

Programming Entity Framework:
Code First

Julia Lerman and Rowan Miller

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Programming Entity Framework: Code First
by Julia Lerman and Rowan Miller

Copyright © 2012 Julia Lerman, Rowan Miller. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-11-18 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449312947 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Entity Framework: Code First, the image of a common bittern, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31294-7

[LSI]

1321545608

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449312947

Table of Contents

Preface . vii

1. Welcome to Code First . 1
Modeling with EF Before Code First 1
Inception of Code First 2
Getting Code First to Developers in Between .NET Releases 3
Writing the Code…First 4
Managing Objects with DbContext 6
Using the Data Layer and Domain Classes 7
Getting from Classes to a Database 8
Working with Configuration 10

Configuring with Data Annotations 10
Configuring with the Fluent API 11

Creating or Pointing to a Database 12
What Code First Does Not Support 12

Choosing Code First 13
Learning from This Book 15

2. Your First Look at Code First . 17
Introducing EF to the Domain Classes 18
Putting the Pieces Together in an Example 18

Convention for Table, Schema, and Column Names 22
Convention for Keys 23
Convention for String Properties 23
Convention for Byte Array 24
Convention for Booleans 24
Convention for One-to-Many Relationships 24

Overriding Convention with Configurations 25
Configuring with Data Annotations 25

Understanding How Model Changes Impact Database Initialization 27
Data Annotations and Validation-Aware UIs 30

iii

Configuring Code First with the Fluent API 31
Organizing Fluent Configurations 33

Summary 35

3. Using Conventions and Configurations for Property Attributes 37
Working with Property Attributes in Code First 37

Length 38
Data Type 38
Nullability and the Required Configuration 39

Mapping Keys 40
Code First Convention Response to Unconventional Key Properties 40
Configuring the Key with Data Annotations 41
Using HasKey to Configure a Key Property in the Fluent API 41

Configuring Database-Generated Properties 42
Configuring Database-Generated Options with Data Annotations 43
Configuring Database-Generated Options with the Fluent API 46

Configuring TimeStamp/RowVersion Fields for Optimistic Concurrency 46
Code First Convention and TimeStamp fields 47
Using Data Annotations to Configure TimeStamp 47
Configuring TimeStamp/RowVersion with Fluent API 49

Configuring Non-Timestamp Fields for Concurrency 49
Configuring for Optimistic Concurrency with Data Annotations 50
Configuring for Optimistic Concurrency with Fluent API 51

Mapping to Non-Unicode Database Types 51
Affecting the Precision and Scale of Decimals 52

Convention for Precision and Scale 52
Data Annotations for Precision and Scale 52
Fluent Configuration for Precision and Scale 52

Working with Complex Types in Code First 53
Defining Complex Types by Convention 54
Configuring Unconventional Complex Types 56
Working with More Complicated Complex Types 57

Configuring Properties of Complex Types 58
Configuring Complex Types with Data Annotations 58
Configuring Complex Type Properties with the Fluent API 59

Summary 60

4. Using Convention and Configuration for Relationships . 61
Working with Multiplicity 63

Configuring Multiplicity with Data Annotations 63
Configuring Multiplicity with the Fluent API 64

Working with Foreign Keys 66
Specifying Unconventionally Named Foreign Keys 68

iv | Table of Contents

Working with Inverse Navigation Properties 71
Working with Cascade Delete 73

Turning On or Off Client-Side Cascade Delete with Fluent Configura-
tions 76
Setting Cascade Delete Off in Scenarios That Are Not Supported by the
Database 78

Exploring Many-to-Many Relationships 78
Working with Relationships that Have Unidirectional Navigation 81
Working with One-to-One Relationships 84

Configuring One-to-One Relationships When Both Ends Are Required 87
Summary 88

5. Using Conventions and Configurations for Database Mappings 91
Mapping Class Name to Database Table and Schema Name 91

Configuring Table and Schema Name with Data Annotations 92
Configuring Table and Schema Name with the Fluent API 93

Mapping Property Names to Database Columns 93
Modifying the Default Column Name with Data Annotations 93
Modifying the Default Column Name with the Fluent API 93
Affecting Column Names for Complex Types 94

Allowing Multiple Entities to Map to a Single Table:
aka Table Splitting 95

Mapping to a Common Table using Data Annotations 96
Splitting a Table Using the Fluent API 99

Mapping a Single Entity Across Multiple Tables 99
Controlling Which Types Get Mapped to the Database 104

Preventing Types from Being Included in the Model 105
Understanding Property Mapping and Accessibility 106

Scalar Property Mapping 106
Accessibility of Properties, Getters, and Setters 106

Preventing Properties from Being Included in the Model 108
Data Annotations for Ignoring a Property 109
Fluent Configuration for Ignoring a Property 109

Mapping Inheritance Hierarchies 109
Working with Code First’s Default Inheritance: Table Per Hierarchy
(TPH) 109
Customizing the TPH Discriminator Field with the Fluent API 112
Configuring Table Per Type (TPT) Hierarchy 113
Configuring for Table Per Concrete Type (TPC) Inheritance 115
Avoiding Mapping Exceptions with TPC 116

Working with Abstract Base Classes 119
Mapping Relationships 123

Controlling Foreign Keys Included in Your Class 123

Table of Contents | v

Controlling Foreign Keys That Are Created by Code First 124
Controlling Many-to-Many Join Tables 125

Summary 127

6. Controlling Database Location, Creation Process, and Seed Data 129
Controlling the Database Location 129

Controlling Database Location with a Configuration File 130
Controlling Database Name with DbContext Constructor 131
Controlling Connection String Name with DbContext Constructor 132
Reusing Database Connections 133
Controlling Database Location with Connection Factories 134

Working with Database Initialization 139
Controlling When Database Initialization Occurs 139
Switching Off Database Initialization Completely 141
Database Initializers Included in Entity Framework 141
Creating a Custom Database Initializer 144
Setting Database Initializers from a Configuration File 147

Using Database Initializers to Seed Data 149
Using Database Initialization to Further Affect Database Schema 151
Summary 152

7. Advanced Concepts . 153
Mapping to Nontable Database Objects 153

Mapping to Updatable Views 154
Using Views to Populate Objects 154
Using Views to Populate Nonmodel Objects 155
Working with Stored Procedures 156

Removing Conventions 157
Taking Control of Model Caching 159

Understanding Model Caching 160
Overriding Default Model Caching 160

Working with the EdmMetadata Table 165
Coding Against EdmMetadata 165
Preventing Code First from Creating and Seeking EdmMetadata 166

Using Code First with ObjectContext 167
Summary 169

8. What’s Coming Next for Code First . 171
Code First Migrations 171
Entity Framework Power Tools 173

Reverse Engineer Code First 173
Viewing a Code First Model 174
Optimize Entity Data Model 175

vi | Table of Contents

Preface

Microsoft’s principal data access technology, ADO.NET Entity Framework, has had
two major releases as part of the .NET Framework. NET 3.5 brought us the first version
of Entity Framework, which is covered in the first edition of Programming Entity
Framework. In 2010, Microsoft .NET 4 was released; it contained the next version of
Entity Framework, referred to as Entity Framework 4. The completely revised second
edition of Programming Entity Framework was dedicated to teaching readers how to
use this version of Entity Framework in Visual Studio 2010.

When .NET 4 was released, the Entity Framework team was already hard at work on
a new addition, called Code First, to provide an alternative to building the Entity Data
Model that is core to Entity Framework. Rather than using a visual designer, Code First
allows you to create the model from your existing classes.

This book is dedicated to teaching readers how to use Code First to build and configure
a model based on the classes in your business domain. While Code First can do much
of the job of inferring a model from your classes, there is quite a lot that you can do to
affect the model that Code First creates.

In this book, you will learn what Code First does by default (aka convention) and how
to perform further configuration to affect how it understands your properties, classes,
relationships, and the database schema they map to—whether you use Code First to
help create a database or you want to use it with an existing database. With this knowl-
edge, you can reap the benefits of the Entity Framework while leveraging existing classes
or those classes you might be building for a new software project.

Audience
This book is designed for .NET developers who have experience with Visual Studio
and database management basics. Prior experience with Entity Framework is beneficial
but not required. The code samples in this book are written in C#, with some of these
samples also expressed in Visual Basic. There are a number of online tools that you can
use to convert snippets of C# into Visual Basic.

vii

http://shop.oreilly.com/product/9780596520298.do
http://shop.oreilly.com/product/9780596520298.do
http://shop.oreilly.com/product/9780596807252.do

Contents of This Book
This book contains eight chapters.

Chapter 1

This chapter provides a high level, end-to-end overview of Code First. You’ll find
sample code, but there are no walkthroughs in this first chapter. The chapter winds
up with a discussion of what you won’t find in Code First, so that you can approach
the technology with the correct expectations.

Chapter 2

In this chapter, you will get to jump right in to the code. The chapter gives you a
chance to work hands-on with Code First (or just read along if you prefer) as you
work with a simple class to see some of the basic default behavior and perform
some simple configurations using the two mechanisms for configuring: Data An-
notations and the Fluent API. You’ll see how Code First is able to automatically
create a database for you using default behavior. Through the next four chapters
you’ll lean on this database creation default, and then in Chapter 6, you’ll learn
how to work with existing databases and exert more control over the database.

Chapter 3

This is the first of three chapters that dive deeply into Code First convention and
configuration. You’ll learn about the presumptions the Code First convention
makes about the attributes of properties (e.g., the length of strings) and how that
gets interpreted into the conceptual model and the database. You’ll also learn how
to perform configuration using Data Annotations and Fluent API to control the
outcome of the model and database.

Chapter 4

In this chapter, you’ll focus on relationships between your classes and how those
work out in the model that Code First infers and in the database. Code First con-
vention is able to infer the most common scenarios when classes have relationships
between them. We’ll look closely at the nuances in your classes that will drive Code
First’s assumptions and then how to ensure that Code First knows exactly what
you want it to do, again by configuring with Data Annotations or the Fluent API.

Chapter 5

This chapter focuses on how classes map to the database. This information will be
especially important when you are mapping your classes to an existing database.
Simple mappings, such as specifying table names or column names and types, can
make a huge difference. You’ll learn about the default mappings to the database
when you have inheritance hierarchies defined between your classes and how to
drive Table Per Hierarchy, Table Per Type and even Table Per Concrete Type

viii | Preface

mappings to the database. You’ll also learn how to map a single entity to multiple
tables or, conversely, multiple entities to a single table.

Chapter 6

This chapter is where you finally get to stray from the default database creation
behavior. You’ll learn how to control Code First’s determination of the database
name and location, whether you do this through connection strings or some lower-
level code in the Code First API. You’ll also find some additional tricks for con-
trolling connections and more.

Chapter 7

In this chapter, you’ll dig farther into Code First to see how to perform some ad-
vanced techniques. You’ll see how to prevent Code First from worrying about
keeping the database in sync with your model when you want to take over control
of that task. You’ll also learn about the default model caching and how to override
it to solve problems like targeting multiple database providers in the same appli-
cation instance. Other advanced topics are addressed as well.

Chapter 8

This book was written about the features of Code First based on the Entity Frame-
work 4.2 release. At the time of this writing, a number of Community Technical
Previews demonstrate some of the features that Code First will gain in upcoming
releases. This chapter shares available information about these future releases.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | ix

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Entity Framework: Code
First by Julia Lerman and Rowan Miller (O’Reilly). Copyright 2012 Julia Lerman,
Rowan Miller, 978-1-449-31294-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022220.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Special thanks to technical reviewers Andrew Peters, from the Entity Framework team,
and Suzanne Shushereba, a software developer at Fletcher Allen Health Care in Bur-
lington, Vermont (and a friend). Andrew leveraged his expertise in Code First to ensure
that we hadn’t made any technical gaffes. Suzanne was new to Code First but not Entity
Framework. She not only read the text to point out where we could provide a better
explanation for a newbie, but she also followed along with the walkthroughs in Visual
Studio to help us find places where providing additional code would be more helpful.

Thanks to Microsoft for making it easy for Rowan to participate in this project.

Thanks once again to O’Reilly Media for providing their support.

Preface | xi

http://shop.oreilly.com/product/0636920022220.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Welcome to Code First

Microsoft’s ADO.NET Entity Framework, known widely as EF, introduced out-of-the-
box Object Relational Mapping to .NET and Visual Studio. Central to Entity Frame-
work was the Entity Data Model, a conceptual model of your application domain that
maps back to the schema of your database. This conceptual model describes the core
classes in your application. Entity Framework uses this conceptual model while query-
ing from the database, creating objects from that data and then persisting changes back
to the database.

Modeling with EF Before Code First
The first iteration of Entity Framework, which came as part of .NET 3.5 and Visual
Studio 2008, gave developers the ability to create this conceptual model by reverse
engineering an existing database into an XML file. This XML file used the EDMX ex-
tension, and you could use a designer to view and customize the model to better suit
your domain. Visual Studio 2010 and .NET 4 brought the second version of Entity
Framework, named Entity Framework 4 (EF4), to align with the .NET version. On the
modeling side, a new capability called Model First was added. Here you could design
your conceptual model in the visual designer and then create the database based on the
model.

Model First allows developers working on new projects that do not have legacy data-
bases to benefit from the Entity Framework as well. Developers can start with a focus
on their application domain by designing the conceptual model and let the database
creation flow from that process.

Whether designing the EDMX by the database-first or model-first way, the next step
for creating your domain is to let automatic code generation build classes based on the
entities and their relationships that it finds in the model. From here, developers have
strongly typed classes representing their domain objects—whether those are custom-
ers, baseball cards, or fairy-tale characters—and can go on their merry way developing
their software applications around these classes.

1

Another critical change came in EF4. In .NET 3.5, the only way Entity Framework was
able to manage in-memory objects was by requiring classes to inherit from Entity
Framework’s EntityObject. The EntityObject communicates its changes to Entity
Framework, which in turns keeps track of changes and eventually is able to persist them
back to the database. In addition to this functionality, .NET 4 introduced POCO (Plain
Old CLR Object) support to enable the Entity Framework to track changes to simpler
classes without needing the EntityObject to be involved. This freed up developers to
use their own classes, independent of Entity Framework. The EF runtime had a way of
being aware of the classes and keeping track of them while in memory.

Inception of Code First
Building upon the pieces that were introduced in EF4, Microsoft was able to create one
more path to modeling, which many developers have been requesting since EF’s in-
ception. This new type of modeling is called Code First. Code First lets you define your
domain model with code rather than using an XML-based EDMX file. Even though
Model First and Database First use code generation to provide classes for you to work
with, many developers simply did not want to work with a designer nor have their
classes generated for them. They just wanted to write code.

In Code First you begin by defining your domain model using POCO classes, which
have no dependency on Entity Framework. Code First can infer a lot of information
about your model purely from the shape of your classes. You can also provide additional
configuration to further describe your model or override what Code First inferred. This
configuration is also defined in code: no XML files or designers.

EF4 also has support for POCO classes when working with the designer.
The EF team provided a POCO template that would allow POCO
classes to be generated for you. These generated classes would be au-
tomatically updated as you made changes in the designer. You could
also use your own POCO classes rather than having them generated for
you. But if you decided to take this approach, you were responsible for
keeping your classes and the EDMX file in sync. This meant that any
changes had to be made in two places—once in the designer and again
in your classes. One of the big advantages of Code First is that your
classes become the model. This means any changes to the model only
need to be made in one place—your POCO classes.

Code First, Database First, and Model First are all just ways of building an Entity Data
Model that can be used with Entity Framework to perform data access. Once the model
has been built, the Entity Framework runtime behaves the same, regardless of how you
created the model. Whether you choose to go with a designer or to use the code-based
modeling is entirely your decision. Figure 1-1 lays out the different options you have
for modeling with Entity Framework.

2 | Chapter 1: Welcome to Code First

Figure 1-1. Modeling workflow options

Microsoft refers to the Database First, Model First, and Code First op-
tions as workflows (e.g., the Code First workflow). That’s because each
of those options is really a set of steps, whether you execute the steps
yourself or the steps happen automatically. For example, with the Da-
tabase First workflow, you reverse engineer from a database and then
let a code generator create the classes. The Code First workflow begins
with you coding your classes and then optionally letting Code First cre-
ate a database for you.

Getting Code First to Developers in Between .NET Releases
Code First was not ready in time to be released in .NET 4. Rather than waiting for
the .NET 5 release to bring Code First to developers, Microsoft made Code First avail-
able in an out-of-band release, referred to as Entity Framework 4.1, in April 2011. The
version number will increment as subsequent updates are released. Entity Framework
4.2 was released in October 2011 and replaces Entity Framework 4.1 as the release that
included Code First. The core Entity Framework API, System.Data.Entity.dll, is still
part of the .NET Framework and was untouched by Entity Framework 4.1 and 4.2.

The Entity Framework 4.1 release also included another important feature, called the
DbContext API. DbContext is the core of this API, which also contains other dependent
classes. DbContext is a lighter-weight version of the Entity Framework’s ObjectCon
text. It is a wrapper over ObjectContext, and it exposes only those features that
Microsoft found were most commonly used by developers working with Entity Frame-
work. The DbContext also provides simpler access to coding patterns that are more

Getting Code First to Developers in Between .NET Releases | 3

complex to achieve with the ObjectContext. DbContext also takes care of a lot of common
tasks for you, so that you write less code to achieve the same tasks; this is particularly
true when working with Code First. Because Microsoft recommends that you use
DbContext with Code First, you will see it used throughout this book. However, a sep-
arate book, called Programming Entity Framework: DbContext, will delve more deeply
into DbContext, DbSet, Validation API, and other features that arrived alongside the
DbContext.

Figure 1-2 helps you to visualize how Code First and DbContext add functionality by
building on the core Entity Framework 4 API, rather than modifying it.

Figure 1-2. Code First and DbContext built on EF4

Flexible Release Schedule
Microsoft will continue to release new features on top of Entity Framework using Visual
Studio’s Library Package Management distribution (aka NuGet) mechanism that is
used for Entity Framework 4.2. The core EF libraries that are in .NET will evolve
with .NET releases. But features such as Code First and DbContext that rely on the
core will be distributed when they are ready by way of updates to the Entity Framework
NuGet package.

Writing the Code…First
Code First is aptly named: the code comes first, the rest follows. Let’s take a look at
the basic default functionality without worrying about all of the possible scenarios you
might need to support. The rest of the book is dedicated to that.

We don’t expect you to recreate the sample code shown in this first
chapter. The code samples are presented as part of an overview, not as
a walkthrough. Beginning with Chapter 2, you will find many walk-
throughs. They are described in a way that you can follow along in Visual
Studio and try things out yourself if you’d like.

Of course, the first thing you’ll need is some code—classes to describe a business do-
main. In this case a very small one, patients and patient visits for a veterinarian.

4 | Chapter 1: Welcome to Code First

Example 1-1 displays three classes for this domain—Patient, Visit, and AnimalType.

Example 1-1. Domain classes

using System;
using System.Collections.Generic;

namespace ChapterOneProject
{
 class Patient
 {
 public Patient()
 {
 Visits = new List<Visit>();
 }
 public int Id { get; set; }
 public string Name { get; set; }
 public DateTime BirthDate { get; set; }
 public AnimalType AnimalType { get; set; }
 public DateTime FirstVisit { get; set; }
 public List<Visit> Visits { get; set; }
 }

 class Visit
 {
 public int Id { get; set; }
 public DateTime Date { get; set; }
 public String ReasonForVisit { get; set; }
 public String Outcome { get; set; }
 public Decimal Weight { get; set; }
 public int PatientId { get; set; }
 }

 class AnimalType
 {
 public int Id { get; set; }
 public string TypeName { get; set; }
 }
}

Core to Code First is the concept of conventions—default rules that Code First will use
to build a model based on your classes. For example, Entity Framework requires that
a class that it will manage has a key property. Code First has a convention that if it finds
a property named Id or a property with the combined name of the type name and Id
(e.g., PatientId), that property will be automatically configured as the key. If it can’t
find a property that matches this convention, it will throw an exception at runtime
telling you that there is no key. Other types of conventions determine the default length
of a string, or the default table structure that Entity Framework should expect in the
database when you have classes that inherit from each other.

This could be very limiting if Code First relied solely on convention to work with your
classes. But Code First is not determined to force you to design your classes to meet its
needs. Instead, the conventions exist to enable Code First to automatically handle some

Writing the Code…First | 5

common scenarios. If your classes happen to follow convention, Code First doesn’t
need any more information from you. Entity Framework will be able to work directly
with your classes. If they don’t follow convention, you can provide additional infor-
mation through Code First’s many configuration options to ensure that your classes
are interpreted properly by Code First.

In the case of the three classes in Example 1-1, the Id properties in each class meet the
convention for keys. We’ll let Code First work with these classes as they are without
any additional configurations.

Managing Objects with DbContext
The domain classes described above have nothing to do with the Entity Framework.
They have no knowledge of it. That’s the beauty of working with Code First. You get
to use your own classes. This is especially beneficial if you have existing domain classes
from another project.

To use Code First, you start by defining a class that inherits from DbContext. One of
the roles of this class, which we’ll refer to as a context, is to let Code First know about
the classes that make up your model. That’s how Entity Framework will be aware of
them and be able to keep track of them. This is done by exposing the domain classes
through another new class introduced along with DbContext—the DbSet. Just as DbCon
text is a simpler wrapper around the ObjectContext, DbSet is a wrapper around Entity
Framework 4’s ObjectSet, which simplifies coding tasks for which we normally use the
ObjectSet.

Example 1-2 shows what this context class might look like. Notice that there are
DbSet properties for Patients and Visits. The DbSets will allow you to query against
the types. But we don’t anticipate doing a direct query of AnimalTypes, so there’s no
need for a DbSet of AnimalTypes. Code First is smart enough to know that Patient makes
use of the AnimalType class and will therefore include it in the model.

Example 1-2. VetContext class which derives from DbContext

using System.Data.Entity;

namespace ChapterOneProject
{
 class VetContext:DbContext
 {
 public DbSet<Patient> Patients { get; set; }
 public DbSet<Visit> Visits { get; set; }
 }
}

6 | Chapter 1: Welcome to Code First

Using the Data Layer and Domain Classes
Now here comes what may seem a little surprising. This is all you need for a data layer—
that is based on the assumption that you’re going to rely 100 percent on Code First
convention to do the rest of the work.

There’s no database connection string. There is not even a database yet. But still, you
are ready to use this data layer. Example 1-3 shows a method that will create a new dog
PatientType along with our first Patient. The method also creates the Patient’s first
Visit record and adds it to the Patient.Visits property.

Then we instantiate the context, add the patient to the DbSet<Patient> (Patients) that
is defined in the context, and finally call SaveChanges, which is a method of DbContext.

Example 1-3. Adding a patient to the database with the VetContext

private static void CreateNewPatient()
{
 var dog = new AnimalType { TypeName = "Dog" };
 var patient = new Patient
 {
 Name = "Sampson",
 BirthDate = new DateTime(2008, 1, 28),
 AnimalType = dog,
 Visits = new List<Visit>
 {
 new Visit
 {
 Date = new DateTime(2011, 9, 1)
 }
 }
 };

 using(var context = new VetContext())
 {
 context.Patients.Add(patient);
 context.SaveChanges();
 }
}

Remember that there’s no connection string anywhere and no known database. Yet
after running this code, we can look in the local SQL Server Express instance and see
a new database whose name matches the fully qualified name of the context class,
ChapterOneProject.VetContext.

You can see the details of this database’s schema in Figure 1-3.

Compare the database schema to the classes defined in Example 1-1. They match al-
most exactly, table to class and field to property. The only difference is that a foreign
key, Patients.AnimalType_Id, was created, even though there was no foreign key prop-
erty in the Patient class. Code First worked out that because of the relationship ex-
pressed in the class (Patient has a reference to AnimalType), a foreign key would be

Using the Data Layer and Domain Classes | 7

needed in the database to persist that relationship. This is one of many conventions
that Code First uses when it’s dealing with relationships. There are many ways to ex-
press relationships between classes. Code First conventions are able to interpret many
of them. Notice, for example, that the PatientId field, which has an explicit property
in the Visit class, is not null, whereas the AnimalType_Id field that Code First inferred
from a navigation property is nullable. Again, convention determined the nullability of
the foreign keys, but if you want to modify how Code First interprets your classes, you
can do so using additional configuration.

Getting from Classes to a Database
If you have worked with Entity Framework, you are familiar with the model that is
expressed in an EDMX file that you work with in a visual designer. You may also be
aware of the fact that the EDMX file is in fact an XML file, but the designer makes it
much easier to work with. The XML used to describe the model has a very specific
schema and working with the raw XML would be mind-boggling without the designer.

What is not as obvious in the designer is that the XML contains more than just the
description of the conceptual model that is displayed in the designer. It also has a
description of database schema that the classes map to and one last bit of XML that
describes how to get from the classes and properties to the tables and columns in the

Figure 1-3. The new database created by Code First

8 | Chapter 1: Welcome to Code First

database. The combination of the model XML, the database schema XML, and the
mapping XML are referred to as metadata.

At runtime, the Entity Framework reads the XML that describes all three parts of the
XML and creates an in-memory representation of the metadata. But the in-memory
metadata is not the XML; it is strongly typed objects such as EntityType, EdmProperty,
and AssociationType. Entity Framework interacts with this in-memory representation
of the model and schema every time it needs to interact with the database.

Because there is no XML file with Code First, it creates the in-memory metadata from
what it can discover in your domain classes. This is where convention and configuration
come into play. Code First has a class called the DbModelBuilder. It is the DbModel
Builder that reads the classes and builds the in-memory model to the best of its ability.
Since it is also building the portion of the metadata that represents the database schema,
it is able to use that to create the database. If you add configurations to help the model
builder determine what the model and database schema should look like, it will read
those just after it inspects the classes and incorporate that information into its under-
standing of what the model and database schema should look like.

Figure 1-4 shows how Entity Framework can build the in-memory model from code or
from an XML file maintained through the designer. Once the in-memory model is
created, Entity Framework doesn’t need to know how the model was created. It can
use the in-memory model to determine what the database schema should look like,
build queries to access data, translate the results of queries into your objects, and persist
changes to those objects back to the database.

Figure 1-4. In-memory metadata created from code or EDMX model

Getting from Classes to a Database | 9

Working with Configuration
In those cases where Code First needs some help understanding your intent, you have
two options for performing configuration: Data Annotations and Code First’s Fluent
API. Which option you choose is most often based on personal preference and your
coding style. There is some advanced configuration that is only possible via the Fluent
API.

Code First allows you to configure a great variety of property attributes, relationships,
inheritance hierarchies, and database mappings. You’ll get a sneak peek at configura-
tion now, but the bulk of this book is dedicated to explaining the convention and
configuration options that are available to you.

Configuring with Data Annotations
One way to apply configuration, which many developers like because it is so simple, is
to use Data Annotations. Data Annotations are attributes that you apply directly to the
class or properties that you want to affect. These can be found in the System.Component
Model.DataAnnotations namespace.

For example, if you want to ensure that a property should always have a value, you can
use the Required annotation. In Example 1-4, this annotation has been applied to the
AnimalType’s TypeName property.

Example 1-4. Using an annotation to mark a property as required

class AnimalType
{
 public int Id { get; set; }
 [Required]
 public string TypeName { get; set; }
}

This will have two effects. The first is that the TypeName field in the database will become
not null. The second is that it will be validated by Entity Framework, thanks to the
Validation API that was also introduced in Entity Framework 4.1. By default, when it’s
time to SaveChanges, Entity Framework will check to be sure that the property you have
flagged as Required is not empty. If it is empty, Entity Framework will throw an
exception.

The Required annotation affects the database column facets and property validation.
Some annotations are specific only to database mappings. For example, the Table an-
notation tells Code First that the class maps to a table of a certain name. The data that
you refer to as AnimalType in your application might be stored in a table called Spe
cies. The Table annotation allows you to specify this mapping.

10 | Chapter 1: Welcome to Code First

Example 1-5. Specifying a table name to map to

[Table("Species")]
class AnimalType
{
 public int Id { get; set; }
 [Required]
 public string TypeName { get; set; }
}

Configuring with the Fluent API
While applying configurations with Data Annotations is quite simple to do, specifying
metadata within a domain class may not align with your style of development. There
is an alternative way to add configurations that uses Code First’s Fluent API. With
configuration applied via the Fluent API, your domain classes remain “clean.” Rather
than modify the classes, you provide the configuration information to Code First’s
model builder in a method exposed by the DbContext. The method is called OnModel
Creating. Example 1-6 demonstrates the same configurations that were used above,
but now applied using the Fluent API. In each configuration, the code specifies that
the model builder should configure the AnimalType.

Example 1-6. Configuring the model using the Fluent API

class VetContext:DbContext
{
 public DbSet<Patient> Patients { get; set; }
 public DbSet<Visit> Visits { get; set; }

 protected override void OnModelCreating
 (DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<AnimalType>()
 .ToTable("Species");
 modelBuilder.Entity<AnimalType>()
 .Property(p => p.TypeName).IsRequired();
 }
 }

The first configuration uses the Fluent API equivalent of the Table Data Annotation,
which is the ToTable method, and passes in the name of the table to which the Animal
Type class should be mapped. The second configuration uses a lambda expression to
identify one of the properties of AnimalType and then appends the IsRequired method
to that property.

This is just one way to build fluent configurations. You will learn much more about
using both Data Annotations and the Fluent API to configure property attributes, re-
lationships, inheritance hierarchies, and database mappings in the following chapters.

Working with Configuration | 11

Creating or Pointing to a Database
Earlier in this chapter, you saw that by default Code First created a SQL Server Express
database. Code First’s database connection handling ranges from this completely au-
tomated behavior to creating a database for you at a location designated in a connection
string. There are a lot of variations to being able to drop and recreate a database when
your model changes during development.

You’ll find that Chapter 6 is dedicated entirely to how Code First interacts with your
database.

The examples in this book will walk you through how to configure database mappings.
These concepts apply equally to generating a database or mapping to an existing da-
tabase. When generating a database, they affect the schema that is generated for you.
When mapping to an existing database, they define the schema that Entity Framework
will expect to be there at runtime.

As we explore Code First conventions and configuration in this book, we will be al-
lowing Code First to create a database. This allows you to run the application after each
step and observe how the database schema has changed. If you are mapping to an
existing database, the only difference is to point Code First at that database. The easiest
way to do that is described in “Controlling Database Location with a Configuration
File” on page 130 (Chapter 6). You will also want to take a look at “Reverse Engineer
Code First” on page 173 (Chapter 8).

What Code First Does Not Support
Code First is a relatively new addition to Entity Framework and there are a few features
that it currently does not support. The EF team has indicated that they plan to add
support for most of these in future releases.

Database migrations
At the time of writing this book, Code First does not yet support database migra-
tions, or in other words, modifying a database to reflect changes to the model. But
work on this feature is well under way and will likely be available shortly after
publication. You can read about an early preview of the Migrations support on the
team’s blog.

Mapping to views
Code First currently only supports mapping to tables. This unfortunately means
that you can’t map Code First directly to stored procedures, views, or other data-
base objects. If you are letting Code First generate a database, there is no way to
create these artifacts in the database, other than manually adding them once Code
First has created the database. If you are mapping to an existing database, there
are some techniques you can use to get data from non-table database artifacts.

12 | Chapter 1: Welcome to Code First

http://blogs.msdn.com/b/adonet/archive/2011/09/21/code-first-migrations -alpha-3-released.aspx
http://blogs.msdn.com/b/adonet/archive/2011/09/21/code-first-migrations -alpha-3-released.aspx

These techniques are described in “Mapping to Nontable Database Ob-
jects” on page 153 (Chapter 7).

Schema definition defining queries
Entity Framework includes a DefiningQuery feature that allows you to specify a
database query directly in the XML metadata. There is also a Query View feature
that allows you to use the conceptual model to define a query that is used to load
entities. This allows the query you specify to be database provider–independent.
Code First does not support either of these features yet.

Multiple Entity Sets per Type (MEST)
Code First does not support the Multiple Entity Sets per Type (MEST) feature.
MEST allows you to use the same class in two different sets that map to two dif-
ferent tables. This is a more obscure Entity Framework feature that is rarely used.
The EF team has said that, in an effort to keep the Code First API simpler, they do
not plan to add support for MEST.

Conditional column mapping
When working with inheritance hierarchies, Code First also requires that a prop-
erty is always mapped to a column with the same name. This is referred to as
conditional column mapping. For example, you may have a Person base class with
a NationalIdentifier property. American and Australian classes that derive from
the Person base class are mapped to separate Australians and Americans tables in
the database. When using the designer, you could map the NationalIdentifier
property to an SSN column in the Americans table and PassportNumber in the Aus
tralians table. Code First does not support this scenario. The column that Natio
nalIdentifier maps to must have the same name in every table.

Choosing Code First
Now that you know what Code First is, you may be wondering whether it’s the right
modeling workflow for your application development. The good news is that the de-
cision is almost entirely dependent on what development style you, or your team,
prefer.

If writing your own POCO classes and then using code to define how they map to a
database appeals to you, then Code First is what you are after. As mentioned earlier,
Code First can generate a database for you or be used to map to an existing database.

If you prefer to use a designer to define the shape of your classes and how they map to
the database, you probably don’t want to use Code First. If you are mapping to an
existing database, you will want to use Database First to reverse engineer a model from
the database. This entails using Visual Studio’s Entity Data Model Wizard to generate
an EDMX based on that database. You can then view and edit the generated model
using the designer. If you don’t have a database but want to use a designer, you should
consider using Model First to define your model with the designer. You can then create
the database based on the model you define. These approaches work well, provided

What Code First Does Not Support | 13

you are happy for EF to generate your classes for you based on the model you create in
the designer.

Finally, if you have existing classes that you want to use with EF, you probably want
to go with Code First even if your first preference would be for designer-based modeling.
If you choose to use the designer, you will need to make any model changes in the
designer and in your classes. This is inefficient and error-prone, so you will probably
be happier in the long run if you use Code First. In Code First, your classes are your
model, so model changes only need to be made in one place and there is no opportunity
for things to get out of sync.

A designer tool that the Entity Framework team is working on will pro-
vide an additional option—reverse engineering a database into Code
First classes and fluent configurations. This tool was created for devel-
opers who have an existing database but prefer using Code First to using
a designer. You’ll learn more about this tool in Chapter 8.

The decision process for which EF workflow to use can be summarized in the decision
tree shown in Figure 1-5.

Figure 1-5. Workflow decision tree

14 | Chapter 1: Welcome to Code First

Learning from This Book
This book will focus on building and configuring a model with Code First. It is an
extension to Programming Entity Framework (second edition) and you’ll find many
references back to that book, rather than duplicating here the nearly 900 pages of de-
tailed information about how Entity Framework functions; how to query and update;
using it in a variety of application types and automated tests; and how to handle ex-
ceptions, security, database connections and transactions. Creating a model with Code
First is just one more feature of the Entity Framework.

In fact, as you move forward to Chapter 2, you’ll find that the domain model changes
from the veterinarian sample used in Chapter 1 to the business model of Programming
Entity Framework, software applications built for a company called Break Away Geek
Adventures.

Look for a second short book titled Programming Entity Framework: DbContext, which
will focus on DbContext, DbSet, Validation API, and using the features that are also part
of the Entity Framework NuGet package.

Learning from This Book | 15

http://shop.oreilly.com/product/9780596807252.do

CHAPTER 2

Your First Look at Code First

If you’ve worked with either the first or second edition of Programming Entity Frame-
work, you may recall the business that was the focus of the book sample—Break Away
Geek Adventures, also known as BAGA. BAGA coordinates much-needed adventure
travel for geeks like us. But it’s been a few years, and the business is growing again, so
it’s time for some new apps. And since BAGA caters to software geeks, they can’t resist
an excuse to try out a new technology such as EF’s Code First.

