

Programming Entity Framework:
DbContext

Julia Lerman and Rowan Miller

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Programming Entity Framework: DbContext
by Julia Lerman and Rowan Miller

Copyright © 2012 Julia Lerman and Rowan Miller. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and
Rachel Roumeliotis

Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

Revision History for the First Edition:
2012-02-23 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449312961 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Entity Framework: DbContext, the image of a great African heron,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31296-1

[LSI]

1330008698

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449312961

Table of Contents

Preface . ix

1. Introducing the DbContext API . 1
Getting the DbContext API into Your Project 2
Looking at Some Highlights of the DbContext API 3

Reducing and Simplifying Ways to Work with a Set 5
Retrieving an Entity Using ID with DbSet.Find 5
Avoiding Trolling Around the Guts of Entity Framework 6

Working with the BreakAway Model 6
Getting the Sample Solution 6
Getting DbContext from an EDMX Model 8

Ensuring DbContext Instances Get Disposed 11

2. Querying with DbContext . 13
Writing Queries with LINQ to Entities 13
Querying All the Data from a Set 16
Using LINQ for Sorting, Filtering, and More 18
Finding a Single Object 21
Querying Local Data 24

Using the Load Method to Bring Data into Memory 26
Running LINQ Queries Against Local 27
Working with the ObservableCollection Returned by Local 29

Loading Related Data 30
Lazy Loading 31
Eager Loading 33
Explicit Loading 36
Checking If a Navigation Property Has Been Loaded 38

Querying Contents of a Collection Navigation Property 39
Explicit Loading a Subset of the Contents of a Navigation Property 41

iii

3. Adding, Changing, and Deleting Entities . 43
Working with Single Entities 44

Adding New Entities 44
Changing Existing Entities 45
Deleting Existing Entities 46
Multiple Changes at Once 51
The “Find or Add” Pattern 52

Working with Relationships 53
Adding a Relationship Between Objects 54
Changing a Relationship Between Objects 56
Removing a Relationship Between Objects 57

Working with Change Tracking 59
Using Snapshot Change Tracking 60

Understanding When Automatic Change Detection Occurs 60
Controlling When DetectChanges Is Called 60
Using DetectChanges to Trigger Relationship Fix-up 63

Enabling and Working with Change Tracking Proxies 64
Ensuring the New Instances Get Proxies 67
Creating Proxy Instances for Derived Types 68

Fetching Entities Without Change Tracking 69

4. Working with Disconnected Entities Including N-Tier Applications 71
A Simple Operation on a Disconnected Graph 72
Exploring the Challenges of N-Tier 74

Using Existing N-Tier Frameworks That Support Graph Modification 76
Using Explicit Operations on the Server Side 77
Replaying Changes on the Server 77

Understanding How DbContext Responds to Setting the State of a Single
Entity 78

Marking a New Entity as Added 79
Marking an Existing Entity as Unchanged 80
Marking an Existing Entity as Modified 81
Registering an Existing Entity for Deletion 83
Working with Relationships with and Without Foreign Keys 85

Setting the State for Multiple Entities in an Entity Graph 88
Getting the Graph into the Context 88
Setting the State of Entities in a Graph 90

Building a Generic Approach to Track State Locally 92
Creating a Generic Method That Can Apply State Through Any Graph 96
Concurrency Implications 98

Tracking Individually Modified Properties 99
Recording Modified Property Names 99
Recording Original Values 102

iv | Table of Contents

Querying and Applying Changes 106

5. Change Tracker API . 111
Change Tracking Information and Operations for a Single Entity 111
Working with the State Property 112
Working with Current, Original, and Database Values 113

Working with DbPropertyValues for Complex Types 119
Copying the Values from DbPropertyValues into an Entity 122
Changing Values in a DbPropertyValues 123

Working with Individual Properties 128
Working with Scalar Properties 128
Working with Complex Properties 131
Working with Navigation Properties 133

Refreshing an Entity from the Database 137
Change Tracking Information and Operations for Multiple Entities 139
Using the Change Tracker API in Application Scenarios 141

Resolving Concurrency Conflicts 141
Logging During Save Changes 147

6. Validating with the Validation API . 153
Defining and Triggering Validation: An Overview 154
Validating a Single Object on Demand with GetValidationResult 155
Specifying Property Rules with ValidationAttribute Data Annotations 157

Validating Facets Configured with the Fluent API 158
Validating Unmapped or “Transient” Properties 158
Validating Complex Types 159
Using Data Annotations with an EDMX Model 159

Inspecting Validation Result Details 160
Inspecting Individual Validation Errors 161

Exploring More ValidationAttributes 163
Using CustomValidationAttributes 164

Validating Individual Properties on Demand 166
Specifying Type-Level Validation Rules 166

Using IValidatableObject for Type Validation 167
Validating Multiple Rules in IValidatableObject 169
Using CustomValidationAttributes for Type Validation 171

Understanding How EF Combines Validations 173
Validating Multiple Objects 175
Validating When Saving Changes 178

Reviewing ObjectContext. SaveChanges Workflow 179
Understanding DbContext.SaveChanges Workflow 179
Disabling Validate Before Save 182

Table of Contents | v

7. Customizing Validations . 183
Overriding ValidateEntity in the DbContext 183
Considering Different Ways to Leverage ValidateEntity 187
Updating Data During SaveChanges 192
Overriding SaveChanges When Validation Occurs 193

Comparing ValidateEntity to SaveChanges for Custom Logic 197
Using the IDictionary Parameter of ValidateEntity 198
Controlling Which Entities Are Validated in ValidateEntity 200

8. Using DbContext in Advanced Scenarios . 203
Moving Between ObjectContext and DbContext 203

Accessing ObjectContext Features from a DbContext 204
Adding DbContext into Existing .NET 4 Applications 205

Leveraging SQL Server Operators Exposed in SqlFunctions 208
Querying Derived Types with DbSet 209
Understanding the Interface Property Limitation 210
Considering Automated Testing with DbContext 210

Testing with DbSet 211
Exploring a Scenario That Unnecessarily Queries the Database 212

Reducing Database Hits in Testing with IDbSet 214
Creating an IDbSet Implementation 214
Abstracting BreakAwayContext for Tests 217
Reviewing the Implementation 221
Supplying Data to a FakeDbSet 221

Accessing the Database Directly from DbContext 222
Executing Queries with Database.SqlQuery and DbSet.SqlQuery 223
Tracking Results of SqlQuery 226
Executing Commands from the Database Class 226

Providing Multiple Targeted Contexts in Your Application 227
Reusing Classes, Configurations, and Validation Across Multiple
Contexts 227
Ensuring That All DbContexts Use a Single Database 231
Validating Relationship Constraints and Other Validations with Mul-
tiple Contexts 232
Getting Code First to Create Full BreakAwayContext Database 232

9. What’s Coming Next for Entity Framework . 235
Understanding Entity Framework’s Version Numbers 235
Entity Framework 5.0 236

Enums 236
Spatial Data 236
Performance Improvements 236
Multiple Result Sets from Stored Procedures 237

vi | Table of Contents

Table Value Functions 237

Table of Contents | vii

Preface

Microsoft’s principal data access technology, ADO.NET Entity Framework, has had
two major releases as part of the .NET Framework. .NET 3.5 brought us the first version
of Entity Framework, which is covered in the first edition of Programming Entity
Framework (O’Reilly). In 2010, Microsoft .NET 4 was released, containing the next
version of Entity Framework, referred to as Entity Framework 4. The completely revised
second edition of Programming Entity Framework (O’Reilly) was dedicated to teaching
readers how to use this version of Entity Framework in Visual Studio 2010.

When .NET 4 was released, the Entity Framework team was already hard at work on
a new addition, called Code First, to provide an alternative way of building the Entity
Data Model that is core to Entity Framework. Rather than using a visual designer, Code
First allows you to create the model from your existing classes. At the same time, the
team devoted resources to making Entity Framework easier to use. They focused on
the most commonly used features and tasks in Entity Framework and built a new API
called the DbContext API.

This book is dedicated to teaching readers how to use the features of the DbContext
API. In addition to the DbContext class, you’ll find the DbSet class for performing set
operations, improved APIs for change tracking and handling concurrency conflicts, and
a Validation API that integrates with validation features already present in .NET.

In this book, you will learn how to query and update data using the new API, whether
you are working with individual objects or graphs of objects and their related data.
You’ll learn how to take advantage of the change tracking features and Validation.
You’ll find myriad samples and delve into taking advantage of advanced features pre-
sented by the API.

Audience
This book is designed for .NET developers who have experience with Visual Studio
and database management basics. Prior experience with Entity Framework is beneficial
but not required. The code samples in the book are written in C#, with some of these

ix

http://shop.oreilly.com/product/9780596807252.do

samples also expressed in Visual Basic. There are a number of online tools you can use
to convert snippets of C# into Visual Basic.

Contents of This Book
This book contains nine chapters.

Chapter 1, Introducing the DbContext API
This chapter provides a high-level, end-to-end overview of the DbContext API.
You’ll learn why the Entity Framework team decided to create the DbContext API
and how it makes the Entity Framework easier to use. You’ll find example code,
but there are no walkthroughs in this first chapter.

Chapter 2, Querying with DbContext
In this chapter you’ll learn about retrieving data from the database using Entity
Framework’s query capabilities. You’ll learn how to find an entity based on its key
and how to load all entities of a given type. You’ll learn how to use Language
Integrated Query (LINQ) to sort and filter data. This chapter also explores the
various strategies for loading related data.

Chapter 3, Adding, Changing, and Deleting Entities
Once you’ve learned how to query for data, this chapter will cover how to make
changes to that data and save those changes to the database. You’ll see how to add
new data as well as change and delete existing data. You’ll learn how Entity Frame-
work keeps track of changes as you make them and how it saves them using the
SaveChanges method.

Chapter 4, Working with Disconnected Entities Including N-Tier Applications
In this chapter, you’ll learn about using Entity Framework to persist changes that
were made to entities while they were not being managed by a context. This chal-
lenge is most common in N-Tier applications where a server component is re-
sponsible for retrieving data and returning it to a client application. The client
application then modifies this data and sends it back to the server to be saved.
You’ll learn about various approaches to solving this challenge and how the Change
Tracker API can be used to implement them.

Chapter 5, Change Tracker API
The Change Tracker API is first introduced in Chapter 4 and this chapter is dedi-
cated to exploring the remaining functionality of the change tracker. You’ll learn
how to access the information that Entity Framework keeps about the state of your
entity instances. You’ll also learn about the operations that can be performed from
the Change Tracker API, including refreshing an entity from the database. This
chapter wraps up with some examples of how the Change Tracker API can be used
to solve some common application requirements.

x | Preface

Chapter 6, Validating with the Validation API
Chapter 6 introduces the new Validation API that integrates with the DbContext
and how it can be used to validate changes to your data before they are sent to the
database. This chapter covers how the Validation API makes use of the existing
validation functionality included in the .NET Framework. You’ll learn how vali-
dation is integrated into the SaveChanges pipeline and how you can also trigger
validation manually. You’ll learn how to set up validation rules and how to inspect
validation errors when your data violates these rules.

Chapter 7, Customizing Validations
This chapter explores some more advanced features of the Validation API, which
was introduced in Chapter 6. You’ll learn how to customize the logic used to val-
idate entities, including customizing the logic that determines which entities need
to be validated. These advanced techniques will allow you to write validation that
interacts with the context, which opens up more validation possibilities, such as
validating the uniqueness of a column. This chapter will also provide guidance
regarding the dangers of using the Validation API for tasks other than validation.

Chapter 8, Using DbContext in Advanced Scenarios
Chapter 8 is devoted to covering some advanced functionality that’s available in
the DbContext API. You’ll learn about techniques for unit testing and how to write
tests that don’t hit a database. You’ll also see how to bypass Entity Framework’s
query pipeline and interact directly with the database when the need arises. Should
your requirements exceed what is possible from the DbContext API, you’ll see how
to drop down to the underlying ObjectContext API. The chapter wraps up with a
look at creating smaller bounded contexts that allow you to interact with a subset
of your complete model.

Chapter 9, What’s Coming Next for Entity Framework
This book was written based on the features of the DbContext API available in the
Entity Framework 4.3 release. At the time of writing, there are a number of previews
available that demonstrate some of the features that the DbContext API will gain
in upcoming releases. This chapter shares available information about these future
releases.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Preface | xi

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Entity Framework: DbCon-
text by Julia Lerman and Rowan Miller (O’Reilly). Copyright 2012 Julia Lerman and
Rowan Miller, 978-1-449-31296-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business. Technology profes-
sionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for re-
search, problem solving, learning, and certification training.

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022237.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We are grateful for the people who spent their precious free time reading through and
even trying the walkthroughs in this book and providing feedback. Thanks to Rowan’s
teammates, Arthur Vickers, Pawel Kadluczka, and Diego Vega, for their help in ensur-
ing our accuracy throughout this book. Roland Civet, Mikael Eliasson, and Daniel
Wertheim also provided invaluable feedback that helped us fine-tune our explanations
and our code.

Thanks to Microsoft for making it possible for Rowan to participate in this project.

Preface | xiii

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://shop.oreilly.com/product/0636920022237.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Thanks once again to O’Reilly Media, especially our editors, Meghan Blanchette and
Rachel Roumeliotis, for their support, their copyediting, and their extreme patience as
many schedule conflicts delayed our promised deadlines.

xiv | Preface

CHAPTER 1

Introducing the DbContext API

Since its first release, the most critical element in Entity Framework has been the
ObjectContext. It is this class that allows us to interact with a database using a concep-
tual model. The context lets us express and execute queries, track changes to objects
and persist those changes back to the database. The ObjectContext class interacts with
other important Entity Framework classes such as the ObjectSet, which enables set
operations on our entities in memory, and ObjectQuery, which is the brains behind
executing queries. All of these classes are replete with features and functionality—some
of it complex and much of it only necessary for special cases. After two iterations of
Entity Framework (in .NET 3.5 SP1 and .NET 4) it was clear that developers were most
commonly using a subset of the features, and unfortunately, some of the tasks we
needed to do most frequently were difficult to discover and code.

Recognizing this, the Entity Framework team set out to make it easier for developers
to access the most frequently used patterns for working with objects within Entity
Framework. Their solution was a new set of classes that encapsulate this subset of
ObjectContext features. These new classes use the ObjectContext behind the scenes, but
developers can work with them without having to tangle with the ObjectContext unless
they need to specifically use some of the more advanced features. The new set of classes
was originally released as part of Entity Framework 4.1 (EF 4.1).

The prominent classes in this simplified API surface are the DbContext, DbSet, and
DbQuery. This entire package of new logic is referred to as the DbContext API. The new
API contains more than just the DbContext class, but it is the DbContext that orchestrates
all of the new features.

The DbContext API is available in the EntityFramework.dll assembly, which also con-
tains the logic that drives Entity Framework Code First. This assembly is separate
from .NET and is even deployed separately as the EntityFramework NuGet package.
A major portion of the Entity Framework is part of the .NET Framework (primarily
System.Data.Entity.dll). The components that are included in .NET are considered the
“core components” of Entity Framework. The DbContext API is completely dependent
on these core components of Entity Framework. The Entity Framework team has

1

indicated that they are working to move more of these core components out of .NET
and into the EntityFramework.dll assembly. This will allow them to deliver more fea-
tures between releases of the .NET Framework.

In Table 1-1, you can see a list of the high-level features and classes in the DbContext
API, how they relate to the API surface from Entity Framework 4 (EF4), their general
purpose, and their benefits.

Table 1-1. Overview of DbContext API features

DbContext
API feature

Relevant EF4
feature/class General purpose Benefit of DbContext API

DbContext ObjectContext Represent a session with the database. Provide
query, change tracking and save capabilities.

Exposes and simplifies most
commonly used features of Ob-
jectContext.

DbSet ObjectSet Provide set operations for entity types, such as Add,
Attach and Remove. Inherits from DbQuery to expose
query capabilities.

Exposes and simplifies most
commonly used features of Ob-
jectSet.

DbQuery ObjectQuery Provide querying capabilities. The query functionality of
DbQuery is exposed on DbSet, so
you don’t have to interact with
DbQuery directly.

Change
Tracker API

ObjectCon-
text.ObjectSta-
teManager

Get access to change tracking information and op-
erations (e.g., original values, current values) man-
aged by the context.

Simpler and more intuitive API
surface.

Validation API n/a Provide automatic validation of data at the data
layer. This API takes advantage of validation features
already existing in .NET 4.

New to DbContext API.

Code First
Model
Building

n/a Reads classes and code-based configurations to build
in-memory model, metadata and relevant database.

New to DbContext API.

Getting the DbContext API into Your Project
The DbContext API is not released as part of the .NET Framework. In order to be more
flexible (and frequent) with releasing new features to Code First and the DbContext
API, the Entity Framework team distributes EntityFramework.dll through Microsoft’s
NuGet distribution feature. NuGet allows you to add references to your .NET projects
by pulling the relevant DLLs directly into your project from the Web. A Visual Studio
extension called the Library Package Manager provides an easy way to pull the appro-
priate assembly from the Web into your projects. Figure 1-1 displays a screenshot of
the Library Package Manager being used to download and add the EntityFramework
NuGet package into a project.

2 | Chapter 1: Introducing the DbContext API

You can learn more about using NuGet and the Library Package Man-
ager at nuget.org.

At the time of this book’s publication (early 2012), the current version
of EntityFramework package is 4.3. Chapter 9 provides an overview of
what to expect in future versions.

Looking at Some Highlights of the DbContext API
DbContext API is mostly targeted at simplifying your interaction with Entity Frame-
work, both by reducing the number of methods and properties you need to wade
through and by providing simpler ways to access commonly used tasks. In previous
versions of Entity Framework, these tasks were often complicated to discover and code.
We have a few favorites that act as great ambassadors to the new API, which we’ll share
with you here. You’ll learn more about these as you work your way through the book.

The samples used in this chapter are for explanation purposes only and
not intended for you to perform in Visual Studio. Beginning with the
next chapter, you’ll find walkthroughs that you can follow in Visual
Studio.

Figure 1-1. Getting EntityFramework.dll from the Library Package Manager

Looking at Some Highlights of the DbContext API | 3

http://nuget.org

Let’s start by looking at how the DbContext API simplifies the context that we define
and work with. We’ll compare the ObjectContext and DbContext based context classes
from the model we’ll be using in this book, based on BreakAway Geek Adventure’s
business applications. We’ll expose queryable sets of People, Destinations, and Trips
based on a Person class, a Destination class, and a Trip class.

Example 1-1 shows a subset of the BreakAwayContext class used in Entity Framework
4, based on an ObjectContext. It wraps up some known types into ObjectSets, which
you can query against.

Example 1-1. BreakAwayContext that inherits from ObjectContext

public class BreakAwayContext : ObjectContext
{
 private ObjectSet<Person> _ people;
 private ObjectSet<Destination> _destinations;
 private ObjectSet<Trip> _trips;

 public ObjectSet<Person> People
 {
 get { return _people ?? (_people = CreateObjectSet<Person>("People")); }
 }

 public ObjectSet< Destination > Contacts
 {
 get { return _ destinations?? (_destinations =
 CreateObjectSet< Destination >("Destinations")); }
 }

 public ObjectSet<Trip> Trips
 {
 get { return _ trips?? (_trips = CreateObjectSet<Trip>("Trips")); }
 }
}

Example 1-2 shows the same context and sets using a DbContext and DbSets instead.
Already you can see a big improvement. You can use automatic properties with DbSet
(that’s the simplified get;set; pattern), something you can’t do with ObjectSet. This
makes for much cleaner code right out of the gate. There is a CreateDbSet method that’s
relative to CreateObjectSet, but you aren’t required to use it for the purpose of creating
a DbSet when you have no other logic to apply.

Example 1-2. BreakAwayContext inheriting from DbContext

public class BreakAwayContext : DbContext
 {
 public DbSet<Person> People { get; set; }
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Trip> Trips { get; set; }
}

4 | Chapter 1: Introducing the DbContext API

Reducing and Simplifying Ways to Work with a Set
In Entity Framework 4, there are a number of tasks that you can achieve from both
ObjectContext and ObjectSet. For example, when adding an object instance to a set,
you can use ObjectContext.AddObject or ObjectSet.AddObject. When adding an object
into the context, the context needs to know which set it belongs to. With
ObjectContext.AddObject, you must specify the set using a string, for example:

context.AddObject("Trips", newTrip);

When ObjectSet was introduced in Entity Framework 4, it came with its own
AddObject method. This path already provides knowledge of the set so you can simply
pass in the object:

context.Trips.AddObject(newTrip);

With this new method available, the only reason ObjectContext.AddObject continued
to exist in Entity Framework 4 was for backward compatibility with earlier versions.
But developers who were not aware of this reason were confused by the fact that there
were two options.

Because the DbContext API is new, we don’t have to worry about backward compat-
ibility, so the DbContext does not have a direct method for adding an object. Addition-
ally, rather than providing the clunky AddObject method in DbSet, the method name is
now simply Add:

context.Trips.Add(newTrip);

ObjectContext also has AttachObject and DeleteObject. DbContext does not have these
methods either. DbSet has Attach and Remove, which are equivalent to ObjectSet’s
Attach and Delete Object. You’ll learn more about interacting with DbSet beginning in
Chapter 2.

Retrieving an Entity Using ID with DbSet.Find
One task that developers perform frequently is retrieving an entity by providing its key
value. For example, you may have access to the PersonId value of a Person in a variable
named _personId and would like to retrieve the relevant person data.

Typically you would construct and execute a LINQ to Entities query. Here’s a query
that uses the SingleOrDefault LINQ method to filter on PersonId when executing a
query on context.People:

context.People.SingleOrDefault(p => p.PersonId == _personId)

Have you written that code so often that you finally wrote a wrapper method so you
could pass the key value in and it would execute the LINQ query for you? Yeah, us too.
Now DbSet has that shortcut built in with the Find method, which will return an entity
whose key property matches the value passed into the method:

context.People.Find(_personId)

Looking at Some Highlights of the DbContext API | 5

Find has another benefit. While the SingleOrDefault query above will always query the
database, Find will first check to see if that particular person is already in memory,
being tracked by the context. If so, that’s what will be returned. If not, it will make the
trip to the database. Under the covers, DbContext is executing logic on ObjectContext
to perform the necessary tasks. You’ll learn more about DbSet.Find in Chapter 2.

Avoiding Trolling Around the Guts of Entity Framework
These are just a few examples of how much more natural it is to work with the DbCon-
text API than the ObjectContext API. If you read Programming Entity Framework, 2e,
you might be familiar with the many extension methods that Julie created and com-
bined to simplify retrieving instances of objects that are being tracked by the context
from the ObjectStateManager. One simple property, DbSet.Local, now performs that
same task. In fact, thanks to the new Change Tracker API, there’s no need to dig into
the ObjectStateManager. It’s not even part of the DbContext API. Instead you can use
DbContext.Entry or DbContext.Entries to find and even change the information being
tracked by the context. You’ll learn more about these methods in Chapter 5.

Working with the BreakAway Model
This book follows the model built around the BreakAway Geek Adventures company
in the book Programming Entity Framework: Code First (O’Reilly). Even though the
examples in this book use a model defined with Code First, the concepts apply just as
well to a model built using the designer.

Getting the Sample Solution
If you want to follow along the book’s examples, you’ll need to download the starting
solution from the download page of the book’s website at http://learnentityframework
.com/downloads. In the solution you’ll find three projects:

1. The Model project contains the domain classes, which are configured using Data
Annotations.

2. The DataAccess project contains the BreakAwayContext class that derives from
DbContext.

3. The BreakAwayConsole project is a console application where you can add and
execute methods as we explore the many capabilities of the DbContext API.

When using Code First you begin with your classes. Code First uses convention to infer
what the schema of the relevant database looks like and how Entity Framework can
translate from your classes to that database. Code First’s conventions do not always
align with your reality, however, so you can tweak how Code First maps your classes
to the database by performing additional configuration. There are two ways to apply
this additional configuration. One is by adding attributes to your classes and their

6 | Chapter 1: Introducing the DbContext API

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/0636920022220.do
http://learnentityframework.com/downloads
http://learnentityframework.com/downloads

properties (called Data Annotations) and the other is by using Code First’s Fluent API.
In the Code First book, we showed you how to use both features and built up two
versions of the BreakAway model—one that uses Data Annotations to configure the
mappings and the other using the Fluent API.

The examples in this book and the sample download are based on the version of the
model that uses Data Annotations. For example, the first class you’ll encounter in
Chapter 2 is the Destination class, which is displayed here in Example 1-3.

Example 1-3. A class using Data Annotations to specify Code First configuration

[Table("Locations", Schema = "baga")]
public class Destination
{
 public Destination()
 {
 this.Lodgings = new List<Lodging>();
 }

 [Column("LocationID")]
 public int DestinationId { get; set; }
 [Required, Column("LocationName")]
 [MaxLength(200)]
 public string Name { get; set; }
 public string Country { get; set; }
 [MaxLength(500)]
 public string Description { get; set; }
 [Column(TypeName = "image")]
 public byte[] Photo { get; set; }
 public string TravelWarnings { get; set; }
 public string ClimateInfo { get; set; }

 public List<Lodging> Lodgings { get; set; }
}

The Destination class has a number of Data Annotations. It begins with a Table at-
tribute indicating that the Destination class will map to a database table named Loca
tions which has the schema baga. Without this annotation, Code First would presume
the table name is the plural of Destination (Destinations), in the default dbo schema.
The DestinationId property is configured to map to a column in the table named
LocationId and the Name column to one called LocationName, with a max length of 200.
The System.Data.SqlClient provider will default to specifying that the LocationName
column is an nvarchar(200). Another annotation ensures that Code First understands
that the Photo property maps to a column whose type is image.

The BreakAway context class inherits from System.Data.Entity.DbContext, the central
class of the DbContext API. It contains properties that reflect sets of the various model
classes contained in the solutions. For example a property named Destinations returns
a queryable set of Destination types. The queryable set comes in the form of a DbSet
class—another piece of the DbContext API. Example 1-4 gives you a sampling of

Working with the BreakAway Model | 7

properties in the BreakAwayContext class, which you’ll see more of beginning with the
next chapter.

Example 1-4. A context class exposing three DbSets that wrap domain classes

 public class BreakAwayContext : DbContext
 {
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }
 public DbSet<Trip> Trips { get; set; }
 }

Code First can either create a database for you or be used to map to an existing database.
By default, Code First will create a database for you on your local SQL Express instance,
using the namespace-qualified context name as the name for the database. For the sake
of simplicity, the examples in this book will let Code First create a database automat-
ically. After running some of the sample code, you will find a DataAccess.BreakAway
Context database on your local SQL Express instance.

You can learn much more about Code First, its configurations, and its
database interactions in Programming Entity Framework: Code First.

Getting DbContext from an EDMX Model
Although the book samples use Code First, you may not be using Code First to describe
the model in your applications. If, instead, you are using the Entity Data Model De-
signer and want to take advantage of the DbContext API, there’s an easy way to do
that. Visual Studio uses the Text Template Transformation Toolkit (T4) generator to
generate the default ObjectContext and classes from an EDMX file. The generator uses
a default template, which is designed to create class fields in a particular way. With the
default template, each entity in the model becomes a class that inherits from EntityOb
ject and a separate class is generated to manage the entities that inherits from Object
Context.

Microsoft provides alternative templates that you can use to generate POCO classes
and a DbContext-based context from the EDMX. These are available online and can
easily be selected from within the Entity Data Model Designer:

1. Open your EDMX file in the Entity Data Model designer.

2. Right-click on the model background and select “Add Code Generation Item…”
as shown in Figure 1-2.

3. In the Add New Item window, select “Online Templates” from the left menu and
then search for “DbContext.” Select the DbContext Generator template from the
search results, enter a name, and click “Add” (Figure 1-3).

8 | Chapter 1: Introducing the DbContext API

http://shop.oreilly.com/product/0636920022220.do

As a result, two templates will be added to your project. One is a context template
(Model.Context.tt in the sample shown in Figure 1-4), which generates a class that
inherits from DbContext, shown in Example 1-5.

Figure 1-2. Adding a new T4 template code generation item from the model’s context menu

Figure 1-3. Selecting the DbContext Generator template

Working with the BreakAway Model | 9

Figure 1-4. Project with .tt template files and their code-generated .cs files

Example 1-5. Generated BAEntities class inheriting from DbContext

public partial class BAEntities : DbContext
{
 public BAEntities()
 : base("name=BAEntities")
 {
 this.Configuration.LazyLoadingEnabled = false;
 }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Activity> Activities { get; set; }
 public DbSet<Contact> Contacts { get; set; }
 public DbSet<CustomerType> CustomerTypes { get; set; }
 public DbSet<Equipment> EquipmentSet { get; set; }
 public DbSet<Trip> Trips { get; set; }
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }

10 | Chapter 1: Introducing the DbContext API

 public DbSet<Payment> Payments { get; set; }
}

The second template (also shown in Figure 1-4), here called Model.tt, is the one that
generates POCO classes for each of the entities in your EDMX model. As you saw above,
the context class exposes each of these POCO types in a DbSet.

Using this template, you can take advantage of an existing visual model and still benefit
from the DbContext API, which you’ll be learning about in this book.

Ensuring DbContext Instances Get Disposed
A DbContext (and its underlying ObjectContext) are responsible for managing and
tracking changes to instances of the classes in its model. These classes are also respon-
sible for managing a connection to the database. It’s important to ensure that any re-
sources used to perform these operations are cleaned up when the DbContext instance
is no longer needed. DbContext implements the standard .NET IDisposable interface,
which includes a Dispose method that will release any such resources.

The examples in this book will make use of the using pattern, which will take care of
disposing the context when the using block completes (Example 1-6). If your applica-
tion doesn’t make use of the using pattern, ensure that the Dispose method is called on
any DbContext instances when they are no longer needed.

Example 1-6. Instantiating and disposing a context with the using pattern

public static List<Destination> GetDestinations()
{
 using (var context = new BreakAwayContext())
 {
 var query= from d in context.Destinations
 orderby d.Name
 select d;
 return query.ToList();
 }
}

Ensuring DbContext Instances Get Disposed | 11

CHAPTER 2

Querying with DbContext

There are two things that almost every application that accesses a database has in com-
mon: the need to retrieve data from the database and to save changes to that data back
into the database. Over the next two chapters you will see how the DbContext API
makes it easy to achieve these tasks using the Entity Framework. The focus of this
chapter will be on retrieving data from the database.

One of the great benefits of using an Object Relational Mapper (ORM), such as Entity
Framework, is that once we have set up the mapping, we can interact with our data in
terms of the objects and properties that make up our model, rather than tables and
columns. When querying for objects, this means we no longer need to know how to
write queries using the SQL syntax of our database.

Writing Queries with LINQ to Entities
Entity Framework queries are written using a .NET Framework feature known as Lan-
guage Integrated Query, or LINQ for short. As the name suggests, LINQ is tightly
integrated with the .NET programming experience and provides a strongly typed query
language over your model. Strongly typed simply means that the query is defined using
the classes and properties that make up your model. This provides a number of benefits
such as compile-time checks to ensure your queries are valid and the ability to provide
IntelliSense as you write your queries.

LINQ is a general query framework and isn’t specific to Entity Framework, or even
databases for that matter. A LINQ Provider is responsible for taking your LINQ query,
translating it into a query against the data, and then returning results. For Entity
Framework this provider is known as LINQ to Entities and is responsible for taking
your LINQ query and translating it into a SQL query against the database you are
targeting. The information you supplied to Entity Framework about the shape of your
model and how it maps to the database is used to perform this translation. Once the
query returns, Entity Framework is responsible for copying the data into instances of
the classes that make up your model.

13

The capabilities of LINQ and its use within Entity Framework are beyond the scope of
this book. This chapter will provide an overview to help you get up and running with
queries using DbContext, but is not an exhaustive query guide. Programming Entity
Framework, 2e, provides a much more in-depth look at the query capabilities of Entity
Framework, not only in Chapter 3 and Chapter 4, which are dedicated to querying, but
throughout the book.

In addition to LINQ, Entity Framework also supports a text-based query
language known as Entity SQL, or ESQL for short. ESQL is typically
used in more advanced scenarios where queries need to be dynamically
constructed at runtime. Because ESQL is text-based, it is also useful in
scenarios where the application needs to build a query against a model
that isn’t known until runtime. Given that ESQL is less commonly used,
it is not exposed directly on the DbContext API. If your application
requires the use of ESQL, you will need to access the ObjectContext API
using the IObjectContextAdapter interface.

To follow along with the examples in this book you will need a Visual Studio solution
containing a console application that references the BAGA model built in Programming
Entity Framework: Code First. You can download a prebuilt solution from http://lear
nentityframework.com/downloads. This prebuilt solution also includes a database ini-
tializer that will reset the database and insert some seed data into the database each
time you run the application. The seed data is used in the examples throughout this
book.

Code First Migrations
Entity Framework 4.3 includes a new Code First Migrations feature that allows you to
incrementally evolve the database schema as your model changes over time. For most
developers, this is a big improvement over the database initializer options from the 4.1
and 4.2 releases that required you to manually update the database or drop and recreate
it when your model changed.

The prebuilt solution still makes use of the DropCreateDatabaseAlways initializer rather
than using Code First Migrations. This allows us to ensure the database is reset to a
well-known state before you run each example in this book.

You can learn more about Code First Migrations at http://blogs.msdn.com/b/adonet/
archive/2012/02/09/ef-4-3-released.aspx.

The Model project of the prebuilt solution contains classes that make up the BAGA
domain model. The BAGA model includes a Destination class (Example 2-1) that rep-
resents all the wonderful places that our intrepid travelers can venture to.

14 | Chapter 2: Querying with DbContext

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do
http://learnentityframework.com/downloads
http://learnentityframework.com/downloads
http://blogs.msdn.com/b/adonet/archive/2012/02/09/ef-4-3-released.aspx
http://blogs.msdn.com/b/adonet/archive/2012/02/09/ef-4-3-released.aspx

Example 2-1. Destination class as listed in download solution

[Table("Locations", Schema = "baga")]
public class Destination
{
 public Destination()
 {
 this.Lodgings = new List<Lodging>();
 }

 [Column("LocationID")]
 public int DestinationId { get; set; }
 [Required, Column("LocationName")]
 [MaxLength(200)]
 public string Name { get; set; }
 public string Country { get; set; }
 [MaxLength(500)]
 public string Description { get; set; }
 [Column(TypeName = "image")]
 public byte[] Photo { get; set; }
 public string TravelWarnings { get; set; }
 public string ClimateInfo { get; set; }

 public List<Lodging> Lodgings { get; set; }
}

The BAGA model also includes a Lodging class (Example 2-2) that represents the ac-
commodation that is available at the various Destinations.

Example 2-2. Lodging class as listed in download solution

public class Lodging
{
 public int LodgingId { get; set; }
 [Required]
 [MaxLength(200)]
 [MinLength(10)]
 public string Name { get; set; }
 public string Owner { get; set; }
 public decimal MilesFromNearestAirport { get; set; }

 [Column("destination_id")]
 public int DestinationId { get; set; }
 public Destination Destination { get; set; }
 public List<InternetSpecial> InternetSpecials { get; set; }
 public Nullable<int> PrimaryContactId { get; set; }
 [InverseProperty("PrimaryContactFor")]
 [ForeignKey("PrimaryContactId")]
 public Person PrimaryContact { get; set; }
 public Nullable<int> SecondaryContactId { get; set; }
 [InverseProperty("SecondaryContactFor")]
 [ForeignKey("SecondaryContactId")]
 public Person SecondaryContact { get; set; }
}

Writing Queries with LINQ to Entities | 15

The Destination and Lodging classes will be used extensively for the examples through-
out this book. To perform data access using these classes you will be using the BreakA
wayContext from the DataAccess project. The project contains additional classes that
are represented in BreakAwayContext as well as the Lodgings and Destinations. We’ll be
using Code First for the examples in this book, but the techniques you will learn apply
to any context that derives from DbContext. This includes contexts created using the
Model First or Database First workflows.

Example 2-3. BreakAwayContext class as listed in download solution

public class BreakAwayContext : DbContext
{
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }
 public DbSet<Trip> Trips { get; set; }
 public DbSet<Person> People { get; set; }
 public DbSet<Reservation> Reservations { get; set; }
 public DbSet<Payment> Payments { get; set; }
 public DbSet<Activity> Activities { get; set; }
}

Querying All the Data from a Set
Arguably the simplest query you can write is one that fetches all the data for a given
entity type. This is the equivalent of a SELECT * FROM mytable query in SQL. Fortunately
you don’t need to know SQL, because Entity Framework will take care of translating
LINQ queries into SQL for you.

Getting all the data from a set doesn’t require you to really write a query. You can simply
iterate over the contents of any given DbSet and Entity Framework will send a query to
the database to find all the data in that set. Let’s add a PrintAllDestinations method
to our console application that iterates over the Destinations set defined in our Break
AwayContext and prints out the name of each Destination (Example 2-4).

Example 2-4. Query for all destinations

private static void PrintAllDestinations()
{
 using (var context = new BreakAwayContext())
 {
 foreach (var destination in context.Destinations)
 {
 Console.WriteLine(destination.Name);
 }
 }
}

16 | Chapter 2: Querying with DbContext

When you debug the application, the console window will close when
the application has finished executing, which may prevent you from
inspecting the output. You can put a breakpoint at the end of the method
for debugging. Alternatively, you can run without debugging (CTRL +
F5), in which case Visual Studio will ensure that the console window
remains open after the program has finished executing.

If you update the Main method to call this new PrintAllDestinations method and run
the application, you will see that the name of each Destination in the database is printed
to the console:

Grand Canyon
Hawaii
Wine Glass Bay
Great Barrier Reef

As the code began iterating over the contents of the Destinations set, Entity Framework
issued a SQL query against the database to load the required data:

SELECT
[Extent1].[LocationID] AS [LocationID],
[Extent1].[LocationName] AS [LocationName],
[Extent1].[Country] AS [Country],
[Extent1].[Description] AS [Description],
[Extent1].[Photo] AS [Photo]
FROM [baga].[Locations] AS [Extent1]

The SQL may not look like the SQL you would have written. This is because Entity
Framework has a generic query building algorithm that not only caters to this very
simple query, but also for much more complex scenarios.

The query is sent to the database when the first result is requested by the application:
that’s during the first iteration of the foreach loop. Entity Framework doesn’t pull back
all the data at once, though. The query remains active and the results are read from the
database as they are needed. By the time the foreach loop is completed, all the results
have been read from the database.

One important thing to note is that Entity Framework will query the database every
time you trigger an iteration over the contents of a DbSet. This has performance impli-
cations if you are continually querying the database for the same data. To avoid this,
you can use a LINQ operator such as ToList to copy the results into a list. You can then
iterate over the contents of this list multiple times without causing multiple trips to the
database. Example 2-5 introduces a PrintAllDestinationsTwice method that demon-
strates this approach.

Example 2-5. Iterating all Destinations twice with one database query

private static void PrintAllDestinationsTwice()
{
 using (var context = new BreakAwayContext())
 {

Querying All the Data from a Set | 17

 var allDestinations = context.Destinations.ToList();

 foreach (var destination in allDestinations)
 {
 Console.WriteLine(destination.Name);
 }

 foreach (var destination in allDestinations)
 {
 Console.WriteLine(destination.Name);
 }
 }
}

Because a query is sent to the database to find the items in a DbSet, iterating a DbSet
will only contain items that exist in the database. Any objects that are sitting in memory
waiting to be saved to the database will not be returned. To ensure added objects are
included you can use the techniques described in “Querying Local Data”
on page 24.

Using LINQ for Sorting, Filtering, and More
While this chapter will not be an exhaustive list of everything you can do with LINQ
and Entity Framework, let’s take a look at the patterns used to achieve some common
query tasks. Let’s say you want to print out the names of Destinations again, but this
time you want them ordered alphabetically by Name. Add a new PrintAllDestinations
Sorted method that uses a LINQ query to perform this sort (Example 2-6).

Example 2-6. Query for destinations sorted by name

private static void PrintAllDestinationsSorted()
{
 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 orderby d.Name
 select d;

 foreach (var destination in query)
 {
 Console.WriteLine(destination.Name);
 }
 }
}

The above code uses LINQ to create a query and then iterates the results of the query
and displays the name of each destination. The query is expressed using a syntax that
looks a little bit like SQL. You start by telling it what you want to select from (in our
case, the Destinations set on our context). You give the set a name so that you can refer
to it throughout the rest of the query (in our case that name is d). Following this, you

18 | Chapter 2: Querying with DbContext

use operators such as orderby, groupby, and where to define the query. Finally you spec-
ify what you want returned using the select operator. In our case we want the actual
Destination objects returned, so we specify the name that we gave the set in the first line.

Remember that Entity Framework won’t execute the query against the database until
it needs the first result. During the first iteration of the foreach loop, the query is sent
to the database. The query remains active and each result is read from the database as
it is needed by the application. LINQ also includes methods that will copy the results
of a query into a collection. For example, ToList can be called on a query to copy the
results into a new List<T>. Calling a method such as this will cause all the results to be
retrieved from the database and be copied into the new List<T>.

The code shown in Example 2-6 uses the LINQ query syntax to express the query.
While most people find this the easiest to understand, there is an alternate method
syntax that can be used if you prefer. Example 2-7 shows the same query expressed
using method syntax.

Example 2-7. LINQ method syntax in C#

var query = context.Destinations
 .OrderBy(d => d.Name);

The method syntax makes use of lambda expressions to define the query. The LINQ
methods are strongly typed, which gives you IntelliSense and compile-time checking
for the lambda expressions you write. For example, in the OrderBy method we are using
a lambda expression to specify that we want to order by the Name property. You start a
lambda expression by giving a name to the thing you are operating on; this forms the
left side of the expression. In our case we are operating on a Destination and we have
chosen to call it d. Then, on the right side of the expression, you specify the body of
the expression. In our case we just want to identify the Name property.

C# uses the lambda sign (=>) to separate the left and right sides of the expression.
VB.NET uses the Function keyword followed by brackets to identify the left side of the
expression. Example 2-8 shows the same query written in VB.NET using the method
syntax.

Example 2-8. LINQ method syntax in VB.NET

context.Destinations.OrderBy(Function(d) d.Name)

Another common task is to filter the results of a query. For example, we may only want
Destinations from Australia. Add the PrintAustralianDestinations method shown in
Example 2-9.

Example 2-9. Query for Australian destinations

private static void PrintAustralianDestinations()
{
 using (var context = new BreakAwayContext())
 {

Using LINQ for Sorting, Filtering, and More | 19

 var query = from d in context.Destinations
 where d.Country == "Australia"
 select d;

 foreach (var destination in query)
 {
 Console.WriteLine(destination.Name);
 }
 }
}

This code looks very similar to the PrintAllDestinationsSorted we saw in Exam-
ple 2-6, except we are using the where operator instead of orderby. You can also combine
these operators. Example 2-10 shows how to query for Australian Destinations sorted
by name.

Example 2-10. Query combining filter and sort

var query = from d in context.Destinations
 where d.Country == "Australia"
 orderby d.Name
 select d;

Operators can also be combined in the method syntax. The same query from Exam-
ple 2-10 is shown using method syntax in Example 2-11.

Example 2-11. Method syntax for combining filter and sort

var query = context.Destinations
 .Where(d => d.Country == "Australia")
 .OrderBy(d => d.Name);

So far our queries have returned collections of entities from our model, but this may
not always be the case. In fact, we have been returning complete Destination objects
when we really only need the name. You can use projection to create a query that selects
from a set of entities in your model but returns results that are of a different type. For
example, you can use projection to create a query that selects from a set of entities type
but only returns a subset of the properties of that entity. It’s called projection because
you are projecting data from the shape of the source that you are selecting from onto
the shape of the result set you want.

In our case we want to project a query about Destinations into a result set that just has
a string representing the destination’s name. Example 2-12 adds a PrintDestination
NameOnly method that shows how we use the select section of our query to specify what
we want the result set to contain.

Example 2-12. Querying for just the Destination name

private static void PrintDestinationNameOnly()
{
 using (var context = new BreakAwayContext())
 {

20 | Chapter 2: Querying with DbContext

 var query = from d in context.Destinations
 where d.Country == "Australia"
 orderby d.Name
 select d.Name;

 foreach (var name in query)
 {
 Console.WriteLine(name);
 }
 }
}

Example 2-13 shows how this same query can be written using method syntax by mak-
ing use of the Select method.

Example 2-13. Method syntax for projection

var query = context.Destinations
 .Where(d => d.Country == "Australia")
 .OrderBy(d => d.Name)
 .Select(d => d.Name);

LINQ is a powerful query language and this section has just grazed the surface of its
capabilities. Programming Entity Framework, 2e, contains a much deeper look into
using LINQ with the Entity Framework. There are also more example queries available
in the Entity Framework MSDN documentation: http://msdn.microsoft.com/en-us/li
brary/bb399367.aspx.

Finding a Single Object
So far you’ve seen queries that return a collection of entities, but sometimes you will
want to run a query that just returns a single object. The most common scenario for
querying for a single object is to find the object with a given key. The DbContext API
makes this very simple by exposing a Find method on DbSet. Find accepts the value to
be searched for and will return the corresponding object if it is found. If there is no
entity with the provided key, Find will return null.

One of the great things about Find is that it doesn’t unnecessarily query the database.
It’s also capable of finding newly added objects that haven’t yet been saved to the
database. Find uses a simple set of rules to locate the object (in order of precedence):

1. Look in memory for an existing entity that has been loaded from the database or
attached to the context (you’ll learn more about attaching objects in Chapter 4).

