THE EXPERT’S VOICE® IN SQL SERVER

SQL Server 2008

Transact-SQL
Recipes

Get the job done with SQL Server’s powerful
database programming and query language

Joseph Sack

Apress:

<UW02°}00COMOM MMM> 003 iMOAN WOy PROJUMOQ

SQL Server 2008
Transact-SQL Recipes

Joseph Sack

APIress’

SQL Server 2008 Transact-SQL Recipes
Copyright © 2008 by Joseph Sack

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-980-8

ISBN-10 (pbk): 1-59059-980-2

ISBN-13 (electronic): 978-1-4302-0626-2

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Evan Terry

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Susannah Davidson Pfalzer

Copy Editor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Dina Quan

Proofreader: Liz Welch

Indexer: Brenda Miller

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

Contents at a Glance

About the AUTNOTo XXV
About the Technical ReVIEWET. XXVii
ACKNOWIBAOMENTS . ..o XXix
IMtrOdUCTION Xxxi
CHAPTER 1 SELECT. . o 1
CHAPTER 2 Perform, Capture, and Track Data Modifications 63
CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 115
CHAPTER 4 Tables 143
CHAPTER 5 INAEXES ... o 197
CHAPTER 6 Full-TextSearch............ 217
CHAPTER 7 VWS 239
CHAPTER 8 SQL Server Functions 257
CHAPTER 9 Conditional Processing, Control-of-Flow, and Cursors 307
CHAPTER 10 Stored Procedures.................. ..o, 325
CHAPTER 11 User-Defined Functionsand Types................................. 343
CHAPTER 12 THigQerS. .. .o 373
CHAPTER 13 CLRIntegration............... 401
CHAPTER 14 XML, Hierarchies, and Spatial Data................................. 419
CHAPTER 15 Hints......... 449
CHAPTER 16 ErrorHandling............ 459
CHAPTER 17 PrinCipals e, 475
CHAPTER 18 Securables, Permissions, and Auditing............................. 501
CHAPTER 19 Encryplion.......... s, 547
CHAPTER 20 Service Broker............ ..., 579

CHAPTER 21 Configuring and Viewing SQL Server Options 615

CHAPTER 22 Creating and Configuring Databases 621
CHAPTER 23 Database Integrity and Optimization................................ 669
CHAPTER 24 Maintaining Database Objects and Object Dependencies 687
CHAPTER 25 Database Mirroring 697
CHAPTER 26 Database Snapshots 717
CHAPTER 27 Linked Servers and Distributed Queries 723
CHAPTER 28 Query Performance Tuning, 739
CHAPTER 29 Backupand Recoveryooiiiiiiiiiaann.. 789

INDEX . .. 823

Contents

AboUL the AUTNOT . . . XXV
About the Technical ReVIEWET. XXVii
ACKNOWIBAOMENTS . ..o XXix
IMtrOdUCTION Xxxi
CHAPTER 1 SELECT 1
The Basic SELECT Statement.t 1

Selecting Specific ColumnsfromaTable 2

Selecting Every Column for EveryRow 3

Selective Querying Using a Basic WHERE Clause. 3

Using the WHERE Clause to Specify Rows Returned in the Result Set4

Combining Search Conditions oo, 4

Negating a Search Condition 6

Keeping Your WHERE Clause Unambiguous. 6

Using Operators and EXpressions.t 7

Using BETWEEN for Date Range Searches 9

UsSing COmMParisonsouirii e 9

Checking for NULLValues. ...t 10

Returning Rows Based ona ListofValues 1

Using Wildcards with LIKE L. 1

Declaring and Assigning Values to Variables 12

Grouping Data. 14

Using the GROUPBY Clausecooiiiiii it 14

Using GROUP BY ALL. ...t 15

Selectively Querying Grouped Data Using HAVING. 16

Ordering ReSUIS. 17

Usingthe ORDERBY Clause. ...t 17

Using the TOP Keyword with Ordered Results 19

SELECT Clause Techniquest 21

Using DISTINCT to Remove Duplicate Values........................ 21

Using DISTINCT in Aggregate Functions 22

Using Column AlISESttt e 22

Using SELECT to Createa Script ool 23

Performing String Concatenation.................................. 24

Creating a Comma-Delimited List Using SELECT. 25

Usingthe INTOClause.ooiii e 26

CONTENTS

CHAPTER 2

SUDQUBIIBS . . oottt e e 27
Using Subqueries to Check for Matches............................ 27
Querying from More Than One DataSource.............................. 28
USINGINNER JOINSo 29
Using OUTER JOINSot e 30
Using CROSS JOINSo 31
Referencing a Single Table Multiple Times in the Same Query 32
Using Derived Tables.o it 33
Combining Result Sets with UNION 33
Using APPLY to Invoke a Table-Valued Function for Each Row. 35
Using CROSS APPLYo 35
Using OUTERAPPLY e 37
Advanced Techniques for DataSources ...t .. 38
Using the TABLESAMPLE to Return RandomRows 38
Using PIVOT to Convert Single Column Values into Multiple Columns
andAggregate Data.................. ... 39
Normalizing Data with UNPIVOT. it 42
Returning Distinct or Matching Rows Using EXCEPT and INTERSECT 44
SummarizingData.......... 46
Summarizing DataUsingCUBE 46
Summarizing Data Using ROLLUP 48
Creating Custom Summaries Using Grouping Sets 49
Revealing Rows Generated by GROUPING. 51
Advanced Group-Level Identification with GROUPING_ID 53
Common Table EXPressionsovvire e e 56
Using a Non-Recursive Common Table Expression................... 56
Using a Recursive Common Table Expression 59
Perform, Capture, and Track Data Modifications............ 63
INSERT .. 63
InsertingaRowintoaTable.................. il 64
Inserting a Row Using DefaultValues 65
Explicitly Inserting a Value into an IDENTITY Column.................. 66
Inserting a Row into a Table with a uniqueidentifier Column........... 67
Inserting Rows Using an INSERT...SELECT Statement................. 68
Inserting Data from a Stored Procedure Call 70
Inserting Multiple Rows with VALUES 71
Using VALUES Asa Table Source.ccoviiviiiinnnn.. 72
UPDATE. .. 73
UpdatingaSingle Row o 74
Updating Rows Based on a FROM and WHERE Clause 75
Updating Large Value Data Type Columns 76
Inserting or Updating an Image File Using OPENROWSET and BULK. 78

CONTENTS

Storing Unstructured Data on the File System While Maintaining

SQL Server Transactional Control. 80
Assigning and Modifying Database Values “in Place”................. 84
DELETE .. 86
Deleting ROWSo 86
TruncatingaTable. ... 88
Advanced Data Modification Techniques 89
Chunking Data Modifications with TOP............................. 89
Executing INSERTS, UPDATES, and DELETEs in a Single Statement 90
Capturing and Tracking Data Modification Changes 93
Returning Rows Affected by a Data Modification Statement............ 93
Asynchronously Capturing Table Data Modifications. 96
Querying All Changes from CDC Tables 99
Querying Net Changes from CDC Tables. 103
Translating the CDC Update Mask................................. 104
Working with LSN Boundaries 105
Disabling Change Data Capture from Tables and the Database. 107
Tracking Net Data Changes with Minimal Disk Overhead............. 107
CHAPTER 3 Transactions, Locking, Blocking, and Deadlocking 115
Transaction Control i 115
Using Explicit Transactions. ..., 117
Displaying the Oldest Active Transaction with DBCC OPENTRAN. 119
Querying Transaction Information by Session 120
LOCKING . .t 122
Viewing Lock Activity. 124
Controlling a Table’s Lock Escalation Behavior 126
Transaction, Locking, and Concurrencycooviiiiineann... 128
Configuring a Session’s Transaction Locking Behavior............... 129
BIOCKING . ..o 134
Identifying and Resolving Blocking Issues 134
Configuring How Long a Statement Will Wait for a Lock
toBeReleased 136
Deadlocking 137
Identifying Deadlocks witha TraceFlag 138
Setting Deadlock Priority. 41
CHAPTER 4 Tables ... 143
Table BaSiCS 143
CreatingaTable. ... 147
Adding a Columntoan Existing Table............................. 147
Changing an Existing Column Definition........................... 148

ix

Download from Wow! eBook <www.wowebook.com>

CONTENTS

Creating a Computed Column. 149
Reducing Storage for Null Columns............................... 150
Droppinga Table Column it 153
Reporting Table Information.................., 154
DroppingaTableot 154
Collation BaSIiCSoot e 155
Viewing CollationMetadata 155
Designating a Column’s Collation 156
Y S .o 157
Creating a Table with a Primary Key 158
Adding a Primary Key Constraint to an Existing Table................ 159
Creating a Table with a Foreign Key Reference 160
Adding a Foreign Key to an Existing Table 161
Creating Recursive Foreign Key References........................ 162
Allowing Cascading Changes in Foreign Keys 163
Surrogate Keys.o 165
Using the IDENTITY Property During Table Creation 165
Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed ValuBS 166
Using the ROWGUIDCOL Property ..., 168
CONStraintS 168
Creating a Unique Constraint 169
Adding a UNIQUE Constraint to an Existing Table. 170
Using CHECK Constraints ...t 171
Adding a CHECK Constraint to an Existing Table 172
Disabling and Enabling a Constraint 173
Using a DEFAULT Constraint During Table Creation.................. 174
Adding a DEFAULT Constraint to an Existing Table 175
Dropping a Constraint fromaTable............................... 176
Temporary Tables and Table Variables 176
Using a Temporary Table for Multiple Lookups Within a Batch 177
Creating a Table Variable to Hold a Temporary ResultSet 178
Manageability for Very Large Tableso i, 180
Implementing Table Partitioning 181
Determining the Location of Data in a Partition 184
Adding a New Partition L. 186
Removing a Partition............. 188
Moving a Partition to a Different Table 189
Removing Partition Functions and Schemes. 190
Easing VLDB Manageability with Filegroups........................ 191
Reducing Disk Space Usage with Data Compression 192

CONTENTS Xi

CHAPTER 5 Indexes. ... 197
INABX OVEIVIBW. . ..ot 197
Creatinga TableIndex.o i, 199
Enforcing Uniqueness on Non-Key Columns. 201
Creating an Index on Multiple Columns. 202
Defining Index Column Sort Direction 203
Viewing Index MetaData 203
Disablinganindex..............cooi i 205
Dropping INAeXes. 206
Changing an Existing Index with DROP_EXISTING. 206
Controlling Index Build Performance and Concurrency 207
Intermediate Index Creationin Tempdb 207
Controlling Parallel Plan Execution for Index Creation................ 208
Allowing User Table Access During Index Creation 208
INdeX OptioNS 209
UsinganIndex INCLUDE............. 209
Using PAD_INDEX and FILLFACTOR.coviiinnn, 210
Disabling Page and/or Row Index Locking 211
Managing Very Large IndexXest 212
Creating an Indexon aFilegroupcciiiii ... 212
Implementing Index Partitioning. 213
Indexing a Subset of Rows 214
Reducing Index Size 215
CHAPTER 6 Full-TextSearch............................ 217
Full-Text Indexes and Catalogsccoiiiiiiiiiiiiinan... 217
Creating a Full-TextCatalog..................ccoiiiiiinn.n.. 217
Creating a Full-TextIndex. ...t 219
Modifying a Full-Text Catalog.oo... 221
Modifying a Full-TextIndexo it 222
Retrieving Full-Text Catalog and Index Metadata. 225
Discarding Common Strings from a Full-Text Index 226
Droppinga Full-TextIndexoo .. 229
Droppinga Full-TextCatalogt 230
Basic Searching ... 230
Using FREETEXT to Search Full-Text Indexed Columns. 231
Using CONTAINS for Word Searching 232
Advanced Searching 232
Using CONTAINS to Search with Wildcards. 233
Using CONTAINS to Search for Inflectional Matches 233

Using CONTAINS for Searching Results by Term Proximity............ 234

x

CONTENTS

Ranked Searchingt 235
Returning Ranked Search Results by Meaning. 235
Returning Ranked Search Results by Weighted Value................ 236
CHAPTER 7 ViOWS . . 239
Regular VIBWS.o 240
CreatingaBasicView................c i, 240
Querying the View Definition 242
Displaying Views and Their Structures 243
Refreshing a View’s Definition 244
ModifyingaView 245
DroppingaView.o 245
Modifying Data ThroughaView............... 246
View Encryption 247
EncryptingaView i 247
INdeXed VIBWSo 248
Creating an Indexed View, 248
Forcing the Optimizer to Use an Index for an Indexed View 251
Partitioned VIBWSo 251
Creating a Distributed-Partitioned View 252
CHAPTER 8 SQL Server Functions 257
Aggregate Functions 257
Returning the Average of Values 258
Returning Row Counts. i 259
Finding the Lowest and Highest Values from an Expression........... 259
Returning the SumofValuest 260
Using Statistical Aggregate Functions............................. 260
Mathematical Functions 261
Performing Mathematical Operations 262
String Functions. 263
Converting a Character Value to ASCIl and Back to Character 264
Returning Integer and Character Unicode Values. 265
Finding the Start Position of a String Within Another String 266

Finding the Start Position of a String Within Another String
UsingWildcards 266
Determining the Similarity of Strings. 267
Taking the Leftmost or Rightmost Part of a String................... 268
Determining the Number of Characters or Bytesina String........... 269
ReplacingaPartofaString, 269
Stuffing a StringintoaString.............. 270

Changing Between Lower- and Uppercase......................... 270

CONTENTS

Removing Leading and TrailingBlanks............................
Repeating an Expression N Numberof Times
Repeating a Blank Space N Numberof Times
Outputting an Expression in Reverse Order
Returning a Chunk of an Expression
Working With NULLSo
Replacing a NULL Value with an Alternative Value.
Performing Flexible Searches Using ISNULL.
Returning the First Non-NULL Value in a List of Expressions
Returning a NULL Value When Two Expressions Are Equal: Otherwise
Returning the First Expression
Date Functions
Returning the Current Date and Time
Converting Between Time Zones,
Incrementing or Decrementing a Date’s Value......................
Finding the Difference Between Two Dates
Displaying the String Value for PartofaDate.......................
Displaying the Integer Representation for Partsof aDate.............
Displaying the Integer Value for Part of a Date Using YEAR, MONTH,
and DAY. ...
Type CONVEISION. e
Converting Between Data Typesocoviiiiiiiniin...
Converting Dates to Their Textual Representation...................
Representing Binary Data in String Literals
Evaluating the Data Type Returned by an Expression................

272
272
273
273
274
274
275
276

277
277
278
279
280
281
282
282

Ranking Functions 288

Generating an Incrementing Row Number
Returning Rows by Rank..................
Returning Rows by Rank Without Gaps............................
Using NTILE
Probing Server, Database, and Connection-Level Settings Using
System Functions.
Determining the First Day of the Week
Viewing the Language Used in the Current Session

Viewing and Setting Current Connection Lock Timeout Settings 295

Displaying the Nesting Level for the Current Stored

Procedure Contextc i 295

Returning the Current SQL Server Instance Name and

SQL ServerVersion ...
Returning the Current Connection’s Session ID (SPID)
Returning the Number of Open Transactions
Retrieving the Number of Rows Affected by the

Previous Statement
Retrieving System Statistics.l

xiv

CONTENTS

CHAPTER 9

CHAPTER 10

Displaying Database and SQL Server Settings...................... 299
Returning the Current Database IDandName 300
Returning a Database Object NameandID......................... 301
Returning the Application and Host for the Current User Session 301
Reporting Current User and Login Context 302
Viewing User Connection Optionscooiiin... 303
IDENTITY and uniqueidentifier Functions. 303
Returning the Last Identity Value 304
Returning an Identity Column’s Seed and Incrementing Value. 305
Creating a New uniqueidentifier Value 305

Conditional Processing, Control-of-Flow, and Cursors307

Conditional ProCessingovriii 307
Using CASE to Evaluate a Single Input Expression. 308
Using CASE to Evaluate Boolean Expressions. 309
Using IF..ELSE. 310

Control-of-Flowo 312
Using RETURN 313
USing WHILE 314
USINg GOTO ... e 316
Using WAITFOR e 318

CUISOTS « . 319
Creating and Using Transact-SQL Cursors 321

Stored Procedures ... 325

Stored Procedure BasicS.t 325
Creating a Basic Stored Procedureccoiinas. 326
Creating a Parameterized Stored Procedure........................ 328
Using OUTPUT Parameters.................coooiiiiiiinain... 330
Modifying a Stored Procedurel 332
Dropping Stored Procedures. ... 332
Executing Stored Procedures Automatically at SQL Server Startup. 333
Reporting Stored Procedure Metadata 334
Documenting Stored Procedures.t 335

Stored Procedure Security 335
Encrypting a Stored Procedure. 336
Using EXECUTE AS to Specify the Procedure’s Security Context 337

Recompilation and Caching 340
RECOMPILE(ing) a Stored Procedure Each Time ItIs Executed 3

Flushing the Procedure Cacheccviiiiinn.n.. 342

CHAPTER 11

CHAPTER 12

CONTENTS

User-Defined Functionsand Types 343
UDF BaSiCS oot 343
Creating Scalar User-Defined Functions 344
Creating Inline User-Defined Functions. 349
Creating Multi-Statement User-Defined Functions 351
Modifying User-Defined Functions. 354
ViewingUDFMetadata 356
Dropping User-Defined Functions 356
Benefitting fromUDFs 357
Maintaining Reusable Code i, 357
Cross-Referencing Natural Key Values 359
Replacing Views with Multi-Statement UDFs 362
UDT BasiCS 365
Creating and Using User-Defined Typesc.oveen.. 365
Identifying Columns and Parameters with Dependencies
onUser-Defined Types ..., 367
Dropping User-Defined Types ...t 368
Passing Table-Valued Parameters..................., 369
THYOIS ... 373
DML TrgOeIS .« ottt e 374
Creating an AFTER DML Trigger. ..o 375
Creating an INSTEAD OF DML Trigger. ..., 378
Handling Transactions Within DML Triggers. 381
Controlling DML Triggers Based on Modified Columns............... 384
Viewing DML TriggerMetadata 385
DL THgOBIS. . ottt 386
Creating a DDL Trigger That Audits Database-Level Events........... 387
Creating a DDL Trigger That Audits Server-Level Events 389
Usingalogon Trigger.ooouvie e 390
Viewing DDL Trigger Metadata. 392
Managing Triggers. 393
Modifying @ Triggert 393
Enabling and Disabling Table Triggers 394
Limiting Trigger Nesting o i 395
Controlling Trigger Recursion.o .. 396
Setting Trigger Firing Order 397

Dropping @ Trigger. 399

XV

xi

CONTENTS

CHAPTER 13

CHAPTER 14

CLR Integration.. 401
CLR OVEIVIBW . . . oottt e e e e 402
When (and When Not) to Use Assemblieso.t. 402
CLR Objects OVEIVIEWo e 404
Creating CLR Database Objects, 404
Enabling CLR Supportin SQL Server. ..., 405
Writing an Assembly for a CLR Stored Procedure 405
Compiling an AssemblyintoaDLLFile............................ 408
Loading the Assembly into SQL Server............................ 409
Creating the CLR Stored Procedure. 410
Creating a CLR Scalar User-Defined Function 412
Creating@a CLRTrigger ..o 415
Administering Assemblies. 417
Viewing Assembly Metadata. 417
Modifying an Assembly’s Permissions 47
Removing an Assembly from the Database 418
XML, Hierarchies, and SpatialData.......................... 419
Working with Native XML, 419
Creating XML Data Type Columnscooiiiinin... 419
Inserting XML DataintoaColumn.........................cco.o.. 421
Validating XML Data Using Schemas.............................. 422
RetrievingXMLDatao i 424
Modifying XML Data i 427
Indexing XML Data.................. i 428
Converting Between XML Documents and Relational Data................. 430
Formatting Relational Data As XML 430
Converting XML to a Relational Form 433
Working with Native HierarchicalData 435
Storing Hierarchical Data 435
Returning a Specific Ancestor 438
Returning Child Nodes.c i 439
Returning aNode’s Depth.......... i 440
Returningthe Root Node., 440
Determining Whether a Node Is a Child of the Current Node M
Changing Node Locations. ...t a4
Native Spatial Data ... 442
Storing Spatial Data. 442
Querying SpatialData.................... ... i 445

CONTENTS Xvii

CHAPTER15 Hints........ 449
UsingJoin Hints 449
ForcingaHASHJoin i 450
Using Query Hints. 451
Forcing a Statement Recompile.................. 452
Using Table HINtS. 454
Executing a Query Without Locking.ooi.a.. 456
Forcinga SEEKoveraSCAN., 456
CHAPTER16 ErrorHandling... 459
System-Defined and User-Defined Error Messages. 459
Viewing System Error Information...................... 459
Creating a User-Defined Error Message 460
Dropping a User-Defined Error Message. 462
Manually Raisingan Error. 462
Invoking an Error Message ... 463
Trapping and Handling Application Errors. 465
Old-Style ErrorHandlingc i 466

Error Handling with TRY...CATCH. 468
Applying Error Handling Without Recoding a Stored Procedure 470
Nesting ErrorHandling 471
CHAPTER 17 Principals 475
Windows Principals 475
CreatingaWindows Login, 476
Viewing Windows Logins, 477
Alteringa Windows Login.co i 478
Droppinga Windows Login. ...t 479
Denying SQL Server Access to a Windows User or Group. 480

SQL Server PrinCipalst 480
Creating a SQL Server Login. i 482
Viewing SQL Server Logins. ... 482
Altering a SQL ServerLoginco i 483
Managing a Login’s Password ol 484
Droppinga SQAL LOGINot 485
Managing Server Role Members ..., 485
Reporting Fixed Server Role Information........................... 486
Database Principals. ... 488
Creating Database USers. ..., 489
Reporting Database User Information 490

Modifying a Database User............... ..., 490

Xviii

CONTENTS

CHAPTER 18

CHAPTER 19

Removing a Database User from the Database
Fixing Orphaned Database Users........................covuenn..
Reporting Fixed Database Roles Information
Managing Fixed Database Role Membership.......................
Managing User-Defined Database Roles.
Managing ApplicationRoles L.

Securables, Permissions, and Auditing

Permissions OVErVIEWt
Reporting SQL Server Assignable Permissions.
Server-Scoped Securables and Permissions
Managing Server Permissions
Querying Server-Level Permissions.cooii...
Database-Scoped Securables and Permissions.
Managing Database Permissions.
Querying Database Permissions.ciii...
Schema-Scoped Securables and Permissions.
Managing Schemas.o i
Managing Schema Permissions.cooiiiiinn...
0bject Permissionst
Managing Object Permissionscccovviiiiieinn.n..
Managing Permissions Across Securable Scopes
Determining a Current Connection’s Permissions to a Securable
Reporting the Permissions for a Principal by Securable Scope
Changing Securable Ownership. ...,
Allowing SQL Logins to Access Non-SQL Server Resources.
Auditing SQL Instance and Database-Level Activity of Principals
Against Securables.
Defining Audit Data Sources.l

501

502
503
505
507
508
509

(2]
oo

|U‘I
—_
o

Capturing SQL Instance—Scoped Events........................... 533

Capturing Database-Scoped Events
Querying Captured AuditData,
Managing, Modifying, and Removing Audit Objects.

Encryption

Encryption by Passphrase. i
Using a Function to Encrypt by Passphrase
Master KBYSo
Backing Up and Restoring a Service MasterKey
Creating, Regenerating, and Dropping a Database MasterKey

CHAPTER 20

CONTENTS

Backing Up and Restoring a Database MasterKey 553
Removing Service Master Key Encryption from the Database
Master Keyo 554
Asymmetric Key Encryption 555
Creating an AsymmetricKey ... 555
Viewing Asymmetric Keys in the Current Database.................. 556
Modifying the Asymmetric Key’s Private Key Password 557
Encrypting and Decrypting Data Using an AsymmetricKey 557
Dropping an AsymmetricKey................ccii i 560
Symmetric Key Encryption ... 560
CreatingaSymmetricKey ..., 560
Viewing Symmetric Keys in the Current Database................... 562
Changing How a Symmetric Key IsEncrypted 562
Using Symmetric Key Encryption and Decryption 563
Droppinga SymmetricKey..............l 567
Certificate Encryption o 567
Creating a Database Certificate 567
Viewing Certificates in the Database.............................. 568
Backing Up and Restoring a Certificate. 569
Managing a Certificate’s Private Key.............................. 570
Using Certificate Encryption and Decryption. 571
Automatically Opening and Decrypting via a SymmetricKey.......... 573
Transparent Data Encryption 575
Enabling Transparent Data Encryption 575
Managing and Removing TDE 576
Service Broker................... . 579
Example Scenario: Online Bookstore.c it 580
Creating a Basic Service Broker Application............................. 580
Enabling Databases for Service Broker Activity 581
Creating the Database Master Key for Encryption................... 582
Managing Message TYpes ...t 582
Creating Contracts.co i 584
Creating QUEUES i 585
Creating ServiCeS.ot 587
InitiatingaDialog..............oc i 589
Querying the Queue for Incoming Messages 591
Receiving and RespondingtoaMessage 591
Endinga Conversation. o i, 594

Prioritizing Service Broker Conversations.......................... 596

XIX

Download from Wow! eBook <www.wowebook.com>

CONTENTS

CHAPTER 21

CHAPTER 22

Creating a Stored Procedure to Process Messages....................... 598
Creating the Bookstore Stored Procedure. 598
Remote-Server Service Broker Implementations......................... 601
Enabling Transport Security 603
Enabling Dialog Security. ... 606
Creating Routes and Remote Service Bindings 608
Event Notifications. 612
Capturing Login Commands. ..., 612
Configuring and Viewing SQL Server Options............... 615
Viewing SQL Server Configurations............................... 615
Changing SQL Server Configurations. 617
Creating and Configuring Databases 621
Creating, Altering, and Dropping Databases............................. 621
Creating a Database with a Default Configuration................... 622
Viewing Database Information 622
Creating a Database Using File Options 624
Creating a Database with a User-Defined Filegroup 627
Setting Database USer ACCESSvvvei i 628
RenamingaDatabase................cc i 631
DroppingaDatabase..................cooiiiiiii 632
Detachinga Database.................. 632
Attachinga Databasel 634
Configuring Database Options, 635
Viewing Database Options ..., 636
Configuring ANSISQL Optionsoooe i 636
Configuring Automatic Options., 638
Creating or Modifying a Database to Allow External Access. 640
Creating or Changing a Database to Use a Non-Server
Default Collation. i 641
Configuring Cursor Options. ..ot 642
Enabling Date Correlation Optimization............................ 643
Modifying Database Parameterization Behavior..................... 644
Enabling Read Consistency for a Transaction. 647
Configuring Database Recovery Models 649
Configuring Page Verification.................................... 650
Controlling Database Access and Ownership......................oo.... 651
Changing a Database State to Online, Offline, or Emergency.......... 652

Changing a Database Owner ..., 653

CHAPTER 23

CHAPTER 24

CONTENTS

Managing Database Files and Filegroups 654
Adding a Data File or Log File to an Existing Database 654

Removing a Data or Log File from a Database......................
Relocating a Data or Transaction Log File.
Changing a File’'s LogicalName.co....
Increasing a Database’s File Size and Modifying Its
Growth Options.
Adding a Filegroup to an Existing Database
Setting the Default Filegroup L,
Removing aFilegroup
Making a Database or Filegroup Read-Only........................
Viewing and Managing Database SpaceUsage
Viewing Database Space Usage.ccoviiiiinnann..

Shrinking the Database or a Database File......................... 665

Database Integrity and Optimization 669

Database Integrity Checking. ... 669

Checking Consistency of the Disk Space Allocation Structures
with DBCC CHECKALLOC.o
Checking Allocation and Structural Integrity with DBCC CHECKDB

Tablesand Constraintso i 674

Checking Allocation and Structural Integrity of All Tables in
a Filegroup Using DBCC CHECKFILEGROUP.
Checking Data Integrity for Tables and Indexed Views Using

DBCC CHECKTABLE 676

Checking Table Integrity with DBCC CHECKCONSTRAINTS.
Checking System Table Consistency with DBCC CHECKCATALOQG.

Index Maintenance. 682

Rebuilding Indexes.
Defragmenting Indexes. ...
RebuildingaHeap ...

Maintaining Database Objects and
Object Dependencies..........................cccoviiiiini..

Database Object Maintenance,
Changing the Name of a User-Created Database Object..............
Changing an Object’'s Schema............................oooias.

Object DEpeNndenCies.
Identifying Object Dependenciescccvvvivniieinn.n..
Identifying Referencing and Referenced Entities
Viewing an Object’s Definition

xi

i

CONTENTS

CHAPTER 25

CHAPTER 26

CHAPTER 27

Database Mirroring.. 697
Database MirroringinContext o i 697
Database Mirroring Architecture i 698
Setting Up Database Mirroring 700
Creating Mirroring Endpoints 700
Backing Up and Restoring Principal Databases 705
Creating a Database Mirroring Session. 707
Setup Summary 709
Operating Database Mirroring i 710
Changing Operating Modesccoiiiiiiiii... m
Performing Failovers................ . i 712
Pausing or Resuming a Mirroring Session 713
Stopping Mirroring Sessions and Removing Endpoints............... 714
Monitoring and Configuring Options 714
Monitoring Mirror Status.................. 714
Configuring the Connection Timeout Period 715
Database Snapshots ... 717
SNapShot BasSiCS.o 717
Creating and Querying Database Snapshots........................ 718
Removing a Database Snapshot 719
Recovering Data with a Database Snapshot........................ 720
Linked Servers and Distributed Queries..................... 723
Linked SErver BasiCs.ov i 723
Creating a Linked Server to Another SQL Server Instance 724
Configuring Linked Server Properties 725
Viewing Linked Server Information 727
Droppinga Linked Server............. i 727
Linked Server LOgins.oooit 728
Adding a Linked Server Login Mapping............................ 728
Viewing Linked Logins.co i 729
Dropping a Linked Server Login Mapping. 730
Executing Distributed Queries i 730
Executing Distributed Queries Against a Linked Server............... 730
Creating and Using an Alias to Reference Four-Part Linked
Server Names. 732
Executing Distributed Queries Using OPENQUERY 733
Executing Ad Hoc Queries Using OPENROWSET. 733
Reading Data from a File Using OPENROWSET BULK Options 735

CONTENTS xxiil

CHAPTER 28 Query Performance Tuning 739
Query Performance TIPSo oot 740
Capturing and Evaluating Query Performance 742

Capturing Executing Queries Using sys.dm_exec_requests........... 742
Viewing Estimated Query Execution Plans Using
Transact-SQL Commands................coiiiiiiiiiians, 743
Viewing Execution Runtime Information 746
Viewing Performance Statistics for Cached Query Plans. 748
Viewing Aggregated Performance Statistics Based on Query
orPlanPatterns 750
Identifying the Top Bottleneck 752
Identifying 1/0 Contention by Database and File..................... 753
INdeX TUNING. ... 754
Displaying Index Fragmentation.................................. 756
Displaying Index Usage. ... 759
StAtiStiCS . . .o 760
Manually Creating Statistics. L. 760
Creating Statistics on a Subsetof Rows........................... 761
Updating Statistics.co i 762
Generating and Updating Statistics Across All Tables................ 763
Viewing StatisticsDetails 765
Removing Statistics............. 766
Miscellaneous TeChNIQUESot 766
Using an Alternative to Dynamic SQL 767
Forcing SQL ServertoUseaQueryPlan........................... 769
Applying Hints Without Modifying Application SQL 771
Creating Plan Guides from Cache 775
Checking the Validity of a Plan Guide 177
Parameterizing a Non-parameterized Query Using Plan Guides. 778
Limiting Competing Query Resource Consumption 781

CHAPTER 29 Backup and Recovery... 789
Creating a Backup and Recovery Plan. 789
Making Backups.t 791

Performing a Basic Full Backup.................................. 793
Compressing Your Backupscooi i 794
Naming and Describing Your Backups and Media................... 796
Configuring Backup Retention 797
Striping Backup Sets. ... 799
Using a Named Backup Devicecoviiiii ... 799

Mirroring Backup Sets. 801

XXiv

CONTENTS

Performing a Transaction Log Backup 803
Create Backups Without Breaking the Backup Sequence............. 804
Performing a Differential Backup................................. 805
Backing Up Individual Files or Filegroups 805
Performing a Partial Backup.........................ociiiat. 807
Viewing BackupMetadata 808
RestoringaDatabase 810
Restoring a Database from a Full Backup.......................... 810
Restoring a Database from a Transaction Log Backup 812
Restoring a Database from a Differential Backup 815
Restoring a File or Filegroup. 816
Performing a Piecemeal (PARTIAL) Restore 818
RestoringaPage i 819
Identifying Databases with Multiple Recovery Paths 820
.. 823

About the Author

JOSEPH SACK is a dedicated support engineer in the Microsoft Premier Field
Engineering organization and has worked with SQL Server since 1997. He is
the author of SQL Server 2005 T-SQL Recipes (Apress, 2005) and SQL Server
2000 Fast Answers for DBAs and Developers (Apress, 2005). He coauthored
Pro SQL Server 2005 (Apress, 2005) and Beginning SQL Server 2000 DBA: From
Novice to Professional (Apress, 2004). Joseph graduated with an associate’s
degree in arts from Bard College at Simon’s Rock and earned a bachelor’s
degree in psychology from the University of Minnesota. You can reach Joseph
on his blog, www. joesack.com.

XXV

http://www.joesack.com

About the Technical Reviewer

EVAN TERRY is the chief technical consultant for The Clegg Company,
specializing in data management and information architecture. His past
and current clients include the State of Idaho, Albertsons, American Honda
Motors, Toyota Motor Sales, The Polk Company, and General Motors. He is
the coauthor of Apress’s Beginning Relational Data Modeling, has published
articles in DM Review, and has presented at the IAIDQ and DAMA Interna-
tional conferences. For questions or consulting needs, Evan can be contacted
atevan_terry@cleggcompany.com.

Xxvii

mailto:terry@cleggcompany.com

Acknowledgments

This book is dedicated to David Hatch, and to the family members, friends, and coworkers who
helped us get through a very challenging year. From Guillain-Barré syndrome to a broken foot—you
were there for us, and we are very lucky to have you in our lives.

During the 9-month writing process, the Apress team helped facilitate a very positive and
smooth experience. want to thank the lead editor, Jonathan Gennick, who was responsive, collab-
orative, and an all-around great guy to work with. I also appreciate Evan Terry’s astute and detailed
technical editing—thanks for coming back for a second round!

I also want to thank the amazing Susannah Davidson Pfalzer for her excellent project manage-
ment skills and positive voice. Thank you also to the keen-eyed Ami Knox, who put the critical
finishing touches on this work, and also to Laura Cheu, for the production editing and patience
with my last-minute changes.

Lastly—thank you to the rest of the behind-the-scenes Apress team who I may not have met
over e-mail or the phone, but who still deserve credit for bringing this book to the market.

XXix

<UW02°}00COMOM MMM> 003 iMOAN WOy PROJUMOQ

Introduction

The purpose of this book is to quickly provide you with the skills you need to solve problems and
perform tasks using the Transact-SQL language. I wrote this book in a problem/solution format in
order to establish an immediate understanding of a task and its associated Transact-SQL solution.
You can use this book to look up the task you want to perform, read how to do it, and then perform
the task on your own system. While writing this book, I followed a few key tenets:

* Keep it brief, providing just enough information needed to get the job done.

* Allow recipes and chapters to stand alone—keeping cross-references and distractions to a
tolerable minimum.

¢ Focus on features that are typically implemented entirely using Transact-SQL. For example,
I cover the new Resource Governor feature because it will typically be deployed by DBAs
using Transact-SQL—whereas I do not cover Policy-Based Management due to its underlying
dependencies on SQL Server Agent, SQL Server Management Objects (SMO), and SQL Server
Management Studio. Fortunately, most of the new SQL Server engine improvements are
entirely Transact-SQL based, and therefore are included in this book.

* Write recipes that help a range of skill sets, from novice to professional. I begin each chapter
with basic recipes and progressively work up to more advanced topics.

Regarding new SQL Server 2008 features, I have interwoven them throughout the book in the
chapters where they apply. If you are just looking for a refresh on new Transact-SQL features, I
specifically call them out at the beginning of each chapter in which they exist.

Although a key tenet of this book is to keep things brief, you'll notice that this book is still quite
large. This is a consequence of the continually expanding SQL Server feature set; however, rest
assured that the recipes contained within are still succinct and constructed in such a way as to
quickly give you the answers you need to get the job done.

I've written this book for SQL Server developers, administrators, application developers, and IT
generalists who are tasked with developing databases or administering a SQL Server environment.
You can read this book from start to finish or jump around to topics that interest you. You can use
this book to brush up on topics before a job interview or an exam. Even for the more experienced
SQL Server professionals, memory fades—and this book can help quickly refresh your memory on
the usage of a command or technique.

Thanks for reading!

XXXi

CHAPTER 1

SELECT

In this chapter, [include recipes for returning data from a SQL Server database using the SELECT
statement. At the beginning of each chapter, you'll notice that most of the basic concepts are cov-
ered first. This is for those of you who are new to the SQL Server 2008 Transact-SQL query language.
In addition to the basics, I'll also provide recipes that can be used in your day-to-day development
and administration. These recipes will also help you learn about the new functionality introduced
in SQL Server 2008.

A majority of the examples in this book use the AdventureWorks database (SQL Server 2008
OLTP version), which can be downloaded online from the CodePlex site (www.codeplex.com),
under the “Microsoft SQL Server Product Samples: Database” project. Look for the file named
AdventurelWorks2008.msi. Also, if you do decide to follow along with the recipe examples, I strongly
recommend that you do so with a non-production learning environment. This will give you the
freedom to experiment without negative consequences.

Brevity and simplicity is a key tenet of this book, so when initially describing a new T-SQL
concept, I'll distill syntax blocks down to only the applicable code required. If an example doesn’t
require a syntax block in order to illustrate a concept or task, I won't include one. For full syntax, you
can always reference Books Online, so instead of rehashing what you'll already have access to, I'll
focus only on the syntax that applies to the recipe. Regarding the result sets returned from the
recipes in this book, I'll often pare down the returned columns and rows shown on the page.

SQL Server 2008 new features will be interwoven throughout the book. For those more signifi-
cant improvements, I'll call them out at the beginning of the chapter so that you know to look out
for them. The new SQL Server 2008 features I cover in this chapter include

¢ New extensions to the GROUP BY clause that allow you to generate multiple grouping result
sets within the same query without having to use UNION ALL

¢ Anew method of initializing a variable on declaration, allowing you to reduce the code
needed to set a variable’s value

You can read the recipes in this book in almost any order. You can skip to the topics that inter-
est you or read it through sequentially. If you see something that is useful to you, perhaps a code
chunk or example that you can modify for your own purposes or integrate into a stored procedure
or function, then this book has been successful.

The Basic SELECT Statement

The SELECT command is the cornerstone of the Transact-SQL language, allowing you to retrieve data
from a SQL Server database (and more specifically from database objects within a SQL Server data-
base). Although the full syntax of the SELECT statement is enormous, the basic syntax can be
presented in a more boiled-down form:

http://www.codeplex.com

CHAPTER 1 © SELECT

SELECT select list
FROM table list

The select_list argument shown in the previous code listing is the list of columns that you
wish to return in the results of the query. The table list arguments are the actual tables and or
views that the data will be retrieved from.

The next few recipes will demonstrate how to use a basic SELECT statement.

Selecting Specific Columns from a Table

This example demonstrates a very simple SELECT query against the AdventurelWorks database,
whereby three columns are returned, along with several rows from the HumanResources.Employee
table. Explicit column naming is used in the query:

USE AdventureWorks

G0

SELECT NationalIDNumber,
LoginID,
JobTitle

FROM HumanResources.Employee

The query returns the following abridged results:

NationalIDNumber LoginID JobTitle

295847284 adventure-works\keno Chief Executive Officer
245797967 adventure-works\terrio Vice President of Engineering
509647174 adventure-works\roberto0 Engineering Manager

112457891 adventure-works\robo Senior Tool Designer
954276278 adventure-works\rachelo Sales Representative
668991357 adventure-works\jae0 Sales Representative
134219713 adventure-works\ranjito Sales Representative

(290 row(s) affected)

How It Works

The first line of code sets the context database context of the query. Your initial database context,
when you first log in to SQL Server Management Studio (SSMS), is defined by your login’s default
database. USE followed by the database name changes your connection context:

USE AdventureWorks
GO

The SELECT query was used next. The few lines of code define which columns to display in the
query results:

SELECT NationalIDNumber,
LoginID,
JobTitle

The next line of code is the FROM clause:

FROM HumanResources.Employee

CHAPTER 1 = SELECT

The FROM clause is used to specify the data source, which in this example is a table. Notice the
two-part name of HumanResources . Employee. The first part (the part before the period) is the schema,
and the second part (after the period) is the actual table name. A schema contains the object, and
that schema is then owned by a user. Because users own a schema, and the schema contains the
object, you can change the owner of the schema without having to modify object ownership.

Selecting Every Column for Every Row

If you wish to show all columns from the data sources in the FROM clause, you can use the following
query:

USE AdventureWorks

GO

SELECT *
FROM HumanResources.Employee

The abridged column and row output is shown here:

BusinessEntityID NationalIDNumber LoginID OrganizationNode
1 295847284 adventure-works\keno 0x

2 245797967 adventure-works\terrio 0x58

3 509647174 adventure-works\robertoo 0x5ACO

4 112457891 adventure-works\rob0 0x5AD6

How It Works

The asterisk symbol (*) returns all columns for every row of the table or view you are querying. All
other details are as explained in the previous recipe.

Please remember that, as good practice, it is better to explicitly reference the columns you
want to retrieve instead of using SELECT *. If you write an application that uses SELECT *, your
application may expect the same columns (in the same order) from the query. If later on you add a
new column to the underlying table or view, or if you reorder the table columns, you could break
the calling application, because the new column in your result set is unexpected. Using SELECT *
can also negatively impact performance, as you may be returning more data than you need over the
network, increasing the result set size and data retrieval operations on the SQL Server instance. For
applications requiring thousands of transactions per second, the number of columns returned in
the result set can have a non-trivial impact.

Selective Querying Using a Basic WHERE Clause

In a SELECT query, the WHERE clause is used to restrict rows returned in the query result set. The sim-
plified syntax for including the WHERE clause is as follows:

SELECT select list
FROM table list
[WHERE search_conditions]

The WHERE clause uses search conditions that determine the rows returned by the query. Search
conditions use predicates, which are expressions that evaluate to TRUE, FALSE, or UNKNOWN.

CHAPTER 1 © SELECT

UNKNOWN values can make their appearance when NULL data is accessed in the search condition.
ANULL value doesn’'t mean that the value is blank or zero—only that the value is unknown. Also, two
NULL values are not equal and cannot be compared without producing an UNKNOWN result.

The next few recipes will demonstrate how to use the WHERE clause to specify which rows are
and aren’t returned in the result set.

Using the WHERE Clause to Specify Rows Returned in the
Result Set

This basic example demonstrates how to select which rows are returned in the query results:

SELECT Title,
FirstName,
LastName

FROM Person.Person

WHERE Title = 'Ms.'

This example returns the following (abridged) results:

Title FirstName LastName

Ms. Gail Erickson
Ms. Janice Galvin
Ms. Jill Williams
Ms. Catherine Abel

Ms. Abigail Coleman
Ms. Angel Gray

Ms. Amy Li

(415 row(s) affected)

How It Works

In this example, you can see that only rows where the person’s title was equal to Ms. were returned.
This search condition was defined in the WHERE clause of the query:

WHERE Title = 'Ms.'

Only one search condition was used in this case; however, an almost unlimited number of
search conditions can be used in a single query, as you’'ll see in the next recipe.

Combining Search Conditions

This recipe will demonstrate connecting multiple search conditions by utilizing the AND, OR, and NOT
logical operators. The AND logical operator joins two or more search conditions and returns the row
or rows only when each of the search conditions is true. The OR logical operator joins two or more
search conditions and returns the row or rows in the result set when any of the conditions are true.
In this first example, two search conditions are used in the WHERE clause, separated by the AND
operator. The AND means that for a given row, both search conditions must be true for that row to be
returned in the result set:
SELECT Title,

FirstName,
LastName

CHAPTER 1 = SELECT 5

FROM Person.Person
WHERE Title = 'Ms.' AND
LastName = 'Antrim’

This returns the following results:

Title FirstName LastName
Ms. Ramona Antrim

(1 row(s) affected)

In this second example, an OR operator is used for the two search conditions instead of an AND,
meaning that if either search condition evaluates to TRUE for a row, that row will be returned:

SELECT Title,
FirstName,
LastName

FROM Person.Person

WHERE Title = 'Ms.' OR
LastName = 'Antrim’

This returns the following (abridged) results:

Title FirstName LastName

Ms. Gail Erickson
Ms. Janice Galvin
Ms. Ramona Antrim
Ms. Abigail Coleman
Ms. Angel Gray

Ms. Amy Li

(415 row(s) affected)

How It Works

In the first example, two search conditions were joined using the AND operator:

WHERE Title = 'Ms.' AND
LastName = 'Antrim’

As you add search conditions to your query, you join them by the logical operators AND and OR.
For example, if both the Title equals Ms. and the LastName equals Antrim, any matching row or rows
will be returned. The AND operator dictates that both joined search conditions must be true in order
for the row to be returned.

The OR operator, on the other hand, returns rows if either search condition is TRUE, as the third
example demonstrated:

WHERE Title = 'Ms.' OR
LastName = 'Antrim’

So instead of a single row as the previous query returned, rows with a Title of Ms. or a LastName
of Antrim were returned.

CHAPTER 1 © SELECT

Negating a Search Condition

The NOT logical operator, unlike AND and OR, isn’t used to combine search conditions, but instead is
used to negate the expression that follows it.

This next example demonstrates using the NOT operator for reversing the result of the following
search condition and qualifying the Title to be equal to Ms. (reversing it to anything butMs.):

SELECT Title,
FirstName,
LastName

FROM Person.Person

WHERE NOT Title = 'Ms.'

This returns the following (abridged) results:

Title FirstName LastName

Mr. Jossef Goldberg
Mr. Hung-Fu Ting

Mr. Brian Welcker

Mr. Tete Mensa-Annan
Mr. Syed Abbas

Mr. Gustavo Achong

Sr. Humberto Acevedo
Sra. Pilar Ackerman
How It Works

This example demonstrated the NOT operator:

WHERE NOT Title = 'Ms.'

NOT specifies the reverse of a search condition, in this case specifying that only rows that don’t
have the Title equal to Ms. be returned.

Keeping Your WHERE Clause Unambiguous

You can use multiple operators (AND, OR, NOT) in a single WHERE clause, but it is important to make
your intentions clear by properly embedding your ANDs and ORs in parentheses. The AND operator
limits the result set, and the OR operator expands the conditions for which rows will be returned.
When multiple operators are used in the same WHERE clause, operator precedence is used to deter-
mine how the search conditions are evaluated (similar to order of operations used in arithmetic and
algebra). For example, the NOT operator takes precedence (is evaluated first) before AND. The AND
operator takes precedence over the OR operator. Using both AND and OR operators in the same WHERE
clause without using parentheses can return unexpected results.

For example, the following query may return unintended results:

SELECT Title,
FirstName,
LastName

FROM Person.Person

WHERE Title = 'Ms.' AND
FirstName = 'Catherine' OR
LastName = 'Adams’

CHAPTER 1 = SELECT

This returns the following (abridged) results:

Title FirstName LastName

NULL Jay Adams
Ms. Catherine Abel
Ms. Frances Adams
Ms. Carla Adams
Mr. Jay Adams
Mr. Ben Adams
Ms. Catherine Whitney

Was the intention of this query to return results for all rows with a Title of Ms., and of those
rows, only include those with a FirstName of Catherine or a LastName of Adams? Or did the query
author wish to search for all people named Ms. with a FirstName of Catherine, as well as anyone
with a LastName of Adams?

A query that uses both AND and OR should always use parentheses to clarify exactly what
rows should be returned. For example, this next query returns anyone with a Title of Ms. and a
FirstName equal to Catherine. It also returns anyone else with a LastName of Adams—regardless of
Title and FirstName:

SELECT Title,
FirstName,
MiddleName,
LastName
FROM Person.Person
WHERE ~ (Title = 'Ms.' AND
FirstName = 'Catherine') OR
LastName = 'Adams’

How It Works

Use parentheses to clarify multiple operator WHERE clauses. Parentheses assist in clarifying a query
as they help SQL Server identify the order that expressions should be evaluated. Search conditions
enclosed in parentheses are evaluated in an inner-to-outer order, so in the example from this
recipe, the following search conditions were evaluated first:

(Title = 'Ms.' AND
FirstName = 'Catherine')

before evaluating the outside OR search expression:

LastName = 'Adams'

Using Operators and Expressions

So far, this chapter has used the = (equals) operator to designate what the value of a column in the
result set should be. The = comparison operator tests the equality of two expressions. An expression
is a combination of values, identifiers, and operators evaluated by SQL Server in order to return a
result (for example, return TRUE or FALSE or UNKNOWN).

Table 1-1 lists some of the operators you can use in a search condition.

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1 © SELECT

Table 1-1. Operators

Operator Description

I= Tests two expressions not being equal to each other.

> Tests that the left condition is not greater than the expression to the right.
I< Tests that the right condition is not greater than the expression to the right.
< Tests the left condition as less than the right condition.

<= Tests the left condition as less than or equal to the right condition.

<> Tests two expressions not being equal to each other.

= Tests equality between two expressions.

> Tests the left condition being greater than the expression to the right.

>= Tests the left condition being greater than or equal to the expression to the right.

ALL When used with a comparison operator and subquery, retrieves rows if all
retrieved values satisfy the search condition.

ANY When used with a comparison operator and subquery, retrieves rows if any
retrieved values satisfy the search condition.

BETWEEN Designates an inclusive range of values. Used with the AND clause between the
beginning and ending values. This operator is useful for data comparisons.

CONTAINS Does a fuzzy search for words and phrases.

ESCAPE Allows you to designate that a wildcard character be interpreted as a literal value

instead. This is used in conjunction with the LIKE operator. For example, the
percentage (%), underscore (_), and square brackets ([]) all have wildcard
meanings within the context of a pattern search using LIKE. If you would like
to find the actual percentage character explicitly, you must define the ESCAPE
character that will precede the wildcard value, indicating that it is a literal

character.
EXISTS When used with a subquery, tests for the existence of rows in the subquery.
FREETEXT Searches character-based data for words using meaning, rather than literal values.
IN Provides an inclusive list of values for the search condition.
IS NOT NULL Evaluates whether the value is NOT NULL.
IS NULL Evaluates whether the value is NULL.
LIKE Tests character string for pattern matching.

NOT BETWEEN Specifies a range of values NOT to include. Used with the AND clause between the
beginning and ending values.

NOT IN Provides a list of values for which NOT to return rows.
NOT LIKE Tests character string, excluding those with pattern matches.
SOME When used with a comparison operator and subquery, retrieves rows if any

retrieved values satisfy the search condition.

As you can see from Table 1-1, SQL Server 2008 includes several operators that can be used
within query expressions. Specifically, in the context of a WHERE clause, operators can be used to
compare two expressions, and also check whether a condition is TRUE, FALSE, or UNKNOWN.

Note SQL Server 2008 also introduces new assignment operators, which I'll discuss in Chapter 2.

CHAPTER 1 = SELECT

The next few recipes will demonstrate how the different operators are used within search
expressions.

Using BETWEEN for Date Range Searches

This example demonstrates the BETWEEN operator, used to designate sales orders that occurred
between the dates 7/28/2002 and 7/29/2002:

SELECT SalesOrderID,
ShipDate
FROM Sales.SalesOrderHeader
WHERE ShipDate BETWEEN '7/28/2002 00:00:00' AND '7/29/2002 23:59:59'

The query returns the following results:

SalesOrderID ShipDate

46845 2002-07-28 00:00:00.000
46846 2002-07-28 00:00:00.000
46847 2002-07-28 00:00:00.000
46848 2002-07-28 00:00:00.000
46849 2002-07-28 00:00:00.000
46850 2002-07-28 00:00:00.000
46851 2002-07-28 00:00:00.000
46852 2002-07-28 00:00:00.000
46853 2002-07-28 00:00:00.000
46854 2002-07-28 00:00:00.000
46855 2002-07-29 00:00:00.000
46856 2002-07-29 00:00:00.000
46857 2002-07-29 00:00:00.000
46858 2002-07-29 00:00:00.000
46859 2002-07-29 00:00:00.000
46860 2002-07-29 00:00:00.000
46861 2002-07-29 00:00:00.000

(17 row(s) affected)

How It Works

The exercise demonstrated the BETWEEN operator, which tested whether or not a column’s ShipDate
value fell between two dates:

WHERE ShipDate BETWEEN '7/28/2002 00:00:00' AND '7/29/2002 23:59:59'

Notice that I designated the specific time in hours, minutes, and seconds as well. Had I just
designated 7/29/2002, I would have only included 00:00:00 in the range.

Using Comparisons

This next example demonstrates the < (less than) operator, which is used in this query to show only
products with a standard cost below $110.00:

SELECT ProductID,
Name,
StandardCost
FROM Production.Product
WHERE StandardCost < 110.0000

10

CHAPTER 1 © SELECT

This query returns the following (abridged) results:

ProductID Name StandardCost
1 Adjustable Race 0.00

2 Bearing Ball 0.00

3 BB Ball Bearing 0.00

4 Headset Ball Bearings 0.00

994 LL Bottom Bracket 23.9716

995 ML Bottom Bracket 44.9506

996 HL Bottom Bracket 53.9416

(317 row(s) affected)

How It Works

This example demonstrated the < operator, returning all rows with a StandardCost less than
110.0000:

WHERE StandardCost < 110.0000

Checking for NULL Values

This next query tests for the NULL value of a specific column. A NULL value does not mean that the
value is blank or zero—only that the value is unknown. This query returns any rows where the value
of the product’s weight is unknown:

SELECT ProductID,

Name,

Weight
FROM Production.Product
WHERE Weight IS NULL

This query returns the following (abridged) results:

ProductID Name Weight
1 Adjustable Race NULL
2 Bearing Ball NULL
3 BB Ball Bearing NULL
4 Headset Ball Bearings NULL

(299 row(s) affected)

How It Works

This example demonstrated the IS NULL operator, returning any rows where the Weight value was
unknown:

WHERE Weight IS NULL

CHAPTER 1 = SELECT

Returning Rows Based on a List of Values
In this example, the IN operator validates the equality of the Color column to a list of expressions:

SELECT ProductID,
Name,
Color
FROM Production.Product
WHERE Color IN ('Silver', 'Black', 'Red")

This returns the following (abridged) results:

ProductID Name Color
317 LL Crankarm Black
318 ML Crankarm Black
319 HL Crankarm Black
725 LL Road Frame - Red, 44 Red

739 HL Mountain Frame - Silver, 42 Silver

(174 row(s) affected)

How It Works

This example demonstrated the IN operator, returning all products that had a Silver, Black, or Red
color:

WHERE Color IN ('Silver', 'Black', 'Red")

Using Wildcards with LIKE

Wildcards are used in search expressions to find pattern matches within strings. In SQL Server 2008,
you have the wildcard options described in Table 1-2.

Table 1-2. Wildcards

Wildcard Usage

% Represents a string of zero or more characters
_ Represents a single character

[] Specifies a single character, from a selected range or list
(] Specifies a single character not within the specified range

This example demonstrates using the LIKE operation with the % wildcard, searching for any
product with a name starting with the letter B:
SELECT ProductID,
Name

FROM Production.Product
WHERE Name LIKE 'B%'

This returns the following results:

1

12

CHAPTER 1 © SELECT

ProductID Name

3 BB Ball Bearing

2 Bearing Ball

877 Bike Wash - Dissolver
316 Blade

(4 row(s) affected)

What if you want to search for the literal value of the % (percentage sign) or an _ (underscore) in
your character column? For this, you can use the ESCAPE operator (first described earlier in Table 1-1).

This next query searches for any product name with a literal underscore value in it. The
ESCAPE operator allows you to search for the wildcard symbol as an actual character. I'll first modify
arow in the Production.ProductDescription table, adding a percentage sign to the Description
column:

UPDATE Production.ProductDescription
SET Description = 'Chromoly steel. High % of defects'
WHERE ProductDescriptionID = 3

Next, I'll query the table, searching for any descriptions containing the literal value of the per-
centage sign:

SELECT ProductDescriptionID,Description
FROM Production.ProductDescription
WHERE Description LIKE '%/%%' ESCAPE '/'

This returns

ProductDescriptionID Description
3 Chromoly steel. High % of defects

How It Works

Wildcards allow you to search for patterns in character-based columns. In the example from this
recipe, the % percentage sign was used to represent a string of zero or more characters:

WHERE Name LIKE 'B%'

If searching for a literal value that would otherwise be interpreted by SQL Server as a wildcard,
you can use the ESCAPE keyword. The example from this recipe searched for a literal percentage sign
in the Description column:

WHERE Description LIKE '%/%%' ESCAPE '/'

A backslash embedded in single quotes was put after the ESCAPE command. This designates the
backslash symbol as the escape character for the preceding LIKE expression string. If an escape
character precedes the underscore within a search condition, it is treated as a literal value instead
of a wildcard.

Declaring and Assigning Values to Variables

Throughout the book, you'll see examples of variables being used within queries and module-based
SQL Server objects (stored procedures, triggers, and more). Variables are objects you can create to

CHAPTER 1 = SELECT

temporarily contain data. Variables can be defined across several different data types and then ref-
erenced within the allowable context of that type.

In this recipe, I'll demonstrate using a variable to hold a search string. You'll see two different
methods for creating and assigning the value of the variable. The first query demonstrates the
pre-SQL Server 2008 method:

DECLARE @AddressLinel nvarchar(60)
SET @AddressLinel = 'Heiderplatz'

SELECT AddressID, AddresslLinel
FROM Person.Address
WHERE AddresslLine1l LIKE '%' + @AddressLinei + '%'

The query in this example returns all rows with an address containing the search string value:

AddressID Addresslinel

20333 Heiderplatz 268
17062 Heiderplatz 268
24962 Heiderplatz 662
19857 Heiderplatz 948
25583 Heiderplatz 948
28939 Heiderplatz 948
16799 Heiderplatz 978

(18 row(s) affected)

Now in SQL Server 2008, you can reduce the required T-SQL code by removing the SET instruc-
tion and instead just assigning the value within the DECLARE statement:

DECLARE @AddressLinel nvarchar(60) = 'Heiderplatz'

SELECT AddressID, AddresslLinel
FROM Person.Address
WHERE AddressLine1l LIKE '%' + @AddressLine1l + '%'

At face value, this enhancement doesn’t seem groundbreaking; however, if you are declaring
and setting hundreds of variables, the amount of code you'll be saved from having to write could be
significant.

How It Works

The first query began by declaring a new variable that is prefixed by the @ symbol and followed by
the defining data type that will be used to contain the search string:

DECLARE @AddresslLinel nvarchar(60)

After declaring the variable, a value could be assigned to it by using the SET command (this
could have been done with SELECT as well):

SET @AddressLinel = 'Heiderplatz'

After that, the populated search value could be used in the WHERE clause of a SELECT query,
embedding it between the % wildcards to find any row with an address containing the search string:

WHERE AddresslLine1l LIKE '%' + @AddressLinel + '%'

13

14

CHAPTER 1 © SELECT

In the next query, I issued the same query, only this time taking advantage of the SQL Server
2008 ability to assign a variable within the DECLARE statement:

DECLARE @AddressLinel nvarchar(60) = 'Heiderplatz'

Note In Chapter 2, I'll show you how this assignment can be coupled with new assignment operators added to
SQL Server 2008, which allows for an inline data value modification.

Grouping Data

The GROUP BY clause is used in a SELECT query to determine the groups that rows should be put in.
The simplified syntax is as follows:

SELECT select list

FROM table list

[WHERE search conditions]
[GROUP BY group by list]

GROUP BY follows the optional WHERE clause and is most often used when aggregate functions
are referenced in the SELECT statement (aggregate functions are reviewed in more detail in
Chapter 8).