In this chapter, we’ll start with a small example to witness some of Code First’s default
behavior and then add to this example bit by bit to see how each thing we do impacts
this behavior.

We’ll begin with a small slice of BAGA’s business domain: the Destinations of our trips
and the Lodgings where our geek clients stay on these trips.

The beauty of Code First is that the code we use to define our domain classes is the
same code that is used to describe the data model on which Entity Framework relies.
And that’s just where we will start—with the code, shown in Example 2-1, which de-
scribes the Destination and Lodging classes. For these early examples, we’ll keep the
classes very simple; they’ll contain some auto-implemented properties and no further
logic.

Example 2-1. The domain model

public class Destination
{
 public int DestinationId { get; set; }
 public string Name { get; set; }
 public string Country { get; set; }
 public string Description { get; set; }
 public byte[] Photo { get; set; }

 public List<Lodging> Lodgings { get; set; }
}

public class Lodging
{

17

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }

 public Destination Destination { get; set; }
}

The Destination class describes a particular locale where a BAGA trip might go. At any
given destination, from Aspen to Zimbabwe, BAGA has made arrangements with var-
ious lodgings, from bed and breakfasts to five-star hotels, where clients will stay. So a
destination object can have one or more lodgings—List<Lodging>—associated with it.

Introducing EF to the Domain Classes
On their own, these classes have nothing to do with Entity Framework or with Code
First. They simply describe part of a domain.

In order for Entity Framework be aware of these classes, we’ll use an Entity Framework
context to serve up, manage, and persist the data to a database. EF has two contexts
to choose from, the ObjectContext, which has been part of Entity Framework since its
first release, and the lighter-weight DbContext, which was introduced along with Code
First in Entity Framework 4.1. While it’s possible to use ObjectContext, it is more com-
mon (and recommended) to use the new DbContext with Code First, and that’s what
we’ll be using here. Later in this book (Chapter 7), you’ll learn about using ObjectCon
text with Code First.

Our class, BreakAwayContext, will inherit from DbContext in order to gain all of DbCon
text’s capabilities. Additionally, it will expose properties that return queryable sets,
DbSets, of Destination classes and Lodging classes.

Example 2-2. The BreakAwayContext class

public class BreakAwayContext : DbContext
{
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }
}

This small class represents a complete data layer that you can use in applications.
Thanks to the DbContext, you’ll be able to query, change, track, and save destination
and lodging data. Let’s create a little console app to do some work with this data layer
so you can see that this is no exaggeration.

Putting the Pieces Together in an Example
To see all of this in action, the following section will walk you through creating a small
solution in Visual Studio, where you’ll place these classes and then create a simplistic

18 | Chapter 2: Your First Look at Code First

console application to exercise your new data layer. To be sure you’re starting on the
right architectural path, this walkthrough will organize the layers of the application
into separate projects.

1. Create a new solution in Visual Studio.

2. Add a Class Library project to the solution named Model.

3. In this project, add a new class named Destination.

4. Modify the Destination class to match the Example 2-3.

Example 2-3. The Destination class

using System.Collections.Generic;

namespace Model
{
 public class Destination
 {
 public int DestinationId { get; set; }
 public string Name { get; set; }
 public string Country { get; set; }
 public string Description { get; set; }

 public byte[] Photo { get; set; }

 public List<Lodging> Lodgings { get; set; }
 }
}

5. Add another class, named Lodging, to this project with the code shown in
Example 2-4.

Example 2-4. The Lodging class

namespace Model
{
 public class Lodging
 {
 public int LodgingId { get; set; }

 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }

 public Destination Destination { get; set; }
 }
}

That’s the extent of the Model project. Now, on to the data layer. While the domain
classes have no awareness of the Entity Framework, the data layer is completely
dependent on it.

Putting the Pieces Together in an Example | 19

Installing NuGet into Visual Studio So You Can Add Libraries to Your Projects
In Chapter 1 you learned that Entity Framework is available via NuGet. To complete
the following steps, you will need to have the NuGet extension for Visual Studio in-
stalled. To install NuGet, select Tools → Extension Manager... from the menu. The
Extension Manager dialog will be displayed: select Online Gallery from the left menu
of the Extension Manager dialog and search for NuGet. Select the NuGet Package
Manager extension, click the Download button, and follow the prompts to install
NuGet.

Once this is installed, you will be able to access the new feature in a few ways in Visual
Studio. One is through the Visual Studio menu where Add Library Package Reference
is a new item in the Tools menu. The other is through the context menu that pops up
when you right click a project in solution explorer. In the following walkthrough, you’ll
use the latter method.

1. Add another Class Library project, named DataAccess, to the solution.

2. Right-click the new project in Solution Explorer and choose Add Library Package
Reference.

3. In the Add Library Package Reference dialog, select the Online tab and search for
Entity Framework.

4. Click the Install button for the Entity Framework package. This will add the Code
First runtime (EntityFramework.dll) to your project.

5. Right-click the new project in Solution Explorer and choose Add Reference.

6. Select the Projects tab and choose the Model project. This gives the context access
to the domain classes that you just created in the Model project.

7. Add a new class file, BreakAwayContext, to this project.

8. Implement this new class as shown in Example 2-5.

Example 2-5. The BreakAwayContext class

using System.Data.Entity;
using Model;

namespace DataAccess
{
 public class BreakAwayContext : DbContext
 {
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }
 }
}

Notice the using statements at the top of this class file. One is for the Sys
tem.Data.Entity namespace. This is what gives you access to the DbContext and DbSet
classes that are key to the BreakAwayContext class. This can be confusing because the

20 | Chapter 2: Your First Look at Code First

classes in the System.Data.Entity namespace are defined in EntityFramework.dll, rather
than System.Data.Entity.dll. System.Data.Entity.dll contains the core Entity Frame-
work components and is included as part of the .NET Framework.

Now your data access layer for this simple demo is complete. It’s time to exercise your
data access with a small console application.

But wait! We haven’t told the data layer where the database is. There’s no connection
string, no configuration file, nothing related to a database. We’ll take advantage of one
of Code First’s capabilities—database initialization. Code First has a series of steps it
follows to find a database to work with and initialize it. We’ll let it use its default
behavior for now, and later, in Chapter 6, you’ll learn much more about database
initialization features. But lest you get concerned, it is indeed possible to work with an
existing database. We just won’t go that route for now.

1. Add a new Console Application project to the solution, named BreakAwayConsole.

2. Right-click the new project in Solution Explorer and select Set as StartUp Project.

3. Right-click the new project in Solution Explorer again, choose Add Library Package
Reference, and add a reference to the EntityFramework package.

4. Right-click the new project in Solution Explorer for the last time (we promise),
choose Add Reference, and add a reference to the Model and DataAccess projects.

5. In the new project, open the Program class (Module in Visual Basic).

6. Add two using statements below the existing using statements at the top of the file:

using Model;
using DataAccess;

7. Add a method to the class called InsertDestination (Example 2-6).

Example 2-6. The InsertDestination method

private static void InsertDestination()
{
 var destination = new Destination
 {
 Country = "Indonesia",
 Description = "EcoTourism at its best in exquisite Bali",
 Name = "Bali"
 };
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(destination);
 context.SaveChanges();
 }
}

8. In the Main method of the class, call this new method (Example 2-7).

Putting the Pieces Together in an Example | 21

Example 2-7. Calling the InsertDestination method

static void Main()
{
 InsertDestination();
}

You’re done!

With this small amount of code you’ve written for the two domain classes, the two-
line data access class, and this little application, you are ready to roll. Run the
application.

This console application doesn’t bother displaying any information to you. What’s
interesting is what’s happened in the database—the database that did not exist a mo-
ment ago.

Code First used the information it discovered in the Destination and Lodging classes
to determine the model and infer the schema of the database that these classes are
persisted in. Since we provided no connection string information, it uses its default
convention, which is to look in the local SQL Server Express instance (localhost
\SQLEXPRESS) for a database matching the fully qualified name of the context class
—DataAccess.BreakAwayContext. Not finding one, Code First creates the database and
then uses the model it discovered by convention to build the tables and columns of the
database.

Therefore, we’ll need to look in SQL Server Express for the database that Code First
created (Figure 2-1).

And there it is, DataAccess.BreakAwayContext with a Destinations table and a Lodg
ings table. That EdmMetadata table is used by Code First’s database initialization, and
you’ll learn more about that later.

Convention for Table, Schema, and Column Names
Code First’s convention for table naming is to use Entity Framework’s Pluralization
Service (introduced in Entity Framework 4) to determine the plural of the class name
based on rules for the English language. By default, each table is created using the
dbo schema.

Code First creates the columns using the same names as the class properties they
map to.

22 | Chapter 2: Your First Look at Code First

Figure 2-1. Database created by Code First

Convention for Keys
Taking a closer look at the database tables, you can learn quite a bit already about Code
First conventions. For example, Code First knew that DestinationId in the Destina
tion class and LodgingId in the Lodging class were meant to be keys and that those keys
map to Primary Key fields in the database. Notice that both of these database fields are
non-nullable Primary Keys (PK, not null). Code First convention looks for fields that
are named Id or [class name]Id and determines that these are meant to be keys for the
classes. DestinationId and LodgingId match this convention. Because these properties
are integer types, Code First has also configured them to be identity columns in the
database. This means that the database will generate values for these columns during
insert.

Convention for String Properties
The convention for strings is that they map to nullable columns with no limit on length.
The database provider is responsible for determining exactly which data type is used
for the column. For SQL Server, the default data type for columns used to store string

Putting the Pieces Together in an Example | 23

properties is nvarchar(max). That’s why you can see in Figure 2-1 that all of the string
properties from the two classes have become nvarchar(max) columns—Destina
tion.Name, Country, Description, etc.—and also allow null values to be stored.

Convention for Byte Array
The Destination class has a Photo property, which is defined as a byte array (byte[]).
As with string properties, Code First convention maps byte arrays to nullable columns
with no limit on length. For SQL Server, this results in the varbinary(max) data type
being used for the Photo column.

Convention for Booleans
The IsResort property in Lodging is a bool. Because bool is a value type, and cannot be
assigned a null value, Code First presumes that the column should also not allow nulls.
The SQL Server provider determines that bool properties map to the bit database type.

Convention for One-to-Many Relationships
A destination can have many lodgings and the Destination class has a List<Lodging>
property to allow you to access those lodgings from a particular destination. Addition-
ally, the Lodging class has a Destination property, so that you can see what Destina
tion is associated with a particular Lodging. Code First recognizes this one-to-many
relationship between Destination and Lodging and, by convention, determines that the
Lodgings table will need a foreign key in order to persist its knowledge of which Desti
nation a Lodging belongs to.

Notice that although there is no foreign key property in the Lodging class pointing back
to the Destination (e.g., DestinationId), Code First created a foreign key in the database
using the pattern [Name of navigation property]_[Primary Key of related class] (i.e.,
Destination_DestinationId). And thanks to some additional metadata that Code First
built, Entity Framework will know to use that Foreign Key when querying from or
saving to the database.

The navigation properties in the Destination and Lodging classes provide Code First
with not one, but two clues about this relationship. Had we only provided one of these,
the relationship would still have been obvious to Code First, which still would have
created the foreign key in the database.

There are also conventions for scenarios where you’ve provided a foreign key, for many-
to-many relationships, and more. You’ll learn about these as you progress further
through the book.

24 | Chapter 2: Your First Look at Code First

Overriding Convention with Configurations
As you learned in Chapter 1, Code First allows you to override its conventions by
supplying additional configuration. You can choose between attribute-based Data An-
notations or the strongly typed Fluent API for providing this configuration.

Any configuration you supply will be included as part of the model that Entity Frame-
work uses to reason about your data at runtime. This not only affects the database
schema but is also used by the built-in validation functionality of DbContext. For ex-
ample, if you tell Code First that a property is required, the Validation API will let you
know if that property has not been populated. You’ll see this in action as we move
forward.

Configuring with Data Annotations
Data Annotations are the simplest form of configuration and are applied directly to
your classes and class properties. These attributes are available in the System.Compo
nentModel.DataAnnotations namespace, which is currently distributed across the Sys-
tem.ComponentModel.DataAnnotations.dll and the EntityFramework.dll. In future ver-
sions of the .NET Framework, the annotations in EntityFramework.dll will move into
System.ComponentModel.DataAnnotations.dll. You will need references to one or both
of these assemblies (depending on which annotations you use) in the project that con-
tains your domain classes. Be aware that the Data Annotations allow the most com-
monly used configuration to be performed but not all of the possible Code First con-
figurations can be achieved with Data Annotations. Some can only be applied using
the alternate style of configuring your classes—the Fluent API.

Because Code First did not automatically discover some of my intent with the Destina
tion and Lodging classes, let’s use some Data Annotations to provide additional con-
figuration details.

Applying Attributes in C# and Visual Basic
In case you are new to using attributes, in C#, attributes are applied using square
brackets. For example, the data annotation for identifying a Key property in C# is
[Key], while in Visual Basic, angle brackets are used (<Key>). When an attribute uses a
named parameter, in C# it is expressed with an equals sign ([Table(Schema="baga")]),
whereas Visual Basic uses a colon in front of the equals sign
(<Table(Schema:="baga")>). For more information on using attributes in .NET code,
see the MSDN topic “Applying Attributes,” at http://msdn.microsoft.com/en-us/library/
bfz783fz.aspx.

Overriding Convention with Configurations | 25

http://msdn.microsoft.com/en-us/library/bfz783fz.aspx
http://msdn.microsoft.com/en-us/library/bfz783fz.aspx

Let’s start with the Destination class. There are three things I’d like to change about
this class:

• Ensure that the Name is provided

• Limit the amount of text in the Description field to 500 characters.

• Store the Photo into a SQL Server image type, not a varbinary(max).

Some of the annotations I’ll need for these configurations are in the System.Compo-
nentModel.DataAnnotations.dll assembly that is part of .NET 4, but one will need a
reference to the EntityFramework.dll assembly.

1. In the Model project, add a reference to the System.ComponentModel.DataAnnota
tions assembly.

2. Add a library package reference to this project for the EntityFramework assembly.

Remember, you’ll have to use the Add Library Project Reference
wizard for each project to which you want to add one of the NuGet
packages, even if that package is already added to another project
in your solution. Follow the same steps you did when adding En-
tityFramework.dll to the ‒DataAccess project.

3. At the top of the Destination class, add a using for System.ComponentModel.DataAn
notations.

4. Modify the class adding annotations to Name, Description, and Photo, as shown in
Example 2-8.

Example 2-8. Modified Destination class

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace Model
{
 public class Destination
 {
 public int DestinationId { get; set; }
 [Required]
 public string Name { get; set; }
 public string Country { get; set; }
 [MaxLength(500)]
 public string Description { get; set; }

 [Column(TypeName="image")]
 public byte[] Photo { get; set; }

 public List<Lodging> Lodgings { get; set; }
 }
}

26 | Chapter 2: Your First Look at Code First

The Required annotation needs no additional information, whereas the MaxLength and
Column have parameter information that you need to provide. The parameter provided
to the Column annotation is specific to the database that you are mapping to. We want
to store Photo in a SQL Server image field. As long as it’s possible to coerce the type
used for the property to the database data type you specify (e.g., coerce a byte[] to an
image), you can configure the data type. All three annotations will impact the database
schema and two of them, Required and MaxLength, will also be used by Entity Frame-
work for validation. Before observing these effects, let’s make some changes to the
Lodging class as well.

Annotations are composable, meaning that you can apply multiple annotations to a
class or property. We’ll do that for the Lodging.Name property.

Add the following three annotations to the Name property in the Lodging class:

[Required]
[MaxLength(200)]
[MinLength(10)]

MinLength is an interesting annotation. While MaxLength has a database counterpart,
MinLength does not. MinLength will be used for Entity Framework validation, but it won’t
impact the database.

MinLength is the only configuration that can be achieved using Data
Annotations but has no counterpart in the Fluent API configurations.

Understanding How Model Changes Impact Database
Initialization
If you were to run the console application again, you’d get a big fat
InvalidOperationException. There’s nothing wrong with the model changes that we’ve
made here. The problem is with the default behavior of Code First database initializa-
tion. So we’re going to have to stop the presses, switch gears, and fix this problem before
moving on with exploring configuration.

Here’s the exact exception message:

The model backing the ‘BreakAwayContext’ context has changed since the database was
created. Either manually delete/update the database, or call Database.SetInitializer with
an IDatabaseInitializer instance. For example, the DropCreateDatabaseIfModelChanges
strategy will automatically delete and recreate the database, and optionally seed it with
new data.

By default, Code First will create the database only if it doesn’t already exist, but your
database does exist.

Understanding How Model Changes Impact Database Initialization | 27

Remember that EdmMetadata table in the database? If not, take a peek at Figure 2-1 again.
That table contains a snapshot of the database section of the model that Code First
built. When Code First uses a model for the first time in an application process, by
default, it will go through its model building process. Then it will compare the in-
memory model with the last version—which it can see by reading the EdmMetadata table.
In this case, Code First recognized that the metadata of the new model does not match
the metadata of the previous model and therefore cannot guarantee that your model
will map to the database.

You have a number of options. One is to simply delete the database (and all of its data
along with it) and let Code First use its rule (no database=create a new one, please) to
recreate the database using the updated model. This can get to be a pain when you are
in development and can also create file lock issues if you try to run your application
too quickly after deleting the database. Another, which we will use for now, is to delete
and recreate the database whenever a model change is detected by Code First. Code
First has a set of initialization strategies to apply these rules for you. The default is
encapsulated in a class called CreateDatabaseIfNotExists. The one we’ll use is in a class
called DropCreateDatabaseIfModelChanges. You can tell your executing application (in
this case, the console app) which strategy to use. Here’s how we’ll do it.

Modify the Main method adding in the code shown in Example 2-9 above
InsertDestination. You’ll need to add a using statement for System.Data.Entity as
well.

Example 2-9. Adding Database Initialization to the Main method

static void Main(string[] args)
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());
 InsertDestination();
}

In this code we’re telling Code First to use an initializer and specifying which strategy
to use (DropCreateDatabaseIfModelChanges) and on which context (BreakAwayContext).
Now when you rerun the application, Code First will recognize the difference in the
new model and, with permission from the initializer, will delete and recreate the data-
base when the time comes.

28 | Chapter 2: Your First Look at Code First

If you’ve opened up the database tables to read data somewhere else
(for example, in Visual Studio’s Server Explorer), Code First will not be
able to delete the database. In this case, there will be a delay while it
attempts the delete, and then eventually EF will get the message from
the database and an exception will be thrown. I seem to do this too
frequently when I’m demonstrating at user groups and conferences.

A common scenario I encounter is that I have opened up SQL Server
Management Studio (SSMS) and performed some queries on the data-
base. Closing the query windows releases the database. You shouldn’t
have to close SSMS completely to release its clutches on the database.

The new database is shown in Figure 2-2.

Figure 2-2. Destinations and Lodgings tables after model changes

The three changes we made to the Destination class are now visible in the Destinations
table. Name, which we set to Required, is now non-nullable in the database. Description
is now an nvarchar(500) rather than max and Photo is an image data type.

The Lodgings table has also been affected. Name is now limited to 200 characters and is
non-nullable. The third annotation applied to Name, MinLength, has no equivalent in the

Understanding How Model Changes Impact Database Initialization | 29

database schema, so it is ignored here. Remember, though, Entity Framework will pay
attention to that attribute when it is validating Lodging objects.

Data Annotations and Validation-Aware UIs
Data Annotations were introduced in .NET 4 for use in validation-aware UIs such as
ASP.NET MVC and ASP.NET Dynamic Data. Many of the annotations you’ll use for
your Code First classes come from this same set of annotations that live in the Sys
tem.ComponentModel.DataAnnotations assembly. Therefore, those UIs will respond to
invalid data where the validation is based on one of the annotations from this assembly.

For example, the Required annotation is in the .NET 4 assembly, not the EntityFrame-
work.dll assembly. Therefore, if you are using your Code First classes in an MVC ap-
plication and the user has neglected to fill out a field that is bound to a Required prop-
erty, the MVC UI validation will respond, as you can see in Figure 2-3.

Figure 2-3. The Required Data Annotation being picked up by MVC validation

DbContext also provides a Validation API, so there is also server-side
validation happening, whether you configure with Data Annotations or
the Fluent API. But when you are using Data Annotations that are also
tracked by MVC, MVC will pick them up as well. The Validation API
is not covered in this book, which focuses on modeling with Code First,
but it will be part of the partner book, Entity Framework: DbContext.

30 | Chapter 2: Your First Look at Code First

Configuring Code First with the Fluent API
Configuring with Data Annotations is fairly simple and it may be just what you’re
looking for. But Data Annotations only allow you to access a subset of the possible
configurations (though much more than you’ve seen so far). The Fluent API, however,
gives you access to even more, so you may prefer it for this reason.

What Is a Fluent API?
The concept of a fluent API isn’t specific to Code First or the Entity Framework. The
fundamental idea behind a fluent API involves using chained method calls to produce
code that is easy for the developer to read. The return type of each call then defines the
valid methods for the next call. For example, in the Code First Fluent API, you can use
the Entity method to select an entity to configure. IntelliSense will then show you all
the methods that can be used to configure an Entity. If you then use the Property
method to select a property to configure, you will see all the methods available for
configuring that particular property.

There’s another reason why some developers will prefer the Fluent API over the anno-
tations. While applying annotations to your pretty domain classes, they can definitely
get more and more bogged down with the attributes. It’s one thing to be applying
validation logic (Required, MaxLength, etc.), but as you learn more about configuration
options, you’ll see that there are also many that are specifically about how the class
maps to the database. If you prefer cleaner classes, you may not want the class to include
information about what table name it should map to in the database. One of the benefits
that many developers see in Code First is that it allows you to use Entity Framework
with classes that are persistence-ignorant. A class that includes database table names
or column data types is not at all ignorant of how it’s being persisted. The Fluent API
allows you to associate the configurations with the context rather than the classes
themselves. The classes remain clean. Let’s see how this works.

Following the Data Annotations and Fluent API Walkthroughs
Throughout the rest of this book, you will see many examples of how to configure
mappings using Data Annotations and how to configure them using the Fluent API.
Some mappings can only be achieved with the Fluent API.

If you are following along with the examples in Visual Studio, we highly recommend
that you do so in two separate solutions. Otherwise, when you code a Data Annotation
and then want to see the same effect in Fluent configurations, you’ll have to comment
out the Data Annotation. Then, when you move forward to another annotation, you’ll
have to comment out the Fluent configurations. It won’t take long for the jumble of
commented and uncommented code to cross wires and throw error messages that occur
because of overlapping or completely missing configurations.

Configuring Code First with the Fluent API | 31

This will mean some required copy/pasting when we have you add a new class or add
a new method to the solution. But it also means Data Annotations will only be applied
in one solution and Fluent configurations will be restricted to the other.

If you do follow this advice, there is one additional suggestion we have for you: Be sure
to use different namespace names for the BreakAwayContext class in the two solutions.
That way if one solution uses the namespace DataLayerForAnnotations, its database will
be DataLayerForAnnotations.BreakAwayContext. If the other uses DataLayerForFluent,
its database name will be DataLayerForFluent.BreakAwayContext. You will be happier
to have two separate databases and a clear understanding of which solution is impacting
which database.

When it’s time to build the model, the DbContext first looks at the classes and learns
what it can from them. At this point, the context is ready to reason out the model, but
there is an opportunity for the developer to interrupt the context and perform additional
configuration. This is thanks to the DbContext.OnModelCreating method, which is called
by the context just before the model is built. The method is virtual, so you can override
it and insert your own logic. This is where the Fluent API configurations go.

The signature of this method is as follows:

protected override void OnModelCreating(DbModelBuilder modelBuilder)

The DbModelBuilder that is provided to the OnModelCreating method is the class that
allows you to add configurations. The DbModelBuilder leverages generics and lambdas
so you’ll get plenty of strong typing to help you along while coding the configurations.

The basic pattern is to tell the DbModelBuilder which entity (class) you want to
configure:

modelBuilder.Entity<Destination>()

You can configure the class itself (e.g., what database table it maps to):

modelBuilder.Entity<Destination>().ToTable("a_table_name")

You can also configure properties of the class. If you want to configure a property, you
have to drill in further:

modelBuilder.Entity<Destination>()
 .Property(d => d.Description).HasMaxLength(500)

The code in Example 2-10 replicates all of the configuration that we previously per-
formed using the data annotations. OnModelCreating is a method of DbContext, so be
sure to put it in your BreakAwayContext class.

Example 2-10. Configuring with the Fluent API

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Destination>()
 .Property(d => d.Name).IsRequired();
 modelBuilder.Entity<Destination>()

32 | Chapter 2: Your First Look at Code First

 .Property(d => d.Description).HasMaxLength(500);
 modelBuilder.Entity<Destination>()
 .Property(d => d.Photo).HasColumnType("image");

 modelBuilder.Entity<Lodging>()
 .Property(l => l.Name).IsRequired().HasMaxLength(200);
}

Some of the configurations are composable. Notice that the configuration for Lodg
ing.Name combines IsRequired with HasMaxLength.

If you are wondering where HasMinLength is, there is no Fluent config-
uration for minimum length, as it is not a facet of a database column.

While it’s possible to use a combination of Data Annotations and the Fluent API, it
makes most sense to use one or the other to keep your code consistent. For this example,
since the configuration is now coded fluently, we’ve removed all of the Data Annota-
tions. In fact the Model project no longer needs the references to the System.Component
Model.DataAnnotations or EntityFramework assemblies.

When running the example again, Code First will compare the model to the EdmMeta
data table in the database and see that although we changed how we configured the
model, the end result is the same. Therefore it will not need to drop and create the
database. The same destination will get added to the database again, so you’ll end up
with matching records. You can see the duplicate data in Figure 2-4.

Figure 2-4. Duplicate data from InsertDestination being rerun without recreating the database

Organizing Fluent Configurations
If you have a lot of configuration to perform, the OnModelCreating method might quickly
become overwhelmed with code. You can group configuration by entity type within
individual EntityTypeConfiguration classes, and then tell the DbModelBuilder about
them in the OnModelCreating method. DbModelBuilder has a Configurations property to
which you can add these EntityTypeConfigurations.

Example 2-11 shows all of the configurations for the Destination class grouped into
the DestinationConfiguration class and the same for the Lodging configurations.

Configuring Code First with the Fluent API | 33

Example 2-11. Organizing configs into separate EntityTypeConfiguration classes

using System.Data.Entity.ModelConfiguration;
using Model;

public class DestinationConfiguration :
 EntityTypeConfiguration<Destination>
{
 public DestinationConfiguration()
 {
 Property(d => d.Name).IsRequired();
 Property(d => d.Description).HasMaxLength(500);
 Property(d => d.Photo).HasColumnType("image");
 }
}
public class LodgingConfiguration :
 EntityTypeConfiguration<Lodging>
{
 public LodgingConfiguration()
 {
 Property(l => l.Name).IsRequired().HasMaxLength(200);
 }
}

When these were inside the OnModelCreating method, they began with the DbModel
Builder, followed by the Entity method to identify which entity was being configured.
But in an EntityConfiguration class, that is already known, based on the fact that the
class is inheriting from EntityTypeConfiguration and the entity type is specified. There-
fore, rather than, for example, modelBuilder.Entity<Destination>().Property, you be-
gin with Property. Calling modelBuilder.Entity<Destination>() will actually create an
EntityTypeConfiguration<Destination> and return it to you, so whichever approach
you chose, you are accessing the same API.

And now in Example 2-12, you can see the revised OnModelCreating method that con-
sumes these classes.

Example 2-12. Adding the configuration classes in OnModelCreating

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Configurations.Add(new DestinationConfiguration());
 modelBuilder.Configurations.Add(new LodgingConfiguration());
}

34 | Chapter 2: Your First Look at Code First

As we move forward with fluent configuration examples in this book,
we’ll sometimes show the configuration as it would look inside an Enti
tyTypeConfiguration class and other times show the configuration as a
modelBuilder configuration. This is just for the sake of letting you con-
tinue to see both syntaxes. However, in your production applications,
it is more reasonable not to mix up the placement of your configuration.
You will most likely want to have a consistent pattern, whether that
means putting all of the configuration inside the OnModelCreating
method or always organizing them into EntityTypeConfiguration
classes. You’ll see that there are a few configuration operations that are
not type-specific and must go directly in the OnModelCreating method.

Summary
In this chapter you have seen the basics of working with Code First. You’ve learned
that Code First’s conventional behavior is quite intelligent, with the ability to guess
what your intention is based on what it discovers in your classes. When the convention
is not able to infer correctly, you can explicitly control how Code First builds a model
and database schema by applying configuration. You learned about configuring directly
in the class by applying attributes called Data Annotations. For those who prefer to
leave their domain classes alone, you learned how to use the alternative Fluent API to
perform configuration in the DbContext class.

Code First can automatically build a database for you. You’ve seen how to exert some
control over its response to changes you make in the model with respect to recreating
the database to match the new model.

Now that you’ve got the flavor of how Code First works, we’ll dig further into all of
these topics as we move through the rest of the chapters, expanding the model and
learning the ins and outs of modeling with Code First.

Summary | 35

CHAPTER 3

Using Conventions and Configurations
for Property Attributes

In Chapter 2, you got your first look at some of Code First’s conventions and how to
override Code First’s default behavior with configuration. You not only saw how to
configure with Data Annotations, but we also applied the same configuration using the
Fluent API so you could see a direct comparison.

In this and the next few chapters, we’ll walk you through a variety of areas where you
can configure your model. For each topic you’ll see what Code First does by convention
and then you’ll learn how to override the convention with Data Annotations and the
Fluent API. As you’ve learned, there are a number of configurations you can apply using
the Fluent API that are not available with Data Annotations. We’ll be sure to point out
those cases when it’s time to dig into them.

We’ll kick things off in this chapter by focusing on Code First conventions and con-
figuration that affect attributes of the properties and their related database columns.
You’ll learn about working with attributes such as the length of a string or byte array
and precision of numeric values. You’ll work with key properties and properties that
are involved with optimistic concurrency. Finally, you’ll learn about how Code First
detects when a property is in fact a complex type (aka value type), as well as how to help
when it’s unable to infer these complex types from your domain classes.

Working with Property Attributes in Code First
In Chapter 2, you saw some of Code First’s conventions and configuration options that
apply to string properties. We’ll provide a quick review here before moving on to new
attributes.

37

Length

Convention max (type specified by database)

Data Annotation MinLength(nn)

MaxLength(nn)

StringLength(nn)

Fluent Entity<T>.Property(t=>t.PropertyName).HasMaxLength(nn)

Length is used to describe the length of arrays. Currently that encompasses string and
Byte array.

Code First convention specifies that the length of string or byte array should be max.
The database provider then determines what type should be used. In SQL Server,
string becomes nvarchar(max) and byte array becomes varbinary(max).

You can override the default length, which will impact the length used in the database.
The maximum length of a property is also validated by Entity Framework at runtime
before pushing changes to the database. With Data Annotations, you can also configure
a MinLength attribute for an array. MinLength will get validated by Entity Framework’s
Validation API but will not impact the database.

The StringLength Alternative
MinLength and MaxLength are part of the EntityFramework.dll. There is also a String
Length annotation that is part of the System.ComponentModel.DataAnnotations.dll:

[StringLength(500,MinimumLength= 10)]
public string Description { get; set; }

Code First will recognize this annotation if you prefer to use it. If you are working with
ASP.NET MVC or Dynamic Data, they will recognize StringLength, but they will not
know about MinLength and MaxLength from the EntityFramework.dll.

When running against SQL Compact Edition, there is an additional
convention that replaces the default maximum array length with 4000
rather than Max.

Data Type

Convention The default column data type is determined by the database provider you are using. For SQL Server some
example default data types are:

String : nvarchar(max)

38 | Chapter 3: Using Conventions and Configurations for Property Attributes

Integer : int

Byte Array : varbinary(max)

Boolean : bit

Data Annotation Column(TypeName=“xxx”)

Fluent Entity<T>.Property(t=>t.PropertyName).HasColumnType (“xxx”)

In Chapter 2, you saw a number of examples of how Code First maps .NET types to
data types. The Destination and Lodging classes contain Integers, Strings, a Byte array,
and a Boolean. Code First lets the database provider select the appropriate data type to
use for each column. The application is using the SQL Server database provider, which
mapped those to nvarchar(max), int, varbinary(max), and bit, respectively.

It’s possible to map to a different database type using configurations as long as you
choose a database type that can be cast automatically. For example, if you try to set the
data type of a String to a database int, at runtime the DbModelBuilder will throw an
error saying Member Mapping specified is not valid, followed by details of the .NET
type and the database type you were attempting to coerce it to.

In Chapter 2, we changed the database type of the Photo property to be an image type
rather than a varbinary(max).

Nullability and the Required Configuration

Convention Key Properties : not null in database

Reference Types (String, arrays): null in the database

Value Types (all numeric types, DateTime, bool, char) : not null in database

Nullable<T> Value Types : null in database

Data Annotation Required

Fluent Entity<T>.Property(t=>t.PropertyName).IsRequired

Convention will ensure that .NET types that are non-nullable map to non-nullable
fields in the database. Additionally, any properties that are part of the key will map to
non-nullable database fields.

If you use .NET to specify a value type (such as int) to be nullable using the generic
Nullable<T>, it will map to a nullable database field.

You saw in Chapter 2 how to specify that a property is required using configuration.
You used the Required Data Annotation and then the IsRequired Fluent configuration
to force the Lodging.Name property to be required. Required properties are validated by
the Entity Framework at runtime before saving data to the database; an exception is
thrown if the property has not been populated.

Working with Property Attributes in Code First | 39

Another effect is that when you mark a property as Required, its database field will
become not null.

Mapping Keys
Convention Properties named Id

Properties named [TypeName] + Id

Data Annotation Key

Fluent Entity<T>.HasKey(t=>t.PropertyName)

Entity Framework requires every entity to have a key. This key is used by the context
to keep track of individual objects. Keys are unique and often generated by the database.
Code First convention makes these same presumptions.

Recall that when Code First created the database from the Destination and Lodging
classes, the DestinationId and LodgingId int fields in the resulting tables were marked
PK and not null. If you look further into the column properties for DestinationId and
LodgingId, you’ll see that these two fields are also Auto-Incremented Identity fields, as
shown in Figure 3-1. This, too, is by convention for integers that are primary keys.

Figure 3-1. An auto-incremented identity key in the database

Most commonly, primary keys in the database are either int or GUID types, although
any primitive type can be used as a key property. A primary key in the database can be
composed from multiple fields in the table, and, similarly, an entity’s key can be com-
posed of multiple properties in a particular class. At the end of this section, you’ll see
how to configure composite keys.

Code First Convention Response to Unconventional Key Properties
In the case of our two classes, the properties that are meant to be keys happen to meet
Code First convention, so everything worked out nicely. What if they did not meet
convention?

Let’s add a new class to the model, Trip, shown in Example 3-1. The Trip class does
not have any properties that meet the convention for an entity key, but our intent is
that the Identifier property be used as the key.

40 | Chapter 3: Using Conventions and Configurations for Property Attributes

Example 3-1. The Trip class without an obvious key property

public class Trip
{
 public Guid Identifier { get; set; }
 public DateTime StartDate { get; set; }
 public DateTime EndDate { get; set; }
 public decimal CostUSD { get; set; }
}

Along with the new class, we’ll need a DbSet<Trip> added into BreakAwayContext:

public DbSet<Trip> Trips { get; set; }

When running the application again, an exception will be thrown as the DbModel
Builder attempts to construct a model from the classes:

One or more validation errors were detected during model generation: Sys-
tem.Data.Edm.EdmEntityType: :

EntityType ‘Trip’ has no key defined. Define the key for this EntityType.