2. Look at added objects that have not yet been saved to the database.

3. Look in the database for entities that have not yet been loaded into memory.

To see this behavior, add the FindDestination method shown in Example 2-14. This
method accepts an ID from the user and then attempts to locate the Destination with
the specified ID.

Finding a Single Object | 21

http://shop.oreilly.com/product/9780596807252.do
http://msdn.microsoft.com/en-us/library/bb399367.aspx
http://msdn.microsoft.com/en-us/library/bb399367.aspx

Example 2-14. Using Find to locate a Destination

private static void FindDestination()
{
 Console.Write("Enter id of Destination to find: ");
 var id = int.Parse(Console.ReadLine());
 using (var context = new BreakAwayContext())
 {
 var destination = context.Destinations.Find(id);
 if (destination == null)
 {
 Console.WriteLine("Destination not found!");
 }
 else
 {
 Console.WriteLine(destination.Name);
 }
 }
}

The code above uses the Find method to look up the Destination with the specified ID.
If one is found, it prints out the name of the destination. If Find returns null, indicating
there is no Destination with the specified ID, an error message is displayed to the user.

Find with Composite Keys
Entity Framework supports entities that have composite keys, that is, entities where the
key is made up of two or more properties. For example, you may have a Passport entity
that uses a combination of IssuingCountry and PassportNumber as its key. To locate
entities with a composite key you supply each of the key values to Find:

context.Passports.Find("USA", "123456789")

The key values must be supplied in the same order that they appear in the model. If
you are using Model First or Database First, this is the order that they appear in the
designer. When composite keys are used, Code First requires you to specify an order
for them. You can use the Column annotation with the Order parameter to specify the
order. If you are using the Fluent API, a HasKey call is required; the order of the key
properties is the order they appear in the body of the HasKey call.

There may be times when you want to query for a single object but are not able to use
Find. These could include wanting to query by something other than the key or wanting
to include related data in the query (as described in “Eager Loading” on page 33). To
do this, you will need to create a standard LINQ query and then use the Single method
to get a single object as the result.

Let’s say we want to locate the Destination that has the name Great Barrier Reef.
Name isn’t the key of Destination but we know there is, and only ever will be, one Great
Barrier Reef. Example 2-10 introduces a FindGreatBarrierReef method that will locate
this single Destination.

22 | Chapter 2: Querying with DbContext

Example 2-15. Query for single entity based on name

private static void FindGreatBarrierReef()
{
 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d;

 var reef = query.Single();

 Console.WriteLine(reef.Description);
 }
}

The LINQ query looks the same as any other query that filters based on name. We then
use the Single method to let Entity Framework know that we expect a single result. If
the query returns no results, or more than one result, an exception will be thrown. If
there are potentially no matches, you can use the SingleOrDefault method, which will
return null if no results are found. Example 2-16 shows the FindGreatBarrierReef
method updated to account for the fact it may not exist in the database.

Example 2-16. Query for single entity that may not exist

private static void FindGreatBarrierReef()
{
 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d;

 var reef = query.SingleOrDefault();

 if (reef == null)
 {
 Console.WriteLine("Can't find the reef!");
 }
 else
 {
 Console.WriteLine(reef.Description);
 }
 }
}

SingleOrDefault uses the same database query that Find uses when it looks for entities
in the database. The SQL selects the TOP two results so that it can ensure there is only
one match:

SELECT TOP (2)
 [Extent1].[LocationID] AS [LocationID],
 [Extent1].[LocationName] AS [LocationName],
 [Extent1].[Country] AS [Country],

Finding a Single Object | 23

 [Extent1].[Description] AS [Description],
 [Extent1].[Photo] AS [Photo],
 [Extent1].[TravelWarnings] AS [TravelWarnings],
 [Extent1].[ClimateInfo] AS [ClimateInfo]
FROM [baga].[Locations] AS [Extent1]
WHERE N'Great Barrier Reef' = [Extent1].[LocationName]

If two rows are found, Single and SingleOrDefault will throw because there is not a
single result. If you just want the first result, and aren’t concerned if there is more than
one result, you can use First or FirstOrDefault.

One important thing to remember is that LINQ queries against a DbSet always send a
query to the database to find the data. So, if the Great Barrier Reef was a newly added
Destination that hadn’t been saved to the database yet, the queries in Example 2-15
and Example 2-16 won’t be able to locate it. To look for newly added entities, you
would also need to query the in-memory data using the techniques shown in “Querying
Local Data” on page 24.

Querying Local Data
So far you’ve used LINQ to query a DbSet directly, which always results in a SQL query
being sent to the database to load the data. You’ve also used the Find method, which
will look for in-memory data before querying that database. Find will only query based
on the key property though, and there may be times when you want to use a more
complex query against data that is already in memory and being tracked by your
DbContext.

One of the reasons you may want to do this is to avoid sending multiple queries to the
database when you know that all the data you need is already loaded into memory.
Back in Example 2-5, we saw one way to do this was to use ToList to copy the results
of a query into a list. While this works well if we are using the data within the same
block of code, things get a little messy if we need to start passing that list around our
application. For example, we might want to load all Destinations from the database
when our application loads. Different areas of our application are then going to want
to run different queries against that data. In some places we might want to display all
Destinations, in others we might want to sort by Name, and in others we might want
to filter by Country. Rather than passing around a list of Destination objects, we can
take advantage of the fact that our context is tracking all the instances and query its
local data.

Another reason may be that you want the results to include newly added data, which
doesn’t yet exist in the database. Using ToList on a LINQ query against a DbSet will
always send a query to the database. This means that any new objects that don’t yet
exist in the database won’t be included in the results. Local queries, however, will
include newly created objects in the results.

24 | Chapter 2: Querying with DbContext

The in-memory data for a DbSet is available via the Local property. Local will return all
the data that has been loaded from the database plus any newly added data. Any data
that has been marked as deleted but hasn’t been deleted from the database yet will be
filtered out for you. More information on how entities get into these different states is
available in Chapter 3.

Let’s start with the very simple task of finding out how many Destinations are in mem-
ory and available to be queried. Go ahead and add the GetLocalDestinationCount
method, as shown in Example 2-17.

Example 2-17. Checking how many Destinations are in-memory

private static void GetLocalDestinationCount()
{
 using (var context = new BreakAwayContext())
 {
 var count = context.Destinations.Local.Count;
 Console.WriteLine("Destinations in memory: {0}", count);
 }
}

The code accesses the Local property of the Destinations set that we created on our
BreakAwayContext. Rather than running a query, we simply store the count in a variable
and then print it to the console. If you run the application you will see that the count
is zero:

Destinations in memory: 0

We’re getting a zero count because we haven’t run any queries to load Destinations
from the database, and we haven’t added any new Destination objects either. Let’s
update the GetLocalDestinationCount method to query some data from the database
before getting the local count (Example 2-18).

Example 2-18. Checking in-memory data after a query

private static void GetLocalDestinationCount()
{
 using (var context = new BreakAwayContext())
 {
 foreach (var destination in context.Destinations)
 {
 Console.WriteLine(destination.Name);
 }

 var count = context.Destinations.Local.Count;
 Console.WriteLine("Destinations in memory: {0}", count);
 }
}

This new code iterates over the Destinations set, causing the data to be loaded from
the database. Because the data is loaded when we get the count from the Local property,
we now see a nonzero result when we run the application:

Querying Local Data | 25

Grand Canyon
Hawaii
Wine Glass Bay
Great Barrier Reef
Destinations in memory: 4

Using the Load Method to Bring Data into Memory
Iterating over the contents of a DbSet with a foreach loop is one way to get all the data
into memory, but it’s a little inefficient to do that just for the sake of loading data. It’s
also a little unclear what the intent of the code is, especially if the iteration code doesn’t
directly precede the local query.

Fortunately the DbContext API includes a Load method, which can be used on a
DbSet to pull all the data from the database into memory. Go ahead and add the GetLo
calDestinationCountWithLoad method (Example 2-19) that uses Load on the Destina
tions set and then prints out the count of in-memory Destinations.

Example 2-19. Using the Load to bring data into memory

private static void GetLocalDestinationCountWithLoad()
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Load();

 var count = context.Destinations.Local.Count;
 Console.WriteLine("Destinations in memory: {0}", count);
 }
}

Compare this code with the GetLocalDestinationCount method we wrote back in Ex-
ample 2-18. This updated code makes it much clearer that our intent is to load the
contents of the Destinations set and then query the in-memory data.

Load is actually an extension method on IQueryable<T> and is defined in
the System.Data.Entity namespace. If you want to use Load, you will
need to have this namespace imported.

Because Load is an extension method on IQueryable<T>, we can also use it to load the
results of a LINQ query into memory, rather than the entire contents of a set. For
example, let’s say we only wanted to load Australian Destinations into memory and
then run a few local queries on that subset of data. Let’s add the LoadAustralianDesti
nations method shown in Example 2-20.

Example 2-20. Loading results of a LINQ query into memory

private static void LoadAustralianDestinations()
{

26 | Chapter 2: Querying with DbContext

 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 where d.Country == "Australia"
 select d;

 query.Load();

 var count = context.Destinations.Local.Count;
 Console.WriteLine("Aussie destinations in memory: {0}", count);
 }
}

This time just the Destinations with Country set to Australia are loaded into memory.
When we run the application, we see that the count we get from Local is reduced to
reflect this.

Using Load on a LINQ query will bring the results of that query into
memory but it does not remove the results of previous queries. For ex-
ample if you called Load on a query for Australian destinations and then
Load on a query for American destinations, both Australian and Amer-
ican destinations would be in memory and would be returned from
Local.

Running LINQ Queries Against Local
So far we have just looked at getting the count from Local to make sure that it is re-
turning the correct data that we brought into memory. Because Local is just a collection
of in-memory objects, we can also run queries against it. One of the great things about
LINQ is that it’s not specific to Entity Framework. We can use the same LINQ syntax
to query a number of different data sources, including in-memory collections of objects.

Let’s add a LocalLinqQueries method that pulls data into memory using a single data-
base query and then runs some in-memory queries using Local (Example 2-21).

Example 2-21. Using LINQ to query Local

private static void LocalLinqQueries()
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Load();

 var sortedDestinations = from d in context.Destinations.Local
 orderby d.Name
 select d;

 Console.WriteLine("All Destinations:");
 foreach (var destination in sortedDestinations)
 {
 Console.WriteLine(destination.Name);

Querying Local Data | 27

 }

 var aussieDestinations = from d in context.Destinations.Local
 where d.Country == "Australia"
 select d;

 Console.WriteLine();
 Console.WriteLine("Australian Destinations:");
 foreach (var destination in aussieDestinations)
 {
 Console.WriteLine(destination.Name);
 }
 }
}

The code loads all Destinations into memory and then runs one query to sort them by
Name and another to pull out just the Australian Destinations. Remember that Find also
defaults to using in-memory data where possible. So we could also use Find and it would
use the data we loaded rather than sending more queries to the database.

While Load and Local are great if you want to reduce the number of queries that get
run against the database just remember that pulling all your data into memory may be
an expensive operation. If you are running multiple queries that only return a subset
of your data you’ll probably get better performance by letting these queries hit the
database and just pull back the data you actually need.

Differences Between LINQ Providers
There are a few subtle but important differences between querying directly against a
DbSet and against Local. These two data sources actually use two different LINQ pro-
viders. Querying against DbSet uses LINQ to Entities, which is specific to Entity Frame-
work and uses your model and mapping to turn your query into SQL that is executed
in the database. However, querying against Local uses LINQ to Objects, which per-
forms filtering, sorting, and similar operations in memory using the standard .NET
operators for testing equality, determining ordering, and the like.

The same query syntax can return different results depending on which one you are
using. For example, the database is typically not case-sensitive when comparing string
values, but .NET is. If you issued a query for Destination names that contain “great”,
the database would return “Great Barrier Reef” and “The great wall of China.” The
same query against Local would return “The great wall of China” but would not return
“Great Barrier Reef” because the capitalization of “great” is different.

Most LINQ providers support the same core features, but there are some differences
in features between each provider. For example, LINQ to Objects supports the Last
operator but LINQ to Entities does not. Therefore, you can use Last when running
queries against Local but not when running queries directly against a DbSet.

28 | Chapter 2: Querying with DbContext

Working with the ObservableCollection Returned by Local
If you’ve looked at the API closely you may have noticed that Local returns an Observ
ableCollection<TEntity>. This type of collection allows subscribers to be notified
whenever objects are added or removed from the collection. ObservableCollection is
useful in a number of data-binding scenarios, but it can also be useful if your application
needs to know when new data comes into memory.

Local will raise the CollectionChanged event whenever the contents of Local change.
This can be when data is brought back from that database via a query, when new objects
are added to the DbContext, or when objects previously brought into memory are
marked for deletion.

Let’s add a ListenToLocalChanges method that uses this functionality to log any changes
to Destinations.Local to the console (Example 2-22).

Example 2-22. Using CollectionChanged to print out changes to Local

private static void ListenToLocalChanges()
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Local
 .CollectionChanged += (sender, args) =>
 {
 if (args.NewItems != null)
 {
 foreach (Destination item in args.NewItems)
 {
 Console.WriteLine("Added: " + item.Name);
 }
 }

 if (args.OldItems != null)
 {
 foreach (Destination item in args.OldItems)
 {
 Console.WriteLine("Removed: " + item.Name);
 }
 }
 };

 context.Destinations.Load();
 }
}

The code adds a new event handler to the Local collection of Destinations. This handler
looks at items entering or leaving the collection and prints out the name of the affected
Destination and indicates if it is being added or removed. Once the event handler is in
place, we use Load to pull all the data from the database into memory. If you run the
application, you can see the output appearing as items are returned from the database:

Querying Local Data | 29

Added: Grand Canyon
Added: Hawaii
Added: Wine Glass Bay
Added: Great Barrier Reef

These events could be handy if you have a screen that needs to be refreshed whenever
some data in your context changes. For example, you might have a screen that displays
all Destinations and another screen where the user can add a new Destination. You
could wire up the screen displaying all Destinations to listen to the Collection
Changed event and refresh whenever anything is added or removed.

Some UI frameworks, such as WPF, will take care of this for you so that you don’t have
to write code to listen to changes. If you bind a WPF ListBox to the contents of
Local, whenever any other area of the application adds or removes an entity from the
DbSet, the ListBox will be updated to reflect those changes.

If you use LINQ to query the contents of Local, the result of the query
is no longer an ObservableCollection. This means if you run a LINQ
query against Local and bind the results to a WPF ListBox, it will no
longer get automatically updated for you when entities are added or
removed. You would need to write code that listens to OnCollection
Changed on DbSet.Local and rerun the query to refresh the ListBox.

Loading Related Data
So far we have looked at accessing data for a single type of entity and everything has
been about Destinations. But if we were writing a real application, we would probably
want to know something about the Lodging that is available at each Destination. If we
want to access the Lodgings associated with a Destination, that means working with
related data.

You’ll need to pull related data into memory so that we can look at it. There are three
approaches you can use to load related data: lazily, eagerly, or explicitly. While they
may achieve the same end result, there are some differences between each approach
that can have a significant impact on performance. This isn’t a one-time decision either.
Different approaches may be better at different times. This section will walk through
the three available options and help you work out which one is best for you in different
situations.

The “Demystifying Entity Framework Strategies: Loading Related
Data” MSDN article gives a detailed look at the pros and cons of the
different strategies and some pointers on choosing the right strategy for
you.

30 | Chapter 2: Querying with DbContext

http://msdn.microsoft.com/en-us/magazine/hh205756.aspx
http://msdn.microsoft.com/en-us/magazine/hh205756.aspx

Lazy Loading
Lazy loading related data is the most transparent to your application and involves let-
ting Entity Framework automatically retrieve the related data for you when you try to
access it. For example, you may have the Grand Canyon destination loaded. If you then
use the Lodgings property of this Destination, Entity Framework will automatically
send a query to the database to load all Lodgings at the Grand Canyon. It will appear
to your application code as if the Lodgings property was always populated.

Entity Framework achieves lazy loading using a dynamic proxy. Here’s how that works.
When Entity Framework returns the results of a query, it creates instances of your
classes and populates them with the data that was returned from the database. Entity
Framework has the ability to dynamically create a new type at runtime that derives
from your POCO class. This new class acts as a proxy to your POCO class and is referred
to as a dynamic proxy. It will override the navigation properties of your POCO class
and include some additional logic to retrieve the data from the database when the
property is accessed. Because the dynamic proxy derives from your POCO class, your
application can be written in terms of the POCO class and doesn’t need to be aware
that there may be a dynamic proxy at runtime.

DbContext has a configuration setting that enables lazy loading: DbCon
text.Configuration.LazyLoadingEnabled. This setting is true by default
and therefore if you have not changed the default, the dynamic proxy
will perform lazy loading.

In order to use dynamic proxies, and therefore lazy loading, there are a couple of criteria
your class must meet. If these criteria are not met, Entity Framework will not create a
dynamic proxy for the class and will just return instances of your POCO class, which
cannot perform lazy loading:

• Your POCO class must be public and not sealed.

• The navigation properties that you want to be lazy loaded must also be marked as
virtual (Overridable in Visual Basic) so that Entity Framework can override the
properties to include the lazy loading logic.

Before we make any changes to our classes, let’s see what the behavior is like without
dynamic proxies. Add a TestLazyLoading method that attempts to access the Lodg
ings associated with a specific Destination (Example 2-23).

Example 2-23. Method to access related data

private static void TestLazyLoading()
{
 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 where d.Name == "Grand Canyon"

Loading Related Data | 31

 select d;

 var canyon = query.Single();

 Console.WriteLine("Grand Canyon Lodging:");
 if (canyon.Lodgings != null)
 {
 foreach (var lodging in canyon.Lodgings)
 {
 Console.WriteLine(lodging.Name);
 }
 }
 }
}

The code locates the Grand Canyon Destination and then tests if the Lodgings property
is populated. If it is populated, the name of each associated Lodging is printed to the
console. If you update the Main method to call TestLazyLoading and run the application,
you will see that nothing is printed out to the console. This is because the Lodgings
property on Destination isn’t marked as virtual (Overridable in Visual Basic), so Entity
Framework can’t override the property in a dynamic proxy. Entity Framework is forced
to use your implementation of the property (that doesn’t perform lazy loading) rather
than replacing it with an implementation that includes the lazy loading logic. Let’s go
ahead and edit the Destination class so that the property is marked as virtual:

public virtual List<Lodging> Lodgings { get; set; }

Now Entity Framework can create a dynamic proxy for the Destination class. If you
run the application again, you’ll see that the individual Lodgings for the Grand Canyon
are displayed because the data was automatically loaded for you when the code en-
countered the first request for Lodgings:

Grand Canyon Lodging:
Grand Hotel
Dave's Dump

As the code executed, Entity Framework sent two queries to the database (Fig-
ure 2-1). The first query retrieves the data for the Grand Canyon Destination and was
executed when the code called the Single method on query. Remember that the Sin
gle method uses a SELECT TOP (2) query to ensure there is one result and only one
result. The second query selects all Lodgings associated with the Grand Canyon. This
query was sent at the moment the code first tried to access the Lodgings property for
the Grand Canyon Destination.

Figure 2-1. Lazy loading query

32 | Chapter 2: Querying with DbContext

Multiple Active Result Sets
When Entity Framework runs a query against the database, it doesn’t bring all the data
back the first time you read data from the query. Each row of data is transferred from
the database as it is needed. This means that as you iterate over the results of a query,
the query is still active and data is being pulled back from the database as you iterate.

When lazy loading is being used, it’s very common for lazy loading to occur while you
are iterating the results of a query. For example, you may have queried for all Destina
tions. You might then iterate over the results using a foreach loop. Inside the loop you
might access the Lodgings property, which will be lazy loaded from the database. This
means that the query to load Lodgings is executed while the main query to fetch all
Destinations is still active.

Multiple Active Result Sets (MARS) is a SQL Server feature that allows more than one
active query against the same connection. When Code First creates a connection by
convention, which it has been in our examples, it will enable MARS. If you are supplying
your own connection, you will need to ensure that MARS is enabled if you want to be
able to have multiple active queries.

If you don’t enable MARS and your code tries to run two active queries, you will receive
an exception. The exception you receive will depend on the operation that triggers the
second query, but the inner exception will be an InvalidOperationException stating
“There is already an open DataReader associated with this Command which must be
closed first.”

Understanding the downsides of lazy loading

Lazy loading is very simple because your application doesn’t really need to be aware
that data is being loaded from the database. But that is also one of its dangers! Improper
use of lazy loading can result in a lot of queries being sent to the database. For example,
you might load fifty Destinations and then access the Lodgings property on each. That
would result in 51 queries against the database—one query to get the Destinations and
then for each of the fifty Destinations, to load that Destination’s Lodgings. In cases like
this it may be much more efficient to load all that data in a single query, using a SQL
join in the database query. This is where eager loading comes into play.

If you decide that lazy loading is just too much magic, you can choose
to disable it altogether by using the DbContext.Configuration.LazyLoa
dingEnabled property. If this switch is set to false, lazy loading will never
occur, even if a navigation property is marked as virtual.

Eager Loading
Eager loading related data relies on you telling Entity Framework what related data to
include when you query for an entity type. Entity Framework will then use a JOIN in

Loading Related Data | 33

the generated SQL to pull back all of the data in a single query. Let’s assume we want
to run though all Destinations and print out the Lodgings for each. Add a TestEager
Loading method that queries for all Destinations and uses Include to also query for the
associated Lodgings (Example 2-24).

Example 2-24. Using eager loading to load related data

private static void TestEagerLoading()
{
 using (var context = new BreakAwayContext())
 {
 var allDestinations = context
 .Destinations
 .Include(d => d.Lodgings);

 foreach (var destination in allDestinations)
 {
 Console.WriteLine(destination.Name);

 foreach (var lodging in destination.Lodgings)
 {
 Console.WriteLine(" - " + lodging.Name);
 }
 }
 }
}

The code uses the Include method to indicate that the query for all destinations should
include the related Lodging data. Include uses a lambda expression to specify which
properties to include the data for. When the application runs, we see a single query is
executed against the database (Figure 2-2). This query uses a join to return the Desti
nation and Lodging data as a single result set.

Figure 2-2. Eager loading returns all data in a single query

There is also a string-based overload of Include that just accepts the name of the prop-
erty to include data for (Include(“Lodgings”) in our case). Previous versions of Entity
Framework only included this string option. The string-based overload is problematic
because it’s not strongly typed and therefore there is no compile-time checking of the
parameter. This can lead to issues with mistyped property names or failing to update
the Include call if the property is renamed in the future.

The lambda version of the Include method is defined as an extension
method in System.Data.Entity. To use the lambda overload you will
need to import this namespace.

34 | Chapter 2: Querying with DbContext

It is possible to include more than one related set of data in a single query. Say we
wanted to query for Lodgings and include the PrimaryContact plus the associated
Photo. We do this by “dotting through” the navigation properties in the lambda
expression:

context.Lodgings
 .Include(l => l.PrimaryContact.Photo)

The syntax gets a little more complicated if you have a collection navigation property
in the middle of the path to be included. What if you want to query for Destinations
and include Lodgings and also the PrimaryContact for each of the related Lodging in-
stances? Following the collection, you need to use the LINQ Select method to identify
which property you want to load:

context.Destinations
 .Include(d => d.Lodgings.Select(l => l.PrimaryContact))

Include can be used multiple times in the same query to identify different data to be
loaded. For example, you may want to query the Lodgings set and include both Pri
maryContact and SecondaryContact. This requires two separate calls to Include:

context.Lodgings
 .Include(l => l.PrimaryContact)
 .Include(l => l.SecondaryContact)

Eager loading is currently only able to include the entire contents of a
navigation property. The ability to only include a subset of the contents
of a collection navigation property is a common request, but it is not
currently supported by the Entity Framework.

Understanding the downsides of eager loading

One thing to bear in mind with eager loading is that fewer queries aren’t always better.
The reduction in the number of queries comes at the expense of the simplicity of the
queries being executed. As you include more and more data, the number of joins in the
query that is sent to the database increases and results in a slower and more complex
query. If you need a significant amount of related data, multiple simpler queries will
often be significantly faster than one big query that returns all the data.

Using Include in LINQ queries

You can also use Include as part of a LINQ query by adding the Include method to the
DbSet being queried. If you are using query syntax, the Include goes in the from part of
the query:

var query = from d in context.Destinations.Include(d => d.Lodgings)
 where d.Country == "Australia"
 select d;

Loading Related Data | 35

If you are using method syntax, you can simply put Include in line with the other
method calls:

var query = context.Destinations
 .Include(d => d.Lodgings)
 .Where(d => d.Country == "Australia");

Include is defined as an extension method on IQueryable<T> and can therefore be added
to a query at any point. It doesn’t have to immediately follow the DbSet from which
you are selecting. For example, you can call Include on an existing query for Australian
Destinations to specify that Lodgings should also be included:

var query = from d in context.Destinations
 where d.Country == "Australia"
 select d;

query = query.Include(d => d.Lodgings);

Note that the code doesn’t just call Include on the existing query but overrides the
query variable with the result of the Include call. This is necessary because Include
doesn’t modify the query that it is called on, it returns a new query that will include
the related data. Remember that Entity Framework doesn’t execute any queries until
the code uses the results of the query. The above code doesn’t use the results of the
query, so nothing will be executed against the database until some other code accesses
the Destinations from the query variable.

Although Include is defined as an extension method on IQueryable<T>
it will only have an effect when used on a LINQ to Entities query. If
another LINQ provider is being used, Include will have no effect unless
the implementation of IQueryable<T> exposes an Include method that
accepts a single string parameter. If this method exists, it will be called
with a string representing the property path that was specified to be
included.

Explicit Loading
Another loading option is explicit loading. Explicit loading is like lazy loading in that
related data is loaded separately, after the main data has been loaded. However, unlike
lazy loading, it doesn’t automatically happen for you; you need to call a method to load
the data.

There are a number of reasons you might opt for explicit loading over lazy loading:

• It removes the need to mark your navigation properties as virtual. To some this
may seem like a trivial change, for others, the fact that a data access technology
requires you to change your POCO classes is far from ideal.

• You may be working with an existing class library where the navigation properties
are not marked as virtual and you simply can’t change that.

36 | Chapter 2: Querying with DbContext

• Explicit loading allows you to be sure that you know exactly when queries are sent
to the database. Lazy loading has the potential to generate a lot of queries; with
explicit loading it is very obvious when and where queries are being run.

Explicit loading is achieved using the DbContext.Entry method. The Entry method gives
you access to all the information that the DbContext has about an entity. This goes
beyond the values that are stored in the properties of the actual entity and includes
things such as the state of the entity and the original values for each property when it
was retrieved from the database. You’ll see a lot more about this information in Chap-
ters 4 and 5. In addition to information about the entity, the Entry method also gives
you access to some operations you can perform on the entity, including loading data
for navigation properties.

Once we have the entry for a given entity we can use the Collection and Reference
methods to drill into the information and operations for navigation properties. One of
the operations available is the Load method, which will send a query to the database to
load the contents of the navigation property.

Let’s take another look at loading the Lodgings available at the Grand Canyon. This
time let’s add a TestExplicitLoading method that uses the Entry method to load the
data (Example 2-25).

Example 2-25. Loading related data with explicit load

private static void TestExplicitLoading()
{
 using (var context = new BreakAwayContext())
 {
 var query = from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d;

 var canyon = query.Single();

 context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Load();

 Console.WriteLine("Grand Canyon Lodging:");
 foreach (var lodging in canyon.Lodgings)
 {
 Console.WriteLine(lodging.Name);
 }
 }
}

The first part of the code should be familiar—it uses a LINQ query to locate the Grand
Canyon Destination. The code then calls the Entry method, passing in the canyon ob-
ject. From there the Collection method is used to drill into the Lodgings navigation
property. Collection and Reference use a lambda expression to specify the property to
drill into. There are also string-based alternatives to these methods, but the lambda

Loading Related Data | 37

version ensures we get compile-time checking of the parameter. Finally, the Load
method is used to query for the related data and bring it into memory.

If you update the Main method to call TestExplicitLoading and then run the application,
you will see two queries run against the database (Figure 2-3). The first one runs when
the code requests the single result of the query for the Grand Canyon, by calling Sin
gle on query. The second query is asking for all Lodging at the Grand Canyon and runs
as a result of the call to Load.

Figure 2-3. Explicit loading runs separate queries for related data

You’ve seen that explicit loading can be used to load the entire contents of a collection
navigation property but it can also be used to load just some of the contents, based on
a LINQ query. You’ll see this in “Explicit Loading a Subset of the Contents of a Nav-
igation Property” on page 41.

Explicit loading of a reference navigation property looks very similar, except you use
the Reference method rather than Collection. For example, if you wanted to load the
PrimaryContact of some lodging, you could write this:

var lodging = context.Lodgings.First();

context.Entry(lodging)
 .Reference(l => l.PrimaryContact)
 .Load();

Checking If a Navigation Property Has Been Loaded
The Reference and Collection methods also give you access to the IsLoaded property.
The IsLoaded method will tell you whether the entire contents of the navigation prop-
erty have been loaded from the database or not. The IsLoaded property will be set to
true when lazy, eager, or explicit loading is used to load the contents of the navigation
property. Add the TestIsLoaded method shown in Example 2-26.

Example 2-26. Testing if a navigation property has been loaded with IsLoaded

private static void TestIsLoaded()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 var entry = context.Entry(canyon);

38 | Chapter 2: Querying with DbContext

 Console.WriteLine(
 "Before Load: {0}",
 entry.Collection(d => d.Lodgings).IsLoaded);

 entry.Collection(d => d.Lodgings).Load();

 Console.WriteLine(
 "After Load: {0}",
 entry.Collection(d => d.Lodgings).IsLoaded);
 }
}

The code uses a LINQ query to load the Grand Canyon Destination from the database.
The value assigned to the IsLoaded property for the Lodgings property is then printed
out to the console. Explicit loading is used to load the contents of the Lodgings property
and the value of IsLoaded is printed to the console again. If you update the Main method
to call TestIsLoaded and then run the application, you will see that the value of IsLoa
ded is set to true after the explicit load is performed:

Before Load: False
After Load: True

If you are performing an explicit load, and the contents of the navigation property may
have already been loaded, you can use the IsLoaded flag to determine if the load is
required or not.

Querying Contents of a Collection Navigation Property
So far you’ve looked at loading the entire contents of a collection navigation property
so that you can work with the data in memory. If you wanted to filter the contents of
a navigation property you could do this after you’d brought everything into memory,
using LINQ to Objects. However, if you are only interested in a subset of the contents,
it may make sense to just bring the bits you are interested in into memory. Or if you
just want a count, or some other calculation, it may make sense just to calculate the
result in the database and not bring any of the data into memory.

Once you’ve used Entry and Collection to drill into a collection navigation property,
you can then use the Query method to get a LINQ query representing the contents of
that property. Because it’s a LINQ query, you can then do further filtering, sorting,
aggregation, and the like.

Assume you wanted to find all Lodgings at the Grand Canyon that are less than ten
miles from the nearest airport. You could just use LINQ to query the contents of the
Lodgings property of the Grand Canyon, something like Example 2-27.

Example 2-27. In-memory query of a navigation property

private static void QueryLodgingDistance()
{
 using (var context = new BreakAwayContext())

Querying Contents of a Collection Navigation Property | 39

 {
 var canyonQuery = from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d;

 var canyon = canyonQuery.Single();

 var distanceQuery = from l in canyon.Lodgings
 where l.MilesFromNearestAirport <= 10
 select l;

 foreach (var lodging in distanceQuery)
 {
 Console.WriteLine(lodging.Name);
 }
 }
}

The problem with this code is that distanceQuery is using LINQ to Objects to query
the contents of the Lodgings navigation property. This will cause the property to be lazy
loaded, pulling the entire contents into memory. The code then immediately filters out
some of the data, meaning there was no need to pull it into memory. Let’s rewrite the
QueryLodgingDistance method from Example 2-27 to use Query, as shown in Exam-
ple 2-28.

Example 2-28. Database query of a navigation property

private static void QueryLodgingDistance()
{
 using (var context = new BreakAwayContext())
 {
 var canyonQuery = from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d;

 var canyon = canyonQuery.Single();

 var lodgingQuery = context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Query();

 var distanceQuery = from l in lodgingQuery
 where l.MilesFromNearestAirport <= 10
 select l;

 foreach (var lodging in distanceQuery)
 {
 Console.WriteLine(lodging.Name);
 }
 }
}

This updated code uses the Query method to create a LINQ to Entities query for the
Lodgings associated with the Grand Canyon. It then composes on that query to ask for

40 | Chapter 2: Querying with DbContext

just the Lodgings that are within ten miles of an airport. When iterating over this query,
Entity Framework takes care of the translation to SQL and performs the filter on Mile
sFromNearestAirport in the database. This means that only the data you care about is
brought back into memory.

Perhaps you want to know how many Lodgings are available at the Grand Canyon. You
could load all the Lodgings and get a count, but why bring all that data into memory
just to get a single integer result? Add a QueryLodgingCount method that uses Query to
get the count without loading the data (Example 2-29).

Example 2-29. Using Query to get a count of Lodgings

private static void QueryLodgingCount()
{
 using (var context = new BreakAwayContext())
 {
 var canyonQuery = from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d;

 var canyon = canyonQuery.Single();

 var lodgingQuery = context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Query();

 var lodgingCount = lodgingQuery.Count();

 Console.WriteLine("Lodging at Grand Canyon: " + lodgingCount);
 }
}

The code loads the Grand Canyon destination and then uses Entry and Collection to
drill into the Lodgings navigation property. From there it uses the Query method to get
a query representing the contents of the navigation property. It then uses the LINQ
Count method to materialize just the count of the results of the query. Because it is using
the LINQ to Entities provider, it recognizes that you want the count and pushes the
entire query to the database so that only the single integer result is returned from the
database. If you update the Main method to call QueryLodgingCount and run the appli-
cation you will see the count correctly displayed:

Lodging at Grand Canyon: 2

Explicit Loading a Subset of the Contents of a Navigation Property
You can combine the Query and Load methods to perform a filtered explicit load. That’s
an explicit load that only loads a subset of the contents of a navigation property. For
example, you may want to just load the Lodgings at the Grand Canyon that contain the
word “Hotel” in their Name:

Querying Contents of a Collection Navigation Property | 41

context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Query()
 .Where(l => l.Name.Contains("Hotel"))
 .Load();

It’s important to remember that calling Load will not clear any objects that are already
in the navigation property. So if you loaded Lodgings at the Grand Canyon that contain
the word “Hotel” and then also loaded Lodgings that contain the word “Campsite”,
the Lodgings navigation property will contain both hotels and campsites.

42 | Chapter 2: Querying with DbContext

CHAPTER 3

Adding, Changing, and
Deleting Entities

In the previous chapter you saw how to get data from the database into memory. But
this is only half the story. Most applications also need to make changes to that data
and then push those changes back into the database. In this chapter we will take a look
at how Entity Framework can be used to make changes to data. These changes fall into
three main categories: adding new data, changing existing data and deleting existing
data.

While looking at querying, we saw the main benefit of using an Object Relational
Mapper (ORM), like Entity Framework, is that application code is written in terms of
your object model. As you write your application, you don’t need to be looking at the
shape of your tables and columns. Nor do you need to know how to write INSERT,
UPDATE, and DELETE statements for your database. Entity Framework will take care of
translating the operations you perform on your objects into SQL statements that will
push these changes into the database.

As you perform operations on your object instances, Entity Framework uses its change
tracker to keep track of what you have done. When you’re ready to commit the changes
to the database, you call the SaveChanges method. SaveChanges will invoke the update
pipeline, which is responsible for translating the changes to your object instances into
SQL statements that are executed against your database. If you’ve developed applica-
tions using Entity Framework’s ObjectContext, you should be familiar with this process.

Because Entity Framework is aware of the relationships between your entities, if you
are saving related objects, it will take care of ordering the SQL statements to ensure
changes are applied in the correct order. For example, you may be deleting an existing
Destination and also moving the Lodgings associated with that Destination to a dif-
ferent Destination. Entity Framework will determine that the Lodging records must be
updated before the Destination record is deleted, regardless of the order that you per-
formed these operations in memory.

43

Entity Framework allows you to make changes that affect single objects, a relationship
between two objects, or an entire graph of objects. In this chapter we are going to take
a look at changes affecting a single object and relationships between objects. In the next
chapter we’ll take a look at some advanced scenarios where operations can affect a
whole graph of objects.

Working with Single Entities
There are three types of changes that can affect a single entity—adding a new entity,
changing the property values of an existing entity, or deleting an existing entity. In this
section you’ll learn how to make each of these changes using Entity Framework.

Adding New Entities
Adding a new object with Entity Framework is as simple as constructing a new instance
of your object and registering it using the Add method on DbSet. Let’s say you wanted
to add a Machu Picchu destination to the database. The AddMachuPicchu method shown
in Example 3-1 demonstrates this.

Example 3-1. Adding a new Destination

private static void AddMachuPicchu()
{
 using (var context = new BreakAwayContext())
 {
 var machuPicchu = new Destination
 {
 Name = "Machu Picchu",
 Country = "Peru"
 };

 context.Destinations.Add(machuPicchu);
 context.SaveChanges();
 }
}

The code constructs a new Destination for Machu Picchu and then calls Add on the
Destinations set you defined in the BreakAwayContext. Finally, the code calls Save
Changes, which will take the changes and save them to the database. We see that a single
INSERT statement is executed against our database:

exec sp_executesql N'
insert [baga].[Locations]
 ([LocationName], [Country], [Description], [Photo])
 values (@0, @1, null, null)

select [LocationID]
 from [baga].[Locations]
 where @@ROWCOUNT > 0 and [LocationID] = scope_identity()',

44 | Chapter 3: Adding, Changing, and Deleting Entities

N'@0 nvarchar(max) ,@1 nvarchar(max) ',
@0=N'Machu Picchu',@1=N'Peru'

Notice that Entity Framework is using the mapping we supplied as it translates the
object changes into SQL. For example, we mapped the Destination class in our domain
model to the baga.Locations table in the database. Entity Framework uses this infor-
mation to construct an INSERT statement that targets the Locations table. The key of
Destination is an identity column, meaning the value is generated by the database when
the record is inserted. Because of this, Entity Framework includes some additional SQL
to fetch this newly created value after the INSERT statement has executed. Entity Frame-
work will then take the returned value and assign it to the DestinationId property of
the object that was added.

In this example we used the default constructor of our POCO class to
create the new instance to be inserted. A little later in this chapter you’ll
learn about change tracking proxies and how to create new instances of
proxies to insert.

Changing Existing Entities
Changing existing objects is as simple as updating the value assigned to the property(s)
you want changed and calling SaveChanges. Perhaps we want to change the Grand
Canyon Destination and assign a Description to it so that BAGA customers know just
how grand it is. Add the ChangeGrandCanyon method shown in Example 3-2.

Example 3-2. Changing an existing Destination

private static void ChangeGrandCanyon()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 canyon.Description = "227 mile long canyon.";

 context.SaveChanges();
 }
}

This code uses a LINQ query to load the Grand Canyon Destination into memory. It
then assigns the new value to the Description property of the loaded Destination. With
the changes completed it calls SaveChanges, which issues an UPDATE statement to the
database:

exec sp_executesql N'
update [baga].[Locations]
 set [Description] = @0
 where ([LocationID] = @1)

Working with Single Entities | 45

',N'@0 nvarchar(500),@1 int',
@0=N'227 mile long canyon.',@1=1

Again we see Entity Framework using the mapping to construct the appropriate SQL
statement. This time it’s an UPDATE statement against the baga.Locations table. Entity
Framework uses the key of the entity to identify the record to be updated. In our case,
that’s DestinationId, which is mapped to the LocationId column. This results in a
WHERE clause that filters based on the LocationId column with the value from the Des
tinationId property in the object being updated.

Deleting Existing Entities
To delete an entity using Entity Framework, you use the Remove method on DbSet.
Remove works for both existing and newly added entities. Calling Remove on an entity
that has been added but not yet saved to the database will cancel the addition of the
entity. The entity is removed from the change tracker and is no longer tracked by the
DbContext. Calling Remove on an existing entity that is being change-tracked will register
the entity for deletion the next time SaveChanges is called.

You may be wondering why the Entity Framework team chose to call
the method Remove rather than Delete, and for that matter, why they
chose Add instead of Insert. The names were chosen for consistency with
other collections and sets in the .NET Framework. Other collections all
use the Add/Remove pair of methods to bring elements into and out of the
collection.

Let’s add a DeleteWineGlassBay method that will delete the Wine Glass Bay Destina
tion from our database (Example 3-3).

Example 3-3. Deleting an existing Destination

private static void DeleteWineGlassBay()
{
 using (var context = new BreakAwayContext())
 {
 var bay = (from d in context.Destinations
 where d.Name == "Wine Glass Bay"
 select d).Single();

 context.Destinations.Remove(bay);
 context.SaveChanges();
 }
}

The code uses a LINQ query to load the Wine Glass Bay Destination from the database.
It then calls Remove on the Destinations set you have defined on the BreakAwayCon
text. Now that Wine Glass Bay is registered for deletion (at least from our database),
we call SaveChanges and a DELETE statement is run against our database:

46 | Chapter 3: Adding, Changing, and Deleting Entities

exec sp_executesql N'
delete [baga].[Locations]
 where ([LocationID] = @0)',
N'@0 int',
@0=3

This is a very simple DELETE statement that uses the key value from the Wine Glass Bay
object to build a WHERE clause that identifies the object we are deleting.

DbSet.Remove Versus Remove on a Collection Navigation Property
While calling Remove on a DbSet will mark an entity for deletion, calling Remove on a
collection navigation property will not. Removing an entity from a collection navigation
property will mark the relationship between the two entities as deleted but not the
entities themselves. More information is provided in “Removing a Relationship Be-
tween Objects” on page 57.

Deleting without loading from the database

DbSet.Remove follows the same rule that we’ve always had to contend with for having
Entity Framework deleting objects. The object must be tracked by the change tracker
and marked as Deleted in order for SaveChanges to construct a DELETE command to send
to the database.

If you know you need to delete an entity, but it’s not already in memory, it’s a little
inefficient to retrieve that entity from the database just to delete it. If you know the key
of the entity you want to delete, you can attach a stub that represents the entity to be
deleted, and then delete this stub. A stub is an instance of an entity that just has the
key value assigned. The key value is all that’s required for deleting entities.

When attaching a stub you use the DbSet.Attach method to let Entity Framework know
that it’s an existing entity. Once an entity is attached, it behaves just like an entity that
was retrieved from the database. So calling DbSet.Remove will cause a DELETE statement
to be sent to the database during SaveChanges. For example, the following code would
delete the Destination with an ID of 2, without loading it from the database:

var toDelete = new Destination { DestinationId = 2 };
context.Destinations.Attach(toDelete);
context.Destinations.Remove(toDelete);
context.SaveChanges();

If an entity has been loaded into memory, you won’t be able to attach a stub for the
entity. Doing so would cause two existing entities with the same key value to be tracked
by the context. If you try and do this you will get an InvalidOperationException stating
“An object with the same key already exists in the ObjectStateManager.”

Another way to delete entities without loading them is to use DbContext.Database.Exe
cuteSqlCommand to execute some raw SQL to perform the deletion in the database. For

Working with Single Entities | 47

example, the following code would delete the Hawaii Destination without loading it
from the database:

context.Database.ExecuteSqlCommand(
 "DELETE FROM baga.Locations WHERE LocationName = 'Hawaii'");

Because we are using raw SQL, we are bypassing any mapping that is done using Entity
Framework. In the above code we needed to remember that the Destination class is
mapped to the baga.Locations table and that the Name property is mapped to the
LocationName column.

Deleting an object with related data

If you are deleting objects that have related data, you may need to update related data
for the delete to succeed. The required updates to related data will depend on whether
the relationship is optional or required. Optional relationships mean that the child
entity can exist in the database without a parent assigned. For example, a Reserva
tion can exist in the database without a Trip assigned. Required relationships mean
the child entity cannot exist without a parent assigned. For example, a Lodging cannot
exist in the database without being assigned to a Destination.

If you delete an entity that is the parent of an optional relationship, the relationship
between the parent and any child entities can be deleted, too. This means the child
entities will be updated so that they are no longer assigned to a parent—the foreign key
column in the database will be set to null. Entity Framework will automatically delete
the relationship for you if the child entity has been loaded into memory from the
database.

Let’s start by seeing what happens if we delete a parent entity of an optional relationship
when the child entity isn’t loaded into memory. There is an optional relationship be-
tween a Reservation and a Trip: Trip is the parent and Reservation is the child. Add a
method that tries to delete a Trip without its child Reservation loaded into memory
(Example 3-4).

Example 3-4. Deleting a Trip without its child Reservation loaded

private static void DeleteTrip()
{
 using (var context = new BreakAwayContext())
 {
 var trip = (from t in context.Trips
 where t.Description == "Trip from the database"
 select t).Single();

 context.Trips.Remove(trip);
 context.SaveChanges();
 }
}

48 | Chapter 3: Adding, Changing, and Deleting Entities

If you update the Main method to call DeleteTrip and run the application, you will get
a DbUpdateException informing you that there was an error while saving. If you drill
into the InnerException properties, you will see that the innermost exception is a SqlEx
ception stating that “The DELETE statement conflicted with the REFERENCE con-
straint ‘FK_Reservations_Trips_Trip_Identifier’.” You get this exception because there
is still a Reservation in the database that has a foreign key pointing to the Trip you are
trying to delete. Let’s update the DeleteTrip method so that the Reservation that ref-
erences the Trip we are deleting is loaded into memory (Example 3-5).