Using the GROUP BY Clause

This example uses the GROUP BY clause to summarize total amount due by order date from the
Sales.SalesOrderHeader table:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001"' AND '7/31/2001'
GROUP BY OrderDate

This returns the following (abridged) results:

OrderDate TotalDueByOrderDate
2001-07-01 00:00:00.000 665262.9599
2001-07-02 00:00:00.000 15394.3298
2001-07-03 00:00:00.000 16588.4572

2001-07-30 00:00:00.000 15914.584
2001-07-31 00:00:00.000 16588.4572

(31 row(s) affected)

How It Works

In this recipe’s example, the GROUP BY clause was used in a SELECT query to determine the groups
that rows should be put in. Stepping through the first line of the query, the SELECT clause designated
that the OrderDate should be returned, as well as the SUM total of values in the TotalDue column. SUM

CHAPTER 1 = SELECT

is an aggregate function. An aggregate function performs a calculation against a set of values (in this
case TotalDue), returning a single value (the total of TotalDue by OrderDate):

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate

Notice that a column alias for the SUM(TotalDue) aggregation was used. A column alias returns
a different name for a calculated, aggregated, or regular column. In the next part of the query, the
Sales.SalesOrderHeader table was referenced in the FROM clause:

FROM Sales.SalesOrderHeader
Next, the OrderDate was qualified to return rows for the month of July and the year 2001:
WHERE OrderDate BETWEEN '7/1/2001' AND '7/31/2001'

The result set was grouped by OrderDate (note that grouping can occur against one or more
combined columns):

GROUP BY OrderDate

Had the GROUP BY clause been left out of the query, using an aggregate function in the SELECT
clause would have raised the following error:

Msg 8120, Level 16, State 1, Line 1
Column 'Sales.SalesOrderHeader.OrderDate’ is invalid in the select list because
it is not contained in either an aggregate function or the GROUP BY clause.

This error is raised because any column that is not used in an aggregate function in the SELECT
list must be listed in the GROUP BY clause.

Using GROUP BY ALL

By adding the ALL keyword after GROUP BY, all row values are used in the grouping, even if they were
not qualified to appear via the WHERE clause.

This example executes the same query as the previous recipe’s example, except it includes the
ALL clause:

SELECT OrderDate,
SUM(TotalDue) TotalDueByOrderDate
FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '7/1/2001" AND '7/31/2001'
GROUP BY ALL OrderDate

This returns the following (abridged) results:

OrderDate TotalDueByOrderDate

2002-08-12 00:00:00.000 NULL

2003-07-25 00:00:00.000 NULL

2004-06-21 00:00:00.000 NULL

2001-07-22 00:00:00.000 42256.626

Warning: Null value is eliminated by an aggregate or other SET operation.

(1124 row(s) affected)

15

16

CHAPTER 1 © SELECT

How It Works

In the results returned by the GROUP BY ALL example, notice that TotalDueByOrderDate was NULL for
those order dates not included in the WHERE clause. This does not mean they have zero rows, but
instead, that data is not returned for them.

This query also returned a warning along with the results:

Warning: Null value is eliminated by an aggregate or other SET operation.

This means the SUM aggregate encountered NULL values and didn’t include them in the total. For
the SUM aggregate function, this was okay; however, NULL values in other aggregate functions can
cause undesired results. For example, the AVG aggregate function ignores NULL values, but the COUNT
function does not. If your query uses both these functions, you may think that the NULL value
included in COUNT helps make up the AVG results—but it doesn’t.

Selectively Querying Grouped Data Using HAVING

The HAVING clause of the SELECT statement allows you to specify a search condition on a query using
GROUP BY and/or an aggregated value. The syntax is as follows:

SELECT select list

FROM table list

[WHERE search conditions]
[GROUP BY group by list]

[HAVING search conditions]

The HAVING clause is used to qualify the results after the GROUP BY has been applied. The WHERE
clause, in contrast, is used to qualify the rows that are returned before the data is aggregated or
grouped. HAVING qualifies the aggregated data after the data has been grouped or aggregated.

This example queries two tables, Production.ScrapReason and Production.WorkOrder. The
Production.ScrapReason is a lookup table that contains manufacturing failure reasons, while the
Production.WorkOrder table contains the manufacturing work orders that control which products
are manufactured in the quantity and time period, in order to meet inventory and sales needs.

This example reports to management which “failure reasons” have occurred 50 or more times:

SELECT s.Name,
COUNT (w.WorkOrderID) Cnt
FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON
s.ScrapReasonID = w.ScrapReasonID
GROUP BY s.Name
HAVING COUNT(*)>50

This query returns

Name Cnt
Gouge in metal 54
Stress test failed 52
Thermoform temperature too low 63
Trim length too long 52
Wheel misaligned 51

(5 row(s) affected)

CHAPTER 1 = SELECT

How It Works

In this recipe, the SELECT clause requested a count of WorkOrderIDs by failure name:

SELECT s.Name,
COUNT (w.WorkOrderID)

Two tables were joined by the ScrapReasonID column:

FROM Production.ScrapReason s
INNER JOIN Production.WorkOrder w ON
s.ScrapReasonID = w.ScrapReasonID

Since an aggregate function was used in the SELECT clause, the non-aggregated columns must
appear in the GROUP BY clause:

GROUP BY s.Name

Lastly, using the HAVING query determines that, of the selected and grouped data, only those
rows in the result set with a count of 50 or higher will be returned:

HAVING COUNT(*)>50

Ordering Results

The ORDER BY clause orders the results of a query based on designated columns or expressions. The
basic syntax for ORDER BY is as follows:

SELECT select list

FROM table list

[WHERE search conditions]

[GROUP BY group by list]

[HAVING search conditions]

[ORDER BY order list [ASC | DESC]]

ORDER BY must appear after the required FROM clause, as well as the optional WHERE, GROUP BY,
and HAVING clauses.

Using the ORDER BY Clause

This example demonstrates ordering the query results by columns ProductID and EndDate:

SELECT p.Name,
h.EndDate,
h.ListPrice
FROM Production.Product p
INNER JOIN Production.ProductlListPriceHistory h ON
p.ProductID = h.ProductID
ORDER BY p.Name, h.EndDate

This query returns

Name EndDate ListPrice
All-Purpose Bike Stand NULL 159.00
AWC Logo Cap NULL 8.99

AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap 2003-06-30 00:00:00.000 8.6442

Bike Wash - Dissolver NULL 7.95

17

Download from Wow! eBook <www.wowebhook.com>

CHAPTER 1 © SELECT

Cable Lock 2003-06-30 00:00:00.000 25.00
Chain NULL 20.24

(395 row(s) affected)

The default sorting order of ORDER BY is ascending order, which can be explicitly designated as
ASC too. The NULL values for each EndDate are sorted to the top for each change in the name.
In this next example, DESC is used to return the results in reverse (descending) order:

SELECT p.Name,
h.EndDate,
h.ListPrice
FROM Production.Product p
INNER JOIN Production.ProductlListPriceHistory h ON
p.ProductID = h.ProductID
ORDER BY p.Name DESC, h.EndDate DESC

This returns the following abridged results:

Name EndDate ListPrice
Women's Tights, S 2003-06-30 00:00:00.000 74.99
Women's Tights, M 2003-06-30 00:00:00.000 74.99

AWC Logo Cap 2002-06-30 00:00:00.000 8.6442
AWC Logo Cap NULL 8.99
All-Purpose Bike Stand NULL 159.00

(395 row(s) affected)

This third example demonstrates ordering results based on a column that is not used in the
SELECT clause:

SELECT p.Name
FROM Production.Product p
ORDER BY p.Color

This returns the following abridged results:

name
Guide Pulley
LL Grip Tape
ML Grip Tape
HL Grip Tape
Thin-Jam Hex Nut 9

How It Works

Although queries sometimes appear to return data properly without an ORDER BY clause, the natural
ordering of results is determined by the physical key column order in the clustered index (see Chap-
ter 5 for more information on clustered indexes). If the row order of your result sets is critical, you
should never depend on the implicit physical order. Always use an ORDER BY if result set ordering is
required.

CHAPTER 1 = SELECT

In the first example, the Production.Product and Production.ProductListPriceHistory tables
were queried to view the history of product prices over time.

Note The full details of INNER JOIN are provided later in the chapter in the section “Using INNER Joins.”

The following line of code sorted the results first alphabetically by product name, and then by
the end date:

ORDER BY p.Name, h.EndDate

You can designate one or more columns in your ORDER BY clause, so long as the columns do not
exceed 8,060 bytes in total.

The second example demonstrated returning results in descending order (ascending is the
default order). The DESC keyword was referenced behind each column that required the descending
sort:

ORDER BY p.Name DESC, h.EndDate DESC

The third example demonstrated ordering the results by a column that was not used in the
SELECT statement:

ORDER BY p.Color

One caveat when ordering by unselected columns is that ORDER BY items must appear in the
select list if SELECT DISTINCT is specified.

Using the TOP Keyword with Ordered Results

The TOP keyword allows you to return the first » number of rows from a query based on the number
of rows or percentage of rows that you define. The first rows returned are also impacted by how your
query is ordered.

Note SQL Server also provides ranking functions, which can be used to rank each row within the partition of a
result set. For a review of ranking functions, see Chapter 8.

In this example, the top ten rows are retrieved from the Purchasing.Vendor table for those rows
with the highest value in the CreditRating column:

SELECT TOP 10 v.Name,
v.CreditRating
FROM Purchasing.Vendor v
ORDER BY v.CreditRating DESC, v.Name

This returns

Name CreditRating
Merit Bikes

Victory Bikes
Proseware, Inc.
Recreation Place
Consumer Cycles
Continental Pro Cycles

ww s puutu

19

20

CHAPTER 1 © SELECT

Federal Sport

Inner City Bikes
Northern Bike Travel
Trey Research

w w w w

(10 row(s) affected)

The next example demonstrates limiting the percentage of rows returned in a query using a
local variable:

DECLARE @Percentage float
SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT
Name

FROM Production.Product

ORDER BY Name

This returns the top 1 percent of rows from the Production.Product table, ordered by product
name:

Name

Adjustable Race
All-Purpose Bike Stand
AWC Logo Cap

BB Ball Bearing
Bearing Ball

Bike Wash - Dissolver
(6 row(s) affected)

How It Works

In previous versions of SQL Server, developers used SET ROWCOUNT to limit how many rows the query
would return or impact. In SQL Server 2005 and 2008, you should use the TOP keyword instead of SET
ROWCOUNT, as the TOP will usually perform faster. Also, not having the ability to use local variables in
the TOP clause was a major reason why people still used SET ROWCOUNT over TOP in previous versions
of SQL Server. With these functionality barriers removed, there is no reason not to start using TOP.

Tip The TOP keyword can also now be used with INSERT, UPDATE, and DELETE statements—something that
will not be supported with SET ROWCOUNT in future versions of SQL Server. For more information about TOP used
in conjunction with data modifications, see Chapter 2.

The key to the first example was the TOP keyword, followed by the number of rows to be
returned:

SELECT TOP 10 v.Name

Also important was the ORDER BY clause, which ordered the results prior to the TOP n rows being
returned:

ORDER BY v.CreditRating DESC, v.Name

CHAPTER 1 = SELECT

The second example demonstrated how to use the new local variable assignment functionality
with TOP PERCENT:

DECLARE @Percentage float
SET @Percentage = 1

SELECT TOP (@Percentage) PERCENT

The new local variable functionality allows you to create scripts, functions, or procedures that
can determine the number of rows returned by a query based on the value set by the caller, instead
of having to hard-code a set TOP number or percentage of rows.

SELECT Clause Techniques

The SELECT clause is primarily used to define which columns are returned in the result set, but its
functionality isn’t limited to just that. This next set of queries will detail a number of SELECT clause
techniques, including the following:

e Using the DISTINCT keyword to remove duplicate values

¢ Renaming columns using column aliases

* Concatenating string values into a single column

e Creating a SELECT statement that itself creates an executable Transact-SQL script

e Creating a comma-delimited array list of values

Using DISTINCT to Remove Duplicate Values

The default behavior of a SELECT statement is to use the ALL keyword (although because it is the
default, you'll rarely see this being used in a query), meaning that all rows will be retrieved and dis-
played if they exist. Using the DISTINCT keyword instead of ALL allows you to return only unique
rows (across columns selected) in your results.

This example shows you how to use the DISTINCT keyword to remove duplicate values from a
set of selected columns, so that only unique rows appear:

SELECT ~ DISTINCT HireDate
FROM HumanResources.Employee

The results show all unique hire dates from the HumanResources.Employee table:

HireDate

1996-07-31 00:00:00.000
1997-02-26 00:00:00.000
1997-12-12 00:00:00.000
1998-01-05 00:00:00.000

2002-11-01 00:00:00.000
2003-04-15 00:00:00.000
2003-07-01 00:00:00.000

(164 row(s) affected)

21

22

CHAPTER 1 © SELECT

How It Works

Use the DISTINCT keyword to return distinct values in the result set. In this recipe, DISTINCT was used
to return unique HireDate column values.

Caution Be sure to use DISTINCT only when actually needed or necessary, as it can slow the query down on
larger result sets.

Using DISTINCT in Aggregate Functions

You can also use DISTINCT for a column that is used within an aggregate function (aggregate func-
tions are reviewed in more detail in Chapter 8). You may wish to do this in order to perform
aggregations on only the unique values of a column.

For example, if you wanted to calculate the average product list price, you could use the follow-
ing query:

SELECT AVG(ListPrice)
FROM Production.Product

This returns

438.6662

But the previous query calculated the average list price across all products. What if some prod-
uct types are more numerous than others? What if you are only interested in the average price of
unique price points?

In this case, you would write the query as follows:

SELECT AVG(DISTINCT ListPrice)
FROM Production.Product

This returns the unique set of price points first, and then averages them (although the differ-
ence doesn’t end up being that large):

437.4042

How It Works

DISTINCT can be used to return unique rows from a result set, as well as force unique column values
within an aggregate function. In this example, the DISTINCT keyword was put within the parentheses
of the aggregate function.

Using Column Aliases

For column computations or aggregate functions, you can use a column alias to explicitly name the
columns of your query output. You can also use column aliases to rename columns that already
have a name, which helps obscure the underlying column from the calling application (allowing
you to swap out underlying columns without changing the returned column name). You can desig-
nate a column alias by using the AS keyword, or by simply following the column or expression with
the column alias name.

CHAPTER 1 = SELECT

This example demonstrates producing column aliases using two different techniques:

SELECT Color AS 'Grouped Color',
AVG(DISTINCT ListPrice) AS 'Average Distinct List Price’,
AVG(ListPrice) 'Average List Price’

FROM Production.Product

GROUP BY Color

This returns the following abridged results:

Grouped Color Average Distinct List Price Average List Price

NULL 65.9275 16.8641
Black 527.5882 725.121
Blue 825.2985 923.6792
Grey 125.00 125.00
Multi 49.6566 59.865
Red 1332.6425 1401.95
Silver 726.2907 850.3053
Silver/Black 61.19 64.0185
White 9.245 9.245
Yellow 991.7562 959.0913

(10 row(s) affected)

How It Works

This recipe shows three examples of using column aliasing. The first example demonstrated how to
rename an existing column using the AS clause. The AS clause is used to change a column name in
the results, or add a name to a derived (calculated or aggregated) column:

SELECT Color AS 'Grouped Color',
The second example demonstrated how to add a column name to an aggregate function:
AVG(DISTINCT ListPrice) AS 'Average Distinct List Price’,

The third example demonstrated how to add a column alias without using the AS keyword
(it can simply be omitted):

AVG(ListPrice) 'Average List Price’

Using SELECT to Create a Script

As a DBA or developer, you sometimes need a Transact-SQL script to run against several objects
within a database or against several databases across a SQL Server instance. For example, you may
want to show how many rows exist in every user table in the database. Or perhaps you have a very
large table with several columns, which you need to validate in search conditions, but you don’t
want to have to manually type each column.

This next recipe offers a time-saving technique, using SELECT to write out Transact-SQL for you.
You can adapt this recipe to all sorts of purposes.

In this example, assume that you wish to check for rows in a table where all values are NULL.
There are many columns in the table, and you want to avoid hand-coding them. Instead, you can
create a script to do the work for you:

23

CHAPTER 1 © SELECT

SELECT column_name + ' IS NULL AND '
FROM INFORMATION_SCHEMA.columns
WHERE table name = 'Employee’

ORDER BY ORDINAL POSITION

This returns code that you can integrate into a WHERE clause (after you remove the trailing AND at
the last WHERE condition):

EmployeeID IS NULL AND
NationalIDNumber IS NULL AND
ContactID IS NULL AND
LoginID IS NULL AND
ManagerID IS NULL AND
Title IS NULL AND
BirthDate IS NULL AND
MaritalStatus IS NULL AND
Gender IS NULL AND
HireDate IS NULL AND
SalariedFlag IS NULL AND
VacationHours IS NULL AND
SickLeaveHours IS NULL AND
CurrentFlag IS NULL AND
rowguid IS NULL AND
ModifiedDate IS NULL AND

(16 row(s) affected)

How It Works

The example used string concatenation and the INFORMATION_SCHEMA. columns system view to gener-
ate a list of columns from the Employee table. For each column, IS NULL AND was concatenated to its
name. The results can then be copied to the WHERE clause of a query, allowing you to query for rows
where each column has a NULL value.

This general technique of concatenating SQL commands to various system data columns can
be used in numerous ways, including for creating scripts against tables or other database objects.

Gaution Do be careful when scripting an action against multiple objects or databases—make sure that the
change is what you intended, and that you are fully aware of the script’s outcome.

Performing String Concatenation

String concatenation is performed by using the + operator to join two expressions, as this example
demonstrates:

SELECT 'The ' +
p.name +
"is only ' +
CONVERT (varchar(25),p.ListPrice) +
o
FROM Production.Product p
WHERE ~ p.ListPrice between 100 AND 120
ORDER BY p.ListPrice

CHAPTER 1 = SELECT

This returns

The ML Bottom Bracket is only 101.24!
The ML Headset is only 102.29!

The Rear Brakes is only 106.50!

The Front Brakes is only 106.50!

The LL Road Rear Wheel is only 112.57!
The Hitch Rack - 4-Bike is only 120.00!

How It Works

When used with character data types, the + operator is used to concatenate expressions together. In
this example, literal values were concatenated to columns from the Production.Product table. Each
row formed a sentence celebrating the low price of each row’s product. You can also concatenate
dates, so long as these are converted to a character or variable character data type using CAST or
CONVERT.

String concatenation is often used when generating end-user reports that require denormaliza-
tion (such as displaying the first and last name in a single column) or when you need to combine
multiple data columns into a single column (as you'll see in the next recipe).

Creating a Comma-Delimited List Using SELECT

This next recipe demonstrates how to create a comma-delimited list using a SELECT query. You can
use this recipe in several ways. For example, you could integrate it into a user-defined function that
returns a comma-delimited list of the regions that a salesperson sells to into a single column (see
Chapter 11).

This example demonstrates returning one-to-many table data into a single presentable string:

DECLARE @Shifts varchar(20) = "'
SELECT @Shifts = @Shifts + s.Name + ','

FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT @Shifts

This query returns

Night,Day,Evening,

(1 row(s) affected)

How It Works

In the first part of this script, a local variable was created to hold a comma-delimited list. Because
you cannot concatenate NULL values with strings, the variable should be set to an initial blank value
instead, as was done in the recipe:

DECLARE @Shifts varchar(20) = "'

25

26

CHAPTER 1 © SELECT

In the query itself, a list of shifts are gathered from the HumanResources. Shift table, ordered by
EndTime. At the core of this example, you see that the local variable is assigned to the value of itself
concatenated to the shift name, and then concatenated to a comma. The query loops through each
value ordered by EndTime, appending each one to the local variable:

SELECT @Shifts = @Shifts + s.Name + ',
FROM HumanResources.Shift s
ORDER BY s.EndTime

SELECT is then used to display the final contents of the local variable:
SELECT @Shifts

Using the INTO Clause

The INTO clause of the SELECT statement allows you to create a new table based on the columns and
rows of the query results. Ideally you should be creating your tables using the CREATE TABLE com-
mand: however, using INTO provides a quick method of creating a new table without having to
explicitly define the column names and data types.

The INTO clause allows you to create a table in a SELECT statement based on the columns and
rows the query returns. The syntax for INTO is as follows:

SELECT select_list
[INTO new_table name]
FROM table list

The INTO clause comes after the SELECT clause but before the FROM clause, as the next recipe will
demonstrate.
In this first example, a new table is created based on the results of a query:

SELECT BusinessEntityID,
Name,
SalesPersonID,
Demographics

INTO Store Archive

FROM Sales.Store

The query returns the number of rows inserted into the new Store_Archive table, but does not
return query results:

(701 row(s) affected)

In the second example, a table is created without inserting rows into it:

SELECT BusinessEntityID,
Name,
SalesPersonID,
Demographics

INTO Store Archive 2

FROM Sales.Store

WHERE ~ 1=0

This returns the number of rows inserted into your new Store_Archive 2 table (which in this
case is zero):

(0 row(s) affected)

CHAPTER 1 = SELECT

How It Works

This recipe’s example looked like a regular SELECT query, only between the SELECT and FROM clauses
the following instructions were inserted:

INTO Store Archive

The INTO clause is followed by the new table name (which must not already exist). This can be
a permanent, temporary, or global temporary table (see Chapter 4 for more information on these
object types). The columns you select determine the structure of the table.

This is a great technique for quickly “copying” the base table structure and data of an existing
table. Using INTO, you are not required to predefine the new table’s structure explicitly (for example,
you do not need to issue a CREATE TABLE statement).

Caution Although the structure of the selected columns is reproduced, the constraints, indexes, and other sep-
arate objects dependent on the source table are not copied.

In the second example, a new table was created without also populating it with rows. This was
achieved by using a WHERE clause condition that always evaluates to FALSE:

WHERE ~ 1=0

Since the number 1 will never equal the number 0, no rows will evaluate to TRUE, and therefore
no rows will be inserted into the new table. However, the new table is created anyway.

Subqueries

A subquery is a SELECT query that is nested within another SELECT, INSERT, UPDATE, or DELETE state-
ment. A subquery can also be nested inside another subquery. Subqueries can often be rewritten
into regular JOINs; however, sometimes an existence subquery (demonstrated in this recipe) can
perform better than equivalent non-subquery methods.

A correlated subquery is a subquery whose results depend on the values of the outer query.

Using Subqueries to Check for Matches

This first example demonstrates checking for the existence of matching rows within a correlated
subquery:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
WHERE EXISTS (SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000 AND
SalesOrderID = s.SalesOrderID)

This returns the following abridged results:

PurchaseOrderNumber
P08410140860
P012325137381
P01160166903
P01073122178

27

Download from Wow! eBook <www.wowebhook.com>

28

CHAPTER 1 © SELECT

P015486173227
P014268145224

(1989 row(s) affected)

This second example demonstrates a regular non-correlated subquery:

SELECT BusinessEntityID,
SalesQuota CurrentSalesQuota
FROM Sales.SalesPerson
WHERE SalesQuota =
(SELECT MAX(SalesQuota)
FROM Sales.SalesPerson)

This returns the three salespeople who had the maximum sales quota of 300,000:

BusinessEntityID CurrentSalesQuota

275 300000.00
279 300000.00
287 300000.00

Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

How It Works

The critical piece of the first example was the subquery in the WHERE clause, which checked for the
existence of SalesOrderIDs that had products with a UnitPrice between 1000 and 2000. A JOIN was
used in the WHERE clause of the subquery, between the outer query and the inner query, by stating
SalesOrderID = s.SalesOrderID. The subquery used the SalesOrderID from each returned row in the
outer query.

In the second example, there is no WHERE clause in the subquery used to join to the outer table.
Itis not a correlated subquery. Instead, a value is retrieved from the query to evaluate against in the
= operator of the WHERE clause.

Querying from More Than One Data Source

The JOIN keyword allows you to combine data from multiple tables and/or views into a single result
set. It joins a column or columns from one table to another table, evaluating whether there is a
match.

With the JOIN keyword, you join two tables based on a join condition. Most often you'll see a
join condition testing the equality of one column in one table compared to another column in the
second table (joined columns do not need to have the same name, only compatible data types).

Tip As a query performance best practice, try to avoid having to convert data types of the columns in your join
clause (using CONVERT or CAST, for example). Opt instead for modifying the underlying schema to match data
types (or convert the data beforehand in a separate table, temp table, table variable, or Common Table Expression
[CTE]). Also, allowing implicit data type conversions to occur for frequently executed queries can cause significant
performance issues (for example, converting nchar to char).

CHAPTER 1 = SELECT

SQL Server 2005 join types fall into three categories: inner, outer, and cross. Inner joins use the
INNER JOIN keywords. INNER JOIN operates by matching common values between two tables. Only
table rows satisfying the join conditions are used to construct the result set. INNER JOINs are the
default JOIN type, so if you wish, you can use just the JOIN keyword in your INNER JOIN operations.

Outer joins have three different join types: LEFT OUTER, RIGHT OUTER, and FULL OUTER joins. LEFT
OUTER and RICHT OUTER JOINSs, like INNER JOINs, return rows that match the conditions of the join
condition. Unlike INNER JOINs, LEFT OUTER JOINs return unmatched rows from the first table of the
join pair, and RIGHT OUTER JOINs return unmatched rows from the second table of the join pair. The
FULL OUTER JOIN clause returns unmatched rows on both the left and right tables.

An infrequently used join type is CROSS JOIN. A CROSS JOIN returns a Cartesian product when a
WHERE clause isn’t used. A Cartesian product produces a result set based on every possible combina-
tion of rows from the left table, multiplied against the rows in the right table. For example, if the
Stores table has 7 rows, and the Sales table has 22 rows, you would receive 154 rows (or 7 times 22)
in the query results (each possible combination of row displayed).

The next few recipes will demonstrate the different join types.

Using INNER Joins

This inner join joins three tables in order to return discount information on a specific product:

SELECT p.Name,
s.DiscountPct

FROM Sales.SpecialOffer s

INNER JOIN Sales.SpecialOfferProduct o ON
s.SpecialOfferID = o.SpecialOfferID

INNER JOIN Production.Product p ON
o0.ProductID = p.ProductID

WHERE p.Name = 'All-Purpose Bike Stand'

The results of this query are as follows:

Name DiscountPct
All-Purpose Bike Stand 0.00

(1 row(s) affected)

How It Works

Ajoin starts after the first table in the FROM clause. In this example, three tables were joined together:
Sales.SpecialOffer, Sales.SpecialOfferProduct, and Production.Product. Sales.SpecialOffer, the
first table referenced in the FROM clause, contains a lookup of sales discounts:

FROM Sales.SpecialOffer s

Notice the letter s which trails the table name. This is a table alias. Once you begin using more
than one table in a query, it is important to explicitly identify the data source of the individual
columns. If the same column names exist in two different tables, you could get an error from the
SQL compiler asking you to clarify which column you really wanted to return.

As a best practice, it is a good idea to use aliases whenever column names are specified in a
query. For each of the referenced tables, a character was used to symbolize the table name—saving
you the trouble of spelling it out each time. This query used a single character as a table alias, but
you can use any valid identifier. A table alias, aside from allowing you to shorten or clarify the origi-
nal table name, allows you to swap out the base table name if you ever have to replace it with a

29

30

CHAPTER 1 © SELECT

different table or view, or if you need to self-join the tables. Table aliases are optional, but recom-
mended when your query has more than one table. A table alias follows the table name in the
statement FROM clause. Because table aliases are optional, you could specify the entire table name
every time you refer to the column in that table.

Getting back to the example . . . the INNER JOIN keywords followed the first table reference, and
then the table being joined to it, followed by its alias:

INNER JOIN Sales.SpecialOfferProduct o

After that, the ON keyword prefaces the column joins:
ON

This particular INNER JOIN is based on the equality of two columns—one from the first table
and another from the second:

s.SpecialOfferID = o.SpecialOfferID

Next, the Production.Product table is INNER JOINed too:

INNER JOIN Production.Product p ON
0.ProductID = p.ProductID

Lastly, a WHERE clause is used to filter rows returned in the final result set:

WHERE Name = 'All-Purpose Bike Stand'

Using OUTER Joins

This recipe compares the results of an INNER JOIN versus a LEFT OUTER JOIN. This first query
displays the tax rates states and provinces using the Person.StateProvince table and the
Sales.SalesTaxRate table. The following query uses an INNER JOIN:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate
FROM Person.StateProvince s
INNER JOIN Sales.SalesTaxRate t ON
s.StateProvinceID = t.StateProvincelD

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType TaxRate

CA AB 1 14.00
CA ON 1 14.25
CA oc 1 14.25
FR FR 3 19.60
GB ENG 3 17.50

(29 row(s) affected)

But with the INNER JOIN, you are only seeing those records from Person.StateProvince that
have rows in the Sales.SalesTaxRate table. In order to see all rows from Person.StateProvince,
whether or not they have associated tax rates, LEFT OUTER JOIN is used:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate
FROM Person.StateProvince s
LEFT OUTER JOIN Sales.SalesTaxRate t ON
s.StateProvincelID = t.StateProvincelD

This returns the following (abridged) results:

CHAPTER 1

SELECT

CountryRegionCode StateProvinceCode TaxType

CA AB 1
CA AB 2
us AK NULL
us AL NULL
us AR NULL
AS AS NULL
us Az 1
FR 94 NULL
FR 95 NULL

(184 row(s) affected)

TaxRate
14.00
7.00
NULL
NULL
NULL
NULL
7.75

NULL
NULL

How It Works

This recipe’s example demonstrated an INNER JOIN query versus a LEFT OUTER JOIN query. The LEFT
OUTER JOIN query returned unmatched rows from the first table of the join pair. Notice how this
query returned NULL values for those rows from Person.StateProvince that didn't have associated

rows in the Sales.SalesTaxRate table.

Using CROSS Joins

In this example, the Person.StateProvince and Sales.SalesTaxRate tables are CROSS JOINed:

SELECT s.CountryRegionCode,
s.StateProvinceCode,
t.TaxType,
t.TaxRate

FROM Person.StateProvince s

CROSS JOIN Sales.SalesTaxRate t

This returns the following (abridged) results:

CountryRegionCode StateProvinceCode TaxType

CA AB 1
us AK 1
us AL 1
us AR 1
AS AS 1
FR 94 3
FR 95 3

(5249 row(s) affected)

TaxRate
14.00
14.00
14.00
14.00
14.00

17.50
17.50

31

32

CHAPTER 1 © SELECT

How It Works

A CROSS JOIN without a WHERE clause returns a Cartesian product. The results of this CROSS JOIN
show StateProvince and SalesTaxRate information that doesn’t logically go together. Since the
Person.StateProvince table had 181 rows, and the Sales.SalesTaxRate had 29 rows, the query
returned 5249 rows.

Referencing a Single Table Multiple Times in the Same Query

Sometimes you may need to treat the same table as two separate tables. This may be because the
table contains nested hierarchies of data (for example, a table containing employee records has a
manager ID that is a foreign key reference to the employee ID), or perhaps you wish to reference the
same table based on different time periods (comparing sales records from the year 2007 versus the
year 2008).

You can achieve this joining of a table with itself through the use of table aliases.

In this example, the Sales.SalesPersonQuotaHistory table is referenced twice in the FROM
clause, with one referencing 2004 sales quota data and the other 2003 sales quota data:

SELECT s.BusinessEntityID,
SUM(s2004.SalesQuota) Total 2004 SQ,
SUM(s2003.SalesQuota) Total 2003_SQ

FROM Sales.SalesPerson s

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2004 ON
s.BusinessEntityID = s2004.BusinessEntityID AND
YEAR(s2004.QuotaDate)= 2004

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2003 ON
s.BusinessEntityID = s2003.BusinessEntityID AND
YEAR(s2003.QuotaDate)= 2003

GROUP BY s.BusinessEntityID

This returns the following (abridged) results:

BusinessEntityID Total 2004 SO Total 2003 _SQ

274 1084000.00 1088000.00
275 6872000.00 9432000.00
276 8072000.00 9364000.00
289 8848000.00 10284000.00
290 6460000.00 5880000.00

(17 row(s) affected)

How It Works

This recipe queried the year 2004 and year 2003 sales quota results. The FROM clause included an
anchor to all salesperson identifiers:

FROM Sales.SalesPerson s

I then left outer joined the first reference to the sales quota data, giving it an alias of $2004:

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2004 ON
s.BusinessEntityID = s2004.BusinessEntityID AND
YEAR(s2004.QuotaDate)= 2004

CHAPTER 1 = SELECT

Next, another reference was created to the same sales quota table—however, this time aliasing
the table as s2003:

LEFT OUTER JOIN Sales.SalesPersonQuotaHistory s2003 ON
s.BusinessEntityID = s2003.BusinessEntityID AND
YEAR(s2003.QuotaDate)= 2003

GROUP BY s.BusinessEntityID

As demonstrated here, you can reference the same table multiple times in the same query so
long as that table has a unique table alias to differentiate it from other referenced objects.

Using Derived Tables

Derived tables are SELECT statements that act as tables in the FROM clause. Derived tables can
sometimes provide better performance than using temporary tables (see Chapter 4 for more on
temporary tables). Unlike temporary tables, derived tables don’t require persisted data to be
populated beforehand.

This example demonstrates how to use a derived table in the FROM clause of a SELECT statement:

SELECT DISTINCT s.PurchaseOrderNumber
FROM Sales.SalesOrderHeader s
INNER JOIN (SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 1000 AND 2000) d ON
s.SalesOrderID = d.SalesOrderID

This returns the following abridged results:

PurchaseOrderNumber
P08410140860
P012325137381
P01160166903
P01073122178

P015486173227
P014268145224

(1989 row(s) affected)

How It Works

This example’s query searches for the PurchaseOrderNumber from the Sales.SalesOrderHeader table
for any order containing products with a UnitPrice between 1000 and 2000.

The query joins a table to a derived table using INNER JOIN. The derived table query is encapsu-
lated in parentheses and followed by a table alias. The derived table is a separate query in itself, and
doesn’t require the use of a temporary table to store the results. Thus, queries that use derived tables
can sometimes perform significantly better than temporary tables, as you eliminate the steps
needed for SQL Server to create and allocate the temporary table prior to use.

Combining Result Sets with UNION

The UNION operator is used to append the results of two or more SELECT statements into a single
result set. Each SELECT statement being merged must have the same number of columns, with the
same or compatible data types in the same order, as this example demonstrates:

33

34

CHAPTER 1 © SELECT

SELECT BusinessEntityID, GETDATE() QuotaDate, SalesQuota

FROM Sales.SalesPerson
WHERE SalesQuota > 0
UNION
SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0

ORDER BY BusinessEntityID DESC, QuotaDate DESC

This returns the following (abridged) results:

SalesPersonID QuotaDate SalesQuota
290 2007-09-01 14:26:28.870 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
290 2003-10-01 00:00:00.000 389000.00
268 2001-10-01 00:00:00.000 7000.00

268 2001-07-01 00:00:00.000 28000.00

(177 row(s) affected)

How It Works

This query appended two result sets into a single result set. The first result set returned the
BusinessEntityID, the current date function (see Chapter 8 for more information on this), and
the SalesQuota. Since GETDATE() is a function, it doesn’t naturally return a column name—so a
QuotaDate column alias was used in its place:

SELECT BusinessEntityID, GETDATE() QuotaDate, SalesQuota
FROM Sales.SalesPerson

The WHERE clause filtered data for those salespeople with a SalesQuota greater than zero:

WHERE SalesQuota > 0

The next part of the query was the UNION operator, which appended the distinct results with the
second query:

UNION

The second query pulled data from the Sales.SalesPersonQuotaHistory, which keeps history
for a salesperson’s sales quota as it changes through time:

SELECT BusinessEntityID, QuotaDate, SalesQuota
FROM Sales.SalesPersonQuotaHistory
WHERE SalesQuota > 0

The ORDER BY clause sorted the result set by BusinessEntityID and QuotaDate, both in descend-
ing order. The ORDER BY clause, when needed, must appear at the bottom of the query and cannot
appear after queries prior to the final UNIONed query. The ORDER BY clause should also only refer to
column names from the first result set:

ORDER BY BusinessEntityID DESC, QuotaDate DESC

Looking at the results again, for a single salesperson, you can see that the current QuotaDate of
2005-02-27 is sorted at the top. This was the date retrieved by the GETDATE () function. The other
rows for SalesPersonID 290 are from the Sales.SalesPersonQuotaHistory table:

CHAPTER 1 = SELECT

SalesPersonID QuotaDate SalesQuota
290 2005-02-27 10:10:12.587 250000.00
290 2004-04-01 00:00:00.000 421000.00
290 2004-01-01 00:00:00.000 399000.00
290 2003-10-01 00:00:00.000 389000.00

Keep in mind that the default behavior of the UNION operator is to remove all duplicate rows
and display column names based on the first result set. For large result sets, this can be a very costly
operation, so if you don’t need to de-duplicate the data, or if the data is naturally distinct, you can
add the ALL keyword to the UNION:

UNION ALL

With the ALL clause added, duplicate rows are NOT removed.

Caution Similar to using DISTINCT—using UNION instead of UNION ALL can lead to additional query
resource overhead. If you do not need to remove duplicate rows, use UNION ALL.

Using APPLY to Invoke a Table-Valued Function for
Each Row

APPLY is used to invoke a table-valued function for each row of an outer query. A table-valued
function returns a result set based on one or more parameters. Using APPLY, the input of these
parameters are the columns of the left referencing table. This is useful if the left table contains
columns and rows that must be evaluated by the table-valued function and to which the results
from the function should be attached.

CROSS APPLY works like an INNER JOIN in that unmatched rows between the left table and the
table-valued function don't appear in the result set. OUTER APPLY is like an OUTER JOIN, in that non-
matched rows are still returned in the result set with NULL values in the function results.

The next two recipes will demonstrate both CROSS APPLY and OUTER APPLY.

Note This next example covers both the FROM and JOIN examples and user-defined table-valued functions.
Table-valued functions are reviewed in more detail in Chapter 11.

Using CROSS APPLY

In this recipe, a table-valued function is created that returns work order routing information based
on the WorkOrderID passed to it:

CREATE FUNCTION dbo.fn_WorkOrderRouting
(@WorkOrderID int) RETURNS TABLE
AS
RETURN
SELECT WorkOrderID,
ProductID,
OperationSequence,
LocationID

35

36

CHAPTER 1 © SELECT

FROM Production.WorkOrderRouting
WHERE WorkOrderID = @WorkOrderID
GO

Next, the WorkOrderID is passed from the Production.WorkOrder table to the new function:

SELECT w.WorkOrderID,
w.OrderQty,
r.ProductID,
r.0OperationSequence
FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r
ORDER BY w.WorkOrderID,
w.0rderQty,
r.ProductID

This returns the following (abridged) results:

WorkOrderID OrderQty ProductID OperationSequence

13 4 747 1
13 4 747 2
13 4 747 3
13 4 747 4
13 4 747 6
72586 1 803 6
72587 19 804 1
72587 19 804 6

(67131 row(s) affected)

How It Works

The first part of this recipe was the creation of a table-valued function. The function accepts a
single parameter, @WorkOrderID, and when executed, returns the WorkOrderID, ProductID,
OperationSequence, and LocationID from the Production.WorkOrderRouting table for the specified
WorkOrderID.

The next query in the example returned the WorkOrderID and OrderQty from the Production.
WorkOrder table. In addition to this, two columns from the table-valued function were selected:

SELECT w.WorkOrderID,
w.0rderQty,
r.ProductID,
r.0OperationSequence

The key piece of this recipe comes next. Notice that in the FROM clause, the Production.
WorkOrder table is joined to the new table-valued function using CROSS APPLY, only unlike a JOIN
clause, there isn't an ON followed by join conditions. Instead, in the parentheses after the function
name, the w.WorkOrderID is passed to the table-valued function from the left Production.WorkOrder
table:

FROM Production.WorkOrder w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r

The function was aliased like a regular table, with the letter r.

CHAPTER 1 = SELECT

Lastly, the results were sorted:

ORDER BY w.WorkOrderID,
w.OrderQty,
r.ProductID

In the results for WorkOrderID 13, each associated WorkOrderRouting row was returned next to
the calling tables WorkOrderID and OrderQty. Each row of the WorkOrder table was duplicated for
each row returned from fn_WorkOrderRouting—all were based on the WorkOrderID.

Using OUTER APPLY

In order to demonstrate OUTER APPLY, I'll insert a new row into Production.WorkOrder (see Chapter 2
for a review of the INSERT command):

INSERT INTO [AdventureWorks].[Production].[WorkOrder]
([ProductID]

, [0rderQty]

» [ScrappedQty |
,[StartDate]
,[EndDate]
,[DueDate]
,[ScrapReasonID]
,[ModifiedDate])
VALUES

(1,

1,

1,
GETDATE(),
GETDATE(),
GETDATE(),
1,
GETDATE())

Because this is a new row, and because Production.WorkOrder has an IDENTITY column for the
WorkOrderID, the new row will have the maximum WorkOrderID in the table. Also, this new row will
not have an associated value in the Production.WorkOrderRouting table, because it was just added.

Next, a CROSS APPLY query is executed, this time qualifying it to only return data for the newly
inserted row:

SELECT w.WorkOrderID,
w.0rderQty,
r.ProductID,
r.0OperationSequence
FROM Production.WorkOrder AS w
CROSS APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r
WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns nothing, because the left table’s new row is unmatched:

WorkOrderID OrderQty ProductID OperationSequence

(0 row(s) affected)

37

Download from Wow! eBook <www.wowebook.com>

38

CHAPTER 1 © SELECT

Now an OUTER APPLY is tried instead, which then returns the row from WorkOrder in spite of
there being no associated value in the table-valued function:

SELECT w.WorkOrderID,
w.0rderQty,
r.ProductID,
r.0perationSequence
FROM Production.WorkOrder AS w
OUTER APPLY dbo.fn_WorkOrderRouting
(w.WorkOrderID) AS r
WHERE w.WorkOrderID IN
(SELECT MAX(WorkOrderID)
FROM Production.WorkOrder)

This returns

WorkOrderID OrderQty ProductID OperationSequence
72592 1 NULL NULL

(1 row(s) affected)

How It Works

CROSS and OUTER APPLY provide a method for applying lookups against columns using a table-valued
function. CROSS APPLY was demonstrated against a row without a match in the table-valued func-
tion results. Since CROSS APPLY works like an INNER JOIN, no rows were returned. In the second
query of this example, OUTER APPLY was used instead, this time returning unmatched NULL rows
from the table-valued function, similar to an OUTER JOIN.

Advanced Techniques for Data Sources

This next set of recipes shows you a few advanced techniques for sampling, manipulating, and
comparing data sources (a data source being any valid data source reference in a FROM clause),
including the following:

e Returning a sampling of rows using TABLESAMPLE

* Using PIVOT to convert values into columns, and using an aggregation to group the data by
the new columns

* Using UNPIVOT to normalize repeating column groups

e Using INTERSECT and EXCEPT operands to return distinct rows that only exist in either the left
query (using EXCEPT), or only distinct rows that exist in both the left and right queries (using
INTERSECT)

Using the TABLESAMPLE to Return Random Rows

TABLESAMPLE allows you to extract a sampling of rows from a table in the FROM clause. This sampling
can be based on a percentage of number of rows. You can use TABLESAMPLE when only a sampling of
rows is necessary for the application instead of a full result set. TABLESAMPLE also provides you with a
somewhat randomized result set.

CHAPTER 1 = SELECT

This example demonstrates a query that returns a percentage of random rows from a specific
data source using TABLESAMPLE:

SELECT FirstName,LastName
FROM Person.Person
TABLESAMPLE SYSTEM (2 PERCENT)

This returns the following (abridged) results:

FirstName LastName
Andre Suri
Adam Turner
Eric Turner
Jackson Turner
Meghan Rowe

(232 row(s) affected)

Executing it again returns a new set of (abridged) results:

FirstName LastName
Robert King
Ricardo Raje
Jose King
Ricardo Chande
Martin Perez
Carlos Collins

(198 row(s) affected)

How It Works

TABLESAMPLE works by extracting a sample of rows from the query result set. In this example, 2 per-
cent of rows were sampled from the Person.Person table. However, don't let the “percent” fool you.
That percentage is the percentage of the table’s data pages. Once the sample pages are selected, all
rows for the selected pages are returned. Since the fill state of pages can vary, the number of rows
returned will also vary—you’ll notice that the first time the query is executed in this example there
were 232 rows, and the second time there were 198 rows. If you designate the number of rows, this is
actually converted by SQL Server into a percentage, and then the same method used by SQL Server
to identify the percentage of data pages is used.

Using PIVOT to Convert Single Column Values into Multiple
Columns and Aggregate Data

The PIVOT operator allows you to create cross-tab queries that convert values into columns, using
an aggregation to group the data by the new columns.
PIVOT uses the following syntax:

FROM table source
PIVOT (aggregate function (value_column)
FOR pivot_column
IN (<column list>)
) table alias

39

CHAPTER 1 © SELECT

The arguments of PIVOT are described in Table 1-3.

Table 1-3. PIVOT Arguments

Argument Description

table source The table where the data will be pivoted

aggregate function (value column) The aggregate function that will be used against the
specified column

pivot_column The column that will be used to create the column
headers

column_list The values to pivot from the pivot column

table alias The table alias of the pivoted result set

This next example shows you how to PIVOT and aggregate data similar to the pivot features in
Microsoft Excel—shifting values in a single column into multiple columns, with aggregated data
shown in the results.

The first part of the example displays the data prepivoted. The query results show employee
shifts, as well as the departments that they are in:

SELECT s.Name ShiftName,
h.BusinessEntityID,
d.Name DepartmentName
FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON
h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON
h.ShiftID = s.ShiftID
WHERE ~ EndDate IS NULL AND
d.Name IN ('Production', 'Engineering', 'Marketing')
ORDER BY ShiftName

Notice that the varying departments are all listed in a single column:

ShiftName BusinessEntityID DepartmentName

Day 3 Engineering
Day 9 Engineering
Day 2 Marketing
Day 6 Marketing
Evening 25 Production
Evening 18 Production
Night 14 Production
Night 27 Production
Night 252 Production

(194 row(s) affected)

The next query pivots the department values into columns, along with a count of employees by
shift:

CHAPTER 1 = SELECT

SELECT ShiftName,
Production,
Engineering,
Marketing
FROM
(SELECT s.Name ShiftName,
h.BusinessEntityID,
d.Name DepartmentName
FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON
h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON
h.ShiftID = s.ShiftID
WHERE ~ EndDate IS NULL AND
d.Name IN ('Production', 'Engineering', 'Marketing')) AS a
PIVOT

COUNT (BusinessEntityID)

FOR DepartmentName IN ([Production], [Engineering], [Marketing])
) AS b
ORDER BY ShiftName

This returns

ShiftName Production Engineering Marketing

Day 79
Evening 54 0 0
Night 46 0 0

(3 row(s) affected)

How It Works

The result of the PIVOT query returned employee counts by shift and department. The query began
by naming the fields to return:

SELECT ShiftName,
Production,
Engineering,
Marketing

Notice that these fields were actually the converted rows, but turned into column names.
The FROM clause referenced the subquery (the query used at the beginning of this example). The
subquery was aliased with an arbitrary name of a:

FROM
(SELECT s.Name ShiftName,
h. BusinessEntityID,
d.Name DepartmentName
FROM HumanResources.EmployeeDepartmentHistory h
INNER JOIN HumanResources.Department d ON
h.DepartmentID = d.DepartmentID
INNER JOIN HumanResources.Shift s ON
h.ShiftID = s.ShiftID
WHERE EndDate IS NULL AND
d.Name IN ('Production', 'Engineering', 'Marketing')) AS a

41

42

CHAPTER 1 © SELECT

Inside the parentheses, the query designated which columns would be aggregated (and how).
In this case, the number of employees would be counted:

PIVOT
(COUNT (BusinessEntityID)

After the aggregation section, the FOR statement determined which row values would be con-
verted into columns. Unlike regular IN clauses, single quotes aren’t used around each string
character, instead using square brackets. DepartmentName was the data column where values are
converted into pivoted columns:

FOR DepartmentName IN ([Production], [Engineering], [Marketing]))

Note The list of pivoted column names cannot already exist in the base table or view query columns being
pivoted.

Lastly, a closed parenthesis closed off the PIVOT operation. The PIVOT operation was then
aliased like a table with an arbitrary name (in this case b):

AS b

The results were then ordered by ShiftName:
ORDER BY ShiftName

The results took the three columns fixed in the FOR part of the PIVOT operation and aggregated
counts of employees by ShiftName.

Normalizing Data with UNPIVOT

The UNPIVOT command does almost the opposite of PIVOT by changing columns into rows. It also
uses the same syntax as PIVOT, only UNPIVOT is designated instead.

This example demonstrates how UNPIVOT can be used to remove column-repeating groups
often seen in denormalized tables. For the first part of this recipe, a denormalized table is created
with repeating, incrementing phone number columns:

CREATE TABLE dbo.Contact
(EmployeeID int NOT NULL,
PhoneNumber1 bigint,
PhoneNumber2 bigint,
PhoneNumber3 bigint)

GO

INSERT dbo.Contact
(EmployeeID, PhoneNumberl, PhoneNumber2, PhoneNumber3)
VALUES(1, 2718353881, 3385531980, 5324571342)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(2, 6007163571, 6875099415, 7756620787)

INSERT dbo.Contact
(EmployeeID, PhoneNumber1, PhoneNumber2, PhoneNumber3)
VALUES(3, 9439250939, NULL, NULL)

CHAPTER 1 = SELECT

Now using UNPIVOT, the repeating phone numbers are converted into a more normalized form
(reusing a single PhoneValue field instead of repeating the phone column multiple times):

SELECT EmployeelD,

PhoneType,

PhoneValue
FROM
(SELECT EmployeeID, PhoneNumberi, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) c
UNPIVOT

(PhoneValue FOR PhoneType IN ([PhoneNumberi], [PhoneNumber2], [PhoneNumber3])

) AS p

This returns

EmployeeID PhoneType PhoneValue
1 PhoneNumbera 2718353881
1 PhoneNumber2 3385531980
1 PhoneNumber3 5324571342
2 PhoneNumberl 6007163571
2 PhoneNumber2 6875099415
2 PhoneNumber3 7756620787
3 PhoneNumber1 9439250939

(7 row(s) affected)

How It Works

This UNPIVOT example began by selecting three columns. The EmployeeID came from the subquery.
The other two columns, PhoneType and PhoneValue, were defined later on in the UNPIVOT statement:

SELECT EmployeelD,
PhoneType,
PhoneValue

Next, the FROM clause referenced a subquery. The subquery selected all four columns from the
contact table. The table was aliased with the letter c (table alias name was arbitrary):

FROM
(SELECT EmployeeID, PhoneNumberi, PhoneNumber2, PhoneNumber3
FROM dbo.Contact) ¢

A new column called PhoneValue (referenced in the SELECT) holds the individual phone num-
bers across the three denormalized phone columns:

UNPIVOT
(PhoneValue FOR PhoneType IN ([PhoneNumber1], [PhoneNumber2], [PhoneNumber3])

FOR references the name of the pivot column, PhoneType, which holds the column names of the
denormalized table. The IN clause following PhoneType lists the columns from the original table to
be narrowed into a single column.

Lastly, a closing parenthesis is used, and then aliased with an arbitrary name, in this case p:

) AS p

This query returned the phone data merged into two columns, one to describe the phone type,
and another to hold the actual phone numbers. Also notice that there are seven rows, instead of

43

44

CHAPTER 1 © SELECT

nine. This is because for EmployeeID 3, only non-NULL values were returned. UNPIVOT does not return
NULL values from the pivoted result set.

Returning Distinct or Matching Rows Using EXCEPT and
INTERSECT

The INTERSECT and EXCEPT operands allow you to return either distinct rows that exist only in the left
query (using EXCEPT) or distinct rows that exist in both the left and right queries (using INTERSECT).

INTERSECT and EXCEPT are useful in dataset comparison scenarios; for example, if you need to
compare rows between test and production tables, you can use EXCEPT to easily identify and popu-
late rows that existed in one table and not the other. These operands are also useful for data
recovery, because you could restore a database from a period prior to a data loss, compare data
with the current production table, and then recover the deleted rows accordingly.

For this recipe, demonstration tables are created that are partially populated from the
Production.Product table:

-- First two new tables based on ProductionProduct will be
-- created, in order to demonstrate EXCEPT and INTERSECT.
-- See Chapter 8 for more on ROW_NUMBER

-- Create TableA
SELECT prod.ProductID,
prod.Name
INTO dbo.TableA
FROM
(SELECT ProductID,
Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum
FROM Production.Product) prod
WHERE RowNum BETWEEN 1 and 20

-- Create TableB
SELECT prod.ProductID,
prod.Name
INTO dbo.TableB
FROM
(SELECT ProductID,
Name,
ROW_NUMBER() OVER (ORDER BY ProductID) RowNum
FROM Production.Product) prod
WHERE RowNum BETWEEN 10 and 29

This returns

(20 row(s) affected)

(20 row(s) affected)

Now the EXCEPT operator will be used to determine which rows exist only in the left table of the
query, TableA, and not in TableB:

SELECT ProductID,
Name

FROM dbo.TableA

EXCEPT

SELECT ProductID,
Name
FROM dbo.TableB

This returns

CHAPTER 1

SELECT

ProductID Name

1 Adjustable Race

2 Bearing Ball

3 BB Ball Bearing

4 Headset Ball Bearings
316 Blade

317 LL Crankarm

318 ML Crankarm

319 HL Crankarm

320 Chainring Bolts

(9 row(s) affected)

To show distinct values from both result sets that match, use the INTERSECT operator:

SELECT ProductID,
Name

FROM dbo.TableA

INTERSECT

SELECT ProductID,
Name

FROM dbo.TableB

This returns

ProductID Name

321 Chainring Nut
322 Chainring

323 Crown Race

324 Chain Stays

325 Decal 1

326 Decal 2

327 Down Tube

328 Mountain End Caps
329 Road End Caps
330 Touring End Caps
331 Fork End

(11 row(s) affected)

How It Works

The example started off by creating two tables (using INTO) that contain overlapping sets of rows.

Note The RoW_NUMBER function used to populate the tables in this recipe is described in more detail in

Chapter 8.

45

46

CHAPTER 1 © SELECT

The first table, TableA, contained the first 20 rows (ordered by ProductID) from the Production.
Product table. The second table, TableB, also received another 20 rows, half of which overlapped
with TableA’s rows.

To determine which rows exist only in TableA, the EXCEPT operand was placed after the FROM
clause of the first query and before the second query:

SELECT ProductID,
Name

FROM dbo.TableA

EXCEPT

SELECT ProductID,
Name

FROM dbo.TableB

In order for EXCEPT to be used, both queries must have the same number of columns. Those
columns also need to have compatible data types (it’s not necessary that the column names from
each query match). The advantages of EXCEPT is that all columns are evaluated to determine
whether there is a match, which is much more efficient than using INNER JOIN (which would
require explicitly joining the tables on each column in both data sources).

The results of the EXCEPT query show the first nine rows from TableA that were not also popu-
lated into TableB.

In the second example, INTERSECT was used to show rows that overlap between the two tables.
Like EXCEPT, INTERSECT is placed between the two queries:

SELECT ProductID,
Name

FROM dbo.TableA

INTERSECT

SELECT ProductID,
Name

FROM dbo.TableB

The query returned the 11 rows that overlapped between both tables. The same rules about
compatible data types and number of columns apply to INTERSECT as for EXCEPT.

Summarizing Data

In these next three recipes, I will demonstrate summarizing data within the result set using the fol-
lowing operators:

e Use CUBE to add summarizing total values to a result set based on columns in the GROUP BY
clause.

e Use ROLLUP with GROUP BY to add hierarchical data summaries based on the ordering of
columns in the GROUP BY clause.

e Use the GROUPING SETS operator to define custom aggregates in a single result set without
having to use UNION ALL.

I'll start this section off by demonstrating how to summarize data with CUBE.

Summarizing Data Using CUBE

CUBE adds rows to your result set, summarizing total values based on the columns in the GROUP BY
clause.

CHAPTER 1 = SELECT 47

This example demonstrates a query that returns the total quantity of a product, grouped by the
shelf the product is kept on:

SELECT i.Shelf,

SUM(i.Quantity) Total
FROM Production.ProductInventory i
GROUP BY CUBE (i.Shelf)

This returns the following results:

Shelf Total
26833
12672
19868
17353
31979
21249
40195
20055
12154
16311
13553
3567
5254
30582
23123
5912
10634
18700
2635
2908
437
ULL 335974

Z—<Z<C—|m7~7523|—7<u:|:o-nmoﬁm>
=

(22 row(s) affected)

In this next query, I'll modify the SELECT and GROUP BY clauses by adding LocationID:

SELECT 1i.Shelf,

i.locationID,

SUM(i.Quantity) Total
FROM Production.ProductInventory i
GROUP BY CUBE (i.Shelf,i.LocationID)

This returns a few levels of totals, the first being by location (abridged):

Shelf LocationID Total

A 1 2727
C 1 13777
D 1 6551
K 1 6751
L 1 7537

NULL 1 72899

Download from Wow! eBook <www.wowebhook.com>

48

CHAPTER 1 © SELECT

In the same result set, later on you also see totals by shelf, and then across all shelves and
locations:

Shelf LocationID Total

T NULL 10634
U NULL 18700
v NULL 2635

W NULL 2908

Y NULL 437
NULL NULL 335974
How It Works

Because the first query groups by shelf, and because I used GROUP BY CUBE, an extra row was added
to the bottom of the result set that shows the total for all shelves:

GROUP BY CUBE (i.Shelf)

CGaution When using CUBE, you must be careful not to accidentally double-count your aggregated values.

This is slightly different syntax from previous versions of SQL Server. In SQL Server 2008, CUBE is
after the GROUP BY, instead of trailing the GROUP BY clause with a WITH CUBE. Notice also that the col-
umn lists are contained within parentheses:

GROUP BY CUBE (i.Shelf,i.LocationID)

Adding additional columns to the query, included in the GROUP BY CUBE clause, you saw aggre-
gate values for each grouping combination. CUBE is often used for reporting purposes, providing a
simple way to return totals by grouped column.

Note In earlier versions of SQL Server, you may have used COMPUTE BY to also provide similar aggregations for
your query. Microsoft has deprecated COMPUTE BY functionality for backward compatibility. Unlike WITH CUBE,
COMPUTE BY created an entirely new summarized result set after the original query results, which were often diffi-
cult for calling applications to consume.

Summarizing Data Using ROLLUP

GROUP BY ROLLUP is used to add hierarchical data summaries based on the ordering of columns in
the GROUP BY clause.
This example retrieves the shelf, product name, and total quantity of the product:

SELECT i.Shelf,
p.Name,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
INNER JOIN Production.Product p ON
i.ProductID = p.ProductID
GROUP BY ROLLUP (i.Shelf, p.Name)

CHAPTER 1 = SELECT

This returns the following (abridged) results:

Shelf Name Total
A Adjustable Race 761

A BB Ball Bearing 909

A NULL 26833
B Adjustable Race 324

B BB Ball Bearing 443

B Bearing Ball 318

B Touring Front Wheel 304

B NULL 12672
C Chain 236

C Chain Stays 585

Y LL Spindle/Axle 209

Y NULL 437
NULL NULL 335974
How It Works

The order you place the columns in the GROUP BY ROLLUP impacts how data is aggregated. ROLLUP in
this query aggregated total quantity for each change in Shelf. Notice the row with shelf A and the
NULL name; this holds the total quantity for shelf A. Also notice that the final row was the grand total
of all product quantities. Whereas CUBE creates a result set that aggregates all combinations for the
selected columns, ROLLUP generates the aggregates for a hierarchy of values.

GROUP BY ROLLUP (i.Shelf, p.Name)

ROLLUP aggregated a grand total and totals by shelf. Totals were not generated for the product
name but would have been had I designated CUBE instead.

Just like CUBE, ROLLUP uses slightly different syntax from previous versions of SQL Server. In SQL
Server 2008, ROLLUP is after the GROUP BY, instead of trailing the GROUP BY clause with a WITH ROLLUP.
Notice also that the column lists are contained within parentheses.

