEGRITY AND OPTIMIZATION686

9802CH23.qxd 6/17/08 3:46 PM Page 686

Maintaining Database Objects and
Object Dependencies

This chapter contains a few recipes that you can use to maintain database objects and view object
dependencies. You’ll see recipes used to

• Change the name of user-created database objects.

• Change an object’s schema.

• Display information about object dependencies via the new SQL Server 2008
sys.sql_expression_dependencies view and Dynamic Management Views
sys.dm_sql_referenced_entities and sys.dm_sql_referencing_entities.

■Tip Object dependency tracking is much more robust in SQL Server 2008, allowing you to reliably track both
cross-database and cross-server dependencies. Dependencies are now tracked by object name instead of by ID,
allowing for dependency tracking for deferred name resolution scenarios.

Database Object Maintenance
In these next two recipes, I’ll show you how to change the name of an existing user-created data-
base object using the sp_rename system stored procedure and how to transfer an existing object
from its existing schema to a different schema using ALTER SCHEMA.

Changing the Name of a User-Created Database Object
This recipe demonstrates how to rename objects using the sp_rename system stored procedure.
Using this procedure, you can rename table columns, indexes, tables, constraints, and other data-
base objects.

The syntax for sp_rename is as follows:

sp_rename [@objname =] 'object_name' , [@newname =] 'new_name'
[, [@objtype =] 'object_type']

The arguments of this system stored procedure are described in Table 24-1.

687

C H A P T E R 2 4

9802CH24.qxd 6/17/08 3:49 PM Page 687

Table 24-1. sp_rename Parameters

Argument Description

object_name The name of the object to be renamed

new_name The new name of the object

object_type The type of object to rename: column, database, index, object, and userdatatype

This recipe demonstrates how to rename a table, column, and index:

USE AdventureWorks
GO

-- Add example objects

CREATE TABLE HumanResources.InsuranceProvider
(InsuranceProviderID int NOT NULL,
InsuranceProviderNM varchar(50) NOT NULL
)
GO

CREATE INDEX ni_InsuranceProvider_InsuranceProviderID
ON HumanResources.InsuranceProvider (InsuranceProviderID)

-- Rename the table
EXEC sys.sp_rename 'HumanResources.InsuranceProvider',

'Provider',
'Object'

-- Rename a column
EXEC sys.sp_rename 'HumanResources.Provider.InsuranceProviderID',

'ProviderID',
'Column'

-- Rename the primary key constraint
EXEC sys.sp_rename 'HumanResources.Provider.ni_InsuranceProvider_
InsuranceProviderID',

'ni_Provider_ProviderID',
'Index'

This returns the following message for each sp_rename execution:

Caution: Changing any part of an object name could
break scripts and stored procedures.

How It Works
This recipe began with you creating a new table called HumanResources.InsuranceProvider with
an index on the new table called InsuranceProviderID. After that, the system stored procedure
sp_rename was used to rename the table:

EXEC sys.sp_rename 'HumanResources.InsuranceProvider',
'Provider',
'Object'

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES688

9802CH24.qxd 6/17/08 3:49 PM Page 688

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Notice that the first parameter uses the fully qualified object name (schema.table_name),
whereas the second parameter just uses the new table_name. The third parameter used the object
type of object.

Next, sp_rename was used to change the column name:

EXEC sys.sp_rename 'HumanResources.Provider.InsuranceProviderID',
'ProviderID',
'Column'

The first parameter used the schema.table_name.column_name to be renamed and the second
parameter the new name of the column. The third parameter used the object type of column.

In the last part of the recipe, the index was renamed:

EXEC sys.sp_rename 'HumanResources.Provider.ni_InsuranceProvider_
InsuranceProviderID',

'ni_Provider_ProviderID',
'Index'

The first parameter used the schema.table_name.index_name parameter. The second parameter
used the name of the new index. The third used the object type of index.

This recipe returned a warning that “changing any part of an object name could break scripts
and stored procedures.” In a real-life scenario, before you rename an object, you’ll also want to
ALTER any view, stored procedure, function, or other programmatic object that contains a reference
to the original object name. I demonstrate how to find out which objects reference an object later
on in this chapter in the “Identifying Object Dependencies” recipe.

Changing an Object’s Schema
In SQL Server 2000, before the concept of schemas, an object’s owner was changed using the
sp_changeobjectowner system stored procedure. Now in SQL Server 2005 and 2008, users (owners)
and schemas are separate, and to change an object’s schema, you use the ALTER SCHEMA command
instead.

The syntax is as follows:

ALTER SCHEMA schema_name TRANSFER object_name

The command takes two arguments: the first being the schema name you want to transfer the
object to, and the second the object name that you want to transfer.

This recipe demonstrates transferring a table from the Sales to the HumanResources schema:

Use AdventureWorks
GO

CREATE TABLE Sales.TerminationReason
(TerminationReasonID int NOT NULL PRIMARY KEY,
TerminationReasonDESC varchar(100) NOT NULL)
GO

ALTER SCHEMA HumanResources TRANSFER Sales.TerminationReason
GO

How It Works
In this recipe, a new table was created in the Sales schema. An object is not owned by a specific
user, but is instead contained within a schema. After creating the table, it was then transferred to
the HumanResources schema using the ALTER SCHEMA TRANSFER command.

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 689

9802CH24.qxd 6/17/08 3:49 PM Page 689

■Caution Permissions granted to the original schema.object will be dropped after the transfer (for example,
SELECT permissions for USER1). If these permissions need to be maintained in the new schema, be sure to script
them out prior to using ALTER SCHEMA.

Object Dependencies
SQL Server 2008 has introduced more reliable methods of tracking object dependencies, as the next
few recipes will demonstrate.

■Caution The sp_depends system stored procedure and the sys.sql_dependencies catalog view have been
deprecated in this edition of SQL Server. Moving forward, use the views demonstrated in this chapter for tracking
object dependencies.

Identifying Object Dependencies
SQL Server 2008 provides new methods for identifying object dependencies within the database,
across databases, and across servers (using linked server four-part names). This recipe will demon-
strate the use of the sys.sql_expression_dependencies object catalog view to identify dependencies
in several scenarios.

I’ll begin by creating two new databases and some new objects within them in order to demon-
strate the functionality:

USE master
GO

-- Create two new databases
CREATE DATABASE TSQLRecipe_A
GO

CREATE DATABASE TSQLRecipe_B
GO

-- Create a new table in the first database
USE TSQLRecipe_A
GO

CREATE TABLE dbo.Book
(BookID int NOT NULL PRIMARY KEY,
BookNM varchar(50) NOT NULL)

GO

-- Create a procedure referencing an object
-- in the second database
USE TSQLRecipe_B
GO

CREATE PROCEDURE dbo.usp_SEL_Book
AS

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES690

9802CH24.qxd 6/17/08 3:49 PM Page 690

SELECT BookID, BookNM
FROM TSQLRecipe_A.dbo.Book
GO

I’ve created a stored procedure that references a table in another database. Now if I wish to
view all objects that the stored procedure depends on, I can execute the following query against
sys.sql_expression_dependencies (I’ll elaborate on what the columns mean in the “How It Works”
section):

SELECT referenced_server_name, referenced_database_name,
referenced_schema_name, referenced_entity_name, is_caller_dependent

FROM sys.sql_expression_dependencies
WHERE OBJECT_NAME(referencing_id) = 'usp_SEL_Book'

This query returns one row (abridged for formatting):

referenced_server_name NULL
referenced_database_name TSQLRecipe_A
referenced_schema_name dbo
referenced_entity_name Book
is_caller_dependent 0

Now let’s say I create another stored procedure that references an object that doesn’t yet exist
(this is an allowable scenario for a stored procedure and is a common practice). For example:

-- Create a procedure referencing an object
-- in the second database
USE TSQLRecipe_B
GO

CREATE PROCEDURE dbo.usp_SEL_Contract
AS

SELECT ContractID, ContractNM
FROM TSQLRecipe_A.dbo.Contract
GO

In previous versions of SQL Server, dependencies on non-existent objects weren’t tracked. In
SQL Server 2008, this behavior is now corrected. You can issue the following query to check depend-
encies of usp_SEL_contract:

USE TSQLRecipe_B
GO

SELECT referenced_server_name, referenced_database_name,
referenced_schema_name, referenced_entity_name, is_caller_dependent

FROM sys.sql_expression_dependencies
WHERE OBJECT_NAME(referencing_id) = 'usp_SEL_Contract'

This query returns one row (abridged for formatting):

referenced_server_name NULL
referenced_database_name TSQLRecipe_A
referenced_schema_name dbo
referenced_entity_name Contract
is_caller_dependent 0

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 691

9802CH24.qxd 6/17/08 3:49 PM Page 691

Even though the object TSQLRecipe_A.dbo.Contract does not exist, the dependency between
the referencing stored procedure and the referenced table is still represented.

How It Works
This recipe demonstrated how to determine object dependencies using the sys.sql_expression_
dependencies catalog view. In the SELECT clause, I referenced five columns. The first column,
referenced_server_name, referenced the four-part linked server name (when applicable). The
referenced_database_name returned a non-null value if the three-part database, schema, and object
name were used. The referenced_schema_name was available if a two-part schema and object name
were used in the referencing module. The referenced_entity_name was the object name being refer-
enced. Finally, the is_caller_dependent column indicated whether the object reference depends on
the person executing the module. For example, if the object name was not fully qualified, and an
object named T1 existed under two different schemas, the actual object referenced would depend
on the person calling the module and the execution context.

Identifying Referencing and Referenced Entities
SQL Server 2008 includes two new Dynamic Management Views that are used to identify referenced
and referencing objects, as this recipe will demonstrate. The sys.dm_sql_referenced_entities
Dynamic Management View, provided with the referencing object name, returns a result set of
objects being referenced. The sys.dm_sql_referencing_entities Dynamic Management View, when
provided the name of the object being referenced, returns a result set of objects referencing it.

In this first example, I will create a table with two references to it, one reference from a stored
procedure and another from a view:

USE TSQLRecipe_A
GO

CREATE TABLE dbo.BookPublisher
(BookPublisherID int NOT NULL PRIMARY KEY,
BookPublisherNM varchar(30) NOT NULL)

GO

CREATE VIEW dbo.vw_BookPublisher
AS

SELECT BookPublisherID, BookPublisherNM
FROM dbo.BookPublisher
GO

CREATE PROCEDURE dbo.usp_INS_BookPublisher
@BookPublisherNM varchar(30)

AS

INSERT dbo.BookPublisher
(BookPublisherNM)
VALUES (@BookPublisherNM)

GO

Next, I’ll use the sys.dm_sql_referenced_entities Dynamic Management View to show all
objects that the view itself references:

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES692

9802CH24.qxd 6/17/08 3:49 PM Page 692

SELECT referenced_entity_name, referenced_minor_name
FROM sys.dm_sql_referenced_entities ('dbo.vw_BookPublisher', 'OBJECT')

This returns

referenced_entity_name referenced_minor_name
BookPublisher NULL
BookPublisher BookPublisherID
BookPublisher BookPublisherNM

(3 row(s) affected)

Notice that this function shows one row for the table referenced in the view, as well as two
rows for each column referenced within the view. I’ll discuss the parameters in the “How It Works”
section.

Next, I’ll query sys.dm_sql_referencing_entities to determine all objects that reference the
dbo.BookPublisher table (the Dynamic Management Views are similarly named, so notice that I am
using “referencing” and not “referenced”):

SELECT referencing_schema_name, referencing_entity_name
FROM sys.dm_sql_referencing_entities ('dbo.BookPublisher', 'OBJECT')

This returns

referencing_schema_name referencing_entity_name
dbo usp_INS_BookPublisher
dbo vw_BookPublisher

(2 row(s) affected)

How It Works
This recipe demonstrated two methods for identifying object dependencies. I created a table and
then referenced it within a view and a stored procedure. The sys.dm_sql_referenced_entities
Dynamic Management View was used to return a list of entities referenced within the specified
object.

sys.dm_sql_referenced_entities ('dbo.vw_BookPublisher', 'OBJECT')

The first parameter was the name of the object that is referencing other objects. The second
parameter designates the type of entities to list. The choices were OBJECT, DATABASE_DDL_TRIGGER,
and SERVER_DDL_TRIGGER. I chose OBJECT, and the result was the name of the referenced table and
specific columns in the SELECT clause of the view.

The second example in the recipe demonstrated showing all references to a specific object, in
this case, the table that was created at the beginning of the recipe:

FROM sys.dm_sql_referencing_entities ('dbo.BookPublisher', 'OBJECT')

The first parameter takes the name of the object that I wanted to identify references to. The
second parameter designated the class of the object I wanted to identify. The choices include
OBJECT, TYPE, XML_SCHEMA_COLLECTION, and PARTITION_FUNCTION. I chose OBJECT, which resulted in a
list of the view and stored procedure that referenced the table designated in the first parameter.

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 693

9802CH24.qxd 6/17/08 3:49 PM Page 693

Viewing an Object’s Definition
Once you’ve identified dependencies regarding a module that you need to modify, you can have a
look at its definition using the OBJECT_DEFINITION function. This function can be used to return the
Transact-SQL definition of user-defined and system-based constraints, defaults, stored procedures,
functions, rules, schema-scoped DML and DDL triggers, and views.

The syntax is as follows:

OBJECT_DEFINITION (object_id)

The only argument for this command is the object ID, which is the unique object identifier
(each object identifier uniquely identifies a database object within a database).

In this example recipe, the Transact-SQL definition is returned for an AdventureWorks data-
base’s user-defined function, and the OBJECT_ID function is used within the OBJECT_DEFINITION
function to get that user-defined function’s identifier:

USE AdventureWorks
GO

SELECT OBJECT_DEFINITION
(OBJECT_ID('dbo.ufnGetAccountingEndDate'))
GO

This returns the Transact-SQL definition:

CREATE FUNCTION [dbo].[ufnGetAccountingEndDate]()
RETURNS [datetime]
AS
BEGIN

RETURN DATEADD(millisecond, -2, CONVERT(datetime, '20040701', 112));
END;

If you’re curious about how Microsoft programs its own system objects, you can also use
OBJECT_DEFINITION to peek at its Transact-SQL definition. In this example, the system stored proce-
dure code for the sp_depends stored procedure is revealed:

USE AdventureWorks
GO

SELECT OBJECT_DEFINITION(OBJECT_ID('sys.sp_depends'))
GO

This returns the following abridged results:

create procedure sys.sp_depends
--- 1996/08/09 16:51 @objname nvarchar(776)
...
select @dbname = parsename(@objname,3)

if @dbname is not null and @dbname <> db_name()
begin raiserror(15250,-1,-1)
return (1)
end
...

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES694

9802CH24.qxd 6/17/08 3:49 PM Page 694

How It Works
In this recipe, I demonstrated using OBJECT_DEFINITION to return the Transact-SQL code for a user-
defined function and for a system stored procedure. In both cases, the OBJECT_ID function was
nested within the function in order to pass the object ID as an argument:

OBJECT_DEFINITION
(OBJECT_ID('dbo.ufnGetAccountingEndDate'))

The object name was fully qualified using the schema.object_name format.
Both examples returned the Transact-SQL code definition for the database objects. Had those

objects been encrypted, you would have gotten a NULL result set instead.

CHAPTER 24 ■ MAINTAINING DATABASE OBJECTS AND OBJECT DEPENDENCIES 695

9802CH24.qxd 6/17/08 3:49 PM Page 695

9802CH24.qxd 6/17/08 3:49 PM Page 696

Database Mirroring

Database mirroring provides high availability at the user database level. High availability in this
case refers to the SQL Server databases being available to end users to query with little or no
unplanned downtime. Database mirroring allows database redundancy, by synchronizing a primary
(principal) database on one server with a second copy of a database on a second server. This second
copy can be used as a hot standby, allowing for fast failover in the event you need to take your pri-
mary copy offline for any reason. Unlike failover clustering (described in the next section), database
mirroring doesn’t require expensive hardware such as shared disk arrays or SAN. At a minimum, all
you need are two SQL Server instances on the same network.

■Caution Unlike failover clustering, database mirroring operates at the user database level. You cannot mirror
system databases (master, msdb, tempdb).

In this chapter, I’ll review how to set up, configure, monitor, and remove database mirroring.
Before I get into the specifics of database mirroring in the next section, I’ll first talk about database
mirroring in the context of other SQL Server high-availability options.

■Tip Although the core functionality of database mirroring has not changed, SQL Server 2008 does introduce
data stream compression and automatic page recovery. These improvements don’t require changes to the existing
syntax.

Database Mirroring in Context
Database mirroring is provided as one of a set of high-availability technologies included with
SQL Server:

• Failover clustering: Available in previous versions of SQL Server, failover clustering allows
you to maintain high availability at the SQL Server instance level, using two or more nodes
that are connected to shared disks. When you install a SQL Server instance on a failover clus-
ter, the user and system database files are installed on the shared disk, and the regular binary
install files are written to all nodes (servers) participating in the cluster. One physical node
“controls” the SQL Server instance at a time, and if something happens to that node that
makes it unavailable, a second node in the cluster can take over the duties of serving that
SQL Server instance. Depending on the settings of the SQL Server instance, a failover from
one server to another can take just a few seconds.

697

C H A P T E R 2 5

9802CH25.qxd 6/18/08 10:54 AM Page 697

• Log shipping: Also available in previous versions, log shipping is the most similar to database
mirroring functionality. Log shipping enables high availability at the database level, and
involves keeping a primary online database on one SQL Server instance and a continuously
recovering database on a second SQL Server instance. As transaction log backups are per-
formed on the primary database, the transaction log backups are copied to the second SQL
Server instance and continuously applied to the database copy. In the event of a failure,
either on the primary database or on the server where it resides, the second database copy
can be brought online by applying the last of the transferred transaction log backups.

• Replication: Also available in previous versions, replication allows you to move data and
object definitions (tables, views, and more) to a second database copy on one or more SQL
Server instances. Depending on the type of replication you’ve chosen, you can push data
changes on a specific schedule, migrate data as changes are made, or synchronize data
changes across multiple data sources. Replication provides high availability in a lesser form,
focusing on specific objects and data, but not allowing you to automate the transfer of all
database object types. This means that you cannot depend on it to produce an identical copy
of your database (something that database mirroring can do).

There are several ways in which database mirroring differentiates itself from other high-
availability options:

• Database mirroring doesn’t require shared disks or special hardware required by failover
clustering. Failover clustering protects the entire SQL Server instance, but database mirror-
ing only allows high availability at the user database scope. System databases cannot be
mirrored.

• Unlike log shipping, setup of a database mirror can be performed entirely with Transact-
SQL. Log shipping requires manual configurations and is considered to be a warm standby
solution. Database mirroring is integrated into the database engine and allows for a hot
database standby, allowing failover within seconds.

■Note A hot standby server is one that receives frequent updates from a production server and is immediately
available for use in the event of a failure on the production server. A warm standby server is one that receives
updates, but may require adjustments or a few minutes of transition before taking over in the event of a failure on
the production server.

• Replication allows you to push or pull specific database objects, but doesn’t allow you to pull
all database objects. Database mirroring, however, creates an exact copy of the database.

In the next section I’ll discuss the architecture of database mirroring.

Database Mirroring Architecture
Database mirroring involves a principal server role, a mirroring server role, and an optional witness
server (shown in Figure 25-1). The database on the principal server is actively used, and as transac-
tions are applied to the principal server’s database, they are also submitted to the mirror server’s
database. The mirror server database is left in a recovering state, where it receives changes made on
the principal copy, but it cannot be used while the principal mirror database is still available.

CHAPTER 25 ■ DATABASE MIRRORING698

9802CH25.qxd 6/18/08 10:54 AM Page 698

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 25-1. Database mirroring basic architecture

If an issue occurs on the principal server database that makes the database unavailable, the
mirror server can take on the role of the primary database. When the other database (the original
principal) comes back online, the former primary database takes on the mirrored server database
role, receiving transactions from the principal server.

Failover from principal to mirror databases can be initiated manually or automatically,
depending on the database mirroring mode. If automatic failover is required, a third server must
join the mirroring session as a witness server. The witness server monitors the principal and mirror
servers. In a database mirroring session that consists of these three servers (principal, mirror, and
witness), two of the three connected servers can make the decision (called a quorum) as to whether
or not an automatic failover should occur.

Database mirroring sessions can run in a synchronous or asynchronous mode. When in syn-
chronous mode, transactions written to the principal server database must also be written to the
mirror server database before any containing transaction can be committed. This option guaran-
tees data redundancy, but has a trade-off of potential performance degradation.

Asynchronous mode allows transactions to commit on the principal database mirroring ses-
sion before actually writing the transaction to the mirror server database. This option allows for
faster transaction completion on the principal database, but also poses the risk of lost transactions
if a failure occurs on the principal server before updates can be reflected on the mirror database.

■Tip SQL Server 2008 Enterprise Edition provides automatic data page repair on the principal and mirror data-
bases if page corruption has occurred. For example, if a page is corrupted on the principal database, an attempt
will be made to retrieve the non-corrupted page from the mirror database. If available, the mirror copy of the page
will be used to overlay the bad page on the principal database. Such fixes are also available if a page is corrupted
on the mirror database but not the principal.

CHAPTER 25 ■ DATABASE MIRRORING 699

9802CH25.qxd 6/18/08 10:54 AM Page 699

With regards to application and client connectivity to the principal database, SQL Server main-
tains metadata that allows .NET application redirection in the event of a failover. Specifically, you
can use the SQL Native Client in your .NET code to connect to the mirrored database and the code
can be configured such as to be aware of the locations of the mirrored databases. With the SQL
Native Client, you can designate both the principal and mirroring SQL Server instances in the con-
nection string, allowing the application connection to be transparently redirected to the newly
active principal when the primary database is unavailable.

Setting Up Database Mirroring
In this chapter, I’ll demonstrate one scenario across several smaller recipes, much like I did in
Chapter 20. In this scenario, I’ll be setting up a database mirroring session on the BookStore data-
base. One SQL Server instance will house the principal database, another will house the mirrored
database, and another will act as the witness (no database needed).

The following is a general list of steps used to enable database mirroring:

1. Create endpoints: You should create mirroring endpoints, which will allow the SQL Server
instances (principal, mirror, and witness) to communicate with each other. You have your
choice regarding which authentication method is used, and I’ll discuss that issue in the
upcoming recipe.

2. Create the database mirror copy: Before doing this, though, you need to make sure the prin-
cipal database is in FULL recovery mode, because transaction log backups are applied to the
mirror database from the principal database, in order to propagate principal database mod-
ifications. To make the mirror database copy, a full database backup is made to the principal
database and is then restored to the mirror SQL Server instance WITH NORECOVERY (this
option also leaves the database in a state to receive additional transaction log restores).
After the full database backup is made on the principal, a transaction log backup must also
be made, and then restored on the database mirror copy.

3. Initialize the database mirroring session: These last steps involve designating the role of
each database using ALTER DATABASE. This command tells SQL Server which SQL Server end-
points connect to the partners and which connect to the witness. Partner databases have
the principal and/or mirror database, and can also change roles if the principal database
becomes unavailable.

The first recipe in this scenario will show you how to create mirroring endpoints that can
be used to define which SQL Server instances participate in which actions within the database
mirroring session.

Creating Mirroring Endpoints
In order to establish a mirroring session, the participant servers must be able to communicate with
one another on their own dedicated TCP port. These endpoint ports will be dedicated to listening
for mirroring messages and operations.

In getting ready to set up a new database mirroring session, the mirroring server is the first to
have an endpoint created, followed by the primary server, and then the optional witness server
(designated if you wish to have automatic failover).

The CREATE ENDPOINT command is used to create the mirroring endpoints. Recall from the pre-
vious chapters in this book that CREATE ENDPOINT is also used to create HTTP endpoints and to
enable Service Broker cross-server communication. The syntax as it applies to database mirroring
is as follows:

CHAPTER 25 ■ DATABASE MIRRORING700

9802CH25.qxd 6/18/08 10:54 AM Page 700

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS TCP (LISTENER_PORT = listenerPort)
FOR DATABASE_MIRRORING (

[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

| CERTIFICATE certificate_name
}]
[[,] ENCRYPTION = { DISABLED |SUPPORTED | REQUIRED }

[ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]
]
[,] ROLE = { WITNESS | PARTNER | ALL }

)

The arguments of this command are described in Table 25-1.

Table 25-1. CREATE ENDPOINT...FOR DATABASE MIRRORING Arguments

Argument Description

endPointName This argument defines the name of the new
server endpoint.

login This option specifies the owning SQL Server
or Windows login of the endpoint. When
not designated, the default owner is the
creator of the new endpoint.

STATE = { STARTED | STOPPED | DISABLED } This argument defines what state the
endpoint is created in. STARTED means the
endpoint will immediately be active.
DISABLED means that the endpoint will not
listen or respond to requests. STOPPED
means that the endpoint listens to requests,
but returns errors back to the caller.

listenerPort This argument specifies the free TCP port
on which the mirroring session will listen
for incoming communications.

WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] This option designates the authentication
method of connection to the endpoint,
using NTLM, KERBEROS, or NEGOTIATE (which
allows the Windows negotiation protocol
to choose from NTLM or Kerberos). If not
designated, NEGOTIATE is the default
authentication option.

CERTIFICATE certificate_name The CERTIFICATE option allows a certificate
to be used for authentication, requiring the
calling endpoint.

ENCRYPTION = { DISABLED| SUPPORTED | REQUIRED } This option applies encryption to a
mirroring process. When DISABLED is
selected, data sent between mirroring
sessions isn’t encrypted. When SUPPORTED is
selected, if both communicating endpoints
support encryption, encryption is used
(otherwise it is not). REQUIRED designates
that communicating endpoints must
support encryption.

Continued

CHAPTER 25 ■ DATABASE MIRRORING 701

9802CH25.qxd 6/18/08 10:54 AM Page 701

Table 25-1. Continued

Argument Description

ALGORITHM { RC4 | AES | RC4 | RC4 AES } This option designates the encryption
algorithm used in encrypted data
transmission.

WITNESS | PARTNER | ALL These options designate the database
mirroring server role. When PARTNER is
designated, the created endpoint can be
used for either primary or mirrored session
communications. If WITNESS is selected, the
endpoint is used for the witness role in a
mirroring session. The ALL session allows
the endpoint to be used for the primary,
mirroring, and witness mirroring session
roles.

Before starting with the recipe, I need to first discuss authentication options that are required
in order for the three SQL Server instances to communicate with one another. First of all, as long as
each of the SQL Server instances is running under the same domain service account, and if you use
the WINDOWS option to create your endpoint, your SQL Server instances will automatically have
access to one another for the database mirroring session. If, however, these SQL Server instances
are not running under the same domain user account, you’ll need to create the Windows login of
the remote SQL Server instance on each participating SQL Server instance. For example, let’s say the
SQL Server instance that is housing the principal database has a startup service account [JOEPROD\
SQLAdmin]. Assume also that the SQL Server instance that is going to house the mirror database copy
uses a startup service account of [JOEPROD\Node2Admin]. In order to allow the mirror SQL Server
access to the principal SQL Server, the [JOEPROD\Node2Admin] must be added to the principal data-
base. For example:

USE master
GO
CREATE LOGIN [JOEPROD\Node2Admin]
FROM WINDOWS
GO

The same thing must be done on the mirror SQL Server instance, in order to allow access to the
principal and witness SQL Server instances. If these new accounts are also in the Windows adminis-
trator groups on the other SQL Server servers, those logins will automatically have access to
connect to the database mirroring endpoint. If they are not members of this group, however, you
must also explicitly grant the remote login access to the endpoint. For example:

GRANT CONNECT ON ENDPOINT::JOEPROD_Mirror
TO [JOEPROD\Node2Admin]
GO

In this chapter’s scenario, I’ll be using three SQL Server instances that run under the same Win-
dows service account. In the first part of this example, a new endpoint is created on the SQL Server
instance that will hold the mirrored copy of the database:

-- Create an endpoint on the mirror SQL server instance

CREATE ENDPOINT JOEPROD_Mirror
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

CHAPTER 25 ■ DATABASE MIRRORING702

9802CH25.qxd 6/18/08 10:54 AM Page 702

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=PARTNER)

GO

This next step is to create a new endpoint on the SQL Server instance that will hold the princi-
pal database:

-- Create an endpoint on the primary SQL server instance

CREATE ENDPOINT JOEPROD_Mirror
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=PARTNER)

GO

In the third step, a new endpoint is created on the SQL Server instance that will act as the
witness in the mirrored database session:

-- Create an endpoint on the witness SQL server instance

CREATE ENDPOINT JOEPROD_Witness
STATE = STARTED
AS TCP (LISTENER_PORT = 5022)
FOR DATABASE_MIRRORING (

AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = SUPPORTED,
ROLE=WITNESS)

GO

After creating the endpoints, you can verify the endpoint settings by querying the
sys.database_mirroring_endpoints system catalog view.

On the SQL Server instance that will eventually house the database mirror copy, the following
query confirms the name of the endpoint, the state (meaning, whether it is started), and its mirror-
ing role:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns

name state_desc role_desc
JOEPROD_Mirror STARTED PARTNER

This query is then executed on the SQL Server instance that will house the principal database:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns

name state_desc role_desc
JOEPROD_Mirror STARTED PARTNER

CHAPTER 25 ■ DATABASE MIRRORING 703

9802CH25.qxd 6/18/08 10:54 AM Page 703

Next, the SQL Server instance that will assume the witness role is queried:

SELECT name, state_desc, role_desc
FROM sys.database_mirroring_endpoints

This returns

name state_desc role_desc
JOEPROD_Witness STARTED WITNESS

How It Works
Before you can set up a database mirroring session, you must add endpoints to the participating
SQL Server instances. These endpoints use the TCP/IP protocol to listen in on a designated port.

In this recipe, an endpoint called JOEPROD_Mirror was first created on the mirroring SQL Server
instance:

CREATE ENDPOINT JOEPROD_Mirror

The initial state was set to STARTED, meaning that the endpoint was created in a state that can
be used right away:

STATE = STARTED

The TCP listening port was set to 5022. This is the port that the endpoint will listen on for data-
base mirroring communication:

AS TCP (LISTENER_PORT = 5022)

The port number choice was arbitrary; just make sure the port is available. If your SQL Server
instances communicate over a firewall, the designated mirroring ports must be opened for those
machines in order to allow communication.

For the authentication, WINDOWS NEGOTIATE was chosen, which means that Windows authenti-
cation will be used to communicate between the participating SQL Server instances:

FOR DATABASE_MIRRORING (
AUTHENTICATION = WINDOWS NEGOTIATE,

For encryption, SUPPORTED was designated, meaning that if both communicating sessions sup-
port encryption, encryption will be used in the data transmission:

ENCRYPTION = SUPPORTED,

The ROLE for the mirrored server was PARTNER, which means that the endpoint can be used for
principal database or the mirror:

ROLE=PARTNER)

In exactly the same fashion, CREATE ENDPOINT was then executed on the principal SQL Server
instance (again, using PARTNER) and then executed on the witness SQL Server instance with a role of
WITNESS.

Finally, I queried the system catalog view, sys.database_mirroring_endpoints, which contains
information on any database mirroring endpoints that may exist on each SQL Server instance. (In
this scenario, there was one endpoint per SQL Server instance.)

CHAPTER 25 ■ DATABASE MIRRORING704

9802CH25.qxd 6/18/08 10:54 AM Page 704

Backing Up and Restoring Principal Databases
Once the endpoints are created, the next step in creating a database mirroring session is to create a
database backup of the principal database and then restore it to the mirrored SQL Server instance.
After restoring a full database backup, a transaction log backup should be made and then applied to
the database mirror copy.

■Note This chapter demonstrates BACKUP and RECOVERY techniques. These commands are reviewed in more
detail in Chapter 29.

Prior to backing up the database, and in order to use database mirroring, the database needs to
use the FULL recovery model. In this example, I demonstrate making this change on the principal
database SQL Server instance:

-- This is executing on the principal database SQL Server instance
USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'BookStore')

CREATE DATABASE BookStore
GO

-- Make sure the database is using FULL recovery

ALTER DATABASE BookStore
SET RECOVERY FULL
GO

Next, I perform a full database backup:

-- Backing up the BookStore DATABASE

BACKUP DATABASE BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH INIT

Once the database backup is complete on the primary SQL Server instance, the .bak file is then
manually copied to the mirroring SQL Server instance, where it will be restored using NORECOVERY.
NORECOVERY mode leaves the database in a state where additional transaction logs can be applied to
it:

RESTORE DATABASE BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH MOVE 'BookStore' TO 'C:\Apress\Recipes\Mirror\BookStore.mdf',

MOVE 'BookStore_log' TO 'C:\Apress\Recipes\Mirror\BookStore_log.ldf',
NORECOVERY

GO

Keep in mind that the database that you restore must use the same name as the principal data-
base in order for database mirroring to work.

CHAPTER 25 ■ DATABASE MIRRORING 705

9802CH25.qxd 6/18/08 10:54 AM Page 705

If any transaction log backups occur after you perform a full backup on the principal SQL
Server instance and before you perform the restore on the mirrored server, you must also apply
those transaction log backups (using RESTORE) to the mirrored server database. Before enabling mir-
roring, you also must perform one more transaction log backups on the principal database and
then restore it to the mirrored copy.

This example demonstrates backing up the transaction log of the principal database:

BACKUP LOG BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH INIT

Once the transaction log backup is complete on the primary SQL Server instance, the .trn file
is then manually copied to the mirroring SQL Server instance, where it is restored using NORECOVERY:

RESTORE LOG BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH FILE = 1, NORECOVERY

■Tip Restoring a user database doesn’t bring along the necessary SQL or Windows logins to the server contain-
ing the mirrored database. Any SQL or Windows logins mapped to database users in the principal database should
also be created on the mirrored SQL Server instance. These logins should be ready in the event of a failover, when
the mirror database must take over the role as the principal. If the logins are not on the mirror database SQL
Server instance, the database users within the mirrored database will be orphaned (the database users, without
any associated logins, will not be able to be accessed).

How It Works
In this recipe, the principal database was first modified to a FULL recovery mode so that it could par-
ticipate in a database mirroring session:

ALTER DATABASE BookStore
SET RECOVERY FULL

After that, a full database backup was made of the BookStore database. The INIT option was
used to entirely overlay the database file with just the most recent full backup (in case an older
backup already existed on the specified file):

BACKUP DATABASE BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH INIT

The backup file was then manually copied to the second SQL Server instance, which would
house the mirrored copy of the database. A new database was then restored using the MOVE and
NORECOVERY option. You should use the MOVE option when you want to relocate where the database
files are restored, versus how they were stored when the original backup was created:

RESTORE DATABASE BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\principalbackup_BookStore.bak'
WITH MOVE 'BookStore' TO 'C:\Apress\Recipes\Mirror\BookStore.mdf',

MOVE 'BookStore_log' TO 'C:\Apress\Recipes\Mirror\BookStore_log.ldf',
NORECOVERY

GO

CHAPTER 25 ■ DATABASE MIRRORING706

9802CH25.qxd 6/18/08 10:54 AM Page 706

After that, back on the principal database server, a transaction log backup was created:

BACKUP LOG BookStore
TO DISK =
'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH INIT

The transaction log backup file was then manually copied to the second SQL Server instance
prior to restoring it on the mirrored copy of the database (again using the NORECOVERY option):

RESTORE LOG BookStore
FROM DISK = 'C:\Apress\Recipes\Mirror\BookStore_tlog.trn'
WITH FILE = 1, NORECOVERY

Now you have a second copy of the database in a NORECOVERY state, and you are ready to pro-
ceed to the next step in this example scenario, which involves creating the database mirroring
session.

Creating a Database Mirroring Session
Once the database is restored and in recovery mode on the mirror server, the mirroring session can
then be started using the ALTER DATABASE command. This is achieved in two steps (three, if you are
using a witness SQL Server instance, which in this scenario you are). First, ALTER DATABASE will be
executed on the mirror SQL Server instance to set it as a partner with the principal server endpoint.
After that, ALTER DATABASE will be executed on the principal SQL Server instance to set the mirroring
partner and witness endpoint locations.

The specified syntax for using ALTER DATABASE to enable database mirroring is as follows:

ALTER DATABASE database_name
[PARTNER { = 'partner_server'
| FAILOVER
| FORCE_SERVICE_ALLOW_DATA_LOSS
| OFF
| RESUME
| SAFETY { FULL | OFF }
| SUSPEND
| TIMEOUT integer

} |
WITNESS { = 'witness_server'

| OFF
}]

The arguments of this command are described in Table 25-2. Keep in mind that several of these
options touch on the functionality demonstrated later on in the chapter.

Table 25-2. ALTER DATABASE Arguments

Argument Description

database_name This defines the name of the database participating in the
mirror session (the name must be the same on both the
principal and mirror servers).

partner_server This specifies the name of the partner server, which expects
the following format: TCP://fully_qualified_domain_
name:port.

Continued

CHAPTER 25 ■ DATABASE MIRRORING 707

9802CH25.qxd 6/18/08 10:54 AM Page 707

TCP://fully_qualified_domain_

Table 25-2. Continued

Argument Description

FAILOVER The FAILOVER option manually fails over the principal
database to the mirror database. This option requires that
the SAFETY option be FULL.

FORCE_SERVICE_ALLOW_DATA_LOSS FORCE_SERVICE_ALLOW_DATA_LOSS forces the failover to the
mirrored database without fully synchronizing the latest
transactions (thus potentially losing data). This operation
requires that the principal server database be unavailable,
the SAFETY option OFF, and no witness designated.

OFF The OFF option stops the database mirroring session.

RESUME The RESUME option starts back up a suspended database
mirroring session.

SAFETY { FULL | OFF } The SAFETY setting has two values, FULL or OFF. When SAFETY is
FULL, the database mirroring session works in synchronous
mode, requiring transactions on the principal database to be
written to the mirror database before the transaction is
allowed to commit. When SAFETY is OFF, the mirroring session
is asynchronous, meaning that transactions at the principal
don’t wait to be applied at the mirror before committing
(which introduces the potential for data loss).

SUSPEND The SUSPEND mode suspends the database mirroring session.

TIMEOUT integer The TIMEOUT option designates how long a server instance will
wait to receive a PING message back (the heartbeat method
between the partner servers) from the other partner before
deeming that connection to be unavailable (thus causing a
failover). The minimum wait time is five seconds, with a
default value of ten seconds.

witness_server This is the name of the witness server, which expects the
following format: TCP://fully_qualified_domain_name:port.

OFF OFF removes the witness from the database mirroring session.

Continuing with the example scenario, on the mirrored SQL Server instance, the following
command is executed to begin the mirroring process by referencing the principal SQL Server
instance and TCP port number (where the endpoint listens):

-- Set on the mirrored SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET PARTNER = 'TCP://NODE2.JOEPROD.COM:5022'
GO

Next, ALTER DATABASE is executed on the principal SQL Server instance, designating the mirror
server’s name and TCP port number:

-- Enable the mirroring session on the principal SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET PARTNER = 'TCP://NODE1.JOEPROD.COM:5022'
GO

CHAPTER 25 ■ DATABASE MIRRORING708

9802CH25.qxd 6/18/08 10:54 AM Page 708

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

TCP://fully_qualified_domain_name:port
TCP://NODE2.JOEPROD.COM:5022
TCP://NODE1.JOEPROD.COM:5022

After setting up both the mirror and principal, you can then optionally add a witness server,
which is configured on the principal SQL Server instance, as this example demonstrates:

-- Enable the witness on the principal SQL Server instance
-- Default SAFETY is FULL - synchronous mode
ALTER DATABASE BookStore

SET WITNESS = 'TCP://NODE3.JOEPROD.COM:5022'
GO

Mirroring is now configured in this example with the optional witness server. Any data modifi-
cations or schema changes made on the principal database will be logged to the mirror database.
The mirror database will not be available for activity, unless it becomes the principal database
either by an automatic or manual failover (discussed and demonstrated later in the chapter).

How It Works
In this example, the ALTER DATABASE command was used to start a database mirroring session. You
started off on the mirrored SQL Server instance. ALTER DATABASE was executed using SET PARTNER:

ALTER DATABASE BookStore
SET PARTNER = 'TCP://NODE2.JOEPROD.COM:5022'

GO

The PARTNER of this command pointed to the principal database SQL Server server name and
the listening endpoint port of that SQL Server instance. Recall earlier that the endpoint was config-
ured to listen on port 5022 in a partner (not witness) capacity.

Next, on the principal database SQL Server instance, the ALTER DATABASE command was used
to set the database mirroring partner, this time pointing to the mirrored database node and listen-
ing to the TCP port:

ALTER DATABASE BookStore
SET PARTNER = 'TCP://NODE1.JOEPROD.COM:5022'

GO

The SQL Server instance containing the principal database is also where you need to configure
the witness for the database mirroring session. Recall from the earlier recipe that I created a data-
base mirroring endpoint on the witness SQL Server instance. When you use ALTER DATABASE and SET
WITNESS, the name of the witness machine and listening TCP port are designated (from the principal
database SQL Server instance):

ALTER DATABASE BookStore
SET WITNESS = 'TCP://NODE3.JOEPROD.COM:5022'

GO

The database mirroring session has now been configured. Any database objects that have been
added or modifications that have been made in the BookStore database will be transferred to the
mirror copy. If the principal database becomes unavailable, a failover can occur, changing the mir-
rored database’s role to the principal role. Before you get into these tasks, however, I’ll quickly recap
what was accomplished in these last few recipes.

Setup Summary
The general steps for setting up database mirroring spanned the last three recipes, so here is a step-
by-step review of how it was done:

CHAPTER 25 ■ DATABASE MIRRORING 709

9802CH25.qxd 6/18/08 10:54 AM Page 709

TCP://NODE3.JOEPROD.COM:5022
TCP://NODE2.JOEPROD.COM:5022
TCP://NODE1.JOEPROD.COM:5022
TCP://NODE3.JOEPROD.COM:5022

1. First, on the mirror SQL Server instance, an endpoint was created using CREATE ENDPOINT
and designating the role of PARTNER, employing the TCP port of 5022.

2. On the principal SQL Server instance, an endpoint was created using a role of PARTNER and a
listener port of 5022 (because these are separate servers, you can use the same TCP port on
each, so long as the port is available for use).

3. Next, on the witness SQL Server instance, an endpoint was created with a role of WITNESS,
using a listener port of 5022.

4. Back on the principal SQL Server instance, the BookStore database (the database to be mir-
rored) was set to FULL recovery mode using ALTER DATABASE (if it was already using FULL, this
step wouldn’t have been necessary).

5. Still on the principal SQL Server instance, a full database backup was performed on the
BookStore database.

6. On the mirror SQL Server instance, the database was then restored using the NORECOVERY
option, leaving it in a state to receive transactions from the mirroring process. Had addi-
tional transaction log backups been made on the principal database after the last full
backup, those transaction log backups would need to be applied to the mirrored, restored
copy too.

7. On the principal SQL Server instance, a transaction log backup was performed on the
BookStore database.

8. On the mirror SQL Server instance, the transaction log backup was then restored using the
NORECOVERY option, leaving it in a state to receive transactions from the mirroring process.

9. Still on the mirror SQL Server instance, the ALTER DATABASE...SET PARTNER command was
executed, pointing to the fully qualified principal server name and TCP port that the princi-
pal SQL Server instance endpoint listens on.

10. On the principal SQL Server instance, ALTER DATABASE...SET PARTNER was executed, point-
ing to the fully qualified name of the mirrored server and TCP port that the mirror SQL
Server instance endpoint listens on.

11. Lastly, still from the principal SQL Server instance, ALTER DATABASE...SET WITNESS was exe-
cuted, pointing to the fully qualified name of the witness server and TCP port that the
witness SQL Server instance endpoint listens on.

After all of this, the database mirror session begins. Modifications to the principal database will
be logged to the awaiting mirror database. The witness server will be keeping an eye on the connec-
tion between the principal and mirror databases, making sure that if there are any problems, the
appropriate actions are taken (such as automatic failovers). Before I discuss failovers, however, in
the next section I’ll discuss the various operating modes of a mirroring session, and how they can
be both modified and controlled.

Operating Database Mirroring
Database mirroring sessions operate in three modes; high availability (used in the previous exam-
ple), high protection, or high performance.

High-availability mode means that transactions committed on the principal database require
the availability of both the principal and mirror databases before the transaction can commit. This
mode also requires a witness server, which allows automatic failover to occur. The owner of the
principal database is determined by a quorum, which is the presence of at least two servers that can
communicate with each other. If the witness loses contact with the mirror, but keeps contact with

CHAPTER 25 ■ DATABASE MIRRORING710

9802CH25.qxd 6/18/08 10:54 AM Page 710

the principal, the principal database will remain in its role. If the witness loses contact with the
principal, however, but can still see the mirror, in high-availability mode the mirror assumes the
role of principal. If the witness becomes unavailable for whatever reason, the principal and mirror
form the quorum, and remain in their present roles. In short—it takes two to make a quorum, and a
quorum decides which partner controls the principal database.

High-protection mode, just like high-availability mode, means that transactions committed on
the principal database require the availability of both the principal and mirror databases before the
transaction can commit. Unlike high-availability mode, however, there isn’t a witness server in the
mix. This means that while a manual failover can occur, an automatic failover can’t. High-protection
mode still forms a quorum (of just the two partner servers) with the mirror database; however, if the
mirror database becomes unavailable, SQL Server will make the database unavailable (meaning
take it out of service). This is because high-protection mode requires the mirror in order to commit
transactions.

Both of the aforementioned modes suggest data protection and availability as the primary
emphasis. With this functionality, however, comes performance overhead. If your mirrored data-
base has significant update activity, each transaction on the principal database must wait for an
acceptance from the mirrored copy before a commit can happen.