Example 3-5. Deleting a Trip with its child Reservation loaded

private static void DeleteTrip()
{
 using (var context = new BreakAwayContext())
 {
 var trip = (from t in context.Trips
 where t.Description == "Trip from the database"
 select t).Single();

 var res = (from r in context.Reservations
 where r.Trip.Description == "Trip from the database"
 select r).Single();

 context.Trips.Remove(trip);
 context.SaveChanges();
 }
}

The updated code uses a second LINQ query to load the single Reservation that is
assigned to the Trip that is being deleted. If you run the application again, it will succeed
and two SQL statements are sent to the database (Figure 3-1).

Figure 3-1. Deleting parent entity and optional relationship to child entity

The update statement sets the foreign key column of the Reservation to null, so that it
is no longer related to the Trip that is being deleted. The delete statement then deletes
the Trip from the database.

Required relationships are a bit different because the foreign key column in the database
can’t be set to null. If you delete a parent entity, each child must either be deleted or
updated to belong to a different parent entity. You can either do this manually or have
the child entities automatically deleted, using a cascade delete. Failure to delete or
reassign child records when you delete a parent will result in a referential integrity
constraint violation when you attempt to SaveChanges.

In our model there is a cascade delete defined between Lodging and Destination. If we
delete a Destination, the Lodging instances that are assigned to it will get automatically

Working with Single Entities | 49

deleted. In our database there is a Grand Canyon Destination, which has two related
Lodgings. Add the DeleteGrandCanyon method shown in Example 3-6.

Example 3-6. Deleting the Grand Canyon with related Lodgings

private static void DeleteGrandCanyon()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Load();

 context.Destinations.Remove(canyon);
 context.SaveChanges();
 }
}

The code loads the Grand Canyon Destination from the database and then uses eager
loading to ensure the related Lodgings are also loaded into memory. The code then
marks the Grand Canyon for deletion and pushes the changes to the database. If you
update the Main method to call DeleteGrandCanyon and run the application, three SQL
commands get sent to the database (Figure 3-2).

Figure 3-2. Deleting the parent of a required relationship with cascade delete

Because the related Lodgings were loaded into memory, and we had a cascade delete
rule configured, Entity Framework has automatically deleted the related Lodgings. The
first two delete statements are deleting the related Lodgings and the final delete state-
ment deletes the Grand Canyon Destination.

Cascade delete is also configured in the database, so we don’t need to load the related
data for it to be automatically deleted. Modify the DeleteGrandCanyon method so that
it no longer loads the related Lodgings into memory (Example 3-7).

Example 3-7. Deleting Grand Canyon without Lodgings loaded

private static void DeleteGrandCanyon()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"

50 | Chapter 3: Adding, Changing, and Deleting Entities

 select d).Single();

 context.Destinations.Remove(canyon);
 context.SaveChanges();
 }
}

If you run the application again, a single delete command is sent to the database, to
delete the Grand Canyon Destination. Because there is a cascade delete configured on
the foreign key constraint between Lodging and Destination, the database has taken
care of deleting the related data. Cascade delete is covered in detail in Programming
Entity Framework, 2e.

If we didn’t have a cascade delete defined, we would need to manually mark each of
the related Lodging entities as deleted before attempting to save. To mark each of the
related Lodgings as deleted, you would need to iterate through the Lodgings property
and call DbSet.Remove on each Lodging. Because Entity Framework is going to update
the Lodgings property to remove each Lodging as it is marked for deletion, you need to
use ToList to create a copy of the Lodgings. Failure to create a copy will result in the
contents of Lodgings changing as it is iterated, which is not supported by the .NET
Framework:

foreach (var lodging in canyon.Lodgings.ToList())
{
 context.Lodgings.Remove(lodging);
}

An alternative to deleting the child entities is to assign them to a new parent. For ex-
ample, we could move the Lodgings from Grand Canyon to Hawaii before deleting the
Grand Canyon:

foreach (var lodging in canyon.Lodgings.ToList())
{
 lodging.Destination = hawaii;
}

You’ll learn more about changing relationships in “Changing a Relationship Between
Objects” on page 56.

Multiple Changes at Once
So far we have looked at making a single change followed by a call to SaveChanges to
push that change to the database. Your application may want to intersperse many
queries and changes and then push all the changes to the database at once. Let’s add a
MakeMultipleChanges method that does just this (Example 3-8).

Example 3-8. Multiple changes in one transaction

private static void MakeMultipleChanges()
{
 using (var context = new BreakAwayContext())

Working with Single Entities | 51

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

 {
 var niagaraFalls = new Destination
 {
 Name = "Niagara Falls",
 Country = "USA"
 };

 context.Destinations.Add(niagaraFalls);

 var wineGlassBay = (from d in context.Destinations
 where d.Name == "Wine Glass Bay"
 select d).Single();

 wineGlassBay.Description = "Picturesque bay with beaches.";

 context.SaveChanges();
 }
}

The code creates a new Destination for Niagara Falls and adds it to the Destinations
set. It then retrieves the Wine Glass Bay Destination and changes its description. Once
these changes are made, SaveChanges is called to push the changes to the database. If
you update the Main method to call MakeMultipleChanges and run the application you
will see three statements are run against the database (Figure 3-3).

Figure 3-3. Multiple changes from one call to SaveChanges

The first is a SELECT statement to fetch the Wine Glass Bay Destination. The next two
statements are an UPDATE and an INSERT that are run when we call SaveChanges.

SaveChanges is transactional, meaning that it either pushes all the
changes to the database or none of them. If one change fails, any changes
that have already been made are rolled back and the database is left in
the state it was in before SaveChanges was called. You can learn more
about how Entity Framework uses transactions by default and how to
override that default behavior in Chapter 20 of Programming Entity
Framework, 2e.

The “Find or Add” Pattern
You may have noticed that DbSet.Add returns an object. It returns the same object that
you pass into the method. This may seem a little strange at first, but it enables a nice
coding pattern that you may find convenient to use in your applications. Your
application might allow a user to search for a Person based on his or

52 | Chapter 3: Adding, Changing, and Deleting Entities

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

her SocialSecurityNumber. If the Person is found, your code can use the existing entity.
But if the Person isn’t located, you want to create a new Person with the supplied
SocialSecurityNumber. The FindOrAddPerson method shown in Example 3-9 demon-
strates this pattern.

Example 3-9. Adding a new Person if existing record doesn’t exist

private static void FindOrAddPerson()
{
 using (var context = new BreakAwayContext())
 {
 var ssn = 123456789;

 var person = context.People.Find(ssn)
 ?? context.People.Add(new Person
 {
 SocialSecurityNumber = ssn,
 FirstName = "<enter first name>",
 LastName = "<enter last name>"
 });

 Console.WriteLine(person.FirstName);
 }
}

Remember that DbSet.Find is an easy way to locate entities based on their key values.
If it finds the entity either in memory or in the database, it will return the correct in-
stance. But if it can’t locate the entity, Find will return null. You can combine Find with
the ?? operator that allows you to provide an alternate value to return if some code
returns null. In the example above, we attempt to locate the entity by using Find based
on its key. If Find doesn’t locate the entity, we add a new Person to the context instead.

The ?? operator is specific to C#; however, the same logic can be written in VB.NET
using the If method:

Dim person = If(context.People.Find(ssn), context.People.Add(
 New Person() With {
 .SocialSecurityNumber = ssn,
 .FirstName = "<enter first name>",
 .LastName = "<enter last name>"
 }
))

Working with Relationships
Now that you know how to add, change, and delete entities, it’s time to look at how
we change relationships between those entities. Your domain model exposes relation-
ships using navigation properties and, optionally, a foreign key property. Changing a
relationship is achieved by changing the values assigned to those properties.

Working with Relationships | 53

Given that a relationship can be represented by up to three properties (two navigation
properties and a foreign key property), you may be wondering if you need to update
all three just to change the relationship. Updating just one of these properties is enough
to let Entity Framework know about the change. It is also fine to update more than one
of the properties if you want to, provided that the changes represent the same change.
When you call SaveChanges, Entity Framework will take care of updating the rest of
these properties for you; this is known as relationship fix-up. Rather than waiting for
SaveChanges to fix up the properties, you can trigger this fix-up on demand by calling
DetectChanges or have it happen in real-time by using change tracking proxies. Both of
these concepts are described later in this chapter.

While the basics of changing relationships are quite simple, there are a lot of intricate
details to be familiar with as you get into more advanced relationship scenarios. These
intricacies are not specific to the DbContext API and are well beyond the scope of this
book.

You can find a detailed look at relationships in Chapter 19 of Program-
ming Entity Framework, 2e.

Adding a Relationship Between Objects
To add a new relationship, you need to assign one of the objects in the relationship to
the navigation property of the other object. If the navigation property you want to
change is a reference (for example, the Destination property of the Resort class), you
set the value to the related object. If the navigation property is a collection (for example,
the Payments property of the Reservation class), you use the Add method to add it to
that collection. Remember that the change can be made at one or both ends of the
relationship.

Let’s assume you want to add a Lodging record for a new luxury resort that is opening,
and you want to associate it with the Grand Canyon. To follow along, add the New
GrandCanyonResort method shown in Example 3-10.

Example 3-10. Adding a new relationship

private static void NewGrandCanyonResort()
{
 using (var context = new BreakAwayContext())
 {
 var resort = new Resort
 {
 Name = "Pete's Luxury Resort"
 };

 context.Lodgings.Add(resort);

54 | Chapter 3: Adding, Changing, and Deleting Entities

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 canyon.Lodgings.Add(resort);

 context.SaveChanges();
 }
}

This code creates the new Resort and adds it to the Lodgings set we defined on BreakA
wayContext (remember that Resort derives from Lodging). Next, the code locates the
Grand Canyon Destination that we want to add this new Resort to. Then the new
Resort is added to the Lodgings collection of the Grand Canyon. This lets Entity Frame-
work know that the two objects are related. SaveChanges is then used to push these
changes to the database.

In Example 3-10, we added the new Resort to the Lodgings set and then
added it to the canyon.Lodgings collection. The example is intentionally
redundant for clarity as you learn about the behaviors. The first call
ensures that the context knows that resort is new and needs to be in-
serted into the database. The second call then specifies that resort must
also be related to canyon. While this makes it obvious that resort is a
new entity, adding it twice is not strictly necessary in this particular
example. If you had skipped adding the new resort to the context and
only added it to canyon, Entity Framework would have found resort
because it is now referenced from the navigation property of an entity
that is tracked by the context (canyon). Entity Framework would have
recognized that resort was not being tracked and in response would
have assumed the resort needed to be in the Added state. Therefore we
could have left out the line of code that added resort to context.Lodg
ings and achieved the same result.

In the code we updated the collection end of a one-to-many relationship. But remember
we can update either end of the relationship. Rather than adding the new Resort to the
Destination.Lodgings collection, we could have set the Lodging.Destination property
to the desired Destination instance:

resort.Destination = canyon;

Lodging also exposes a foreign key property, DestinationId, to represent the relation-
ship. We could also have updated that instead:

resort.DestinationId = canyon.DestinationId;

If you are adding an object to a collection navigation property, you need to make sure
that the collection property will be initialized. Remember that, by default, properties
will be assigned a value of null. In our case we enabled lazy loading on the Lodgings
property, so Entity Framework took care of creating a collection and assigning it to the

Working with Relationships | 55

Lodgings property. If you aren’t using lazy loading, you will need to include logic in
either your classes or the consuming code to initialize the collection.

Changing a Relationship Between Objects
Changing a relationship is actually the same as adding a new relationship. When we
add a relationship, we are changing it from “unassigned” to point to an entity. Changing
a relationship to point from one entity to another uses exactly the same process. To
change a relationship, we locate the entity to be changed and update the navigation
property, or foreign key property.

Perhaps we made a mistake while entering some data and the Grand Hotel actually
exists at the Great Barrier Reef rather than the Grand Canyon. The ChangeLodgingDes
tination method shown in Example 3-11 demonstrates assigning a new relationship
that will replace an existing relationship.

Example 3-11. Updating an existing relationship

private static void ChangeLodgingDestination()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from l in context.Lodgings
 where l.Name == "Grand Hotel"
 select l).Single();

 var reef = (from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d).Single();

 hotel.Destination = reef;

 context.SaveChanges();
 }
}

The code locates both the Grand Hotel and the Great Barrier Reef by using LINQ
queries. Next it updates the relationship by changing the Destination property of the
Grand Hotel to point to the Great Barrier Reef. There is no need to remove the existing
relationship between the Grand Hotel and the Grand Canyon. Entity Framework
knows that we want the relationship to be updated, which implies it will no longer
point to the old value. Running the code will result in a single update statement being
sent to the database:

exec sp_executesql N'update [dbo].[Lodgings]
set [destination_id] = @0
where ([LodgingId] = @1)
',N'@0 int,@1 int',@0=4,@1=1

The update statement looks very similar to the one you saw earlier in this chapter, when
we modified a String property of an entity. Entity Framework uses the Locations key

56 | Chapter 3: Adding, Changing, and Deleting Entities

value to locate the record to be updated. This time, instead of updating a simple column,
it is updating the foreign key column to point to the primary key of the Destination we
updated our Location to.

By now you’ve probably worked out that we could also make the change by adding
hotel to the Lodgings property of reef:

reef.Lodgings.Add(hotel);

We could also make the change by setting the foreign key property:

hotel.DestinationId = reef.DestinationId;

Removing a Relationship Between Objects
Let’s say that Dave is no longer the primary contact for Dave’s Dump. In fact, the service
is so bad at this lodging that they no longer have a contact at all. This means we simply
want to remove the relationship rather than changing it to a new Person.

To remove a relationship, you can remove the target object from a collection navigation
property. Alternatively, you can set a reference navigation property to null. If your
classes expose a nullable foreign key property for the relationship, a third option is to
set the foreign key to null.

Removing relationships by changing the foreign key is only possible with
nullable properties (for example, the PrimaryContactId property of the
Lodging class). If your foreign key is an int (for example, the Destina
tionId property of the Lodging class), you won’t be able to set the value
to null and by convention, that relationship would be required. Setting
the value to 0 would cause a primary key/foreign key constraint error in
the database, as there will be no parent whose primary key is equal to 0.

Add the RemovePrimaryContact method shown in Example 3-12.

Example 3-12. Removing a primary contact for Dave’s Dump

private static void RemovePrimaryContact()
{
 using (var context = new BreakAwayContext())
 {
 var davesDump = (from l in context.Lodgings
 where l.Name == "Dave's Dump"
 select l).Single();

 context.Entry(davesDump)
 .Reference(l => l.PrimaryContact)
 .Load();

 davesDump.PrimaryContact = null;

 context.SaveChanges();

Working with Relationships | 57

 }
}

The code starts by fetching Dave’s Dump from the database with a LINQ query. Next
it loads the related PrimaryContact. We need to do this so that something is actually
changing when we set the value to null. Because lazy loading isn’t enabled for this
property it is already null by default so the code explicitly loads the PrimaryContact.
Eager loading or enabling lazy loading would achieve exactly the same thing. Once the
contact is loaded, the PrimaryContact property is set to null to let Entity Framework
know that we want to delete this relationship. Dave will not be deleted from the data-
base, nor will Dave’s Dump, but they will no longer be related to each other. Save
Changes will update the database to null out the foreign key for the primary contact of
Dave’s Dump.

This highlights one of the advantages of exposing foreign key properties in your classes.
Because we expose a foreign key property for the PrimaryContact relationship, and that
property used a nullable integer (Nullable<int> or int?), then we can set that property
to null without the need to load the related data. This works because foreign key prop-
erties are always populated when you query for an entity, whereas navigation properties
are only populated when you load the related data. Let’s rewrite the RemovePrimaryCon
tact method to modify the foreign key property rather than the navigation property
(Example 3-13).

Example 3-13. Removing a primary contact for Dave’s Dump using the foreign key

private static void RemovePrimaryContact()
{
 using (var context = new BreakAwayContext())
 {
 var davesDump = (from l in context.Lodgings
 where l.Name == "Dave's Dump"
 select l).Single();

 davesDump.PrimaryContactId = null;

 context.SaveChanges();
 }
}

In this example, we were removing an optional relationship; according to the model
we built, it is fine for Lodging to exist without a PrimaryContact. If we tried to remove
a required relationship the outcome would be a little different. Let’s say we had tried
to remove the relationship between Dave’s Dump and the Grand Canyon. According
to the BAGA model, Lodging can’t exist without a Destination. Entity Framework
would allow us to set the Lodging.Destination property to null, but it would throw an
exception when we tried to SaveChanges. We are allowed to set the property to null
provided we set it to another valid Destination before we try and SaveChanges.

58 | Chapter 3: Adding, Changing, and Deleting Entities

Given that Dave is no longer a contact, we may want to remove him from the database,
rather than just removing his relationship as a primary contact for Dave’s Dump. If you
delete an entity there is no need to delete all the relationships that they participate in:
Entity Framework will automatically delete them for you. As discussed in “Deleting
Existing Entities” on page 46, if any of the relationships are required you will need to
delete or reassign any child entities before saving.

Working with Change Tracking
Throughout this chapter you have seen that Entity Framework keeps track of the
changes you make to your objects. Entity Framework uses its change tracker to do this.
You can access the change tracker information, and some change tracking–related op-
erations, through the DbContext.ChangeTracker property. You’ll see more about the
Change Tracker API in Chapter 5.

There are two different ways that Entity Framework can track the changes to your
objects: snapshot change tracking or change tracking proxies.

Snapshot change tracking
The code written so far in this chapter has relied on snapshot change tracking. The
classes in our model are all POCO and they don’t contain any logic to notify Entity
Framework when a property value is changed. Because there is no way to be no-
tified when a property value changes, Entity Framework will take a snapshot of the
values in each property when it first sees an object and store the values in memory.
This snapshot occurs when the object is returned from a query or when we add it
to a DbSet. When Entity Framework needs to know what changes have been made,
it will scan each object and compare its current values to the snapshot. This process
of scanning each object is triggered through a method of ChangeTracker called
DetectChanges.

Change tracking proxies
The other mechanism for tracking changes is through change tracking proxies,
which allow Entity Framework to be notified of changes as they are made. In
Chapter 2, you learned about dynamic proxies that are created for lazy loading.
Change tracking proxies are created using the same mechanism, but in addition to
providing for lazy loading, they also have the ability to communicate changes to
the context.

To use change tracking proxies, you need to structure your classes in such a way
that Entity Framework can create a dynamic type at runtime that derives from our
POCO class and override every property. This dynamic type, known as a dynamic
proxy, includes logic in the overridden properties to notify Entity Framework when
those properties are changed. In fact, all of the rules for creating dynamic change
tracking proxies from POCOs that you learned about if you read Programming
Entity Framework, 2e, are the same when you are using POCOs with DbContext.

Working with Change Tracking | 59

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

Using Snapshot Change Tracking
Snapshot change tracking depends on Entity Framework being able to detect when
changes occur. The default behavior of the DbContext API is to automatically perform
this detection as the result of many events on the DbContext. DetectChanges not only
updates the context’s state management information so that changes can be persisted
to the database, it also performs relationship fix-up when you have a combination of
reference navigation properties, collection navigation properties and foreign keys. It’s
important to have a clear understanding of how and when changes are detected, what
to expect from it and how to control it. This section addresses those concerns.

Understanding When Automatic Change Detection Occurs
The DetectChanges method of ObjectContext has been available since Entity Framework
4 as part of the snapshot change tracking pattern on POCO objects. What’s different
about DbContext.ChangeTracker.DetectChanges (which in turn, calls ObjectCon
text.DetectChanges) is that there are many more events that trigger an automatic call
to DetectChanges. Here is the list of the method calls you should already be familiar
with that will cause DetectChanges to do its job:

• DbSet.Add

• DbSet.Find

• DbSet.Remove

• DbSet.Local

• DbContext.SaveChanges

• Running any LINQ query against a DbSet

There are more methods that will trigger DetectChanges. You’ll learn more about these
methods throughout the rest of this book:

• DbSet.Attach

• DbContext.GetValidationErrors

• DbContext.Entry

• DbChangeTracker.Entries

Controlling When DetectChanges Is Called
The most obvious time that Entity Framework needs to know about changes is during
SaveChanges, but there are also many others. For example, if we ask the change tracker
for the current state of an object, it will need to scan and check if anything has changed.
Scanning isn’t just restricted to the object in question either. Consider a situation where
you query for a Lodging from the database and then add it to the Lodgings collection of
a new Destination. This Lodging is now modified because assigning it to a new

60 | Chapter 3: Adding, Changing, and Deleting Entities

Destination changes its DestinationId property. But to know that this change has oc-
curred (or hasn’t occurred) Entity Framework needs to scan all of the Destination
objects as well. Many of the operations you perform on the DbContext API will cause
DetectChanges to be run.

In most cases DetectChanges is fast enough that it doesn’t cause performance issues.
However, if you have a very large number of objects in memory or you are performing
a lot of operations on DbContext in quick succession, the automatic DetectChanges be-
havior may be a performance concern. Fortunately you have the option to switch off
the automatic DetectChanges behavior and call it manually when you know that it needs
to be called.

Entity Framework is built on the assumption that you will call DetectChanges before
every API call if you have changed any of the entities since the last API call. This includes
calling DetectChanges before running any queries. Failure to do this can result in un-
expected side effects. DbContext takes care of this requirement for you provided that
you leave automatic DetectChanges enabled. If you switch it off, you are responsible for
calling DetectChanges.

Working out when DetectChanges needs to be called isn’t as trivial as it
may appear. The Entity Framework team strongly recommends that you
only swap to manually calling DetectChanges if you are experiencing
performance issues. It’s also recommended to only opt out of automatic
DetectChanges for poorly performing sections of code and to reenable it
once the section in question has finished executing.

Automatic DetectChanges can be toggled on and off via the DbContext.Configura
tion.AutoDetectChangesEnabled Boolean flag. Let’s add a ManualDetectChanges method
that disables automatic DetectChanges and observes the effect this has (Example 3-14).

Example 3-14. Manually calling DetectChanges

private static void ManualDetectChanges()
{
 using (var context = new BreakAwayContext())
 {
 context.Configuration.AutoDetectChangesEnabled = false;

 var reef = (from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d).Single();

 reef.Description = "The world's largest reef.";

 Console.WriteLine(
 "Before DetectChanges: {0}",
 context.Entry(reef).State);

 context.ChangeTracker.DetectChanges();

Using Snapshot Change Tracking | 61

 Console.WriteLine(
 "After DetectChanges: {0}",
 context.Entry(reef).State);
 }
}

The code switches off automatic DetectChanges and then queries for the Great Barrier
Reef and changes its description. The next line will write out the current state that the
context thinks the reef entity is in. We then manually call DetectChanges and repeat
the process of writing out the current state. Accessing the current state makes use of
the Entry method from Change Tracker API, which is discussed in Chapter 5. If you
update the Main method to call ManualDetectChanges, you will see the following output:

Before DetectChanges: Unchanged
After DetectChanges: Modified

As expected, the context doesn’t detect that the reef entity is modified until after we
manually call DetectChanges. The reason we get an incorrect result is that we broke the
rule of calling DetectChanges before calling an API after we had modified an entity.
Because we were simply reading the state of an entity, this didn’t have any nasty side
effects.

The code we saw in Example 3-9 didn’t really buy us anything by switching off auto-
matic DetectChanges. Calling the DbContext.Entry method would also have automati-
cally triggered DetectChanges if the change tracking wasn’t disabled.

If you write tests to check the state of entities and you use this Entry
method to inspect state, keep in mind that the Entry method itself calls
DetectChanges. This could inadvertently alter your test results. You can
use the AutoDetectChangesEnabled configuration to have tighter control
over DetectChanges in this scenario.

However if we were performing a series of API calls on DbContext without changing any
objects in between, we could avoid some unnecessary execution of the DetectChanges
process. The AddMultipleDestinations method shown in Example 3-15 demonstrates
this.

Example 3-15. Adding multiple objects without DetectChanges

private static void AddMultipleDestinations()
{
 using (var context = new BreakAwayContext())
 {
 context.Configuration.AutoDetectChangesEnabled = false;

 context.Destinations.Add(new Destination
 {
 Name = "Paris",
 Country = "France"
 });

62 | Chapter 3: Adding, Changing, and Deleting Entities

 context.Destinations.Add(new Destination
 {
 Name = "Grindelwald",
 Country = "Switzerland"
 });

 context.Destinations.Add(new Destination
 {
 Name = "Crete",
 Country = "Greece"
 });

 context.SaveChanges();
 }
}

This code avoids four unnecessary calls to DetectChanges that would have occurred
while calling the DbSet.Add and SaveChanges methods. This example is used purely for
demonstration purposes and is not a scenario where disabling DetectChanges is going
to provide any significant benefit. In Chapter 5 you’ll learn about making changes to
your objects using the Change Tracker API. The Change Tracker API enables you to
make changes to your objects by going through a DbContext API. This approach allows
you to change your objects without the need to call DetectChanges.

Using DetectChanges to Trigger Relationship Fix-up
DetectChanges is also responsible for performing relationship fix-up for any relation-
ships that it detects have changed. If you have changed some relationships and would
like to have all the navigation properties and foreign key properties synchronized,
DetectChanges will achieve this. This can be particularly useful in data-binding scenarios
where your UI will change one of the navigation properties (or perhaps the foreign key
property) but you then want the other properties in the relationship to be updated to
reflect the change. The DetectRelationshipChanges method in Example 3-16 uses
DetectChanges to perform relationship fix-up.

Example 3-16. Using DetectChanges to fix up relationships

private static void DetectRelationshipChanges()
{
 using (var context = new BreakAwayContext())
 {
 var hawaii = (from d in context.Destinations
 where d.Name == "Hawaii"
 select d).Single();

 var davesDump = (from l in context.Lodgings
 where l.Name == "Dave's Dump"
 select l).Single();

 context.Entry(davesDump)

Using Snapshot Change Tracking | 63

 .Reference(l => l.Destination)
 .Load();

 hawaii.Lodgings.Add(davesDump);

 Console.WriteLine(
 "Before DetectChanges: {0}",
 davesDump.Destination.Name);

 context.ChangeTracker.DetectChanges();

 Console.WriteLine(
 "After DetectChanges: {0}",
 davesDump.Destination.Name);
 }
}

The code loads the Hawaii Destination into memory as well as Dave’s Dump Lodg
ing. It also uses explicit loading to load the Destination of Dave’s Dump—that’s the
Grand Canyon. Dave’s Dump has such a bad reputation that he has decided to move
the Dump to Hawaii where nobody’s heard of him yet. So we add the davesDump instance
to the Lodgings collection of hawaii. Because we are using POCO objects, Entity Frame-
work doesn’t know that we’ve made this change, and therefore it doesn’t fix up the
navigation property or foreign key property on davesDump. We could wait until we call
SaveChanges, or any other method, which triggers DetectChanges, but perhaps we want
things fixed up right away. We’ve added in a call to DetectChanges to achieve this. If
we update the Main method to call DetectRelationshipChanges and run the application
we see this in action:

Before DetectChanges: Grand Canyon
After DetectChanges: Hawaii

Before the DetectChanges call, Dave’s Dump is still assigned to the old Destination.
After we call DetectChanges, relationship fix-up has occurred and everything is back in
sync.

Enabling and Working with Change Tracking Proxies
If your performance profiler has pinpointed excessive calls to DetectChanges as a prob-
lem or you prefer relationship fix-up to occur in real time, there is another option—the
change tracking proxies mentioned earlier. With only some minor changes to your
POCO classes, Entity Framework will be able to create change tracking proxies. Change
tracking proxies will allow Entity Framework to track changes as we make them to our
objects and also perform relationship fix-up as it detects changes to relationships.

The rules for allowing a change tracking proxy to be created are as follows:

• The class must be public and not sealed.

• Each property must be marked as virtual.

64 | Chapter 3: Adding, Changing, and Deleting Entities

• Each property must have a public getter and setter.

• Any collection navigation properties must be typed as ICollection<T>.

Update the Destination class as shown in Example 3-17 to meet these requirements.
Notice that we are also removing the logic from the constructor that initialized the
Lodgings property. The change tracking proxy will override any collection navigation
properties and use its own collection type (EntityCollection<TEntity>). This collection
type will track any changes to the collection and report them to the change tracker. If
you attempt to assign another type to the property, such as the List<T> we were creating
in the constructor, the proxy will throw an exception.

Example 3-17. Destination class updated to enable change tracking proxies

[Table("Locations", Schema = "baga")]
public class Destination
{
 public Destination()
 {
 //this.Lodgings = new List<Lodging>();
 }

 [Column("LocationID")]
 public virtual int DestinationId { get; set; }
 [Required, Column("LocationName")]
 [MaxLength(200)]
 public virtual string Name { get; set; }
 public virtual string Country { get; set; }
 [MaxLength(500)]
 public virtual string Description { get; set; }
 [Column(TypeName = "image")]
 public virtual byte[] Photo { get; set; }
 public virtual string TravelWarnings { get; set; }
 public virtual string ClimateInfo { get; set; }

 public virtual ICollection<Lodging> Lodgings { get; set; }
}

In Chapter 2, you learned how Entity Framework creates dynamic proxies for a class
when one or more navigation properties in that class are marked virtual. Those proxies,
which derive from the given class, allow the virtual navigation properties to be lazy
loaded. The change tracking proxies are created in the same way at runtime, but these
proxies have more features than those you saw in Chapter 2.

While the requirements for getting a change tracking proxy are fairly simple, it’s also
very easy to miss one of them. It’s even easier to make a change to the class in the future
that will unintentionally break one of the rules. Because of this, it’s a good idea to add
a unit test that ensures Entity Framework can create a change tracking proxy. Let’s add
a method that will test just this (Example 3-18). You’ll also need to add a using for the
System.Data.Objects.DataClasses namespace.

Enabling and Working with Change Tracking Proxies | 65

Example 3-18. Testing for a change tracking proxy

private static void TestForChangeTrackingProxy()
{
 using (var context = new BreakAwayContext())
 {
 var destination = context.Destinations.First();

 var isProxy = destination is IEntityWithChangeTracker;

 Console.WriteLine("Destination is a proxy: {0}", isProxy);
 }
}

When Entity Framework creates the dynamic proxy for change tracking, it will imple-
ment the IEntityWithChangeTracker interface. The test in Example 3-18 creates a Des
tination instance by retrieving it from the database and then checks for this interface
to ensure that the Destination is wrapped with a change tracking proxy. Note that it’s
not enough just to check that Entity Framework is creating a proxy class that derives
from our class, because lazy loading proxies will also do this. The presence of IEntity
WithChangeTracker is what causes Entity Framework to listen for changes in real time.

Now that we have a change tracking proxy, let’s update Main to call the ManualDe
tectChanges method we wrote back in Example 3-14 and run the application:

Before DetectChanges: Modified
After DetectChanges: Modified

This time we see that Entity Framework is aware of changes regardless of whether
DetectChanges is called or not. Now update Main to call the DetectRelationship
Changes method we wrote in Example 3-16 and run the application:

Before DetectChanges: Hawaii
After DetectChanges: Hawaii

This time we see that Entity Framework detected the relationship change and per-
formed relationship fix-up without DetectChanges being called.

It is not necessary to disable automatic DetectChanges when you use
change tracking proxies. DetectChanges will skip the change detection
process for any objects that report changes in real time. Therefore, en-
abling change tracking proxies is enough to get the performance benefits
of avoiding DetectChanges. In fact, Entity Framework won’t even take a
snapshot of the property values when it finds a change tracking proxy.
DetectChanges knows it can skip scanning for changes in entities that
don’t have a snapshot of their original values.

66 | Chapter 3: Adding, Changing, and Deleting Entities

If you have entities that contain complex types (for example, Per
son.Address), Entity Framework will still use snapshot change tracking
for the properties contained in the complex type. This is required be-
cause Entity Framework does not create a proxy for the complex type
instance. You still get the benefits of automatic change detection on the
properties defined directly on the entity itself, but changes to properties
on the complex type will only be detected by DetectChanges.

Ensuring the New Instances Get Proxies
Entity Framework will automatically create proxies for the results of any queries you
run. However, if you just use the constructor of your POCO class to create new objects,
these will not be proxies. In order to get proxies you need to use the DbSet.Create
method to get new instances of an entity. This rule is the same as when working with
POCOs with ObjectContext and ObjectSet.

If you have enabled change tracking proxies for an entity in your model,
you can still create and add nonproxy instances of the entity. Entity
Framework will happily work with a mixture of proxied and nonproxied
entities in the same set. You just need to be aware that you will not get
automatic change tracking or relationship fix-up for instances that are
not change tracking proxies. Having a mixture of proxied and non-
proxied instances in the same set can be confusing, so it’s generally rec-
ommended that you use DbSet.Create to create new instances so that
all entities in the set are change tracking proxies.

Add the CreatingNewProxies method shown in Example 3-19 to see this in action.

Example 3-19. Creating new proxy instances

private static void CreatingNewProxies()
{
 using (var context = new BreakAwayContext())
 {
 var nonProxy = new Destination();
 nonProxy.Name = "Non-proxy Destination";
 nonProxy.Lodgings = new List<Lodging>();

 var proxy = context.Destinations.Create();
 proxy.Name = "Proxy Destination";

 context.Destinations.Add(proxy);
 context.Destinations.Add(nonProxy);

 var davesDump = (from l in context.Lodgings
 where l.Name == "Dave's Dump"
 select l).Single();

 context.Entry(davesDump)

Enabling and Working with Change Tracking Proxies | 67

 .Reference(l => l.Destination)
 .Load();

 Console.WriteLine(
 "Before changes: {0}",
 davesDump.Destination.Name);

 nonProxy.Lodgings.Add(davesDump);

 Console.WriteLine(
 "Added to non-proxy destination: {0}",
 davesDump.Destination.Name);

 proxy.Lodgings.Add(davesDump);

 Console.WriteLine(
 "Added to proxy destination: {0}",
 davesDump.Destination.Name);
 }
}

The code starts by creating two new Destination instances and adding them to the
Destinations set on the context. One of these Destinations is just an instance of our
POCO class. The other is created using DbSet.Create and is a change tracking proxy.
Next, the code queries for Dave’s Dump and loads the Destination that it currently
belongs to using the Entry method that you learned about in Chapter 2. We then add
Dave’s Dump to the Lodgings property of the POCO Destination and then to the proxy
Destination. At each stage the code prints out the name of the Destination assigned to
the Destination property on Dave’s Dump:

Before changes: Grand Canyon
Added to non-proxy destination: Grand Canyon
Added to proxy destination: Proxy Destination

You can see that Dave’s Dump is initially assigned to the Grand Canyon Destination.
When it’s added to the Lodgings collection of the nonproxy Destination, the Destina
tion property on Dave’s Dump is not updated; it’s still the Grand Canyon. Because this
Destination isn’t a proxy, Entity Framework isn’t aware that we changed the relation-
ship. However, when we add it to the Lodgings collection of the proxy Destination we
get full relationship fix-up instantly.

Creating Proxy Instances for Derived Types
There is also a generic overload of DbSet.Create that is used to create instances of
derived classes in our set. For example, calling Create on the Lodgings set will give you
an instance of the Lodging class. But the Lodgings set can also contain instances of
Resort, which derives from Lodging. To get a new proxy instance of Resort, we use the
generic overload:

var newResort = context.Lodgings.Create<Resort>();

68 | Chapter 3: Adding, Changing, and Deleting Entities

Fetching Entities Without Change Tracking
You’ve probably gathered by now that tracking changes isn’t a trivial process and there
is a bit of overhead involved. In some areas of your application, you may be displaying
data in a read-only screen. Because the data will never get updated, you may want to
avoid the overhead associated with change tracking.

Fortunately Entity Framework includes an AsNoTracking method that can be used to
execute a no-tracking query. A no-tracking query is simply a query where the results
will not be tracked for changes by the context. Add the PrintDestinationsWithoutCh
angeTracking method shown in Example 3-20.

Example 3-20. Querying data without change tracking

private static void PrintDestinationsWithoutChangeTracking()
{
 using (var context = new BreakAwayContext())
 {
 foreach (var destination in context.Destinations.AsNoTracking())
 {
 Console.WriteLine(destination.Name);
 }
 }
}

The code uses the AsNoTracking method to get a no-tracking query for the contents of
the Destinations set. The results are then iterated over and printed to the console.
Because this is a no-tracking query, the context is not keeping track of any changes
made to the Destinations. If you were to modify a property of one of the Destina
tions and call SaveChanges, the changes would not be sent to the database.

Fetching data without change tracking will usually only provide a no-
ticeable performance gain when you are fetching larger amounts of data
for read-only display. If your application will update and save any of the
data, you should not use AsNoTracking there.

AsNoTracking is an extension method defined on IQueryable<T>, so you can use it in
LINQ queries also. You can use AsNoTracking on the end of the DbSet in the from line
of the query:

var query = from d in context.Destinations.AsNoTracking()
 where d.Country == "Australia"
 select d;

You can also use AsNoTracking to convert an existing LINQ query to be a no-tracking
query. Note that the code doesn’t just call AsNoTracking on the existing query but over-
rides the query variable with the result of the AsNoTracking call. This is required because
AsNoTracking doesn’t modify the query that it is called on, it returns a new query:

Fetching Entities Without Change Tracking | 69

var query = from d in context.Destinations
 where d.Country == "Australia"
 select d;

query = query.AsNoTracking();

Because AsNoTracking is an extension method, you will need to have the Sys
tem.Data.Entity namespace imported to use it.

70 | Chapter 3: Adding, Changing, and Deleting Entities

CHAPTER 4

Working with Disconnected Entities
Including N-Tier Applications

In the previous chapter you learned how to add new entities and change or delete
existing entities. All the examples we looked at involved making changes one at a time
to entities that are tracked by the context. Each of the changes affected a single entity
or relationship. You saw that you can perform multiple of these single entity operations
and then call SaveChanges to push all the changes to the database in a single transaction.
In this chapter we will look at making changes to entities that are not being tracked by
a context. Entities that are not being tracked by a context are known as disconnected
entities.

For most single-tier applications, where the user interface and database access layers
run in the same application process, you will probably just be performing operations
on entities that are being tracked by a context. Operations on disconnected entities are
much more common in N-Tier applications. N-Tier applications involve fetching some
data on a server and returning it, over the network, to a client machine. The client
application then manipulates this data before returning it to the server to be persisted.

The N-Tier pattern makes data access more complex because there is no longer a con-
text tracking changes that are made to each entity. The data is fetched using one context,
and returned to the client where there is no context to track changes. The data is then
sent back to the server and must be persisted back to the database using a new instance
of the context.

While the majority of content in this chapter is aimed at developers
writing N-Tier applications, it’s useful information for anyone working
with Entity Framework and will give you a deeper understanding of how
Entity Framework behaves.

When it comes time to persist the data on the server, you are typically working with a
graph of entities. A graph of entities is simply a number of entities that reference each

71

other. We’ve already worked with graphs of entities that are attached to the context.
In the last chapter we looked at adding a relationship using a navigation property, which
is enough to create a graph, because one entity now references another. In N-Tier sce-
narios this graph of entities is usually disconnected from the context, though, meaning
the context isn’t yet tracking any of the entities in the graph.

When it comes time to start performing operations on this disconnected graph, there
are some additional behaviors in Entity Framework that you need to be aware of. The
entity that you perform the operation on is known as the root of the graph. Performing
an operation on the root of disconnected graph can have side effects on the rest of the
graph, too.

A Simple Operation on a Disconnected Graph
Before we delve into the complexities of N-Tier scenarios, let’s take a quick look at an
example of the side effects of performing an operation on the root of a disconnected
graph. In the previous chapter we saw that DbSet.Add can be used to register a new
entity to be inserted when SaveChanges is called.

You’ll see the term register used throughout this chapter. When an en-
tity is registered with the context it means that the context becomes
aware of the entity and starts tracking it.

So far the entities we’ve passed to the Add method have been standalone instances with
no references to other entities. Now let’s see what happens when we pass the root of a
newly created graph of entities that isn’t yet tracked by the context. Add the AddSim
pleGraph method that is shown in Example 4-1.

Example 4-1. Method to add a graph of entities

private static void AddSimpleGraph()
{
 var essex = new Destination
 {
 Name = "Essex, Vermont",
 Lodgings = new List<Lodging>
 {
 new Lodging { Name = "Big Essex Hotel" },
 new Lodging { Name = "Essex Junction B&B" },
 }
 };

 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(essex);

 Console.WriteLine(

72 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

 "Essex Destination: {0}",
 context.Entry(essex).State);

 foreach (var lodging in essex.Lodgings)
 {
 Console.WriteLine(
 "{0}: {1}",
 lodging.Name,
 context.Entry(lodging).State);
 }

 context.SaveChanges();
 }
}

The code constructs a new Destination instance, which also references two new Lodg
ing instances in its Lodgings property. Then the new Destination is added to a context
using the Add method. Once the Destination is added, the code uses the DbCon
text.Entry method to get access to the change tracking information that Entity Frame-
work has about the new Destination. From this change tracking information the
State property is used to write out the current state of the entity. This process is then
repeated for each of the newly created Lodgings that are referenced from the new Des
tination. If you modify the Main method to call AddSimpleGraph and run the application
you will see the following output:

Essex Destination: Added
Big Essex Hotel: Added
Essex Junction B&B: Added

It’s no surprise that Entity Framework has the new Destination registered as an
Added entity because we used the Add method to add it to the context. What may be a
little less obvious is that Entity Framework looked in the navigation properties of the
Destination instance and saw that it referenced two Lodging instances that the context
wasn’t already tracking. Entity Framework also registers these entities as Added and will
insert them into the database when SaveChanges is called. The process of finding related
entities is recursive, so if one of the new Lodging instances referenced a new Person
instance, the Person would also get added to the context. Figure 4-1 attempts to visu-
alize how calling Add on a disconnected Destination will also add other disconnected
entities that are reachable from the Destination.

If a reference is found to an entity that is already tracked by the context, the entity that
is already tracked is left in its current state. For example, if one of our new Lodging
instances referenced an existing Person that had been queried for using the context, the
existing Person would not be marked as Added. The existing Person would remain in the
Unchanged state and the Lodging would be inserted with its foreign key pointing to the
existing Person. Figure 4-2 attempts to visualize how adding a disconnected Destina
tion will also add other disconnected entities, but if an entity that is being tracked by
the context is found, it is left in its current state.

A Simple Operation on a Disconnected Graph | 73

Exploring the Challenges of N-Tier
Now that you’ve seen how Entity Framework behaves when it is asked to add the root
of a graph of entities to the context, we’re going to take a look at how this affects N-
Tier applications. Remember that in an N-Tier application the data is queried for in
one context, but the changes need to be persisted using another context. For example,
on the server side of your application you could expose a GetDestinationAndLodgings
method that will return a Destination with all of its Lodgings:

public Destination GetDestinationAndLodgings(int destinationId)

The client side of the application could then fetch a Destination and make some
changes to it. These changes could include changing the Description of the Destina
tion and adding a new Lodging to its Lodgings collection. The server side of the appli-
cation could then expose a SaveDestinationAndLodgings method to push all these
changes back to the database:

public void SaveDestinationAndLodgings(Destination destination)

When it comes time to implement the SaveDestinationAndLodgings method, things get
a little more complicated. Like the simple graph from Example 4-1, the Destination
that gets passed in isn’t tracked by a context. In fact, because it’s been serialized over

Figure 4-1. Adding a disconnected graph of entities

74 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

the network on its way to and from the client, it’s not even the same instance that was
queried for using Entity Framework. The SaveDestinationAndLodgings method needs
to let Entity Framework know if it’s an existing Destination or a new Destination that
needs to be added. If it’s an existing Destination, some of the properties may have been
modified and therefore need to be updated in the database. The Lodgings property may
also contain instances of Lodging that can also be existing or new. Since Entity Frame-
work hasn’t been tracking these entities, you need to let it know all of this
information.

Your server-side logic could be exposed through a service or perhaps a class that follows
the repository pattern. Either way, you need to overcome the disconnected nature of
the objects that are returned from the client application.

There are a number of different approaches to solving the challenges associated with
building N-Tier applications. Covering the details of each approach is well beyond the
scope of this book, but we’ll take a quick look at the different options that are available
to you and how they relate to using Entity Framework.

Figure 4-2. Adding a disconnected graph that references a tracked entity

Exploring the Challenges of N-Tier | 75

Using Existing N-Tier Frameworks That Support Graph Modification
In a lot of cases you can save yourself the headache of dealing with the intricacies of N-
Tier data access by using a framework that takes care of tracking changes that are made
to data on the client and applying those changes on the server. Entity Framework is
tightly integrated with WCF Data Services, which is one such framework. WCF Data
Services is Microsoft’s solution to the N-Tier challenge. There are frameworks available
from other vendors as well.

WCF Data Services allows you to choose what data from your model is exposed from
the server and what permission clients have for the data (read, append, update, and so
on). WCF Data Services also includes a client component that takes care of tracking
changes you make to data on the client, pushing those changes back to the database,
and saving them using your Entity Framework model. WCF Data Services uses the
OData protocol (http://odata.org) for exposing data from the server; this allows your
service to be accessed by clients other than WCF Data Services, including non .NET
Framework platforms.

The WCF Data Services client has a similar “look and feel” to performing data access
directly against DbContext. Using WCF Data Services is arguably the simplest approach
to N-Tier data access with Entity Framework, and it is the approach the Entity Frame-
work team recommends. You can learn more about using WCF Data Services with
DbContext in this article: http://msdn.microsoft.com/en-us/data/hh272554.