Because there was no key property that met the pattern expected by convention (in this
case either Id or TripId), Code First could not go forward with building the model. To
be clear, the type (Guid) has nothing to do with this problem. As stated earlier, you can
use any primitive type for a key.

Configuring the Key with Data Annotations
The Data Annotation for identifying a key is simply Key. Key exists in the System.Com-
ponentModel.DataAnnotations.dll because it has been added to .NET 4 for use by other
APIs (for example, ASP.NET MVC uses Key). If your project didn’t already contain a
reference to this assembly, you’d need to add it. The EntityFramework.dll reference is
not required for this particular annotation, although you might be using others from
that assembly:

[Key]
public Guid Identifier { get; set; }

Don’t forget that you’ll need to add a using or Imports statement for the
System.ComponentModel.DataAnnotations namespace at the top of this
class.

Using HasKey to Configure a Key Property in the Fluent API
Configuring a Key property with the Fluent API is a bit different than the few Fluent
configurations you used in Chapter 2. Rather than configuring a particular property,
this configuration is added directly to the Entity. To configure a key, you use the
HasKey method, as shown in Example 3-2.

Mapping Keys | 41

Example 3-2. The HasKey Fluent configuration in OnModelCreating

modelBuilder.Entity<Trip>().HasKey(t => t.Identifier)

If you are encapsulating the configurations within EntityTypeConfiguration classes, as
you learned about in Chapter 2, you begin with HasKey or this.HasKey (Example 3-3).

Example 3-3. HasKey inside of an EntityTypeConfiguration class

HasKey(t => t.Identifier)

Configuring Database-Generated Properties
Convention Integer keys: Identity

Data Annotation DatabaseGenerated(DatabaseGeneratedOption)

Fluent Entity<T>.Property(t=>t.PropertyName)

.HasDatabaseGeneratedOption(DatabaseGeneratedOption)

In the previous section, you learned that by default, Code First will flag int key prop-
erties so that Entity Framework is aware that the database will generate the values.
What about the Guid key that we just created? Guids require special handling, which
involves the DatabaseGenerated configuration.

To demonstrate, we’ll add a new method, InsertTrip (Example 3-4) to the console
application and call it from the Main module.

Example 3-4. The InsertTrip method

private static void InsertTrip()
{
 var trip = new Trip
 {
 CostUSD = 800,
 StartDate = new DateTime(2011, 9, 1),
 EndDate = new DateTime(2011, 9, 14)
 };
 using (var context = new BreakAwayContext())
 {
 context.Trips.Add(trip);
 context.SaveChanges();
 }
}

Running the application will cause the database to be dropped and recreated with the
new Trips table shown in Figure 3-2.

Identifier is a primary key, unique identifier, not null column.

42 | Chapter 3: Using Conventions and Configurations for Property Attributes

Recall that earlier in the chapter, you learned that value types are re-
quired by convention. You can see the effect of this. The StartDate,
EndDate, and CostUSD properties of the Trip class are all value types and
therefore, by default, not null in the Trips table in the database.

However, an empty Guid value got entered into the new row. As you can see in
Figure 3-3, it’s filled with 0s.

Figure 3-3. Identifier without an actual Guid value

Neither the database nor Entity Framework is aware that we’d like one of them to
generate a new Guid for new Trips. With no logic to generate a new Guid for this prop-
erty, it inserted the Guid default value—the zeros.

If you attempt to insert another record with the same value in Identifier, the database
will throw an error because it expects a unique value.

It is possible to configure the database to automatically generate a new Guid, by setting
the default value to newid(). Whether you do this manually in the database or expect
Code First to inject this logic, you must let Code First know that the database will be
handling the Guid.

The solution is to let Code First know that the database will generate this key using
another annotation: DatabaseGenerated. This configuration has three options—None,
Identity, and Computed. We want the identifier to be treated as an Identity key by the
database, forcing the database to generate the identity key values for new rows, just as
it does by default with keys that are integers.

Configuring Database-Generated Options with Data Annotations
Modify the class to tell Code First that the database will generate an identity key on
your behalf:

[Key,DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public Guid Identifier { get; set; }

Figure 3-2. Identifier primary key in the Trips table

Configuring Database-Generated Properties | 43

In the case where the Key field is an Integer, Code First defaults to
DatabaseGeneratedOption.Identity. With a Guid, you need to explicitly
configure this. These are the only types that you can configure to be
Identity when Code First is generating the database. If you are mapping
to an existing database, any column where the database generates a
value on insert can be marked as Identity.

After running the application again, Figure 3-4 shows the newly generated Identifier.

Figure 3-4. Identifier Guid populated by the database after an EF insert

You might be interested in seeing the SQL, shown in Example 3-5, sent to the database
for the INSERT where Entity Framework expects the database to generate the Guid value
for the Identifier property.

Example 3-5. SQL for inserting a new Trip

declare @generated_keys table([Identifier] uniqueidentifier)
insert [dbo].[Trips]([StartDate], [EndDate], [CostUSD])
output inserted.[Identifier] into @generated_keys
values (@0, @1, @2)
select t.[Identifier]
from @generated_keys as g
join [dbo].[Trips] as t on g.[Identifier] = t.[Identifier]
where @@ROWCOUNT > 0',
N'@0 datetime2(7),@1 datetime2(7),@2 decimal(18,2)',
@0='2011-09-01 00:00:00',@1='2011-09-14 00:00:00',@2=800.00

There are two other enums for DatabaseGeneratedOption: None and Computed. Following
is an example of where None is useful.

Example 3-6 shows another new class for our model, Person. The SocialSecurityNum
ber property has been configured as the Key property for the class.

Example 3-6. Person class with unconventional key property

using System.ComponentModel.DataAnnotations;

namespace Model
{
 public class Person
 {
 [Key]
 public int SocialSecurityNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

44 | Chapter 3: Using Conventions and Configurations for Property Attributes

 }
}

Remember to add a DbSet<Person> to BreakAwayContext:

public DbSet<Person> People { get; set; }

And finally, a new method, InsertPerson (shown in Example 3-7) is added to the con-
sole app, along with a call to this from the Main method, which inserts a new person
into the database.

Example 3-7. InsertPerson method

private static void InsertPerson()
{
 var person = new Person
 {
 FirstName = "Rowan",
 LastName = "Miller",
 SocialSecurityNumber = 12345678
 };
 using (var context = new BreakAwayContext())
 {
 context.People.Add(person);
 context.SaveChanges();
 }
}

After running the application again, let’s take a look at the new row in the database,
shown in Figure 3-5.

Figure 3-5. SocialSecurityNumber incorrectly generated

The SocialSecurityNumber is 1, not 12345678. Why? Because Code First followed its
convention that a Key that is an integer is presumed to be a database identity field and
therefore, Entity Framework did not provide the SocialSecurityNumber value in the
INSERT command. It let the database generate the value. In fact, if you look at the
SocialSecurityNumber value of the person instance after SaveChanges is called, it has
been updated to reflect the database-generated value, 1.

To fix this, we need to add some configuration to override the Identity convention,
because in this case DatabaseGeneratedOption.Identity is wrong. Instead we want None:

[Key, DatabaseGenerated(DatabaseGeneratedOption.None)]
public int SocialSecurityNumber { get; set; }

Then, running the app again, you can see in Figure 3-6 that the value provided by the
application was inserted into the database as expected.

Configuring Database-Generated Properties | 45

DatabaseGeneratedOption.Computed is used to specify a mapping to a database field that
is computed. For example, if there was a FullName field in the People table with a formula
that combined the values of FirstName and LastName, you would want to let Entity
Framework know so that it would not attempt to save data into that column.

You cannot specify the formula to use for a computed column in Code First and, there-
fore, you can only use Computed when mapping to an existing database. Otherwise, the
database provider will throw a runtime exception when it encounters the Computed
configuration while trying to create the database.

Configuring Database-Generated Options with the Fluent API
The DatabaseGeneratedOption can be configured on a particular property. You can ap-
pend this configuration to the HasKey you applied earlier, for example:

modelBuilder.Entity<Trip>()
 .HasKey(t => t.Identifier)
 .Property(t => t.Identifier)
 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);

Or you can create a separate statement:

modelBuilder.Entity<Person>()
 .HasKey(p => t.SocialSecurityNumber);
modelBuilder.Entity<Person>()
 .Property(p => p.SocialSecurityNumber)
 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.None);

You’ll notice that the DatabaseGeneratedOption enums are within the
System.ComponentModel.DataAnnotations namespace in EntityFramework.dll. You’ll
also need to have a using statement for this namespace at the top of the context class file.

Configuring TimeStamp/RowVersion Fields for Optimistic
Concurrency

Convention None

Data Annotation TimeStamp

Fluent Entity<T>.Property(t=>t.PropertyName).IsRowVersion()

Entity Framework has supported optimistic concurrency since the first version. Chapter
23 of the second edition of Programming Entity Framework covers optimistic

Figure 3-6. SocialSecurityNumber value inserted by EF

46 | Chapter 3: Using Conventions and Configurations for Property Attributes

http://shop.oreilly.com/product/9780596807252.do

concurrency in depth. Here we’ll show you how to configure your classes to map to
RowVersion (also known as TimeStamp) fields and at the same time instruct Entity Frame-
work to use these fields for concurrency checking when performing updates or deletes
on the database.

With Code First you can flag a field to be used in optimistic concurrency checks re-
gardless of what type it maps to in the database, or you can take it a step further and
specify that the concurrency field maps to a TimeStamp field.

Only one property in a class can be configured as a TimeStamp property.

RowVersion and TimeStamp are two terms for the same data type. SQL
Server has always used TimeStamp, while many other databases use the
more aptly named RowVersion. As of SQL Server 2008, the timestamp
data type was changed to be called rowversion, but most of the tools
(e.g., SQL Server Management Studio, Visual Studio) continue to dis-
play this as timestamp.

Code First Convention and TimeStamp fields
By default, Code First does not recognize TimeStamp properties, so there is no conven-
tional behavior. You must configure properties to get the behavior.

Using Data Annotations to Configure TimeStamp
Not just any property can be mapped to a timestamp database type. You must use a
byte array. With that, the Data Annotation is simple: TimeStamp.

Add the following property to both the Trip and Person classes:

[Timestamp]
public byte[] RowVersion { get; set; }

Then run the console app again, ensuring that both the InsertTrip and InsertPerson
methods are called from the Main method.

In the database you’ll see that the new RowVersion column (Figure 3-7) has been added
to both tables and its type is a non-nullable timestamp.

The database will automatically create a new value for these fields any time the row is
modified. But TimeStamp doesn’t only affect the database mapping. It also causes the
properties to be seen by Entity Framework as concurrency tokens. If you have worked
with an EDMX file, this is the equivalent of setting the property’s ConcurrencyMode to
Fixed. Any time Entity Framework performs an insert, update, or delete to the database,
it will take the concurrency field into account, returning the updated database value
on every INSERT and UPDATE and passing in the original value from the property with
every UPDATE and DELETE.

Configuring TimeStamp/RowVersion Fields for Optimistic Concurrency | 47

For example, Example 3-8 shows the SQL that was sent to the database when Save
Changes was called in the InsertPerson method:

Example 3-8. INSERT combined with SELECT to return new RowVersion

exec sp_executesql N
'insert [dbo].[People]([SocialSecurityNumber], [FirstName], [LastName])
values (@0, @1, @2)
select [RowVersion]
from [dbo].[People]
where @@ROWCOUNT > 0 and [SocialSecurityNumber] = @0',
N'@0 int,@1 nvarchar(max) ,@2 nvarchar(max) ',@0=12345678,@1=N'Rowan',@2=N'Miller'

Not only does Entity Framework tell the database to perform the INSERT, but it also
requests the RowVersion value back. EF will always do this with a property that is flagged
for concurrency, even if it is not a timestamp value.

Even more critical are the UPDATE and DELETE commands, because here is where the
concurrency check occurs.

We’ve added a new method to the app, UpdatePerson, shown in Example 3-9.

Example 3-9. The UpdateTrip method

private static void UpdateTrip()
{
 using (var context = new BreakAwayContext())
 {
 var trip = context.Trips.FirstOrDefault();
 trip.CostUSD = 750;
 context.SaveChanges();
 }
}

Example 3-10 shows the SQL executed when SaveChanges is called in the UpdateTrip
method.

Figure 3-7. People and Trips with RowVersion timestamp fields

48 | Chapter 3: Using Conventions and Configurations for Property Attributes

Example 3-10. UPDATE that filters on original RowVersion and returns new RowVersion

exec sp_executesql N'update [dbo].[Trips]
set [CostUSD] = @0
where (([Identifier] = @1) and ([RowVersion] = @2))
select [RowVersion]
from [dbo].[Trips]
where @@ROWCOUNT > 0 and [Identifier] = @1',
N'@0 decimal(18,2),@1 uniqueidentifier,@2 binary(8)',
@0=750.00,@1='D1086EFE-5C5B-405D-9F09-688981BB5B41',@2=0x0000000000001773

Notice the where predicate used to locate the trip being updated—it filters on the
Identifier and the RowVersion. If someone else has modified the trip since it was re-
trieved by our method, the RowVersion will have changed and there will be no row that
matches the filter. The UPDATE will fail and Entity Framework will throw an Optimistic
ConcurrencyException.

Configuring TimeStamp/RowVersion with Fluent API
While the Data Annotation uses the term TimeStamp, the Fluent configuration uses the
term RowVersion. To specify a RowVersion property, append the IsRowVersion() method
to the Property.

With DbModelBuilder, you configure the Property like this:

modelBuilder.Entity<Person>()
 .Property(p => p.RowVersion).IsRowVersion();

Inside an EntityTypeConfiguration<T> class the configuration looks like:

Property(p => p.RowVersion).IsRowVersion();

Configuring Non-Timestamp Fields for Concurrency
Convention None

Data Annotation ConcurrencyCheck

Fluent Entity<T>.Property(t=>t.PropertyName).IsConcurrencyToken()

A less common way to provide concurrency checking involves fields that are not row
versioning types. For example, some databases do not even have a row version type.
So though you won’t be able to specifically configure a row version property, you may
still want the concurrency checking on one or more database fields.

The Person class currently uses the property SocialSecurityNumber as its identity key.
Perhaps the class used a PersonId property for its identity key and SocialSecurityNum
ber was simply an integer property not used for identity tracking. In that case, you
might want to have a way to avoid conflicts in case the SocialSecurityNumber is changed,
because in the United States (not taking illegal activity into account) a social security

Configuring Non-Timestamp Fields for Concurrency | 49

number uniquely identifies a citizen. Therefore, if a user is editing a Person record,
perhaps changing the spelling of the FirstName, but in the meantime, someone else
changes that person’s Social Security Number, the user changing the FirstName should
be alerted of a conflict when she attempts to save her changes. Flagging the SocialSe
curityNumber property as a concurrency checking field will provide this check.

Configuring for Optimistic Concurrency with Data Annotations
Example 3-11 shows the modified class with the SocialSecurityNumber configured with
the ConcurrencyCheck annotation.

Example 3-11. Modified Person class with a ConcurrencyCheck

public class Person
{
 public int PersonId { get; set; }
 [ConcurrencyCheck]
 public int SocialSecurityNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Example 3-12 shows a new method to force an update to a Person. If you call this
method, you will need to call InsertPerson first to ensure there is an existing Person in
the database.

Example 3-12. The UpdatePerson method

private static void UpdatePerson()
{
 using (var context = new BreakAwayContext())
 {
 var person = context.People.FirstOrDefault();
 person.FirstName = "Rowena";
 context.SaveChanges();
 }
}

Just as you saw with the Trip.RowVersion field in Example 3-10, when an update or
delete is sent to the database, the SQL (shown in Example 3-13) looks for the row with
not only the matching key (PersonId) but also with the concurrency field (SocialSecur
ityNumber) that matches the originally retrieved value.

Example 3-13. SQL providing concurrency checking on SocialSecurityNumber

exec sp_executesql N'update [dbo].[People]
set [FirstName] = @0
where (([PersonId] = @1) and ([SocialSecurityNumber] = @2))
',N'@0 nvarchar(max) ,@1 int,@2 int',@0=N'Rowena',@1=1,@2=12345678

50 | Chapter 3: Using Conventions and Configurations for Property Attributes

If no match is found (meaning that the SocialSecurityNumber has changed in the da-
tabase), the update will fail and an OptimisticConcurrencyException will be thrown.

Configuring for Optimistic Concurrency with Fluent API
The Fluent API method for concurrency is IsConcurrencyToken and gets applied to a
Property as shown in Example 3-14.

Example 3-14. Configuring concurrency checking fluently

public class PersonConfiguration : EntityTypeConfiguration<Person>
{
 public PersonConfiguration()
 {
 Property(p => p.SocialSecurityNumber).IsConcurrencyToken();
 }
}

We’ve decided it’s time for Person to have its own configuration class, so the configu-
ration is inside this new class. Don’t forget to add the PersonConfiguration to the
modelBuilder.Configurations collection in your OnModelCreating method.

Mapping to Non-Unicode Database Types
Convention All strings map to Unicode-encoded database types

Data Annotation unavailable

Fluent Entity<T>.Property(t=>t.PropertyName).IsUnicode(boolean)

By default, Code First convention presumes that all strings map to Unicode string types
in a database.

There is no Data Annotation for mapping Unicode.

See Dane Morgridge’s blog post “EF4 Code First Control Unicode and
Decimal Precision, Scale with Attributes,” which discusses getting
around this limitation.

Mapping to Non-Unicode Database Types | 51

http://geekswithblogs.net/danemorgridge/archive/2010/12/20/ef4-code-first-control-unicode-and-decimal-precision-scale-with.aspx
http://geekswithblogs.net/danemorgridge/archive/2010/12/20/ef4-code-first-control-unicode-and-decimal-precision-scale-with.aspx

You can specify whether or not a string maps to a Unicode string type in the database
with the IsUnicode method. The following code added to the LodgingConfiguration
tells Code First to not map the Owner property as a Unicode encoded type:

Property(l => l.Owner).IsUnicode(false);

Affecting the Precision and Scale of Decimals
Convention Decimals are 18, 2

Data Annotation unavailable

Fluent Entity<T>.Property(t=>t.PropertyName).HasPrecision(n,n)

Precision (the number of digits in a number) and Scale (the number of digits to the right
of the decimal point in a number) are property attributes that can be configured with
the Fluent API, though not with Data Annotations.

To see how it works, we’ll add a new decimal property to the Lodging class: MilesFrom
NearestAirport:

public decimal MilesFromNearestAirport { get; set; }

Convention for Precision and Scale
By default, Decimal types have a Precision of 18 and a Scale of 2, as shown in Figure 3-8.

Figure 3-8. Decimal property default Precision and Scale

Data Annotations for Precision and Scale
Precision and Scale cannot be configured with Data Annotations.

Fluent Configuration for Precision and Scale
With the Fluent API, you configure both the precision and scale with a single method,
HasPrecision. Even if one of the defaults is correct, you need to include both:

Property(l => l.MilesFromNearestAirport).HasPrecision(8, 1);

52 | Chapter 3: Using Conventions and Configurations for Property Attributes

As a result, Figure 3-9 shows the MilesFromNearestAirport database column with the
specified precision.

Figure 3-9. MilesFromNearestAirport with its configured precision

Working with Complex Types in Code First
Entity Framework has supported using complex types since the first version. Complex
types are also known as value types and can be used to add additional properties to
another class. What differentiates complex types from entity types is that a complex
type does not have its own key. It is dependent on its “host” type for change tracking
and persistence.

A type that has no key property and is used as a property in one or more mapped types
will be recognized by Code First convention as a complex type. Code First will presume
that the properties of the complex type are contained in the table to which the host
type maps.

What if the People table in an existing database included properties to represent a
person’s address? A class that mapped directly to that table might look like the Person
class in Example 3-15.

Example 3-15. Individual properties representing an address in Person

public class Person
{
 public int PersonId { get; set; }
 public int SocialSecurityNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string StreetAddress { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

But in your model you prefer to have Address as a separate class and be simply a value
type property of Person, as shown in Example 3-16.

Working with Complex Types in Code First | 53

Example 3-16. Address type as a property of Person

public class Address
{
 public int AddressId { get; set; }
 public string StreetAddress { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}
public class Person
{
 public int PersonId { get; set; }
 public int SocialSecurityNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Address Address { get; set; }
}

By convention this setup would result in a separate table, Addresses, for the Address
data. But the goal is to have the properties of Address be fields of the People table.

You can achieve this if Address is a complex type. And if you have other tables that also
contain these same properties, you can use the Address complex type in their classes as
well.

Remember that by definition, a complex type does not have a key
property.

Defining Complex Types by Convention
The conventional way to turn the Address class into a complex type is to remove the
AddressId property. Let’s comment that out for now:

// public int AddressId { get; set; }

Before rerunning the application, you’ll need to consider the InsertPerson method
listed in Example 3-7 before Address even existed. Because the Address property is not
handled and will therefore be null, it will cause a DbUpdateException to be thrown by
SaveChanges. Rather than worry about that in any code that inserts a new Person, you
can instantiate a new Address in the constructor of the Person class (Example 3-17).

Example 3-17. Instantiating the Address property in the constructor of the Person class

public class Person
{
 public Person()
 {
 Address = new Address();

54 | Chapter 3: Using Conventions and Configurations for Property Attributes

 }
. . .

In addition to the rule that a complex type does not have a key, Code First has two
other rules that must be satisfied for detecting complex types. The complex type can
only contain primitive properties and, when used in another class, it can only be used
as a non-collection type. In other words, if you want a property in the Person class that
is a List<Address> or some other type that results in a collection of Address types,
Address cannot be a complex type.

Conventional Complex Type Rules
1. Complex types have no key property.

2. Complex types can only contain primitive properties.

3. When used as a property in another class, the property must represent a single
instance. It cannot be a collection type.

After running the application, Figure 3-10 shows that the Address fields are part of the
People table. The Code First convention recognized that Address was meant to be a
complex type and responded in the new model that it generated.

Figure 3-10. Properties of the Address complex type as fields in the People table

Working with Complex Types in Code First | 55

Notice how the Address fields are named: HostPropertyName_Property
Name, for example. This is the Code First convention. In Chapter 5, you’ll
learn how to configure column names for complex type properties.

Configuring Unconventional Complex Types
What if your intended complex type, Address, did not follow convention? Perhaps you
want to have an AddressId property even though you know that an individual
Address instance will not be change-tracked by Entity Framework?.

If we add the AddressId property back into the Address class and rerun the application,
Code First convention will not be able to infer your intent and will go back to creating
a separate Addresses table that has a PK/FK relationship to the People table.

You can fix this by explicitly configuring the complex type.

Specifying complex types with Data Annotations

There is a ComplexType Data Annotation that you can apply to a class.

Example 3-18. Address with AddressId reinstated and a ComplexType configuration

[ComplexType]
public class Address
{
 public int AddressId { get; set; }
 public string StreetAddress { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

With this in place, when you run the application again, the model will be rebuilt and
the resulting database schema will once again match Figure 3-10, with the addition of
a new int field called Address_AddressId.

Specifying complex types with the Fluent API

To instruct Code First that a type is a complex type using the Fluent API, you must use
the DbModelBuilder.ComplexType method.

modelBuilder.ComplexType<Address>();

Example 3-19 shows the modified OnModelCreating method.

Example 3-19. Specifying a complex type fluently

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Configurations.Add(new DestinationConfiguration());
 modelBuilder.Configurations.Add(new LodgingConfiguration());

56 | Chapter 3: Using Conventions and Configurations for Property Attributes

 modelBuilder.Configurations.Add(new PersonConfiguration());
 modelBuilder.Configurations.Add(new TripConfiguration());
 modelBuilder.ComplexType<Address>();
}

This modelBuilder configuration is intentionally positioned after the
code for adding configurations. In-line configurations, those which are
called directly against the modelBuilder instance inside the OnModelCreat
ing method, must come after any code that adds configuration classes
to the Configurations collection.

Working with More Complicated Complex Types
Recall that one of the conventions for complex types is that the type can only contain
primitive types. If your complex type doesn’t satisfy this rule, you will have to configure
the type. Here is an example.

We’ve created two new types, PersonalInfo and Measurement, shown in Exam-
ple 3-20. PersonalInfo contains two Measurement properties. Notice there is no identity
property in either type. Our intent is for both PersonalInfo and Measurement to be
complex types. The PersonalInfo complex type makes use of the Measurement complex
type; this is known as a nested complex type.

Example 3-20. New classes: PersonalInfo and Measurement

public class PersonalInfo
{
 public Measurement Weight { get; set; }
 public Measurement Height { get; set; }
 public string DietryRestrictions { get; set; }
}

public class Measurement
{
 public decimal Reading { get; set; }
 public string Units { get; set; }
}

We then add the new PersonalInfo property into the Person class:

public PersonalInfo Info { get; set; }

We'll also need to add some logic to the constructor of Person to instantiate these new
properties:

public Person()
{
 Address = new Address();
 Info = new PersonalInfo
 {
 Weight = new Measurement(),
 Height = new Measurement()

Working with Complex Types in Code First | 57

 };
}

If you go ahead and run the application, the model builder will throw an exception:

EntityType ‘PersonalInfo’ has no key defined. Define the key for this EntityType.

Code First does not recognize that we want PersonalInfo to be a complex type. The
reason is that we broke one of the rules: the complex type must contain only primitive
types. There are two Measurement properties in PersonalInfo. Because those are not
primitive types, convention did not see PersonalInfo as a complex type.

If you add the ComplexType configuration to the PersonalInfo class, Code First will be
able to properly build the model. You don’t need to configure the Measurement class
since it follows convention for Complex Types.

Configuring Properties of Complex Types
Code First will treat complex type properties in the same way as any other type and
you can configure them with Data Annotations or fluently.

Configuring Complex Types with Data Annotations
Recall that Code First convention named them using the pattern ComplexTypeName_Prop
ertyName (see Figure 3-10). You can apply Data Annotations to complex types just as
you use them for the other classes. Example 3-21 uses an annotation you are already
familiar with, MaxLength, to affect a property in the Address type.

Example 3-21. Configuring the StreetAddress property of the Address

[ComplexType]
public class Address
{
 public int AddressId { get; set; }
 [MaxLength(150)]
 public string StreetAddress { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

Figure 3-11 shows the People table of the database with the modified Address_Stree
tAddress field. You can also see the Address_AddressId field that came from reinstating
AddressId and the fields added as a result of the PersonalInfo complex type and its
Measurement subtype.

58 | Chapter 3: Using Conventions and Configurations for Property Attributes

Figure 3-11. Address_StreetAddress field after MaxLength(150) configuration applied

In Chapter 5, we’ll revisit the column names of this complex type and
fix them up when you learn about configuring column names.

Configuring Complex Type Properties with the Fluent API
There are two ways to configure properties of complex types with the Fluent API. You
can start with the host entity or you can start with the complex type itself. According
to the Entity Framework team, the latter is the preferred way to configure property
attributes. MaxLength falls into this category. When we get to the examples of config-
uring column names in Chapter 5, we’ll configure from the Person entity since the goal
will be to impact how the Person mapping handles the naming of its fields.

The model builder recognizes the difference between complex types and entity types.

If you want to configure directly from the DbModelBuilder, you must begin with its
Complex<T> method, instead of the Entity<T> method you’ve used so far. Exam-
ple 3-22 demonstrates configuring a Complex Type directly from the modelBuilder
instance in OnCreatingModel.

Example 3-22. Configuring a property of the Address complex type

modelBuilder.ComplexType<Address>()
 .Property(p => p.StreetAddress).HasMaxLength(150);

If you prefer to encapsulate your configurations, you’ll need to inherit from ComplexTy
peConfiguration class rather than EntityTypeConfiguration, as shown in Example 3-23.

Configuring Properties of Complex Types | 59

Example 3-23. Configuring the length of StreetAddress in the Address ComplexType

public class AddressConfiguration :
 ComplexTypeConfiguration<Address>
{
 public AddressConfiguration()
 {
 Property(a => a.StreetAddress).HasMaxLength(150);
 }
}

You’ll also need to be sure that the you add this AddressConfiguration to the model:

modelBuilder.Configurations.Add(new AddressConfiguration());

Summary
In this chapter you’ve seen many of the presumptions that Code First makes about
what the model should look like based on what it sees in your classes. Strings become
nvarchar(max) in SQL Server. Numbers acquire a precision that lets them have up to
18 digits (which will enable you to keep track of values in the quadrillions!) and
2 decimal places. While these and other defaults may be useful for very generic sce-
narios, you do have the ability to apply configurations to specify the sizes you prefer.
You’ve also learned how to ensure that Entity Framework is aware that values should
be treated as timestamps or at least concurrency fields. You’ve also worked with prop-
erties that point to complex types—types that do not have keys and can only be tracked
when they are a property of another class that is tracked.

Code First conventions take care of a good portion of common scenarios, but it is the
ability to override these conventions with your own configurations that affords you
great control over how your classes are managed by Entity Framework.

60 | Chapter 3: Using Conventions and Configurations for Property Attributes

CHAPTER 4

Using Convention and Configuration
for Relationships

In Chapter 3, you learned about convention and configuration that affect attributes of
properties and the effects that these have on the database. In this chapter, the focus
will be on convention and configuration that affects the relationships between classes.
This includes how classes relate to one another in memory, as well as the corresponding
foreign key constraints in the database. You’ll learn about controlling multiplicity,
whether or not a relationship is required, and working with cascade deletes. You’ll see
the conventional behavior and learn how to control the relationships using Data An-
notations and the Fluent API.

You’ll start seeing more configuration that can be performed with the Fluent API but
cannot be done through Data Annotations. Recall, however, that if you really love to
apply configuration with attributes, the note in “Mapping to Non-Unicode Database
Types” on page 51 points to a blog post that demonstrates how to create attributes to
perform configuration that is only available through the Fluent API.

You’ve already seen some of the relationship conventions in action throughout the
earlier chapters of this book. You built a Destination class (Example 4-1) that has a
Lodgings property which is a List<Lodging>.

Example 4-1. The Destination class with a property that points to the Lodging class

public class Destination
{
 public int DestinationId { get; set; }
 public string Name { get; set; }
 public string Country { get; set; }
 public string Description { get; set; }
 public byte[] Photo { get; set; }

 public List<Lodging> Lodgings { get; set; }
}

61

On the other end of the relationship, the Lodging class (Example 4-2) has a Destina
tion property that represents a single Destination instance.

Example 4-2. The Lodging class with its reference back to the Destination class

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 public Destination Destination { get; set; }
}

Code First sees that you have defined both a reference and a collection navigation
property, so by convention it will configure this as a one-to-many relationship. Based
on this, Code First can also determine that Lodging is the dependent end of the rela-
tionship (the end with the foreign key) and Destination is the principal end (the end
with the primary key). It therefore knows that the table Lodging maps to will need a
foreign key pointing back to the primary key of Destination. You saw this played out
in Chapter 2, where it created the Destination_DestinationId foreign key field in the
Lodgings table.

In the rest of this chapter, you will get an understanding of the full set of conventions
that Code First has around relationships and how to override those conventions when
they don’t align with your intent.

Relationships in Your Application Logic
Once Code First has worked out the model and its relationships, Entity Framework
will treat those relationships just the same as it does with POCOs that are mapped using
an EDMX file. All of the rules you learned about working with POCO objects through-
out Programming Entity Framework still apply. For example, if you have a foreign key
property and a navigation property, Entity Framework will keep them in sync. If you
have bidirectional relationships, Entity Framework will keep them in sync as well. At
what point Entity Framework synchronizes the values is determined by whether you
are leveraging dynamic proxies. Without the proxies, Entity Framework relies on an
implicit or explicit call to DetectChanges. With the proxies, the synchronization hap-
pens in response to the property value being changed. Typically you do not need to
worry about calling DetectChanges because DbContext will take care of calling it for you
when you call any of its methods that rely on things being in sync. The Entity Frame-
work team recommends that you only use dynamic proxies if you find a need to; typ-
ically this would be around performance tuning. POCO classes without proxies are
usually simpler to interact with, as you don’t need to be aware of the additional be-
haviors and nuances that are associated with proxies.

62 | Chapter 4: Using Convention and Configuration for Relationships

http://shop.oreilly.com/product/9780596807252.do

Working with Multiplicity
As you’ve seen, Code First will create relationships when it sees navigation properties
and, optionally, foreign key properties. Details about those navigation properties and
foreign keys will help the conventions determine multiplicity of each end. We’ll focus
on foreign keys a little later in this chapter; for now, let’s take a look at relationships
where there is no foreign key property defined in your class.

Code First applies a set of rules to work out the multiplicity of each relationship. The
rules use the navigation properties you defined in your classes to determine multiplicity.
There can either be a pair of navigation properties that point to each other (bidirectional
relationship) or a single navigation property (unidirectional relationship):

• If your classes contain a reference and a collection navigation property, Code First
assumes a one-to-many relationship.

• Code First will also assume a one-to-many relationship if your classes include a
navigation property on only one side of the relationship (i.e., either the collection
or the reference, but not both).

• If your classes include two collection properties, Code First will use a many-to-
many relationship by default.

• If your classes include two reference properties, Code First will assume a one-to-
one relationship.

• In the case of one-to-one relationships, you will need to provide some additional
information so that Code First knows which entity is the principal and which is
the dependent. You’ll see this in action a little later on in this chapter, in the
“Working with One-to-One Relationships” on page 84 section. If no foreign key
property is defined in your classes, Code First will assume the relationship is op-
tional (i.e., the one end of the relationship is actually zero-or-one as opposed to
exactly-one).

• In the “Working with Foreign Keys” on page 66 section of this chapter, you will
see that when you define a foreign key property in your classes, Code First uses the
nullability of that property to determine if the relationship is required or optional.

Looking back at the Lodging to Destination relationship that we just revisited, you can
see these rules in action. Having a collection and a reference property meant that Code
First assumed it was a one-to-many relationship. We can also see that, by convention,
Code First has configured it as an optional relationship. But in our scenario it really
doesn’t make sense to have a Lodging that doesn’t belong to a Destination. So let’s take
a look at how we can make this a required relationship.

Configuring Multiplicity with Data Annotations
Most of the multiplicity configuration needs to be done using the Fluent API. But we
can use Data Annotations to specify that a relationship is required. This is as simple as

Working with Multiplicity | 63

placing the Required annotation on the reference property that you want to be required.
Modify Lodging by adding the Required annotation to the Destination property
(Example 4-3).

Example 4-3. Required annotation added to Destination property

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 [Required]
 public Destination Destination { get; set; }
}

If you were to run the application so that the database gets recreated with the change
you just made, you would see that the Destination_DestinationId column in the Lodg
ings table no longer allows null values (Figure 4-1). This is because the relationship is
now required.

Figure 4-1. Lodgings table with required foreign key

Configuring Multiplicity with the Fluent API
Configuring relationships with the Fluent API can look confusing if you haven’t taken
the time to understand the fundamental ideas. We’ll lead you down the path to en-
lightenment.

When fixing relationships with Data Annotations, you apply annotations directly to
the navigation properties. It’s very different with the Fluent API, where you are literally
configuring the relationship, not a property. In order to do so, you must first identify
the relationship. Sometimes it’s enough to mention one end, but most often you need
to describe the complete relationship.