Enter high-performance mode, which allows asynchronous updates on the principal database
(no waiting for the mirror before committing the transaction) and no witness server. This mode
emphasizes transaction speed, but not data availability (because of the lack of manual or automatic
failover) and minimal data recoverability (asynchronous modifications allow for the potential of lost
transactions on the mirror database).

■Note In SQL Server 2008, database mirroring has been optimized to take automatic advantage of data stream
compression and log send buffer optimizations.

In this next recipe, I’ll demonstrate how to use ALTER DATABASE to configure the high-availability,
high-protection, and high-performance modes.

Changing Operating Modes
Both high-availability and high-protection modes use the FULL safety mode (which is the default
mode when you start a mirroring session). You can, however, turn this setting off by using ALTER
DATABASE...SET SAFETY. This command takes two options: OFF or FULL.

In this first example, the safety of a specific mirrored session is turned OFF for a database (put-
ting it in high-performance mode) by executing the command on the principal SQL Server instance:

ALTER DATABASE BookStore SET SAFETY OFF

This second example demonstrates turning safety back on again, and changing from high-
performance to high-availability mode:

ALTER DATABASE BookStore SET SAFETY FULL

High-protection mode was not demonstrated here, as it also has FULL safety mode enabled,
only without the use of a witness in the database mirroring session.

How It Works
In this example, the mirroring session safety was turned off and then on again by referencing the
database name, followed by the new safety mode (either OFF or FULL). With the presence of a witness

CHAPTER 25 ■ DATABASE MIRRORING 711

9802CH25.qxd 6/18/08 10:54 AM Page 711

and the safety on FULL, your database mirroring session will operate in high-availability mode. If
you aren’t using a witness, but safety is still FULL, the database mirroring session is operating in
high-protection mode. With safety OFF, the database is in asynchronous, high-performance mode.
See Table 25-3 for a summary of these different modes.

Table 25-3. Database Mirroring Operating Modes

Mode Safety Configuration Witness?

High availability FULL Yes

High protection FULL No

High performance OFF No

■Tip As a best practice, use synchronous high-availability mode for mission-critical databases. Only use
asynchronous high-performance mode for databases where you can easily recover the lost data through other
mechanisms or sources. Of the synchronous choices, use a witness server whenever possible (high availability)
in order to take advantage of automatic failover.

Performing Failovers
A failover involves switching the roles of the principal and mirror database, with the mirror copy
becoming the principal and the principal becoming the mirror. Existing database connections are
broken during the failover, and the connecting application must then connect to the new principal
database (and with .NET functionality, the connection string can be database-mirror aware).

You can manually set databases participating in a mirroring session to failover in synchronous
high-performance or high-availability modes using the ALTER DATABASE...SET PARTNER FAILOVER
command.

In this example, a failover is initiated from the principal server (which becomes the mirror
server after the operation):

USE master
GO
ALTER DATABASE BookStore SET PARTNER FAILOVER

How long the actual failover operation takes depends on the time it takes to roll forward the
logged transactions on the mirrored copy.

If the database session is running in asynchronous, high-performance mode, you cannot initi-
ate a manual failover. Instead, if the principal becomes unavailable, you can either wait for the
database to become available again or force the service on the mirror copy. To force the service, use
the ALTER DATABASE...SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS command. After forcing the
service, the mirrored database will roll forward logged transactions (and in asynchronous mode, the
principal could have lost some of the transactions in transit prior to the outage). The mirrored data-
base then takes over as the principal.

■Caution Force service on a mirrored database only if absolutely necessary, as data can be lost from the
unavailable principal database.

CHAPTER 25 ■ DATABASE MIRRORING712

9802CH25.qxd 6/18/08 10:54 AM Page 712

In this example, the mirrored database in a database session using asynchronous high-
performance mode is forced into service (this requires that the actual principal database be
unavailable to the mirroring session):

ALTER DATABASE ReportCentralDB SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

How It Works
These examples demonstrated failover options, which depend on the database mirroring session
mode. You may decide to perform a manual failover, for example, in order to perform maintenance
activities on the principal database server.

For asynchronous high-performance mode, however, if the principal database becomes
unavailable, you’ll only want to force service on the mirror session when absolutely necessary, as
data can be lost from any unsent transactions on the unavailable principal database.

Pausing or Resuming a Mirroring Session
If your mirrored principal database is undergoing a significant number of updates, which are then
being bottlenecked by the synchronous updates to the mirror, you can temporarily pause the mir-
roring session using ALTER DATABASE...SET PARTNER SUSPEND. This option keeps the principal
database available and preserves changes in the log, which will then be sent to the mirroring data-
base once it’s resumed. The database mirroring session should only be paused for a short period of
time, as the transaction log will continue to grow, causing it to fill up if the transaction log file size is
fixed or expand until the drive is full (if the transaction log file size is not fixed).

In this example, the BookStore database mirroring session is paused from the principal server:

ALTER DATABASE BookStore SET PARTNER SUSPEND

The state is then confirmed by querying the sys.database_mirroring system catalog view on
the principal server:

SELECT mirroring_state_desc
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns

mirroring_state_desc
SUSPENDED

This next example demonstrates resuming the database mirroring session, causing the mirror
database to synchronize with the pending log transactions:

ALTER DATABASE BookStore SET PARTNER RESUME

How It Works
You can pause or resume a database mirroring session without removing it entirely. Use the tech-
niques demonstrated in this recipe to allow the removal of performance bottlenecks that may
appear on high-activity databases. Be mindful, however, of the transaction log size, and don’t keep
the mirroring session disabled longer than is strictly necessary.

CHAPTER 25 ■ DATABASE MIRRORING 713

9802CH25.qxd 6/18/08 10:54 AM Page 713

Stopping Mirroring Sessions and Removing Endpoints
The previous example demonstrated briefly pausing and resuming a mirroring session; however, if
you wish to remove it altogether, you can use the ALTER DATABASE...SET PARTNER OFF command.

In this example, the BookStore database mirror is stopped and removed (mirroring metadata is
removed):

ALTER DATABASE BookStore SET PARTNER OFF

You can remove the mirroring endpoints on each SQL Server instance using the DROP ENDPOINT
command, for example:

-- Executed on the witness server
DROP ENDPOINT JOEPROD_Witness

-- Executed on the mirror server
DROP ENDPOINT JOEPROD_Mirror

-- Executed on the principal server
DROP ENDPOINT JOEPROD_Mirror

How It Works
Use ALTER DATABASE...SET PARTNER OFF to stop and remove the database mirroring session. Con-
nections will be broken in the principal database, but allowed back in again for regular activity after
the mirroring session is removed. The mirrored copy is left in a restoring state, where you can either
recover or drop it. If you wish to reinstate mirroring, you have to follow the steps of setting up the
principal, mirror, and witness from scratch.

If you remove mirroring, it’s best to also remove the endpoints using DROP ENDPOINT, so that you
don’t forget that they are there holding onto the TCP port (which you may decide to use for other
things).

Monitoring and Configuring Options
The last batch of recipes in this chapter will show you how to

• Monitor the status of the database mirror using the sys.database_mirroring system catalog
view.

• Configure the connection timeout period using the ALTER DATABASE...SET PARTNER TIMEOUT
command.

You’ll begin with learning how to monitor a database mirroring session’s current status.

Monitoring Mirror Status
You can confirm the status of your mirroring session by querying the sys.database_mirroring sys-
tem catalog view.

For example, this view is executed on the principal and shows the state of the mirror, the role of
the current database, the safety level (described in the next recipe), and the state of the witness con-
nection to the principal:

CHAPTER 25 ■ DATABASE MIRRORING714

9802CH25.qxd 6/18/08 10:54 AM Page 714

SELECT mirroring_state_desc, mirroring_role_desc, mirroring_safety_level_desc,
mirroring_witness_state_desc
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns

mirroring_state_desc mirroring_role_desc mirroring_safety level_desc mirroring_witness_state_desc

SYNCHRONIZED PRINCIPAL FULL CONNECTED

How It Works
The SYNCHRONIZED state, when seen for the default FULL safety mode, means that the principal
and mirrored database contain the same data. Other states you can see in this view include the
following:

• SYNCHRONIZING, which means that the principal is sending log records that the mirror is still
in the process of applying.

• SUSPENDED, which means that either the mirrored copy of the database is unavailable, errors
have occurred, or the database has been manually put in this state. In a SUSPENDED state, the
principal database runs without sending log records to the mirror.

• PENDING_FAILOVER, which is seen when a manual failover request has been made, but not yet
executed.

• DISCONNECTED, which means that the partner has lost communication with the other partner
and witness.

Configuring the Connection Timeout Period
Database mirroring uses a default connection timeout period of 10 seconds. If a connection cannot
be made after 10 seconds, a failure occurs, and depending on the role of the database (principal,
mirror, or witness) or the mirroring session mode (synchronous, asynchronous), a failover or mir-
roring shutdown can occur.

If your network latency causes premature failures in the database mirroring session, you can
configure the connection timeout period using the ALTER DATABASE...SET PARTNER TIMEOUT com-
mand. This command configures the timeout period in seconds (with a minimum of 5 seconds
allowed).

In this example, the connection timeout period is increased to 15 seconds on the principal
server:

ALTER DATABASE BookStore SET PARTNER TIMEOUT 15

You can confirm the new setting by querying the sys.database_mirroring system catalog view:

SELECT mirroring_connection_timeout
FROM sys.database_mirroring
WHERE database_id = DB_ID('BookStore')

This returns

mirroring_connection_timeout
15

CHAPTER 25 ■ DATABASE MIRRORING 715

9802CH25.qxd 6/18/08 10:54 AM Page 715

How It Works
In this recipe, the connection timeout period was modified using the ALTER DATABASE...SET
PARTNER TIMEOUT command:

ALTER DATABASE BookStore SET PARTNER TIMEOUT 15

When a mirroring session is active, PING communication messages are sent between the partic-
ipating servers. When a server instance has to wait longer than the configured timeout, a failure
occurs. The reaction to the failure depends on the role of the server, how quorum is defined (which
two servers still see one another), and the database mirroring mode (high availability, high protec-
tion, or high performance).

CHAPTER 25 ■ DATABASE MIRRORING716

9802CH25.qxd 6/18/08 10:54 AM Page 716

Database Snapshots

Database snapshots are read-only, static copies of a database, representative of a specific point in
time. You can connect to these snapshots just as you would any other database, allowing you to use
them for reporting, testing, training, or data recovery purposes. Before you conduct large or poten-
tially hazardous database updates, you can use database snapshots as a just-in-case precaution
when you may need to undo your work.

In this chapter, I demonstrate how to create, query, and drop database snapshots, as well as
how to use database snapshots for data recovery purposes.

Snapshot Basics
Database snapshots can be created from user databases, providing a read-only view of the data,
from the specific point in time when the snapshot was generated. Multiple snapshots can be cre-
ated for a single database, allowing you, for example, to create a snapshot of a database at the end
of each day or week, or at month’s end.

Database snapshots are also space efficient, because they use sparse files. A sparse file is a file
that contains no user data when first created. Snapshots reserve a minimum amount of space in
order to maintain the original snapshot’s data. When first created, a database snapshot does not
produce an extra copy of all data in the source database, but as database changes occur over time
in the source, a copy of the pre-changed data is placed in the sparse file. The snapshot will then
contain the contents of the database as it appeared the moment the snapshot was created.

Queries against the snapshot will return data from the snapshot, the database, or both.
Unchanged source database data will still be retrieved from the source database. But, if the data
has been changed on the source database since the snapshot database was created, it will be
retrieved from the snapshot.

As the percentage of changed data in the database source approaches 100%, the database
snapshot will approach the size of the original database at the time the snapshot was originally
created. Keep in mind that if the same data is modified on the source database multiple times, no
additional updates are made to the database snapshot. Once a data page is updated on the source,
the pre-changed data page is only moved a single time to the snapshot database.

There are a few limitations to be aware of when deciding whether to use snapshots. For exam-
ple, snapshots can’t be created for the system databases. And, database snapshots can’t be backed
up, restored over, attached, or detached like regular databases. Also, snapshots do add performance
overhead to the source database. This is because you’ll see increased I/O activity for each modifica-
tion that causes a data page to be moved to the snapshot file. If you have multiple snapshots on the
same source database, the I/O activity will increase for each snapshot that requires page updates.

Limitations aside, database snapshots offer an excellent means of preserving point-in-time
data, separating out reporting queries from the source database, and allowing quick data recovery.

The next set of recipes will demonstrate database snapshots in action.
717

C H A P T E R 2 6

9802CH26.qxd 5/13/08 4:16 PM Page 717

Creating and Querying Database Snapshots
You create a database snapshot using the CREATE DATABASE command.

The syntax for this command is as follows:

CREATE DATABASE database_snapshot_name
ON

(NAME = logical_file_name,
FILENAME = 'os_file_name') [,...n]

AS SNAPSHOT OF source_database_name

The arguments for this command are described in Table 26-1.

Table 26-1. CREATE DATABASE...AS SNAPSHOT Arguments

Argument Description

database_snapshot_name This specifies the name of the database snapshot that
you want to create.

(NAME = logical_file_name,FILENAME = logical_file_name is the logical file name of the
'os_file_name') [,...n] source database data files. os_file_name is the

physical file name to be created for the snapshot file.
For each source database data file, there must be a
snapshot file defined.

source_database_name This defines the source database that the snapshot is
based on.

In this recipe’s example, a snapshot is generated for the AdventureWorks database:

CREATE DATABASE AdventureWorks_Snapshot_Oct_08_2008
ON
(NAME = AdventureWorks2008_Data,

FILENAME =
'C:\Apress\Recipes\AdventureWorks_Snapshot_Oct_08_2008.mdf')
AS SNAPSHOT OF AdventureWorks

GO

Next, I’ll perform an update in the AdventureWorks database in order to demonstrate the data-
base snapshot’s functionality:

USE AdventureWorks
GO

UPDATE HumanResources.Department
SET GroupName = 'Materials'
WHERE Name='Production'
GO

Now I’ll query the HumanResources.Department table in the AdventureWorks source database to
confirm my change:

SELECT GroupName
FROM AdventureWorks.HumanResources.Department
WHERE Name='Production'

This returns

CHAPTER 26 ■ DATABASE SNAPSHOTS718

9802CH26.qxd 5/13/08 4:16 PM Page 718

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

GroupName
Materials

Next, I’ll query the snapshot:

SELECT GroupName
FROM AdventureWorks_Snapshot_Oct_08_2008.HumanResources.Department
WHERE Name='Production'

The snapshot returns the original value of the GroupName prior to the change and as of when the
snapshot was created:

GroupName
Manufacturing

How It Works
In this recipe, a database snapshot was created using the CREATE DATABASE command:

CREATE DATABASE AdventureWorks_Snapshot_Oct_08_2008

The ON clause included the logical name of the data file from the AdventureWorks database, fol-
lowed by the physical path and file name of the new database snapshot data file (since the snapshot
is read-only, no transaction log file is needed):

ON
(NAME = AdventureWorks_Data,

FILENAME = 'C:\Apress\Recipes\AdventureWorks_Snapshot_Oct_08_2008.mdf')

The AS clause designated which database the snapshot would be based on:

AS SNAPSHOT OF AdventureWorks

Once the snapshot was created, an update was performed in the AdventureWorks database.
Behind the scenes, SQL Server copied the pre-changed data pages to the database snapshot file.

Queries against the snapshot that require data that has changed in the source database since
the snapshot was created will be read from the snapshot database. This copy-on-write functionality
allows the size of the snapshot file to remain relatively small, meaning that only the data affected by
any changes would need to be stored in the snapshot data file.

Removing a Database Snapshot
To remove a database snapshot, use the DROP DATABASE command.

The syntax is as follows:

DROP DATABASE database_snapshot_name

This command uses just one argument: the name of the database snapshot.
In this next example, I demonstrate dropping the database snapshot created in the previous

recipe:

DROP DATABASE AdventureWorks_Snapshot_Oct_08_2008

CHAPTER 26 ■ DATABASE SNAPSHOTS 719

9802CH26.qxd 5/13/08 4:16 PM Page 719

How It Works
The snapshot was removed in this recipe using DROP DATABASE. This removed the snapshot from the
SQL Server instance, along with the removal of the underlying physical snapshot file.

Recovering Data with a Database Snapshot
Consider this not-so-uncommon scenario: you get a call from a database end user telling you that
he has accidentally updated a column’s value for all rows in a table. The database he modified is
very large, and restoring the data from backup will first require that you retrieve the backup file
from tape. Once retrieved, you’ll have to restore the database under a separate database name, and
then INSERT...SELECT out the missing data into the production database. In addition to the pain of
doing all of this, you may also find that you don’t have the required disk space to store both the
backup file and additional restored copy of the database.

Now imagine that you had created periodic snapshots of your database prior to significant data
update events. Depending on the volatility of the data in your source database, database snapshots
may only consume a fraction of the space required for a full database restore. With a snapshot, you
can restore/update the data affected by the previous example by updating the source database with
data from the snapshot database.

Or, if you can afford to do so, you can overlay the existing source database, recovering data as of
the last snapshot using the RESTORE...FROM DATABASE_SNAPSHOT command. Using RESTORE...FROM
DATABASE_SNAPSHOT, SQL Server will copy over the existing source database with the database snap-
shot. The RESTORE...FROM DATABASE_SNAPSHOT command is only used in conjunction with
snapshots.

■Note For other uses of the RESTORE command, see Chapter 29.

The syntax for reverting from a database snapshot is as follows:

RESTORE DATABASE <database_name>
FROM DATABASE_SNAPSHOT = <database_snapshot_name>

This command takes two arguments: the name of the source database that you want to restore
over, and the name of the database snapshot that you want to revert from.

Using RESTORE...FROM DATABASE_SNAPSHOT, you’ll lose any data modifications made to the
source database since the last snapshot, only recovering your data as of the point in time when the
snapshot was created. But, with only having to update information that was modified since the
snapshot was created, RESTORE...FROM DATABASE_SNAPSHOT operations can take significantly less
time than regular database restores. You are achieving similar results to those in a regular database
restore, in that your database state is reverted to the contents as they were when the snapshot was
created.

■Caution Only revert to a snapshot if you can afford to lose all the changes you made in the source database
since the last snapshot! This method is most useful for “scratch” databases, such as the ones used for training or
testing. Also, although database snapshots are a convenient means of recovering data, database snapshots should
not be considered a replacement for a good data recovery plan.

If you plan on using database snapshots to recover data in your SQL Server instance, note that
other database snapshots (snapshots you are not recovering from) must be deleted prior to the

CHAPTER 26 ■ DATABASE SNAPSHOTS720

9802CH26.qxd 5/13/08 4:16 PM Page 720

RESTORE...FROM DATABASE_SNAPSHOT operation. Otherwise, you will receive an error message similar
to this:

Msg 3137, Level 16, State 4, Line 2
Database cannot be reverted. Either the primary or the snapshot names are improperly
specified, all other snapshots have not been dropped, or there are missing files.
Msg 3013, Level 16, State 1, Line 2
RESTORE DATABASE is terminating abnormally.

In addition to database snapshots, any full-text catalogs in the database must be removed prior
to a database snapshot RESTORE...FROM DATABASE_SNAPSHOT operation, and your source database
can’t contain read-only or offline filegroups.

■Note Since a restore from a snapshot file breaks the transaction log backup sequence (see Chapter 29), it is a
good idea to perform a full database backup after performing the RESTORE operation.

For this next recipe, I’ll create a new database and then populate a table using data from the
AdventureWorks database:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQL_AW')

BEGIN
CREATE DATABASE TSQL_AW

END
GO

USE TSQL_AW
GO

SELECT BusinessEntityID, CreditCardID, ModifiedDate
INTO dbo.PersonCreditCard
FROM AdventureWorks.Sales.PersonCreditCard

Next, I’ll create a new database snapshot on the TSQL_AW database:

CREATE DATABASE TSQL_AW_Oct_09_2008
ON
(NAME = TSQL_AW,

FILENAME = 'C:\Apress\Recipes\TSQL_AW_Oct_09_2008.mdf')
AS SNAPSHOT OF TSQL_AW
GO

Next, all rows from the dbo.PersonCreditCard table are accidentally deleted (no WHERE clause
was used):

USE TSQL_AW
GO
DELETE dbo.PersonCreditCard

This returns

(19118 row(s) affected)

CHAPTER 26 ■ DATABASE SNAPSHOTS 721

9802CH26.qxd 5/13/08 4:16 PM Page 721

A query is executed to validate what happened in the TSQL_AW database:

SELECT COUNT(*)
FROM dbo.PersonCreditCard

This returns

0

Next, I’ll revert the TSQL_AW database to the state it was in as of the database snapshot. Keep in
mind that no sessions can be connected to the source database during the RESTORE, so this example
changes the database context to the master database. The TSQL_AW database is offline during the
operation:

USE master
GO

RESTORE DATABASE TSQL_AW
FROM DATABASE_SNAPSHOT = 'TSQL_AW_Oct_09_2008'

The validation query is executed again to see if the rows are restored:

USE TSQL_AW
GO

SELECT COUNT(*)
FROM dbo.PersonCreditCard

This returns

19118

How It Works
The RESTORE...FROM DATABASE_SNAPSHOT command allows you to undo any changes you made to the
source database after the date and time of the creation of the designated database snapshot. This
operation can also take less time to perform than a regular restore operation (for more on this topic,
see Chapter 29).

In this recipe, all rows from a table were accidentally deleted. A database snapshot was then
used to revert to the data as of the point when the database snapshot was created. During the
RESTORE...FROM DATABASE_SNAPSHOT operation, the database was offline and unavailable for use.
After the operation completed, any changes made to TSQL_AW since the database snapshot were lost.

CHAPTER 26 ■ DATABASE SNAPSHOTS722

9802CH26.qxd 5/13/08 4:16 PM Page 722

Linked Servers and Distributed
Queries

Linked servers provide SQL Server with access to data from remote data sources. Using linked
servers, you can issue queries, perform data modifications, and execute remote procedure calls.
Remote data sources can be homogeneous (meaning that a source is another SQL Server instance)
or heterogeneous (from other relational database products and data sources such as DB2, Access,
Oracle, Excel, and text files). A query that joins or retrieves data across multiple platforms is a cross-
platform query. Using a cross-platform query, you can access legacy database systems without the
cost of merging or migrating existing data sources.

The remote data sources are connected to via an OLE DB provider. OLE DB, created by
Microsoft, is a set of component object model (COM) interfaces used to provide consistent access
to varying data sources. To establish access from a SQL Server instance to another data source
requires that you choose the correct OLE DB provider. How the OLE DB provider was designed
determines what kind of distributed query operations can be implemented through a distributed
query.

So in a nutshell, a linked server is a means of establishing a connection to a remote data
source. Depending on the OLE DB driver used to set up the linked server, you can execute distrib-
uted queries to retrieve data or perform operations on the remote data source.

Distributed queries can also be run without having to define linked servers, for example, by
using the Transact-SQL function OPENROWSET. In addition to querying a remote data source without a
linked server, OPENROWSET allows BULK reads of ASCII, Unicode, and binary files. Using OPENROWSET
and BULK, you can read tabular data from a text file, or use it to import an ASCII, Unicode, or binary
type file into a single large data type column and single row (such as varchar(max), nvarchar(max),
or varbinary(max)).

SQL Server also provides the SYNONYM object, which allows you to reference an object that has a
long name with a shorter name. This can be useful for long identifiers in general, but particularly for
distributed queries that reference a four-part linked server name, using a shorter name for the data
source instead.

This chapter contains recipes for creating linked servers, executing distributed queries, reading
from a text file using OPENROWSET and BULK, and using the new SYNONYM object.

Linked Server Basics
This next set of recipes will demonstrate how to use linked servers. Specifically, I’ll be demonstrat-
ing how to

• Create a linked server connection to another SQL Server instance.

• Configure the properties of a linked server.
723

C H A P T E R 2 7

9802CH27.qxd 6/17/08 3:57 PM Page 723

• View information about configured linked servers on the SQL Server instance.

• Drop a linked server.

I’ll start off by discussing how to use the system stored procedure sp_addlinkedserver to create
a new linked server.

Creating a Linked Server to Another SQL Server Instance
Linked servers allow you to query external data sources from within a SQL Server instance. The
external data source can be either a different SQL Server instance or a non-SQL Server data source
such as Oracle, MS Access, DB2, or MS Excel.

To create the linked server, use the system stored procedure sp_addlinkedserver. The syntax is
as follows:

sp_addlinkedserver
[@server=] 'server' [,
[@srvproduct=] 'product_name']
[, [@provider=] 'provider_name']
[, [@datasrc=] 'data_source']
[, [@location=] 'location']
[, [@provstr=] 'provider_string']
[, [@catalog=] 'catalog']

The parameters of this system stored procedure are described in Table 27-1.

Table 27-1. sp_addlinkedserver Arguments

Argument Description

server This is the local name used for the linked server. Instance names are also
allowed, for example, MYSERVER\SQL1.

product_name This is the product name of the OLE DB data source. For SQL Server instances,
the product_name is 'SQL Server'.

provider_name This is the unique programmatic identifier for the OLE DB provider. When not
specified, the provider name is the SQL Server data source. The explicit
provider_name for SQL Server is SQLNCLI (for Microsoft SQL Native Client OLE
DB Provider). MSDAORA is used for Oracle, OraOLEDB.Oracle for Oracle versions 8
and higher, Microsoft.Jet.OLEDB.4.0 for MS Access and MS Excel, DB2OLEDB
for IBM DB2, and MSDASQL for an ODBC data source.

data_source This is the data source as interpreted by the specified OLE DB provider. For
SQL Server, this is the network name of the SQL Server (servername or
servername\instancename). For Oracle, this is the SQL*Net alias. For MS Access
and MS Excel, this is the full path and name of the file. For an ODBC data
source, this is the system DSN name.

location This is the location as interpreted by the specified OLE DB provider.

provider_string This is the connection string specific to the OLE DB provider. For an ODBC
connection, this is the ODBC connection string. For MS Excel, this is Excel 5.0.

catalog The catalog definition varies based on the OLE DB provider implementation.
For SQL Server, this is the optional database name. For DB2, this catalog is the
name of the database.

In a network environment with multiple SQL Server instances, linked servers provide a con-
venient method for sharing SQL Server data without having to physically push or pull the data and
replicate the schema.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES724

9802CH27.qxd 6/17/08 3:57 PM Page 724

■Tip In this chapter, I cover examples of communication between SQL Server instances. For heterogeneous data
sources such as DB2, Access, and Oracle, parameters will vary substantially. For an extensive table of required
sp_addlinkedserver options, see the SQL Server Books Online topic “sp_addlinkedserver (Transact-SQL).”

The configurations used to connect to heterogeneous data sources vary, based on the OLE DB
provider. If you’re just connecting to a different SQL Server instance, however, Microsoft makes it
easy for you. In this recipe, I demonstrate creating a linked server connection to another SQL Server
instance:

EXEC sp_addlinkedserver
@server= 'JOEPROD',
@srvproduct= 'SQL Server'

You can also create linked servers to connect to SQL Server named instances, for example:

EXEC sp_addlinkedserver
@server= 'JOEPROD\NODE2',
@srvproduct= 'SQL Server'

How It Works
Adding a linked server to an external data source allows you to perform distributed queries (distrib-
uted queries are reviewed later in this chapter in the “Executing Distributed Queries” section).
When adding a SQL Server linked server to a SQL Server instance, whether it’s a default or named
instance, Microsoft makes it easy for you by requiring just the server and product_name values.

Regarding security methods for connecting to the SQL Server instance, when creating a new
linked server, the current user’s login security credentials (SQL or Windows) will be used to connect
to the linked server. You can also create explicit remote login mapping for the linked server, which
you’ll see discussed in the “Adding a Linked Server Login Mapping” recipe.

Configuring Linked Server Properties
There are a number of different settings you can use to configure a linked server after it has been
created. These settings are described in Table 27-2.

Table 27-2. Linked Server Properties

Setting Description

collation compatible Enable this setting if you are certain that the SQL Server
instance has the same collation as the remote SQL Server
instance. Doing so can improve performance, as SQL
Server will no longer have to perform comparisons of
character columns between the data sources, because the
same collation is assumed.

collation name If use remote collation is enabled and the linked server is
for a non–SQL Server data source, collation name specifies
the name of the remote server collation. The collation
name must be one supported by SQL Server.

Continued

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 725

9802CH27.qxd 6/17/08 3:57 PM Page 725

Table 27-2. Continued

Setting Description

connect timeout This designates the number of seconds a connection
attempt will be made to the linked server before a timeout
occurs. If the value is 0, the sp_configure server value of
remote query timeout is used as a default.

data access If this option is enabled, distributed query access is
allowed.

lazy schema validation If this option is set to true, schema is not checked on
remote tables at the beginning of the query. Although this
reduces overhead for the remote query, if the schema has
changed and you are not schema-checking, the query may
raise an error if the referenced objects used by the query
no longer correspond with the query command.

query timeout This determines the number of seconds it takes for a
waiting query to time out. If this value is 0, then the
sp_configure value configured for the query wait option
will be used instead.

rpc This enables remote procedure calls from the server.

rpc out This enables remote procedure calls to the server.

remote proc transaction promotion When this option is enabled (which it is by default), remote
procedure calls start a distributed transaction that is
managed via MS DTC.

use remote collation This determines whether remote server collation is used
(true) instead of the local server collation (false).

To change linked server properties, use the sp_serveroption system stored procedure. The syn-
tax is as follows:

sp_serveroption [@server =] 'server'
,[@optname =] 'option_name'

,[@optvalue =] 'option_value'

The arguments of this system stored procedure are described in Table 27-3.

Table 27-3. sp_serveroption Arguments

Argument Description

server The name of the linked server to configure properties for

option_name The option to configure

option_value The new value of the option

In this recipe, the query timeout setting for the JOEPROD\NODE2 linked server will be changed to
60 seconds:

EXEC sp_serveroption
@server = 'JOEPROD\NODE2' ,
@optname = 'query timeout',
@optvalue = 60

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES726

9802CH27.qxd 6/17/08 3:57 PM Page 726

How It Works
In this recipe, the linked server JOEPROD\NODE2 was modified to a query timeout limit of 60 seconds.
The first parameter, called server, designated the linked server name. The second parameter,
option_name, designated the option to configure, and the third parameter, option_value, configured
the new value.

Viewing Linked Server Information
You can use the sys.servers system catalog view to view linked servers defined on a SQL Server
instance. For example:

SELECT name, query_timeout, lazy_schema_validation
FROM sys.servers
WHERE is_linked = 1

This returns

name query_timeout lazy_schema_validation
JOEPROD\NODE2 60 1

How It Works
The system catalog view sys.servers can be used to retrieve information about linked servers
defined on your SQL Server instance. Other options you can view from sys.servers include
product, provider, data_source, location, provider_string, catalog, is_linked, is_remote_login_
enabled, is_rpc_out_enabled, is_data_access_enabled, is_collation_compatible, use_remote_
collation, and collation_name. The is_linked column was qualified in the query to return only
linked servers (excluding the local SQL Server instance settings).

Dropping a Linked Server
The sp_dropserver system stored procedure is used to drop a linked server. The syntax for
sp_dropserver is as follows:

sp_dropserver [@server=] 'server'
[, [@droplogins=] { 'droplogins' | NULL}]

The parameters of this system stored procedure are described in Table 27-4.

Table 27-4. sp_dropserver Arguments

Argument Description

server This defines the name of the linked server to remove from the SQL Server instance.

droplogins If droplogins is specified, login mappings are removed prior to dropping the linked
server.

This recipe demonstrates dropping a linked server:

EXEC sp_dropserver
@server= 'JOEPROD',

@droplogins= 'droplogins'

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 727

9802CH27.qxd 6/17/08 3:57 PM Page 727

How It Works
This recipe demonstrated removing a linked server from your SQL Server instance using the system
stored procedure sp_dropserver. The droplogins option was designated in the second parameter to
drop any existing login mappings (I’ll review linked server logins in the next block of recipes) prior
to removing the linked server. If you try to drop a linked server before removing logins, you’ll get the
following message:

There are still remote logins for the server.

Linked Server Logins
In the next three recipes, I’ll demonstrate how to work with linked server login mappings. Specifi-
cally, I’ll cover how to

• Create a linked server login mapping.

• View linked server login mappings configured on the SQL server instance.

• Drop a linked server login mapping.

I’ll start off by discussing how to use the system stored procedure sp_addlinkedsrvlogin to
create a login mapping.

Adding a Linked Server Login Mapping
When executing a distributed query against a linked server, SQL Server maps your local login and
credentials to the linked server. Based on the security on the remote data source, your credentials
are either accepted or rejected. When sp_addlinkedserver is executed and a linked server is created,
the default behavior is to use your local login credentials (either SQL or Windows) to access data
on the linked server. Even if you don’t have the proper permissions to connect to a linked server,
security on the linked server is not checked until you attempt a distributed query. Since security
configurations, logins, and database users vary by SQL Server instance, you may need to set up a
different mapping from your local login to a different remote login.

The login mapping information is stored on the SQL Server instance where the linked server is
defined. To create a login mapping, you use the sp_addlinkedsrvlogin system stored procedure.

The syntax is as follows:

sp_addlinkedsrvlogin [@rmtsrvname =] 'rmtsrvname'
[, [@useself =] 'TRUE' | 'FALSE' | 'NULL']
[, [@locallogin =] 'locallogin']
[, [@rmtuser =] 'rmtuser']
[, [@rmtpassword =] 'rmtpassword']

The parameters of this system stored procedure are described in Table 27-5.

Table 27-5. sp_addlinkedsrvlogin Arguments

Argument Description

rmtsrvname This defines the local linked server that you want to add the login mapping to.

Useself When the value true is used for this option, the local SQL or Windows login is used
to connect to the remote server name. If false, the locallogin, rmtuser, and
rmtpassword parameters of the sp_addlinkedsrvlogin stored procedure will apply
to the new mapping.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES728

9802CH27.qxd 6/17/08 3:57 PM Page 728

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Argument Description

locallogin This is the name of the SQL Server login or Windows user to map to a remote login.
If this parameter is left NULL, the mapping applies to all local logins on the SQL
Server instance.

rmtuser This is the name of the user/login used to connect to the linked server.

rmtpassword This defines the password of the login/user used to connect to the linked server.

In this recipe, a login mapping is created for all local users—mapping to a login named test on
the JOEPROD\NODE2 linked server:

EXEC sp_addlinkedsrvlogin
@rmtsrvname = 'JOEPROD\NODE2',
@useself = 'false' ,
@locallogin = NULL, -- Applies to all local logins
@rmtuser = 'test',
@rmtpassword = 'test1!'

How It Works
In this recipe, a login mapping was explicitly created using the sp_addlinkedsrvlogin system stored
procedure. The first parameter, @rmtsrvname, contained the name of the linked server you are con-
necting to. The second parameter, @useself, was a false value, so that the defined login and
password in @rmtuser and @rmtpassword on the remote server will be used. The @locallogin was set
to NULL, meaning that the test login will be used to map from any login on the local SQL Server con-
nection. Now when a query is executed against the TESTSRV linked server, those queries will run
under the test remote user.

Viewing Linked Logins
To see explicit local login mappings to remote logins, you can query the sys.server_principals,
sys.linked_logins, and sys.servers system catalog views, as this query demonstrates:

SELECT s.name LinkedServerName, ll.remote_name, p.name LocalLoginName
FROM sys.linked_logins ll
INNER JOIN sys.servers s ON

s.server_id = ll.server_id
LEFT OUTER JOIN sys.server_principals p ON

p.principal_id = ll.local_principal_id
WHERE s.is_linked = 1

This returns

LinkedServerName remote_name LocalLoginName
JOEPROD\NODE2 test NULL

How It Works
This recipe retrieved explicit login mappings to remote logins by querying the sys.linked_logins,
sys.servers, and sys.server_principals system catalog views. The query returned the name of the
linked server, the remote login on the remote data source, and the local login that was mapped to it.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 729

9802CH27.qxd 6/17/08 3:57 PM Page 729

In this case, the results returned the remote login name of test and NULL for the local login name
(meaning that all local connections will map to the remote test login).

Dropping a Linked Server Login Mapping
Use the sp_droplinkedsrvlogin system stored procedure to drop a linked server login mapping. The
syntax for sp_droplinkedsrvlogin is as follows:

sp_droplinkedsrvlogin [@rmtsrvname=] 'rmtsrvname' ,
[@locallogin=] 'locallogin'

The parameters of this system stored procedure are described in Table 27-6.

Table 27-6. sp_droplinkedsrvlogin Arguments

Argument Description

rmtsrvname The linked server name of the login mapping

locallogin The name of the SQL Server login or Windows user mapping to drop from the
linked server

This recipe demonstrates dropping the login mapping created in an earlier recipe:

EXEC sp_droplinkedsrvlogin
@rmtsrvname= 'JOEPROD\NODE2' ,
@locallogin= NULL

How It Works
In this recipe, the default login mapping for all local users was removed by sending the linked server
name in the first parameter and a NULL value in the second @locallogin parameter.

Executing Distributed Queries
So far in this chapter, I’ve demonstrated how to create and configure linked servers. In this next set
of recipes, you’ll learn how to execute distributed queries against the linked server remote data
source. You aren’t limited to using a linked server to connect to a remote data source, however, and
the next few recipes will also demonstrate how to access external data using commands such as
OPENQUERY and OPENROWSET. You’ll also learn how to create and use an alias to a linked server name.

Executing Distributed Queries Against a Linked Server
Distributed queries are queries that reference one or more linked servers, performing either read or
modification operations against remote tables, views, or stored procedures. The types of queries
(SELECT, INSERT, UPDATE, DELETE, EXEC) that are supported against linked servers depend on the level
of support for transactions present in the OLE DB providers. You can run a distributed query refer-
encing a linked server by using either a four-part name of the remote object in the FROM clause or
the OPENQUERY Transact-SQL command (OPENQUERY is reviewed later in the chapter in the “Executing
Distributed Queries Using OPENQUERY” recipe).

The basic syntax for referencing a linked server using a four-part name is as follows:

linked_server_name.catalog.schema.object_name

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES730

9802CH27.qxd 6/17/08 3:57 PM Page 730

The parts of the four-part name are described in Table 27-7.

Table 27-7. Linked Server Four-Part Name

Part Description

linked_server_name The linked server name

catalog The catalog (database) name

schema The schema container of the data source object

object_name The database object (for example the view, table, data source, or stored
procedure)

This distributed query selects the performance counter value from the sys.dm_os_
performance_counters Dynamic Management View on the linked server:

SELECT object_name, counter_name, instance_name,
cntr_value, cntr_type
FROM JOEPROD.master.sys.dm_os_performance_counters
WHERE counter_name = 'Active Transactions' AND
instance_name = '_Total'

This returns

object_name counter_name instance_name cntr_value cntr_type
SQLServer:Databases Active Transactions Total 0 65792

This next query demonstrates executing a system stored procedure on the linked server (for a
SQL Server named instance). The linked server is a named instance, so the full name is put in
square brackets:

EXEC [JOEPROD\NODE2].master.dbo.sp_monitor

This returns various statistics and result sets about the remote SQL Server instance:

last_run current_run seconds
2005-09-02 22:47:26.770 2005-10-09 10:52:27.007 3153901

cpu_busy io_busy idle
53(53)-0% 22(21)-0% 10433(10192)-0%

packets_received packets_sent packet_errors
182(154) 377(349) 0(0)

total_read total_write total_errors connections
693(693) 201(201) 0(0) 8091(8079)

How It Works
As you can see, executing a distributed query simply involves referencing the database object using
the four-part name. If you need to reference a linked server that is a SQL Server named instance, use
square brackets around the linked server name.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 731

9802CH27.qxd 6/17/08 3:57 PM Page 731

Creating and Using an Alias to Reference Four-Part Linked
Server Names
You can create an alias for a database object (including stored procedures, functions, tables, and
views) that can then be referenced in your code, allowing you to shorten a long name or obscure
changes to the underlying object source (switching from a development to production linked server
name, for example).

This functionality is performed using CREATE SYNONYM, which uses the following abridged
syntax:

CREATE SYNONYM [schema_name.] synonym_name
FOR < object >

The arguments for this command are detailed in Table 27-8.

Table 27-8. CREATE SYNONYM Arguments

Argument Description

[schema_name.] synonym_name The optional schema name and required synonym name.

object The object that will be aliased. This can be of the format
server_name.database_name.schema_name.object_name,
database_name.schema_name.object_name, or schema_name.
object_name.

Also, to drop a synonym, use the DROP SYNONYM command. The syntax is as follows:

DROP SYNONYM [schema.] synonym_name

The command takes the optional schema of the synonym and the required synonym name.
In this recipe, a synonym is created on a linked server:

CREATE SYNONYM dbo.PerfInfo
FOR JOEPROD.master.sys.dm_os_performance_counters

Next, the linked server synonym is referenced in the FROM clause of the query using the new
synonym name:

SELECT cntr_value
FROM dbo.PerfInfo
WHERE counter_name = 'Active Transactions' AND
instance_name = '_Total'

After that, the synonym is dropped from the database:

DROP SYNONYM dbo.PerfInfo

Lastly, I create a new synonym with the same name as before, but this time pointing to a differ-
ent SQL Server instance:

CREATE SYNONYM dbo.PerfInfo
FOR [JOEPROD\NODE2].master.sys.dm_os_performance_counters

How It Works
In this recipe, a synonym called PerfInfo was created to represent a four-part linked server table
name. Synonyms can reduce keystrokes by allowing you to use a shorter name to represent a linked
server four-part name. The PerfInfo synonym was then used in the FROM clause in order to query

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES732

9802CH27.qxd 6/17/08 3:57 PM Page 732

the underlying linked server table. After that, the synonym was dropped (although in real life you
would have kept the synonym around for future use). Lastly, a new synonym was created with the
previous name, referencing a new data source. This means the original query against dbo.PerfInfo
will now access a different SQL Server instance. Synonyms can give you the ability to change under-
lying data sources without changing the referencing synonym name.

Executing Distributed Queries Using OPENQUERY
SQL Server provides a different method for executing distributed queries other than using the four-
part naming method.

OPENQUERY is a function that issues a pass-through query against an existing linked server and is
referenced in the FROM clause of a query just like a table. The syntax is as follows:

OPENQUERY (linked_server ,'query')

The parameters for this command are described in Table 27-9.

Table 27-9. OPENQUERY Arguments

Argument Description

linked_server_name The linked server name that you want to query

Catalog The actual query to issue against the linked server connection

The OPENQUERY command queries a linked server by sending it as a pass-through query instead
of referencing the four-part name. A pass-through query executes entirely on the remote server and
then returns the results back to the calling query.

Why use one over the other? Some OLE DB providers that you can use to create a linked server
may have varying abilities to be referenced using the four-part name in the FROM clause. OPENQUERY
is an alternative method for retrieving distributed data, and may work correctly where a four-part
name query does not. Using the OPENQUERY command may also remove the potential for cross-
platform joining performance issues, allowing the query to execute fully on the remote server.

This recipe demonstrates querying a linked server with the same query as the previous recipe,
only this time the actual query in the second parameter of the OPENQUERY command uses the three-
part, not four-part, name in the FROM clause:

SELECT cntr_value
FROM OPENQUERY ([JOEPROD] ,
'SELECT object_name, counter_name, instance_name, cntr_value, cntr_type
FROM master.sys.dm_os_performance_counters
WHERE counter_name = ''Active Transactions'' AND
instance_name = ''_Total''')

How It Works
In this recipe, the first parameter of the OPENQUERY command was the name of the linked server. The
second parameter was the query itself. Notice that the WHERE clause contains double-ticked values,
which serve as delimited single ticks.

Executing Ad Hoc Queries Using OPENROWSET
Like OPENQUERY, the OPENROWSET command is referenced in the FROM clause and acts like a table in a
SELECT statement. Unlike OPENQUERY, however, OPENROWSET creates an ad hoc connection to the data

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 733

9802CH27.qxd 6/17/08 3:57 PM Page 733

source. It does not use an existing linked server connection to query the remote data source. This is
a useful function if you don’t wish to retain a linked server for a remote data source on the SQL
Server instance.

The syntax for OPENROWSET is as follows:

OPENROWSET
({ 'provider_name' ,
{ 'datasource' ; 'user_id' ; 'password' | 'provider_string' }
, { [catalog.] [schema.] object | 'query' }

The parameters for this command are described in Table 27-10.

Table 27-10. OPENROWSET Arguments

Argument Description

provider_name The unique programmatic identifier for the OLE DB
provider.

datasource ; user_id ; password | The connection string expected by the OLE DB provider.
provider_string You designate either the datasource, user_id, and

password or the provider string.

catalog.schema.object| query The object name to return results for or the query to
execute.

In this recipe, a query is issued against a SQL Server named instance:

SELECT *
FROM OPENROWSET
('SQLNCLI','TESTSRV\NODE2';'test';'test1!',
'SELECT * FROM AdventureWorks.HumanResources.Department
WHERE GroupName = ''Research and Development''')

This returns

DepartmentID Name GroupName ModifiedDate
1 Engineering Research and Development 1998-06-01

00:00:00.000
2 Tool Design Research and Development 1998-06-01

00:00:00.000
6 Research and Development Research and Development 1998-06-01

00:00:00.000
18 Misc Research and Development 2005-09-20

19:20:25.570

How It Works
In this recipe, I used OPENROWSET to query a remote data source without having to define a linked
server. The first parameter of the command designated SQLNCLI, which is the provider name for the
Microsoft SQL Native Client OLE DB Provider. The second parameter included three semicolon-
delimited values—the SQL Server instance name, login, and password. The last parameter for the
command included a query against the AdventureWorks database on the remote SQL Server
instance.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES734

9802CH27.qxd 6/17/08 3:57 PM Page 734

■Tip Remote access requires the Ad Hoc Distributed Queries sp_configure option to be enabled and the
provider Disallow Adhoc Access registry option set to 0.