WCF Data Services is a good option for building N-Tier applications, but there are
some reasons it may not be the right tool for your job. WCF Data Services gives you
quite a bit of control over how requests are processed on the server, but it is a framework
and therefore it is somewhat scoped in what it can handle. Depending on your appli-
cation, you may have some advanced requirements that are not supported.

You may also be in a situation where the shape of the server operations and/or the
protocol to be used for client-server communication are outside of your control. In
these situations, authoring your own web services may be the only viable option.

Self-Tracking Entities
Around the time that Entity Framework 4 was released, the Entity Framework team
also released a Self-Tracking Entities template for Model First and Database First. This
replaced the default code generation with a template that produced entities that would
internally track their changes on the client and transfer the information back to the
server. The template also generated some helper methods that would take the change
tracking information and replay the changes back into a context on the server.

The Entity Framework team hasn’t made any significant updates to the Self-Tracking
Entities template since it was first released. They are recommending that developers
look at using WCF Data Services as a more robust and complete solution.

76 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

http://odata.org
http://msdn.microsoft.com/en-us/data/hh272554

There is no Self-Tracking Entities template that can be used with the DbContext API.
There is also no Self-Tracking Entities solution for use with Code First.

Using Explicit Operations on the Server Side
Another way to avoid the complexity of determining the changes to be made on the
server is to expose very granular operations that require the client to identify the exact
change to be made. For example, rather than the SaveDestinationAndLodgings method
we saw earlier in this chapter, you could expose AddDestination and UpdateDestina
tion methods. These methods would only operate on a standalone Destination instance
rather than a graph of entities. You would expose separate methods for adding and
updating Locations. Entity Framework makes it simple to implement these methods
and you’ll find everything you need for this approach in the “Understanding How
DbContext Responds to Setting the State of a Single Entity” on page 78 section of
this chapter.

While this option makes the server component of your application much easier, it
potentially makes the client component more complex. You are also likely to end up
with a large number of operations exposed from the server. If you can’t use an existing
framework, such as WCF Data Services, you will need to weigh up the benefits of this
approach and the approach covered in the next section. Granular operations will typ-
ically give you a higher quantity of code, but that code will be much simpler to write,
test, and debug. Next we’ll take a look at a more generalized solution that will probably
involve less code, but is inherently more complex.

Replaying Changes on the Server
Another option is to have a more generalized server operation that accepts a graph of
entities and then lets Entity Framework know what state each entity in that graph
should be in. This is often referred to as replaying the changes on the server, because
you are walking through each entity and letting Entity Framework know what hap-
pened on the client. The process of iterating through each entity and setting its state is
also known as painting the state.

There are many different ways to implement this logic. You could write code that is
strongly tied to the classes in your model and each server operation knows how to
navigate the graph that is passed in, look at each entity, and set its state appropriately.
You can also come up with a generalized approach that can replay the changes for any
graph given any root entity. The generalized approach typically uses a base class or an
interface that exposes information to allow your server-side code to work out what
state each entity is in. You’ll see examples of both of these in the next section of this
chapter.

Exploring the Challenges of N-Tier | 77

Chapter 18 of Programming Entity Framework, 2e, demonstrated this
pattern by providing a base class with a State property. The State prop-
erty could be set on the client side and then read on the server side to
determine how to register the class with the context.

Understanding How DbContext Responds to Setting the State
of a Single Entity
Now that we’ve taken a look at the N-Tier challenges and the high-level options for
addressing them, it’s time to see how to implement those techniques using Entity
Framework. We’ll start by taking a step back and looking at how to set the state for a
single entity. Then we’ll take those techniques and use them to set the state for each
entity in a graph.

Building an actual N-Tier application is beyond the scope of this book, so we’re going
to keep working in the console application. We’ll implement methods that you could
potentially expose from a web service for your client application to consume. Rather
than serializing entities, you’ll use a temporary context to fetch any data from the da-
tabase and then manipulate the data to mimic client-side changes. You’ll then pass
these objects into the pseudo-server-side operations that will use a new context, with
no previous knowledge of the entity instances, to persist the changes to the database.

Entity Framework has a list of states that the change tracker uses to record the status
of each entity. In this section, you’ll see how to move an entity into each of these states.
The states that Entity Framework uses when change tracking are the following:

Added
The entity is being tracked by the context but does not exist in the database. During
SaveChanges an INSERT statement will be used to add this entity to the database.

Unchanged
The entity already exists in the database and has not been modified since it was
retrieved from the database. SaveChanges does not need to process the entity.

Modified
The entity already exists in the database and has been modified in memory. During
SaveChanges an UPDATE statement will be sent to the database to apply the changes.
A list of the properties that have been modified is also kept to determine which
columns should be set in the UPDATE statement.

Deleted
The entity already exists in the database and has been marked for deletion. During
SaveChanges a DELETE statement will be used to remove the entity from the database.

Detached
The entity is not being tracked by the context.

78 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

http://shop.oreilly.com/product/9780596807252.do

Setting an entity to the Detached state used to be important before the
Entity Framework supported POCO objects. Prior to POCO support,
your entities would have references to the context that was tracking
them. These references would cause issues when trying to attach an
entity to a second context. Setting an entity to the Detached state clears
out all the references to the context and also clears the navigation prop-
erties of the entity—so that it no longer references any entities being
tracked by the context. Now that you can use POCO objects that don’t
contain references to the context that is tracking them, there is rarely a
need to move an entity to the Detached state. We will not be covering
the Detached state in the rest of this chapter.

Marking a New Entity as Added
Arguably the simplest operation is to take an entity and mark it as Added; in fact, you
saw how to do that in Chapter 3. You can use the DbSet.Add method to tell Entity
Framework that an entity is added. Add the AddDestination and TestAddDestination
methods shown in Example 4-2.

Example 4-2. Adding a new Destination

private static void TestAddDestination()
{
 var jacksonHole = new Destination
 {
 Name = "Jackson Hole, Wyoming",
 Description = "Get your skis on."
 };

 AddDestination(jacksonHole);
}

private static void AddDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(destination);
 context.SaveChanges();
 }
}

The TestAddDestination method mimics a client application creating a new Destina
tion and passing it to the AddDestination method on the server. The AddDestination
method adds the new Destination to a context and then saves it to the database. If you
update the Main method to call TestAddDestination and run the application, you will
see that the Jackson Hole Destination is added to the database.

There is also another way to write this same method. Earlier in this chapter we saw that
we could use DbContext.Entry to get access to the change tracking information for an
entity. We used the State property on the change tracking information to read the state

Understanding How DbContext Responds to Setting the State of a Single Entity | 79

of an entity, but we can also set this property, too. Update the AddDestination method
to use the State property rather than DbSet.Add (Example 4-3). You’ll need to add a
using for the System.Data namespace to use the EntityState enum.

Example 4-3. Marking a Destination as added using the State property

private static void AddDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Entry(destination).State = EntityState.Added;
 context.SaveChanges();
 }
}

Calling DbSet.Add and setting the State to Added both achieve exactly the same thing.
If the entity is not tracked by the context, it will start being tracked by the context in
the Added state. Both DbSet.Add and setting the State to Added are graph operations—
meaning that any other entities that are not being tracked by the context and are reach-
able from the root entity will also be marked as Added. If the entity is already tracked
by the context, it will be moved to the Added state. So far we’ve only added entities that
aren’t tracked by the context, but a little later in this chapter you’ll see that being able
to set the state of an entity that is already tracked to Added is important.

Whether you choose DbSet.Add or setting the State property is simply a matter of which
is more convenient in the code you are writing. For this simple scenario, the code is
arguably easier to understand if you stick with DbSet.Add. Later in the chapter you’ll
see that setting the State property is cleaner in generalized scenarios where your code
calculates the state you are setting the entity to.

Marking an Existing Entity as Unchanged
While DbSet.Add is used to tell Entity Framework about new entities, DbSet.Attach is
used to tell Entity Framework about existing entities. The Attach method will mark an
entity in the Unchanged state. Add the AttachDestination and TestAttachDestination
methods shown in Example 4-4.

Example 4-4. Attaching an existing Destination

private static void TestAttachDestination()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {
 canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 AttachDestination(canyon);

80 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

}

private static void AttachDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Attach(destination);
 context.SaveChanges();
 }
}

The TestAttachDestination method fetches an existing Destination from the database
and passes it to the AttachDestination method, which uses DbSet.Attach to register the
existing Destination with a context and save the changes. You can also write this
method by setting the State property for the entity to Unchanged (Example 4-5).

Example 4-5. Marking a Destination as Unchanged using the State property

private static void AttachDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Entry(destination).State = EntityState.Unchanged;
 context.SaveChanges();
 }
}

If you update the Main method to call TestAttachDestination and run your application,
you’ll discover the AttachDestination is quite pointless because it doesn’t do anything.
That’s because we told Entity Framework that the Destination was Unchanged; therefore
SaveChanges just ignores the entity. While this is a bit silly if it’s all we do in the method,
it will be very useful when we have a graph of entities, some of which may not need
any changes pushed to the database.

DbSet.Attach and setting the State property to Unchanged have the same effect. If the
entity isn’t tracked by the context, it will begin being tracked in the Unchanged state. If
it is already tracked, it will be moved to the Unchanged state.

Marking an Existing Entity as Modified
You’ve seen how to mark an existing entity as Unchanged; now let’s look at existing
entities that have some changes that need to be pushed to the database. There are a few
options that range from marking every property as modified to telling Entity Frame-
work what the original values were for each property and letting it calculate the mod-
ifications. For the moment we’ll just focus on getting the changes into the database by
marking the whole entity as modified. You’ll learn about setting individual properties
as modified in “Tracking Individually Modified Properties” on page 99.

When you tell Entity Framework that an entire entity is modified, it will send an update
statement to the database that sets every column to the values currently stored in the

Understanding How DbContext Responds to Setting the State of a Single Entity | 81

properties of the entity. There isn’t an AttachAsModified method on DbSet, although
there are plenty of people asking for one, so don’t be surprised if it turns up in the
future. For the moment, you need to set the State property to Modified. Add the
UpdateDestination and TestUpdateDestination methods shown in Example 4-6.

Example 4-6. Attaching an existing entity as modified

private static void TestUpdateDestination()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {
 canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 canyon.TravelWarnings = "Don't fall in!";
 UpdateDestination(canyon);
}

private static void UpdateDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Entry(destination).State = EntityState.Modified;
 context.SaveChanges();
 }
}

The TestUpdateDestination simulates a client application that queries for the Grand
Canyon Destination from the server, modifies the TravelWarnings property, and passes
the updated Destination to the UpdateDestination method on the server. The Update
Destination method marks the incoming Destination as Modified and saves the changes
to the database. If you update the Main method to call TestModifyDestination and run
the application, an update statement is sent to the database:

exec sp_executesql N'
update
 [baga].[Locations]
set
 [LocationName] = @0,
 [Country] = @1,
 [Description] = null,
 [Photo] = null,
 [TravelWarnings] = @2,
 [ClimateInfo] = null
where
 ([LocationID] = @3)

',N'@0 nvarchar(200),@1 nvarchar(max) ,@2 nvarchar(max) ,@3 int',
@0=N'Grand Canyon',@1=N'USA',@2=N'Don''t fall in!',@3=1

82 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

Notice that even though we only updated the TravelWarnings property, Entity Frame-
work is updating every column. TravelWarnings gets updated to the new value we set;
all the other columns get “updated” to the same values they had when we retrieved the
Destination from the database. This is because Entity Framework doesn’t know which
properties were updated. We just specified that the entity was Modified, so Entity
Framework is updating all the columns to match the current property values.

Registering an Existing Entity for Deletion
In the previous chapter you saw that DbSet.Remove can be used to delete existing entities.
You also learned that calling Remove on an entity in the Added state will cancel the ad-
dition and cause the context to stop tracking the entity. Calling Remove on an entity that
isn’t tracked by the context will cause an InvalidOperationException to be thrown. The
Entity Framework throws this exception because it isn’t clear whether the entity you
are trying to remove is an existing entity that should be marked for deletion or a new
entity that should just be ignored. For this reason, we can’t use just Remove to mark a
disconnected entity as Deleted; we need to Attach it first. Add the DeleteDestination
and TestDeleteDestination methods shows in Example 4-7.

Example 4-7. Registering an existing entity for deletion

private static void TestDeleteDestination()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {
 canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 DeleteDestination(canyon);
}

private static void DeleteDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Attach(destination);
 context.Destinations.Remove(destination);
 context.SaveChanges();
 }
}

The TestDeleteDestination method simulates a client application fetching an existing
Destination from the server and then passing it to the DeleteDestination method on
the server. The DeleteDestination method uses the Attach method to let the context
know that it’s an existing Destination. Then the Remove method is used to register the
existing Destination for deletion.

Understanding How DbContext Responds to Setting the State of a Single Entity | 83

Having to attach the entity and then delete it is a little confusing and it’s not immediately
clear what the code is trying to achieve when we look at it. Fortunately we can also set
the State property of the entity to Deleted. Because Remove is used in attached scenarios,
its behavior is different when used on added, unchanged, or disconnected entities.
However, changing the State property is only used for explicitly setting state of an
entity, so Entity Framework assumes that setting the state to deleted means you want
an existing entity marked for deletion. We can rewrite the DeleteDestination method
to use this approach and the intent of the code becomes a lot clearer (Example 4-8).

Example 4-8. Registering an entity for deletion using the State property

private static void DeleteDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Entry(destination).State = EntityState.Deleted;
 context.SaveChanges();
 }
}

Using a stub entity to mark for deletion

Entity Framework only needs the key value(s) of an entity to be able to construct a
DELETE statement for the entity. Therefore, you can reduce the amount of data that gets
sent between the server and client by only sending back the key value of entities that
need to be deleted. Add another overload of DeleteDestination that just accepts the
key of the Destination to be deleted (Example 4-9).

Example 4-9. Registering an entity for deletion based on its key value

private static void DeleteDestination(int destinationId)
{
 using (var context = new BreakAwayContext())
 {
 var destination = new Destination { DestinationId = destinationId };
 context.Entry(destination).State = EntityState.Deleted;
 context.SaveChanges();
 }
}

The code constructs a new Destination instance with only the key property set—that’s
DestinationId. This entity with only the key value set is known as a stub entity. The
code then sets the State property for this new entity to Deleted, indicating that it is an
existing entity to be marked for deletion. Because Entity Framework will only access
the DestinationId property when it constructs the DELETE statement, it doesn’t matter
that the other properties are not populated.

84 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

If your entity contains any concurrency tokens, these properties are also
used to construct the DELETE statement. You can still use the stub entity
approach, but you will need to set values for the concurrency token
properties as well.

Working with Relationships with and Without Foreign Keys
If there is one thing you can do to make your life easier in N-Tier scenarios, it’s to expose
foreign key properties for the relationships in your model. Relationships that include
a foreign key property are called foreign key associations, and unless you have a very
good reason not to expose the foreign key properties you will save yourself a lot of pain
by including them.

More detailed information on including foreign keys in your Code First
model is available in Chapter 4 of Programming Entity Framework: Code
First. For Database First and Model First, see Chapter 19 of Program-
ming Entity Framework, 2e.

Benefiting from foreign key properties

The good news is that if you include foreign key properties in your model you already
know everything you need to know to work with relationships. If you mark the entity
as added, it will get inserted with the value currently assigned to its foreign key property.
If you mark an entity as modified, the foreign key property will get updated along with
all the other properties. To see this in action, add the UpdateLodging and TestUpdate
Lodging methods shown in Example 4-10.

Example 4-10. Changing a foreign key value

private static void TestUpdateLodging()
{
 int reefId;
 Lodging davesDump;
 using (var context = new BreakAwayContext())
 {
 reefId = (from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d.DestinationId).Single();

 davesDump = (from l in context.Lodgings
 where l.Name == "Dave's Dump"
 select l).Single();
 }

 davesDump.DestinationId = reefId;
 UpdateLodging(davesDump);
}

private static void UpdateLodging(Lodging lodging)

Understanding How DbContext Responds to Setting the State of a Single Entity | 85

http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

{
 using (var context = new BreakAwayContext())
 {
 context.Entry(lodging).State = EntityState.Modified;
 context.SaveChanges();
 }
}

The TestUpdateLodging method simulates a client application that fetches a Lodging and
changes its DestinationId property. Remember that DestinationId is the foreign key
to the Destination that the Lodging belongs to. This time it looks like Dave’s reputation
has become national, so he is moving his business around the world from Hawaii, USA,
to Queensland, Australia. Once the changes are made, the Lodging is passed to the
UpdateLodging method on the server. This method looks very much like the UpdateDes
tination method you wrote back in Example 4-6. As you can see, there is nothing
special required to deal with foreign key relationships.

Using navigation properties to define relationships

You aren’t restricted to using the foreign key property to change relationships. You can
still use the navigation properties, and you’ll see this in action a little later in this
chapter.

If you chose not to include a foreign key property, you are using independent associa-
tions. They are called independent associations because Entity Framework reasons
about the relationship independently of the entities that the relationship belongs to,
and this makes things difficult when it comes to disconnected entities. In fact, foreign
keys are so vital in N-Tier scenarios that the Entity Framework team chose not to expose
the methods for changing the state of independent relationships on the DbContext API.
To work with them, you will need to drop down to the ObjectContext API.

Delving into the complexities of independent associations in N-Tier
scenarios is well beyond the scope of this book. You can find a detailed
look at this topic in Chapter 19 of Programming Entity Framework, 2e.

The problem you’ll encounter is that change tracking only tracks scalar properties.
When you change a foreign key property, such as Lodging.DestinationId, the context
is aware of that property. But when you change a navigation property, there’s nothing
to track. Even if you mark the Lodging as Modified, the context is only aware of the
scalar properties. When you use an independent association, the context actually keeps
track of the relationship itself. It has an object that contains the keys of the two related
instances and this is what the context uses to track relationship modifications and
update them in the database and the state of the relationship. When your entity is not
connected to the context, the context is unable to do the work of modifying these
relationship objects. When you reconnect the entities to a context, you need to

86 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

http://shop.oreilly.com/product/9780596807252.do

manually dig down into the context, find those relationship objects, and modify them.
It’s pretty complex and very confusing. This is one of the reasons developers convinced
the Entity Framework team that we really needed to have foreign key properties avail-
able to us after struggling with independent associations in Entity Framework 1.0.

So, given that you simply might find yourself in this same situation, let’s take a look at
a quick example to give you an idea of the difference in resolving this problem in a
disconnected scenario to the simplicity of working with foreign key associations, and
hopefully convince you to stay away from them. Let’s assume for a moment that we
hadn’t included the DestinationId property on Lodging and used an independent as-
sociation instead. The code for UpdateLodging would need to look something like
Example 4-11.

Example 4-11. UpdateLodging for independent associations

private static void UpdateLodging(
 Lodging lodging,
 Destination previousDestination)
{
 using (var context = new BreakAwayContext())
 {
 context.Entry(lodging).State = EntityState.Modified;
 context.Entry(lodging.Destination).State = EntityState.Unchanged;

 if (lodging.Destination.DestinationId !=
 previousDestination.DestinationId)
 {
 context.Entry(previousDestination).State = EntityState.Unchanged;

 ((IObjectContextAdapter)context).ObjectContext
 .ObjectStateManager
 .ChangeRelationshipState(
 lodging,
 lodging.Destination,
 l => l.Destination,
 EntityState.Added);

 ((IObjectContextAdapter)context).ObjectContext
 .ObjectStateManager
 .ChangeRelationshipState(
 lodging,
 previousDestination,
 l => l.Destination,
 EntityState.Deleted);
 }

 context.SaveChanges();
 }
}

The first thing you’ll notice is that we now require the Destination instance that the
Lodging used to belong to. This is because changing an independent association requires

Understanding How DbContext Responds to Setting the State of a Single Entity | 87

that the context have an added relationship to the new entity and a deleted relationship
to the previous entity. This is a complicated side effect of the way that Entity Framework
handles concurrency checks when updating independent associations. The code starts
by marking the lodging as Modified, to take care of updating any properties that aren’t
involved in the relationship. The current Destination is also marked as an existing
entity. The code then checks to see if this call is changing the Destination this Lodg
ing is assigned to, by comparing the current Destination and the previous Destina
tion. If the Destination does need to be changed, the previous Destination is also
marked as an existing entity. The code then uses ObjectContext.ObjectStateMan
ager.ChangeRelationshipState to mark the relationship to the current Destination as
Added and the previous Destination as Deleted. With all that taken care of, it’s time to
call SaveChanges and push the changes to the database.

Many-to-many relationships are always independent associations. If
you have many-to-many relationships in your model, you will need to
use ChangeRelationshipState to mark references as Added, Unchanged, or
Deleted when processing changes on the server.

Setting the State for Multiple Entities in an Entity Graph
Now that you know the fundamental building blocks, it’s time to plug them together
to determine and set the state of each entity in a graph. When a disconnected entity
graph arrives on the server side, the server will not know the state of the entities. You
need to provide a way for the state to be discovered so that the context can be made
aware of each entity’s state. This section will demonstrate how you can coerce the
context to infer and then apply entity state.

The first step is to get the graph into the context. You do that by performing an oper-
ation that will cause the context to start tracking the root of the graph. Once that is
done, you can set the state for each entity in the graph.

Getting the Graph into the Context
Back in Example 4-1 you saw that adding the root of a graph will cause every entity in
the graph to be registered with the context as a new entity. This behavior is the same
if you use DbSet.Add or change the State property for an entity to Added. Once all the
entities are tracked by the state manager, you can then work your way around the graph,
specifying the correct state for each entity. It is possible to start by calling an operation
that will register the root as an existing entity. This includes DbSet.Attach or setting the
State property to Unchanged, Modified, or Deleted. However, this approach isn’t rec-
ommended because you run the risk of exceptions due to duplicate key values if you
have added entities in your graph. If you register the root as an existing entity, every
entity in the graph will get registered as an existing entity. Because existing entities

88 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

should all have unique primary keys, Entity Framework will ensure that you don’t
register two existing entities of the same type with the same key. If you have a new
entity instance that will have its primary key value generated by the database, you
probably won’t bother assigning a value to the primary key; you’ll just leave it set to
the default value. This means if your graph contains multiple new entities of the same
type, they will have the same key value. If you attach the root, Entity Framework will
attempt to mark every entity as Unchanged, which will fail because you would have two
existing entities with the same key.

For example, assume you have an existing Destination that includes two new instances
of the Lodging class in its Lodgings property. The key of Lodging is the integer property
LodgingId, which is generated by the database when you save. This means the two new
Lodgings both have zero assigned to their LodgingId property. If you attempt to register
the root as an existing entity, the two Lodging instances will also be registered as existing
entities. This will fail because that would mean there are two existing Lodgings with a
key of zero.

There may be some cases where you have multiple graphs and/or individual entities
that need to be registered with the context. This occurs when not all the entities you
need to reason about are reachable from one root. For example, we are going to be
writing a method that will save a Destination and the Lodgings that it references. Each
of these entities will either be a new entity to be added or an existing entity to be
updated. The method will also accept a separate list of Lodgings that should be deleted.
Because these Lodgings are to be deleted, the client will probably have removed them
from the Lodgings collection on the root Destination. Therefore registering the root
Destination won’t be enough to register the deleted Lodgings; we’ll need to register
them separately.

Table 4-1 summarizes the options along with the pros and cons that you’ve read in this
section.

Table 4-1. Patterns and warnings for joining graphs to a context

Method Result Warnings

Add Root Every entity in graph will be change
tracked and marked with Added state

SaveChanges will attempt to insert data that may already exist
in database

Attach Root Every entity in graph will be change
tracked and marked with Unchanged
state

New entities will not get inserted into database and have a
conflict with matching keys

Add or Attach Root,
then paint state
throughout graph

Entities will have correct state when
painting is complete

It is recommended that you Add the root rather than attaching
it to avoid key conflicts for new entities. More information is
provided at the start of this section.

Setting the State for Multiple Entities in an Entity Graph | 89

Setting the State of Entities in a Graph
We’re going to start by looking at an example where we iterate through the graph using
our knowledge of the model and set the state for each entity throughout the graph, or
painting the state. In the next section you’ll see how you can generalize this solution so
that you don’t have to manually navigate the graph set the state of each entity. We’re
going to write a method that will save a Destination and its related Lodgings. Deleted
entities are tricky in disconnected scenarios. If you delete the entity on the client side,
there’s nothing to send to the server so that it knows to delete that data in the database
as well. This example demonstrates one pattern for overcoming the problem. Add the
SaveDestinationAndLodgings method shown in Example 4-12.

Example 4-12. Setting state for each entity in a graph

private static void SaveDestinationAndLodgings(
 Destination destination,
 List<Lodging> deletedLodgings)
{
 // TODO: Ensure only Destinations & Lodgings are passed in

 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(destination);

 if (destination.DestinationId > 0)
 {
 context.Entry(destination).State = EntityState.Modified;
 }

 foreach (var lodging in destination.Lodgings)
 {
 if (lodging.LodgingId > 0)
 {
 context.Entry(lodging).State = EntityState.Modified;
 }
 }

 foreach (var lodging in deletedLodgings)
 {
 context.Entry(lodging).State = EntityState.Deleted;
 }

 context.SaveChanges();
 }
}

The new method accepts the Destination to be saved. This Destination may also have
Lodgings related to it. The method also accepts a list of Lodgings to be deleted. These
Lodgings may or may not be in the Lodgings collection of the Destination that is being
saved. You’ll also notice a TODO to ensure that the client calling the method only
supplied Destinations and Lodgings, because that is all that our method is expecting.

90 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

If the caller were to reference an unexpected InternetSpecial from one of the Lodg
ings, we wouldn’t process this with our state setting logic. Validating input is good
practice and isn’t related to the topic at hand, so we’ve left it out for clarity.

The code then adds the root Destination to the context, which will cause any related
Lodgings to also be added. Next we are using a check on the key property to determine
if this is a new or existing Destination. If the key is set to zero, it’s assumed it’s a new
Destination and it’s left in the added state; if it has a value, it’s marked as a modified
entity to be updated in the database. The same process is then repeated for each of the
Lodgings that is referenced from the Destination.

Finally the Lodgings that are to be deleted are registered in the Deleted state. If these
Lodgings are still referenced from the Destination, they are already in the state manager
in the added state. If they were not referenced by the Destination, the context isn’t yet
aware of them. Either way, changing the state to Deleted will register them for deletion.
With the state appropriately set for every entity in the graph, it’s time to call Save
Changes.

To see the SaveDestinationAndLodgings method in action, add the TestSaveDestinatio
nAndLodgings method shown in Example 4-13.

Example 4-13. Method to test SaveDestinationAndLodging method

private static void TestSaveDestinationAndLodgings()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {
 canyon = (from d in context.Destinations.Include(d => d.Lodgings)
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 canyon.TravelWarnings = "Carry enough water!";

 canyon.Lodgings.Add(new Lodging
 {
 Name = "Big Canyon Lodge"
 });

 var firstLodging = canyon.Lodgings.ElementAt(0);
 firstLodging.Name = "New Name Holiday Park";

 var secondLodging = canyon.Lodgings.ElementAt(1);
 var deletedLodgings = new List<Lodging>();
 canyon.Lodgings.Remove(secondLodging);
 deletedLodgings.Add(secondLodging);

 SaveDestinationAndLodgings(canyon, deletedLodgings);
}

Setting the State for Multiple Entities in an Entity Graph | 91

This method retrieves the Grand Canyon Destination from the database, using eager
loading to ensure that the related Lodgings are also in memory. Next it changes the
TravelWarnings property of the canyon. Then one of the Lodgings is modified and an-
other is removed from the Lodgings property of the canyon and added to a list of Lodg
ings to be deleted. A new Lodging is also added to the canyon. Finally the canyon and
the list of Lodgings to be deleted are passed to the SaveDestinationAndLodgings method.
If you update the Main method to call TestSaveDestinationAndLodgings and run the
application, a series of SQL statements will be sent to the database (Figure 4-3).

Figure 4-3. SQL statements during save after setting state for each entity

The first update is for the existing Grand Canyon Destination that we updated the
TravelWarnings property on. Next is the update for the Lodging we changed the name
of. Then comes the delete for the Lodging we added to the list of Lodgings to be deleted.
Finally, we see the insert for the new Lodging we created and added to the Lodgings
collection of the Grand Canyon Destination.

Building a Generic Approach to Track State Locally
The SaveDestination method we implemented in Example 4-12 isn’t overly complex,
but if we expose methods to save various parts of our model, we would be repeating
the state setting code over and over again in each method. So let’s take a look at a more
generalized approach to applying changes on the server.

You may recognize this pattern from Programming Entity Framework,
2e. It was introduced in Chapter 18 when demonstrating the user of
POCOs in WCF Services.

This approach relies on having a consistent way to determine the state of any entity in
your model. The easiest way to achieve that is to have an interface or abstract base
class that every entity in your model will implement.

Interface Versus Base Class
The decision between using a base class or an interface is entirely up to you. Using a
base class means you define the additional properties in one place and then each entity
just needs to inherit from the base class. Some developers may prefer the interface
because having a common base class for every entity pollutes the shape of the model.

92 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

As coauthors we discussed which approach to use in the book and found that there
wasn’t a clear winner. We opted to use an interface, but the techniques you will learn
in this chapter work just as well if you choose to use a base class.

For this example we are going to use an IObjectWithState interface that will tell us the
current state of the entity. It will have no dependencies on Entity Framework and will
be implemented by your domain classes, so it can go in the Model project. Go ahead
and add the IObjectWithState interface to the Model project (Example 4-14). Later in
this section you’ll add this interface to some of your classes.

Example 4-14. Sample interface to determine state of an entity

namespace Model
{
 public interface IObjectWithState
 {
 State State { get; set; }
 }

 public enum State
 {
 Added,
 Unchanged,
 Modified,
 Deleted
 }
}

Note that we’ve opted for a new enum to represent state rather than reusing the Enti
tyState enum from Entity Framework. This ensures our domain model doesn’t have
any dependencies on types from our data access technology.

Before we get to applying state, it would be useful if any entities we retrieve from the
database would have their state automatically set to Unchanged. Otherwise the server
needs to manually do this before returning the objects to the client. The easiest way to
do this is to listen to the ObjectMaterialized event on the underlying ObjectContext.
Add the constructor in Example 4-15 to the BreakAwayContext class. You’ll need to add
a using statement for the System.Data.Entity.Infrastructure namespace to get access
to the IObjectContextAdapter interface.

Example 4-15. Hooking up an event to mark existing entities as Unchanged

public BreakAwayContext()
{
 ((IObjectContextAdapter)this).ObjectContext
 .ObjectMaterialized += (sender, args) =>
 {
 var entity = args.Entity as IObjectWithState;
 if (entity != null)
 {
 entity.State = State.Unchanged;

Building a Generic Approach to Track State Locally | 93

 }
 };
}

The code uses IObjectContextAdapter to get access to the underlying ObjectContext. It
then wires up a new handler to the ObjectMaterialized event, which will fire whenever
an entity is returned from a query to the database. Because all objects that come from
the database are existing objects, we take this opportunity to mark them as Unchanged
if they implement our state tracking interface.

In a real-world scenario you would need to implement the change tracking interface
on every class in your model. But for the sake of simplicity, we will just use Destina
tion and Lodging for this demonstration. Go ahead and edit the Lodging and Destina
tion classes to implement the IObjectWithState interface:

public class Destination : IObjectWithState

public class Lodging : IObjectWithState

You’ll also need to add a State property into both of these classes to satisfy the IOb
jectWithState interface that you just added:

public State State { get; set; }

Now it’s time to write a method that uses all this information to take a disconnected
graph and apply the client-side changes to a context by setting the correct state for each
entity in the graph.

One important thing to remember is that this approach is dependent on
the client application honoring the contract of setting the correct state.
If the client doesn’t set the correct state, the save process will not behave
correctly.

Add the SaveDestinationGraph and ConvertState methods shown in Example 4-16.

Example 4-16. Setting state based on a state tracking interface

public static void SaveDestinationGraph(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 context.Destinations.Add(destination);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = ConvertState(stateInfo.State);
 }

 context.SaveChanges();
 }

94 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

}

public static EntityState ConvertState(State state)
{
 switch (state)
 {
 case State.Added:
 return EntityState.Added;

 case State.Modified:
 return EntityState.Modified;

 case State.Deleted:
 return EntityState.Deleted;

 default:
 return EntityState.Unchanged;
 }
}

The code uses DbSet.Add on the root Destination to get the contents of the graph into
the context in the Added state. Next it uses the ChangeTracker.Entries<TEntity> method
to find the entries for all entities that are tracked by the context and implement
IObjectWithState.

The Entries method will give you access to the same object that you
would get by calling DbContext.Entry on each entity. There is a nonge-
neric overload of Entries that will give you an entry for every entity that
is tracked by the context. The generic overload, which we are using, will
filter the entries to those that are of the specified type, derived from the
specified type, or implement the specified interface. If you use the
generic overload, the Entity property of each entry object will be
strongly typed as the type you specified. You’ll learn more about the
Entries method in Chapter 5.

For each entry, the code converts the state from the entities State property to Entity
Framework’s EntityState and sets it to the State property for the change tracker entry.
Once all the states have been set, it’s time to use SaveChanges to push the changes to
the database. Now that we have our generalized solution, let’s write some code to test
it out. We’re going to apply the same changes we did back in Example 4-13, but this
time using our new method of applying changes. Add the TestSaveDestinationGraph
method shown in Example 4-17.

Example 4-17. Testing the new SaveDestinationTest method

private static void TestSaveDestinationGraph()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {

Building a Generic Approach to Track State Locally | 95

 canyon = (from d in context.Destinations.Include(d => d.Lodgings)
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 canyon.TravelWarnings = "Carry enough water!";
 canyon.State = State.Modified;

 var firstLodging = canyon.Lodgings.First();
 firstLodging.Name = "New Name Holiday Park";
 firstLodging.State = State.Modified;

 var secondLodging = canyon.Lodgings.Last();
 secondLodging.State = State.Deleted;

 canyon.Lodgings.Add(new Lodging
 {
 Name = "Big Canyon Lodge",
 State = State.Added
 });

 SaveDestinationGraph(canyon);
}

The code simulates a client application that queries for an existing Destination and its
related Lodgings. The Destination is updated and marked as Modified. The first Lodg
ing is also updated and marked as Modified. The second Lodging is marked for deletion
by setting its State property to Deleted. Finally, a new Lodging is put into the Lodg
ings collection with its State set to Added. The graph is then passed to the SaveDestina
tionGraph method. If you update the Main method to call TestSaveDestinationGraph
and run your application, the same SQL statements from Figure 4-3 will be run against
the database.

Creating a Generic Method That Can Apply State Through Any Graph
With some simple tweaks to the SaveDestinationGraph method we wrote in Exam-
ple 4-16, we can create a method that can work on any root in our model, not just
Destinations. Add the ApplyChanges method shown in Example 4-18.

The generic method demonstrated in this section is specifically designed
for use with disconnected scenarios where you have a short-lived con-
text. Notice that the context is instantiated in the ApplyChanges method.

Example 4-18. Generalized method for replaying changes from a disconnected graph of entities

private static void ApplyChanges<TEntity>(TEntity root)
 where TEntity : class, IObjectWithState
{
 using (var context = new BreakAwayContext())
 {

96 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

 context.Set<TEntity>().Add(root);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = ConvertState(stateInfo.State);
 }

 context.SaveChanges();
 }
}

This new method accepts any root that implements IObjectWithState. Because we
don’t know the type of the root until runtime, we don’t know which DbSet to add it to.
Fortunately there is a Set<T> method on DbContext that can be used to create a set of a
type that will be resolved at runtime. We use that to get a set and then add the root.
Next we set the state for each entity in the graph and then push the changes to the
database. If you want to test this new method out, change the last line of your TestSa
veDestinationGraph method to call ApplyChanges rather than SaveDestinationGraph:

ApplyChanges(canyon);

Running the application will result in the same SQL statements from Figure 4-3 being
run again.

There is one potential issue with our ApplyChanges method—at the moment it blindly
assumes that every entity in the graph implements IObjectWithState. If an entity that
doesn’t implement the interface is present, it will just be left in the Added state and Entity
Framework will attempt to insert it. Update the ApplyChanges method as shown in
Example 4-19.

Example 4-19. Checking for entities that don’t implement IObjectWithState

private static void ApplyChanges<TEntity>(TEntity root)
 where TEntity : class, IObjectWithState
{
 using (var context = new BreakAwayContext())
 {
 context.Set<TEntity>().Add(root);

 CheckForEntitiesWithoutStateInterface(context);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = ConvertState(stateInfo.State);
 }

 context.SaveChanges();
 }
}

Building a Generic Approach to Track State Locally | 97

private static void CheckForEntitiesWithoutStateInterface(
 BreakAwayContext context)
{
 var entitiesWithoutState =
 from e in context.ChangeTracker.Entries()
 where !(e.Entity is IObjectWithState)
 select e;

 if (entitiesWithoutState.Any())
 {
 throw new NotSupportedException(
 "All entities must implement IObjectWithState");
 }
}

The method now calls a CheckForEntitiesWithoutStateInterface helper method that
uses the nongeneric overload of ChangeTracker.Entries to get all entities that have been
added to the context. It uses a LINQ query to find any of these that don’t implement
IObjectWithState. If any entities that don’t implement IObjectWithState are found, an
exception is thrown.

Concurrency Implications
This approach works well with timestamp-style concurrency tokens, where the prop-
erty that is used as a concurrency token will not be updated on the client. For existing
entities, the value of the timestamp property will be sent to the client and then back to
the server. The entity will then be registered as Unchanged, Modified, or Deleted with
the same value in the concurrency token property as when it was originally queried
from the database.

If you need to have concurrency checking in your N-Tier application, timestamp prop-
erties are arguably the easiest way to implement this. More information on timestamp
properties in Code First models is available in Chapter 3 of Programming Entity Frame-
work: Code First. For Database First and Model First, see Chapter 23 of Programming
Entity Framework, 2e.

If a property that can be updated on the client is used as a concurrency token, this
approach will not suffice. Because this approach does not track the original value of
properties, the concurrency token will only have the updated value for the concurrency
check. This value will be checked against the database value during save, and a con-
currency exception will be thrown because it will not match the value in the database.
To overcome this limitation you will need to use the approach described in “Recording
Original Values” on page 102.

98 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

Tracking Individually Modified Properties
So far, the methods you’ve seen have focused on changing the state of an entity. For a
lot of applications, it’s enough to simply track the state at the entity level and update
entire objects just as you would when relying on stored procedures. However, you may
find yourself wanting to be more granular with the way modified properties are tracked.
Rather than marking the entire entity as modified, you might want only the properties
that have actually changed to be marked as modified. This is how change tracking
works when properties of a tracked entity are modified. It ensures that only the prop-
erties that have actually been changed would be included in the update statement. In
this section we’ll take a quick look at some common approaches to achieving granular
property tracking when the entities are disconnected from the context:

• Keeping track of modified properties on the client side and passing that list to the
server along with the entities

• Storing the original properties into the entities when they are retrieved from the
database before passing them onto the client

• Requerying the database when the entities have been returned to the server from
the client

The samples provided in this section will provide you with a closer look
at the Change Tracker API that is tied to the DbContext API. The Entity
Framework team worked hard to make our lives easier when dealing
with disconnected scenarios. You’ve already seen some of the benefits
we developers can reap from their work, and you’ll see more as you read
through to the end of this chapter.

Recording Modified Property Names
This first approach is very similar to tracking state at the entity level. In addition to
marking an entity as modified, the client is also responsible for recording which prop-
erties have been modified. One way to do this would be to add a list of modified prop-
erty names to the state tracking interface. Update the IObjectWithState interface to
include a ModifiedProperties property, as shown in Example 4-20.

Example 4-20. State tracking interface updated to include modified properties

using System.Collections.Generic;

namespace Model
{
 public interface IObjectWithState
 {
 State State { get; set; }
 List<string> ModifiedProperties { get; set; }
 }

Tracking Individually Modified Properties | 99

 public enum State
 {
 Added,
 Unchanged,
 Modified,
 Deleted
 }
}

You’ll also need to add this property to the Destination and Lodging classes to satisfy
this new addition to the IObjectWithState interface:

public List<string> ModifiedProperties { get; set; }

Now that we have a place to record the modified properties, let’s update the Apply
Changes method to make use of it, as shown in Example 4-21.

Example 4-21. Updating ApplyChanges to use ModifiedProperties

private static void ApplyChanges<TEntity>(TEntity root)
 where TEntity : class, IObjectWithState
{
 using (var context = new BreakAwayContext())
 {
 context.Set<TEntity>().Add(root);

 CheckForEntitiesWithoutStateInterface(context);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 if (stateInfo.State == State.Modified)
 {
 entry.State = EntityState.Unchanged;
 foreach (var property in stateInfo.ModifiedProperties)
 {
 entry.Property(property).IsModified = true;
 }
 }
 else
 {
 entry.State = ConvertState(stateInfo.State);
 }
 }

 context.SaveChanges();
 }
}

The changes to the method are inside the foreach loop where we apply the state. If we
find a modified entity in the graph, we mark it as Unchanged, rather than Modified. Once
the entity is marked as Unchanged, we loop through the modified properties and mark

100 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

each of them as modified. We do this using the Property method on the entry to get
the change tracking information for the given property and then setting the IsModi
fied property to true. As soon as we mark one of the properties as modified, the state
of the entity will also move to Modified. But only the properties we marked as modified
will be updated when we save.

There are two overloads of Property, one that accepts the name of the
property as a string and the other that accepts a lambda expression rep-
resenting the property. We are using the string property because we
don’t know the names of the properties we want to access until runtime.
If you know the name of the property you want to access, you can use
the lambda version so that you get compile-time checking of the sup-
plied value (for example, context.Entry(destination).Property(d =>
d.Name).IsModified = true).

You'll also need to update the TestSaveDestinationGraph method to populate Modified
Properties for the Destination and Lodging that are modified:

canyon.TravelWarnings = "Carry enough water!";
 canyon.State = State.Modified;
 canyon.ModifiedProperties = new List<string> { "TravelWarnings" };

 var firstLodging = canyon.Lodgings.First();
 firstLodging.Name = "New Name Holiday Park";
 firstLodging.State = State.Modified;
 firstLodging.ModifiedProperties = new List<string> { "Name" };

If you run the application again, you will see a set of SQL statements similar to the ones
in Figure 4-3. This time, however, the update statements only set the properties we
marked as modified. Here is the SQL from the update statement for the Destination:

exec sp_executesql N'update [baga].[Locations]
set [TravelWarnings] = @0
where ([LocationID] = @1)
',N'@0 nvarchar(max) ,@1 int',
@0=N'Carry enough water!',@1=1

Complex Types
Entity Framework uses a single value to record whether the properties stored inside a
complex property are modified or not. If any of the properties are modified, the root
complex property is marked as modified and all the properties inside the complex
property will be set in the UPDATE statement that is issued during SaveChanges. For
example, if the Address.State property is modified on an existing Person, Entity Frame-
work records the entire Address property as modified. All the properties associated
with a Persons address will be included in the UPDATE statement during SaveChanges.

The code shown in Example 4-21 assumes that the client uses the same logic when
populating the ModifiedProperties collection. If the Address.State property is modi-

Tracking Individually Modified Properties | 101

fied, the ModifiedProperties collection will just contain "Address". The ApplyChanges
code will then use the change tracker API to mark the Address property as modified.

Information on working with the change tracking information of individual properties
inside a complex property is provided in “Working with Complex Proper-
ties” on page 131.

Concurrency implications

This approach has the same implications for concurrency as the generic approach you
saw in the previous section. Timestamp concurrency properties will work well, but
concurrency properties that can be modified on the client will cause issues.

Recording Original Values
An alternative to asking the client to record the properties that were modified is to keep
track of the original values for existing entities. One of the big advantages of this ap-
proach is that you are no longer relying on the client to tell you which properties were
modified. This makes the code on the client side much simpler and less error prone.
Entity Framework can then check for changes between the original and current values
to determine if anything is modified. Let’s change the IObjectWithState interface to
record original values rather than modified properties. Because we are going to calculate
whether an entity is modified or not, we no longer need the Modified option in the
State enum, so let’s remove that, too. These changes are shown in Example 4-22.

Example 4-22. Change state tracking interface to use original values

using System.Collections.Generic;

namespace Model
{
 public interface IObjectWithState
 {
 State State { get; set; }
 Dictionary<string, object> OriginalValues { get; set; }
 }

 public enum State
 {
 Added,
 Unchanged,
 Deleted
 }
}

You’ll also need to remove the ModifiedProperties property from Destination and
Lodging and add in the new OriginalValues property:

public Dictionary<string, object> OriginalValues { get; set; }

102 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

We want Entity Framework to automatically populate the OriginalValues property
when an entity is retrieved from the database, so let’s update the event handler we
added to the constructor of our context (Example 4-23). You’ll need to add a using
statement for the System.Collections.Generic namespace.