To identify a relationship, you point to its navigation properties. Regardless of which
end you begin with, this is the pattern:

Entity.Has[Multiplicity](Property).With[Multiplicity](Property)

64 | Chapter 4: Using Convention and Configuration for Relationships

The multiplicity can be Optional (a property that can have a single instance or be null),
Required (a property that must have a single instance), or Many (a property with a col-
lection of a single type).

The Has methods are as follows:

• HasOptional

• HasRequired

• HasMany

In most cases you will follow the Has method with one of the following With methods:

• WithOptional

• WithRequired

• WithMany

Example 4-4 shows a concrete example using the existing one-to-many relationship
between Destination and Lodging. This configuration doesn’t really do anything, be-
cause it is configuring exactly what Code First detected by convention. Later in this
chapter, you will see that this approach is used to identify a relationship so that you
can perform further configuration related to foreign keys and cascade delete.

Example 4-4. Specifying an optional one-to-many relationship

modelBuilder.Entity<Destination>()
 .HasMany(d => d.Lodgings)
 .WithOptional(l => l.Destination);

Example 4-5 shows what this same configuration would look like inside an
EntityTypeConfiguration class rather than directly inside OnModelCreating.

Example 4-5. Specifying a relationship in an EntityConfiguration class

HasMany(d => d.Lodgings)
 .WithOptional(l => l.Destination);

This identifies a relationship that Destination Has. It has a Many relationship that is
defined by its property, Lodgings. And the Lodgings end of the relationship comes along
With a relationship (which is Optional) to Destination. Figure 4-2 attempts to help you
visualize this relationship the way the model builder sees it.

We looked at how to change this to be a required relationship with Data Annotations,
so now let’s see how to do the same with the Fluent API. Add the configuration shown
in Example 4-6 to your DestinationConfiguration class.

Example 4-6. Configuring a required relationship with the Fluent API

HasMany(d => d.Lodgings)
 .WithRequired(l => l.Destination);

Working with Multiplicity | 65

This looks very similar to the configuration we saw in Example 4-5, except, instead of
calling HasOptional, you are now calling HasRequired. This lets Code First know that
you want this one-to-many relationship to be required rather than optional. Run the
application again and you will see that the database looks the same as it did in Fig-
ure 4-1 when you used Data Annotations to configure the relationship to be required.

If you are configuring a one-to-one relationship where both ends are
required or both ends are optional, Code First will need some more
information from you to work out which end is the principal and which
end is the dependent. This area of the Fluent API can get very confusing!
The good news is that you probably won’t need to use it very often. This
topic is covered in detail in “Working with One-to-One Relation-
ships” on page 84.

Working with Foreign Keys
So far we’ve just looked at relationships where there isn’t a foreign key property in your
class. For example, Lodging just contains a reference property that points to Destina
tion, but there is no property to store the key value of the Destination it points to. In
these cases, we have seen that Code First will introduce a foreign key in the database
for you. But now let’s look at what happens when we include the foreign key property
in the class itself.

In the previous section you added some configuration to make the Lodging to Destina
tion relationship required. Go ahead and remove this configuration so that we can
observe the Code First conventions in action. With the configuration removed, add a
DestinationId property into the Lodging class:

public int DestinationId { get; set; }

Figure 4-2. How Entity Framework perceives a one- to-many relationship

66 | Chapter 4: Using Convention and Configuration for Relationships

Once you have added the foreign key property to the Lodging class, go ahead and run
your application. The database will get recreated in response to the change you just
made. If you inspect the columns of the Lodgings table, you will notice that Code First
has automatically detected that DestinationId is a foreign key for the Lodging to Desti
nation relationship and is no longer generating the Destination_DestinationId foreign
key (Figure 4-3).

Figure 4-3. Lodgings with FK after DestinationId is added to the class

As you might expect by now, Code First has a set or rules it applies to try and locate a
foreign key property when it discovers a relationship. The rules are based on the name
of the property. The foreign key property will be discovered by convention if it is named
[Target Type Key Name], [Target Type Name] + [Target Type Key Name], or [Navigation
Property Name] + [Target Type Key Name]. The DestinationId property you added
matched the first of these three rules. Name matching is case-insensitive, so you could
have named the property DestinationID, DeStInAtIoNiD, or any other variation of cas-
ing. If no foreign key is detected, and none is configured, Code First falls back to au-
tomatically introducing one in the database.

Why Foreign Key Properties?
It’s common when coding to want to identify a relationship with another class. For
example, you may be creating a new Lodging and want to specify which Destination
the Lodging is associated with. If the particular destination is in memory, you can set
the relationship through the navigation property:

myLodging.Destination=myDestinationInstance;

However, if the destination is not in memory, this would require you to first execute a
query on the database to retrieve that destination so that you can set the property. There
are times when you may not have the object in memory, but you do have access to that
object’s key value. With a foreign key property, you can simply use the key value with-
out depending on having that instance in memory:

myLodging.DestinationId=3;

Additionally, in the specific case when the Lodging is new and you attach the pre-
existing Destination instance, there are scenarios where Entity Framework will set the

Working with Foreign Keys | 67

Destination’s state to Added even though it already exists in the database. If you are
only working with the foreign key, you can avoid this problem.

There’s something else interesting that happens when you add the foreign key property.
Without the DestinationId foreign key property, Code First convention allowed Lodg
ing.Destination to be optional, meaning you could add a Lodging without a Destina
tion. If you check back to Figure 2-1 in Chapter 2, you’ll see that the Destination_Des
tinationId field in the Lodgings table is nullable. Now with the addition of the Desti
nationId property, the database field is no longer nullable and you’ll find that you can
no longer save a Lodging that has neither the Destination nor DestinationId property
populated. This is because DestinationId is of type int, which is a value type and cannot
be assigned null. If DestinationId was of type Nullable<int>, the relationship would
remain optional. By convention, Code First is using the nullability of the foreign key
property in your class to determine if the relationship is required or optional.

It’s Just Easier with Foreign Key Properties
Code First allows you define relationships without using foreign key properties in your
classes. However, some of the confusing behaviors that developers encounter when
working with related data in Entity Framework stems from dependent classes that do
not have a foreign key property. The Entity Framework has certain rules that it follows
when it checks relationship constraints, performs inserts, etc. When there’s no foreign
key property to keep track of a required principal (e.g., knowing what the destination
is for a particular lodging), it’s up to the developer to ensure that you’ve somehow
provided the required information to EF. You can also learn more in Julie’s January
2012 Data Points column, “Making Do with Absent Foreign Keys” (http://msdn.com/
magazine).

Specifying Unconventionally Named Foreign Keys
What happens when you have a foreign key, but it doesn’t follow Code First
convention?

Let’s introduce a new InternetSpecial class that allows us to keep track of special
pricing for the various lodgings (Example 4-7). This class has both a navigation property
(Accommodation) and a foreign key property (AccommodationId) for the same relationship.

Example 4-7. The new InternetSpecial class

using System;
namespace Model
{
 public class InternetSpecial
 {
 public int InternetSpecialId { get; set; }
 public int Nights { get; set; }

68 | Chapter 4: Using Convention and Configuration for Relationships

http://msdn.com/magazine
http://msdn.com/magazine

 public decimal CostUSD { get; set; }
 public DateTime FromDate { get; set; }
 public DateTime ToDate { get; set; }

 public int AccommodationId { get; set; }
 public Lodging Accommodation { get; set; }
 }
}

Lodging will need a new property to contain each lodging’s special prices:

public List<InternetSpecial> InternetSpecials { get; set; }

Code First can see that Lodging has many InternetSpecials and that InternetSpe
cials has a Lodging (called Accommodation). Even though there’s no DbSet<InternetSpe
cial>, InternetSpecial is reachable from Lodging and will therefore be included in the
model.

You’ll learn more about how the model builder finds or ignores entities
in Chapter 5.

When you run your application again, it will create the table shown in Figure 4-4. Not
only is there an AccommodationId column, which is not a foreign key, but there is also
another column there which is a foreign key, Accommodation_LodgingId.

Figure 4-4. InternetSpecials appears to have two foreign keys

You’ve seen Code First introduce a foreign key in the database before. As early as
Chapter 2, you witnessed the Destination_DestinationId field added to the Lodgings
table because Code First detected a need for a foreign key. It’s done the same here.
Thanks to the Accommodation navigation property, Code First detected a relationship
to Lodging and created the Accommodation_LodgingId field using its conventional pat-
tern. Code First convention was not able to infer that AccommodationId is meant to be
the foreign key. It simply found no properties that matched any of the three patterns
that Code First convention uses to detect foreign key properties, and therefore created
its own foreign key.

Working with Foreign Keys | 69

Fixing foreign key with Data Annotations

You can configure foreign key properties using the ForeignKey annotation to clarify
your intention to Code First. Adding ForeignKey to the AccommodationId, along with
information telling it which navigation property represents the relationship it is a for-
eign key for, will fix the problem:

[ForeignKey("Accommodation")]
public int AccommodationId { get; set; }
public Lodging Accommodation { get; set; }

Alternatively, you can apply the ForeignKey annotation to the navigation property and
tell it which property is the foreign key for the relationship:

public int AccommodationId { get; set; }
[ForeignKey("AccommodationId")]
public Lodging Accommodation { get; set; }

Which one you use is a matter of personal preference. Either way, you’ll end up with
the correct foreign key in the database: AccommodationId, as is shown in Figure 4-5.

Figure 4-5. AccommodationId correctly identified as the foreign key

Fixing foreign key with the Fluent API

The Fluent API doesn’t provide a simple way to configure the property as a foreign key.
You’ll use the relationship API to configure the correct foreign key. And you can’t
simply configure that piece of the relationship; you’ll need to first specify which rela-
tionship you want to configure (as you learned how to do earlier in this chapter) and
then apply the fix.

To specify the relationship, begin with the InternetSpecial entity. We’ll do that directly
from the modelBuilder, although you can certainly create an EntityTypeConfiguration
class for InternetSpecial.

In this case, we’ll be identifying the relationship but not changing the multiplicity that
Code First selected by convention. Example 4-8 specifies the existing relationship.

70 | Chapter 4: Using Convention and Configuration for Relationships

Example 4-8. Identifying the relationship to be configured

modelBuilder.Entity<InternetSpecial>()
 .HasRequired(s => s.Accommodation)
 .WithMany(l => l.InternetSpecials)

What we want to change, however, is something about the foreign key that is also
involved with this relationship. Code First expects the foreign key property to be named
LodgingId or one of the other conventional names. So we need to tell it which property
truly is the foreign key—AccommodationId. Example 4-9 shows adding the HasForeign
Key method to the relationship you specified in Example 4-8.

Example 4-9. Specifying a foreign key property when it has an unconventional name

modelBuilder.Entity<InternetSpecial>()
 .HasRequired(s => s.Accommodation)
 .WithMany(l => l.InternetSpecials)
 .HasForeignKey(s => s.AccommodationId);

This, too, will result in the database schema shown in Figure 4-5.

Working with Inverse Navigation Properties
So far Code First has always been able to work out that the two navigation properties
we have defined on each end of a relationship are in fact different ends of the same
relationship. It has been able to do this because there has only ever been one possible
match. For example, Lodging only contains a single property that refers to Destina
tion (Lodging.Destination); likewise, Destination only contains a single property that
references Lodging (Destination.Lodgings).

While it isn’t terribly common, you may run into a scenario where there are multiple
relationships between entities. In these cases, Code First won’t be able to work out
which navigation properties match up. You will need to provide some additional
configuration.

For example, what if you kept track of two contacts for each lodging? That would
require a PrimaryContact and SecondaryContact property in the Lodging class. Go ahead
and add these properties to the Lodging class:

public Person PrimaryContact { get; set; }
public Person SecondaryContact { get; set; }

Let’s also introduce the navigation properties on the other end of the relationship. This
will allow you to navigate from a Person to the Lodging instances that they are primary
and secondary contact for. Add the following two properties to the Person class:

public List<Lodging> PrimaryContactFor { get; set; }
public List<Lodging> SecondaryContactFor { get; set; }

Code First conventions will make the wrong assumptions about these new relationships
you have just added. Because there are two sets of navigation properties, Code First is

Working with Inverse Navigation Properties | 71

unable to work out how they match up. When Code First can’t be sure which navigation
properties are the inverse of each other, it will create a separate relationship for each
property. Figure 4-6 shows that Code First is creating four relationships based on the
four navigation properties you just added.

Figure 4-6. Too many foreign keys in the Lodgings table

Code First convention can identify bidirectional relationships, but not when there are
multiple bidirectional relationships between two entities. The reason that there are
extra foreign keys in Figure 4-6 is that Code First was unable to determine which of the
two properties in Lodging that return a Person link up to the List<Lodging> properties
in the Person class.

You can add configuration (using Data Annotations or the Fluent API) to present this
information to the model builder. With Data Annotations, you’ll use an annotation
called InverseProperty. With the Fluent API, you’ll use a combination of the Has/
With methods to specify the correct ends of these relationships.

You can place the annotations on either end of the relationship (or both ends if you
want). We’ll stick them on the navigation properties in the Lodging class (Exam-
ple 4-10). The InverseProperty Data Annotation needs the name of the corresponding
navigation property in the related class as its parameter.

Example 4-10. Configuring multiple bidirectional relationships from Lodging to Person

[InverseProperty("PrimaryContactFor")]
public Person PrimaryContact { get; set; }
[InverseProperty("SecondaryContactFor")]
public Person SecondaryContact { get; set; }

With the Fluent API, you need to use the Has/With pattern that you learned about earlier
to identify the ends of each relationship. The first configuration in Example 4-11 de-
scribes the relationship with Lodging.PrimaryContact on one end and Person.Primary
ContactFor on the other. The second configuration is for the relationship between
SecondaryContact and SecondaryContactFor.

72 | Chapter 4: Using Convention and Configuration for Relationships

Example 4-11. Configuring multiple relationships fluently

modelBuilder.Entity<Lodging>()
 .HasOptional(l => l.PrimaryContact)
 .WithMany(p => p.PrimaryContactFor);

modelBuilder.Entity< Lodging >()
 .HasOptional(l => l.SecondaryContact)
 .WithMany(p => p.SecondaryContactFor);

Working with Cascade Delete
Cascade delete allows dependent data to be automatically deleted when the principal
record is deleted. If you delete a Destination, for example, the related Lodgings will also
be deleted automatically. Entity Framework supports cascade delete behavior for in-
memory data as well as in the database. As discussed in Chapter 19 of the second edition
of Programming Entity Framework, it is recommended that you implement cascade
delete on entities in the model if their mapped database objects also have cascade delete
defined.

By convention, Code First switches on cascade delete for required relationships. When
a cascade delete is defined, Code First will also configure a cascade delete in the data-
base that it creates. Earlier in this chapter we looked at making the Lodging to Destina
tion relationship required. In other words, a Lodging cannot exist without a Destina
tion. Therefore, if a Destination is deleted, any related Lodgings (that are in memory
and being change-tracked by the context) will also be deleted. When SaveChanges is
called, the database will delete any related rows that remain in the Lodgings table, using
its cascade delete behavior.

Looking at the database, you can see that Code First carried through the cascade delete
and set up a constraint on the relationship in the database. Notice the Delete Rule in
Figure 4-7 is set to Cascade.

Example 4-12 shows a new method called DeleteDestinationInMemoryAndDbCascade,
which we’ll use to demonstrate the in-memory and database cascade delete.

The code uses a context to insert a new Destination with a couple of Lodgings. It then
saves these Lodgings to the database and records the primary of the new Destination.
In a separate context, the code then retrieves the Destination and its related Lodgings,
and then uses the Remove method to mark the Destination instance as Deleted. We use
Console.WriteLine to inspect the state of one of the related Lodging instances that are
in memory. We’ll do this using the Entry method of DbContext. The Entry method gives
us access to the information that EF has about the state of a given object. Next, the call
to SaveChanges persists the deletions to the database.

Working with Cascade Delete | 73

http://shop.oreilly.com/product/9780596807252.do

Figure 4-7. Cascade delete defined in a database constraint

Example 4-12. A method to explore cascade deletes

private static void DeleteDestinationInMemoryAndDbCascade()
{
 int destinationId;
 using (var context = new BreakAwayContext())
 {
 var destination = new Destination
 {
 Name = "Sample Destination",
 Lodgings = new List<Lodging>
 {
 new Lodging { Name = "Lodging One" },
 new Lodging { Name = "Lodging Two" }
 }
 };

 context.Destinations.Add(destination);
 context.SaveChanges();
 destinationId = destination.DestinationId;
 }

 using (var context = new BreakAwayContext())
 {
 var destination = context.Destinations
 .Include("Lodgings")
 .Single(d => d.DestinationId == destinationId);

74 | Chapter 4: Using Convention and Configuration for Relationships

 var aLodging = destination.Lodgings.FirstOrDefault();
 context.Destinations.Remove(destination);

 Console.WriteLine("State of one Lodging: {0}",
 context.Entry(aLodging).State.ToString());

 context.SaveChanges();
 }
}

After calling Remove on the Destination, the state of a Lodging is displayed in the
console window. It is Deleted also even though we did not explicitly remove any of the
Lodgings. That’s because Entity Framework used client-side cascade deleting to delete
the dependent Lodgings when the code explicitly deleted (Removed) the destination.

Next, when SaveChanges is called, Entity Framework sent three DELETE commands to
the database, as shown in Figure 4-8. The first two are to delete the related Lodging
instances that were in memory and the third to delete the Destination.

Figure 4-8. Delete commands in response to deleting a Destination and its related Lodgings

Now let’s change the method. We’ll remove the eager loading (Include) that pulled the
Lodging data into memory along with Destination. We’ll also remove all of the related
code that mentions the Lodgings. Since there are no Lodgings in memory, there will be
no client-side cascade delete, but the database should clean up any orphaned Lodg
ings because of the cascade delete defined in the database (Figure 4-7). The revised
method is listed in Example 4-13.

Example 4-13. Modified DeleteDestinationInMemoryAndDbCascade code

private static void DeleteDestinationInMemoryAndDbCascade()
{
 int destinationId;
 using (var context = new BreakAwayContext())
 {
 var destination = new Destination
 {
 Name = "Sample Destination",
 Lodgings = new List<Lodging>
 {
 new Lodging { Name = "Lodging One" },
 new Lodging { Name = "Lodging Two" }
 }
 };

 context.Destinations.Add(destination);
 context.SaveChanges();

Working with Cascade Delete | 75

 destinationId = destination.DestinationId;
 }

 using (var context = new BreakAwayContext())
 {
 var destination = context.Destinations
 .Single(d => d.DestinationId == destinationId);

 context.Destinations.Remove(destination);
 context.SaveChanges();
 }

 using (var context = new BreakAwayContext())
 {
 var lodgings = context.Lodgings
 .Where(l => l.DestinationId == destinationId).ToList();

 Console.WriteLine("Lodgings: {0}", lodgings.Count);
 }
}

When run, the only command sent to the database is one to delete the destination. The
database cascade delete will delete the related lodgings in response. When querying for
the Lodgings at the end, since the database deleted the lodgings, the query will return
no results and the lodgings variable will be an empty list.

Turning On or Off Client-Side Cascade Delete with Fluent Configurations
You might be working with an existing database that does not use cascade delete or
you may have a policy of being explicit about data removal and not letting it happen
automatically in the database. If the relationship from Lodging to Destination is op-
tional, this is not a problem, since by convention, Code First won’t use cascade delete
with an optional relationship. But you may want a required relationship in your classes
without leveraging cascade delete.

You may want to get an error if the user of your application tries to delete a Destina
tion and hasn’t explicitly deleted or reassigned the Lodging instances assigned to it.

For the scenarios where you want a required relationship but no cascade delete, you
can explicitly override the convention and configure cascade delete behavior with the
Fluent API. This is not supported with Data Annotations.

Keep in mind that if you set the model up this way, your application code will be
responsible for deleting or reassigning dependent data when necessary.

The Fluent API method to use is called WillCascadeOnDelete and takes a Boolean as a
parameter. This configuration is applied to a relationship, which means that you first
need to specify the relationship using a Has/With pairing and then call WillCascadeOn
Delete.

Working within the LodgingConfiguration class, the relationship is defined as:

76 | Chapter 4: Using Convention and Configuration for Relationships

HasRequired(l=>l.Destination)
 .WithMany(d=>d.Lodgings)

From there, you’ll find three possible configurations to add. WillCascadeOnDelete is
one of them, as you can see in Figure 4-9.

Figure 4-9. WillCascadeOnDelete—one of the configurations you can add to a fluently described
relationship

Now you can set WillCascadeOnDelete to false for this relationship:

HasRequired(l=>l.Destination)
 .WithMany(d=>d.Lodgings)
 .WillCascadeOnDelete(false)

If you add the above code to your project, remove it again before con-
tinuing with the rest of this chapter.

This will also mean that the database schema that Code First generates will not include
the cascade delete. The Delete Rule that was Cascade in Figure 4-7 would become No
Action.

In the scenario where the relationship is required, you’ll need to be aware of logic that
will create a conflict, for example, the current required relationship between Lodging
and Destination that requires that a Lodging instance have a Destination or a Destina
tionId. If you have a Lodging that is being change-tracked and you delete its related
Destination, this will cause Lodging.Destination to become null. When SaveChanges is
called, Entity Framework will attempt to synchronize Lodging.DestinationId, setting
it to null. But that’s not possible and an exception will be thrown with the following
detailed message:

The relationship could not be changed because one or more of the foreign-key properties
is non-nullable. When a change is made to a relationship, the related foreign-key property
is set to a null value. If the foreign-key does not support null values, a new relationship
must be defined, the foreign-key property must be assigned another non-null value, or
the unrelated object must be deleted.

The overall message here is that you have control over the cascade delete setting, but
you will be responsible for avoiding or resolving possible validation conflicts caused by
not having a cascade delete present.

Working with Cascade Delete | 77

Setting Cascade Delete Off in Scenarios That Are Not Supported by the
Database
Some databases (including SQL Server) don’t support multiple relationships that spec-
ify cascade delete pointing to the same table. Because Code First configures required
relationships to have cascade delete, this results in an error if you have two required
relationships to the same entity. You can use WillCascadeOnDelete(false) to turn off
the cascade delete setting on one or more of the relationships. Example 4-14 shows an
example of the exception message from SQL Server if you don’t configure this correctly.

Example 4-14. Exception message when Code First attempts to create cascade delete where multiple
relationships exist

System.InvalidOperationException was unhandled
 Message=The database creation succeeded, but the creation of the database objects
 did not.
 See InnerException for details.

 InnerException: System.Data.SqlClient.SqlException
 Message=Introducing FOREIGN KEY constraint 'Lodging_SecondaryContact' on table
 'Lodgings' may cause cycles or multiple cascade paths. Specify ON DELETE
 NO ACTION or ON UPDATE NO ACTION, or modify other FOREIGN KEY
 constraints. Could not create constraint. See previous errors.

Consider Performance Implications of Client-Side Cascade Delete
Whether you are using Code First, Database First, or Model First, you should keep in
mind the performance implications of cascade delete. If you delete a principal, or “pa-
rent,” without having the related object(s) in memory, the database will take care of
the cascade delete. If you pull all of the related objects into memory and let the client-
side cascade delete affect those related objects, then call SaveChanges, SaveChanges will
send DELETE commands to the database for each of those related objects. There may be
cases where those related objects are in memory and you do indeed want them to be
deleted. But if you don’t need them in memory and can rely on the database to do the
cascade delete, you should consider avoiding pulling them into memory.

Exploring Many-to-Many Relationships
Entity Framework supports many-to-many relationships. Let’s see how Code First re-
sponds to a many-to-many relationship between two classes when generating a
database.

If you’ve had many-to-many relationships when using the database-first strategy, you
may be familiar with the fact that Entity Framework can create many-to-many map-
pings when the database join table contains only the primary keys of the related entities.
This mapping rule is the same for Code First.

78 | Chapter 4: Using Convention and Configuration for Relationships

Let’s add a new Activity class to the model. Activity, shown in Example 4-15, will be
related to the Trip class. A Trip can have a number of Activities scheduled and an
Activity can be scheduled for a variety of trips. Therefore Trip and Activity will have
a many-to-many relationship.

Example 4-15. A new class, Activity

using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;

namespace Model
{
 public class Activity
 {
 public int ActivityId { get; set; }
 [Required,MaxLength(50)]
 public string Name { get; set; }

 public List<Trip> Trips { get; set; }
 }
}

There’s a List<Trip> in the Activity class. Let’s also add a List<Activity> to the
Trip class for the other end of the many-to-many relationship:

public List<Activity> Activities { get; set; }

When you run the application again, Code First will recreate the database because of
the model changes. Code First convention will recognize the many-to-many relation-
ship and build a join table in the database with the appropriate keys of the tables it’s
joining. The keys are both primary keys of the join table and foreign keys pointing to
the joined tables, as shown in Figure 4-10.

Figure 4-10. The ActivityTrips join table created by Code First for the many-to-many relationship

Exploring Many-to-Many Relationships | 79

Notice that Code First convention created the table name by combining the names of
the classes it’s joining and then pluralizing the result. It also used the same pattern
we’ve seen earlier for creating the foreign key names. In Chapter 5, which focuses on
table and column mappings, you’ll learn how to specify the table name and column
names of the join table with configurations.

Once the many-to-many relationship exists, it behaves in just the same way that many-
to-many relationships have worked in Entity Framework since the first version. You
can query, add, and remove related objects by using the class properties. In the back-
ground, Entity Framework will use its knowledge of how your classes map to the da-
tabase to create select, insert, update, and delete commands that incorporate the join
table.

For example, the following query looks for a single trip and eager loads the related
Activities:

var tripWithActivities = context.Trips
 .Include("Activities").FirstOrDefault();

The query is written against the classes with no need to be concerned about how the
trip and its activities are joined in the database. Entity Framework uses its knowledge
of the mappings to work out the SQL that performs the join and returns a graph that
includes all of the activities that are bound to the first trip. This may not be exactly how
you would construct the SQL, but remember that Entity Framework constructs the
store SQL based on a pattern that can be used generically regardless of the structure of
your classes or the schema of the database.

The result is a graph of the trip and its activities. Figure 4-11 shows the Trip in a debug
window. You can see it has two Activities that were pulled back from the database
along with the Trip.

Figure 4-11. Trip and Activities graph that is a result of querying across a many-to-many relationship

Expanding the Activities in Figure 4-12 shows the details of the activities returned.
Notice that there is a circular reference pointing back to the Trip that each Activity is
attached to in memory.

80 | Chapter 4: Using Convention and Configuration for Relationships

Figure 4-12. Inspecting the Activities returned along with the Trip

Entity Framework took care of the joins to get across the join table without you having
to be aware of its presence. In the same way, any time you do inserts, updates, or deletes
within this many-to-many relationship, Entity Framework will work out the proper
SQL for the join without you having to worry about it in your code.

Working with Relationships that Have Unidirectional
Navigation
So far we have looked at relationships where a navigation property is defined in both
classes that are involved in the relationship. However, this isn’t a requirement when
working with the Entity Framework.

In your domain, it may be commonplace to navigate from a Destination to its associated
Lodging options, but a rarity to navigate from a Lodging to its Destination. Let’s go
ahead and remove the Destination property from the Lodging class (Example 4-16).

Example 4-16. Navigation property removed from Lodging class

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 public int DestinationId { get; set; }
 //public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }

Working with Relationships that Have Unidirectional Navigation | 81

 public Person PrimaryContact { get; set; }
 public Person SecondaryContact { get; set; }
}

Entity Framework is perfectly happy with this; it has a very clear relationship defined
from Lodging to Destination with the Lodgings property in the Destination class. This
still causes the model builder to look for a foreign key in the Lodging class and Lodg
ing.DestinationId satisfies the convention.

Now let’s go one step further and remove the foreign key property from the Lodging
class, as shown in Example 4-17.

Example 4-17. Foreign key commented out

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 //public int DestinationId { get; set; }
 //public Destination Destination { get; set; }
}

Removing DestinationId will break a previous sample, the DeleteDesti
nationInMemoryAndDbCascade method in Example 4-12. Comment that
method out so that your solution will still compile properly.

Remember the Code First convention that will introduce a foreign key if you don’t
define one in your class? That same convention still works when only one navigation
property is defined in the relationship. Destination still has a property that defines its
relationship to Lodging. In Figure 4-13 you can see that a Destination_DestinationId
column is added into the Lodgings table. You might recall that the convention for nam-
ing the foreign key column was [Navigation Property Name] + [Primary Key Name]. But
we no longer have a navigation property on Lodging. If no navigation property is defined
on the dependent entity, Code First will use [Principal Type Name] + [Primary Key
Name]. In this case, that happens to equate to the same name.

82 | Chapter 4: Using Convention and Configuration for Relationships

Figure 4-13. Foreign key added to the database

What if we tried to just define a foreign key and no navigation properties
in either class? Entity Framework itself supports this scenario, but Code
First does not. Code First requires at least one navigation property to
create a relationship. If you remove both navigation properties, Code
First will just treat the foreign key property as any other property in the
class and will not create a foreign key constraint in the database.

Now let’s change the foreign key property to something that won’t get detected by
convention. Let’s use LocationId instead of DestinationId, as shown in Exam-
ple 4-18. Remember that we have no navigation property; it’s still commented out.

Example 4-18. Foreign key with unconventional name

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 public int LocationId { get; set; }
 //public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }
 public Person PrimaryContact { get; set; }
 public Person SecondaryContact { get; set; }
}

Thanks to Destination.Lodgings, Code First knows about the relationship between the
two classes. But it cannot find a conventional foreign key. We’ve been down this road
before. All we had to do was add some configuration to identify the foreign key.

In previous examples, we placed the ForeignKey annotation on the navigation property
in the dependent class or we placed it on the foreign key property and told it which
navigation property it belonged to. But we no longer have a navigation property in the
dependent class. Fortunately, we can just place the data annotation on the navigation

Working with Relationships that Have Unidirectional Navigation | 83

property we do have (Destination.Lodgings). Code First knows that Lodging is the
dependent in the relationship, so it will search in that class for the foreign key:

[ForeignKey("LocationId")]
public List<Lodging> Lodgings { get; set; }

The Fluent API also caters to relationships that only have one navigation property. The
Has part of the configuration must specify a navigation property, but the With part can
be left empty if there is no inverse navigation property. Once you have specified the
Has and With sections, you can call the HasForeignKey method you used earlier:

modelBuilder.Entity<Destination>()
 .HasMany(d => d.Lodgings)
 .WithRequired()
 .HasForeignKey(l => l.LocationId);

While a unidirectional relationship may make sense in some scenarios, we want to be
able to navigate from a Lodging to its Destination. Go ahead and revert the changes to
the Lodging class. Uncomment the Destination property and rename the foreign key
property back to DestinationId, as shown in Example 4-19. You’ll also need to remove
the ForeignKey annotation from Destination.Lodging and remove the above Fluent API
configuration if you added it.

Example 4-19. Lodging class reverted to include navigation property and conventional foreign key

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 public int DestinationId { get; set; }
 public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }
 public Person PrimaryContact { get; set; }
 public Person SecondaryContact { get; set; }
}

Working with One-to-One Relationships
There is one type of relationship that Code First will always require configuration for:
one-to-one relationships. When you define a one-to-one relationship in your model,
you use a reference navigation property in each class. If you have a reference and a
collection, Code First can infer that the class with the reference is the dependent and
should have the foreign key. If you have two collections, Code First knows it’s many-
to-many and the foreign keys go in a separate join table. However, when Code First
just sees two references, it can’t work out which class should have the foreign key.

84 | Chapter 4: Using Convention and Configuration for Relationships

Let’s add a new PersonPhoto class to contain a photo and a caption for the people in
the Person class. Since the photo will be for a specific person, we’ll use PersonId as the
key property. And since that is not a conventional key property, it needs to be config-
ured as such with the Key Data Annotation (Example 4-20).

Example 4-20. The PersonPhoto class

using System.ComponentModel.DataAnnotations;
 namespace Model
{
 public class PersonPhoto
 {
 [Key]
 public int PersonId { get; set; }
 public byte[] Photo { get; set; }
 public string Caption { get; set; }

 public Person PhotoOf { get; set; }
 }
}

Let’s also add a Photo property to the Person class, so that we can navigate both
directions:

public PersonPhoto Photo { get; set; }

Remember that Code First can’t determine which class is the dependent in these sit-
uations. When it attempts to build the model, an exception is thrown, telling you that
it needs more information:

Unable to determine the principal end of an association between the types ‘Model.Per-
sonPhoto’ and ‘Model.Person’. The principal end of this association must be explicitly
configured using either the relationship fluent API or data annotations.

This problem is most easily solved by using a ForeignKey annotation on the dependent
class to identify that it contains the foreign key. When configuring one-to-one rela-
tionships, Entity Framework requires that the primary key of the dependent also be the
foreign key. In our case PersonPhoto is the dependent and its key, PersonPhoto.Per
sonId, should also be the foreign key. Go ahead and add in the ForeignKey annotation
to the PersonPhoto.PersonId property, as shown in Example 4-21. Remember to specify
the navigation property for the relationship when adding the ForeignKey annotation.

Example 4-21. Adding the ForeignKey annotation

public class PersonPhoto
{
 [Key]
 [ForeignKey("PhotoOf")]
 public int PersonId { get; set; }
 public byte[] Photo { get; set; }
 public string Caption { get; set; }

Working with One-to-One Relationships | 85

 public Person PhotoOf { get; set; }
}

Running the application again will successfully create the new database table, although
you’ll see that Entity Framework didn’t deal well with pluralizing the word “Photo.”
We’ll clean that up in Chapter 5, when you learn how to specify table names. More
importantly, notice that PersonId is now both a PK and an FK. And if you look at the
PersonPhoto_PhotoOf foreign key constraint details, you can see that it shows the Peo
ple.PersonId is the primary table/column in the relationship and PersonPhotoes.Per
sonId is the foreign key table/column (Figure 4-14). This matches our intent.

Figure 4-14. PersonPhotoes with foreign key

Earlier in this chapter, we also saw that you could place the ForeignKey annotation on
the navigation property and specify the name of the foreign key property (in our case,
that is PersonId). Since both classes contain a PersonId property, Code First still won’t
be able to work out which class contains the foreign key. So you can’t employ the
configuration in that way for this scenario.

Of course, there is also a way to configure this in the Fluent API. Let’s assume for the
moment that the relationship is one-to-zero-or-one, meaning a PersonPhoto must have
a Person but a Person isn’t required to have a PersonPhoto. We can use the HasRe
quired and WithOptional combination to specify this:

modelBuilder.Entity<PersonPhoto>()
 .HasRequired(p => p.PhotoOf)
 .WithOptional(p => p.Photo);

That’s actually enough for Code First to work out that PersonPhoto is the dependent.
Based on the multiplicity we specified, it only makes sense for Person to be the principal
and PersonPhoto to be the dependent, since a Person can exist without a PersonPhoto
but a PersonPhoto must have a Person.

Notice that you didn’t need to use HasForeignKey to specify that PersonPhoto.Per
sonId is the foreign key. This is because of Entity Framework’s requirement that the
primary key of the dependent be used as the foreign key. Since there is no choice, Code
First will just infer this for you. In fact, the Fluent API won’t let you use HasForeign
Key. In IntelliSense, the method simply isn’t available after combining HasRequired and
WithOptional.

86 | Chapter 4: Using Convention and Configuration for Relationships

Configuring One-to-One Relationships When Both Ends Are Required
Now let’s tell Code First that a Person must have a PersonPhoto (i.e., it’s required). With
Data Annotations, you can use the same Required data annotation that we used earlier
on Destination.Name and Lodging.Name. You can use Required on any type of property,
not just primitive types:

[Required]
public PersonPhoto Photo { get; set; }

Now update the Main method to call the InsertPerson method you defined back in
Chapter 3 and run the application again. An exception will be thrown when Save
Changes is called. In the exception, Entity Framework’s Validation API reports that the
validation for the required PersonPhoto failed.