OPENROWSET can be used in the FROM clause of a SELECT and can also be used as the target table of
an INSERT, UPDATE, or DELETE operation—depending on the update support of the OLE DB provider.

Reading Data from a File Using OPENROWSET BULK Options
As demonstrated in Chapter 2’s recipe, “Inserting or Updating an Image File Using OPENROWSET
and BULK,” you can query data from an ASCII, Unicode, or binary file using the new BULK options in
the OPENROWSET command. With this functionality, you can query a file and also use the result set in a
data modification statement—all without having to first physically import the data from the file
into a SQL Server table.

The syntax for the BULK options in OPENROWSET is as follows:

OPENROWSET
({ BULK 'data_file' ,

{ FORMATFILE = 'format_file_path' [<bulk_options>]
| SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB }

})

The parameters for this command are described in Table 27-11.

Table 27-11. OPENROWSET...BULK Arguments

Argument Description

data_file This defines the name and path of the file to read.

format_file_path This specifies the name and path of the format file—which lays
out the column definitions in the data file. You have a choice of
two format file layouts—XML or non-XML.

bulk_options These options define how the data is read, as well as which rows
are retrieved. See Table 27-12 for details.

SINGLE_BLOB | SINGLE_CLOB | When designated, the format file parameter is ignored. Instead,
SINGLE_NCLOB the data file is imported as a single-row, single-column value.

For example, if you wish to import a document or image file into
a large data type column, you would designate one of these
flags. Designate the SINGLE_BLOB object for importing into a
varbinary(max) data type, SINGLE_CLOB for ASCII data into a
varchar(max) data type, and SINGLE_NCLOB for importing into a
nvarchar(max) Unicode data type.

The BULK options syntax is as follows:

<bulk_options> ::=
[, CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
[, ERRORFILE = 'file_name']
[, FIRSTROW = first_row]
[, LASTROW = last_row]
[, MAXERRORS = maximum_errors]
[, ROWS_PER_BATCH = rows_per_batch]

These options are described in Table 27-12.

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 735

9802CH27.qxd 6/17/08 3:57 PM Page 735

Table 27-12. BULK Options

Option Description

'ACP' | 'OEM' | 'RAW' | 'code_page' This defines the chosen source data code page of
character data to be converted to the destination SQL
Server code page. OEM is the default. ACP is the ISO 1252
code page, RAW implies no conversion, and code_page is
a specific encoded code page number.

file_name This defines the error file name used to hold any reject
rows from the BULK process.

first_row This specifies the first row in the result set to load
(default is 1). If the first row includes column names, you
can designate a first_row of 2 to skip the first column.

last_row This defines the last row in the result set to load (default
is 0, the last row of the result set).

maximum_errors This gives the maximum number of errors in the load
process before the load fails (default is 10).

rows_per_batch This value indicates the number of rows to import per
batch; however, OPENROWSET should always import the
data as a single batch. Specifying a number here may
help the query processor allocate appropriate resources.
However, in most cases, this option can be ignored or
set to 0.

In this recipe, I’ll demonstrate two examples of reading from an external text file.
The first example demonstrates using a SELECT statement to read data from a text file. The text

file has the following comma-delimited data in a text file called ContactType.txt:

21,Sales Phone Rep,2005-06-01 00:00:00
20,Sales Phone Manager,2005-06-01 00:00:00

The columns in this file will be defined using a format file called ContactTypeFormat.Fmt, which
contains the following format file definition (SQL Server allows both XML format and regular text
format files):

10.0
3
1 SQLCHAR 0 2 "," 1 ContactTypeID ""
2 SQLCHAR 0 20 "," 2 Name SQL_Latin1_General_CP1_CI_AS
3 SQLCHAR 0 19 "\r\n" 3 ModifiedDate ""

This query reads from the ContactType.txt file in a SELECT query:

SELECT ContactTypeID, Name, ModifiedDate
FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',

FORMATFILE = 'C:\Apress\Recipes\ContactTypeFormat.Fmt',
FIRSTROW = 1,
MAXERRORS = 5,
ERRORFILE = 'C:\Apress\Recipes\ImportErrors.txt')
AS ContactType

This returns

ContactTypeID Name ModifiedDate
21 Sales Phone Rep 2005-06-01 00:00:00
20 Sales Phone Manager 2005-06-01 00:00:00

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES736

9802CH27.qxd 6/17/08 3:57 PM Page 736

The second example in this recipe will import the ContactType.txt file into a single column
and single row (instead of breaking it out into a tabular result set as was done in the previous
query). First, a table is created to hold the imported document:

-- Create a table to hold import documents
CREATE TABLE dbo.ImportRepository

(ImportHistoryID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ImportFile varchar(max) NOT NULL)

GO

Next, the value is imported into a new row using OPENROWSET...BULK:

INSERT dbo.ImportRepository
(ImportFile)
SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',

SINGLE_CLOB) as ContactTypeFile

Now to confirm the contents:

SELECT ImportFile
FROM dbo.ImportRepository

This returns

ImportFile
21,Sales Phone Rep,2005-06-01 00:00:00 20,Sales Phone Manager,2005-06-01 00:00:00

How It Works
In the first example in this recipe, a data file was queried using the OPENROWSET BULK option. The
SELECT clause included the columns from the data file, as defined by the format file:

SELECT ContactTypeID, Name, ModifiedDate

The OPENROWSET command was then included in the FROM clause. The BULK option was the first
parameter in the command, followed by the data and data format file:

FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',
FORMATFILE = 'C:\Apress\Recipes\ContactTypeFormat.Fmt',

Three options were also included, designating the first row of the data file to be imported:

FIRSTROW = 1,

The number of allowable errors for the import before failure was also designated, along with an
error file to contain the rejected rows:

MAXERRORS = 5,
ERRORFILE = 'C:\Apress\Recipes\ImportErrors.txt')

After the closed parenthesis, a table name alias was required in order to be used in the SELECT
query:

AS ContactType

The second example used OPENROWSET to insert the entire contents of a single file into a single
column and single row. After creating a table to store the results, an INSERT SELECT was used:

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES 737

9802CH27.qxd 6/17/08 3:57 PM Page 737

INSERT dbo.ImportRepository
(ImportFile)

The SELECT referenced the BulkColumn system column name, which is returned from OPEN-
ROWSET when using any of the SINGLE_ options (BLOB, CLOB, NCLOB):

SELECT BulkColumn

The OPENROWSET is held in the FROM clause of the SELECT statement, followed by the name of the
file and the SINGLE_CLOB option (which imports the data as ASCII text):

FROM OPENROWSET(BULK 'C:\Apress\Recipes\ContactType.txt',
SINGLE_CLOB) as ContactTypeFile

This is a much easier method of importing files (ASCII, Unicode, or binary) using Transact-SQL
than was available prior to SQL Server 2005. A query is executed against the table, and the results of
the raw file format are displayed in a single column/row (with delimiting commas intact).

CHAPTER 27 ■ LINKED SERVERS AND DISTRIBUTED QUERIES738

9802CH27.qxd 6/17/08 3:57 PM Page 738

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Query Performance Tuning

SQL Server query performance tuning and optimization requires a multi-layered approach.
Following are a few key factors that impact SQL Server query performance:

• Database design: Probably one of the most important factors influencing both query
performance and data integrity, design decisions impact both read and modification per-
formance. Standard designs include OLTP-normalized databases, which focus on data
integrity, removal of redundancy, and the establishment of relationships between multiple
entities. This is a design most appropriate for quick transaction processing. You’ll usually
see more tables in a normalized OLTP design, which means more table joins in your queries.
Data warehouse designs, on the other hand, often use a more denormalized Star or
Snowflake design. These designs use a central fact table, which is joined to two or more
description dimension tables. For Snowflake designs, the dimension tables can also have
related tables associated to it. The focus of this design is on query speed, not on fast updates
to transactions.

• Appropriate indexing: Your table indexes should be based on your high-priority or frequently
executed queries. If a query is executing thousands of times a day and is completing in 2 sec-
onds, but could be running in less than 1 second with the proper index, adding this index
could reduce the I/O pressure on your SQL Server instance significantly. You should create
indexes as needed and remove indexes that aren’t being used (this chapter shows you how to
do this). As with most changes, there is a trade-off. Each index on your table adds overhead
to data modification operations and can even slow down SELECT queries if SQL Server
decides to use the less efficient index. When you’re initially designing your database, it is
better for you to keep the indexes at a minimum (having at least a clustered index and non-
clustered indexes for your foreign keys). Add indexes once you have a better idea about the
actual queries that will be executed against the database. Indexing requirements are organic,
particularly on volatile, frequently updated databases, so your approach to adding and
removing indexes should be flexible and iterative.

• Index fragmentation: As data modifications are made over time, your indexes will become
fragmented. As fragmentation increases, index data will become spread out over more data
pages. The more data pages your query needs to retrieve, the higher the I/O requirements
and the slower the query.

• Configurations: This category includes databases, the SQL instance, and operating system
configurations. Poor choices in configurations (like enabling automatic shrinking and auto-
matic closing of a database) can lead to performance issues for a busy application.

739

C H A P T E R 2 8

9802ch28.qxd 6/18/08 10:57 AM Page 739

• Up-to-date statistics: As I discussed in Chapter 22, the AUTO_CREATE_STATISTICS database
option enables SQL Server to automatically generate statistical information regarding the
distribution of values in a column. If you disable this behavior, statistics can get out of date.
Since SQL Server depends on statistics to decide how to best execute the query, SQL Server
may choose a less-than-optimal plan if it is basing its execution decisions on stale statistics.

• Hardware: I once spent a day trying to get a 3-second query down to 1 second. No matter
which indexes I tried to add or query modifications I made, I couldn’t get its duration low-
ered. This was because there were simply too many rows required in the result set. The
limiting factor was I/O. A few months later, I migrated the database to the higher-powered
production server. After that, the query executed consistently in less than 1 second. This
underscores the fact that well-chosen hardware does matter. Your choice of processor archi-
tecture, available memory, and disk subsystem can have a significant impact on query
performance.

• Network throughput: The time it takes to obtain query results can be impacted by a slow or
unstable network connection. This doesn’t mean that you should be quick to blame the net-
work engineers whenever a query executes slowly—but do keep this potential cause on your
list of areas to investigate.

In this chapter, I’ll demonstrate the T-SQL commands and techniques you can use to help eval-
uate and troubleshoot your query performance. You’ll also learn how to address fragmented indexes
and out-of-date statistics, and evaluate the usage of indexes in the database.

■Note Since this is a T-SQL–focused book, I don’t review the graphical interface tools that also assist with per-
formance tuning such as SQL Server Profiler, graphical execution plans, System Monitor, and the Database Engine
Tuning Advisor. These are all extremely useful tools—so I still encourage you to use them as part of your overall
performance tuning strategy in addition to the T-SQL commands and techniques you’ll learn about in this chapter.

As for new SQL Server 2008 functionality, in this chapter I’ll demonstrate how to

• Control workloads and associated CPU and memory resources using Resource Governor.

• Create statistics on a subset of data using the new filtered statistics improvement.

• Display query statistics aggregated across near-identical queries (queries that are identical
with the exception of non-parameterized literal values) or queries with identical query exe-
cution plans.

• Create plan guides based on existing query plans in the query plan cache using the
sp_create_plan_guide_from_handle system stored procedure.

This chapter will also review a few miscellaneous query performance topics, including how to
use sp_executesql as an alternative to dynamic SQL, how to apply query hints to a query without
changing the query itself, and how to force a query to use a specific query execution plan.

Query Performance Tips
Before I start the discussion of the commands and tools you can use to evaluate query performance,
I’d first like to briefly review a few basic query performance tuning guidelines. Query performance
is a vast topic, and in many of the chapters I’ve tried to include small tips along with the various
content areas. Since this is a chapter that discusses query performance independently of specific

CHAPTER 28 ■ QUERY PERFORMANCE TUNING740

9802ch28.qxd 6/18/08 10:57 AM Page 740

objects, the following list details a few query performance best practices to be aware of when con-
structing SQL Server queries (note that indexing tips are reviewed later in the chapter):

• In your SELECT query, only return the columns that you need. Fewer columns in your query
translate to less I/O and network bandwidth.

• Along with fewer columns, you should also be thinking about fewer rows. Use a WHERE clause
to help reduce the rows returned by your query. Don’t let the application return 20,000 rows
when you only need to display the first 10.

• Keep the FROM clause under control. Each table you JOIN to in a single query can add addi-
tional overhead. I can’t give you an exact number to watch out for, as it depends on your
database’s design, size, and columns used to join a query. However, over the years, I’ve seen
enormous queries that are functionally correct, but take far too long to execute. Although it
is convenient to use a single query to perform a complex operation, don’t underestimate the
power of smaller queries. If I have a very large query in a stored procedure that is taking too
long to execute, I’ll usually try breaking that query down into smaller intermediate result
sets. This usually results in a significantly faster generation of the final desired result set.

• Use ORDER BY only if you need ordered results. Sorting operations of larger result sets can
incur additional overhead. If it isn’t necessary for your query, remove it.

• Avoid implicit data type conversions in your FROM, WHERE, and HAVING clauses. Implicit data
type conversions happen when the underlying data types in your predicates don’t match
and are automatically converted by SQL Server. One example is a Java application sending
Unicode text to a non-Unicode column. For applications processing hundreds of transac-
tions per second, these implicit conversions can really add up.

• Don’t use DISTINCT or UNION (instead of UNION ALL) if the unique rows aren’t necessary.

• Beware of testing in a vacuum. When developing your database on a test SQL Server
instance, it is very important that you populate the tables with a representative data set. This
means that you should populate the table with the estimated number of rows you would
actually see in production, as well as a representative set of values. Don’t use dummy data in
your development database and then expect the query to execute with similar performance
in production. SQL Server performance is highly dependent on indexes and statistics, and
SQL Server will make decisions based on the actual values contained within a table. If your
test data isn’t representative of “real life” data, you’ll be in for a surprise when queries in pro-
duction don’t perform as you saw them perform on the test database.

• When choosing between cursors and set-based approaches, always favor the latter. If you
must use cursors, be sure to close and deallocate them as soon as possible.

• Query hints can sometimes be necessary in more complex database-driven applications;
however, they often outlast their usefulness once the underlying data volume or distribution
changes. Avoid overriding SQL Server’s decision process by using hints sparingly.

• Avoid nesting views. I’ve often seen views created that reference other views, which in turn
reference objects that are already referenced in the calling view! This overlap and redun-
dancy can often result in non-optimal query plans due to the resulting query complexity.

• I pushed this point hard in Chapter 10, and I think it is worth repeating here: stored proce-
dures often yield excellent performance gains over regular ad hoc query calls. Stored
procedures also promote query execution stability (reusing existing query execution plans).
If you have a query that executes with unpredictable durations, consider encapsulating the
query in a stored procedure.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 741

9802ch28.qxd 6/18/08 10:57 AM Page 741

When reading about SQL Server performance tuning (like you are now), be careful about the
words “never” and “always.” Instead, get comfortable with the answer “it depends.” When it comes
to query tuning, results may vary. Keep your options open and feel free to experiment (in a test
environment, of course). Ask questions and don’t accept conventional wisdom at face value.

Capturing and Evaluating Query Performance
In this next set of recipes, I’ll demonstrate how to capture and evaluate query performance and
activity. I’ll also demonstrate several other Transact-SQL commands, which can be used to return
detailed information about the query execution plan.

Capturing Executing Queries Using sys.dm_exec_requests
In addition to capturing queries in SQL Server Profiler, you can also capture the SQL for currently
executing queries by querying the sys.dm_exec_requests Dynamic Management View, as this recipe
demonstrates:

SELECT r.session_id, r.status, r.start_time, r.command, s.text
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) s
WHERE r.status = 'running'

This captures any queries that are currently being executed—even the current query used to
capture those queries:

session_id status start_time command text
55 running 2008-10-16 13:53:52.670 SELECT SELECT r.session_id, r.status,

r.start_time, r.command, s.text
FROM sys.dm_exec_requests r
CROSS APPLY
sys.dm_exec_sql_text(r.sql_handl
e) s WHERE r.status = 'running'

How It Works
The sys.dm_exec_requests Dynamic Management View returns information about all requests exe-
cuting on a SQL Server instance.

The first line of the query selected the session ID, status of the query, start time, command type
(for example, SELECT, INSERT, UPDATE, DELETE), and actual SQL text:

SELECT r.session_id, r.status, r.start_time, r.command, s.text

In the FROM clause, the sys.dm_exec_requests Dynamic Management View was cross-applied
against the sys.dm_exec_sql_text Dynamic Management Function. This function takes the
sql_handle from the sys.dm_exec_requests Dynamic Management View and returns the associated
SQL text:

FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) s

The WHERE clause then designated that currently running processes be returned:

WHERE r.status = 'running'

CHAPTER 28 ■ QUERY PERFORMANCE TUNING742

9802ch28.qxd 6/18/08 10:57 AM Page 742

Viewing Estimated Query Execution Plans Using
Transact-SQL Commands
Knowing how SQL Server executes a query can help you determine how best to fix a poorly per-
forming query. Details you can identify by viewing a query’s execution plan (graphical or command
based) include the following:

• Highest cost queries within a batch and highest cost operators within a query

• Index or table scans (accessing all the pages in a heap or index) versus using seeks (only
accessing selected rows)

• Missing statistics or other warnings

• Costly sort or calculation activities

• Lookup operations where a nonclustered index is used to access a row, but then needs to
access the clustered index to retrieve columns not covered by the nonclustered index

• High row counts being passed from operator to operator

• Discrepancies between the estimated and actual row counts

• Implicit data type conversions (identified in an XML plan where the Implicit attribute of the
Convert element is equal to 1)

In SQL Server, there are three commands that can be used to view detailed information about a
query execution plan for a SQL statement or batch: SET SHOWPLAN_ALL, SET SHOWPLAN_TEXT, and SET
SHOWPLAN_XML. The output of these commands helps you understand how SQL Server plans to
process and execute your query, identifying information such as table join types used and the
indexes accessed. For example, using the output from these commands, you can see whether SQL
Server is using a specific index in a query, and if so, whether it is retrieving the data using an index
seek (nonclustered index is used to retrieve selected rows for the operation) or index scan (all index
rows are retrieved for the operation).

When enabled, the SET SHOWPLAN_ALL, SET SHOWPLAN_TEXT, and SET SHOWPLAN_XML commands
provide you with the plan information without executing the query, allowing you to adjust the
query or indexes on the referenced tables before actually executing it.

Each of these commands returns information in a different way. SET SHOWPLAN_ALL returns the
estimated query plan in a tabular format, with multiple columns and rows. The output includes
information such as the estimated IO or CPU of each operation, estimated rows involved in the
operation, operation cost (relative to itself and variations of the query), and the physical and logical
operators used.

■Note Logical operators describe the conceptual operation SQL Server must perform in the query execution.
Physical operators are the actual implementation of that logical operation. For example, a logical operation in a
query, INNER JOIN, could be translated into the physical operation of a nested loop in the actual query execution.

The SET SHOWPLAN_TEXT command returns the data in a single column, with multiple rows for
each operation. You can also return a query execution plan in XML format using the SET
SHOWPLAN_XML command.

The syntax for each of these commands is very similar. Each command is enabled when set to
ON, and disabled when set to OFF:

SET SHOWPLAN_ALL { ON | OFF }
SET SHOWPLAN_TEXT { ON | OFF}
SET SHOWPLAN_XML { ON | OFF }

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 743

9802ch28.qxd 6/18/08 10:57 AM Page 743

This recipe’s example demonstrates returning the estimated query execution plan of a query in
the AdventureWorks database using SET SHOWPLAN_TEXT and then SET SHOWPLAN_XML:

SET SHOWPLAN_TEXT ON
GO

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2
GO

SET SHOWPLAN_TEXT OFF
GO

This returns the following estimated query execution plan output:

StmtText

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2

(1 row(s) affected)

StmtText
|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

|--Clustered Index Scan (OBJECT:(
[AdventureWorks].[Production].[ProductReview].
[PK_ProductReview_ProductReviewID] AS [r]),
WHERE:([AdventureWorks].[Production].[ProductReview].[Rating]
as [r].[Rating]>(2)))

|--Clustered Index Seek
(OBJECT:([AdventureWorks].[Production].[Product].
[PK_Product_ProductID] AS [p]),
SEEK:([p].[ProductID]=[AdventureWorks].[Production].
[ProductReview].[ProductID] as [r].[ProductID]) ORDERED FORWARD)

(3 row(s) affected)

The next example returns estimated query plan results in XML format:

SET SHOWPLAN_XML ON
GO

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2
GO

SET SHOWPLAN_XML OFF
GO

CHAPTER 28 ■ QUERY PERFORMANCE TUNING744

9802ch28.qxd 6/18/08 10:57 AM Page 744

This returns the following (this is an abridged snippet, because the actual output is more than
a page long):

<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
Version="1.1" Build="10.0.1424.2">
<BatchSequence>
<Batch>
<Statements>

...
<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join" EstimateRows="3"
EstimateIO="0" EstimateCPU="1.254e-005" AvgRowSize="105"
EstimatedTotalSubtreeCost="0.00996111" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"
Table="[Product]" Alias="[p]" Column="Name" />
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"
Table="[Product]" Alias="[p]" Column="ProductNumber" />
<ColumnReference Database="[AdventureWorks]" Schema="[Production]"
Table="[ProductReview]" Alias="[r]" Column="ReviewerName" />

</OutputList>
...

How It Works
You can use SHOWPLAN_ALL, SHOWPLAN_TEXT, or SHOWPLAN_XML to tune your Transact-SQL queries and
batches. These commands show you the estimated execution plan without actually executing the
query. You can use the information returned in the command output to take action toward improv-
ing the query performance (for example, adding indexes to columns being using in search or join
conditions). Looking at the output, you can determine whether SQL Server is using the expected
indexes, and if so, whether SQL Server is using an index seek, index scan, or table scan operation.

In this recipe, the SET SHOWPLAN for both TEXT and XML was set to ON, and then followed by GO:

SET SHOWPLAN_TEXT ON
GO

A query referencing the Production.Product and Production.ProductReview was then evalu-
ated. The two tables were joined using an INNER join on the ProductID column, and only those
products with a product rating of 2 or higher would be returned:

SELECT p.Name, p.ProductNumber, r.ReviewerName
FROM Production.Product p
INNER JOIN Production.ProductReview r ON

p.ProductID = r.ProductID
WHERE r.Rating > 2

The SHOWPLAN was set OFF at the end of the query, so as not to keep executing SHOWPLAN for sub-
sequent queries for that connection.

Looking at snippets from the output, you can see that a nested loop join (physical operation)
was used to perform the INNER JOIN (logical operation):

|--Nested Loops(Inner Join, OUTER REFERENCES:([r].[ProductID]))

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 745

9802ch28.qxd 6/18/08 10:57 AM Page 745

http://schemas.microsoft.com/sqlserver/2004/07/showplan

You can also see from this output that a clustered index scan was performed using the
PK_ProductReview_ProductReviewID primary key clustered index to retrieve data from the
ProductReview table:

|--Clustered Index Scan (OBJECT:([AdventureWorks].[Production].[ProductReview].
[PK_ProductReview_ProductReviewID] AS [r]),

A clustered index seek, however, was used to retrieve data from the Product table:

|--Clustered Index Seek(OBJECT:([AdventureWorks].[Production].[Product].
[PK_Product_ProductID] AS [p]),

The SET SHOWPLAN_XML command returned the estimated query plan in an XML document
format, displaying similar data as SHOWPLAN_TEXT. The XML data is formatted using attributes and
elements.

For example, the attributes of the RelOp element show a physical operation of Nested Loops
and a logical operation of Inner Join—along with other statistics such as estimated rows impacted
by the operation:

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join" EstimateRows="3"
EstimateIO="0" EstimateCPU="1.254e-005" AvgRowSize="105"
EstimatedTotalSubtreeCost="0.00996111" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

The XML document follows a specific schema definition format that defines the returned XML
elements, attributes, and data types. This schema can be viewed at the following URL: http://
schemas.microsoft.com/sqlserver/2004/07/showplan/showplanxml.xsd.

Viewing Execution Runtime Information
SQL Server provides four commands that are used to return query and batch execution statistics
and information: SET STATISTICS IO, SET STATISTICS TIME, SET STATISTICS PROFILE, and SET
STATISTICS XML.

Unlike the SHOWPLAN commands, STATISTICS commands return information for queries that
have actually executed in SQL Server. The SET STATISTICS IO command is used to return disk activ-
ity (hence I/O) generated by the executed statement. The SET STATISTICS TIME command returns
the number of milliseconds taken to parse, compile, and execute each statement executed in the
batch.

SET STATISTICS PROFILE and SET STATISTICS XML are the equivalents of SET SHOWPLAN_ALL and
SET SHOWPLAN_XML, only the actual (not estimated) execution plan information is returned along
with the actual results of the query.

The syntax of each of these commands is similar, with ON enabling the statistics and OFF dis-
abling them:

SET STATISTICS IO { ON | OFF }

SET STATISTICS TIME { ON | OFF }

SET STATISTICS PROFILE { ON | OFF }

SET STATISTICS XML { ON | OFF }

CHAPTER 28 ■ QUERY PERFORMANCE TUNING746

9802ch28.qxd 6/18/08 10:57 AM Page 746

http://schemas.microsoft.com/sqlserver/2004/07/showplan/showplanxml.xsd
http://schemas.microsoft.com/sqlserver/2004/07/showplan/showplanxml.xsd

In the first example, STATISTICS IO is enabled prior to executing a query that totals the amount
due by territory from the Sales.SalesOrderHeader and Sales.SalesTerritory tables:

SET STATISTICS IO ON
GO

SELECT t.name TerritoryNM,
SUM(TotalDue) TotalDue

FROM Sales.SalesOrderHeader h
INNER JOIN Sales.SalesTerritory t ON

h.TerritoryID = t.TerritoryID
WHERE OrderDate BETWEEN '1/1/2003' AND '12/31/2003'
GROUP BY t.name
ORDER BY t.name

SET STATISTICS IO OFF
GO

This returns the following (abridged) results:

TerritoryNM TotalDue
Australia 4547123.2777
Canada 8186021.9178
...
Southwest 11523237.5187
United Kingdom 4365879.4375

Table 'Worktable'. Scan count 1, logical reads 39, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 686, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.

Table 'SalesTerritory'. Scan count 1, logical reads 2, physical reads 1, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads
0.

Substituting SET STATISTICS TIME with SET STATISTICS IO would have returned the following
(abridged) results for that same query:

TerritoryNM TotalDue
Australia 4547123.2777
...
Southeast 3261402.9982
Southwest 11523237.5187
United Kingdom 4365879.4375

SQL Server parse and compile time:
CPU time = 20 ms, elapsed time = 21 ms.

(10 row(s) affected)

SQL Server Execution Times:
CPU time = 30 ms, elapsed time = 24 ms.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 747

9802ch28.qxd 6/18/08 10:57 AM Page 747

How It Works
The SET STATISTICS commands return information about the actual execution of a query or batch
of queries. In this recipe, SET STATISTICS IO returned information about logical, physical, and large
object read events for tables referenced in the query. For a query that is having performance issues
(based on your business requirements and definition of “issues”), you can use SET STATISTICS IO to
see where the I/O hot spots are occurring. For example, in this recipe’s result set, you can see that
the SalesOrderHeader had the highest number of logical reads:

...
Table 'SalesOrderHeader'. Scan count 1, logical reads 686, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.
...

Pay attention to high physical (reads from disk) or logical read values (reads from the data
cache)—even if the physical read is zero and the logical read is a high value. Also look for worktables
(which were also seen in this recipe):

Table 'Worktable'. Scan count 1, logical reads 39, physical reads 0, read-ahead
reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Worktables are usually seen in conjunction with GROUP BY, ORDER BY, hash joins, and UNION
operations in the query. Worktables are created in tempdb for the duration of the query, and are
removed automatically when SQL Server has finished the operation.

In the second example in this recipe, SET STATISTICS TIME was used to show the parse and
compile time of the query (shown before the actual query results), and then the actual execution
time (displayed after the query results). This command is useful for measuring the amount of time a
query takes to execute from end to end, allowing you to see whether precompiling is taking longer
than you realized, or if the slowdown occurs during the actual query execution.

The two other STATISTICS commands, SET STATISTICS PROFILE and SET STATISTICS XML,
return information similar to SET SHOWPLAN_ALL and SET SHOWPLAN_XML, only the results are based
on the actual, rather than the estimated, execution plan.

Viewing Performance Statistics for Cached Query Plans
In this recipe, I demonstrate using SQL Server Dynamic Management Views and Functions to view
performance statistics for cached query plans.

■Tip SQL Server 2008 introduces various improvements for managed collection and analysis of performance
statistics. For example, the new Data Collector uses stored procedures, SQL Server Integration Services, and SQL
Server Agent jobs to collect data and load it into the Management Data Warehouse.

In this example, a simple query that returns all rows from the Sales.SalesPerson table is exe-
cuted against the AdventureWorks database. Prior to executing it, you’ll clear the procedure cache so
that you can identify the query more easily in this demonstration (remember that you should only
clear out the procedure cache on test SQL Server instances):

CHAPTER 28 ■ QUERY PERFORMANCE TUNING748

9802ch28.qxd 6/18/08 10:57 AM Page 748

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

DBCC FREEPROCCACHE
GO

SELECT BusinessEntityID, TerritoryID, SalesQuota
FROM Sales.SalesPerson

Now, I’ll query the sys.dm_exec_query_stats Dynamic Management View, which contains sta-
tistical information regarding queries cached on the SQL Server instance. This view contains a
sql_handle, which I’ll use as an input to the sys.dm_exec_sql_text Dynamic Management Func-
tion. This function is used to return the text of a Transact-SQL statement:

SELECT t.text,
st.total_logical_reads,
st.total_physical_reads,
st.total_elapsed_time/1000000 Total_Time_Secs,
st.total_logical_writes

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t

This returns the following abridged results:

text total_logical_ total_physical_ Total_Time_ total_logical_
reads reads Secs writes

SELECT BusinessEntityID... 2 0 0 0

How It Works
This recipe demonstrated clearing the procedure cache, and then executing a query that took a few
seconds to finish executing. After that, the sys.dm_exec_query_stats Dynamic Management View
was queried to return statistics about the cached execution plan.

The SELECT clause retrieved information on the Transact-SQL text of the query, number of logi-
cal and physical reads, total time elapsed in seconds, and logical writes (if any):

SELECT t.text,
st.total_logical_reads,
st.total_physical_reads,
st.total_elapsed_time/1000000 Total_Time_Secs,
st.total_logical_writes

The total elapsed time column was in microseconds, so it was divided by 1000000 in order to
return the number of full seconds.

In the FROM clause, the sys.dm_exec_query_stats Dynamic Management View was cross-
applied against the sys.dm_exec_sql_text Dynamic Management Function in order to retrieve the
SQL text of the cached query:

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t

This information is useful for identifying read- and/or write-intensive queries, helping you
determine which queries should be optimized. Keep in mind that this recipe’s query can only
retrieve information on queries still in the cache. This query returned the totals, but the sys.dm_
exec_query_stats also includes columns that track the minimum, maximum, and last measure-
ments for reads and writes. Also note that the sys.dm_exec_query_stats has other useful columns
that can measure CPU time (total_worker_time, last_worker_time, min_worker_time, and
max_worker_time) and .NET CLR object execution time (total_clr_time, last_clr_time,
min_clr_time, max_clr_time).

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 749

9802ch28.qxd 6/18/08 10:57 AM Page 749

Viewing Aggregated Performance Statistics Based on Query
or Plan Patterns
The previous recipe demonstrated viewing query statistics using the sys.dm_exec_query_stats
Dynamic Management View. Statistics in this Dynamic Management View are displayed as long as
the query plan remains in the cache. For applications that make use of stored procedures or pre-
pared plans, sys.dm_exec_query_stats can give an accurate picture of overall aggregated statistics
and resource utilization. However, if the application sends unprepared query text and does not
properly parameterize literal values, individual statistic rows will be generated for each variation of
an almost identical query, making the statistics difficult to correlate and aggregate.

For example, assume that the application sends the following three individual SELECT state-
ments:

SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'cheryl1@adventure-works.com'

SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'stuart2@adventure-works.com'

SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'eunice0@adventure-works.com'

After executing each query, I execute the following query:

SELECT t.text,
st.total_logical_reads

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t
WHERE text LIKE '%Purchasing.vVendorWithContacts%'

This returns

text total_logical_reads
SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'stuart2@adventure-works.com' 12
SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'cheryl1@adventure-works.com' 12
SELECT BusinessEntityID
FROM Purchasing.vVendorWithContacts
WHERE EmailAddress = 'eunice0@adventure-works.com' 12

Notice that a statistics row was created for each query, even though each query against
Purchasing.vVendorWithContacts was identical with the exception of the EmailAddress literal value.
This is an issue you’ll see for applications that do not prepare the query text.

To address this issue, SQL Server 2008 introduces two new columns into the sys.dm_exec_
query_stats Dynamic Management View: query_hash and query_plan_hash. Both of these columns
contain a binary hash value. The query_hash binary value is the same for those queries that are
identical with the exception of literal values (in this example, differing e-mail addresses). The gener-
ated query_plan_hash binary value is the same for those queries that use identical query plans.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING750

9802ch28.qxd 6/18/08 10:57 AM Page 750

mailto:cheryl1@adventure-works.com
mailto:stuart2@adventure-works.com
mailto:eunice0@adventure-works.com
mailto:stuart2@adventure-works.com
mailto:cheryl1@adventure-works.com
mailto:eunice0@adventure-works.com

These two columns add the ability to aggregate overall statistics across identical queries or query
execution plans. For example:

SELECT st.query_hash,
COUNT(t.text) query_count,
SUM(st.total_logical_reads) total_logical_reads

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t
WHERE text LIKE '%Purchasing.vVendorWithContacts%'
GROUP BY st.query_hash

This returns

query_ hash query_count total_logical_reads
0x5C4B94191341266A 3 36

How It Works
I started off the recipe by executing three queries that were identical with the exception of the literal
values defined for the EmailAddress column in the WHERE clause. After that, I demonstrated querying
the sys.dm_exec_query_stats Dynamic Management View to view the logical read statistics for each
query. Three separate rows were generated for each query against Purchasing.vVendorWithContacts,
instead of showing an aggregated single row. This can be problematic if you are trying to capture the
TOP X number of high-resource-usage queries because your result may not reflect the numerous
variations of the same query that exists in the query plan cache.

To address this problem, I demonstrated using the new query_hash column introduced to the
sys.dm_exec_query_stats Dynamic Management View in SQL Server 2008.

Walking through the query, the SELECT clause of the query referenced this new query_hash col-
umn and produced a COUNT of the distinct queries using different literal values and a SUM of the
logical reads across these queries:

SELECT st.query_hash,
COUNT(t.text) query_count,
SUM(st.total_logical_reads) total_logical_reads

The FROM clause referenced the sys.dm_exec_query_stats Dynamic Management View and
used CROSS APPLY to access the query text based on the sql_handle:

FROM sys.dm_exec_query_stats st
CROSS APPLY sys.dm_exec_sql_text(st.sql_handle) t

I narrowed down the result set to those queries referencing the Purchasing.
vVendorWithContacts view:

WHERE text LIKE '%Purchasing.vVendorWithContacts%'

Lastly, since I was aggregating the statistics by the query_hash, I used a GROUP BY clause with the
query_hash column:

GROUP BY st.query_hash

The query_hash value of 0x5C4B94191341266A was identical across all three queries, allowing me
to aggregate each of the individual rows into a single row and properly summing up the statistic
columns I was interested in. Aggregating by the query_hash or query_plan_hash improves visibility
to specific query or plan patterns and their associated resource costs.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 751

9802ch28.qxd 6/18/08 10:57 AM Page 751

Identifying the Top Bottleneck
Have you ever been approached by a customer or coworker who reports that “SQL Server is running
slow”? When you ask for more details, that person may not be able to properly articulate the per-
formance issue or may attribute the issue to some random change or event without having any real
evidence to back it up.

In this situation, your number one tool for identifying and narrowing down the field of possible
explanations is the sys.dm_os_wait_stats Dynamic Management View. This DMV provides a run-
ning total of all waits encountered by executing threads in the SQL Server instance. Each time SQL
Server is restarted, or if you manually clear the statistics, the data is reset to zero and accumulates
over the uptime of the SQL Server instance.

SQL Server categorizes these waits across several different types. Some of these types only indi-
cate quiet periods on the instance where threads lay in waiting, whereas other wait types indicate
external or internal contention on specific resources.

■Tip The technique described here is part of the Waits and Queues methodology. An in-depth discussion of this
methodology can be found under the Technical White Papers section of http://technet.microsoft.com/
en-us/sqlserver/bb331794.aspx.

The following recipe shows the top two wait types that have accumulated for the SQL Server
instance since it was last cleared or since the instance started:

SELECT TOP 2
wait_type, wait_time_ms

FROM sys.dm_os_wait_stats
WHERE wait_type NOT IN

('LAZYWRITER_SLEEP', 'SQLTRACE_BUFFER_FLUSH',
'REQUEST_FOR_DEADLOCK_SEARCH', 'LOGMGR_QUEUE',
'CHECKPOINT_QUEUE', 'CLR_AUTO_EVENT','WAITFOR',
'BROKER_TASK_STOP', 'SLEEP_TASK', 'BROKER_TO_FLUSH')

ORDER BY wait_time_ms DESC

This returns the following (your results will vary based on your SQL Server activity):

wait_type wait_time_ms
LCK_M_U 31989
LCK_M_S 12133

In this case, the top two waits for the SQL Server instance are related to requests waiting to
acquire update and shared locks. You can interpret these wait types by looking them up in SQL
Server Books Online or in the Waits and Queues white papers published by Microsoft. In this
recipe’s case, the top two wait types are often associated with long-running blocks. This is then the
indication that if an application is having performance issues, you would be wise to start looking
at additional evidence of long-running blocks using more granular tools (Dynamic Management
Views, SQL Profiler). The key purpose of looking at sys.dm_os_wait_stats is that you troubleshoot
the predominant issue, and not just the root cause of an unrelated issue or something that isn’t a
lower priority issue.

If you wish to clear the currently accumulated wait type statistics, you can then run the follow-
ing query:

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR)

CHAPTER 28 ■ QUERY PERFORMANCE TUNING752

9802ch28.qxd 6/18/08 10:57 AM Page 752

http://technet.microsoft.com

Clearing the wait type statistics allows you to provide a delta later on of accumulated wait sta-
tistics based on a defined period of time.

How It Works
This recipe demonstrated using the sys.dm_os_wait_stats Dynamic Management View to help
determine what the predominant wait stats were for the SQL Server instance.

The SELECT clause chose the wait type and wait time (in milliseconds) columns:

SELECT TOP 2
wait_type, wait_time_ms

FROM sys.dm_os_wait_stats

Since not all wait types are necessarily indicators of real issues, the WHERE clause was used to
filter out non-external or non-resource waits (although this isn’t a definitive list of those wait types
you would need to filter out):

WHERE wait_type NOT IN
('LAZYWRITER_SLEEP', 'SQLTRACE_BUFFER_FLUSH',
'REQUEST_FOR_DEADLOCK_SEARCH', 'LOGMGR_QUEUE',
'CHECKPOINT_QUEUE', 'CLR_AUTO_EVENT','WAITFOR',
'BROKER_TASK_STOP', 'SLEEP_TASK', 'BROKER_TO_FLUSH')

ORDER BY wait_time_ms DESC

The Dynamic Management View’s data is grouped at the instance level, not at the database
level, so it is a good first step in your performance troubleshooting mission. It is not your end-all-
be-all solution, but rather a very useful tool for helping point you in the right direction when
troubleshooting a poorly defined performance issue. This Dynamic Management View also comes
in handy for establishing trends over time. If a new wait type arises, this may be a leading indicator
of a new performance issue.

Identifying I/O Contention by Database and File
Assume for a moment that you queried sys.dm_os_wait_stats and found that most of your waits
are attributed to I/O. Since the wait stats are scoped at the SQL Server instance level, your next step
would be to identify which databases are experiencing the highest amount of I/O contention.

One method you can use to determine which databases have the highest number of read,
write, and I/O stall behavior is the sys.dm_io_virtual_file_stats Dynamic Management View
(this DMV shows data equivalent to the fn_virtualfilestats function).

This recipe demonstrates viewing database I/O statistics, ordered by I/O stalls. I/O stalls are
measured in milliseconds and represent the total time users had to wait for read or write I/O opera-
tions to complete on a file since the instance was last restarted or the database created:

SELECT DB_NAME(database_id) DatabaseNM,
file_id FileID,
io_stall IOStallsMs,
size_on_disk_bytes FileBytes,
num_of_bytes_written BytesWritten,
num_of_bytes_read BytesRead

FROM sys.dm_io_virtual_file_stats(NULL, NULL)
ORDER BY io_stall DESC

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 753

9802ch28.qxd 6/18/08 10:57 AM Page 753

This returns

DatabaseNM FileID IOStallsMs FileBytes BytesWritten BytesRead
tempdb 1 3729468 92602368 216678400 78725120
AdventureWorks 1 520481 405536768 234594304 328687616
AdventureWorks 2 54145 18874368 279374848 409600
master 1 9927 4194304 2998272 22315008
msdb 1 4435 12124160 843776 20725760
tempdb 2 2095 1048576 4382720 663552
master 2 997 786432 1622016 458752
model 1 456 1310720 57344 4431872
msdb 2 182 524288 262144 450560
AdventureWorks 3 150 1048576 139264 196608
AdventureWorks 7 96 1048576 90112 131072
AdventureWorks 4 93 1048576 139264 196608
model 2 66 524288 61440 450560
AdventureWorks 5 24 1048576 139264 196608
AdventureWorks 6 17 1048576 139264 131072

How It Works
This recipe demonstrated using the sys.dm_io_virtual_file_stats Dynamic Management View to
return statistics about each database and file on the SQL Server instance. This DMV takes two input
parameters: the first is the database ID, and the second is the file ID. Designating NULL for the data-
base ID shows results for all databases. Designating NULL for the file ID results in showing all files for
the database.

In this recipe, I designated that all databases and associated files be returned:

FROM sys.dm_io_virtual_file_stats(NULL, NULL)

I also ordered the I/O stalls in descending order, in order to see the files with the most I/O
delay activity first:

ORDER BY io_stall DESC

These results identified that the highest number of stalls were seen on file ID 2 for the
AdventureWorks database, which in this example is the log file. If you have identified that I/O is the
predominant performance issue, using sys.dm_io_virtual_file_stats is an efficient method for
narrowing down which databases and files should be the focus of your troubleshooting efforts.

Index Tuning
This next batch of recipes demonstrates techniques for managing indexes. Specifically, I’ll be cover-
ing how to

• Identify index fragmentation, so you can figure out which indexes should be rebuilt or
reorganized.

• Display index usage, so you can determine which indexes aren’t being used by SQL Server.

Before getting into the recipes, I’d like to take a moment to discuss some general indexing best
practices. When considering these best practices, always remember that, like query tuning, there
are few hard and fast “always” or “never” rules. Index usage by SQL Server depends on a number

CHAPTER 28 ■ QUERY PERFORMANCE TUNING754

9802ch28.qxd 6/18/08 10:57 AM Page 754

of factors, including, but not limited to, the query construction, referenced tables in the query,
referenced columns, number of rows in the table, and uniqueness of the index column(s) data.
Following are some basic guidelines to keep in mind when building your index strategy:

• Add indexes based on your high-priority and high-execution count queries. Determine
ahead of time what acceptable query execution durations might be based on your business
requirements.

• Don’t add too many indexes at the same time. Instead, add an index and test the query to see
that the new index is used. If it is not used, remove it. If it is used, test to make sure there are
no negative side effects to other queries. Remember that each additional index adds extra
overhead to data modifications to the base table.

• Unless you have a very good reason not to do so, always add a clustered index to each table.
A table without a clustered index is a heap, meaning that the data is stored in no particular
order. Clustered indexes are ordered according to the clustered key and its data pages
reordered during an index rebuild or reorganization. Heaps, however, are not rebuilt during
an index rebuild or reorganization process, and therefore can grow out of control, taking up
many more data pages than necessary.

• Monitor query performance over time. As your data and application activity changes, so too
will the performance and effectiveness of your indexes.

• Fragmented indexes can slow down query performance, since more I/O operations are
required in order to return results for a query. Keep index fragmentation to a minimum by
rebuilding and/or reorganizing your indexes on a scheduled or as-needed basis.

• Select clustered index keys that are rarely modified, highly unique, and narrow in data type
width. Width is particularly important because each nonclustered index also contains within
it the clustered index key. Clustered indexes are useful when applied to columns used in
range queries. This includes queries that use the operators BETWEEN, >, >=, <, and <=. Clustered
index keys also help reduce execution time for queries that return large result sets or depend
heavily on ORDER BY and GROUP BY clauses. With all these factors in mind, remember that you
can only have a single clustered index for your table, so choose carefully.

• Nonclustered indexes are ideal for small or one-row result sets. Again, columns should be
chosen based on their use in a query, specifically in the JOIN or WHERE clause. Nonclustered
indexes should be made on columns containing highly unique data. As discussed in Chapter
5, don’t forget to consider using covering queries and the INCLUDE functionality for non-key
columns.