Example 4-23. Populating original values after query

public BreakAwayContext()
{
 ((IObjectContextAdapter)this).ObjectContext
 .ObjectMaterialized += (sender, args) =>
 {
 var entity = args.Entity as IObjectWithState;
 if (entity != null)
 {
 entity.State = State.Unchanged;

 entity.OriginalValues =
 BuildOriginalValues(this.Entry(entity).OriginalValues);
 }
 };
}

private static Dictionary<string, object> BuildOriginalValues(
 DbPropertyValues originalValues)
{
 var result = new Dictionary<string, object>();
 foreach (var propertyName in originalValues.PropertyNames)
 {
 var value = originalValues[propertyName];
 if (value is DbPropertyValues)
 {
 result[propertyName] =
 BuildOriginalValues((DbPropertyValues)value);
 }
 else
 {
 result[propertyName] = value;
 }
 }
 return result;
}

In addition to marking the entity as Unchanged, this updated code will populate the
OriginalValues property. It does this by getting the original values from the change
tracking entry for the entity and using the BuildOriginalValue helper method to convert
them to the required dictionary format. The helper method loops through each of the
properties that we have original values for. If the value is just a normal scalar property,
it copies the value of the property to into the resulting dictionary. If the value is a
DbPropertyValues, this indicates that it is a complex property and the code uses a re-
cursive call to build a nested dictionary of the values in the complex property. More

Tracking Individually Modified Properties | 103

information on nested DbPropertyValues for complex properties is available in “Work-
ing with Complex Properties” on page 131.

Because the entity has just been returned from the database, the current and original
values are the same, so we could have also used the CurrentValues property to get the
values. Now we can update the ApplyChanges method to make use of this property
(Example 4-24).

Example 4-24. Using original values in ApplyChanges

private static void ApplyChanges<TEntity>(TEntity root)
 where TEntity : class, IObjectWithState
{
 using (var context = new BreakAwayContext())
 {
 context.Set<TEntity>().Add(root);

 CheckForEntitiesWithoutStateInterface(context);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = ConvertState(stateInfo.State);
 if (stateInfo.State == State.Unchanged)
 {
 ApplyPropertyChanges(entry.OriginalValues,
 stateInfo.OriginalValues);
 }
 }

 context.SaveChanges();
 }
}

private static void ApplyPropertyChanges(
 DbPropertyValues values,
 Dictionary<string, object> originalValues)
{
 foreach (var originalValue in originalValues)
 {
 if (originalValue.Value is Dictionary<string, object>)
 {
 ApplyPropertyChanges(
 (DbPropertyValues)values[originalValue.Key],
 (Dictionary<string, object>)originalValue.Value);
 }
 else
 {
 values[originalValue.Key] = originalValue.Value;
 }
 }
}

104 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

After painting the state of entities throughout the graph, the code now checks to see if
it’s an existing entity. For existing entities the code uses the ApplyPropertyChanges
helper method to set the original values for the entity. The helper method loops through
the OriginalValues that were captured when the entity was retrieved from the database.
If the value is a nested dictionary, indicating a complex property, then it uses a recursive
call to apply the changes for the individual properties inside the complex property. If
the value is just a scalar value, it updates the original value being stored by the context.
Entity Framework will detect if any of the values differ from the values currently as-
signed to the properties of the entity. If a difference is detected, the property, and
therefore the entity, will be marked as modified. We also need to update the Convert
State method because we no longer have a Modified option in the State enum
(Example 4-25).

Example 4-25. ConvertState updated to reflect removal of Modified state

public static EntityState ConvertState(State state)
{
 switch (state)
 {
 case State.Added:
 return EntityState.Added;

 case State.Deleted:
 return EntityState.Deleted;

 default:
 return EntityState.Unchanged;
 }
}

To test out the new logic, you can update the TestSaveDestinationGraph method to no
longer mark entities as Modified when it changes properties (Example 4-26). This is no
longer required because the ApplyChanges method will calculate this for you.

Example 4-26. Updating the test method to test recording of original values

private static void TestSaveDestinationGraph()
{
 Destination canyon;
 using (var context = new BreakAwayContext())
 {
 canyon = (from d in context.Destinations.Include(d => d.Lodgings)
 where d.Name == "Grand Canyon"
 select d).Single();
 }

 canyon.TravelWarnings = "Carry enough water!";

 var firstLodging = canyon.Lodgings.First();
 firstLodging.Name = "New Name Holiday Park";

 var secondLodging = canyon.Lodgings.Last();

Tracking Individually Modified Properties | 105

 secondLodging.State = State.Deleted;

 canyon.Lodgings.Add(new Lodging
 {
 Name = "Big Canyon Lodge",
 State = State.Added
 });

 ApplyChanges(canyon);
}

If you run the application, you will get the familiar set of SQL statements from Fig-
ure 4-3. The update statements that are generated will only set properties that were
actually modified.

Concurrency implications

This approach offers the best concurrency support because it records the same infor-
mation that is stored by the change tracker when modifying entities that are attached
to a context. Timestamp concurrency properties will work because the value retrieved
from the database is sent to the client and then back to the server, to be used when
updating existing data. Concurrency properties that can be modified will also work
because the original value, which was assigned to the property when it was retrieved
from the database, is recorded. Because this value is set as the original value for the
property, Entity Framework will use the original value when performing concurrency
checks.

Querying and Applying Changes
Another approach that developers sometimes try is to calculate the modified properties
by querying the database to get the current entity and then copying the values from the
incoming entity. Because this approach requires one query to get the entity from the
database and often a second query to update the data, it’s usually slower than just
marking the entity as modified and updating every column. That said, sending a lot of
unnecessary updates to the database isn’t ideal. If one of the other techniques in this
chapter doesn’t work for you, this may be worth looking at.

Entity Framework makes it easy to copy the values from one object to another. Putting
graphs aside for a moment, we could implement an UpdateDestination method as
follows:

public static void UpdateDestination(Destination destination)
{
 using (var context = new BreakAwayContext())
 {
 if (destination.DestinationId > 0)
 {
 var existingDestiantion = context.Destinations
 .Find(destination.DestinationId);

106 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

 context.Entry(existingDestiantion)
 .CurrentValues
 .SetValues(destination);
 }
 else
 {
 context.Destinations.Add(destination);
 }

 context.SaveChanges();
 }
}

If the Destination has a key value assigned, it’s assumed to be an existing Destina
tion. The Find method is used to load the Destination from the database. The SetVal
ues method is used on CurrentValues to copy values from the incoming Destination to
the existing Destination from the database. Entity Framework will automatically detect
if any of the property values are different. If there are differences, the appropriate prop-
erties will be marked as modified.

This approach falls down when you start working with graphs, though. Let’s assume
the incoming Destination references a new Lodging. We can’t query for this Lodging
from the database, since it’s new, so we need to register this Lodging for addition. The
problem is if we try and add the Lodging to the context, it will also try and add any other
entities that it references. If the Lodging references an existing entity, it’s going to end
up in the context in the added state. This gets very complicated, because we now want
to try and take this existing entity back out of the context so that we can query for the
entity from the database and copy its values over.

While it is technically possible to make this work, the code gets very complicated.
Fortunately, there is a better alternative. Rather than getting the existing entity from
the database and copying the values to it, we can attach the incoming entity and then
set its original values to the values from the database. Update the ApplyChanges method
as shown in Example 4-27.

Example 4-27. ApplyChanges checks for modification using database values

private static void ApplyChanges<TEntity>(TEntity root)
 where TEntity : class, IObjectWithState
{
 using (var context = new BreakAwayContext())
 {
 context.Set<TEntity>().Add(root);

 CheckForEntitiesWithoutStateInterface(context);

 foreach (var entry in context.ChangeTracker
 .Entries<IObjectWithState>())
 {
 IObjectWithState stateInfo = entry.Entity;
 entry.State = ConvertState(stateInfo.State);

Tracking Individually Modified Properties | 107

 if (stateInfo.State == State.Unchanged)
 {
 var databaseValues = entry.GetDatabaseValues();
 entry.OriginalValues.SetValues(databaseValues);
 }
 }

 context.SaveChanges();
 }
}

Rather than getting the original values that were recorded when the entity was retrieved
from the database, the code now gets the current original values from the database. In
fact, the OriginalValues property on IObjectWithState is now no longer required. The
database values are retrieved using the GetDatabaseValues method. This method returns
DbPropertyValues, which is the same type returned from the CurrentValues and Origi
nalValues property on an entity. The SetValues method on DbPropertyValues will copy
the values from any other DbPropertyValues instance into itself. We use this function-
ality to copy the database values into the original values for each entity. If you run the
application, SQL statements similar to those from Figure 4-3 will be executed against
the database. However, this time the update statements will only set the properties that
were actually changed.

Concurrency implications

This approach bypasses concurrency checks because it requeries for the database values
just before saving any changes. These new database values are used in place of the
values that were originally retrieved from the database when sending data to the client.
If you are using concurrency tokens, this approach to replaying changes on the server
is not suitable.

Caching Original Entities
Another approach that developers sometimes use is to cache the original entities that
are retrieved from the context. These cached entities can then be used to calculate the
modified properties when it comes time to save. This approach is effectively the same
as the “Query and Apply Changes” method, but it uses cached in-memory entities,
instead of querying the database, to calculate changes.

This approach may initially seem attractive because it reduces the round trips to the
database and removes the need to include any state information on the entities that are
returned to the client application. It is, however, very complex and not recommended
unless absolutely required.

In an N-Tier application, the server typically has no way to know which “save data”
calls align with which “get data” calls. For example, inside the UpdateDestination
method you don’t know which call was used to get the data. This makes it hard to know
which cached graph to use for comparison. The two common solutions to this are to
implement some form of session ID, or to implement a second-level cache.

108 | Chapter 4: Working with Disconnected Entities Including N-Tier Applications

The session ID approach involves returning a unique identifier to the client alongside
any data that is returned. When the client wants to save changes to the data, it must
also supply this unique ID that can be used to locate the cached graph for comparison.
This gets very complicated when you start to think about server farms where the “get
data” and “save data” calls may be processed by different physical servers. Also consider
long-running client applications where the user might query for some data, leave the
application open overnight, and then save in the morning.

The second-level cache approach involves having a single in-memory cache that is used
for all requests on the server. When data is queried from the database, it is stored in
the cache ready to be used for comparison. Because multiple queries may return the
same data, or at least overlapping data, the cache needs to take care of merging results
so that duplicate entities don’t exist in the cache. Second-level caches can provide a
nice performance improvement because you can also query against the cache to avoid
hitting the database to return data. Entity Framework does not have built-in support
for a second-level cache, so you need to do a lot of work to wire one up. This gets
particularly complicated when you start to think about setting expiration rules for your
data so that stale data doesn’t remain in the cache when the database gets updated.

If you want to get a deep education on the pros and cons of caching with ORMs, check
out this article on the Association for Computing Machinery (ACM) website: “Expos-
ing the ORM Cache: Familiarity with ORM caching issues can help prevent perfor-
mance problems and bugs”.

Tracking Individually Modified Properties | 109

http://queue.acm.org/detail.cfm?id=1394141
http://queue.acm.org/detail.cfm?id=1394141
http://queue.acm.org/detail.cfm?id=1394141

CHAPTER 5

Change Tracker API

So far you have seen how to use Entity Framework to query for data from the database
and save changes to those entities back to the database. You’ve seen how Entity Frame-
work will keep track of any changes you make to entities that are being tracked by a
context. It is the responsibility of the Change Tracker to keep track of these changes as
you make them.

In this chapter you will learn about using the Change Tracker API to access the infor-
mation that Entity Framework is storing about the entities it is tracking. This infor-
mation goes beyond the values stored in the properties of your entities and includes
the current state of the entity, the original values from the database, which properties
have been modified, and other data. The Change Tracker API also gives you access to
additional operations that can be performed on an entity, such as reloading its values
from the database to ensure you have the latest data.

You’ve already seen bits of the Change Tracker API in action in earlier chapters. In
Chapter 2 you saw how to perform explicit loading using the DbContext.Entry. In
Chapter 3 you saw how to get the Change Tracker to scan your entities for changes
using the DbContext.ChangeTracker.DetectChanges method. In Chapter 4 you saw how
to set the state of an entity, mark individual properties as modified, and work with
original values using the Entry method. You also saw how to look at all entities being
tracked by the context using the DbContext.ChangeTracker.Entries method.

We’ll start this chapter by taking a tour of all the information and operations that are
available in the Change Tracker API. Then we’ll wrap up the chapter by looking at how
these operations can be combined to save time logging and resolving concurrency
conflicts.

Change Tracking Information and Operations for a Single Entity
The easiest way to get access to the change tracking information for an entity is using
the Entry method on DbContext. Entry returns a DbEntityEntry instance, which gives
you access to the information and operations available for the entity. There are two

111

overloads of Entry. One is generic (Entry<TEntity>) and will return a strongly typed
DbEntityEntry<TEntity>:

public DbEntityEntry<TEntity> Entry<TEntity>(TEntity entity)

The other overload is nongeneric and returns DbEntityEntry:

public DbEntityEntry Entry(object entity);

Both of these provide access to exactly the same information and operations. Because
the strongly typed DbEntityEntry<TEntity> knows the type of entity it represents, it
allows you to use lambda expressions when drilling into property details, so that you
get IntelliSense and additional compile-time checks. You don’t need to worry about
selecting the correct overload—the compiler will take care of this for you. If the entity
you pass to Entry is typed as object, you will get the nongeneric DbEntityEntry. If the
entity you pass in is typed as something more specific than object (for example, Desti
nation), you will get the generic DbEntityEntry<TEntity>, where TEntity is the same
type as the entity you pass in. You’ll see both of these overloads in action in the next
couple of sections.

Working with the State Property
One of the core pieces of change tracking information is what state the entity is currently
in: Added, Unchanged, Modified, or Deleted. This can be determined using the State
property on DbEntityEntry. To see how this works, add the PrintState method shown
in Example 5-1.

Example 5-1. Reading the State property

private static void PrintState()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 DbEntityEntry<Destination> entry = context.Entry(canyon);

 Console.WriteLine("Before Edit: {0}", entry.State);
 canyon.TravelWarnings = "Take lots of water.";
 Console.WriteLine("After Edit: {0}", entry.State);
 }
}

The code retrieves the Grand Canyon destination from the database and then locates
the change tracking entry for it. The canyon variable is strongly typed as Destination,
so the compiler selects the generic overload of Entry and we get a strongly typed DbEn
tityEntry<Destination> returned. The code then prints out the state of canyon as re-
corded in the change tracker. Next, the TravelWarnings property is modified and then

112 | Chapter 5: Change Tracker API

the State is printed out again. Update the Main method to call the PrintState method
and run the application. The console window will display the following:

Before Edit: Unchanged
After Edit: Modified

As expected, the canyon object is reported as Unchanged after it is retrieved from the
database. After modifying one of its properties, the object is seen by the change tracker
as being in the Modified state.

Back in Chapter 3, we enabled Destination as a change tracking proxy, meaning that
changes to any instances of Destination are reported to the context in real time. Entities
that are not change tracking proxies require an explicit or implicit call to DetectCh
anges to scan for any changes to the object. Most of the methods on DbContext will
automatically call DetectChanges for you. Entry is one of those methods. But reading
the State property will not cause an automatic DetectChanges. If Destination was not
a change tracking proxy, you would need to call DetectChanges after setting the Trav
elWarnings property to get the correct state reported. More information on DetectCh
anges is available in the Using Snapshot Change Tracking section of Chapter 3. You
can avoid the need to call DetectChanges by calling Entry each time you need the entry,
rather than keeping a reference to it. For example, rather than storing the entry in the
entry variable as you did in Example 5-1, you could use Entry each time you want the
state:

Console.WriteLine("Before Edit: {0}", context.Entry(canyon).State);
canyon.TravelWarnings = "Take lots of water.";
Console.WriteLine("After Edit: {0}", context.Entry(canyon).State);

The State property also exposes a public setter, meaning you can assign
a state to an entity. Setting the state is useful when you are working with
disconnected graphs of entities—typically in N-Tier scenarios. Chap-
ter 4 of this book is dedicated to learning about the various ways to set
the state of entities, including setting the State property.

Working with Current, Original, and Database Values
Along with the current state of an entity, DbEntityEntry gives you access to the entity’s
current, original, and database values. The DbPropertyValues type is used to represent
each of these sets of properties. Current values are the values that are currently set in
the properties of the entity. Original values are the values for each property when the
entity was originally attached to the context; for example, when the entity was first
retrieved from the database. Database values are the values currently stored in the da-
tabase, which may have changed since you queried for the entity. Accessing database
values involves Entity Framework performing a behind-the-scenes query for you.

Working with Current, Original, and Database Values | 113

There is a bug in Entity Framework 4.1 and 4.2 that blocks you from
using the GetDatabaseValues method for an entity that is not in the same
namespace as your context. The Entity Framework team has fixed this
bug in the Entity Framework 4.3 release. If you are using Entity Frame-
work 4.2 or earlier, you will need to modify the namespace of your con-
text class to be the same as your domain classes. Failure to make this
change will result in an EntitySqlException if you attempt to retrieve
the database values for an entity.

Let’s start by writing a method that will output these various values for any given
Lodging. Add the PrintChangeTrackingInfo method shown in Example 5-2.

Example 5-2. Printing change tracking info for a Lodging

private static void PrintChangeTrackingInfo(
 BreakAwayContext context,
 Lodging entity)
{
 var entry = context.Entry(entity);

 Console.WriteLine(entry.Entity.Name);

 Console.WriteLine("State: {0}", entry.State);

 Console.WriteLine("\nCurrent Values:");
 PrintPropertyValues(entry.CurrentValues);

 Console.WriteLine("\nOriginal Values:");
 PrintPropertyValues(entry.OriginalValues);

 Console.WriteLine("\nDatabase Values:");
 PrintPropertyValues(entry.GetDatabaseValues());
}

private static void PrintPropertyValues(DbPropertyValues values)
{
 foreach (var propertyName in values.PropertyNames)
 {
 Console.WriteLine(" - {0}: {1}",
 propertyName,
 values[propertyName]);
 }
}

The code starts by looking up the change tracking entry for the supplied Lodging. Be-
cause the lodging variable is strongly typed as Lodging, the compiler will select the
generic overload of Entry. The code then prints out the Name of the Lodging. Of course,
we could have just gotten the name from the lodging variable, but we are using the
Entity property on the entry for demonstration purposes. Because the entry is strongly
typed, the Entity property provides strongly typed access to the Destination, which is
why we can call entry.Entity.Name.

114 | Chapter 5: Change Tracker API

The code then loops through the current, original, and database values and writes the
value for each property using the PrintPropertyValues helper method. These collec-
tions of values are all the DbPropertyValues type. Note that there is no way to directly
iterate over the values, so you need to iterate over the names of the properties and look
up the value for each property. GetDatabaseValues will send a query to the database at
the time it is called, to determine what values are currently stored in the database. A
new query will be sent to the database every time you call the method.

This method for accessing current, original, and database values uses a
string to identify the property to get the value for. In “Working with
Individual Properties” on page 128, you will learn about a strongly ty-
ped way to specify the property.

Now let’s write a method to test out our change tracking logic. Go ahead and add the
PrintLodgingInfo method shown in Example 5-3.

Example 5-3. Method to test PrintChangeTrackingInfo

private static void PrintLodgingInfo()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 hotel.Name = "Super Grand Hotel";

 context.Database.ExecuteSqlCommand(
 @"UPDATE Lodgings
 SET Name = 'Not-So-Grand Hotel'
 WHERE Name = 'Grand Hotel'");

 PrintChangeTrackingInfo(context, hotel);
 }
}

This new method locates an existing Lodging from the database and modifies its Name
property. The code then uses Database.ExecuteSqlCommand to run some raw SQL to
modify the name of the Lodging in the database. You’ll learn more about executing raw
SQL against the database in Chapter 8. Finally, the hotel instance is passed to our
PrintChangeTrackingInfo method. Update the Main method to call PrintLodgingInfo
and run the application, which will output the following to the console:

Super Grand Hotel
State: Modified

Current Values:
 - LodgingId: 1
 - Name: Super Grand Hotel

Working with Current, Original, and Database Values | 115

 - Owner:
 - MilesFromNearestAirport: 2.50
 - DestinationId: 1
 - PrimaryContactId:
 - SecondaryContactId:

Original Values:
 - LodgingId: 1
 - Name: Grand Hotel
 - Owner:
 - MilesFromNearestAirport: 2.50
 - DestinationId: 1
 - PrimaryContactId:
 - SecondaryContactId:

Database Values:
 - LodgingId: 1
 - Name: Not-So-Grand Hotel
 - Owner:
 - MilesFromNearestAirport: 2.50
 - DestinationId: 1
 - PrimaryContactId:
 - SecondaryContactId:

As expected, the current name of the hotel is printed out. Since we changed the Name,
the State of the entity is displayed as Modified. The current value for Name shows the
new name that we assigned in PrintLodgingInfo (“Super Grand Hotel”). The original
value of Name shows the value when we retrieved the Lodging from the database (“Grand
Hotel”). The database value of Name shows the new value we assigned in the database
using the raw SQL command, after the hotel was retrieved from the database (“Not-
So-Grand Hotel”).

The code from Example 5-2 works nicely for existing entities, because they have cur-
rent, original, and database values. But this isn’t true for new entities or entities that
are marked for deletion. New entities don’t have original values or database values.
Entity Framework doesn’t track current values for entities that are marked for deletion.
If you try to access such values, Entity Framework will throw an exception. Let’s add
some conditional logic in PrintChangeTrackingInfo to account for these restrictions.
Replace the code that prints out current, original, and database values with the code
in Example 5-4.

Example 5-4. Avoiding trying to access invalid values

if (entry.State != EntityState.Deleted)
{
 Console.WriteLine("\nCurrent Values:");
 PrintPropertyValues(entry.CurrentValues);
}

if (entry.State != EntityState.Added)
{
 Console.WriteLine("\nOriginal Values:");

116 | Chapter 5: Change Tracker API

 PrintPropertyValues(entry.OriginalValues);

 Console.WriteLine("\nDatabase Values:");
 PrintPropertyValues(entry.GetDatabaseValues());
}

The updated code now checks the State of the entry and skips printing out current
values for entities that are marked for deletion. The code also skips printing original
and database values for newly added entities. Let’s also update the PrintLodgingInfo
method so that we can see these changes in action (Example 5-5).

Example 5-5. Modified PrintLodgingInfo method

private static void PrintLodgingInfo()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 PrintChangeTrackingInfo(context, hotel);

 var davesDump = (from d in context.Lodgings
 where d.Name == "Dave's Dump"
 select d).Single();

 context.Lodgings.Remove(davesDump);

 PrintChangeTrackingInfo(context, davesDump);

 var newMotel = new Lodging { Name = "New Motel" };

 context.Lodgings.Add(newMotel);

 PrintChangeTrackingInfo(context, newMotel);
 }
}

The updated code now also locates Dave’s Dump and marks it for deletion. The code
also adds New Motel to the context. PrintChangeTrackingInfo is called for both of these
entities. If you run the application again, you will see that the relevant change tracking
information is successfully displayed for all three locations.

The PrintChangeTrackingInfo method will currently only work for Lodgings, because
the entity parameter is strongly typed. But most of the code in the method is not specific
to the Lodging type. Let’s change the PrintChangeTrackingInfo method to accept any
entity type by changing the entity parameter to be typed as object rather than Lodging:

private static void PrintChangeTrackingInfo(
 BreakAwayContext context,
 object entity)

Working with Current, Original, and Database Values | 117

Since the entity may not be a Lodging, the compiler now selects the nongeneric Entry
method, which returns the nongeneric DbEntityEntry. Because we no longer know what
type the entity is, we can’t be sure that there is a Name property to print—in fact, the
compiler will give us an error if we try to. Remove the line that printed out the name
of the Lodging and replace it with a line that prints out the type of the entity instead:

Console.WriteLine("Type: {0}", entry.Entity.GetType());

Go ahead and run the application. You will see that the updated code continues to
successfully display change tracking information.

So far, our examples have used the indexer syntax to get the value for a property out of
DbPropertyValues. The indexer syntax is where you used square braces on an object to
specify the key/index of the value you want to retrieve (in other words, entry.Current
Values[“Name”]). Because there is no way to know what type will be returned from each
property, the return type of the indexer on DbPropertyValues is object. There may be
times where you do know what type the value will be. Rather than casting the return
value to the required type, you can use the GetValue<TValue> method to specify the type
of the value. For example, you may want to find the original value that was assigned
to the Name property of a Lodging when it was retrieved from the database. Add the
PrintOriginalName method shown in Example 5-6.

Example 5-6. Using GetValue<TValue> to get a strongly typed original value

private static void PrintOriginalName()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 hotel.Name = "Super Grand Hotel";

 string originalName = context.Entry(hotel)
 .OriginalValues
 .GetValue<string>("Name");

 Console.WriteLine("Current Name: {0}", hotel.Name);
 Console.WriteLine("Original Name: {0}", originalName);
 }
}

The code retrieves a Lodging from the database and changes its Name property. The code
then looks up the original value for the Name property using the GetValue method on
the OriginalValues for the entity. Because we know that Name is a string property, the
code specifies string as the TValue when calling GetValues. The original value is
returned as a string and the current and original value for the Name property are then
printed to the console.

118 | Chapter 5: Change Tracker API

Working with DbPropertyValues for Complex Types
Let’s look at how you can work with DbPropertyValues when you have a property on
your entity that uses a complex type. Remember that complex types allow you to group
multiple scalar values into a class. A property that references a complex type is known
as a complex property. For example, the BAGA model uses an Address complex type to
group address related properties (Example 5-7).

Example 5-7. The existing Address classes

[ComplexType]
public class Address
{
 public int AddressId { get; set; }
 [MaxLength(150)]
 [Column("StreetAddress")]
 public string StreetAddress { get; set; }
 [Column("City")]
 public string City { get; set; }
 [Column("State")]
 public string State { get; set; }
 [Column("ZipCode")]
 public string ZipCode { get; set; }
}

Code First convention recognizes complex types when the type has no
key property. Since Address has a property that Code First will recognize
as a key, AddressId, and therefore will infer this to be an entity type, the
class is explicitly marked as a ComplexType.

This complex type is then used by the Address property in the Person class (Exam-
ple 5-8). Person.Address is therefore a complex property. Note that PersonInfo is also
a complex type.

Example 5-8. The existing Person Class

[Table("People")]
public class Person
{
 public Person()
 {
 Address = new Address();
 Info = new PersonalInfo
 {
 Weight = new Measurement(),
 Height = new Measurement()
 };
 }

 public int PersonId { get; set; }
 [ConcurrencyCheck]

Working with Current, Original, and Database Values | 119

 public int SocialSecurityNumber { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Address Address { get; set; }
 public PersonalInfo Info { get; set; }

 public List<Lodging> PrimaryContactFor { get; set; }
 public List<Lodging> SecondaryContactFor { get; set; }
 [Required]
 public PersonPhoto Photo { get; set; }
 public List<Reservation> Reservations { get; set; }
}

To demonstrate how DbPropertyValues handles complex types, let’s create a new Per
son and pass it to our PrintChangeTrackingInfo method. Add the PrintPersonInfo
method shown in Example 5-9.

Example 5-9. Printing change tracking information for an entity with a complex property

private static void PrintPersonInfo()
{
 using (var context = new BreakAwayContext())
 {
 var person = new Person
 {
 FirstName = "John",
 LastName = "Doe",
 Address = new Address { State = "VT" }
 };

 context.People.Add(person);

 PrintChangeTrackingInfo(context, person);
 }
}

When we get the value for a complex property from DbPropertyValues, it’s going to
return another DbPropertyValues that contains the values from the complex type. Let’s
update the PrintPropertyValues helper method to account for this (Example 5-10).

Example 5-10. PrintPropertyValues updated to account for complex properties

private static void PrintPropertyValues(
 DbPropertyValues values,
 int indent = 1)
{
 foreach (var propertyName in values.PropertyNames)
 {
 var value = values[propertyName];
 if (value is DbPropertyValues)
 {
 Console.WriteLine(
 "{0}- Complex Property: {1}",
 string.Empty.PadLeft(indent),

120 | Chapter 5: Change Tracker API

 propertyName);

 PrintPropertyValues(
 (DbPropertyValues)value,
 indent + 1);
 }
 else
 {
 Console.WriteLine(
 "{0}- {1}: {2}",
 string.Empty.PadLeft(indent),
 propertyName,
 values[propertyName]);
 }
 }
}

For each property being printed, the code now checks if the value is a DbPropertyVal
ues. If it is, the code prints out the name of the complex property and then recursively
calls PrintPropertyValues with the values for the complex type. PrintPropertyValues
also allows an indent level to be supplied, which is used to indent the values of a com-
plex property. If an indent is not supplied, a default indent of 1 is used. Update the
Main method to call PrintPersonInfo and run the application. The console will display
the following output:

Type: Model.Person
State: Added

Current Values:
 - PersonId: 0
 - SocialSecurityNumber: 0
 - FirstName: John
 - LastName: Doe
 - Complex Property: Address
 - AddressId: 0
 - StreetAddress:
 - City:
 - State: VT
 - ZipCode:
 - Complex Property: Info
 - Complex Property: Weight
 - Reading: 0
 - Units:
 - Complex Property: Height
 - Reading: 0
 - Units:
 - DietryRestrictions:

The console output is displaying the property values contained in the Address property.
You’ll also notice that the code works for nested complex types. Person.Info is a com-
plex property that references the PersonInfo complex type. PersonInfo also has complex
properties for a Person’s Height and Weight. From the printout you can see that the

Working with Current, Original, and Database Values | 121

DbPropertyValues for the Info complex property returned another DbPropertyValues for
its Weight and Height properties.

Copying the Values from DbPropertyValues into an Entity
Having a single object, like DbPropertyValues, that represents a set of values is handy.
However, we usually want to write application logic in terms of our domain classes,
rather than a type such as DbPropertyValues. For example, we might have a method
that defines how we display a Destination for the user of our application to see. We
can pass any instance of a Destination into the method to print out its current values,
but it would be good if we could use that same method to print out the original and
database values as well. Add the PrintDestination method shown in Example 5-11.

Example 5-11. Method to print information about a Destination

private static void PrintDestination(Destination destination)
{
 Console.WriteLine("-- {0}, {1} --",
 destination.Name,
 destination.Country);

 Console.WriteLine(destination.Description);

 if (destination.TravelWarnings != null)
 {
 Console.WriteLine("WARNINGS!: {0}", destination.TravelWarnings);
 }
}

If you want to display the current values for a Destination, you can pass the actual
instance to the method. But there may be scenarios where you want to display the
original values fetched from the database or perhaps the current database values to the
end user. One such scenario is resolving concurrency conflicts during a save. We’ll look
at that particular scenario in more detail later in this chapter.

DbPropertyValues includes a ToObject method that will copy the values into a new in-
stance of the entity without overwriting the existing instance as you would with a query
to the database. To see how this works, add the TestPrintDestination method shown
in Example 5-12.

Example 5-12. Getting an entity representing the values in the database

private static void TestPrintDestination()
{
 using (var context = new BreakAwayContext())
 {
 var reef = (from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d).Single();

 reef.TravelWarnings = "Watch out for sharks!";

122 | Chapter 5: Change Tracker API

 Console.WriteLine("Current Values");
 PrintDestination(reef);

 Console.WriteLine("\nDatabase Values");
 DbPropertyValues dbValues = context.Entry(reef)
 .GetDatabaseValues();

 PrintDestination((Destination)dbValues.ToObject());
 }
}

The code retrieves the Great Barrier Reef Destination from the database and changes
its TravelWarnings property. Then it passes the Destination to the PrintDestination
method to print out the current values. Next, it gets the values from the database and
uses ToObject to construct a Destination that contains the values from the database.
This new Destination is then passed to PrintDestination to print the database values.
Update the Main method to call TestPrintDestination and run the application:

Current Values
-- Great Barrier Reef, Australia --
Beautiful coral reef.
WARNINGS!: Watch out for sharks!

Database Values
-- Great Barrier Reef, Australia --
Beautiful coral reef

The current and database values are printed to the screen and you can see that the
updated TravelWarnings property is printed out in the current values. The second in-
stance of Destination, which was created by calling ToObject, is not attached to the
context. Any changes to this second instance will not be persisted during SaveChanges.

ToObject will only clone the values from scalar properties; all navigation
properties on the entity will be left unassigned. This makes ToObject
useful for cloning a single object, but it will not clone an entire object
graph for you.

Changing Values in a DbPropertyValues
DbPropertyValues isn’t a read-only type. You can also use it to update values that are
stored in an instance. When you set values using CurrentValues or OriginalValues, this
will also update the current and original values in the change tracker. Additionally,
updating the CurrentValues will change the values that are stored in the properties of
your entity instance.

In “Recording Original Values” on page 102, you saw how the OriginalValues could
be individually updated. As each value was updated, the Change Tracker worked out

Working with Current, Original, and Database Values | 123

which properties had been modified. Let’s take a look at setting the current values. Add
the ChangeCurrentValue method shown in Example 5-13.

Example 5-13. Changing a current value via the Change Tracker API

private static void ChangeCurrentValue()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 context.Entry(hotel)
 .CurrentValues["Name"] = "Hotel Pretentious";

 Console.WriteLine("Property Value: {0}", hotel.Name);
 }
}

The code loads the Grand Hotel Lodging from the database. The code then gets the
CurrentValues for the hotel instance and modifies the value stored for the Name property.
Finally, the code writes out the value stored in the Name property on the entity. Update
the Main method to call ChangeCurrentValue and run the application, which will result
in the following output:

Property Value: Hotel Pretentious

We see from the output that updating the value of a property in the CurrentValues has
also updated the value stored in the property of the entity.

Back in “Working with Change Tracking” on page 59, you learned that POCO entities
require a call to DetectChanges to scan for changes in the properties of the entity. You
also learned that DbContext takes care of calling DetectChanges for you, but that you
can disable this behavior if you want to control when DetectChanges is called.

Remember that in most cases it is best to let DbContext automatically
call DetectChanges for you. More information on manually calling
DetectChanges and the use of change tracking proxies is available in
Chapter 4.

If you make changes using the Change Tracker API, there is no need for DetectCh
anges to be called, because the Change Tracker is aware of the change being made. To
see this in action, update the ChangeCurrentValue method, as shown in Example 5-14.

Example 5-14. Updating via the Change Tracker API removes the need for DetectChanges

private static void ChangeCurrentValue()
{
 using (var context = new BreakAwayContext())
 {

124 | Chapter 5: Change Tracker API

 context.Configuration.AutoDetectChangesEnabled = false;

 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 context.Entry(hotel)
 .CurrentValues["Name"] = "Hotel Pretentious";

 Console.WriteLine("Property Value: {0}", hotel.Name);
 Console.WriteLine("State: {0}", context.Entry(hotel).State);
 }
}

The updated code now disables automatic calling of DetectChanges. The code also
prints out the state of the hotel entity, as recorded by the Change Tracker, after the
current value for Name has been updated. Go ahead and run the application again:

Property Value: Hotel Pretentious
State: Modified

If we had updated the Name property on the entity, we would expect the state to be
Unchanged, since a call to DetectChanges would be required to discover the updated
property. However, because the Name property was updated using the Change Tracker
API, the state is correctly recorded as Modified without calling DetectChanges.

There may be times when you want to have an editable copy of the current or original
values but you don’t want changes to be recorded in the Change Tracker. You’ll see
one such scenario when we look at resolving concurrency conflicts later in this chapter.
The Clone method will return a copy of any DbPropertyValues instance. Be aware that
when you clone current or original values, the resulting copy will not be hooked up to
the change tracker. Add the CloneCurrentValues method shown in Example 5-15 to see
how cloning works.

Example 5-15. Cloning current values

private static void CloneCurrentValues()
{
 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 var values = context.Entry(hotel).CurrentValues.Clone();

 values["Name"] = "Simple Hotel";

 Console.WriteLine("Property Value: {0}", hotel.Name);
 Console.WriteLine("State: {0}", context.Entry(hotel).State);
 }
}

Working with Current, Original, and Database Values | 125

The code loads the Grand Hotel Lodging from the database and then clones its current
values. The value stored for the Name property in the cloned values is updated, and then
the value of the Name property in the entity is written out. Update the Main method to
call CloneCurrentValues and run the application to see the following output in the con-
sole:

Property Value: Grand Hotel
State: Unchanged

As expected, updating the cloned values has no impact on the values or the state of the
entity they were cloned from.

Using the SetValues method

In Chapter 4, you learned that you can copy the contents of one DbPropertyValues into
another using the SetValues method. For example, you may want users of a client
application with access to the change tracker to be able to roll back changes they’ve
made to an entity. The easiest way to do this is to copy the original values (when the
entity was retrieved from the database) back into the current values. Add the UndoE
dits method shown in Example 5-16.

Example 5-16. Copying original values back into current values

private static void UndoEdits()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 canyon.Name = "Bigger & Better Canyon";

 var entry = context.Entry(canyon);
 entry.CurrentValues.SetValues(entry.OriginalValues);
 entry.State = EntityState.Unchanged;

 Console.WriteLine("Name: {0}", canyon.Name);
 }
}

The code retrieves the Grand Canyon Destination from the database and changes its
Name. The code then undoes this edit by locating the entry and copying the original
values back into the current values. Entity Framework isn’t smart enough to detect that
these new values match the original values, so the code also manually swaps the state
back to Unchanged. Finally, the name property is printed out to verify that the changes
were reverted. Update the Main method to call UndoEdits and run the application. As
expected, the changes to the Name property are reverted and displayed in the console
like this:

Name: Grand Canyon

126 | Chapter 5: Change Tracker API

SetValues doesn’t just accept DbPropertyValues, but can accept any ob-
ject. SetValues will attempt to overwrite the property values with the
values in the object that’s been passed in. This is done by matching the
names of the object’s properties with the names of the DbPropertyVal
ues instance. If a property with the same name is found, the value is
copied. If the property on the object is not of the same type as the value
stored in the DbPropertyValues, an InvalidOperationException is
thrown. Any properties in the object that don’t match the name of a
value already stored in the DbPropertyValues are ignored.

Many applications allow you to enter a new record by cloning an existing record. Let’s
see how to use SetValues to accomplish this task. You might be a fan of Dave, of Dave’s
Dump fame, and want to create a new Dave’s Campsite Lodging using Dave’s Dump
as a starting point. Add the CreateDavesCampsite method shown in Example 5-17.

Example 5-17. Copying one entity into another

private static void CreateDavesCampsite()
{
 using (var context = new BreakAwayContext())
 {
 var davesDump = (from d in context.Lodgings
 where d.Name == "Dave's Dump"
 select d).Single();

 var clone = new Lodging();
 context.Lodgings.Add(clone);
 context.Entry(clone)
 .CurrentValues
 .SetValues(davesDump);

 clone.Name = "Dave's Camp";
 context.SaveChanges();

 Console.WriteLine("Name: {0}",
 clone.Name);

 Console.WriteLine("Miles: {0}",
 clone.MilesFromNearestAirport);

 Console.WriteLine("Contact Id: {0}",
 clone.PrimaryContactId);
 }
}

The code retrieves Dave’s Dump from the database. Then it creates a new Lodging for
Dave’s Campsite and adds it to the context. The current values for the new Campsite
are then copied from Dave’s Dump, using the SetValues method. The code then over-
writes the name, since we don’t want this new Lodging to have the same name, and
saves to the database. Finally, some of the properties of the new Lodging are written

Working with Current, Original, and Database Values | 127

out to the console. Update the Main method to call CreateDavesCampsite and run the
application:

Name: Dave's Camp
Miles: 32.65
Contact Id: 1

As expected, the displayed values are the same as Dave’s dump, except for the Name
property that we overwrote.

Working with Individual Properties
DbPropertyValues is a great way to work with complete sets of values, but there may be
times when you just want to work with the change tracking information for one prop-
erty. You can of course access the values of a single property using DbPropertyValues,
but that uses string-based names for the property. Ideally you should be using strongly
typed lambda expressions to identify the property, so that you get compile-time check-
ing, IntelliSense, and refactoring support.

You can use the Property, Complex, Reference, and Collection methods on an entry to
get access to the change tracking information and operations for an individual property:

• The Property method is used for scalar and complex properties.

• The Complex method is used to get additional operations that are specific to com-
plex properties.

• The Reference and Collection methods are used for navigation properties.

• There is also a Member method, which can be used for any type of property. The
Member method is not strongly typed and only provides access to information that
is common to all properties.

Working with Scalar Properties
Let’s start with the Property method. The Property method allows you to read and
write the original and current value. It also lets you know whether an individual prop-
erty is marked as Modified, something that isn’t possible with DbPropertyValues. The
WorkingWithPropertyMethod method shown in Example 5-18 will allow you to begin
exploring the Property method.

Example 5-18. Accessing change tracking information for a property

private static void WorkingWithPropertyMethod()
{
 using (var context = new BreakAwayContext())
 {
 var davesDump = (from d in context.Lodgings
 where d.Name == "Dave's Dump"
 select d).Single();

128 | Chapter 5: Change Tracker API

 var entry = context.Entry(davesDump);

 entry.Property(d => d.Name).CurrentValue =
 "Dave's Bargain Bungalows";

 Console.WriteLine(
 "Current Value: {0}",
 entry.Property(d => d.Name).CurrentValue);

 Console.WriteLine(
 "Original Value: {0}",
 entry.Property(d => d.Name).OriginalValue);

 Console.WriteLine(
 "Modified?: {0}",
 entry.Property(d => d.Name).IsModified);
 }
}

The code retrieves Dave’s Dump from the database and locates the representative entry
from the context. It then uses the Property method to change the current value for the
Name property. Then the code prints out the current and original values plus the IsMo
dified flag. The IsModified flag tells us if the property is marked as Modified and will
be updated when SaveChanges is called. You can update the Main method to call Work
ingWithPropertyMethod and run the application to see these results in the console:

Current Value: Dave's Bargain Bungalows
Original Value: Dave's Dump
Modified?: True

The current and original values are displayed as expected, since we changed the value
of the Name property. You can see that the property is also marked as modified. There
is also a weakly typed overload of Property that accepts a string property name rather
than a lambda expression. In fact, all the methods you will see in this section have a
string-based overload.

The strongly typed lambda overloads are recommended because they give you a com-
pile-time check, but the string-based overloads can be useful when writing generalized
code. For example, you might want to find out which properties are currently marked
as Modified. You can get the names of all properties using CurrentValues and then check
if they are modified using the Property method. The FindModifiedProperties method
shown in Example 5-19 demonstrates this.

Example 5-19. Finding the modified properties of an entity

private static void FindModifiedProperties()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

Working with Individual Properties | 129

 canyon.Name = "Super-Size Canyon";
 canyon.TravelWarnings = "Bigger than your brain can handle!!!";

 var entry = context.Entry(canyon);
 var propertyNames = entry.CurrentValues.PropertyNames;

IEnumerable<string> modifiedProperties = from name in propertyNames
 where entry.Property(name).IsModified
 select name;

 foreach (var propertyName in modifiedProperties)
 {
 Console.WriteLine(propertyName);
 }
 }
}

The code retrieves the Grand Canyon Destination from the database and changes a
couple of properties. The code then locates the entry for the Grand Canyon and gets a
list of all property names using CurrentValues. Then a LINQ query is used to find which
of those property names are marked as modified. The where section of the LINQ query
uses the string-based overload of Property to get the change tracking information for
the property. Finally, the modified properties are written out to the console. When you
run FindModifiedProperties, the names of the two edited properties are written out to
the console:

Name
TravelWarnings

The Property method also gives you access to the name of the property and the change
tracker entry for the entity containing the property. This information is provided in the
Name and EntityEntry properties (Figure 5-1).

Figure 5-1. EntityEntry and Name for the TravelWarnings property

In the code you’ve seen so far, we’ve always known this information because we started
with the change tracking entry and then the property name to find the information for

130 | Chapter 5: Change Tracker API

a property. In Chapters 6 and 7 you will see how the Name and EntityEntry properties
are useful in Validation scenarios.

Working with Complex Properties
When working with complex properties, you use the ComplexProperty method to get
access to change tracking information and operations. The same operations that you
just learned about for scalar properties are all available for complex properties. You
can also use the Property method to drill into individual scalar properties on the com-
plex type. The WorkingWithComplexMethod shown in Example 5-20 demonstrates inter-
acting with the properties of the Address complex property in a Person instance.

Example 5-20. Accessing change tracking information for a complex property.

private static void WorkingWithComplexMethod()
{
 using (var context = new BreakAwayContext())
 {
 var julie = (from p in context.People
 where p.FirstName == "Julie"
 select p).Single();

 var entry = context.Entry(julie);

 entry.ComplexProperty(p => p.Address)
 .Property(a => a.State)
 .CurrentValue = "VT";

 Console.WriteLine(
 "Address.State Modified?: {0}",
 entry.ComplexProperty(p => p.Address)
 .Property(a => a.State)
 .IsModified);

 Console.WriteLine(
 "Address Modified?: {0}",
 entry.ComplexProperty(p => p.Address).IsModified);

 Console.WriteLine(
 "Info.Height.Units Modified?: {0}",
 entry.ComplexProperty(p => p.Info)
 .ComplexProperty(i => i.Height)
 .Property(h => h.Units)
 .IsModified);
 }
}

The code loads data for Julie from the database and locates the change tracking entry
from the context. Next it drills into the Address complex property and then into the
scalar State property within Address. The code changes the current value assigned to
Address.State and then prints out the IsModified flag for Address.State and for the

Working with Individual Properties | 131

complex Address property. Finally, the code drills into a nested complex property to
check the IsModified flag for Info.Height.Units. You can see that ComplexProperty calls
can be chained together to drill into a complex property that is defined in another
complex property. Following are the console results after running the WorkingWithCom
plexMethod:

Address.State Modified?: True
Address Modified?: True
Info.Height.Units Modified?: False

An alternative syntax to access the change tracking information for a complex property
is to specify the full path to the property in a single Property call. For example, you
could also change the current value of Address.State using the following code:

entry.Property(p => p.Address.State).CurrentValue = "VT";

You can also specify the full path if you are using the string-based overload of Property:

entry.Property("Address.State").CurrentValue = "VT";

When working with complex properties, Entity Framework tracks that state for the
complex type, but not for its individual properties. If you check the state of any property
within the complex type (for example, the City property of Address), Entity Framework
will return the state of the complex type (Address). After changing the Address.State
property, every property of Address will be marked as modified.