Creating Custom Summaries Using Grouping Sets

SQL Server 2008 introduces the ability to define your own grouping sets within a single query result
set without having to resort to multiple UNION ALLs. Grouping sets also provides you with more con-
trol over what is aggregated, compared to the previously demonstrated CUBE and ROLLUP operations.
This is performed by using the GROUPING SETS operator.

First, I'll demonstrate by defining an example business requirement for a query. Let’s assume I
want a single result set to contain three different aggregate quantity summaries. Specifically, I
would like to see quantity totals by shelf, quantity totals by shelf and product name, and then also
quantity totals by location and name.

To achieve this in previous versions of SQL Server, you would need to have used UNION ALL:

SELECT
NULL,
i.LocationID,
p.Name,
SUM(i.Quantity) Total
FROM Production.ProductInventory i

49

CHAPTER 1 © SELECT

INNER JOIN Production.Product p ON
i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND
Name IN ('Chain', 'Decal', 'Head Tube")
GROUP BY i.locationID, p.Name
UNION ALL
SELECT
i.Shelf,
NULL,
NULL,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
INNER JOIN Production.Product p ON
i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND
Name IN ('Chain', 'Decal', 'Head Tube")
GROUP BY i.Shelf
UNION ALL
SELECT
i.Shelf,
NULL,
p.Name,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
INNER JOIN Production.Product p ON
i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND
Name IN ('Chain', 'Decal', 'Head Tube")
GROUP BY i.Shelf, p.Name

This returns

LocationID Name Total

NULL 1 Chain 236
NULL 5 Chain 192
NULL 50 Chain 161
NULL 20 Head Tube 544
A NULL NULL 897
C NULL NULL 236
A NULL Chain 353
C NULL Chain 236
A NULL Head Tube 544

(9 row(s) affected)

In SQL Server 2008, you can save yourself all that extra code by using the GROUPING SETS opera-
tor instead to define the various aggregations you would like to have returned in a single result set:

SELECT
i.Shelf,
i.locationID,
p.Name,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
INNER JOIN Production.Product p ON
i.ProductID = p.ProductID
WHERE Shelf IN ('A','C') AND

CHAPTER 1 = SELECT

Name IN ('Chain', 'Decal', 'Head Tube")
GROUP BY GROUPING SETS
((i.Shelf), (i.Shelf, p.Name), (i.LocationID, p.Name))

This returns the same result set as the previous query (only ordered a little differently):

Shelf LocationID Name Total
NULL 1 Chain 236
NULL 5 Chain 192
NULL 50 Chain 161
NULL 20 Head Tube 544
A NULL Chain 353
A NULL Head Tube 544
A NULL NULL 897
C NULL Chain 236
C NULL NULL 236

(9 row(s) affected)

How It Works

The new GROUPING SETS operator allows you to define varying aggregate groups in a single query,
while avoiding the use of multiple queries attached together using UNION ALL. The core of this
recipe’s example is the following two lines of code:

GROUP BY GROUPING SETS
((i.Shelf), (i.Shelf, p.Name), (i.LocationID, p.Name))

Notice that unlike a regular aggregated query, the GROUP BY clause is not followed by a list of
columns. Instead, it is followed by GROUPING SETS. GROUPING SETS is then followed by parentheses
and the groupings of column names, each also encapsulated in parentheses.

Revealing Rows Generated by GROUPING

You may have noticed that those rows that were grouped in the previous recipes had NULL values in
the columns that weren't participating in the aggregate totals. For example, when shelf C was totaled
up, the location and product name columns were NULL:

C NULL NULL 236

The NULL values are acceptable if your data doesn't explicitly contain NULLs—however, what if it
does? How can you differentiate “stored” NULLs from those generated in the rollups, cubes, and
grouping sets?

In order to address this issue, you can use the GROUPING and GROUPING_ID functions. I'll discuss
GROUPING in this recipe and GROUPING_ID in the next. GROUPING was available in previous versions of
SQL Server, and it allowed simple evaluation of whether or not a row is a product of aggregation. For
example, the following query uses a CASE statement to evaluate whether each row is a total by shelf,
total by location, grand total, or regular non-cubed row:

SELECT
i.Shelf,
i.locationID,
CASE
WHEN GROUPING(i.Shelf) = 0 AND

51

52

CHAPTER 1 © SELECT

GROUPING(i.LocationID) = 1 THEN 'Shelf Total'
WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 0 THEN 'Location Total'
WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 1 THEN 'Grand Total'
ELSE 'Regular Row'
END RowType,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
WHERE LocationID = 2
GROUP BY CUBE (i.Shelf,i.LocationID)

This returns

Shelf LocationID RowType Total
B 2 Regular Row 900

C 2 Regular Row 1557
D 2 Regular Row 3092
NULL 2 Location Total 5549
NULL NULL Grand Total 5549
B NULL Shelf Total 900

C NULL Shelf Total 1557
D NULL Shelf Total 3092

(8 row(s) affected)

How It Works

The GROUPING function allows you to differentiate and act upon those rows that are generated auto-
matically for aggregates using CUBE, ROLLUP, and GROUPING SETS. In this example, I started off the
SELECT statement as normal, with the Shelf and Location columns:

SELECT
i.Shelf,
i.LocationID,

Following this, I then began a CASE statement that would evaluate the combinations of return
values for the GROUPING statement.

Tip For more on CASE, see Chapter 9.

When GROUPING returns a 1 value (true), it means the column NULL is not an actual data value,
but is a result of the aggregate operation, standing in for the value “all”. So for example, if the shelf
value is not NULL and the location ID is null due to the CUBE aggregation process and not the data
itself, the string Shelf Total is returned:

CASE
WHEN GROUPING(i.Shelf) = 0 AND
GROUPING(i.LocationID) = 1 THEN 'Shelf Total'

This continues with similar logic, only this time if the shelf value is NULL due to the CUBE aggre-
gation process, but the location is not null, a location total is provided:

WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 0 THEN 'Location Total'

CHAPTER 1 = SELECT

The last WHEN defines when both shelf and location are NULL due to the CUBE aggregation
process, which means the row contains the grand total for the result set:

WHEN GROUPING(i.Shelf) = 1 AND
GROUPING(i.LocationID) = 1 THEN 'Grand Total'

GROUPING only returns a 1 or a 0; however, in SQL Server 2008, you also have the option of using
GROUPING ID to compute grouping at a finer grain, as I'll demonstrate in the next recipe.

Advanced Group-Level Identification with GROUPING_ID

Note This recipe assumes an understanding of the binary/base-2 number system.

Identifying which rows belong to which type of aggregate becomes progressively more difficult for
each new column you add to GROUP BY and each unique data value that can be grouped and aggre-
gated. For example, assume that I have a non-aggregated report showing the quantity of products
that exist in location 3 within bins 1 and 2:

SELECT

i.Shelf,

i.locationID,

i.Bin,

i.Quantity
FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)

This query returns only two rows:

Shelf LocationID Bin Quantity
A 3 2 41
A 3 1 49

Now what if I wanted to report aggregations based on the various combinations of shelf, loca-
tion, and bin? I could use CUBE to give summaries of all these potential combinations:

SELECT

i.Shelf,

i.locationID,

i.Bin,

SUM(i.Quantity) Total
FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND

i.Bin IN (1,2)

GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BY i.Shelf, i.lLocationID, i.Bin

Although the query returns the various aggregations expected from CUBE, the results are diffi-
cult to decipher:

Shelf LocationID Bin Total
NULL NULL NULL 90
NULL NULL 1 49
NULL NULL 2 41

53

CHAPTER 1 © SELECT

NULL 3 NULL 90
NULL 3 1 49
NULL 3 2 41
A NULL NULL 90
A NULL 1 49
A NULL 2 41
A 3 NULL 90
A 3 1 49
A 3 2 41

(12 row(s) affected)

This is where GROUPING_ID comes in handy. Using this function, I can determine the level of
grouping for the row. This function is more complicated than GROUPING, however, because
GROUPING_ID takes one or more columns as its input and then returns the integer equivalent of the
base-2 (binary) number calculation on the columns.

This is best described by example, so I'll demonstrate taking the previous query and adding
CASE logic to return proper row descriptors:

SELECT
i.Shelf,
i.lLocationID,
i.Bin,
CASE GROUPING ID(i.Shelf,i.lLocationID, i.Bin)
WHEN 1 THEN 'Shelf/Location Total'
WHEN 2 THEN 'Shelf/Bin Total'
WHEN 3 THEN 'Shelf Total'
WHEN 4 THEN 'Location/Bin Total'
WHEN 5 THEN 'Location Total'
WHEN 6 THEN 'Bin Total'
WHEN 7 THEN 'Grand Total'
ELSE 'Regular Row'
END,
SUM(i.Quantity) Total
FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND
i.Bin IN (1,2)
GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BY i.Shelf, i.lLocationID, i.Bin

I'll explain what each of the integer values mean in the “How It Works” section. The results
returned from this query give descriptions of the various aggregations CUBE resulted in:

Shelf LocationID Bin Total
NULL NULL NULL Grand Total 90
NULL NULL 1 Bin Total 49
NULL NULL 2 Bin Total 41
NULL 3 NULL Location Total 90
NULL 3 1 Location/Bin Total 49
NULL 3 2 Location/Bin Total 41

A NULL NULL Shelf Total 90

A NULL 1 Shelf/Bin Total 49

A NULL 2 Shelf/Bin Total 41

A 3 NULL Shelf/Location Total 90

A 3 1 Regular Row 49

CHAPTER 1 = SELECT

A 3 2 Regular Row 41
(12 row(s) affected)

How It Works

GROUPING ID takes a column list and returns the integer value of the base-2 binary column list calcu-
lation (I'll step through this).

The query started off with the list of the three non-aggregated columns to be returned in the
result set:

SELECT
i.Shelf,
i.locationID,
i.Bin,
Next, I defined a CASE statement that evaluated the return value of GROUPING_ID for the list of
the three columns:

CASE GROUPING ID(i.Shelf,i.LocationID, i.Bin)

In order to illustrate the base-2 conversion to integer concept, I'll focus on a single row, the row
that shows the grand total for shelf A generated automatically by CUBE:

Shelf LocationID Bin Total
A NULL NULL 90

Now envision another row beneath it that shows the bit values being enabled or disabled based
on whether the column is not a grouping column. Both Location and Bin from GROUPING ID’s per-
spective have a bit value of 1 because neither of them are a grouping column for this specific row.
For this row, Shelf is the grouping column:

Shelf LocationID Bin
A NULL NULL
0 1 1

Converting the binary 011 to integer, I'll add another row that shows the integer value beneath
the flipped bits:

Shelf LocationID Bin

A NULL NULL
0 1 1
4 2 1

Because only location and bin have enabled bits, I add 1 and 2 to get a summarized value of 3,
which is the value returned for this row by GROUPING ID. So the various combinations of grouping
are calculated from binary to integer. In the CASE statement that follows, 3 translates to a shelf total.

Since I have three columns, the various potential aggregations are represented in the following
WHEN/THENS:

CASE GROUPING_ID(i.Shelf,i.LocationID, i.Bin)
WHEN 1 THEN 'Shelf/Location Total'
WHEN 2 THEN 'Shelf/Bin Total'
WHEN 3 THEN 'Shelf Total'

55

56 CHAPTER 1 © SELECT

WHEN 4 THEN 'Location/Bin Total'
WHEN 5 THEN ‘lLocation Total'
WHEN 6 THEN 'Bin Total'
WHEN 7 THEN 'Grand Total'

ELSE 'Regular Row'

END,

Each potential combination of aggregations is handled in the CASE statement. The rest of the
query involves using an aggregate function on quantity, and then using CUBE to find the various
aggregation combinations for shelf, location, and bin:

SUM(i.Quantity) Total
FROM Production.ProductInventory i
WHERE i.LocationID IN (3) AND
i.Bin IN (1,2)
GROUP BY CUBE (i.Shelf,i.LocationID, i.Bin)
ORDER BYi.Shelf, i.LocationID, i.Bin

Common Table Expressions

A Common Table Expression, or CTE, is similar to a view or derived query, allowing you to create a
temporary query that can be referenced within the scope of a SELECT, INSERT, UPDATE, or DELETE
query. Unlike a derived query, you don’'t need to copy the query definition multiple times each time
it is used. You can also use local variables within a CTE definition—something you can’t do in a view
definition.

The basic syntax for a CTE is as follows:

WITH expression name [(column name [,...n])]
AS (CTE_query definition)

The arguments of a CTE are described in the Table 1-4.

Table 1-4. CTE Arguments

Argument Description

expression_name The name of the common table expression

column_name [,...n] The unique column names of the expression

CTE_query definition The SELECT query that defines the common table expression

A non-recursive CTE is one that is used within a query without referencing itself. It serves as a
temporary result set for the query. A recursive CTE is defined similarly to a non-recursive CTE, only
arecursive CTE returns hierarchical self-relating data. Using a CTE to represent recursive data can
minimize the amount of code needed compared to other methods.

The next two recipes will demonstrate both non-recursive and recursive CTEs.

Using a Non-Recursive Common Table Expression

This example of a common table expression demonstrates returning vendors in the
Purchasing.Vendor table—returning the first five and last five results ordered by name:

CHAPTER 1 = SELECT 57

WITH VendorSearch (RowNumber, VendorName, AccountNumber)
AS

SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,

Name,
AccountNumber
FROM Purchasing.Vendor
)
SELECT RowNumber,
VendorName,
AccountNumber

FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5
UNION
SELECT RowNumber,
VendorName,
AccountNumber
FROM VendorSearch
WHERE RowNumber BETWEEN 100 AND 104

This returns

RowNumber VendorName AccountNumber
1 A. Datum Corporation ADATUMOOO1

2 Advanced Bicycles ADVANCEDO001
3 Allenson Cycles ALLENSONOOO1
4 American Bicycles and Wheels AMERICANO001
5 American Bikes AMERICAN0O002
100 Vista Road Bikes VISTAR00001
101 West Junction Cycles WESTJIUNOOO1
102 WestAmerica Bicycle Co. WESTAMER0O001
103 Wide World Importers WIDEWOROOO1
104 Wood Fitness WOODFIT0001

(10 row(s) affected)

The previous example used UNION; however, non-recursive CTEs can be used like any other
SELECT query too:

WITH VendorSearch (VendorID, VendorName)
AS

SELECT BusinessEntityID,
Name
FROM Purchasing.Vendor

)

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice
FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON
v.VendorID = p.VendorID
ORDER BY v.VendorName

Download from Wow! eBook <www.wowebhook.com>

58

CHAPTER 1 © SELECT

This returns the following (abridged) results:

VendorID VendorName ProductID StandardPrice
32 Advanced Bicycles 359 45.41
32 Advanced Bicycles 360 43.41
32 Advanced Bicycles 361 47.48
32 Advanced Bicycles 362 43.41

32 Advanced Bicycles 363 41.41

(460 row(s) affected)

How It Works

In the first example of the recipe, WITH defined the CTE name and the columns it returned. This was
a non-recursive CTE because CTE data wasn't being joined to itself. The CTE in this example was
only using a query that UNIONed two data sets:

WITH VendorSearch (RowNumber, VendorName, AccountNumber)

The column names defined in the CTE can match the actual names of the query within—or
you can create your own alias names. For example, here the Purchasing.Vendor column Name has
been referenced as VendorName in the CTE.

Next in the recipe, AS marked the beginning of the CTE query definition:

AS
(

Inside the parentheses, the query used a function that returned the sequential row number of
the result set—ordered by the vendor name (see Chapter 8 for a review of RON_NUMBER):

SELECT ROW_NUMBER() OVER (ORDER BY Name) RowNum,
Name,
AccountNumber

FROM Purchasing.Vendor

)

The vendor name and AccountNumber from the Purchasing.Vendor table were also returned. The
CTE definition finished after marking the closing parentheses.

Following the CTE definition was the query that used the CTE. Keep in mind that a SELECT,
INSERT, UPDATE, or DELETE statement that references some or all the CTE columns must follow the
definition of the CTE:

SELECT RowNumber,
VendorName,
AccountNumber
FROM VendorSearch
WHERE RowNumber BETWEEN 1 AND 5

The SELECT column names were used from the new VendorSearch CTE. In the WHERE clause, the
first query returns rows 1 through 5. Next the UNION operator was used prior to the second query:

UNION

This second query displayed the last five rows. The VendorSearch CTE was referenced twice—
but the full query definition only had to be defined a single time (unlike using derived queries)—
thus reducing code.

CHAPTER 1 = SELECT

In the second example of the recipe, a simple CTE was defined without using any functions,
just BusinessEntityID and VendorName from the Purchasing.Vendor table:

WITH VendorSearch (VendorID, VendorName)
AS
(
SELECT BusinessEntityID,
Name
FROM Purchasing.Vendor
)

In the query following this CTE definition, the CTE VendorSearch was joined just like a regular
table (only without specifying the owning schema):

SELECT v.VendorID,
v.VendorName,
p.ProductID,
p.StandardPrice
FROM VendorSearch v
INNER JOIN Purchasing.ProductVendor p ON
v.VendorID = p.BusinessEntityID
ORDER BY v.VendorName

Caution If the CTE is part of a batch of statements, the statement before its definition must be followed by a
semicolon.

Note You can use a semicolon as a SQL Server statement terminator. Doing so isn’t mandatory in most areas,
but it is ANSI compliant, and you’ll see it being used in some of the documentation coming from Microsoft.

Using a Recursive Common Table Expression

In this example, the new Company table will define the companies in a hypothetical giant mega con-
glomerate. Each company has a CompanyID and an optional ParentCompanyID. The example will
demonstrate how to display the company hierarchy in the results using a recursive CTE. First, the
table is created:

CREATE TABLE dbo.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL)

Next, rows are inserted into the new table (using new SQL Server 2008 syntax that I'll be
demonstrating in Chapter 2):

INSERT dbo.Company (CompanyID, ParentCompanyID, CompanyName)
VALUES

(1, NULL, 'Mega-Corp'),

(2, 1, 'Mediamus-Corp'),

(3, 1, 'KindaBigus-Corp'),

(4, 3, 'GettinSmaller-Corp'),

(5, 4, 'Smallest-Corp'),

(6, 5, "Puny-Corp'),

(7, 5, 'Small2-Corp")

59

CHAPTER 1 © SELECT

Now the actual example:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanylLevel)
AS

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel
FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanylLevel + 1
FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID
)
SELECT ParentCompanyID, CompanyID, CompanyName, Companylevel
FROM CompanyTree

This returns

ParentCompanyID CompanyID CompanyName CompanylLevel
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2
4 5 Smallest-Corp 3
5 6 Puny-Corp 4
5 7 Small2-Corp 4

(7 row(s) affected)

How It Works

In this example, the CTE name and columns are defined first:
WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanylLevel)

The CTE query definition began with AS and an open parenthesis:

The SELECT clause began with the “anchor” SELECT statement. The anchor definition has to be
defined first. When using recursive CTEs, “anchor” refers to the fact that it defines the base of the
recursion—in this case the top level of the corporate hierarchy (the parentless Mega-Corp). This
SELECT also includes a CompanyLevel column alias, preceded with the number zero. This column will
be used in the recursion to display how many levels deep a particular company is in the company
hierarchy:

CHAPTER 1 = SELECT

SELECT ParentCompanyID,
CompanyID,
CompanyName,
0 AS CompanyLevel

FROM dbo.Company

WHERE ParentCompanyID IS NULL

Next was the UNION ALL, to join the second, recursive query to the anchor member (UNION ALL,
and not just UNION, is required for the last anchor member and the first recursive member in a recur-
sive CTE):

UNION ALL

After that was the recursive query. Like the anchor, the SELECT clause references the
ParentCompanyID, CompanyID, and CompanyName from the dbo.Company table. Unlike the anchor, the
CTE column references p.CompanyLevel (from the anchor query), adding 1 to its total at each level
of the hierarchy:

SELECT c.ParentCompanyID,
c.CompanyID,
c.CompanyName,
p.CompanylLevel + 1

The dbo.Company table was joined to the CompanyTree CTE, joining the CTE’s recursive query’s
ParentCompanyID to the CTE’s CompanyID:

FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

After the closing of the CTE’s definition, the query selected from the CTE based on the columns
defined in the CTE definition.

SELECT ParentCompanyID, CompanyID, CompanyName, Companylevel
FROM CompanyTree

In the results, for each level in the company hierarchy, the CTE increased the CompanyLevel
column.

With this useful new feature come some cautions, however. If you create your recursive CTE
incorrectly, you could cause an infinite loop. While testing, to avoid infinite loops, use the
MAXRECURSION hint mentioned earlier in the chapter.

For example, you can stop the previous example from going further than two levels by adding
the OPTION clause with MAXRECURSION at the end of the query:

WITH CompanyTree(ParentCompanyID, CompanyID, CompanyName, CompanylLevel) AS

SELECT ParentCompanyID, CompanyID, CompanyName, 0 AS Companylevel
FROM dbo.Company
WHERE ParentCompanyID IS NULL
UNION ALL
SELECT c.ParentCompanyID, c.CompanyID, c.CompanyName, p.CompanylLevel + 1
FROM dbo.Company c
INNER JOIN CompanyTree p
ON c.ParentCompanyID = p.CompanyID

SELECT ParentCompanyID, CompanyID, CompanyName, Companylevel
FROM CompanyTree
OPTION (MAXRECURSION 2)

61

62

CHAPTER 1 © SELECT

This returns

ParentCompanyID CompanyID CompanyName CompanyLevel
NULL 1 Mega-Corp 0
1 2 Mediamus-Corp 1
1 3 KindaBigus-Corp 1
3 4 GettinSmaller-Corp 2

Msg 530, Level 16, State 1, Line 2
The statement terminated. The maximum recursion 2 has
been exhausted before statement completion.

As a best practice, set the MAXRECURSION based on your understanding of the data. If you know
that the hierarchy cannot go more than ten levels deep, for example, then set MAXRECURSION to that
value.

Tip You can also use the new HierarchyID data type to more easily traverse data hierarchies. For more infor-
mation on this new SQL Server 2008 data type, see Chapter 14.

CHAPTER 2

Perform, Capture, and Track Data
Modifications

In this chapter, I review how to modify data using the Transact-SQL INSERT, UPDATE, and DELETE
commands. I'll review the basics of each command and cover specific techniques such as inserting
data from a stored procedure and importing an image file into a table using OPENROWSET BULK func-
tionality.

The new SQL Server 2008 features I cover in this chapter include the following:

Inserting multiple rows from a single INSERT statement. I'll also demonstrate using the
multiple-row technique to create a query data source in a SELECT clause (without having to
create a permanent or temporary table).

New assignment operators that allow you to modify a passed data value with minimal
coding.

The new MERGE command, which allows you to consolidate and apply data modification
commands using a single block of code.

Storing unstructured data on the file system while maintaining SQL Server transactional
control using the new FILESTREAM attribute.

Two new options for tracking table data changes using Change Data Capture (CDC) and
Change Tracking built-in functionality.

Before going into the new features, however, I'll start the chapter off by reviewing basic INSERT
concepts.

INSERT

The simplified syntax for the INSERT command is as follows:

INSERT

[INTO]

table or view name

[(column_list)]

VALUES (({DEFAULT | NULL | expression } [,...n 1) [,...n 1)

The arguments of this command are described in Table 2-1.

63

64

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Table 2-1. INSERT Command Arguments

Argument Description

table or view name The name of the table or updateable view that you
are inserting a row into.

column list The explicit comma-separated list of columns on
the insert table that will be populated with values.

(DEFAULT | NULL | expression }[,...n 1) The comma-separated list of values to be inserted
as arow into the table. In SQL Server 2008, you can
insert multiple rows in a single statement. Each
value can be an expression, NULL value, or DEFAULT
value (if a default was defined for the column).

Inserting a Row into a Table

In this recipe, I demonstrate the use of INSERT to add new rows into a table (as specified by

table name), specifying a column_list of columns into which the data should be inserted, and a
corresponding comma-separated list of values to be inserted, [,n], in the VALUES clause. Specif-
ically, here I demonstrate inserting a single row into the AdventureWorks Production.Location table:

USE AdventureWorks
GO

INSERT Production.Llocation
(Name, CostRate, Availability)
VALUES ('Wheel Storage', 11.25, 80.00)

This returns

(1 row(s) affected)

This next query then searches for any row with the name Wheel Storage:

SELECT Name,

CostRate,

Availability
FROM Production.location
WHERE Name = 'Wheel Storage'

This returns

Name CostRate Availability
Wheel Storage 11.25 80.00

(1 row(s) affected)

How It Works

In this recipe, a new row was inserted into the Production.Location table.
The query began with the INSERT command and the name of the table that will receive the
inserted data (the INTO keyword is optional):

INSERT Production.location

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

The next line of code explicitly listed the columns of the destination table that I wish to insert
the data into:

(Name, CostRate, Availability)

A comma must separate each column. Columns don'’t need to be listed in the same order as
they appear in the base table—as long as the values in the VALUES clause exactly match the order of
the column list. Column lists are not necessary if the values are all provided and are in the same
order. However, using column lists should be required for your production code, particularly if the
base schema undergoes periodic changes. This is because explicitly listing columns allows you to
add new columns to the base table without changing the referencing code (assuming the new col-
umn has a default value).

The next line of code was the VALUES clause and a comma-separated list of values (expressions)
to insert:

VALUES ('Wheel Storage', 11.25, 80.00)

As T've noted previously, the values in this list must be provided in the same order as the listed
columns or, if no columns are listed, the same order of the columns in the table.

Inserting a Row Using Default Values

In this recipe, I'll show you how to load a row into a table such that it takes a default value for a
certain column (or columns), using the DEFAULT keyword. In the previous recipe, the Production.
Location table had a row inserted into it. The Production.Location table has two other columns
that were not explicitly referenced in the INSERT statement. If you look at the column definition
of Table 2-2, you'll see that there is also a LocationID and a ModifiedDate column that were not
included in the previous example’s INSERT.

Table 2-2. Production.Location Table Definition

Column Name Data Type Nullability = Default Value Identity Column?
LocationID smallint NOT NULL Yes
Name dbo.Name (user-defined NOT NULL No

data type)
CostRate smallmoney NOT NULL 0.00 No
Availability decimal(8,2) NOT NULL 0.00 No
ModifiedDate datetime NOT NULL GETDATE() (function No

to return the current
date and time)

Note See Chapter 4 for more information on the CREATE TABLE command, IDENTITY columns, and DEFAULT
values.

The ModifiedDate column has a default value that populates the current date and time for new
rows if the column value wasn'’t explicitly inserted. The INSERT could have been written to update
this column too. For example:

INSERT Production.location

(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 2', 11.25, 80.00, '1/1/2005")

65

66

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

When a column has a default value specified in a table, you can use the DEFAULT keyword in the
VALUES clause, in order to explicitly trigger the default value.
For example:

INSERT Production.Llocation
(Name, CostRate, Availability, ModifiedDate)
VALUES ('Wheel Storage 3', 11.25, 80.00, DEFAULT)

If each column in the table uses defaults for all columns, you can trigger an insert that inserts a
row using only the defaults by including the DEFAULT VALUES option. For example:

INSERT dbo.ExampleTable
DEFAULT VALUES

How It Works

The DEFAULT keyword allows you to explicitly set a column’s default value in an INSERT statement.
The DEFAULT VALUES keywords can be used in your INSERT statement to explicitly set all the column’s
default values (assuming the table is defined with a default on each column).

The LocationID column from the Production.Location table, however, is an IDENTITY column
(not a defaulted column). An IDENTITY property on a column causes the value in that column to
automatically populate with an incrementing numeric value. Because LocationID is an IDENTITY
column, the database manages inserting the values for this row, so an INSERT statement cannot nor-
mally specify a value for an IDENTITY column. If you want to specify a certain value for an IDENTITY
column, you need to follow the procedure outlined in the next recipe.

Explicitly Inserting a Value into an IDENTITY Column

In this recipe, I'll demonstrate how to explicitly insert values into an IDENTITY property column. A
column using an IDENTITY property automatically increments based on a numeric seed value and
incrementing value for every row inserted into the table. IDENTITY columns are often used as
surrogate keys (a surrogate key is a unique primary key generated by the database that holds no
business-level significance other than to ensure uniqueness within the table).

In data load or recovery scenarios, you may find that you need to manually insert explicit val-
ues into an IDENTITY column. For example, if a row with the key value of 4 were deleted accidentally,
and you needed to manually reconstruct that row, preserving the original value of 4 with the old
business information, you would need to be able to explicitly insert this value into the table.

To explicitly insert a numeric value into a column using an IDENTITY property, you must use the
SET IDENTITY_INSERT command. The syntax is as follows:

SET IDENTITY_INSERT [database name . [schema name] .] table { ON | OFF }

The arguments of this command are described in Table 2-3.

Table 2-3. SET IDENTITY_INSERT Command

Argument Description

[database name . [schema name] .] These specify the optional database name, optional
schema name, and required table name for which
explicit values will be allowed to be inserted into
table an IDENTITY property column.

ON | OFF When set ON, explicit value inserts are allowed. When
OFF, explicit value inserts are not allowed.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

In this recipe, I'll demonstrate how to explicitly insert the value of an IDENTITY column into a
table. The following query first demonstrates what happens if you try to do an explicit insert into an
identity column without first using IDENTITY_INSERT:

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

This returns an error, keeping you from inserting an explicit value for the identity column:

Msg 544, Level 16, State 1, Line 2
Cannot insert explicit value for identity column in table 'Department' when
IDENTITY_INSERT is set to OFF.

Using SET IDENTITY_INSERT removes this barrier, as this next example demonstrates:

SET IDENTITY_INSERT HumanResources.Department ON

INSERT HumanResources.Department
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

SET IDENTITY_INSERT HumanResources.Department OFF

How It Works
In the recipe, this property was set ON prior to the insert:

SET IDENTITY_ INSERT HumanResources.Department ON

The INSERT was then performed using a value of 17. When inserting into an identity column,
you must also explicitly list the column names after the INSERT table_name clause:

INSERT HumanResources.D epartment
(DepartmentID, Name, GroupName)
VALUES (17, 'Database Services', 'Information Technology')

For inserted values greater than the current identity value, new inserts to the table will auto-
matically use the new value as the identity seed.
IDENTITY_ INSERT should be set OFF once you are finished explicitly inserting values:

SET IDENTITY_INSERT HumanResources.Department OFF

You should set this OFF once you are finished, as only one table in the session (your database
connection session) can have IDENTITY_INSERT ON at the same time (assuming that you wish to
insert explicit values for multiple tables). Closing your session will remove the ON property, setting it
back to OFF.

Inserting a Row into a Table with a uniqueidentifier Column

In this recipe, I'll show you how to insert data into a table that uses a uniqueidentifier column.
This data type is useful in scenarios where your identifier must be unique across several SQL Server
instances. For example, if you have ten remote SQL Server instances generating records that are
then consolidated on a single SQL Server instance, using an IDENTITY value generates the risk of pri-
mary key conflicts. Using a uniqueidentifier data type would allow you to avoid this.

67

Download from Wow! eBook <www.wowebook.com>

68

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Auniqueidentifier data type stores a 16-byte globally unique identifier (GUID) that is often
used to ensure uniqueness across tables within the same or a different database. GUIDs offer an
alternative to integer value keys, although their width compared to integer values can sometimes
result in slower query performance for bigger tables.

To generate this value for a new INSERT, the NEWID system function is used. NEWID generates a
unique uniqueidentifier data type value, as this recipe demonstrates:

INSERT Purchasing.ShipMethod
(Name, ShipBase, ShipRate, rowguid)
VALUES('MIDDLETON CARGO TS1', 8.99, 1.22, NEWID())

SELECT rowguid, name
FROM Purchasing.ShipMethod
WHERE Name = "MIDDLETON CARGO TS1'

This returns the following (if you are following along, note that your Rowguid value will be dif-
ferent from mine):

Rowguid name
174BE850-FDEA-4E64-8D17-C019521C6C07 MIDDLETON CARGO TS1

How It Works

The rowguid column in the Purchasing.ShipMethod table is a uniqueidentifier data type column.
Here is an excerpt from the table definition:

rowguid uniqueidentifier ROWGUIDCOL NOT NULL DEFAULT (newid()),

To generate a new uniqueidentifier data type value for this inserted row, the NEWID() function
was used in the VALUES clause:

VALUES('MIDDLETON CARGO TS1', 8.9 9, 1.2 2, NEWID())

Selecting the new row that was just created, the rowguid was given a uniqueidentifier value of
174BE850-FDEA-4E64-8D17-C019521C6C07 (although when you test it yourself, you'll get a different
value because NEWID creates a new value each time it is executed).

Inserting Rows Using an INSERT...SELECT Statement

The previous recipes showed you how to insert a single row of data. In this recipe, I'll show you
how to insert multiple rows into a table using INSERT. . SELECT. The syntax for performing an
INSERT. .SELECT operation is as follows:

INSERT
[INTO]
table_or view_name
[(column_list)]
SELECT column_list FROM data_source

The syntax for using INSERT. . .SELECT is almost identical to inserting a single row, only instead
of using the VALUES clause, you designate a SELECT query that will populate the columns and rows
into the table or updateable view. The SELECT query can be based on one or more data sources, so
long as the column list conforms to the expected data types of the destination table.

For the purposes of this example, a new table will be created for storing the rows. The example
populates values from the HumanResources.Shift table into the new dbo.Shift Archive table:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

CREATE TABLE [dbo]. [Shift Archive](

[ShiftID] [tinyint] NOT NULL,

[Name] [dbo]. [Name] NOT NULL,

[StartTime] [datetime] NOT NULL,

[EndTime] [datetime] NOT NULL,

[ModifiedDate] [datetime] NOT NULL DEFAULT (getdate()),
CONSTRAINT [PK_Shift ShiftID] PRIMARY KEY CLUSTERED
([ShiftID] ASC)

GO

Next, an INSERT. .SELECT is performed:

INSERT dbo.Shift Archive

(ShiftID, Name, StartTime, EndTime, ModifiedDate)
SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift

ORDER BY ShiftID

The results show that three rows were inserted:

(3 row(s) affected)

Next, a query is executed to confirm the inserted rows in the Shift_Archive table:

SELECT ShiftID, Name
FROM Shift Archive

This returns

ShiftID Name

1 Day

2 Evening
3 Night

(3 row(s) affected)

How It Works

Using the INSERT...SELECT statement, you can insert multiple rows into a table based on a SELECT
query. Just like regular, single-value INSERTs, you begin by using INSERT table name and the list of
columns to be inserted into the table (in parentheses):

INSERT Shift Archive
(ShiftID, Name, StartTime, EndTime, ModifiedDate)

Following this is the query used to populate the table. The SELECT statement must return
columns in the same order as the columns appear in the INSERT column list. The columns list must
also have data type compatibility with the associated INSERT column list:

SELECT ShiftID, Name, StartTime, EndTime, ModifiedDate
FROM HumanResources.Shift
ORDER BY ShiftID

When the column lists aren’t designated, the SELECT statement must provide values for all the
columns of the table into which the data is being inserted.

69

70

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Inserting Data from a Stored Procedure Call

In this recipe, I demonstrate how to insert table data by using a stored procedure. A stored procedure
groups one or more Transact-SQL statements into a logical unit and stores it as an object in a SQL
Server database. Stored procedures allow for more sophisticated result set creation (for example,
you can use several intermediate result sets built in temporary tables before returning the final
result set). Reporting system stored procedures that return a result set can also be used for
INSERT...EXEC, which is useful if you wish to retain SQL Server information in tables.

This recipe also teaches you how to add rows to a table based on the output of a stored proce-
dure. A stored procedure can only be used in this manner if it returns data via a SELECT command
from within the procedure definition and the result set (or even multiple result sets) match the
required number of supplied values to the INSERT.

Note For more information on stored procedures, see Chapter 10.

The syntax for inserting data from a stored procedure is as follows:

INSERT
[INTO]
table or view_name
[(column_list)]
EXEC stored procedure name

The syntax is almost identical to the previously demonstrated INSERT examples, only this time
the data is populated via an executed stored procedure.

In this example, a stored procedure is created that returns rows from the Production.
TransactionHistory table based on the begin and end dates passed to the stored procedure.
These results returned by the procedure also only return rows that don't exist in the Production.
TransactionHistoryArchive:

CREATE PROCEDURE dbo.usp SEL Production TransactionHistory
@ModifiedStartDT datetime,
@ModifiedEndDT datetime

AS

SELECT TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLinelD,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate
FROM Production.TransactionHistory
WHERE ModifiedDate BETWEEN @ModifiedStartDT AND @ModifiedEndDT AND
TransactionID NOT IN
(SELECT TransactionID
FROM Production.TransactionHistoryArchive)

GO
Next, this example tests the stored procedures to precheck which rows will be inserted:
EXEC dbo.usp SEL Production TransactionHistory '6/2/04', '6/3/04'

This returns 568 rows based on the date range passed to the procedure. In the next example,
this stored procedure is used to insert the 568 rows into the Production.TransactionHistoryArchive
table:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

INSERT Production.TransactionHistoryArchive

(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderlLineID, TransactionDate,
TransactionType, Quantity, ActualCost, ModifiedDate)

EXEC dbo.usp SEL Production TransactionHistory '6/2/04", '6/3/04'

How It Works

This example demonstrated using a stored procedure to populate a table using INSERT and EXEC.
The INSERT began with the name of the table to be inserted into:

INSERT Production.TransactionHistoryArchive

Next was the list of columns to be inserted into:

(TransactionID, ProductID, ReferenceOrderID, ReferenceOrderlLinelD,
TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate)

Last was the EXEC statement, which executed the stored procedures. Any parameters the stored
procedure expects follow the stored procedure name:

EXEC usp_SEL_Production_TransactionHistory '6/2/04', '6/3/04'

Inserting Multiple Rows with VALUES

SQL Server 2008 introduces the ability to insert multiple rows using a single INSERT command with-
out having to issue a subquery or stored procedure call. This allows the application to reduce the
code required to add multiple rows and also reduce the number of individual commands executed.
Essentially, you use the VALUES to group and specify one or more rows and their associated column
values, as the following recipe demonstrates:

-- Create a lookup table
CREATE TABLE HumanResources.Degree
(DegreeID int NOT NULL IDENTITY(1,1) PRIMARY KEY,
DegreeNM varchar(30) NOT NULL,
Degree(D varchar(5) NOT NULL,
ModifiedDate datetime NOT NULL)
GO

INSERT HumanResources.Degree

(DegreeNM, DegreeCD, ModifiedDate)

VALUES
('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
("Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())

G0

This returns the following query output:

(5 row(s) affected)

7

72

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

How It Works

In this recipe, I demonstrated inserting multiple rows from a single INSERT statement. I started off
by creating a new table to hold information on college degree types. I then used the INSERT in a typi-
cal fashion, showing the column names that would have values passed to it for each row:

INSERT HumanResources.Degree
(DegreeNM, DegreeCD, ModifiedDate)

Next, in the VALUES clause, I designated a new row for each degree type. Each row had three
columns, and these columns were encapsulated in parentheses:

VALUES

('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())
GO

This new feature allowed me to insert multiple rows without having to retype the initial INSERT
table name and column list. An example of where this may be useful would be for custom applica-
tions that include a database schema along with a set of associated lookup values. Rather than
hand-code 50 INSERT statements in your setup script, you can create a single INSERT with multiple
rows designated. This also allows you to bypass importing a rowset from an external source.

Using VALUES As a Table Source

The previous recipe demonstrated how to insert multiple rows without having to retype the initial
INSERT table name and column list. Using this same new feature in SQL Server 2008, you can also
reference the VALUES list in the FROM clause of a SELECT statement.

This recipe will demonstrate how to reference a result set without having to use a permanent or
temporary table. The following query demonstrates listing various college degrees in a five-row
result set—without having to persist the rows in a table or reference in a subquery:

SELECT DegreeNM, DegreeCD, ModifiedDT

FROM

(VALUES
('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.", GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE()))

Degree (DegreeNM, DegreeCD, ModifiedDT)

This returns

DegreeNM DegreeCD ModifiedDT

Bachelor of Arts B.A. 2007-08-21 19:10:34.667
Bachelor of Science B.S. 2007-08-21 19:10:34.667
Master of Arts M.A. 2007-08-21 19:10:34.667
Master of Science M.S. 2007-08-21 19:10:34.667
Associate's Degree A.A. 2007-08-21 19:10:34.667

(5 row(s) affected)

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

How It Works

This recipe demonstrated using a new SQL Server 2008 technique for returning a result set to persist
the rows in storage. Breaking down the query, the first row in the SELECT clause listed the column
names:

SELECT DegreeNM, DegreeCD, ModifiedDT

These are not actual column names from a referenced table—but instead are aliased names I
defined later on in the query itself.

The next line defined the FROM clause for the data source, followed by a parenthesis encapsulat-
ing the VALUES keyword:

FROM
(VALUES

The next few lines of code listed rows I wished to return from this query (similar to how I
inserted multiple rows in a single INSERT in the previous recipe):

('Bachelor of Arts', 'B.A.', GETDATE()),
('Bachelor of Science', 'B.S.', GETDATE()),
('Master of Arts', 'M.A.', GETDATE()),
('Master of Science', 'M.S.', GETDATE()),
('Associate''s Degree', 'A.A.', GETDATE())
)

Lastly, after the final closing parenthesis for the row list, I defined a name for this data source
and the associated column names to be returned for each column (and to be referenced in the
SELECT clause):

Degree (DegreeNM, DegreeCD, ModifiedDT)

This new technique allowed me to specify rows of a table source without having to actually
create a temporary or permanent table.

UPDATE

The following is basic syntax for the UPDATE statement:

UPDATE <table or view_name>
SET column_name = {expression | DEFAULT | NULL} [,...n]
WHERE <search condition>

The arguments of this command are described in Table 2-4.

Table 2-4. UPDATE Command Arguments

Argument Description

table or view name The table or updateable view containing data to be updated.
column_name = {expression The name of the column or columns to be updated. The
DEFAULT | NULL} column can be set to an expression, the DEFAULT value of the

column, or a NULL.

search_condition The search condition that defines what rows are modified. If
this isn’t included, all rows from the table or updateable view
will be modified.

73

74

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Updating a Single Row
In this recipe, I'll demonstrate how to use the UPDATE statement to modify data. With the UPDATE
statement, you can apply changes to single or multiple columns, as well as to single or multiple
TOWS.

In this example, a single row is updated by designating the SpecialOfferID, which is the pri-
mary key of the table (for more on primary keys, see Chapter 4). Before performing the update, I'll
first query the specific row that I plan on modifying:

SELECT DiscountPct
FROM Sales.SpecialOffer
WHERE SpecialOfferID = 10

This returns

DiscountPct
0.50

Now I'll perform the modification:

UPDATE Sales.SpecialOffer
SET DiscountPct = 0.15
WHERE SpecialOfferID = 10

Querying that specific row after the update confirms that the value of DiscountPct was indeed
modified:

SELECT DiscountPct
FROM Sales.SpecialOffer
WHERE SpecialOfferID = 10

This returns

DiscountPct
0.15

How It Works
In this example, the query started off with UPDATE and the table name Sales.SpecialOffer:

UPDATE Sales.SpecialOffer

Next, SET was used, followed by the column name to be modified, and an equality operator to
modify the DiscountPct to a value of 0.15. Relating back to the syntax at the beginning of the recipe,
this example is setting the column to an expression value, and not a DEFAULT or NULL value:

SET DiscountPct = 0.15

Had this been the end of the query, all rows in the Sales. SpecialOffer table would have been
modified, because the UPDATE clause works at the table level, not the row level. But the intention of
this query was to only update the discount percentage for a specific product. The WHERE clause was
used in order to achieve this:

WHERE SpecialOfferID = 10

After executing this query, only one row is modified. Had there been multiple rows that met the
search condition in the WHERE clause, those rows would have been modified too.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Tip Performing a SELECT query with the FROM and WHERE clauses of an UPDATE, prior to the UPDATE, allows you
to see what rows you will be updating (an extra validation that you are updating the proper rows). This is also a
good opportunity to use a transaction to allow for rollbacks in the event that your modifications are undesired. For
more on transactions, see Chapter 3.

Updating Rows Based on a FROM and WHERE Clause

In this recipe, I'll show you how to use the UPDATE statement to modify rows based on a FROM clause
and associated WHERE clause search conditions. The basic syntax, elaborating from the last example,
is as follows:

UPDATE <table_or view name>

SET column_name = {expression | DEFAULT | NULL} [,...n]
FROM <table_source>

WHERE <search_condition>

The FROM and WHERE clauses are not mandatory; however, you will find that they are almost
always implemented in order to specify exactly which rows are to be modified, based on joins
against one or more tables.

In this example, assume that a specific product, “Full-Finger Gloves, M,” from the Production.
Product table has a customer purchase limit of two units per customer. For this query’s require-
ment, any shopping cart with a quantity of more than two units for this product should
immediately be adjusted back to the required limit:

UPDATE Sales.ShoppingCartItem

SET Quantity =2,
ModifiedDate = GETDATE()

FROM Sales.ShoppingCartItem c

INNER JOIN Production.Product p ON
c.ProductID = p.ProductID

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

How It Works
Stepping through the code, the first line showed the table to be updated:

UPDATE Sales.ShoppingCartItem

Next, the columns to be updated were designated in the SET clause:

SET Quantity =2,
ModifiedDate = GETDATE()

Next came the optional FROM clause where the Sales.ShoppingCartItem and Production.
Product tables were joined by ProductID. As you can see, the object being updated can also be refer-
enced in the FROM clause. The reference in the UPDATE and in the FROM were treated as the same table:

FROM Sales.ShoppingCartItem c
INNER JOIN Production.Product p ON
c.ProductID = p.P roductID

Using the updated table in the FROM clause allows you to join to other tables. Presumably, those
other joined tables will be used to filter the updated rows or to provide values for the updated rows.

75

76

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

If you are self-joining to more than one reference of the updated table in the FROM clause, at least
one reference to the object cannot specify a table alias. All the other object references, however,
would have to use an alias.

The WHERE clause specified that only the “Full-Finger Gloves, M” product in the Sales.
ShoppingCartItem should be modified, and only if the Quantity is greater than 2 units:

WHERE p.Name = 'Full-Finger Gloves, M ' AND
c.Quantity > 2

Updating Large Value Data Type Columns

In this recipe, I'll show you how to modify large-value data type column values. SQL Server intro-
duced new large-value data types in the previous version, which were intended to replace the
deprecated text, ntext, and image data types. These data types include

e varchar(max), which holds non-Unicode variable-length data
e nvarchar(max), which holds Unicode variable-length data

e varbinary(max), which holds variable-length binary data

These data types can store up to 2A31-1 bytes of data (for more information on data types, see
Chapter 4).

One of the major drawbacks of the old text and image data types is that they required you to
use separate functions such as WRITETEXT and UPDATETEXT in order to manipulate the image/text
data. Using the new large-value data types, you can now use regular INSERT and UPDATEs instead.

The syntax for inserting a large-value data type is no different from a regular insert. For updat-
ing large-value data types, however, the UPDATE command now includes the .WRITE method:

UPDATE <table or_view_name>

SET column_name = .WRITE (expression , @0ffset , @Length)
FROM <table source>

WHERE <search_condition>

The parameters of the .WRITE method are described in Table 2-5.

Table 2-5. UPDATE Command with .WRITE Clause

Argument Description
expression The expression defines the chunk of text to be placed in the column.
@0ffset @0ffset determines the starting position in the existing data the new text should be

placed. If @0ffset is NULL, it means the new expression will be appended to the end
of the column (also ignoring the second @Length parameter).

@Length @Length determines the length of the section to overlay.

This example starts off by creating a table called RecipeChapter:

CREATE TABLE dbo.RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)
Go

Next, a row is inserted into the table. Notice that there is nothing special about the string being
inserted into the Chapter varchar(max) column:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

INSERT dbo.RecipeChapter

(ChapterID, Chapter)

VALUES

(1, 'At the beginning of each chapter you will notice
that basic concepts are covered first.')

This next example updates the newly inserted row, adding a sentence to the end of the existing
sentence:

UPDATE RecipeChapter

SET Chapter .WRITE (' In addition to the basics, this chapter will also provide
recipes that can be used in your day to day development and administration.' ,
NULL, NULL)

WHERE ChapterID = 1

Next, for that same row, the phrase “day to day” is replaced with the single word “daily”:

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 181, 10)
WHERE ChapterID = 1

Lastly, the results are returned for that row:

SELECT Chapter
FROM RecipeChapter
WHERE ChapterID = 1

This returns

Chapter

At the beginning of each chapter you will notice that basic concepts
are covered first.

In addition to the basics, this chapter will also provide recipes
that can be used in your daily development and administration.

How It Works

The recipe began by creating a table where book chapter descriptions would be held. The Chapter
column used a varchar(max) data type:

CREATE TABLE RecipeChapter
(ChapterID int NOT NULL,
Chapter varchar(max) NOT NULL)

Next, a new row was inserted. Notice that the syntax for inserting a large-object data type
doesn't differ from inserting data into a regular non-large-value data type:

INSERT RecipeChapter

(ChapterID, Chapter)

VALUES

(1, 'At the beginning of each chapter you will
notice that basic concepts are covered first.')

Next, an UPDATE was performed against the RecipeChapter table to add a second sentence after
the end of the first sentence:

UPDATE RecipeChapter

77

Download from Wow! eBook <www.wowebook.com>

78

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

The SET command was followed by the name of the column to be updated (Chapter) and the
new .WRITE command. The .WRITE command was followed by an open parenthesis, a single quote,
and the sentence to be appended to the end of the column:

SET Chapter .WRITE(' In addition to the basics,

this chapter will also provide recipes that can be

used in your day to day development and administration.' ,
NULL, NULL)

The WHERE clause specified that the Chapter column for a single row matching ChapterID = 1be
modified:

WHERE ChapterID = 1

The next example of .WRITE demonstrated replacing data within the body of the column. In the
example, the expression day to day was replaced with daily. The bigint value of @0ffset and
@Length are measured in bytes for varbinary(max) and varchar(max) data types. For nvarchar (max),
these parameters measure the actual number of characters. For the example, the .WRITE had a value
for @0ffset (181 bytes into the text) and @Length (10 bytes long):

UPDATE RecipeChapter
SET Chapter .WRITE('daily', 181, 10)
WHERE ChapterID = 1

Inserting or Updating an Image File Using OPENROWSET
and BULK

In this recipe, I demonstrate how to insert or update an image file from the file system into a
SQL Server table. Adding images to a table in earlier versions of SQL Server usually required the
use of external application tools or scripts. There was no elegant way to insert images using just
Transact-SQL.

As of SQL Server 2005 and 2008, UPDATE and OPENROWSET can be used together to import an
image into a table. OPENROWSET can be used to import a file into a single-row, single-column value.
The basic syntax for OPENROWSET as it applies to this recipe is as follows:

OPENROWSET
(BULK 'data_file' ,
SINGLE BLOB | SINGLE CLOB | SINGLE NCLOB)

The parameters for this command are described in Table 2-6.

Table 2-6. The OPENROWSET Command Arguments

Parameter Description

data_file This specifies the name and path of the file to read.

SINGLE BLOB |SINGLE CLOB | Designate the SINGLE_BLOB object for importing into a
SINGLE_NCLOB varbinary(max) data type. Designate SINGLE_CLOB for ASCII data

into a varchar(max) data type and SINGLE_NCLOB for importing into
anvarchar(max) Unicode data type.

Note See Chapter 27 for a detailed review of the syntax of OPENROWSET.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

The first part of the recipe creates a new table that will be used to store image files:

CREATE TABLE dbo.StockBmps
(StockBmpID int NOT NULL,
bmp varbinary(max) NOT NULL)
GO

Next, a row containing the image file will be inserted into the table:

INSERT dbo.StockBmps
(StockBmpID, bmp)
SELECT 1,
BulkColumn
FROM OPENROWSET (BULK
"C:\Apress\StockPhotoOne.bmp', SINGLE BLOB) AS x

This next query selects the row from the table:

SELECT bmp
FROM StockBmps
WHERE StockBmpID = 1

This returns the following (abridged) results:

bmp
0x424D365600000000000036040000280000007D000000A400000001000800000000000052000000000
0000000000000010000000100001B71900057575E00EFEFEFO00FOBOC0023A7D30028D2FF001A5B7
1005473A1008C8C8C00B3B3B300208BB00031303100D1D1D1005896B20018425600112C3500777D
7B00474F9100A089660078CDDD0071AFC6009D9D9D0045444A00686B6F00728FAD0077998C001
C1D1E0009040500080304000501000026C4FF

The last example in this recipe updates an existing BMP file, changing it to a different BMP file:

UPDATE dbo.StockBmps

SET bmp =

(SELECT BulkColumn

FROM OPENROWSET(BULK 'C:\Apress\StockPhotoTwo.bmp', SINGLE BLOB) AS x)
WHERE StockBmpID =1

How It Works

In this recipe, I've demonstrated using OPENROWSET with the BULK option to insert a row containing a
BMP image file, and then the way to update it to a different GIF file.
First, a table was created to hold the GIF files using a varbinary(max) data type:

CREATE TABLE dbo.StockBmps
(StockBmpID int NOT NULL,
bmp varbinary(max) NOT NULL)

Next, a new row was inserted using INSERT:

INSERT dbo.StockBmps
(StockBmpID, bmp)

The INSERT was populated using a SELECT query against the OPENROWSET function to bring in the
file data. The BulkColumn referenced in the query represents the varbinary value to be inserted into
the varbinary(max) row from the OPENROWSET data source:

SELECT 1,
BulkColumn

79

80

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

In the FROM clause, OPENROWSET was called. OPENROWSET allows you to access remote data from a
data source:

FROM OPENROWSET (BULK
"C:\Apress\StockPhotoOne.bmp', SINGLE BLOB) AS x

The BULK option was used inside the function, followed by the file name and the SINGLE_BLOB
keyword. The BULK option within OPENROWSET means that data will be read from a file (in this case,
the BMP file specified after BULK). The SINGLE_BLOB switch tells OPENROWSET to return the contents of
the data file as a single-row, single-column varbinary(max) rowset.

This recipe also demonstrates an UPDATE of the varbinary(max) column from an external file.
The UPDATE designated the StockBmps table and used SET to update the bmp column:

UPDATE StockBmps
SET bmp =

The expression to set the new image to StockPhotoTwo. bmp from the previous StockPhotoOne.
bmp occurred in a subquery. It used almost the same syntax as the previous INSERT; only this time the
only value returned in the SELECT is the BulkColumn column:

(SELECT BulkColumn
FROM OPENROWSET(BULK 'C:\Apress\StockPhotoTwo.bmp', SINGLE BLOB) AS x)

The image file on the machine was then stored in the column value for that row as
varbinary(max) data.

Storing Unstructured Data on the File System While
Maintaining SQL Server Transactional Control

SQL Server 2008 introduces the new FILESTREAM attribute, which can be applied to the
varbinary(max) data type. Using FILESTREAM, you can exceed the 2GB limit on stored values and take
advantage of relational handling of files via SQL Server, while actually storing the files on the file
system. BACKUP and RESTORE operations maintain both the database data as well as the files saved on
the file system, thus handling end-to-end data recoverability for applications that store both struc-
tured and unstructured data. FILESTREAM marries the transactional consistency capabilities of SQL
Server with the performance advantages of NT file system streaming.

T-SQL is used to define the FILESTREAM attribute and can be used to handle the data; however,
Win32 streaming APIs are the preferred method from the application perspective when performing
actual read and write operations (specifically using the OpenSqlFilestream API). Although demon-
strating Win32 and the implementation of applicable APIs is outside of the scope of this book, I will
use this recipe to walk you through how to set up a database and table with the FILESTREAM attrib-
ute, INSERT a new row, and use a query to pull path and transaction token information that is
necessary for the OpenSqlFilestream API call.

Tip FILESTREAM must be configured at both the Windows and SQL Server scope. To enable FILESTREAM for
the Windows scope and define the associated file share, use SQL Server Configuration Manager. To enable
FILESTREAM at the SQL Server instance level, use sp_configure with the filestream_access_level option.

To confirm whether FILESTREAM is configured for the SQL Server instance, I can validate the set-
ting using the SERVERPROPERTY function and three different properties that describe the file share
name of the filestream share and the associated effective and actual configured values:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

SELECT SERVERPROPERTY('FilestreamShareName') ShareName,
SERVERPROPERTY('FilestreamEffectivelevel') Effectivelevel,
SERVERPROPERTY('FilestreamConfiguredLevel') ConfiguredLevel

This returns

ShareName Effectivelevel ConfiguredlLevel
AUGUSTUS 3 3

Next, I will create a new database that will have a filegroup containing FILESTREAM data.

Tip See Chapter 22 for more on the CREATE DATABASE command.

Unlike regular file/filegroup assignments in CREATE DATABASE, I will associate a filegroup with a
specific path, and also designate the name of the folder that will be created by SQL Server on the file
system and will contain all FILESTREAM files associated with the database:

USE master
GO

CREATE DATABASE PhotoRepository ON PRIMARY
(NAME = N'PhotoRepository',
FILENAME = N'C:\Apress\MDF\PhotoRepository.mdf" ,
SIZE = 3048KB ,
FILEGROWTH = 1024KB),
FILEGROUP FS PhotoRepository CONTAINS FILESTREAM
(NAME = 'FG_PhotoRepository',
FILENAME = N'C:\Apress\FILESTREAM")
LOG ON
(NAME = N'PhotoRepository log',
FILENAME = N'C:\Apress\LDF\PhotoRepository log.ldf' ,
SIZE = 1024KB ,
FILEGROWTH = 10%)
GO

Now I can create a new table that will be used to store photos for book covers. I will designate
the BookPhotoFile column as a varbinary(max) data type, followed by the FILESTREAM attribute:

USE PhotoRepository
GO

CREATE TABLE dbo.BookPhoto
(BookPhotoID uniqueidentifier ROWGUIDCOL NOT NULL PRIMARY KEY,
BookPhotoNM varchar(50) NOT NULL,
BookPhotoFile varbinary(max) FILESTREAM)

GO

Now that the table is created, I can INSERT a new row using the regular INSERT command and
importing a file using OPENROWSET (demonstrated in the previous recipe):

INSERT dbo.BookPhoto
(BookPhotoID, BookPhotoNM, BookPhotoFile)
SELECT NEWID(),
'SQL Server 2008 Transact-SOL Recipes cover',

81

82

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

BulkColumn
FROM OPENROWSET (BULK
"C:\Apress\TSQL2008Recipes.bmp", SINGLE BLOB) AS x

If I look under the C: \Apress\FILESTREAM directory, I will see a new subdirectory and a new file.
In this case, on my server, I see a new file called 00000012-000000e1-0002 under the path C:\Apress\
FILESTREAM\33486315-2cal-43ea-a50e-0f84ad8c3fab\e2f3103-cd21-4f29-acd1-a0a3ffb1a681. Files
created using FILESTREAM should only be accessed within the context of T-SQL and the associated
Win32 APIs.

After inserting the value, I will now issue a SELECT to view the contents of the table:

SELECT BookPhotoID, BookPhotoNM, BookPhotoFile
FROM dbo.BookPhoto

This returns

BookPhotoID BookPhotoNM BookPhotoFile
236E5A69-53B3-4CB6-9F11- SQL Server 2008 T-SQL 0x424D36560000000000003604000028000
EF056082F542 Recipes cover 0007D000000A40000000100080000000000

005200000000000000000000000100000001
0000276B8E0026BOED005B5D6900EEEEEE00
528CA2000E0A0B001C597900B3B3B3008B8A
8D00D1D1D1002AC6FF002394C7002280AB00
2C2A2B00193F560066ADBD0025A4DC001128
34005E

Now assuming I have an application that uses OLEDB to query the SQL Server instance, I need
to now collect the appropriate information about the file system file in order to stream it using my
application.