• Use a 100% fill factor for those indexes that are located within read-only filegroups or data-
bases. This reduces I/O and can improve query performance because fewer data pages are
required to fulfill a query’s result set.

• Avoid wide index keys. Always test narrower composite keys in favor of larger indexes.

• Try to anticipate which indexes will be needed based on the queries you perform—but also
don’t be afraid to make frequent use of the Database Engine Tuning Advisor tool. Using the
Database Engine Tuning Advisor, SQL Server can evaluate your query or batch of queries and
determine what indexes could be added (or removed) in order to help the query run faster.
I’ll demonstrate this later on.

The next recipe will now demonstrate how to display index fragmentation.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 755

9802ch28.qxd 6/18/08 10:57 AM Page 755

Displaying Index Fragmentation
Fragmentation is the natural byproduct of data modifications to a table. When data is updated in
the database, the logical order of indexes (based on the index key) gets out of sync with the actual
physical order of the data pages. As data pages become further and further out of order, more I/O
operations are required in order to return results requested by a query. Rebuilding or reorganizing
an index allows you to defragment the index by synchronizing the logical index order, reordering
the physical data pages to match the logical index order.

■Note See Chapter 5 for a review of index management and Chapter 23 for a review of index defragmentation
and reorganization.

The sys.dm_db_index_physical_stats Dynamic Management Function returns information
that allows you to determine an index’s level of fragmentation.

The syntax for sys.dm_db_index_physical_stats is as follows:

sys.dm_db_index_physical_stats (
{ database_id | NULL }
, { object_id | NULL }
, { index_id | NULL | 0 }
, { partition_number | NULL }
, { mode | NULL | DEFAULT }

)

The arguments of this command are described in Table 28-1.

Table 28-1. sys.dm_db_index_physical_stats Arguments

Argument Description

database_id | NULL This defines the database ID of the indexes to evaluate.
If NULL, all databases for the SQL Server instance are
returned.

object_id | NULL This specifies the object ID of the table and views (indexed
views) to evaluate. If NULL, all tables are returned.

index_id | NULL | 0 This gives the specific index ID of the index to evaluate.
If NULL, all indexes are returned for the table(s).

partition_number | NULL This defines the specific partition number of the partition
to evaluate. If NULL, all partitions are returned based on the
defined database/table/indexes selected.

LIMITED | SAMPLED | DETAILED | These modes impact how the fragmentation data is
NULL | DEFAULT collected. The LIMITED mode scans all pages for a heap and

the pages above the leaf level. SAMPLED collects data based
on a 1% sampling of pages in the heap or index. The
DETAILED mode scans all pages (heap or index). DETAILED is
the slowest, but most accurate, option. Designating NULL or
DEFAULT is the equivalent of the LIMITED mode.

In this example, the sys.dm_db_index_physical_stats Dynamic Management View is queried
for all objects in the AdventureWorks database with an average fragmentation percent greater
than 30:

CHAPTER 28 ■ QUERY PERFORMANCE TUNING756

9802ch28.qxd 6/18/08 10:57 AM Page 756

USE AdventureWorks
GO

SELECT OBJECT_NAME(object_id) ObjectName,
index_id,
index_type_desc,
avg_fragmentation_in_percent

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),NULL, NULL, NULL, 'LIMITED')
WHERE avg_fragmentation_in_percent > 30
ORDER BY OBJECT_NAME(object_id)

This returns the following (abridged) results:

ObjectName index_id index_type_desc avg_fragmentation_in_percent
BillOfMaterials 2 NONCLUSTERED INDEX 33.3333333333333
BusinessEntityContact 1 CLUSTERED INDEX 50
BusinessEntityContact 2 NONCLUSTERED INDEX 50
BusinessEntityContac t 3 NONCLUSTERED INDEX 50
BusinessEntityContact 4 NONCLUSTERED INDEX 50
CountryRegion 1 CLUSTERED INDEX 50
DatabaseLog 0 HEAP 32.6732673267327
...

This second example returns fragmentation for a specific database, table, and index:

SELECT OBJECT_NAME(f.object_id) ObjectName,
i.name IndexName,
f.index_type_desc,
f.avg_fragmentation_in_percent

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),
OBJECT_ID('Production.ProductDescription'),
2,
NULL,
'LIMITED') f

INNER JOIN sys.indexes i ON
i.object_id = f.object_id AND
i.index_id = f.index_id

This returns

ObjectName IndexName index_type_desc avg_fragmentationin_percent
ProductDescription AK_ProductDescription_ NONCLUSTERED INDEX 66.6666666666667

rowguid

How It Works
The first example started off by changing the database context to the AdventureWorks database:

USE AdventureWorks
GO

Since the OBJECT_NAME function is database-context sensitive, changing the database context
ensures that you are viewing the proper object name.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 757

9802ch28.qxd 6/18/08 10:57 AM Page 757

Next, the SELECT clause displayed the object name, index ID, description, and average fragmen-
tation percent:

SELECT OBJECT_NAME(object_id) ObjectName,
index_id, index_type_desc,
avg_fragmentation_in_percent

The index_type_desc column tells you if the index is a heap, clustered index, nonclustered
index, primary XML index, or secondary XML index.

Next, the FROM clause referenced the sys.dm_db_index_physical_stats catalog function.
The parameters, which were put in parentheses, included the database name and NULL for all other
parameters except the scan mode:

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),NULL, NULL, NULL, 'LIMITED')

Since sys.dm_db_index_physical_stats is referenced like a table (unlike 2000’s DBCC SHOWCONTIG),
the WHERE clause was used to qualify that only rows with a fragmentation percentage of 31% or
greater be returned in the results:

WHERE avg_fragmentation_in_percent > 30

The query returned several rows for objects in the AdventureWorks database with a fragmenta-
tion greater than 30%. The avg_fragmentation_in_percent column shows logical fragmentation of
nonclustered or clustered indexes, returning the percentage of disordered pages at the leaf level of
the index. For heaps, avg_fragmentation_in_percent shows extent-level fragmentation. Regarding
extents, recall that SQL Server reads and writes data at the page level. Pages are stored in blocks
called extents, which consist of eight contiguous 8KB pages. Using the avg_fragmentation_in_
percent, you can determine whether the specific indexes need to be rebuilt or reorganized using
ALTER INDEX.

In the second example, fragmentation was displayed for a specific database, table, and index.
The SELECT clause included a reference to the index name (instead of index number):

SELECT OBJECT_NAME(f.object_id) ObjectName,
i.name IndexName,
f.index_type_desc,
f.avg_fragmentation_in_percent

The FROM clause included the specific table name, which was converted to an ID using the
OBJECT_ID function. The third parameter included the index number of the index to be evaluated for
fragmentation:

FROM sys.dm_db_index_physical_stats
(DB_ID('AdventureWorks'),
OBJECT_ID('Production.ProductDescription'),
2,
NULL,
'LIMITED') f

The sys.indexes system catalog view was joined to the sys.dm_db_index_physical_stats func-
tion based on the object_id and index_id.

INNER JOIN sys.indexes i ON
i.object_id = f.object_id AND
i.index_id = f.index_id

The query returned the fragmentation results just for that specific index.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING758

9802ch28.qxd 6/18/08 10:57 AM Page 758

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Displaying Index Usage
Creating useful indexes in your database is a balancing act between read and write performance.
Indexes can slow down data modifications while at the same time speeding up SELECT queries. You
must balance the cost/benefit of index overhead with read activity versus data modification activity.
Every additional index added to a table may improve query performance at the expense of data
modification speed. On top of this, index effectiveness changes as the data changes, so an index
that was useful a few weeks ago may no longer be useful today. If you’re going to have indexes on a
table, they should be put to good use on high-priority queries.

To identify disused indexes, you can query the sys.dm_db_index_usage_stats Dynamic Man-
agement View. This view returns statistics on the number of index seeks, scans, updates, or lookups
since the SQL Server instance was last restarted. It also returns the last dates the index was refer-
enced.

In this example, the sys.dm_db_index_usage_stats Dynamic Management View is queried to
see whether the indexes on the Sales.Customer table are being used. Prior to referencing sys.dm_db_
index_usage_stats, two queries will be executed against the Sales.Customer table: one returning all
rows and columns, and the second returning the AccountNumber column for a specific TerritoryID:

SELECT *
FROM Sales.Customer

SELECT AccountNumber
FROM Sales.Customer
WHERE TerritoryID = 4

After executing the queries, the sys.dm_db_index_usage_stats Dynamic Management View is
queried:

SELECT i.name IndexName, user_seeks, user_scans,
last_user_seek, last_user_scan
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON

s.object_id = i.object_id AND
s.index_id = i.index_id

WHERE database_id = DB_ID('AdventureWorks') AND
s.object_id = OBJECT_ID('Sales.Customer')

This returns

IndexName user_seeks user_scans last_user_seek last_user_scan

IX_Customer_TerritoryID 1 0 2008-10-15 17:13:35.487 NULL

PK_Customer_CustomerID 0 1 NULL 2008-10-15 17:13:34.237

How It Works
The sys.dm_db_index_usage_stats Dynamic Management View allows you to see what indexes are
being used in your SQL Server instance. The statistics are valid since the last SQL Server restart.

In this recipe, two queries were executed against the Sales.Customer table. After executing the
queries, the sys.dm_db_index_usage_stats Dynamic Management View was queried.

The SELECT clause displayed the name of the index, the number of user seeks and user scans,
and the dates of the last user seeks and user scans:

SELECT i.name IndexName, user_seeks, user_scans,
last_user_seek, last_user_scan

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 759

9802ch28.qxd 6/18/08 10:57 AM Page 759

The FROM clause joined the sys.dm_db_index_usage_stats Dynamic Management View to the
sys.indexes system catalog view (so the index name could be displayed in the results) on the
object_id and index_id:

FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON

s.object_id = i.object_id AND
s.index_id = i.index_id

The WHERE clause qualified that only indexes for the AdventureWorks database be displayed, and
of those indexes, only those for the Sales.Customer table. The DB_ID function was used to get the
database system ID, and the OBJECT_ID function was used to get the table’s object ID:

WHERE database_id = DB_ID('AdventureWorks') AND
s.object_id = OBJECT_ID('Sales.Customer')

The query returned two rows, showing that the PK_Customer_CustomerID clustered index of the
Sales.Customer table had indeed been scanned recently (most likely by the first SELECT * query)
and the IX_Customer_TerritoryID nonclustered index had been used in the second query (which
qualified TerritoryID = 4).

Indexes assist with query performance, but also add disk space and data modification over-
head. Using the sys.dm_db_index_usage_stats Dynamic Management View, you can monitor
whether indexes are actually being used, and if not, replace them with more effective indexes.

Statistics
As I discussed in Chapter 22, the AUTO_CREATE_STATISTICS database option enables SQL Server to
automatically generate statistical information regarding the distribution of values in a column. The
AUTO_UPDATE_STATISTICS database option automatically updates existing statistics on your table or
indexed view. Unless you have a very good reason for doing so, these options should never be dis-
abled in your database, as they are critical for good query performance.

Statistics are critical for efficient query processing and performance, allowing SQL Server to
choose the correct physical operations when generating an execution plan. Table and indexed view
statistics, which can be created manually or generated automatically by SQL Server, collect infor-
mation that is used by SQL Server to generate efficient query execution plans.

The next few recipes will demonstrate how to work directly with statistics. When reading these
recipes, remember to let SQL Server manage the automatic creation and update of statistics in your
databases whenever possible. Save most of these commands for special troubleshooting circum-
stances or when you’ve made significant data changes (for example, executing sp_updatestats right
after a large data load).

Manually Creating Statistics
SQL Server will usually generate the statistics it needs based on query activity. However, if you still
wish to explicitly create statistics on a column or columns, you can use the CREATE STATISTICS
command.

The syntax is as follows:

CREATE STATISTICS statistics_name
ON { table | view } (column [,...n])

[WITH
[[FULLSCAN
| SAMPLE number { PERCENT | ROWS }
| STATS_STREAM = stats_stream] [,]]

CHAPTER 28 ■ QUERY PERFORMANCE TUNING760

9802ch28.qxd 6/18/08 10:57 AM Page 760

[NORECOMPUTE]
]

The arguments of this command are described in Table 28-2.

Table 28-2. CREATE STATISTICS Arguments

Argument Description

statistics_name This defines the name of the new statistics.

table | view This specifies the table or indexed view off of
which the statistics are based.

column [,...n] This specifies one or more columns used for
generating statistics.

FULLSCAN| SAMPLE number { PERCENT | ROWS } FULLSCAN, when specified, reads all rows when
generating the statistics. SAMPLE reads either a
defined number of rows or a defined percentage
of rows.

STATS_STREAM = stats_stream This is reserved for Microsoft’s internal use.

NORECOMPUTE This option designates that once the statistics are
created, they should not be updated—even when
data changes occur afterward. This option
should rarely, if ever, be used. Fresh statistics
allow SQL Server to generate good query plans.

In this example, new statistics are created on the Sales.Customer AccountNumber column:

CREATE STATISTICS Stats_Customer_AccountNumber
ON Sales.Customer (AccountNumber)
WITH FULLSCAN

How It Works
This recipe demonstrated manually creating statistics on the Sales.Customer table. The first line of
code designated the statistics name:

CREATE STATISTICS Stats_Customer_AccountNumber

The second line of code designated the table to create statistics on, followed by the column
name used to generate the statistics:

ON Sales.Customer (AccountNumber)

The last line of code designated that all rows in the table would be read in order to generate the
statistics:

WITH FULLSCAN

Creating Statistics on a Subset of Rows
In Chapter 5, in the “Indexing a Subset of Rows” recipe, I demonstrated the ability to create filtered,
nonclustered indexes that cover a small percentage of rows. Doing this reduced the index size and
improved the performance of queries that only needed to read a fraction of the index entries that
they would otherwise have to process. Creating the filtered index also creates associated statistics.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 761

9802ch28.qxd 6/18/08 10:57 AM Page 761

These statistics use the same filter predicate and can result in more accurate results because the
sampling is against a smaller rowset.

You can also explicitly create filtered statistics using the CREATE STATISTICS command. Similar
to creating a filtered index, filtered statistics also support filter predicates for several comparison
operators to be used, including IS, IS NOT, =, <>, >, <, and more.

The following query demonstrates creating filtered statistics on a range of values for the
UnitPrice column in the Sales.SalesOrderDetail table:

CREATE STATISTICS Stats_SalesOrderDetail_UnitPrice_Filtered
ON Sales.SalesOrderDetail (UnitPrice)
WHERE UnitPrice >= 1000.00 AND

UnitPrice <= 1500.00
WITH FULLSCAN

How It Works
This recipe demonstrated creating filtered statistics. Similar to filtered indexes, I just added a WHERE
clause within the definition of the CREATE STATISTICS call and defined a range of allowed values for
the UnitPrice column. Creating statistics on a column creates a histogram with up to 200 interval
values designating how many rows are at each interval value, as well as how many rows are smaller
than the current key but less than the previous key. The query optimization process depends on
highly accurate statistics. Filtered statistics allow you to specify the key range of values your applica-
tion focuses on, resulting in even more accurate statistics for that subset of data.

Updating Statistics
After you create statistics, if you wish to manually update statistics, you can use the UPDATE
STATISTICS command.

The syntax is as follows:

UPDATE STATISTICS table | view
[

{
{ index | statistics_name }

| ({ index |statistics_name } [,...n])
}

]
[WITH

[
[FULLSCAN]
| SAMPLE number { PERCENT | ROWS }
| RESAMPLE

]
[,] [ALL | COLUMNS | INDEX]
[[,] NORECOMPUTE]

]

The arguments of this command are described in Table 28-3.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING762

9802ch28.qxd 6/18/08 10:57 AM Page 762

Table 28-3. UPDATE STATISTICS Arguments

Argument Description

table | view This defines the table name or indexed view for which to
update statistics.

{ index | statistics_name}| This specifies the name of the index or named statistics to
update.

FULLSCAN| SAMPLE number FULLSCAN, when specified, reads all rows when generating
{ PERCENT | ROWS } |RESAMPLE the statistics. SAMPLE reads either a defined number of rows or

a percentage. RESAMPLE updates statistics based on the
original sampling method.

[ALL | COLUMNS | INDEX] When ALL is designated, all existing statistics are updated.
When COLUMN is designated, only column statistics are updated.
When INDEX is designated, only index statistics are updated.

NORECOMPUTE This option designates that once the statistics are created, they
should not be updated—even when data changes occur. Again,
this option should rarely, if ever, be used. Fresh statistics allow
SQL Server to generate good query plans.

This example updates all the statistics for the Sales.Customer table, populating statistics based
on the latest data:

UPDATE STATISTICS Sales.Customer
WITH FULLSCAN

How It Works
This example updated all the statistics for the Sales.Customer table, refreshing them with the latest
data. The first line of code designated the table name containing the statistics to be updated:

UPDATE STATISTICS Sales.Customer

The last line of code designated that all rows in the table would be read in order to update the
statistics:

WITH FULLSCAN

Generating and Updating Statistics Across All Tables
You can also automatically generate statistics across all tables in a database for those columns that
don’t already have statistics associated to them, by using the system stored procedure sp_createstats.

The syntax is as follows:

sp_createstats [[@indexonly =] 'indexonly']
[, [@fullscan =] 'fullscan']

[, [@norecompute =] 'norecompute']

The arguments of this command are described in Table 28-4.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 763

9802ch28.qxd 6/18/08 10:57 AM Page 763

Table 28-4. sp_createstats Arguments

Argument Description

indexonly When indexonly is designated, only columns used in indexes will be considered for
statistics creation.

fullscan When fullscan is designated, all rows will be evaluated for the generated statistics.
If not designated, the default behavior is to extract statistics via sampling.

norecompute The norecompute option designates that once the statistics are created, they should
not be updated—even when data changes occur. Like with CREATE STATISTICS and
UPDATE STATISTICS, this option should rarely, if ever, be used. Fresh statistics allow
SQL Server to generate good query plans.

This example demonstrates creating new statistics on columns in the database that don’t
already have statistics created for them:

EXEC sp_createstats
GO

This returns the following (abridged) result set:

Table 'AdventureWorks.Production.ProductProductPhoto':
Creating statistics for the following columns:

Primary
ModifiedDate

Table 'AdventureWorks.Sales.StoreContact':
Creating statistics for the following columns:

ModifiedDate
Table 'AdventureWorks.Person.Address':
Creating statistics for the following columns:

AddressLine2
City
PostalCode
ModifiedDate

...

If you wish to update all statistics in the current database, you can use the system stored proce-
dure sp_updatestats. This stored procedure only updates statistics when necessary (when data
changes have occurred). Statistics on unchanged data will not be updated.

This next example automatically updates all statistics in the current database:

EXEC sp_updatestats
GO

This returns the following (abridged) results. Notice the informational message of “update is
not necessary.” The results you see may differ based on the state of your table statistics:

Updating [Production].[ProductProductPhoto]
[PK_ProductProductPhoto_ProductID_ProductPhotoID], update is not necessary...
[AK_ProductProductPhoto_ProductID_ProductPhotoID], update is not necessary...
[_WA_Sys_00000002_01142BA1], update is not necessary...
[Primary], update is not necessary...
[ModifiedDate], update is not necessary...
0 index(es)/statistic(s) have been updated, 5 did not require update.

...

CHAPTER 28 ■ QUERY PERFORMANCE TUNING764

9802ch28.qxd 6/18/08 10:57 AM Page 764

Viewing Statistics Details
To view detailed information about column statistics, you can use the DBCC SHOW STATISTICS
command.

The syntax is as follows:

DBCC SHOW_STATISTICS ('table_name' | 'view_name' , target)
[WITH [NO_INFOMSGS]
< STAT_HEADER | DENSITY_VECTOR | HISTOGRAM > [, n]]

The arguments of this command are described in Table 28-5.

Table 28-5. DBCC SHOW_STATISTICS Arguments

Argument Description

'table_name' | 'view_name' This defines the table or indexed view to evaluate.

target This specifies the name of the index or named statistics to
evaluate.

NO_INFOMSGS When designated, NO_INFOMSGS suppresses informational
messages.

STAT_HEADER | DENSITY_VECTOR Specifying STAT_HEADER, DENSITY_VECTOR, or HISTOGRAM
| HISTOGRAM [, n] designates which result sets will be returned by the command

(you can display one or more). Not designating any of these
means that all three result sets will be returned.

This example demonstrates how to view the statistics information on the Sales.Customer
Stats_Customer_CustomerType statistics:

DBCC SHOW_STATISTICS ('Sales.Customer' , Stats_Customer_AccountNumber)

This returns the following result sets:

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 765

Name Updated Rows Rows Sampled Steps Density Average key String Filter Unfiltered

length Index Expression Rows

Stats_Customer_ Mar 30 2008 19820 19820 152 1 10 YES NULL 19820

AccountNumber 12:49PM

All density Average Length Columns

5.045409E-05 10 AccountNumber

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

AW00000001 0 1 0 1

...

AW00027042 127 1 127 1

AW00027298 255 1 255 1

AW00027426 127 1 127 1

...

AW00030118 0 1 0 1

9802ch28.qxd 6/18/08 10:57 AM Page 765

How It Works
This recipe demonstrated how to get more specific information about column statistics. In the
results of this recipe’s example, the All density column pointed to the selectivity of a column.
Selectivity refers to the percentage of rows that will be returned given a specific column’s value.
Columns with a low density and high selectivity often make for useful indexes (useful to the query
optimization process).

In this recipe’s example, the All density value was 5.045409E–05 (float), which equates to a
decimal value of 0.00005045409. This is the result of dividing 1 by the number of rows, in this case
19,820.

If you had a column with a high density of similar values and low selectivity (one value is likely
to return many rows), you can make an educated assumption that an index on this particular col-
umn is unlikely to be very useful to SQL Server in generating a query execution plan.

Removing Statistics
To remove statistics, use the DROP STATISTICS command.

The syntax is as follows:

DROP STATISTICS table.statistics_name | view.statistics_name [,...n]

This command allows you to drop one or more statistics, prefixed with the table or indexed
view name.

In this example, the Sales.Customer Stats_Customer_AccountNumber statistics are dropped
from the database:

DROP STATISTICS Sales.Customer.Stats_Customer_AccountNumber

How It Works
This recipe dropped user-created statistics using DROP STATISTICS. The statistics were dropped
using the three-part name of schema.table.statistics_name.

Miscellaneous Techniques
The next several recipes detail techniques that don’t cleanly fall under any of the previous sections
in this chapter. These recipes will demonstrate how to

• Employ an alternative to dynamic SQL and stored procedures using the sp_executesql sys-
tem stored procedure.

• Force a query to use a specified query plan.

• Apply query hints to an existing query without having to actually modify the application’s
SQL code using plan guides.

• Create a plan guide based on a pointer to the cached plan.

• Check the validity of a plan guide (in case reference objects have rendered the plan invalid).

• Force parameterization of a non-parameterized query.

• Use the new SQL Server 2008 Resource Governor feature to limit query resource consump-
tion (for both CPU and memory).

I’ll start this section off by describing an alternative to using dynamic SQL.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING766

9802ch28.qxd 6/18/08 10:57 AM Page 766

Using an Alternative to Dynamic SQL
Using the EXECUTE command, you can execute the contents of a character string within a batch,
procedure, or function. You can also abbreviate EXECUTE to EXEC.

For example, the following statement performs a SELECT from the Sales.Currency table:

EXEC ('SELECT CurrencyCode FROM Sales.Currency')

Although this technique allows you to dynamically formulate strings that can then be exe-
cuted, this technique comes with some major hazards. The first and most important hazard is the
risk of SQL injection. SQL injection occurs when harmful code is inserted into an existing SQL string
prior to being executed on the SQL Server instance. Allowing user input into variables that are con-
catenated to a SQL string and then executed can cause all sorts of damage to your database (not to
mention the potential privacy issues). The malicious code, if executed under a context with suffi-
cient permissions, can drop tables, read sensitive data, or even shut down the SQL Server process.

The second issue with character string execution techniques is in their performance. Although
performance of dynamically generated SQL may sometimes be fast, the query performance can
also be unreliable. Unlike stored procedures, dynamically generated and regular ad hoc SQL
batches and statements will cause SQL Server to generate a new execution plan each time they
are run.

If stored procedures are not an option for your application, an alternative, the sp_executesql
system stored procedure, addresses the dynamic SQL performance issue by allowing you to create
and use a reusable query execution plan where the only items that change are the query parame-
ters. Parameters are also type safe, meaning that you cannot use them to hold unintended data
types. This is a worthy solution, when given a choice between ad hoc statements and stored
procedures.

■Caution sp_executesql addresses some performance issues, but does not entirely address the SQL injection
issue. Beware of allowing user-passed parameters that are concatenated into a SQL string! Stick with the parame-
ter functionality described next.

The syntax for sp_executesql is as follows:

sp_executesql [@stmt =] stmt
[

{, [@params=] N'@parameter_name data_type [OUT | OUTPUT][,...n]' }
{, [@param1 =] 'value1' [,...n] }

]

The arguments of this command are described in Table 28-6.

Table 28-6. sp_executesql Arguments

Argument Description

stmt The string to be executed.

@parameter_name data_type One or more parameters that are embedded in the string
[[OUTPUT][,...n] statement. OUTPUT is used similarly to a stored procedure OUTPUT

parameter.

'value1' [,...n] The actual values passed to the parameters.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 767

9802ch28.qxd 6/18/08 10:57 AM Page 767

In this example, the Production.TransactionHistoryArchive table is queried based on a spe-
cific ProductID, TransactionType, and minimum Quantity values:

EXECUTE sp_executesql
N'SELECT TransactionID, ProductID,

TransactionType, Quantity
FROM Production.TransactionHistoryArchive
WHERE ProductID = @ProductID AND

TransactionType = @TransactionType AND
Quantity > @Quantity',
N'@ProductID int,
@TransactionType char(1),
@Quantity int',

@ProductID =813,
@TransactionType = 'S',

@Quantity = 5

This returns the following results:

TransactionID ProductID TransactionType Quantity
28345 813 S 7
31177 813 S 9
35796 813 S 6
36112 813 S 7
40765 813 S 6
47843 813 S 7
69114 813 S 6
73432 813 S 6

How It Works
The sp_executesql allows you to execute a dynamically generated Unicode string. This system
procedure allows parameters, which in turn allow SQL Server to reuse the query execution plan
generated by its execution.

Notice in the recipe that the first parameter was preceded with the N' Unicode prefix, as
sp_executesql requires a Unicode statement string. The first parameter also included the SELECT
query itself, including the parameters embedded in the WHERE clause:

EXECUTE sp_executesql
N'SELECT TransactionID, ProductID,
TransactionType, Quantity
FROM Production.TransactionHistoryArchive
WHERE ProductID = @ProductID AND

TransactionType = @TransactionType AND
Quantity > @Quantity',

The second argument further defined the data type of each parameter that was embedded in
the first parameter’s SQL statement. Each parameter is separated by a comma:

N'@ProductID int,
@TransactionType char(1),
@Quantity int',

The last argument assigned each embedded parameter a value, which was put into the query
dynamically during execution.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING768

9802ch28.qxd 6/18/08 10:57 AM Page 768

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

@ProductID =813,
@TransactionType = 'S',
@Quantity = 5

The query returned eight rows based on the three parameters provided. If the query is executed
again, only with different parameter values, it is likely that the original query execution plan will be
used by SQL Server (instead of creating a new execution plan).

Forcing SQL Server to Use a Query Plan
The USE PLAN command allows you to force the query optimizer to use an existing, specific query
plan for a SELECT query. You can use this functionality to override SQL Server’s choice, in those rare
circumstances when SQL Server chooses a less efficient query plan over one that is more efficient.
Like plan guides (covered later), this option should only be used by an experienced SQL Server pro-
fessional, as SQL Server’s query optimizer usually makes good decisions when deciding whether or
not to reuse or create new query execution plans.

The syntax for USE PLAN is as follows:

USE PLAN N'xml_plan'

The xml_plan parameter is the XML data type representation of the stored query execution
plan. The specific XML query plan can be derived using several methods, including SET
SHOWPLAN_XML, SET STATISTICS XML, the sys.dm_exec_query_plan Dynamic Management View,
sys.dm_exec_text_query_plan, and via SQL Server Profiler’s Showplan XML events.

In this example, SET STATISTICS XML is used to extract the XML-formatted query plan for use in
the USE PLAN command:

SET STATISTICS XML ON

SELECT TOP 10 Rate
FROM HumanResources.EmployeePayHistory
ORDER BY Rate DESC

SET STATISTICS XML OFF

The XMLDocument results returned from SET STATISTICS XML are then copied to the next query.
Note that all the single quotes (') in the XML document have to be escaped with an additional
single quote (except for the quotes used for USE PLAN):

SELECT TOP 10 Rate
FROM HumanResources.EmployeePayHistory
ORDER BY Rate DESC
OPTION (USE PLAN
'<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"
Version="1.1" Build="10.0.1424.2">
<BatchSequence>
<Batch>
<Statements>
<StmtSimple StatementText="SELECT TOP 10 Rate
FROM

HumanResources.EmployeePayHistory
ORDER BY Rate DESC
"
StatementId="1" StatementCompId="2" StatementType="SELECT"
StatementSubTreeCost="0.019825" StatementEstRows="10" StatementOptmLevel="TRIVIAL">

<StatementSetOptions QUOTED_IDENTIFIER="false" ARITHABORT="true"
CONCAT_NULL_YIELDS_NULL="false" ANSI_NULLS="false" ANSI_PADDING="false"
ANSI_WARNINGS="false" NUMERIC_ROUNDABORT="false" />

<QueryPlan DegreeOfParallelism="0" MemoryGrant="1024" CachedPlanSize="8"
CompileTime="20" CompileCPU="3" CompileMemory="72">

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 769

9802ch28.qxd 6/18/08 10:57 AM Page 769

http://schemas.microsoft.com/sqlserver/2004/07/showplan

<RelOp NodeId="0" PhysicalOp="Sort" LogicalOp="TopN Sort"
EstimateRows="10" EstimateIO="0.0112613" EstimateCPU="0.00419345" AvgRowSize="15"
EstimatedTotalSubtreeCost="0.019825" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OutputList>
<MemoryFractions Input="1" Output="1" />
<RunTimeInformation>
<RunTimeCountersPerThread Thread="0" ActualRows="10"

ActualRebinds="1" ActualRewinds="0" ActualEndOfScans="1" ActualExecutions="1" />
</RunTimeInformation>
<TopSort Distinct="0" Rows="10">
<OrderBy>
<OrderByColumn Ascending="0">
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OrderByColumn>

</OrderBy>
<RelOp NodeId="1" PhysicalOp="Clustered Index Scan"

LogicalOp="Clustered Index Scan" EstimateRows="316" EstimateIO="0.00386574"
EstimateCPU="0.0005046" AvgRowSize="15" EstimatedTotalSubtreeCost="0.00437034"
TableCardinality="316" Parallel="0" EstimateRebinds="0" EstimateRewinds="0">

<OutputList>
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</OutputList>
<RunTimeInformation>
<RunTimeCountersPerThread Thread="0" ActualRows="316"

ActualEndOfScans="1" ActualExecutions="1" />
</RunTimeInformation>
<IndexScan Ordered="0" ForcedIndex="0" NoExpandHint="0">
<DefinedValues>
<DefinedValue>
<ColumnReference Database="[AdventureWorks]"

Schema="[HumanResources]" Table="[EmployeePayHistory]" Column="Rate" />
</DefinedValue>

</DefinedValues>
<Object Database="[AdventureWorks]" Schema="[HumanResources]"

Table="[EmployeePayHistory]"
Index="[PK_EmployeePayHistory_BusinessEntityID_RateChangeDate]"
IndexKind="Clustered" />

</IndexScan>
</RelOp>

</TopSort>
</RelOp>

</QueryPlan>
</StmtSimple>

</Statements>
</Batch>

</BatchSequence>
</ShowPlanXML>')

CHAPTER 28 ■ QUERY PERFORMANCE TUNING770

9802ch28.qxd 6/18/08 10:57 AM Page 770

How It Works
USE PLAN allows you to capture the XML format of a query’s execution plan and then force the query
to use it on subsequent executions. In this recipe, I used SET STATISTICS XML ON to capture the
query’s XML execution plan definition. That definition was then copied into the OPTION clause. The
USE PLAN hint requires a Unicode format, so the XML document text was prefixed with an N'.

Both USE PLAN and plan guides should be used only as a last resort—after you have thoroughly
explored other possibilities such as query design, indexing, database design, index fragmentation,
and out-of-date statistics. USE PLAN may have short-term effectiveness, but as data changes, so too
will the needs of the query execution plan. In the end, the odds are that, over time, SQL Server will
be better able to dynamically decide on the correct SQL plan than you. Nevertheless, Microsoft pro-
vided this option for those advanced troubleshooting cases when SQL Server doesn’t choose a
query execution plan that’s good enough.

Applying Hints Without Modifying Application SQL
As was discussed at the beginning of the chapter, troubleshooting poor query performance involves
reviewing many areas such as database design, indexing, and query construction. You can make
modifications to your code, but what if the problem is with code that you cannot change?

If you are encountering issues with a database and/or queries that are not your own to change
(in shrink-wrapped software, for example), then your options become more limited. Usually in the
case of third-party software, you are restricted to adding new indexes or archiving off data from
large tables. Making changes to the vendor’s actual database objects or queries is usually off limits.

SQL Server provides a solution to this common issue using plan guides. Plan guides allow you
to apply hints to a query without having to change the actual query text sent from the application.

■Tip In SQL Server 2008, you can designate both query and table hints within plan guides.

Plan guides can be applied to specific queries embedded within database objects (stored pro-
cedures, functions, triggers) or specific stand-alone SQL statements.

A plan guide is created using the sp_create_plan_guide system stored procedure:

sp_create_plan_guide [@name =] N'plan_guide_name'
, [@stmt =] N'statement_text'
, [@type =] N' { OBJECT | SQL | TEMPLATE }'
, [@module_or_batch =]

{
N'[schema_name.]object_name'
| N'batch_text'
| NULL

}
, [@params =] { N'@parameter_name data_type [,...n]' | NULL }
, [@hints =] { N'OPTION (query_hint [,...n]) ' | N'XML_showplan' | NULL }

The arguments of this command are described in Table 28-7.

Table 28-7. sp_create_plan_guide Arguments

Argument Description

plan_guide_name This defines the name of the new plan guide.

statement_text This specifies the SQL text identified for optimization.

Continued

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 771

9802ch28.qxd 6/18/08 10:57 AM Page 771

mailto:N'@parameter_namedata_type[,...n

Table 28-7. Continued

Argument Description

OBJECT | SQL | TEMPLATE When OBJECT is selected, the plan guide will apply to
the statement text found within a specific stored
procedure, function, or DML trigger. When SQL is
selected, the plan guide will apply to statement text
found in a stand-alone statement or batch. The
TEMPLATE option is used to either enable or disable
parameterization for a SQL statement. Recall from
Chapter 22, in the topic “Modifying Database
Parameterization Behavior,” that the PARAMETERIZATION
option, when set to FORCED, increases the chance that a
query will become parameterized, allowing it to form a
reusable query execution plan. SIMPLE parameteriza-
tion, however, affects a smaller number of queries (at
SQL Server’s discretion). The TEMPLATE option is used
to override either a database’s SIMPLE or FORCED
parameterization option. If a database is using SIMPLE
parameterization, you can force a specific query
statement to be parameterized. If a database is using
FORCED parameterization, you can force a specific
query statement to not be parameterized.

N'[schema_name.]object_name' | This specifies either the name of the object the SQL
N'batch_text' | NULL text will be in, the batch text, or NULL, when TEMPLATE is

selected.

N'@parameter_name data_type This defines the name of the parameters to be used
[,...n]' | NULL for either SQL or TEMPLATE type plan guides.

N'OPTION (query_hint [,...n])' | This defines the hint or hints to be applied to the
N'XML_showplan' | NULL statement, the XML query plan to be applied, or NULL,

used to indicate that the OPTION clause will not be
employed for a query.

■Note In SQL Server 2008, the @hints argument now accepts XML Showplan output as direct input.

To remove or disable a plan guide, use the sp_control_plan_guide system stored procedure:

sp_control_plan_guide [@operation =] N'<control_option>'
[, [@name =] N'plan_guide_name']

<control_option>::=
{

DROP
| DROP ALL
| DISABLE
| DISABLE ALL
| ENABLE
| ENABLE ALL

}

The arguments of this command are described in Table 28-8.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING772

9802ch28.qxd 6/18/08 10:57 AM Page 772

Table 28-8. sp_control_plan_guide Arguments

Argument Description

DROP The DROP operation removes the plan guide from the database.

DROP ALL DROP ALL drops all plan guides from the database.

DISABLE DISABLE disables the plan guide, but doesn’t remove it from the database.

DISABLE ALL DISABLE ALL disables all plan guides in the database.

ENABLE ENABLE enables a disabled plan guide.

ENABLE ALL ENABLE ALL does so for all disabled plan guides in the database.

plan_guide_name plan_guide_name defines the name of the plan guide to perform the
operation on.

In this recipe’s example, I’ll create a plan guide in order to change the table join type method
for a stand-alone query. In this scenario, assume the third-party software package is sending a
query that is causing a LOOP join. In this scenario, I want the query to use a MERGE join instead.

■Caution SQL Server should almost always be left to make its own decisions regarding how a query is
processed. Only under special circumstances, and administered by an experienced SQL Server professional,
should plan guides be created in your SQL Server environment.

In this example, the following query is executed using sp_executesql:

EXEC sp_executeSQL
N'SELECT v.Name ,a.City
FROM Purchasing.Vendor v
INNER JOIN [Person].BusinessEntityAddress bea

ON bea.BusinessEntityID = v.BusinessEntityID
INNER JOIN Person.Address a

ON a.AddressID = bea.AddressID'

Looking at a snippet of this query’s execution plan using SET STATISTICS XML ON shows that the
Vendor and BusinessEntityAddress table are joined together using a nested loop operator:

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join"
EstimateRows="105.447" EstimateIO="0" EstimateCPU="0.000440767"
AvgRowSize="93" EstimatedTotalSubtreeCost="0.322517"
Parallel="0" EstimateRebinds="0" EstimateRewinds="0">

If, for example, I want SQL Server to use a different join method, but without having to change
the actual query sent by the application, I can enforce this change by creating a plan guide. The fol-
lowing plan guide is created to apply a join hint onto the query being sent from the application:

EXEC sp_create_plan_guide
@name = N'Vendor_Query_Loop_to_Merge',
@stmt = N'SELECT v.Name ,a.City

FROM Purchasing.Vendor v
INNER JOIN [Person].BusinessEntityAddress bea

ON bea.BusinessEntityID = v.BusinessEntityID
INNER JOIN Person.Address a

ON a.AddressID = bea.AddressID',

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 773

9802ch28.qxd 6/18/08 10:57 AM Page 773

@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (MERGE JOIN)'

■Tip In SQL Server 2008, you can now also designate table hints in the plan guide @hints parameter.

I can confirm that the plan guide was created (as well as confirm the settings) by querying the
sys.plan_guides catalog view:

SELECT name, is_disabled, scope_type_desc, hints
FROM sys.plan_guides

This returns

name is_disabled scope_type_desc hints
Vendor_Query_Loop_to_Merge 0 SQL OPTION (MERGE JOIN)

After creating the plan guide, I execute the query again using sp_executesql. Looking at the
XML execution plan, I now see that the nested loop joins have changed into merge join operators
instead—all without changing the actual query being sent from the application to SQL Server:

<RelOp NodeId="0" PhysicalOp="Merge Join" LogicalOp="Inner Join"
EstimateRows="105.447" EstimateIO="0" EstimateCPU="0.0470214"
AvgRowSize="93" EstimatedTotalSubtreeCost="0.491476" Parallel="0"
EstimateRebinds="0" EstimateRewinds="0">

In fact, all joins in the query were converted from loops to a merge join, which may not be a
desired effect of designating the hint for a multi-join statement! If it is decided that this merge join
is no longer more effective than a nested loop join, you can drop the plan guide using the
sp_control_plan_guide system stored procedure:

EXEC sp_control_plan_guide N'DROP', N'Vendor_Query_Loop_to_Merge'

How It Works
Plan guides allow you to add query hints to a query being sent from an application without having
to change the application itself. In this example, a particular SQL statement was performing nested
loop joins. Without changing the actual query itself, SQL Server “sees” the plan guide and matches
the incoming query to the query in the plan guide. When matched, the hints in the plan guide are
applied to the incoming query.

The sp_create_plan_guide allows you to create plans for stand-alone SQL statements, SQL
statements within objects (procedures, functions, DML triggers), and SQL statements that are either
being parameterized or not, due to the database’s PARAMETERIZATION setting.

In this recipe, the first parameter sent to sp_create_plan_guide was the name of the new plan
guide:

EXEC sp_create_plan_guide
@name = N'Vendor_Query_Loop_to_Merge',

CHAPTER 28 ■ QUERY PERFORMANCE TUNING774

9802ch28.qxd 6/18/08 10:57 AM Page 774

The second parameter was the SQL statement to apply the plan guide to (whitespace charac-
ters, comments, and semicolons will be ignored):

@stmt = N'SELECT v.Name ,a.City
FROM Purchasing.Vendor v
INNER JOIN [Person].BusinessEntityAddress bea

ON bea.BusinessEntityID = v.BusinessEntityID
INNER JOIN Person.Address a

ON a.AddressID = bea.AddressID',
@type = N'SQL',

The third parameter was the type of plan guide, which in this case was stand-alone SQL:

@type = N'SQL',

For the fourth parameter, since it was not for a stored procedure, function, or trigger, the
@module_or_batch parameter was NULL:

@module_or_batch = NULL,

The @params parameter was also sent NULL since this was not a TEMPLATE plan guide:

@params = NULL,

The last parameter contained the actual hint to apply to the incoming query—in this case
forcing all joins in the query to use a MERGE operation:

@hints = N'OPTION (MERGE JOIN)'

Finally, the sp_control_plan_guide system stored procedure was used to drop the plan guide
from the database, designating the operation of DROP in the first parameter and the plan guide name
in the second parameter.

Creating Plan Guides from Cache
SQL Server 2008 introduces the ability to create plan guides based on existing query plans in a
query plan cache using the sp_create_plan_guide_from_handle system stored procedure.

Consider using this functionality under the following circumstances:

• You need a query plan (or plans) to remain stable after an upgrade or database migration.

• You have a specific query that uses a “bad” plan, and you want it to use a known “good” plan.

• Your application has mission-critical queries that have service-level agreements regarding
specific response times, and you wish to keep that time stable.

• You need to reproduce the exact query execution plan on another SQL Server instance (test,
QA, for example).

• You have a query that needs to execute predictably, but not necessarily perform as optimally
as it always could.

■Caution You should almost always let SQL Server compile and recompile plans as needed instead of relying
on plan guides. SQL Server can adapt to any new changes in the data distribution and objects referenced in the
query by recompiling an existing plan when appropriate.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 775

9802ch28.qxd 6/18/08 10:57 AM Page 775

The syntax for the sp_create_plan_guide_from_handle system stored procedure is as follows:

sp_create_plan_guide_from_handle [@name =] N'plan_guide_name'
, [@plan_handle =] plan_handle
, [[@statement_start_offset =] { statement_start_offset | NULL }]

The arguments of this command are described in Table 28-9.

Table 28-9. sp_create_plan_guide_from_handle Arguments

Argument Description

plan_guide_name This defines the name of the new plan guide.

plan_handle This designates the plan handle from the sys.dm_exec_
query_stats DMV.

statement_start_offset | NULL The statement start offset designates the starting position
within the query batch. If NULL, the query plan for each
statement in the batch will have a plan guide created for it.

This functionality allows you to preserve desired query plans for future reuse on the SQL Server
instance. In this recipe, I’ll demonstrate creating a plan guide from the cache for the following query
(which I will execute first, in order to get a plan created in cache):

SELECT
p.Title,
p.FirstName,
p.MiddleName,
p.LastName

FROM HumanResources.Employee e
INNER JOIN Person.Person p

ON p.BusinessEntityID = e.BusinessEntityID
WHERE Title = 'Ms.'

After executing the query, I can retrieve the plan handle pointing to the query plan in the cache
by executing the following query:

SELECT plan_handle
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(plan_handle) t
WHERE t.text LIKE 'SELECT%p.Title%' AND

t.text LIKE '%Ms%'

This returns

plan_handle
0x060005006E48752FB080940B000000000000000000000000

Next, I will create a plan guide based on the plan handle using the
sp_create_plan_guide_from_handle system stored procedure:

EXEC sp_create_plan_guide_from_handle 'PlanGuide_EmployeeContact',
@plan_handle = 0x060005006E48752FB080940B000000000000000000000000,
@statement_start_offset = NULL

Querying the sys.plan_handles system catalog view, I can confirm that the plan guide was cre-
ated properly (results not displayed, as the query plan and text display issues on the printed page):

CHAPTER 28 ■ QUERY PERFORMANCE TUNING776

9802ch28.qxd 6/18/08 10:57 AM Page 776

SELECT name, query_text, hints
FROM sys.plan_guides

The hints column from sys.plan_guides actually contains the query execution plan in XML
format.

■Tip You can confirm whether your plan guide is being successfully used by tracking the SQL Server Profiler
events “Plan Guide Successful” and “Plan Guide Unsuccessful”.

How It Works
This recipe demonstrated how to preserve an existing cached plan as a plan guide. This is the exe-
cution plan that will be used for the query matching the query text of the plan guide. Even after a
SQL Server instance restart, or flushing of the procedure cache, the associated plan guide query
plan will still be used.