So far in this section, we have always modified the scalar values of an existing complex
type instance. You can also assign a new complex type instance to a complex property.
In Example 5-20, instead of editing the State property of the existing Address instance,
we could have replaced it with a new instance:

entry.ComplexProperty(p => p.Address)
 .CurrentValue = new Address { State = "VT" };

Replacing the value assigned to a complex property with a new instance will mark the
entire complex property as modified.

You may have noticed in Figure 5-1 that a ParentProperty is available
after calling Property or ComplexProperty. For properties that are defined
directly on an entity, this will always return null. For properties that are
defined within a complex property, ParentProperty will return the
change tracking information for the parent complex property. For ex-
ample, if you are looking at the information for the City property inside
Address, ParentProperty will give you the information for Address. In
the examples in this chapter, we always know the parent property be-
cause we started with the entity, then drilled into the complex property,
followed by its subproperties.

132 | Chapter 5: Change Tracker API

Working with Navigation Properties
Now it’s time to look at how to access the change tracking information and operations
associated with a navigation property. Instead of the Property method, you use the
Reference and Collection methods to get to navigation properties:

• Reference is used when the navigation property is just a reference to a single entity
(for example, Lodging.Destination).

• Collection is used when the navigation property is a collection (for example, Des
tination.Lodgings).

These methods give you the ability to do several things:

1. Read and write the current value assigned to the navigation property

2. Load the related data from the database

3. Get a query representing the contents of the navigation property

In “Explicit Loading” on page 36, you saw how the Load method can be used to load
the contents of a navigation property from the database. You also learned that the
IsLoaded flag can be used to determine if the entire contents of a navigation property
(for example, Destination.Trips) have already been loaded. In Chapter 2 you also saw
how to use the Query method to run a LINQ query against the contents of the navigation
property. This was in “Querying Contents of a Collection Navigation Prop-
erty” on page 39.

Modifying the value of a navigation property

The Reference method gives you access to change tracking information and operations
for a navigation property. One piece of information that is available is the value cur-
rently assigned to the navigation property. This is accessed via the CurrentValue prop-
erty. If the navigation property hasn’t been loaded from the database, CurrentValue will
return null. You can also set the CurrentValue property to change the entity assigned
to the navigation property, therefore changing the relationship. Add the code for Work
ingWithReferenceMethod, shown in Example 5-21.

Example 5-21. Change tracking information for a reference navigation property

private static void WorkingWithReferenceMethod()
{
 using (var context = new BreakAwayContext())
 {
 var davesDump = (from d in context.Lodgings
 where d.Name == "Dave's Dump"
 select d).Single();

 var entry = context.Entry(davesDump);

 entry.Reference(l => l.Destination)
 .Load();

Working with Individual Properties | 133

 var canyon = davesDump.Destination;

 Console.WriteLine(
 "Current Value After Load: {0}",
 entry.Reference(d => d.Destination)
 .CurrentValue
 .Name);

 var reef = (from d in context.Destinations
 where d.Name == "Great Barrier Reef"
 select d).Single();

 entry.Reference(d => d.Destination)
 .CurrentValue = reef;

 Console.WriteLine(
 "Current Value After Change: {0}",
 davesDump.Destination.Name);
 }
}

The code retrieves Dave’s Dump Lodging from the database and locates the change
tracking entry from the context. Then it drills into the Destination reference and ex-
plicitly loads the related data using Reference().Load(). The name of the Destination
that Dave’s Dump is assigned is then written out to the console using the Current
Value property. Next, we change CurrentValue by assigning the Great Barrier Reef
Destination. Finally, we’ll write out the name of the Destination that Dave’s Dump is
assigned again, but this time by accessing the navigation property on the davesDump
entity itself.

Update the Main method to call WorkingWithReferenceMethod and run the application
to see the following results:

Current Value After Load: Grand Canyon
Current Value After Change: Great Barrier Reef

CurrentValue allowed you to read and write the Destination that Dave’s Dump is as-
signed to. Changing the CurrentValue also updated the navigation property on the
davesDump entity.

Modifying navigation properties with the change tracker

Earlier, when working with scalar properties, you saw that DetectChanges was not re-
quired when making changes through the change tracker. The same is true for reference
navigation properties. Change detection and relationship fix-up occur without
DetectChanges being called. To see this in action, update the WorkingWithReferenceMe
thod method to disable automatic change detection and lazy loading. Add the following
code immediately before the LINQ query that retrieves Dave’s Dump from the
database:

134 | Chapter 5: Change Tracker API

context.Configuration.AutoDetectChangesEnabled = false;
context.Configuration.LazyLoadingEnabled = false;

Let’s also print some additional information to the console to observe how the context
is tracking the changes. Add the following code after the final Console.WriteLine call
in the existing method:

Console.WriteLine(
 "State: {0}",
 entry.State);

Console.WriteLine(
 "Referenced From Current Destination: {0}",
 reef.Lodgings.Contains(davesDump));

Console.WriteLine(
 "Referenced From Former Destination: {0}",
 canyon.Lodgings.Contains(davesDump));

The code prints out the state of Dave’s Dump as recorded by the change tracker. Then
it prints out whether Dave’s Dump is present in Lodgings collection on the current
Destination (reef) and the former Destination (canyon). Go ahead and run the appli-
cation again, which will print these results in the console:

After Load: Grand Canyon
After CurrentValue Change: Great Barrier Reef
State: Modified
Referenced From Current Destination: True
Referenced From Former Destination: False

The change tracker is aware that Dave’s Dump is Modified without calling DetectCh
anges. The change tracker has also taken care of updating the Destination reference on
Dave’s Dump, removing Dave’s Dump from the Lodgings collection on the former
Destination, and adding it to the new Destination.

More information on relationship fix-up is available in “Using De-
tectChanges to Trigger Relationship Fix-up” on page 63.

Working with collection navigation properties

You’ve seen many features of working with a reference navigation using the Refer
ence method. The same operations are available when using the Collection method to
interact with a collection navigation property. The WorkingWithCollectionMethod
method, shown in Example 5-22, runs through some of the same tasks, but this time
with a navigation property that points to a collection. We’re using Reservation.Pay
ments as our collection navigation property rather than Destination.Lodgings. Back in
Chapter 3, we set up Destination to use a dynamic change tracking proxy so that
changes would be automatically reported to the change tracker. But Reservation is not

Working with Individual Properties | 135

set up to use a change tracking proxy. This will allow us to explore how the Collec
tion method behaves with change detection and relationship fix-up.

Example 5-22. Method to explore interacting with a collection property

private static void WorkingWithCollectionMethod()
{
 using (var context = new BreakAwayContext())
 {
 var res = (from r in context.Reservations
 where r.Trip.Description == "Trip from the database"
 select r).Single();

 var entry = context.Entry(res);

 entry.Collection(r => r.Payments)
 .Load();

 Console.WriteLine(
 "Payments Before Add: {0}",
 entry.Collection(r => r.Payments).CurrentValue.Count);

 var payment = new Payment { Amount = 245 };
 context.Payments.Add(payment);

 entry.Collection(r => r.Payments)
 .CurrentValue
 .Add(payment);

 Console.WriteLine(
 "Payments After Add: {0}",
 entry.Collection(r => r.Payments).CurrentValue.Count);
 }
}

The method loads a Reservation from the database and locates its change tracking entry
from the context. Then it drills into the Payments property using the Collection method
and, just as we did with the Reference, uses the Load method to explicitly load any
related Payments from the database. The method then calls the Collection.Current
Value.Count property to count how many payments are in the collection and prints out
the count. Finally, the method adds a new payment and prints out the count again.
Update the Main method to call WorkingWithCollectionMethod and run the application.
Here is what you’ll see in the console:

Payments Before Add: 1
Payments After Add: 2

With a Collection, you can use the CurrentValue property to read and write from the
relevant collection navigation property (in this case, Payments). CurrentValue on col-
lection navigation properties returns the instance of the collection assigned to the nav-
igation property. In the case of Reservation.Payments, that’s the List<Payment> that gets
created in the constructor of Reservation. Therefore, adding or removing from the

136 | Chapter 5: Change Tracker API

CurrentValue behaves the same as adding or removing from the navigation property
itself. This means that unless the entity is a change tracking proxy, you’ll need DetectCh
anges to get change detection and relationship fix-up to occur. Let’s see how this affects
the results of the WorkingWithCollectionMethod method by adding a line of code to
disable automatic change detection. Add the following line of code immediately before
the LINQ query that retrieves the Reservation from the database:

context.Configuration.AutoDetectChangesEnabled = false;

Also add the following code after the final Console.WriteLine call. This new code calls
DetectChanges after adding the Payment. The value assigned to the foreign key on the
new Payment is printed out to the console on either side of the DetectChanges call:

Console.WriteLine(
 "Foreign Key Before DetectChanges: {0}",
 payment.ReservationId);

context.ChangeTracker.DetectChanges();

Console.WriteLine(
 "Foreign Key After DetectChanges: {0}",
 payment.ReservationId);

Go ahead and run the application again. You can see the effect of setting AutoDetectCh
angesEnabled to false and the explicit DetectChanges call in the console output:

Count Before Add: 1
Count After Add: 2
Foreign Key Before DetectChanges: 0
Foreign Key After DetectChanges: 1

The addition of the Payment to the Payments collection of the Reservation was not au-
tomatically detected. Relationship fix-up was not triggered until DetectChanges was
called.

Refreshing an Entity from the Database
Throughout this book you have seen how to load data from the database and work
with it in-memory. So far, you have only loaded the data one time, but there may be
times when you want to refresh or reload a given entity. For example you may have
had an entity in memory for a long period of time and want to make sure you have the
latest data before displaying it to a user.

Entity Framework includes a Reload method on DbEntityEntry that can be used to
refresh an entity with the latest data from the database. The ReloadLodging method
shown in Example 5-23 uses this method.

Example 5-23. Reloading an entity from the database

private static void ReloadLodging()
{

Refreshing an Entity from the Database | 137

 using (var context = new BreakAwayContext())
 {
 var hotel = (from d in context.Lodgings
 where d.Name == "Grand Hotel"
 select d).Single();

 context.Database.ExecuteSqlCommand(
 @"UPDATE dbo.Lodgings
 SET Name = 'Le Grand Hotel'
 WHERE Name = 'Grand Hotel'");

 Console.WriteLine(
 "Name Before Reload: {0}",
 hotel.Name);

 Console.WriteLine(
 "State Before Reload: {0}",
 context.Entry(hotel).State);

 context.Entry(hotel).Reload();

 Console.WriteLine(
 "Name After Reload: {0}",
 hotel.Name);

 Console.WriteLine(
 "State After Reload: {0}",
 context.Entry(hotel).State);
 }
}

The method retrieves the Grand Hotel Lodging from the database and then, for the sake
of demoing this feature, issues a raw SQL query to update its Name in the database. The
code then calls Reload to refresh with the latest data from the database. Notice that the
code prints out the value assigned to the Name property and the state of the entity before
and after calling Reload. Update the Main method to call ReloadLodging and run the
application to see the effect. This is the output in the console:

Name Before Reload: Grand Hotel
State Before Reload: Unchanged
Name After Reload: Le Grand Hotel
State After Reload: Unchanged

You can see that the new value for the Name property was retrieved from the database.

Reload will also overwrite any changes you have in memory. To see this effect, update
the ReloadLodging method to edit the Lodging before reloading. Add the following line
of code immediately after the LINQ query that populates the hotel variable:

hotel.Name = "A New Name";

The code now modifies the Name property of the entity in memory before calling
Reload. This will now be the output of the method:

138 | Chapter 5: Change Tracker API

Name Before Reload: A New Name
State Before Reload: Modified
Name After Reload: Le Grande Hotel
State After Reload: Unchanged

Because we edited the Name property, the entity state is Modified before the Reload. After
the Reload, the entity is now marked as Unchanged, because any changes were overwrit-
ten with data from the database.

Change Tracking Information and Operations for
Multiple Entities
So far you have seen how to get access to the DbEntityEntry for a single entity. Some-
times you might want to get access to entries for all entities or a subset of the entries
tracked by the context. You can do this using the DbContext.ChangeTracker.Entries
method. There is a generic Entries<TEntity> overload that returns a collection of DbEn
tityEntry<TEntity> records for all entities that are of the type specified for TEntity. The
nongeneric overload of Entries does not allow you to specify the type, and it returns a
collection of DbEntityEntry records for all of the tracked entities.

We’ll start by looking at all entries known by the change tracker using the nongeneric
overload using the PrintChangeTrackerEntries method shown in Example 5-24.

Example 5-24. Iterating over all entries from the change tracker

private static void PrintChangeTrackerEntries()
{
 using (var context = new BreakAwayContext())
 {
 var res = (from r in context.Reservations
 where r.Trip.Description == "Trip from the database"
 select r).Single();

 context.Entry(res)
 .Collection(r => r.Payments)
 .Load();

 res.Payments.Add(new Payment { Amount = 245 });

 var entries = context.ChangeTracker.Entries();
 foreach (var entry in entries)
 {
 Console.WriteLine(
 "Entity Type: {0}",
 entry.Entity.GetType());

 Console.WriteLine(
 " - State: {0}",
 entry.State);
 }

Change Tracking Information and Operations for Multiple Entities | 139

 }
}

The code retrieves a Reservation from the database and then uses explicit loading to
bring its related Payments into memory. The code also creates a new Payment and adds
it to the Payments collection of the Reservation. Then we use the Entries method to
retrieve all change tracked entries from the context. As the code iterates over the entries,
it prints out the type of entity and its current state. Calling PrintChangeTrackerEn
tries from the Main method results in this console output:

Entity Type: Model.Payment
 - State: Added
Entity Type: Model.Reservation
 - State: Unchanged
Entity Type: Model.Payment
 - State: Unchanged

The Entries method returns an entry for the Reservation and its existing Payment, as
well as the new Payment we added. You’ll notice that the entries aren’t returned in the
order they began being tracked by the context.

You shouldn’t rely on the order that entries are returned in, as it may
change between versions of Entity Framework.

You can also use LINQ to Objects to query the result of the Entries method. Replace
the line of code in PrintChangeTrackerEntries that populates the entries variable to
use a LINQ query:

var entries = from e in context.ChangeTracker.Entries()
 where e.State == EntityState.Unchanged
 select e;

This updated code uses a LINQ query to select only the entries for entities that are
tracked in the Unchanged state. If you run the application you will see that the informa-
tion for the Added Payment is no longer displayed:

Entity Type: Model.Reservation
 - State: Unchanged
Entity Type: Model.Payment
 - State: Unchanged

Another way to filter is to use the generic overload of Entries to specify which types
you want entries for. Change the Entries call in PrintChangeTrackerEntries again along
with the code, which writes to the console:

var entries = context.ChangeTracker.Entries<Payment>();
foreach (var entry in entries)
{
 Console.WriteLine(
 "Amount: {0}",
 entry.Entity.Amount);

140 | Chapter 5: Change Tracker API

 Console.WriteLine(
 " - State: {0}",
 entry.State);
}

The call now uses the generic overload of Entries to specify that we are only interested
in entries for the Payment type. Thanks to the generic overload, the Entity property on
the returned entries is now strongly typed as Payment. We’ll print out the payment
Amount instead of the type of the entity. If you run the application again, you will see
that only information for the two Payment entities is printed:

Amount: 245
 - State: Added
Amount: 150.00
 - State: Unchanged

The type that you supply to the generic overload of Entries does not need to be a type
that is included in your model. For example, in Chapter 4, you saw the generic overload
used to get all entries for entities that implemented a given interface:

context.ChangeTracker.Entries<IObjectWithState>()

Using the Change Tracker API in Application Scenarios
We’ve covered a lot of functionality in this chapter, so let’s look at a couple of examples
of how that functionality can be used in an application.

You’ll see how you can use the Change Tracker API to resolve concurrency conflicts
and also to log changes that are made during SaveChanges.

Resolving Concurrency Conflicts
A concurrency conflict occurs when you attempt to update a record in the database but
another user has updated that same record since you queried for it. By default, Entity
Framework will always update the properties that you have modified regardless of
whether or not there is a concurrency conflict. However, you can configure your model
so that Entity Framework will throw an exception when a concurrency conflict occurs.
You do this by specifying that a specific property should be used as a concurrency token.

How to configure your model for optimistic concurrency is covered in
detail in Programming Entity Framework, 2e (for EDMX models) and in
Programming Entity Framework: Code First (for models defined using
Code First).

During SaveChanges Entity Framework will check if the value in the corresponding
database column has been updated since the record was bought into memory. A con-
currency exception is thrown if the value in the database has changed.

Using the Change Tracker API in Application Scenarios | 141

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/0636920022220.do

The BAGA model includes two examples of concurrency tokens. The SocialSecurity
Number property on Person is marked with the ConcurrencyCheck attribute. When up-
dating an existing Person, Entity Framework will check that the SSN allocated to the
Person when the record was retrieved from the database remains the same in the data-
base. If another user has changed the SSN, SaveChanges will fail and a DbUpdateConcur
rencyException will be thrown. The Trip class includes a RowVersion property that is
marked with the Timestamp attribute. Timestamp properties are treated the same as
other concurrency check properties, except the database will automatically generate a
new value for this property whenever any column in the record is updated. This means
that when saving changes to an existing Trip, a concurrency exception will be thrown
if another user has updated any properties since the Trip was retrieved from the data-
base.

Let’s write a method that will cause a DbUpdateConcurrencyException to be thrown when
trying to save a change to an existing Trip. When the exception is thrown, we’ll ask the
end user of our application to tell us how they want to resolve the conflict. Go ahead
and add the ConcurrencyDemo method shown in Example 5-25.

Example 5-25. Causing a concurrency exception.

private static void ConcurrencyDemo()
{
 using (var context = new BreakAwayContext())
 {
 var trip = (from t in context.Trips.Include(t => t.Destination)
 where t.Description == "Trip from the database"
 select t).Single();

 trip.Description = "Getaway in Vermont";

 context.Database.ExecuteSqlCommand(
 @"UPDATE dbo.Trips
 SET CostUSD = 400
 WHERE Description = 'Trip from the database'");

 SaveWithConcurrencyResolution(context);
 }
}

private static void SaveWithConcurrencyResolution(
 BreakAwayContext context)
{
 try
 {
 context.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 ResolveConcurrencyConflicts(ex);
 SaveWithConcurrencyResolution(context);

142 | Chapter 5: Change Tracker API

 }
}

The example retrieves an existing Trip from the database and changes its Description
property. It then issues a raw SQL query to update the CostUSD column of the same
Trip in the database. Executing this statement will cause the database to generate a new
value for the RowVersion column in the database. Issuing a raw SQL statement is not a
recommended practice and is just used to simulate another user changing data. Next,
the code calls the SaveWithConcurrencyResolution helper method. This helper method
calls SaveChanges, which will issue an UPDATE command to apply our changes to the
Trip. As part of the update process, Entity Framework will check if the RowVersion
column in the database still has the same value as it did when we queried for the
Trip. Because of change we made with ExecuteSqlCommand, the RowVersion will have
changed and a DbUpdateConcurrencyException will be thrown. The example code
catches this exception and attempts to resolve the conflict with a custom method,
ResolveConcurrencyConflict. Once the conflict is resolved, the code makes a recursive
call to SaveWithConcurrencyResolution. The recursive call is used to ensure that we
handle any further concurrency conflicts that occur after the first conflict is resolved.
Example 5-26 shows the ResolveConcurrencyConflict method.

Example 5-26. Resolving a concurrency conflict

private static void ResolveConcurrencyConflicts(
 DbUpdateConcurrencyException ex)
{
 foreach (var entry in ex.Entries)
 {
 Console.WriteLine(
 "Concurrency conflict found for {0}",
 entry.Entity.GetType());

 Console.WriteLine("\nYou are trying to save the following values:");
 PrintPropertyValues(entry.CurrentValues);

 Console.WriteLine("\nThe values before you started editing were:");
 PrintPropertyValues(entry.OriginalValues);

 var databaseValues = entry.GetDatabaseValues();
 Console.WriteLine("\nAnother user has saved the following values:");
 PrintPropertyValues(databaseValues);

 Console.Write(
 "[S]ave your values, [D]iscard you changes or [M]erge?");

 var action = Console.ReadKey().KeyChar.ToString().ToUpper();
 switch (action)
 {
 case "S":
 entry.OriginalValues.SetValues(databaseValues);
 break;

Using the Change Tracker API in Application Scenarios | 143

 case "D":
 entry.Reload();
 break;

 case "M":
 var mergedValues = MergeValues(
 entry.OriginalValues,
 entry.CurrentValues,
 databaseValues);

 entry.OriginalValues.SetValues(databaseValues);
 entry.CurrentValues.SetValues(mergedValues);
 break;

 default:
 throw new ArgumentException("Invalid option");
 }
 }
}

Fortunately, the DbUpdateConcurrencyException gives you access to everything you need
to know about the conflict. The exception’s Entries property gives you the DbEntityEn
try for each of the entities that had a concurrency conflict.

Because Entity Framework stops at the first exception, the Entries
property on DbUpdateConcurrencyException will almost always contain
just a single entry. If you have a relationship that does not expose a
foreign key property on your entity, Entity Framework treats relation-
ships as separate from the entity; these relationships are known as in-
dependent associations. SaveChanges also treats the relationships as sep-
arate from the entity. If a concurrency conflict occurs when saving the
relationship, the resulting exception will include the entry for the entity
on each end of the relationship. This is yet one more good reason to
always include foreign key properties in your entities.

The ResolveConcurrencyConflicts method iterates through each of the entries in the
exception to resolve the conflict. It lets the user know what type of entity the conflict
occurred in by checking the type of the entity in the Entity property. Next the user is
shown the current, original, and database values using the PrintPropertyValues method
you added back in Example 5-10. The code then gives the user three options for re-
solving the conflict:

“Save your values”
If the changes that another user has made don’t make sense given the changes the
current user is making, the user can proceed with saving his or her values to the
database. This option will overwrite any changes that were made by other users,
even if those changes were to a property that the user is not trying to update. For

144 | Chapter 5: Change Tracker API

example, the drop to $400 that the other user applied might not be applicable now
that the Trip is visiting beautiful Vermont.

If the user selects this option, the original values are set to the database values. This
updates the RowVersion property with the new value from the database, so that the
next save will succeed. Setting the original values will also mark any properties that
have a different current value as Modified. In our example, only the Description
property was modified. However, the current value for CostUSD is still the value
retrieved from the database ($1000), but the database value has been updated
($400). Therefore the CostUSD property will get marked as Modified—to be set back
to the value when originally queried ($1000).

“Discard your changes”
If the user’s changes no longer make sense, the user can discard his or her changes
and accept the new values that the other user has saved. For example, the user
might decide that given the price reduction the other user applied, it’s better to
leave the Trip Description as it was.

The DbEntityEntry.Reload method makes this option very simple to implement.
Reload will query the database again for the database values. If you wanted to avoid
this additional query, you could also set the original and current values to the
database values. Remember that Entity Framework isn’t smart enough to move
properties back out of the Modified state if you change the current and original
value to the same thing. Therefore, you would also need to set the State property
on the entry back to Unchanged. Calling Reload has one small advantage; it will
always pick up the very latest version of the entity at the time the user decides to
discard his or her changes. If another user has modified the affected entity again,
after we detected the conflict and queried the database values, then Reload will pick
up this latest set of changes.

“Merge”
The user may decide that both sets of changes make sense and they should be
merged. The user’s change to the Description may be completely unrelated to the
drop in price. The price should remain at $400 but the change to Description
should also be applied.

We’ll use a custom MergeValues method, which we are about to add, to calculate
the correct values to save. These merged values are then set to the current values.
The database values are set to the original values to ensure the RowVersion property
has the new value from the database, so that the next save will succeed.

The final piece of code to add is the MergeValues method that will be used when the
user decides to merge his or her changes with the changes another user has applied
(Example 5-27).

Example 5-27. The MergeValues method

private static DbPropertyValues MergeValues(
 DbPropertyValues original,

Using the Change Tracker API in Application Scenarios | 145

 DbPropertyValues current,
 DbPropertyValues database)
{
 var result = original.Clone();

 foreach (var propertyName in original.PropertyNames)
 {
 if (original[propertyName] is DbPropertyValues)
 {
 var mergedComplexValues = MergeValues(
 (DbPropertyValues)original[propertyName],
 (DbPropertyValues)current[propertyName],
 (DbPropertyValues)database[propertyName]);

 ((DbPropertyValues)result[propertyName])
 .SetValues(mergedComplexValues);
 }
 else
 {
 if (!object.Equals(
 current[propertyName],
 original[propertyName]))
 {
 result[propertyName] = current[propertyName];
 }
 else if (!object.Equals(
 database[propertyName],
 original[propertyName]))
 {
 result[propertyName] = database[propertyName];
 }
 }
 }

 return result;
}

MergeValues begins by using the Clone method to create a set of values that will store
the merged result. We are cloning from the original values, but you could clone from
any of the three sets of values (current, original, or database). Note that the code is
going to assume that the three sets of supplied values contain exactly the same prop-
erties—in our case, we know this is true because they come from the same entity. The
method then loops through each property to perform the merge.

If the property value is a DbPropertyValues, we know it represents a complex type. For
complex types, the code uses a recursive call to merge the values in the complex type.
The merged values for the complex type are then copied into the result using the
SetValues method.

For scalar properties, the code compares the current value to the original value to see
if the current user has edited the value. If the current user has edited the value, the
current value is copied to the merged result. If the current user hasn’t edited the value
but another user has changed it in the database, the database value is copied to the

146 | Chapter 5: Change Tracker API

result. If nobody has edited the value, all three value collections agree and the value
that was originally cloned can be left in the merged result.

If you want to test out the code, update the Main method to call ConcurrencyDemo and
run the application.

Logging During Save Changes
The change tracking information that Entity Framework maintains is also useful if you
want to log the changes that a user is making during SaveChanges. We’ll take a look at
an example that writes the changes to the Console, but the techniques could be used
for any number of logging or auditing solutions.

The logging output could get annoying if we leave it on for every example in this book,
so we are going to introduce a flag that allows us to turn it on when we want to use it.
Add the following property to your BreakAwayContext class:

public bool LogChangesDuringSave { get; set; }

You’ll need some helper methods to print out the required logging information. Add
the two methods shown in Example 5-28 to your BreakAwayContext class. You’ll need
to add a using statement for the System, System.Data, and System.Linq namespaces.

Example 5-28. Helper methods for logging

private void PrintPropertyValues(
 DbPropertyValues values,
 IEnumerable<string> propertiesToPrint,
 int indent = 1)
{
 foreach (var propertyName in propertiesToPrint)
 {
 var value = values[propertyName];
 if (value is DbPropertyValues)
 {
 Console.WriteLine(
 "{0}- Complex Property: {1}",
 string.Empty.PadLeft(indent),
 propertyName);

 var complexPropertyValues = (DbPropertyValues)value;
 PrintPropertyValues(
 complexPropertyValues,
 complexPropertyValues.PropertyNames,
 indent + 1);
 }
 else
 {
 Console.WriteLine(
 "{0}- {1}: {2}",
 string.Empty.PadLeft(indent),
 propertyName,
 values[propertyName]);

Using the Change Tracker API in Application Scenarios | 147

 }
 }
}

private IEnumerable<string> GetKeyPropertyNames(object entity)
{
 var objectContext = ((IObjectContextAdapter)this).ObjectContext;

 return objectContext
 .ObjectStateManager
 .GetObjectStateEntry(entity)
 .EntityKey
 .EntityKeyValues
 .Select(k => k.Key);
}

The PrintPropertyValues method is almost the same as the PrintPropertyValues you
added to the Program class back in Example 5-10. The only difference is that this method
accepts the names of the properties that should be printed, rather than printing all
properties. As the name suggests, the GetKeyPropertyNames method will give you the
names of the properties that make up the key of an entity. There is no way to get this
information from the DbContext API, so the code uses the IObjectContextAdapter to
get the underlying ObjectContext. You’ll learn more about IObjectContextAdapter in
Chapter 8. The code gets the key property names by getting the EntityKey for the entity
from the ObjectStateManager. ObjectStateManager is the ObjectContext equivalent to
the DbContext.ChangeTracker.

With the helper methods in place, let’s write the logging code. The easiest way to run
additional logic during the save process is to override the SaveChanges method on your
derived context. The SaveChanges method on DbContext is virtual (Overrideable in
Visual Basic) for exactly this purpose. Add the overridden SaveChanges method shown
in Example 5-29 to your BreakAwayContext class.

Example 5-29. Overriding SaveChanges to perform logging

public override int SaveChanges()
{
 if (LogChangesDuringSave)
 {
 var entries = from e in this.ChangeTracker.Entries()
 where e.State != EntityState.Unchanged
 select e;

 foreach (var entry in entries)
 {
 switch (entry.State)
 {
 case EntityState.Added:
 Console.WriteLine(
 "Adding a {0}",
 entry.Entity.GetType());

148 | Chapter 5: Change Tracker API

 PrintPropertyValues(
 entry.CurrentValues,
 entry.CurrentValues.PropertyNames);
 break;

 case EntityState.Deleted:
 Console.WriteLine(
 "Deleting a {0}",
 entry.Entity.GetType());

 PrintPropertyValues(
 entry.OriginalValues,
 GetKeyPropertyNames(entry.Entity));
 break;

 case EntityState.Modified:
 Console.WriteLine(
 "Modifying a {0}",
 entry.Entity.GetType());

 var modifiedPropertyNames =
 from n in entry.CurrentValues.PropertyNames
 where entry.Property(n).IsModified
 select n;

 PrintPropertyValues(
 entry.CurrentValues,
 GetKeyPropertyNames(entry.Entity)
 .Concat(modifiedPropertyNames));
 break;
 }
 }
 }

 return base.SaveChanges();
}

The code checks if the LogChangesDuringSave property is set to true—by default the
property is set to false. If logging is enabled, the logging logic is executed. The code
then locates the entries for all entities that are going to be saved—that’s all entities that
aren’t in the Unchanged state. For each of these entities, the code identifies the change
being performed and the type of entity it is being performed on. Then it prints out the
values of some of the properties of the entity. The set of properties that gets printed
depends on the type of operation being performed:

• For Added entities, the entire set of current values that are going to be inserted are
printed.

• For Deleted entities, just the key properties are printed out, since this is enough
information to identify the record being deleted.

• For Modified entities, the key properties and the properties that are being updated
are printed out.

Using the Change Tracker API in Application Scenarios | 149

If you want to test the code out, add the TestSaveLogging method shown in
Example 5-30.

Example 5-30. Method to test out logging during save

private static void TestSaveLogging()
{
 using (var context = new BreakAwayContext())
 {
 var canyon = (from d in context.Destinations
 where d.Name == "Grand Canyon"
 select d).Single();

 context.Entry(canyon)
 .Collection(d => d.Lodgings)
 .Load();

 canyon.TravelWarnings = "Take a hat!";

 context.Lodgings.Remove(canyon.Lodgings.First());

 context.Destinations.Add(new Destination { Name = "Seattle, WA" });

 context.LogChangesDuringSave = true;
 context.SaveChanges();
 }
}

The code retrieves the Grand Canyon Destination and its related Lodgings from the
database. The Grand Canyon Destination is then modified, one of its Lodgings is
marked for deletion, and a new Destination is added to the context. The code then
enables the logging you just added and calls SaveChanges. Update the Main method to
call TestSaveLogging and run the application to see the log information in the console:

Adding a new Model.Destination
 - DestinationId: 0
 - Name: Seattle, WA
 - Country:
 - Description:
 - Photo:
 - TravelWarnings:
 - ClimateInfo:
Modifiying an existing
System.Data.Entity.DynamicProxies.Destination_C0312EA59B82EAC711175D8C037E196179
A49BDE8FF3F0D6830DDB66725C841B
 - DestinationId: 1
 - TravelWarnings: Take a hat!
Deleting an existing Model.Lodging
 - LodgingId: 1

As expected, logging information is printed out for the three entities that are affected
during SaveChanges. You’ll notice that the Lodging we modified has a strange type
name—it’s not Model.Destination. This is because we enabled Destination as a change

150 | Chapter 5: Change Tracker API

tracking proxy. The type name displayed is the type that Entity Framework creates at
runtime that derives from the Model.Destination type.

Using the Change Tracker API in Application Scenarios | 151

CHAPTER 6

Validating with the Validation API

Developers often spend a lot of time writing validation logic in their applications. Many
of the rules for validation are built into their classes, but .NET can’t magically verify
those rules. Code First allows you to apply some rules directly to properties using Data
Annotations or the Fluent API. For example, you can specify the maximum length of
a string or the fact that a particular property is required (i.e., can’t be null).

Another type of rule that your model describes is relationship constraints. For example,
in our model, a Lodging is required to have a related Destination. Entity Framework
has always checked that relationship constraint rules are met before it will push inserts,
updates, or deletes to the database.

The DbContext adds to this existing validation with the new Validation API that is as-
sociated with the DbContext. Using the Validation API, the DbContext can automatically
(or on demand) validate all of the rules that you have defined using mechanisms that
the validation will recognize. The API takes advantage of features that already exist
in .NET 4—ValidationAttributes and the IValidatableObject. This integration is a
great benefit to developers. Not only does it mean that you can leverage existing ex-
perience if you’ve worked with the features already, but it also means that Entity
Framework validation can flow into other tools that use this class or interface.

Validation in the data layer is an important element of data-focused applications. While
you may have client-side or business layer validations, you may desire or prefer to have
one last bastion of validation before data is pushed into the database. In scenarios where
client-side validation is performed in a web application dependent on JavaScript being
enabled in a browser, data layer validation plays an important role when the end user
has disabled JavaScript.

In this chapter, you’ll learn how to take advantage of the built-in validation provided
by the DbContext and Validation API using its default behaviors.

153

Defining and Triggering Validation: An Overview
The Validation API checks rules that you can apply in a number of ways:

• Property attribute rules that you can specify using Data Annotations or the fluent
API.

• Custom validation attributes that can be defined for properties or types.

• Rules defined in the Validate method of any model class that implements IValida
tableObject. This interface is part of .NET 4, so it’s great to see that the DbCon
text was designed to take advantage of this.

• Relationship constraints explicitly defined in the model.

• Additionally, you can inject validations into the validation pipeline.

There are a number of ways to cause the DbContext to execute the validations:

• By default, validation will be performed on all tracked Added and Modified objects
when you call SaveChanges.

• The DbEntityEntry.GetValidationResult method will perform validation on a sin-
gle object.

• DbEntityEntry has a path for validating an individual property.

• DbContext.GetValidationErrors will iterate through each Added and Modified object
being tracked by the DbContext and validate each object.

In the next chapter you’ll learn how to override ValidateEntity as well
as change the default that validates only Added or Modified objects.

At the root of all of these validation methods is the DbEntityEntry.GetValidationRe
sult method, which validates the rules defined in property attributes and IValidata
bleObjects. GetValidationErrors calls ValidateEntity on each [Added or Modified]
tracked object, which in turn calls GetValidationResult. SaveChanges calls GetValida
tionErrors, which means that the validation occurs automatically whenever Save
Changes is called. Figure 6-1 shows the waterfall path and different entry points to
leverage the Validation API.

The “it just works” approach of having validation implicitly called by SaveChanges may
be all that some developers need or are interested in. But rather than start with the
appearance of magic, we’ll use a bottom-up approach to show you the explicit valida-
tion functionality so that you can use that to have more control over how and when
validation occurs.

154 | Chapter 6: Validating with the Validation API

Figure 6-1. Three ways to execute GetValidationResult from your code

Validating a Single Object on Demand with
GetValidationResult
Our sample classes already have some attributes that will be checked by the Validation
API. For example, in the Destination class, you should already have a MaxLength an-
notation on the Description property shown here:

[MaxLength(500)]
public string Description { get; set; }

Refer to the listing for Destination shown in Example 2-1.

Testing this rule won’t be very easy since breaking it would mean adding a string that
is greater than 500 characters. I don’t feel like typing that much. Instead, I’ll add a new
MaxLength annotation to another property—the LastName property in the Person class:

[MaxLength(10)]
public string LastName { get; set; }

Now let’s see what happens when we set the length to a string with more than ten
characters. GetValidationResult allows you to explicitly validate a single entity. It re-
turns a ValidationResult type that contains three important members. We’ll focus on
just one of those for now, the IsValid property, which is a Boolean that indicates if the
instance passed its validation rules. Let’s use that to validate a Person instance. The

Validating a Single Object on Demand with GetValidationResult | 155

ValidateNewPerson method in Example 6-1 shows calling the GetValidationRe
sult.IsValid method.

Example 6-1. Method to test validation of LastName.

private static void ValidateNewPerson()
{
 var person = new Person
 {
 FirstName = "Julie",
 LastName = "Lerman",
 Photo = new PersonPhoto { Photo = new Byte[] { 0 } }
 };

using (var context = new BreakAwayContext())
{
 if (context.Entry(person).GetValidationResult().IsValid)
 {
 Console.WriteLine("Person is Valid");
 }
 else
 {
 Console.WriteLine("Person is Invalid");
 }
}

}

If you run this method from the Main method, you will see the message “Person is Valid”
in the console windows.

The GetValidationResult method calls the necessary logic to validate any Validatio
nAttributes defined on the object’s properties. It then looks to see if the type has a
CustomValidationAttribute or implements the IValidatableObject interface and if it
does, calls its Validate method. You’ll see this in action later in this chapter.

While we strongly recommend against calling data access code directly
in the user interface, these examples are solely for the purpose of dem-
onstrating the Validation API features. We are not suggesting that you
use the DbContext for performing client-side validation.

Now change the code so that it sets LastName to “Lerman-Flynn” instead of Lerman.
Run the app again and you will see “Person is Invalid” in the console. The Validation
API of the DbContext was able to detect that a rule was broken. This is just a high-level
look at the method. Let’s explore more ways to define rules before we dig further into
the result of the validation.

156 | Chapter 6: Validating with the Validation API

What About Lazy Loading During Validation?
If you have lazy loading enabled on your context, you don’t need to worry about adverse
effects of lazy loading during validation; GetValidationResult will disable lazy loading
prior to executing the validations. Then, when it has completed its work, it will restore
the DbContext.Configure.LazyLoadingEnabled Boolean property to its original state.

Specifying Property Rules with ValidationAttribute Data
Annotations
The MaxLength Data Annotation is exposed via the MaxLengthAttribute class. MaxLength
Attribute is one of a group of attributes that inherit from a class called System.Data.Anno
tations.ValidationAttribute. GetValidationResult checked MaxLength because it’s de-
signed to check any rule that is applied using a ValidationAttribute.

The Validation API will check any rule that is applied using a ValidationAttribute.

Following is a list of the attribute classes that derive from ValidationAttribute along
with the annotation used to decorate a class property:

DataTypeAttribute
[DataType(DataType enum)]

RangeAttribute
[Range (low value, high value, error message string)]

RegularExpressionAttribute
[RegularExpression(@”expression”)]

RequiredAttribute
[Required]

StringLengthAttribute
[StringLength(max length value,

MinimumLength=min length value)]

CustomValidationAttribute
This attribute can be applied to a type as well as to a property.

For the sake of describing database schema mappings, the Entity Framework team
added MaxLengthAttribute to the namespace and paired it with a new MinLengthAttri
bute. They both derive from ValidationAttribute, so these too will be checked by the
Validation API.

Both MaxLength and Required are not just ways to define a class property but they are
also used to describe a database column to which the properties map. Technically, these
are referred to as facets. Therefore, in Entity Framework, these two facets play dual
rules—they help Code First understand what the mapped database columns look like

Specifying Property Rules with ValidationAttribute Data Annotations | 157

and they also participate in the class-level validation. An added benefit is that since you
can also define these two facets—MaxLength and Required—with the Fluent API, Entity
Framework will take advantage of the relevant ValidationAttribute types under the
covers to make sure they get validated as if they had been configured with the Data
Annotations.

Entity Framework has been taught to look for the StringLength annotation and use its
MaximumLength parameter as a database column facet as well.

Validating Facets Configured with the Fluent API
If you have used the Fluent API to configure your Code First model, you may be familiar
with specifying attributes fluently instead of using Data Annotations.

The Programming Entity Framework: Code First book covers fluent API
in detail.

Two of the Data Annotations that inherit from ValidationAttribute—MaxLength and
Required—have Fluent API counterparts. This is due to the fact that MaxLength and
Required are attributes that impact the model’s comprehension of the database schema
and therefore impact how Entity Framework maps the classes to the database.

The Validation API will check these two rules if you configure them with the Fluent
API. For example, you could replace the [MaxLength] annotation on Person.LastName
with this code added into the BreakAwayContext.OnModelCreating method:

modelBuilder.Entity<Person>()
 .Property(p => p.LastName).HasMaxLength(10)

If you return to the ValidateNewPerson method from Example 6-1, ensure the Last
Name property is set to “Lerman-Flynn,” and then rerun the method, it will result in a
message from the console application: “Person is Invalid.”

Underneath the covers, Entity Framework is using the StringLengthAttribute (or in
the case of a Required scalar, the RequiredAttribute) to validate the HasMaxLength facet
of Person.FirstName. Although the example only checks the IsValid property, the de-
tails of the error are returned by GetValidationResult, and you’ll see how to read these
shortly.

Validating Unmapped or “Transient” Properties
It is possible to have properties in your class that do not map to the database. By con-
vention, properties that do not have both a setter and a getter will not be part of the
model. These are also known as transient properties. You can also configure a property

158 | Chapter 6: Validating with the Validation API

http://shop.oreilly.com/product/0636920022220.do

to be unmapped using the NotMapped data annotation or the Ignore fluent method. By
default, unmapped properties will not get validated.

However, if you have applied a ValidationAttribute to a transient property (as long as
that property is in a class that is part of the model), Entity Framework will validate
those rules as well.

Validating Complex Types
Entity Framework’s conceptual model supports the use of complex types, also known
as value objects. You can configure a complex type both in the Entity Data Model
designer as well as with Code First. It is also possible (and feasible) to apply attributes
to the properties of complex types. Entity Framework’s GetValidationResult will val-
idate attributes placed on complex type properties.

Using Data Annotations with an EDMX Model
It’s easy to apply data annotations to your class and then use that class with Entity
Framework thanks to Code First, but what if you are using the Entity Data Model
designer to create your Database First or Code First model and then relying on code
generation to create your classes? There’s no opportunity to apply Data Annotations
to your properties. You might modify the T4 template to apply Data Annotations that
follow very common patterns in your classes, but typically this is not the appropriate
mechanism for applying property-by-property attributes.

The generated classes are partial classes, which does give you the ability to add more
logic to the classes with additional partial classes. However, you cannot add attributes
in one partial class to properties that are declared in another partial class.

But all is not lost. There is a feature in .NET called an associated metadata class that
allows you to add metadata to classes in an external file. These classes are commonly
referred to as “buddy classes,” although we are more fond of the term “ugly buddy
classes” because they feel a little kludgy. However ugly, they are a great way to apply
data annotations to generated code. So setting aside illusions of grandeur about our
code, let’s take a look at a simple example of an associated metadata class.

David Ebbo has an interesting blog post on other ways to use the
Metadata attribute: http://blogs.msdn.com/b/davidebb/archive/2009/07/
24/using-an-associated-metadata-class-outside-dynamic-data.aspx

If you are using the DbContext Generator template to generate classes from an EDMX,
the Person class will be declared as a partial class:

 public partial class Person

Specifying Property Rules with ValidationAttribute Data Annotations | 159

http://blogs.msdn.com/b/davidebb/archive/2009/07/24/using-an-associated-metadata-class-outside-dynamic-data.aspx
http://blogs.msdn.com/b/davidebb/archive/2009/07/24/using-an-associated-metadata-class-outside-dynamic-data.aspx

and the scalar properties will be simple. Here is what the FirstName property will look
like:

public string FirstName { get; set; }

You can create a new class where you can mimic the property declaration and apply
the attribute:

class Person_Metadata {
 [MinLength(10)]
 public string FirstName { get; set; }
}

Then you need to let the Person class know to use the Person_Metadata class for the sole
purpose of reading the attributes.

You do this by applying the Metadata attribute to the Person class:

[MetadataType(typeof(Person_Metadata))]
 public partial class Person

If you want to try this out in the Code First sample you’ve been working
with, be sure to remove or comment out the MinLength annotation on
the FirstName property in the Person class.

Inspecting Validation Result Details
Notice that GetValidationResult doesn’t simply throw an exception if the validation
fails. Instead, it returns a System.Data.Entity.Validation.DbEntityValidationResult
whether the rule is met or broken, setting IsValid to the appropriate value and pro-
viding detailed information on any broken rules.

DbEntityValidationResult also exposes a ValidationErrors property, which contains
a collection of more detailed errors in the form of DbValidationError types. One final
property of DbEntityValidationResult is a pointer. In this scenario, it seems redundant
to have the Entry property when we started with the Entry to get the results. However,
when one of the higher-level methods calls GetValidationResult on your behalf, you
may not know which Entry is currently being validated; in that scenario, you’ll probably
be grateful for the Entry property.

Figure 6-2 shows getting to the Entry, IsValid, and ValidationErrors properties in the
debugger.