I'll begin by opening up a transaction and using the new PathName () method of the varbinary
column to retrieve the logical path name of the file:

BEGIN TRAN
SELECT BookPhotoFile.PathName()

FROM dbo.BookPhoto
WHERE BookPhotoNM = 'SQL Server 2008 Transact-SOL Recipes cover'

This returns

\\CAESAR\AUGUSTUS\v1\PhotoRepository\dbo\BookPhoto\BookPhotoFile\
236E5A69-53B3-4CB6-9F11-EF056082F542

Next, I need to retrieve the transaction token, which is also needed by the Win 32 API:
SELECT GET_FILESTREAM TRANSACTION CONTEXT()

This returns

0x57773034AFA62746966EE30DAE70B344

After I have retrieved this information, the application can use the OpenSQLFileStream API with
the path and transaction token to perform functions such as ReadFile and WriteFile and then close
the handle to the file.

After the application is finished with its work, I can either roll back or commit the transaction:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

COMMIT TRAN

If I wish to delete the file, I can set the column value to NULL:

UPDATE dbo.BookPhoto
SET BookPhotoFile = NULL
WHERE BookPhotoNM = 'SQL Server 2008 Transact-SOL Recipes cover'

You may not see the underlying file on the file system removed right away; however, it will be
removed eventually by the garage collector process.

How It Works

In this recipe, I demonstrated how to use the new SQL Server 2008 FILESYSTEM attribute of the
varbinary(max) data type to store unstructured data on the file system. This enables SQL Server
functionality to control transactions within SQL Server and recoverability (files get backed up with
BACKUP and restored with RESTORE), while also being able to take advantage of high-speed streaming
performance using Win 32 APIs.

In this recipe, I started off by checking whether FILESTREAM was enabled on the SQL Server
instance. After that, I created a new database, designating the location of the FILESTREAM filegroup
and file name (which is actually a path and not a file):

FILEGROUP FS_PhotoRepository CONTAINS FILESTREAM
(NAME = 'FG_PhotoRepository"',
FILENAME = N'C:\Apress\FILESTREAM")

Keep in mind that the path up to the last folder has to exist, but the last folder referenced can-
not exist. For example, C:\Apress\ existed on my server; however, FILESTREAM can't exist prior to the
database creation.

After creating the database, I then created a new table to store book cover images. For the
BookPhotoFile column, I designated the varbinary(max) type followed by the FILESTREAM attribute:

BookPhotoFile varbinary(max) FILESTREAM)

Had I left off the FILESTREAM attribute, any varbinary data stored would have been contained
within the database data file, and not stored on the file system. The column maximum size would
also have been capped at 2GB.

Next, I inserted a new row into the table that held the BMP file of the SQL Server 2008 Transact-
SQL Recipes book cover. The varbinary(max) value was generated using the OPENROWSET technique I
demonstrated in the previous recipe:

INSERT dbo.BookPhoto

(BookPhotoID, BookPhotoNM, BookPhotoFile)

SELECT NEWID(),
'SQL Server 2008 Transact-SQL Recipes cover',
BulkColumn

FROM OPENROWSET (BULK

'C:\Apress\TSQL2008Recipes.bmp", SINGLE BLOB) AS x

From an application perspective, I needed a couple of pieces of information in order to
take advantage of streaming capabilities using Win 32 APIs. I started off by opening up a new
transaction:

BEGIN TRAN

83

84

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

After that, I referenced the path name of the stored file using the PathName () method:
SELECT BookPhotoFile.PathName()

This function returned a path as a token, which the application can then use to grab a Win32
handle and perform operations against the value.

Next, I called the GET_FILESTREAM TRANSACTION CONTEXT function to return a token representing
the current session’s transaction context:

SELECT GET_FILESTREAM TRANSACTION CONTEXT()

This was a token used by the application to bind file system operations to an actual
transaction.

After that, I committed the transaction and then demonstrated how to “delete” the file by
updating the BookPhotoFile column to NULL for the specific row I had added earlier. Keep in mind
that deleting the actual row would serve the same purpose (deleting the file on the file system).

Assigning and Modifying Database Values “in Place”

SQL Server 2008 introduces new compound assignment operators beyond the standard equality (=)
operator that allow you to both assign and modify the outgoing data value. These operators are sim-
ilar to what you would see in the C and Java languages. New assignment operators include the
following:

e +=(add, assign)

e -=(subtract, assign)

e *= (multiply, assign)

e /= (divide, assign)

 |=(bitwise |, assign)

» "= (bitwise exclusive OR, assign)
e &= (bitwise &, assign)

* %= (modulo, assign)

This recipe will demonstrate modifying base pay amounts using assignment operators. I'll start
by creating a new table and populating it with a few values:

USE AdventureWorks
GO

CREATE TABLE HumanResources.EmployeePayScale
(EmployeePayScaleID int NOT NULL PRIMARY KEY IDENTITY(1,1),
BasePayAMT numeric(9,2) NOT NULL,

ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

-- Using new multiple-row insert functionality
INSERT HumanResources.EmployeePayScale
(BasePayAMT)
VALUES

(30000.00),

(40000.00),

(50000.00),

(60000.00)

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Next, I'll double-check the initial value of a specific pay scale row:

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE ~ EmployeePayScaleID = 4

This returns

BasePayAMT
60000.00

Before SQL Server 2008, if I wanted to modify a value within an UPDATE based on the row’s
existing value, I would need to do something like the following:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT = BasePayAMT + 10000
WHERE ~ EmployeePayScaleID = 4

Querying that row, I see that the base pay amount has increased by 10,000:

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE ~ EmployeePayScaleID = 4

This returns

BasePayAMT
70000.00

Now I'll start experimenting with the assignment operators. This new feature allows me to sim-
plify my code—assigning values in place without having to include another column reference in the
value expression.

In this example, the base pay amount is increased by another 10,000 dollars:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT += 10000
WHERE ~ EmployeePayScaleID = 4

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE ~ EmployeePayScaleID = 4

This returns

BasePayAMT
80000.00

Next, the base pay amount is multiplied by 2:

UPDATE HumanResources.EmployeePayScale
SET BasePayAMT *= 2
WHERE ~ EmployeePayScaleID = 4

SELECT BasePayAMT
FROM HumanResources.EmployeePayScale
WHERE ~ EmployeePayScaleID = 4

85

86

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

This returns

BasePayAMT
160000.00

How It Works

Assignment operators help you modify values with a minimal amount of coding. In this recipe, I
demonstrated using the add/assign operator:

SET BasePayAMT += 10000

and the multiply/assign operator:
SET BasePayAMT *= 2

The expressions designated the column name to be modified on the left, followed by the
assignment operator, and then associated data value to be used with the operator. Keep in mind
that this functionality isn’t limited to UPDATE statements; you can use this new functionality when
assigning values to variables.

DELETE

The simple syntax for DELETE is as follows:

DELETE [FROM] table or view name
WHERE search condition

The arguments of this command are described in Table 2-7.

Table 2-7. The DELETE Command Arguments

Argument Description

table_or view_name This specifies the name of the table or updateable view that you are
deleting rows from.

search_condition The search condition(s) in the WHERE clause defines which rows will be
deleted from the table or updateable view.

Deleting Rows

In this recipe, I show you how to use the DELETE statement to remove one or more rows from a table.
First, take an example table that is populated with rows:

SELECT *
INTO Production.Example ProductProductPhoto
FROM Production.ProductProductPhoto

This returns

(504 row(s) affected)

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Next, all rows are deleted from the table:
DELETE Production.Example ProductProductPhoto

This returns

(504 row(s) affected)

This next example demonstrates using DELETE with a WHERE clause. Let’s say that the relation-
ship of keys between two tables gets dropped, and the users were able to delete data from the
primary key table and not the referencing foreign key tables (see Chapter 4 for a review of primary
and foreign keys). Only rows missing a corresponding entry in the Product table are deleted from
the example product photo table. In this example, no rows meet this criteria:

-- Repopulate the Example ProductProductPhoto table
INSERT Production.Example ProductProductPhoto
SELECT *

FROM Production.ProductProductPhoto

DELETE Production.Example ProductProductPhoto
WHERE ProductID NOT IN

(SELECT ProductID

FROM Production.Product)

This third example demonstrates the same functionality of the previous example, only the
DELETE has been rewritten to use a FROM clause instead of a subquery:

DELETE Production.ProductProductPhoto

FROM Production.Example_ProductProductPhoto ppp

LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

WHERE p.ProductID IS NULL

How It Works

In the first example of the recipe, all rows were deleted from the Example ProductProductPhoto
table:

DELETE Production.Example ProductProductPhoto

This is because there was no WHERE clause to specify which rows would be deleted.
In the second example, the WHERE clause was used to specify rows to be deleted based on a sub-
query lookup to another table:

WHERE ProductID NOT IN
(SELECT ProductID
FROM Production.Product)

The third example used a LEFT OUTER JOIN instead of a subquery, joining the ProductID of the
two tables:

FROM Production.Example ProductProductPhoto ppp
LEFT OUTER JOIN Production.Product p ON
ppp.ProductID = p.ProductID

Because the same object that is being deleted from Production.ProductProductPhoto is also the
same object in the FROM clause, and since there is only one reference to that table in the FROM clause,

87

Download from Wow! eBook <www.wowebook.com>

88

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

itis assumed that rows identified in the FROM and WHERE clause will be one and the same—it will be
associated to the rows deleted from the Production.ProductProductPhoto table.

Because a LEFT OUTER JOIN was used, if any rows did not match between the left and right
tables, the fields selected from the right table would be represented by NULL values. Thus, to show
rows in Production.Example ProductProductPhoto that don't have a matching ProductID in the
Production.Product table, you can qualify the Production.Product as follows:

WHERE p.ProductID IS NULL

Any rows without a match to the Production.Product table will be deleted from the
Production.Example ProductProductPhoto table.

Truncating a Table

In this recipe, I show you how to delete rows from a table in a minimally logged fashion (hence,
much quicker if you have very large tables). Generally, you should use DELETE for operations that
should be fully logged; however, for test or throwaway data, this is a fast technique for removing the
data. “Minimal logging” references how much recoverability information is written to the database’s
transaction log (see Chapter 22). To achieve this, use the TRUNCATE command.

The syntax is as follows:

TRUNCATE TABLE table name
This command takes just the table name to truncate. Since it always removes all rows from a
table, there is no FROM or WHERE clause, as this recipe demonstrates:

-- First populating the example
SELECT *

INTO Sales.Example Store

FROM Sales.Store

-- Next, truncating ALL rows from the example table
TRUNCATE TABLE Sales.Example Store
Next, the table’s row count is queried:

SELECT COUNT(*)
FROM Sales.Example Store

This returns

How It Works

The TRUNCATE TABLE statement, like the DELETE statement, can delete rows from a table. TRUNCATE
TABLE deletes rows faster than DELETE, because it is minimally logged. Unlike DELETE however, the
TRUNCATE TABLE removes ALL rows in the table (no WHERE clause).

Although TRUNCATE TABLE is a faster way to delete rows, you can’t use it if the table columns are
referenced by a foreign key constraint (see Chapter 4 for more information on foreign keys), if the
table is published using transactional or merge replication, or if the table participates in an indexed
view (see Chapter 7 for more information). Also, if the table has an IDENTITY column, keep in mind
that the column will be reset to the seed value defined for the column (if no seed was explicitly set,
itissetto 1).

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Advanced Data Modification Techniques

These next two recipes will demonstrate more advanced data modification techniques. Specifically,
I'll demonstrate how to improve the throughput of data modifications by “chunking” them into
smaller sets.

I'll also demonstrate the new SQL Server 2008 MERGE command, which you can use to efficiently
apply changes to a target table based on the data in a table source without having to designate mul-
tiple DML statements.

Chunking Data Modifications with TOP

I demonstrated using TOP in Chapter 1. TOP can also be used in DELETE, INSERT, or UPDATE statements
as well. This recipe further demonstrates using TOP to “chunk” data modifications, meaning instead
of executing a very large operation in a single statement call, you can break the modification into
smaller pieces, potentially increasing performance and improving database concurrency for larger,
frequently accessed tables. This technique is often used for large data loads to reporting or data
warehouse applications.

Large, single-set updates can cause the database transaction log to grow considerably. When
processing in chunks, each chunk is committed after completion, allowing SQL Server to potentially
reuse that transaction log space. In addition to transaction log space, on a very large data update, if
the query must be cancelled, you may have to wait a long time while the transaction rolls back. With
smaller chunks, you can continue with your update more quickly. Also, chunking allows more con-
currency against the modified table, allowing user queries to jump in, instead of waiting several
minutes for a large modification to complete.

In this recipe, I show you how to modify data in blocks of rows in multiple executions, instead
of an entire result set in one large transaction. First, I create an example deletion table for this
recipe:

USE AdventureWorks
GO

SELECT *
INTO Production.Example BillOfMaterials
FROM Production.BillOfMaterials

Next, all rows will be deleted from the table in 500-row chunks:

WHILE (SELECT COUNT(*)FROM Production.Example BillOfMaterials)> 0
BEGIN

DELETE TOP(500)
FROM Production.Example BillOfMaterials

END

This returns

(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(500 row(s) affected)
(179 row(s) affected)

89

90

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

How It Works

In this example, I used a WHILE condition to keep executing the DELETE while the count of rows in the
table was greater than zero (see Chapter 9 for more information on WHILE):

WHILE (SELECT COUNT(*)FROM Production.Example BillOfMaterials)> o
BEGIN

Next was the DELETE, followed by the TOP clause, and the row limitation in parentheses:

DELETE TOP(500)
FROM Production.BillOfMaterials

This recipe didn’t use a WHERE clause, so no filtering was applied, and all rows were deleted from
the table—but only in 500-row chunks. Once the WHILE condition no longer evaluated to TRUE, the
loop ended. After executing, the row counts affected in each batch were displayed. The first five
batches deleted 500 rows, and the last batch deleted the remaining 179 rows.

This “chunking” method can be used with INSERTs and UPDATEs too. For INSERT and UPDATE, the
TOP clause follows right after the INSERT and UPDATE keyword, for example:

INSERT TOP(100)

UPDATE TOP(25)

The expanded functionality of TOP (beyond just SELECT) adds a new technique for managing
large data modifications against a table. By reducing the size of large modifications, you can
improve database concurrency by reducing the time that locks are held during the operation
(leaving small windows for other sessions), and also help manage the size of the transaction log
(more commits, instead of one single commit for a gigantic transaction).

Executing INSERTs, UPDATEs, and DELETEs in a
Single Statement

SQL Server 2008 introduces the MERGE command to efficiently apply changes to a target table based
on the data in a table source. If you've ever had to load and incrementally modify relational data
warehouses or operational data stores based on incoming data from external data sources, you'll
find this technique to be a big improvement over previous methods.

Rather than create multiple data modification statements, you can instead point MERGE to your
target and source tables, defining what actions to take when search conditions find a match, when
the target table does not have a match, or when the source table does not have a match. Based on
these matching conditions, you can designate whether or not a DELETE, INSERT, or UPDATE operation
takes place (again, within the same statement).

This recipe will demonstrate applying changes to a production table based on data that exists
in a staging table (presumably staged data from an external data source). I'll start off by creating a
production table that tells me whether or not a corporate housing unit is available for renting. If the
IsRentedIND is 0, the unit is not available. If it is 1, it is available:

CREATE TABLE HumanResources.CorporateHousing
(CorporateHousingID int NOT NULL PRIMARY KEY IDENTITY(1,1),
UnitNBR int NOT NULL,

IsRentedIND bit NOT NULL,
ModifiedDate datetime NOT NULL DEFAULT GETDATE())

GO

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

-- Insert existing units

INSERT HumanResources.CorporateHousing
(UnitNBR, IsRentedIND)

VALUES

(1, 0),

(24, 1),

(39, 0),

(54, 1)

In this scenario, I receive periodic data feeds that inform me of rental status changes for corpo-
rate units. Units can shift from rented to not rented. New units can be added based on contracts
signed, and existing units can be removed due to contract modifications or renovation require-
ments. So for this recipe, I'll create a staging table that will receive the current snapshot of corporate
housing units from the external data source. I'll also populate it with the most current information:

CREATE TABLE dbo.StagingCorporateHousing
(UnitNBR int NOT NULL,
IsRentedIND bit NOT NULL)

Go

INSERT dbo.StagingCorporateHousing

(UnitNBR, IsRentedIND)

VALUES

-- UnitNBR "1" no longer exists

(24, 0), -- UnitNBR 24 has a changed rental status

(39, 1), -- UnitNBR 39 is the same

(54, 0), -- UnitNBR 54 has a change status

(92, 1) -- UnitNBR 92 is a new unit, and isn't in production yet

Now my objective is to modify the target production table so that it reflects the most current
data from our data source. If a new unit exists in the staging table, I want to add it. If a unit number
exists in the production table but not the staging table, I want to delete the row. If a unit number
exists in both the staging and production tables, but the rented status is different, I want to update
the production (target) table to reflect the changes.

I'll start by looking at the values of production before the modification:

-- Before the MERGE
SELECT CorporateHousingID, UnitNBR, IsRentedIND
FROM HumanResources.CorporateHousing

This returns

CorporateHousingID UnitNBR IsRentedIND

1 1 0
2 24 1
3 39 0
4 54 1

Next, I'll modify the production table per my business requirements:

MERGE INTO HumanResources.CorporateHousing p

USING dbo.StagingCorporateHousing s

ON p.UnitNBR = s.UnitNBR

WHEN MATCHED AND s.IsRentedIND <> p.IsRentedIND THEN
UPDATE SET IsRentedIND = s.IsRentedIND

WHEN NOT MATCHED BY TARGET THEN

91

92

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

INSERT (UnitNBR, IsRentedIND) VALUES (s.UnitNBR, s.IsRentedIND)
WHEN NOT MATCHED BY SOURCE THEN
DELETE;

This returns

(5 row(s) affected)

Next, I'll check the “after” results of the production table:

-- After the MERGE
SELECT CorporateHousingID, UnitNBR, IsRentedIND
FROM HumanResources.CorporateHousing

This returns

CorporateHousingID UnitNBR IsRentedIND
2 24 0

3 39 1

4 54 0

5 92 1

How It Works

In this recipe, I demonstrated how to apply INSERT/UPDATE/DELETE modifications using a MERGE state-
ment. The MERGE command allowed me to modify a target table based on the expression validated
against a source staging table.

In the first line of the MERGE command, I designated the target table where I will be applying the
data modifications:

MERGE INTO HumanResources.CorporateHousing p

On the second line, I identified the data source that will be used to compare the data against
the target table. This source could have also been based on a derived or linked server table:

USING dbo.StagingCorporateHousing s

Next, I defined how I am joining these two data sources. In this case, I am using what is essen-
tially a natural key of the data. This natural key is what uniquely identifies the row both in the
source and target tables:

ON p.UnitNBR = s.UnitNBR

Next, I defined what happens when there is a match between the unit numbers by designating
WHEN MATCHED. I also added an addition search condition, which indicates that if the rental indicator
doesn’t match, the rental indicator should be changed to match the staging data:

WHEN MATCHED AND s.IsRentedIND <> p.IsRentedIND THEN
UPDATE SET IsRentedIND = s.IsRentedIND

Next, I evaluated what happens when there is not a match from the source to the target table—
for example, if the source table has a value of 92 for the unit number, but the target table does not
have such a row. When this occurs, I directed this command to add the missing row to the target
table:

WHEN NOT MATCHED BY TARGET THEN
INSERT (UnitNBR, IsRentedIND) VALUES (s.UnitNBR, s.IsRentedIND)

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Lastly, if there are rows in the target table that aren’t in the source staging table, I directed the
command to remove the row from the target production table:

WHEN NOT MATCHED BY SOURCE THEN
DELETE;

Notice that this is one of those commands that require termination with a semicolon. You
should also note that not every MERGE command requires an associated INSERT/UPDATE/DELETE. You
may decide that you wish to only add new rows and update existing ones. Or you may decide that,
rather than remove a row from production, you want to “logically” delete it instead by updating
aflag.

Using MERGE will allow you to apply data modifications to target tables with less code than in
previous versions, as well as realize some performance benefits when applying data modifications
incrementally, as you'll be making a single pass over the source and target data rather than multiple
passes for each modification type.

Capturing and Tracking Data Modification
Changes

The last few recipes in this chapter will demonstrate how to capture and track data modification
activity.

In the first recipe, I'll show you how to use the OUTPUT clause to show impacted rows from an
INSERT, UPDATE, or DELETE operation. After that, I'll demonstrate two new features introduced in
SQL Server 2008: Change Data Capture (CDC) and Change Tracking.

Change Data Capture (CDC for short) has minimal performance overhead and can be used for
incremental updates of other data sources, for example, migrating changes made in the OLTP data-
base to your data warehouse database.

While CDC was intended to be used for asynchronous tracking of incremental data changes for
data stores and warehouses and also provides the ability to detect intermediate changes to data,
Change Tracking is a synchronous process that is part of the transaction of a DML operation itself
(INSERT/UPDATE/DELETE) and is intended to be used for detecting net row changes with minimal disk
storage overhead.

Returning Rows Affected by a Data Modification Statement

In this recipe, I show you how to return information about rows that are impacted by an INSERT,
UPDATE, or DELETE operation using the OUTPUT clause (MERGE can also be captured). In this first exam-
ple, an UPDATE statement modifies the name of a specific product. OUTPUT is then used to return
information on the original and updated column names:

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

UPDATE Production.Product

SET Name = 'HL Spindle/Axle XYZ'

OUTPUT DELETED.Name,
INSERTED.Name

INTO @ProductChanges

WHERE ProductID = 524

93

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

SELECT DeletedName,
InsertedName
FROM @ProductChanges

This query returns

DeletedName InsertedName
HL Spindle/Axle HL Spindle/Axle XYZ

This next example uses OUTPUT for a DELETE operation. First, I'll create a demonstration table to
hold the data:

SELECT *
INTO Sales.Example SalesTaxRate
FROM Sales.SalesTaxRate

Next, I create a table variable to hold the data, delete rows from the table, and then select from
the table variable to see which rows were deleted:

DECLARE @SalesTaxRate TABLE(
[SalesTaxRateID] [int] NOT NULL,
StateProvinceID] [int] NOT NULL,
TaxType] [tinyint] NOT NULL,
TaxRate] [smallmoney] NOT NULL,
Name] [dbo]. [Name] NOT NULL,
rowguid] [uniqueidentifier] ,
ModifiedDate] [datetime] NOT NULL)

— e

DELETE Sales.Example SalesTaxRate
OUTPUT DELETED.*
INTO @SalesTaxRate

SELECT SalesTaxRatelD,
Name
FROM @SalesTaxRate

This returns the following abridged results:

SalesTaxRateID Name

1 Canadian GST + Alberta Provincial Tax
2 Canadian GST + Ontario Provincial Tax
3 Canadian GST + Quebec Provincial Tax
4 Canadian GST

27 Washington State Sales Tax

28 Taxable Supply

29 Germany Output Tax

30 France Output Tax

31 United Kingdom Output Tax

(29 row(s) affected)

In the third example, I'll demonstrate using an INSERT with OUTPUT. A new row is inserted into a
table, and the operation is captured to a table variable table:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

DECLARE @NewDepartment TABLE
(DepartmentID smallint NOT NULL,
Name nvarchar(50) NOT NULL,
GroupName nvarchar(50) NOT NULL,
ModifiedDate datetime NOT NULL)

INSERT HumanResources.Department

(Name, GroupName)

OUTPUT INSERTED.*

INTO @NewDepartment

VALUES ('Accounts Receivable', ‘'Accounting')

SELECT DepartmentID,
ModifiedDate
FROM @NewDepartment

This returns

DepartmentID ModifiedDate
18 2007-09-15 08:38:28.833

How It Works

The first example used a temporary table variable to hold the OUTPUT results (see Chapter 4 for more
information on temporary table variables):

DECLARE @ProductChanges TABLE
(DeletedName nvarchar(50),
InsertedName nvarchar(50))

Next, the first part of the UPDATE changed the product name to HL Spindle/Axle XYZ:

UPDATE Production.Product
SET Name = 'HL Spindle/Axle XYZ'

After the SET clause, but before the WHERE clause, the OUTPUT defined which columns to return:

OUTPUT DELETED.Name,
INSERTED.Name

Like DML triggers (covered in Chapter 12), two “virtual” tables exist for the OUTPUT to use—
INSERTED and DELETED—both of which hold the original and modified values for the updated table.
The INSERTED and DELETED virtual tables share the same column names of the modified table—in
this case returning the original name (DELETED.Name) and the new name (INSERTED.Name).

The values of this OUTPUT were placed into the temporary table variable by using INTO, followed
by the table name:

INTO @ProductChanges
The UPDATE query qualified that only ProductID 524 would be modified to the new name:
WHERE ProductID = 524

After the update, a query was executed against the @ProductChanges temporary table variable to
show the before/after changes:
SELECT DeletedName,

InsertedName
FROM @ProductChanges

95

96

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

The DELETE and INSERT examples using OUTPUT were variations on the first example, where
OUTPUT pushes the deleted rows (for DELETE) or the inserted rows (for INSERT) into a table variable.

Asynchronously Capturing Table Data Modifications

SQL Server 2008 provides a built-in method for asynchronously tracking all data modifications that
occur against your user tables without your having to code your own custom triggers or queries.
Change Data Capture has minimal performance overhead and can be used for incremental updates
of other data sources, for example, migrating changes made in the OLTP database to your data
warehouse database. The next set of recipes will demonstrate how to use this new functionality.

To begin with, I'll create a new database that will be used to demonstrate this functionality:

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSOLRecipe CDC_Demo')
BEGIN
CREATE DATABASE TSQLRecipe CDC_Demo
END
GO

In this first recipe, I'll demonstrate adding CDC to a table in the TSQLRecipe CDC _Demo database.
The first step is to validate whether the database is enabled for Change Data Capture:

SELECT is_cdc_enabled
FROM sys.databases
WHERE name = 'TSQLRecipe CDC Demo'

This returns

is cdc_enabled
0

Change Data Capture is configured and managed using various stored procedures. In order to
enable the database, I'll execute the sys.dp_cdc_enable_db stored procedure in the context of the
TSQLRecipe CDC_Demo database:

USE TSQOLRecipe CDC Demo
GO

EXEC sys.sp cdc_enable db
GO

This returns

Command(s) completed successfully.

Next, I'll revalidate that Change Data Capture is enabled:

SELECT is_cdc_enabled
FROM sys.databases
WHERE name = 'TSQLRecipe CDC Demo'

This returns

is cdc_enabled
1

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Now that Change Data Capture is enabled, I can proceed with capturing changes for tables in
the database by using the sys.sp_cdc_enable_table system stored procedure. The parameters of
this stored procedure are described in Table 2-8.

Table 2-8. sp_cdc_enable_table Parameters

Parameter Description

@source_schema This parameter defines the schema of the object.

@source_name This parameter specifies the table name.

@role name This option allows you to select the name of the user-defined role that

will have permissions to access the CDC data.

@capture_instance You can designate up to fwo capture instances for a single table. This
comes in handy if you plan on altering the schema of a table already
captured by CDC. You can alter the schema without affecting the
original CDC (unless it is a data type change), create a new capture
instance, track changes in two tables, and then drop the original
capture instance once you are sure the new schema capture fits your
requirements. If you don’t designate the name, the default value is
schema_source.

@supports_net_changes When enabled, this option allows you to show just the latest change to
the data within the LSN range selected. This option requires a primary
key be defined on the table. If no primary key is defined, you can also
designate a unique key in the @index_name option.

@index_name This parameter allows you to designate the unique key on the table to
be used by CDC if a primary key doesn't exist.

@captured column list If you aren't interested in tracking all column changes, this option
allows you to narrow down the list.

@filegroup name This option allows you to designate where the CDC data will be stored.
For very large data sets, isolation on a separate filegroup may yield
better manageability and performance.

@partition switch This parameter takes a TRUE or FALSE value designating whether or not a
ALTER TABLE...SWITCH PARTITION command will be allowed against the
CDC table (default is FALSE).

In this recipe, I would like to track all changes against the following new table:

USE TSQLRecipe CDC Demo
GO

CREATE TABLE dbo.Equipment
(EquipmentID int NOT NULL PRIMARY KEY IDENTITY(1,1),
EquipmentDESC varchar(100) NOT NULL,
LocationID int NOT NULL)

GO

I'would like to be able to capture all changes made to rows, as well as return just the net
changes for a row. For other options, I'll be going with the default:

EXEC sys.sp_cdc_enable_table
@source _schema = ‘'dbo',
@source name = ‘Equipment’,
@role name = NULL,

@capture instance = NULL,
@supports_net changes = 1,

97

Download from Wow! eBook <www.wowebhook.com>

98

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

@index_name = NULL,
@captured column_list = NULL,
@filegroup_name = default

The results of this procedure call indicate that two SQL Server Agent jobs were created (SQL
Server Agent has to be running):

Job 'cdc.TSQLRecipe CDC Demo capture' started successfully.
Job 'cdc.TSQLRecipe CDC Demo cleanup' started successfully.

Two jobs, a capture and a cleanup, are created for each database that has CDC enabled for
tables.

Tip Had CDC already been enabled for a table in the same database, the jobs would not have been re-created.

I can confirm that this table is now tracked by executing the following query:

SELECT is_tracked by cdc

FROM sys.tables

WHERE name = 'Equipment' and
schema_id = SCHEMA ID('dbo")

This returns

is tracked by cdc
1

I can also validate the settings of your newly configured capture instance using the
sys.sp_cdc_help_change data_capture stored procedure:

EXEC sys.sp_cdc_help change data _capture 'dbo', 'Equipment’

This returns the following result set (presented in name/value pairs for formatting purposes):

source_schema dbo
source_table Equipment
capture_instance dbo_ Equipment
object id 357576312
source_object_id 293576084
start_lsn NULL

end lsn NULL
supports_net_changes 1
has_drop_pending NULL

role name NULL
index_name PK__Equipmen__344745994707859D

filegroup name
create date
index_column_list
captured_column_list

NULL
2008-03-16 09:27:52.990
[EquipmentID]

[EquipmentID], [EquipmentDESC], [LocationID]

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

How It Works

In this recipe, I started off by enabling CDC capabilities for the database using sp_cdc_enable_db.
Behind the scenes, enabling CDC for the database creates a new schema called cdc and a few new
tables in the database, detailed in Table 2-9. You shouldn’t need to query these tables directly, as
there are system stored procedures and functions that can return the same data in a cleaner format.

Table 2-9. CDC System Tables

Table Description
cdc.captured_columns Returns the columns tracked for a specific capture instance.
cdc.change_tables Returns tables created when CDC is enabled for a table. Use

sys.sp_cdc_help_change data_capture to query this information
rather than query this table directly.

cdc.ddl_history Returns rows for each DDL change made to the table, once CDE is
enabled. Use sys.sp_cdc_get ddl_history instead of querying this
table directly.

cdc.index_columns Returns index columns associated with the CDC-enabled table. Query

sys.sp_cdc_help change data_capture to retrieve this information
rather than querying this table directly.

cdc.1lsn_time_mapping Helps you map the log sequence number to transaction begin and end
times. Again, avoid querying the table directly, and instead use the
functions sys.fn_cdc_map_lsn to time and sys.fn cdc_map_time_
to_lsn.

I'll review how some of the more commonly used functions and procedures are used in
upcoming recipes.

After enabling the database for CDC, I then added CDC tracking to a user table in the database
using the sp_cdc_enable_table procedure. I designated the schema, name, and the net changes flag.
All other options were left to the default values.

Once sp_cdc_enable table was executed, because this was the first source table to be enabled
in the database, two new SQL Agent jobs were created. One job was called cdc.TSQLRecipe CDC_
Demo_capture. This job is responsible for capturing changes made using replication log reader tech-
nology and is scheduled to start automatically when SQL Server starts and run continuously. The
second job, cdc.TSOLRecipe CDC Demo cleanup, is scheduled by default to run daily at 2 a.m. and
cleans up data older than three days (72 hours) by default.

Executing sys.sp_cdc_help change data_capture allowed me to validate various settings of the
capture instance, including the support of net changes, tracking columns, creation date, and pri-
mary key used to determine uniqueness of the rows.

Enabling CDC for a table also causes a new table to be created in the CDC schema. In this
case, a new table called cdc.dbo_Equipment CT was created automatically. This table has the same
columns as the base table, along with five additional columns added to track LSN, operation, and
updated column information. You shouldn’t query this directly, but instead use functions as I'll
demonstrate in the next recipe.

Querying All Changes from CDC Tables

Now that CDC is enabled for the database and a change capture instance is created for a table, I'll
go ahead and start making changes to the table in order to demonstrate the functionality:

99

100

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

USE TSQLRecipe CDC Demo
GO

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES ('Projector A', 22)

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES ('HR File Cabinet', 3)

UPDATE dbo.Equipment
SET EquipmentDESC = 'HR File Cabinet 1'
WHERE EquipmentID = 2

DELETE dbo.Equipment
WHERE EquipmentID = 1

After making the changes, I can now view a history of what was changed using the CDC func-
tions. Data changes are tracked at the log sequence number (LSN) level. An LSN is a record in the
transaction log that uniquely identifies activity.

I will now pull the minimum and maximum LSN values based on the time range I wish to pull
changes for. To determine LSN, I'll use the sys.fn_cdc_map_time_to_ lsn function, which takes two
input parameters, the relational operator, and the tracking time (there are other ways to do this,
which I demonstrate later on in the chapter). The relational operators are as follows:

e Smallest greater than

¢ Smallest greater than or equal

e Largestless than

¢ Largest less than or equal

These operators are used in conjunction with the Change Tracking time period you specify to

help determine the associated LSN value. For this recipe, I want the minimum and maximum LSN
values between two time periods:

SELECT sys.fn_cdc_map_time to lsn

("smallest greater than or equal' , '2008-03-16 09:34:11') as BeginLSN
SELECT sys.fn_cdc_map_time to 1lsn

('largest less than or equal' , '2008-03-16 23:59:59') as EndLSN

This returns the following results (your actual LSN if you are following along will be different):

BeginLSN
0x0000001€000001020001

(1 row(s) affected)

EndLSN
0x0000001€000001570001

(1 row(s) affected)

I now have my LSN boundaries to detect changes that occurred during the desired time range.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

My next decision is whether or not I wish to see all changes or just net changes. I can call the
same functions demonstrated in the previous query in order to generate the LSN boundaries and
populate them into variables for use in the cdc.fn_cdc_get all changes dbo Equipment function.
As the name of that function suggests, I'll demonstrate showing all changes first:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
("smallest greater than or equal' , '2008-03-16 09:34:11")

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
__$operation,
_ $update mask,
EquipmentID,
EquipmentDESC,
LocationID
FROM cdc.fn_cdc_get all changes dbo_Equipment
(@FromLSN, @ToLSN, 'all')

This returns the following result set:

__ $operation _ S$update mask EquipmentID EquipmentDESC LocationID
2 0x07 1 Projector A 22
2 0x07 2 HR File Cabinet 3
4 0x02 2 HR File Cabinet 1 3
1 0x07 1 Projector A 22

This result set revealed all modifications made to the table. Notice that the function name,
cdc.fn_cdc_get all changes dbo_Equipment, was based on my CDC instance capture name for the
source table. Also notice the values of _$operation and _$update mask.The $operation values
are interpreted as follows:

e 1isadelete.
e 2isaninsert.

e 3isthe “prior” version of an updated row (use all update old option to see—I didn’t use this
in the prior query).

4 isthe “after” version of an updated row.

The update mask uses bits to correspond to the capture column modified for an operation.
I'll demonstrate how to translate these values in a separate recipe.

Moving forward in this current recipe, I could have also used the all update old option to
show previous values of an updated row prior to the modification. I can also add logic to translate
the values seen in the result set for the operation type. For example:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time_to_lsn
("smallest greater than or equal' , '2008-03-16 09:34:11")

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
('largest less than or equal' , '2008-03-16 23:59:59"')

101

102 CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

SELECT
CASE _ $operation
WHEN 1 THEN 'DELETE'
WHEN 2 THEN 'INSERT'
WHEN 3 THEN 'Before UPDATE'
WHEN 4 THEN 'After UPDATE'
END Operation,
__ $update_mask,
EquipmentID,
EquipmentDESC,
LocationID
FROM cdc.fn_cdc_get all changes dbo Equipment
(@FromLSN, @ToLSN, 'all update old")

This returns

Operation __ $update_mask EquipmentID EquipmentDESC LocationID
INSERT 0x07 1 Projector A 22

INSERT 0x07 2 HR File Cabinet 3

Before UPDATE 0x02 2 HR File Cabinet 3

After UPDATE 0x02 2 HR File Cabinet 1 3

DELETE 0x07 1 Projector A 22

How It Works

In this recipe, modifications were made against the CDC tracked table. Because the underlying CDC
data is actually tracked by LSN, I needed to translate my min/max time range to the minimum and
maximum LSNs that would include the data changes I was looking for. This was achieved using
sys.fn_cdc_map_time to lsn.

Tip Thereis also a sys.fn_cdc_map 1lsn to_time function available to convert your tracked LSNs to
temporal values.

Next, I executed the cdc.fn_cdc_get all changes_dbo_Equipment function, which allowed me
to return all changes made for the LSN range I passed:

SELECT
__$operation,
_ $update_mask,
EquipmentID,
EquipmentDESC,
LocationID
FROM cdc.fn_cdc_get all changes dbo Equipment
(@FromLSN, @ToLSN, 'all')

For an ongoing incremental load, it may also make sense to store the beginning and ending
LSN values for each load, and then use the sys.fn_cdc_increment_lsn function to increment the old
upper bound LSN value to be your future lower bound LSN value for the next load (I'll demonstrate
this in a later recipe).

In the last example of this recipe, I used the all update old parameter to return both before
and after versions of rows from UPDATE statements, and also encapsulated the operation column in
a CASE statement for better readability.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Querying Net Changes from CDC Tables

In the original CDC setup recipe, sp_cdc_enable_table change data_capture was executed with
@supports_net_changes = 1 for the source table. This means that I also have the option of executing
the net changes version of the CDC procedure. The fn_cdc_get_net_changes_ version of the stored
procedure also takes a beginning and ending LSN value; however, the third parameter differs in the
row filter options:

* all, which returns the last version of a row without showing values in the update mask.

e all with mask, which returns the last version of the row along with the update mask value
(the next recipe details how to interpret this mask).

e all with merge, which returns the final version of the row as either a delete or a merge oper-
ation (either an insert or update). Inserts and updates are not broken out.

The following recipe demonstrates showing net changes without displaying the update mask.
I'll start by issuing a few new data modifications:

INSERT dbo.Equipment
(EquipmentDESC, LocationID)
VALUES

('Portable White Board', 18)

UPDATE dbo.Equipment
SET LocationID = 1
WHERE EquipmentID = 3

Next, I track the net effect of my changes using the following query:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
("smallest greater than or equal' , '2008-03-16 09:45:00")

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
CASE _ $operation
WHEN 1 THEN 'DELETE'
WHEN 2 THEN 'INSERT'
WHEN 3 THEN 'Before UPDATE'
WHEN 4 THEN 'After UPDATE'
WHEN 5 THEN 'MERGE'
END Operation,
__ $update _mask,
EquipmentID,
EquipmentDESC,
LocationID
FROM cdc.fn_cdc_get net changes dbo Equipment
(@FromLSN, @ToLSN, 'all with mask")

This returns

Operation __$update _mask EquipmentID EquipmentDESC LocationID
INSERT NULL 3 Portable White Board 1

103

104

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

How It Works

In this recipe, I used cdc.fn_cdc_get net changes dbo_Equipment to return the net changes of rows
between the specific LSN range. I first inserted a new row and then updated it. I queried cdc.fn_
cdc_get net_changes _dbo Equipment to show the net change based on the LSN range. Although two
changes were made, only one row was returned to reflect the final change needed, an INSERT opera-
tion that would produce the final state of the row.

Translating the CDC Update Mask

The update mask returned by the cdc.fn_cdc_get_all changes_and cdc.fn_cdc_get_net_changes_
functions allows you to determine which columns were affected by a particular operation. In order
to interpret this value, however, you need the help of a couple of other CDC functions:

e sys.fn_cdc_is bit setis used to check whether a specific bit is set within the mask. Its first
parameter is the ordinal position of the bit to check, and the second parameter is the update
mask itself.

* sys.fn_cdc_get column_ordinal is the function you can use in conjunction with sys.fn_
cdc_is bit set to determine the ordinal position of the column for the table. This function’s
first parameter is the name of the capture instance. The second parameter is the name of the
column.

In this recipe, I'll use both of these functions to help identify which columns were updated
within the specific LSN boundary. First, I'll make two updates against two different rows:

UPDATE dbo.Equipment
SET EquipmentDESC = 'HR File Cabinet A1’
WHERE EquipmentID = 2

UPDATE dbo.Equipment
SET LocationID = 35
WHERE EquipmentID = 3

Now I'll issue a query to determine which columns have been changed using the update mask:

DECLARE @FromLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
("smallest greater than or equal' , '2008-03-16 10:02:00")

DECLARE @ToLSN varbinary(10) =
sys.fn_cdc_map_time to lsn
('largest less than or equal' , '2008-03-16 23:59:59')

SELECT
sys.fn_cdc_is bit set (
sys.fn_cdc_get column_ordinal (
"dbo_Equipment' , 'EquipmentDESC'),
__$update_mask) EquipmentDESC_Updated,
sys.fn_cdc_is bit set (
sys.fn_cdc_get column_ordinal (
"dbo_Equipment' , 'LocationID'),
__$update _mask) LocationID Updated,
EquipmentID,
EquipmentDESC,
LocationID

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

FROM cdc.fn_cdc_get all changes dbo Equipment
(@FromLSN, @ToLSN, 'all')
WHERE _ $operation = 4

This returns

EquipmentDESC Updated LocationID Updated EquipmentID EquipmentDESC LocationID
1 0 2 HR File Cabinet A1 3

0 1 3 Portable White Board 35

How It Works

In this recipe, I updated two rows. One update involved changing only the equipment description,
and the second update involved changing the location ID.
In order to identify whether or not a bit is set, I used the following function call:

SELECT sys.fn_cdc_is bit set (

The first parameter of this function call is the ordinal position of the column I wish to check.
In order to return this information, I used the following function call:

sys.fn_cdc_get column_ordinal ('dbo Equipment' , 'EquipmentDESC')

The second parameter of sys.fn_cdc_is bit setis the update mask column name to be
probed. I referenced this, along with an aliased name of the column in the query:

, _ $update_mask) EquipmentDESC Updated,

I repeated this code for the LocationID in the next line of the query:

sys.fn_cdc_is bit set (sys.fn_cdc_get column_ordinal
("dbo_Equipment' , 'LocationID'), _ $update mask) LocationID Updated,

The rest of the query was standard, returning the change column values and querying the “all
changes” CDC function:

DepartmentID,
Name,
GroupName
FROM cdc.fn_cdc_get all changes dbo Department
(@FromLSN, @ToLSN, 'all')

Lastly, I qualified the query to only return type 4 rows, which are after versions of rows for an
update operation:

WHERE _ $operation = 4

Working with LSN Boundaries

I've demonstrated how to determine the minimum and maximum LSN boundaries using sys.fn_
cdc_map_time_to_lsn. However, you aren’t limited to just using this function to define your bound-
aries. The following functions in this recipe can also be used to generate LSN values:

e sys.fn_cdc_increment_lsn allows you to return the next LSN number based on the input
LSN number. So, for example, you could use this function to convert your last loaded upper
bound LSN into your next lower bound LSN.

105

106 CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

* sys.fn_cdc_decrement_lsn returns the prior LSN based on the input LSN number.

* sys.fn_cdc_get max_lsnreturns the largest LSN from the CDC data collected for your cap-
ture instance.

e sys.fn_cdc_get min_lsnreturns the oldest LSN from the CDC data collected for your cap-
ture instance.

The following recipe demonstrates retrieving LSN values from the CDC data collected for the
dbo.Equipment table:

SELECT sys.fn_cdc_get min 1sn ('dbo Equipment') Min LSN
SELECT sys.fn_cdc_get max_1sn () Max_LSN
SELECT sys.fn_cdc_increment lsn (sys.fn_cdc_get max_lsn()) New Lower Bound LSN

SELECT sys.fn_cdc_decrement 1lsn (sys.fn_cdc_get max_lsn())
New_Lower Bound_Minus_one_LSN

This returns the following (note that your results will be different):

Min_LSN
0x0000001C000001040014

(1 row(s) affected)

Max_LSN
0x0000001E0000008B0001

(1 row(s) affected)

New_Lower Bound LSN
0x0000001E0000008B0002

(1 row(s) affected)

New_Lower Bound_Minus_one_LSN
0x0000001E0000008B0000

(1 row(s) affected)

How It Works

The new CDC functionality provides built-in methods for tracking changes to target tables in your
database; however, you must still consider what logic you will use to capture time ranges for your
Change Tracking. This recipe demonstrated methods you can use to retrieve the minimum and
maximum available LSNs from the CDC database.

The sys.fn_cdc_get min_lsn function takes the capture instance name as its input parameter,
whereas sys.fn_cdc_get_max_lsn returns the maximum LSN at the database scope. The sys.fn_
cdc_increment 1snand sys.fn_cdc_decrement lsn functions are used to increase and decrease the
LSN based on the LSN you pass it. These functions allow you to create new boundaries for queries
against the CDC data.

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Disabling Change Data Capture from Tables and the Database

This recipe demonstrates how to remove Change Data Capture from a table. To do so, I'll execute
the sys.sp_cdc_disable_table stored procedure. In this example, I will disable all Change Tracking
from the table that may exist:

EXEC sys.sp cdc_disable table
'dbo", 'Equipment', 'all’
I can then validate that the table is truly disabled by executing the following query:

SELECT is_tracked by cdc

FROM sys.tables

WHERE name = 'Equipment' and
schema_id = SCHEMA ID('dbo")

This returns

is tracked by cdc
0

(1 row(s) affected)

To disable CDC for the database itself, I execute the following stored procedure:
EXEC sys.sp _cdc_disable db

This returns

Command(s) completed successfully.

How It Works

The stored procedure sys.sp cdc_disable table isused to remove CDC from a table. The first
parameter of this stored procedure designates the schema name, and the second parameter desig-
nates the table name. The last parameter designates whether you wish to remove all Change
Tracking by designating all or instead specify the name of the capture instance.

To entirely remove CDC abilities from the database itself, I executed the sys.sp _cdc_
disable_db procedure, which also removes the CDC schema and associated SQL Agent jobs.

Tracking Net Data Changes with Minimal Disk Overhead

CDC was intended to be used for asynchronous tracking of incremental data changes for data stores
and warehouses and also provides the ability to detect intermediate changes to data. Unlike CDC,
Change Tracking is a synchronous process that is part of the transaction of a DML operation itself
(INSERT/UPDATE/DELETE) and is intended to be used for detecting net row changes with minimal disk
storage overhead.

The synchronous behavior of Change Tracking allows for a transactionally consistent view of
modified data, as well as the ability to detect data conflicts. Applications can use this functionality
with minimal performance overhead and without the need to add supporting database object mod-
ifications (no custom change-detection triggers or table timestamps needed).

In this recipe, I'll walk through how to use the new Change Tracking functionality to detect
DML operations. To begin with, I'll create a new database that will be used to demonstrate this
functionality:

107

Download from Wow! eBook <www.wowebhook.com>

108

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

IF NOT EXISTS (SELECT name
FROM sys.databases
WHERE name = 'TSQLRecipeChangeTrackDemo")
BEGIN
CREATE DATABASE TSQLRecipeChangeTrackDemo
END
GO

To enable Change Tracking functionality for the database, I have to configure the CHANGE _
TRACKING database option. I also can configure how long changes are retained in the database and
whether or not automatic cleanup is enabled. Configuring your retention period will impact how
much Change Tracking is maintained for the database. Setting this value too high can impact stor-
age. Setting it too low could cause synchronization issues with the other application databases if the
remote applications do not synchronize often enough:

ALTER DATABASE TSQLRecipeChangeTrackDemo
SET CHANGE_TRACKING = ON
(CHANGE_RETENTION = 36 HOURS,
AUTO_CLEANUP = ON)

A best practice when using Change Tracking is to enable the database for Snapshot Isolation.
For databases and tables with significant DML activity, it will be important that you capture Change
Tracking information in a consistent fashion—grabbing the latest version and using that version
number to pull the appropriate data.

Caution Enabling Snapshot Isolation will result in additional space usage in tempdb due to row versioning
generation. This can also increase overall I/0 overhead.

Not using Snapshot Isolation can result in transactionally inconsistent change information:

ALTER DATABASE TSQLRecipeChangeTrackDemo
SET ALLOW_SNAPSHOT ISOLATION ON
GO

I can confirm that I have properly enabled the database for Change Tracking by querying
sys.change tracking databases:

SELECT DB_NAME(database_id) DBNM,is auto_cleanup_on,
retention period,retention period units desc
FROM sys.change_tracking_databases

This returns

DBNM is auto cleanup on retention period retention period units desc
TSOLRecipeChangeTrackDemo 1 36 HOURS

Now I will create a new table that will be used to demonstrate Change Tracking:

USE TSQLRecipeChangeTrackDemo
GO

CREATE TABLE dbo.BookStore

(BookStoreID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
BookStoreNM varchar(30) NOT NULL,

TechBookSection bit NOT NULL)

GO

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Next, for each table that I wish to track changes for, I need to use the ALTER TABLE command
with the CHANGE_TRACKING option. If I also want to track which columns were updated, I need to
enable the TRACK_COLUMNS_UPDATED option, as demonstrated next:

ALTER TABLE dbo.BookStore
ENABLE CHANGE_TRACKING
WITH (TRACK_COLUMNS UPDATED = ON)
I can validate which tables are enabled for Change Tracking by querying the sys.change
tracking tables catalog view:

SELECT OBJECT NAME(object id) ObjNM,is track columns_updated on
FROM sys.change_tracking_tables

This returns

ObjNM is_track_columns_updated on
BookStore 1

Now I will demonstrate Change Tracking by doing an initial population of the table with three
New rows:

INSERT dbo.BookStore
(BookStoreNM, TechBookSection)
VALUES

("McGarnicles and Bailys', 1),
('Smith Book Store', 0),
('University Book Store',1)

One new function I can use for ongoing synchronization is the CHANGE_TRACKING_CURRENT_
VERSION function, which returns the version number from the last committed transaction for the
table. Each DML operation that occurs against a change-tracked table will cause the version num-
ber to increment. I'll be using this version number later on to determine changes:

SELECT CHANGE_TRACKING CURRENT VERSION ()

This returns

Also, I can use the CHANGE_TRACKING MIN VALID VERSION function to check the minimum ver-
sion available for the change-tracked table. If a disconnected application is not synchronized for a
period of time exceeding the Change Tracking retention period, a full refresh of the application data
would be necessary:

SELECT CHANGE_TRACKING MIN VALID VERSION
(OBJECT_ID('dbo.BookStore'))

This returns

To detect changes, I can use the CHANGETABLE function. This function has two varieties of usage,
using the CHANGES keyword to detect changes as of a specific synchronization version and using the
VERSION keyword to return the latest Change Tracking version for a row.

109

110

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

I'll start off by demonstrating how CHANGES works. The following query demonstrates returning
the latest changes to the BookStore table as of version 0. The first parameter is the name of the
Change Tracking table, and the second parameter is the version number:

SELECT BookStoreID,SYS CHANGE OPERATION,
SYS_CHANGE_VERSION

FROM CHANGETABLE

(CHANGES dbo.BookStore, 0) AS CT

This returns the primary key of the table, followed by the DML operation type (I for INSERT,
U for UPDATE, and D for DELETE), and the associated row version number (since all three rows were
added for a single INSERT, they all share the same version number):

BookStoreID ~ SYS CHANGE OPERATION SYS CHANGE VERSION

1 I 1
2 I 1
3 I 1

Gaution When gathering synchronization information, use SET TRANSACTION ISOLATION LEVEL SNAPSHOT
and BEGIN TRAN...COMMIT TRAN to encapsulate gathering of change information and associated current Change
Tracking versions and minimum valid versions. Using Snapshot Isolation will allow for a transactionally consistent
view of the Change Tracking data.

Now I'll modify the data a few more times in order to demonstrate Change Tracking further:

UPDATE dbo.BookStore
SET BookStoreNM = 'King Book Store'
WHERE BookStoreID = 1

UPDATE dbo.BookStore
SET TechBookSection

=1
WHERE BookStorelID = 2

DELETE dbo.BookStore
WHERE BookStorelID = 3

I'll check the latest version number:

SELECT CHANGE_TRACKING CURRENT VERSION ()

This is now incremented by three (there were three operations that acted against the data):

Now let’s assume that an external application gathered information as of version 1 of the data.
The following query demonstrates how to detect any changes that have occurred since version 1:

SELECT BookStorelID,
SYS CHANGE VERSION,
SYS_CHANGE_OPERATION,
SYS_CHANGE_COLUMNS

FROM CHANGETABLE

(CHANGES dbo.BookStore, 1) AS CT

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

This returns information on the rows that were modified since version 1, displaying the pri-
mary keys for the two updates I performed earlier and the primary key for the row I deleted:

BookStoreID SYS CHANGE VERSION SYS_CHANGE_OPERATION SYS CHANGE_COLUMNS

1 2 U 0x0000000002000000
2 3 U 0x0000000003000000
3 4 D NULL

The SYS_CHANGE_COLUMNS column is a varbinary value that contains the columns that changed
since the last version. To interpret this, I can use the CHANGE_TRACKING IS _COLUMN_IN_MASK function,
as I'll demonstrate next. This function takes two arguments, the column ID of the table column and
the varbinary value to be evaluated. The following query uses this function to check whether the
columns BookStoreNM and TechBookSection were modified:

SELECT BookStorelID,
CHANGE_TRACKING IS COLUMN_IN MASK(
COLUMNPROPERTY (
OBJECT_ID('dbo.BookStore'), 'BookStoreNM', 'ColumnId') ,
SYS_CHANGE_COLUMNS) IsChanged BookStoreNM,
CHANGE_TRACKING IS COLUMN_ IN MASK(
COLUMNPROPERTY (
OBJECT_ID('dbo.BookStore'), 'TechBookSection', 'ColumnId") ,
SYS_CHANGE_COLUMNS) IsChanged TechBookSection
FROM CHANGETABLE
(CHANGES dbo.BookStore, 1) AS CT
WHERE SYS CHANGE OPERATION = 'U'

This returns bit values of 1 for true and 0 for false regarding what columns were modified:

BookStoreID IsChanged_BookStoreNM IsChanged_TechBookSection
1 1 0
2 0 1

Next, I'll demonstrate that the VERSION argument of CHANGETABLE can be used to return the lat-
est change version for each row. This version value can be stored and tracked by the application in
order to facilitate Change Tracking synchronization:

SELECT bs.BookStoreID, bs.BookStoreNM, bs.TechBookSection,
ct.SYS_CHANGE VERSION

FROM dbo.BookStore bs

CROSS APPLY CHANGETABLE

(VERSION dbo.BookStore, (BookStoreID), (bs.BookStoreID)) as ct

This returns the SYS_CHANGE_VERSION column along with the current column values for each row:

BookStoreID BookStoreNM TechBookSection SYS_CHANGE_VERSION
1 King Book Store 1 2
2 Smith Book Store 1 3

Now I'll perform another UPDATE to demonstrate the version differences:

UPDATE dbo.BookStore

SET BookStoreNM = 'Kingsly Book Store',
TechBookSection = 0

WHERE BookStorelID = 1

111

112

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

Next, I'll execute another query using CHANGETABLE:

SELECT bs.BookStoreID, bs.BookStoreNM, bs.TechBookSection,
ct.SYS _CHANGE VERSION

FROM dbo.BookStore bs

CROSS APPLY CHANGETABLE

(VERSION BookStore, (BookStoreID), (bs.BookStoreID)) as ct

This shows that the row version of the row I just modified is now incremented to 5—but the
other row that I did not modify remains at a version number of 2:

BookStoreID BookStoreNM TechBookSection SYS CHANGE_VERSION
1 Kingsly Book Store 0 5
2 Smith Book Store 1 3

I'll now check the current version number:
SELECT CHANGE_TRACKING CURRENT_ VERSION O

This returns

The version number matches the latest change made to the table for the last committed trans-
action.

For the final part of this recipe, I will also demonstrate how to provide Change Tracking appli-
cation context information with your DML operations. This will allow you to track which applica-
tion made data modifications to which rows—which is useful information if you are synchronizing
data across several data sources. In order to apply this data lineage, I can use the CHANGE_TRACKING
CONTEXT function. This function takes a single input parameter of context, which is a varbinary data
type value representing the calling application.

I start off by declaring a variable to hold the application context information. I then use the
variable within the CHANGE_TRACKING CONTEXT function prior to an INSERT of a new row to the
change-tracked table:

DECLARE @context varbinary(128) = CAST('Apress XYZ' as varbinary(128));

WITH CHANGE TRACKING CONTEXT (@context)
INSERT dbo.BookStore

(BookStoreNM, TechBookSection)

VALUES

('Capers Book Store', 1)

Next, I will check for any changes that were made since version 5 (what I retrieved earlier on
using CHANGE_TRACKING_CURRENT VERSION):

SELECT BookStorelD,

SYS_CHANGE_OPERATION,

SYS_CHANGE_VERSION,

CAST(SYS_CHANGE_CONTEXT as varchar) ApplicationContext
FROM CHANGETABLE
(CHANGES dbo.BookStore, 5) AS CT

This returns the new row value that was inserted, along with the application context informa-
tion that I converted from the SYS_CHANGE_CONTEXT column:

CHAPTER 2 © PERFORM, CAPTURE, AND TRACK DATA MODIFICATIONS

BookStoreID SYS_CHANGE_OPERATION SYS_CHANGE_VERSION ApplicationContext
4 I 6 Apress XYZ

How It Works

In this recipe, I demonstrated how to use Change Tracking in order to detect net row changes with
minimal disk storage overhead. I started off by creating a new database and then using ALTER
DATABASE...SET CHANGE_ TRACKING to enable Change Tracking in the database. I also designated a
36-hour Change Tracking retention using the CHANGE_RETENTION and AUTO_CLEANUP options. I used
the sys.change_tracking databases catalog view to check the status of the change-tracked data-
base.

I also enabled Snapshot Isolation for the database. This is a best practice, as you'll want to use
Snapshot Isolation-level transactions when retrieving row change versions and the associated data
from the change-tracked table.

Next, I created a new table and then used ALTER TABLE...ENABLE CHANGE TRACKING. I designated
that column-level changes also be tracked by enabling TRACK_COLUMNS_UPDATED. I validated the
change-tracked status of the table by querying the sys.change tracking_tables catalog view.

After that, I demonstrated several different functions that are used to retrieve Change Tracking
data, including

* CHANGE_TRACKING CURRENT_VERSION, which returns the version number from the last commit-
ted transaction for the table

e CHANGE_TRACKING MIN_ VALID VERSION, which returns the minimum version available for the
change-tracked table

* CHANGETABLE with CHANGES, to detect changes as of a specific synchronization version

e CHANGE_TRACKING IS COLUMN_IN_MASK, to detect which columns were updated from a change-
tracked table

e CHANGETABLE with VERSION, to return the latest change version for a row
e CHANGE_TRACKING_CONTEXT, to store change context with a DML operation so you can track
which application modified what data

Change Tracking as a feature set allows you to avoid having to custom-code your own net
Change Tracking solution. This feature has minimal overhead and doesn’t require schema modifica-
tion in order to implement (no triggers or timestamps).

113

CHAPTER 3

Transactions, Locking, Blocking,
and Deadlocking

In the last two chapters, I covered Data Modification Language and provided recipes for SELECT,
INSERT, UPDATE, and DELETE statements. Before moving on to Data Definition Language (creating/
altering/dropping tables, indexes, views, and more), in this chapter I'll review recipes for handling
transactions, lock monitoring, blocking, and deadlocking. I'll review the new SQL Server 2008 table
option that allows you to disable lock escalation or enable it for a partitioned table. I'll demonstrate
the snapshot isolation level, as well as Dynamic Management Views that are used to monitor and
troubleshoot blocking and locking.

Transaction Control

Transactions are an integral part of a relational database system, and they help define a single unit
of work. This unit of work can include one or more Transact-SQL statements, which are either com-
mitted or rolled back as a group. This all-or-none functionality helps prevent partial updates or
inconsistent data states. A partial update occurs when one part of an interrelated process is rolled
back or cancelled without rolling back or reversing all of the other parts of the interrelated
processes.