I started off the recipe by executing the SELECT query so that a query plan would be cached on
the SQL Server instance. After doing that, I can search for the plan handle of the cached plan by
querying sys.dm_exec_query_stats. I also used CROSS APPLY with sys.dm_exec_sql_text, so that I
could search for text that contained the start and end of my query.

Once I had the plan handle, I executed the sp_create_plan_guide_from_handle system stored
procedure. The first parameter was the name of the plan guide:

EXEC sp_create_plan_guide_from_handle 'PlanGuide_EmployeeContact',

The second parameter contains the plan handle (note that I could have placed the plan handle
in a local variable and then fed it to the stored procedure in a single batch with the
sys.dm_exec_query_stats query).

Lastly, I designated the statement start offset as NULL. This is because the cached plan con-
tained only a single statement. If this were a multi-statement batch, I could have used this
parameter to designate the statement start offset number:

@statement_start_offset = NULL

Once the plan guide is created, any matching SQL that is executed will use the query execution
plan designated in the plan guide (look at the hints column of the sys.plan_guides system catalog
view to confirm). This allows you to keep a plan stable across several scenarios—for example, after a
database migration to a new SQL Server instance, service pack upgrade, or version upgrade. Highly
volatile query execution plans (recompiled often with varying execution plan performance impacts)
can benefit from the “freezing” of the most efficient or performing plan for the associated query.

Checking the Validity of a Plan Guide
SQL Server 2008 introduces the new system function sys.fn_validate_plan_guide, which allows
you to check the validity of existing plan guides. SQL Server typically does a great job of compiling
and recompiling query execution plans based on changes to objects referenced within a query. Plan
guides, on the other hand, are not automatically modified based on changing circumstances.

The sys.fn_validate_plan_guide is a table-valued function that takes a single argument, the
plan_guide_id. In this recipe, I demonstrate validating all plan guides within the database context I
am interested in (for example, AdventureWorks):

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 777

9802ch28.qxd 6/18/08 10:57 AM Page 777

SELECT pg.plan_guide_id, pg.name, v.msgnum,
v.severity, v.state, v.message

FROM sys.plan_guides pg
CROSS APPLY sys.fn_validate_plan_guide(pg.plan_guide_id) v

If this query returns no rows, this means that there are no errors with existing plan guides. If
rows are generated, you will need to re-create a valid plan guide based on the changed circum-
stances.

How It Works
This recipe demonstrated how to check the validity of each plan guide in a specific database. The
SELECT statement referenced the plan guide ID and name, along with the message number, severity,
state, and message if errors exist:

SELECT pg.plan_guide_id, pg.name, v.msgnum,
v.severity, v.state, v.message

The FROM clause included sys.plan_guides, which returns all plan guides for the database
context:

FROM sys.plan_guides pg

Since this is a table-valued function expecting an input argument, I used CROSS APPLY against
sys.fn_validate_plan_guide, and used the plan guide from sys.plan_guides as input:

CROSS APPLY sys.fn_validate_plan_guide(pg.plan_guide_id) v

This query returns rows for any plan guides invalidated by changes due to underlying object
changes.

Parameterizing a Non-parameterized Query Using Plan Guides
When I am evaluating the overall performance of a SQL Server instance, I like to take a look at the
sys.dm_exec_cached_plans Dynamic Management View to see what kind of plans are cached on the
SQL Server instance. In particular, I’m interested in the objtype column, seeing whether or not the
applications using the SQL Server instance are using mostly prepared statements, stored proce-
dures, or ad hoc queries.

For applications that make heavy use of ad hoc queries, I’ll often see a very large query cache
filled with nearly identical queries. For example, the following query shows the object type and
associated query text:

SELECT cp.objtype, st.text
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
WHERE st.text LIKE 'SELECT BusinessEntityID%'
GO

In my database, I see three rows returned:

objtype text
Adhoc SELECT BusinessEntityID

FROMHumanResources.Employee
WHERE NationalIDNumber = 509647174

CHAPTER 28 ■ QUERY PERFORMANCE TUNING778

9802ch28.qxd 6/18/08 10:57 AM Page 778

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Adhoc SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 245797967

Adhoc SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 295847284

Notice that each row is almost identical—except that the NationalIDNumber value is different.
Ideally, this form of query should be encapsulated in a stored procedure or called using
sp_executesql in order to prevent identical plans in the cache and encourage plan reuse.

If you cannot control the form in which queries are called by the execution, one option you
have is to use a plan guide to force parameterization of the query, which I will demonstrate in this
recipe.

In the “Applying Hints Without Modifying Application SQL” recipe, I introduced the sp_create_
plan_guide system stored procedure. The TEMPLATE option in that procedure is used to override
either a database’s SIMPLE or FORCED parameterization option. If a database is using SIMPLE parame-
terization, you can force a specific query statement to be parameterized. If a database is using
FORCED parameterization, you can force a specific query statement to not be parameterized.

The sp_get_query_template system stored procedure makes deploying template plan guides a
little easier by taking a query and outputting the parameterized form of it for use by sp_create_
plan_guide. The syntax for this procedure is as follows:

sp_get_query_template
[@querytext =] N'query_text'

, @templatetext OUTPUT
, @parameters OUTPUT

The arguments of this command are described in Table 28-10.

Table 28-10. sp_get_query_template Arguments

Argument Description

querytext The query you wish to parameterize

templatetext The output parameter containing the parameterized form of the query

parameters The output parameter containing the list of parameter names and data types

In this recipe, I’ll start by populating the template SQL and parameters using sp_get_query_
template, and then sending these values to sp_create_plan_guide (I’ll walk through the code step by
step in the “How It Works” section):

DECLARE @sql nvarchar(max)
DECLARE @parms nvarchar(max)

EXEC sp_get_query_template
N'SELECT BusinessEntityID

FROM HumanResources.Employee
WHERE NationalIDNumber = 295847284',

@sql OUTPUT,
@parms OUTPUT

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 779

9802ch28.qxd 6/18/08 10:57 AM Page 779

EXEC sp_create_plan_guide N'PG_Employee_Contact_Query',
@sql,
N'TEMPLATE',
NULL,
@parms,
N'OPTION(PARAMETERIZATION FORCED)'

After the plan guide is created, I can execute three different versions of the same query (three
different values for NationalIDNumber—each executed separately and not part of the same batch):

SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 295847284

SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 245797967

SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 509647174

After executing these queries, I will now check the cache to see whether there is a prepared
plan for this query:

SELECT usecounts,objtype,text
FROM sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
WHERE st.text LIKE '%(@0 int)SELECT BusinessEntityID%' AND

objtype = 'Prepared'

This returns the number of times the prepared plan has been used (three times since the plan
guide was created), the object type, and parameterized SQL text:

usecounts objtype text
3 Prepared (@0 int)select BusinessEntityID from HumanResources . Employee

where NationalIDNumber = @0

How It Works
In this recipe, I demonstrated how to force parameterization for a single query. Near-identical
queries such as the one I demonstrated can unnecessarily expand the cache, consuming memory
and creating excessive compilation operations. By reducing compilation and encouraging the use of
prepared plans, you can improve performance of the query itself and reduce resource consumption
on the SQL server instance.

Walking through the code, I started off by declaring two local variables that would be used to
hold the template SQL and associated parameters:

DECLARE @sql nvarchar(max)
DECLARE @parms nvarchar(max)

I then executed a call against the sp_get_query_template system stored procedure:

EXEC sp_get_query_template

The first parameter of this procedure expects the SQL to be converted to template format:

CHAPTER 28 ■ QUERY PERFORMANCE TUNING780

9802ch28.qxd 6/18/08 10:57 AM Page 780

N'SELECT BusinessEntityID
FROM HumanResources.Employee
WHERE NationalIDNumber = 295847284',

The second parameter is used for the output parameter that will contain the template SQL:

@sql OUTPUT,

The third parameter is used for the output parameter that will contain the parameters used in
association with the template SQL:

@parms OUTPUT

Next, I called sp_create_plan_guide to create a plan guide:

EXEC sp_create_plan_guide

The first parameter of this procedure took the name of the new plan guide:

N'PG_Employee_Contact_Query',

The second parameter took the value of the template SQL:

@sql,

The third parameter designated that this would be a TEMPLATE plan guide:

N'TEMPLATE',

The @module_or_batch parameter was given a NULL value, which is the required value for
TEMPLATE plan guides:

NULL,

The next parameter contained the definition of all parameters associated with the template
SQL:

@parms,

The last parameter designated the hints to attach to the query. In this case, I asked that the
query use forced parameterization:

N'OPTION(PARAMETERIZATION FORCED)'

Once the plan guide was created, I executed the query in three different forms, each with a dif-
ferent NationalIDNumber literal value. I then checked sys.dm_exec_cached_plans to see whether
there was a new row for a prepared plan. I confirmed that the usecounts column had a value of 3
(one for each query execution I had just performed)—which helped me confirm that the newly
parameterized prepared plan was being reused.

Limiting Competing Query Resource Consumption
SQL Server 2008 introduces the ability to constrain resource consumption for workloads using
Resource Governor. Resource Governor allows you to define resource pools that constrain the mini-
mum and maximum CPU task scheduling bandwidth and memory reserved.

■Tip CPU task scheduling is only limited when there is CPU contention across all available schedulers.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 781

9802ch28.qxd 6/18/08 10:57 AM Page 781

SQL Server provides two resource pools out of the box: default and internal. The internal
resource pool, which cannot be modified, uses unrestricted resources for SQL Server ongoing
process activity. The default resource pool is used for connections and requests prior to Resource
Governor being configured and by default has no limitations on resources (although you can
change this later).

You can create your own resource pools using the CREATE RESOURCE POOL command. The syntax
for this command is as follows:

CREATE RESOURCE POOL pool_name
[WITH

([MIN_CPU_PERCENT = value]
[[,] MAX_CPU_PERCENT = value]
[[,] MIN_MEMORY_PERCENT = value]
[[,] MAX_MEMORY_PERCENT = value])]

The arguments of this command are described in Table 28-11.

Table 28-11. CREATE RESOURCE POOL Arguments

Argument Description

Pool_name This defines the name of the resource pool.

MIN_CPU_PERCENT = value When there is query contention, this defines minimum
guaranteed average CPU task scheduling percentage from
0 to 100.

MAX_CPU_PERCENT = value When there is query contention, this defines the maximum CPU
task scheduling percentage for all query requests in the resource
pool.

MIN_MEMORY_PERCENT = value This specifies the minimum percent of reserved memory for the
resource pool.

MAX_MEMORY_PERCENT = value This specifies the maximum percent of server memory that can
be used for query requests in the pool.

Once you create one or more resource pools, you can then associate them with workload
groups. One or more workload groups can be bound to a single resource pool. Workload groups
allow you to define the importance of requests within the pool, the maximum memory grant per-
centage, maximum CPU time in seconds, maximum memory grant time out, maximum degree of
parallelism, and maximum number of concurrently executing requests. You can create resource
pools using the CREATE WORKLOAD GROUP command. The syntax for this command is as follows:

CREATE WORKLOAD GROUP group_name
[WITH

([IMPORTANCE = { LOW | MEDIUM | HIGH }]
[[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
[[,] REQUEST_MAX_CPU_TIME_SEC = value]
[[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
[[,] MAX_DOP = value]
[[,] GROUP_MAX_REQUESTS = value])]

[USING { pool_name | "default" }]

The arguments of this command are described in Table 28-12.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING782

9802ch28.qxd 6/18/08 10:57 AM Page 782

Table 28-12. CREATE WORKLOAD GROUP Arguments

Argument Description

group_name Defines the name of the workload group.

IMPORTANCE = {LOW | MEDIUM | HIGH} Defines the importance of requests within the
workload group. If two workloads share the same
resource pool, the importance of each workload
can determine which requests have a higher
priority.

REQUEST_MAX_MEMORY_GRANT_PERCENT = value Caps maximum memory a request can use from
the resource pool.

REQUEST_MAX_CPU_TIME_SEC = value Caps maximum CPU time (seconds) a single
request can use from the resource pool.

REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value Caps maximum seconds a request will wait for
memory before failing.

MAX_DOP = value Defines maximum degree of parallelism allowed
for requests in the workload group.

GROUP_MAX_REQUESTS = value Caps concurrently executing requests in the
workload group.

USING { pool_name | "default" } Designates which pool the workload group will
be bound to.

■Note Multiple workload groups can be associated with a single resource pool, but a workload group cannot be
associated with multiple resource pools.

Just as there are the internal and default resource pools, there are also the internal and default
workload groups. The default workload group is used for any requests that are not covered by the
classifier user-defined function (a function that determines which workload groups incoming con-
nections are assigned to—demonstrated later in this recipe).

After creating user-defined workload groups and their binding to resource pools, you can then
create a single classifier user-defined function that will help determine which workload group an
incoming SQL Server connection and request belongs to.

For example, if you have a SQL login named Sue, you can assign that login in the classifier func-
tion to belong to a specific workload group that is associated with a specific resource pool.

The classifier user-defined function is created in the master database and returns the workload
group name that the incoming SQL Server connection will use. In order to activate the classifier for
incoming connections, the ALTER RESOURCE GOVERNOR command is used—which I’ll demonstrate
later on in this recipe.

Beginning the recipe, let’s assume that I have a SQL Server instance that is used by an applica-
tion with two general types of activity. The first type of activity relates to the application itself. The
application uses ongoing automated processes with specific connection qualities and must run
reliably. The second type of activity comes from ad hoc query users. These are users who require
periodic information about transactional activity, but getting that information must never hamper
the performance of the main application. Granted, the best practice would be to separate this activ-
ity onto two SQL Server instances; however, if this isn’t possible, I can use Resource Governor to
constrain resources instead.

I’ll start by creating two separate user-defined resource pools for the SQL Server instance. The
first pool will be used for the high-priority application. I will make sure that this pool reserves at
least 25% of CPU and memory during times of query contention:

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 783

9802ch28.qxd 6/18/08 10:57 AM Page 783

CREATE RESOURCE POOL priority_app_queries
WITH (MIN_CPU_PERCENT = 25,

MAX_CPU_PERCENT = 75,
MIN_MEMORY_PERCENT = 25,
MAX_MEMORY_PERCENT = 75)

GO

Next, I will create a second resource pool that will be reserved for ad hoc queries. I will cap the
maximum CPU and memory of these pools at 25% during times of high query contention, in order
to preserve resources for the previously created resource pool:

CREATE RESOURCE POOL ad_hoc_queries
WITH (MIN_CPU_PERCENT = 5,

MAX_CPU_PERCENT = 25,
MIN_MEMORY_PERCENT = 5,
MAX_MEMORY_PERCENT = 25)

GO

I can change the values of the resource pools using the ALTER RESOURCE POOL command. For
example, I am now going to change the minimum memory for the ad hoc query pool to 10% and
maximum memory to 50%:

ALTER RESOURCE POOL ad_hoc_queries
WITH (MIN_MEMORY_PERCENT = 10,

MAX_MEMORY_PERCENT = 50)
GO

Once I have created the pools, I can now confirm the settings using the sys.resource_
governor_resource_pools catalog view:

SELECT pool_id,name,min_cpu_percent,max_cpu_percent,
min_memory_percent,max_memory_percent

FROM sys.resource_governor_resource_pools

This returns

pool_id name min_cpu_ max_cpu_ min_memory_ max_memory_
percent percent percent percent

1 internal 0 100 0 100
2 default 0 100 0 100
258 ad_hoc_queries 5 25 10 50
259 priority_app_queries 25 75 25 75

Now that I have created the resource pools, I can bind workload groups to them. In this case, I
will start by creating a workload group for my highest priority application connections. I will set this
workload group to a high importance, and be generous with the maximum memory grant percent-
age and other arguments:

CREATE WORKLOAD GROUP application_alpha
WITH

(IMPORTANCE = HIGH,
REQUEST_MAX_MEMORY_GRANT_PERCENT = 75,
REQUEST_MAX_CPU_TIME_SEC = 75,
REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 120,
MAX_DOP = 8,
GROUP_MAX_REQUESTS = 8)

USING priority_app_queries
GO

CHAPTER 28 ■ QUERY PERFORMANCE TUNING784

9802ch28.qxd 6/18/08 10:57 AM Page 784

Next, I will create another workload group that will share the same resource pool as
application_alpha, but with a lower importance and less generous resource consumption
capabilities:

CREATE WORKLOAD GROUP application_beta
WITH

(IMPORTANCE = LOW,
REQUEST_MAX_MEMORY_GRANT_PERCENT = 50,
REQUEST_MAX_CPU_TIME_SEC = 50,
REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 360,
MAX_DOP = 1,
GROUP_MAX_REQUESTS = 4)

USING priority_app_queries
GO

I can modify the various limits of the workload group by using ALTER WORKLOAD GROUP. For
example:

ALTER WORKLOAD GROUP application_beta
WITH (IMPORTANCE = MEDIUM)

The prior two workload groups will share the same resource pool. I will now create one more
workload group that will bind to the ad hoc resource pool I created earlier. This workload group will
be able to use the maximum memory available to the ad hoc pool:

CREATE WORKLOAD GROUP adhoc_users
WITH

(IMPORTANCE = LOW,
REQUEST_MAX_MEMORY_GRANT_PERCENT = 100,
REQUEST_MAX_CPU_TIME_SEC = 120,
REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 360,
MAX_DOP = 1,
GROUP_MAX_REQUESTS = 5)

USING ad_hoc_queries
GO

Once finished, I can confirm the configurations of the workload groups by querying the
sys.resource_governor_workload_groups catalog view:

SELECT name,
Importance impt,
request_max_memory_grant_percent max_m_g,
request_max_cpu_time_sec max_cpu_sec,
request_memory_grant_timeout_sec m_g_to,
max_dop,
group_max_requests max_req,
pool_id

FROM sys.resource_governor_workload_groups

This returns

name impt max_m_g max_cpu_sec m_g_to max_dop max_req pool_id
internal Medium 25 0 0 0 0 1
default Medium 25 0 0 0 0 2
application_alpha High 75 75 120 8 8 256
application_beta Medium 50 50 360 1 4 256
adhoc_users Low 100 120 360 1 5 257

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 785

9802ch28.qxd 6/18/08 10:57 AM Page 785

Now I am ready to create the classifier function. This function will be called for each new con-
nection. The logic of this function will return the workload group where all connection requests will
be sent. The classifier function can use several different connection-related functions for use in the
logic, including HOST_NAME, APP_NAME, SUSER_NAME, SUSER_SNAME, IS_SRVROLEMEMBER, and IS_MEMBER.

■Caution Make sure this function is tuned properly and executes quickly.

I create the following function that looks at the SQL Server login name and connection host
name in order to determine which workload group the new connection should be assigned to:

USE master
GO

CREATE FUNCTION dbo.JOEPROD_classifier()
RETURNS sysname
WITH SCHEMABINDING
AS
BEGIN

DECLARE @resource_group_name sysname

IF SUSER_SNAME() IN ('AppLogin1', 'AppLogin2')
SET @resource_group_name = 'application_alpha'

IF SUSER_SNAME() IN ('AppLogin3', 'AppLogin4')
SET @resource_group_name = 'application_beta'

IF HOST_NAME() IN ('Workstation1234', 'Workstation4235')
SET @resource_group_name = 'adhoc_users'

-- If the resource group is still unassigned, use default
IF @resource_group_name IS NULL
SET @resource_group_name = 'default'

RETURN @resource_group_name

END
GO

Now that I’ve created the classifier function, I can activate it using ALTER RESOURCE GOVERNOR
and the CLASSIFIER_FUNCTION argument:

-- Assign the classifier function
ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = dbo.JOEPROD_classifier)
GO

To enable the configuration, I must also execute ALTER RESOURCE GOVERNOR with the
RECONFIGURE option:

ALTER RESOURCE GOVERNOR RECONFIGURE
GO

I’ll validate the settings using the sys.resource_governor_configuration catalog view:

SELECT OBJECT_NAME(classifier_function_id,DB_ID('master')) Fn_Name,
is_enabled

FROM sys.resource_governor_configuration

CHAPTER 28 ■ QUERY PERFORMANCE TUNING786

9802ch28.qxd 6/18/08 10:57 AM Page 786

This returns

Fn_Name is_enabled
JOEPROD_classifier 1

Now incoming activity for new connections will be routed to the appropriate workload groups
and will use resources from their associated resource pools.

■Tip You can monitor the incoming request statistics for resource pools and workload groups using the
sys.dm_resource_governor_resource_pools and sys.dm_resource_governor_workload_groups
Dynamic Management Views.

To disable the settings, I can execute the ALTER RESOURCE GOVERNOR with the DISABLE argument:

ALTER RESOURCE GOVERNOR DISABLE

I can remove the user-defined workload groups and resource pools by executing DROP WORKLOAD
GROUP and DROP RESOURCE POOL:

USE master
GO

DROP WORKLOAD GROUP application_alpha
DROP WORKLOAD GROUP application_beta
DROP WORKLOAD GROUP adhoc_users

DROP RESOURCE POOL ad_hoc_queries
DROP RESOURCE POOL priority_app_queries

I can also drop the classifier function once it is no longer being used:

ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = NULL)

DROP FUNCTION dbo.JOEPROD_classifier

How It Works
This recipe demonstrated how to use Resource Governor to allocate memory and CPU resources
into separate, user-defined resource pools. Once the resource pools were defined, I created work-
load groups, which in turn had associated limits within the confines of their assigned user-defined
resource pool. I then created a classifier user-defined function, which was used to assign workload
groups to incoming connection requests. This allowed me to confine lower priority requests to
fewer resources than higher priority requests.

This new functionality allows you to maintain significant control over SQL Server instances
that have varying workload requirements and limited system resources. Even on systems with gen-
erous system resources, you can use Resource Governor to protect higher priority workloads from
being negatively impacted by lower priority requests.

CHAPTER 28 ■ QUERY PERFORMANCE TUNING 787

9802ch28.qxd 6/18/08 10:57 AM Page 787

9802ch28.qxd 6/18/08 10:57 AM Page 788

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Backup and Recovery

One of the most critical responsibilities of a SQL Server professional is to protect data. This chap-
ter contains various recipes for backing up your database, be it a full, file, filegroup, transaction log,
or differential backup (all of these backups will be described in more detail).

I’ll also review how to use the new compression improvement added to SQL Server 2008 Enter-
prise Edition, and you’ll also learn methods for using these backup types to recover (restore) your
database.

Creating a Backup and Recovery Plan
Before getting too far into the details of how to perform backups and restores for your SQL Server
databases, I’d first like to discuss how to generate a database recovery plan. In general, you should
think about answering the following questions:

• Which of your databases are important? If a database is important, that is, used for non-
trivial purposes, it should be backed up.

• How much data can you lose? In other words, what is your recovery point objective (RPO)?
Can you lose a day’s worth of data? An hour’s worth? A minute’s? The less data you can afford
to lose, the more often you should be backing up your databases.

• Do you have an off-site storage facility? Disasters happen. Equipment can be destroyed or
catch on fire. If the data is important to you, you need to be moving it to a separate, offsite
location via tape or over the network.

• What is your recovery time objective (RTO)? How much downtime can your business handle?
How much time would it currently take you to get everything up and running after a loss of
all your databases? If your databases are large, and your downtime allowance very small, you
may need to consider duplication of your existing databases (database mirroring, log ship-
ping, replication, SAN technologies).

Recovery plans are based on the value your company places on the SQL Server instance and its
databases. The business value placed on an individual instance can range from trivial (“crash-and-
burn”) to mission critical (“can’t lose any data at all”). It almost goes without saying that business-
critical databases must be backed up. If you cannot afford to lose or reproduce the data within a
database, you should be backing it up. This chapter will review how to use Transact-SQL to perform
backups and will discuss the various types of backups that can be performed.

Another consideration with backups is the backup frequency. If you can afford to lose 24 hours’
worth of data, then, depending on the database size, a full database backup scheduled to run once a
day may be acceptable. If you cannot lose more than 30 minutes’ worth of modifications, you
should consider executing transaction log backups every 30 minutes as well. If you cannot afford to
lose any data at all, then you should investigate such solutions as log shipping, database mirroring,

789

C H A P T E R 2 9

9802ch29.qxd 6/17/08 4:06 PM Page 789

RAID mirroring, or vendor solutions offered with storage area networks (SAN) and split-mirror soft-
ware. The implication being, of course, that the closer you want to get to a no-data-loss guarantee,
the more money you will have to spend.

Along with backups, you should also be thinking about archiving the files generated from the
backup to another server on the network or to tape. If your SQL Server instance machine is
destroyed, you will definitely need backups from an off-server and offsite source.

The last major point to consider is the maximum allowable downtime for the SQL Server
instance and databases. Aside from the data that is lost, how much time can you afford to spend
before everything is up and running again? How much money does your business lose for each hour
of database downtime? If the number is high, you need to invest in redundancy to offset this outage.
If a database restore operation for a single database takes 8 hours, you may need to reevaluate
whether restoring from backup is appropriate or cost effective. In this situation, you may choose to
use replication, log shipping, database mirroring, or other third-party solutions that involve making
copies of the data available across two or more SQL Server instances. Failover clustering can also
help you with your SQL Server instance’s availability by eliminating many different single points of
failure (except for shared disks). If your hardware goes bad, do you have replacement parts on site?
Or, do you need to run to the nearest store to buy them? For high-availability requirements, you
need to think about any single points of failure, and address them with redundant parts and
processes.

As a DBA, you should consider and act upon all the questions raised in this section in order to
create a SQL Server backup and recovery plan. At a lower level, you should also know the details of
who to contact in the event of a disaster. The following is a list of items that you should document
along with your backup and recovery strategy:

• Do you have a “run book”? You will need to know the primary contact or contacts for each
application connecting to a database. Who handles the communication with end users? If a
database is corrupted, who makes the decision to restore from a backup (and potentially
lose some recent data updates) rather than work with Microsoft to potentially save the cor-
rupted data?

• If you have a standby server, who on your IT staff needs to be involved to get the standby
server up and running? Who installs the OS, moves files, swaps DSN names, and so on?
Do you have a list of these people and their pager/e-mail/contact info?

• Do you have a support plan with your hardware and software vendors? Do you have a central
document listing license keys, service codes, and phone numbers?

• Do you have spare parts or an available spare parts server?

• If your entire site is down, do you have an alternative site? Do you have a documented
process for moving to this alternate site?

If you lose an entire server and must rebuild it from scratch, you should have even more infor-
mation available to you. Your company should have the following information documented and
available:

• Who on your team needs to be involved in a server rebuild? Can he be available at 2 a.m.?
Will he be available when you need him?

• Where do you keep your SQL Server backup files? What types of backups were you perform-
ing and how often were they run?

• Were there any other applications installed or configured on the SQL Server server? (Remem-
ber, aside from performance improvements, making your SQL Server machine a dedicated
server reduces the complexity of reinstalling third-party or home-grown applications.)

CHAPTER 29 ■ BACKUP AND RECOVERY790

9802ch29.qxd 6/17/08 4:06 PM Page 790

• What operating system version were you running on? Do you have the CDs needed to rein-
stall the OS or reinstall SQL Server? Do you have all necessary license keys?

• Did you document the steps used to install SQL Server? What collation did you choose? Did
you install all available components (Integration Services, Analysis Services, Reporting Ser-
vices, for example) or just the database engine?

The more databases and applications you have running on the SQL Server instance, the more
documentation you’ll need to keep in order to be prepared for the worst. The important thing is to
prioritize accordingly, first forming plans for your organization’s most critical databases and then
enlisting the help of business partners to help keep your backup and recovery plan both updated
and useful.

Making Backups
In this next set of recipes, I’ll show you different methods for backing up SQL Server databases.
Specifically, I’ll be showing you how to perform full, transaction log, and differential backups. I’ll
also demonstrate the new compression improvement introduced in SQL Server 2008 Enterprise
Edition.

A full backup makes a full copy of your database. While the database backup is executed, the
database remains available for database activity (since this is an online activity). Of all the database
backup options, full database backups are the most time-consuming. The full backup includes all
changes and log file entries as of the point in time when the backup operation completes. Once cre-
ated, a full database backup allows you to restore your entire database. A full backup is the core of
your data recovery plan, and it’s a prerequisite for taking advantage of transaction log or differential
backups (as you’ll see later). When creating a backup, you have the option of creating a file on a disk
drive or writing directly to tape. In general, SQL Server backups execute and complete more quickly
when written directly to disk. Once the backup has been created, you can then copy it to tape or to a
network drive.

A SQL Server database requires a transaction log file. A transaction log tracks transactions that
have committed, or those that are still open and not yet committed. This file contains a record of
ongoing transactions and modifications in the database. Transaction log backups back up the trans-
action log’s activity that has occurred since the last full or transaction log backup. When the backup
completes, SQL Server truncates the inactive portion of the log (the part not containing open trans-
action activity). Transaction log backups have low resource overhead and can be run frequently
(every 15 minutes, for example).

Transaction log backups can only be performed on databases using a FULL or BULK_LOGGED
recovery model. Recall from Chapter 22 that the three database recovery models are FULL,
BULK_LOGGED, and SIMPLE:

• When using SIMPLE recovery, the transaction log is automatically truncated by SQL Server,
removing the ability to perform transaction log backups. In this recovery mode, the risk of
data loss is dependent on your full or differential backup schedule, and you will not be able
to perform point-in-time recovery that a transaction log backup offers.

• The BULK_LOGGED recovery model allows you to perform full, differential, and transaction log
backups—however, there is minimal logging to the transaction log for bulk operations. The
benefit of this recovery mode is reduced log space usage during bulk operations; however,
the trade-off is that transaction log backups can only be used to recover to the time the last
transaction log backup was completed (no point-in-time recovery or marked transactions
allowed).

CHAPTER 29 ■ BACKUP AND RECOVERY 791

9802ch29.qxd 6/17/08 4:06 PM Page 791

• The FULL recovery model fully logs all transaction activity, bulk operations included. In this
safest model, all restore options are available, including point-in-time transaction log
restores, differential backups, and full database backups.

Aside from allowing a restore from the point that the transaction log backup completed, trans-
action log backups also allow for point-in-time and transaction mark recovery. Point-in-time
recovery is useful for restoring a database prior to a database modification or failure. Transaction
marking allows you to recover to the first instance of a marked transaction (using BEGIN
TRAN...WITH MARK) and includes the updates made within this transaction.

The size of the transaction log backup file depends on the level of database activity and
whether or not you are using a FULL or BULK_LOGGED recovery model. Again, the SIMPLE recovery
model does not allow transaction log backups.

To recover from transaction logs backups, you must first restore from the full backup, and then
apply the transaction log backups. Transaction logs are cumulative, meaning each backup is part of
a sequential line of transaction log backups and must be restored sequentially in the same order.
You cannot, for example, restore a full database backup and then restore the third transaction log
backup, skipping the first two transaction log backups.

A database also should not be recovered (meaning brought online and made available for use)
until you are finished applying all the transaction logs that you wish to apply in order chronologi-
cally by backup date and time. Recovery is handled by the RECOVERY and NORECOVERY keywords of the
RESTORE command, reviewed later in the chapter.

You must understand the backups that have been made, what is contained in them, and when
they were performed before you can restore them. Later on in the chapter, I’ll demonstrate the vari-
ous commands that you can use to view this information. The following list details a typical backup
sequence:

Time Backup Type
8AM Full database backup
10AM Transaction log backup
1PM Transaction log backup

If you wanted to recover the database as of 1 p.m., you would need to restore the 8 a.m. full
backup first, the 10 a.m. transaction log backup next, and finally the 1 p.m. transaction log backup.
If using differential backups, you must restore the full backup first, the differential backup next, and
then transaction log backups created after the differential backup. Differential backups copy all the
data and log pages that have changed since the last full backup. Since the database is online when
it’s being backed up, the differential backup includes changes and log file entries from the point the
backup began to when the backup completes. The files generated by differential backups are usu-
ally smaller than full database backups, and are created more quickly too.

Differential backups, unlike transaction log backups, are self-contained and only require the
latest full backup from which to restore. Transaction log backups, however, are sequential files that
don’t include data from previous transaction log backups. For example, if you run a full backup at
8 a.m., a differential backup at 10 a.m., and an additional differential backup at 1 p.m., the 1 p.m.
differential backup will still include all changes since the 8 a.m. full backup:

Time Backup Type
8AM Full database backup
10AM Differential backup (captures changes from 8am - 10am)
1PM Differential backup (captures changes from 8am - 1pm)

CHAPTER 29 ■ BACKUP AND RECOVERY792

9802ch29.qxd 6/17/08 4:06 PM Page 792

Differential backups can still work side-by-side with transaction log backups, although transac-
tion log backups can’t be restored until any full and differential backups have been restored first.

The first recipe in this set of backup recipes will demonstrate how to perform a full backup in
its simplest form.

Performing a Basic Full Backup
To perform a full backup, you use the BACKUP DATABASE command. The simplified syntax for per-
forming a full backup to disk is as follows:

BACKUP DATABASE { database_name | @database_name_var }
TO DISK = { 'physical_backup_device_name' | @physical_backup_device_name_var }
[,...n]

The arguments of this command are described in Table 29-1.

Table 29-1. BACKUP DATABASE Arguments

Argument Description

database_name | @database_name_var This defines the database name to be backed up (either
designated as a string or local variable).

'physical_backup_device_name' | This specifies the physical path and file name, or a local
@physical_backup_device_name_var variable containing the physical path and file name.

[,...n] You can designate up to 64 backup device names for a
single BACKUP DATABASE command.

The BACKUP command also includes several options, many of which I’ll demonstrate in this
chapter:

[WITH] [Option Name] [,...n]

■Tip For a full list of options, see SQL Server 2008 Books Online. I’ll demonstrate the more common options in
this chapter.

In this recipe, I’ll perform a simple, full database backup of the TestDB database to a disk device
(file). Used for demonstrating BACKUP DATABASE, I’ll first create a new scratch database that is also
populated with a few objects from the AdventureWorks database:

USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TestDB')

BEGIN
CREATE DATABASE TestDB

END
GO

USE TestDB
GO

CHAPTER 29 ■ BACKUP AND RECOVERY 793

9802ch29.qxd 6/17/08 4:06 PM Page 793

SELECT *
INTO dbo.SalesOrderDetail
FROM AdventureWorks.Sales.SalesOrderDetail
GO

SELECT *
INTO dbo.SalesOrderHeader
FROM AdventureWorks.Sales.SalesOrderHeader
GO

Now, the new database will be backed up:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2008_1617.BAK'

This returns

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 5 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2461 pages in 4.210 seconds (4.788 MB/sec).

How It Works
In this simple recipe, a full database backup was created for the TestDB database. The first line of
code designated the name of the database to be backed up:

BACKUP DATABASE TestDB

The second line of code designated the file to back up the database to:

TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2008_1617.BAK'

A backup file was created with a *.bak file extension. The name of the backup showed the date
and military time. Although including a timestamp in the file name helps you identify the time the
backup was created, it isn’t a requirement. After executing, information was returned regarding the
number of data pages processed and the amount of time the backup process took.

Compressing Your Backups
SQL Server 2008 introduces native backup compression for Enterprise Edition and Developer
Edition. This functionality allows you to more quickly back up your databases and consume less
disk space. The amount of compression gained depends on the data within the database. For exam-
ple, databases with character data with repeating values will result in higher compression ratios
than databases containing mostly numeric or encrypted data.

In this recipe, I’ll demonstrate first how to enable compression for the SQL Server instance by
default. After doing this, I’ll show you how to explicitly not compress a backup or compress a
backup regardless of the server-level option.

In this first query, I will configure the server-instance default (again, this requires Enterprise
Edition or Developer Edition to use):

USE master
GO

EXEC sp_configure 'backup compression default', '1'
RECONFIGURE WITH OVERRIDE
GO

CHAPTER 29 ■ BACKUP AND RECOVERY794

9802ch29.qxd 6/17/08 4:06 PM Page 794

Executing the following query, I can confirm that the setting is active:

SELECT description,value_in_use
FROM sys.configurations
WHERE name = 'backup compression default'

This returns

description value_in_use
Enable compression of backups by default 1

Now I run a simple backup against the AdventureWorks database:

BACKUP DATABASE AdventureWorks
TO DISK = 'C:\Apress\AW_compressed.bak'

The operation statistics are as follows:

Processed 24056 pages for database 'AdventureWorks',
file 'AdventureWorks2008_Data' on file 1.
Processed 36 pages for database 'AdventureWorks',
file 'FileStreamDocuments' on file 1.
Processed 5 pages for database 'AdventureWorks',
file 'AdventureWorks2008_Log' on file 1.
BACKUP DATABASE successfully processed 24112 pages
in 6.318 seconds (29.814 MB/sec).

If I do not wish to compress the backup, I can use the NO_COMPRESSION argument (similarly, I
can designate COMPRESSION to override the server option if it is disabled):

BACKUP DATABASE AdventureWorks
TO DISK = 'C:\Apress\AW_uncompressed.bak'
WITH NO_COMPRESSION

The operations statistics are as follows (notice that the compressed backup runs in 6.318 sec-
onds versus the uncompressed 11.863 seconds—but that isn’t the only distinction, as you’ll find
out):

Processed 24056 pages for database 'AdventureWorks',
file 'AdventureWorks2008_Data' on file 1.
Processed 16 pages for database 'AdventureWorks',
file 'AW2' on file 1.
Processed 36 pages for database 'AdventureWorks',
file 'FileStreamDocuments' on file 1.
Processed 1 pages for database 'AdventureWorks',
file 'AdventureWorks2008_Log' on file 1.
BACKUP DATABASE successfully processed 24109 pages
in 11.863 seconds (15.876 MB/sec).

I can query the statistics about both backups by looking at msdb..backupset:

SELECT TOP 2 database_name, backup_size, compressed_backup_size
FROM msdb..backupset
ORDER BY backup_finish_date DESC

CHAPTER 29 ■ BACKUP AND RECOVERY 795

9802ch29.qxd 6/17/08 4:06 PM Page 795

Looking at the resulting space taken up by the backups, the compressed backup of the
AdventureWorks database takes up 45MB versus the uncompressed backup, which takes up 191MB
(the following data is in bytes):

database_name backup_size compressed_backup_size
AdventureWorks 200365056 200365056
AdventureWorks 200365056 47361034

How It Works
Backup compression allows you to create database backups that run faster and take up less disk
space. The counterbalancing cost can be CPU, so you should evaluate the overhead given your con-
current query traffic and system resource needs.

Using compression by default is accomplished by enabling the backup compression default
server option using sp_configure or by simply designating COMPRESSION in the WITH clause of the
BACKUP operation. If you wish to not compress a specific backup when the server option is enabled,
you only need to designate NO_COMPRESSION, as was demonstrated in this recipe.

To view the compressed size of the resulting backup, I queried the msdb..backupset table, look-
ing at the compressed_backup_size column. If the database backup was not compressed, this value
would be the same size as the backup_size column.

Naming and Describing Your Backups and Media
Considering industry regulation of information and retention laws, your company policies may
require that you keep database backups for a long period of time. With longer retention periods,
backup set metadata becomes more important. Naming your database backup file with the data-
base name and timestamp is usually sufficient; however, SQL Server includes other options you can
take advantage of as well for describing and naming your backups. These options include

[WITH
[[,] DESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
[[,] MEDIANAME = { media_name | @media_name_variable }]
[[,] NAME = { backup_set_name | @backup_set_name_var }]

]

Table 29-2 describes these options.

Table 29-2. Backup Media Options

Argument Description

DESCRIPTION Free-form text description of the backup set, helping identify the contents
of the backup device

MEDIADESCRIPTION Free-form text description of the media set, helping identify the contents of
the media

MEDIANAME Name of the entire backup media set, limited to 128 characters

NAME Name of the backup set

Two terms related to SQL Server backups are used in Table 29-2: backup set and media set. A
backup set is simply the result of a database backup operation. The backup set can span one or

CHAPTER 29 ■ BACKUP AND RECOVERY796

9802ch29.qxd 6/17/08 4:06 PM Page 796

more backup devices (disk or tape). The media set is the collection of one or more backup devices
that the backup set is written to.

The following example demonstrates the designating of a description and name for both the
backup and media sets:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB.bak'
WITH DESCRIPTION = 'My second recipe backup, TestDB',

NAME = 'TestDB Backup October 14th',
MEDIADESCRIPTION = 'Backups for October 2008, Week 2',
MEDIANAME = 'TestDB_October_2008_Week2'

This returns

Processed 2440 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2441 pages in
0.815 seconds (23.399 MB/sec).

How It Works
This recipe has demonstrated how to add more descriptive information with your database backup.
The additional options were added to the BACKUP DATABASE command using the WITH clause. The
DESCRIPTION described the backup set:

WITH DESCRIPTION = 'My second recipe backup, TestDB',

The NAME identified the backup set name:

NAME = 'TestDB Backup October 14th',

The MEDIADESCRIPTION designated the description of the media set:

MEDIADESCRIPTION = 'Backups for October 2008, Week 2',

The MEDIANAME designated the name of the entire backup media set:

MEDIANAME = 'TestDB_October_2008_Week2'

This information can be retrieved using RESTORE commands (such as RESTORE HEADERONLY),
which will be covered later on in the chapter in the “Viewing Backup Metadata” recipe.

Configuring Backup Retention
In the first recipe of this chapter, if the backup file (device) hadn’t already existed before the backup,
it would be created during execution of the BACKUP command. If the file did already exist, the default
behavior of the backup process would be to append the backup to the existing backup file (retain-
ing any other backups on the file).

There are several BACKUP options that impact the backup set retention:

[WITH
[[,] EXPIREDATE = { date | @date_var }
| RETAINDAYS = { days | @days_var }]
[[,] { FORMAT | NOFORMAT }]
[[,] { INIT | NOINIT }]
[[,] { NOSKIP | SKIP }]

]

CHAPTER 29 ■ BACKUP AND RECOVERY 797

9802ch29.qxd 6/17/08 4:06 PM Page 797

These options are described in Table 29-3.

Table 29-3. Backup Retention Options

Argument Description

EXPIREDATE | RETAINDAYS EXPIREDATE indicates the date the backup set expires and can be
overwritten. RETAINDAYS specifies the days before the backup media
set can be overwritten.

FORMAT | NOFORMAT FORMAT generates a media header to all volumes used for the backup.
Existing headers are overwritten. This renders a backup set unusable
if a stripe exists on the device. NOFORMAT indicates that a media
header should not be written on all volumes.

INIT | NOINIT INIT overwrites existing backup sets, but preserves the media
header. Backup sets are not overwritten if they have not expired yet
or the name set in the BACKUP statement doesn’t match the name on
the backup media. NOINIT appends the backup set to the disk or
tape device. NOINIT is the default option.

NOSKIP | SKIP SKIP does not check expiration and name verification. NOSKIP checks
the date and name, and is an extra safeguard to ensure the backup is
not overwritten improperly.

This recipe demonstrates performing a full database backup while setting a backup set reten-
tion period of 30 days, after which it can be overwritten:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct.bak'
WITH RETAINDAYS = 30

Now an attempt will be made to overwrite existing backups on the TestDB_June.bak file:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct.bak'
WITH INIT

This returns

Msg 4030, Level 16, State 1, Line 1
The medium on device 'C:\Apress\Recipes\TestDB_Oct.bak'
expires on Apr 14 2008 2:35:42:000PM and cannot be overwritten.
Msg 3013, Level 16, State 1, Line 1
BACKUP DATABASE is terminating abnormally.

How It Works
In this recipe, a new database backup was created with a backup set retention of 30 days. After the
backup was created, another backup was executed, this time using the INIT switch (which over-
writes existing backup sets). This attempt failed with an error warning that the backup set hasn’t
expired yet, and therefore cannot be overwritten.

CHAPTER 29 ■ BACKUP AND RECOVERY798

9802ch29.qxd 6/17/08 4:06 PM Page 798

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Striping Backup Sets
Striping backups involves using more than one device (disk or tape) for a single backup set opera-
tion. In fact, when performing a database backup, you can use up to 64 devices (disk or backup) in
your backup operation. This is particularly useful for very large databases, because you can improve
backup performance by striping the backup files across separate drives/arrays. Striping the backup
files means each file is written to proportionately and simultaneously. Striped backups use parallel
write operations and can significantly speed up backup operations.

This recipe demonstrates striping a backup across three disk devices:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe1.bak',

DISK = 'D:\Apress\Recipes\TestDB_Stripe2.bak',
DISK = 'E:\Apress\Recipes\TestDB_Stripe3.bak'

This backup creates three files that are each used to store one third of the backup information
needed to restore the database. If you try to use any one of the devices independently for a backup,
you’ll get an error message, as this next example demonstrates:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe1.bak'

This returns

Msg 3132, Level 16, State 1, Line 1
The media set has 3 media families but only 1 are provided.
All members must be provided.
Msg 3013, Level 16, State 1, Line 1
BACKUP DATABASE is terminating abnormally.

How It Works
In this recipe, a backup was created using three devices, which are also called media families. The
three media families are used as a single media set, which can contain one or more backup sets.
After creating the media set made up of three media families, the second part of the recipe
attempted a backup using one of the existing media families. An error occurred because until that
file or files are formatted (using WITH FORMAT), they must be used together and not separately in a
backup operation.

Using a Named Backup Device
You can define a logical name for a tape or disk device that can be used in your BACKUP or RESTORE
command. Defining a device adds it to the sys.backup_devices catalog view and saves you from
having to type in a disk’s path and file or tape name.