Ensuring that the sample code honors the required Photo

If you want to leave the Photo property as Required and avoid the validation errors, you
can modify the InsertPerson and UpdatePerson methods so that they add data into the
Photo field. For the sake of keeping the code simple, we’ll just stuff a single byte into
the Photo’s byte array rather than worrying about supplying an actual photo.

In the InsertPerson method, modify the line of code that instantiates a new Person
object to add the Photo property, as shown in Example 4-22.

Example 4-22. Modifying the InsertPerson method to add a Photo to the new Person

var person = new Person
{
 FirstName = "Rowan",
 LastName = "Miller",
 SocialSecurityNumber = 12345678,
 Photo = new PersonPhoto { Photo = new Byte[] { 0 } }
};

In the UpdatePerson method, we’ll add some code to ensure that any Person data you’ve
already added before we created the Photo class gets a Photo at the same time that you
update. Modify the UpdatePerson method as shown in Example 4-23 so that it allocates
a new PersonPhoto when it tries to update a person without a photo.

Example 4-23. Modification to UpdatePerson to ensure existing Person data has a Photo

private static void UpdatePerson()
{
 using (var context = new BreakAwayContext())
 {
 var person = context.People.Include("Photo").FirstOrDefault();
 person.FirstName = "Rowena";
 if (person.Photo == null)
 {
 person.Photo = new PersonPhoto { Photo = new Byte[] { 0 } };
 }

Working with One-to-One Relationships | 87

 context.SaveChanges();
 }
}

The updated method will use Include to also retrieve the Person’s Photo when fetching
the data from the database. We then check if the Person has a Photo and add a new one
if they do not. Now the Photo requirement in the Person class will be fulfilled any time
you execute the InsertPerson and UpdatePerson methods.

Configuring one-to-one with the Fluent API

Not surprisingly, you can also configure the same relationship with the Fluent API. But
you’ll need to let Code First know which class is the principal and which is the de-
pendent. If both ends are required, this can’t simply be implied from the multiplicity.

You might expect to call HasRequired followed by WithRequired. However, if you start
with HasRequired, you will have the additional options of WithRequiredPrincipal and
WithRequiredDependent in the place of WithRequired. These methods take into account
the entity that you are configuring; that is, the entity that you selected in model
Builder.Entity or the entity that your EntityTypeConfiguration class is for. Selecting
WithRequiredPrincipal will make the entity that you are configuring the principal,
meaning it contains the primary key of the relationship. Selecting WithRequiredDepend
ent will make the entity that you are configuring the dependent, meaning it will have
the foreign key of the relationship.

Assuming you are configuring PersonPhoto, which you want to be the dependent, you
would use the following configuration:

modelBuilder.Entity<PersonPhoto>()
 .HasRequired(p => p.PhotoOf)
 .WithRequiredDependent(p => p.Photo);

Configuring a one-to-one relationship where both ends are optional works exactly the
same, except you start with HasOptional and select either WithOptionalPrincipal or
WithOptionalDependent.

Summary
In this chapter, you’ve seen that Code First has a lot of intelligence about relationships.
Code First conventions are able to discover relationships of any multiplicity with or
without a provided foreign key. But there are many scenarios where your intentions
don’t coincide with Code First conventions. You’ve learned many ways to “fix” the
model by configuring with Data Annotations and the Fluent API. You should have a
good understanding of how to work with relationships in the Fluent API based on its
Has/With pattern.

88 | Chapter 4: Using Convention and Configuration for Relationships

In the next chapter, we’ll look at another set of mappings in Code First that are all
about how your classes map to the database, including how to map a variety of inher-
itance hierarchies.

Summary | 89

CHAPTER 5

Using Conventions and Configurations
for Database Mappings

So far you’ve learned about Code First convention and configurations that affect prop-
erty attributes and those that pertain to relationships between classes. In both of these
categories, Code First affected not only the model but the database as well. In this
chapter, you’ll learn about convention and configurations that focus on how your
classes map to the database without impacting the conceptual model.

You’ll start with simple mappings that allow you to specify the names of database
tables, schemas and properties. You’ll learn how to enable multiple classes to map to
a common table, or map a single class to multiple tables. Finally, we’ll walk you through
a variety of inheritance scenarios.

Mapping Class Name to Database Table and Schema Name
Entity Framework uses its pluralization service to infer database table names based on
the class names in the model—Destination becomes Destinations, Person becomes
People, etc. Your class naming conventions, however, might not be the same as your
table naming conventions. You might hit a word that doesn’t get pluralized properly
(such as was the case with PersonPhoto, which became PersonPhotoes in Chapter 4).
Or you might be mapping to an existing table with names that don’t happen to align
with Code First convention.

Entity Framework’s pluralization service uses pluralization for common
English words. There is currently no international pluralization service.

91

http://msdn.microsoft.com/en-us/library/system.data.entity.design.pluralizationservices.pluralizationservice.aspx

You can use the Table Data Annotation to ensure that Code First maps your class to
the correct table name. Using the Table annotation, you can also impact the name of
the table’s database schema.

Table naming is important to other mappings, as you’ll see in this chapter, from entity
splitting to inheritance hierarchies and even many-to-many mapping.

By convention, Code First will do its best to pluralize the class name and use the results
as the name of the table that the class is mapped to. Additionally, all tables are assigned
to the schema dbo by default.

Configuring Table and Schema Name with Data Annotations
The Table Data Annotation allows you to change the name of the table that your class
maps to. In the last chapter, you may recall that Entity Framework didn’t handle the
PersonPhoto pluralization very well and named the table PersonPhotoes. Although the
pluralization might work nicely for a class named Potato, you might want to help out
with PersonPhoto:

[Table("PersonPhotos")]
public class PersonPhoto

Another example is in the original BreakAway database, which is used in both the first
and second editions of Programming Entity Framework. The table that contains the
destination information is named Locations. If you were mapping to that table, you’d
want to specify the table name:

[Table("Locations")]
public class Destination

Table also has a named parameter for specifying the schema name. Here is how it would
look together with a specified table name:

[Table("Locations", Schema="baga")]
public class Destination

Remember that for Visual Basic the syntax is a bit different for named parameters:

<Table("Locations", Schema:="baga")>
Public Class Destination

Figure 5-1 shows the Locations table with the baga schema.

The second parameter is not required, making Table("Locations") a valid annotation.
However, if you want to specify the schema but not the table, you are still required to
provide the first parameter. It cannot be empty, a space, or null, so you’ll need to supply
the name of the table.

92 | Chapter 5: Using Conventions and Configurations for Database Mappings

http://shop.oreilly.com/product/9780596807252.do

Configuring Table and Schema Name with the Fluent API
The Fluent API has a ToTable method for specifying table names and schema. It takes
two parameters: the first is the table name and the second is the schema name. As with
the Data Annotation, you can use the table name parameter without the schema name,
but you must include the table name if you want to also specify a schema name:

modelBuilder.Entity<Destination>().ToTable("Locations", "baga");

Mapping Property Names to Database Columns
Not only can you remap the table name, but you can also alter the presumed database
column name. By convention, Code First will just use the name of the property as the
name of the column that it maps to, but this may not always be the case. For example,
in that original BreakAway database, not only is the table name that contains destina-
tion information different than convention, but its primary field is called LocationID,
not DestinationId. And the field containing the name is called LocationName.

Modifying the Default Column Name with Data Annotations
You may recall using the Column Data Annotation to modify the data type of columns
earlier. The same Data Annotation is used to change the column name, as shown in
Example 5-1.

Example 5-1. Specifying column names for properties using Data Annotations

[Column("LocationID")]
public int DestinationId { get; set; }
[Required, Column("LocationName")]
public string Name { get; set; }

Modifying the Default Column Name with the Fluent API
HasColumnName is the Fluent method used to specify a column name for a property. The
column name configurations are shown in Example 5-2, as they would appear in the

Figure 5-1. Table configuration results in baga.Locations

Mapping Property Names to Database Columns | 93

DestinationConfiguration class. Notice that HasColumnName can be appended to the
existing configuration for the Name property.

Example 5-2. Specifying column names for properties using the Fluent API

public class DestinationConfiguration :
 EntityTypeConfiguration<Destination>
{
 public DestinationConfiguration()
 {
 Property(d => d.Nam
 .IsRequired().HasColumnName("LocationName");
 Property(d => d.DestinationId).HasColumnName("LocationID");

Affecting Column Names for Complex Types
In Chapter 3, you created a ComplexType from the Address class and then added an
Address property to the Person class. You may recall that Code First named the columns
that the Person.Address properties mapped to using the pattern Address_StreetAd
dress or Address_State, etc.

You can use the same configurations to affect the column names in the Address complex
type as you did for Destination previously.

Example 5-3. Configuring column names to be used in the table of any class that hosts the complex type

[ComplexType]
public class Address
{
 public int AddressId { get; set; }
 [MaxLength(150)]
 [Column("StreetAddress")]
 public string StreetAddress { get; set; }
 [Column("City")]
 public string City { get; set; }
 [Column("State")]
 public string State { get; set; }
 [Column("ZipCode")]
 public string ZipCode { get; set; }
}

Now any class that incorporates the Address complex type will use the column names
specified in these Data Annotations for mapping the relevant properties.

If you configure the column names fluently, you can choose between setting the names
that will be used by any class that has Address as a property or explicitly configuring
each “host” class.

Examples 5-4 and 5-5 show configurations applied to the Address complex type. This
will have the same effect as using the Data Annotations—all classes that host Address
will use these column names.

94 | Chapter 5: Using Conventions and Configurations for Database Mappings

Example 5-4. Configuring a complex type column name from the modelBuilder

modelBuilder.ComplexType<Address>()
 .Property(p => p.StreetAddress).HasColumnName("StreetAddress");

Example 5-5. Configuring the complex type column name from a configuration class

public class AddressConfiguration :
 ComplexTypeConfiguration<Address>
{
 public AddressConfiguration()
 {
 Property(a => a.StreetAddress).HasColumnName("StreetAddress");
 }
}

The effect of this configuration is that rather than let the convention create the name
Address_StreetAddress in the Person table, the configuration will force the field name
to simply be StreetAddress.

Example 5-6 displays examples of configuring the column name of the StreetAddress
property by navigating through the Person entity. First, you’ll see the configuration as
it would appear in the OnModelCreating method and then as it would appear in a con-
figuration class. Configuring from the Person class will only affect column names in the
People table. If you have an Address property in another class, its table will not use
these column names.

Example 5-6. Configuring the StreetAddress column name to be used when Address is a property of
Person

modelBuilder.Entity<Person>()
 .Property(p => p.Address.StreetAddress)
 .HasColumnName("StreetAddress");

public class PersonConfiguration : EntityTypeConfiguration<Person>
{
 public PersonConfiguration()
 {
 Property(p => p.Address.StreetAddress)
 .HasColumnName("StreetAddress");
 }
}

Allowing Multiple Entities to Map to a Single Table:
aka Table Splitting
Often a database table has so many columns in it that some scenarios only require you
to use a subset of them, while others require access to additional column data. When
mapping an entity to such a table, you may find yourself wasting resources pulling back,
materializing, and carrying around unused data. Table splitting helps solve this problem

Allowing Multiple Entities to Map to a Single Table: aka Table Splitting | 95

by allowing you to break up the columns of a single table across multiple entities.
Chapter 14 of the second edition of Programming Entity Framework covers how to map
table splitting in the EDM designer. Here you’ll learn how to split a table by configuring
Code First.

You may be more likely to want table splitting when mapping to an
existing database where you find yourself with the scenario described
above, though you might find that you want it even when letting Code
First create the database for you.

Let’s say that the existing database stores the photo and caption for a person in the
People table rather than the separate PersonPhotos table. Since we may want access to
the person’s name and personal information more frequently than the photo, keeping
the photo in a separate class will work out nicely. Example 5-7 provides a reminder of
what the PersonPhoto class looks like, as well as the Photo property in the Person class.
While we’re at it, let’s configure the Photo property to be an image, as we did for the
Destination.Photo property in Chapter 2.

Example 5-7. The PersonPhoto class with Data Annotations

[Table("PersonPhotos")]
public class PersonPhoto
{
 [Key , ForeignKey("PhotoOf")]
 public int PersonId { get; set; }
 [Column(TypeName="image")]
 public byte[] Photo { get; set; }
 public string Caption { get; set; }

 public Person PhotoOf { get; set; }
}

By convention, Code First assumes that PersonPhoto maps to its own table, which we’ve
configured to be named PersonPhotos.

In order to map entities into a common table, the entities must comply with the fol-
lowing rules:

• The entities must have a one-to-one relationship.

• The entities must share a common key.

The Person and PersonTable classes meet these requirements.

Mapping to a Common Table using Data Annotations
The Table Data Annotation is all you need to influence this mapping. Since we know
that the Person entity maps to the People table, you can configure the PersonPhoto class
to map to that table as well. However, you need to specify the table name for all of the

96 | Chapter 5: Using Conventions and Configurations for Database Mappings

http://shop.oreilly.com/product/9780596807252.do

involved classes. Otherwise, Entity Framework will use another convention that avoids
accidental duplicate table names. You can see the result of this mistake in Figure 5-2.
The PersonPhoto table is named People because of the Table configuration, so when
Code First attempted to auto-name the table for the Person class and saw that People
was already in use, it chose People1.

Figure 5-2. Code First convention renaming a potential duplicate table name to People1

Instead, we’ll apply the table name to both classes:

[Table("People")]
public class Person

[Table("People")]
public class PersonPhoto

With this change to the model, Code First will recreate the database again. The Peo
ple table now has the Photo and Caption fields (see Figure 5-3) and there is no longer a
PersonPhotos table.

If you were to rerun the InsertPerson and UpdatePerson methods (recall that we modi-
fied those methods to add in single-byte photos in Chapter 4), you’ll find that they
continue to work without any modifications to the code. The classes are still separate.
Entity Framework can work out the table mappings and perform the correct commands
on the database.

What’s more interesting about this mapping is that you can query one of the entities
without wasting resources pulling back the table columns that are in the other entity.

If you execute a query against the Person class, for example context.People.ToList(),
Entity Framework projects only those columns that map to the Person class but none
of the fields that map to PersonPhoto (Example 5-8).

Allowing Multiple Entities to Map to a Single Table: aka Table Splitting | 97

Example 5-8. SQL Query retrieving subset of table columns

SELECT
[Extent1].[PersonId] AS [PersonId],
[Extent1].[SocialSecurityNumber] AS [SocialSecurityNumber],
[Extent1].[FirstName] AS [FirstName],
[Extent1].[LastName] AS [LastName],
[Extent1].[Info_Weight_Reading] AS [Info_Weight_Reading],
[Extent1].[Info_Weight_Units] AS [Info_Weight_Units],
[Extent1].[Info_Height_Reading] AS [Info_Height_Reading],
[Extent1].[Info_Height_Units] AS [Info_Height_Units],
[Extent1].[Info_DietryRestrictions] AS [Info_DietryRestrictions],
[Extent1].[StreetAddress] AS [StreetAddress],
[Extent1].[City] AS [City],
[Extent1].[State] AS [State],
[Extent1].[ZipCode] AS [ZipCode]
FROM [dbo].[People] AS [Extent1]

Thanks to the relationship between the Person and PersonPhoto class, you can load the
photo data easily, for example, eager loading with context.People.Include("Photo")
or loading after the fact with explicit or lazy loading. This is something you can’t do
with scalar properties.

Lazy Loading Split Table Data
Lazy loading makes this feature shine. Although the DbContext we are using has lazy
loading enabled by default, we have not yet discussed how to make your Code First
classes leverage lazy loading. In fact, this is the same as with any simple class in Entity
Framework, thanks to the POCO support introduced in Entity Framework 4 and dis-
cussed in depth in Chapter 13 of Programming Entity Framework. Any navigation

Figure 5-3. Photo and Caption fields in the People table

98 | Chapter 5: Using Conventions and Configurations for Database Mappings

property with the virtual (Overridable in Visual Basic) keyword applied to it will au-
tomatically be retrieved from the database when it is first accessed.

For example, you can alter the Photo property so that it can be lazy loaded:

[Required]
public virtual PersonPhoto Photo { get; set; }

The following example code demonstrates lazy loading the Photo. A query returns all
of the Person data from the database, but the related Photo data is not retrieved in the
query. Then the code performs some work with a particular person. In the last line, the
code displays the Caption of the person’s photo by navigating to Person.Photo.Cap
tion. Since the Photo is not yet in memory, this call will trigger Entity Framework to
run a behind-the-scenes query and retrieve that data from the database. As far as the
code is concerned, the Photo was just there. If the Photo property was not virtual, or
lazy loading was explicitly disabled for the context, the last line of code would throw
an exception because the Photo property will be null:

var people = context.People.ToList();
var firstPerson = people[0];
SomeCustomMethodToDisplay(firstPerson.Photo.Caption);

While this is a good overview, readers looking to learn more about lazy
loading can find it in Programming Entity Framework, second edition.

Splitting a Table Using the Fluent API
Just like the Data Annotation, you need only specify the table name for the classes. And
again, you must specify the table name for all of the involved classes to ensure that they
all truly do map to the same table name. The following code shows the fluent config-
uration added directly from the modelBuilder instance in OnModelCreating. You can add
them in the relevant EntityTypeConfiguration classes as well:

modelBuilder.Entity<Person>().ToTable("People");
modelBuilder.Entity<PersonPhoto>().ToTable("People");

Mapping a Single Entity Across Multiple Tables
Now we’ll completely flip this last scenario. With the person information, it makes
sense that we won’t need to see a person’s photo as often as we’ll need to look at or
work with his or her name. On the other hand, it may be more common to see the
destination photo any time we retrieve a Destination. If you are mapping to an existing
database, there’s a possibility that the photo has been stored in a separate table for the
sake of database normalization, performance, or some other reason. But your domain
model expresses all of that data in a single class. This is when it is beneficial to map the

Mapping a Single Entity Across Multiple Tables | 99

http://shop.oreilly.com/product/9780596807252.do

single Destination class to grab all of the details distributed across the two database
tables. This mapping is referred to as entity splitting.

The key to this mapping is Code First’s ability to configure sets of properties to map
to a particular table. It cannot be done with Data Annotations, however, because the
annotations don’t have the concept of a subset of properties.

The Fluent API has a Map method that lets you feed a list of properties as well as the
table name. We’ll use that to map some of the Destination properties to the Loca
tions table and the others to a table named LocationPhotos. Be sure not to skip any
properties!

Since there are a number of configurations on Destination at this point, the new map-
ping is shown along with the others inside the DestinationConfiguration class in
Example 5-9.

Example 5-9. DestinationConfiguration with Entity Splitting mapping at the end

public class DestinationConfiguration :
 EntityTypeConfiguration<Destination>
{
 public DestinationConfiguration()
 {
 Property(d => d.Name)
 .IsRequired().HasColumnName("LocationName");
 Property(d => d.DestinationId).HasColumnName("LocationID");
 Property(d => d.Description).HasMaxLength(500);
 Property(d => d.Photo).HasColumnType("image");
 // ToTable("Locations", "baga");
 Map(m =>
 {
 m.Properties(d => new
 {d.Name, d.Country, d.Description });
 m.ToTable("Locations");
 });
 Map(m =>
 {
 m.Properties(d => new { d.Photo });
 m.ToTable("LocationPhotos");
 });
 }
}

The lambda expressions in the Map configuration are multiline statements, which is why
you see the semicolons inside the lambda expression. Multiline lambda statements are
also supported for Visual Basic (VB). The same configuration class is shown in VB in
Example 5-10.

Example 5-10. DestinationConfiguration using Visual Basic syntax

Public Class DestinationConfiguration
 Inherits EntityTypeConfiguration(Of Destination)
 Public Sub New()

100 | Chapter 5: Using Conventions and Configurations for Database Mappings

 Me.Property(Function(d) d.Name)
 .IsRequired().HasColumnName("LocationName")
 Me.Property(Function(d) d.DestinationId)
 .HasColumnName("LocationID")
 Me.Property(Function(d) d.Description).HasMaxLength(500)
 Me.Property(Function(d) d.Photo).HasColumnType("image")
 Me.Ignore(Function(d) d.TodayForecast)
 ' Me.ToTable("Locations") REM replaced by table mapping below
 Me.Map(Sub(m)
 m.Properties(Function(d) New With
 {Key d.Name, Key d.Country, Key d.Description})
 m.ToTable("Locations")
 End Sub)
 Map(Sub(m)
 m.Properties(Function(d) New With {Key d.Photo})
 m.ToTable("LocationPhotos")
 End Sub)
 End Sub
End Class

Notice that there are two separate Map configurations. Alternatively, you can chain one
onto the end of the other, as shown in Example 5-11.

Example 5-11. Combining the mappings

Map(m =>
 {
 m.Properties(d => new { d.Name, d.Country, d.Description });
 m.ToTable("Locations");
 }
 .Map(m =>
 {
 m.Properties(d => new { d.Photo });
 m.ToTable("LocationPhotos");
 }
);

Finally, we can see the effect on the database in Figure 5-4.

Notice that even though we mapped only the Photo property to the LocationPhotos
table, Code First worked out a shared primary key and a foreign key for that table. It
also created a PK/FK constraint between Locations and LocationPhotos. Interestingly,
there is no cascade delete defined for the LocationPhotos table. But Entity Framework
knows that if you delete a Destination, it will have to build a Delete command that
spans both tables. Let’s take a look at the SQL generated by Entity Framework for
various CRUD operations against Destination objects.

Example 5-12 shows the code we wrote back in Chapter 2 that inserts a single Desti
nation object and calls SaveChanges.

Mapping a Single Entity Across Multiple Tables | 101

Figure 5-4. Properties from the Destination class spread across multiple tables

Example 5-12. Insert a single object that maps to two database tables

private static void InsertDestination()
{
 var destination = new Destination
 {
 Country = "Indonesia",
 Description = "EcoTourism at its best in exquisite Bali",
 Name = "Bali"
 };
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(destination);
 context.SaveChanges();
 }
}

exec sp_executesql
N'insert [dbo].[Locations]([LocationName], [Country], [Description])
values (@0, @1, @2)
select [LocationID]
from [dbo].[Locations]
where @@ROWCOUNT > 0 and [LocationID] = scope_identity()',
N'@0 nvarchar(max) ,@1 nvarchar(max) ,@2 nvarchar(500)',
@0=N'Bali',@1=N'Indonesia',@2=N'EcoTourism at its best in exquisite Bali'

exec sp_executesql
N'insert [dbo].[LocationPhotos]([LocationID], [Photo])
 values (@0, null)',
N'@0 int',@0=1

The SQL that results first inserts data into the Locations table. In the same command,
there is code to return the newly generated LocationID value. The second command

102 | Chapter 5: Using Conventions and Configurations for Database Mappings

then inserts a new row into LocationPhotos, including the LocationID that was returned
from the first command. Since the method did not provide any photo information, the
value of the Photo field inserted into that table is null.

Example 5-13 shows code to query, update, and delete Destination data. You can see
by the SQL that Entity Framework handles interaction with the multiple tables as it
builds commands in response to SaveChanges.

Example 5-13. Query, update and delete a Destination

 using (var context = new BreakAwayContext())
 {
 var destinations = context.Destinations.ToList();
 var destination = destinations[0];
 destination.Description += "Trust us, you'll love it!";
 context.SaveChanges();
 context.Destinations.Remove(destination);
 context.SaveChanges();
 }

—-RESPONSE TO QUERY
SELECT
[Extent1].[LocationID] AS [LocationID],
[Extent2].[LocationName] AS [LocationName],
[Extent2].[Country] AS [Country],
[Extent2].[Description] AS [Description],
[Extent1].[Photo] AS [Photo]
FROM [dbo].[LocationPhotos] AS [Extent1]
INNER JOIN [dbo].[Locations] AS [Extent2] ON [Extent1].[LocationID] = [Extent2].
[LocationID]

—RESPONSE TO UPDATE
exec sp_executesql
N'update [dbo].[Locations]
 set [Description] = @0
 where ([LocationID] = @1)',
N'@0 nvarchar(500),@1 int',
@0='Trust us, you''ll love it!',@1=1

--RESPONSE TO DELETE
exec sp_executesql N'delete [dbo].[LocationPhotos]
where ([LocationID] = @0)',N'@0 int',@0=1

exec sp_executesql N'delete [dbo].[Locations]
where ([LocationID] = @0)',N'@0 int',@0=1

Now that we’ve taken a look at entity splitting, let’s put all the Destination data back
into a single table. If you’ve been following along in Visual Studio, remove the entity
splitting configuration we just added and reinstate the single ToTable call to map Des
tination to the Locations table:

ToTable("Locations", "baga");

Mapping a Single Entity Across Multiple Tables | 103

Controlling Which Types Get Mapped to the Database
Each time you’ve added a class to the model, you’ve also had to add a DbSet into the
BreakAwayContext. The DbSet serves two functions. The first is that it returns a queryable
set of a particular type. The second is that it lets DbModelBuilder know that the type
referred to in each set should be included in the model.

But this is not the only way to ensure that a type becomes part of your model. There
are three ways for a type to be included in the model:

1. Expose a DbSet of the type in the context.

2. Have a reference to the type in another type that is mapped (i.e., the type is reach-
able from another type in the model).

3. Reference a type from any Fluent API call on the DbModelBuilder.

You’ve seen the first in action. Let’s check out the other two.

We’ll add a new class to the model: Reservation.

Example 5-14. The new Reservation class

namespace Model
{
 public class Reservation
 {
 public int ReservationId { get; set; }
 public DateTime DateTimeMade { get; set; }
 public Person Traveler { get; set; }
 public Trip Trip { get; set; }
 public DateTime PaidInFull { get; set; }
 }
}

If you run the application, the DbModelBuilder will not be aware of this type. There’s
no DbSet<Reservation> and neither of the other two conditions listed above have been
met. Therefore, the model will not change and the database will not get recreated. If
you look at the database, there is no Reservations table.

Now, let’s go to the Person class and add a property so that we can see all of the
Reservations made by a Person:

public List<Reservation> Reservations { get; set; }

Run the app again, and now you’ll see a Reservations table in the database. You can
see the new table in Figure 5-5.

104 | Chapter 5: Using Conventions and Configurations for Database Mappings

Figure 5-5. New Reservations table

By convention, because Person is in the model and Person is aware of the Reservation
class, Code First pulls Reservation into the model as well.

Now let’s look at the third convention for including a class in the model—providing a
configuration.

First, comment out the Reservations property in Person to be sure you’re back to the
state where the Reservation class will not be discovered by the model:

// public List<Reservation> Reservations { get; set; }

Add a fluent configuration for reservation. The effect will be the same whether you
encapsulate the configuration into an EntityTypeConfiguration class and add it into
the modelBuilder.Configurations or if you just call modelBuilder.Entity for the type
directly in OnModelCreating. Just to keep things organized, we’ll create a separate con-
figuration class, shown in Example 5-15.

Example 5-15. An empty configuration class for Reservation

public class ReservationConfiguration :
 EntityTypeConfiguration<Reservation>
{
}

Notice that we’ve done nothing more than declare the class. There’s no code in it. This
is enough to allow you to add the class to the DbModelBuilder configurations, which
will ensure that Reservation is included in the model and maps to the database table,
Reservations:

modelBuilder.Configurations.Add(new ReservationConfiguration());

Now that you’ve seen the conventional behavior that causes Code First to include a
class in its model, let’s look at how to configure the model to exclude a class.

Preventing Types from Being Included in the Model
You may have classes defined in your application that exist for purposes that do not
require them to be persisted in the database. And even if you do not define a DbSet or
any configurations for them, it’s possible that they are reachable by another type and

Controlling Which Types Get Mapped to the Database | 105

therefore pulled into the model—creating an expectation that the class will be involved
in queries or updates to the database.

However, you can explicitly tell Code First to ignore a class that should not be part of
the model.

Using Data Annotations to ignore types

The NotMapped annotation can be applied to a class to instruct Code First to exclude
the type from the model:

[NotMapped]
public class MyInMemoryOnlyClass

Using Fluent Configuration to ignore types

With the Fluent API, you’ll use the Ignore method to prevent types from being pulled
into the model. If you want to ignore a class, you need to do this directly from the
DbModelBuilder, not inside of an EntityTypeConfiguration:

modelBuilder.Ignore<MyInMemoryOnlyClass>();

Understanding Property Mapping and Accessibility
There are a variety of factors that affect whether or not properties in your classes are
recognized and mapped by Code First. Following is a list of rules to be aware of when
defining properties in your classes, what to expect from convention, and how to change
the default mapping with configuration.

Scalar Property Mapping
Scalar properties are only mapped if they can be converted to a type that is supported
by EDM.

The valid EDM types are Binary, Boolean, Byte, DateTime, DateTimeOffset, Decimal,
Double, Guid, Int16, Int32, Int64, SByte, Single, String, Time.

Scalar properties that can’t be mapped to an EDM type are ignored (e.g., enums and
unsigned integers).

Accessibility of Properties, Getters, and Setters
1. A public property will be automatically mapped by Code First.

2. The setter can be marked with a more restrictive accessor, but the getter must
remain public for the property to be mapped automatically.

3. A nonpublic property must be configured using the Fluent API in order to be map-
ped by Code First.

106 | Chapter 5: Using Conventions and Configurations for Database Mappings

In the case of nonpublic properties, this means you need to be able to access the prop-
erty from wherever you perform the configuration.

For example, if you had a Person class with an internal Name property that lived in the
same assembly as your PersonContext class, you could call modelBuilder.Entity<Per
son>().Property(p => p.Name) in the OnModelCreating method of your Person context.
This would cause the property to be included in your model.

However, if Person and PersonContext were defined in separate assemblies, you could
add a PersonConfiguration class (EntityConfiguration<Person>) to the same assembly
as the Person class and perform the configuration inside the configuration class. This
would require that the assembly containing the domain classes have a reference to
EntityFramework.dll. The PersonConfig configuration class could then be registered in
the OnModelCreating method of the PersonContext.

A similar approach can be used for protected and private properties. However, the
configuration class must be nested inside the class that is part of the model, so that it
can access private and protected properties. Here is an example of such a class, which
hides the Name with a private modifier but allows external code to set Name using a
CreatePerson method. The nested PersonConfig class has access to the locally scoped
Name property:

public class Person
{
 public int PersonId { get; set; }
 private string Name { get; set; }

 public class PersonConfig : EntityTypeConfiguration<Person>
 {
 public PersonConfig()
 {
 Property(b => b.Name);
 }
 }

 public string GetName()
 {
 return this.Name;
 }

 public static Person CreatePerson(string name)
 {
 return new Person { Name = name };
 }
}

When the configuration class is nested, you can register it like this:

modelBuilder.Configurations.Add(new Person.PersonConfig());

A common scenario people ask about is preventing developers from modifying a par-
ticular property (e.g., PersonId) in code by setting its setter to private or internal. This

Understanding Property Mapping and Accessibility | 107

is possible thanks to the second rule listed above: the setter can be marked with a more
restrictive accessor, but the getter must remain public for the property to be mapped
automatically. Entity Framework will use reflection to access a nonpublic setter, but
this is not supported when running in medium trust. With the exception of medium trust
scenarios, this means that the context will be able to populate restricted properties
when materializing objects as a result of a query or an insert. The context will still be
able to set the value of that property as a result of queries or inserts—even if the context
and domain class are in separate assemblies or namespaces. This will work with key
values as well as nonkey values.

Preventing Properties from Being Included in the Model
By convention, all public properties that have both a getter and a setter will be included
in the model.

Code First uses the same configuration methods—NotMapped in Data Annotations and
Ignore in Fluent configurations—to exclude properties from classes.

A typical example of a property that you might not want to store in the database is one
that performs a calculation using other properties in a class. For example, you might
want to have easy access to a person’s full name based on their first and last name. The
class can calculate that on the fly and you may have no need to store it in the database.

If a property has only a getter or a setter, but not both, it will not be included in the
model.

If you had the following property, FullName, in the Person class, it would not get mapped
because it has a getter but no setter:

public string FullName
{
 get { return String.Format("{0} {1}",
 FirstName.Trim(), LastName); }
}

However, you might have a property with both a getter and a setter that you don’t want
persisted in the database. For example, the Destination class might have a string with
the current forecast in it. But you don’t want to discover the forecast on-demand, and
you might have a routine elsewhere in the application that populates the forecast:

private string _todayForecast;

public string TodayForecast
{
 get { return _todayForecast; }
 set { _todayForecast = value; }
}

108 | Chapter 5: Using Conventions and Configurations for Database Mappings

That’s a case where you won’t want to persist the forecast info in the database. Entity
Framework should not include the property when querying or modifying the database
table that maps to Destination.

Data Annotations for Ignoring a Property
With Data Annotations, you can apply the NotMapped attribute:

[NotMapped]
public string TodayForecast

Fluent Configuration for Ignoring a Property
In the Fluent API, you can configure the entity to ignore a property. Here’s an example
of using the Ignore method in the DestinationConfiguration class:

Ignore(d => d.TodayForecast);

Note that there is a known bug when using NotMapped or Ignore on pri-
vate properties. You can see a description of the problem in an MSDN
Connect item. An August 18, 2011, comment by Microsoft in the same
issue says, “This has been fixed and will be released in the next major
release of Code First.”

Mapping Inheritance Hierarchies
Entity Framework supports a variety of inheritance hierarchies in the model. Whether
you define your model with Code First, Model First, or Database First has no bearing
on the types of inheritance or how Entity Framework works with these types for query-
ing, change tracking, and updating data.

Chapter 14 of Programming Entity Framework addresses inheritance in
detail. In the following sections, we’ll focus on how to achieve the de-
sired inheritance in your model, but we won’t spend a lot of time on
interacting with the types in the hierarchy.

Working with Code First’s Default Inheritance: Table Per Hierarchy (TPH)
Table Per Hierarchy (TPH) describes mapping inherited types to a single database table
that uses a discriminator column to differentiate one subtype from another. When you
create inheritance in your model, this is how Code First convention will infer the table
mapping by default. To see this in action, let’s make two changes to the model. First,
we’ll remove the IsResort property from Lodging and then create a separate Resort class
that inherits from Lodging. Example 5-16 displays these classes.

Mapping Inheritance Hierarchies | 109

http://connect.microsoft.com/VisualStudio/feedback/details/675167/ef-cf-notmappedattribute-ignored-on-private-properties
http://connect.microsoft.com/VisualStudio/feedback/details/675167/ef-cf-notmappedattribute-ignored-on-private-properties
http://shop.oreilly.com/product/9780596807252.do

Example 5-16. Modified Lodging class and a new Resort class that derives from Lodging

public class Lodging
{
 public int LodgingId { get; set; }

 [Required]
 [MaxLength(200)]
 [MinLength(10)]
 public string Name { get; set; }
 public string Owner { get; set; }
 // public bool IsResort { get; set; }
 public decimal MilesFromNearestAirport { get; set; }
 [InverseProperty("PrimaryContactFor")]
 public Person PrimaryContact { get; set; }
 [InverseProperty("SecondaryContactFor")]
 public Person SecondaryContact { get; set; }
 public int DestinationId { get; set; }
 public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }
}

public class Resort : Lodging
{
 public string Entertainment { get; set; }
 public string Activities { get; set; }
}

Figure 5-6 shows the impact on the database using Code First convention.