160 | Chapter 6: Validating with the Validation API

Figure 6-2. Entry, IsValid and ValidationErrors a validation result

Inspecting Individual Validation Errors
Looking back at Figure 6-2, you’ll see that when we set the LastName to Lerman-Flynn,
which exceeded the MaxLength(10) specification, the result’s ValidationErrors collec-
tion contains a single DbValidationError. DbValidationError exposes two properties,
the name of the property and the actual error message.

Where did the error message come from? The internal validation logic has a formula
that composes a message using the property name and the annotation that failed. This
is default behavior.

You can specify your own error message in any ValidationAttribute. For example, if
you were writing error messages for an application used by surfers, you might want to
specify one like this:

[MaxLength(10,
 ErrorMessage= "Dude! Last name is too long! 10 is max.")]
public string LastName { get; set; }

Figure 6-3 shows the new ErrorMessage returned in a DbEntityValidationError.

Figure 6-3. ErrorMessage and PropertyName of a DbValidationError

Because the ValidationAttribute type is part of .NET 4 and not specific
to Entity Framework, we won’t spend a lot of time going into great detail
about how to configure the ValidationAttribute types. Other .NET
frameworks, such as Managed Extensibility Framework (MEF),
ASP.NET MVC, and ASP.NET Dynamic Data, use this functionality,
and there is a lot of information available. To start, here is the MSDN
Topic on the ValidationAttribute class: http://msdn.microsoft.com/en
-us/library/system.componentmodel.dataannotations.ValidationAttri
bute.aspx.

Inspecting Validation Result Details | 161

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.ValidationAttribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.ValidationAttribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.ValidationAttribute.aspx

As mentioned in the earlier note, MEF, MVC, and Dynamic Data are able to leverage
the ValidationAttribute. Although the ValidateNewPerson method demonstrated using
DbContext to perform the validation, it is also possible to validate ValidationAttri
butes directly using its Validate method. This is a great benefit for client-side develop-
ment. However, since the focus of this book is DbContext, we’ll focus on how the
DbContext works with the ValidationAttributes at the data layer. Remember that
DbContext checks more than just ValidationAttributes, so you can benefit from these
as well as other rules all at once on the server side with DbContext.

If you are calling GetValidationResults directly, you will have to write your own logic
to interact with the DbEntityValidationResult, read the errors, and handle them,
whether for logging or returning to the UI to present to the user.

In the case of the validation detected in ValidateNewPerson, there is a single error inside
the ValidationErrors property. You could get to it by requesting that first error. For
example:

var result = context.Entry(person).GetValidationResult();
if (!result.IsValid)
{
 Console.WriteLine(
 result.ValidationErrors.First().ErrorMessage);
}

That will work if you only expect or only care about the first error. However, if you
have numerous ValidationAttributes defined on a type and more than one is broken,
there will be more than one DbEntityValidationError in the ValidationErrors property.

What if the Person class also had a rule that the FirstName property must be at least
three characters?

 [MinLength(3)]
 public string FirstName { get; set; }

If you were to update the ValidateNewPerson method from Example 6-1 to insert just
the letter J as the FirstName, the validation will see two errors, as shown in Figure 6-4.

Figure 6-4. Two errors inside of the result’s ValidationErrors property

It might be wiser, therefore, to iterate through the errors. You’ll need to add a using
statement for the System.Data.Entity.Validation namespace:

162 | Chapter 6: Validating with the Validation API

foreach (DbValidationError error in result.ValidationErrors)
{
 Console.WriteLine(error.ErrorMessage);
}

Simplifying the Console Test Methods
Rather than rewrite the validation result inspection in each method, we’ve encapsulated
that code into a standard method, ConsoleValidateResults, which you’ll see going for-
ward. Here’s that code if you want to use it, too:

private static void ConsoleValidationResults(object entity)
{
 using (var context = new BreakAwayContext())
 {
 var result = context.Entry(entity).GetValidationResult();
 foreach (DbValidationError error in result.ValidationErrors)
 {
 Console.WriteLine(error.ErrorMessage);
 }
 }
}

Exploring More ValidationAttributes
So far we’ve looked at the MaxLength property, which is not only a ValidationAttri
bute, but is an attribute that’s in the EntityFramework assembly. Let’s look at an at-
tribute that is not specific to Entity Framework, the RegularExpressionAttribute, and
verify that the DbContext.GetValidationResult will see that as well.

Following is a RegularExpression applied to the Destination.Country property. This
expression specifies that the string can be up to 40 characters and will accept uppercase
and lowercase letters:

 [RegularExpression(@"^[a-zA-Z''-'\s]{1,40}$")]
 public string Country { get; set; }

The ValidateDestinationRegEx method in Example 6-2 creates a new Destination and
asks the DbContext to validate the instance.

You’ll notice that we’ve also refactored the method to move the call to
GetValidationResult and Console.WriteLine into a separate method
called ConsoleValidationResults. See the sidebar “Simplifying the Con-
sole Test Methods” on page 163 to see this new method.

Example 6-2. The ValidateDestination method

public static void ValidateDestination()
{
 ConsoleValidationResults(

Exploring More ValidationAttributes | 163

 new Destination
 {
 Name = "New York City",
 Country = "USA",
 Description = "Big city"
 });
}

With the Country set to “USA,” the property is valid and no errors are displayed. How-
ever, if you change the Country value to “U.S.A.,” GetValidationResult detects an error
because the periods in between the letters do not follow the rule defined by the regular
expression. Be aware that the default error message only reports that the value does not
match the expression; it does not tell you which part of the expression was broken:

The field Country must match the regular expression '^[a-zA-Z''-'\s]{1,40}$'.

This is not a problem with how Entity Framework handles the validation. It is simply
how the RegularExpressionAttribute behaves by default. You can learn more about
controlling this error message in the MSDN documentation referenced above.

Using CustomValidationAttributes
You can build custom validation logic that can be applied to a property using a Custom
ValidationAttribute. These too will get checked during Entity Framework validation.
Example 6-3 shows an example of a static class, BusinessValidations, which contains
a single validation, DescriptionRules, to be used on various description properties in
the model. The rule checks for exclamation points and a few emoticons to ensure that
trip descriptions or other descriptions don’t read as though they were text messages! ☺

Example 6-3. Static custom validations to be used by different classes

using System.ComponentModel.DataAnnotations;

namespace Model
{
 public static class BusinessValidations
 {
 public static ValidationResult DescriptionRules(string value)
 {
 var errors = new System.Text.StringBuilder();
 if (value != null)
 {
 var description = value as string;

 if (description.Contains("!"))
 {
 errors.AppendLine("Description should not contain '!'.");
 }
 if (description.Contains(":)") ||
 description.Contains(":("))
 {
 errors.AppendLine(

164 | Chapter 6: Validating with the Validation API

 "Description should not contain emoticons.");
 }
 }
 if (errors.Length > 0)
 return new ValidationResult(errors.ToString());
 else
 return ValidationResult.Success;
 }
 }
}

The ValidationResult used here is a System.ComponentModel.DataAnno
tations.ValidationResult, not to be confused with the System.Win
dows.Controls.ValidationResult.

You can apply the validation to properties using the CustomValidationAttribute, as
shown in Example 6-4, where we’ve added the annotation to the Destination.Descrip
tion property (which already has a MaxLength annotation). The attribute requires that
you specify the class where the validation method exists and then the name of the
method as a string.

Example 6-4. Applying the new DescriptionRules validation to a property

[MaxLength(500)]
[CustomValidation(typeof(BusinessValidations), "DescriptionRules")]
public string Description { get; set; }

If you’d like to test out the validation, you can modify the ValidateDestination method
to insert some of the undesirable characters into the Description string, as we’ve done
in Example 6-5.

Example 6-5. Creating a Destination that breaks multiple validation rules

public static void ValidateDestination()
{
 ConsoleValidationResults(
 new Destination {
 Name = "New York City",
 Country = "U.S.A",
 Description = "Big city! :) "
 });
}

Executing the method will cause the validation to return the following list of errors:

The field Country must match the regular expression '^[a-zA-Z''-'\s]{1,40}$'.
Description should not contain '!'.
Description should not contain emoticons.

Both the RegularExpression validation on the Country property and the Description
Rules custom validation on Description are reported.

Exploring More ValidationAttributes | 165

Validating Individual Properties on Demand
In addition to providing the GetValidationResults method, DbEntityEntry lets you drill
into individual properties, as you’ve already seen in Chapter 5:

context.Entry(trip).Property(t => t.Description);

This returns a DbPropertyEntry representing the Description property.

The DbPropertyEntry class has a method for explicitly validating that particular entry—
GetValidationErrors—which will return an ICollection<DbValidationError>. This is
the same DbValidationError class we’ve been exploring already in this chapter.

Example 6-6 displays a new method, ValidatePropertyOnDemand, which shows how to
validate a property using DbPropertyEntry.GetValidationErrors. You’ll first need to
apply the DescriptionRules custom attribute to the Trip.Description property, just as
you did for Destination.Description in Example 6-4.

Example 6-6. Validating a property

private static void ValidatePropertyOnDemand()
{
 var trip=new Trip
 {
 EndDate = DateTime.Now,
 StartDate = DateTime.Now,
 CostUSD = 500.00M,
 Description = "Hope you won't be freezing :)"
 };
 using (var context = new BreakAwayContext())
 {
 var errors = context.Entry(trip)
 .Property(t => t.Description)
 .GetValidationErrors();
 Console.WriteLine("# Errors from Description validation: {0}",
 errors.Count());
 }
}

The method creates a new Trip that has an emoticon in the Description. Based on the
custom validation rule you created earlier in this chapter, the emoticon is invalid.

If you were to call this method from the Main method in the console application, the
console window would report that there is one error in the Description. Keep this
method around, because we’ll look at it again in the next section.

Specifying Type-Level Validation Rules
While there are more ways to trigger validations, let’s stick with the GetValidationRe
sult method while we look at other ways to provide rules that the Validation API will
validate. So far you’ve seen how to apply validation rules on individual properties. You

166 | Chapter 6: Validating with the Validation API

can also define rules for a type that can take multiple properties into account. Two
ways to create type-level validation that will be checked by the Entity Framework Val-
idation API are by having your type implement the IValidatableObject interface or
defining CustomValidationAttributes for type. This section will explore both of these
options.

Using IValidatableObject for Type Validation
In addition to the ValidationAttribute, .NET 4 introduced another feature to help
developers with validation logic—the IValidatableObject interface. IValidatableOb
ject provides a Validate method to let developers (or frameworks) provide their own
context from which to perform the validation.

If an entity that is being validated implements the IValidatableObject interface, the
Validation API logic will recognize this, call the Validate method, and surface the results
of the validation in a DbEntityValidationError.

What does IValidatableObject provide that is not satisfied with Data Annotations?
The Data Annotations let you specify a limited number of rules for individual proper-
ties. With the additional Validate method, you can provide any type of logic that can
be constrained to the class. What we mean by constrained is that the validation logic
won’t rely on external objects since you can’t guarantee that they’ll be available when
the validation is being performed. A typical example is comparing date properties in a
class.

Validations and Your Application Architecture
The IValidatableObject.Validate method can be called from any part of your appli-
cation that has access to the .NET framework. You can even leverage it for client-side
validation. In your application architecture, you should be considerate of where you
are depending on the DbContext to perform validation logic. Most likely, the context
will be on the server side of your application and you would not want to rely on your
data access layer for client-side validation in your user interface. Like the ValidationAt
tributes, IValidatableObject gives you the option to perform your validation in what-
ever layer of your application makes the most sense for your architecture and scenario.

The Trip type has StartDate and EndDate fields. Let’s use IValidatableObject to define
a rule that EndDate must be greater than StartDate.

Example 6-7 shows the Trip class after we’ve added the IValidatableObject imple-
mentation that includes the Validate method. Validate compares the dates and returns
a ValidationResult if the rule is broken. Notice that we’ve also added the Description
Rules attribute we created in Example 6-3 to the Description field.

Specifying Type-Level Validation Rules | 167

Example 6-7. Validating dates in an IValidatableObject.Validate method

public class Trip : IValidatableObject
{
 [Key, DatabaseGenerated(DatabaseGeneratedOption.Identity)]
 public Guid Identifier { get; set; }
 public DateTime StartDate { get; set; }
 public DateTime EndDate { get; set; }
 [CustomValidation(typeof(BusinessValidations), "DescriptionRules")]
 public string Description { get; set; }
 public decimal CostUSD { get; set; }
 [Timestamp]
 public byte[] RowVersion { get; set; }

 public int DestinationId { get; set; }
 [Required]
 public Destination Destination { get; set; }
 public List<Activity> Activities { get; set; }

 public IEnumerable<ValidationResult> Validate(
 ValidationContext validationContext)
 {
 if (StartDate.Date >= EndDate.Date)
 {
 yield return new ValidationResult(
 "Start Date must be earlier than End Date",
 new[] { "StartDate", "EndDate" });
 }
 }
}

Visual Basic (VB) does not have a yield keyword. Instead, you can create a List<Vali
dationResult>, add each ValidationResult into that list, and then return it. Exam-
ple 6-8 shows the Validate method as you would write it in VB.

Example 6-8. The Validate method expressed in Visual Basic

Public Function Validate(
 ByVal validationContext As ValidationContext)
 As IEnumerable(Of ValidationResult)
 Implements IValidatableObject.Validate
 Dim results = New List(Of ValidationResult)
 If StartDate.Date >= EndDate.Date Then
 results.Add(New ValidationResult
 ("Start Date must be earlier than End Date",
 {"StartDate", "EndDate"}))
 End If
 Return result
End Function

We’ve added a new method to the console application called ValidateTrip, shown in
Example 6-9.

168 | Chapter 6: Validating with the Validation API

Example 6-9. The ValidateTrip method to check the new rule

private static void ValidateTrip()
{
 ConsoleValidationResults(new Trip
 {
 EndDate = DateTime.Now,
 StartDate = DateTime.Now.AddDays(2),
 CostUSD = 500.00M,
 Destination = new Destination { Name = "Somewhere Fun" }
 });
}

When calling ValidateTrip, the application displays the error message, “Start Date
must be earlier than End Date.” But it’s listed twice. That’s because the Validate method
listed this as a problem for both StartDate and EndDate, so it created two separate errors.
The DbValidationError.ErrorMessage is the same in both, but one has “EndDate” in its
DbValidationError.PropertyName while the other has “StartDate.”

This is important for data binding with frameworks such as MVC or WPF where you
can bind the errors to the displayed properties. If we modify the ValidateTrip method
to ensure that EndDate is a later date than StartDate, the ValidateTrip method returns
no error messages.

Mapped complex types that implement IValidatableObject will be
checked in the validation pipeline as well.

Validating Multiple Rules in IValidatableObject
You can add as many class validations as you like in your Validate method. With the
C# yield keyword, all of the ValidationResult types created will be contained within
the IEnumerable that’s returned by the method.

Example 6-10 shows the Trip.Validate method with a second validation added that
checks against a list of words that are undesirable for describing trips. You could use
a RegularExpression annotation with the word list, but this method gives you the op-
portunity to store the list of words in a resource file so that it’s not hard-coded into the
application. The list is hard-coded into this example only for the simplicity of demon-
strating the validation. You’ll need to add a using statement for the System.Linq name-
space.

Example 6-10. Validate method for the Trip type

public IEnumerable<ValidationResult> Validate(
 ValidationContext validationContext)
{
 if (StartDate.Date >= EndDate.Date)
 {

Specifying Type-Level Validation Rules | 169

 yield return new ValidationResult(
 "Start Date must be earlier than End Date",
 new[] { "StartDate", "EndDate" });
 }

 var unwantedWords = new List<string>
 {
 "sad",
 "worry",
 "freezing",
 "cold"
 };

 var badwords = unwantedWords
 .Where(word => Description.Contains(word));

 if (badwords.Any())
 {
 yield return new ValidationResult(
 "Description has bad words: " + string.Join(";", badwords),
 new[] { "Description" });
 }
}

Now we’ll modify the ValidateTrip method to add a Description (which includes the
undesirable words “freezing” and “worry”) to the new trip before the validation is
performed (Example 6-11).

Example 6-11. ValidateTrip method modified to include Description

private static void ValidateTrip()
{
 ConsoleValidationResults(new Trip
 {
 EndDate = DateTime.Now,
 StartDate = DateTime.Now.AddDays(2),
 CostUSD = 500.00M,
 Description="Don't worry about freezing on this trip",
 Destination = new Destination { Name = "Somewhere Fun" }
 });
}

When running ValidateTrip with this trip that now breaks two rules, both error mes-
sages are displayed in the console window:

Start Date must be earlier than End Date
Start Date must be earlier than End Date
Description has bad words: worry;freezing

In the previous section, “Validating Individual Properties on Demand” on page 166,
you created a method to explore the DbPropertyEntry.GetValidationErrors. Looking
back at Example 6-6, notice that in addition to the emoticon in the description, there
is what you now know to be an undesirable word—freezing. If you were to run the
method again, the console window would still only report a single error, which is a

170 | Chapter 6: Validating with the Validation API

result of the emoticon. It seems to ignore the problem with the word freezing. That’s
because the validation that checks for the word freezing is defined for the class. DbPro
pertyEntry.GetValidationErrors can only check ValidationAttributes placed on
properties.

Should You Use Validate for Other Purposes?
Applications often track when data was first created or last updated. Updating fields
like DateAdded and DateLastModified is something that could demand redundant logic.
It may be tempting to place that logic into Validate, but remember that Validate must
return an IEnumerable<ValidationResult>. Your code would start to get pretty messy if
you had to return fake results. You’d be better off abstracting logic like this elsewhere.
In the scope of Entity Framework’s Validation API, there’s a more important reason to
avoid it, which you’ll learn about in detail in Chapter 7. Because of the way Save
Changes, DetectChanges, and validation interact with one another, you could get unex-
pected behavior and incorrectly persisted data if you modify values in your validation
logic.

Using CustomValidationAttributes for Type Validation
You can also use CustomValidationAttribute on a type rather than an individual prop-
erty, allowing you to define a validation that takes into account more than a single
property. We’ll show you how you can define the same validation in the IValidata
bleObject example above by using CustomValidationAttribute.

The signature of a CustomValidationAttribute has the target type specified in the pa-
rameter along with a ValidationContext, which is used in the same way as the Valida
tionContext parameter of the Validate method. Example 6-12 shows two validation
methods that are added into the Trip class. Notice that these methods are both pub
lic and static. Also notice that we’re using separate methods for each validation.
That’s because a ValidationAttribute can only return a single ValidationResult.

Example 6-12. Two validation methods to be used as Trip type attributes

public static ValidationResult TripDateValidator(
 Trip trip,
 ValidationContext validationContext)
{
 if (trip.StartDate.Date >= trip.EndDate.Date)
 {
 return new ValidationResult(
 "Start Date must be earlier than End Date",
 new[] { "StartDate", "EndDate" });
 }

 return ValidationResult.Success;
}

Specifying Type-Level Validation Rules | 171

public static ValidationResult TripCostInDescriptionValidator(
 Trip trip,
 ValidationContext validationContext)
{
 if (trip.CostUSD > 0)
 {
 if (trip.Description
 .Contains(Convert.ToInt32(trip.CostUSD).ToString()))
 {
 return new ValidationResult(
 "Description cannot contain trip cost",
 new[] { "Description" });
 }
 }

 return ValidationResult.Success;
}

The first method, TripDateValidator, mimics a validation you used earlier—checking
that the StartDate is earlier than the EndDate. The second method, TripCostInDescrip
tionValidator, checks to make sure that a user hasn’t written the trip cost into the
description. The logic in that method could be fine-tuned for a production application,
but it should suffice for this demonstration.

There’s a notable difference with these methods when comparing them to the Vali
date method you saw earlier. The Validate method has access to private methods,
properties, and fields. But because of the way the ValidationAttribute is handled under
the covers triggering those methods (which is also why they must be public and
static), it will not have this access.

To have both validations executed, you need to add them as separate attributes on the
Trip class, as shown in Example 6-13.

Example 6-13. Applying a type-level CustomValidationAttribute

[CustomValidation(typeof(Trip), "TripDateValidator")]
[CustomValidation(typeof(Trip), "TripCostInDescriptionValidator")]
public class Trip: IValidatableObject

If you were to run the ValidateTrip method, the console window would display this:

Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Description has bad words: worry;freezing

As a reminder, because the validator creates the ValidationResult specifying that it’s
for both the StartDate field and for the EndDate property, the error is listed once for
each property. If you were to inspect the ValidationResult more closely, you would see
that the errors are differentiated by their PropertyName. You’re also seeing the errors

172 | Chapter 6: Validating with the Validation API

generated by the Validate method. The Validate method is also checking the date range
as well as checking the Description for unwanted words.

Modify the ValidateTrip method to break the TripCostInDescriptionValidator rule as
follows, changing the value of the Description:

private static void ValidateTrip()
{
 ConsoleValidationResults(new Trip
 {
 EndDate = DateTime.Now,
 StartDate = DateTime.Now.AddDays(2),
 CostUSD = 500.00M,
 Description = "You should enjoy this 500 dollar trip",
 Destination = new Destination { Name = "Somewhere Fun" }
 });
}

Running the application again would result in the two errors from the problem with
the date properties as well as the error message from the failed TripCostInDescription
Validator validation:

Description cannot contain trip cost
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date

IValidatableObject or CustomValidationAttribute?
Good question, and it’s one that we’ve been asking the pros so we can relay their advice
to you. You have two ways to define type validation rules: which one is best to use?
Naturally the question generated some debate. So our best guidance within the context
of this book about Entity Framework is that it may simply be a matter of personal
preference and coding style. If you are already using Data Annotations in your class,
you might want to continue the pattern by using the attribute to provide type validation
rules. You may not be a fan of decorating your classes with attributes and find that
implementing IValidatableObject is more appropriate for your code.

Understanding How EF Combines Validations
Remember the DescriptionRules method that we added to the BusinessValidations
class to validate the Description property of Destination and Trip? Those contain
overall rules for writing any description for the company, not just those for destinations.

Now we’ll modify the Description in the ValidateTrip method to include the dreaded
smiley face emoticon and exclamation point:

Description="Hope you won't be freezing on this trip! :)"

Understanding How EF Combines Validations | 173

Before running the ValidateTrip method again, keep in mind that the values of this
Trip instance break four rules:

1. The StartDate is not at least a full calendar day before the EndDate.

2. The word freezing is in the description.

3. There is an emoticon in the Description.

4. There is an exclamation point in the Description.

Here is the list of messages returned by the method:

Description should not contain '!'.
Description should not contain emoticons.

The problems about the dates and the word freezing are missing from the messages.

To be sure, let’s revert the Description, removing the exclamation and emoticon so
that it passes the DescriptionRules but fails the others. This brings us back to the date
problem listed for both the date fields and the message about the word freezing:

Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Start Date must be earlier than End Date
Description has bad words: freezing

While this looks like there’s a problem with the validation, the validation is indeed
working as designed. We’ve defined both property validation and type validation. The
property validations check for the emoticons and exclamation point, while the type
validations check the dates and look for bad words. The failure of a property validation
is short-circuiting the type validations. In other words, the type validation is never
performed because problems were found when validating the properties.

Let’s update the ValidateTrip method so that it no longer supplied a value for the
Destination property—which is marked with a Required attribute:

// Destination = new Destination { Name = "Somewhere Fun" }

If you rerun the ValidateTrip method, which no longer provides a value for the required
Destination property, the only error message is this:

The Destination field is required.

The Required validation failure is reported, but the type validations are still missing, so
the failure of this validation also prevented the type validation. If we added the “! :)”
back into the Description, you’d see all of the property validation problems listed (Re-
quired, “!”, and the emoticon) but still no report of the type validation problems.

What’s happening is that there are rules that the validation engine follows that prevent
it from erroneously reporting errors that might be caused by other validation errors. If
the property validation fails, it’s possible that the bad attributes might cause the type
validation to fail as well.

174 | Chapter 6: Validating with the Validation API

Borrowing from the Entity Framework team blog post at http://blogs.msdn.com/b/ado
net/archive/2011/05/27/ef-4-1-validation.aspx, here is a description of the order in
which validations are performed:

1. Property-level validation on the entity and the base classes. If a property is complex
its validation would also include the following:

2. Property-level validation on the complex type and its base types

3. Type-level validation on the complex type and its base types, including IValidata
bleObject validation on the complex type

4. Type-level validation on the entity and the base entity types, including IValidata
bleObject validation

The key point is that type-level validation will not be run if property validation returns
an error. In addition to the IValidatableObject validations, relationship constraints are
validated. Since it’s possible that one of the property failures was due to a missing
required property, that null value could very easily cause a relationship to be invalid.
The Validation API does not allow constraint checking to occur if the properties cannot
be validated.

Aligning Validation with the Rest of .NET
ASP.NET MVC, ASP.NET Dynamic Data, WCF RIA Services, and Managed Extensi-
bility Framework have their own mechanisms for leveraging ValidationAttributes and
IValidatableObject. Each of these technologies has similar patterns for determining
the order in which to perform validations and how a failure of one validation will impact
whether or not other validations are performed.

One of the important patterns is that type validation is not performed if property val-
idations fail. This is mostly due to the possibility of there being a Required property.
According to Pawel Kadluczka from the Entity Framework team:

We wanted to be as close as possible to what they (e.g., MVC) do for consistency.
The reason why they do it is that none of the built-in validation attributes treat
null as an incorrect value—e.g., for StringLength, null will not break. This makes
sense since null can be treated either as incorrect value or as something that has
0 length. Choosing one of these options arbitrarily would probably make half of
the developers using validation unhappy. Now they can choose on their own the
behavior they need.

Validating Multiple Objects
In addition to explicitly validating a single object with GetValidationResult, you can
force the context to validate all of the necessary objects it is tracking with a single
command: DbContext.GetValidationErrors. I’ve emphasized the word “necessary” be-
cause, by default, GetValidationErrors only validates Added and Modified objects since

Validating Multiple Objects | 175

http://blogs.msdn.com/b/adonet/archive/2011/05/27/ef-4-1-validation.aspx
http://blogs.msdn.com/b/adonet/archive/2011/05/27/ef-4-1-validation.aspx

it typically wouldn’t be necessary to validate objects that are Unchanged or are marked
to be deleted from the database.

When you call this method, the context will internally call DetectChanges to ensure that
all of the change tracking information is up-to-date. Then it will iterate through all of
the Added and Modified objects that it’s tracking and call DbContext.ValidateEntity on
each object. ValidateEntity, in turn, will call GetValidationResult on the target object.
When all of the objects have been validated, GetValidationErrors returns a collection
of DbEntityValidationResult types for every failed object. The collection is returned as
an IEnumerable< DbEntityValidationResult > and it only contains DbEntityValidation
Result instances for the failed objects.

In addition to calling GetValidationResult, ValidateEntity can also call
custom logic that you specify. The next chapter will focus on custom-
izing ValidateEntity. You’ll also learn to modify how Entity Framework
decides which entities to validate by overriding the default, which only
validates Added and Modified entities.

Example 6-14 displays a method that results in a context tracking

• two new Trips,

• one new Destination,

• and one modified Trip.

If you look closely at the code, you’ll see that one of the new trips will be valid while
the other three objects are not valid.

Example 6-14. Validating multiple tracked objects

private static void ValidateEverything()
{
 using (var context = new BreakAwayContext())
 {
 var station = new Destination
 {
 Name = "Antartica Research Station",
 Country = "Antartica",
 Description = "You will be freezing!"
 };

 context.Destinations.Add(station);

 context.Trips.Add(new Trip
 {
 EndDate = new DateTime(2012, 4, 7),
 StartDate = new DateTime(2012, 4, 1),
 CostUSD = 500.00M,
 Description = "A valid trip.",
 Destination = station
 });

176 | Chapter 6: Validating with the Validation API

 context.Trips.Add(new Trip
 {
 EndDate = new DateTime(2012, 4, 7),
 StartDate = new DateTime(2012, 4, 15),
 CostUSD = 500.00M,
 Description = "There were sad deaths last time.",
 Destination = station
 });

 var dbTrip = context.Trips.First();
 dbTrip.Destination = station;
 dbTrip.Description = "don't worry, this one's from the database";

 DisplayErrors(context.GetValidationErrors());
 }
}

Along with the ValidateEverything method in Example 6-14, add the DisplayErrors
custom method (Example 6-15) to the Program class. This will iterate through the
DbEntityValidationResult objects returned by the GetValidationErrors method and
display them in a console window.

Example 6-15. DisplayErrors method called from Example 5-12

private static void DisplayErrors(
 IEnumerable<DbEntityValidationResult> results)
{
 int counter = 0;
 foreach (DbEntityValidationResult result in results)
 {
 counter++;
 Console.WriteLine(
 "Failed Object #{0}: Type is {1}",
 counter,
 result.Entry.Entity.GetType().Name);

 Console.WriteLine(
 " Number of Problems: {0}",
 result.ValidationErrors.Count);

 foreach (DbValidationError error in result.ValidationErrors)
 {
 Console.WriteLine(" - {0}", error.ErrorMessage);
 }
 }
}

Modify the Main method to call ValidateEverything, which will execute and display the
validation results, as shown in Example 6-16.

Validating Multiple Objects | 177

Example 6-16. Output from ValidateEverything method

Failed Object #1: Type is Destination
 Number of Problems: 1
 - Description should not contain '!'.

Failed Object #2: Type is Trip
 Number of Problems: 5
 - Start Date must be earlier than End Date
 - Start Date must be earlier than End Date
 - Start Date must be earlier than End Date
 - Start Date must be earlier than End Date
 - Description has bad words: sad

Failed Object #3: Type is Trip
 Number of Problems: 1
 - Description has bad words: worry

GetValidationErrors does not check relationship constraints unless they are explicitly
configured. For example, by default, the Reservation.Traveler property is nullable.
There are two ways to force the Reservation to require that a Person type be attached.
One is to add an int TravelerId property and configure that to be the foreign key for
Traveler. Int is non-nullable by default. ValidateEntity will not check that constraint
and therefore GetValidationErrors won’t either.

SaveChanges will detect relationship constraint problems even if they are
not defined in a way that ValidateEntity will trap them.

Another way to require that a Person be attached is to configure the Traveler property
as required. With a ValidationAttribute (even if you’ve configured with the Fluent
API), ValidateEntity will check this rule and GetValidationErrors will detect the prob-
lem.

In Chapter 3, you learned about DetectChanges, the events that call it by
default, and how to disable automatic change detection. If you have
disabled change detection, that means GetValidationErrors won’t call
it either and you should make an explicit call to DetectChanges before
calling GetValidationErrors.

Validating When Saving Changes
While you may prefer to have explicit control over when GetValidationResults is called,
Entity Framework can automatically perform the validations when you call Save
Changes. By default, when you call SaveChanges, each Added and Modified entity that is
being tracked by the context will be validated because SaveChanges calls
GetValidationErrors.

178 | Chapter 6: Validating with the Validation API

Reviewing ObjectContext. SaveChanges Workflow
Later in this section, you’ll learn how to disable the automatic validation that occurs
during SaveChanges. You may already be familiar with how ObjectContext.Save
Changes works in the Entity Framework. For a brief overview, it follows this workflow
(note that this is not taking DbContext into account yet —only the internal workflow):

1. SaveChanges, by default, calls DetectChanges to update its tracking information on
POCO objects.

2. SaveChanges iterates through each tracked entity that requires some modification
(those with states Added, Modified, or Deleted).

3. For each of these entities, it checks that their relationship constraints are in a proper
state. If not, it will throw an EntityUpdateException for that entity and stop further
processing.

4. If all of the entities pass the relationship validation, EF constructs and executes the
necessary SQL command(s) to perform the correct action in the database.

5. If the database command fails, the context responds by throwing an EntityUpda
teException and stops further processing.

Because SaveChanges uses a DbTransaction by default, in either of the circumstances
that causes the routine to throw an exception, any of the commands that succeeded up
until that point are rolled back.

Understanding DbContext.SaveChanges Workflow
When you use DbContext to call SaveChanges, one additional step is performed prior to
the first step in the ObjectContext.Savechanges workflow. DbContext.SaveChanges calls
GetValidationErrors, which runs through the ValidateEntity process. If no errors are
found, it then calls ObjectContext.SaveChanges. Because GetValidationErrors has al-
ready called DetectChanges, ObjectContext.SaveChanges skips its own call to DetectCh
anges.

Figure 6-5 shows the execution path when your code calls DbContext.SaveChanges.

Validating When Saving Changes | 179

Figure 6-5. Database persistence workflow beginning with DbContext.SaveChanges

What this means to you is that, by default, Entity Framework will validate all of the
rules specified with ValidationAttributes and IValidatableObject automatically when
you call SaveChanges from a DbContext.

If errors are detected during GetValidationErrors, SaveChanges will throw a DbEntity
ValidationException with the results of GetValidationErrors in its EntityValidationEr
rors property. In this case, the context will never make the call to ObjectContext.Save
Changes.

In the previous section, you learned that ValidationEntity, called by GetValidationEr
rors, will not check relationship constraints unless they are specified in configuration.
However, ObjectContext.SaveChanges has always checked relationship constraints and
continues to do so. Therefore, any relationship constraints that were not validated by
GetValidationErrors will be checked in the next stage of the save. The same applies to
null complex properties. Since null complex properties are not supported, ObjectCon
text always checks if a complex property is not null. Having the Required attribute on
a complex property makes sense only for consistency reasons (that is, a null complex
property violation will be reported the same way as other validation violations).

180 | Chapter 6: Validating with the Validation API

If you’d like to see this in action, you can modify the ValidateEverything method so
that rather than explicitly calling GetValidationErrors, it will call SaveChanges. Replace
the final line of the ValidateEverything method from Example 6-14 (i.e., the code line
that calls into DisplayErrors) with the code in Example 6-17. You’ll call SaveChanges
instead and then display information about any validation exceptions.

Example 6-17. ValidateEverything modified to call SaveChanges instead of GetValidationErrors

try
{
 context.SaveChanges();
 Console.WriteLine("Save Succeeded.");
}
catch (DbEntityValidationException ex)
{
 Console.WriteLine(
 "Validation failed for {0} objects",
 ex.EntityValidationErrors.Count());
}

Because this example contains intentional problems that will be detected during the
internal call to GetValidationErrors, ObjectContext.SaveChanges will never be executed
and your data will not be persisted to the database. If the validations were to pass,
there’s still a chance of an UpdateException when the lower-level ObjectContext.Save
Changes is called internally, but we’re ignoring that possibility in this example.

If you were to run this method, you would find is that a DbEntityValidationExcep
tion is thrown. DbEntityValidationException has a property called EntityValidatio
nErrors which returns an IEnumerable of something you are already familiar with—
EntityValidationResults that were created for each failed entity.

Figure 6-6 shows the DbValidationException in the debug window (with private fields
removed for clarity).

Figure 6-6. Inspecting a DbValidationException

Validating When Saving Changes | 181

The exception handler in Example 6-17 displays how many EntityValidationResult
instances are contained in the exception, in other words, how many entities failed val-
idation when SaveChanges was called.

Because you already know how to iterate through EntityValidationResult objects, you
can dig further into the exception if you want to relay the details of the validation errors.

Disabling Validate Before Save
You may want to exert more control over when validation occurs by calling the various
validation methods explicitly in your application. You can prevent Entity Framework
from triggering the validation during SaveChanges thanks to the DbContext.Configura
tion property. One of the settings you can configure on DbContext is ValidateOnSaveEn
abled. This is set to true by an internal method when you instantiate a new DbCon
text, which means that it’s true by default on any DbContext class.

You can disable it in the constructor of your context class so that it’s always false
whenever you instantiate a new instance of the context.

For example, in BreakAwayContext you could add the following constructor:

public class BreakAwayContext : DbContext
{
 public BreakAwayContext()
 {
 Configuration.ValidateOnSaveEnabled = false;
 }
 ... rest of class logic
}

You can also enable or disable this feature as needed throughout your application by
modifying the configuration setting on your context instance.

One benefit of disabling the validation on SaveChanges and calling the validation meth-
ods explicitly is that it allows you to avoid having an exception thrown. When valida-
tions fail inside of the SaveChanges call, SaveChanges throws the DbEntityValidationEx
ception. However, as you’ve seen through this chapter, calling GetValidationResult or
GetValidationErrors explicitly returns something whether the validations pass or fail.
GetValidationResult returns a ValidationResult that will indicate whether or not the
validation passed. GetValidationErrors returns an IEnumerable of ValidationResults
for failed validations and if there were none, the IEnumerable will be empty. When
application performance is an important factor in your development process, the ex-
pense of exceptions might be the deciding factor for choosing the automatic validation
during SaveChanges or disabling that and taking control over how and when validation
occurs. You’ll learn more about taking advantage of this configuration in the next
chapter.

182 | Chapter 6: Validating with the Validation API

CHAPTER 7

Customizing Validations

In the previous chapter you learned many ways that you can apply validation rules so
that the DbContext Validation API can find and check them either on demand or au-
tomatically. While you can explicitly validate individual classes and properties directly
from the DbEntityEntry method, you can also have the context validate all of its tracked
entities as a group, either by calling GetValidationErrors or letting SaveChanges call that
method for you. GetValidationErrors then calls ValidateEntity on each of the Added
and Modified entities in the context. ValidateEntity then triggers logic that checks the
ValidationAttribute and IValidatableObject rules you’ve specified in your classes.

You’ve seen how ValidateEntity works in Chapter 6. In this chapter, you’ll learn how
to customize the ValidateEntity method not only by overriding the logic of the method,
but also by overriding the method that determines which entities should be validated.

Overriding ValidateEntity in the DbContext
ValidateEntity is a virtual method, meaning that you can override it and add your own
custom logic. Like any virtual method, after executing your logic, you can control
whether or not it performs the validations it’s designed to execute (for example, vali-
dating the ValidationAttributes and IValidatableObject rules).

Example 7-1 shows the ValidateEntity method added into the BreakAwayContext class
after using the Visual Studio IDE shortcut to add the overridden method.

Example 7-1. Signature of ValidateEntity override

protected override
 System.Data.Entity.Validation.DbEntityValidationResult
 ValidateEntity(
 System.Data.Entity.Infrastructure.DbEntityEntry entityEntry,
 System.Collections.Generic.IDictionary<object, object> items)
{
 return base.ValidateEntity(entityEntry, items);
}

183

If you are new to overriding methods in Visual Studio, the IDE has a
shortcut to help you insert the method in C# and in VB. In the
BreakAwayContext class, type the word override (Overrides for VB) fol-
lowed by a space. Visual Studio will then show you a list of virtual
methods. Select ValidateEntity from the list and the method code will
be automatically added to the class.

By ensuring that the System.Data.Entity.Infrastructure, System.Data.Entity.Vali
dation, and System.Collections.Generic namespaces are all added to the using state-
ments at the top of the class file, the method signature becomes a little easier to read:

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry,IDictionary<object, object> items)
{
 return base.ValidateEntity(entityEntry, items);
}

You can add logic to ValidateEntity that performs additional validations on all types
or on a subset of types (for example, a particular type or a particular set of types that
inherit from another class or implement from an interface).

Another benefit of inserting logic here is that you have access to the DbContext and
therefore can perform validation that depends on other tracked entities or even checks
against data in the database. That’s something you can’t do in a ValidationAttribute
or in the IValidatableObject.Validate method unless you were to pass a DbContext
instance into the type. This would, however, force the type to be aware of the data layer
which, if you care about keeping your POCO classes persistence ignorant, is
undesirable.

You can read more about persistence ignorance (PI) from the perspec-
tive of Entity Framework in Chapter 24 of Programming Entity Frame-
work, 2e, or in any number of resources on the Internet. Here, for
example, is a discussion of PI in the scope of an article on the Unit of
Work Pattern and Persistence Ignorance by Jeremy Miller in MSDN
Magazine: http://msdn.microsoft.com/en-us/magazine/dd882510.aspx
#id0420053.

An example of a validation that involves multiple entities is a rule for BreakAway Geek
Adventures that a payment must made along with a new reservation. You’ll find a
Payment class in the model of the sample download along with a Payments navigation
property in the Reservation class. The two classes are listed in Example 7-2.

Example 7-2. Payment class

public class Payment
{
 public Payment()
 {

184 | Chapter 7: Customizing Validations

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do
http://msdn.microsoft.com/en-us/magazine/dd882510.aspx#id0420053
http://msdn.microsoft.com/en-us/magazine/dd882510.aspx#id0420053

 PaymentDate = DateTime.Now;
 }

 public int PaymentId { get; set; }
 public int ReservationId { get; set; }
 public DateTime PaymentDate { get; set; }
 public decimal Amount { get; set; }
}

public class Reservation
{
 public Reservation()
 {
 Payments = new List<Payment>();
 }

 public int ReservationId { get; set; }
 public DateTime DateTimeMade { get; set; }
 public Person Traveler { get; set; }
 public Trip Trip { get; set; }
 public Nullable<DateTime> PaidInFull { get; set; }

 public List<Payment> Payments { get; set; }
}

You may want your custom context logic to take precedence over the other validations
that would be performed. In other words if the custom logic added in ValidateEntity
fails, then don’t bother validating the rules that are specified in ValidationAttributes
or IValidatableObject. If no errors are detected in the custom context logic, then the
base.ValidateEntity method will get called to check rules defined with ValidationAt
tributes and IValidatableObject. Figure 7-1 helps you visualize this workflow. You’ll
explore a number of other possible workflows later in the chapter.

Figure 7-1. Calling base validation only if custom validation finds no errors

Overriding ValidateEntity in the DbContext | 185

The ValidateEntity signature contains an entityEntry parameter. This represents the
DbEntityEntry for the object currently being processed by the SaveChanges method.
DbEntityEntry allows you to navigate to the actual object instance that it represents.
You cast with the as operator to ensure you are working with the correct type:

var reservation = entityEntry.Entity as Reservation;
if (reservation !=null)
{
 //logic on reservation goes here
}

From here you can use the reservation instance or work directly against the change
tracker through entityEntry.

Example 7-3 shows code that validates the new rule for Reservation. The code instan-
tiates a new DbEntityValidationResult for this particular entry. Then, if the entry is for
a Reservation and is new (Added) but has no Payments, a new error is added to the
DbEntityValidationResult. If the reservation validation results in errors (in which case,
result.IsValid will be false), those results are returned from ValidateEntity and the
base validation is not called. If the result is valid, the base method is called instead.

Remember from Chapter 6 that ValidateEntity temporarily disables
lazy loading, so the context will not be looking for any payments in the
database.

Example 7-3. ValidateEntity calling base validation only if custom validation passes

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)
{
 var result = new DbEntityValidationResult(entityEntry,
 new List<DbValidationError>());
 var reservation = entityEntry.Entity as Reservation;
 if (reservation != null)
 {
 if (entityEntry.State == EntityState.Added &&
 reservation.Payments.Count == 0)
 {
 result.ValidationErrors.Add(
 new DbValidationError(
 "Reservation",
 "New reservation must have a payment.")
);
 }
 }
 if (!result.IsValid)
 {
 return result;
 }
 return base.ValidateEntity(entityEntry, items);
}

186 | Chapter 7: Customizing Validations

Keep in mind an important detail of the processing steps described ear-
lier in Chapter 6. GetValidationErrors (called by SaveChanges) will ex-
ecute ValidateEntity on all of the tracked entities before it begins con-
structing commands for the database. When designing custom logic for
ValidateEntity, don’t expect entities that have already been validated
to be in the database by the time you reach the next entity.

If you have multiple validations to perform in ValidateEntity, it could get cluttered up
pretty quickly. Example 7-4 shows the same logic as Example 7-3, but with the vali-
dation specific to the Reservation split out to a separate method.

Example 7-4. ValidateEntity calling base validation only if custom validation passes

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)
{
 var result = new DbEntityValidationResult(entityEntry,
 new List<DbValidationError>());

 ValidateReservation(result);

 if (!result.IsValid)
 {
 return result;
 }

 //call base validation
 return base.ValidateEntity(entityEntry, items);
}

private void ValidateReservation(DbEntityValidationResult result)
{
 var reservation = result.Entry.Entity as Reservation;
 if (reservation != null)
 {
 if (result.Entry.State == EntityState.Added &&
 reservation.Payments.Count == 0)
 {
 result.ValidationErrors.Add(
 new DbValidationError(
 "Reservation",
 "New reservation must have a payment.")
);
 }
 }
}

Considering Different Ways to Leverage ValidateEntity
In the previous example, ValidateEntity executes our context-based business valida-
tions. If no errors are found, it continues on to execute the base ValidateEntity method,

Considering Different Ways to Leverage ValidateEntity | 187

which checks any rules defined with type validation (IValidatableObject rules) and
property validation (ValidateAttribute rules). That’s just one execution path you could
set up in ValidateEntity.

Throughout this chapter, we’ll present different forms of the Valida
teEntity method. If you are following along with the code samples, you
might want to retain each version of ValidateEntity in the BreakAway
Context class. What we did while developing our samples was to wrap
a complier directive around the methods that we don’t want to use any-
more. This is cleaner than commenting out code. In C# you can add
#if false before the beginning of the method and then #endif after the
end of the method.

#if false
protected override DbEntityValidationResult
 ValidateEntity(DbEntityEntry entityEntry,
 IDictionary<object, object> items)
{
 ...method code
}
#endif

The code inside the directive will be grayed out and ignored by the
compiler. Change the directive to #if true to reengage it.

In Visual Basic the directive looks like this:

#If False Then
#End If

You could reverse this logic, returning the base ValidateEntity results first and, if there
are none, executing your custom logic as visualized in Figure 7-2.