To add a new backup device definition, use the sp_addumpdevice system-stored procedure:

sp_addumpdevice [@devtype =] 'device_type'
, [@logicalname =] 'logical_name'
, [@physicalname =] 'physical_name'

[, { [@cntrltype =] controller_type |
[@devstatus =] 'device_status' }

]

CHAPTER 29 ■ BACKUP AND RECOVERY 799

9802ch29.qxd 6/17/08 4:06 PM Page 799

The arguments of this command are described in Table 29-4.

Table 29-4. sp_addumpdevice Arguments

Argument Description

device_type This argument is used to specify the device type: disk or tape.

logical_name This option defines the name of the backup device that will be used in the
BACKUP and RESTORE syntax.

physical_name This argument defines the operating system file name, universal naming
convention name (UNC), or tape path.

controller_type This argument is ignored (backward compatible).

device_status This argument is ignored (backward compatible).

To view the definition of a backup device, use the sp_helpdevice system-stored procedure,
which only takes the logical_name as a parameter:

sp_helpdevice [[@devname =] 'name']

To delete a backup device, use sp_dropdevice:

sp_dropdevice [@logicalname =] 'device'
[, [@delfile =] 'delfile']

The first parameter is the name of the backup device, and when DELFILE is designated in the
second parameter, the actual backup device file is deleted. In the first part of the recipe, a backup
device is created called TestDBBackup, which is mapped to the C:\Apress\Recipes\TestDB_Device.
bak file:

USE master
GO

EXEC sp_addumpdevice 'disk', 'TestDBBackup', 'C:\Apress\Recipes\TestDB_Device.bak'

This returns

Command(s) completed successfully.

Next, information regarding the device is queried using sp_helpdevice:

EXEC sp_helpdevice 'TestDBBackup'

This returns the following (abridged columns):

device_name physical_name description
TestDBBackup C:\Apress\Recipes\TestDB_Device.bak disk, backup device

Next, a backup is performed against the device:

BACKUP DATABASE TestDB
TO TestDBBackup

This returns

CHAPTER 29 ■ BACKUP AND RECOVERY800

9802ch29.qxd 6/17/08 4:06 PM Page 800

Processed 2440 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2441 pages in
0.858 seconds (22.226 MB/sec).

Lastly, the device is dropped using sp_dropdevice (since the second DELFILE option is not des-
ignated, the physical backup file will remain on the operating system):

EXEC sp_dropdevice 'TestDBBackup'

This returns

Device dropped.

How It Works
In this recipe, I demonstrated how to create a named backup device, allowing you to skip the key-
strokes you would need to designate a full disk or tape name in your BACKUP or RESTORE commands.

The first example in the recipe created a device using sp_addumpdevice. The first parameter of
the stored procedure took the device type disk. The second parameter was the logical name of the
device, and the third parameter was the actual physical file path and name. The second query in the
recipe demonstrated returning information about the device using sp_helpdevice. The status field
relates to the description of the device, and the cntrltype column designates the device type (2 for
disk device, 5 for tape). The third query in the recipe demonstrated using the device in a backup,
which involved simply designating the device name instead of using the DISK or TAPE option. In the
last query of the recipe, the device was dropped using sp_dropdevice.

Mirroring Backup Sets
You can mirror a database, log, file, or filegroup backup. Mirroring creates backup redundancy by
creating two, three, or four copies of a media set. This redundancy can come in handy if one of the
media sets is corrupted or invalid, because you can use any of the other valid mirrored media sets
instead.

The syntax is as follows:

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]

The MIRROR TO command is used in conjunction with a list of one or more backup devices, and
up to three mirrors. In this example, a backup is mirrored to three different copies. Unlike the previ-
ous striping example, only one of these generated backup files will actually be needed for a
database restore operation. However, if one of the files is invalid, there are three other copies to
attempt a restore from instead:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Original.bak'
MIRROR TO DISK = 'D:\Apress\Recipes\TestDB_Mirror_1.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Mirror_2.bak'
MIRROR TO DISK = 'F:\Apress\Recipes\TestDB_Mirror_3.bak'
WITH FORMAT

CHAPTER 29 ■ BACKUP AND RECOVERY 801

9802ch29.qxd 6/17/08 4:06 PM Page 801

This returns

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2457 pages in 11.460 seconds (1.756 MB/sec).

This second example demonstrates mirroring a striped backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe_1_Original.bak',
DISK = 'D:\Apress\Recipes\TestDB_Stripe_2_Original.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Stripe_1_Mirror_1.bak',
DISK = 'F:\Apress\Recipes\TestDB_Stripe_2_Mirror_1.bak'
WITH FORMAT

This returns

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE successfully processed 2457 pages in 7.883 seconds (2.553 MB/sec).

How It Works
In the first example of this recipe, a backup was executed with three mirrors, which resulted in four
backup files for the TestDB database. The first line of code designated the database to back up:

BACKUP DATABASE TestDB

The second line designated the location of the main (non-mirrored) backup file:

TO DISK = 'C:\Apress\Recipes\TestDB_Original.bak'

The next three lines designated the three mirrored copies of the backup:

MIRROR TO DISK = 'D:\Apress\Recipes\TestDB_Mirror_1.bak'
MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Mirror_2.bak'
MIRROR TO DISK = 'F:\Apress\Recipes\TestDB_Mirror_3.bak'
WITH FORMAT

Note that WITH FORMAT is required the first time a mirrored backup set is created. The original
backup was placed on the C:\ drive, and then each mirrored copy placed on its own drive (D:\, E:\,
F:\). Any single .bak file in this example can then be used to restore the TestDB database, thus pro-
viding redundancy in the event of a backup file corruption.

The second example in the recipe demonstrated mirroring a striped backup (two media fami-
lies in a media set). This time, TO DISK included the two files used to stripe the original backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Stripe_1_Original.bak',
DISK = 'D:\Apress\Recipes\TestDB_Stripe_2_Original.bak'

The MIRROR TO DISK also designated two files that will be the mirror copy of the original striped
backup:

MIRROR TO DISK = 'E:\Apress\Recipes\TestDB_Stripe_1_Mirror_1.bak',
DISK = 'F:\Apress\Recipes\TestDB_Stripe_2_Mirror_1.bak'
WITH FORMAT

Notice that MIRROR TO DISK was only designated once, followed by the two devices to mirror to.

CHAPTER 29 ■ BACKUP AND RECOVERY802

9802ch29.qxd 6/17/08 4:06 PM Page 802

Performing a Transaction Log Backup
The BACKUP LOG command is used to perform a transaction log backup. The following is the basic
syntax for performing a transaction log backup:

BACKUP LOG { database_name | @database_name_var }
{

TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]

[WITH] [Option Name] [,...n]
}

BACKUP LOG shares many of the same options and functionality as the BACKUP DATABASE com-
mand. Options not yet demonstrated in this chapter that are specific only to transaction log
backups are described in Table 29-5.

Table 29-5. BACKUP LOG Options

Argument Description

NO_TRUNCATE If the database is damaged, NO_TRUNCATE allows you to back up the
transaction log without truncating the inactive portion (the inactive
portion contains committed transaction entries). This is often used
for emergency transaction log backups, capturing activity prior to a
RESTORE operation. Don’t run this on a long-term basis, because your
log file size will keep expanding.

NORECOVERY | STANDBY = NORECOVERY backs up the tail of the transaction log and then leaves
the database in a RESTORING state (which is a state from which
additional RESTORE commands can be issued). STANDBY also backs up
the tail of the transaction log, but instead of leaving it in a RESTORING
state, puts it into a read-only STANDBY state (used for log shipping).
This option requires a file to be designated to hold changes that will
be rolled back if log restores are applied.

In the first query of this recipe, a transaction log backup will be executed on the TestDB
database:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2008_1819.trn'

This returns

Processed 13 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP LOG successfully processed 13 pages in 0.448 seconds (0.230 MB/sec).

The second example in this recipe demonstrates making a transaction log backup on the tail of
the transaction log. This assumes that there has been a database corruption issue—taking a backup
of the “tail” means that you are backing up the latest transactions in the database without truncat-
ing the inactive portion of the transaction log:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2008_1820_Emergency.trn'
WITH NO_TRUNCATE

CHAPTER 29 ■ BACKUP AND RECOVERY 803

9802ch29.qxd 6/17/08 4:06 PM Page 803

How It Works
In this recipe, I demonstrated two examples of transaction log backups. Note that BACKUP LOG can’t
be performed unless the database has had a full database backup in the past. Also, in both exam-
ples, the database had to be using either a FULL or BULK_LOGGED recovery model. The first example
was a standard transaction log backup to disk. The first line of code designated the name of the
database to back up:

BACKUP LOG TestDB

The second line of code designated the device to back up to:

TO DISK = 'C:\Apress\Recipes\TestDB_Oct_14_2008_1819.trn'

After the backup was completed, a file is generated, and the inactive portion of the transaction
log is truncated automatically. In the second query, the WITH NO_TRUNCATE option was designated,
allowing you to back up the active portion of the transaction log without truncating the inactive
portion of the transaction log.

Later on in the chapter, you’ll learn how to restore data from a transaction log file, including
how to use point-in-time recovery.

Create Backups Without Breaking the Backup Sequence
Database and transaction log backups can use the COPY_ONLY option to create backups that don’t
impact the backup sequence. As you’ll see in future recipes in this chapter, both differential and
transaction log backups depend on a full backup being performed first. Whenever other full data-
base backups are created, the sequence restarts again. This means that previous differential or log
backups cannot use the later-generated full database backups. Only those differential or transaction
log backups that are created after the full database backup can be used.

When you use the COPY_ONLY option, however, a full backup does not disrupt the sequence of
backups. This is useful for creating ad hoc backups prior to major database changes, where you
don’t want to disrupt the standard backup schedule, but might like to have a “just-in-case” full
backup available to RESTORE from. This example demonstrates how to use COPY_ONLY with a full
database backup:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Copy.bak'
WITH COPY_ONLY

When you’re using COPY_ONLY with transaction log backups, the transaction log is not truncated
after the backup is created (leaving an unbroken chain of transaction log backups). This example
demonstrates how to use COPY_ONLY with a transaction log backup:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Copy.trn'
WITH COPY_ONLY

How It Works
This recipe demonstrated using COPY_ONLY to create both full and transaction log backups. The syn-
tax was similar to previous recipes, with the difference being that COPY_ONLY was included in the
WITH clause. Full database backups using this option will not break the sequence of restores
required for previous transaction log or differential backups. Transaction log backups using the
COPY_ONLY option will also not break the chronological order of the other transaction log backups.

CHAPTER 29 ■ BACKUP AND RECOVERY804

9802ch29.qxd 6/17/08 4:06 PM Page 804

Performing a Differential Backup
In this next recipe, I demonstrate how to create a differential backup. Recall from earlier in the
chapter that differential backups are used to back up all data and log pages that have changed since
the last full backup. This differs from transaction log backups, which only capture changes made
since the last transaction log and/or full database backup.

Differential backups are performed using BACKUP DATABASE and use the same syntax and func-
tionality as regular full database backups—only the DIFFERENTIAL keyword is included. This recipe
demonstrates creating a differential backup on the TestDB database:

BACKUP DATABASE TestDB
TO DISK = N'C:\Apress\Recipes\TestDB.diff'
WITH DIFFERENTIAL, NOINIT, STATS = 25

This returns

58 percent processed.
78 percent processed.
Processed 40 pages for database 'TestDB', file 'TestDB' on file 1.
100 percent processed.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP DATABASE WITH DIFFERENTIAL successfully
processed 41 pages in 0.339 seconds (0.989 MB/sec).

How It Works
In this recipe, a differential backup was created on the TestDB database. The command usage was
similar to previous recipes, only this time the DIFFERENTIAL keyword was included in the WITH
clause. Two other options (both available when using different backup types) were used: NOINIT,
which appends the backup set to an existing disk or tape device, and STATS, which returns feedback
to the client on backup progress. Differential backups can only be executed after a full database
backup, so for a new database, a differential backup can’t be the initial backup method.

Backing Up Individual Files or Filegroups
For very large databases, if the time required for a full backup exceeds your backup time window,
another option is to back up specific filegroups or files at varying schedules. This option allows
recovery in the event of lost files or filegroups. In order to perform file or filegroup backups for read-
write enabled databases, the database must be using either the full or bulk-logged recovery models,
as transaction log backups must be applied after restoring a file or filegroup backup.

Backing up a file or filegroup uses virtually the same syntax as a full database backup, except
you use the FILEGROUP or FILE keywords, and you can specify more than one filegroup or file by sep-
arating each by a comma.

To demonstrate backing up a filegroup, you’ll create a new database that uses a secondary file-
group called FG2:

USE master
GO

CREATE DATABASE VLTestDB
ON PRIMARY
(NAME = N'VLTestDB',
FILENAME =
N'c:\Apress\Recipes\VLTestDB.mdf' ,

CHAPTER 29 ■ BACKUP AND RECOVERY 805

9802ch29.qxd 6/17/08 4:06 PM Page 805

SIZE = 3048KB ,
FILEGROWTH = 1024KB),
FILEGROUP FG2
(NAME = N'VLTestDB2',
FILENAME =
N'c:\Apress\Recipes\VLTestDB2.ndf' ,
SIZE = 3048KB ,
FILEGROWTH = 1024KB),
(NAME = N'VLTestDB3',
FILENAME =
N'c:\Apress\Recipes\VLTestDB3.ndf' ,
SIZE = 3048KB ,
FILEGROWTH = 1024KB)
LOG ON
(NAME = N'VLTestDB_log',
FILENAME =
N'c:\Apress\Recipes\VLTestDB_log.ldf' ,
SIZE = 1024KB ,
FILEGROWTH = 10%)
GO

This first example creates a single filegroup backup:

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG2.bak'

This returns the following results:

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
Processed 3 pages for database 'VLTestDB', file 'VLTestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully
processed 19 pages in 0.082 seconds (1.756 MB/sec).

This second example demonstrates backing up two specific files for this database. To get a list
of file names first, execute sp_helpfile:

USE VLTestDB
GO

EXEC sp_helpfile

This returns the following (abridged) results:

name fileid filename
VLTestDB 1 c:\Apress\Recipes\VLTestDB.mdf
VLTestDB_log 2 c:\Apress\Recipes\VLTestDB_log.ldf
VLTestDB2 3 c:\Apress\Recipes\VLTestDB2.ndf
VLTestDB3 4 c:\Apress\Recipes\VLTestDB3.ndf

Using the logical file name from the sp_helpfile results, this example demonstrates backing
up the TestDB3 file in the TestDB database:

BACKUP DATABASE VLTestDB
FILE = 'VLTestDB2',
FILE = 'VLTestDB3'
TO DISK = 'C:\apress\Recipes\VLTestDB_DB2_DB3.bak'

CHAPTER 29 ■ BACKUP AND RECOVERY806

9802ch29.qxd 6/17/08 4:06 PM Page 806

This returns

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
Processed 2 pages for database 'VLTestDB', file 'VLTestDB_log' on file 1.
BACKUP DATABASE...FILE=<name> successfully processed
17 pages in 0.278 seconds (0.499 MB/sec).

How It Works
This recipe started out by demonstrating backing up a specific filegroup. The syntax is almost iden-
tical to a regular full database backup, only the FILEGROUP is specified:

...
FILEGROUP = 'FG2'
...

The second example demonstrated backing up two specific files using the FILE option, in this
case backing up two database files:

...
FILE = 'VLTestDB2',
FILE = 'VLTestDB3'
...

Restoring from a filegroup or file backup will be demonstrated later in the chapter.

Performing a Partial Backup
A partial backup automatically creates a backup of the primary filegroup and any read-write file-
groups in the database. This option is ideal for those very large databases with read-only filegroups
that needn’t be backed up as frequently as the writable filegroups. The syntax for performing a
partial backup is almost the same as a full backup, except that with a partial backup you need to
designate the READ_WRITE_FILEGROUPS option. If there are read-only files or filegroups you also want
to back up, you can explicitly designate them too.

To prep for this example, the VLTestDB’s FG2 filegroup will be set to READONLY:

USE master
GO
ALTER DATABASE VLTestDB
MODIFY FILEGROUP FG2 READONLY
GO

This returns

The filegroup property 'READONLY' has been set.

Now, performing a backup with the READ_WRITE_FILEGROUPS option means that only read-write
filegroups and files will be included in the backup:

BACKUP DATABASE VLTestDB
READ_WRITE_FILEGROUPS
TO DISK = 'C:\Apress\Recipes\TestDB_Partial_include_FG3.bak'

CHAPTER 29 ■ BACKUP AND RECOVERY 807

9802ch29.qxd 6/17/08 4:06 PM Page 807

This returns

Processed 152 pages for database 'VLTestDB', file 'VLTestDB' on file 2.
Processed 1 pages for database 'VLTestDB', file 'VLTestDB_log' on file 2.
BACKUP DATABASE...FILE=<name> successfully
processed 153 pages in 0.120 seconds (9.960 MB/sec).

How It Works
A read-only filegroup contains files that cannot be written to. Since read-only data doesn’t change, it
only needs to be backed up periodically (as in when it’s changed to read-write for updates). For very
large databases, unnecessary backups of read-only filegroups can eat up time and disk space. The
new partial database backup option allows you to back up just the primary filegroup and any
writable filegroups and files, without having to explicitly list each filegroup. If you wish to include a
read-only filegroup in the backup, you can still do so.

In this recipe, I modified the FG2 filegroup to be read-only. I then backed up the database using
the READ_WRITE_FILEGROUPS option, meaning that the files in the FG2 filegroup were not included in
the backup.

A database restore from a partial backup also assumes that you have a filegroup/file backup for
the skipped-over files. A restore from a partial backup is demonstrated later on in this chapter.

Viewing Backup Metadata
Once a backup is created, you can view the contents of the media set by using various RESTORE func-
tions, including RESTORE LABELONLY, RESTORE HEADERONLY, RESTORE FILELISTONLY, and RESTORE
VERIFYONLY:

• RESTORE LABELONLY is used to return information about backup media on a specific backup
device.

• RESTORE HEADERONLY returns a row for each backup set created on a specific device.

• RESTORE FILELISTONLY goes a level deeper by showing the database file names (logical,
physical) and other information of the backed-up database.

• RESTORE VERIFYONLY prevalidates the backup device to report whether a RESTORE operation
would succeed without errors.

The syntax is very similar across all four commands, and I’ll demonstrate the common usages
of these commands in this recipe.

In most cases, you’ll use these RESTORE commands to identify the contents of the device prior to
writing your actual RESTORE DATABASE operation. In this first example in the recipe, the media set
information is returned for the TestDB.bak device:

RESTORE LABELONLY
FROM DISK = 'C:\apress\Recipes\TestDB.bak'

This returns the following (abridged) results:

MediaName MediaDate
TestDB_October_2008_Week2 2008-10-14 16:23:30.000

CHAPTER 29 ■ BACKUP AND RECOVERY808

9802ch29.qxd 6/17/08 4:06 PM Page 808

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

In this second query, the same device is evaluated to see what backup sets exist on it:

RESTORE HEADERONLY
FROM DISK = 'C:\Apress\Recipes\TestDB.bak'

This returns the following (abridged) results:

Position DatabaseName DatabaseCreation DateBackupTypeDescription
1 TestDB 2008-10-14 16:15:03.000 Database

In the third example of this recipe, the individual files backed up in the backup sets of a device
are validated:

RESTORE FILELISTONLY
FROM DISK = 'C:\Apress\Recipes\TestDB.bak'

This returns the following (abridged) results:

LogicalName PhysicalName Type
TestDB C:\Apress\Recipes\TestDB.mdf D
TestDB_log C:\Apress\Recipes\TestDB_log.LDF L

In the last example of this recipe, the backup device’s RESTORE validity is checked:

RESTORE VERIFYONLY
FROM DISK = 'C:\Apress\Recipes\TestDB.bak'
WITH FILE = 1,
LOADHISTORY

This returns

The backup set on file 1 is valid.

How It Works
The four commands discussed in this recipe, RESTORE FILELISTONLY, RESTORE HEADERONLY, RESTORE
VERIFYONLY, and RESTORE LABELONLY, are each useful for gathering the information that you’ll need
prior to performing a RESTORE operation. In the first example in this recipe, RESTORE LABELONLY was
used to return information on the media set of a specific backup device.

The second example used RESTORE HEADERONLY to see what backup sets actually existed on the
device, so that when you restore, you can specify the backup set file number to restore from (also
making sure you are restoring from the correct date and backup type).

The third example in the recipe used RESTORE FILELISTONLY to return the actual database files
that were backed up in the device’s backup sets. This is particularly useful information if you want
to restore a database to a different server, because the drive and folder structures could be different
on the new server versus the old. In later recipes in this chapter, you’ll learn how to move the loca-
tion of database files during a restore.

The last example checked the backup device to make sure it was valid for the RESTORE DATABASE
operation. The backup set was designated using FILE = 1. Also, history regarding the backup set
was saved to the msdb system database using the LOADHISTORY option.

CHAPTER 29 ■ BACKUP AND RECOVERY 809

9802ch29.qxd 6/17/08 4:06 PM Page 809

Restoring a Database
The first part of this chapter was dedicated to reviewing how to back up a database, including how
to perform a full, transaction log, differential, file, and filegroup backup. The second part of this
chapter will discuss how to restore a database from a backup file. A restore operation copies all data,
log, and index pages from the backup media set to the destination database. The destination data-
base can be an existing database (which will be overlaid) or a new database (where new files will be
created based on the backup). After the restore operation, a “redo” phase ensues, rolling forward
committed transactions that were happening at the end of the database backup. After that, the
“undo” phase rolls back uncommitted transactions.

This next set of recipes will demonstrate database restores in action.

Restoring a Database from a Full Backup
In this recipe, I demonstrate how to use the RESTORE command to restore a database from a full
database backup. Unlike a BACKUP operation, a RESTORE is not always an online operation—for a
full database restore, user connections must be disconnected from the database prior to restoring
over the database. Other restore types (such as filegroup, file, or page) can allow online activity in
the database in other areas aside, from the elements being restored. For example, if filegroup FG2 is
getting restored, FG3 can still be accessed during the operation.

■Note Online restores are a SQL Server Enterprise Edition feature.

In general, you may need to restore a database after data loss due to user error or file corrup-
tion, or if you need a second copy of a database or are moving a database to a new SQL Server
instance.

The following is simplified syntax for the RESTORE command:

RESTORE DATABASE { database_name | @database_name_var }
[FROM <backup_device> [,...n]]
[WITH] [Option Name] [,...n]

The RESTORE DATABASE command also includes several options, many of which I’ll demonstrate
in this chapter.

The first example in this recipe is a simple RESTORE from the latest backup set on the device (in
this example, two backup sets exist on the device for the TestDB database, and you want the second
one). For the demonstration, I’ll start by creating two full backups on a single device:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2008.BAK'
GO

-- Time passes, we make another backup to the same device

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2008.BAK'
GO

Now the database is restored using the second backup from the device (notice that the REPLACE
argument is used to tell SQL Server to overlay the existing TestDB database):

CHAPTER 29 ■ BACKUP AND RECOVERY810

9802ch29.qxd 6/17/08 4:06 PM Page 810

USE master
GO

RESTORE DATABASE TestDB
FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2008.bak'
WITH FILE = 2, REPLACE

This returns the following output:

Processed 2456 pages for database 'TestDB', file 'TestDB' on file 2.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 2.
RESTORE DATABASE successfully processed 2457 pages in 5.578 seconds (3.607 MB/sec).

In this second example, a new database is created by restoring from the TestDB backup, creat-
ing a new database called TrainingDB1.Notice that the MOVE argument is used to designate the
location of the new database files:

USE master
GO

RESTORE DATABASE TrainingDB1
FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2008.BAK'
WITH FILE = 2,
MOVE 'TestDB' TO 'C:\Apress\Recipes\TrainingDB1.mdf',
MOVE 'TestDB_log' TO 'C:\Apress\Recipes\TrainingDB1_log.LDF'

This returns

Processed 2456 pages for database 'TrainingDB1', file 'TestDB' on file 2.
Processed 1 pages for database 'TrainingDB1', file 'TestDB_log' on file 2.
RESTORE DATABASE successfully processed 2457 pages in 4.799 seconds (4.193 MB/sec).

In the last example for this recipe, the TestDB database is restored from a striped backup set
(based on the striped set created earlier in the chapter):

USE master
GO

RESTORE DATABASE TestDB
FROM DISK = 'C:\Apress\Recipes\TestDB_Stripe1.bak',
DISK = 'D:\Apress\Recipes\TestDB_Stripe2.bak',
DISK = 'E:\Apress\Recipes\TestDB_Stripe3.bak'
WITH FILE = 1, REPLACE

This returns

Processed 152 pages for database 'TestDB', file 'TestDB' on file 1.
Processed 1 pages for database 'TestDB', file 'TestDB_log' on file 1.
RESTORE DATABASE successfully processed 153 pages in 0.657 seconds (1.907 MB/sec).

CHAPTER 29 ■ BACKUP AND RECOVERY 811

9802ch29.qxd 6/17/08 4:06 PM Page 811

How It Works
In the first example, the query began by setting the database to the master database. This is because
a full RESTORE is not an online operation, and requires that there be no active connections to the
database that is being restored in order to run.

The RESTORE was for the TestDB database, and it overlaid the current database with the data as it
existed at the end of the second backup set on the TestDB_Oct_15_2008.bak backup device. The first
line of the command detailed the database to RESTORE over:

RESTORE DATABASE TestDB

The second line of this example designated the location of the backup device:

FROM DISK = 'C:\Apress\Recipes\TestDB_Oct_15_2008.bak'

The last line of this example designated which backup set from the backup device should be
used to RESTORE from (recall from earlier in this chapter that you can use RESTORE HEADERONLY to see
what backup sets exist on a backup device):

WITH FILE = 2, REPLACE

Any data that was updated since the last backup will be lost, so it is assumed in this example
that data loss is acceptable, and that data as of the last backup is desired. In the second example, a
new database was created based on a RESTORE from another database. The example is similar to the
previous query, only this time the MOVE command is used to designate where the new database files
should be located (and the new database name is used as well):

MOVE 'TestDB' TO 'C:\apress\Recipes\TrainingDB1.mdf',
MOVE 'TestDB_log' TO 'C:\apress\Recipes\TrainingDB1_log.LDF'

RESTORE FILELISTONLY (demonstrated earlier) can be used to retrieve the logical name and
physical path of the backed-up database.

■Tip The RESTORE...MOVE command is often used in conjunction with database migrations to different SQL
Server instances that use different drive letters and directories.

In the last example of the recipe, the TestDB was restored from a striped backup set. FROM DISK
was repeated for each disk device in the set:

RESTORE DATABASE TestDB
FROM DISK = 'C:\apress\Recipes\TestDB_Stripe1.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe2.bak',
DISK = 'C:\apress\Recipes\TestDB_Stripe3.bak'
WITH FILE = 1, REPLACE

In each of these examples, the database was restored to a recovered state, meaning that it was
online and available for users to query after the redo phase (and during/after the undo phase). In
the next few recipes, you’ll see that the database is often not recovered until a differential or trans-
action log backup can be restored.

Restoring a Database from a Transaction Log Backup
Transaction log restores require an initial full database restore, and if you’re applying multiple
transaction logs, they must be applied in chronological order (based on when the transaction log
backups were generated). Applying transaction logs out of order, or with gaps between backups,

CHAPTER 29 ■ BACKUP AND RECOVERY812

9802ch29.qxd 6/17/08 4:06 PM Page 812

isn’t allowed. The syntax for restoring transaction logs is RESTORE LOG instead of RESTORE DATABASE;
however, the syntax and options are the same.

To set up this demonstration, a new database is created called TrainingDB:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TrainingDB')

BEGIN
CREATE DATABASE TrainingDB

END
GO

-- Add a table and some data to it
USE TrainingDB
GO

SELECT *
INTO dbo.SalesOrderDetail
FROM AdventureWorks.Sales.SalesOrderDetail
GO

This database will be given a full backup and two consecutive transaction log backups:

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB.bak'
GO

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_8AM.trn'
GO

-- Two hours pass, another transaction log backup is made

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_10AM.trn'
GO

The previous RESTORE examples have assumed that there were no existing connections in the
database to be restored over. However, in this example, I demonstrate how to kick out any connec-
tions to the database prior to performing the RESTORE:

USE master
GO

-- Kicking out all other connections
ALTER DATABASE TrainingDB
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

Next, a database backup and two transaction log backups are restored from backup:

RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB.bak'
WITH NORECOVERY, REPLACE

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_8AM.trn'
WITH NORECOVERY, REPLACE

CHAPTER 29 ■ BACKUP AND RECOVERY 813

9802ch29.qxd 6/17/08 4:06 PM Page 813

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_10AM.trn'
WITH RECOVERY, REPLACE

This returns

Processed 1656 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 1658 pages in 4.164 seconds (3.260 MB/sec).
Processed 0 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE LOG successfully processed 2 pages in 0.066 seconds (0.186 MB/sec).
RESTORE LOG successfully processed 0 pages in 0.072 seconds (0.000 MB/sec).

In this second example, I’ll use STOPAT to restore the database and transaction log as of a spe-
cific point in time. To demonstrate, first a full backup will be taken of the TrainingDB database:

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008.bak'

Next, rows will be deleted out of the table, and the current time after the change will be
queried:

USE TrainingDB
GO

DELETE dbo.SalesOrderDetail
WHERE ProductID = 776
GO

SELECT GETDATE()
GO

This returns

2008-10-14 20:20:56.583

Next, a transaction log backup is performed:

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_2022.trn'

This returns

Processed 18 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
BACKUP LOG successfully processed 18 pages in 0.163 seconds (0.876 MB/sec).

The database is restored from backup, leaving it in NORECOVERY so that the transaction log
backup can also be restored:

USE master
GO

RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008.bak'
WITH FILE = 1, NORECOVERY,
STOPAT = '2008-10-14 20:18:56.583'
GO

CHAPTER 29 ■ BACKUP AND RECOVERY814

9802ch29.qxd 6/17/08 4:06 PM Page 814

Next, the transaction log is restored, also designating the time prior to the data deletion:

RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_Oct_14_2008_2022.trn'
WITH RECOVERY,
STOPAT = '2008-10-14 20:18:56.583'
GO

The following query confirms that you have restored just prior to the data deletion:

USE TrainingDB
GO

SELECT COUNT(*)
FROM dbo.SalesOrderDetail
WHERE ProductID = 776
GO

This returns

228

How It Works
In the first example for this recipe, the TrainingDB database was restored from a full database
backup and left in NORECOVERY mode. Being in NORECOVERY mode allows other transaction log or
differential backups to be applied. In this example, two transaction log backups were applied in
chronological order, with the second using the RECOVERY option to bring the database online.

The second example in the recipe demonstrated restoring a database as of a specific point in
time. Point-in-time recovery is useful for restoring a database prior to a database modification or
failure. The syntax was similar to the first example, only the STOPAT was used for both the RESTORE
DATABASE and RESTORE LOG. Including the STOPAT for each RESTORE statement makes sure that the
restore doesn’t recover past the designated date.

Restoring a Database from a Differential Backup
The syntax for differential database restores is identical to full database restores, only full database
restores must be performed prior to applying differential backups. When restoring the full database
backup, the database must be left in NORECOVERY mode. Also, any transaction logs you wish to restore
must be done after the differential backup is applied, as this example demonstrates.

First, however, I’ll set up the example by performing a full, differential, and transaction log
backup on the TrainingDB database:

USE master
GO

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.bak'

-- Time passes

BACKUP DATABASE TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.diff'
WITH DIFFERENTIAL

CHAPTER 29 ■ BACKUP AND RECOVERY 815

9802ch29.qxd 6/17/08 4:06 PM Page 815

-- More time passes

BACKUP LOG TrainingDB
TO DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample_tlog.trn'

Now, I’ll demonstrate performing a RESTORE, bringing the database back to the completion of
the last transaction log backup:

USE master
GO

-- Full database restore
RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.bak'
WITH NORECOVERY, REPLACE

-- Differential
RESTORE DATABASE TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample.diff'
WITH NORECOVERY

-- Transaction log
RESTORE LOG TrainingDB
FROM DISK = 'C:\Apress\Recipes\TrainingDB_DiffExample_tlog.trn'
WITH RECOVERY

This returns

Processed 152 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 2 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 154 pages in 0.443 seconds (2.831 MB/sec).
Processed 40 pages for database 'TrainingDB', file 'TrainingDB' on file 1.
Processed 1 pages for database 'TrainingDB', file 'TrainingDB_log' on file 1.
RESTORE DATABASE successfully processed 41 pages in 0.069 seconds (4.860 MB/sec).
RESTORE LOG successfully processed 0 pages in 0.070 seconds (0.000 MB/sec).

How It Works
Differential backups capture database changes that have occurred since the last full database
backup. Differential restores use the same syntax as full database restores, only they must always
follow a full database restore (with NORECOVERY) first. In this recipe, the database was initially
restored from a full database backup, then followed by a restore from a differential backup, and
then lastly a restore from a transaction log backup. The differential RESTORE command was formed
similarly to previous RESTORE examples, only it referenced the differential backup file. On the last
restore, the RECOVERY option was designated to make the database available for use.

Restoring a File or Filegroup
Restoring a file or filegroup uses virtually the same syntax as a full database restore, except you also
use the FILEGROUP or FILE keyword. To perform a restore of a specific read-write file or filegroup,
your database must use either a full or bulk-logged recovery model. This is required because trans-
action log backups must be applied after restoring a file or filegroup backup. In SQL Server, if your
database is using a simple recovery model, only read-only files or read-only filegroups can have
file/filegroup backups and restores.

CHAPTER 29 ■ BACKUP AND RECOVERY816

9802ch29.qxd 6/17/08 4:06 PM Page 816

To set up this recipe’s example, a filegroup backup is taken for the VLTestDB database:

USE master
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG2.bak'
WITH NAME = N'VLTestDB-Full Filegroup Backup',
SKIP, STATS = 20
GO

Time passes, and then a transaction log backup is taken for the database:

BACKUP LOG VLTestDB
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG_Example.trn'

Next, the database filegroup FG2 is restored from backup, followed by the restore of a transac-
tion log backup:

USE master
GO

RESTORE DATABASE VLTestDB
FILEGROUP = 'FG2'
FROM DISK = 'C:\Apress\Recipes\VLTestDB_FG2.bak'
WITH FILE = 1, NORECOVERY, REPLACE

RESTORE LOG VLTestDB
FROM DISK = 'C:\Apress\Recipes\VLTestDB_FG_Example.trn'
WITH FILE = 1, RECOVERY

This returns

Processed 8 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 8 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
RESTORE DATABASE ... FILE=<name> successfully processed
16 pages in 0.119 seconds (1.101 MB/sec).
Processed 0 pages for database 'VLTestDB', file 'VLTestDB2' on file 1.
Processed 0 pages for database 'VLTestDB', file 'VLTestDB3' on file 1.
RESTORE LOG successfully processed 0 pages in 0.062 seconds (0.000 MB/sec).

How It Works
Filegroup or file backups are most often used in very large databases, where full database backups
may take too long to execute. With filegroup or file backups comes greater administrative complex-
ity, because you’ll have to potentially recover from disaster using multiple backup sets (one per
filegroup, for example).

In this recipe, the VLTestDB database filegroup named FG2 was restored from a backup device
and left in NORECOVERY mode so that a transaction log restore could be applied. The RECOVERY key-
word was used in the transaction log restore operation in order to bring the filegroup back online.
In SQL Server Enterprise Edition, filegroups other than the primary filegroup can be taken off-line
for restores while leaving the other active filegroups available for use (this is called an ONLINE
restore).

CHAPTER 29 ■ BACKUP AND RECOVERY 817

9802ch29.qxd 6/17/08 4:06 PM Page 817

Performing a Piecemeal (PARTIAL) Restore
The PARTIAL command can be used with the RESTORE DATABASE command to restore secondary file-
groups in a piecemeal fashion. This variation of RESTORE brings the primary filegroup online, letting
you then restore other filegroups as needed later on. If you’re using a database with a full or bulk-
logged recovery model, you can use this command with read-write filegroups. If the database is
using a simple recovery model, you can only use PARTIAL in conjunction with read-only secondary
filegroups.

In this example, the VLTestDB is restored from a full database backup using the PARTIAL key-
word and designating that only the PRIMARY filegroup be brought online (and with filegroups FG2
and FG3 staying offline and unrestored).

First, to set up this example, the primary and FG2 filegroups in the VLTestDB are backed up:

USE master
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'PRIMARY'
TO DISK = 'C:\Apress\Recipes\VLTestDB_Primary_PieceExmp.bak'
GO

BACKUP DATABASE VLTestDB
FILEGROUP = 'FG2'
TO DISK = 'C:\Apress\Recipes\VLTestDB_FG2_PieceExmp.bak'
GO

After that, a transaction log backup is performed:

BACKUP LOG VLTestDB
TO DISK = 'C:\Apress\Recipes\VLTestDB_PieceExmp.trn'
GO

Next, a piecemeal RESTORE is performed, recovering just the PRIMARY filegroup:

RESTORE DATABASE VLTestDB
FILEGROUP = 'PRIMARY'
FROM DISK = 'C:\Apress\Recipes\VLTestDB_Primary_PieceExmp.bak'
WITH PARTIAL, NORECOVERY, REPLACE

RESTORE LOG VLTestDB
FROM DISK = 'C:\Apress\Recipes\VLTestDB_PieceExmp.trn'
WITH RECOVERY

The other filegroup, FG2, now contains unavailable files. You can view the file status by query-
ing sys.database_files from the VLTestDB database:

USE VLTestDB
GO

SELECT name,
state_desc

FROM sys.database_files

This returns

CHAPTER 29 ■ BACKUP AND RECOVERY818

9802ch29.qxd 6/17/08 4:06 PM Page 818

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Name state_desc
VLTestDB ONLINE
VLTestDB_log ONLINE
VLTestDB2 RECOVERY_PENDING
VLTestDB3 RECOVERY_PENDING

How It Works
In this recipe, the VLTestDB was restored from a full backup, restoring just the PRIMARY filegroup. The
WITH clause included the PARTIAL keyword and NORECOVERY, so that transaction log backups can be
restored. After the transaction log restore, any objects in the PRIMARY filegroup will be available, and
objects in the secondary filegroups are unavailable until you restore them at a later time.

For very large databases, using the PARTIAL keyword during a RESTORE operation allows you to
prioritize and load filegroups that have a higher priority, making them available sooner.

Restoring a Page
SQL Server provides the ability to restore specific data pages in a database using a FULL or
BULK_LOGGED recovery model. In the rare event that a small number of data pages become corrupted
in a database, it may be more efficient to restore individual data pages than the entire file, filegroup,
or database.

The syntax for restoring specific pages is similar to restoring a filegroup or database, only you
use the PAGE keyword coupled with the page ID. Bad pages can be identified in the msdb.dbo.
suspect_pages system table, in the SQL error log, or returned in the output of a DBCC command.

To set up this example, a full database backup is created for the TestDB database:

BACKUP DATABASE TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_PageExample.bak'
GO

Next, a restore is performed using the PAGE argument:

RESTORE DATABASE TestDB
PAGE='1:8'
FROM DISK = 'C:\Apress\Recipes\TestDB_PageExample.bak'
WITH NORECOVERY, REPLACE
GO

This returns

Processed 1 pages for database 'TestDB', file 'TestDB' on file 1.
RESTORE DATABASE ... FILE=<name> successfully processed 1 pages
in 1.107 seconds (0.007 MB/sec).

At this point, any differential or transaction log backups taken after the last full backup should
also be restored. Since there were none in this example, no further backups are restored.

Next, and this is something that departs from previous examples, a new transaction log backup
must be created that captures the restored page:

BACKUP LOG TestDB
TO DISK = 'C:\Apress\Recipes\TestDB_PageExample_tlog.trn'
GO

CHAPTER 29 ■ BACKUP AND RECOVERY 819

9802ch29.qxd 6/17/08 4:06 PM Page 819

This returns

Processed 2 pages for database 'TestDB', file 'TestDB_log' on file 1.
BACKUP LOG successfully processed 2 pages in 0.840 seconds (0.014 MB/sec).

To finish the page restore process, the latest transaction log taken after the RESTORE...PAGE
must be executed with RECOVERY:

RESTORE LOG TestDB
FROM DISK = 'C:\Apress\Recipes\TestDB_PageExample_tlog.trn'
WITH RECOVERY

How It Works
In this recipe, a single data page was restored from a full database backup using the PAGE option in
the RESTORE DATABASE command. Like restoring from a FILE or FILEGROUP, the first RESTORE leaves the
database in a NORECOVERY state, allowing additional transaction log backups to be applied prior to
recovery.

Identifying Databases with Multiple Recovery Paths
Multiple recovery paths are created when you recover a database from backup using point-in-time
recovery, or when you recover a database without recovering the latest differential or chain of log
backups. When there are backups created that you do not use in your RESTORE process, you create a
fork in the recovery path.

This recipe demonstrates how to use the sys.database_recovery_status catalog view to get
information about a database with more than one recovery path. In the first step, I will create a new
database and give it a full database backup, create a table and some rows, and finish up with a
transaction log backup:

USE master
GO

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'RomanHistory')

BEGIN
CREATE DATABASE RomanHistory

END
GO

BACKUP DATABASE RomanHistory
TO DISK = 'C:\Apress\RomanHistory_A.bak'
GO

USE RomanHistory
GO

CREATE TABLE EmperorTitle
(EmperorTitleID int NOT NULL PRIMARY KEY IDENTITY(1,1),
TitleNM varchar(255))

GO

CHAPTER 29 ■ BACKUP AND RECOVERY820

9802ch29.qxd 6/17/08 4:06 PM Page 820

INSERT EmperorTitle (TitleNM)
VALUES ('Aulus'), ('Imperator'), ('Pius Felix'), ('Quintus')

BACKUP LOG RomanHistory
TO DISK = 'C:\Apress\RomanHistory_A.trn'
GO

Next, I’ll query the sys.database_recovery_status catalog view to get information about the
database at this point (column aliases are used to shorten the names for presentation in this book):

SELECT last_log_backup_lsn LastLSN, recovery_fork_guid Rec_Fork,
first_recovery_fork_guid Frst_Fork, fork_point_lsn Fork_LSN
FROM sys.database_recovery_status
WHERE database_id = DB_ID('RomanHistory')

This query returns the following (your values will vary):

LastLSN Rec_Fork Frst_Fork Fork_LSN
18000000010900001 D020752F-1085-49F6-A848-21C9EDBFF290 NULL NULL

Notice that the first_recovery_fork_guid and fork_point_lsn columns are NULL. This is
because I have not created a fork yet in my recovery path. The last_log_backup_lsn tells me the
LSN of the most recent log backup, and the recovery_fork_guid shows the current recovery path in
which the database is active.

■Tip A log sequence number (LSN) uniquely identifies each record in a database transaction log.

Next, I will perform a few more data modifications and another transaction log backup:

INSERT EmperorTitle (TitleNM)
VALUES ('Germanicus'), ('Lucius'), ('Maximus'), ('Titus')

BACKUP LOG RomanHistory
TO DISK = 'C:\Apress\RomanHistory_B.trn'
GO

I’ll now go ahead and RESTORE the database to a prior state (but not to the latest state):

USE master
GO

RESTORE DATABASE RomanHistory
FROM DISK = 'C:\Apress\RomanHistory_A.bak'
WITH NORECOVERY

RESTORE DATABASE RomanHistory
FROM DISK = 'C:\Apress\RomanHistory_A.trn'
WITH RECOVERY

Now if I reissue the previous query against sys.database_recovery_status, I will see that both
the fork_point_lsn and first_recovery_fork_guid columns are no longer NULL:

SELECT last_log_backup_lsn LastLSN, recovery_fork_guid Rec_Fork,
first_recovery_fork_guid Frst_Fork, fork_point_lsn Fork_LSN
FROM sys.database_recovery_status
WHERE database_id = DB_ID('RomanHistory')

CHAPTER 29 ■ BACKUP AND RECOVERY 821

9802ch29.qxd 6/17/08 4:06 PM Page 821

This query returns

LastLSN Rec_Fork Frst_Fork Fork_LSN
18000000010900001 F18522D8-6FDB-40BE- D020752F-1085-49F6- 18000000010900001

AB99-047DE4280F40 A848-21C9EDBFF290

How It Works
The sys.database_recovery_status catalog view allows you to see whether multiple recovery forks
have been created for a database.

In this recipe, I made one full database backup and two transaction log backups. If I restored
the database using all three of the backups, I would have remained in the same recovery path. How-
ever, instead, I only restored the first full backup and first transaction log backup, putting the
database into recovery before restoring the second transaction log. By recovering prematurely, I
brought the database online into a second recovery path.