Figure 5-6. Discriminator and Resort type fields in Lodgings table

The Resort information is stored in the Lodgings table, and Code First created a column
called Discriminator. Notice that it is non-nullable and its type is nvarchar(128). By
default, Code First will use the type name of each type in the hierarchy as the value
stored in the discriminator column. For example, if you add and run the InsertLodg
ing method (Example 5-17), the INSERT command generated by Entity Framework puts
the string “Lodging” into the Discriminator column in the new database row.

110 | Chapter 5: Using Conventions and Configurations for Database Mappings

Example 5-17. Code to insert a new Lodging type

private static void InsertLodging()
{
 var lodging = new Lodging
 {
 Name = "Rainy Day Motel",
 Destination=new Destination
 {
 Name="Seattle, Washington",
 Country="USA"
 }
 };

 using (var context = new BreakAwayContext())
 {
 context.Lodgings.Add(lodging);
 context.SaveChanges();
 }
}

Alternatively, Example 5-18 shows code that specifically instantiates a new Resort type.

Example 5-18. Code to insert a new Resort type

private static void InsertResort()
{
 var resort = new Resort {
 Name = "Top Notch Resort and Spa",
 MilesFromNearestAirport=30,
 Activities="Spa, Hiking, Skiing, Ballooning",
 Destination=new Destination{
 Name="Stowe, Vermont",
 Country="USA"}
 };
 using (var context = new BreakAwayContext())
 {
 context.Lodgings.Add(resort);
 context.SaveChanges();
 }
}

This time, Entity Framework will insert the string “Resort” into the Discriminator col-
umn in the database.

This conventional behavior is based on the possibility that you might add more derived
Lodging types. If the discriminator column was simply a Boolean that indicated if the
Lodging was a Resort or not, there would be no room to expand the hierarchy. This
flexibility works well for conventional behavior.

Mapping Inheritance Hierarchies | 111

Customizing the TPH Discriminator Field with the Fluent API
You do have the ability to specifically configure the name and type of the discriminator
column as well as the possible values used for delineating the various types. You can
do this with the Fluent API.

There is no Data Annotation to customize the TPH mapping.

You employ the same Map configuration that you used for the entity splitting above.
That allows you to include a few configurations at once.

Some configurations are only available inside of the Map method.

Example 5-19 shows a configuration added to the LodgingConfiguration class.

Example 5-19. Configuring the discriminator column name and possible values

Map(m =>
 {
 m.ToTable("Lodgings");
 m.Requires("LodgingType").HasValue("Standard");
 })
.Map<Resort>(m =>
 {
 m.Requires("LodgingType").HasValue("Resort");
 });

Notice we’re seeing some new configuration methods—Requires and HasValue.
Requires is a configuration that is specifically there to define a discriminator column.
HasValue is also specific to configuring discriminators. You can use HasValue to specify
what value is used for a particular type. We’ll tell Code First to use LodgingType as the
name of the discriminator column rather than use the conventional name, Discrimina
tor. By convention, Code First uses the class name as the discriminator value (for ex-
ample, “Lodging”). Instead we’ll tell it to use “Standard” for the Lodging base class.
Once you begin specifying discriminator values, you need to configure all of them, even
if, like “Resort”, they match convention.

You might know that the only derived type you’ll ever have for Lodging is Resort and
therefore decide that a Boolean, such as IsResort, will suffice. In that case, the value
will be a Boolean. You don’t need to tell Code First that it is a Boolean. Just supply the
desired values and Code First will type the discriminator column accordingly.

112 | Chapter 5: Using Conventions and Configurations for Database Mappings

The mapping to turn the discriminator into a Boolean field called IsResort is shown in
Example 5-20.

Example 5-20. Configuring a discriminator column to be a boolean

Map(m =>
{
 m.ToTable("Lodging");
 m.Requires("IsResort").HasValue(false);
})
.Map<Resort>(m =>
{
 m.Requires("IsResort").HasValue(true);
});

The resulting bit column, IsResort, is shown in Figure 5-7.

Figure 5-7. The renamed discriminator column, IsResort

Configuring Table Per Type (TPT) Hierarchy
While TPH contains all of the types for a hierarchy in a single table, Table Per Type
(TPT) only stores properties from the base class in a single table. Additional properties
defined on a derived type are stored in a separate table with a foreign key back to the
core table. If your database schema uses separate tables for a hierarchy, you’ll need to
explicitly configure the derived types to follow suit. This is a simple configuration where
all you need to do is specify the table name of a derived type. You can do that with Data
Annotations or the Fluent API.

Here’s the configured Resort type:

[Table("Resorts")]
public class Resort : Lodging
{
 public string Entertainment { get; set; }
 public string Activities { get; set; }
}

Mapping Inheritance Hierarchies | 113

The combination of the inheritance and the Table Data Annotation will tell Code First
to create a new table for the Resort type, and because it inherits from Lodging, it will
inherit the Lodging’s key property.

TPT or TPH? How to Choose?
Alex James from the Entity Framework team has a blog post called “Tip 12—How to
choose an Inheritance Strategy” that you might want to check out if you would like
some additional guidance on choosing an inheritance strategy.

Figure 5-8 shows the Lodgings and new Resorts table in the database. Notice that
Lodgings no longer has a discriminator or the Resort fields (Entertainment and
Activities).

Figure 5-8. TPT configuration resulting in a Resorts table

The new Resorts table has a LodgingId column that is a primary key and a foreign key,
the latter of which is named for clarity: Resort_TypeConstraint_From_Lodg
ing_To_Resorts.

For the curious, there is no cascade delete defined on the Resort_Type
Constraint_From_Lodging_To_Resorts key. Entity Framework will take
care of deleting data from both tables when required.

When you add a new Resort and SaveChanges, this triggers Entity Framework to first
add a new row in the Lodging table with the appropriate values, return the new

114 | Chapter 5: Using Conventions and Configurations for Database Mappings

http://blogs.msdn.com/b/alexj/archive/2009/04/15/tip-12-choosing-an-inheritance-strategy.aspx
http://blogs.msdn.com/b/alexj/archive/2009/04/15/tip-12-choosing-an-inheritance-strategy.aspx

LodgingId value, and then insert a new row into Resorts including the LodgingId value
that came from the new row in the Lodgings table.

With the Fluent API you can use the ToTable mappings to achieve the TPT mapping as
well. Again, you need only specify the table name for the derived entity, Resort, so that
Code First will create the extra table and constraint that you saw in Figure 5-8. Exam-
ple 5-21 shows that mapping when it’s built directly from the modelBuilder instance.

Example 5-21. In-line ToTable mapping used for TPT inheritance

modelBuilder.Entity<Resort>().ToTable("Resorts");

You could also start with the base class configuration and use the Map method to get to
the Resort type (Example 5-22).

Example 5-22. Mapping ToTable within the Map method

modelBuilder.Entity<Lodging>()
 .Map<Resort>(m =>
 {
 m.ToTable("Resorts");
 }
);

If you want to be explicit, you can specify the table name for each of the types in the
hierarchy. In this case, the Lodgings table is already presumed by convention, but with
a more detailed configuration, the intent is more clear to someone reading the code as
shown in Example 5-23.

Example 5-23. Mapping ToTable for a TPT inheritance from base entity

modelBuilder.Entity<Lodging>().Map(m =>
 {
 m.ToTable("Lodgings");
 }).Map<Resort>(m =>
 {
 m.ToTable("Resorts");
 });

What’s interesting about this last variation is that you can map a derived class from its
base class configuration. You would not be able to start with Entity<Resort> and then
add Map<Lodging> to it.

All three variations of building this mapping achieve the same end. But now you have
some options that you might want to choose from to better align with your coding style.

Configuring for Table Per Concrete Type (TPC) Inheritance
Table Per Concrete Type (TPC) is similar to TPT, except that all the properties for each
type are stored in separate tables. There is no core table that contains data common to
all types in the hierarchy. This allows you to map an inheritance hierarchy to tables

Mapping Inheritance Hierarchies | 115

with overlapping (common) fields. This can be useful when you set ancient data aside
in a spare table. Perhaps we’re mapping Lodgings and Resorts to a table where the resort
table also contains Name, Owner, and MilesFromNearestAirport. You can configure your
hierarchy to map to tables with this schema using the Fluent API.

There is no Data Annotation support for this mapping.

Let’s change the mapping for the Lodging/Resort hierarchy once again.

TPC mapping is configured using the MapInheritedProperties method, which is only
accessible from within the Map method. And since we also need a separate table for the
derived class (that will be duplicating the inherited properties), we can combine the
Table configuration and the MapInheritedProperties configuration.

Note that you must include the ToTable mapping for the base entity this time. With the
TPT mapping this wasn’t required, but with TPC, it is:

modelBuilder.Entity<Lodging>()
 .Map(m =>
 {
 m.ToTable("Lodgings");
 })
 .Map<Resort>(m =>
 {
 m.ToTable("Resorts");
 m.MapInheritedProperties();
 });

MapInheritedProperties is essentially telling Code First that it should remap all the
properties that are inherited from the base class to new columns in the table for the
derived type.

If you are following along in Visual Studio, you should wait until reading
the next section before running this code.

Avoiding Mapping Exceptions with TPC
If you attempt to run the existing application to check out this configuration, you will
get an exception that details a mapping conflict as the DbModelBuilder attempts to create
the new model. This is thanks to a conflict with the Lodging class.

TPC requires that relationships in any of the classes in the TPC hierarchy be expressed
with an explicit foreign key property. Take a look at the Lodging class, which is listed
as a reminder in Example 5-24.

116 | Chapter 5: Using Conventions and Configurations for Database Mappings

Example 5-24. A reminder of the Lodging class

public class Lodging
{
 public int LodgingId { get; set; }

 public string Name { get; set; }
 public string Owner { get; set; }
 public decimal MilesFromNearestAirport { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }

 public Person PrimaryContact { get; set; }
 public Person SecondaryContact { get; set; }
 public int DestinationId { get; set; }
 public Destination Destination { get; set; }
}

While the navigation to Destination is complemented by the DestinationId property,
there are two navigation reference properties that do not have a foreign key property:
PrimaryContact and SecondaryContact. Code First leverages the database foreign key
fields to take care of persisting the relationship. If you’ve been using Entity Framework
since the first version, you may recognize this as independent associations, which were
the only option for building relationships in Visual Studio 2008. Foreign Key associa-
tions, where we can have a foreign key property such as DestinationId in the class, were
introduced to Entity Framework in Visual Studio 2010 and .NET 4. TPC can’t work
with classes that have independent associations in them.

To fix this problem, you’ll have to add foreign key properties into the Lodging class. To
some developers, this is a painful pill to swallow—being forced to have your domain
classes comply with Entity Framework’s rules in order to participate. But unfortunately,
as you may have gathered by this point, many mappings in Code First are simpler to
achieve when there’s a foreign key property available.

Remember that in our domain, it’s possible that a Lodging has neither a PrimaryCon
tact nor a SecondaryContact. When we added the PrimaryContact and SecondaryCon
tact navigation properties in Chapter 4, Code First convention inferred them to be
nullable (aka Optional). The new foreign key properties will be integers, which are by
default non-nullable. You’ll run into a conflict because it won’t be possible to have an
optional contact if you are required to have a value in its foreign key. Therefore, we’ll
make the new foreign key properties nullable as well. Notice the use of the Nulla
ble<T> generic when declaring the new properties, PrimaryContactId and SecondaryCon
tactId, in Example 5-25.

Example 5-25. Lodging class with nullable foreign keys

abstract public class Lodging
{
 public int LodgingId { get; set; }

 public string Name { get; set; }
 public string Owner { get; set; }

Mapping Inheritance Hierarchies | 117

 public decimal MilesFromNearestAirport { get; set; }

 public List<InternetSpecial> InternetSpecials { get; set; }
 public Nullable<int> PrimaryContactId { get; set; }
 public Person PrimaryContact { get; set; }
 public Nullable<int> SecondaryContactId { get; set; }
 public Person SecondaryContact { get; set; }
 public int DestinationId { get; set; }
 public Destination Destination { get; set; }
}

We’re not quite done yet. If you recall from Chapter 4, Code First will not be able to
recognize unconventional foreign key properties without some help. These new prop-
erties do not match any of the three possible patterns that Code First will use to detect
foreign keys (e.g., PersonId). So you’ll need to use the HasForeignKey mapping you
learned about in Example 4-3.

Example 5-26 shows the two existing configurations for these properties that are in the
LodgingConfiguration class. We’ve modified them by adding the HasForeignKey map-
ping to each one.

Example 5-26. Fixing up the model for unconventional foreign key properties

HasOptional(l => l.PrimaryContact)
 .WithMany(p => p.PrimaryContactFor)
 .HasForeignKey(p=>p.PrimaryContactId);

HasOptional(l => l.SecondaryContact)
 .WithMany(p => p.SecondaryContactFor)
 .HasForeignKey(p => p.SecondaryContactId);

Finally all of the pieces are in place for the TPC inheritance. The model will validate
and, as you can see in Figure 5-9, indeed, all of the inherited fields from the Lodging
class are now in the Resorts table. And thanks to all of the work we did to help Code
First work out the foreign keys, those are properly configured in the Resorts table as
well.

Equally important is that the console application methods we wrote to insert Lodg
ings and to insert Resorts succeed at their tasks.

When working with an EDMX file, it is possible to specify which prop-
erties to overlap in a TPC hierarchy. With Code First, you can’t filter
out which properties to overlap. MapInheritedProperties will always
cause all of the properties to be mapped to the derived table(s).

118 | Chapter 5: Using Conventions and Configurations for Database Mappings

Working with Abstract Base Classes
All of the inheritance types you’ve seen work whether your base class is one that you
can instantiate or if it’s abstract. But we think it will be helpful to take a quick look at
using abstract base classes when modeling with Code First.

Let’s modify the Lodging to be an abstract base class. That means we’ll never use
Lodging directly. It can’t be instantiated. Instead, we will only ever work with classes
that derive from it. In Example 5-27, we’ll add a second derived class: Hostel.

Example 5-27 lists all three classes.

Example 5-27. The abstract base class, Lodging, with its derived classes, Resort and Hostel

abstract public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 public List<InternetSpecial> InternetSpecials { get; set; }
 public Nullable<int> PrimaryContactId { get; set; }
 public Person PrimaryContact { get; set; }
 public Nullable<int> SecondaryContactId { get; set; }
 public Person SecondaryContact { get; set; }
 public int DestinationId { get; set; }
 public Destination Destination { get; set; }

Figure 5-9. Resorts table designed for a TPC hierarchy mapping

Working with Abstract Base Classes | 119

}

public class Resort : Lodging
{
 public string Entertainment { get; set; }
 public string Activities { get; set; }
}

public class Hostel: Lodging
{
 public int MaxPersonsPerRoom { get; set; }
 public bool PrivateRoomsAvailable { get; set; }
}

When you change Lodging to be an abstract class, this means you can
no longer instantiate Lodging directly. Any code that you may have in
the console app that does instantiate Lodging will cause compilation
errors, so you should remove or comment out any methods that contain
such code. A great trick is to surround the method with the #if/
#endif processor directive and use false for the if logic. For example:

#if false
private static void InsertLodging()
 {
 var lodging = new Lodging
 {
 Name = "Rainy Day Motel",
 Destination = new Destination
 {
 Name = "Seattle, Washington",
 Country = "USA"
 }
 };

 using (var context = new BreakAwayContext())
 {
 context.Lodgings.Add(lodging);
 context.SaveChanges();
 }
 }
#endif

To include the code again, change the directive to #if true.

We’ve removed the TPC configuration so the resulting model and database table is
purely based on Code First convention, which means that the inheritance will revert
to TPH. All of the fields from the derived classes are contained in the Lodgings table.
You can see in Figure 5-10 that even though Lodging is an abstract class, the effect on
the database is no different than it was with the default TPH mapping when Lodging
was not abstract. However, since we have another derived class, there are new prop-
erties included for the Hostel type.

120 | Chapter 5: Using Conventions and Configurations for Database Mappings

Figure 5-10. Default TPH setup with an abstract base class

Example 5-28 shows a series of methods to insert a new Resort and a new Hostel, and
then query all Lodgings to see what we’ve got in the database.

Example 5-28. Code to insert a Resort, then insert a Hostel, and finally to query Lodgings

private static void InsertResort()
{
 var resort = new Resort
 {
 Name = "Top Notch Resort and Spa",
 MilesFromNearestAirport = 30,
 Activities = "Spa, Hiking, Skiing, Ballooning",
 Destination = new Destination { Name = "Stowe, Vermont",
 Country = "USA" }
 };
 using (var context = new BreakAwayContext())
 {
 context.Lodgings.Add(resort);
 context.SaveChanges();
 }
}

private static void InsertHostel()
{
 var hostel = new Hostel
 {
 Name = "AAA Budget Youth Hostel",
 MilesFromNearestAirport = 25,
 PrivateRoomsAvailable=false,
 Destination = new Destination {
 Name = "Hanksville, Vermont",
 Country = "USA" }
 };
 using (var context = new BreakAwayContext())
 {

Working with Abstract Base Classes | 121

 context.Lodgings.Add(hostel);
 context.SaveChanges();
 }
}

private static void GetAllLodgings()
{
 var context = new BreakAwayContext();
 var lodgings = context.Lodgings.ToList();
 foreach (var lodging in lodgings)
 {
 Console.WriteLine("Name: {0} Type: {1}",
 lodging.Name, lodging.GetType().ToString());
 }
 Console.ReadKey();
}

When Entity Framework sends the INSERT commands to the database, it populates the
Discriminator column with “Resort” for the Resort class and “Hostel” for the Hostel
type. When retrieving all Lodgings, it filters on Resort and Hostel discriminators, as
shown in the SQL listed in Example 5-29.

Example 5-29. SQL to retrieve all of the known types that derive from Lodging

SELECT
[Extent1].[Discriminator] AS [Discriminator],
[Extent1].[LodgingId] AS [LodgingId],
[Extent1].[Name] AS [Name],
[Extent1].[Owner] AS [Owner],
[Extent1].[MilesFromNearestAirport] AS [MilesFromNearestAirport],
[Extent1].[PrimaryContactId] AS [PrimaryContactId],
[Extent1].[SecondaryContactId] AS [SecondaryContactId],
[Extent1].[DestinationId] AS [DestinationId],
[Extent1].[Entertainment] AS [Entertainment],
[Extent1].[Activities] AS [Activities],
[Extent1].[MaxPersonsPerRoom] AS [MaxPersonsPerRoom],
[Extent1].[PrivateRoomsAvailable] AS [PrivateRoomsAvailable]
FROM [dbo].[Lodgings] AS [Extent1]
WHERE [Extent1].[Discriminator] IN ('Resort','Hostel')

Why does it use the discriminators instead of simply returning all of the lodging data?
This is to cover the scenario in which there are other types in the database that aren’t
part of the model.

Figure 5-11 shows the output into the console after the items inserted in the first two
methods are retrieved in the GetAllLodgings method.

You can modify the mappings to turn this hierarchy into a TPT or TPC mapping with
Code First. For example, if you specify table names for both the Resort and Hostel class
while the Lodging class is abstract, you’ll end up with three database tables: Resorts,
Hostels, and Lodgings. The code in Example 5-28 will work with no changes. SQL
commands will span and join the tables as necessary, just as they did when Lodging was
not abstract. All of the behavior around abstract base classes in the model when you’re

122 | Chapter 5: Using Conventions and Configurations for Database Mappings

using Code First simply follows EF’s behavior with abstract base classes since the first
version of Entity Framework. The only difference is that you are defining the model in
a new way.

Now that we've explored abstract base classes, go ahead and remove the abstract key-
word from Lodging so that we can create instances of it again. You can also re-enable
any of the methods you commented out when we made Lodging abstract:

public class Lodging

Mapping Relationships
So far you have seen how to control the mapping of classes and their primitive prop-
erties; the final piece is to look at how relationships are mapped. This includes con-
trolling the name of foreign key columns and the name of the join table in many-to-
many relationships. Chapter 4 covered a wide variety of conventions and configurations
for relationships. Now that you are more familiar with mappings, this section will pro-
vide you with additional ways to control particular details of how those relationships
are mapped.

Controlling Foreign Keys Included in Your Class
You’ve seen that a relationship is created by adding navigation properties between two
classes. You’ve also seen that you can optionally include a foreign key property in the
dependent class. By default, Code First will use the property name as the name for the
column. You saw this back in Chapter 4, when you added the DestinationId to the
Lodging class. Code First added a DestinationId column to your database and config-
ured it as a foreign key.

Changing the column name for a foreign key property is exactly the same as changing
the column name for any other primitive property. Changing the column name of a
foreign key property has no impact on Code First’s ability to detect that it is a foreign
key. Foreign key detection only considers the property name and not the name of the
column it is mapped to.

Let’s say you want to change the column name to be destination_id. You can apply
the Column annotation directly to the foreign key property:

[Column("destination_id")]
public int DestinationId { get; set; }

Figure 5-11. Output to console window

Mapping Relationships | 123

Alternatively, you can change the column name using the Fluent API by adding the
following configuration to the LodgingConfiguration class:

Property(l => l.DestinationId).HasColumnName("destination_id");

Controlling Foreign Keys That Are Created by Code First
As early as Chapter 2, you saw that Code First will create a foreign key column for you
when you don’t include a foreign key property in your class. You saw this in action
with the Lodging class, where a Destination_DestinationId column was added to the
database for you. Let’s remove the DestinationId foreign key property from the Lodg
ing class so that Code First will automatically generate a foreign key column again
(Example 3-10).

There is one method, DeleteDestinationInMemoryAndDbCascade(), in
your console application that uses the Lodging.DestinationId property.
You’ll want to comment out that method if you plan to run the appli-
cation with this modification. You will also need to comment out the
configuration you just added to rename the column that Destinatio
nId is mapped to.

Example 5-30. Foreign key property commented out

public class Lodging
{
 public int LodgingId { get; set; }
 public string Name { get; set; }
 public string Owner { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 //public int DestinationId { get; set; }
 public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }
 public Nullable<int> PrimaryContactId { get; set; }
 public Person PrimaryContact { get; set; }
 public Nullable<int> SecondaryContactId { get; set; }
 public Person SecondaryContact { get; set; }
}

Changing the name of a generated foreign key column is something that can only be
done through the Fluent API. In the same way that you used a Map method to control
the mapping of a class, you can also use the Map method to control the mapping of a
relationship.

Example 5-31 shows how you can add the Map method to the relationship configuration
to specify foreign key names.

124 | Chapter 5: Using Conventions and Configurations for Database Mappings

Example 5-31. Generated foreign key column configured

HasRequired(l => l.Destination)
 .WithMany(d => d.Lodgings)
 .Map(c => c.MapKey("destination_id"));

Now that you've seen this behavior, go ahead and revert these changes by uncom-
menting the DestinationId foreign key property and removing the above Fluent API
configuration. You can also uncomment the DeleteDestinationInMemoryAndDbCascade
method and the configuration to rename the column that DestinationId is mapped to:

public int DestinationId { get; set; }
public Destination Destination { get; set; }

Controlling generated foreign keys with entity splitting

In “Mapping a Single Entity Across Multiple Tables” on page 99, you saw something
called entity splitting. This allows the same class to spread its properties over multiple
tables. In these cases you may want to control which table the generated foreign key
column gets added to.

By default, the generated foreign key will get added to the first table that you specify
in the entity splitting configuration. You can change this by appending a ToTable call
to the end of your generated foreign key mapping. For example, assume you had split
the Lodging entity between a Lodgings table and a LodgingInfo table. If you wanted to
place the foreign key to the related destination in the LodgingInfo table, you would add
a ToTable call to the configuration (Example 5-32).

This code is just provided as an example and won’t work with your
project if you have been following along.

Example 5-32. Generated foreign key column configured

HasRequired(l => l.Destination)
 .WithMany(d => d.Lodgings)
 .Map(c => c.MapKey("destination_id").ToTable("LodgingInfo"));

Controlling Many-to-Many Join Tables
In “Exploring Many-to-Many Relationships” on page 78, you saw that introducing a
many-to-many relationship between Activity and Trip resulted in the ActivityTrips
join table being added to your database (Figure 4-10).

However, in our domain it may make more sense for that table to be called TripActiv
ities. Fortunately you can also use the Map method when configuring a many-to-many
relationship. Let’s start by changing the table name. You can do so by adding the con-
figuration shown in Example 5-33 to the TripConfiguration class.

Mapping Relationships | 125

Example 5-33. Many-to-many join table name changed

HasMany(t => t.Activities)
 .WithMany(a => a.Trips)
 .Map(c => c.ToTable("TripActivities"));

The mapping begins by using the HasMany and WithMany methods to identify the rela-
tionship that you are configuring. Once you have identified the relationship, you can
use the Map method to specify the mapping. Within the mapping, you then use the
ToTable method to specify the table name. We’ll look at some of the other things that
can be done inside the Map method next. The join table with the new name applied in
the database is shown in Figure 5-12.

Figure 5-12. Join table renamed

You might also want to tidy up those foreign key names to just be TripIdentifier and
ActivityId. Fortunately, you can also specify column names inside the Map method
(Example 5-34).

Example 5-34. Changing the many-to-many column names

HasMany(t => t.Activities)
 .WithMany(a => a.Trips)
 .Map(c =>
 {
 c.ToTable("TripActivities");
 c.MapLeftKey("TripIdentifier");
 c.MapRightKey("ActivityId");
 });

Notice that you use the MapLeftKey and MapRightKey methods to specify the column
names. MapLeftKey affects the foreign key column that points to the class being config-
ured. In this case you added the configuration to the TripConfiguration class, so Trip
is the entity being configured. Therefore Trip is considered the left entity and Activ
ity is considered the right entity. Figure 5-13 shows the join table with its table name
and column names changed.

126 | Chapter 5: Using Conventions and Configurations for Database Mappings

Figure 5-13. Join table columns renamed

Summary
In this chapter you worked with features of Code First that related directly to how your
classes and properties map to the database. You’ve learned how to control the naming
of columns, tables, and even schemas. You’ve seen how to configure classes that map
to multiple tables, as well as how to create multiple classes that point to a common
table. You’ve also spent time working with inheritance hierarchies, some of which can
only be configured using the Fluent API, and finally you learned how to apply mappings
to relationships.

In all, the chapters so far have taught you how to achieve in Code First almost all of
the same mapping capabilities that you would have access to if you were working with
a EDMX file in the designer. With Code First, you have the ability to plug your domain
classes into the Entity Framework without being tied to a designer or an extra model.

Summary | 127

CHAPTER 6

Controlling Database Location,
Creation Process, and Seed Data

In previous chapters you have seen how convention and configuration can be used to
affect the model and the resulting database schema. In this chapter you will see how
the convention and configuration concept applies to the database that is used by Code
First.

You’ll learn how Code First conventions select a database and how you can alter this
convention or specify the exact database that your context should use. The topics we
cover will help you target other database providers, deploy your application, and per-
form many other database-related tasks.

You’ll also discover how database initializers can be used to control the database cre-
ation process and insert seed data into the database. This can be particularly useful
when writing automated scenario tests.

Controlling the Database Location
So far you have relied on the Code First convention to select which database the ap-
plication targets. By default, Code First has created the database on localhost\SQLEX-
PRESS using the fully qualified name of your context class for the database name (i.e.,
the namespace plus the class name). There will be times when this won’t be appropriate
and you need to override the convention and tell Code First which database to connect
to. You can modify or replace the convention used to select a database using Code First
connection factories. Alternatively, you can just tell Code First exactly which database
to use for a particular context, using the DbContext constructors or your application
configuration file.

129

Code First database creation and initialization works with SQL Azure
in the same way that it works with any local database. You can see this
in action in “Tutorial: Developing a Windows Azure Data Application
Using Code First and SQL Azure”. Vendors have begun modifying their
database providers to support Code First as well. Be sure to check for
this support before trying to use Code First with one of the third-party
providers.

Controlling Database Location with a Configuration File
The easiest and most definitive way to control the database that your context connects
to is via a configuration file. Using the configuration file allows you to bypass all data-
base location–related conventions and specify the exact database you want to use. This
approach is particularly useful if you want to change the connection string of your
context to point to a production database as you deploy your application.

By default, the connection string that you add to your configuration file should have
the same name as your context. The name of the connection string can be either just
the type name or the fully qualified type name. In “Controlling Connection String Name
with DbContext Constructor” on page 132, you will see how to use a connection string
with a name that does not match your context name. Add an App.config file to your
BreakAwayConsole application with a BreakAwayContext connection string, as shown in
Example 6-1.

Example 6-1. Connection string specified in App.config

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="BreakAwayContext"
 providerName="System.Data.SqlClient"
 connectionString="Server=.\SQLEXPRESS;
 Database=BreakAwayConfigFile;
 Trusted_Connection=true" />
 </connectionStrings>
</configuration>

For those familiar with creating connection strings when your applica-
tion uses an EDMX file, notice that this is not an EntityConnection
String but simply a database connection string. With Code First, you
have no need to reference metadata files or the System.Data.Entity
Client namespace.

Modify the Main method so that it calls the InsertDestination method, as shown in
Example 6-2.

130 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

http://www.microsoft.com/windowsazure/learn/tutorials/road-trip-tutorial/
http://www.microsoft.com/windowsazure/learn/tutorials/road-trip-tutorial/

Example 6-2. Main method modified to call InsertDestination

static void Main()
{
 InsertDestination();
}

Run the application, and you will notice that a BreakAwayConfigFile database has been
created in your local SQL Express instance (Figure 6-1).

Figure 6-1. New database used based on configuration file setting

Code First matched the BreakAwayContext name of your context with the BreakAwayCon
text connection string in the configuration file. Because an entry was found in the
configuration file, the convention for locating a database was not used. The connection
string entry could also have been named DataAccess.BreakAwayContext, which is the
fully qualified name of the context.

Controlling Database Name with DbContext Constructor
You’ve seen how to set the connection string that your context will use via the config-
uration file; now let’s look at some ways to control the database connection from code.
So far you have just used the default constructor on DbContext, but there are also a
number of other constructors available. Most of these are for more advanced scenarios,
which will be covered later in this book, but there are two constructors that allow you
to affect the database being connected to.

If you added a connection string to your configuration file, as shown in
the previous section, be sure to remove it before starting this section.
Remember that the configuration file overrides everything, including
the features you will see in this section.

DbContext includes a constructor that takes a single string parameter to control the
database name. If you use this constructor, the value you supply will be used in place
of the fully qualified context name. Add a constructor to BreakAwayContext that accepts

Controlling the Database Location | 131

a string value for the database name and passes it to the base constructor
(Example 6-3). Notice that you are also adding a default constructor to ensure that all
the existing code from previous chapters continues to work.

Example 6-3. Database name constructor added to context

public BreakAwayContext()
{ }

public BreakAwayContext(string databaseName)
 : base(databaseName)
{ }

Modify the Main method to call a new SpecifyDatabaseName method (Example 6-4).

Example 6-4. SpecifyDatabaseName method added to application

static void Main()
{
 SpecifyDatabaseName();
}

private static void SpecifyDatabaseName()
{
 using (var context =
 new BreakAwayContext("BreakAwayStringConstructor"))
 {
 context.Destinations.Add(new Destination { Name = "Tasmania" });
 context.SaveChanges();
 }
}

This new method uses the constructor you just added to specify a database name. This
name is used instead of the fully qualified name of your context. Run the application
and you will see that a database named BreakAwayStringConstructor has been created
in your local SQL Express instance.

Controlling Connection String Name with DbContext Constructor
Earlier in this chapter, you saw that you are able to specify a database to use in the
configuration file by adding a connection string with the same name as your context.
If you use the DbContext constructor that accepts a database name, Entity Framework
will look for a connection string whose name matches the database name. In other
words, with the default constructor, Entity Framework will look for a connection string
named BreakAwayContext, but with the constructor used in Example 6-4, it will expect
a connection string named BreakAwayStringConstructor.

You can also force the context to get its connection string from the configuration file
by supplying name=[connection string name] to this constructor. This way, you don’t
need to rely on name matching, since you are explicitly providing a connection string
name. If no connection string is found with the specified name, an exception is thrown.

132 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Example 6-5 shows how you can modify the default constructor of BreakAwayContext
to ensure that the connection string is always loaded from the configuration file.

If you are following along in Visual Studio, don’t make this change, since
we are no longer using the config file.

Example 6-5. Constructor defining which connection string should be loaded from App.config

public BreakAwayContext()
 :base("name=BreakAwayContext")
{ }

Reusing Database Connections
DbContext has another constructor that allows you to supply a DbConnection instance.
This can be useful if you have other application logic that works with a DbConnection
or if you want to reuse the same connection across multiple contexts. To see this in
action, add another constructor to BreakAwayContext that accepts a DbConnection and
then passes the DbConnection to the base constructor, as shown in Example 6-6. You’ll
also notice that you need to specify a value for the contextOwnsConnection. This argu-
ment controls whether or not the context should take ownership of the connection. If
set to true, the connection will get disposed along with the context. If set to false,
your code will need to take care of disposing the connection.

You will need to add a using for the System.Data.Common namespace
when you add this new constructor.

Example 6-6. DbConnection constructor added to context

public BreakAwayContext(DbConnection connection)
 : base(connection, contextOwnsConnection: false)
{ }

Modify the Main method to call a new ReuseDbConnection method, as shown in
Example 6-7.

You’ll also need to add a using for the System.Data.SqlClient name-
space, because the code makes use of the SqlConnection type.

Controlling the Database Location | 133

Example 6-7. ReuseDbConnection method added to application

static void Main()
{
 ReuseDbConnection();
}

private static void ReuseDbConnection()
{
 var cstr = @"Server=.\SQLEXPRESS;
 Database=BreakAwayDbConnectionConstructor;
 Trusted_Connection=true";

 using (var connection = new SqlConnection(cstr))
 {
 using (var context = new BreakAwayContext(connection))
 {
 context.Destinations.Add(new Destination { Name = "Hawaii" });
 context.SaveChanges();
 }

 using (var context = new BreakAwayContext(connection))
 {
 foreach (var destination in context.Destinations)
 {
 Console.WriteLine(destination.Name);
 }
 }
 }
}

The ReuseDbConnection constructs a SqlConnection and then reuses it to construct two
separate BreakAwayContext instances. In the example, the SqlConnection is just con-
structed from a connection string that is defined in code. However, Code First isn’t
concerned with where you got the connection. You could be getting this connection
string from a resource file. You may also be using some existing components that give
you an existing DbConnection instance.

Controlling Database Location with Connection Factories
One final option for controlling the database that is used is by swapping out the con-
vention that Code First is using. The convention that Code First uses is available via
Database.DefaultConnectionFactory. Connection factories implement the IDbConnec
tionFactory interface and are responsible for taking the name of a context and creating
a DbConnection pointing to the database to be used. Entity Framework includes two
connection factory implementations and you can also create your own.

Working with SqlConnectionFactory

The default connection factory for Code First is SqlConnectionFactory. This connection
factory will use the SQL Client (System.Data.SqlClient) database provider to connect

134 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

to a database. The default behavior will select a database on localhost\SQLEXPRESS
using the fully qualified name of the context type as the database name. Integrated
authentication will be used for authenticating with the database server.

You can override parts of this convention by specifying segments of the connection
string that are to be set for any connection it creates. These segments are supplied to
the constructor of SqlConnectionFactory using the same syntax used in connection
strings. For example, if you wanted to use a different database server, you can specify
the Server segment of the connection string:

Database.DefaultConnectionFactory =
 new SqlConnectionFactory("Server=MyDatabaseServer");

Alternatively, you may want to use different credentials to connect to the database
server:

Database.DefaultConnectionFactory =
 new SqlConnectionFactory("User=MyUserName;Password=MyPassWord;");

Working with SqlCeConnectionFactory

Entity Framework also includes SqlCeConnectionFactory, which uses SQL Compact
Client to connect to SQL Server Compact Edition databases. By default the database
file name matches the fully qualified name of the context class and is created in the |
ApplicationData| directory.