A transaction is bound by the four properties of the ACID test. ACID stands for Atomicity,
Consistency, Isolation (or Independence), and Durability:

* Atomicity means that the transactions are an all-or-nothing entity—carrying out all steps or
none at all.

e Consistency ensures that the data is valid both before and after the transaction. Data
integrity must be maintained (foreign key references, for example), and internal data
structures need to be in a valid state.

e [solation is a requirement that transactions not be dependent on other transactions that may

be taking place concurrently (either at the same time or overlapping). One transaction can’t
see another transaction’s data that is in an intermediate state, but instead sees the data as it
was either before the transaction began or after the transaction completes.

e Durability means that the transaction’s effects are fixed after the transaction has committed,
and any changes will be recoverable after system failures.

In this chapter, I'll demonstrate and review the SQL Server mechanisms and functionality that
are used to ensure ACID test compliance, namely locking and transactions.
There are three possible transaction types in SQL Server: autocommit, explicit, or implicit.

115

116

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Autocommit is the default behavior for SQL Server, where each separate Transact-SQL state-
ment you execute is automatically committed after it is finished. For example, if you have two
INSERT statements, with the first one failing and the second one succeeding, the second change is
maintained because each INSERT is automatically contained in its own transaction. Although this
mode frees the developer from having to worry about explicit transactions, depending on this mode
for transactional activity can be a mistake. For example, if you have two transactions, one that cred-
its an account and another that debits it, and the first transaction failed, you'll have a debit without
the credit. This may make the bank happy, but not necessarily the customer, who had his account
debited. Autocommit is even a bit dangerous for ad hoc administrative changes—for example, if
you accidentally delete all rows from a table, you don’t have the option of rolling back the transac-
tion after you've realized the mistake.

Implicit transactions occur when the SQL Server session automatically opens a new transac-
tion when one of the following statements is first executed: ALTER TABLE, FETCH, REVOKE, CREATE,
GRANT, SELECT, DELETE, INSERT, TRUNCATE TABLE, DROP, OPEN, and UPDATE.

A new transaction is automatically created (opened) once any of the aforementioned state-
ments are executed, and remains open until either a ROLLBACK or COMMIT statement is issued. The
initiating command is included in the open transaction. Implicit mode is activated by executing
the following command in your query session:

SET IMPLICIT TRANSACTIONS ON
To turn this off (back to explicit mode), execute the following:
SET IMPLICIT TRANSACTIONS OFF

Implicit mode can be very troublesome in a production environment, as application designers
and end users could forget to commit transactions, leaving them open to block other connections
(more on blocking later in the chapter).

Explicit transactions are those that you define yourself. This is by far the recommended mode
of operation when performing data modifications for your database application. This is because
you explicitly control which modifications belong to a single transaction, as well as the actions that
are performed if an error occurs. Modifications that must be grouped together are done using your
own instruction.

Explicit transactions use the Transact-SQL commands and keywords described in Table 3-1.

Table 3-1. Explicit Transaction Commands

Command Description
BEGIN TRANSACTION Sets the starting point of an explicit transaction.
ROLLBACK TRANSACTION Restores original data modified by a transaction and brings

data back to the state it was in at the start of the transaction.
Resources held by the transaction are freed.

COMMIT TRANSACTION Ends the transaction if no errors were encountered and makes
changes permanent. Resources held by the transaction are
freed.

BEGIN DISTRIBUTED TRANSACTION Allows you to define the beginning of a distributed transaction
to be managed by Microsoft Distributed Transaction
Coordinator (MS DTC). MS DTC must be running locally
and remotely.

SAVE TRANSACTION Issues a savepoint within a transaction, which allows one to
define a location to which a transaction can return if part of the
transaction is cancelled. A transaction must be rolled back or
committed immediately after rolling back to a savepoint.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Command Description

@@TRANCOUNT Returns the number of active transactions for the connection.
BEGIN TRANSACTION increments @@TRANCOUNT by 1, and ROLLBACK
TRANSACTION and COMMIT TRANSACTION decrements @@TRANCOUNT
by 1. ROLLBACK TRANSACTION to a savepoint has no impact.

Using Explicit Transactions

This recipe’s example demonstrates how to use explicit transactions to commit or roll back a data
modification depending on the return of an error in a batch of statements:

USE AdventureWorks
GO

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

-- Variable to hold the latest error integer value
DECLARE @Error int

BEGIN TRANSACTION

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

SET @Error = @@ERROR
IF (@Error<> 0) GOTO Error Handler

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error Handler

COMMIT TRAN

Error Handler:
IF @Error <> 0
BEGIN
ROLLBACK TRANSACTION
END

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

This returns

BeforeCount
16

(1 row(s) affected)

117

Download from Wow! eBook <www.wowebhook.com>

118

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

(1 row(s) affected)

Msg 2601, Level 14, State 1, Line 14

Cannot insert duplicate key row in object 'HumanResources.Department'
with unique index 'AK Department Name'.

The statement has been terminated.

AfterCount
16

(1 row(s) affected)

How It Works

The first statement in this example validated the count of rows in the HumanResources.Department
table, returning 16 rows:

-- Before count
SELECT COUNT(*) BeforeCount FROM HumanResources.Department

Alocal variable was created to hold the value of the @@ERROR function (which captures the latest
error state of a SQL statement):

-- Variable to hold the latest error integer value
DECLARE @Error int

Next, an explicit transaction was started:

BEGIN TRANSACTION

The next statement attempted an INSERT into the HumanResources.Department table. There was
a unique key on the department name, but because the department name didn'’t already exist in the
table, the insert succeeded:

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Accounts Payable', 'Accounting')

Next was an error handler for the INSERT:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error Handler

This line of code evaluates the @@ERROR function. The @@ERROR system function returns the last
error number value for the last executed statement within the scope of the current connection. The
IF statement says that if an error occurs, the code should jump to the Error Handler section of the
code (using GOT0).

Note For a review of GOTO, see Chapter 9. For a review of @@Error, see Chapter 16. Chapter 16 also intro-
duces a new error handling command, TRY. . . CATCH.

GOTO is a keyword that helps you control the flow of statement execution. The identifier after
GOTO, Error_Handler, is a user-defined code section.

Next, another insert is attempted, this time for a department that already exists in the table.
Because the table has a unique constraint on the Name column, this insert will fail:

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Engineering', 'Research and Development')

The failure will cause the @@ERROR following this INSERT to be set to a non-zero value. The IF
statement will then evaluate to TRUE, which will invoke the GOTO, thus skipping over the COMMIT TRAN
to the Error_Handler section:

SET @Error = @@ERROR
IF (@Error <> 0) GOTO Error Handler

COMMIT TRAN
Following the Error Handler section is a ROLLBACK TRANSACTION:

Error Handler:
IF @Error <> 0
BEGIN
ROLLBACK TRANSACTION
END

Another count is performed after the rollback, and again, there are only 16 rows in the data-
base. This is because both INSERTs were in the same transaction, and one of the INSERTs failed. Since
a transaction is all-or-nothing, no rows were inserted:

-- After count
SELECT COUNT(*) AfterCount FROM HumanResources.Department

Some final thoughts and recommendations regarding how to handle transactions in your
Transact-SQL code or through your application:

¢ Keep transaction time as short as possible for the business process at hand. Transactions
that remain open can hold locks on resources for an extended period of time, which can
block other users from performing work or reading data.

* Minimize resources locked by the transaction. For example, update only tables that are
related to the transaction at hand. If the data modifications are logically dependent on each
other, they belong in the same transaction. If not, the unrelated updates belong in their own
transaction.

* Add only relevant Transact-SQL statements to a transaction. Don’t add extra lookups or
updates that are not germane to the specific transaction. Executing a SELECT statement
within a transaction can create locks on the referenced tables, which can in turn block other
users/sessions from performing work or reading data.

* Do not open new transactions that require user or external feedback within the transaction.
Open transactions can hold locks on resources, and user feedback can take an indefinite
amount of time to receive. Instead, gather user feedback before issuing an explicit trans-
action.

Displaying the Oldest Active Transaction with DBCC
OPENTRAN

If a transaction remains open in the database, whether intentionally or not, this transaction can
block other processes from performing activity against the modified data. Also, backups of the
transaction log can only truncate the inactive portion of a transaction log, so open transactions can
cause the log to grow (or reach the physical limit) until that transaction is committed or rolled back.

119

120

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

In order to identify the oldest active transactions in a database, you can use the DBCC OPENTRAN
command. This example demonstrates using DBCC OPENTRAN to identify the oldest active transaction
in the database:

BEGIN TRANSACTION

DELETE Production.ProductProductPhoto
WHERE ProductID = 317

DBCC OPENTRAN('AdventureWorks")

ROLLBACK TRAN

This returns

(1 row(s) affected)
Transaction information for database 'AdventureWorks'.

Oldest active transaction:
SPID (server process ID): 54
UID (user ID) : -1

Name 1 user_transaction

LSN : (41:1021:39)

Start time : Sep 15 2008 10:45:53:780AM

SID 1 0x010500000000000515000000a065cf7e784b9b5fe77c8770375a2900

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works

The recipe started off by opening up a new transaction, and then deleting a specific row from the
Production.ProductProductPhoto table. Next, the DBCC OPENTRAN was executed, with the database
name in parentheses:

DBCC OPENTRAN(AdventureWorks)

These results showed information regarding the oldest active transaction, including the server
process ID, user ID, and start time of the transaction. The key pieces of information from the results
are the SPID (server process ID) and Start time.

Once you have this information, you can validate the Transact-SQL being executed using
Dynamic Management Views, figure out how long the process has been running for, and if neces-
sary, shut down the process. DBCC OPENTRAN is useful for troubleshooting orphaned connections
(connections still open in the database but disconnected from the application or client), and the
identification of transactions missing a COMMIT or ROLLBACK.

This command also returns the oldest distributed and undistributed replicated transactions,
if any exist within the database. If there are no active transactions, no session-level data will be
returned.

Querying Transaction Information by Session

This recipe demonstrates how to find out more information about an active transaction. To demon-
strate, I'll describe a common scenario: your application is encountering a significant number of
blocks with a high duration. You've been told that this application always opens up an explicit
transaction prior to each query.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

To illustrate this scenario, I'll execute the following SQL (representing the application code
causing the concurrency issue):

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRAN

SELECT *
FROM HumanResources.Department

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Test', 'OA")

In a separate/new SQL Server Management Studio query window, I would like to identify all
open transactions by querying the sys.dm_tran_session_transactions Dynamic Management View
(DMV):

SELECT session id, transaction id, is user transaction, is local
FROM sys.dm_tran_session_transactions
WHERE is user transaction = 1

This returns the following (your actual session IDs and transaction IDs will vary):

session_id transaction id is user transaction is local
54 145866 1 1

Now that I have a session ID to work with, I can dig into the details about the most recent query
executed by querying sys.dm_exec_connections and sys.dm_exec_sql_text:

SELECT s.text

FROM sys.dm_exec_connections c

CROSS APPLY sys.dm exec_sql text(c.most recent sql handle) s
WHERE session id = 54

This returns the last statement executed. (I could have also used the sys.dm_exec_requests
DMV for an ongoing and active session; however, nothing was currently executing for my example
transaction, so no data would have been returned.)

text
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

BEGIN TRAN

SELECT *
FROM HumanResources.Department

INSERT HumanResources.Department
(Name, GroupName)
VALUES ('Test', 'QA")

Since I also have the transaction ID from the first query against sys.dm_tran_session_
transactions, I can use the sys.dm tran_active transactions tolearn more about the transaction
itself:

121

122 CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

SELECT transaction begin time,
CASE transaction_type
WHEN 1 THEN 'Read/write transaction'
WHEN 2 THEN 'Read-only transaction'
WHEN 3 THEN 'System transaction’
WHEN 4 THEN 'Distributed transaction'
END tran_type,
CASE transaction_state
WHEN 0 THEN 'not been completely initialized yet'
WHEN 1 THEN 'initialized but has not started’
WHEN 2 THEN 'active'
WHEN 3 THEN 'ended (read-only transaction)'
WHEN 4 THEN 'commit initiated for distributed transaction'
WHEN 5 THEN 'transaction prepared and waiting resolution'
WHEN 6 THEN 'committed’
WHEN 7 THEN 'being rolled back'
WHEN 8 THEN 'been rolled back'
END tran_state
FROM sys.dm tran active transactions
WHERE transaction_id = 145866

This returns information about the transaction begin time, the type of transaction, and the
state of the transaction:

transaction_begin_time tran_type tran_state
2008-08-26 10:03:26.520 Read/write transaction active

How It Works

This recipe demonstrated how to use various DMVs to troubleshoot and investigate a long-running,
active transaction. The columns you decide to use depend on the issue you are trying to trouble-
shoot. In this scenario, I used the following troubleshooting path:

e T queried sys.dm tran session transactions in order to display a mapping between the ses-
sion ID and the transaction ID (identifier of the individual transaction).

e Tqueried sys.dm_exec_connections and sys.dm exec_sql_text in order to find the latest
command executed by the session (referencing the most_recent_sql_handle column).

 Lastly, I queried sys.dm_tran_active_transactions in order to determine how long the trans-
action was opened, the type of transaction, and the state of the transaction.

Using this troubleshooting technique allows you to go back to the application and pinpoint
query calls for abandoned transactions (opened but never committed), and transactions that are
inappropriate because they run too long or are unnecessary from the perspective of the application.

Locking

Locking is a normal and necessary part of a relational database system, ensuring the integrity of the
data by not allowing concurrent updates to the same data or viewing of data that is in the middle

of being updated. Locking can also prevent users from reading data while it is being updated. SQL
Server manages locking dynamically; however, it is still important to understand how Transact-SQL
queries impact locking in SQL Server. Before proceeding on to the recipe, I'll briefly describe SQL
Server locking fundamentals.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Locks help prevent concurrency problems from occurring. Concurrency problems (discussed
in detail in the next section, “Transaction, Locking, and Concurrency”) can happen when one user
attempts to read data that another is modifying, modify data that another is reading, or modify data
that another transaction is trying to modify.

Locks are placed against SQL Server resources. How a resource is locked is called its lock mode.
Table 3-2 reviews the main lock modes that SQL Server has at its disposal.

Table 3-2. SQL Server Lock Modes

Name Description

Shared lock Shared locks are issued during read-only, non-modifying queries. They
allow data to be read, but not updated by other processes while being
held.

Intent lock Intent locks effectively create a lock queue, designating the order of

connections and their associated right to update or read resources. SQL
Server uses intent locks to show future intention of acquiring locks on a
specific resource.

Update lock Update locks are acquired prior to modifying the data. When the row is
modified, this lock is escalated to an exclusive lock. If not modified, it is
downgraded to a shared lock. This lock type prevents deadlocks if two
connections hold a shared lock on a resource and attempt to convert to
an exclusive lock, but cannot because they are each waiting for the other
transaction to release the shared lock.

Exclusive lock This type of lock issues a lock on the resource that bars any kind of
access (reads or writes). It is issued during INSERT, UPDATE, or DELETE
statements.

Schema modification This type of lock is issued when a DDL statement is executed.

Schema stability This type of lock is issued when a query is being compiled. It keeps DDL

operations from being performed on the table.

Bulk update This type of lock is issued during a bulk-copy operation. Performance is
increased for the bulk copy operation, but table concurrency is reduced.

Key-range Key-range locks protect a range of rows (based on the index key)—for
example, protecting rows in an UPDATE statement with a range of dates
from 1/1/2005 to 12/31/2005. Protecting the range of data prevents row
inserts into the date range that would be missed by the current data
modification.

You can lock all manner of objects in SQL Server, from a single row in a database, to a table, to
the database itself. Lockable resources vary in granularity, from small (at the row level) to large (the
entire database). Small-grain locks allow for greater database concurrency, because users can exe-
cute queries against specified unlocked rows. Each lock placed by SQL Server requires memory,
however, so thousands of individual row locks can also affect SQL Server performance. Larger-
grained locks reduce concurrency, but take up fewer resources. Table 3-3 details the resources SQL
Server can apply locks to.

123

124

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Table 3-3. SQL Server Lock Resources

Resource Name Description

Allocation unit A set of related pages grouped by data type, for example, data rows, index rows,
and large object data rows.

Application An application-specified resource.

DB An entire database lock.

Extent Allocation unit of eight 8KB data or index pages.

File The database file.

HOBT A heap (table without a clustered index) or B-tree.

Metadata System metadata.

Key Index row lock, helping prevent phantom reads. Also called a key-range lock,

this lock type uses both a range and a row component. The range represents the
range of index keys between two consecutive index keys. The row component
represents the lock type on the index entry.

Object A database object (for example a view, stored procedure, function).
Page An 8KB data or index page.

RID Row identifier, designating a single table row.

Table Aresource that locks entire table, data, and indexes.

Not all lock types are compatible with each other. For example, no other locks can be placed
on a resource that has already been locked by an exclusive lock. The other transaction must wait or
time out until the exclusive lock is released. A resource locked by an update lock can only have a
shared lock placed on it by another transaction. A resource locked by a shared lock can have other
shared or update locks placed on it.

Locks are allocated and escalated automatically by SQL Server. Escalation means that finer-
grain locks (row or page locks) are converted into coarse-grain table locks. SQL Server will attempt
to initialize escalation when a single Transact-SQL statement has more than 5,000 locks on a single
table or index, or if the number of locks on the SQL Server instance exceeds the available memory
threshold. Locks take up system memory, so converting many locks into one larger lock can free
up memory resources. The drawback to freeing up the memory resources, however, is reduced
concurrency.

Note SQL Server 2008 has a new table option that allows you to disable lock escalation or enable lock escala-
tion at the partition (instead of table) scope. I'll demonstrate this in the “Controlling a Table’s Lock Escalation
Behavior” recipe.

Viewing Lock Activity

This recipe shows you how to monitor locking activity in the database using the SQL Server
sys.dm_tran_locks Dynamic Management View. The example query being monitored by this DMV
will use a table locking hint.

In the first part of this recipe, a new query editor window is opened, and the following com-
mand is executed:

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

USE AdventureWorks

BEGIN TRAN

SELECT ProductID, ModifiedDate
FROM Production.ProductDocument
WITH (TABLOCKX)

In a second query editor window, the following query is executed:

SELECT request session_id sessionid,
resource_type type,
resource_database id dbid,
OBJECT_NAME(resource associated entity id, resource database id) objectname,
request_mode rmode,
request_status rstatus
FROM sys.dm tran locks
WHERE resource type IN ('DATABASE', 'OBJECT')

Tip This recipe narrows down the result set to two SQL Server resource types of DATABASE and OBJECT for
clarity. Typically, you'll monitor several types of resources. The resource type determines the meaning of the
resource_associated entity id column, as I'll explain in the “How It Works” section.

The query returned information about the locking session identifier (server process ID, or
SPID), the resource being locked, the database, object, resource mode, and lock status:

sessionid type dbid objectname rmode rstatus
53 DATABASE 8 NULL S GRANT
52 DATABASE 8 NULL S GRANT
52 OBJECT 8 ProductDocument X GRANT
How It Works

The example began by starting a new transaction and executing a query against the Production.
ProductDocument table using a TABLOCKX locking hint (this hint places an exclusive lock on the table).
In order to monitor what locks are open for the current SQL Server instance, the sys.dm tran_locks
Dynamic Management View was queried. It returned a list of active locks in the AdventurelWorks
database. The exclusive lock on the ProductDocument table could be seen in the last row of the
results.

The first three columns define the session lock, resource type, and database ID:

SELECT request_session id sessionid,
resource_type type,
resource_database id dbid,

The next column uses the OBJECT_NAME function. Notice that it uses two parameters (object ID
and database ID) in order to specify which name to access (this second database ID parameter was
introduced in SP2 of SQL Server 2005 to allow you to specify which database you are using in order
to translate the object name):

OBJECT_NAME(resource associated entity id, resource database id) objectname,

125

126

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

I also query the locking request mode and status:

request_mode rmode,
request status rstatus

Lastly, the FROM clause references the DMV, and the WHERE clause designates two resource types:

FROM sys.dm_tran_locks
WHERE resource_type IN ('DATABASE', 'OBJECT')

The resource_type column designates what the locked resource represents (for example,
DATABASE, OBJECT, FILE, PAGE, KEY, RID, EXTENT, METADATA, APPLICATION, ALLOCATION_UNIT, or HOBT type).
The resource_associated entity id depends on the resource type, determining whether the ID is
an object ID, allocation unit ID, or Hobt ID:

e Ifthe resource associated entity id column contains an object ID (for a resource type of
OBJECT), you can translate the name using the sys.objects catalog view.

e Ifthe resource associated entity id column contains an allocation unit ID (for a resource
type of ALLOCATION_UNIT), you can reference sys.allocation_units and reference the
container_id.Container_ id can then be joined to sys.partitions where you can then
determine the object ID.

e Ifthe resource associated entity id column contains a Hobt ID (for a resource type of KEY,
PAGE, ROW, or HOBT), you can directly reference sys.partitions and look up the associated
object ID.

* For resource types such as DATABASE, EXTENT, APPLICATION, or METADATA, the resource
associated entity id column will be 0.

Use sys.dm_tran_locks to troubleshoot unexpected concurrency issues, such as a query ses-
sion that may be holding locks longer than desired, or issuing a lock resource granularity or lock
mode that you hadn't expected (perhaps a table lock instead of a finer-grained row or page lock).
Understanding what is happening at the locking level can help you troubleshoot query concurrency
more effectively.

Controlling a Table’s Lock Escalation Behavior

Each lock that is created in SQL Server consumes memory resources. When the number of locks
increases, memory decreases. If the percentage of memory being used for locks exceeds a certain
threshold, SQL Server can convert fine-grained locks (page or row) into coarse-grained locks (table
locks). This process is called lock escalation. Lock escalation reduces the overall number of locks
being held on the SQL Server instance, reducing lock memory usage.

While finer-grained locks do consume more memory, they also can improve concurrency, as
multiple queries can access unlocked rows. Introducing table locks may reduce memory consump-
tion, but they also introduce blocking, because a single query holds an entire table. Depending on
the application using the database, this behavior may not be desired, and you may wish to exert
more control over when SQL Server performs lock escalations.

SQL Server 2008 introduces the ability to control lock escalation at the table level using the
ALTER TABLE command. You are now able to choose from the following three settings:

e TABLE, which is the default behavior used in SQL Server 2005. When configured, lock escala-
tion is enabled at the table level for both partitioned and non-partitioned tables.

AUTO enables lock escalation at the partition level (heap or B-tree) if the table is partitioned.
If it is not partitioned, escalation will occur at the table level.

e DISABLE removes lock escalation at the table level. Note that you still may see table locks due
to TABLOCK hints or for queries against heaps using a serializable isolation level.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

This recipe demonstrates modifying a table across the two new SQL Server 2008 settings:
ALTER TABLE Person.Address
SET (LOCK_ESCALATION = AUTO)

SELECT lock escalation,lock escalation desc
FROM sys.tables
WHERE name="Address’

This returns

lock_escalation lock escalation desc
2 AUTO

Next, I'll disable escalation:
ALTER TABLE Person.Address
SET (LOCK_ESCALATION = DISABLE)

SELECT lock escalation,lock escalation_desc
FROM sys.tables
WHERE name="'Address'

This returns

lock_escalation lock_escalation_desc
1 DISABLE

How It Works

This recipe demonstrated enabling two new SQL Server 2008 table options that control locking
escalation. The command began with a standard ALTER TABLE designating the table name to
modify:

ALTER TABLE Person.Address

The second line designated the SET command along with the LOCK_ESCALATION configuration to
be used:

SET (LOCK_ESCALATION = AUTO)

After changing the configuration, I was able to validate the option by querying the lock
escalation_desc column from the sys.tables catalog view.

Once the AUTO option is enabled, if the table is partitioned, lock escalation will occur at the par-
titioned level, which improves concurrency if there are multiple sessions acting against separate
partitions.

Note For further information on partitioning, see Chapter 4.

If the table is not partitioned, table-level escalation will occur as usual. If you designate the
DISABLE option, table-level lock escalation will not occur. This can help improve concurrency, but
could result in increased memory consumption if your requests are accessing a large number of
rOWS Or pages.

127

Download from Wow! eBook <www.wowebook.com>

128

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Transaction, Locking, and Concurrency

One of the listed ACID properties was Isolation. Transaction isolation refers to the extent to which
changes made by one transaction can be seen by other transactions occurring in the database (i.e.,
under conditions of concurrent database access). At the highest possible degree of isolation, each
transaction occurs as if it were the only transaction taking place at that time. No changes made by
other transactions are visible to it. At the lowest level, anything done in one transaction, whether
committed or not, can been seen by another transaction.

The ANSI/ISO SQL standard defines four types of interactions between concurrent transac-
tions. These are

e Dirty reads: These occur while a transaction is updating a row, and a second transaction
reads the row before the first transaction is committed. If the original update rolls back, the
uncommitted changes will be read by the second transaction, even though they are never
committed to the database. This is the definition of a dirty read.

* Non-repeatable reads: These occur when one transaction is updating data, and a second is
reading the same data while the update is in progress. The data retrieved before the update
will not match data retrieved after the update.

* Phantom reads: These occur when a transaction issues two reads, and between the two reads
the underlying data is updated with data being inserted or deleted. This causes the results of
each query to differ. Rows returned in one query that do not appear in the other are called
phantom rows.

* Lost updates: This occurs when two transactions update a row’s value, and the transaction to
last update the row “wins.” Thus the first update is lost.

SQL Server uses locking mechanisms to control the competing activity of simultaneous trans-
actions. In order to avoid the concurrency issues such as dirty reads, non-repeatable reads, and so
on, it implements locking to control access to database resources and to impose a certain level of
transaction isolation. Table 3-4 describes the available isolation levels in SQL Server.

Table 3-4. SQL Server Isolation Levels

Isolation Level Description
READ COMMITTED (this is the default While READ COMMITTED is used, uncommitted data
behavior of SQL Server) modifications can't be read. Shared locks are used during a

query, and data cannot be modified by other processes
while the query is retrieving the data. Data inserts and
modifications to the same table are allowed by other
transactions, so long as the rows involved are not locked
by the first transaction.

READ UNCOMMITTED This is the least restrictive isolation level, issuing no locks
on the data selected by the transaction. This provides the
highest concurrency but the lowest amount of data integrity,
as the data that you read can be changed while you read it
(as mentioned previously, these reads are known as dirty
reads), or new data can be added or removed that would
change your original query results. This option allows you to
read data without blocking others but with the danger of
reading data “in flux” that could be modified during the read
itself (including reading data changes from a transaction
that ends up getting rolled back). For relatively static and
unchanging data, this isolation level can potentially improve
performance by instructing SQL Server not to issue
unnecessary locking on the accessed resources.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Isolation Level Description

REPEATABLE READ When enabled, dirty and non-repeatable reads are not
allowed. This is achieved by placing shared locks on all read
resources. New rows that may fall into the range of data
returned by your query can, however, still be inserted by
other transactions.

SERIALIZABLE When enabled, this is the most restrictive setting. Range
locks are placed on the data based on the search criteria
used to produce the result set. This ensures that actions such
as insertion of new rows, modification of values, or deletion
of existing rows that would have been returned within the
original query and search criteria are not allowed.

SNAPSHOT This isolation level allows you to read a transactionally
consistent version of the data as it existed at the beginning of
a transaction. Data reads do not block data modifications—
however, the SNAPSHOT session will not detect changes being
made.

Transactions and locking go hand in hand. Depending on your application design, your trans-
actions can significantly impact database concurrency and performance. Concurrency refers to
how many people can query and modify the database and database objects at the same time. For
example, the READ UNCOMMITTED isolation level allows the greatest amount of concurrency since it
issues no locks—with the drawback that you can encounter a host of data isolation anomalies (dirty
reads, for example). The SERIALIZABLE mode, however, offers very little concurrency with other
processes when querying a larger range of data.

Configuring a Session’s Transaction Locking Behavior

This recipe demonstrates how to use the SET TRANSACTION ISOLATION LEVEL command to set the
default transaction locking behavior for Transact-SQL statements used in a connection. You can
have only one isolation level set at a time, and the isolation level does not change unless explicitly
set. SET TRANSACTION ISOLATION LEVEL allowsyou to change the locking behavior for a specific
database connection. The syntax for this command is as follows:

SET TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ
| SNAPSHOT
| SERIALIZABLE

}

In this first example, SERTALIZABLE isolation is used to query the contents of a table. In the first
query editor window, the following code is executed:

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

BEGIN TRAN

129

130 CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

This returns the following results (while still leaving a transaction open for the query session):

AddressTypeID Name

1 Billing

2 Home

3 Main Office
4 Primary

5 Shipping

6 Archive

In a second query editor, the following query is executed to view the kinds of locks generated by
the SERIALIZABLE isolation level:

SELECT resource associated entity id, resource type,
request _mode, request session id
FROM sys.dm_tran_locks

This shows several key locks being held for request_session_id 52 (which is the other session’s
1D):

resource_associated entity id resource type request mode request session id

0 DATABASE S 52
0 DATABASE S 53
72057594043039744 PAGE IS 52
101575400 OBJECT IS 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangeS-S 52
72057594043039744 KEY RangesS-S 52

Back in the first query editor window, execute the following code to end the transaction and
remove the locks:

COMMIT TRAN

In contrast, the same query is executed again in the first query editor window, this time using
the READ UNCOMMITTED isolation level to read the range of rows:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO
BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

In a second query editor, the following query is executed to view the kinds of locks generated
by the READ UNCOMMITTED isolation level:

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

SELECT resource associated entity id, resource type,
request_mode, request session_id
FROM sys.dm_tran locks

This returns (abridged results)

resource_associated entity id resource type request mode request session id
0 DATABASE S 52
0 DATABASE S 53

Unlike SERIALIZABLE, the READ UNCOMMITTED isolation level creates no additional locks on the
keys of the Person.AddressType table.

Returning back to the first query editor with the READ UNCOMMITTED query, the transaction is
ended for cleanup purposes:

COMMIT TRAN
I'll demonstrate the SNAPSHOT isolation level next. In the first query editor window, the following
code is executed:

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

BEGIN TRAN

SELECT CurrencyRatelD,
EndOfDayRate

FROM Sales.CurrencyRate

WHERE CurrencyRateID = 8317

This returns

CurrencyRateID EndOfDayRate
8317 0.6862

In a second query editor window, the following query is executed:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Now back to the first query editor, the following query is reexecuted:

SELECT CurrencyRatelD,
EndOfDayRate

FROM Sales.CurrencyRate

WHERE CurrencyRateID = 8317

131

132

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

This returns

CurrencyRateID EndOfDayRate
8317 0.6862

The same results are returned as before, even though the row was updated by the second query
editor query. The SELECT was not blocked from reading the row, nor was the UPDATE blocked from
making the modification.

Now I am going to commit the transaction and reissue the query:

COMMIT TRAN

SELECT CurrencyRatelD,
EndOfDayRate

FROM Sales.CurrencyRate

WHERE CurrencyRateID = 8317

This returns the updated value:

CurrencyRateID EndOfDayRate
8317 1.00

How It Works

In this recipe, I demonstrated how to change the locking isolation level of a query session by using
the SET TRANSACTION ISOLATION LEVEL.Executing this command isn't necessary if you wish to use
the default SQL Server isolation level, which is READ COMMITTED. Otherwise, once you set an isolation
level, it remains in effect for the connection until explicitly changed again.

The first example in the recipe demonstrated using the SERTALIZABLE isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
Go

An explicit transaction was then started, and a query was executed against the Person.
AddressType table for all rows that fell between a specific range of AddressTypeID values:

BEGIN TRAN

SELECT AddressTypeID, Name
FROM Person.AddressType
WHERE AddressTypeID BETWEEN 1 AND 6

In a separate connection, a query was then executed against the sys.dm_tran_locks Dynamic
Management View, which returned information about active locks being held for the SQL Server
instance. In this case, we saw a number of key range locks, which served the purpose of prohibiting
other connections from inserting, updating, or deleting data that would cause different results in
the query’s search condition (WHERE AddressTypeID BETWEEN 1 AND 6).

In the second example, the isolation level was set to READ UNCOMMITTED:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
GO

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Querying sys.dm_tran_locks again, we saw that this time no row, key, or page locks were held
at all on the table, allowing the potential for other transactions to modify the queried rows while
the original transaction remained open. With this isolation level, the query performs dirty reads,
meaning that the query could read data with in-progress modifications, whether or not the actual
modification is committed or rolled back later on.

In the third example from the recipe, the database setting ALLOW_SNAPSHOT_ISOLATION was
enabled for the database (see Chapter 22 for more information on ALTER DATABASE):

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT ISOLATION ON
GO

This option had to be ON in order to start a snapshot transaction. In the next line of code, the
database context was changed, and SET TRANSACTION ISOLATION LEVEL was setto SNAPSHOT:

USE AdventureWorks
GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
GO

A transaction was then opened and a query against Sales.CurrencyRate was performed:
BEGIN TRAN

SELECT CurrencyRatelD,
EndOfDayRate

FROM Sales.CurrencyRate

WHERE CurrencyRateID = 8317

In the second query editor session, the same Sales.CurrencyRate row being selected in the first
session query was modified:

USE AdventureWorks
GO

UPDATE Sales.CurrencyRate
SET EndOfDayRate = 1.00
WHERE CurrencyRateID = 8317

Back at the first query editor session, although the EndOfDayRate was changed to 1.0 in the sec-
ond session, executing the query again in the SNAPSHOT isolation level shows that the value of that
column was still 0.6862. This new isolation level provided a consistent view of the data as of the
beginning of the transaction. After committing the transaction, reissuing the query against Sales.
CurrencyRate revealed the latest value.

What if you decide to UPDATE a row in the snapshot session that was updated in a separate
session? Had the snapshot session attempted an UPDATE against CurrencyRateID 8317 instead of a
SELECT, an error would have been raised, warning you that an update was made against the original
row while in snapshot isolation mode:

Msg 3960, Level 16, State 1, Line 2

Cannot use snapshot isolation to access table 'Sales.CurrencyRate'
directly or indirectly in database 'AdventureWorks'.

Snapshot transaction aborted due to update conflict.

Retry transaction.

133

134

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Blocking

Blocking occurs when one transaction in a database session is locking resources that one or more
other session transactions wants to read or modify. Short-term blocking is usually OK and expected
for busy applications. However, poorly designed applications can cause long-term blocking, unnec-
essarily keeping locks on resources and blocking other sessions from reading or updating them.

In SQL Server, a blocked process remains blocked indefinitely or until it times out (based on
SET LOCK_TIMEOUT), the server goes down, the process is killed, the connection finishes its updates,
or something happens to the original transaction to cause it to release its locks on the resource.

Some reasons why long-term blocking can happen:

¢ Excessive row locks on a table without an index can cause SQL Server to acquire a table lock,
blocking out other transactions.

» Applications open a transaction and then request user feedback or interaction while the
transaction stays open. This is usually when an end user is allowed to enter data in a GUI
while a transaction remains open. While open, any resources referenced by the transaction
may be held with locks.

e Transactions BEGIN and then look up data that could have been referenced prior to the trans-
action starting.

¢ Queries use locking hints inappropriately, for example, if the application uses only a few
rows, but uses a table lock hint instead (for an overview of locking hints, see the recipes in
the section “Using Table Hints” in Chapter 15, which include a list of the available locking
hints).

e The application uses long-running transactions that update many rows or many tables
within one transaction (chunking large updates into smaller update transactions can help
improve concurrency).

Identifying and Resolving Blocking Issues

In this recipe, I'll demonstrate how to identify a blocking process, view the Transact-SQL being exe-
cuted by the process, and then forcibly shut down the active session’s connection (thus rolling back
any open work not yet committed by the blocking session). First, however, let’s go to a quick back-
ground on the commands used in this example.

This recipe demonstrates how to identify blocking processes with the SQL Server Dynamic
Management View sys.dm_os_waiting_tasks. This view is intended to be used instead of the sp_who
system stored procedure, which was used in previous versions of SQL Server.

After identifying the blocking process, this recipe will then use the sys.dm exec_sql_text
dynamic management function and sys.dm_exec_connections DMV used earlier in the chapter to
identify the SQL text of the query that is being executed—and then as a last resort, forcefully end the
process.

To forcefully shut down a wayward active query session, the KILL command is used. KILL
should only be used if other methods are not available, including waiting for the process to stop on
its own or shutting down or canceling the operation via the calling application. The syntax for KILL
is as follows:

KILL {spid | UOW} [WITH STATUSONLY]

The arguments for this command are described in Table 3-5.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

Table 3-5. KILL Command Arguments

Argument Description

spid This indicates the session ID associated with the active database connection to
be shut down.

UOoW This is the unit-of-work identifier for a distributed transaction, which is the
unique identifier of a specific distributed transaction process.

WITH STATUSONLY Some KILL statements take longer to roll back a transaction than others
(depending on the scope of updates being performed by the session). In order
to check the status of a rollback, you can use WITH STATUSONLY to get an
estimate of rollback time.

Beginning the example, the following query is executed in the first query editor session in order
to set up a blocking process:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400

WHERE ProductID = 1 AND

LocationID = 1

Next, in a second query editor window, the following query is executed:
BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 406

WHERE ProductID = 1 AND

LocationID = 1

Now in a third query editor window, I'll execute the following query:

SELECT blocking session_id, wait_duration_ms, session_id
FROM sys.dm os waiting tasks
WHERE blocking session_id IS NOT NULL

This returns

blocking session_id wait duration_ms session_id
54 27371 55

This query identified that session 54 is blocking session 55.

To see what session 54 is doing, I execute the following query in the same window as the previ-
ous query:
SELECT t.text
FROM sys.dm_exec_connections c

CROSS APPLY sys.dm exec_sql text (c.most recent sql handle) t
WHERE c.session id = 54

This returns

text
BEGIN TRAN

135

136

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

UPDATE Production.ProductInventory
SET Quantity = 400

WHERE ProductID = 1 AND
LocationID = 1

Next, to forcibly shut down the session, execute this query:
KILL 54

This returns

Command(s) completed successfully.

The second session’s UPDATE is then allowed to proceed once the other session’s connection is
removed.

How It Works

The recipe demonstrated blocking by executing an UPDATE against the Production.ProductInventory
table with a transaction that was opened but not committed. In a different session, a similar query
was executed against the same table and the same row. Because the other connection’s transaction
never committed, the second connection must wait in line indefinitely before it has a chance to
update the record.

In a third Query Editor window, the sys.dm_os_waiting_tasks Dynamic Management View was
queried, returning information on the session being blocked by another session.

When troubleshooting blocks, you'll want to see exactly what the blocking session_id is doing.
To view this, the recipe used a query against sys.dm _exec_connections and sys.dm_exec_sql text.
The sys.dm_exec_connections DMV was used to retrieve the most_recent_sql_handle column for
session_id 53.This is a pointer to the SQL text in memory, and was used as an input parameter for
the sys.dm_exec_sql _text dynamic management function. The text column is returned from
sys.dm_exec_sql_text displaying the SQL text of the blocking process.

Note Often blocks chain, and you must work your way through each blocked process up to the original block-
ing process using the blocking_session_id and session_id columns.

KILL was then used to forcibly end the blocking process, but in a production scenario, you'll
want to see whether the process is valid, and if so, whether it should be allowed to complete or if it
can be shut down or cancelled using the application (by the application end user, for example).
Prior to stopping the process, be sure that you are not stopping a long-running transaction that is
critical to the business, like a payroll update, for example. If there is no way to stop the transaction
(for example, the application that spawned it cannot commit the transaction), you can use the KILL
command (followed by the SPID to terminate).

Configuring How Long a Statement Will Wait for a Lock to
Be Released

When a transaction or statement is being blocked, this means it is waiting for a lock on a resource to
be released. This recipe demonstrates the SET LOCK_TIMEOUT option, which specifies how long the
blocked statement should wait for a lock to be released before returning an error.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

The syntax is as follows:
SET LOCK_TIMEOUT timeout_period

The timeout period is the number of milliseconds before a locking error will be returned. In
order to set up this recipe’s demonstration, I will execute the following batch:

BEGIN TRAN

UPDATE Production.ProductInventory
SET Quantity = 400

WHERE ProductID = 1 AND
LocationID = 1

In a second query window, this example demonstrates setting up a lock timeout period of one
second (1000 milliseconds):

SET LOCK_TIMEOUT 1000
UPDATE Production.ProductInventory
SET Quantity = 406

WHERE ProductID = 1 AND
LocationID = 1

After one second (1000 milliseconds), I receive the following error message:

Msg 1222, Level 16, State 51, Line 3
Lock request time out period exceeded.
The statement has been terminated.

How It Works

In this recipe, the lock timeout is set to 1000 milliseconds (1 second). This setting doesn’t impact
how long a resource can be held by a process, only how long it has to wait for another process to
release access to the resource.

Deadlocking

Deadlocking occurs when one user session (let’s call it Session 1) has locks on a resource that
another user session (let’s call it Session 2) wants to modify, and Session 2 has locks on resources
that Session 1 needs to modify. Neither Session 1 nor Session 2 can continue until the other releases
the locks, so SQL Server chooses one of the sessions in the deadlock as the deadlock victim.

Note A deadlock victim has its session killed and transactions rolled back.

Some reasons why deadlocks can happen:

» The application accesses tables in different order. For example, Session 1 updates Customers
and then Orders, whereas Session 2 updates Orders and then Customers. This increases the
chance of two processes deadlocking, rather than them accessing and updating a table in a
serialized (in order) fashion.

137

Download from Wow! eBook <www.wowebook.com>

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

» The application uses long-running transactions, updating many rows or many tables within
one transaction. This increases the surface area of rows that can cause deadlock conflicts.

¢ In some situations, SQL Server issues several row locks, which it later decides must be esca-
lated to a table lock. If these rows exist on the same data pages, and two sessions are both
trying to escalate the lock granularity on the same page, a deadlock can occur.

Identifying Deadlocks with a Trace Flag

If you are having deadlock trouble in your SQL Server instance, this recipe demonstrates how to
make sure deadlocks are logged to the SQL Server Management Studio SQL log appropriately using
the DBCC TRACEON, DBCC TRACEOFF, and DBCC TRACESTATUS commands. These functions enable, dis-
able, and check the status of trace flags.

Tip There are other methods in SQL Server for troubleshooting deadlocks, such as using SQL Profiler, but since
this book is Transact-SQL focused, | don’t cover them here.

Trace flags are used within SQL Server to enable or disable specific behaviors for the SQL
Server instance. By default, SQL Server doesn't return significant logging when a deadlock event
occurs. Using trace flag 1222, information about locked resources and types participating in a
deadlock are returned in an XML format, helping you troubleshoot the event.

The DBCC TRACEON command enables trace flags. The syntax is as follows:

DBCC TRACEON (trace# [,...n][,-1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-6.

Table 3-6. DBCC TRACEON Command Arguments

Argument Description
tracett This specifies one or more trace flag numbers to enable.
-1 When -1 is designated, the specified trace flags are enabled globally.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

The DBCC TRACESTATUS command is used to check on the status (enabled or disabled) for a spe-
cific flag or flags. The syntax is as follows:

DBCC TRACESTATUS ([[trace#t [,...n 1 1 [,][-2]171) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-7.

Table 3-7. DBCC TRACESTATUS Command Arguments

Argument Description
tracett This specifies one or more trace flag numbers to check the status of.
-1 This shows globally enabled flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

The DBCC TRACEOFF command disables trace flags. The syntax is as follows:
DBCC TRACEOFF (trace# [,...n] [, -1]) [WITH NO_INFOMSGS]

The arguments for this command are described in Table 3-8.

Table 3-8. DBCC TRACEOFF Command Arguments

Argument Description
tracett This indicates one or more trace flag numbers to disable.
-1 This disables the globally set flags.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses informational
messages from the DBCC output.

In order to demonstrate this recipe, a deadlock will be simulated. In a new query editor win-
dow, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 1494

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID = 1492

COMMIT TRAN
END

In a second query editor window, the following query is executed:

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

WHILE 1=1
BEGIN
BEGIN TRAN

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID = 1492

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 1494

COMMIT TRAN
END

139

140

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

After a few seconds, check each query editor window until the following error message appears
on one of the query editors:

Msg 1205, Level 13, State 51, Line 9

Transaction (Process ID 53) was deadlocked on lock resources
with another process and has been chosen as the deadlock victim.
Rerun the transaction.

Looking at the SQL log in SQL Server Management Studio, the deadlock event was not logged.
I'll now open a third query editor window and execute the following command:
DBCC TRACEON (1222, -1)

GO
DBCC TRACESTATUS

DBCC TRACESTATUS shows the active traces running for both the local session and globally:

TraceFlag Status Global Session
1222 1 1 0

To simulate another deadlock, I'll restart the “winning” connection query (the one that wasn'’t
killed in the deadlock), and then the deadlock losing session, causing another deadlock after a few
seconds.

After the deadlock has occurred, I stop the other executing query. Now the SQL log in SQL
Server Management Studio contains a detailed error message from the deadlock event, including
the database and object involved, the lock mode, and the Transact-SQL statements involved in the
deadlock.

For example, when deadlocks occur, you'll want to make sure to find out the queries that are
involved in the deadlock, so you can troubleshoot them accordingly. The following excerpt from the
log shows a deadlocked query:

09/15/2008 20:20:00,spid15s,Unknown,
UPDATE [Purchasing].[Vendor] set [CreditRating] = @1
WHERE [BusinessEntityID]=@2

From this we can tell which query was involved in the deadlocking, which is often enough to
get started with a solution. Other important information you can retrieve by using trace 1222
includes the login name of the deadlocked process, the client application used to submit the query,
and the isolation level used for its connection (letting you know whether that connection is using an
isolation level that doesn’t allow for much concurrency):

. clientapp=Microsoft SOL Server Management Studio - Query hostname=CAESAR
hostpid=2388 loginname=CAESAR\Administrator isolationlevel=serializable (4)
xactid=1147351 currentdb=8 lockTimeout=4294967295
clientoption1=673187936 clientoption2=390200

After examining the SQL log, disable the trace flag in the query editor:

DBCC TRACEOFF (1222, -1)
GO
DBCC TRACESTATUS

CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

How It Works

In this recipe, I simulated a deadlock using two separate queries that updated the same rows
repeatedly: updating two rows in the opposite order. When a deadlock occurred, the error message
was logged to the query editor window, but nothing was written to the SQL log.

To enable deadlock logging to the SQL log, the recipe enabled the trace flag 1222. Trace 1222
returns detailed deadlock information to the SQL log. The -1 flag indicated that trace flag 1222
should be enabled globally for all SQL Server connections. To turn on a trace flag, DBCC TRACEON was
used, with the 1222 flag in parentheses:

DBCC TRACEON (1222, -1)
To verify that the flag was enabled, DBCC TRACESTATUS was executed:
DBCC TRACESTATUS

After encountering another deadlock, the deadlock information was logged in the SQL log.
The flag was then disabled using DBCC TRACEOFF:

DBCC TRACEOFF (1222, -1)

Setting Deadlock Priority

You can increase a query session’s chance of being chosen as a deadlock victim by using the SET
DEADLOCK_PRIORITY command. The syntax for this command is as follows:

SET DEADLOCK PRIORITY { LOW | NORMAL | HIGH | <numeric-priority> }

The arguments for this command are described in Table 3-9.

Table 3-9. SET DEADLOCK_PRIORITY Command Arguments

Argument Description

LOW LOW makes the current connection the likely deadlock victim.

NORMAL NORMAL lets SQL Server decide based on which connection seems least
expensive to roll back.

HIGH HIGH lessens the chances of the connection being chosen as the victim,
unless the other connection is also HICH or has a numeric priority greater
than 5.

<numeric-priority> The numeric priority allows you to use a range of values from -10 to 10,
where -10 is the most likely deadlock victim, up to 10 being the least likely
to be chosen as a victim. The higher number between two participants in a
deadlock wins.

For example, had the first query from the previous recipe used the following deadlock priority
command, it would almost certainly have been chosen as the victim (normally, the default deadlock
victim is the connection SQL Server deems least expensive to cancel and roll back):

SET NOCOUNT ON
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
SET DEADLOCK PRIORITY LOW

BEGIN TRAN

141

142 CHAPTER 3 © TRANSACTIONS, LOCKING, BLOCKING, AND DEADLOCKING

UPDATE Purchasing.Vendor
SET CreditRating = 1
WHERE BusinessEntityID = 2

UPDATE Purchasing.Vendor
SET CreditRating = 2
WHERE BusinessEntityID =1

COMMIT TRAN

How It Works

You can also set the deadlock priority to HIGH and NORMAL. HIGH means that unless the other session
is of the same priority, it will not be chosen as the victim. NORMAL is the default behavior and will be
chosen if the other session is HIGH, but not chosen if the other session is LOW. If both sessions have
the same priority, the least expensive transaction to roll back will be chosen.

CHAPTER 4

Tables

In this chapter, I'll present recipes that demonstrate table creation and manipulation. Tables are
used to store data in the database and make up the central unit upon which most SQL Server data-
base objects depend. Tables are uniquely named within a database and schema and contain one or
more columns. Each column has an associated data type that defines the kind of data that can be
stored within it.

Tip SQL Server 2008 includes new date types for handling date and time, hierarchy, space (geography and
geometry), and the FILESTREAM attribute. I'll discuss the hierarchical and spatial data types in Chapter 14 and
cover the FILESTREAM attribute in this chapter.

AsT've done in the previous chapters, I'll provide basic table recipes throughout, and break
them up with walkthroughs of more complex functionality. Regarding new features introduced in
SQL Server 2008, I'll demonstrate the sparse column improvement in the “Reducing Storage for Null
Columns” recipe. Also, in the “Manageability for Very Large Tables” section, I'll introduce the new
data compression functionality available in the Enterprise Edition and Developer Edition of SQL
Server 2008.

Caution If you decide to follow along with some of these recipes, consider backing up the AdventureWorks
database beforehand, so that you can restore it to a clean version once you are finished.

Table Basics

You can create a table using the CREATE TABLE command. The full syntax is quite extensive, so this
chapter will build upon the different areas of the command as the chapter progresses. The simpli-
fied syntax is as follows:

CREATE TABLE
[database name . [schema_name] . | schema_name .] table name
(column_name <data_type> [NULL | NOT NULL] [,...n])

The arguments of this command are described in Table 4-1.

143

144

CHAPTER 4 © TABLES

Table 4-1. CREATE TABLE Arguments

Argument

Description

[database name . [schema name] .

| schema_name .] table name

column_name
data_type

NULL | NOT NULL

This argument indicates that you can qualify the
new table name using the database, schema, and table
name, or just the schema and table name.

This argument defines the name of the column.

This argument specifies the column’s data type (data
types are described next).

The NULL | NOT NULL option refers to the column
nullability. Nullability defines whether a column can
contain a NULL value. A NULL value means that the
value is unknown. It does not mean that the column
is zero, blank, or empty.

Each column requires a defined data type. The data type defines and restricts the type of data

the column can hold.

Table 4-2 details the system data types available in SQL Server.

Table 4-2. SQL Server Data Types

Data Type

Value Range

bigint

binary

bit
char

date

datetime

datetime2

datetimeoffset

This specifies a whole number from -2/63
(-9,223,372,036,854,775,808) through 263 -1
(9,223,372,036,854,775,807).

This specifies fixed-length binary data with a maximum of
8000 bytes.

This specifies a whole number, either 0 or 1.

This specifies fixed-length character data with maximum
length of 8000 characters.

This stores dates to an accuracy of 1 day, ranging from
1-01-01 through 9999-12-31.

This provides date and time storage with an accuracy of
0.333 seconds, ranging from January 1, 1753, through
December 31, 9999. (1753 was the year following the
adoption of the Gregorian calendar, which produced a
difference in days to the previous calendar of 12 days.
Beginning with the year 1753 sidesteps all sorts of
calculation problems.)

This stores date and time to an accuracy of 100
nanoseconds, ranging from 1-01-01 00:00:00.0000000
through 9999-12-31 23:59:59.9999999.

The time zone offset is the difference in time between a
specific time zone and Coordinated Universal Time (UTC).
You can use this new data type with the SYSDATETIMEOFFSET
system function to store the current system timestamp
along with the database time zone. You can also use this
data type with the SWITCHOFFSET function to change the time
zone offset by a specific increment/decrement. This data
type is stored within an accuracy of 100 nanoseconds,
ranging from 1-01-01 00:00:00.0000000 through 9999-12-31
23:59:59.9999999.

CHAPTER 4 © TABLES

Data Type

Value Range

decimal or numeric (no difference
between the two)

float

geography and geometry

hierarchyid

int

money

nchar

nvarchar

real
smalldatetime

smallint
smallmoney

sql_variant

table

time
timestamp

tinyint

This stores data ranging from —10/38 +1 through 10738 -1.
decimal uses precision and scale. Precision determines
maximum total number of decimal digits, both left and right
of the decimal point. Scale determines maximum decimal
digits to the right of the decimal point.

This specifies a floating-precision number from -1.79E + 308
to -2.23E-308, 0, and 2.23E — 308 to 1.79E + 308.

These specify native storage of spatial data. The geometry
data type represents flat-earth (Euclidean) coordinate
spatial data and also allows for storage of points, polygons,
curves, and collections. The geography data type is used for
round-earth spatial storage, allowing for latitude and
longitude coordinates and storage of points, polygons,
curves, and collections. These data types are new to SQL
Server 2008 and are discussed in Chapter 14.

This natively stores a position within a tree hierarchy. This
data type is new to SQL Server 2008 and is discussed in
Chapter 14.

This specifies a whole number from —2/31 (-2,147,483,648)
through 2A31-1 (2,147,483,647).

This specifies a monetary value between —2/63
(-922,377,203,685,477.5808) through 2/63-1
(+922,337,203,685,477.5807).

This specifies a fixed-length Unicode character data with a
maximum length of 4000 characters.

This specifies variable-length Unicode character data with a
maximum length of 4000 characters. SQL Server also has the
max option, which allows you to store up to 2A31-1bytes.
This option allows you to use the regular data types instead
of SQL Server 2000’s text, ntext, and image.

This specifies a floating-precision number from -3.40E + 38
to-1.18E-38, 0, and 1.18E - 38 to 3.40E + 38.

This indicates the date and time from January 1, 1900,
through June 6, 2079.

This specifies a whole number from -32,768 through 32,767.

This specifies a monetary value between -214,748.3648
through +214,748.3647.

This data type can store all data types except text, ntext,
timestamp, varchar (max), nvarchar (max), varbinary(max),
xml, image, user-defined types, and another sql_variant.

The table data type can’t be used in CREATE TABLE as a
column type. Instead, it is used for table variables or for
storage of rows for a table-valued function.

This stores the time to an accuracy of 100 nanoseconds,
ranging from 00:00:00.0000000 to 23:59:59.9999999.

This specifies a database-wide unique number that is
updated when a row is modified.

This specifies a whole number from 0 through 255.

Continued

145

146

CHAPTER 4 © TABLES

Table 4-2. Continued

Data Type

Value Range

uniqueidentifier
varbinary

varchar

xml

This stores a 16-byte globally unique identifier (GUID).

This specifies variable-length data with a maximum of 8000
bytes. SQL Server also has the max value, which allows you to
store up to 2431 —-1bytes. This option allows you to use the
regular data types instead of SQL Server 2000’s text, ntext,
and image.

This specifies variable-length character data with a
maximum length of 8,000 characters. SQL Server also has
the max value, which allows you to store up to 2A31 —1bytes.
This option allows you to use the regular data types instead
of SQL Server 2000’s text, ntext, and image.

This data type stores native XML data.

Following are some basic guidelines when selecting data types for your columns:

¢ Store character data types in character type columns (char, nchar, varchar, nvarcht),
numeric data in numeric type columns (int, bigint, tinyint, smallmoney, money,
decimal\numeric, float), and date and/or time data in smalldate, date, datetime2, time,
datetimeoffset, or datetime data types. For example, although you can store numeric and
datetime information in character-based fields, doing so may slow down your performance
when attempting to utilize the column values within mathematical or other Transact-SQL

functions.

e Ifyour character data type columns use the same or a similar number of characters consis-
tently, use fixed-length data types (char, nchar). Fixed-length columns consume the same
amount of storage for each row, whether or not they are fully utilized. If, however, you expect
that your character column’s length will vary significantly from row to row, use variable-
length data types (varchar, nvarchar). Variable-length columns have some storage overhead
tacked on; however, they will only consume storage for characters used. Only use char or
nchar if you are sure that you will have consistent lengths in your strings, and that most of
your string values will be present.

¢ Choose the smallest numeric or character data type required to store the data. You may be
tempted to select data types for columns that use more storage than is necessary, resulting in
wasted storage. Conserving column space, particularly for very large tables, can increase the
number of rows that can fit on an 8KB data page, reduce total storage needed in the data-
base, and potentially improve index performance (smaller index keys).

A table can have up to 1024 columns (with the exception of sparse columns as of SQL Server
2008 RTM), but can't exceed a total of 8060 actual used bytes per row. A data page size is 8KB,
including the header, which stores information about the page. This byte limit is not applied to
the large object data types varchar(max), nvarchar(max), varbinary(max), text, image, or xml.

Another exception to the 8060-byte limit rule is SQL Server’s row overflow functionality for reg-
ular varchar, nvarchar, varbinary, and sql_variant data types. If the lengths of these individual
data types do not exceed 8,000 bytes, but the combined width of more than one of these columns
together in a table exceeds the 8060-byte row limit, the column with the largest width will be
dynamically moved to another 8KB page and replaced in the original table with a 24-byte pointer.
Row overflow provides extra flexibility for managing large row sizes, but you should still limit your
potential maximum variable data type length in your table definition when possible, as reliance on

CHAPTER 4 © TABLES

page overflow may decrease query performance, as more data pages need to be retrieved by a single
query.

Creating a Table

In this recipe, I will create a simple table called EducationType owned by the Person schema:
USE AdventureWorks

GO

CREATE TABLE Person.EducationType
(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

How It Works

In this example, a very simple, two-column table was created within the AdventurelWorks database
using the Person schema. The first line of code shows the schema and table name:

CREATE TABLE Person.EducationType

The column definition follows on the second line of code within the parentheses:

(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

The first column name, EducationTypeID, was defined with an integer data type and NOT NULL
specified (meaning that NULL values are not allowed for this column). The second column was the
EducationTypeNM column name with a data type of varchar(40) and the NOT NULL option.

In the next recipe, you'll learn how to add additional columns to an existing table.

Adding a Column to an Existing Table

After a table is created, you can modify it using the ALTER TABLE command. Like CREATE TABLE, this
chapter will demonstrate the ALTER TABLE and CREATE TABLE functionality in task-based parts. In
this recipe, I demonstrate how to add a column to an existing table.

The specific syntax for adding a column is as follows:

ALTER TABLE table name
ADD { column_name data_type } NULL

Table 4-3 details the arguments of this command.

Table 4-3. ALTER TABLE ADD Column Arguments

Argument Description

table name The table name you are adding the column to
column_name The name of the column

data_type The column’s data type

This example demonstrates adding a column to an existing table (note that using this method
adds the column to the last column position in the table definition):

ALTER TABLE HumanResources.Employee
ADD Latest EducationTypeID int NULL

147

Download from Wow! eBook <www.wowebook.com>

148

CHAPTER 4 © TABLES

How It Works

ALTER TABLE was used to make modifications to an existing table. The first line of code designated
the table to have the column added to:

ALTER TABLE HumanResources.Employee

The second line of code defined the new column and data type:

ADD Latest EducationTypeID int NULL

When adding columns to a table that already has data in it, you will be required to add the col-
umn with NULL values allowed. You can't specify that the column be NOT NULL, because you cannot
add the column to the table and simultaneously assign values to the new column. By default, the
value of the new column will be NULL for every row in the table.

Changing an Existing Column Definition

In addition to adding new columns to a table, you can also use ALTER TABLE to modify an existing
column’s definition.
The syntax for doing this is as follows:

ALTER TABLE table_name
ALTER COLUMN column_name
[type _name] [NULL | NOT NULL] [COLLATE collation name]

Table 4-4 details the arguments of this command.