CHAPTER 29 ■ BACKUP AND RECOVERY822

9802ch29.qxd 6/17/08 4:06 PM Page 822

■Symbols
@ prefix, 13, 328
@@ prefix, 293
%= modulo, assign operator, 84
&= bitwise &, assign operator, 84
^= bitwise exclusive OR, assign operator, 84
|= bitwise |, assign operator, 84
*.bak files, 794
*= multiply, assign operator, 84
+= add, assign operator, 84
-= subtract, assign operator, 84
/= divide, assign operator, 84
= equality operator, 84
; semicolon, 59
[] wildcard, 11
[^] wildcard, 11
!< operator, 8
!> operator, 8
!= operator, 8
sign, prefixing local temporary tables, 176
sign, prefixing global temporary tables, 176
% wildcard, 11
< operator, 8
< > operator, 8
<= operator, 8
> operator, 8
+ operator, 24
= operator, 8
_ wildcard, 11

■A
ABS function, 261
accent sensitivity, 218
ACID test (Atomicity, Consistency, Isolation (or

Independence), and Durability), 115
ACOS function, 261
ad hoc queries, executing via OPENROWSET

command, 733
add, assign (+=) operator, 84
ADD FILE command, 654
ADD FILEGROUP command, 660
ADD LOG FILE command, 655
AdventureWorks sample database, downloading, 1
AFTER DML triggers, 375
AFTER triggers, 374
aggregate functions, 22, 257–261
aggregated performance statistics, viewing, 750
alias data types. See user-defined types
aliases, 732

column, 15, 22
table, 29

ALL operator, 8

allocated unit lock resource, 124
ALLOW_SNAPSHOT_ISOLATION database option,

647, 648
ALTER APPLICATION ROLE command, 498
ALTER ASSEMBLY command, 417
ALTER ASYMMETRIC KEY command, 557
ALTER BROKER PRIORITY command, 597
ALTER CERTIFICATE command, 570
ALTER COLUMN command, 149
ALTER DATABASE AUDIT SPECIFICATION

command, 543
ALTER DATABASE command, 213, 393, 397, 581,

629, 631
ANSI SQL options and, 637
changing recovery mode and, 649
cursor options and, 642
database compatibility level and, 623
database mirroring and, 700, 707
database state and, 652
external access and, 640
files/filegroups and, 654–663
operating modes, configuring via, 711
page verification and, 651
parameterization and, 644
read-consistency options and, 648
shrinking databases/database files and, 667
Transparent Data Encryption and, 575

ALTER DATABASE...SET PARTNER FAILOVER
command, 712

ALTER DATABASE...SET PARTNER
FORCE_SERVICE_ALLOW_DATA_LOSS
command, 712

ALTER DATABASE...SET PARTNER OFF command,
714

ALTER DATABASE...SET PARTNER SUSPEND
command, 713

ALTER DATABASE...SET PARTNER TIMEOUT
command, 714

ALTER FULLTEXT CATALOG command, 221
ALTER FULLTEXT INDEX command, 222
ALTER FULLTEXT STOPLIST command, 227, 229
ALTER FUNCTION, 354
ALTER INDEX command, 200, 205, 215, 429
ALTER INDEX REBUILD command, 682
ALTER INDEX REOGRANIZE command, 682, 685
ALTER LOGIN command, 483, 612
ALTER MASTER KEY command, 552, 554
ALTER OWNERSHIP command, 527
ALTER PARTITION FUNCTION command, 186
ALTER PARTITION SCHEME command, 186
ALTER PROCEDURE command, 332
ALTER QUEUE command, 598
ALTER RESOURCE GOVERNOR command, 786
ALTER RESOURCE POOL command, 784

Index

823

9802Index.qxd 6/26/08 11:03 AM Page 823

ALTER ROLE command, 495
ALTER SCHEMA command, 517, 689
ALTER SCHEMA TRANSFER command, 689
ALTER SERVER AUDIT command, 539, 542, 544
ALTER SERVER AUDIT SPECIFICATION

command, 543
ALTER SYMMETRIC KEY command, 562
ALTER TABLE command, 147–154, 175

Change Tracking and, 109
constraints and, 159, 170, 172, 175
foreign keys and, 161
lock escalation and, 126
moving partitions between tables, 189
rebuilding heaps and, 686
table column collation and, 156

ALTER TRACE permission, 505
ALTER TRIGGER command, 393
ALTER USER command, 490
ALTER USER WITH LOGIN command, 492
ALTER VIEW command, 245, 247
ALTER WORKLOAD GROUP command, 785
ALTER XML SCHEMA COLLECTION command,

422
anchor members, 61
ANSI SQL options, 636–638
ANY operator, 8
application lock resource, 124
application roles, 488, 497–499
APPLY clause, 35–38
APP_NAME function, 301
artificial keys, 165–168
ASCII files, importing, 735–738
ASCII function, 264
ASIN function, 261
assemblies, 402

administering, 417
compiling into DLL files, 408
loading into SQL Server, 409
security and, 406
when to use/not to use, 402

assignment operators, 84–86
asymmetric key encryption, 555–560
asymmetric keys, 547
asynchronous processing, 579
ATAN function, 261
ATN2 function, 261
atomicity, 115
Atomicity, Consistency, Isolation (or

Independence), and Durability (ACID),
117

audit action groups, 536
audit events, 536
auditing SQL instance- /database-scoped activity,

501, 529–545
authentication, mixed, 476, 480
authorization, 480
AUTO option, 127
autocommit transactions, 116
automatic database options, 638
automatic page recovery, 697
AUTO_CREATE_STATISTICS database option, 740,

760

AUTO_UPDATE_STATISTICS database option, 760
AVG aggregate function, 257, 258

■B
B-tree structures, 198
BACKUP CERTIFICATE command, 569
BACKUP command, 793, 797, 799
BACKUP DATABASE command, 793, 805
backup device definitions, 799
BACKUP LOG command, 803
BACKUP MASTER KEY command, 553
backup sets, 796

retention options for, 797
striping, 799

backups, 789–809
compression for, 794
differential, 792, 805–809
full, 791, 793–804
naming/describing, 796
partial, 807
plan for, 789–791
sequence of, 792, 804
striping, 799
of transaction logs, 791, 803

BEGIN CATCH command, 470
BEGIN DIALOG CONVERSATION command, 589
BEGIN DISTRIBUTED TRANSACTION command,

116
BEGIN...END statement, 312
BEGIN TRANSACTION command, 116
BEGIN TRY command, 469
best practices

for assemblies, grouping related functionalities
within, 406

for BEGIN...END statement, 312
for Change Tracking, 108
for control-of-flow, 318
for documenting stored procedures, 335
for data type conversions, 28
for MAXRECURSION hint, 62
for views, 240, 246
for Snapshot Isolation, 113

BETWEEN operator, 8, 9
binary files, importing, 735–738
bitwise &, assign (&=) operator, 84
bitwise exclusive OR, assign (^=) operator, 84
bitwise |, assign (|=) operator, 84
blocking, 134–137
bottlenecks, 752
built-in error messages, 459–462
built-in functions. See functions
BULK option, 79, 723, 735–738
bulk update locks, 123
BULK_LOGGED recovery model, 649, 791

■C
cached query execution plans, 327, 340, 748
caller permissions, 337
Cartesian products, 29, 32
cascading changes feature, 163

■INDEX824

9802Index.qxd 6/26/08 11:03 AM Page 824

case, uppercase/lowercase conversions and,
346–349

case sensitivity/insensitivity, collations and, 641
CASE statement, 307–310
CAST function, 284–288
catalogs, full-text, 217–230
CDC (Change Data Capture), 93, 96–107

disabling from tables/database, 107
enabling/configuring, 96

CDC system tables, 99–104
CDC update mask, 104
CEILING function, 261
certificate encryption, 567–573
Change Data Capture. See CDC
Change Tracking, 93, 107–113

enabling, 108
disabling for full-text indexes, 224

CHAR function, 264
character data types, 146
character values, converting to/from ASCII, 264
characters, string functions for, 263–274
CHARINDEX function, 266, 269
CHECK constraints, 168, 171–174, 251, 255
CHECKSUM option, 650
CHECKSUM_AGG aggregate function, 257
CHECK_POLICY option, 482
chunking data, 89
CLOSE MASTER KEY command, 554
CLOSE SYMMETRIC KEY command, 562
CLR (Common Language Runtime), 325, 401
CLR data type to SQL Server data type translations,

407
CLR database objects, creating, 404–416
CLR integration, 401–418
CLR objects, 404
CLR scalar user-defined functions, creating,

412–414
CLR stored procedures

creating, 410
writing assemblies for, 405

CLR triggers, creating, 415–416
clustered indexes, 198, 755
COALESCE function, 274, 276
code pages, collations for, 155
COLLATE command, 155, 641
collations, 155, 641
column aliases, 15, 22
column constraints, 157
column sets, 153
columns, 147–154

computed, 149
constraints and, 168–176
data types and, 144
dropping, 153
grouping, 14–17
identity of, checking, 166
mapping to partitions, 180
renaming, 22, 687–689
rows, converting to via UNPIVOT, 42
SELECT statement and, 21–27
selecting for rows, 2
sparse, 150–153
uniqueidentifier, 67

user-defined types and, identifying, 367
values, converting into, 39
xml data types for, 419
XML data, inserting into, 421

columns sets, 151
comma-delimited lists, creating via SELECT

statement, 25
COMMIT TRANSACTION command, 116
Common Language Runtime (CLR). See entries

at CLR
comparisons, 9
compatibility levels, for databases, 623
composite indexes, 199, 202
composite primary keys, 157
compound assignment operators, 84–86
compression

for backups, 794
for indexes/partitions, 212

COMPUTE BY clause (deprecated with SQL Server
2005), 48

computed columns, 149
{CONCAT | HASH | MERGE} UNION hint, 451
concurrency, 123, 128, 129

improving for indexes, 209
indexing locking and, 211
lock activity and, 126

conditional processing, 307–312
configurations, query performance and, 739
CONNECT permissions, 605
connection timeout, for database mirroring, 715
@@CONNECTIONS function, 298
consistency, 115
constraints, 157, 168–176

dropping from tables, 176
enabling/disabling, 173
forms of, 168
renaming, 687–689
vs. triggers, 373
validating integrity of, 674–682

CONTAINS predicate, 8, 230, 232
for inflectional matches, 233
for term proximity, 234
for wildcard searches, 233

CONTAINSTABLE command, 236
contracts, for message types, 584
control-of-flow, 307, 312–319
conversations

between databases, 580
dialog, 589
ending, 594
prioritizing, 579, 596–598

CONVERT function, 284–288
Coordinated Universal Time (UTC), 144, 278
COPY_ONLY option, 804
correlated subqueries, 27
COS function, 261
COT function, 262
COUNT aggregate function, 257, 259
COUNT_BIG aggregate function, 250, 257
covering queries, 209
covering_permission_name, 503
@@CPU_BUSY function, 298
CREATE APPLICATION ROLE command, 497

■INDEX 825

9802Index.qxd 6/26/08 11:03 AM Page 825

CREATE ASSEMBLY command, 405, 409
CREATE ASYMMETRIC KEY command, 555
CREATE BROKER PRIORITY command, 579,

596–598
CREATE CERTIFICATE command, 567
CREATE CONTRACT command, 584
CREATE CREDENTIAL command, 528
CREATE DATABASE command, 622, 624

collations and, 641
database snapshots and, 718
external access and, 640

CREATE DATABASE FOR ATTACH command, 634
CREATE DATABASE AUDIT SPECIFICATION

command, 535–539
CREATE ENDPOINT command, 700
CREATE EVENT NOTIFICATION command, 612
CREATE FULLTEXT CATALOG command, 217
CREATE FULLTEXT INDEX command, 219
CREATE FULLTEXT STOPLIST command, 226, 229
CREATE FUNCTION command, 344, 348
CREATE INDEX command, 199, 214, 215, 428
CREATE INDEX...DROP_EXISTING command, 206
CREATE LOGIN command, 476, 492

capturing, 612
SQL Server logins and, 481
Windows logins and, 476

CREATE MASTER KEY command, 551
CREATE MESSAGE TYPE command, 582
CREATE PARTITION FUNCTION command, 180
CREATE PARTITION SCHEME command, 180
CREATE PROCEDURE command, 326–331
CREATE QUEUE command, 585, 598
CREATE REMOTE SERVICE BINDING command,

610
CREATE RESOURCE POOL command, 782
CREATE ROLE command, 495
CREATE ROUTE command, 608
CREATE SCHEMA command, 514
CREATE SERVER AUDIT command, 530–532
CREATE SERVER AUDIT SPECIFICATION

command, 533–535
CREATE SERVICE command, 587
CREATE SPATIAL INDEX command, 446
CREATE STATISTICS command, 760, 762
CREATE SYMMETRIC KEY command, 560
CREATE SYNONYM command, 732
CREATE TABLE command, 26, 143
CREATE TRIGGER command, 375
CREATE TYPE command, 365–367, 371
CREATE USER command, 489
CREATE VIEW command, 240, 247
CREATE WORKLOAD GROUP command, 782
CREATE XML SCHEMA COLLECTION command,

422
credentials, CREATE CREDENTIAL command and,

528
CROSS APPLY clause, 35
cross-database chaining, 640
CROSS JOINs, 29, 31
cross-platform queries, 723
cross-server communication, 601–611
cross-tab queries via PIVOT operator, 39
CTEs (Comment Table Expressions), 56–62

CUBE clause, 49
(WITH) CUBE clause, 46
CURRENT_TIMESTAMP function, 278
cursor options, configuring, 642–643
cursors, 307, 319–323

caution against using, 307, 321
temporary tables as alternative to, 176

■D
data

grouping, 14–17
recovering, 44, 720
relocating, 657
removing from database, 656
summarizing, 46–56
unstructured, storing on file system, 80–84

Data Collector, 748
data compression, 192–195
Data Definition Language (DDL), 373
data hierarchies, 62
data integrity, constraints and, 168, 173
Data Manipulation Language (DML), 373
data modifications, 63–90

advanced techniques for, 89–93
capturing/tracking, 93–113
chunking, 89

data pages, restoring, 819
data recovery, INTERSECT/EXCEPT operands and,

44
data sources

advanced techniques for, 38–46
querying multiple, 28–35

data stream compression, 697, 711
data types

columns and, 144
converting, 284–288
data types deprecated with SQL Server 2005, 76
large value, 76

Database Audit Specification, 529, 538, 542
creating, 535
managing, 543–545
removing, 545

database certificates, 567–573
database design, query performance and, 739
Database Encryption Key (DEK), 547, 575, 576
Database Engine Tuning Advisor, 755
database files

logical name of, changing, 658
managing, 654–663
shrinking, 665–668
size of, changing, 659

database integrity, 669–686
Database Master Keys, 547, 550, 551–555

backing up/restoring, 553
creating, 582
removing Service Master Key encryption from,

554
database mirroring, 697–716, 801

architecture of, 698
enabling (steps), 700
monitoring/configuring options for, 714–716

■INDEX826

9802Index.qxd 6/26/08 11:03 AM Page 826

sessions of, 707, 710, 713
setting up (steps summarized), 709

database objects
aliases and, 732
checking allocation/structural integrity of,

672–674
identifying user-defined types and, 367
maintenance for, 687–690
referenced/referencing, management views for

identifying, 692
tracking dependencies and, 687, 690–695
user-created, renaming, 687–689
viewing definition of, 694

database options
configuring, 635–651
viewing, 636

database owner, changing, 653
database principals, 475, 488–499
database redundancy, database mirroring and, 697
database roles, 488, 493–497

fixed, 493–495
user-defined, 495–497

database scope, 501
database-scoped events, capturing, 535–539
database-scoped securables, 509–514
database state, 651–654
Database Tuning Advisor, 203
database user access modes, 628
database users, 488–493

creating, 489
dropping, 491
fixing orphaned, 491–493

DATABASEPROPERTYEX function, 156, 299
databases

access/ownership, controlling, 651–654
attaching, 634–635
automatic options for, 638–639
backing up/restoring, 789–668
detaching/dropping, 632
enabling for Service Broker, 581
external access and, 640
files/filegroups, managing for, 654–663
I/O statistics and, 753
maintaining, 669–686
partner, 700
principal, 687, 699–716
read-only, setting to, 662
removing assemblies from, 418
renaming, 631
shrinking, 665–668
snapshots of, 717–722
space usage, viewing/managing, 663–668
viewing information about, 622–624

DATALENGTH function, 264, 269
date conversions, 285
date functions, 277–284
DATEADD function, 280
DATEDIFF function, 278, 281
@@DATEFIRST function, 293
DATENAME function, 278, 282
DATEPART function, 278, 282
datetime data type, 180, 277, 285
DATE_CORRELATION_OPTIMIZATION option, 643

DAY function, 283
DB lock resource, 124
DBCC CHECKALLOC command, 670–672
DBCC CHECKCATALOG command, 681–682
DBCC CHECKCONSTRAINTS command, 679–681
DBCC CHECKDB command, 669, 672–674
DBCC CHECKFILEGROUP command, 675–676
DBCC CHECKIDENT command, 166
DBCC CHECKTABLE command, 676–679
DBCC commands, 669–682
DBCC FREEPROCCACHE command, 342, 645
DBCC INPUTBUFFER command, 134, 321
DBCC OPENTRAN command, 120
DBCC SHOW_STATISTICS command, 765
DBCC SHRINKDATABASE command, 665–668
DBCC SHRINKFILE command, 665–668
DBCC SQLPERF command, 663
DBCC TRACEOFF command, 138
DBCC TRACEON command, 138, 141
DBCC TRACESTATUS command, 138, 140
dbo schemas, 514
DB_ID function, 300
DB_NAME function, 300
DDL (Data Definition Language), 373
DDL triggers, 386–393

database-level events and, auditing, 387–388
server-level events and, auditing, 389
viewing metadata and, 392

deadlock priority, setting, 141
deadlocking, 137–142
DEALLOCATE statement, 321
DECLARE CURSOR statement, 320
DecryptByAsmKey function, 558
DecryptByCert system function, 572
DecryptByKey function, 564, 573
DecryptByKeyAutoAsymKey, 573
DecryptByKeyAutoCert, 573
DecryptByPassPhrase function, 548
DEFAULT constraints, 168, 174
default values, inserting rows via, 65
DEGREES function, 262
DEK (Database Encryption Key), 547, 575
DELETE statement, 86–88

MERGE command and, 90–93
OUTPUT clause, using with, 93

DENSE_RANK function, 288, 292
DENY command, 480

database-scoped securables and, 510
object permissions and, 520
schema-scoped securables and, 515
securables and, 501
server-scoped securables and, 506

DENY CONNECT SQL command, 480
derived queries, 56–62
derived tables, 33
dialog conversations, 589
dialog security, 601, 606–608
dictionary compression, 193
DIFFERENCE function, 264, 267
differential backups, 792, 805–809

restoring, 815, 816
viewing backup metadata and, 808

DIFFERENTIAL keyword, 805

■INDEX 827

9802Index.qxd 6/26/08 11:03 AM Page 827

dirty reads, 128
DISABLE option, 127
DISABLE TRIGGER command, 394
disabling

Change Data Capture, 107
change tracking, for full-text indexes, 224
constraints, 173
indexes, 205
query parallelism, 618
triggers, 394

disk errors, 650
disk space allocation structures, checking

consistency of, 670–672
disk storage usage, viewing/managing, 663–668
displaying. See viewing
DISTINCT keyword, 21
distinct rows, 44
distributed queries, 723–738
distributed-partitioned views, 239, 252
divide, assign (/=) operator, 84
DLL files, compiling assemblies into, 408
DML (Data Manipulation Language), 373
DML triggers, 374–385

controlling based on modified columns, 384
transactions and, 381
viewing metadata and, 385

DMVs (Dynamic Management Views), 121, 124,
134

downloading AdventureWorks sample database, 1
DROP APPLICATION ROLE command, 499
DROP ASYMMETRIC KEY command, 560
DROP BROKER PRIORITY command, 597
DROP CERTIFICATE command, 569
DROP command, 154, 599
DROP DATABASE AUDIT SPECIFICATION

command, 545
DROP DATABASE command, 632, 720
DROP ENDPOINT command, 714
DROP FULLTEXT CATALOG command, 230
DROP FULLTEXT INDEX ON command, 229
DROP FULLTEXT STOPLIST command, 229
DROP INDEX command, 206, 429
DROP LOGIN command

capturing, 612
SQL Server logins and, 485
Windows logins and, 479

DROP MASTER KEY command, 552
DROP PROCEDURE command, 332
DROP RESOURCE POOL command, 787
DROP ROLE command, 495
DROP SCHEMA command, 514
DROP SERVER AUDIT SPECIFICATION command,

545
DROP STATISTICS command, 766
DROP SYMMETRIC KEY command, 567
DROP SYNONYM command, 732
DROP TABLE command, temporary tables and,

177
DROP TRIGGER command, 399
DROP TYPE command, 368
DROP USER command, 491
DROP VIEW command, 245
DROP WORKLOAD GROUP command, 787

DROP XML SCHEMA COLLECTION command,
422

dropping
application roles, 499
asymmetric keys, 560
backup devices, 800
database certificates, 569
Database Master Keys, 552
database roles, 495
database users, 491
databases, 632
endpoints, 714
error messages, 462
indexes, 206, 429
linked server login mappings, 730
linked servers, 727
plan guides, 772
resource pools, 787
schema-scoped securables, 514
SQL Server logins, 485
statistics, 766
symmetric keys, 567
synonyms, 732
triggers, 399
user-defined functions, 356
Windows logins, 479
workload groups, 787
XML Schema collections, 422

duplicate rows, 35
duplicate values, removing, 21
durability, 115
Dynamic Management Views (DMVs), 121, 124,

134

■E
EKM (Extensible Key Management), 547
emergency state, 652
ENABLE TRIGGER command, 394
ENABLE_BROKER option, 581
EncryptByAsmKey function, 557
EncryptByCert system function, 571
EncryptByKey function, 563
EncryptByPassPhrase function, 548
encryption, 547–578

certificate, 567–573
stored procedures and, 336
Transparent Data Encryption and, 547, 575–578

ENCRYPTION OPTION, for views, 247
END CONVERSATION command, 590, 594
endpoints

creating for database mirroring, 700–704
removing, 714
services defining, 587

entity integrity, 157
equality (=) operator, 84
error handling, 459–473
@@ERROR function, 466–468
error messages

dropping, 462
invoking with RAISERROR command, 463
viewing, 459

error trapping, 465–468

■INDEX828

9802Index.qxd 6/26/08 11:03 AM Page 828

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ESCAPE keyword, 8, 12
event notifications, 579, 612–614
EXCEPT operand, 44
exclusive locks, 123
EXECUTE AS statement, 340–337, 524
EXECUTE command, 767
execution runtime information, viewing, 746–748
EXISTS operator, 8
EXP function, 262
EXPAND VIEWS hint, 452
explicit transactions, 116–119
expressions, 7–14
extended stored procedures, 403
Extensible Key Management (EKM), 547
extent lock resource, 124
extents, 758
EXTERNAL_ACCESS permission, 406, 409, 414

■F
failover clustering, 697
failovers, 709, 710, 712
FAST integer hint, 451
FASTFIRSTROW hint, 455
FILE keyword, 805, 816
file lock resource, 124
FILEGROUP keyword, 805, 816
filegroups, 180–184, 187, 627

adding to databases, 660
backing up, 805–807
default, setting, 660
indexes, creating on, 212
managing, 654–663
placing tables on, 180, 191
read-only, 662, 807
removing, 661

files, I/O statistics and, 753
files, backing up, 805–807
FILESTREAM attribute, 80–84
FILLFACTOR option, 209
filtered indexes, 212, 214
filtered statistics, 762
fixed server roles, 485–488
FLOOR function, 262
fn_my_permissions function, 523
FOR XML command, 430–433
FORCESEEK hint, 456–458
foreign key constraints, 158, 168
foreign keys, 88, 160–164
FORMSOF command, 234
four-part linked server names, 730, 732
FREETEXT predicate, 8, 230, 235
FREETEXTTABLE ranking function, 235
FROM clause, 235

best practices for, 741
distributed queries and, 730, 733
predicates and, 230
rows, updating via, 75
views and, 239

full backups, 791, 793–804
COPY_ONLY option and, 804
restoring, 810–812

FULL OUTER JOINs, 29

FULLTEXTCATALOGPROPERTY system function,
225

FULL recovery model, 649, 700, 705, 792
FULL safety mode, 711
full table scan, 197
Full-Text Engine for SQL Server (MSFTESQL), 217
full-text catalogs, 217–230
full-text indexes, 217–230
full-text search, 217–261

advanced, 232–232
ranked, 235–237
CLR scalar UDFs, creating, 412–414
date, 277–284
flexible, using ISNULL, 275
mathematical, 261
ranking, 288–293
statistical, 298
string, 263–303
user-defined, 343–365, 372, 404

functions, 257–306
aggregate, 257–261
date, 277–284
mathematical, 261–263
identity, 303–306
NULLs and, 274–277
ranking, 288–293
string, 262–274
system, 293–303
type conversion and, 284–288
uniqueidentifier, 303–306

■G
geography data type, 442–448
Geography Markup Language (GML), 442
geometry data type, 442–448
GetAncestor method, 438
GETDATE function, 278, 286
GetDescendant method, 437, 439
GetLevel method, 436, 440
GetReparentedValue method, 441
GetRoot method, 440
GETUTCDATE function, 278
GET_FILESTREAM_TRANSACTION_CONTEXT()

method, 84
global temporary tables, 176
GML (Geography Markup Language), 442
GMT (Greenwich Mean Time), 144, 278
GOTO command, 307, 312, 316
GRANT command, 480

database-scoped securables and, 509
object permissions and, 519
schema-scoped securables and, 515
securables and, 501
server-scoped securables and, 505

grantee, permissions and, 505
grantor, permissions and, 505
Greenwich Mean Time (GMT), 144, 278
GROUP BY ALL clause, 15
GROUP BY clause, 14, 49, 51
GROUP BY ROLLUP clause, 48
group-level identification, for rows, 53–56
GROUPING aggregate function, 257

■INDEX 829

9802Index.qxd 6/26/08 11:03 AM Page 829

grouping data, 14–17
GROUPING function, 51, 54
GROUPING SETS operator, 49
GROUPING_ID function, 51, 53–56

■H
Hardware Security Modules (HSM), 547
hardware, query performance and, 740
HASH joins, 450
{HASH | ORDER} GROUP hint, 451
Has_perms_by_name system function, 522
HAVING command, 16, 230
heaps, 197, 669, 686
hierarchyid data type, 62, 435–441
high availability, 697, 710
high performance, 711
high protection, 711
hints, 449–458, 771–775
HONOR_BROKER_PRIORITY option, 596
horizontal partitioning, 180
horizontally partitioned tables, 239, 251, 256
HOST_ID function, 301
HOST_NAME function, 301
hot database standby, 698
HSM (Hardware Security Modules), 547

■I
I/O contention, identifying, 753
IDENTITY column property, 66, 165, 303–306
IDENTITY values, checking, 166
IDENT_CURRENT function, 304
IDENT_INCR function, 305
IDENT_SEED function, 305
@@IDLE function, 298
IF...ELSE statement, 307, 310
IGNORE_CONSTRAINTS hint, 455
IGNORE_TRIGGERS hint, 455
image data type (deprecated with SQL Server

2005), 76
image files, inserting/updating via OPENROWSET

and BULK, 78
implicit transactions, 116
IN operator, 8
INCLUDE command, 199, 209
@@IDENTITY function, 304
INDEX (index_val [,... n]) hint, 455
index columns, sort direction for, 203
index compression, 212
index fragmentation, 755, 756–758
index key, 197, 199
index key columns, 197
index pages, 210
index seeks/index scans, FORCESEEK hint and,

456–458
index usage, displaying, 754, 759–760
indexed views, 239, 246, 248–251
indexes, 197–215

access to, allowing during creation, 208
best practices for, 755
clustered, 198, 755
creating, 199–230

maintenance for, 682–686
managing, 212–215
multiple-column, creating, 202
nonclustered, 198, 755
page-level data compression for, 684
performance tuning for, 207–209, 212, 754–760
primary key and, 157
query performance and, 199, 739
re-creating after dropping, 206
renaming, 687–689

inflectional matches, 217, 233
INFORMATION_SCHEMA.columns system, 24
inline user-defined functions, 343, 349
INNER JOINs, 29
INSERT statement, 63–71

MERGE command and, 90–93
OUTPUT clause, using with, 93

INSERT...EXEC statement, 70
INSERT...SELECT statement, 68
INSTEAD OF DML triggers, 378
INSTEAD OF triggers, 247, 374
integers, FAST integer hint for, 451
intent locks, 123
intermediate indexes, tempdb system database

and, 207
intermediate leaf level, 198
intermediate level pages, 210
international data storage, collations and, 155
INTERSECT operand, 44
INTO clause, 26
@@IO_BUSY function, 298
IS NOT NULL operator, 8
IS NULL operator, 10
ISDATE function, 287
IsDescendantOf method, 441
ISNULL function, 274
ISNUMERIC function, 287
isolation, 115, 128–133

■J
join hints, 449
JOIN keyword, 28
joins, best practices for, 741

■K
KEEP PLAN hint, 452
KEEPDEFAULTS hint, 455
KEEPFIXED PLAN hint, 452
KEEPIDENTITY hint, 455
key columns, 199
key lock resource, 124
key-range locks, 123
keys, 157–168, 359

multiple, 199
surrogate, 165–168, 359

KILL command, 134

■L
@@LANGID function, 294
@@LANGUAGE function, 294

■INDEX830

9802Index.qxd 6/26/08 11:03 AM Page 830

large value data types, 76
leaf level, 198
leaf level pages, 210
LEFT function, 264, 268
LEFT OUTER JOINs, 29
LEN function, 264, 269
LIKE operator, 8

wildcards, using with, 11
LIKE operator, vs. full-text search, 217, 230
linked servers, 723–738
lists, comma-delimited, 25
local partitioned tables, 256
local temporary tables, 176
local variables, xml data types for, 419
location applications, geography/geometry data

types and, 442
lock escalation, 124, 126
lock mode, 123
@@LOCK_TIMEOUT function, 295
locking, 122–133

indexes and, 211
viewing lock activity, 124

locks, 617
LOG function, 262
log sequence number (LSN), 821
log shipping, 698
LOG10 function, 262
logical names, for backup devices, 799
logical operators, 743
login commands, capturing, 612–614
login/user associations, 491–493
LOGINPROPERTY function, 484
logins

SQL Server, 480–485
Windows, 475–480

logon triggers, 390
lookup tables, temporary tables and, 176
lookups, multiple, 177
LOOP joins, 450
{LOOP | MERGE | HASH} JOIN hint, 451
lost updates, 128
LOWER function, 264, 270
LSN (log sequence number), 821
LSN boundaries, 105
LTRIM function, 264, 271

■M
mapping applications, geography/geometry data

types and, 442
master database, 581, 603
Master Keys, 547, 550–555
master merges, 221
matching rows, 27, 44
mathematical functions, 261
MAX aggregate function, 257, 259
MAXDOP index option, 208
MAXDOP number_of_processors hint, 451
MAXRECURSION hint, 61, 452
media families, 799
media sets, 797, 799, 808
MERGE command, 89, 90–93
MERGE joins, 450

MERGE RANGE functionality, 186, 188
message types, 582

message-queuing, Service Broker for, 579–601
receiving/responding to, 591
sending, 589

metadata lock resource, 124
Microsoft

Full-Text Engine for SQL Server (MSFTESQL),
217

.NET Framework, 402
SQL Native Client OLE DB Provider, 724, 734

MIN aggregate function, 257, 259
MIRROR TO clause, 801
mirroring backup sets, 801
mirroring databases. See database mirroring
model system database, 622
MODIFY FILE command, 657–659
MODIFY FILEGROUP command, 660, 662
modifying data. See data modifications
modulo, assign (%=) operator, 84
MONTH function, 278, 283
msdb.dbo.suspect_pages system table, 819
MSFTESQL (Full-Text Engine for SQL Server), 217
multi-statement user-defined functions, 343, 351,

362–365
multilingual data storage, collations and, 155
multiple keys, 199
multiple-column indexes, 202
multiply, assign (*=) operator, 84
MULTI_USER mode, 628

■N
names, displaying in single column, 25
NCHAR function, 264
nesting TRY...CATCH calls, 471
@@NESTLEVEL function, 295
.NET assemblies, 401
.NET CLR assemblies, 325
.NET Framework, 402
network throughput, query performance and, 740
NEWID system function, 303, 305
NEWSEQUENTIALID system function, 303, 306
NOCHECK option, 172
NOEXPAND keyword, 251
noise words, 217, 226–229
NOLOCK hint, 455
non-key columns

adding to nonclustered index via INCLUDE
command, 209

enforcing uniqueness for, 201
including within a nonclustered index, 209

non-recursive CTEs, 56
non-unique indexes, 199
nonclustered indexes, 198

best practices for, 755
compression and, 215
non-key columns and, 209
partitioning applied to, 213

nonrepeatable reads, 128
NORECOVERY option, database mirroring and,

705
NOT BETWEEN operator, 8

■INDEX 831

9802Index.qxd 6/26/08 11:03 AM Page 831

NOT IN operator, 8
NOT LIKE operator, 8
ntext data type (deprecated with SQL Server 2005),

76
NTILE function, 288, 292
NULL values, 274–277

checking for, 10
sparse columns and, 150–153

NULL | NOT NULL option, 144
nullability, 144
NULLIF function, 274, 277
numeric data types, 146
nvarchar(max) data types, 76

■O
object dependencies, 244

identifying, 690–692
tracking, 687, 690–695

object lock resource, 124
object permissions, 519–522
objects

changing schemas for, 689
reporting information about, 154

OBJECT_DEFINITION function, 243, 694
OBJECT_ID function, 301, 694
OBJECT_NAME function, 125, 301
offline state, 652
OGC (Open Geospatial Consortium), 442
OLE DB providers, 723, 730, 734
ON DELETE command, 163
ON SCHEMA command, 519
ON UPDATE command, 163
ONLINE option, 208
online restores, 810
online state, 652
Open Geospatial Consortium (OGC), 442
OPEN SYMMETRIC KEY command, 562, 573
OPENQUERY command, 730, 733
OPENROWSET command, 78, 81, 83, 723, 733–738
OPENXML command, 430, 433–435
operators, 7–14
OPTIMIZE FOR (@variable_name =

literal_constant) [,...n] hint, 452
ORDER BY clause

syntax for, 17–19
best practices for, 741

OUTER APPLY clause, 37
OUTER JOINs, 29
OUTPUT clause, 93
OUTPUT parameters, 328, 330
overlapping rows, 46
ownership chaining, 337

■P
@@PACKET_ERRORS function, 298
@@PACK_RECEIVED function, 298
@@PACK_SENT function, 298
PAD_INDEX option, 209
page compression, 192–195
PAGE keyword, 819
page-level data compression, for indexes, 684

page lock resource, 124
page locks, 211
page splits, 210
page verification, configuring, 650
parallelism, index build performance and, 208
parameterization, 459, 778–781
PARAMETERIZATION option, 644
PARAMETERIZATION { SIMPLE | FORCED } hint,

452
parameterized stored procedures, 328
parameters, 328

user-defined types and, identifying, 367
xml data types for, 419

parent_class_desc, 503
parent_covering_permission_name, 503
Parse method, 439, 445
partial backups, 807
PARTIAL command, 818
partial restores, 818
partition functions, dropping, 190
partition-level compression, 194
partition schemes, 181, 190
partitioned views , 251–256
partitions, 197

mapping columns to, 180
removing, 188

partner databases, 700
passphrases, encryption and, 547–550
passwords, encryption and, 547–550
PATH indexes, 429
PATINDEX function, 263, 266, 269
performance

Change Data Capture (CDC) and, 93, 96
cursors and, 307, 319
data compression and, 194
filegroups and, 180
for indexes, improving, 207–209, 212
index build, parallelism and, 208
indexed views and, 248
optimizing. See performance tuning
stored procedures and, 340
temporary tables/table variables and, 177
transactions and, 129
triggers and, 373
user-defined functions and, 357
views and, 240
XML indexes and, 428

performance tuning, 739–787
best practices for, 741
for indexes, 754–760

permissions, 501–529
for assemblies, modifying, 417
on database-scoped securables, 509–514
managing across securable scopes, 522–529
object, 519–522
principals and, 475
on schema-scoped securables, 514–519
on server-scoped securables, 505–509
viewing available, 503

PERSISTED keyword, 149
phantom reads, 128
PI function, 262
PIVOT operator, 39

■INDEX832

9802Index.qxd 6/26/08 11:03 AM Page 832

plan guides, 771–781
cautions for, 771, 773
checking validity of, 777
creating based on existing query plans, 775–777
forcing parameterization and, 778–781

point-in-time recovery, 649, 814, 820
POWER function, 262
predicates, 230–232
prefix compression, 193
price points, DISTINCT keyword for, 22
primary databases. See principal databases,

database mirroring and
primary filegroup, 627
primary key constraints, 159, 169
primary keys, 157–159, 201
principal databases, database mirroring and, 697,

699–716
architecture of, 698–700
backing up/restoring, 705–707

principals, 475–499
private keys

changing password and, 557
database certificates and, 570

procedure cache, flushing, 342
processes, controlling number of used in

parallelism, 208
PROPERTY indexes, 429
proximity of terms, 217, 234

■Q
query concurrency, index locking and, 211
query execution plans, 327, 340

forcing SQL Server to use, 769
viewing, 743–771

query hints, 451
query optimization, 739–787

best practices for, 741
hints and, 449–787

query parallelism, disabling, 618
query performance, indexes and, 199
querying

BULK option and, 735–738
distributed queries and, 723–738
HAVING clause and, 16
for incoming messages, 591
multiple data sources, 28–35
WHERE clause and, 3–7

queues, 580, 585, 752
quorum, of connected servers, 699, 710
QUOTENAME function, 264

■R
RADIANS function, 262
RAISERROR command, 460, 462–465
RAND function, 262
range queries, clustered indexes and, 198
RANK function, 288, 290
ranking functions, 288–293
READ COMMITTED isolation level, 128
read-consistency, 647–648
READ UNCOMMITTED isolation level, 128

READPAST hint, 455
READ_COMMITTED_SNAPSHOT database

option, 647–648
READ_WRITE_FILEGROUPS option, 807
rebuilding heaps, 669, 686
RECEIVE command

messages and, 591
queues and, 585

RECEIVE TOP command, 594
RECOMPILE hint, 452
recompiling stored procedures, 340
RECONFIGURE command, 617, 619
RECONFIGURE WITH OVERRIDE command, 396,

617
recovery paths, 820
recovery plan, for databases, 789–791
recovery point objective (RPO), 789
recovery time objective (RTO), 789
recursive CTEs, 56, 59
recursive foreign key references, 162
recursive members, 61
referenced/referencing objects, identifying, 692
relational data sets, converting to XML format,

430–435
remote data sources, 723
REMOTE joins, 450
remote service bindings, 601, 608
REMOVE FILE command, 656, 662
REMOVE FILEGROUP command, 661
REMOVE PRIVATE KEY command, 571
REPAIR options, DBCC commands and, 669, 674
REPEATABLE READ COMMITTED isolation level,

129
REPLACE function, 264, 269
REPLICATE function, 264, 272
replication, 698
resource consumption, constraining, 781–787
Resource Governor feature, 781–787
resource pools, 781–787
resources for further reading

geography/geometry data types, 445
Waits and Queues methodology, 752
XML Schema definitions, 422
XML transport formats, 442
XPath, 432
XQuery, 425

RESTORE command, 792, 799
differential backup and, 816
full backup and, 810
PARTIAL command and, 818

RESTORE FILELISTONLY command, 808
RESTORE...FROM DATABASE_SNAPSHOT

command, 720–722
RESTORE HEADERONLY command, 808
RESTORE LABELONLY command, 808
RESTORE LOG command, 813
RESTORE MASTER KEY command, 553
RESTORE...MOVE command, 812
RESTORE VERIFYONLY command, 808
restoring databases, 810–822

from differential backups, 815
from full backups, 810–812
multiple recovery paths and, 820

■INDEX 833

9802Index.qxd 6/26/08 11:03 AM Page 833

partial restores and, 818–819
from transaction log backups, 812–815

RETURN command, 307, 312
RETURNS keyword, 352
REVERSE function, 264, 273
REVERT command, 524
REVOKE command

database-scoped securables and, 510
object permissions and, 520
schema-scoped securables and, 516
securables and, 501
server-scoped securables and, 506

RID lock resource, 124
RIGHT function, 264, 268
RIGHT OUTER JOINs, 29
ROBUST PLAN hint, 452
ROLLBACK command, triggers and, 383
ROLLBACK TRANSACTION command, 116
ROLLUP clause, 48, 49
root nodes, 198
ROUND function, 262
routes, Service Broker and, 601, 608
row-based security, 365
row compression, 192–195
row locks, 211
@@ROWCOUNT function, 297
ROWGUIDCOL property, 165, 168, 303
rows, 35

converted from columns via UNPIVOT, 42
count of, 259
cursors and, 319–323
deleting, 86–88
distinct, 44
extracting sampling of via TABLESAMPLE, 38
grouping, 14–17
inserting into tables, 64–71
limiting percentage of, 20
matching, 27, 44
multiple, inserting via single INSERT, 71
overlapping, 46
ranking functions and, 288–293
returning based on list of values, 11
revealing rows generated via GROUPING, 51
selecting columns for, 2
table-valued functions, invoking for, 35–38
updating, 74–85

ROW_NUMBER function, 45, 288
RPO (recovery point objective), 789
RTO (recovery time objective), 789
RTRIM function, 264, 271

■S
SAFE permission, 406, 409, 414
SAVE TRANSACTION command, 116
scalar user-defined functions, 343

advantages of, 357
cross-referencing natural key values and,

359–362
reusable code and, 357

scanning table data, 197
schema modification locks, 123
schema scope, 501

schema-scoped securables, 514–519
schema stability locks, 123
schema.object_name, 516
SCHEMABINDING option, 248
schemas, 3

changing for objects, 689
validating XML data via, 422–424

scope qualifier, 519
SCOPE_IDENTITY function, 304
scripts, creating via SELECT statement, 23
search conditions, 6, 75
searching. See full-text search
securables, 475, 501–529

auditing SQL instance-/database-scoped
activity against, 529–545

database-scoped, 509–514
managing permissions across, 522–529
schema-scoped, 514–519
server-scoped, 505–509

security
dialog, 601, 606–608
EXECUTE AS command and, 337–340
principals and, 475–499
row-based, 365
stored procedures and, 326, 335
Transparent Data Encryption (TDE) for, 547,

575
transport, 601, 603–606

security-identifiers (sids), 491
SELECT statement, 1–62

best practices for, 741
indexed views and, 248
temporary tables and, 176
temporary tables as alternative to, 177
VALUES keyword and, 72
views and, 239, 241

selectivity, indexes and, 202
semicolon (;), 59
SEND ON CONVERSATION command, 590, 593
SERIALIZABLE isolation level, 129
Server Audit object, 501, 529–545

creating, 530–532
enabling, 539
modifying, 543–545

Server Audit Specification, 529, 533, 542
creating, 535
managing, 543–545
removing, 545

server roles, fixed, 485–488
server scope, 501
server-scoped securables, 505–509
server session id, renamed from server process id,

321
@@SERVERNAME function, 296
SERVERPROPERTY function, 155, 300
servers, linked, 723–738
Service Broker, 579–133

cross-server communication and, 601–611
steps in creating applications (list), 580

severity levels, for error messages, 460, 465
shared locks, 123
SHOWPLAN commands, 743–746
shrinking databases/database files, 665–668

■INDEX834

9802Index.qxd 6/26/08 11:03 AM Page 834

SHUTDOWN command, 505
sids (security-identifiers), 491
SIGN function, 262
SIMPLE recovery model, 649, 791
SIN function, 262
SINGLE_USER mode, 628
smalldatetime data type, 277, 285
SNAPSHOT COMMITTED isolation level, 129
Snapshot Isolation, 108, 113
snapshots, of databases, 717–722
SOME operator, 8
sort direction for index columns, 203
sort order, collations for, 155
SORT_IN_TEMPDB command, 207
SOUNDEX function, 264, 267
source control systems, benefits of, 335
SPACE function, 264, 272
sparse columns, 150–153
sparse files, 717
spatial data, 442–448
spatial indexes, 446
SPID, 321
@@SPID function, 296
sp_addextendedproc system-stored procedure,

403
sp_addlinkedserver stored procedure, 724, 728
sp_addlinkedsrvlogin stored procedure, 728
sp_addmessage system-stored procedure, 460
sp_addrolemember system-stored procedure, 494
sp_addsrvrolemember system-stored procedure,

485
sp_addumpdevice system-stored procedure, 799
sp_cdc_enable_db stored procedure, 99
sp_changedbowner system-stored procedure, 651,

653
sp_changeobjectowner system-stored procedure,

689
sp_change_users_login system-stored procedure

(deprecated), 493
sp_configure stored procedure, 396, 404
sp_configure system-stored procedure, 615, 618
sp_control_plan_guide system-stored procedure,

772
sp_createstats stored procedure, 763–764
sp_create_plan_guide system-stored procedure,

771, 779
sp_create_plan_guide_from_handle system-stored

procedure, 775
sp_depends system-stored procedure

(deprecated), 690
sp_detach_db special procedure, 632
sp_dropdevice system-stored procedure, 800
sp_droplinkedsrvlogin system-stored procedure,

730
sp_droprolemember system-stored procedure, 494
sp_dropserver system-stored procedure, 727
sp_dropsrvrolemember stored procedure, 486
sp_estimate_data_compression_savings system-

stored procedure, 193
sp_executesql system-stored procedure, 740, 766,

767, 773
sp_get_query_template system-stored procedure,

779

sp_grantdbaccess system-stored procedure, 489
sp_help stored procedure, 154
sp_helpdb stored procedure, 622
sp_helpdbfixedrole system-stored procedure, 493
sp_helpdevice system-stored procedure, 800
sp_helprole system-stored procedure, 495
sp_helprolemember system-stored procedure, 493
sp_helpserverrole system-stored procedure, 487
sp_helpsrvrolemember system-stored procedure,

487
sp_helpuser system-stored procedure, 490
sp_procoption system-stored procedure, 333
sp_refreshsqlmodule system-stored procedure,

244
sp_refreshview system-stored procedure, 245
sp_rename system-stored procedure, 687
sp_serveroption system-stored procedure, 726
sp_setapprole stored procedure, 497
sp_settriggerorder system-stored procedure, 398
sp_spaceused system-stored procedure, 663, 667
sp_updatestats system-stored procedure, 760, 764
sp_who system-stored procedure, 134
SQL collations, 155
SQL injection attacks, 326, 767
SQL instance-scoped events, capturing, 533–535,