For executable applications, |ApplicationData| resolves to the directory
of the application that is running. For websites, it resolves to an
App_Data subdirectory of the website’s root directory.

Installing SQL Server Compact Edition
Before using SQL Server Compact Edition, you need to install the runtime. The runtime
is available as an installer or via NuGet. Install the SqlServerCompact NuGet package
to your BreakAwayConsole project. You can install the NuGet package by right-clicking
on the References folder in your BreakAwayConsole project and selecting “Add Library
Package Reference….” Select “Online” from the left menu and then search for “SqlSer-
verCompact.”

Modify the Main method, as shown in Example 6-8, to set the SqlCeConnectionFac
tory, and then call the InsertDestination method you created back in Chapter 2. The
connection factories are included in the System.Data.Entity.Infrastructure name-
space, so you will need to add a using for this. Be sure to read the rest of this section
before running the code.

Controlling the Database Location | 135

Example 6-8. Changing the default connection factory

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

 Database.DefaultConnectionFactory =
 new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0");

 InsertDestination();
}

Notice that you need to specify a string that identifies the database provider to use
(known as the provider invariant name). This string is chosen by the provider writer to
uniquely identify the provider. Most providers keep the same identifier between ver-
sions, but SQL Compact uses a different identifier for each version. This is because
SQL Compact providers are not backwards-compatible (you can’t use, for example,
the 4.0 provider to connect to a 3.5 database). The SqlCeConnectionFactory needs to
know what version of the provider to use, so it requires you to supply this string.

If you want to test out this code, you will need to make a small change to your model.
Back in Chapter 3, we configured Trip.Identifier to be a database-generated key.
Identifier is a GUID property and SQL Server had no problem generating values for
us. SQL Compact, however, isn’t able to generate values for GUID columns. If you
want to run the application, remove either the Data Annotation or Fluent API call that
configures Trip.Identifier as database-generated.

Once you’ve made this change, you can run the application and you will notice that a
DataAccess.BreakawayContext.sdf file is created in the output directory of your appli-
cation (Figure 6-2). Now that you’ve seen SQL Compact in action, go ahead and re-
enable the configuration to make Trip.Identifier database-generated.

Writing a custom connection factory

So far you have seen the connection factories that are included in Entity Framework,
but you can also write your own by implementing the IDbConnectionFactory interface.
The interface is simple and contains a single CreateConnection method that accepts the
context name and returns a DbConnection.

In this section, you’ll build a custom connection factory that is very similar to SqlCon
nectionFactory, except it will just use the context class name, rather than its fully
qualified name for the database. You’ll also build this custom factory so that it will
remove the word Context if it’s found in the context name.

Start by adding a CustomConnectionFactory class to your DataAccess project (Exam-
ple 6-9).

136 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Example 6-9. Custom connection factory implementation

using System.Data.Common;
using System.Data.Entity.Infrastructure;
using System.Data.SqlClient;
using System.Linq;

namespace DataAccess
{
 public class CustomConnectionFactory : IDbConnectionFactory
 {
 public DbConnection CreateConnection(
 string nameOrConnectionString)
 {
 var name = nameOrConnectionString
 .Split('.').Last()
 .Replace("Context", string.Empty);

 var builder = new SqlConnectionStringBuilder
 {
 DataSource = @".\SQLEXPRESS",
 InitialCatalog = name,

Figure 6-2. SQL Server Compact file created in output directory

Controlling the Database Location | 137

 IntegratedSecurity = true,
 MultipleActiveResultSets = true
 };

 return new SqlConnection(builder.ToString());
 }
 }
}

The CustomConnectionFactory implementation uses the Split method to take the section
of the context name after the final period to use for the database name. It then replaces
any instances of the Context word with an empty string. Then it uses SqlConnection
StringBuilder to create a connection string that is then used to construct a SqlConnec
tion.

With this method in place, you can modify the Main method to make use of the custom
connection factory you just created (Example 6-10). You do so by setting the Custom
ConnectionFactory as the DefaultConnectionFactory before other code, which will be
using a context.

Example 6-10. Default connection factory set to new custom factory

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

 Database.DefaultConnectionFactory = new CustomConnectionFactory();

 InsertDestination();
}

Run the application and you will see that a new “BreakAway” database is created on
the local SQL Express instance (Figure 6-3). The custom factory you just created has
removed the namespace from the database name and also stripped the word “Context”
from the end.

Figure 6-3. BreakAway database created on local SQL Express

138 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Working with Database Initialization
In Chapter 2, you saw that an initializer can be set for a context type using the Data
base.SetInitializer method. The initializer you set allowed the database to be drop-
ped and recreated whenever the model changed:

Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

Initialization involves two main steps. First, the model is created in memory using the
Code First conventions and configuration discussed in previous chapters. Second, the
database that will be used to store data is initialized using the database initializer that
has been set. By default, this initialization will use the model that Code First calculated
to create a database schema for you. Initialization will occur one time per application
instance; in .NET Framework applications, the application instance is also referred to
as an AppDomain. Initialization is triggered the first time that the context is used. Initi-
alization occurs lazily, so creating an instance of the context is not enough to cause
initialization to happen. An operation that requires the model must be performed, such
as querying or adding entities.

The initialization process is thread-safe, so multiple threads in the same
AppDomain can use the same context type. DbContext itself is not thread-
safe, so a given instance of the context type must only be used in a single
thread.

Controlling When Database Initialization Occurs
There are situations where you may want to control when initialization occurs, rather
than leaving it to happen automatically the first time your context is used in an appli-
cation instance. Initialization can be triggered using the DbContext.Database.Initial
ize method. This method takes a single boolean parameter named force. Supplying
false will cause the initialization to occur only if it hasn’t yet been triggered in the
current AppDomain. Remember that running the initializer once per AppDomain is the
default behavior. Setting force to true will cause the initialization process to run even
if it has already occurred in the current AppDomain. Because the context also triggers
initialization, this code needs to run prior to the context being used in the AppDomain.

Why would you want to manually trigger database initialization? You may want to
manually trigger initialization so that any errors that occur during model creation and
database initialization can be caught and processed in a single place. Another reason
to force initialization to occur would be to front-load the cost of creating a large and/
or complex model.

Let’s see this in action. Modify the Main method, adding in code to force database
initialization to occur, and handle any exceptions that occur as a result of building the
model (Example 6-11).

Working with Database Initialization | 139

Example 6-11. Main method updated to process initialization errors

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

 using (var context = new BreakAwayContext())
 {
 try
 {
 context.Database.Initialize(force: false);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Initialization Failed...");
 Console.WriteLine(ex.Message);
 }
 }
}

Now we’ll make a change that will cause initialization to fail by asking Code First to
map a numeric property to a string column. Doing this will cause the model creation
process to fail before Code First even tries to create the database schema.

Modify Activity and add in a Column annotation that specifies a varchar data type to
be used for the ActivityId property (Example 6-12).

Example 6-12. ActivityId mapped to an incompatible database type

public class Activity
{
 [Column(TypeName = "varchar")]
 public int ActivityId { get; set; }
 [Required, MaxLength(50)]
 public string Name { get; set; }
 public List<Trip> Trips { get; set; }
}

Run the application and the program will display the exception informing us that the
data type that was specified is not valid because of the invalid cast:

Initialization Failed...

Schema specified is not valid. Errors:

(122,12) : error 2019: Member Mapping specified is not valid. The type 'Edm.Int32[Nul-
lable=False,DefaultValue=]' of member 'ActivityId' in type 'DataAccess.Activity' is not
compatible with 'SqlServer.varchar[Nullable=False,DefaultValue=,Max-
Length=8000,Unicode=False,FixedLength=False,StoreGeneratedPattern=Identity]' of
member 'ActivityId' in type 'CodeFirstDatabaseSchema.Activity'.

(146,10) : error 2019: Member Mapping specified is not valid. The type 'Edm.Int32[Nul-
lable=False,DefaultValue=]' of member 'ActivityId' in type 'DataAccess.Activity' is not
compatible with 'SqlServer.varchar[Nullable=False,DefaultValue=,Max-

140 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Length=8000,Unicode=False,FixedLength=False]' of member 'Activity_ActivityId' in
type 'CodeFirstDatabaseSchema.ActivityTrip'.

Remove the annotation you just added to DestinationId and run the application again.
This time there will be no error.

Switching Off Database Initialization Completely
Of course, not every scenario calls for the database to be automatically initialized, and
Entity Framework caters to these situations, too. For example, if you are mapping to
an existing database, you probably want Code First to error if it can’t connect to the
database, rather than trying to magically create one for you. You can switch off initi-
alization by passing null to Database.SetInitializer:

Database.SetInitializer(null);

When the initializer is set to null, DbContext.Database.Initialize can still be used to
force model creation to occur.

Database Initializers Included in Entity Framework
You’ll notice that Database.SetInitializer accepts an instance of IDatabaseInitial
izer<TContext>. There are three implementations of this interface included in Entity
Framework. These implementations are abstract, so you can derive from them and
customize the behavior. We’ll walk through creating your own implementation a little
later on.

CreateDatabaseIfNotExists
This is the default initializer that is set for all contexts unless Database.SetInitial
izer is used to specify an alternative initializer. This is the safest initializer, as the
database will never be dropped automatically, causing data loss. We saw in Chap-
ter 2 that if the model is changed from when the database was created, an exception
is thrown during initialization:

The model backing the “BreakAwayContext” context has changed since the data-
base was created. Either manually delete/update the database, or call Database.SetI
nitializer with an IDatabaseInitializer instance. For example, the DropCreateDa
tabaseIfModelChanges strategy will automatically delete and recreate the database,
and optionally seed it with new data.

Because this is the default initializer, you shouldn’t need to set it, but if you find a
need to you can use the following code:

Database.SetInitializer(
 new CreateDatabaseIfNotExists<BreakAwayContext>());

DropCreateDatabaseWhenModelChanges
You’ve seen this initializer used throughout the previous chapters to make sure the
database always matches the current model. If Code First detects that the model

Working with Database Initialization | 141

and database do not match, the database will be dropped and recreated so that it
matches the current model. This is useful during development, but you obviously
wouldn’t want to use this when deploying your application, as it will result in data
loss. We’ve already seen the code required to set this initializer:

Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

DropCreateDatabaseAlways
This initializer will drop and recreate the database regardless of whether the model
matches the database or not. At first glance, you may wonder why you would ever
want to do that. If you are writing integration tests that exercise your whole ap-
plication stack, it can be useful to have a way to reset the database to a well-known
state before running a test. Modify the Main method as shown in Example 6-13 to
run some code that could represent a test that uses your application to insert a
single Destination.

Example 6-13. Implementation of a pseudo integration test

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseAlways<BreakAwayContext>());
 RunTest();
}

private static void RunTest()
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(new Destination { Name = "Fiji" });
 context.SaveChanges();
 }

 using (var context = new BreakAwayContext())
 {
 if (context.Destinations.Count() == 1)
 {
 Console.WriteLine(
 "Test Passed: 1 destination saved to database");
 }
 else
 {
 Console.WriteLine(
 "Test Failed: {0} destinations saved to database",
 context.Destinations.Count());
 }
 }
}

Because the initializer is set to drop and recreate the database each time, you know that
the database will be empty before the test starts. You won’t always want the database

142 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

to be empty before running integration tests, and we’ll look at seeding data a little later
on. Go ahead and run the application, and we will see that the test passes.

So far we have just executed a single test, but normally there would be multiple tests
required to test an application. Update the Main method so that it runs the same test
twice in a row (Example 6-14).

Example 6-14. Main updated to run the test twice

static void Main(string[] args)
{
 Database.SetInitializer(
 new DropCreateDatabaseAlways<BreakAwayContext>());

 RunTest();
 RunTest();
}

Run the application, and you will see that the first execution of the test method will
succeed but the second one will fail, stating that there are two destinations in the da-
tabase. The second test is failing because the data from the first execution is still in the
database. This is happening because AppDomain only runs the initializer once by default.

Earlier in this chapter, you learned that you can use Database.Initialize to force ini-
tialization to occur, even if has already happened in the current AppDomain. Modify the
RunTest method to include a call to Database.Initialize with force set to true to ensure
the database is reset before each test (Example 6-15). Run the application again and
you will see both tests now pass. The database is getting dropped and recreated in the
well-known state before each execution.

Example 6-15. RunTest updated to force initialization

static void RunTest()
{
 using (var context = new BreakAwayContext())
 {
 context.Database.Initialize(force: true);

 context.Destinations.Add(new Destination { Name = "Fiji" });
 context.SaveChanges();
 }

 using (var context = new BreakAwayContext())
 {
 if (context.Destinations.Count() == 1)
 {
 Console.WriteLine(
 "Test Passed: 1 destination saved to database");
 }
 else
 {
 Console.WriteLine(
 "Test Failed: {0} destinations saved to database",

Working with Database Initialization | 143

 context.Destinations.Count());
 }
 }
}

Dropping and recreating the database is an easy way to start each test with a well-known
state, but it can be expensive if you are running a lot of integration tests. Consider using
System.Transactions.TransactionScope as a way to avoid changes being permanently
saved to the database during each test.

Creating a Custom Database Initializer
So far, you have used the initializers that are included in the Entity Framework API.
There may be times when the initialization logic that you want doesn’t align with any
of the included initializers. Fortunately Database.SetInitializer accepts the IDataba
seInitializer interface, which you can implement to provide your own logic.

As well as writing your own custom initializers, you can also find ini-
tializers that other people have created. One example of this is available
in the EFCodeFirst.CreateTablesOnly NuGet package. This initializer
will allow you to drop and create the tables in an existing database,
rather than dropping and creating the actual database itself. This is par-
ticularly useful if you are targeting a hosted database where you don’t
have permission to drop or create the entire database.

There could be any number of reasons you want to implement your own initializer. We
are going to look at a simple scenario where the developer will be prompted before the
database is dropped and recreated. The Database property exposes a variety of methods
to interact with the database such as checking to see if it exists, creating it, or dropping
it. The three initializers that are included in the API contain logic that leverages these
methods. You can combine the methods in logic in your own class. That’s what you'll
do in this next example. Add the PromptForDropCreateDatabaseWhenModelChages class
to your DataAccess project (Example 6-16).

Example 6-16. Custom initializer

using System;
using System.Data.Entity;

namespace DataAccess
{
 public class PromptForDropCreateDatabaseWhenModelChages<TContext>
 : IDatabaseInitializer<TContext>
 where TContext : DbContext
 {
 public void InitializeDatabase(TContext context)
 {
 // If the database exists and matches the model

144 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

 // there is nothing to do
 var exists = context.Database.Exists();
 if (exists && context.Database.CompatibleWithModel(true))
 {
 return;
 }

 // If the database exists and doesn't match the model
 // then prompt for input
 if (exists)
 {
 Console.WriteLine
 ("Existing database doesn't match the model!");
 Console.Write
 ("Do you want to drop and create the database? (Y/N): ");
 var res = Console.ReadKey();
 Console.WriteLine();
 if (!String.Equals(
 "Y",
 res.KeyChar.ToString(),
 StringComparison.OrdinalIgnoreCase))
 {
 return;
 }

 context.Database.Delete();
 }

 // Database either didn't exist or it didn't match
 // the model and the user chose to delete it
 context.Database.Create();
 }
 }
}

The PromptForDropCreateDatabaseWhenModelChages class implements a single Initiali
zeDatabase method. First, it checks if the database exists and matches the current
model. If it does, there is nothing else to be done and the initializer returns. If the
database exists but doesn’t match the current model, you will be prompted to see if
you want to drop and create the database. If you decide not to recreate the database,
the initializer returns and Entity Framework will attempt to run against the existing
database schema. If you do decide to recreate the database, the existing database is
dropped. The final line of code simply creates the database and is only reached if the
database didn’t exist or if we chose to recreate the database.

The custom initializer now needs to be registered with the Entity Framework; modify
the Main method to take care of this (Example 6-17). You’ll notice that we’re also up-
dating Main so that it calls the InsertDestination method that we wrote back in
Chapter 2.

Working with Database Initialization | 145

Example 6-17. Custom initializer registered in Main

static void Main()
{
 Database.SetInitializer(new
 PromptForDropCreateDatabaseWhenModelChages<BreakAwayContext>());
 InsertDestination();
}

Let’s go ahead and change the model so that it no longer matches the database. Modify
the Destination class by adding a MaxLength annotation to the Name property:

[MaxLength(200)]
public string Name { get; set; }

Now run the application, and you will be prompted, asking if you want to drop and
create the database. Answer no (N) to tell our custom initializer to leave the database
alone this time. You’ll notice that the application still completes successfully. This is
because the changes you made don’t prevent Entity Framework from being able to use
the current model to access the out-of-date database schema. Entity Framework expects
that Destination names should be 200 characters or less. Since the database didn’t
change, it doesn’t enforce max length, so it’s happy with the insert statement that Entity
Framework is sending to the database.

Now let’s make a change that will affect the insert statement. Modify the Destination
class to include a new TravelWarnings property:

public string TravelWarnings { get; set; }

Run the application again. As before, you’ll be prompted, asking if you want to drop
and create the database. Select not to recreate the database again, and this time you
will get a DbUpdateException. You’ll need to drill through the inner exceptions to find
the actual cause of the error (Figure 6-4).

The inner exception of the top-level exception is an UpdateException, and the inner
exception of that is a SqlException. The SqlException finally has the message that ex-
plains what happened: “Invalid column name 'TravelWarnings'.” The problem is that
Entity Framework is trying to execute the SQL shown in Example 6-18, but the Trav
elWarnings column doesn’t exist in the database.

146 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Figure 6-4. Exception while inserting a Destination

Example 6-18. Invalid SQL being executed

insert [dbo].[Destinations]([Name], [Country], [Description],
 [TravelWarnings], [Photo])
values (@0, @1, @2, null, null)
select [DestinationId]
from [dbo].[Destinations]
where @@ROWCOUNT > 0 and [DestinationId] = scope_identity()

Run the application again, but this time select to drop and recreate the database when
prompted. The application will now execute successfully.

Setting Database Initializers from a Configuration File
Setting initializers in code is an easy way to get started while developing, but when it’s
time to deploy your application, you probably want to have an easier way to set them
without modifying code. It’s highly unlikely you want to deploy your application with
the DropCreateDatabaseIfModelChanges initializer set in production! Add an appSet
tings section to the config file of your BreakAwayConsole project that includes the ini-
tializer setting shown in Example 6-19.

Example 6-19. Initializer set in configuration file

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="DatabaseInitializerForType DataAccess.BreakAwayContext, DataAccess"
 value="System.Data.Entity.DropCreateDatabaseIfModelChanges`1
 [[DataAccess.BreakAwayContext, DataAccess]], EntityFramework" />

Working with Database Initialization | 147

 </appSettings>
</configuration>

The example includes a line break for formatting, but you should re-
move the line break in your App.config file. The value needs to be on a
single line for the setting to work.

There is a lot going on in the line of configuration, so let’s break down how it is struc-
tured. The key section always starts off with DatabaseInitializerForType followed by
a space, then the assembly qualified name of the context that the initializer is being set
for. In our case that is DataAccess.BreakAwayContext, DataAccess, which simply means
the DataAccess.BreakAwayContext type that is defined in the DataAccess assembly. The
value section is the assembly qualified name of the database initializer to be used. It
looks complex because we are using a generic type; we are setting
DropCreateDatabaseIfModelChanges<BreakAwayContext> defined in the EntityFrame
work assembly.

Also modify the Main method so that it no longer sets an initializer in code:

static void Main()
{
 InsertDestination();
}

Now make a change to the model so that you can test that the entry in our configuration
file is being used. Modify the Destination class to include a new ClimateInfo property:

public string ClimateInfo { get; set; }

Run the application, and you will see that the database gets dropped and recreated with
the new ClimateInfo column.

Now if you want to deploy your application, you may want to change the initializer to
CreateDatabaseIfNotExists so that you never incur automatic data loss. You may also
be working with a DBA who is going to create the database for you. If the database is
being created outside of the Code First workflow, you will want to switch off database
initialization altogether. You can do that by changing the configuration file to specify
Disabled for the initializer (Example 6-20).

Example 6-20. Initializer disabled in configuration file

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="DatabaseInitializerForType DataAccess.BreakAwayContext, DataAccess"
 value="Disabled" />
 </appSettings>
</configuration>

148 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Now that we’ve explored setting database initializers in a config file, be sure to remove
any settings that you have added.

Using Database Initializers to Seed Data
In this chapter, you have seen how database initializers can be used to control how and
when Code First creates the database. So far, the database that Code First creates has
always been empty, but there are situations where you may want Code First to create
your database with some seed data. You may have some lookup tables that have a
predefined set of data, such as Gender or Country. You may just want some sample
data in your database while you are working locally so that you can see how your
application behaves.

Another scenario where seed data can be useful is running integration tests. In the
previous section, we wrote a test that relied on an empty database; now let’s write one
that relies on a database containing some well-known data.

Let’s start by writing the test you are going to run. Modify the Main method to run a
test that verifies there is a Destination entry for “Great Barrier Reef” in our database
(Example 6-21). Be sure you have removed any settings you added to the config file in
the previous section.

Example 6-21. Implementation of pseudo test reliant on seed data

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseAlways<BreakAwayContext>());
 GreatBarrierReefTest();
}

static void GreatBarrierReefTest()
{
 using (var context = new BreakAwayContext())
 {
 var reef = from destination in context.Destinations
 where destination.Name == "Great Barrier Reef"
 select destination;

 if (reef.Count() == 1)
 {
 Console.WriteLine(
 "Test Passed: 1 'Great Barrier Reef' destination found");
 }
 else
 {
 Console.WriteLine(
 "Test Failed: {0} 'Great Barrier Reef' destinations found",
 context.Destinations.Count());
 }

Using Database Initializers to Seed Data | 149

 }
}

Run the application, and you will see that the test fails, stating that there are no entries
for “Great Barrier Reef” in the database. This makes sense, because you set the Drop
CreateDatabaseAlways initializer, which will create and empty the database for us.

What the test really needs is a variation of DropCreateDatabaseAlways that will insert
some seed data after it has created the database. The three initializers that are included
in the Entity Framework are not sealed, meaning you can create your own initializer
that derives from one of the included ones. All three of the included initializers also
include a Seed method that is virtual (Overridable in Visual Basic), meaning it can be
overridden. The seed method has an empty implementation, but the initializers will
call it at the appropriate time to insert seed data that you provide.

To check out this feature, add a DropCreateBreakAwayWithSeedData class to your Data-
Access project. The key to providing the seed data is to override the initializer’s Seed
method, as shown in Example 6-22.

Example 6-22. Initializer with seed data implemented

using System.Data.Entity;
using Model;

namespace DataAccess
{
 public class DropCreateBreakAwayWithSeedData :
 DropCreateDatabaseAlways<BreakAwayContext>
 {
 protected override void Seed(BreakAwayContext context)
 {
 context.Destinations.Add(new Destination
 { Name = "Great Barrier Reef" });
 context.Destinations.Add(new Destination
 { Name = "Grand Canyon" });
 }
 }
}

Notice that there is no call to context.SaveChanges() at the end of the
Seed method in Example 6-24. The base Seed method will call that for
you after the code in your custom method has been executed. If you let
Visual Studio’s editor auto-implement the override method for you, it
will include a call to base.Seed(context). You can leave that in if you
like, but be sure to let it be the last line of code in the method.

Now that you have created an initializer that will insert seed data, it needs to be regis-
tered with Entity Framework so that it will be used. This is achieved in same way that
we registered the included initializers earlier—via the Database.SetInitializer
method.

150 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

Modify the Main method so that DropCreateBreakAwayWithSeedData is registered
(Example 6-23).

Example 6-23. Initializer with seed data is registered

static void Main()
{
 Database.SetInitializer(new DropCreateBreakAwayWithSeedData());
 GreatBarrierReefTest();
}

Run the application again, and the test will pass this time because Code First is now
using DropCreateBreakAwayWithSeedData to initialize the database. Because this initial-
izer derives from DropCreateDatabaseAlways, it will drop the database and recreate and
empty one. The Seed method that you overrode will then be called and the seed data
you specified is inserted into the newly created database each time.

The Seed method in Example 6-24 is a great first look at seeding the
database but somewhat simplistic. You can insert various types of data
and related data as well. For an example of an efficient LINQ method
used to insert entire graphs of related data in Seed, check out my blog
post, Seeding a Database with Code First.

Using Database Initialization to Further Affect Database
Schema
In addition to seeding a database when Code First creates it, you may want to affect
the database in ways that can’t be done with configurations or data seeding. For ex-
ample, you may want to create an Index on the Name field of the Lodgings table to speed
up searches by name.

You can achieve this by calling the DbContext.Database.ExecuteSqlCommand method
along with the SQL to create the index inside the Seed method. Example 6-24 shows
the modified Seed method that forces this Index to be created before the data is inserted.

Example 6-24. Using the ExecuteSqlCommand to add an Index to the database

protected override void Seed(BreakAwayContext context)
{
 context.Database.ExecuteSqlCommand
 ("CREATE INDEX IX_Lodgings_Name ON Lodgings (Name)");
 context.Destinations.Add(new Destination
 { Name = "Great Barrier Reef" });
 context.Destinations.Add(new Destination
 { Name = "Grand Canyon" });
}

Using Database Initialization to Further Affect Database Schema | 151

http://thedatafarm.com/blog/data-access/seeding-a-database-with-ef4-code-first

Summary
In this chapter you saw how Code First interacts with the database by default, and how
you can override this default behavior. You’ve learned how to control the database that
Code First connects to and how that database is initialized. You’ve also seen how da-
tabase initializers can be used in scenario tests to insert seed data into the database as
it is initialized.

Throughout this book, you have seen how Code First creates a model based on your
domain classes and configuration. You’ve then seen how Code First locates and initi-
alizes the database that the model will be used to access. In the next chapter, you will
learn about some advanced concepts that you probably won’t use regularly, but you
may find useful from time to time.

152 | Chapter 6: Controlling Database Location, Creation Process, and Seed Data

CHAPTER 7

Advanced Concepts

The Code First modeling functionality that you have seen so far should be enough to
get you up and running with most applications. However, Code First also includes
some more advanced functionality that you may require as your needs advance.
Throughout this book you’ve seen Code First’s conventions in action, but if there are
one or more conventions you don’t like, Code First allows you to remove them. You
may also want to get rid of that EdmMetadata table Code First is adding to your database.
Code First caches its model by default, and it’s possible to override that behavior to
solve problems like targeting multiple database providers in the same application in-
stance. This chapter will cover these topics and more.

Mapping to Nontable Database Objects
So far you have used Code First to map to tables, whether you are generating a database
or mapping to tables in an existing database. But databases support many other types
of objects, including stored procedures and views.

As of Entity Framework 4.2, Code First only has built-in support for tables, meaning
that it is only capable of generating schemas that contain tables. Therefore, if you are
using Code First to generate your database, you are restricted to tables.

However, if you are mapping to an existing database, you may have views, stored pro-
cedures, and other objects in the database you are mapping to. Let’s take a look at how
we can interact with those.

You have the option of manually editing the database schema after Code
First has created it. If you do manually edit the database to include
nontable objects, you can apply the same techniques discussed in this
section.

The Entity Framework team has indicated that they plan to add support
for mapping to other database objects in future releases.

153

Mapping to Updatable Views
In some cases you may want to simply map an entity to a view rather than a table. For
example, you may be mapping to a database that has a very large and confusing schema.
To simplify things, the database might contain a view that exposes the data for your
entity with more comprehensible column names. If the view is updatable, you can use
the Entity Framework to insert, update, and delete data as well as selecting it. Fortu-
nately, most databases, including SQL Server, use the same SQL syntax for interacting
with views as they do for tables. This means you can simply “lie” to Code First and tell
it that the view is a table. You do this by using the same configuration you use for
naming tables.

Curious about updatable views? Check out SQL Server’s “CREATE
VIEW (Transact-SQL)” topic on MSDN. There’s a helpful explanation
about what makes a view updatable.

For example, perhaps you want the Destination data to come from an updateable view
called my_destination_view rather than a table. You can use the Table annotation to
specify the view name:

[Table("my_detination_view")]
public class Destination

Alternatively, you can use the ToTable method from the Fluent API to map to the view:

modelBuilder.Entity<Destination>().ToTable("my_detination_view");

Using Views to Populate Objects
Not all scenarios call for mapping an entity directly to an updateable view. You may
find yourself wanting to leave a class mapped to a table but to have the ability to use a
view to retrieve a set of those classes in a particular scenario. For example, let’s assume
that you want to leave Destination mapped to the Destinations table, but in one area
of your application you want to load all the destinations from the TopTenDestina
tions view. You can use the SqlQuery method on DbSet to load entities based on some
SQL that you write:

var destinations = context.Destinations
 .SqlQuery("SELECT * FROM dbo.TopTenDestinations");

In the above code we are using a SQL statement that bypasses Entity Framework to get
back the desired Destination objects. The good thing is that once those objects are
retrieved from the database, they are treated exactly the same as objects that were
loaded any other way. This means you still get change tracking, lazy loading, and other
DbContext features for the Destination objects that were loaded.

154 | Chapter 7: Advanced Concepts

http://msdn.microsoft.com/en-us/library/ms187956.aspx
http://msdn.microsoft.com/en-us/library/ms187956.aspx

The SqlQuery method relies on an exact match between the column names in the result
set of the query you wrote and the names of the properties in your object. Because the
Destination class contains DestinationId, Name, and other properties, the view must
return columns with these same names. If the view does not have the same column
names as the properties on your class, you will need to alias the columns in your select
statement.

For example, let’s say that your TopTenDestinations view uses Id instead of
DestinationId for the primary key name. In SQL Server, you can use the AS word to
alias the Id column from the view as the DestinationId column that Entity Framework
is expecting, as you can see in Example 7-1.

Example 7-1. Querying a database view from a DbSet

var destinations = context.Destinations
 .SqlQuery(@"SELECT
 Id AS DestinationId,
 Name,
 Country,
 Description,
 Photo
 FROM dbo.TopTenDestinations");

Note that the column-to-property name matching does not take any mapping into
account. For example, if you had mapped the DestinationId property to a column
called Id in the Destinations table, the SqlQuery method would not use this mapping.
The SqlQuery method always attempts the column-to-property matching based on
property name. Therefore, the column in the result set would still need to be called
DestinationId.

Using Views to Populate Nonmodel Objects
The two techniques we have looked at so far allow you to use a view to populate a set
of objects that are part of your model. Once these objects are created, they are tracked
by the context and any changes will be written back to the database. You may find
yourself wanting to get the results of a view back into a read-only set of objects. The
results of the view may combine data from multiple tables and therefore can’t be map-
ped directly to an entity that is part of your model.

For example, you may have a view called DestinationSummaryView that combines data
from the Destinations and Lodgings tables. This view may have DestinationId, Name,
LodgingCount, and ResortCount columns. These columns don’t match any of the entities
in the BAGA model, but it would be great to be able to get the results back into a
purpose-built object that you can then use in your application.

The DestinationSummary class might look something like Example 7-2.

Mapping to Nontable Database Objects | 155

Example 7-2. DestinationSummary implementation

public class DestinationSummary
{
 public int DestinationId { get; set; }
 public string Name { get; set; }
 public int LodgingCount { get; set; }
 public int ResortCount { get; set; }
}

Because the class isn’t part of the BAGA model, you can’t use a DbSet to query for
results. Instead, you use the SqlQuery method on DbContext.Database as follows:

var summary = context.Database.SqlQuery<DestinationSummary>(
 "SELECT * FROM dbo.DestinationSummaryView");

In response, Entity Framework will run the SQL that you supplied to access the Desti
nationSummaryView view. It will then take these results and try to match the column
names up with the property names of the DestinationSummary class that you specified
in the generic argument of SqlQuery. Because the column and property names match,
we will get the results of the query in a collection of DestinationSummary objects.

Because we didn’t go through a DbSet as we did in Example 7-1, the DestinationSum
mary objects that are created are not tracked by the context. Therefore, if you change
any of the properties, Entity Framework will not pay any attention to those changes
any time SaveChanges is called.

Working with Stored Procedures
Code First does not have any support for mapping Insert, Update, and Delete state-
ments for your classes directly to stored procedures, as you are able to do in the designer.

The Entity Framework team has indicated that this is a common request
they hear from customers and something they will likely add in a future
release.

Using the same techniques you just saw for working with views, you can also use stored
procedures to fetch results from the database. For example, let’s say you have a Get
TopTenDestinations stored procedure that takes a single parameter to specify in which
country to look for destinations. You can use the SqlQuery method on DbSet to execute
this procedure:

var country = "Australia";
var destinations = context.Destinations
 .SqlQuery("dbo.GetTopTenDestinations @p0", country);

Notice that SqlQuery accepts parameters. See the sidebar “SqlQuery Parameters to
Prevent SQL Injection” on page 157 for more information.

156 | Chapter 7: Advanced Concepts

As you saw above with views, you can also use the DbContext.Database.SqlQuery
method to get back results from stored procedures that don’t match an entity in your
model. Let’s assume you have a GetDestinationSummary stored procedure and you want
to get the results in a collection of the DestinationSummary class you saw back in Ex-
ample 7-2. Let’s also say this stored procedure takes two parameters—one for the
country and the other for some keywords:

var country = "Australia";
var keyWords = "Beach, Sun";
var destinations = context.Database.SqlQuery<DestinationSummary>(
 "dbo.GetDestinationSummary @p0, @p1", country, keyWords);

In the above code, you can see that we’re using index-based naming for parameters. As
noted in the sidebar, Entity Framework will wrap these parameters up as DbParameter
objects for you to avoid any SQL injection issues. The column names in the result
returned by the stored procedure will be matched with the property names on Desti
nationSummary. Because DestinationSummary isn’t part of the BAGA model, the results
are not tracked and any changes will not be pushed back to the database.

SqlQuery Parameters to Prevent SQL Injection
The SqlQuery method allows you to specify parameters. Entity Framework will take
care of wrapping these into DbParameter objects to help prevent against SQL injection
attacks. You use a @p prefix for parameters followed by an integer index. Entity Frame-
work will then match these indexes up with the list of parameters you provide after the
query string. As with the view-based example you saw earlier, the results of the query
are tracked by the context and behave the same as results of any other query.

Removing Conventions
In previous chapters you have seen that Code First includes a set of conventions that
help build your model. You’ve seen how you can supplement or override what the
conventions do using Data Annotations or the Fluent API. One other option you have
is to switch off one or more of the default conventions.

Each Code First convention is implemented as a class in the System.Data.Entity.Mod
elConfiguration.Conventions namespace. Code First currently only allows you to re-
move one or more of the included conventions.

The ability to write your own conventions was included in a preview of
Code First. However, the Entity Framework team removed this func-
tionality because they felt that they didn’t have time to polish the design
and get to the appropriate quality level without holding up the much-
awaited release of Code First. It’s likely this feature will become avail-
able again in a future release.

Removing Conventions | 157

A full list of the Code First conventions that can be removed and a description of what
each convention does is available at http://msdn.microsoft.com/en-us/library/
gg696316(v=VS.103).aspx. The complete list of conventions is also shown in
Figure 7-1.

Figure 7-1. Code First conventions as listed in the MSDN library

While you can remove any of the conventions listed in Figure 7-1, we’ll use just one—
OneToManyCascadeDelete—to demonstrate how to go about this process. This conven-
tion adds a cascade delete rule to all required relationships.