Table 4-4. ALTER TABLE...ALTER COLUMN Arguments

Argument Description

table name The table name containing the column to be modified.
column_name The name of the column to modify.

type name The column’s data type to modify.

NULL | NOT NULL The nullability option to modify.

COLLATE collation name The column collation (for character-based data types) to modify.

Collations define three settings: a code page used to store non-
Unicode character data types, the sort order for non-Unicode
character data types, and the sort order for Unicode data types.
Collations are reviewed later on in the chapter in the section
“Collation Basics.”

This example demonstrates how to change an existing table column’s nullability and data type.
The Gender column in the HumanResources.Employee table is originally NOT NULL, and the original
data type of the LoginID column is nvarchar (256):

-- Make it Nullable
ALTER TABLE HumanResources.Employee
ALTER COLUMN Gender nchar(1) NULL

-- Expanded nvarchar(256) to nvarchar(300)
ALTER TABLE HumanResources.Employee
ALTER COLUMN LoginID nvarchar(300) NOT NULL

CHAPTER 4 © TABLES

How It Works

In this recipe, two columns were modified in the HumanResources. Employee table. The ALTER COLUMN
modified the Gender column to allow NULL values, although the data type remained the same:

ALTER COLUMN Gender nchar(1) NULL

In the second ALTER TABLE, the LoginID column’s data type of nvarchar(256) was expanded to
nvarchar(300):

ALTER COLUMN LoginID nvarchar(300) NOT NULL

There are limitations to the kind of column changes that can be made. For example, you
can't alter a column that is used in an index unless the column data type is varchar, nvarchar, or
varbinary—and even then, the new size of that data type must be larger than the original size. You
also can’'t use ALTER COLUMN on columns referenced in a primary key or foreign key constraint. The
full list of other column modification limitations (and there are quite a few) are documented in
SQL Server Books Online.

Creating a Computed Column

A column defined within a CREATE TABLE or ALTER TABLE statement can be derived from a freestand-
ing or column-based calculation. Computed columns are sometimes useful when a calculation
must be recomputed on the same data repeatedly in referencing queries. A computed column is
based on an expression defined when you create or alter the table, and is not physically stored in
the table unless you use the PERSISTED keyword.

In this recipe, I'll give a demonstration of creating a computed column, as well as presenting
ways to take advantage of SQL Server 2005’s PERSISTED option. The syntax for adding a computed
column either by CREATE or ALTER TABLE is as follows:

column_name AS computed column_expression
[PERSISTED]

The column_name is the name of the new column. The computed column_expression is the
calculation you wish to be performed in order to derive the column’s value. Adding the PERSISTED
keyword actually causes the results of the calculation to be physically stored.

In this example, a new, calculated column is added to an existing table:

ALTER TABLE Production.TransactionHistory
ADD CostPerUnit AS (ActualCost/Quantity)

The previous example created a calculated column called CostPerUnit. This next query takes
advantage of it, returning the highest CostPerUnit for quantities over 10:

SELECT TOP 1 CostPerUnit, Quantity, ActualCost
FROM Production.TransactionHistory

WHERE Quantity > 10

ORDER BY ActualCost DESC

This returns

CostPerUnit Quantity ActualCost
132.0408 13 1716.5304

The next example creates a PERSISTED calculated column, which means the calculated data will
actually be physically stored in the database (but still automatically calculated by SQL Server):

149

150

CHAPTER 4 © TABLES

CREATE TABLE HumanResources.CompanyStatistic

(CompanyID int NOT NULL,

StockTicker char(4) NOT NULL,

SharesOutstanding int NOT NULL,

Shareholders int NOT NULL,

AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED)

How It Works

The first example added a new, non-persisted column called CostPerUnit to the Production.
TransactionHistory table, allowing it to be referenced in SELECT queries like a regular table column:

ADD CostPerUnit AS (ActualCost/Quantity)

Computed columns can’t be used within a DEFAULT or FOREIGN KEY constraint. A calculated col-
umn can't be explicitly updated or inserted into (since its value is always derived).

Computed columns can be used within indexes, but must meet certain requirements, such as
being deterministic (always returning the same result for a given set of inputs) and precise (not con-
taining float values).

The second example demonstrated using a computed column in a CREATE TABLE command:

AvgSharesPerShareholder AS (SharesOutStanding/Shareholders) PERSISTED

Unlike the first example, adding the PERSISTED keyword means that the data is actually physi-
cally stored in the database. Any changes made to columns that are used in the computation will
cause the stored value to be updated again. The stored data still can’t be modified directly—the data
is still computed. Storing the data does mean, however, that the column can be used to partition a
table (see the “Implementing Table Partitioning” recipe later in the chapter), or can be used in an
index with an imprecise (float-based) value—unlike its non-persisted version.

Reducing Storage for Null Columns

SQL Server 2008 introduces sparse columns, a storage optimization improvement that enables zero-
byte storage of NULL values. Consequently, this allows a large number of sparse columns to be
defined for a table (as of this writing, 30,000 sparse columns are allowed). This improvement is ideal
for database designs and applications requiring a high number of infrequently populated columns
or for tables having sets of columns related only with a subset of the data stored in the table.

To define a sparse column, you need only add the SPARSE storage attribute after the column
definition within a CREATE or ALTER TABLE command, as the following query demonstrates:

CREATE TABLE dbo.WebsiteProduct

(WebsiteProductID int NOT NULL PRIMARY KEY IDENTITY(1,1),
ProductNM varchar(255) NOT NULL,

PublisherNM varchar(255) SPARSE NULL,

ArtistNM varchar(150) SPARSE NULL,

ISBNNBR varchar(30) SPARSE NULL,

DiscsNBR int SPARSE NULL,

MusiclLabelNM varchar(255) SPARSE NULL)

The previous table takes a somewhat denormalized approach to creating columns that apply
only to specific product types. For example, the PublisherNM and ISBNNBR columns apply to a book
product, whereas DiscsNBR, ArtistNM, and MusiclLabelNM will more often apply to a music product.
When a product row is stored, the sparse columns that do not apply to it will not incur a storage cost
for each NULL value.

CHAPTER 4 © TABLES

Continuing the demonstration, I'll insert two new rows into the table (one representing a book
and one a music album):

INSERT dbo.WebsiteProduct
(ProductNM, PublisherNM, ISBNNBR)
VALUES
('SQL Server 2008 Transact-SQL Recipes',
'Apress’,
'1590599802")

INSERT dbo.WebsiteProduct
(ProductNM, ArtistNM, DiscsNBR, MusiclabelNM)
VALUES
('Etiquette’,

'Casiotone for the Painfully Alone’,

1,
'Tomlab")

Sparse columns can be queried using a couple of methods. The following is an example of

using a standard method of querying:

SELECT ProductNM, PublisherNM,ISBNNBR
FROM dbo.WebsiteProduct
WHERE ISBNNBR IS NOT NULL

This returns

ProductNM PublisherNM ISBNNBR
SOL Server 2008 Transact-SQL Recipes Apress 1590599802

The second method is to use a column set. A column set allows you to logically group all sparse
columns defined for the table. This xml data type calculated column allows for SELECTs and data
modification and is defined by designating COLUMN_SET FOR ALL_SPARSE_COLUMNS after the column
definition. You can only have one column set for a single table, and you also can’t add one to a table
that already has sparse columns defined in it. In this next example, I'll re-create the previous table
with a column set included:

DROP TABLE dbo.WebsiteProduct

CREATE TABLE dbo.WebsiteProduct

(WebsiteProductID int NOT NULL PRIMARY KEY IDENTITY(1,1),
ProductNM varchar(255) NOT NULL,

PublisherNM varchar(255) SPARSE NULL,

ArtistNM varchar(150) SPARSE NULL,

ISBNNBR varchar(30) SPARSE NULL,

DiscsNBR int SPARSE NULL,

MusiclLabelNM varchar(255) SPARSE NULL,

ProductAttributeCS xml COLUMN_SET FOR ALL_ SPARSE COLUMNS)

-- Re-insert data

INSERT dbo.WebsiteProduct

(ProductNM, PublisherNM, ISBNNBR)
VALUES

('SQL Server 2008 Transact-SQL Recipes',
'Apress’,

'1590599802")

151

152

CHAPTER 4 © TABLES

INSERT dbo.WebsiteProduct

(ProductNM, ArtistNM, DiscsNBR, MusiclabelNM)
VALUES

('Etiquette’,

'Casiotone for the Painfully Alone’,

1,
"Tomlab")

Now that the column set is defined, I can reference it instead of the individual sparse columns:

SELECT ProductNM, ProductAttributeCS
FROM dbo.WebsiteProduct
WHERE ProductNM IS NOT NULL

This returns

ProductNM ProductAttributeCsS

SOL Server 2008 Transact-SQL Recipes <PublisherNM>Apress</PublisherNM><ISBNNBR>
1590599802</ISBNNBR>

Etiquette <ArtistNM>Casiotone for the Painfully Alone

</ArtistNM><DiscsNBR>1</DiscsNBR>< MusiclLabelNM>
Tomlab</ MusiclLabelNM>

As you can see from the previous results, each row shows untyped XML data that displays ele-
ments for each non-NULL column value.

I can use both an INSERT and UPDATE to modify the values across all sparse columns. The follow-
ing query demonstrates adding a new row:

INSERT dbo.WebsiteProduct
(ProductNM,ProductAttributeCs)
VALUES
('Roots & Echoes',
'<ArtistNM>The Coral</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusiclabelNM>Deltasonic</ MusicLabelNM>")

Any sparse columns not referenced in my DML operation will be set to a NULL value. Once a
column set is defined for a table, performing a SELECT * query no longer returns each individual
sparse column, as the following query demonstrates (only non-sparse columns and then the
column set):

SELECT *
FROM dbo.WebsiteProduct

WebsiteProductID ProductNM ProductAttributeCS

1 SOL Server 2008 Transact-SQL Recipes <PublisherNM>Apress
</PublisherNM><ISBNNBR>
1590599802</ISBNNBR>

2 Etiquette <ArtistNM>Casiotone for the

Painfully Alone</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusiclLabelNBR>Tomlab
</MusiclLabelNBR>

3 Roots & Echoes <ArtistNM>The Coral</ArtistNM>
<DiscsNBR>1</DiscsNBR>
<MusiclLabelNM>Deltasonic
</MusicLabelNNM>

CHAPTER 4 © TABLES

You still, however, have the option of explicitly naming each sparse column you wish to see,
rather than viewing the entire sparse column:
SELECT ProductNM, ArtistNM

FROM dbo.WebsiteProduct
WHERE ArtistNM IS NOT NULL

This returns

ProductNM ArtistNM
Etiquette Casiotone for the Painfully Alone
Roots & Echoes The Coral

How It Works

The sparse column storage attribute allows you to store up to 30,000 infrequently populated
columns on a single table. As demonstrated in this recipe, defining a column as SPARSE is as simple
as adding the name within the column definition:

CREATE TABLE dbo.WebsiteProduct

ArtistNM varchar(150) SPARSE NULL,

Most data types are allowed for a sparse column, with the exception of the image, ntext, text,
timestamp, geometry, geography, or user-defined data types.

Caution Sparse columns also add more required space for non-null values than for regular non-sparse,
non-null columns.

This recipe also demonstrated the use of a column set, which was defined within the column
definition during the CREATE TABLE (but can also be added using ALTER TABLE if no other column set
or sparse columns exist):

CREATE TABLE dbo.WebsiteProduct

ProductAttributeCS xml COLUMN_SET FOR ALL_SPARSE_COLUMNS)

The column set becomes particularly useful when a table has thousands of sparse tables, as it
allows you to avoid directly referencing each sparse column name in your query. The column set
allows querying and DML operations. When performing an INSERT or UPDATE, all unreferenced
sparse columns are set to NULL and have zero-byte storage.

Dropping a Table Column

You can use ALTER TABLE to drop a column from an existing table.
The syntax for doing so is as follows:

ALTER TABLE table name
DROP COLUMN column_name

Table 4-5 details the arguments of this command.

153

154

CHAPTER 4 © TABLES

Table 4-5. ALTER TABLE... DROP COLUMN Arguments

Argument Description
table name The table name containing the column to be dropped
column_name The name of the column to drop from the table

This recipe demonstrates how to drop a column from an existing table:

ALTER TABLE HumanResources.Employee
DROP COLUMN Latest EducationTypeID

How It Works
The first line of code designated the table for which the column would be dropped:

ALTER TABLE HumanResources.Employee

The second line designated the column to be dropped from the table (along with any data
stored in it):

DROP COLUMN Latest EducationTypeID

You can drop a column only if it isn’'t being used in a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK
CONSTRAINT (these constraint types are all covered in this chapter). You also can’'t drop a column
being used in an index or that has a DEFAULT value bound to it.

Reporting Table Information

The system stored procedure sp_help returns information about the specified table, including the
column definitions, IDENTITY column, ROWGUIDCOL, filegroup location, indexes (and keys), CHECK,
DEFAULT, and FOREIGN KEY constraints, and referencing views.

The syntax for this system stored procedure is as follows:

sp_help [[@objname =] ' name ']

This example demonstrates how to report detailed information about the object or table (the
results aren’t shown here as they include several columns and multiple result sets):

EXEC sp_help 'HumanResources.Employee’

How It Works

The sp_help system stored procedure returns several different result sets with useful information
regarding the specific object (in this example, it returns data about the table HumanResources.
Employee). This system stored procedure can be used to gather information regarding other data-
base object types as well.

Dropping a Table

In this recipe, I'll demonstrate how to drop a table. The DROP command uses the following syntax:

DROP TABLE schema.tablename

CHAPTER 4 © TABLES

The DROP TABLE takes a single argument, the name of the table. In this example, the Person.
EducationType table is dropped:

DROP TABLE Person.EducationType

How It Works

The DROP command removes the table definition and its data permanently from the database. In
this example, the DROP command would have failed had another table been referencing the table’s
primary key in a foreign key constraint. If there are foreign key references, you must drop them first
before dropping the primary key table.

Collation Basics

If your database requires international or multilingual data storage, your default SQL Server
instance settings may not be sufficient for the task. This recipe describes how to view and manipu-
late code pages and sort order settings using collations. SQL Server collations determine how data is
sorted, compared, presented, and stored.

SQL Server allows two types of collations: Windows or SQL. Windows collations are the pre-
ferred selection, as they offer more options and match the same support provided with Microsoft
Windows locales. SQL collations are used in earlier versions of SQL Server and are maintained for
backward compatibility.

In addition to SQL Server and database-level collation settings, you can also configure individ-
ual columns with their own collation settings. If you need to store character data in a column that
uses a different default collation than your database or server-level collation, you use the COLLATE
command within the column definition.

The Windows or SQL collation can be explicitly defined during a CREATE TABLE or ALTER TABLE
operation for columns that use the varchar, char, nchar, and nvarchar data types.

Collations define three settings:

* A code page used to store non-Unicode character data types
e The sort order for non-Unicode character data types

e The sort order for Unicode data types

Your SQL Server instance’s default collation was determined during the install, where you
either used the default-selected collation or explicitly changed it. The next two recipes will demon-
strate how to view information about the collations on your SQL Server instance, as well as define
an explicit collation for a table column.

Viewing Collation Metadata

You can determine your SQL Server instance’s default collation by using the SERVERPROPERTY func-
tion and the Collation option. For example:

SELECT SERVERPROPERTY('Collation')

This returns (for this example’s SQL Server instance)

SOL_Latini General CP1_CI_AS

155

156

CHAPTER 4 © TABLES

In addition to the SQL Server instance’s default collation settings, your database can also have
a default collation defined for it. You can use the DATABASEPROPERTYEX system function to determine
a database’s default collation. For example, this next query determines the default database colla-
tion for the Adventurelorks database (first parameter is database name, second is the Collation
option to be viewed):

SELECT DATABASEPROPERTYEX ('AdventureWorks' , 'Collation')

This returns the following collation information for the database (which in this example is
going to be the same as the SQL Server instance default until explicitly changed):

SOL_Latini General CP1_CI_AS

Note See Chapter 8 for more information on the SERVERPROPERTY and DATABASEPROPERTYEX functions.

But what do the results of these collation functions mean? To determine the actual settings
that a collation applies to the SQL Server instance or database, you can query the table function
fn_helpcollations for a more user-friendly description. In this example, the collation description
is returned from the SOL_Latin1 General CP1 CI_AS collation:

SELECT description
FROM sys.fn_helpcollations()
WHERE name = 'SQL Latini General CP1 CI AS'

This returns the collation description:

description
Latini-General, case-insensitive, accent-sensitive, kanatype-insensitive, width-
insensitive for Unicode Data, SOL Server Sort Order 52 on Code Page 1252 for non-
Unicode Data

The results show a more descriptive breakdown of the collation’s code page, case sensitivity,
sorting, and Unicode options.

How It Works

This recipe demonstrated how to view the default collation for a SQL Server instance and for spe-
cific databases. You also saw how to list the collation’s code page, case sensitivity, sorting, and
Unicode options using fn_helpcollations. Once you know what settings your current database
environment is using, you may decide to apply different collations to table columns when interna-
tionalization is required. This is demonstrated in the next recipe.

Designating a Column’s Collation

In this recipe, I'll demonstrate how to designate the collation of a table column using the ALTER
TABLE command:

ALTER TABLE Production.Product
ADD IcelandicProductName nvarchar(50) COLLATE Icelandic CI AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian CI_AS

CHAPTER 4 © TABLES

How It Works

In this recipe, two new columns were added to the Production.Product table. The query began by
using ALTER TABLE and the table name:

ALTER TABLE Production.Product

After that, ADD was used, followed by the new column name, data type, COLLATE keyword, and
collation name (for a list of collation names, use the fn_helpcollations function described earlier):

ADD IcelandicProductName nvarchar(50) COLLATE Icelandic CI AI,
UkrainianProductName nvarchar(50) COLLATE Ukrainian CI_AS

Be aware that when you define different collations within the same database or across data-
bases in the same SQL Server instance, you can sometimes encounter compatibility issues.
Cross-collation joins don’t always work, and data transfers can result in lost or misinterpreted data.

Keys

A primary key is a special type of constraint that identifies a single column or set of columns, which
in turn uniquely identifies all rows in the table.

Constraints place limitations on the data that can be entered into a column or columns. A pri-
mary key enforces entity integrity, meaning that rows are guaranteed to be unambiguous and
unique. Best practices for database normalization dictate that every table should have a primary
key. A primary key provides a way to access the record and ensures that the key is unique. A primary
key column can’t contain NULL values.

Only one primary key is allowed for a table, and when a primary key is designated, an underly-
ing table index is automatically created, defaulting to a clustered index (index types are reviewed in
Chapter 5). You can also explicitly designate a nonclustered index be created when the primary key
is created instead, if you have a better use for the single clustered index allowed for a table. An index
created on primary key counts against the total indexes allowed for a table.

To designate a primary key on a single column, use the following syntax in the column
definition:

(column_name <data_type> [NULL | NOT NULL] PRIMARY KEY)

The key words PRIMARY KEY are included at the end of the column definition.

A composite primary key is the unique combination of more than one column in the table. In
order to define a composite primary key, you must use a table constraint instead of a column con-
straint. Setting a single column as the primary key within the column definition is called a column
constraint. Defining the primary key (single or composite) outside of the column definition is
referred to as a table constraint.

The syntax for a table constraint for a primary key is as follows:

CONSTRAINT constraint name PRIMARY KEY
(column [ASC | DESC] [,...n 1)

Table 4-6 details the arguments of this command.

157

Download from Wow! eBook <www.wowebook.com>

158

CHAPTER 4 © TABLES

Table 4-6. Table Constraint, Primary Key Arguments

Argument Description

constraint_name This specifies the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The column or columns that make up the primary key must

uniquely identify a single row in the table (no two rows can
have the same values for all the specified columns). The
ASC (ascending) and DESC (descending) options define the
sorting order of the columns within the clustered or
nonclustered index.

Foreign key constraints establish and enforce relationships between tables and help maintain
referential integrity, which means that every value in the foreign key column must exist in the
corresponding column for the referenced table. Foreign key constraints also help define domain
integrity, in that they define the range of potential and allowed values for a specific column or
columns. Domain integrity defines the validity of values in a column.

The basic syntax for a foreign key constraint is as follows:

CONSTRAINT constraint name
FOREICN KEY (column_name)
REFERENCES [schema_name.] referenced table name [(ref_column)]

Table 4-7 details the arguments of this command.

Table 4-7. Foreign Key Constraint Arguments

Argument Description
constraint_name The name of the foreign key constraint
column_name The column in the current table referencing the

primary key column of the primary key table

[schema_name.] referenced table name The table name containing the primary key being
referenced by the current table

ref column The primary key column being referenced

The next few recipes will demonstrate primary and foreign key usage in action.

Creating a Table with a Primary Key
In this recipe, I'll create a table with a single column primary key:

CREATE TABLE Person.CreditRating(
CreditRatingID int NOT NULL PRIMARY KEY,
CreditRatingNM varchar(40) NOT NULL)

GO

In the previous example, a primary key was defined on a single column. You can, however,
create a composite primary key.

In this example, a new table is created with a PRIMARY KEY table constraint formed from two
columns:

CHAPTER 4 © TABLES

CREATE TABLE Person.EmployeeEducationType (
EmployeeID int NOT NULL,
EducationTypeID int NOT NULL,
CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

How It Works

In the first example of the recipe, I created the Person.CreditRating table with a single-column pri-
mary key. The column definition had the PRIMARY KEY keywords following the column definition:

CreditRatingID int NOT NULL PRIMARY KEY,

The primary key column was defined at the column level, whereas the second example defines
the primary key at the table level:

CONSTRAINT PK_EmployeeEducationType
PRIMARY KEY (EmployeeID, EducationTypeID))

The constraint definition followed the column definitions. The constraint was named, and
then followed by the constraint type (PRIMARY KEY) and the columns forming the primary key in
parentheses.

Adding a Primary Key Constraint to an Existing Table

In this recipe, I'll demonstrate how to add a primary key to an existing table using ALTER TABLE and
ADD CONSTRAINT:

CREATE TABLE Person.EducationType
(EducationTypeID int NOT NULL,
EducationTypeNM varchar(40) NOT NULL)

ALTER TABLE Person.EducationType
ADD CONSTRAINT PK_EducationType
PRIMARY KEY (EducationTypeID)

How It Works

In this recipe, ALTER TABLE was used to add a new primary key to an existing table that doesn’t
already have one defined. The first line of code defined the table to add the primary key to:

ALTER TABLE Person.EducationType
The second line of code defined the constraint name:
ADD CONSTRAINT PK EducationType

On the last line of code in the previous example, the constraint type PRIMARY KEY was declared,
followed by the column defining the key column in parentheses:

PRIMARY KEY (EducationTypeID)

159

160

CHAPTER 4 © TABLES

Creating a Table with a Foreign Key Reference

In this recipe, I'll demonstrate how to create a table with a foreign key. In this example, I define two
foreign key references within the definition of a CREATE TABLE statement:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,

CreditRatingID int NOT NULL,

CONSTRAINT FK_EmployeeCreditRating Employee

FOREIGN KEY(BusinessEntityID)

REFERENCES HumanResources.Employee(BusinessEntityID),
CONSTRAINT FK_EmployeeCreditRating CreditRating
FOREIGN KEY(CreditRatingID)

REFERENCES Person.CreditRating(CreditRatingID)

How It Works

In this example, a table was created with two foreign key references. The first four lines of code
defined the table name and its three columns:

CREATE TABLE Person.EmployeeCreditRating(
EmployeeCreditRating int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,

CreditRatingID int NOT NULL,

On the next line, the name of the first foreign key constraint is defined (must be a unique name
in the current database):

CONSTRAINT FK_EmployeeCreditRating Employee

The constraint type is defined, followed by the table’s column (which will be referencing an
outside primary key table):

FOREIGN KEY(BusinessEntityID)
The referenced table is defined, with that table’s primary key column defined in parentheses:
REFERENCES HumanResources.Employee(BusinessEntityID),

A second foreign key is then created for the CreditRatingID column, which references the pri-
mary key of the Person.CreditRating table:

CONSTRAINT FK_EmployeeCreditRating CreditRating
FOREIGN KEY(CreditRatingID)
REFERENCES Person.CreditRating(CreditRatingID)

)

As I demonstrated in this example, a table can have multiple foreign keys—and each foreign
key can be based on a single or multiple (composite) key that references more than one column
(referencing composite primary keys or unique indexes). Also, although the column names needn'’t
be the same between a foreign key reference and a primary key, the primary key/unique columns
must have the same data type. You also can't define foreign key constraints that reference tables
across databases or servers.

CHAPTER 4 © TABLES

Adding a Foreign Key to an Existing Table

Using ALTER TABLE and ADD CONSTRAINT, you can add a foreign key to an existing table. The syntax
for doing so is as follows:

ALTER TABLE table name

ADD CONSTRAINT constraint name

FOREICN KEY (column_name)

REFERENCES [schema name.] referenced table name [(ref column)]

Table 4-8 details the arguments of this command.

Table 4-8. ALTER TABLE...ADD CONSTRAINT Arguments

Argument Description

table_name The name of the table receiving the new foreign key
constraint

constraint_name The name of the foreign key constraint

column_name The column in the current table referencing the

primary key column of the primary key table

[schema_name.] referenced table name The table name containing the primary key being
referenced by the current table

ref column The primary key column being referenced

This example adds a foreign key constraint to an existing table:

CREATE TABLE Person.EmergencyContact (
EmergencyContactID int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,
ContactFirstNM varchar(50) NOT NULL,
ContactlLastNM varchar(50) NOT NULL,
ContactPhoneNBR varchar(25) NOT NULL)

ALTER TABLE Person.EmergencyContact

ADD CONSTRAINT FK_EmergencyContact Employee

FOREIGN KEY (BusinessEntityID)

REFERENCES HumanResources.Employee (BusinessEntityID)

How It Works

This example demonstrated adding a foreign key constraint to an existing table. The first line of
code defined the table where the foreign key would be added:

ALTER TABLE Person.EmergencyContact
The second line defined the constraint name:

ADD CONSTRAINT FK_EmergencyContact_Employee

The third line defined the column from the table that will reference the primary key of the pri-
mary key table:

FOREIGN KEY (BusinessEntityID)

161

162

CHAPTER 4 © TABLES

The last line of code defined the primary key table and primary key column name:

REFERENCES HumanResources.Employee (BusinessEntityID)

Creating Recursive Foreign Key References

A foreign key column in a table can be defined to reference its own primary/unique key. This tech-
nique is often used to represent recursive relationships, as I'll demonstrate. In this example, a table
is created with a foreign key reference to its own primary key:

CREATE TABLE HumanResources.Company
(CompanyID int NOT NULL PRIMARY KEY,
ParentCompanyID int NULL,
CompanyName varchar(25) NOT NULL,
CONSTRAINT FK_Company_Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company (CompanyID))

A row specifying CompanyID and CompanyName is added to the table:

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

A second row is added, this time referencing the ParentCompanyID, which is equal to the previ-
ously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp')

A third row insert is attempted, this time specifying a ParentCompanyID for a CompanyID that
does not exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

The following error message is returned:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the FOREIGN KEY SAME TABLE constraint
"FK_Company_Company". The conflict occurred in database "AdventureWorks", table
"Company", column 'CompanyID'.

The statement has been terminated.

How It Works

In this example, the HumanResources.Company table was created with the CompanyID column defined
as the primary key, and with a foreign key column defined on ParentCompanyID that references
CompanyID:

CONSTRAINT FK_Company Company
FOREIGN KEY (ParentCompanyID)
REFERENCES HumanResources.Company(CompanyID)

CHAPTER 4 © TABLES

The foreign key column ParentCompanyID must be nullable in order to handle a parent-child
hierarchy. A company with a NULL parent is at the top of the company hierarchy (which means it
doesn’t have a parent company). After the table was created, three new rows were inserted.

The first row inserted a company without designating the ParentCompanyID (which means the
value for the ParentCompanyID column for this company is NULL):

INSERT HumanResources.Company
(CompanyID, CompanyName)
VALUES(1, 'MegaCorp')

The second insert created a company that references the first company, MegaCorp, defined in
the previous INSERT statement. The value of 1 was valid in the ParentCompanyID column, as it refers
to the previously inserted row:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(2, 1, 'Medi-Corp")

The third insert tries to create a new company with a ParentCompanyID of 8, which does not
exist in the table:

INSERT HumanResources.Company
(CompanyID, ParentCompanyID, CompanyName)
VALUES(3, 8, 'Tiny-Corp')

Because there is no company with a CompanyID of 8 in the table, the foreign key constraint pre-
vents the row from being inserted and reports an error. The row is not inserted.

Allowing Cascading Changes in Foreign Keys

Foreign keys restrict the values that can be placed within the foreign key column or columns. If the
associated primary key or unique value does not exist in the reference table, the INSERT or UPDATE to
the table row fails. This restriction is bidirectional in that if an attempt is made to delete a primary
key, but a row referencing that specific key exists in the foreign key table, an error will be returned.
All referencing foreign key rows must be deleted prior to deleting the targeted primary key or
unique value; otherwise, an error will be raised.

SQL Server provides an automatic mechanism for handling changes in the primary key/unique
key column, called cascading changes. In previous recipes, cascading options weren’t used. You can
allow cascading changes for deletions or updates using ON DELETE and ON UPDATE. The basic syntax
for cascading options is as follows:

[ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
[NOT FOR REPLICATION]

Table 4-9 details the arguments of this command.

Table 4-9. Cascading Change Arguments

Argument Description

NO ACTION The default setting for a new foreign key is NO ACTION, meaning if an
attempt to delete a row on the primary key/unique column occurs when
there is a referencing value in a foreign key table, the attempt will raise an
error and prevent the statement from executing.

CASCADE For ON DELETE, if CASCADE is chosen, foreign key rows referencing the
deleted primary key are also deleted. For ON UPDATE, foreign key rows
referencing the updated primary key are also updated.

Continued

163

164

CHAPTER 4 © TABLES

Table 4-9. Continued

Argument Description

SET NULL If the primary key row is deleted, the foreign key referencing row(s) can
also be set to NULL (assuming NULL values are allowed for that foreign key
column).

SET DEFAULT If the primary key row is deleted, the foreign key referencing row(s) can

also be set to a DEFAULT value. The new cascade SET DEFAULT option
assumes the column has a default value set for a column. If not, and the
column is nullable, a NULL value is set.

NOT FOR REPLICATION The NOT FOR REPLICATION option is used to prevent foreign key constraints
from being enforced by SQL Server Replication Agent processes (allowing
data to arrive via replication potentially out-of-order from the primary
key data).

In this example, a table is created using cascading options:

-- Drop old version of table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
BusinessEntityID int NOT NULL,

EducationTypeID int NULL,

CONSTRAINT FK_EmployeeEducationType Employee

FOREICN KEY(BusinessEntityID)

REFERENCES HumanResources.Employee(BusinessEntityID)
ON DELETE CASCADE,

CONSTRAINT FK EmployeeEducationType EducationType
FOREIGN KEY(EducationTypelID)

REFERENCES Person.EducationType(EducationTypelD)

ON UPDATE SET NULL)

How It Works

In this recipe, one of the foreign key constraints uses ON DELETE CASCADE in a CREATE TABLE
definition:

CONSTRAINT FK_EmployeeEducationType Employee
FOREICN KEY(BusinessEntityID)
REFERENCES HumanResources.Employee(BusinessEntityID)
ON DELETE CASCADE

Using this cascade option, if a row is deleted on the HumanResources.Employee table, any refer-
encing BusinessEntityID in the Person.EmployeeEducationType table will also be deleted.
A second foreign key constraint was also defined in the CREATE TABLE using ON UPDATE:

CONSTRAINT FK_EmployeeEducationType EducationType
FOREIGN KEY(EducationTypeID)
REFERENCES Person.EducationType(EducationTypelD)
ON UPDATE SET NULL

If an update is made to the primary key of the Person.EducationType table, the
EducationTypeID column in the referencing Person.EmployeeEducationType table will
be set to NULL.

CHAPTER 4 © TABLES

Surrogate Keys

Surrogate keys, also called artificial keys, can be used as primary keys and have no inherent busi-
ness/data meaning. Surrogate keys are independent of the data itself and are used to provide a
single unique record locator in the table. A big advantage to surrogate primary keys is that they
don’t need to change. If you use business data to define your key (natural key), such as first name
and last name, these values can change over time and change arbitrarily. Surrogate keys don’'t have
to change, as their only meaning is within the context of the table itself.

The next few recipes will demonstrate methods for generating and managing surrogate keys
using IDENTITY property columns and uniqueidentifier data type columns.

The IDENTITY column property allows you to define an automatically incrementing numeric
value for a single column in a table. An IDENTITY column is most often used for surrogate primary
key columns, as they are more compact than non-numeric data type natural keys. When a new row
is inserted into a table with an IDENTITY column property, the column is inserted with a unique
incremented value. The data type for an IDENTITY column can be int, tinyint, smallint, bigint,
decimal, or numeric. Tables may only have one identity column defined, and the defined IDENTITY
column can’t have a DEFAULT or rule settings associated with it.

The basic syntax for an IDENTITY property column is as follows:

[IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]]

The IDENTITY property takes two values: seed and increment. seed defines the starting number
for the IDENTITY column, and increment defines the value added to the previous IDENTITY column
value to get the value for the next row added to the table. The default for both seed and increment is
1.The NOT FOR REPLICATION option preserves the original values of the publisher IDENTITY column
data when replicated to the subscriber, retaining any values referenced by foreign key constraints
(preventing the break of relationships between tables that may use the IDENTITY column as a pri-
mary key and foreign key reference).

Unlike the IDENTITY column, which guarantees uniqueness within the defined table, the
ROWGUIDCOL property ensures a very high level of uniqueness (Microsoft claims that it can be unique
for every database networked in the world). This is important for those applications that merge
data from multiple sources, where the unique values cannot be duplicated across tables. This
unique ID is stored in a uniqueidentifier data type and is generated by the NEWID system function.
The ROWGUIDCOL is a marker designated in a column definition, allowing you to query a table not
only by the column’s name, but also by the ROWGUIDCOL designator, as this recipe demonstrates.

Which surrogate key data type is preferred? Although using a uniqueidentifier data type with
a NEWID value for a primary key may be more unique, it takes up more space than an integer-based
IDENTITY column. If you only care about unique values within the table, you may be better off using
an integer surrogate key, particularly for very large tables. However, if uniqueness is an absolute
requirement, with the expectation that you may be merging data sources in the future,
uniqueidentifier with NEWID may be your best choice.

The next set of recipes will demonstrate IDENTITY and ROWGUIDCOL properties in action.

Using the IDENTITY Property During Table Creation

In this example, I'll demonstrate how to create a new table with a primary key IDENTITY column.
The IDENTITY keyword is placed after the nullability option but before the PRIMARY KEY keywords:

CREATE TABLE HumanResources.CompanyAuditHistory
(CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY,
CompanyID int NOT NULL ,

AuditReasonDESC varchar(50) NOT NULL,
AuditDT datetime NOT NULL DEFAULT GETDATE())

165

166

CHAPTER 4 © TABLES

Two rows are inserted into the new table:

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)
VALUES

(1, 'Bad 1099 numbers.', '6/1/2009")

INSERT HumanResources.CompanyAuditHistory
(CompanyID, AuditReasonDESC, AuditDT)

VALUES

(1, "Missing financial statement.', '7/1/2009")

Even though the CompanyAuditHistory column wasn't explicitly populated with the two inserts,
querying the table shows that the IDENTITY property on the column caused the values to be popu-
lated:

SELECT CompanyAuditHistory, AuditReasonDESC
FROM HumanResources.CompanyAuditHistory

This returns

CompanyAuditHistory AuditReasonDESC

1 Bad 1099 numbers.
2 Missing financial statement.
How It Works

In this example, an IDENTITY column was defined for a new table. The IDENTITY property was desig-
nated after the column definition, but before the PRIMARY KEY definition:

CompanyAuditHistory int NOT NULL IDENTITY(1,1) PRIMARY KEY

After creating the table, two rows were inserted without explicitly inserting the
CompanyAuditHistory column value. After selecting from the table, these two rows were automati-
cally assigned values based on the IDENTITY property, beginning with a seed value of 1, and
incrementing by 1 for each new row.

Using DBCC CHECKIDENT to View and Correct IDENTITY
Seed Values

In this recipe, I'll show you how to check the current IDENTITY value of a column for a table by using
the DBCC CHECKIDENT command. DBCC CHECKIDENT checks the current maximum value for the speci-
fied table. The syntax for this command is as follows:

DBCC CHECKIDENT
("table name' [, {NORESEED | { RESEED [, new reseed value] }}])
[WITH NO_INFOMSGS]

Table 4-10 details the arguments of this command.

CHAPTER 4 © TABLES

Table 4-10. CHECKIDENT Arguments

Argument Description

table name This indicates the name of the table to check IDENTITY values for.

NORESEED | RESEED NORESEED means that no action is taken other than to report the maximum
identity value. RESEED specifies what the current IDENTITY value should be.

new_reseed value This specifies the new current IDENTITY value.

WITH NO_INFOMSGS When included in the command, WITH NO_INFOMSGS suppresses

informational messages from the DBCC output.

In this example, the current table IDENTITY value is checked:
DBCC CHECKIDENT('HumanResources.CompanyAuditHistory', NORESEED)

This returns

Checking identity information: current identity value '2°',
current column value '2'.

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

This second example resets the seed value to a higher number:
DBCC CHECKIDENT ('HumanResources.CompanyAuditHistory', RESEED, 50)

This returns

Checking identity information: current identity value '2°',
current column value '50'.

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

How It Works

The first example demonstrated checking the current IDENTITY value using the DBCC CHECKIDENT and
the NORESEED option. The second example demonstrated actually resetting the IDENTITY value to a
higher value. Any future inserts will begin from that value.

Why make such a change? DBCC CHECKIDENT with RESEED is often used to fill primary key gaps. If
you deleted rows from the table that had the highest value for the IDENTITY column, the used iden-
tity values will not be reused the next time records are inserted into the table. For example, if the
last row inserted had a value of 22, and you deleted that row, the next inserted row would be 23. Just
because the value is deleted doesn’t mean the SQL Server will backfill the gap. If you need to reuse
key values (which is generally OK to do in the test phase of your database—in production you really
shouldn’t reuse primary key values), you can use DBCC CHECKIDENT to reuse numbers after a large
row deletion.

167

Download from Wow! eBook <www.wowebook.com>

168

CHAPTER 4 © TABLES

Using the ROWGUIDCOL Property

First, a table is created using ROWGUIDCOL, identified after the column data type definition but before
the default definition (populated via the NEWID system function):

CREATE TABLE HumanResources.BuildingAccess
(BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),
EmployeeID int NOT NULL,
AccessTime datetime NOT NULL,
DoorID int NOT NULL)

Next, a row is inserted into the table:

INSERT HumanResources.BuildingAccess
(EmployeeID, AccessTime, DoorID)
VALUES (32, GETDATE(), 2)

The table is then queried, using the ROWGUIDCOL designator instead of the original
BuildingEntryExitID column name (although the original name can be used too—ROWGUIDCOL
just offers a more generic means of pulling out the identifier in a query):

SELECT ~ ROWGUIDCOL,
EmployeelD,
AccessTime,
DoorID
FROM HumanResources.BuildingAccess

This returns

BuildingEntryExitID EmployeeID AccessTime DoorID
92ED29C7-6CE4-479B-8E47-30F6D7B2AD4AF 32 2008-09-15 16:45:04.553 2
How It Works

The recipe started by creating a new table with a uniqueidentifier data type column:
BuildingEntryExitID uniqueidentifier ROWGUIDCOL DEFAULT NEWID(),

The column was bound to a default of the function NEWID—which returns a uniqueidentifier
data type value. In addition to this, the ROWGUIDCOL property was assigned. Only one ROWGUIDCOL col-
umn can be defined for a table. You can still, however, have multiple uniqueidentifier columns in
the table.

A SELECT query then used ROWGUIDCOL to return the uniqueidentifier column, although the col-
umn name could have been used instead.

Constraints

Constraints are used by SQL Server to enforce column data integrity. Both primary and foreign keys
are forms of constraints. Other forms of constraints used for a column include the following:
e UNIQUE constraints, which enforce uniqueness within a table on non-primary key columns

e DEFAULT constraints, which can be used when you don’t know the value of a column in a row
when it is first inserted into a table, but still wish to populate that column with an antici-
pated value

e (HECK constraints, which are used to define the data format and values allowed for a column

CHAPTER 4 © TABLES

The next few recipes will discuss how to create and manage these constraint types.

Creating a Unique Constraint

You can only have a single primary key defined on a table. If you wish to enforce uniqueness on
other non-primary key columns, you can use a UNIQUE constraint. A unique constraint, by defini-
tion, creates an alternate key. Unlike a PRIMARY KEY constraint, you can create multiple UNIQUE
constraints for a single table and are also allowed to designate a UNIQUE constraint for columns that
allow NULL values (although only one NULL value is allowed for a single-column key per table). Like
primary keys, UNIQUE constraints enforce entity integrity by ensuring that rows can be uniquely
identified.

The UNIQUE constraint creates an underlying table index when it is created. This index can be
CLUSTERED or NONCLUSTERED, although you can't create the index as CLUSTERED if a clustered index
already exists for the table.

As with PRIMARY KEY constraints, you can define a UNIQUE constraint when a table is created
either on the column definition or at the table constraint level. The syntax for defining a UNIQUE
constraint during a table’s creation is as follows:

(column_name <data_type> [NULL | NOT NULL] UNIQUE)

This example demonstrates creating a table with both a PRIMARY KEY and UNIQUE key defined:

CREATE TABLE HumanResources.EmployeeAnnualReview(
EmployeeAnnualReviewID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,

AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE)

You can apply a unique constraint across multiple columns by creating a table constraint:

CONSTRAINT constraint_name UNIQUE
(column [ASC | DESC] [,...n 1)

Table 4-11 details the arguments of this command.

Table 4-11. UNIQUE Constraint Arguments

Argument Description

constraint_name This specifies the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify a

single row in the table (i.e., no two rows can have the same
values for all the specified columns). The ASC (ascending)
and DESC (descending) options define the sorting order of
the columns within the clustered or nonclustered index.

In this example, a new table is created with a UNIQUE constraint based on three table columns:

-- Drop the old version of the table
DROP TABLE Person.EmergencyContact

CREATE TABLE Person.EmergencyContact (
EmergencyContactID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,

ContactFirstNM varchar(50) NOT NULL,
ContactLastNM varchar(50) NOT NULL,

169

170

CHAPTER 4 © TABLES

ContactPhoneNBR varchar(25) NOT NULL,
CONSTRAINT UNQ_EmergencyContact FirstNM_LastNM_PhoneNBR
UNIQUE (ContactFirstNM, ContactlastNM, ContactPhoneNBR))

How It Works

In the first example, a UNIQUE constraint was defined in the CREATE TABLE for a specific column:

AnnualReviewSummaryDESC varchar(900) NOT NULL UNIQUE

The UNIQUE keyword follows the column definition and indicates that a UNIQUE constraint is to
be created on the column AnnualReviewSummaryDESC.

In the second example, a UNIQUE constraint is created based on three table columns defined in
CREATE TABLE. The constraint is defined after the column definitions. The first line of code defines
the constraint name:

CONSTRAINT UNQ_EmergencyContact FirstNM_LastNM PhoneNBR

The second line of code defines the constraint type (UNIQUE) and a list of columns that make up
the constraint in parentheses:

UNIQUE (ContactFirstNM, ContactlLastNM, ContactPhoneNBR)

Adding a UNIQUE Constraint to an Existing Table

Using ALTER TABLE, you can add a UNIQUE constraint to an existing table. The syntax is as follows:

ALTER TABLE table name
ADD CONSTRAINT constraint name
UNIQUE (column [ASC | DESC] [,...n 1)

Table 4-12 details the arguments of this command.

Table 4-12. ALTER TABLE...ADD CONSTRAINT (Unique) Arguments

Argument Description

table_name This specifies the name of the table receiving the new
unique key index.

constraint_name This indicates the unique name of the constraint to be
added.

column [ASC | DESC] [,...n] The values stored in the column(s) must uniquely identify a

single row in the table (i.e., no two rows can have the same
values for all the specified columns). The ASC (ascending)
and DESC (descending) options define the sorting order of
the columns within the clustered or nonclustered index.

This example demonstrates adding a UNIQUE key to the Production.Culture table:

ALTER TABLE Production.Culture
ADD CONSTRAINT UNQ_Culture Name
UNIQUE (Name)

CHAPTER 4 © TABLES

How It Works

In this example, the first line of code defined the table to be modified:
ALTER TABLE Production.Culture
The second line of code defined the name of the constraint:
ADD CONSTRAINT UNQ_Culture Name
The third line of code defined the constraint type, followed by the column name it will apply to:
UNIQUE (Name)

The columns specified in the UNIQUE constraint definition can’t have duplicate values occurring
in the table; otherwise, the operation will fail with an error that a duplicate key value was found.

Using CHECK Constraints

The CHECK constraint is used to define what format and values are allowed for a column. The syntax
of the CHECK constraint is as follows:

CHECK (logical expression)

If the logical expression of CHECK evaluates to TRUE, the row will be inserted. If the CHECK con-
straint expression evaluates to FALSE, the row insert will fail. This example demonstrates adding a
CHECK constraint to a CREATE TABLE definition. The GPA column’s values will be restricted to a specific
numeric range:

-- Drop old version of the table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,

EducationTypeID int NULL,
GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0))

In the previous example, the CHECK constraint expression was defined at the column constraint
level. A CHECK constraint can also be defined at the table constraint level—where you are allowed to
reference multiple columns in the expression, as this next example demonstrates:

-- Drop old version of the table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,

EducationTypeID int NULL,

GPA numeric(4,3) NOT NULL,

CONSTRAINT CK_EmployeeEducationType

CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0))

How It Works

In the first example, a CHECK column constraint was placed against the GPA column in the Person.
EmployeeEducationType table:

GPA numeric(4,3) NOT NULL CHECK (GPA > 2.5 AND GPA <=4.0)

17

172

CHAPTER 4 © TABLES

Only a GPA column value greater than 2.5 or less than/equal to 4.0 is allowed in the table—
anything else out of that range will cause any INSERT or UPDATE to fail.
In the second example, the CHECK table constraint evaluated two table columns:

CHECK (EducationTypeID > 1 AND GPA > 2.5 AND GPA <=4.0)

This CHECK constraint requires that the EducationTypeID value be greater than 1, in addition to
the GPA requirements.

Adding a CHECK Constraint to an Existing Table

Like other constraint types, you can add a CHECK constraint to an existing table using ALTER TABLE
and ADD CONSTRAINT. The syntax is as follows:

ALTER TABLE table name

WITH CHECK | WITH NOCHECK

ADD CONSTRAINT constraint name
CHECK (logical expression)

Table 4-13 details the arguments of this command.

Table 4-13. ALTER TABLE...ADD CONSTRAINT (Check) Arguments

Argument Description
table name This specifies the name of the table receiving the new CHECK constraint.
CHECK | WITH NOCHECK With the CHECK option (the default), existing data is validated against

the new CHECK constraint. NOCHECK skips validation of new data, limiting
the constraint to validation of new values (inserted or updated).

constraint_name This defines the name of the CHECK constraint.

logical_expression This specifies the logical expression to use to restrict values that are
allowed in the column.

In this example, a new CHECK request is added to the Person.ContactType table:

ALTER TABLE Person.ContactType WITH NOCHECK
ADD CONSTRAINT CK_ContactType
CHECK (Name NOT LIKE '%assistant%')

How It Works

A new constraint was added to the Person.ContactType table to not allow any name like “assistant.”
The first part of the ALTER TABLE statement included WITH NOCHECK:

ALTER TABLE Person.ContactType WITH NOCHECK

Had this statement been executed without WITH NOCHECK, it would have failed because there
are already rows in the table with “assistant” in the name. Adding WITH NOCHECK means that existing
values are ignored going forward, and only new values are validated against the CHECK constraint.

Gaution Using WITH NOCHECK may cause problems later on, as you cannot depend on the data in the table
conforming to the constraint.

CHAPTER 4 © TABLES

The next part of the statement defined the new constraint name:

ADD CONSTRAINT CK ContactType

The constraint type CHECK was used followed by the logical expression to limit the Name col-
umn’s contents:

CHECK (Name NOT LIKE '%assistant%')

Disabling and Enabling a Constraint

The previous exercise demonstrated using NOCHECK to ignore existing values that disobey the new
constraints rule when adding a new constraint to the table. Constraints are used to maintain data
integrity, although sometimes you may need to relax the rules while performing a one-off data
import or non-standard business operation. NOCHECK can also be used to disable a CHECK or FOREICN
KEY constraint, allowing you to insert rows that disobey the constraints rules.

In the setup of this example, an insert is attempted to the Sales.PersonCreditCard table:

INSERT Sales.PersonCreditCard
(BusinessEntityID, CreditCardID)
VALUES (14425, 924533)

The insert fails, returning the following error message:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the FOREIGN KEY constraint
"FK_PersonCreditCard CreditCard CreditCardID". The conflict occurred in database
"AdventureWorks", table "Sales.CreditCard", column 'CreditCardID'.

The statement has been terminated.

Next, the foreign key constraint that caused the previous error message will be disabled using
NOCHECK:

ALTER TABLE Sales.PersonCreditCard
NOCHECK CONSTRAINT FK PersonCreditCard CreditCard CreditCardID

The insert is then attempted again:

INSERT Sales.PersonCreditCard
(BusinessEntityID, CreditCardID)
VALUES (14425, 924533)

This time it succeeds:

(1 row(s) affected)

I can then DELETE the newly inserted row, so as not to leave data integrity issues once the con-
straint is reenabled:

DELETE Sales.PersonCreditCard
WHERE BusinessEntityID = 14425 AND
CreditCardID = 924533

To reenable checking of the foreign key constraint, CHECK is used in an ALTER TABLE statement:

ALTER TABLE Sales.PersonCreditCard
CHECK CONSTRAINT FK_PersonCreditCard CreditCard CreditCardID

173

174

CHAPTER 4 © TABLES

To disable or enable all CHECK and FOREIGN KEY constraints for the table, you should use the ALL
keyword, as this example demonstrates:

-- disable checking on all constraints
ALTER TABLE Sales.PersonCreditCard
NOCHECK CONSTRAINT ALL

-- enable checking on all constraints
ALTER TABLE Sales.PersonCreditCard
CHECK CONSTRAINT ALL

Caution Disabling all CHECK and FOREIGN KEY constraints for a table should only be performed when
absolutely necessary. Reenable all constraints when you are finished.

How It Works

In this recipe, an insert was attempted against Sales.PersonCreditCard with a CreditCardID that
didn't exist in the primary key table. The insert causes a conflict with the FK_PersonCreditCard
CreditCard CreditCardID foreign key constraint.

To disable the constraint from validating new values, ALTER TABLE and NOCHECK CONSTRAINT
were used. After disabling the constraint with NOCHECK, the CreditCardID value was then allowed to
be inserted, even though it doesn’t exist in the primary key table. The scenario was completed by
reenabling the constraint again and deleting the value just inserted.

The next example demonstrated disabling all foreign key and check constraints on a table
using the ALL keyword:

NOCHECK CONSTRAINT ALL

All constraints for the table were then reenabled using the following code:

CHECK CONSTRAINT ALL

Using a DEFAULT Constraint During Table Creation

If you don’'t know the value of a column in a row when it is first inserted into a table, you can use a
DEFAULT constraint to populate that column with an anticipated or non-NULL value. The syntax for
designating the default value in the column definition of a CREATE TABLE is as follows:

DEFAULT constant_expression

The constant_expression is the default value you wish to populate into the column when the
column’s value isn't explicitly specified in an INSERT. This example demonstrates setting the default
value of the EducationTypeID column to 1:

-- Drop old table
DROP TABLE Person.EmployeeEducationType

CREATE TABLE Person.EmployeeEducationType(
EmployeeEducationTypeID int NOT NULL PRIMARY KEY,
EmployeeID int NOT NULL,

EducationTypeID int NOT NULL DEFAULT 1,
GPA numeric(4,3) NOT NULL)

CHAPTER 4 © TABLES

How It Works

In this example, the default value of EducationTypeID was set to a default of 1. The keyword DEFAULT
was placed after the column definition and followed by the default value (which must match the
data type of the column):

EducationTypeID int NOT NULL DEFAULT 1

Since this column has a DEFAULT value, if the value isn't explicitly inserted with an INSERT state-
ment, the value 1 will be inserted instead of a NULL value.

Adding a DEFAULT Constraint to an Existing Table

Like other constraint types, you can add a default constraint to an existing table column using ALTER
TABLE and ADD CONSTRAINT. The syntax for doing this is as follows:

ALTER TABLE table name

ADD CONSTRAINT constraint name
DEFAULT default value

FOR column_name

Table 4-14 details the arguments of this command.

Table 4-14. ALTER TABLE...ADD CONSTRAINT (Default) Arguments

Argument Description

table name The name of the table receiving the new DEFAULT constraint
constraint_name The name of the DEFAULT constraint

default_value The default value to be used for the column

column_name The name of the column the default is being applied to

This example demonstrates adding a default to an existing table column:

ALTER TABLE HumanResources.Company
ADD CONSTRAINT DF_Company_ParentCompanyID
DEFAULT 1 FOR ParentCompanyID

How It Works

In this example, a new default was applied to an existing table column. The first line of ALTER TABLE
defined the impacted table:

ALTER TABLE HumanResources.Company
The second line of the statement added a constraint and defined the constraint name:
ADD CONSTRAINT DF_Company ParentCompanyID

The third line of code defined the constraint type, DEFAULT, followed by the value to use for the
default:

DEFAULT 1
Lastly, the column that the default was applied to was used in the FOR clause:

FOR ParentCompanyID

175

176

CHAPTER 4 © TABLES

Dropping a Constraint from a Table

Now that I've reviewed several constraints that can be added to a table, in this recipe I'll demon-
strate how to now drop a constraint using ALTER TABLE and DROP CONSTRAINT. The basic syntax for
dropping a constraint is as follows:

ALTER TABLE table name
DROP CONSTRAINT constraint name

The table_name designates the table you are dropping the constraint from, and the constraint_
name designates the name of the constraint to be dropped. In this example, a default constraint is
dropped from the HumanResources.Company table:

ALTER TABLE HumanResources.Company
DROP CONSTRAINT DF_Company ParentCompanyID

How It Works

In the first line of code in this example, the table to drop the constraint from was designated:

ALTER TABLE HumanResources.Company

In the second line of code, the name of the constraint to drop was designated:

DROP CONSTRAINT DF_Company_ParentCompanyID

Notice that the constraint type wasn't needed, and that only the constraint name was used. To
find out the constraints present on a table, use the sp_help system stored procedure.

Temporary Tables and Table Variables

Temporary tables are defined just like regular tables, only they are automatically stored in the
tempdb database (no matter which database context you create them in). Temporary tables are often
used in the following scenarios:

* Asan alternative to cursors: For example, instead of using a Transact-SQL cursor to loop
through a result set, performing tasks based on each row, you can populate a temporary
table instead. Using a WHILE loop, you can loop through each row in the table, perform the
action for the specified row, and then delete the row from the temp table.

* Asan incremental storage of result sets: For example, let’s say you have a single SELECT query
that performs a join against ten tables. Sometimes queries with several joins can perform
badly. One technique to try is to break down the large query into smaller, incremental
queries. Using temporary tables, you can create intermediate result sets based on smaller
queries, instead of trying to execute a single, very large, multi-joined query.

* Asa temporary, low-overhead lookup table: For example, imagine that you are using a query
that takes several seconds to execute but only returns a small result set. You wish to use the
small result set in several areas of your stored procedure, but each time you reference it, you
incur the query execution time overhead. To resolve this, you can execute the query just
once within the procedure, populating the temporary table. Then you can reference the tem-
porary table in multiple places in your code, without incurring the extra overhead.

There are two different temporary table types: global and local. Local temporary tables are pre-
fixed with a single # sign, and global temporary tables with a double ## sign.

CHAPTER 4 © TABLES

Local temporary tables are available for use by the current user connection that created them.
Multiple connections can create the same-named temporary table for local temporary tables with-
out encountering conflicts. The internal representation of the local table is given a unique name, so
as not to conflict with other temporary tables with the same name created by other connections in
the tempdb database. Local temporary tables are dropped by using the DROP statement or are auto-
matically removed from memory when the user connection is closed.

Global temporary tables have a different scope from local temporary tables. Once a connection
creates a global temporary table, any user with proper permissions to the current database he is in
can access the table. Unlike local temporary tables, you can'’t create simultaneous versions of a
global temporary table, as this will generate a naming conflict. Global temporary tables are removed
from SQL Server if explicitly dropped by DROP TABLE. They are also automatically removed after the
connection that created it disconnects and the global temporary table is no longer referenced by
other connections. As an aside, I rarely see global temporary tables used in the field. When a table
must be shared across connections, a real table is created, instead of a global temporary table.
Nonetheless, SQL Server offers this as a choice.

Temporary tables are much maligned by the DBA community due to performance issues—
some of these complaints are valid, and some aren'’t. It is true that temporary tables may cause
unwanted disk overhead in tempdb, locking of tempdb during their creation, as well as stored proce-
dure recompilations, when included within a stored procedure’s definition (a recompilation is when
an execution plan of the stored procedure is re-created instead of reused).

A table variable is a data type that can be used within a Transact-SQL batch, stored procedure,
or function—and is created and defined similarly to a table, only with a strictly defined lifetime
scope. Table variables are often good replacements of temporary tables when the data set is small.
Statistics are not maintained for table variables like they are for regular or temporary tables, so
using too large a table variable may cause query optimization issues. Unlike regular tables or tem-
porary tables, table variables can’t have indexes or FOREIGN KEY constraints added to them. Table
variables do allow some constraints to be used in the table definition (PRIMARY KEY, UNIQUE, CHECK).

Reasons to use table variables include the following:

¢ Well scoped. The lifetime of the table variable only lasts for the duration of the batch, func-
tion, or stored procedure.

» Shorter locking periods (because of the tighter scope).

e Less recompilation when used in stored procedures.

As stated earlier, there are drawbacks to using table variables. Table variable performance suf-
fers when the result set becomes too large or when column data cardinality is critical to the query
optimization process. When encountering performance issues, be sure to test all alternative solu-
tions, and don’t necessarily assume that one option (temporary tables) is less desirable than others
(table variables).

Using a Temporary Table for Multiple Lookups Within a Batch

In this example, I'll demonstrate creating a local temporary table that is then referenced multiple
times in a batch of queries. This technique can be helpful if the query used to generate the lookup
values takes several seconds to execute. Rather than execute the SELECT query multiple times, I can
query the pre-aggregated temp table instead:

CREATE TABLE #ProductCostStatistics

(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

177

Download from Wow! eBook <www.wowebhook.com>

178

CHAPTER 4 © TABLES

INSERT #ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,
AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt
FROM Production.ProductCostHistory
GROUP BY ProductID

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost ASC

SELECT TOP 3 *
FROM #ProductCostStatistics
ORDER BY AvgStandardCost DESC

SELECT AVG(AvgStandardCost) Average of AvgStandardCost
FROM #ProductCostStatistics

DROP TABLE #ProductCostStatistics

This returns three result sets from the temporary table:

ProductID AvgStandardCost ProductCount

873 0.8565 1
922 1.4923 1
870 1.8663 1

ProductID AvgStandardCost ProductCount

749 2171.2942 1
750 2171.2942 1
751 2171.2942 1

Average of AvgStandardCost
423.0001

How It Works

In this recipe, a temporary table called #ProductCostStatistics was created. The table had rows
inserted into it like a regular table, and then the temporary table was queried three times (again,
just like a regular table), and then dropped. The table was created and queried with the same syntax
as a regular table, only the temporary table name was prefixed with a # sign. In situations where the
initial population query execution time takes too long to execute, this is one technique to consider.

Creating a Table Variable to Hold a Temporary Result Set

Table variables were first demonstrated in Chapter 2, in the “Returning Rows Affected by a Data
Modification Statement” recipe. There you learned to use them to hold the results of the OUTPUT

command.