539
SQL logins, accessing non-SQL server resources

and, 528
SQL Native Client (Microsoft) OLE DB Provider,

724, 734
SQL Server 2000, XML integration and, 430
SQL Server 2008

BULK option and, 723, 735–738
cascading changes and, 163
Change Data Capture new with, 93, 96–107
Change Tracking new with, 93, 107–113
CLR integration and, 401
CLR support, enabling in, 405
compound assignment operators new with,

84–86
Data Collector new with, 748
data compression improvements with, 192–195
data page restores and, 819
data stream compression new with, 697, 711
database mirroring and, 801
database object dependency tracking and, 687,

690–695
DATE_CORRELATION_OPTIMIZATION option

and, 643
DDL triggers and, 373, 386
FILESTREAM attribute new with, 80–84
filtered indexes new with, 212, 214
FORCESEEK hint new with, 456–458
forcing to use query execution plans and, 769
grouping sets and, 49
hierarchyid data type new with, 435–441
index compression new with, 212
index options and, 199, 208–212
join types and, 29
loading assemblies into, 409
lock escalation and, 124, 126
lock resources of, 123
MERGE command new with, 89, 90–93

■INDEX 835

9802Index.qxd 6/26/08 11:03 AM Page 835

multiple rows from single INSERT statement,
new with, 71

object dependencies new with, 244
partial backups and, 807
query guide creation from cache new with,

775–777
query performance tuning and, 740
read-consistency options and, 647–648
rebuilding heaps new with, 669, 686
Resource Governor feature new with, 781–787
Server Audit object new with, 501, 529–545
Service Broker and, 579–306
sparse columns new with, 150–153
spatial data new with, 442–448
statement-level stored procedure recompilation

new with, 453
sys.fn_validate_plan_guide system catalog

function new with, 777
sys.sql_expression_dependencies view new

with, 687
table partitioning improvements with, 180, 189
table-valued parameters new with, 369–372
Transparent Data Encryption (TDE) new with,

547, 575–578
SQL Server data type to CLR data type translations,

407
SQL Server instances, shutting down, 505
SQL Server logins, 480–485
SQL Server principals, 475, 480–488
SQL Server Profiler, 742
SQL Server transactional control, 80–84
SQRT function, 262
SQUARE function, 262
STArea method, 445
statistical functions, 260, 298
statistics, 760–766

creating, 760
filtered, 762
query performance and, 740
updating, 762
viewing detailed information about, 765

STATISTICS commands, 746–766
STDEV function, 258, 261
STDEVP function, 258, 261
STDistance method, 445
STIntersects method, 446
STLength method, 445
stoplists/stopwords, 217, 226–229
stored procedure headers, 335
stored procedures, 325–342, 404

best practices for, 741
creating, 326–330
documenting, 335
dropping, 332
executing automatically, 333
extended, 403
for processing messages, 598–601
inserting table data via, 70
modifying, 332
TRY...CATCH command and, 466, 470
when to use/benefits of, 325

STR function, 264
string concatenation, 24

string execution, 767
string functions, 263–274
strings, discarding uncommon from full-text

indexes, 226–229
striping backups, 799
STUFF function, 264, 270, 354
subqueries, 27
SUBSTRING function, 264, 273
subtract, assign (-=) operator, 84
SUM aggregate function, 257, 260
summarizing data, 46–56
surrogate keys, 165–567, 359
symmetric keys, 547
SYNONYM object, 723
synonyms, 732
sys.asymmetric_keys system catalog view, 556
sys.backup_devices catalog view, 799
sys.certificates system catalog view, 568
sys.configurations system catalog view, 615
sys.conversation_priorities catalog view, 596
sys.databases system catalog view, 636, 644, 650
sys.database_audit_specifications system catalog

view, 537
sys.database_audit_specification_details system

catalog view, 537
sys.database_mirroring system catalog view,

713–715
sys.database_mirroring_endpoints system catalog

view, 703
sys.database_recovery_status catalog view, 820
sys.dm_audit_actions catalog view, 533, 535, 541
sys.dm_database_encryption_keys catalog view,

577
sys.dm_db_index_physical_stats dynamic

management view, 756–758
sys.dm_db_index_usage_stats dynamic

management view, 759
sys.dm_exec_cached_plans dynamic management

view, 778, 781
sys.dm_exec_cached_plans system catalog view,

644
sys.dm_exec_connections dynamic management

view, 121, 136
sys.dm_exec_query_plan dynamic management

view, 645, 769
sys.dm_exec_query_stats dynamic management

view, 749, 777
sys.dm_exec_requests dynamic management view,

121, 742
sys.dm_exec_sql_text dynamic management view,

121, 134, 136, 749
sys.dm_exec_text_query_plan dynamic

management view, 646
sys.dm_io_virtual_file_stats dynamic management

view, 753
sys.dm_os_performance_counters dynamic

management view, 731
sys.dm_os_waiting_tasks dynamic management

view, 134
sys.dm_os_wait_stats dynamic management view,

752
sys.dm_resource_governor_resource_pools

dynamic management view, 787

■INDEX836

9802Index.qxd 6/26/08 11:03 AM Page 836

sys.dm_resource_governor_workload_groups
dynamic management view, 787

sys.dm_sql_referenced_entities dynamic
management view, 687, 692

sys.dm_sql_referencing_entities dynamic
management view, 687, 692

sys.dm_tran_active_transactions dynamic
management view, 121

sys.dm_tran_session_transactions dynamic
management view, 121

sys.endpoints catalog view, 527
sys.fn_builtin_permissions system catalog

function, 504
sys.fn_validate_plan_guide system catalog

function, 777
sys.linked_logins catalog view, 729
sys.messages system catalog view, 459
sys.messages table, 459, 462
sys.plan_guides catalog view, 774, 777
sys.resource_governor_resource_pools catalog

view, 784
sys.resource_governor_workload_groups catalog

view, 785
sys.schemas system catalog view, 518
sys.servers system catalog view, 727, 729
sys.server_audit_specifications catalog view, 534
sys.server_audits catalog view, 531
sys.server_audit_specification_details catalog view,

534
sys.server_file_audits catalog view, 531
sys.server_permissions catalog view, 508
sys.server_principals system catalog view, 477, 482,

486, 508, 527, 729
sys.services catalog view, 597
sys.service_contracts catalog view, 597
sys.sql_dependencies catalog view (deprecated),

690
sys.sql_expression_dependencies catalog view,

687, 690
sys.sql_modules catalog view, 242, 325, 334
sys.symmetric_keys system catalog view, 562
sys.triggers catalog view, 385
sys.XML_schema_collections catalog view, 423
sys.XML_schema_namespaces catalog view, 423
sysadmin fixed server role, 485
sysadmin server role members, 549
SYSDATETIME function, 278
SYSDATETIMEOFFSET function, 144, 278
system catalog views, 225
system-defined error messages, 459–462
system functions, 293–303
SYSTEM_USER function, 302
SYSUTCDATETIME function, 278

■T
T-SQL programming language, 401
table aliases, 29, 32
table constraints, 157
table hints, 454
table lock resource, 124
table partitioning, 180, 181–191

table-valued functions, invoking for outer-query
rows, 35–38

table-valued parameters, 369–372
table-valued user-defined functions, 343, 357
table variables, 176–180

performance issues and, 177
RETURNS keyword and, 352

tables
creating, 147
derived, 33
dropping, 154
filegroups, placing on, 180, 191
new, creating from query results via INTO

clause, 26
querying multiple, 28–35
referencing multiple times, 32
renaming, 687–689
reporting information about, 154
statistics, generating/updating across, 763–764
temporary, 176–180
truncating, 88
validating integrity of, 674–682
very large, managing, 180–578

tempdb database, 176, 207
temporary tables, 176–180

vs. derived tables, 33
performance issues and, 177

term proximity, 217, 234
tessellation process, 448
testing, best practices for, 741
text data type (deprecated with SQL Server 2005),

76
time, 277, 285
@@TIMETICKS function, 298
TODATETIMEOFFSET function, 278
tokens, 217
TOP keyword, 19, 89
TORN_PAGE_DETECTION option, 650
ToString method, 437
@@TOTAL_ERRORS function, 298
@@TOTAL_READ function, 298
@@TOTAL_WRITE function, 298
trace flags, 138–141
Transact-SQL cursors, temporary tables as

alternative to, 176
Transact-SQL predicates, 230–232
Transact-SQL scripts, creating, 23
Transact-SQL statements

transaction locking behavior for, 129–133
default transaction locking behavior for,

129–133
transaction log files

backing up, 698, 700, 705–707, 791, 803
recovery models for, 649
relocating, 657
restoring backups of, 812–815
removing from database, 656

transaction mark recovery, 649
transactions, 115–122

concurrent, interactions between, 128
configuring locking behavior for, 129–133
displaying oldest active, 119
DML triggers and, 381

■INDEX 837

9802Index.qxd 6/26/08 11:03 AM Page 837

obtaining information about, 120
recommendations for handling in Transact-SQL

code, 119
types of, 115

@@TRANCOUNT function, 297
@@TRANCOUNT TRANSACTION command, 117
Transparent Data Encryption (TDE), 547, 575–578
transport security, 601, 603–606
trigger recursion, 396
triggers, 373–400, 404

CLR, creating, 415–416
dropping, 399
enabling/disabling, 394
firing order and, 397
INSTEAD OF, 247
logon, 390
managing, 393–400
TRY...CATCH command and, 466

troubleshooting
active transactions, 120
blocks, 134–137
deadlocks, 137–142
foreign keys, 163

TRUNCATE TABLE command, 88, 337
TRUSTWORTHY option, 581
TRY...CATCH command, 465, 468–473

benefits of, 465
nesting calls and, 471
stored procedures and, 470

■U
UDFs. See user-defined functions
UDTs. See user-defined types
undo phase, 810
Unicode files, importing, 735–738
UNICODE function, 264
UNION ALL operator, 35, 49, 51
UNION ALL statement, 239, 251, 255
UNION operator, result sets and, 33
UNION statement, 364
UNIQUE constraints, 168–171
unique indexes, 199
uniqueidentifier column, 67
uniqueidentifier data type, 165, 303–306, 589
UNKNOWN result, 7
UNPIVOT command, 42
UNSAFE permission, 406, 410
untyped XML columns, 422
update locks, 123
update mask, 104
UPDATE statement, 73–85

MERGE command and, 90–93
OUTPUT clause, using with, 93

UPDATE STATISTICS command, 762
updates, lost, 128
UPDLOCK hint, 455
UPPER function, 264, 270
USE clause, 2
USE PLAN ‘xml_plan’ hint, 452
USE PLAN command, 771, 769
user access modes, 628
user-defined aggregate functions, 404

user-defined database roles, 488, 495–497
user-defined error messages, 459–462
user-defined functions (UDFs), 343–365, 404

benefits of, 357–365
caution for, 357
dropping, 356
modifying, 354
table-valued parameters and, 369–372
viewing list of, 356

user-defined types (UDTs), 343, 365–372, 404
caution for, 365
creating, 365–367
dropping, 368

USER function, 302
UTC (Coordinated Universal Time), 144, 278
utilities

Database Engine Tuning Advisor, 755
SQL Server Profiler, 742

■V
VALUE indexes, 429
values

assigning to variables, 12
converting into columns, 39
declaring/assigning values to, 12
duplicate, removing, 21
inserting explicitly into IDENTITY column, 66
NULL, checking for, 10
returning rows based on list of, 11

VALUES keyword, 71–73
VAR function, 258, 260
varbinary(max) data types, 76
varchar(max) data types, 76
VARP function, 258, 260
VB.NET, creating assemblies in, 405
vbc.exe compiler, 408
very large databases (VLDBs), filegroups and, 180,

191
view definitions

querying, 242
refreshing, 244

viewing
aggregated performance statistics, 750
asymmetric keys, 556
backup devices, 800
cached query plans, statistics for, 748
database certificates, 568
database information, 622–624
database object definitions, 694
database options, 636
database space usage, 663–665
execution runtime information, 746–748
fixed database role members, 493
fixed database roles, 493
fixed server role members, 487
fixed server roles, 486
index usage, 754, 759–760
indexes, 203
linked logins, 729
linked servers, 727
media sets, contents of, 808–809
permissions, available, 503

■INDEX838

9802Index.qxd 6/26/08 11:03 AM Page 838

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

query execution plans, 743–771
SQL Server configurations, 615–617
SQL Server logins, 482
statistics information, 765
symmetric keys, 562
system catalog views and, 225
Windows logins, 477

views, 239–256
CTEs and, 56–62
dropping, 245
encrypting, 247
indexed, 248–251
partitioned, 251–256
regular, 240–247
replacing with multi-statement UDFs, 362–365
returning information about, 243

virtual log files (VLFs), 668
VLDBs (very large databases), filegroups and, 180,

191
VLFs (virtual log files), 668

■W
WAITFOR command, 307, 313, 318
waits, 752
Waits and Queues methodology, 752
weighted value, returning search results by, 236
Well-Known Binary (WKB), 442
Well-Known Text (WKT), 442
WHERE clause, 3–7

keeping unambiguous, 6
rows, updating via, 75

WHERE statement, 307, 312, 314
best practices for, 741
predicates and, 230
temporary tables and, 176

wildcard searches, 217, 233
wildcards, with LIKE, 11
Windows authentication, Windows principals and,

475–480

Windows collations, 155
Windows credentials, 528
Windows logins, 475–480

creating, 476
dropping, 479

Windows-only authentication, 476
Windows principals, 475–480
WITH CUBE clause, 46
WITH NORECOVERY option, database mirroring

and, 700
WITH RECOMPILE command, 340
WITH ROLLUP clause, 49
witness server, 699
WKB (Well-Known Binary), 442
WKT (Well-Known Text), 442
word meaning, returning search results by, 235
workload groups, 782
worktables, 748

■X
XLOCK hint, 455
xml data type, 365, 419–430
XML data, retrieving/modifying, 424–428
XML DML, 428
XML format, converting relational data sets into,

430–435
XML indexes, 428–430
XML integration, 419–435
XML Schema collections, 422–424
XML transport formats, 442
XQuery methods, 424–428

■Y
YEAR function, 278, 283

■INDEX 839

9802Index.qxd 6/26/08 11:03 AM Page 839

9802Index.qxd 6/26/08 11:03 AM Page 840

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	SELECT
	The Basic SELECT Statement
	Selecting Specific Columns from a Table
	How It Works

	Selecting Every Column for Every Row
	How It Works

	Selective Querying Using a Basic WHERE Clause
	Using the WHERE Clause to Specify Rows Returned in the Result Set
	How It Works

	Combining Search Conditions
	How It Works

	Negating a Search Condition
	How It Works

	Keeping Your WHERE Clause Unambiguous
	How It Works

	Using Operators and Expressions
	Using BETWEEN for Date Range Searches
	How It Works

	Using Comparisons
	How It Works

	Checking for NULL Values
	How It Works

	Returning Rows Based on a List of Values
	How It Works

	Using Wildcards with LIKE
	How It Works

	Declaring and Assigning Values to Variables
	How It Works

	Grouping Data
	Using the GROUP BY Clause
	How It Works

	Using GROUP BY ALL
	How It Works

	Selectively Querying Grouped Data Using HAVING
	How It Works

	Ordering Results
	Using the ORDER BY Clause
	How It Works

	Using the TOP Keyword with Ordered Results
	How It Works

	SELECT Clause Techniques
	Using DISTINCT to Remove Duplicate Values
	How It Works

	Using DISTINCT in Aggregate Functions
	How It Works

	Using Column Aliases
	How It Works

	Using SELECT to Create a Script
	How It Works

	Performing String Concatenation
	How It Works

	Creating a Comma-Delimited List Using SELECT
	How It Works

	Using the INTO Clause
	How It Works

	Subqueries
	Using Subqueries to Check for Matches
	How It Works

	Querying from More Than One Data Source
	Using INNER Joins
	How It Works

	Using OUTER Joins
	How It Works

	Using CROSS Joins
	How It Works

	Referencing a Single Table Multiple Times in the Same Query
	How It Works

	Using Derived Tables
	How It Works

	Combining Result Sets with UNION
	How It Works

	Using APPLY to Invoke a Table-Valued Function for Each Row
	Using CROSS APPLY
	How It Works

	Using OUTER APPLY
	How It Works

	Advanced Techniques for Data Sources
	Using the TABLESAMPLE to Return Random Rows
	How It Works

	Using PIVOT to Convert Single Column Values into Multiple Columns and Aggregate Data
	How It Works

	Normalizing Data with UNPIVOT
	How It Works

	Returning Distinct or Matching Rows Using EXCEPT and INTERSECT
	How It Works

	Summarizing Data
	Summarizing Data Using CUBE
	How It Works

	Summarizing Data Using ROLLUP
	How It Works

	Creating Custom Summaries Using Grouping Sets
	How It Works

	Revealing Rows Generated by GROUPING
	How It Works

	Advanced Group-Level Identification with GROUPING_ID
	How It Works

	Common Table Expressions
	Using a Non-Recursive Common Table Expression
	How It Works

	Using a Recursive Common Table Expression
	How It Works

	Perform, Capture, and Track Data Modifications
	INSERT
	Inserting a Row into a Table
	How It Works

	Inserting a Row Using Default Values
	How It Works

	Explicitly Inserting a Value into an IDENTITY Column
	How It Works

	Inserting a Row into a Table with a uniqueidentifier Column
	How It Works

	Inserting Rows Using an INSERT...SELECT Statement
	How It Works

	Inserting Data from a Stored Procedure Call
	How It Works

	Inserting Multiple Rows with VALUES
	How It Works

	Using VALUES As a Table Source
	How It Works

	UPDATE
	Updating a Single Row
	How It Works

	Updating Rows Based on a FROM and WHERE Clause
	How It Works

	Updating Large Value Data Type Columns
	How It Works

	Inserting or Updating an Image File Using OPENROWSET and BULK
	How It Works

	Storing Unstructured Data on the File System While Maintaining SQL Server Transactional Control
	How It Works

	Assigning and Modifying Database Values “in Place”
	How It Works

	DELETE
	Deleting Rows
	How It Works

	Truncating a Table
	How It Works

	Advanced Data Modification Techniques
	Chunking Data Modifications with TOP
	How It Works

	Executing INSERTs, UPDATEs, and DELETEs in a Single Statement
	How It Works

	Capturing and Tracking Data Modification Changes
	Returning Rows Affected by a Data Modification Statement
	How It Works

	Asynchronously Capturing Table Data Modifications
	How It Works

	Querying All Changes from CDC Tables
	How It Works

	Querying Net Changes from CDC Tables
	How It Works

	Translating the CDC Update Mask
	How It Works

	Working with LSN Boundaries
	How It Works

	Disabling Change Data Capture from Tables and the Database
	How It Works

	Tracking Net Data Changes with Minimal Disk Overhead
	How It Works

	Transactions, Locking, Blocking, and Deadlocking
	Transaction Control
	Using Explicit Transactions
	How It Works

	Displaying the Oldest Active Transaction with DBCC OPENTRAN
	How It Works

	Querying Transaction Information by Session
	How It Works

	Locking
	Viewing Lock Activity
	How It Works

	Controlling a Table’s Lock Escalation Behavior
	How It Works

	Transaction, Locking, and Concurrency
	Configuring a Session’s Transaction Locking Behavior
	How It Works

	Blocking
	Identifying and Resolving Blocking Issues
	How It Works

	Configuring How Long a Statement Will Wait for a Lock to Be Released
	How It Works

	Deadlocking
	Identifying Deadlocks with a Trace Flag
	How It Works

	Setting Deadlock Priority
	How It Works

	Tables
	Table Basics
	Creating a Table
	How It Works

	Adding a Column to an Existing Table
	How It Works

	Changing an Existing Column Definition
	How It Works

	Creating a Computed Column
	How It Works

	Reducing Storage for Null Columns
	How It Works

	Dropping a Table Column
	How It Works

	Reporting Table Information
	How It Works

	Dropping a Table
	How It Works

	Collation Basics
	Viewing Collation Metadata
	How It Works

	Designating a Column’s Collation
	How It Works

	Keys
	Creating a Table with a Primary Key
	How It Works

	Adding a Primary Key Constraint to an Existing Table
	How It Works

	Creating a Table with a Foreign Key Reference
	How It Works

	Adding a Foreign Key to an Existing Table
	How It Works

	Creating Recursive Foreign Key References
	How It Works

	Allowing Cascading Changes in Foreign Keys
	How It Works

	Surrogate Keys
	Using the IDENTITY Property During Table Creation
	How It Works

	Using DBCC CHECKIDENT to View and Correct IDENTITY Seed Values
	How It Works

	Using the ROWGUIDCOL Property
	How It Works

	Constraints
	Creating a Unique Constraint
	How It Works

	Adding a UNIQUE Constraint to an Existing Table
	How It Works

	Using CHECK Constraints
	How It Works

	Adding a CHECK Constraint to an Existing Table
	How It Works

	Disabling and Enabling a Constraint
	How It Works

	Using a DEFAULT Constraint During Table Creation
	How It Works

	Adding a DEFAULT Constraint to an Existing Table
	How It Works

	Dropping a Constraint from a Table
	How It Works

	Temporary Tables and Table Variables
	Using a Temporary Table for Multiple Lookups Within a Batch
	How It Works

	Creating a Table Variable to Hold a Temporary Result Set
	How It Works

	Manageability for Very Large Tables
	Implementing Table Partitioning
	How It Works

	Determining the Location of Data in a Partition
	How It Works

	Adding a New Partition
	How It Works

	Removing a Partition
	How It Works

	Moving a Partition to a Different Table
	How It Works

	Removing Partition Functions and Schemes
	How It Works

	Easing VLDB Manageability with Filegroups
	How It Works

	Reducing Disk Space Usage with Data Compression
	How It Works

	Indexes
	Index Overview
	Creating a Table Index
	How It Works

	Enforcing Uniqueness on Non-Key Columns
	How It Works

	Creating an Index on Multiple Columns
	How It Works

	Defining Index Column Sort Direction
	How It Works

	Viewing Index Meta Data
	How It Works

	Disabling an Index
	How It Works

	Dropping Indexes
	How It Works

	Changing an Existing Index with DROP_EXISTING
	How It Works

	Controlling Index Build Performance and Concurrency
	Intermediate Index Creation in Tempdb
	How It Works

	Controlling Parallel Plan Execution for Index Creation
	How It Works

	Allowing User Table Access During Index Creation
	How It Works

	Index Options
	Using an Index INCLUDE
	How It Works

	Using PAD_INDEX and FILLFACTOR
	How It Works

	Disabling Page and/or Row Index Locking
	How It Works

	Managing Very Large Indexes
	Creating an Index on a Filegroup
	How It Works

	Implementing Index Partitioning
	How It Works

	Indexing a Subset of Rows
	How It Works

	Reducing Index Size
	How It Works

	Full-Text Search
	Full-Text Indexes and Catalogs
	Creating a Full-Text Catalog
	How It Works

	Creating a Full-Text Index
	How It Works

	Modifying a Full-Text Catalog
	How It Works

	Modifying a Full-Text Index
	How It Works

	Retrieving Full-Text Catalog and Index Metadata
	How It Works

	Discarding Common Strings from a Full-Text Index
	How It Works

	Dropping a Full-Text Index
	How It Works

	Dropping a Full-Text Catalog
	How It Works

	Basic Searching
	Using FREETEXT to Search Full-Text Indexed Columns
	How It Works

	Using CONTAINS for Word Searching
	How It Works

	Advanced Searching
	Using CONTAINS to Search with Wildcards
	How It Works

	Using CONTAINS to Search for Inflectional Matches
	How It Works

	Using CONTAINS for Searching Results by Term Proximity
	How It Works

	Ranked Searching
	Returning Ranked Search Results by Meaning
	How It Works

	Returning Ranked Search Results by Weighted Value
	How It Works

	Views
	Regular Views
	Creating a Basic View
	How It Works

	Querying the View Definition
	How It Works

	Displaying Views and Their Structures
	How It Works

	Refreshing a View’s Definition
	How It Works

	Modifying a View
	How It Works

	Dropping a View
	How It Works

	Modifying Data Through a View
	How It Works

	View Encryption
	Encrypting a View
	How It Works

	Indexed Views
	Creating an Indexed View
	How It Works

	Forcing the Optimizer to Use an Index for an Indexed View
	How It Works

	Partitioned Views
	Creating a Distributed-Partitioned View
	How It Works

	SQL Server Functions
	Aggregate Functions
	Returning the Average of Values
	How It Works

	Returning Row Counts
	How It Works

	Finding the Lowest and Highest Values from an Expression
	How It Works

	Returning the Sum of Values
	How It Works

	Using Statistical Aggregate Functions
	How It Works

	Mathematical Functions
	Performing Mathematical Operations
	How It Works

	String Functions
	Converting a Character Value to ASCII and Back to Character
	How It Works

	Returning Integer and Character Unicode Values
	How It Works

	Finding the Start Position of a String Within Another String
	How It Works

	Finding the Start Position of a String Within Another String Using Wildcards
	How It Works

	Determining the Similarity of Strings
	How It Works

	Taking the Leftmost or Rightmost Part of a String
	How It Works

	Determining the Number of Characters or Bytes in a String
	How It Works

	Replacing a Part of a String
	How It Works

	Stuffing a String into a String
	How It Works

	Changing Between Lowerand Uppercase
	How It Works

	Removing Leading and Trailing Blanks
	How It Works

	Repeating an Expression
	Number of Times
	How It Works

	Repeating a Blank Space
	Number of Times
	How It Works

	Outputting an Expression in Reverse Order
	How It Works

	Returning a Chunk of an Expression
	How It Works

	Working with NULLs
	Replacing a NULL Value with an Alternative Value
	How It Works

	Performing Flexible Searches Using ISNULL
	How It Works

	Returning the First Non-NULL Value in a List of Expressions
	How It Works

	Returning a NULL Value When Two Expressions Are Equal: Otherwise Returning the First Expression
	How It Works

	Date Functions
	Returning the Current Date and Time
	How It Works

	Converting Between Time Zones
	How It Works

	Incrementing or Decrementing a Date’s Value
	How It Works

	Finding the Difference Between Two Dates
	How It Works

	Displaying the String Value for Part of a Date
	How It Works

	Displaying the Integer Representation for Parts of a Date
	How It Works

	Displaying the Integer Value for Part of a Date Using YEAR, MONTH, and DAY
	How It Works

	Type Conversion
	Converting Between Data Types
	How It Works

	Converting Dates to Their Textual Representation
	How It Works

	Representing Binary Data in String Literals
	How It Works

	Evaluating the Data Type Returned by an Expression
	How It Works

	Ranking Functions
	Generating an Incrementing Row Number
	How It Works

	Returning Rows by Rank
	How It Works

	Returning Rows by Rank Without Gaps
	How It Works

	Using NTILE
	How It Works

	Probing Server, Database, and Connection-Level Settings Using System Functions
	Determining the First Day of the Week
	How It Works

	Viewing the Language Used in the Current Session
	How It Works

	Viewing and Setting Current Connection Lock Timeout Settings
	How It Works

	Displaying the Nesting Level for the Current Stored Procedure Context
	How It Works

	Returning the Current SQL Server Instance Name and SQL Server Version
	How It Works

	Returning the Current Connection’s Session ID (SPID)
	How It Works

	Returning the Number of Open Transactions
	How It Works

	Retrieving the Number of Rows Affected by the Previous Statement
	How It Works

	Retrieving System Statistics
	How It Works

	Displaying Database and SQL Server Settings
	How It Works

	Returning the Current Database ID and Name
	How It Works

	Returning a Database Object Name and ID
	How It Works

	Returning the Application and Host for the Current User Session
	How It Works

	Reporting Current User and Login Context
	How It Works

	Viewing User Connection Options
	How It Works

	IDENTITY and uniqueidentifier Functions
	Returning the Last Identity Value
	How It Works

	Returning an Identity Column’s Seed and Incrementing Value
	How It Works

	Creating a New uniqueidentifier Value
	How It Works

	Conditional Processing, Control-ofFlow, and Cursors
	Conditional Processing
	Using CASE to Evaluate a Single Input Expression
	How It Works

	Using CASE to Evaluate Boolean Expressions
	How It Works

	Using IF...ELSE
	How It Works

	Control-of-Flow
	Using RETURN
	How It Works

	Using WHILE
	How It Works

	Using GOTO
	How It Works

	Using WAITFOR
	How It Works

	Cursors
	Creating and Using Transact-SQL Cursors
	How It Works

	Stored Procedures
	Stored Procedure Basics
	Creating a Basic Stored Procedure
	How It Works

	Creating a Parameterized Stored Procedure
	How It Works

	Using OUTPUT Parameters
	How It Works

	Modifying a Stored Procedure
	How It Works

	Dropping Stored Procedures
	How It Works

	Executing Stored Procedures Automatically at SQL Server Startup
	How It Works

	Reporting Stored Procedure Metadata
	How It Works

	Documenting Stored Procedures
	How It Works

	Stored Procedure Security
	Encrypting a Stored Procedure
	How It Works

	Using EXECUTE AS to Specify the Procedure’s Security Context
	How It Works

	Recompilation and Caching
	RECOMPILE(ing) a Stored Procedure Each Time It Is Executed
	How It Works

	Flushing the Procedure Cache
	How It Works

	User-Defined Functions and Types
	UDF Basics
	Creating Scalar User-Defined Functions
	How It Works

	Creating Inline User-Defined Functions
	How It Works

	Creating Multi-Statement User-Defined Functions
	How It Works

	Modifying User-Defined Functions
	How It Works

	Viewing UDF Metadata
	How It Works

	Dropping User-Defined Functions
	How It Works

	Benefitting from UDFs
	Maintaining Reusable Code
	How It Works

	Cross-Referencing Natural Key Values
	How It Works

	Replacing Views with Multi-Statement UDFs
	How It Works

	UDT Basics
	Creating and Using User-Defined Types
	How It Works

	Identifying Columns and Parameters with Dependencies on User-Defined Types
	How It Works

	Dropping User-Defined Types
	How It Works

	Passing Table-Valued Parameters
	How It Works

	Triggers
	DML Triggers
	Creating an AFTER DML Trigger
	How It Works

	Creating an INSTEAD OF DML Trigger
	How It Works

	Handling Transactions Within DML Triggers
	How It Works

	Controlling DML Triggers Based on Modified Columns
	How It Works

	Viewing DML Trigger Metadata
	How It Works

	DDL Triggers
	Creating a DDL Trigger That Audits Database-Level Events
	How It Works

	Creating a DDL Trigger That Audits Server-Level Events
	How It Works

	Using a Logon Trigger
	How It Works

	Viewing DDL Trigger Metadata
	How It Works

	Managing Triggers
	Modifying a Trigger
	How It Works

	Enabling and Disabling Table Triggers
	How It Works

	Limiting Trigger Nesting
	How It Works

	Controlling Trigger Recursion
	How It Works

	Setting Trigger Firing Order
	How It Works

	Dropping a Trigger
	How It Works

	CLR Integration
	CLR Overview
	When (and When Not) to Use Assemblies
	CLR Objects Overview
	Creating CLR Database Objects
	Enabling CLR Support in SQL Server
	How It Works

	Writing an Assembly for a CLR Stored Procedure
	How It Works

	Compiling an Assembly into a DLL File
	How It Works

	Loading the Assembly into SQL Server
	How It Works

	Creating the CLR Stored Procedure
	How It Works

	Creating a CLR Scalar User-Defined Function
	How It Works

	Creating a CLR Trigger
	How It Works

	Administering Assemblies
	Viewing Assembly Metadata
	How It Works

	Modifying an Assembly’s Permissions
	How It Works

	Removing an Assembly from the Database
	How It Works

	XML, Hierarchies, and Spatial Data
	Working with Native XML
	Creating XML Data Type Columns
	How It Works

	Inserting XML Data into a Column
	How It Works

	Validating XML Data Using Schemas
	How It Works

	Retrieving XML Data
	How It Works

	Modifying XML Data
	How It Works

	Indexing XML Data
	How It Works

	Converting Between XML Documents and Relational Data
	Formatting Relational Data As XML
	How It Works

	Converting XML to a Relational Form
	How It Works

	Working with Native Hierarchical Data
	Storing Hierarchical Data
	How It Works

	Returning a Specific Ancestor
	How It Works

	Returning Child Nodes
	How It Works

	Returning a Node’s Depth
	How It Works

	Returning the Root Node
	How It Works

	Determining Whether a Node Is a Child of the Current Node
	How It Works

	Changing Node Locations
	How It Works

	Native Spatial Data
	Storing Spatial Data
	How It Works

	Querying Spatial Data
	How It Works

	Hints
	Using Join Hints
	Forcing a HASH Join
	How It Works

	Using Query Hints
	Forcing a Statement Recompile
	How It Works

	Using Table Hints
	Executing a Query Without Locking
	How It Works

	Forcing a SEEK over a SCAN
	How It Works

	Error Handling
	System-Defined and User-Defined Error Messages
	Viewing System Error Information
	How It Works

	Creating a User-Defined Error Message
	How It Works

	Dropping a User-Defined Error Message
	How It Works

	Manually Raising an Error
	Invoking an Error Message
	How It Works

	Trapping and Handling Application Errors
	Old-Style Error Handling
	How It Works

	Error Handling with TRY...CATCH
	How It Works

	Applying Error Handling Without Recoding a Stored Procedure
	How It Works

	Nesting Error Handling
	How It Works

	Principals
	Windows Principals
	Creating a Windows Login
	How It Works

	Viewing Windows Logins
	How It Works

	Altering a Windows Login
	How It Works

	Dropping a Windows Login
	How It Works

	Denying SQL Server Access to a Windows User or Group
	How It Works

	SQL Server Principals
	Creating a SQL Server Login
	How It Works

	Viewing SQL Server Logins
	How It Works

	Altering a SQL Server Login
	How It Works

	Managing a Login’s Password
	How It Works

	Dropping a SQL Login
	How It Works

	Managing Server Role Members
	How It Works

	Reporting Fixed Server Role Information
	How It Works

	Database Principals
	Creating Database Users
	How It Works

	Reporting Database User Information
	How It Works

	Modifying a Database User
	How It Works

	Removing a Database User from the Database
	How It Works

	Fixing Orphaned Database Users
	How It Works

	Reporting Fixed Database Roles Information
	How It Works

	Managing Fixed Database Role Membership
	How It Works

	Managing User-Defined Database Roles
	How It Works

	Managing Application Roles
	How It Works

	Securables, Permissions, and Auditing
	Permissions Overview
	Reporting SQL Server Assignable Permissions
	How It Works

	Server-Scoped Securables and Permissions
	Managing Server Permissions
	How It Works

	Querying Server-Level Permissions
	How It Works

	Database-Scoped Securables and Permissions
	Managing Database Permissions
	How It Works

	Querying Database Permissions
	How It Works

	Schema-Scoped Securables and Permissions
	Managing Schemas
	How It Works

	Managing Schema Permissions
	How It Works

	Object Permissions
	Managing Object Permissions
	How It Works

	Managing Permissions Across Securable Scopes
	Determining a Current Connection’s Permissions to a Securable
	How It Works

	Reporting the Permissions for a Principal by Securable Scope
	How It Works

	Changing Securable Ownership
	How It Works

	Allowing SQL Logins to Access Non-SQL Server Resources
	How It Works

	Auditing SQL Instance and Database-Level Activity of Principals Against Securables
	Defining Audit Data Sources
	How It Works

	Capturing SQL Instance–Scoped Events
	How It Works

	Capturing Database-Scoped Events
	How It Works

	Querying Captured Audit Data
	How It Works

	Managing, Modifying, and Removing Audit Objects
	How It Works

	Encryption
	Encryption by Passphrase
	Using a Function to Encrypt by Passphrase
	How It Works

	Master Keys
	Backing Up and Restoring a Service Master Key
	How It Works

	Creating, Regenerating, and Dropping a Database Master Key
	How It Works

	Backing Up and Restoring a Database Master Key
	How It Works

	Removing Service Master Key Encryption from the Database Master Key
	How It Works

	Asymmetric Key Encryption
	Creating an Asymmetric Key
	How It Works

	Viewing Asymmetric Keys in the Current Database
	How It Works

	Modifying the Asymmetric Key’s Private Key Password
	How It Works

	Encrypting and Decrypting Data Using an Asymmetric Key
	How It Works

	Dropping an Asymmetric Key
	How It Works

	Symmetric Key Encryption
	Creating a Symmetric Key
	How It Works

	Viewing Symmetric Keys in the Current Database
	How It Works

	Changing How a Symmetric Key Is Encrypted
	How It Works

	Using Symmetric Key Encryption and Decryption
	How It Works

	Dropping a Symmetric Key
	How It Works

	Certificate Encryption
	Creating a Database Certificate
	How It Works

	Viewing Certificates in the Database
	How It Works

	Backing Up and Restoring a Certificate
	How It Works

	Managing a Certificate’s Private Key
	How It Works

	Using Certificate Encryption and Decryption
	How It Works

	Automatically Opening and Decrypting via a Symmetric Key
	How It Works

	Transparent Data Encryption
	Enabling Transparent Data Encryption
	How It Works

	Managing and Removing TDE
	How It Works

	Service Broker
	Example Scenario: Online Bookstore
	Creating a Basic Service Broker Application
	Enabling Databases for Service Broker Activity
	How It Works

	Creating the Database Master Key for Encryption
	How It Works

	Managing Message Types
	How It Works

	Creating Contracts
	How It Works

	Creating Queues
	How It Works

	Creating Services
	How It Works

	Initiating a Dialog
	How It Works

	Querying the Queue for Incoming Messages
	How It Works

	Receiving and Responding to a Message
	How It Works

	Ending a Conversation
	How It Works

	Prioritizing Service Broker Conversations
	How It Works

	Creating a Stored Procedure to Process Messages
	Creating the Bookstore Stored Procedure
	How It Works

	Remote-Server Service Broker Implementations
	Enabling Transport Security
	How It Works

	Enabling Dialog Security
	How It Works

	Creating Routes and Remote Service Bindings
	How It Works

	Event Notifications
	Capturing Login Commands
	How It Works

	Configuring and Viewing SQL Server Options
	Unknown
	Viewing SQL Server Configurations
	How It Works

	Changing SQL Server Configurations
	How It Works

	Creating and Configuring Databases
	Creating, Altering, and Dropping Databases
	Creating a Database with a Default Configuration
	How It Works

	Viewing Database Information
	How It Works

	Creating a Database Using File Options
	How It Works

	Creating a Database with a User-Defined Filegroup
	How It Works

	Setting Database User Access
	How It Works

	Renaming a Database
	How It Works

	Dropping a Database
	How It Works

	Detaching a Database
	How It Works

	Attaching a Database
	How It Works

	Configuring Database Options
	Viewing Database Options
	How It Works

	Configuring ANSI SQL Options
	How It Works

	Configuring Automatic Options
	How It Works

	Creating or Modifying a Database to Allow External Access
	How It Works

	Creating or Changing a Database to Use a Non-Server Default Collation
	How It Works

	Configuring Cursor Options
	How It Works

	Enabling Date Correlation Optimization
	How It Works

	Modifying Database Parameterization Behavior
	How It Works

	Enabling Read Consistency for a Transaction
	How It Works

	Configuring Database Recovery Models
	How It Works

	Configuring Page Verification
	How It Works

	Controlling Database Access and Ownership
	Changing a Database State to Online, Offline, or Emergency
	How It Works

	Changing a Database Owner
	How It Works

	Managing Database Files and Filegroups
	Adding a Data File or Log File to an Existing Database
	How It Works

	Removing a Data or Log File from a Database
	How It Works

	Relocating a Data or Transaction Log File
	How It Works

	Changing a File’s Logical Name
	How It Works

	Increasing a Database’s File Size and Modifying Its Growth Options
	How It Works

	Adding a Filegroup to an Existing Database
	How It Works

	Setting the Default Filegroup
	How It Works

	Removing a Filegroup
	How It Works

	Making a Database or Filegroup Read-Only
	How It Works

	Viewing and Managing Database Space Usage
	Viewing Database Space Usage
	How It Works

	Shrinking the Database or a Database File
	How It Works

	Database Integrity and Optimization
	Database Integrity Checking
	Checking Consistency of the Disk Space Allocation Structures with DBCC CHECKALLOC
	How It Works

	Checking Allocation and Structural Integrity with DBCC CHECKDB
	How It Works

	Tables and Constraints
	Checking Allocation and Structural Integrity of All Tables in a Filegroup Using DBCC CHECKFILEGROUP
	How It Works

	Checking Data Integrity for Tables and Indexed Views Using DBCC CHECKTABLE
	How It Works

	Checking Table Integrity with DBCC CHECKCONSTRAINTS
	How It Works

	Checking System Table Consistency with DBCC CHECKCATALOG
	How It Works

	Index Maintenance
	Rebuilding Indexes
	How It Works

	Defragmenting Indexes
	How It Works

	Rebuilding a Heap
	How It Works

	Maintaining Database Objects and Object Dependencies
	Database Object Maintenance
	Changing the Name of a User-Created Database Object
	How It Works

	Changing an Object’s Schema
	How It Works

	Object Dependencies
	Identifying Object Dependencies
	How It Works

	Identifying Referencing and Referenced Entities
	How It Works

	Viewing an Object’s Definition
	How It Works

	Database Mirroring
	Database Mirroring in Context
	Database Mirroring Architecture
	Setting Up Database Mirroring
	Creating Mirroring Endpoints
	How It Works

	Backing Up and Restoring Principal Databases
	How It Works

	Creating a Database Mirroring Session
	How It Works

	Setup Summary
	Operating Database Mirroring
	Changing Operating Modes
	How It Works

	Performing Failovers
	How It Works

	Pausing or Resuming a Mirroring Session
	How It Works

	Stopping Mirroring Sessions and Removing Endpoints
	How It Works

	Monitoring and Configuring Options
	Monitoring Mirror Status
	How It Works

	Configuring the Connection Timeout Period
	How It Works

	Database Snapshots
	Snapshot Basics
	Creating and Querying Database Snapshots
	How It Works

	Removing a Database Snapshot
	How It Works

	Recovering Data with a Database Snapshot
	How It Works

	Linked Servers and Distributed Queries
	Linked Server Basics
	Creating a Linked Server to Another SQL Server Instance
	How It Works

	Configuring Linked Server Properties
	How It Works

	Viewing Linked Server Information
	How It Works

	Dropping a Linked Server
	How It Works

	Linked Server Logins
	Adding a Linked Server Login Mapping
	How It Works

	Viewing Linked Logins
	How It Works

	Dropping a Linked Server Login Mapping
	How It Works

	Executing Distributed Queries
	Executing Distributed Queries Against a Linked Server
	How It Works

	Creating and Using an Alias to Reference Four-Part Linked Server Names
	How It Works

	Executing Distributed Queries Using OPENQUERY
	How It Works

	Executing Ad Hoc Queries Using OPENROWSET
	How It Works

	Reading Data from a File Using OPENROWSET BULK Options
	How It Works

	Query Performance Tuning
	Query Performance Tips
	Capturing and Evaluating Query Performance
	Capturing Executing Queries Using sys.dm_exec_requests
	How It Works

	Viewing Estimated Query Execution Plans Using Transact-SQL Commands
	How It Works

	Viewing Execution Runtime Information
	How It Works

	Viewing Performance Statistics for Cached Query Plans
	How It Works

	Viewing Aggregated Performance Statistics Based on Query or Plan Patterns
	How It Works

	Identifying the Top Bottleneck
	How It Works

	Identifying I/O Contention by Database and File
	How It Works

	Index Tuning
	Displaying Index Fragmentation
	How It Works

	Displaying Index Usage
	How It Works

	Statistics
	Manually Creating Statistics
	How It Works

	Creating Statistics on a Subset of Rows
	How It Works

	Updating Statistics
	How It Works

	Generating and Updating Statistics Across All Tables
	Viewing Statistics Details
	How It Works

	Removing Statistics
	How It Works

	Miscellaneous Techniques
	Using an Alternative to Dynamic SQL
	How It Works

	Forcing SQL Server to Use a Query Plan
	How It Works

	Applying Hints Without Modifying Application SQL
	How It Works

	Creating Plan Guides from Cache
	How It Works

	Checking the Validity of a Plan Guide
	How It Works

	Parameterizing a Non-parameterized Query Using Plan Guides
	How It Works

	Limiting Competing Query Resource Consumption
	How It Works

	Backup and Recovery
	Creating a Backup and Recovery Plan
	Making Backups
	Performing a Basic Full Backup
	How It Works

	Compressing Your Backups
	How It Works

	Naming and Describing Your Backups and Media
	How It Works

	Configuring Backup Retention
	How It Works

	Striping Backup Sets
	How It Works

	Using a Named Backup Device
	How It Works

	Mirroring Backup Sets
	How It Works

	Performing a Transaction Log Backup
	How It Works

	Create Backups Without Breaking the Backup Sequence
	How It Works

	Performing a Differential Backup
	How It Works

	Backing Up Individual Files or Filegroups
	How It Works

	Performing a Partial Backup
	How It Works

	Viewing Backup Metadata
	How It Works

	Restoring a Database
	Restoring a Database from a Full Backup
	How It Works

	Restoring a Database from a Transaction Log Backup
	How It Works

	Restoring a Database from a Differential Backup
	How It Works

	Restoring a File or Filegroup
	How It Works

	Performing a Piecemeal (PARTIAL) Restore
	How It Works

	Restoring a Page
	How It Works

	Identifying Databases with Multiple Recovery Paths
	How It Works

	Index