158 | Chapter 7: Advanced Concepts

http://msdn.microsoft.com/en-us/library/gg696316(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg696316(v=VS.103).aspx

While you could just override the cascade behavior for every required relationship, if
you have a lot of relationships, it may make more sense just to disable the convention
altogether.

Switching off conventions is done in the OnModelCreating method on your context via
the DbModelBuilder.Conventions.Remove method. Add the following line of code to
OnModelCreating in your BreakAwayContext class:

modelBuilder.Conventions.Remove<OneToManyCascadeDeleteConvention>();

The model contains a required relationship between Lodging and Destination. Up until
now, Code First has been automatically adding a cascade delete rule to this relationship.
With the new code in place, run the application so that the database gets recreated and
this cascade delete will be removed from this relationship in the model and in the
database (Figure 7-2). It will also disappear from any other required relationships that
may exist.

Figure 7-2. Cascade delete off between Lodging and Destination

After switching off the conventions, you may decide that you want to reintroduce cas-
cade delete behavior on some of the relationships. You can do this using the Fluent API
as described back in Chapter 4.

In the BAGA model, it makes sense for us to have cascade delete enabled on required
relationships, so go ahead and re-enable the OneToManyCascadeDeleteConvention con-
vention by removing the modelBuilder.Conventions.Remove call we just added.

Taking Control of Model Caching
Throughout this book you have seen how Code First takes care of a lot of things for
you, but that you can take control of them and change the behavior when needed.
Model caching is no exception; in fact, you likely had no idea that Code First was
caching a model for you up to this point. After scanning your classes and applying
conventions and configuration, Code First keeps an in-memory version of your model

Taking Control of Model Caching | 159

around so that it can be reused in the application instance. This is the reason that the
OnModelCreating method is only hit once for each DbContext in an application instance.
In this section, you will learn more about what model caching is, when you might need
to override the conventions, and how you go about doing that.

Understanding Model Caching
In earlier chapters, you have seen that Code First will automatically discover and build
a model based on the DbSet properties that you expose on your context. The model
creation process involves taking that set of entity types, running the Code First con-
ventions on them, and then applying any additional configuration that you specified
via Data Annotations or the Fluent API. This process isn’t cheap on resources and can
take some time, especially if your model is large and/or complex. To avoid incurring
this cost every time you create an instance of your context, Code First runs this process
once and then caches the final model for your context type. Model caching occurs at
the AppDomain level.

You can see model caching in action by monitoring when the OnModelCreating method
is called on your context. Add a line to the OnModelCreating method that will write to
the console whenever it is called:

Console.WriteLine("OnModelCreating called!");

Modify the Main method to call the InsertDestination method a number of times
(Example 7-3). You added the InsertDestination method itself back in Chapter 2.

Example 7-3. Main updated to use the context multiple times

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());

 InsertDestination();
 InsertDestination();
 InsertDestination();
}

After running the application again, you will see that although the code constructs and
uses three separate instances of BreakAwayContext, the OnModelCreating method is only
called once. This is because Code First only calls OnModelCreating while creating the
model for the first context instance; after that, the final model is cached and is reused
for the following uses of BreakAwayContext.

Overriding Default Model Caching
There aren’t many situations where you need to take control of model caching. Provided
that the model for a given context type stays the same for every instance of that context

160 | Chapter 7: Advanced Concepts

with an AppDomain, the default behavior is going to work as expected. Using the default
behavior is also going to give you the best performance, because model creation will
only occur one time.

There are some situations where the model for a given context type may vary between
instances in the same AppDomain. One example would be using a multitenant database.
A multitenant database involves having the same model replicated multiple times in
the same physical database. For example, you may have a model that is used to store
blog posts and a website that displays them. Your website might contain a personal
and a work blog that both use the same model. In the database you could have the
tables used to store the data for this model replicated in two separate schemas. The
tables for your work blog may live in the work schema (work.Posts, work.Comments, etc.)
and the tables for your personal blog might live in the personal schema (per
sonal.Posts, personal.Comments, etc.). Each of these sets of tables is known as a tenant.
Database schemas are just one way to distinguish between tenants; there are many
other patterns, such as table prefixes.

If your application needs to access multiple tenants from the same AppDomain, the map-
ping between classes and tables is going to be different depending on what tenant you
are targeting. Different mapping means a different model, which in turn means the
default model caching won’t work for you.

Another example would be using the same context to target the same model on different
database providers in the same AppDomain. Different database providers means different
data types for the columns in the database, which in turn means a different model. Let’s
take a look at this scenario and how to handle model caching.

Add the TargetMultipleProviders method shown in Example 7-4. This method uses
the same context to access a SQL Server and SQL Server Compact Edition database.

You will need the SQL Server Compact Edition runtime installed to
complete this section. If you have completed Chapter 6, you have al-
ready installed the runtime. If not, see “Installing SQL Server Compact
Edition” on page 135. You may also remember that in Chapter 6 we had
to change our model to target SQL Compact. If you want to test out this
code, you will need to make the same change again here. Back in Chap-
ter 3, we configured Trip.Identifier to be a database-generated key.
Identifier is a GUID property, and SQL Server had no problem gener-
ating values for us. SQL Compact, however, isn’t able to generate values
for GUID columns. If you want to run the application, remove either
the Data Annotation or Fluent API call that configures Trip.Identi
fier as database-generated.

Taking Control of Model Caching | 161

Example 7-4. Reusing a context to target multiple providers

static void Main(string[] args)
{
 Database.SetInitializer(new
 DropCreateDatabaseIfModelChanges<BreakAwayContext>());

 TargetMultipleProviders();
}

private static void TargetMultipleProviders()
{
 var sqlString = @"Server=.\SQLEXPRESS;
 Database=DataAccess.BreakAwayContext;
 Trusted_Connection=true";

 using (var connection = new SqlConnection(sqlString))
 {
 using (var context = new BreakAwayContext(connection))
 {
 context.Destinations.Add(new Destination { Name = "Hawaii" });
 context.SaveChanges();
 }
 }

 var sqlCeString =
 @"Data Source=|AppData|\DataAccess.BreakAwayContext.sdf";

 using (var connection = new SqlCeConnection(sqlCeString))
 {
 using (var context = new BreakAwayContext(connection))
 {
 context.Destinations.Add(new Destination { Name = "Hawaii" });
 context.SaveChanges();
 }
 }
}

Run the application. You will get an exception when trying to use the context instance
that targets SQL Server Compact Edition. This will be a NotSupportedException stating
that, “Using the same DbCompiledModel to create contexts against different types of
database servers is not supported. Instead, create a separate DbCompiledModel for
each type of server being used.”

To use the same context type with different models in the same AppDomain, you need
to externally build a DbCompiledModel for each model and then use these to construct
the different context instances. DbContext exposes a set of constructors that allow you
to supply the model to be used, along with connection information. Add a constructor
to the BreakAwayContext class that allows a DbCompiledModel and a DbConnection to be
supplied:

public BreakAwayContext(DbConnection connection,
 DbCompiledModel model)

162 | Chapter 7: Advanced Concepts

 : base(connection, model, contextOwnsConnection: false)
{ }

The code in Example 7-5 shows an updated TargetMultipleProviders method that
demonstrates how this constructor can now be used to target different database pro-
viders, using a different model for each.

Example 7-5. Code updated to work with multiple providers

private static void TargetMultipleProviders()
{
 var sql_model = GetBuilder().Build(
 new DbProviderInfo("System.Data.SqlClient", "2008"))
 .Compile();

 var ce_model = GetBuilder().Build(
 new DbProviderInfo("System.Data.SqlServerCe.4.0", "4.0"))
 .Compile();

 var sql_cstr = @"Server=.\SQLEXPRESS;
 Database=DataAccess.BreakAwayContext;
 Trusted_Connection=true";

 using (var connection = new SqlConnection(sql_cstr))
 {
 using (var context =
 new BreakAwayContext(connection, sql_model))
 {
 context.Destinations.Add(new Destination { Name = "Hawaii" });
 context.SaveChanges();
 }
 }

 var ce_cstr =
 @"Data Source=|DataDirectory|\DataAccess.BreakAwayContext.sdf";
 using (var connection = new SqlCeConnection(ce_cstr))
 {
 using (var context = new BreakAwayContext(connection, ce_model))
 {
 context.Database.Initialize(force: true);
 context.Destinations.Add(new Destination { Name = "Hawaii" });
 context.SaveChanges();
 }
 }
}

private static DbModelBuilder GetBuilder()
{
 var builder = new DbModelBuilder();
 builder.Entity<EdmMetadata>().ToTable("EdmMetadata");

 builder.Entity<Activity>();
 builder.Entity<Destination>();
 builder.Entity<Hostel>();
 builder.Entity<InternetSpecial>();

Taking Control of Model Caching | 163

 builder.Entity<Lodging>();
 builder.Entity<Person>();
 builder.Entity<PersonPhoto>();
 builder.Entity<Reservation>();
 builder.Entity<Resort>();
 builder.Entity<Trip>();

 builder.ComplexType<Address>();
 builder.ComplexType<Measurement>();
 builder.ComplexType<PersonalInfo>();

 return builder;
}

Let’s walk through what the code in the TargetMultipleProviders method is doing. The
GetBuilder method is responsible for creating a DbModelBuilder and registering all your
classes with the builder. The code in the example registers each class using the DbMo
delBuilder.Entity and DbModelBuilder.ComplexType methods. This approach will work
if you have been using Data Annotations to configure your classes. If you have been
using the Fluent API, you should copy the code from your OnModelCreating method to
replace this code. Note that you also need to include the EdmMetadata class and map it
to the EdmMetadata table; this allows Code First to detect when the model and database
go out of sync. When DbContext is responsible for building the model, it will take care
of adding this class for you.

The next step is to build and compile the model for the two providers that are going to
be targeted. In the example, the invariant name and manifest token for the database
provider are supplied to the Build method. As an alternative, there is another overload
of Build that accepts a DbConnection to get the provider information from.

With the compiled models created, they can now be used to access the two different
databases. Remember that database initialization only occurs once per AppDomain, so
only the first database to be used will be initialized automatically. The call to Data
base.Initialize on the context targeting the second database ensures that the second
database is also initialized.

In the end, the new Destination is added to two different databases using the same set
of classes and configurations to define duplicate models. Now that we’re done using
SQL Compact, go ahead and re-enable the configuration to make Trip.Identifier da-
tabase-generated.

Remember that building and compiling the model are expensive oper-
ations. The resulting compiled model should be cached and reused for
all context instances that target the same model.

164 | Chapter 7: Advanced Concepts

Working with the EdmMetadata Table
Back in Chapter 2, you learned that, by default, Code First adds an EdmMetadata table
to your database. There are some advantages in allowing Code First to have this table
in the database, but you also have the option of removing it. In this section, you will
see how to remove the EdmMetadata table from your database. You’ll also learn about
the implications of removing it.

The EdmMetadata table serves a single purpose, and that is to store a snapshot of the
model that was used to create the database. Having the snapshot allows Code First to
check whether the current model matches the current database or not. The snapshot
is stored by taking a SHA256 hash of the database portion of the model. You can see
in Figure 7-3 that the EdmMetadata table always contains a single row with the hash
stored in it.

Figure 7-3. Contents of EdmMetadata table

Coding Against EdmMetadata
Code First uses the EdmMetadata table in the included database initializers, but you can
also interact with it programmatically using the EdmMetadata class in the EntityFrame-
work API. Modify the Main method to call a new UseEdmMetadataTable method, shown
in Example 7-6, to experiment with this class:

Example 7-6. The UseEdmMetadata method

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseIfModelChanges<BreakAwayContext>());
 UseEdmMetadataTable();
}

private static void UseEdmMetadataTable()
{
 using (var context = new BreakAwayContext())
 {
 var modelHash = EdmMetadata.TryGetModelHash(context);
 Console.WriteLine("Current Model Hash: {0}", modelHash);

 var databaseHash =
 context.Set<EdmMetadata>().Single().ModelHash;
 Console.WriteLine("Current Database Hash: {0}", databaseHash);

 var compatible =
 context.Database.CompatibleWithModel(throwIfNoMetadata: true);

Working with the EdmMetadata Table | 165

 Console.WriteLine("Model Compatible With Database?: {0}",
 compatible);
 }
}

This code starts by using the static EdmMetadata.TryGetModelHash method to find the
hash for the current model. This method will always work for Code First models, but
if you attempt to use it with a model created using the designer, it will return null. The
EdmMetadata class is included as part of your model, so you can use your DbContext to
interact with it.

The second section of code creates a DbSet for the EdmMetadata class and then asks for
the single row of data so that it can read the hash value from it. Finally, there is a
DbContext.Database.CompatibleWithModel method that makes it simple to check if the
model and database match. This is the method that the database initializers included
in the Entity Framework make use of. Specifying true for the throwIfNoMetadata pa-
rameter will cause an exception to be thrown if the EdmMetadata table has been excluded
from the database. Specifying false will cause the method to return false if the table
is excluded. You can run the code and see that everything currently matches.

Preventing Code First from Creating and Seeking EdmMetadata
The functionality that the EdmMetadata table enables is useful, but you may not be happy
with Code First adding the extra table to your database. If you don’t want Code First
to add the EdmMetadata table, you can ask it to stop including it. Modify the BreakAway
Context class to include a line of code that removes the IncludeMetadataConvention in
the OnModelCreating method:

modelBuilder.Conventions.Remove<IncludeMetadataConvention>();

So far you have relied on the DropCreateDatabaseIfModelChanges initializer to take care
of keeping the model and database in sync. However, this initializer relies on the Edm-
Metadata table. If you try to run your application, you will get a NotSupportedExcep
tion stating that

Model compatibility cannot be checked because the EdmMetadata type was not included
in the model. Ensure that IncludeMetadataConvention has been added to the DbMo-
delBuilder conventions.

With the EdmMetadata table excluded, you can still use the CreateDatabaseIfNotEx
ists and DropCreateDatabaseAlways initializers. If using CreateDatabaseIfNotExists,
Code First will make no attempt to check that the database and model match and it
will simply assume that you have made sure they do. If you make changes to the model,
you will also be responsible for making the same changes to the database manually.

Modify the Main method to set the DropCreateDatabaseAlways initializer and call the
InsertDestination method you created in Chapter 2 (Example 2-7). Run the applica-
tion, and you will see that the EdmMetadata table is no longer present in your database.

166 | Chapter 7: Advanced Concepts

Example 7-7. Main updated to demonstrate EdmMetadata table is removed

static void Main()
{
 Database.SetInitializer(
 new DropCreateDatabaseAlways<BreakAwayContext>());
 InsertDestination();
}

For our BAGA application, we are perfectly happy for Code First to include the EdmMe
tadata table in our database. Once you’ve seen the database without the EdmMetadata
table, go ahead and remove the line of configuration you just added to exclude it.
Because Code First just created your database without an EdmMetadata table, you’ll also
need to go and manually drop the DataAccess.BreakAwayContext database from your
localhost\SQLEXPRESS instance. If you don’t do this, Code First won’t be able to check
compatibility as you change your model in the future.

Using Code First with ObjectContext
Up until now, you have seen Code First being used with the DbContext API, which is
the recommended API surface for working with Code First. DbContext was introduced
in Entity Framework 4.1 as a lighter-weight and more productive wrapper over the
existing Entity Framework components. The alternative to DbContext is the ObjectCon
text API, and while it is recommended to use DbContext with Code First, it is still
possible to use ObjectContext. In this chapter, you will see how to build a Code First
model and use it to construct an ObjectContext.

DbContext or ObjectContext?
DbContext is simply a wrapper over ObjectContext and associated classes. If you need
some of the more advanced features that are only available from ObjectContext, you
can cast DbContext to the IObjectContextAdapter interface to access the underlying
ObjectContext. This approach allows you to access the functionality from ObjectCon
text while still being able to write most of your code against the newer DbContext. You
might consider using Code First with ObjectContext if you have existing applications
that are based on ObjectContext and you are swapping from Model First or Database
First to Code First.

Similar to using a DbContext-based context, you start by creating a derived context,
except this time it derives from ObjectContext and exposes ObjectSet properties instead
of DbSet properties. Notice in Example 7-8 that when using an ObjectContext, you need
to write a bit more code than with the DbContext. You must expose a constructor that
accepts an EntityConnection. The ObjectSet properties also need to be initialized using
the CreateObjectSet method; this is something DbContext takes care of for you.

Using Code First with ObjectContext | 167

Add this new BreakAwayObjectContext class to your DataAccess project.

Example 7-8. Implementing ObjectContext

using System.Data.EntityClient;
using System.Data.Objects;
using Model;

namespace DataAccess
{
 public class BreakAwayObjectContext : ObjectContext
 {
 public BreakAwayObjectContext(EntityConnection connection)
 : base(connection)
 {
 this.Destinations = this.CreateObjectSet<Destination>();
 this.Lodgings = this.CreateObjectSet<Lodging>();
 this.Trips = this.CreateObjectSet<Trip>();
 this.People = this.CreateObjectSet<Person>();
 this.PersonPhotos = this.CreateObjectSet<PersonPhoto>();
 }

 public ObjectSet<Destination> Destinations { get; private set; }
 public ObjectSet<Lodging> Lodgings { get; private set; }
 public ObjectSet<Trip> Trips { get; private set; }
 public ObjectSet<Person> People { get; private set; }
 public ObjectSet<PersonPhoto> PersonPhotos { get; private set; }
 }
}

At this point, DbContext would take care of scanning the DbSet properties and building
a model based on them. But ObjectContext has no built-in support for Code First. Code
First provides a method to bridge this gap—DbModelBuilder.UseObjectContext. In the
following walkthrough, you’ll learn how to leverage this to create an ObjectContext
from a Code First model.

Modify the Main method to make use of a new UseObjectContext method, as shown in
Example 7-9.

Example 7-9. Code updated to use BreakAwayObjectContext

static void Main()
{
 UseObjectContext();
}

private static void UseObjectContext()
{
 var builder = GetBuilder();

 var cstr = @"Server=.\SQLEXPRESS;
 Database=BreakAwayObjectContext;
 Trusted_Connection=true";

168 | Chapter 7: Advanced Concepts

 using (var connection = new SqlConnection(cstr))
 {
 var model = builder.Build(connection).Compile();
 using (var context =
 model.CreateObjectContext<BreakAwayObjectContext>(connection))
 {
 if (!context.DatabaseExists())
 {
 context.CreateDatabase();
 }
 context.Destinations.AddObject(
 new Destination { Name = "Ayers Rock" });
 context.SaveChanges();
 }
 }
}

You start by creating a DbModelBuilder, using the GetBuilder method we added earlier
in this chapter. You then use the model builder to create a model and compile it. Note
that you must supply the connection or provider information when building the model,
as the provider affects the data types, etc. in the resulting model. With the model com-
piled, you can then use the CreateObjectContext method to construct the ObjectCon
text. This method relies on the constructor you exposed that accepts a single Entity
Connection parameter. ObjectContext doesn’t support database initializers, so you also
need to write code to check if the database exists and create it if it does not. Note that
ObjectContext does not support EdmMetadata either, so there is no way to detect if the
model and database are compatible.

Summary
In this chapter, you saw a variety of advanced features that Code First provides. These
features are provided to make sure that you can override what Code First does by default
in situations where the default behavior just doesn’t work for your scenario. Most ap-
plications won’t require you to use these features, but it’s good to have an understand-
ing of what is available in case you ever need them.

We’ve now covered Code First from top to bottom. We started with a high-level over-
view of what Code First is. You then learned how Code First builds the model and how
you can customize the model by using configuration. You saw how to influence which
database Code First connects to and how that database is initialized. And finally in this
chapter, we wrapped things up with some advanced topics.

The final chapter of this book will help prepare you for what’s coming in future releases
of Code First.

Summary | 169

CHAPTER 8

What’s Coming Next for Code First

So far, this book has covered all of the Code First components that reached their final
release at the time of writing. There are, however, some notable features that are still
in preview at this time that you should be aware of. You’ll gain the ability to migrate a
database schema as your Code First model evolves, reverse engineer a Code First model
from an existing database, and many other useful tasks.

These features are available as add-ons to the EntityFramework NuGet package and
can be downloaded separately. Currently there are two add-ons available. The first, the
EntityFramework.Migrations NuGet package, adds database migration capabilities to
Code First. The second, Entity Framework Power Tools, provides some extra design
time tooling for working with Code First and is available on Visual Studio Gallery.

Code First Migrations
Throughout this book we have used database initializers to drop and recreate the da-
tabase every time the model changes. This is far from ideal, because in doing so, you
lose any data every time the model changes. That might be acceptable while you’re
developing locally, but it’s definitely not a viable solution once you want to push
changes into production! Currently you are forced to use a schema compare tool or a
hand-written script to push database changes to the production database.

Since Code First was released, one of the most common requests from the developer
community was for a migrations solution. Migrations allow you to incrementally evolve
your database schema as your model changes. There are many migration solutions
available, but none that are integrated with Code First. Most of these solutions take a
similar approach to providing database migration functionality. Each set of changes to
the database is expressed in a code file, known as a migration. The migrations are
ordered, typically using a timestamp, and a table in the database keeps track of which
migrations have been applied to the database.

The Entity Framework team has been working on providing a migrations solution that
is tightly integrated with Code First. Code First Migrations Alpha 3 became available

171

in early September 2011. Details on the Alpha 3 release of Code First Migrations can
be found at http://blogs.msdn.com/b/adonet/archive/2011/09/21/code-first-migrations
-alpha-3-released.aspx. This early preview is focused on the developer experience inside
Visual Studio and allows migrations to be created and executed against the database
as your Code First model is changed.

Code First Migrations is available as the EntityFramework.Migrations NuGet package.
Once installed, it adds a couple of commands to the Package Manager Console that
can be used to generate and run migrations.

As you make changes to your Code First model, you can ask Code First Migrations to
create a migration that will apply the corresponding changes to the database. Migra-
tions are expressed in code, and once a migration has been created, you are free to edit
the code that was generated for you. Example 8-1 shows what a migration can look like.

Example 8-1. Sample migration

namespace BreakAway.Migrations
{
 using System.Data.Entity.Migrations;

 public partial class SampleChanges : DbMigration
 {
 public override void Up()
 {
 AddColumn(
 "Destinations",
 "Description",
 c => c.String());

 ChangeColumn(
 "Destinations",
 "Name",
 c => c.String(maxLength: 100));
 }

 public override void Down()
 {
 ChangeColumn(
 "Destinations",
 "Name",
 c => c.String());

 DropColumn(
 "Destinations",
 "Description");
 }
 }
}

The migrations are expressed using an API that is similar to the Fluent API you’ve been
using to configure the model. In the example, you can see that a Description column
is being added to the Destinations table and the Name column is having its maximum

172 | Chapter 8: What’s Coming Next for Code First

http://blogs.msdn.com/b/adonet/archive/2011/09/21/code-first-migrations-alpha-3-released.aspx
http://blogs.msdn.com/b/adonet/archive/2011/09/21/code-first-migrations-alpha-3-released.aspx

length changed to 50. A provider model is used to translate the operations defined in
code into database specific SQL.

Code First Migrations also supports automatic migrations, which allow simple changes,
such as column additions, to be performed without having a migration present in your
project. You can use automatic migrations and code-based migrations in the same sol-
ution to allow the correct level of control for each change you make.

Entity Framework Power Tools
The first Entity Framework Power Tools Community Technical Preview (CTP 1) was
made available in May 2011. This package can be installed through the Visual Studio
Extension Manager or downloaded directly from the Visual Studio Gallery at http://
visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d.
Once installed, the Power Tools add designer tools to Visual Studio that can be accessed
through context menus in the Visual Studio Solution Explorer.

Reverse Engineer Code First
With this designer tool installed, you’ll find a new menu option—Entity Framework—
on the project context menu in Solution Explorer (Figure 8-1). The new item has a
submenu item called “Reverse Engineer Code First.” Selecting this option will prompt
you to point to an existing database that you would like to map classes to using Code
First. The tool will use the schema of the database to generate a Code First context, a
set of POCO classes, and a set of configuration classes to map the POCO classes to the
database. You can see what these classes look like in the blog post Quick Look at
Reverse Engineer DB into Code First Classes.

The reverse engineer process is designed to be a one-time code generation to get you
started against an existing database. Once the code is generated, you may need to tweak
it to match your exact database schema. For example, CTP1 does not generate the
correct mapping code for tables that are not in the dbo schema. If you have tables in
another schema, you would need to edit the ToTable call in the relevant configuration
objects to specify the correct schema.

CTP1 of the Power Tools only supports reverse engineering to C#. The
Entity Framework team will introduce VB.NET capabilities in a future
release.

Entity Framework Power Tools | 173

http://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d
http://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d
http://thedatafarm.com/blog/data-access/quick-look-at-reverse-engineer-db-into-code-first-classes
http://thedatafarm.com/blog/data-access/quick-look-at-reverse-engineer-db-into-code-first-classes

Figure 8-1. Project context menu

Viewing a Code First Model
The Entity Framework Power Tools also adds an Entity Framework item to the context
menu for classes that inherit from DbContext (Figure 8-2). When you right-click the
code file in Solution Explorer, this Entity Framework entry has four options. The first
three provide you different views of the model for the selected context.

Figure 8-2. Code First context menu

174 | Chapter 8: What’s Coming Next for Code First

View Entity Data Model (Read-only)

The “View Entity Data Model (Read-only)" option will launch the Entity Data Model
designer and display the model defined by the context. The Power Tools achieve this
by writing out a temporary EDMX file that represents the model and opening it with
the designer.

This is a read-only view of the model, and any changes you make will not result in
changes being made to your code. You are only able to make changes because the
designer, which ships as part of Visual Studio, does not have a read-only mode.

The ability to view the model can be useful if you are trying to work out how Code First
is interpreting your classes and configuration. The designer also displays mapping so
you can see how Code First is mapping your classes and properties to columns and
tables in the database.

View Entity Data Model XML

The “View Entity Data Model XML” option will load up the EDMX equivalent of your
Code First model in the XML editor.

This option is primarily used by the Entity Framework team to identify issues in the
model that is being generated by Code First.

View Entity Data Model DDL SQL

The View Entity Data Model DDL SQL option allows you to generate the same SQL
script that Code First would use to generate a database from your model. This can be
useful if you have been developing with Code First and now need to hand a SQL script
off to your DBA to create a production database.

Optimize Entity Data Model
The fourth option in the Entity Framework menu item that’s attached to the context
class is “Optimize Entity Data Model.” This allows you to perform view generation on
your Code First model.

View generation is a process that Entity Framework performs to calculate the SQL
statements that will be used to Select, Insert, Update, and Delete for each type in your
model. This process typically occurs the first time you use your context within an ap-
plication process. If you have a large and/or complex model, view generation can be
an expensive operation, taking several minutes or even hours in very large models.

To avoid incurring this cost every time your application runs, you can use Pre-Compiled
Views. That’s exactly what this option does: it precalculates the SQL and stores it in a
code file in your project. Entity Framework will pick up this code at runtime and use
the precalculated views rather than performing View generation. If you change your

Entity Framework Power Tools | 175

model after performing view generation, you will need to rerun this option to calculate
the views again.

Pre-Compiled Views are a fairly advanced feature, and it is not recommended that you
use them unless you hit a performance issue related to View Generation.

Pre-compilation and view generation are not unique to Code First. These features have
been available for EDMX files since the first version of Entity Framework. The Power
Tools simply let you also take advantage of these features when using Code First. You
can read more about precompiled views and view generation in Chapter 20 of
Programming Entity Framework, second edition.

Following the Entity Framework Team
There are a number of ways you can keep up to date on new features that the Entity
Framework team is developing—and even influence what features they work on next.
The ADO.NET Team Blog is used by the EF team to share announcements about new
and upcoming releases. The EF team also has an EF Design Blog, where they share early
thinking about new features they are about to start working on. This allows you to have
input into the design of features before they are implemented and end up in a preview.
Finally, the EF team has a user voice site where you can add and vote on feature requests.

176 | Chapter 8: What’s Coming Next for Code First

http://shop.oreilly.com/product/9780596807252.do
http://blogs.msdn.com/adonet
http://blogs.msdn.com/efdesign
http://ef.mswish.net

About the Authors
Julia Lerman is the leading independent authority on the Entity Framework and has
been using and teaching the technology since its inception in 2006. She is well known
in the .NET community as a Microsoft MVP, ASPInsider, and INETA Speaker. Julia is
a frequent presenter at technical conferences around the world and writes articles for
many well-known technical publications, including the “Data Points” column in
MSDN Magazine. Julia lives in Vermont with her husband, Rich, and gigantic dog,
Sampson, where she runs the Vermont.NET User Group. You can read her blog at
www.thedatafarm.com/blog and follow her on Twitter at julielerman.

Rowan Miller is based in Seattle, Washington, and works as a Program Manager for
the ADO.NET Entity Framework team at Microsoft. Prior to moving to the United
States, he resided in the small state of Tasmania in Australia. Rowan speaks at technical
conferences and blogs at http://romiller.com. Outside of technology, Rowan’s passions
include snowboarding, mountain biking, horse riding, rock climbing, and pretty much
anything else that involves being active. The primary focus of his life, however, is to
follow Jesus.

http://twitter.com/#!/julielerman
http://romiller.com

	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Welcome to Code First
	Modeling with EF Before Code First
	Inception of Code First
	Getting Code First to Developers in Between .NET Releases
	Writing the Code…First
	Managing Objects with DbContext
	Using the Data Layer and Domain Classes
	Getting from Classes to a Database
	Working with Configuration
	Configuring with Data Annotations
	Configuring with the Fluent API

	Creating or Pointing to a Database
	What Code First Does Not Support
	Choosing Code First

	Learning from This Book

	Chapter 2. Your First Look at Code First
	Introducing EF to the Domain Classes
	Putting the Pieces Together in an Example
	Convention for Table, Schema, and Column Names
	Convention for Keys
	Convention for String Properties
	Convention for Byte Array
	Convention for Booleans
	Convention for One-to-Many Relationships

	Overriding Convention with Configurations
	Configuring with Data Annotations

	Understanding How Model Changes Impact Database Initialization
	Data Annotations and Validation-Aware UIs

	Configuring Code First with the Fluent API
	Organizing Fluent Configurations

	Summary

	Chapter 3. Using Conventions and Configurations for Property Attributes
	Working with Property Attributes in Code First
	Length
	Data Type
	Nullability and the Required Configuration

	Mapping Keys
	Code First Convention Response to Unconventional Key Properties
	Configuring the Key with Data Annotations
	Using HasKey to Configure a Key Property in the Fluent API

	Configuring Database-Generated Properties
	Configuring Database-Generated Options with Data Annotations
	Configuring Database-Generated Options with the Fluent API

	Configuring TimeStamp/RowVersion Fields for Optimistic Concurrency
	Code First Convention and TimeStamp fields
	Using Data Annotations to Configure TimeStamp
	Configuring TimeStamp/RowVersion with Fluent API

	Configuring Non-Timestamp Fields for Concurrency
	Configuring for Optimistic Concurrency with Data Annotations
	Configuring for Optimistic Concurrency with Fluent API

	Mapping to Non-Unicode Database Types
	Affecting the Precision and Scale of Decimals
	Convention for Precision and Scale
	Data Annotations for Precision and Scale
	Fluent Configuration for Precision and Scale

	Working with Complex Types in Code First
	Defining Complex Types by Convention
	Configuring Unconventional Complex Types
	Specifying complex types with Data Annotations
	Specifying complex types with the Fluent API

	Working with More Complicated Complex Types

	Configuring Properties of Complex Types
	Configuring Complex Types with Data Annotations
	Configuring Complex Type Properties with the Fluent API

	Summary

	Chapter 4. Using Convention and Configuration for Relationships
	Working with Multiplicity
	Configuring Multiplicity with Data Annotations
	Configuring Multiplicity with the Fluent API

	Working with Foreign Keys
	Specifying Unconventionally Named Foreign Keys
	Fixing foreign key with Data Annotations
	Fixing foreign key with the Fluent API

	Working with Inverse Navigation Properties
	Working with Cascade Delete
	Turning On or Off Client-Side Cascade Delete with Fluent Configurations
	Setting Cascade Delete Off in Scenarios That Are Not Supported by the Database

	Exploring Many-to-Many Relationships
	Working with Relationships that Have Unidirectional Navigation
	Working with One-to-One Relationships
	Configuring One-to-One Relationships When Both Ends Are Required
	Ensuring that the sample code honors the required Photo
	Configuring one-to-one with the Fluent API

	Summary

	Chapter 5. Using Conventions and Configurations for Database Mappings
	Mapping Class Name to Database Table and Schema Name
	Configuring Table and Schema Name with Data Annotations
	Configuring Table and Schema Name with the Fluent API

	Mapping Property Names to Database Columns
	Modifying the Default Column Name with Data Annotations
	Modifying the Default Column Name with the Fluent API
	Affecting Column Names for Complex Types

	Allowing Multiple Entities to Map to a Single Table: aka Table Splitting
	Mapping to a Common Table using Data Annotations
	Splitting a Table Using the Fluent API

	Mapping a Single Entity Across Multiple Tables
	Controlling Which Types Get Mapped to the Database
	Preventing Types from Being Included in the Model
	Using Data Annotations to ignore types
	Using Fluent Configuration to ignore types

	Understanding Property Mapping and Accessibility
	Scalar Property Mapping
	Accessibility of Properties, Getters, and Setters

	Preventing Properties from Being Included in the Model
	Data Annotations for Ignoring a Property
	Fluent Configuration for Ignoring a Property

	Mapping Inheritance Hierarchies
	Working with Code First’s Default Inheritance: Table Per Hierarchy (TPH)
	Customizing the TPH Discriminator Field with the Fluent API
	Configuring Table Per Type (TPT) Hierarchy
	Configuring for Table Per Concrete Type (TPC) Inheritance
	Avoiding Mapping Exceptions with TPC

	Working with Abstract Base Classes
	Mapping Relationships
	Controlling Foreign Keys Included in Your Class
	Controlling Foreign Keys That Are Created by Code First
	Controlling generated foreign keys with entity splitting

	Controlling Many-to-Many Join Tables

	Summary

	Chapter 6. Controlling Database Location, Creation Process, and Seed
 Data
	Controlling the Database Location
	Controlling Database Location with a Configuration File
	Controlling Database Name with DbContext Constructor
	Controlling Connection String Name with DbContext Constructor
	Reusing Database Connections
	Controlling Database Location with Connection Factories
	Working with SqlConnectionFactory
	Working with SqlCeConnectionFactory
	Writing a custom connection factory

	Working with Database Initialization
	Controlling When Database Initialization Occurs
	Switching Off Database Initialization Completely
	Database Initializers Included in Entity Framework
	Creating a Custom Database Initializer
	Setting Database Initializers from a Configuration File

	Using Database Initializers to Seed Data
	Using Database Initialization to Further Affect Database Schema
	Summary

	Chapter 7. Advanced Concepts
	Mapping to Nontable Database Objects
	Mapping to Updatable Views
	Using Views to Populate Objects
	Using Views to Populate Nonmodel Objects
	Working with Stored Procedures

	Removing Conventions
	Taking Control of Model Caching
	Understanding Model Caching
	Overriding Default Model Caching

	Working with the EdmMetadata Table
	Coding Against EdmMetadata
	Preventing Code First from Creating and Seeking EdmMetadata

	Using Code First with ObjectContext
	Summary

	Chapter 8. What’s Coming Next for Code First
	Code First Migrations
	Entity Framework Power Tools
	Reverse Engineer Code First
	Viewing a Code First Model
	View Entity Data Model (Read-only)
	View Entity Data Model XML
	View Entity Data Model DDL SQL

	Optimize Entity Data Model