CHAPTER 4 © TABLES

Note SQL Server 2008 introduces table-valued parameters and user-defined types, which you can use to pass
temporary result sets between modules. These topics are covered in Chapter 11.

The syntax to creating a table variable is similar to creating a table, only the DECLARE keyword is
used and the table name is prefixed with an @ symbol:

DECLARE @TableName TABLE
(column_name <data type> [NULL | NOT NULL] [,...n])

In this example, a table variable is used in a similar fashion to the temporary table of the previ-
ous recipe. This example demonstrates how the implementation differs (including how you don’t
explicitly DROP the table):

DECLARE @ProductCostStatistics TABLE

(ProductID int NOT NULL PRIMARY KEY,
AvgStandardCost money NOT NULL,
ProductCount int NOT NULL)

INSERT @ProductCostStatistics
(ProductID, AvgStandardCost, ProductCount)
SELECT ProductID,
AVG(StandardCost) AvgStandardCost,
COUNT(ProductID) Rowcnt
FROM Production.ProductCostHistory
GROUP BY ProductID

SELECT TOP 3 *
FROM @ProductCostStatistics
ORDER BY ProductCount

This returns

ProductID AvgStandardCost ProductCount

710 3.3963 1
709 3.3963 1
731 352.1394 1
How It Works

This recipe used a table variable in much the same way as the previous recipe did with temporary
tables. There are important distinctions between the two recipes, however.

First, this time a table variable was defined using DECLARE @Tablename TABLE instead of CREATE
TABLE. Secondly, unlike the temporary table recipe, there isn’t a GO after each statement, as tempo-
rary tables can only be scoped within the batch, procedure, or function.

In the next part of the recipe, I used inserts and selects from the table variable as you would a
regular table, only this time using the @tablename format:

INSERT @ProductCostStatistics

SELECT TOP 3 *
FROM @ProductCostStatistics

179

180

CHAPTER 4 © TABLES

No DROP TABLE was necessary at the end of the example, as the table variable is eliminated from
memory after the end of the batch/procedure/function execution.

Manageability for Very Large Tables

These next few recipes will demonstrate methods for managing very large tables (with millions of
rows, for example). Specifically, I'll discuss SQL Server table-partitioning functionality, and then
filegroup placement.

Table partitioning provides you with a built-in method of horizontally partitioning data within
a table and/or index while still maintaining a single logical object. Horizontal partitioning involves
keeping the same number of columns in each partition, but reducing the number of rows. Partition-
ing can ease management of very large tables and/or indexes, decrease load time, improve query
time, and allow smaller maintenance windows. These next few recipes in this section will demon-
strate how to use Transact-SQL commands to create, modify, and manage partitions and partition
database objects.

Tip SQL Server 2008 introduces partitioned table query processing improvements, including partition-aware
seek operations, better visibility of accessed partitions in the execution plan, and the new trace flag 2440, which
enables the assignment of multiple threads of execution per partition in a parallel query plan.

I'll also cover filegroup placement. Database data files belong to filegroups. Every database has
a primary filegroup, and you can add additional filegroups as needed. Adding new filegroups to a
database is often used for very large databases (VLDB), as they can ease backup administration and
potentially improve performance by distributing data over multiple arrays. I'll demonstrate placing
a table on a specific filegroup in the last recipe of this chapter.

Before diving into the partitioning-related recipes, I'll discuss the two new commands CREATE
PARTITION FUNCTION and CREATE PARTITION SCHEME.The CREATE PARTITION FUNCTION maps columns
to partitions based on the value of a specified column. For example, if you are evaluating a column
with a datetime data type, you can partition data to separate filegroups based on the year or month.

The basic syntax for CREATE PARTITION FUNCTION is as follows:

CREATE PARTITION FUNCTION partition function name(input_parameter type)
AS RANGE [LEFT | RICHT]
FOR VALUES ([boundary value [,...n] 1])

Table 4-15 details the arguments of this command.

Table 4-15. CREATE PARTITION FUNCTION Arguments

Argument Description
partition_function_name This specifies the partition function name.
input_parameter type This indicates the data type of the partitioning column. You

cannot use large value data types (text, ntext, image, xml,
timestamp, varchar(max), varbinary(max), nvarchar(max)), CLR
user-defined data types, or aliased data types. If you wished to
partition table data by a datetime column, you would designate
datetime for the input_parameter type.

LEFT | RIGHT You also have a choice of LEFT or RIGHT, which defines which
boundary the defined values in the boundary_value argument
belong to (see the upcoming “How It Works” section for a review
of LEFT versus RIGHT).

CHAPTER 4 © TABLES

Argument Description

[boundary value [,...n]] This argument defines the range of values in each partition.
You can define up to 999 partitions (however, that many isn’t
recommended due to potential performance concerns). The
number of values you choose in this argument amounts to a
total of n + 1 partitions (again, see the upcoming “How It Works”
section for a more in-depth explanation).

Once a partition function is created, it can be used with one or more partition schemes.
A partition scheme maps partitions defined in a partition function to actual filegroups.
The basic syntax for CREATE PARTITION SCHEME is as follows:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file group name | [PRIMARY] } [,...n])

Table 4-16 details the arguments of this command.

Table 4-16. CREATE PARTITION SCHEME Arguments

Argument Description

partition scheme name This specifies the name of the partition scheme.

partition_function_name This indicates the name of the partition function
that the scheme will bind to.

ALL If ALL is designated, all partitions will map to the
filegroup designated in the file_group_name
argument.

{ file group name | [PRIMARY] } [,...n] This defines the filegroup or filegroups assigned to
each partition. When PRIMARY is designated, the
partition will be stored on the primary filegroup.

Implementing Table Partitioning

In this recipe, I'll demonstrate how to

» Create a filegroup or filegroups to hold the partitions.
¢ Add files to each filegroup used in the partitioning.

e Use the CREATE PARTITION FUNCTION command to determine how the table’s data will be
partitioned.

e Use the CREATE PARTITION SCHEME command to bind the PARTITION FUNCTION to the specified
filegroups.

¢ Create the table, binding a specific partitioning column to a PARTITION SCHEME.

The recipe creates a table called Sales.WebSiteHits, which is used to track each hit to a hypo-
thetical web site. In this scenario, the table is expected to grow large quickly. Because of the
potential size, queries may not perform as well as they could, and backup operations against the
entire database take longer than the current maintenance window allows.

To address this application scenario, the data from this table will be partitioned horizontally,
which means that groups of rows based on a selected column (in this case HitDate) will be mapped

181

182 CHAPTER 4 © TABLES

into separate underlying physical files on the disk. The first part of this example demonstrates
adding the new filegroups to the AdventurelWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg1

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg2

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfg3

ALTER DATABASE AdventureWorks
ADD FILEGROUP hitfga

Next, for each new filegroup created, a new database file is added to it:

ALTER DATABASE AdventureWorks

ADD FILE

(' NAME = awhitfgi,
FILENAME = 'c:\Apress\aw_hitfgi.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfgl
GO

ALTER DATABASE AdventureWorks

ADD FILE

(' NAME = awhitfg2,
FILENAME = 'c:\Apress\aw_hitfg2.ndf"',
SIZE = 1MB

)
TO FILEGROUP hitfg2
GO

ALTER DATABASE AdventureWorks

ADD FILE

(NAME = awhitfg3,
FILENAME = 'c:\Apress\aw_hitfg3.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfg3
GO

ALTER DATABASE AdventureWorks

ADD FILE

(NAME = awhitfgs,
FILENAME = 'c:\Apress\aw_hitfg4.ndf',
SIZE = 1MB

)
TO FILEGROUP hitfgs
GO

Now that the filegroups are ready for their partitioned data, the partition function will be
created, which determines how the table will have its data horizontally partitioned (in this case, by
date range):

CHAPTER 4 © TABLES

CREATE PARTITION FUNCTION HitDateRange (datetime)
AS RANGE LEFT FOR VALUES ('1/1/2006', '1/1/2007', '1/1/2008")
Go

After creating the partition function, I create the partition scheme in order to bind the partition
function to the new filegroups:

CREATE PARTITION SCHEME HitDateRangeScheme
AS PARTITION HitDateRange
TO (hitfg1, hitfg2, hitfg3, hitfgs)

Lastly, I create a table that uses the partition scheme on the HitDate column in the ON clause of
the CREATE TABLE statement:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,

HitDate datetime NOT NULL,

CONSTRAINT PK_WebSiteHits

PRIMARY KEY (WebSiteHitID, HitDate))

ON [HitDateRangeScheme] (HitDate)

How It Works

In the first part of the recipe, four new filegroups were added to the AdventureWorks database. After
that, a database file was added to each filegroup.

Next, a partition function was created that defined the partition boundaries for the partition
function and the expected partition column data type. On the first line of the CREATE PARTITION
FUNCTION command, the datetime data type was selected:

CREATE PARTITION FUNCTION HitDateRange (datetime)

The next line defined the ranges for values for the partition function, creating partitions
by year:

AS RANGE LEFT FOR VALUES ('1/1/2006', '1/1/2007', '1/1/2008"')

You can define up to 999 partitions (however, that many isn't recommended due to potential
performance concerns). The number of values you choose amounts to a total of n + 1 partitions. You
also have a choice of LEFT or RIGHT, which defines the boundary that the defined values belong to. In
this recipe, LEFT was chosen. Table 4-17 shows the partition boundaries (or partitions where rows
will be placed) in this case.

Table 4-17. LEFT Boundaries

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2007 00:00:00

3 1/1/2007 00:00:01 1/1/2008 00:00:00

4 1/1/2008 00:00:01 Highest allowed datetime

Had RIGHT been chosen instead, the partition boundaries would have been as shown in
Table 4-18.

183

184

CHAPTER 4 © TABLES

Table 4-18. RIGHT Boundaries

Partition # Lower Bound datetime Upper Bound datetime
1 Lowest allowed datetime 12/31/2005 12:59:59
2 1/1/2006 00:00:00 12/31/2006 12:59:59
3 1/1/2007 00:00:00 12/31/2007 12:59:59
4 1/1/2008 00:00:00 Highest allowed datetime

Once a partition function is created, it can be used with one or more partition schemes. A par-
tition scheme maps the partitions defined in a partition function to actual filegroups. The first line
of the new partition scheme defined the partition scheme name:

CREATE PARTITION SCHEME HitDateRangeScheme

The second line of code defined the partition function of the partition scheme it is bound to
(the function created in the previous step):

AS PARTITION HitDateRange

The T0 clause defines which filegroups map to the four partitions defined in the partition func-
tion, in order of partition sequence:

T0 (hitfg1, hitfg2, hitfg3, hitfgs)

After a partition scheme is created, it can then be bound to a table. In the CREATE TABLE state-
ment’s ON clause (last row of the table definition), the partition scheme is designated with the
column to partition in parentheses:

CREATE TABLE Sales.WebSiteHits
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,

HitDate datetime NOT NULL,

CONSTRAINT PK_WebSiteHits

PRIMARY KEY (WebSiteHitID, HitDate))

ON [HitDateRangeScheme] (HitDate)

Notice that the primary key is made up of both the WebSiteHitID and HitDate. The partitioned
key column (HitDate) must be part of the primary key.

The Sales.WebSiteHits table is now partitioned—and can be worked with just like a single reg-
ular table. You needn’t do anything special to your SELECT, INSERT, UPDATE, or DELETE statements. In
the background, as data is added, rows are inserted into the appropriate filegroups based on the
partition function and scheme.

Determining the Location of Data in a Partition

Because partitioning happens in the background, you don't actually query the individual partitions
directly. In order to determine which partition a row belongs to, you can use the $PARTITION func-
tion.

The syntax for $PARTITION is as follows:

$PARTITION.partition function name(expression)

Table 4-19 details the arguments of this command.

CHAPTER 4 © TABLES

Table 4-19. $PARTITION Function Arguments

Argument Description
partition function name The name of the partition function used to partition the table
expression The column used as the partitioning key

This example demonstrates how to use this function. To begin with, four rows are inserted into
the Sales.WebSiteHits partitioned table:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Home Page', '10/22/2007")

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Home Page', '10/2/2006")

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '5/9/2008")

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2000")

The table is then queried using SELECT and the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

This returns

HitDate Partition
2000-03-04 00:00:00.000 1
2006-10-02 00:00:00.000 2
2007-10-22 00:00:00.000 3
2008-05-09 00:00:00.000 4

How It Works

The recipe started out by inserting four rows into the partitioned Sales.WebSiteHits table. Each
insert is for a row with a different HitDate year (in order to demonstrate the function).
Next, a query was executed against the table using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

The partition function_name is the name of the function created in the last recipe. The expres-
sion in parentheses is the HitDate, which is the column used to partition the data.

The $PARTITION function evaluates each HitDate and determines what partition it is stored in
based on the partition function. This allows you to see how data is distributed across the different
partitions. If one partition is uneven with the rest, you can explore creating or removing existing
partitions—both functions of which are demonstrated next.

185

186

CHAPTER 4 © TABLES

Adding a New Partition

Over time, you may decide that your partitioned table needs additional partitions (for example, you
can create a new partition for each new year). To add a new partition, the ALTER PARTITION SCHEME
and ALTER PARTITION FUNCTION commands are used.

Before a new partition can be created on an existing partition function, you must first prepare a
filegroup for use in holding the new partition data (a new or already used filegroup can be used).
The first step is designating the next partition filegroup to use with ALTER PARTITION SCHEME.

The syntax for ALTER PARTITION SCHEME is as follows:

ALTER PARTITION SCHEME partition_scheme name
NEXT USED [filegroup name]

Table 4-20 details the arguments of this command.

Table 4-20. ALTER PARTITION SCHEME Arguments

Argument Description

partition_scheme name This specifies the name of the partition scheme to modify.

NEXT USED [filegroup_name] The NEXT USED keywords queues the next filegroup to be used by
any new partition.

After adding a reference to the next filegroup, ALTER PARTITION FUNCTION is used to create
(split) the new partition (and also remove/merge a partition). The syntax for ALTER PARTITION
FUNCTION is as follows:

ALTER PARTITION FUNCTION partition function name()

SPLIT RANGE (boundary value)
| MERGE RANGE (boundary value)
}

Table 4-21 details the arguments of this command.

Table 4-21. ALTER PARTITION FUNCTION Arguments

Argument Description

partition_function_name This specifies the name of the partition function to add or
remove a partition from.

SPLIT RANGE (boundary value) | SPLIT RANGE is used to create a new partition by defining

MERGE RANGE (boundary value) anew boundary value. MERGE RANGE is used to remove an
existing partition.

This example demonstrates how to create (split) a new partition. The first step is creating a new
filegroup to be used by the new partition. In this example, the PRIMARY filegroup is used:

ALTER PARTITION SCHEME HitDateRangeScheme
NEXT USED [PRIMARY]

Next, the partition function is modified to create a new partition, defining a boundary of
January 1, 2009:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2009')

CHAPTER 4 © TABLES

After the new partition is created, a new row is inserted to test the new partition:

INSERT Sales.WebSiteHits
(WebSitePage, HitDate)
VALUES ('Sales Page', '3/4/2009")

The table is queried using $PARTITION:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

This shows the newly inserted row has been stored in the new partition (partition number 5):

HitDate Partition
2000-03-04 00:00:00.000
2006-10-02 00:00:00.000
2007-10-22 00:00:00.000
2008-05-09 00:00:00.000
2009-03-04 00:00:00.000

Ul B W N

How It Works

In this recipe’s example, the HitDateRangeScheme was altered using ALTER PARTITION SCHEME and the
NEXT USED keywords. The NEXT USED keywords queue the next filegroup to be used by any new parti-
tion. In this example, the default PRIMARY filegroup was selected as the destination for the new
partition:

ALTER PARTITION SCHEME HitDateRangeScheme

NEXT USED [PRIMARY]

ALTER PARTITION FUNCTION was then used with SPLIT RANGE in order to add a new partition
boundary:

ALTER PARTITION FUNCTION HitDateRange ()
SPLIT RANGE ('1/1/2006")

Only one value was used to add the new partition, which essentially splits an existing partition
range into two, using the original boundary type (LEFT or RIGHT). You can only use SPLIT RANGE for a
single split at a time—and you can’t add multiple partitions in a statement.

This example’s split added a new partition, partition 5, as shown in Table 4-22.

Table 4-22. New Partition Layout

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2007 00:00:00

3 1/1/2007 00:00:01 1/1/2008 00:00:00

4 1/1/2008 00:00:01 1/1/2009 00:00:00

5 1/1/2009 00:00:01 Highest allowed datetime

A new row was inserted into the Sales.WebSiteHits table, which used the partition function. A
query was executed to view the partitions that each row belongs in, and it is confirmed that the new
row was inserted into the fifth partition.

187

Download from Wow! eBook <www.wowebook.com>

188

CHAPTER 4 © TABLES

Removing a Partition

The previous recipe showed the syntax for ALTER PARTITION FUNCTION, including a description of the
MERGE RANGE functionality, which is used to remove an existing partition. Removing a partition
essentially merges two partitions into one, with rows relocating to the resulting merged partition.

This example demonstrates removing the 1/1/2007 partition from the HitDateRange partition
function:

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2007")

Next, the partitioned table is queried using the $PARTITION function:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHits

This returns the following results:

HitDate Partition
2000-03-04 00:00:00.000
2007-10-22 00:00:00.000
2006-10-02 00:00:00.000
2008-05-09 00:00:00.000
2009-03-04 00:00:00.000

S w NN

How It Works

ALTER PARTITION FUNCTION is used for both splitting and merging partitions. In this case, the MERGE
RANGE keywords were used to eliminate the 1/1/2007 partition boundary:

ALTER PARTITION FUNCTION HitDateRange ()
MERGE RANGE ('1/1/2007")

A query was executed to view which rows belong to which partitions. Table 4-23 lists the
boundaries after the MERGE.

Table 4-23. New Partition Layout

Partition # Lower Bound datetime Upper Bound datetime

1 Lowest allowed datetime 1/1/2006 00:00:00

2 1/1/2006 00:00:01 1/1/2008 00:00:00

3 1/1/2008 00:00:01 1/1/2009 00:00:00

4 1/1/2009 00:00:01 Highest allowed datetime

Partition 2 now encompasses the data for two years instead of one. You can only merge one
partition per ALTER PARTITION FUNCTION execution, and you can’t convert a partitioned table into a
non-partitioned table using ALTER PARTITION FUNCTION—you can only reduce the number of parti-
tions down to a single partition.

CHAPTER 4 © TABLES

Moving a Partition to a Different Table

With SQL Server’s partitioning functionality, you can transfer partitions between different tables
with a minimum of effort or overhead. You can transfer partitions between tables using ALTER
TABLE... SWITCH. Transfers can take place in three different ways: switching a partition from a parti-
tioned table to another partitioned table (both needing to be partitioned on the same column),
transferring an entire table from a non-partitioned table to a partitioned table, or moving a parti-
tion from a partitioned table to a non-partitioned table.

Tip In SQL Server 2005, partitioned tables couldn’t be referenced in a view with schema binding, a restriction
that prevented the use of indexed views. SQL Server 2008 now supports schema binding and partition-aligned
indexed views.

The basic syntax for switching partitions between tables is as follows:

ALTER TABLE tablename

SWITCH [PARTITION source partition number expression]
TO [schema name.] target table

[PARTITION target partition number expression]

Table 4-24 details the arguments of this command.

Table 4-24. ALTER TABLE...SWITCH Arguments

Argument Description

tablename The source table to move the partition from
source_partition_number expression The partition number being relocated

[schema_name.] target table The target table to receive the partition
partition.target partition number expression The destination partition number

This example demonstrates moving a partition between Sales.WebSiteHits and a new table
called Sales.WebSiteHitsHistory. In the first step, a new table is created to hold historical web site
hit information:

CREATE TABLE Sales.WebSiteHitsHistory
(WebSiteHitID bigint NOT NULL IDENTITY(1,1),
WebSitePage varchar(255) NOT NULL,

HitDate datetime NOT NULL,

CONSTRAINT PK_WebSiteHitsHistory

PRIMARY KEY (WebSiteHitID, HitDate))

ON [HitDateRangeScheme] (HitDate)

Next, ALTER TABLE is used to move partition 3 from Sales.WebSiteHits to partition 3 of the new
Sales.WebSiteHitsHistory table:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3
TO Sales.WebSiteHitsHistory PARTITION 3

Next, a query is executed using $PARTITION to view the transferred data in the new table:

SELECT HitDate,
$PARTITION.HitDateRange (HitDate) Partition
FROM Sales.WebSiteHitsHistory

189

190

CHAPTER 4 © TABLES

This returns

HitDate Partition
2008-05-09 00:00:00.000 3

How It Works

The first part of the recipe created a new table called Sales.WebSiteHitsHistory and used the same
partition scheme as the Sales.WebSiteHits table.

The source table and partition number to transfer was referenced in the first line of the ALTER
TABLE command:

ALTER TABLE Sales.WebSiteHits SWITCH PARTITION 3
The T0 keyword designated the destination table and partition to move the data to:
TO Sales.WebSiteHitsHistory PARTITION 3

Moving partitions between tables is much faster than performing a manual row operation
(INSERT..SELECT, for example) because you aren'’t actually moving physical data. Instead, you are
only changing the metadata regarding where the partition is currently stored. Also, keep in mind
that the target partition of any existing table needs to be empty for the destination partition. If it is
anon-partitioned table, it must also be empty.

Removing Partition Functions and Schemes

If you try to drop a partition function or scheme while it is still bound to an existing table or index,
you’ll get an error message. You also can’t directly remove a partition scheme or function while it is
bound to a table (unless you drop the entire table as will be done in this recipe). If you had origi-
nally created the table as a heap (a table without a clustered index), and then created a clustered
index bound to a partition scheme, you can use the CREATE INDEX DROP_EXISTING option (see
Chapter 5) to rebuild the index without the partition scheme reference.

Dropping a partition scheme uses the following syntax:

DROP PARTITION SCHEME partition_scheme name

This command takes the name of the partition scheme to drop.
Dropping a partition function uses the following syntax:

DROP PARTITION FUNCTION partition function name

Again, this command only takes the partition function name that should be dropped.

This example demonstrates how to drop a partition function and scheme, assuming that it is
okay in this scenario to drop the source tables (which oftentimes in a production scenario will not
be acceptable!):

DROP TABLE Sales.WebSiteHitsHistory
DROP TABLE Sales.WebSiteHits

-- Dropping the partition scheme and function
DROP PARTITION SCHEME HitDateRangeScheme
DROP PARTITION FUNCTION HitDateRange

CHAPTER 4 © TABLES

How It Works

This example demonstrated dropping a partition scheme and function; for this example, this
required that the source tables be dropped beforehand. One alternative solution is to copy out the
results to an external table, drop the tables, drop the partition scheme and partition function, and
then rename the tables that you copied the data to. If your goal is just to get the table down to a
single partition, you can merge all partitions, while still keeping the partition scheme and function.
A single partitioned table is functionally equivalent to a regular, non-partitioned table.

Easing VLDB Manageability with Filegroups

Filegroups are often used for very large databases because they can ease backup administration and
potentially improve performance by distributing data over disk LUNs or arrays. When creating a
table, you can specify that it be created on a specific filegroup. For example, if you have a table that
you know will become very large, you can designate that it be created on a specific filegroup.

Note This recipe includes filegroup techniques and concepts covered in more detail in Chapter 22.

The basic syntax for designating a table’s filegroup is as follows:

CREATE TABLE ...
[ON {filegroup | "default" }]
[{ TEXTIMAGE ON { filegroup | "default" }]

Table 4-25 details the arguments of this command.

Table 4-25. Arguments for Creating a Table on a Filegroup

Argument Description

filegroup This specifies the name of the filegroup on which the
table will be created.

"DEFAULT" This sets the table to be created on the default
filegroup defined for the database.

TEXTIMAGE ON { filegroup | "DEFAULT" } This option stores in a separate filegroup the data
from text, ntext, image, xml, varchar (max),
nvarchar(max), and varbinary(max) data types.

This example demonstrates how to place a table on a non-default, user-created filegroup. The
first step involves creating a new filegroup in the AdventureWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP AW_FG2
GO

Next, a new file is added to the filegroup:

ALTER DATABASE AdventureWorks

ADD FILE

(' NAME = AW_F2,
FILENAME = 'C:\Apress\aw_f2.ndf"',
SIZE = 1MB

TO FILEGROUP AW_FG2
GO

191

192

CHAPTER 4 © TABLES

I'll then create a new table on the new filegroup (causing its data to be stored in the new file,
contained within the filegroup):

CREATE TABLE HumanResources.AWCompany (
AWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentAWCompanyID int NULL,
AWCompanyNM varchar(25) NOT NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())
) ON AW_FG2

In the second example, a table is created by specifying that large object data columns be stored
on a separate filegroup (AW_FG2) from the regular data (on the PRIMARY filegroup):

CREATE TABLE HumanResources.EWCompany (
EWCompanyID int IDENTITY(1,1) NOT NULL PRIMARY KEY,
ParentEWCompanyID int NULL,
EWCompanyName varchar(25) NOT NULL,
HeadQuartersImage varbinary(max) NULL,
CreateDT datetime NOT NULL DEFAULT (getdate())

) ON [PRIMARY]

TEXTIMAGE ON AW FG2

How It Works

The recipe started by creating a new filegroup called AW_FG2. This was done using the ALTER
DATABASE command. After that, a new database file was added to the AdventurelWorks database,
which was placed into the new filegroup.

CREATE TABLE was then executed normally, only in the last part of the table definition ON AW_FG2
was used in order to place it into the AW_FG2 filegroup:

ON AW_FG2

If an ON filegroup clause isn’t used in a CREATE TABLE, it's assumed that the table will be placed
on the default filegroup (which, if you haven't changed it, is called PRIMARY).

If this table becomes very large, and you've placed it on its own filegroup, a filegroup backup
can be used to specifically back up the table and any other tables or indexes that are placed in it
(see Chapter 5 for more on placing an index into a filegroup and Chapter 29 for a review of filegroup
backups).

For the second example, a table was created with filegroup options placing regular data on the
PRIMARY filegroup and text/image data on the AW_FG2 filegroup (doing so requires that your table
actually have a large value data type):

ON [PRIMARY]
TEXTIMAGE ON AW_FG2

Separating out large object data may ease database maintenance and improve performance,
depending on your database design and physical hardware, the types of queries accessing it, and
the location of the file(s) in the filegroup.

Reducing Disk Space Usage with Data Compression

SQL Server 2008 Enterprise Edition and Developer Edition introduce row- and page-level compres-
sion for tables, indexes, and associated partitions.

Row compression applies variable-length storage to numeric data types (for example, int,
bigint, and decimal) and fixed-length types such as money and datetime. Row compression also

CHAPTER 4 © TABLES

applies variable-length format to fixed-character strings and doesn’t store trailing blank characters,
NULL, and 0 values.

Page compression includes row compression, and also adds prefix and dictionary compres-
sion. Prefix compression involves the storage of column prefix values that are stored multiple times
in a column across rows and replaces the redundant prefixes with references to the single value.
Dictionary compression occurs after prefix compression and involves finding repeated data values
anywhere on the data page (not just prefixes) and then replacing the redundancies with a pointer to
the single value.

Tip Chapter 5 reviews how to use CREATE INDEX and ALTER INDEX to enable compression for nonclustered
indexes.

This recipe will show how to use CREATE TABLE and ALTER TABLE to enable row and page com-
pression. In the first example, I will enable row compression for a new table. To do so, I designate
the DATA_COMPRESSION table option and select either NONE, ROW, or PAGE:

CREATE TABLE dbo.ArchiveJobPosting

(JobPostingID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,
CandidateID int NOT NULL,

JobDESC char(2000) NOT NULL

)
WITH (DATA_COMPRESSION = ROW)

To reconfigure compression on an existing table, I can execute ALTER TABLE...REBUILD WITH
with the DATA_COMPRESSION table option. For example, the following command turns off compres-
sion for the table I just created:

ALTER TABLE dbo.ArchiveJobPosting
REBUILD WITH
(DATA_COMPRESSION = NONE)

Next, I will populate the table with garbage data in order to demonstrate the benefits of com-
pression. The following query inserts a row, choosing a random integer value for the CandidateID,
and then repeating the letter “a” 50 times for the JobDESC. The GO command followed by 100000
means that the INSERT will execute 100,000 times, resulting in 100,000 new rows into this table (this
may take a few minutes for you to execute if you are following along on your own test SQL Server
instance):

INSERT dbo.ArchiveJobPosting

(CandidateID, JobDESC)

VALUES (CAST(RAND() * 10 as int),
REPLICATE('a',50))

GO 100000

Now that the data is populated, I can execute the sp_estimate _data compression savings sys-
tem stored procedure to get an estimate of how much disk savings I can expect to see when using
either row or page compression. The sp_estimate data_compression_savings stored procedure
takes five arguments: the schema name of the table to be compressed, object name, index ID, parti-
tion number, and data compression method (NONE, ROW, or PAGE). In the following example, I will first
check to see how much space can be saved by using row compression:

EXEC sys.sp_estimate_data_compression_savings

@schema_name = ‘'dbo’,
@object name = ‘'ArchiveJobPosting’,

193

194

CHAPTER 4 © TABLES

@index_id = NULL,
@partition _number = NULL,
@data_compression = 'ROW'

This returns the following information (reformatted for readability):

object name ArchiveJobPosting
schema_name dbo

index_id 1

partition number 1

size with current compression setting(KB) 200752

size with requested compression setting(KB) 6536

sample size with current compression setting(KB) 39776

sample size with requested compression setting(KB) 1296

As you can see from the stored procedure results, adding row compression would save
194,216KB with the current data set. The sample size data is based on the stored procedure loading
sample data into a cloned table in tempdb and validating the compression ratio accordingly.

Now I will test to see whether there are benefits to using page-level compression:

EXEC sys.sp_estimate_data_compression_savings
@schema_name = ‘'dbo’,
@object_name = 'ArchiveJobPosting',
@index_id = NULL,
@partition number = NULL,
@data_compression = 'PAGE'

This returns

object name ArchiveJobPosting
schema_name dbo

index_id 1
partition_number 1

size with_current compression setting(KB) 200752

size with requested compression setting(KB) 1200

sample size with current compression setting(KB) 40144

sample size with requested compression setting(KB) 240

Sure enough, the page-level compression shows additional benefits beyond just row-level
compression.

Gaution The trade-off for compression is some increased CPU utilization. You must consider and test your
current application to determine whether the trade-off of disk space to ongoing CPU overhead is beneficial.

Next, I will go ahead and turn on page-level compression for the table using ALTER TABLE:

ALTER TABLE dbo.ArchiveJobPosting
REBUILD WITH
(DATA_COMPRESSION = PAGE)

Compression can also be configured at the partition level. In the next set of commands, I will
create a new partitioning function and scheme, and apply it to a new table. The table will use vary-
ing compression levels based on the partition. I first start off by creating the partition function and
scheme:

CHAPTER 4 © TABLES

CREATE PARTITION FUNCTION pfn ArchivePart(int)
AS RANGE LEFT FOR VALUES (50000, 100000, 150000)
@0

-- This command assumes your db has these filegroups
CREATE PARTITION SCHEME psc_ArchivePart

AS PARTITION pfn_ ArchivePart

T0 (hitfgl, hitfg2, hitfg3, hitfgs) ;

GO

Next, I create the table referencing the partition scheme on the JobPostingID integer column. I
also designate which partitions will have PAGE compression and which partitions will have row com-
pression:

CREATE TABLE dbo.ArchiveJobPosting V2

(JobPostingID int NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,

CandidateID int NOT NULL,

JobDESC char(2000) NOT NULL)

ON psc_ArchivePart(JobPostingID)

WITH (DATA COMPRESSION = PAGE ON PARTITIONS (1 TO 3),
DATA_COMPRESSION = ROW ON PARTITIONS (4))

If I want to change the compression level for any of the partitions, I can use ALTER TABLE, as
demonstrated next, by changing partition 4 from row to page compression:

ALTER TABLE dbo.ArchiveJobPosting V2
REBUILD PARTITION = 4
WITH (DATA_COMPRESSION = PAGE)

How It Works

This recipe demonstrated how to apply page- and row-level compression to a table by using CREATE
TABLE and ALTER TABLE. SQL Server 2008 Enterprise Edition and Developer Edition introduce the
compression feature, which is used to reduce overall disk usage for database tables. Depending on
the type of data stored in your table, overall compression ratios will vary in significance. Also note
that the benefit of compression comes with an overall CPU cost, which you'll want to thoroughly
test prior to deploying in a production environment.

Enabling compression only involves using the DATA_COMPRESSION clause in conjunction with
the CREATE TABLE or ALTER TABLE command (I'll demonstrate nonclustered index compression in
Chapter 5). This compression can take place against a heap (no clustered index), clustered index,
nonclustered index, indexed view, or specific partitions on a table or index. To validate the benefits
of adding row or page compression, use the sp_estimate_data_compression_savings system stored
procedure as was demonstrated in this recipe.

195

CHAPTER 5

Indexes

Indexes assist with query processing by speeding up access to the data stored in tables and views.
Indexes allow for ordered access to data based on an ordering of data rows. These rows are ordered
based upon the values stored in certain columns. These columns comprise the index key columns,
and their values (for any given row) are a row’s index key.

This chapter contains recipes for creating, altering, and dropping different types of indexes. I'll
demonstrate how indexes can be created, including a syntax for index options, support for partition
schemes, the INCLUDE command, page and row lock disabling, index disabling, and the ability to
perform online operations.

I'll also cover a couple of new features in SQL Server 2008, including filtered indexes and index
compression. For exercises performed in this chapter, you may wish to back up the AdventureWorks
database beforehand, so that you can restore it to its original state after going through the recipes.

Note For coverage of index maintenance, reindexing, and rebuilding (ALTER INDEX), see Chapter 23. Indexed
views are covered in Chapter 7. For coverage of index performance troubleshooting and fragmentation, see
Chapter 28.

Index Overview

An index is a database object that, when created on a table, can provide faster access paths to data
and can facilitate faster query execution. Indexes are used to provide SQL Server with a more effi-
cient method of accessing the data. Instead of always searching every data page in a table, an index
facilitates retrieving specific rows without having to read a table’s entire content.

By default, rows in a regular unindexed table aren’t stored in any particular order. A table in an
orderless state is called a heap. In order to retrieve rows from a heap based on a matching set of
search conditions, SQL Server would have to read through all the rows in the table. Even if only one
row matched the search criteria and that row just happened to be the first row the SQL Server data-
base engine read, SQL Server would still need to evaluate every single table row since there is no
other way for it to know if other matching rows exist. Such a scan for information is known as a full
table scan. For a large table, that might mean reading hundreds or thousands or millions and bil-
lions of rows just to retrieve a single row. However, if SQL Server knows that there is an index on a
column (or columns) of a table, then it may be able to use that index to search for matching records
more efficiently.

In SQL Server, a table is contained in one or more partitions. A partition is a unit of organiza-
tion that allows you to horizontally separate allocation of data within a table and/or index, while
still maintaining a single logical object. When a table is created, by default, all of its data is

197

Download from Wow! eBook <www.wowebook.com>

198

CHAPTER 5 © INDEXES

contained within a single partition. A partition contains heaps, or, when indexes are created, B-tree
structures.

When an index is created, its index key data is stored in a B-tree structure. A B-tree structure
starts with a root node, which is the beginning of the index. This root node has index data that con-
tains a range of index key values that point to the next level of index nodes, called the intermediate
leaf level. The bottom level of the node is called the leaf level. The leaf level differs based on whether
the actual index type is clustered or nonclustered. If it is a clustered index, the leaf level is the actual
data pages itself. If a nonclustered index, the leaf level contains pointers to the heap or clustered
index data pages.

A clustered index determines how the actual table data is physically stored. You can only desig-
nate one clustered index. This index type stores the data according to the designated index key
column or columns. Figure 5-1 demonstrates the B-tree structure of the clustered index. Notice that
the leaf level consists of the actual data pages.

ROOT Page
A-Z
| |
Intermediate Level L Intermediate Level . Intermediate Level
A-H 1-Q R-Z
|
I | | | |
Leaf Node . Leaf Node _ Leaf Node l_ Leaf Node | _ Leaf Node
Data Pages Data Pages Data Pages Data Pages Data Pages

Figure 5-1. B-tree structure of a clustered index

Clustered index selection is a critical choice, as you can only have one clustered index for a
single table. In general, good candidates for clustered indexes include columns that are queried
often in range queries because the data is then physically organized in a particular order. Range
queries use the BETWEEN keyword and the greater than (>) and less than (<) operators. Other columns
to consider are those used to order large result sets, those used in aggregate functions, and those
that contain entirely unique values. Frequently updated columns and non-unique columns are usu-
ally not a good choice for a clustered index key, because the clustered index key is contained in the
leaf level of all dependent nonclustered indexes, causing excessive reordering and modifications.
For this same reason, you should also avoid creating a clustered index with too many or very wide
(many bytes) index keys.

Nonclustered indexes store index pages separately from the physical data, with pointers to the
physical data located in the index pages and nodes. Nonclustered index columns are stored in the
order of the index key column values. You can have up to 249 nonclustered indexes on a table or
indexed view. For nonclustered indexes, the leaf node level is the index key coupled to a row locater
that points to either the row of a heap or the clustered index row key, as shown in Figure 5-2.

When selecting columns to be used for nonclustered indexes, look for those columns that are
frequently referenced in WHERE, JOIN, and ORDER BY clauses. Search for highly selective columns that
would return smaller result sets (less than 20 percent of all rows in a table). Selectivity refers to how
many rows exist for each unique index key value. If a column has poor selectivity, for example, only
containing zeros or ones, it is unlikely that SQL Server will take advantage of that query when creat-
ing the query execution plan, because of its poor selectivity.

CHAPTER 5 © INDEXES
ROOT Page
A-Z
|]
Leaf Level Leaf Level Leaf Level
Row Locator Row Locator Row Locator
|
| | | | |
Heap or . Heap or Heap or Heap or Heap or

Clustered Index

Clustered Index

Clustered Index

Clustered Index

Clustered Index

Figure 5-2. B-tree structure of a nonclustered index

An index, either clustered or nonclustered, is based on one or more key values. The index key
refers to columns used to define the index itself. SQL Server also has a feature that allows the addi-
tion of non-key columns to the leaf level of the index by using the new INCLUDE clause demonstrated
later on in the chapter. This feature allows more of your query’s selected columns to be returned or
“covered” by a single nonclustered index, thus reducing total I/0, as SQL Server doesn’'t have to
access the clustered leaf level data pages at all.

You can use up to 16 key columns in a single index, so long as you don’t exceed 900 bytes of all
index key columns combined. You can’t use large object data types within the index key, including
varchar(max), nvarchar(max), varbinary(max), xml, ntext, text, and the image data types.

A clustered or nonclustered index can either be specified as unique or non-unique. Choosing a
unique index makes sure that the data values inserted into the key column or columns are unique.
For unique indexes using multiple keys (called a composite index), the combination of the key val-
ues have to be unique for every row in the table.

As noted earlier, indexes can be massively beneficial in terms of your query performance, but
there are also costs associated with them. You should only add indexes based on expected query
activity, and you should continually monitor whether or not indexes are still being used over time. If
not, they should be removed. Too many indexes on a table can cause performance overhead when-
ever data modifications are performed to the table, as SQL Server must maintain the index changes
alongside the data changes. Ongoing maintenance activities such as index rebuilding and reorgani-
zations will also be prolonged with excessive indexing.

These next few recipes will demonstrate how to create, modify, disable, view, and drop indexes.

Note See Chapter 28 to learn how to view which indexes are being used for a query. This chapter also covers
how to view index fragmentation and identify whether or not an index is being used over time. To learn how to
rebuild or reorganize indexes, see Chapter 23.

Creating a Table Index

In this recipe, I'll show you how to create two types of indexes, one clustered and the other nonclus-
tered. An index is created by using the CREATE INDEX command. This chapter will review the many
facets of this command; however, the basic syntax used in this upcoming example is as follows:

199

200

CHAPTER 5 © INDEXES

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON {
[database name. [schema_name] . | schema_name.]
table or view name}
(column [ASC | DESC] [,...n])

The arguments of this command are described in Table 5-1.

Table 5-1. CREATE INDEX Command Arguments

Argument Description

[UNIQUE] You can only have one primary key on each table.
However, if you wish to enforce uniqueness in other
non-key columns, you can designate that the index be
created with the UNIQUE constraint. You can create
multiple UNIQUE indexes for a single table and can
include columns that contain NULL values (although
only one NULL value is allowed per column combo).

[CLUSTERED | NONCLUSTERED] This specifies the index type, either CLUSTERED or
NONCLUSTERED. You can only have one CLUSTERED index,
but up to 249 NONCLUSTERED indexes.

index_name This defines the name of the new index.

[database _name. [schema_name] . This indicates the table or view to be indexed.

| schema_name.] table or view name}

Column This specifies the column or columns to be used as
part of the index key.

[ASC | DESC] This defines specific column order of indexing, either

ASC for ascending order or DESC for descending order.

I'll also show you a few examples of modifying an existing index using the ALTER INDEX
command:

ALTER INDEX index_name
ON object name

This command includes many of the same options of CREATE INDEX, only you cannot use it to
change which columns are used and their ordering. This command is also used to rebuild or reor-
ganize an index (which is covered in Chapter 23).

Starting off the recipe, I'll create a new table in the AdventurelWorks database for demonstration
purposes. I will intentionally leave off a PRIMARY KEY in the table definition:

USE AdventureWorks
GO

CREATE TABLE HumanResources.TerminationReason(
TerminationReasonID smallint IDENTITY(2,1) NOT NULL,
TerminationReason varchar(50) NOT NULL,
DepartmentID smallint NOT NULL,

CONSTRAINT FK_TerminationReason_DepartmentID
FOREIGN KEY (DepartmentID) REFERENCES
HumanResources.Department (DepartmentID)

)
GO

CHAPTER 5 © INDEXES

Before I demonstrate how to use CREATE INDEX, it is important to remember that when a
primary key is created on a column using CREATE TABLE or ALTER TABLE, that primary key also cre-
ates an index. Instead of defining this up front, in this example, I will create a CLUSTERED index on
the TerminationReasonID using ALTER TABLE with ADD CONSTRAINT:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Next, I'll create a nonclustered index on the DepartmentID column:

CREATE NONCLUSTERED INDEX NCI_TerminationReason DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

How It Works

In this exercise, the TerminationReason table was created without a primary key defined, meaning
that initially, the table was a “heap.” The primary key was then added afterward using ALTER TABLE.
The word CLUSTERED follows the PRIMARY KEY statement, thus designating a clustered index with the
new constraint:

ALTER TABLE HumanResources.TerminationReason
ADD CONSTRAINT PK_TerminationReason PRIMARY KEY CLUSTERED (TerminationReasonID)

Had the TerminationReasonID column not been chosen as the primary key, you could have still
defined a clustered index on it by using CREATE INDEX:

CREATE CLUSTERED INDEX CI_TerminationReason_TerminationReasonID ON
HumanResources.TerminationReason (TerminationReasonID)

Had a nonclustered index already existed for the table, the creation of the new clustered index
would have caused the nonclustered index to be rebuilt, in order to swap the nonclustered leaf level
row identifier with the clustered key.

The nonclustered index in the example was created as follows:

CREATE NONCLUSTERED INDEX NCI TerminationReason DepartmentID ON
HumanResources.TerminationReason (DepartmentID)

The only difference in syntax between the two index types was that the word NONCLUSTERED is
designated between CREATE and INDEX.

Enforcing Uniqueness on Non-Key Columns

In this recipe, I'll show you how to enforce uniqueness for non-key table columns. The syntax for
CREATE INDEX in the previous recipe showed the UNIQUE keyword. This example shows you how to
create a unique index on the HumanResources.TerminationReason table’s TerminationReason column:

CREATE UNIQUE NONCLUSTERED INDEX UNI_TerminationReason ON
HumanResources.TerminationReason (TerminationReason)

Now, I'll insert two new rows into the table with success:

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (1, 'Bad Engineering Skills')

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Breaks Expensive Tools')

201

202

CHAPTER 5 © INDEXES

If I attempt to insert a row with a duplicate TerminationReason value, an error will be raised:

INSERT HumanResources.TerminationReason
(DepartmentID, TerminationReason)
VALUES (2, 'Bad Engineering Skills')

This returns

Msg 2601, Level 14, State 1, Line 9

Cannot insert duplicate key row in object 'HumanResources.TerminationReason'
with unique index 'UNI_TerminationReason'.

The statement has been terminated.

Selecting the current rows from the table shows that only the first two rows were inserted:

SELECT TerminationReasonID, TerminationReason, DepartmentID
FROM HumanResources.TerminationReason

This returns

TerminationReasonID TerminationReason DepartmentID
1 Bad Engineering Skills 1

2 Breaks Expensive Tools 2

How It Works

A unique index was created on the TerminationReason column, which means that each row must
have a unique value. You can choose multiple unique constraints for a single table. NULL values are
permitted in a unique index; however, they must only occur once. Like a primary key, unique
indexes enforce entity integrity by ensuring that rows can be uniquely identified.

Creating an Index on Multiple Columns

In this recipe, I'll show you how to create a multiple-column index. In previous recipes, I've shown
you how to create an index on a single column; however, many times you will want more than one
column to be used in a single index. Use composite indexes when two or more columns are often
searched within the same query, or are often used in conjunction with one another.

In this example, we're assuming that TerminationReason and the DepartmentID will often be
used in the same WHERE clause of a SELECT query. With that in mind, I'll create the following multi-
column NONCLUSTERED INDEX:

CREATE NONCLUSTERED INDEX NI_TerminationReason TerminationReason DepartmentID
ON HumanResources.TerminationReason(TerminationReason, DepartmentID)

How It Works

Choosing which columns to index is a bit of an art. You'll want to add indexes to columns that you
know will be commonly queried; however, you must always keep a column’s selectivity in mind. If a
column has poor selectivity, for example, only containing a few unique values across thousands of
rows, it is unlikely that SQL Server will take advantage of that query when creating the query execu-
tion plan. One general rule of thumb when creating a composite index is to put the most selective
columns at the beginning, followed by the other less-selective columns. In this recipe’s example, the

CHAPTER 5 © INDEXES

TerminationReason was chosen as the first column, followed by the DepartmentID. Both are guaran-
teed to be totally unique in the table, and therefore are equally selective.

Tip Use the Database Tuning Advisor to help make index suggestions for you based on a query or batch of
queries. See Chapter 28 for more information on index usage and performance.

Defining Index Column Sort Direction

In this recipe, I'll show you how to set the sort direction of an index column. The default sort for an
indexed column is ascending order. You can explicitly set the ordering using ASC or DESC in the col-
umn definition of CREATE INDEX:

(column [ASC | DESC 1 [,...n])

In this example, I'll add a new column to a table and then index the column using a descending
order:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeveritylevel smallint
GO

CREATE NONCLUSTERED INDEX NI TerminationReason ViolationSeveritylevel
ON HumanResources.TerminationReason (ViolationSeveritylevel DESC)

How It Works

In this recipe’s example, a new column, ViolationSeveritylLevel, was added to the
TerminationReason table:

ALTER TABLE HumanResources.TerminationReason
ADD ViolationSeveritylevel smallint
GO

Query authors may want to most commonly sort on this value, showing
ViolationSeverityLevel from highest to lowest. Matching index order to how you think users will
use ORDER BY in the query can improve query performance, as SQL Server isn't then required to
re-sort the data when the query is processed. The index is created with the DESC instruction after
the column name:

(ViolationSeveritylLevel DESC)

If you have multiple key columns in your index, each can have its own separate sort order.

Viewing Index Meta Data

In this recipe, I'll show you how to view helpful information about indexes. Once you've created
indexes on your tables, you'll need some mechanism for tracking where they are, what their names
are, types, and the columns that define them. For this, use the sp_helpindex system stored proce-
dure to view the index names, descriptions, and keys for indexes on a specific table. This system
stored procedure only takes a single argument, the name of the table whose indexes you want to
view.

203

204

CHAPTER 5 © INDEXES

This example demonstrates viewing all indexes on the Employee table:
EXEC sp_helpindex 'HumanResources.Employee'

This returns the following results:

index_name index_description index_keys
AK_Employee_LoginID nonclustered, unique located on PRIMARY LoginID
AK_Employee_NationalIDNumber nonclustered, unique located on PRIMARY NationalIDNumber
AK_Employee_rowguid nonclustered, unique located on PRIMARY rowguid
IX_Employee_ManagerID nonclustered located on PRIMARY ManagerID
PK_Employee_ EmployeeID clustered, unique, primary key located on PRIMARY EmployeeID

For more in-depth index analysis of indexes, you can use the sys. indexes system catalog view.
For example, the following query shows index options (which will be discussed later in the chapter)
for the HumanResources.Employee table:

SELECT SUBSTRING(name, 1,30) index_name,
allow_row locks,
allow page locks,
is disabled,
fill factor,
has_filter
FROM sys.indexes
WHERE object id = OBJECT ID('HumanResources.Employee")

This returns

index_name allow row locks allow page locks is disabled fill factor has_filter
PK_Employee EmployeeID 1 1 0 0 0
AK_Employee LoginID 1 1 0 0 0
AK_Employee NationalIDNumber 1 1 0 0 0
AK_Employee_rowguid 1 1 0 0 0
IX_Employee ManagerID 1 1 0 0 0

How It Works

You can use the system stored procedure sp_helpindex call to list the indexes on a specific table.
The output also returns a description of the indexes, including the type and filegroup location. The
key columns defined for the index are also listed.

The sys.indexes system catalog view can also be used to find out more about the configured
settings of a specific index.

Tip For related index keys and included columns, use the sys.index_columns catalog view.

Several of the options shown in this system catalog view haven’t been covered yet, but some of
them that I've discussed are described in Table 5-2.

CHAPTER 5 © INDEXES

Table 5-2. A Subset of the sys.indexes System Catalog Columns

Column Description

object id This is the object identifier of the table or view for which the index
belongs. You can use the OBJECT_NAME function to show the table or view
name, or OBJECT_ID to convert a table or view name into its database
object identifier.

name This indicates the index name.

index_id When index_idis 0, the index is a heap. When index_idis 1, the indexis a
clustered index. When index_id is greater than 1, it is a nonclustered
index.

type This specifies the index type, which can be 0 for heap, 1 for clustered
index, 2 for nonclustered, 3 for an XML index, and 4 for spatial.

type_desc This defines the index type description.

is_unique When is_unique is 1, the index is a unique index.

is_primary key When is_primary key is 1, the index is the result of a primary key
constraint.

is _unique_constraint When is_unique constraint is 1, the index is the result of a unique
constraint.

Disabling an Index

In this recipe, I'll show you how to disable an index from being used in SQL Server queries. Dis-
abling an index retains the metadata definition data in SQL Server but makes the index unavailable
for use. Consider disabling an index as an index troubleshooting technique or if a disk error has
occurred and you would like to defer the index’s re-creation.

Gaution If you disable a clustered index, keep in mind that the table index data will no longer be accessible.
This is because the leaf level of a clustered index is the actual table data itself. Also, reenabling the index means
either re-creating or rebuilding it (see the “How It Works” section for more information).

An index is disabled by using the ALTER INDEX command. The syntax is as follows:

ALTER INDEX index_name ON
table or view name DISABLE

The command takes two arguments, the name of the index, and the name of the table or view
that the index is created on.
In this example, I will disable the UNI_TerminationReason index on the TerminationReason table:

ALTER INDEX UNI_TerminationReason ON
HumanResources.TerminationReason DISABLE

How It Works

This recipe demonstrated how to disable an index. If an index is disabled, the index definition
remains in the system tables, although the user can no longer use the index. For nonclustered
indexes on a table, the index data is actually removed from the database. For a clustered index on a

205

206

CHAPTER 5 © INDEXES

table, the data remains on disk, but because the index is disabled, you can’t query it. For a clustered
or nonclustered index on the view, the index data is removed from the database.

To reenable the index, you can use either the CREATE INDEX with DROP_EXISTING command (see
later in this chapter) or ALTER INDEX REBUILD (described in Chapter 23). Rebuilding a disabled non-
clustered index reuses the existing space used by the original index.

Dropping Indexes

In this recipe, I'll show you how to drop an index from a table or view. When you drop an index, it is
physically removed from the database. If this is a clustered index, the table’s data remains in an
unordered (heap) form. You can remove an index entirely from a database by using the DROP INDEX
command. The basic syntax is as follows:

DROP INDEX <table or view name>.<index_name> [,...n]
In this example, I'll demonstrate dropping a single index from a table:

DROP INDEX HumanResources.TerminationReason.UNI TerminationReason

How It Works

You can drop one or more indexes for a table using the DROP INDEX command. Dropping an index
frees up the space taken up by the index and removes the index definition from the database. You
can’'t use DROP INDEX to remove indexes that result from the creation of a PRIMARY KEY or UNIQUE
CONSTRAINT. If you drop a clustered index that has nonclustered indexes on it, those nonclustered
indexes will also be rebuilt in order to swap the clustered index key for a row identifier of the heap.

Changing an Existing Index with DROP_EXISTING

In this recipe, I'll show you how to drop and re-create an index within a single execution, as well as
change the key column definition of an existing index. The ALTER INDEX can be used to change
index options, rebuild and reorganize indexes (reviewed in Chapter 23), and disable an index, but it
is not used to actually add, delete, or rearrange columns in the index.

You can, however, change the column definition of an existing index by using CREATE
INDEX. ..DROP_EXISTING. This option also has the advantage of dropping and re-creating an index
within a single command (instead of using both DROP INDEX and CREATE INDEX). Also, using
DROP_EXISTING on a clustered index will not cause existing nonclustered indexes to be automatically
rebuilt, unless the index column definition has changed.

This first example demonstrates just rebuilding an existing nonclustered index (no change in
the column definition):

CREATE NONCLUSTERED INDEX NCI TerminationReason DepartmentID ON
HumanResources.TerminationReason

(DepartmentID ASC)

WITH (DROP_EXISTING = ON)

GO

Next, a new column is added to the existing nonclustered index:

CREATE NONCLUSTERED INDEX NCI_TerminationReason_DepartmentID ON
HumanResources.TerminationReason

(ViolationSeveritylevel, DepartmentID DESC)

WITH (DROP_EXISTING = ON)

GO

CHAPTER 5 © INDEXES

How It Works

In the first example, the CREATE INDEX didn’t change anything about the existing index definition,
but instead just rebuilds it by using the DROP_EXISTING clause. Rebuilding an index can help defrag-
ment the data, something which is discussed in more detail in Chapter 23.

In the second statement, a new column was added to the existing index and placed right before
the DepartmentID. The index was re-created with the new index key column, making it a composite
index.

You can’'t use DROP_EXISTING to change the name of the index, however. For that, use DROP INDEX
and CREATE INDEX with the new index name.

Controlling Index Build Performance and
Concurrency

So far in this chapter, I've reviewed how an index is defined, but note that you can also determine
under what circumstances an index is built. For example, when creating an index in SQL Server, in
order to improve the performance, you can designate that a parallel plan of execution is used,
instantiating multiple processors to help complete a time-consuming build. In addition to this, you
could also direct SQL Server to create the index in tempdb, instead of causing file growth operations
in the index’s home database. If you are using Enterprise Edition, you can also allow concurrent
user query access to the underlying table during the index creation by using the ONLINE option.

The next three recipes will demonstrate methods for improving the performance of the index
build, as well as improving user concurrency during the operation.

Intermediate Index Creation in Tempdb

In this recipe, I'll show you how to push index creation processing to the tempdb system database.
The tempdb system database is used to manage user connections, temporary tables, temporary
stored procedures, or temporary work tables needed to process queries on the SQL Server instance.
Depending on the database activity on your SQL Server instance, you can sometimes reap perform-
ance benefits by isolating the tempdb database on its own disk array, separate from other databases.
If index creation times are taking too long for what you expect, you can try to use the index option
SORT_IN_TEMPDB to improve index build performance (for larger tables). This option pushes the
intermediate index build results to the tempdb database instead of using the user database where
the index is housed.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as
follows:

WITH (SORT_IN TEMPDB = { ON | OFF })

The default for this option is OFF. In this example, I'll create a new nonclustered index with the
SORT_IN_TEMPDB option enabled:

CREATE NONCLUSTERED INDEX NI Address PostalCode ON
Person.Address (PostalCode)
WITH (SORT_IN TEMPDB = ON)

How It Works

The SORT_IN_TEMPDB option enables the use of the tempdb database for intermediate index results.
This option may decrease the amount of time it takes to create the index for a large table, but with

207

Download from Wow! eBook <www.wowebook.com>

208

CHAPTER 5 © INDEXES

the trade-off that the tempdb system database will need additional space to participate in this
operation.

Controlling Parallel Plan Execution for Index Creation

In this recipe, I'll show you how to control the number of processors used to process a single query.
If using SQL Server Enterprise Edition with a multiprocessor server, you can control/limit the num-
ber of processors potentially used in an index creation operation by using the MAXDOP index option.
Parallelism, which in this context is the use of two or more processors to fulfill a single query state-
ment, can potentially improve the performance of the index creation operation.

The syntax for this option, which can be used in both CREATE INDEX and ALTER INDEX, is as
follows:

MAXDOP = max_degree of_parallelism

The default value for this option is 0, which means that SQL Server can choose any or all of
the available processors for the operation. A MAXDOP value of 1 disables parallelism on the index
creation.

Tip Limiting parallelism for index creation may improve concurrency for user activity running during the build,
but may also increase the time it takes for the index to be created.

This example demonstrates how to control the number of processors used in parallel plan exe-
cution (parallelism) during an index creation:

CREATE NONCLUSTERED INDEX NI_Address AddressLinel ON
Person.Address (AddressLinel)
WITH (MAXDOP = 4)

How It Works

In this recipe, the index creation was limited to 4 processors:
WITH (MAXDOP = 4)

Just because you set MAXDOP doesn’t make any guarantee that SQL Server will actually use the
number of processors that you designate. It only ensures that SQL Server will not exceed the MAXDOP
threshold.

Allowing User Table Access During Index Creation

In this recipe, I'll show you how to allow query activity to continue to access the index even while an
index creation process is executing. If you are using SQL Server Enterprise Edition, you can allow
concurrent user query access to the underlying table during the index creation by using the new
ONLINE option, which is demonstrated in this next recipe:

CREATE NONCLUSTERED INDEX NCI ProductVendor MinOrderQty ON
Purchasing.ProductVendor(MinOrderQty)
WITH (ONLINE = ON)

CHAPTER 5 © INDEXES

How It Works

With the new ONLINE option in the WITH clause of the index creation, long-term table locks are not
held during the index creation. This can provide better concurrency on larger indexes that contain
frequently accessed data. When the ONLINE option is set ON, only intent share locks are held on the
source table for the duration of the index creation, instead of the default behavior of a longer-term
table lock held for the duration of the index creation.

Index Options

The next three recipes cover options that impact performance, although each in their own different
ways. For example, the INCLUDE keyword allows you to add non-key columns to a nonclustered
index. This allows you to create a covering index that can be used to return data to the user without
having to access the clustered index data.

The second recipe will discuss how the PAD_INDEX and FILLFACTOR options determine how to set
the initial percentage of rows to fill the index leaf level pages and intermediate levels of an index.
The recipe will discuss how the fill factor impacts the performance of not only queries, but also
insert, update, and delete operations.

The third recipe will cover how to disable certain locking types for a specific index. As will be
discussed in the recipe, using these options allows you to control both concurrency and resource
usage when queries access the index.

Using an Index INCLUDE

In this recipe, I'll show you how to include non-key columns within a nonclustered index. A
covering query is a query whose referenced columns are found entirely within a nonclustered index.
This scenario often results in better query performance, as SQL Server does not have to retrieve
the actual data from the clustered index or heap—it only needs to read the data stored in the non-
clustered index. The drawback, however, is that you can only include up to 16 columns or up to
900 bytes for an index key.

One solution to this problem is the INCLUDE keyword, which allows you to add up to 1023 non-
key columns to the nonclustered index, helping you improve query performance by creating a
covered index. These non-key columns are not stored at each level of the index, but instead are
only found in the leaf level of the nonclustered index. The syntax for using INCLUDE with CREATE
NONCLUSTERED INDEX is as follows:

CREATE NONCLUSTERED INDEX index name
ON table or view name (column [ASC | DESC] [,...n])
INCLUDE (column [,... n])

Whereas the first column list is for key index columns, the column list after INCLUDE is for
non-key columns. In this example, I'll create a new large object data type column to the
TerminationReason table. I'll drop the existing index on DepartmentID and re-create it with
the new non-key value in the index:

ALTER TABLE HumanResources.TerminationReason
ADD LegalDescription varchar(max)

DROP INDEX
HumanResources.TerminationReason.NI_TerminationReason TerminationReason DepartmentID

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason (TerminationReason, DepartmentID)
INCLUDE (LegalDescription)

209

210

CHAPTER 5 © INDEXES

How It Works

This recipe demonstrated a technique for enhancing a nonclustered index’s usefulness. The exam-
ple started off by creating a new varchar (max) data type column. Because of its data type, it cannot
be used as a key value in the index; however, using it within the INCLUDE keyword will allow you to
reference the new large object data types. The existing index on the TerminationReason table was
then dropped and re-created using INCLUDE with the new non-key column.

You can use INCLUDE only with a nonclustered index (where a covered query comes in handy),
and you still can’'t include the deprecated image, ntext, and text data types. Also, if the index size
increases too significantly because of the additional non-key values, you may lose some of the
query benefits that a covering query can give you, so be sure to test comparative before/after per-
formance.

Using PAD_INDEX and FILLFACTOR

In this recipe, I'll show you how to set the initial percentage of rows to fill the index leaf level pages
and intermediate levels of an index. The fill factor percentage of an index refers to how full the leaf
level of the index pages should be when the index is first created. The default fill factor, if not explic-
itly set, is 0, which equates to filling the pages as full as possible (SQL Server does leave some space
available—enough for a single index row). Leaving some space available, however, allows new rows
to be inserted without resorting to page splits. A page split occurs when a new row is added to a full
index page. In order to make room, half the rows are moved from the existing full page to a new
page. Numerous page splits can slow down INSERT operations. On the other hand, however, fully
packed data pages allow for faster read activity, as the database engine can retrieve more rows from
less data pages.

The PAD_INDEX option, used only in conjunction with FILLFACTOR, specifies that the specified
percentage of free space be left open on the intermediate level pages of an index.

These options are set in the WITH clause of the CREATE INDEX and ALTER INDEX commands. The
syntax is as follows:

WITH (PAD_INDEX = { ON | OFF }
| FILLFACTOR = fillfactor)

In this example, an index is dropped and re-created with a 50% fill factor and PAD_INDEX
enabled:

DROP INDEX
HumanResources.TerminationReason.NI_TerminationReason TerminationReason DepartmentID

CREATE NONCLUSTERED INDEX NI_TerminationReason_TerminationReason_DepartmentID
ON HumanResources.TerminationReason

(TerminationReason ASC, DepartmentID ASC)

WITH (PAD_INDEX=ON, FILLFACTOR=50)

How It Works

In this recipe, the fill factor was configured to 50%, leaving 50% of the index pages free for new rows.
PAD_INDEX was also enabled, so the intermediate index pages will also be left half free. Both options
are used in the WITH clause of the CREATE INDEX syntax:

WITH (PAD_INDEX=ON, FILLFACTOR=50)

Using FILLFACTOR can be a balancing act between reads and writes. For example, a 100% fill fac-
tor can improve reads, but slow down write activity, causing frequent page splitting as the database
engine must continually shift row locations in order to make space in the data pages. Having too

CHAPTER 5 © INDEXES

low of a fill factor can benefit row inserts, but it can also slow down read operations, as more data
pages must be accessed in order to retrieve all required rows. If you're looking for a general rule of
thumb, use a 100% fill factor for tables with almost no data modification activity, 80-90% for low
activity, 60-70% for medium activity, and 50% or lower for high activity on the index key.

Disabling Page and/or Row Index Locking

In this recipe, I'll show you how to change the lock resource types that can be locked for a specific
index. In Chapter 3, I discussed various lock types and resources within SQL Server. Specifically, var-
ious resources can be locked by SQL Server from small (row and key locks) to medium (page locks,
extents) to large (table, database). Multiple, smaller-grained locks help with query concurrency,
assuming there are a significant number of queries simultaneously requesting data from the same
table and associated indexes. Numerous locks take up memory, however, and can lower perform-
ance for the SQL Server instance as a whole. The trade-off is larger-grained locks, which increase
memory resource availability but also reduce query concurrency.

You can create an index that restricts certain locking types when it is queried. Specifically, you
can designate whether page or row locks are allowed.

In general you should allow SQL Server to automatically decide which locking type is best;
however, there may be a situation where you wish to temporarily restrict certain resource locking
types, for troubleshooting or a severe performance issue.

The syntax for configuring these options for both CREATE INDEX and ALTER INDEX is as follows:

WITH (ALLOW ROW LOCKS = { ON | OFF }
| ALLOW PAGE_LOCKS = { ON | OFF })

This recipe shows you how to disable the database engine’s ability to place row or page locks on
an index, forcing it to use table locking instead:

-- Disable page locks. Table and row locks can still be used.
CREATE INDEX NI _EmployeePayHistory Rate ON
HumanResources.EmployeePayHistory (Rate)

WITH (ALLOW_PAGE_LOCKS=OFF)

-- Disable page and row locks. Only table locks can be used.
ALTER INDEX NI_EmployeePayHistory Rate ON
HumanResources.EmployeePayHistory

SET (ALLOW_PAGE_LOCKS=0FF ,ALLOW_ROW_LOCKS=OFF)

-- Allow page and row locks.

ALTER INDEX NI_EmployeePayHistory Rate ON
HumanResources.EmployeePayHistory

SET (ALLOW_PAGE LOCKS=ON,ALLOW ROW_LOCKS=ON)

How It Works

This recipe demonstrated three variations. The first query created a new index on the table, config-
ured so that the database engine couldn’t issue page locks against the index:

WITH (ALLOW_PAGE_LOCKS=OFF)
In the next statement, both page and row locks were turned OFF (the default for an index is for
both to be set to ON):

ALTER INDEX NI EmployeePayHistory Rate ON
HumanResources.EmployeePayHistory
SET (ALLOW_PAGE_LOCKS=OFF,ALLOW_ROW_LOCKS=OFF)

211

212

CHAPTER 5 © INDEXES

In the last statement, page and row locking is reenabled:
SET (ALLOW_PAGE_LOCKS=ON,ALLOW_ROW_LOCKS=ON)

Removing locking options should only be done if you have a good reason to do so—for exam-
ple, you may have activity that causes too many row locks, which can eat up memory resources.
Instead of row locks, you may wish to have SQL Server use larger-grained page or table locks
instead.

Managing Very Large Indexes

This next set of recipes for this chapter cover methods for managing very large indexes; however,
the features demonstrated here can be applied to smaller and medium-sized indexes as well. For
example, you can designate that an index is created on a separate filegroup. Doing so can provide
benefits from both the manageability and performance sides, as you can then perform separate
backups by filegroup, as well as improving I/0 performance of a query if the filegroup has files that
exist on a separate array.

As was initially reviewed in Chapter 4, you can also implement index partitioning. Partitioning
allows you to break down the index data set into smaller subsets of data. As will be discussed in the
recipe, if large indexes are separated onto separate partitions, this can positively impact the per-
formance of a query (particularly for very large indexes).

SQL Server 2008 also introduces the filtered index feature and the ability to compress data at
the page and row level. The filtered index feature allows you to create an index and associated sta-
tistics for a subset of values. If incoming queries only hit a small percentage of values within a
column, for example, you can create a filtered index that will only target those common values—
thus reducing the overall index size compared to a full table index, and also improving the accuracy
of the underlying statistics.

As for the new compression feature, available in the Enterprise and Developer Editions, you
can now designate row or page compression for an index or specified partitions. I originally demon-
strated this feature for CREATE TABLE and ALTER TABLE in Chapter 4. In this chapter, I'll continue this
discussion with how to enable compression using CREATE INDEX and ALTER INDEX.

Creating an Index on a Filegroup

In this recipe, I'll show you how to create an index on a specific filegroup. If not explicitly desig-
nated, an index is created on the same filegroup as the underlying table. This is accomplished using
the ON clause of the CREATE INDEX command:

ON filegroup name | default

This option can take an explicit filegroup name or the database default filegroup (for more
information on filegroups, see Chapter 22).

This example demonstrates how to explicitly define which filegroup an index is stored on. First,
I'll create a new filegroup on the AdventurelWorks database:

ALTER DATABASE AdventureWorks
ADD FILEGROUP FG2

Next, I'll add a new file to the database and the newly created filegroup:

ALTER DATABASE AdventureWorks
ADD FILE
(NAME = AW2,
FILENAME = 'c:\Apress\aw2.ndf',

CHAPTER 5 © INDEXES

SIZE = 1MB

TO FILEGROUP FG2
Lastly, I'll create a new index, designating that it be stored on the newly created filegroup:

CREATE INDEX NI ProductPhoto ThumnailPhotoFileName ON
Production.ProductPhoto (ThumbnailPhotoFileName)
ON [FG2]

How It Works

The first part of the recipe creates a new filegroup in the AdventureWorks database called FG2 using
the ALTER DATABASE command. After that, a new database data file is created on the new filegroup.
Lastly, a new index is created on the FG2 filegroup. The ON clause designated the filegroup name for
the index in square brackets:

ON [FG2]

Filegroups can be used to help manage very large databases, both by allowing separate back-
ups by filegroup, as well as improving I/O performance if the filegroup has files that exist on a
separate array.

Implementing Index Partitioning

In this recipe, I'll show you how to apply partitioning to a nonclustered index. In Chapter 4,
demonstrated table partitioning. Partitioning can provide manageability, scalability, and perform-
ance benefits for large tables. This is because partitioning allows you to break down the data set into
smaller subsets of data. Depending on the index key(s), an index on a table can also be quite large.
Applying the partitioning concept to indexes, if large indexes are separated onto separate partitions,
this can positively impact the performance of a query. Queries that target data from just one parti-
tion will benefit because SQL Server will target just the selected partition, instead of accessing all
partitions for the index.

This recipe will now demonstrate index partitioning using the HitDateRangeScheme partition
scheme that was created in Chapter 4 on the Sales.WebSiteHits table:

CREATE NONCLUSTERED INDEX NI WebSiteHits WebSitePage ON
Sales.WebSiteHits (WebSitePage)
ON [HitDateRangeScheme] (HitDate)

How It Works

The partition scheme is applied using the ON clause.
ON [HitDateRangeScheme] (HitDate)

Notice that although the HitDate column wasn’t a nonclustered index key, it was included in
the partition scheme, matching that of the table. When the index and table use the same partition
scheme, they are said to be “aligned.”

You can choose to use a different partitioning scheme for the index than the table; however,
that scheme must use the same data type argument, number of partitions, and boundary values.
Unaligned indexes can be used to take advantage of collocated joins—meaning if you have two
columns from two tables that are frequently joined that also use the same partition function,
same data type, number of partitions, and boundaries, you can potentially improve query join

213

214

CHAPTER 5 © INDEXES

performance. However, the common approach will most probably be to use aligned partition
schemes between the index and table, for administration and performance reasons.

Indexing a Subset of Rows

SQL Server 2008 introduces the ability to create filtered, nonclustered indexes in support of queries
that require only a small percentage of table rows. The CREATE INDEX command now includes a filter
predicate that can be used to reduce index size by indexing only rows that meet certain conditions.
That reduced index size saves on disk space and potentially improves the performance of queries
that now need only read a fraction of the index entries that they would otherwise have to process.

The filter predicate allows for several comparison operators to be used, including IS, ISNOT, =,
<>, >, <, and more. In this recipe, I will demonstrate how to add filtered indexes to one of the larger
tables in the AdventureWorks database, Sales.SalesOrderDetail. To set up my example, let’s assume
that I have the following common query against the UnitPrice column:

SELECT SalesOrderID
FROM Sales.SalesOrderDetail
WHERE UnitPrice BETWEEN 150.00 AND 175.00

Let’s also assume that the person executing this query is the only one who typically uses the
UnitPrice column in the search predicate, and when she does query it, she is only concerned with
values between $150 and $175. Creating a full index on this column may be considered to be waste-
ful. If this query is executed often, and a full clustered index scan is performed against the base
table each time, this may cause performance issues.

I have just described an ideal scenario for a filtered index on the UnitPrice column. You can
create that filtered index as follows:

CREATE NONCLUSTERED INDEX NCI UnitPrice SalesOrderDetail
ON Sales.SalesOrderDetail(UnitPrice)
WHERE UnitPrice >= 150.00 AND UnitPrice <= 175.00

Queries that search against UnitPrice that also search in the defined filter predicate range will
likely use the filtered index instead of performing a full index scan or using full-table index alterna-
tives.

In this second example, let’s assume that it is common to query products with two distinct IDs.
In this case, I am also querying anything with an order quantity greater than ten; however, this is
not my desired filtering scenario—just the product ID filtering:

SELECT SalesOrderDetaillID

FROM Sales.SalesOrderDetail

WHERE ProductID IN (776, 777) AND
OrderQty > 10

This query performs a clustered index scan. I can improve performance of the query by adding
a filtered index, which will result in an index seek against that nonclustered index instead of the
clustered index scan. Here’s how to create that filtered index:

CREATE NONCLUSTERED INDEX NCI_ProductID SalesOrderDetail
ON Sales.SalesOrderDetail(ProductID,OrderQty)
WHERE ProductID IN (776, 777)

The result will be less I/0, as the query can operate against the much smaller, filtered index.

How It Works

This recipe demonstrates how to use the filtered index feature to create a fine-tuned index that
requires less storage than the full-table index alternative. Filtered indexes require that you

CHAPTER 5 © INDEXES 215

understand the nature of incoming queries against the tables in your database. If you have a high
percentage of queries that consistently query a small percentage of data in a set of tables, filtered
indexes will allow you to improve I/O performance while also minimizing on-disk storage.

The CREATE INDEX statement isn’t modified much from its original format. In order to imple-
ment the filter, [used a WHERE clause after the ON clause (if using an INCLUDE, the WHERE should appear
after it):

CREATE NONCLUSTERED INDEX NCI UnitPrice SalesOrderDetail
ON Sales.SalesOrderDetail(UnitPrice)
WHERE UnitPrice »>= 150.00 AND UnitPrice <= 175.00

The filter predicate allows for simple logic using operators such as IN, IS, IS NOT, =, <>, >, >=, I>,
<, <=, and !<.You should also be aware that filtered indexes have filtered statistics created along with
them. These statistics use the same filter predicate and can result in more accurate results because
the sampling is against a smaller rowset.

Reducing Index Size

As I covered in Chapter 4, the SQL Server 2008 Enterprise and Developer Editions introduce page-
and row-level compression for tables, indexes, and the associated partitions. In that chapter, I
demonstrated how to enable compression using the DATA_COMPRESSION clause in conjunction with
the CREATE TABLE and ALTER TABLE commands. That covered how you compress clustered indexes
and heaps. For nonclustered indexes, you use CREATE INDEX and ALTER INDEX to implement com-
pression. The syntax remains the same, designating the DATA_COMPRESSION option along with a value
of either NONE, ROW, or PAGE. The following example demonstrates adding a nonclustered index with
PAGE-level compression (based on the example table ArchiveJobPosting that I created in Chapter 4):

CREATE NONCLUSTERED INDEX NCI_SalesOrderDetail CarrierTrackingNumber
ON Sales.SalesOrderDetail (CarrierTrackingNumber)
WITH (DATA COMPRESSION = PAGE)

I can modify the compression level after the fact by using ALTER INDEX. In this example, [use
ALTER INDEX to change the compression level to row-level compression:

ALTER INDEX NCI_SalesOrderDetail CarrierTrackingNumber
ON Sales.SalesOrderDetail

REBUILD

WITH (DATA_COMPRESSION = ROW)

How It Works

This recipe demonstrated enabling row and page compression for a nonclustered index. The
process for adding compression is almost identical to that of adding compression for the clustered
index or heap, using the DATA_COMPRESSION index option. When creating a new index, the WITH clause
follows the index key definition. When modifying an existing index, the WITH clause follows the
REBUILD keyword.

CHAPTER 6

Full-Text Search

Full—text search functionality allows you to issue intelligent word—and phrase—searches against
character and binary data, using full-text enabled operators, which can perform significantly better
than a regular LIKE operator search.

With SQL Server 2008, full-text search functionality is now integrated into the database. Full-
text catalogs are no longer stored separately on the file system and are now integrated with the
database itself. Full-text indexing and querying support functionality is also no longer dependent
on the separate MSFTESQL service as it was in earlier versions of SQL Server.

Tip SQL Server 2008 also fully integrates stopwords (formerly called noise words) into the database, allowing
you to create your own stoplists and associated stopwords. The previous version used noise-word files external to
the database. I'll review this functionality in the “Discarding Common Strings from a Full-Text Index” recipe.

In the first part of this chapter, I'll present recipes that teach you how to enable full-text search
capabilities in your database using Transact-SQL. In the second half of this chapter, I'll demonstrate
how to query the full-text indexes using basic and advanced Transact-SQL predicates.

Full-Text Indexes and Catalogs

Full-text indexes allow you to search against unstructured textual data using more sophisticated
functions and a higher level of performance than using just the LIKE operator. Unlike regular B-tree
clustered or nonclustered indexes, full-text indexes are compressed index structures comprised of
tokens from the indexed textual data. Tokens are words or character strings that SQL Server has
identified in the indexing process. Using special full-text functions, you can extend word or phrase
searches beyond the character pattern, and search based on inflection, synonyms, wildcards, and
proximity to other words.

Full-text catalogs are used to contain zero or more full-text indexes and, starting with SQL
Server 2008, are stored within the database. (In previous versions, they were stored on the local hard
drive of the SQL Server instance server.) A full-text catalog can contain full-text indexes that index
one or more tables in a single database.

SQL Server uses a number of Transact-SQL commands to create, modify, and remove full-text
catalog and full-text index objects, which the next set of recipes will demonstrate.

Creating a Full-Text Catalog

In its simplest form, you can create a new catalog just by defining its name. There are other options
however, and the extended syntax for CREATE FULLTEXT CATALOG is as follows:

217

Download from Wow! eBook <www.wowebook.com>

218

CHAPTER 6 = FULL-TEXT SEARCH

CREATE FULLTEXT CATALOG catalog name

[ON FILEGROUP 'filegroup']
[IN PATH 'rootpath']

[WITH ACCENT SENSITIVITY = {ON|OFF}]

[AS DEFAULT]

[AUTHORIZATION owner name]

The arguments of this command are described in Table 6-1.

Table 6-1. CREATE FULLTEXT CATALOG Arguments

Argument

Description

catalog_name
filegroup

rootpath

ACCENT_SENSITIVITY = {ON|OFF}

AS DEFAULT

owner_name

This option specifies the name of the new full-text catalog.

This argument designates that the catalog will be placed on a
specific filegroup. If this isn’t designated, the default filegroup
for the database is used.

This is a deprecated option as of SQL Server 2008 and is no
longer used.

This option allows you to choose whether the indexes will be
created within the catalog as accent sensitive or accent
insensitive. Accent sensitivity defines whether or not SQL
Server will distinguish between accented and unaccented
characters.

This option sets the catalog as the default catalog for all full-
text indexes that are created in the database without explicitly
defining an owning full-text catalog.

The AUTHORIZATION option determines the owner of the new
full-text catalog, allowing you to choose either a database user
orarole.

In this first example, a new full-text catalog is created in the AdventurelWorks database (note
that a full-text catalog only belongs to a single database):

USE AdventureWorks
GO

CREATE FULLTEXT CATALOG cat_Production Document

In the second example, a new full-text catalog is created with accent sensitivity enabled:

USE AdventureWorks
GO

CREATE FULLTEXT CATALOG cat_Production_Document EX2

WITH ACCENT_SENSITIVITY = ON

How It Works

In this recipe, I demonstrated how to create a new full-text catalog using the CREATE FULLTEXT
CATALOG command. This command creates an instance logical entity that can be used to group one

or more full-text indexes.

Once a full-text catalog is created, you can then proceed with full-text indexes, which are

reviewed in the next recipe.

CHAPTER 6 " FULL-TEXT SEARCH

Creating a Full-Text Index

In this recipe, I'll demonstrate how to create a full-text index on columns in a table, so that you can
then take advantage of the more sophisticated search capabilities shown later on in the chapter.

The command for creating a full-text index is CREATE FULLTEXT INDEX.The abridged syntaxis as
follows:

CREATE FULLTEXT INDEX ON table name
[({ column_name
[TYPE COLUMN type column_name]
[LANGUAGE language term]
FL,e.un]

KEY INDEX index_name
[ON fulltext catalog name]

[WITH [(] <with_option> [,...n] [)]]
(5]

<with_option>::=

CHANGE _TRACKING [=] { MANUAL | AUTO | OFF [, NO POPULATION] }
| STOPLIST [=] { OFF | SYSTEM | stoplist name }

The arguments of this command are described in Table 6-2.

Table 6-2. CREATE FULLTEXT INDEX Arguments

Argument Description

table name This specifies the name of the table that you are creating the
full-text index on. There can only be one full-text index on a
single table.

column_name This indicates the listed column or columns to be indexed,

which can be of the data types varchar, nvarchar, char,
nchar, xml, varbinary, text, ntext, and image.

type_column_name The TYPE COLUMN keyword token is used to designate a
column in the table that tells the full-text index what type of
data is held in the varbinary(max) or image data type
column. SQL Server can interpret different file types, but
must know exactly how to do so.

language term The optional LANGUAGE keyword can also be used within the
column list to indicate the language of the data stored in the
column. Specifying the language will help SQL Server
determine how the data is parsed in the full-text indexing
process and how it will be linguistically interpreted. For a list
of available languages, query the sys.fulltext languages
table.

index_name In order for the full-text index to be created on a table, that
table must have a single-key, unique, non-nullable column.
This can be, for example, a single column primary key or a
column defined with a UNIQUE constraint that is also non-
nullable. The KEY INDEX clause in the CREATE FULLTEXT INDEX
command identifies the required unique key column on the
specified table.

Continued

219

220

CHAPTER 6 = FULL-TEXT SEARCH

Table 6-2. Continued

Argument Description

fulltext_catalog name The ON clause designates the catalog where the full-text
index will be stored. If a default catalog was identified before
creation of the index, and this option isn’t used, the index
will be stored on the default catalog. However, if no default
was defined, the index creation will fail.

CHANGE_TRACKING {MANUAL | AUTO This argument determines how user data changes will be

| OFF [, NO POPULATION]} detected by the full-text service. Based on this configuration,
indexes can be automatically updated as data is changed in
the table. You also have the option of only manually
repopulating the indexes at a time or on a schedule of your
choosing. The AUTO option is designated to automatically
update the full-text index as table data is modified. The
MANUAL option means that changes will be either propagated
manually by the user or initiated via a SQL Server Agent
schedule. The OFF option means that SQL Server will not
keep a list of user changes. Using OFF with NO POPULATION
means that SQL Server will not populate the index after it is
created. Under this option, full-text index population will
only occur after someone executes ALTER FULLTEXT INDEX,
which is reviewed in the next recipe.

STOPLIST [=] { OFF | SYSTEM Stoplists contain a list of stopwords, which are strings that

| stoplist name } should be ignored by the search. The default option is
SYSTEM, meaning that the default system stoplist will be
used. When this option is set to OFF, no stoplist is used.
Otherwise, designating stoplist name allows you to use a
user-defined stoplist.

In this recipe’s example, a new full-text index is created on the AdventurelWorks database’s
Production.Document table (I'll demonstrate how to query the index in future recipes).
DocumentSummary is the column to be indexed, and FileExtension is the column that contains a
pointer to the column’s document type:

USE AdventureWorks
GO

CREATE FULLTEXT INDEX ON Production.Document
(DocumentSummary, Document TYPE COLUMN FileExtension)
KEY INDEX PK Document DocumentNode
ON cat_Production Document
WITH CHANGE TRACKING AUTO,

STOPLIST = SYSTEM

How It Works

In this recipe, I created a new full-text index for the Production.Document table, on the
DocumentSummary column (which has a varchar(max) data type) and Document column (which has a
varbinary(max) data type). Stepping through the code, the first line designated the table the full-text
index would be based on:

CREATE FULLTEXT INDEX ON Production.Document

CHAPTER 6 " FULL-TEXT SEARCH

The second line of code designated the column or columns to be indexed, and then a pointer
to the column that tells SQL Server what document type is stored in the column. In this case, I am
indexing both the DocumentSummary and Document columns. Since Document is varbinary(max), I des-
ignate the column that will contain the file type contained within the Document column:

(DocumentSummary, Document TYPE COLUMN FileExtension)

Keep in mind that the TYPE COLUMN clause is only necessary if you are indexing a
varbinary(max) or image type column, as you'll be assisting SQL Server with interpreting the stored
data. Regular text data types such as char, varchar, nchar, nvarchar, text, ntext, and xml don’t
require the TYPE COLUMN clause.

Next, the name of the key, non-null, unique column for the table was identified:

KEY INDEX PK Document DocumentNode

The ON clause designates which full-text catalog the full-text index will be stored in (created in
the previous recipe):

ON cat Production Document

Next, the method of ongoing index population was designated for the index:

WITH CHANGE TRACKING AUTO

Lastly, the option for the STOPLIST was designated—using the system default stoplist:
STOPLIST = SYSTEM
Once the full-text index is created, you can begin querying it. Before you get to this, however,

there are other commands used for modifying or removing indexes and catalogs you should be
aware of.

Modifying a Full-Text Catalog

In this recipe, I'll demonstrate ALTER FULLTEXT CATALOG, which you can use to do the following:

* Change accent-sensitive settings. Accent sensitivity defines whether or not SQL Server will
distinguish between accented and unaccented characters, or treat them as equivalent char-
acters in the search.

e Set the catalog as the default database catalog.
* REBUILD the entire catalog with all indexes in it.

* REORGANIZE the catalog, which optimizes internal index and catalog full-text structures. This
process is called a master merge, which means that smaller indexes are physically processed
(not logically, however) into one large index in order to improve performance.

The syntax for ALTER FULLTEXT CATALOG is as follows:

ALTER FULLTEXT CATALOG catalog_name

{ REBUILD [WITH ACCENT_SENSITIVITY = {ON|OFF}]
| REORGANIZE
| AS DEFAULT

The arguments for this command are described in Table 6-3.

221

222

CHAPTER 6 = FULL-TEXT SEARCH

Table 6-3. ALTER FULLTEXT CATALOG Arguments

Argument Description
REBUILD The REBUILD option rebuilds the catalog.

[WITH ACCENT SENSITIVITY = {ON|OFF}] The ACCENT_SENSITIVITY option can only be configured
when used in conjunction with a REBUILD.

REORGANIZE This option causes SQL Server to optimize catalog
structures and internal indexes.

AS DEFAULT This option sets the catalog as the default database
catalog.

In this first example in the recipe, a full-text catalog is optimized using the REORGANIZE keyword:

ALTER FULLTEXT CATALOG cat_Production Document
REORGANIZE

In this second example, a full-text catalog is set to be the default full-text catalog for the
database:

ALTER FULLTEXT CATALOG cat Production Document
AS DEFAULT

In this example, a full-text catalog (and all indexes within) is rebuilt along with disabling accent
sensitivity:
ALTER FULLTEXT CATALOG cat_Production Document
REBUILD WITH ACCENT SENSITIVITY = OFF

How It Works

In this recipe, ALTER FULLTEXT CATALOG was used to optimize the indexes and internal data struc-
tures, set the catalog to the default database, and rebuild the catalog and indexes within. This
command is used to maintain existing catalogs and keep them performing at their best as data
modifications are made to the underlying indexed tables.

Modifying a Full-Text Index

The ALTER FULLTEXT INDEX command can be used both to change the properties of an index and to
control/initiate index population. The syntax is as follows:

ALTER FULLTEXT INDEX ON table_name
{ ENABLE
DISABLE
SET CHANGE_TRACKING { MANUAL | AUTO | OFF }
ADD (column_name
[TYPE COLUMN type column_name]
[LANGUAGE language term] [,...n])
[WITH NO POPULATION]
DROP (' column_name [,...n])
[WITH NO POPULATION]
START { FULL | INCREMENTAL | UPDATE } POPULATION
{STOP | PAUSE | RESUME } POPULATION
SET STOPLIST { OFF| SYSTEM | stoplist name }
[WITH NO POPULATION] }

CHAPTER 6 " FULL-TEXT SEARCH

The arguments of this command are described in Table 6-4.

Table 6-4. ALTER FULLTEXT INDEX Arguments

Argument

Description

table name

ENABLE | DISABLE

SET CHANGE TRACKING {MANUAL|AUTO|OFF}

ADD (column_name [,...n])

type column_name

language_term

WITH NO POPULATION
DROP (column_name [,...n])

START {FULL|INCREMENTAL |UPDATE}
POPULATION

{STOP | PAUSE | RESUME} POPULATION

SET STOPLIST { OFF| SYSTEM |
stoplist_name }

This argument specifies the name of the table of the
index to be modified.

The ENABLE option activates the full-text index. DISABLE
deactivates a full-text index. Deactivating a full-text
index means that changes to the table columns are no
longer tracked and moved to the full-text index
(however, full-text search conditions are still allowed
against the index).

MANUAL specifies that change tracking on the source
indexed data will be enabled on a schedule or
manually executed basis. AUTO specifies that the full-
text index is modified automatically when the indexed
column(s) values are modified. OFF disables change
tracking from occurring on the full-text index.

This argument indicates the name of the column or
columns to add to the existing full-text index.

This option specifies the column used to designate the
full-text index file type of the data stored in the
varbinary(max) or image data type column.

This indicates the optional LANGUAGE keyword used
within the column list to indicate the language of the
data stored in the column.

When designated, the full-text index isn’t populated
after the addition or removal of a table column.

This argument gives the name of the column or
columns to remove from the existing full-text index.

This option initiates the population of the full-text
index based on the option of FULL, INCREMENTAL, and
UPDATE. FULL refreshes every row from the table into the
index. INCREMENTAL only refreshes the index for those
rows that were modified since the last population, and
in order for INCREMENTAL to be used, the indexed table
requires a column with a timestamp data type. The
UPDATE token refreshes the index for any rows that were
inserted, updated, or deleted since the last index
update.

For very large tables, full-text index population can
consume significant system resources. Because of this,
you may need to stop a population process while it is
in progress. For indexes created with the MANUAL or OFF
change tracking setting, you can use the STOP
POPULATION option. PAUSE and RESUME are used when
full populations are underway.

Designating SYSTEM means that the default system
stoplist will be used. When this option is set to OFF, no
stoplist is used. Otherwise, designating stoplist _name
allows you to use a user-defined stoplist.

223

224

CHAPTER 6 © FULL-TEXT SEARCH

In this first example, a new column is added to the existing full-text index on the
Production.Document table:

ALTER FULLTEXT INDEX ON Production.Document
ADD (Title)

Next, a full-text index population is initiated:

ALTER FULLTEXT INDEX ON Production.Document
START FULL POPULATION

This returns a warning because the full-text index population was already underway for the
table (I didn’t designate the WITH NO POPULATION option when adding the new column to the full-
text index):

Warning: Request to start a full-text index population on table or indexed view
'Production.Document’ is ignored because a population is currently active for
this table or indexed view.

This next example demonstrates disabling change tracking for the table’s full-text index:

ALTER FULLTEXT INDEX ON Production.Document
SET CHANGE TRACKING OFF

This returns the following warning:

Warning: Request to stop change tracking has deleted all changes tracked on table or
indexed view 'Production’.

In this last example for the recipe, the Title column is dropped from the full-text index:

ALTER FULLTEXT INDEX ON Production.Document
DROP (Title)

How It Works
In this recipe, ALTER FULLTEXT INDEX was used to perform the following actions:

¢ Add a new column to an existing full-text index. This is useful if you wish to add additional
columns to the full-text index that would benefit from more advanced searching
functionality.

o Start a full-text index population (which works if the population isn’t already set to automati-
cally update). For very large tables, you may wish to manually control when the full-text
index is populated, instead of allowing SQL Server to manually populate the index over time.

» Disable change tracking. This removes a log of any changes that have occurred to the
indexed data.

e Drop a column from a full-text index. For example, if you have a column that isn’'t benefitting
from the full-text index functionality, it is best to remove it in order to conserve space (from
the stored indexing results) and resources (from the effort it takes SQL Server to update the
data).

Other actions ALTER FULLTEXT INDEX can perform include disabling an enabled index using the
DISABLE option, thus making it unavailable for us (but keeping the metadata in the system tables).
You can then enable a disabled index using the ENABLE keyword.

CHAPTER 6 " FULL-TEXT SEARCH

Retrieving Full-Text Catalog and Index Metadata

This recipe shows you how to retrieve useful information regarding the full-text catalogs and
indexes in your database by using system catalog views.

The sys.fulltext_catalogs system catalog view returns information on all full-text catalogs in
the current database. For example:

SELECT name, path, is default, is accent_sensitivity on
FROM sys.fulltext catalogs

This returns

name path is default 1is accent sensitivity on
cat_Production Document NULL 1 0
cat_Production Document EX2 NULL 0 1

The sys.fulltext_indexes system catalog view lists all full-text indexes in the database. For
example:

SELECT object name(object id) table name,
change_tracking state desc, stoplist id
FROM sys.fulltext_indexes

This returns

table name change tracking state desc stoplist id
Document OFF 0

The sys.fulltext_index_columns system catalog view lists all full-text indexed columns in the
database. For example:

SELECT object _name(ic.object _id) tblname, c.name
FROM sys.fulltext index_columns ic
INNER JOIN sys.columns c ON

ic.object id = c.object id AND

ic.column_id = c.column_id

This returns the table name and the indexed column names:

tblname name
Document DocumentSummary
Document Document

Also, the FULLTEXTCATALOGPROPERTY system function can be used to return information about a
specific catalog. The syntax is as follows:

FULLTEXTCATALOGPROPERTY ('catalog name' ,'property"')

The function takes two arguments, the name of the catalog and the name of the property to
evaluate. Some of the more useful options for the property option are described in Table 6-5.

225

226

CHAPTER 6 = FULL-TEXT SEARCH

Table 6-5. FULLTEXTCATALOGPROPERTY Property Options (Abridged)

Property Description

AccentSensitivity Returns 1 for accent sensitive, 0 for insensitive

IndexSize Returns the size of the full-text catalog in megabytes

MergeStatus Returns 1 when a reorganization is in process, and 0 when it is not
PopulateStatus Returns a numeric value representing the current population status of a

catalog—for example, 0 for idle, 1 for an in-progress population, 2 for paused,
7 for building an index, and 8 for a full disk

In this example, the full-text catalog population status is returned:

SELECT FULLTEXTCATALOGPROPERTY ('cat Production Document','PopulateStatus')
PopulationStatus

This returns 0 for idle:

PopulationStatus
0

How It Works

This recipe used three different catalog views and a system function to return information about
full-text catalogs and indexes in the current database. You'll need this information in order to keep
track of their existence, as well as to track the current state of activity and settings.

Discarding Common Strings from a Full-Text Index

SQL Server 2008 introduces the ability to identify common strings that are unhelpful for a full-text
index search. These unhelpful strings are called stopwords (called noise words in previous versions
of SQL Server) and are contained within stoplists. A stoplist contains one or more stopwords and is
used in conjunction with a full-text index. SQL Server includes a system default stoplist containing
common stopwords across all supported languages.

To create your own custom stoplist, you use the CREATE FULLTEXT STOPLIST command. The syn-
tax is as follows:

CREATE FULLTEXT STOPLIST stoplist name
[FROM { [database name.] source stoplist name } | SYSTEM STOPLIST]
[AUTHORIZATION owner name];

The arguments of this command are described in Table 6-6.

Table 6-6. CREATE FULLTEXT STOPLIST Arguments

Argument Description

stoplist name Supplies the name of the new user-defined stoplist

{ [database_name.] Allows you to reference the database name and source stoplist
source_stoplist name } name from which to copy an already existing stoplist

SYSTEM STOPLIST Allows you to copy the system default stoplist

AUTHORIZATION owner name Defines the database principal stoplist owner

CHAPTER 6 " FULL-TEXT SEARCH

In this example, I will create a new stoplist that is not copied from a preexisting stoplist (note
that a full-text stoplist statement must be terminated by a semicolon [;]):

CREATE FULLTEXT STOPLIST TSQLRecipes;

To confirm the details of my new stoplist, I can query the sys.full text stoplists system cat-
alog view:

SELECT stoplist_id,name,principal id
FROM sys.fulltext stoplists

This returns

stoplist id name principal id
5 TSQLRecipes 1

Once I have created the stoplist, I can now start populating it with stopwords by using the
ALTER FULLTEXT STOPLIST command. The syntax for this command is as follows:

ALTER FULLTEXT STOPLIST stoplist name
{ ADD 'stopword' LANGUAGE language term
| DROP

{
'stopword' LANGUAGE language term
| ALL LANGUAGE language term
| ALL };

The arguments of this command are described in Table 6-7.

Table 6-7. ALTER FULLTEXT STOPLIST Arguments

Argument Description
stoplist_name Specifies the name of the new user-defined stoplist.
ADD 'stopword’ Defines the string value of the stopword. Up to

64 characters can be added.

LANGUAGE language term Defines the language term associated with the
stopword—which can be the string (alias from
sys.syslanguages), integer (LCID), or hexadecimal
representation (hex value of LCID).

DROP 'stopword' LANGUAGE language_term Specifies that a specific stopword for a specific
language should be dropped.

DROP ALL LANGUAGE language term Removes all stopwords for a language.
DROP ALL Specifies that all stopwords be removed from the
stoplist.

In this example, assume that I am indexing tables containing references to SQL Server docu-
mentation. In this case, the terms “SQL” and “Server” are not very helpful in the context of a search
(almost every entry would contain it). So in this example, I will add two new stopwords to my
stoplist created earlier:

ALTER FULLTEXT STOPLIST TSQLRecipes
ADD 'SQL' LANGUAGE 'English';

ALTER FULLTEXT STOPLIST TSOLRecipes
ADD 'Server' LANGUAGE 'English';

227

Download from Wow! eBook <www.wowebhook.com>

228

CHAPTER 6 © FULL-TEXT SEARCH

After adding the two new stopwords to my stoplist, I can validate the list by querying the
sys.fulltext stopwords system catalog view:

SELECT stoplist id,stopword,language
FROM sys.fulltext stopwords

This returns

stoplist id stopword language
5 SOL English
5 Server English

In the next query, I'll demonstrate binding my new stoplist to a full-text index:

--Example table

CREATE TABLE dbo.SQLTopic
(SQLTopic int IDENTITY PRIMARY KEY,
SQLTopicHeaderNM varchar(255) NOT NULL,
SQLTopicBody varchar(max) NOT NULL)

GO

-- Create example catalog

CREATE FULLTEXT CATALOG ftcat_SQLDocumentation
AS DEFAULT

GO

-- Create full-text index binding to our new stoplist
-- Look up your actual PK constraint name using sp_help 'dbo.sqltopic’
CREATE FULLTEXT INDEX ON dbo.SQLTopic(SQLTopicBody)
KEY INDEX PK_ SQLTopic_ AD5554EC442B18F2
WITH STOPLIST = TSQLRecipes
GO

I can confirm the stoplist binding using the sys.fulltext indexes system catalog view:

SELECT stoplist_id
FROM sys.fulltext_indexes
WHERE object id = object id('dbo.SQLTopic")

This returns

stoplist id
5

I can test whether or not my new stop words are recognized by the Full-Text Engine by using
the sys.dm_fts_parser Dynamic Management View. The syntax for this DMV is as follows:

sys.dm fts parser('query string', lcid, stoplist id, accent sensitivity)

The first parameter, query string, is the query string you may use within a full-text index
search. The 1cid is the locale identifier, and stoplist_id is the unique ID for the stoplist (which you
can retrieve from sys.fulltext stoplists). The accent _sensitivity argument has a 1 or 0 value,
indicating whether your search should be accent sensitive or insensitive. To demonstrate using this
DMV, the following query tests searching on the phase SQL Server 2008 Transact-SQL Recipes
using the stoplist created earlier:

CHAPTER 6 " FULL-TEXT SEARCH

SELECT display term, special term
FROM sys.dm fts parser
(""SQL Server 2008 Transact-SQL Recipes"', 1033, 5, 0)

This returns return a list of each keyword, along with how they are treated (noise word/stop-
word or exact match):

display term special term

sql Noise Word
server Noise Word
2008 Exact Match
nn2008 Exact Match
transact Exact Match
sql Noise Word
transactsql Exact Match
recipes Exact Match

As you can see from the results, both SQL and Server are recognized as noise words (stop-
words).

In this next query, I demonstrate removing a stopword from the stoplist (this is allowed even
while the stoplist is actively bound to a full-text index):

ALTER FULLTEXT STOPLIST TSOLRecipes
DROP 'Server' LANGUAGE 'English';

To remove a stoplist, I use the DROP FULLTEXT STOPLIST command. Before I can drop it, it must
be unbound from the full-text indexes using it. The last query of this recipe demonstrates removing
the stoplist settings from the full-text index and then dropping the stoplist:

ALTER FULLTEXT INDEX ON dbo.SQLTopic
SET STOPLIST SYSTEM
Go

DROP FULLTEXT STOPLIST TSQLRecipes;

How It Works

This recipe demonstrated how to discard common strings from a full-text index by creating a user-
defined stoplist that contained a list of stopwords. To create the stoplist, I used the CREATE FULLTEXT
STOPLIST command. After creating the stoplist, I was then able to use ALTER FULLTEXT STOPLIST to
add and remove stopword strings to the stoplist. I used the sys.fulltext stoplists and sys.
fulltext_stopwords system catalog views to confirm my settings. I then created a new table and
full-text catalog, and then created a new full-text index that used the new stoplist by designating
WITH STOPLIST = TSQLRecipes.Iwas able to test whether my stopwords in the stoplist would be
properly ignored by using sys.dm_fts_parser. To remove the stoplist from the full-text index, I used
ALTER FULLTEXT INDEX with SET STOPLIST, followed by the DROP FULLTEXT STOPLIST command.

Dropping a Full-Text Index

In this recipe, I'll demonstrate how to remove a full-text index from the full-text catalog using the
DROP FULLTEXT INDEX command. The syntax is as follows:

DROP FULLTEXT INDEX ON table name

229

230

CHAPTER 6 = FULL-TEXT SEARCH

This command only takes a single argument, the name of the table on which the full-text index
should be dropped. For example:

DROP FULLTEXT INDEX ON Production.Document

How It Works

The DROP FULLTEXT INDEX ON command references the full-text indexed table. Since only one index
is allowed on a single table, no other information is required to drop the full-text index.

Dropping a Full-Text Catalog

In this recipe, I demonstrate how to remove a full-text catalog from the database using the DROP
FULLTEXT CATALOG command. The syntax is as follows:

DROP FULLTEXT CATALOG catalog name
This command takes a single argument, the name of the catalog to drop. For example:

DROP FULLTEXT CATALOG cat Production Document

How It Works

The DROP FULLTEXT CATALOG references the catalog name and doesn’t require any further informa-
tion to remove it from the database. If the full-text catalog was set as the DEFAULT catalog, you'll see
the following warning:

Warning: The fulltext catalog 'cat Production Document'
is being dropped and is currently set as default.

Basic Searching

Once you've created the full-text catalog and full-text indexes, you can get down to the business of
querying the data with more sophisticated Transact-SQL predicates. Predicates are used in expres-
sions in the WHERE or HAVING clauses, or join conditions of the FROM clause. Predicates return a TRUE,
FALSE, or UNKNOWN response.

Beginning with the more simple commands, the FREETEXT command is used to search unstruc-
tured text data based on inflectional, literal, or synonymous matches. It is more intelligent than
using LIKE because the text data is searched by meaning and not necessarily the exact wording.

The CONTAINS predicate is used to search unstructured textual data for precise or less-precise
word and phrase matches. This command can also take into consideration the proximity of words
to one another, allowing for weighted results.

These next two recipes will demonstrate basic searches using the FREETEXT and CONTAINS
predicates. The examples depend on a full-text index on the Production.Document table’s
DocumentSummary column. I'll create that index here, before proceeding with the recipes:

USE AdventureWorks

GO
CREATE FULLTEXT CATALOG cat_Production Document

CHAPTER 6 " FULL-TEXT SEARCH

CREATE FULLTEXT INDEX ON Production.Document
(DocumentSummary)
KEY INDEX PK_Document_DocumentNode
ON cat Production Document
WITH CHANGE_TRACKING AUTO,
STOPLIST = SYSTEM

Using FREETEXT to Search Full-Text Indexed Columns

The FREETEXT predicate is used to search full-text columns based on inflectional, literal, or synony-
mous matches. The syntax is as follows:

FREETEXT ({ column_name | (column_list) | * }
, 'freetext string' [, LANGUAGE language term])

The arguments for this predicate are described in Table 6-8.

Table 6-8. FREETEXT Arguments

Argument Description

column_name | column list | * Indicates the name of the column or columns that are full-text
indexed and that you wish to be searched. Specifying *
designates that all searchable columns are used.

freetext_string Defines the text to search for.

language_term Directs SQL Server to use a specific language for performing the
search, accessing thesaurus information, and removing
stopwords.

In this example, I'll use FREETEXT to search data based on the meaning of the search term. SQL
Server looks at the individual words and searches for exact matches, inflectional forms, or exten-
sions/replacements based on the specific language’s thesaurus:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE FREETEXT (DocumentSummary, 'change pedal')

This returns

DocumentNode DocumentSummary

0x7BCO Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

How It Works

In this recipe, FREETEXT was used to search the DocumentSummary column for the phrase “change
pedal.” Though neither the exact word “change” nor “pedal” exists in the data, a row was returned
because of a match on the plural form of pedal (“pedals”).

FREETEXT is, however, a less-precise way of searching full-text indexes compared to CONTAINS,
which is demonstrated in the next few recipes.

231

232

CHAPTER 6 © FULL-TEXT SEARCH

Using CONTAINS for Word Searching

In this recipe, I demonstrate using the CONTAINS command to perform word searches. CONTAINS
allows for more sophisticated full-text term searches than the FREETEXT predicate. The abridged
syntax is as follows:

CONTAINS
({ column_name | (column list) | * } ,
"< contains_search_condition >’ [, LANGUAGE language term])

The arguments are identical to FREETEXT, only CONTAINS allows for a variety of search conditions
(some demonstrated later on in the “Advanced Searching” section of this chapter).

This example demonstrates a simple search of rows, with a DocumentSummary searching for the
words “replacing” or “pedals”:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"replacing” OR "pedals"')

This returns

DocumentNode DocumentSummary

0x7BCO Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

0x7C20 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works Cycles
parts when replacing worn or broken components.

How It Works

In this recipe, I performed a search against the DocumentSummary, finding any summary that con-
tained either the words “replacing” OR “pedals.” Unlike FREETEXT, the literal words are searched, and
not the synonyms or inflectional form.

OR was used to search for rows with either of the words, but AND could also have been used to
return rows only if both words existed for the DocumentSummary value.

Tip For a term consisting of a single word, double quotes are not necessary, just the outer single quotes.

Advanced Searching

So far, this chapter has demonstrated examples of fairly straightforward word searches. However,
using CONTAINS, you can perform more advanced searches against words or phrases. Some examples
of this include the following:

» Using a wildcard search to find words or phrases that match a specific text prefix

¢ Searching for words or phrases based on inflections of a specific word

» Searching for words or phrases based on the proximity of words to one another

CHAPTER 6 " FULL-TEXT SEARCH

These next three recipes will demonstrate these more advanced searches using the CONTAINS
predicate.

Using CONTAINS to Search with Wildcards

In this recipe, I demonstrate how to use wildcards within a CONTAINS search. A prefix term is desig-
nated, followed by the asterisk symbol:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS (DocumentSummary, '"import*"')

This returns

DocumentNode DocumentSummary

0x5B40 It is important that you maintain your bicycle and keep it in good repair.
Detailed repair and service guidelines are provided along with instructions
for adjusting the tightness of the suspension fork.

How It Works

This recipe uses the asterisk symbol to represent a wildcard of one or more characters. This is simi-
lar to using LIKE, only you can benefit from the inherent performance of full-text indexing. Any
match on a word that starts with “import” will be returned. In this case, one row that matches on
the word “important” was returned.

When using a wildcard, the term must be embedded in double quotes; otherwise, SQL Server
interprets the asterisk as a literal value to be searched for. For example, searching for ' import*'
without the embedded quotes looks for the literal asterisk value as part of the search term.

Using CONTAINS to Search for Inflectional Matches

In this recipe, I'll demonstrate how to search for rows that match a search term based on inflec-
tional variations. The syntax for searching for inflectional variations is as follows:

FORMSOF ({ INFLECTIONAL | THESAURUS } , < simple term > [,...n])

In this example, the inflectional variation of “replace” is searched:

SELECT DocumentNode, DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, ' FORMSOF (INFLECTIONAL, replace) ')

This returns

DocumentNode DocumentSummary

0x7B40 Reflectors are vital safety components of your bicycle. Always ensure your
front and back reflectors are clean and in good repair. Detailed
instructions and illustrations are included should you need to replace the
front reflector or front reflector bracket of your Adventure Works Cycles
bicycle.

0x7BCO Detailed instructions for replacing pedals with Adventure Works Cycles
replacement pedals. Instructions are applicable to all Adventure Works
Cycles bicycle models and replacement pedals. Use only Adventure Works
Cycles parts when replacing worn or broken components.

233

234

CHAPTER 6 © FULL-TEXT SEARCH

0x7C20 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works Cycles
models: Mountain 100 through Mountain 500. Use only Adventure Works Cycles
parts when replacing worn or broken components.

How It Works

This recipe searches for any rows with the inflectional version of “replace.” Although the literal
value is not always found in that column, a row will also be returned that contains “replaced” or
“replacing.”

THESAURUS is the other option for the FORMSOF clause, allowing you to search based on synony-
mous terms (which are maintained in XML files in the $SQL_Server Install Path\Microsoft SQL
Server\<InstancePath>\MSSQL\FTDATA\ directory). For example, the French thesaurus XML file is
called tsFRA.xml. These XML files are updateable, so you can customize them according to your
own application requirements.

Using CONTAINS for Searching Results by Term Proximity

This recipe demonstrates how CONTAINS is used to find rows with specified words that are near one
another. The abridged syntax is as follows:

{ < simple term > | < prefix term > }
{ NEAR | ~ }
{ < simple term > | < prefix term > }

In this example, rows are returned where the word “oil” is near to “grease”:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease')

This returns

DocumentSummary

Guidelines and recommendations for lubricating the required components of your
Adventure Works Cycles bicycle. Component lubrication is vital to ensuring a smooth
and safe ride and should be part of your standard maintenance routine. Details
instructions are provided for each bicycle component requiring regular lubrication
including the frequency at which oil or grease should be applied.

How It Works

This recipe looked for any text that had the word “grease” near the word “oil.” This example
searched for proximity between two words, although you can also test for proximity between multi-
ple words, for example:

SELECT DocumentSummary
FROM Production.Document
WHERE CONTAINS(DocumentSummary, 'oil NEAR grease AND frequency')

In this case, all three words should be in near proximity to one another.

CHAPTER 6 " FULL-TEXT SEARCH

Ranked Searching

The previous examples demonstrated full-text index searches conducted in the WHERE clause of a
SELECT query. SQL Server also has ranking functions available, which are referenced in the FROM
clause of a query instead. Instead of just returning those rows that meet the search condition, the
ranking functions CONTAINSTABLE and FREETEXTTABLE are used to return designated rows by rele-
vance. The closer the match, the higher the system-generated rank, as these next two recipes will
demonstrate.

Returning Ranked Search Results by Meaning

In this recipe, I demonstrate FREETEXTTABLE, which can be used to return search results ordered by
rank, based on a search string.
The syntax and functionality between FREETEXT and FREETEXTTABLE is still very similar:

FREETEXTTABLE (table , { column_name | (column list) | * }
, 'freetext_string'
[, LANGUAGE language term]
[,top_n by rank])

The two additional arguments that differentiate FREETEXTTABLE from FREETEXT are the table
and top_n_by rank arguments. The table argument is the name of the table containing the full-text
indexed column or columns. The top_n_by rank argument, when designated, takes an integer value
that represents the top matches in order of rank.

In this example, rows are returned from Production.Document in order of closest rank to the
search term “bicycle seat”:

SELECT f.RANK, DocumentNode, DocumentSummary

FROM Production.Document d

INNER JOIN FREETEXTTABLE(Production.Document, DocumentSummary, 'bicycle seat') f
ON d.DocumentNode = f.[KEY]

ORDER BY RANK DESC

This returns

RANK DocumentNode DocumentSummary

61 0x7C20 Worn or damaged seats can be easily replaced following these simple
instructions. Instructions are applicable to these Adventure Works
Cycles models: Mountain 100 through Mountain 500. Use only Adventure
Works Cycles parts when replacing worn or broken c

37 0x6B40 Guidelines and recommendations for lubricating the required
components of your Adventure Works Cycles bicycle. Component
lubrication is vital to ensuring a smooth and safe ride and should
be part of your standard maintenance routine. Details instructions a

37 0x7B40 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good repair.
Detailed instructions and illustrations are included should you need
to replace the front reflector or front reflector bracke

21 0x7BCO Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement pedals. Use
only Adventure Works Cycles parts when replacing worn or broken

21 0x5B40 It is important that you maintain your bicycle and keep it in good
repair. Detailed repair and service guidelines are provided along
with instructions for adjusting the tightness of the suspension
fork.

235

236

CHAPTER 6 = FULL-TEXT SEARCH

How It Works

FREETEXTTABLE is similar to FREETEXT in that it searches full-text indexed columns by meaning, and
not literal value. FREETEXTTABLE is different from FREETEXT, however, in that it is referenced like a
table in the FROM clause, allowing you to join data by its KEY. KEY and RANK are two columns that the
FREETEXTTABLE returns in the result set. KEY is the unique/primary key defined for the full index, and
RANK is the measure of how relevant a search result the row is estimated to be.

In this recipe, the FREETEXTTABLE result set searched the DocumentSummary column for “bicycle
seat,” joined by its KEY value to the Production.Document table’s DocumentNode column:

INNER JOIN FREETEXTTABLE(Production.Document,
DocumentSummary,
'bicycle seat') f

ON d.DocumentNode = f.[KEY]

RANK was returned sorted by descending order, based on the strength of the match:

ORDER BY RANK DESC

Returning Ranked Search Results by Weighted Value

In this recipe, I demonstrate returning search results based on a weighted pattern match value
using the CONTAINSTABLE command. CONTAINSTABLE is equivalent to FREETEXTTABLE in that it acts as a
table and can be referenced in the FROM clause. CONTAINSTABLE also has the same search capabilities
and variations as CONTAINS.

Both CONTAINS and CONTAINSTABLE can be used to designate a row match’s “weight,” giving one
term more importance than another, thus impacting result rank. This is achieved by using ISABOUT
in the command, which assigns a weighted value to the search term.

The basic syntax for this is as follows:

ISABOUT { <search term> } [WEICHT (weight value)]

This example demonstrates querying Production.Document by rank, giving the term “bicycle” a
higher weighting than the term “seat”:

SELECT f.RANK, d.DocumentNode, d.DocumentSummary
FROM Production.Document d
INNER JOIN CONTAINSTABLE(Production.Document, DocumentSummary,
"ISABOUT (bicycle weight (.9), seat weight (.1))') f
ON d.DocumentNode = f.[KEY]
ORDER BY RANK DESC

This returns

RANK DocumentNode DocumentSummary

23 0x6B40 Guidelines and recommendations for lubricating the required
components of your Adventure Works Cycles bicycle. Component
lubrication is vital to ensuring a smooth and safe ride and should
be part of your standard maintenance routine. Details instructions a

23 0x7B40 Reflectors are vital safety components of your bicycle. Always
ensure your front and back reflectors are clean and in good repair.
Detailed instructions and illustrations are included should you need
to replace the front reflector or front reflector bracke

11 0x7BCO Detailed instructions for replacing pedals with Adventure Works
Cycles replacement pedals. Instructions are applicable to all
Adventure Works Cycles bicycle models and replacement pedals. Use
only Adventure Works Cycles parts when replacing worn or broken

CHAPTER 6 " FULL-TEXT SEARCH

11 0x5B40 It is important that you maintain your bicycle and keep it in good
repair. Detailed repair and service guidelines are provided along
with instructions for adjusting the tightness of the suspension
fork.

How It Works

The CONTAINSTABLE is a result set, joining to Production.Document by KEY and DocumentID. RANK was
returned in the SELECT clause, and sorted in the ORDER BY clause. CONTAINSTABLE can perform the
same kinds of searches as CONTAINS, including wildcard, proximity, inflectional, and thesaurus
searches.

In this example, a weighted term search was performed, meaning that words are assigned
values that impact their weight within the result ranking.

In this recipe, two words were searched, “bicycle” and “seat,” with “bicycle” getting a higher
rank than “seat”:

"ISABOUT (bicycle weight (.9), seat weight (.1))’

The weight value, which can be a number from 0.0 through 1.0, impacts how each row’s
matching will be ranked within CONTAINSTABLE. ISABOUT is put within the single quotes, and the col-
umn definition is within parentheses. Each term was followed by the word “weight” and the value
0.0to 1.0 value in parentheses. Although the weight does not affect the rows returned from the
query, it will impact the ranking value.

237

<UW02°}00COMOM MMM> 003 iMOAN WOy PROJUMOQ

CHAPTER 7

Views

Views allow you to create a virtual representation of table data defined by a SELECT statement. The
defining SELECT statement can join one or more tables and can include one or more columns. Once
created, a view can be referenced in the FROM clause of a query.

Views can be used to simplify data access for query writers, obscuring the underlying complex-
ity of the SELECT statement. Views are also useful for managing security and protecting sensitive
data. If you wish to restrict direct table access by the end user, you can grant permissions exclu-
sively to views, rather than to the underlying tables. You can also use views to expose only those
columns that you wish the end user to see, including just the necessary columns in the view defini-
tion. Views can even allow direct data updates, under specific circumstances that I'll describe later
in the chapter recipe “Modifying Data Through a View.” Views also provide a standard interface to
the back-end data, which shouldn’t need to change unless there are significant changes to the
underlying table structures.

In addition to regular views, you can also create indexed views, which are views that actually
have index data persisted within the database (regular views do not actually store physical data).
Also available are distributed-partitioned views, which allow you to represent one logical table
made up of horizontally partitioned tables, each located across separate SQL Server instances.
Table 7-1 shows the three types of views used in SQL Server.

Table 7-1. SQL Server View Types

View Type Description

Regular view This view is defined by a Transact-SQL query. No data is actually
stored in the database, only the view definition.

Indexed view This view is first defined by a Transact-SQL query, and then, after
certain requirements are met, a clustered index is created on it in
order to materialize the index data similar to table data. Once a
clustered index is created, multiple nonclustered indexes can be
created on the indexed view as needed.

Distributed partitioned view This is a view that uses UNION ALL to combine multiple, smaller
tables separated across two or more SQL Server instances into a
single, virtual table for performance purposes and scalability
(expansion of table size on each SQL Server instance, for example).

In this chapter, I'll present recipes that create each of these types of views, and I'll also provide
methods for reporting view metadata.

239

240

CHAPTER 7 © VIEWS

Regular Views

Views are a great way to filter data and columns before presenting it to end users. Views can be used
to obscure numerous table joins and column selections and can also be used to implement security
by only allowing users authorization access to the view, and not to the actual underlying tables.

For all the usefulness of views, there are still some performance shortcomings to watch out for.
When considering views for your database, consider the following best practices:

e Performance-tune your views as you would performance-tune a SELECT query, because a reg-
ular view is essentially just a “stored” query. Poorly performing views can have a significant
impact on server performance.

e Don't nest your views more than one level deep. Specifically, do not define a view that calls
another view, and so on. This can lead to confusion when you attempt to tune inefficient
queries and can degrade performance with each level of view nesting.

e When possible, use stored procedures instead of views. Stored procedures can offe