Figure 7-2. Calling custom validation only if base validation finds on errors

188 | Chapter 7: Customizing Validations

As an example, you might want to check a value for uniqueness in the database, perhaps
to ensure that new Lodgings have a unique Name and Destination combination. You can
do this in ValidateEntity because you have access to the context and therefore can
execute a query such as

Lodgings.Any(l => l.Name == lodging.Name &&
 l.DestinationId == lodging.DestinationId);

But Lodging.Name already has a number of ValidationAttribute rules applied: Required,
MinLength, and MaxLength. You might prefer to ensure that these three attributes are
satisfied before wasting the trip to the database to check for a duplicate lodging. You
could run the base ValidateEntity method first and return its errors if there are any. If
there are no errors found in the base validation, continue on to the new validation logic,
which checks the database for an existing lodging with the name and destination of the
one about to be added. Example 7-5 demonstrates this logic. First, base.ValidateEn
tity is called. If its results are valid, a custom validation method, ValidateLodging, is
called and its errors, if any, are added to the results collection, which is returned at the
end.

Example 7-5. Executing context validation only if property and type validation pass

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)
{
 var result = base.ValidateEntity(entityEntry, items);

 if (result.IsValid)
 {
 ValidateLodging(result);
 }
 return result;
}

private void ValidateLodging(DbEntityValidationResult result)
{
 var lodging = result.Entry.Entity as Lodging;
 if (lodging != null && lodging.DestinationId != 0)
 {
 if (Lodgings.Any(l => l.Name == lodging.Name &&
 l.DestinationId == lodging.DestinationId))
 {
 result.ValidationErrors.Add(
 new DbValidationError(
 "Lodging",
 "There is already a lodging named " + lodging.Name +
 " at this destination.")
);
 }
 }
}

Considering Different Ways to Leverage ValidateEntity | 189

Checking for uniqueness in Example 7-5 may have made you wonder
about a simpler way to define unique validations. The Entity Framework
team is working on a feature that would allow you to define Unique
Constraints directly in the model. You can read more details about this
in their March 2011 blog post at http://blogs.msdn.com/b/efdesign/
archive/2011/03/09/unique-constraints-in-the-entity-framework.aspx.

We created a method in the console app called CreateDuplicateLodging to test this
validation, shown in Example 7-6.

Example 7-6. Inserting Lodgings to test validations

private static void CreateDuplicateLodging()
{
 using (var context = new BreakAwayContext())
 {
 var destination = context.Destinations
 .FirstOrDefault(d => d.Name == "Grand Canyon");

 try
 {
 context.Lodgings.Add(new Lodging
 {
 Destination = destination,
 Name = "Grand Hotel"
 });

 context.SaveChanges();
 Console.WriteLine("Save Successful");
 }
 catch (DbEntityValidationException ex)
 {
 Console.WriteLine("Save Failed: ");
 foreach (var error in ex.EntityValidationErrors)
 {
 Console.WriteLine(
 string.Join(Environment.NewLine,
 error.ValidationErrors.Select(v => v.ErrorMessage)));
 }

 return;
 }
 }
}

The critical part of this method inserts Grand Hotel at the Grand Canyon while the
bulk of the method is code to display errors for this demonstration. Our seed data
includes a Lodging called Grand Hotel at the Destination Grand Canyon. So our new
Lodging will be a duplicate. If you run this method from the console application’s main
method, ValidateEntity will call ValidateLodging and discover the duplication. The
console will report the error:

190 | Chapter 7: Customizing Validations

http://blogs.msdn.com/b/efdesign/archive/2011/03/09/unique-constraints-in-the-entity-framework.aspx
http://blogs.msdn.com/b/efdesign/archive/2011/03/09/unique-constraints-in-the-entity-framework.aspx

Save Failed:
There is already a lodging named Grand Hotel at this destination.

Now let’s add in a validation that will fail the base.ValidateEntity check. Modify the
Lodging to add a data annotation to the MilesFromNearestAirport property. The
RangeAttribute specifies a valid value range for the property. Here we’ll say that any-
thing from .5 to 150 miles will be valid:

[Range(.5,150)]
public decimal MilesFromNearestAirport { get; set; }

If you run the application again, you’ll see this message in the console window:

Save Failed:
The field MilesFromNearestAirport must be between 0.5 and 150.

There’s no mention of the duplication. That’s because the ValidateEntity method is
designed to check the property and type rules first and return the exception right away
if any are found—before it has called ValidateLodging.

Let’s return to the ValidateEntity method and force it to return the combination of
validation errors checked in the custom logic and in the logic check by
base.ValidateEntity, as visualized in Figure 7-3.

Figure 7-3. Combining errors from custom and base validation

Example 7-7 demonstrates code that will allow you to collect the results of the base
validation and then add any additional errors found in the custom logic to that result
before returning the combined errors from ValidateEntity.

Example 7-7. Combing type and property validation results with context results

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)
{
 var result = base.ValidateEntity(entityEntry, items);
 ValidateLodging(result);
 return result;
}

Running the CreateDuplicateLodging method one last time will now display both
errors:

Save Failed:
The field MilesFromNearestAirport must be between 0.5 and 150.
There is already a lodging named Grand Hotel at this destination.

Considering Different Ways to Leverage ValidateEntity | 191

You can include multiple validation checks in ValidateEntity. These ex-
amples only contain one at a time for the sake of brevity.

Now that you’ve seen a few possible workflows for executing validations in
ValidateEntity, you can mimic these or define your own workflow when customizing
ValidateEntity.

Further Refactoring
As you implement this custom logic into your own application, you may have many
custom validations defined in your DbContext class. Rather than having to call Vali
dateReservation, ValidateLodging, and any others from ValidateEntity, you could
combine them into a single method such as IsValid and call that from ValidateEn
tity instead. For example:

 private void IsValid(DbEntityValidationResult result)
 {
 ValidateLodging(result);
 ValidateReservation(result);
 }

Updating Data During SaveChanges
Quite often, there are last-minute modifications that you want to make to data before
it’s sent to the database. One example is setting DateAdded and DateModified values in
your classes. While there are a number of ways to achieve this in .NET code, you may
wish to perform this logic in the data layer. Because the context is already iterating
through all of its Added and Modified entities when it calls ValidateEntity, it’s tempting
to add this logic into ValidateEntity rather than perform an additional enumeration
in the SaveChanges method.

It’s possible to do this, but it is not recommended. The following are some downsides
to putting this type of logic inside of ValidateEntity:

• The ValidateEntity method is designed for performing validations. Using it for
other purposes infringes on the principle of Singular Responsibility—a coding
principle that exists to help you in the quest for maintainable code.

• You might not want to bother with modifying data before you know it’s valid and
headed for the database. You could call base.ValidateEntity prior to the update
logic as shown in Example 7-5, but a later entity might be invalid, rendering all
modifications moot.

• By the time you’re in the ValidateEntity method, DetectChanges has already been
called and you need to be careful about how you update values.

192 | Chapter 7: Customizing Validations

One alternative is to override SaveChanges and iterate through entities to apply the dates
before base.SaveChanges does a second iteration to validate the entities. Keep in mind
that after this, there is a third iteration—the one that creates and executes the com-
mands for each Added, Modified, and Deleted entity to the database.

If you override SaveChanges to apply the date values, ValidateEntity will be called af-
terwards, during base.SaveChanges. If invalid data is found, the effort and processing
time taken to update the date properties was wasted.

In the next section, we’ll look at pros and cons of the options you have to perform the
date modifications during SaveChanges and then show you an efficient example of
modifying ModifiedDate and AddedDate properties during SaveChanges.

Overriding SaveChanges When Validation Occurs
If you want to set values inside of SaveChanges and you are leveraging the Validation
API, you have a number of choices:

• Update the data values in SaveChanges and let base.SaveChanges perform the val-
idation (through ValidateEntity) as it normally would.

• Turn off ValidateOnSaveEnabled and iterate through entities, calling GetValidation
Result and then the date fix-up for each entity.

• Turn off ValidateOnSaveEnabled and iterate through entities, fixing up the dates
for each entity and then calling GetValidationResult.

• Turn off ValidateOnSaveEnabled. Call GetValidationErrors (which will iterate
through entities) and then iterate again performing the date fix-ups.

• Turn off ValidateOnSaveEnabled. Iterate through entities to perform the date fix-
ups, and then call GetValidationErrors (which will iterate through entities). This
would be no different than the first option in this list.

There are pros and cons to each approach. We’ll walk through one of them and present
the pros and cons of the others. In the end, you should be able to choose the approach
that best fits your application.

For this example, we’ll perform validations by calling GetValidationErrors and then
update two date fields for any entity that inherits a new base class, Logger. In this
scenario, we have confidence that updating the date fields won’t break any validation
rules, so it is safe to perform this task after the validations have been checked by the
API. In a real-world application, you should have automated tests in place to ensure
that future modifications to the application don’t break this assertion.

Example 7-8 shows a new abstract class called Logger, which exposes two new date
fields. It also has a public method, UpdateModificationLogValues, for updating those
fields. This method may be used by any number of business logic methods that access
your classes.

Overriding SaveChanges When Validation Occurs | 193

Example 7-8. Logger base class

 public abstract class Logger
 {
 public DateTime LastModifiedDate { get; set; }
 public DateTime AddedDate { get; set; }

 public void UpdateModificationLogValues(bool isAdded)
 {
 if (isAdded)
 {
 AddedDate = DateTime.Now;
 }
 LastModifiedDate = DateTime.Now;
 }
 }

Modify the Activity class to inherit from Logger:

public class Activity : Logger

Now you can override SaveChanges, as shown in Example 7-9. Back in Chapter 5 you
overrode SaveChanges to perform logging; you should replace the logging implemen-
tation with this new implementation. Notice that the first action in the method is to
store the current setting of AutoDetectChangesEnabled. That’s because we’re going to
temporarily set it to false and want to reset it before exiting the method. The reason
we’re setting it to false is to control exactly when DetectChanges is called.

Example 7-9. SaveChanges overridden to perform validation and updates

public override int SaveChanges()
{
 var autoDetectChanges = Configuration.AutoDetectChangesEnabled;

 try
 {
 Configuration.AutoDetectChangesEnabled = false;
 ChangeTracker.DetectChanges();
 var errors = GetValidationErrors().ToList();
 if (errors.Any())
 {
 throw new DbEntityValidationException
 ("Validation errors found during save.", errors);
 }

 foreach (var entity in this.ChangeTracker.Entries()
 .Where(e =>
 e.State ==EntityState.Added ||
 e.State == EntityState.Modified))
 {
 ApplyLoggingData(entity);
 }
 ChangeTracker.DetectChanges();

 Configuration.ValidateOnSaveEnabled = false;

194 | Chapter 7: Customizing Validations

 return base.SaveChanges();
 }
 finally
 {
 Configuration.AutoDetectChangesEnabled = autoDetectChanges;
 }
}

The ApplyLoggingData method shown in Example 7-10 will call UpdateModification
LogValues on any entities that inherit from Logger, passing in a Boolean to signal
whether or not the AddedDate needs to be set. Once all the dates have been updated,
we call DetectChanges to ensure that Entity Framework is aware of any changes that
were made.

Example 7-10. ApplyLoggingData method in BreakAwayContext class

private static void ApplyLoggingData(DbEntityEntry entityEntry)
{
 var logger = entityEntry.Entity as Logger;
 if (logger == null) return;
 logger.UpdateModificationLogValues
 (entityEntry.State == EntityState.Added);
}

Now we’ll test that the date fields get changed by adding a new, valid Activity using
the InsertActivity method (added into the console application) shown in Exam-
ple 7-11. The code displays the dates after SaveChanges has been called. After the first
call to SaveChanges, the code makes a modification and saves again, displaying the dates
a second time.

Example 7-11. Console method to observe Logger properties updated in SaveChanges

private static void InsertActivity()
{
 var activity = new Activity { Name = "X-C Skiing" };
 using (var context = new BreakAwayContext())
 {
 context.Activities.Add(activity);
 try
 {
 context.SaveChanges();
 Console.WriteLine("After Insert: Added={0}, Modified={1}",
 activity.AddedDate, activity.LastModifiedDate);
 //pause 2 seconds
 System.Threading.Thread.Sleep(2000);
 activity.Name = ("X-C Skating");
 context.SaveChanges();
 Console.WriteLine("After Modified: Added={0}, Modified={1}",
 activity.AddedDate, activity.LastModifiedDate);
 }
 catch (DbEntityValidationException ex)
 {
 Console.WriteLine("Save Test Failed: " +

Overriding SaveChanges When Validation Occurs | 195

 ex.EntityValidationErrors.FirstOrDefault()
 .ValidationErrors.First().ErrorMessage);
 }
 }
}

When you run this, you’ll see that the newly inserted activity has its AddedDate and
LastModifiedDate values populated after being saved. Then when the activity is edited
and saved again, you can see that its LastModifiedDate value has been updated again,
thanks to the combined logic in SaveChanges and the Logger class:

After Insert: Added=12/9/2011 12:16:27 PM, Modified=12/9/2011 12:16:27 PM
After Modified: Added=12/9/2011 12:16:27 PM, Modified=12/9/2011 12:16:33 PM

This works because by the time we’re calling ApplyLoggingData, the context is already
aware that these are either Added or Modified entities and is already planning to persist
them to the database.

You can avoid the need to call DetectChanges by changing properties directly through
the change tracker. That’s logic that you won’t be able to (or want to) embed into your
domain classes (which we prefer to not have any knowledge of Entity Framework). So
you’ll have to do that within the context. Example 7-12 shows what the ApplyLogging
Data would look like if you were to set the properties through the change tracker.

Example 7-12. Using the change tracker to update scalar properties

private static void ApplyLoggingData(DbEntityEntry entityEntry)
{
 var logger = entityEntry.Entity as Logger;
 if (logger == null) return;
 entityEntry.Cast<Logger>()
 .Property(l => l.ModifiedDate).CurrentValue = DateTime.Now;
 if (entityEntry.State==EntityState.Added)
 {
 entityEntry.Cast<Logger>()
 .Property(l => l.AddedDate).CurrentValue = DateTime.Now;
 }
}

In Chapter 5, you learned how to work with scalars as well as collection and reference
navigation properties through the change tracker. If you want to make changes to nav-
igation properties at the data layer, you should do so using the change tracker, as shown
with the scalar property changes made in Example 7-12. If you used the navigation
properties of the class directly, whether you do that in the context code or call into code
in the type you are modifying (for example, Logger.UpdateModificationLogValues), you
run a substantial risk of those changes not being persisted to the database. Again, this
is dependent on where in the workflow DetectChanges is being called. If you are in the
habit of using the change tracker to make the changes, you don’t have to worry about
DetectChanges.

196 | Chapter 7: Customizing Validations

Comparing ValidateEntity to SaveChanges for Custom Logic
If you’ve been using Entity Framework for a few years, you might be familiar with
various options we’ve had for applying validation logic and wondering how
ValidateEntity fits into the picture. The first version of Entity Framework gave us the
ObjectContext.SavingChanges event, which let developers execute validation or other
logic when SaveChanges was called. Your logic added into SavingChanges would be ex-
ecuted and then Entity Framework would execute its internal logic. Entity Framework
4 brought us the added benefit of a virtual SaveChanges method so we could not only
have Entity Framework execute our custom logic when calling SaveChanges, but we had
the option of completely halting the internal code.

You can also override SaveChanges when it is called from DbContext. DbContext doesn’t
have a SavingChanges event because with the virtual SaveChanges, the former approach
is redundant. The only reason SavingChanges still exists as a method of ObjectContext
is for backward compatibility. But if you need to, you can get to ObjectContext from
DbContext by first dropping down to the ObjectContext using the IObjectContextAdap
ter, as you’ve seen previously in this book.

ValidateEntity is yet another extensibility point that is available during SaveChanges.
But as you’ve seen in this chapter, you should be considerate of when your code makes
use of ValidateEntity or SaveChanges to insert your logic.

ValidateEntity by default is executed on every Added or Modified object being tracked.
It is a good replacement for code that you may have put in SaveChanges where you iterate
through each tracked object and perform some validation logic on it.

A big caveat with the ValidateEntity method, however, is that it is executed after
DetectChanges has been called, so you have to be careful about how you go about setting
properties. You can safely set properties using the DbEntityEntry, but our preference is
to avoid adding nonvalidation logic into a method that is designated for performing
validations.

The SaveChanges method is a good place to execute logic where you want to do some-
thing with a group of objects. For example, you might want to log how many reserva-
tions are added in a particular update. While you do have access to this in the
ValidateEntity method, this is something you want to execute only once during a save.

Microsoft’s guidance is to use ValidateEntity to perform validation logic (rule check-
ing) only. Their primary reason for this guidance is concern over incorrectly coded
property modifications that won’t get picked up by the context if the developer is un-
aware of the fact that DetectChanges was already called—and will not be called again.
Another is that in ValidateEntity, the team has ensured that lazy loading won’t have
unexpected effects on the validation.

From a perspective of architectural guidance, yet another reason is that by not forcing
ValidateEntity to perform non-validation logic, you follow the principle of Single Re-
sponsibility. ValidateEntity is for validating. Single Responsibility helps to keep in

Overriding SaveChanges When Validation Occurs | 197

http://msdn.microsoft.com/en-us/magazine/cc546578.aspx#id0390008
http://msdn.microsoft.com/en-us/magazine/cc546578.aspx#id0390008

mind the fact that if you introduce other features into that method, you’ll increase the
difficulty of maintaining your application as it grows and evolves.

Using the IDictionary Parameter of ValidateEntity
So far we’ve focused on the entityEntry parameter of ValidateEntity. There is also an
IDictionary<object, object> parameter available:

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)

By default, the value of this parameter is null, but you can use the parameter to pass
additional values to custom implementations of IValidatableObject.Validate or Vali
dationAttributes.

Watch for a change to the IDictionary parameter in a future version of
Entity Framework: it may be changed to default to an empty dictionary
rather than null. That would make coding against it simpler. As of Entity
Framework 4.3, the parameter is still null.

For example, recall the signature of IValidatableObject.Validate:

public IEnumerable<ValidationResult>
 Validate(ValidationContext validationContext)

ValidationContext implements iDictionary. Entity Framework passes the items de-
fined in ValidateEntity to this validationContext parameter. It’s also possible to use
a ValidationContext when creating overrides of the ValidationAttribute class. (See the
MSDN Library documentation topic ValidationAttribute Class for more information
about this feature: http://msdn.microsoft.com/en-us/library/system.componentmodel.da
taannotations.validationattribute.aspx)

You can create a dictionary of objects in the ValidateEntity method and pass them
along in the base ValidateEntity call by assigning the dictionary to the items variable.
Those objects would then be available for you to use in validations that accept a Vali
dationContext.

For example, you may want to be sure that a newly added or modified payment does
not cause the saved payments to exceed the cost of the trip on which the reservation is
booked. To validate this rule, you would need the data layer to access the database
when it’s validating new or modified payment objects. But rather than performing all
of the calculations in the data layer, you could have the data layer provide the necessary
information to the payment so that the rule can be included in the business logic for
the Payment itself.

198 | Chapter 7: Customizing Validations

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationattribute.aspx

I’ve seen examples where the DbContext itself is passed back into the
ValidationContext of IValidatable.Validate or ValidationAttributes
from ValidateEntity. Neither of us are fans of this pattern because it
forces the object to be aware of the context, of the data layer, and of
Entity Framework. Not only is the class no longer POCO, but it also
removes another quality that I have learned to admire, persistence ig-
norance.

Example 7-13 shows the Validate method for Payment after we’ve modified Payment to
implement the IValidatableObject interface. There are two validations in the method.
The method first checks to see if there are PaymentSum and TripCost items in the vali
dationContext. The method expects that the method that has triggered Validate will
have created these items in the dictionary passed in as the validationContext parameter.
If they are there, the method will use those to compare the payments to the trip cost.

Example 7-13. IValidatableObject.Validate method using ValidationResult

public IEnumerable<ValidationResult> Validate(
 ValidationContext validationContext)
{
 var vc = validationContext; //for book readability

 if (vc.Items.ContainsKey("DbPaymentTotal")
 && vc.Items.ContainsKey("TripCost"))
 {
 if (Convert.ToDecimal(vc.Items["DbPaymentTotal"]) + Amount >
 Convert.ToDecimal(vc.Items["TripCost"]))
 {
 yield return new ValidationResult(
 "Oh horrors! The client has overpaid!",
 new[] { "Reservation" });
 }
 }
}

This example is to demonstrate the use of the IDictionary and not meant
as the de facto pattern for checking for overpayments in a production
application. There are many more factors to take into consideration for
this particular use case regardless of whether you are using Entity
Framework validation or any other validation pattern.

Given that the Payment class validation expects to be provided with a ValidationCon
text that supplies the sum of Payments for a single Reservation that are already in the
database and the cost of the trip for which the payment and reservation are made, the
ValidateEntity method needs to add those values into the IDictionary.

Example 7-14 does just that—retrieving the total of payments for the Reservation and
the TripCost from the database, and then adding them to the _items IDictionary. This

Using the IDictionary Parameter of ValidateEntity | 199

example also places the particular validation logic, FillPaymentValidationItems, in a
separate method in order to keep the ValidateEntity method cleaner.

Example 7-14. ValidateEntity passing values using the IDictionary

protected override DbEntityValidationResult ValidateEntity
 (DbEntityEntry entityEntry, IDictionary<object, object> items)
{
 var _items = new Dictionary<object, object>();
 FillPaymentValidationItems(entityEntry.Entity as Payment, _items);
 return base.ValidateEntity(entityEntry, _items);
}

private void FillPaymentValidationItems(Payment payment, Dictionary<object, object> _items)
{
 if (payment == null)
 {
 return;
 }
 //calculate payments already in the database
 if (payment.ReservationId > 0)
 {
 var paymentData = Reservations
 .Where(r => r.ReservationId == payment.ReservationId)
 .Select(r => new
 {
 DbPaymentTotal = r.Payments.Sum(p => p.Amount),
 TripCost = r.Trip.CostUSD
 }).FirstOrDefault();
 _items.Add("DbPaymentTotal", paymentData.DbPaymentTotal);
 _items.Add("TripCost", paymentData.TripCost);
 }
}

Notice that ValidateEntity doesn’t check the type of the entityEntry.Entity. Instead
it leverages the performance benefit of casting with as, which will return a null if the
entity is not a Payment. Then the helper method does a quick check for a null before
bothering with the inner logic. This is simply a design decision made on our part.

The method first ensures that the ReservationId has been set. If the user is adding a
new Reservation and Payment together, then the Reservation won’t have a
ReservationId yet and therefore it won’t have been set on the Payment.

Controlling Which Entities Are Validated in ValidateEntity
As we’ve pointed out earlier, by default, Entity Framework will only send Added and
Modified entities to the ValidateEntity method. Internal code checks the state before
calling ValidateEntity in a virtual (Overridable in VB) method of DbContext called
ShouldValidateEntity.

200 | Chapter 7: Customizing Validations

After some internal evaluation, ShouldValidateEntity returns a Boolean based on this
line of code which checks to see if the state is either Modified or Added:

return ((entityEntry.State &
(EntityState.Modified | EntityState.Added)) != 0);

Because ShouldValidateEntity is virtual, you can override the default logic and specify
your own rules for which entities are validated. You may want only certain types to be
validated or you may want validation performed on Deleted objects.

As an example, it wouldn’t make sense to delete Reservations for Trips that are in the
past. If you want to capture deleted Reservations in the data layer and check to make
sure they aren’t for past Trips, you’ll have to make sure the deleted Reservation makes
it to the ValidateEntity method. You don’t have to send all deleted objects. Instead
you can “open up” the pipeline only for deleted Reservations.

Add the ShouldValidateEntity method to the BreakAwayContext. You can use the same
steps to override the method explained in the earlier note when adding the ValidateEn
tity method.

Example 7-15 shows the ShouldValidateEntity method after we’ve added additional
logic to allow deleted Reservation objects to be validated as well. If the entity being
evaluated is a deleted Reservation, ShouldValidateEntity will return true. If not, it will
perform its default logic to determine whether or not to validate the entity.

Example 7-15. Overriding ShouldValidateEntity

protected override bool ShouldValidateEntity(DbEntityEntry entityEntry)
{
 return base.ShouldValidateEntity(entityEntry)
 || (entityEntry.State == EntityState.Deleted
 && entityEntry.Entity is Reservation);
}

Once you’ve allowed the entry to pass through to ValidateEntity, you’ll need to add
logic to ValidateEntity to perform the new validation.

Controlling Which Entities Are Validated in ValidateEntity | 201

CHAPTER 8

Using DbContext in
Advanced Scenarios

The focus of this book so far has been to get you up and running with using the
DbContext, along with its partner APIs—Validation and Change Tracking. Now it’s
time to look at some advanced and less commonly used features of DbContext, the
DbSet and the Database classes, as well as moving between a DbContext and ObjectCon
text. Even though this book is not an application patterns book, we will also take a
look at two interesting application scenarios. One will be a discussion of defining your
DbContext and taking into consideration the use of multiple contexts in your application
to target only the sets of model classes that are needed in any given scenario. The other
will be a look at leveraging the IDbSet to create abstractions that will allow you to build
more flexible applications. In Programming Entity Framework, 2e, you’ll find an ex-
tensive sample that uses ObjectSet, automated unit testing, and repositories. This IDb
Set example will be a slice of that, explaining how you can replicate the pattern using
the DbContext API.

Moving Between ObjectContext and DbContext
As you’ve learned, the DbContext is a smaller API exposing the most commonly used
features of the ObjectContext. In some cases, those features are mirrored in the DbCon-
text API. In other cases, the Entity Framework team has simplified more complex cod-
ing by providing us with methods like Find or properties like DbSet.Local. But there’s
a big API lurking underneath that you may still need access to. For example, you might
want to work directly with the MetadataWorkspace to write generic code against classes
because that API can read the model more efficiently than reflection. Additionally, the
MetadataWorkspace is able to provide more information about the metadata than you
can discover with reflection, for example, for Key properties. Or you might want to
take advantage of a database-specific function that is exposed through Entity SQL,
which you can’t access from LINQ to Entities. Or you may already have an application

203

http://shop.oreilly.com/product/9780596807252.do

written using the ObjectContext and you want to leverage the DbContext in future up-
dates without replacing all of the ObjectContext code.

All of these scenarios are achievable.

You can learn about MetadataWorkspace, mentioned above, in Chapter
18 of Programming Entity Framework, 2e.

Accessing ObjectContext Features from a DbContext
If you are starting with a DbContext, you can access the ObjectContext features very
easily through the IObjectContextAdapter. In fact, you’ve seen this done a few times in
this book already. In Chapter 4 we used this to access the ObjectMaterialized event
that is not available directly on DbContext.

The Entity Framework team refers to the procedure of accessing the
ObjectContext from DbContext as “dropping down to ObjectContext.”
You have seen this expression used a few times already in this book.

The pattern to get to the ObjectContext is to cast the DbContext instance to this IOb
jectContextAdapter and, from there, access its ObjectContext property. DbContext is
implemented as an explicit interface of IObjectContextAdapter, which is why you need
to explicitly cast it:

 ((IObjectContextAdapter)context).ObjectContext

Once you have the ObjectContext in hand, you can work directly against that. This is
not a new instance. DbContext wraps ObjectContext; the ObjectContext instance re-
turned from IObjectContextAdapter is the instance that your DbContext was already
using internally.

If you are writing a layered application and don’t want other developers on your team
to worry about this implementation detail, you could create a property to allow them
to get directly from the DbContext to the underlying ObjectContext.

For example, they may be aware that there are more advanced features available when
they need them. You could wrap those into a property called Core. Here’s an example
of a Core property that casts with the as operator:

public ObjectContext Core
{
 get
 {
 return (this as IObjectContextAdapter).ObjectContext;
 }
}

204 | Chapter 8: Using DbContext in Advanced Scenarios

http://shop.oreilly.com/product/9780596807252.do

Now you can simply call Core from the DbContext instance to get at the desired features.

Adding DbContext into Existing .NET 4 Applications
What if you have an existing .NET 4 application that uses ObjectContext, but now you
are extending the features of the application and would like to take advantage of the
DbContext for new code? You can do this thanks to one of the overloads for instantiating
a new DbContext. The overload allows you to pass in an existing ObjectContext instance.

The overload takes two parameters. The first is an ObjectContext instance and the
second is a Boolean indicating whether or not the DbContext can dispose of the Object
Context when the DbContext is disposed:

public DbContext(ObjectContext objectContext,
 bool dbContextOwnsObjectContext)
{}

If you were to call this overload directly from the code that uses this context, that code
would need to provide an ObjectContext instance each time as well as the bool value.
Rather than force this onto the developer who is consuming the context, you can create
a DbContext class that will do this automatically as well as expose the DbSets necessary
for querying, updating, change tracking etc.

For the sake of demonstrating, we’ll start with a sample download from Programming
Entity Framework, 2e. The WPF application from Chapter 26 uses a database-first
EDMX with generated POCO classes and a hand-built ObjectContext class. This model
is based on the BreakAway domain, as is the model we’ve used throughout this book.

The ObjectContext class, BAEntities, exposes a number of ObjectSets. Example 8-1
displays a subset of its code listing.

Example 8-1. A portion of the original BAEntities ObjectContext class

public partial class BAEntities : ObjectContext
{
 public const string ConnectionString = "name=BAEntities";
 public const string ContainerName = "BAEntities";

 public BAEntities()
 : base(ConnectionString, ContainerName)
 {
 this.ContextOptions.LazyLoadingEnabled = false;
 Initialize();
 }

 partial void Initialize();

 public ObjectSet<Activity> Activities
 {
 get { return _activities ??
 (_activities = CreateObjectSet<Activity>("Activities")); }
 }

Moving Between ObjectContext and DbContext | 205

http://shop.oreilly.com/product/9780596807252.do
http://shop.oreilly.com/product/9780596807252.do

 private ObjectSet<Activity> _activities;

 public ObjectSet<Contact> Contacts
 {
 get { return _contacts ??
 (_contacts = CreateObjectSet<Contact>("Contacts")); }
 }
 private ObjectSet<Contact> _contacts;

 public ObjectSet<Trip> Trips
 {
 get { return _trips ??
 (_trips = CreateObjectSet<Trip>("Trips")); }
 }
 private ObjectSet<Trip> _trips;

 public ObjectSet<Destination> Destinations
 {
 get { return _destinations ??
 (_destinations =
 CreateObjectSet<Destination>("Destinations")); }
 }
 private ObjectSet<Destination> _destinations;
}

In the project that contains this BAEntities class, we’ve added the EntityFramework
package reference and a new class file, BAEntitiesDbContext.cs, that contains the BAEn
titiesDbContext class. This new class does three important things:

1. Inherits from DbContext

2. Has a default constructor that calls a private constructor with the ObjectContext
overload.

3. Exposes DbSets to code against using the DbContext API.

Example 8-2 shows the listing for BaEntitiesDbContext. It includes DbSet properties to
expose the classes exposed by the ObjectSet properties shown in Example 8-1. There
are other DbSet properties in the class but they are not relevant to this example.

Example 8-2. DbContext class that wraps the BAEntities ObjectContext

using System.Data.Entity;
using System.Data.Objects;

namespace BAGA
{
 public class BAEntitiesDbContext: DbContext
 {
 public BAEntitiesDbContext():this(new BAEntities(),
 dbContextOwnsObjectContext:true)
 {
 }
 public DbSet<Activity> Activities{get;set;}
 public DbSet<Contact> Contacts {get;set;}

206 | Chapter 8: Using DbContext in Advanced Scenarios

 public DbSet<Trip> Trips {get;set;}
 public DbSet<Destination> Destinations {get;set;}
 }
}

The constructor is a default constructor that takes no parameters, but its declaration
invokes the base DbContext constructor overload that uses an ObjectContext.

The automated tests listed in Example 8-3 verify that, using this DbContext, we can
retrieve, insert, and edit entities. Notice that the third test uses the DbSet.Find method
as well. Because the database generates new key values for Trip, the second test verifies
that the inserted Trip has a TripId greater than 0. The third test uses a similar assertion
for the inserted Payment. The third test also re-retrieves the reservation from the data-
base to check that its ModifiedDate value was updated.

Example 8-3. Automated tests to exercise the DbContext that wraps an existing ObjectContext

using System.Linq;
using System.Transactions;
using BAGA;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System;

namespace DbContextTests
{
 [TestMethod]
 public void CanRetrieveTripViaDbContext()
 {
 using (var context = new BAEntitiesDbContext())
 {
 Assert.IsNotNull(context.Trips.FirstOrDefault());
 }
 }

 [TestMethod]
 public void CanInsertTripViaDbContext()
 {
 using (new TransactionScope())
 {
 var trip = new Trip
 {
 DestinationID = 55,
 LodgingID = 1,
 StartDate = new DateTime(2012, 1, 1),
 EndDate = new DateTime(2012, 2, 1),
 TripCostUSD = 1000
 };
 using (var context = new BAEntitiesDbContext())
 {
 context.Trips.Add(trip);
 context.SaveChanges();
 Assert.IsTrue(trip.TripID > 0);
 }
 }

Moving Between ObjectContext and DbContext | 207

 }

 [TestMethod]
 public void CanRetrieveandModifyReservationandAddPayment()
 {
 using (new TransactionScope())
 {
 DateTime reservationDate;
 using (var context = new BAEntitiesDbContext())
 {
 //4 is a known reservation in the database
 var res = context.Reservations.Find(4);
 reservationDate = res.ReservationDate.AddDays(-1);
 res.ReservationDate = reservationDate;
 var payment = new Payment
 {
 Amount = 100,
 ModifiedDate = DateTime.Now,
 PaymentDate = DateTime.Now.Date
 };
 res.Payments.Add(payment);
 context.SaveChanges();
 Assert.IsTrue(payment.PaymentID > 0);
 }
 using (var context = new BAEntitiesDbContext())
 {
 Assert.AreEqual(reservationDate,
 context.Reservations.Find(4).ReservationDate);
 }
 }
 }
 }
}

If you want to take advantage of DbContext when adding new features to an existing
application that uses an ObjectContext, you can do so with the addition of a DbCon
text in the style of the BaEntitiesDbContext. Be sure to test your logic!

Leveraging SQL Server Operators Exposed in SqlFunctions
One scenario that we’ve been asked about recently was the ability to detect numeric
data in some type of string column in the database. SQL Server has an IsNumeric func-
tion but there’s no way to express that in LINQ to Entities. A set of SQL Server specific
functions was wrapped into System.Data.Objects.SQLClient.SqlFunctions in .NET4.
These can be used in LINQ to Entities queries against the ObjectContext and against
DbContext.

In the BreakAway domain, perhaps you need to search for numeric zip codes. Because
postal codes can be alphanumeric in many parts of the world, the zip code field is a
string and in the database, it’s an nvarchar.

208 | Chapter 8: Using DbContext in Advanced Scenarios

To use IsNumeric in your query, you’ll need a using statement for the Sys
tem.Data.Objects.SqlClient namespace at the top of your code file.

Then you can use SqlFunctions directly in the query expression. Example 8-4 demon-
strates using the IsNumeric function to return a list of people with numeric zip codes.
IsNumeric returns 1 for valid numbers, which is why the query searches for IsNumeric
is equal to 1.

Example 8-4. Using SQL Server IsNumeric in LINQ to Entities

private static void UseSqlFunctions()
{
 using (var context = new BreakAwayContext())
 {
 var query=from p in context.People
 where SqlFunctions.IsNumeric(p.LastName)==1
 select p;
 var results=query.ToList();
 }
}

If you look at the query in a profiler, you can see that the IsNumeric function is used in
the SQL query. Here are the last two lines of the SQL executed in the database:

FROM [dbo].[People] AS [Extent1]
WHERE 1 = (ISNUMERIC([Extent1].[ZipCode]))

Just be sure to keep in mind that this is specifically designed for use in SQL Server
databases, though other providers could make similar functionality available for their
databases.

Querying Derived Types with DbSet
If you have been working with ObjectContext and ObjectSet, you should be aware of
another benefit of DbSet when working with derived types. You can create DbSets that
encapsulate derived types. When working with ObjectSet, you are only able to create
sets from a base type. So if you had a hierarchy such as Person with a derived type,
Customer, any time you wanted to query Customer you would have to express a query
starting with

context.People.OfType<Customer>()

This can get pretty tedious.

The DbContext API lets you create DbSet properties from derived types without having
to declare the base type or set the OfType method to access the derived type. If you want
to expose the derived type as a DbSet, you simply add it as you would any other entity
in the model:

public DbSet<Customer> Customers { get; set; }

Querying Derived Types with DbSet | 209

You can expose DbSet properties for base types and their derived types in your context.
As with ObjectSet, querying a DbSet of the base type (for example, DbSet<Person>) will
return all of the types in the hierarchy, including derived types that are exposed by their
own DbSet property.

Understanding the Interface Property Limitation
Entity Framework is unable to create schema from interfaces. That means if you have
any properties (complex type properties or navigation properties) that are interface
types, Code First will not build those into the model. Your code may run without
throwing an exception, but the database won’t have any schema to represent that type
and therefore its data will not be persisted.

For example, you might have an IDestination interface and the Destination class and
some other classes implementing that interface:

 public class Destination : IDestination
 public class EliteDestination : IDestination
 public class RoughingItDestination : IDestination

Then consider the Destination property in Lodging class. Rather than always returning
a Destination instance, you might want to return any of those types:

[Required]
public IDestination Destination { get; set; }

Unfortunately, this scenario is just not supported.

We’ve seen some workarounds for this limitation, but they typically end up using one
of the concrete implementations of the interface somewhere in the workaround and
doing so means that you won’t be able to use any other implementations of the
interface.

Currently, providing support for mapped interface properties in Entity
Framework is not high on the team’s priority list because there have
been so few requests for this. If you want to get more attention to making
Code First recognize interface properties, vote on (or submit) a sugges-
tion at data.uservoice.com. Be sure you’re in the feedback area for Entity
Framework.

Considering Automated Testing with DbContext
In this book, we’ve used a console application to demonstrate many of the features that
you’ve learned about. This is to ensure that readers using the Express and Standard
versions of Visual Studio are able to follow along. Our personal preference when build-
ing applications, however, is to include automated tests, whether we use the testing

210 | Chapter 8: Using DbContext in Advanced Scenarios

http://data.uservoice.com

tools built into Visual Studio Professional and Visual Studio Ultimate, or third-party
tools such as XUnit, NUnit, or the testing features in JetBrain’s Resharper.

To be able to build flexible tests, you’ll want to leverage the IDbSet interface. The
DbSet class you’ve worked with throughout this book implements IDbSet. And the
IDbSet interface is where the Add, Attach, Remove, and Create methods come from.
IDbSet also implements IQueryable<T>, which enables LINQ and brings along the ex-
tension methods: Find, Include, and AsNoTracking.

First, let’s look at examples of automated tests that you can build and run with the
existing BreakAwayContext class and without having to work with the IDbSet.

Testing with DbSet
You can build unit tests to validate that your classes work as expected without engaging
Entity Framework or the database.

For example, the simple test listed in Example 8-5 checks that the FullName property
in the Person type functions as expected.

Example 8-5. Ensuring that FullName works as expected

 [TestMethod()]
 public void PersonFullNameReturnsFirstNamePlusLastName()
 {
 var person = new Person
 {
 FirstName = "Roland",
 LastName = "Civet"
 };
 Assert.AreEqual(person.FullName, "Roland Civet");
 }

You can also write integrated tests that check to make sure some of your Entity Frame-
work–related logic works as expected. Example 8-6 displays a test method that ensures
you’ve configured your class correctly to cause Entity Framework validation to notice
that a related Photo property is missing from a new Person.

Example 8-6. An integration test to ensure that your code and Entity Framework work together

[TestMethod]
public void ValidationDetectsMissingPhotoInPerson()
{
 var person = new Person
 {
 FirstName = "Mikael",
 LastName = "Eliasson"
 };
 DbEntityValidationResult result;
 using (var context = new BreakAwayContext())
 {
 result = context.Entry(person).GetValidationResult();

Considering Automated Testing with DbContext | 211

 }
 Assert.IsFalse(result.IsValid);
 Assert.IsTrue(result.ValidationErrors
 .Any(v => v.ErrorMessage.ToLower()
 .Contains("photo field is required")));
}

You can also write integration tests against custom logic that executes database queries
or saves data back to the database to make sure the persistence is working as expected.

But there’s one area of testing that’s a bit trickier with Entity Framework, which is
testing logic that uses the context to query and save data but does not necessarily need
to make the trip to the database.

Exploring a Scenario That Unnecessarily Queries the Database
A simplistic example is a method that performs a database query based on some other
logic. Perhaps you have a repository method to retrieve customers who have reserva-
tions for a trip, but only if that trip is in the future. Example 8-7 shows a single method
from a repository class, GetTravelersOnFutureTrip. The class declaration and construc-
tor are included in the listing for clarity.

Example 8-7. The GetTravelersOnFutureTrip method in the TripRepository class

public class TripRepository
{
 BreakAwayContext _context;

 public TripRepository(BreakAwayContext context)
 {
 _context = context;
 }
 public List<Person> GetTravelersOnFutureTrip(Trip trip)
 {
 if (trip.StartDate <= DateTime.Today)
 {
 return null;
 }

 return _context.Reservations
 .Where(r => r.Trip.Identifier == trip.Identifier)
 .Select(r => r.Traveler)
 .ToList();
 }
}

If a past trip is passed into the method, the method will return null. If a future trip is
passed in, the method will query for the travelers on the trip and return a list of those
travelers. Recall that the Reservation.Traveler property returns a Person type. If no
reservations have been made for the trip, the list will contain zero items.

212 | Chapter 8: Using DbContext in Advanced Scenarios

It would be feasible to test that the GetTravelersOnFutureTrip returns a null if the past
trip is passed in and that it doesn’t return a null (regardless of the size of the list returned)
if the trip is in the future.

Example 8-8 displays two tests to check both bits of logic.

Example 8-8. Testing logic of GetTravelersOnFutureTrip

[TestMethod]
public void GetCustomersOnPastTripReturnsNull()
{
 var trip = new Trip { StartDate = DateTime.Today.AddDays(-1) };
 using (var context = new BreakAwayContext())
 {
 var rep = new TripRepository(context);
 Assert.IsNull(rep.GetTravelersOnFutureTrip(trip));
 }
}

[TestMethod]
public void GetCustomersOnFutureTripDoesNotReturnNull()
{
 Database.SetInitializer(new
 DropCreateDatabaseIfModelChanges<BreakAwayContext>());
 var trip = new Trip { StartDate = DateTime.Today.AddDays(1) };
 using (var context = new BreakAwayContext())
 {
 var rep = new TripRepository(context);
 Assert.IsNotNull(rep.GetTravelersOnFutureTrip(trip));
 }
}

The first method, GetTravelersOnPastTripReturnsNull, will not hit the database. It cre-
ates a minimally populated trip instance with a past StartDate. The GetCustomersOnFu
tureTrip method sees that the StartDate is in the past and returns null, never reaching
the query. Because the database will never be hit by the repository method, there’s no
need to even worry about database initialization in this test.

In the second test, we expect to query the database, so we’re setting the initializer to
DropCreateDatabaseIfModelChanges to ensure that the database exists. Since the test
doesn’t care about the actual data, there’s no need to seed the database. We again create
a minimal Trip, this time with a future StartDate. The repository method will execute
the database query, requesting all Reservations where the TripIdentifier is
00000000-0000-0000-0000-000000000000 because we didn’t set that value in the Trip
instance. There will be no results and the method will return an empty List<Person>.
The test passes because an empty list is not equal to null. You can see that for this test,
what’s in the database is of no consequence, so the trip to the database is a wasted
effort. You only want to make sure that the method responds correctly to a future or
past date. However, with the BreakAwayContext and its DbSets, there’s no avoiding the
query if a future trip is passed in as a parameter.

Considering Automated Testing with DbContext | 213

If we build some more logic into the solution using the IDbSet interface, we’ll be able
to take the database out of the picture for the tests.

Reducing Database Hits in Testing with IDbSet
If you want to test a method such as GetTravelersOnFutureTrip without hitting the
database, you’ll need to use abstractions of the context and sets that do not involve
database interaction. What we’ll show you is the key parts of a more abstracted solution
so that we can focus on the IDbSet interface.

As an alternative to the BreakAwayContext class, we’ll create another context that can
create entities on the fly without depending on the database. But in order for us to use
this alternative context with the repository, it will need to let us execute the code in the
GetTravelersOnFutureTrip method. That means it will need, for example, the ability to
create and execute queries. IDbSet gives us the capabilities that we need.

Not only does the DbSet class we’ve been using implement IDbSet, it also inherits from
DbQuery. And it’s the DbQuery class that adds in the reliance on the database. In our
alternative context, we’ll use properties that implement IDbSet but are not derived from
DbQuery. That means we’ll need a concrete implementation of IDbSet, giving us the
ability to perform set logic and queries without interacting with a database, effectively
“faking” the database interaction. So let’s start by creating this concrete class.

Creating an IDbSet Implementation
Because IDbSet implements IQueryable and IEnumerable, this new class will need to
implement members of all three interfaces. Example 8-9 shows the entire listing of the
FakeDbSet class including namespaces used by the class.

The Visual Studio IDE, as well as third-party productivity tools, can help
implement the interface members to reduce the typing.

Example 8-9. The FakeDbSet implementation of IDbSet

using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Data.Entity;
using System.Linq;
using System.Linq.Expressions;

namespace Testing
{
 public abstract class FakeDbSet<T> : IDbSet<T>

214 | Chapter 8: Using DbContext in Advanced Scenarios

 where T : class, new()
 {
 readonly ObservableCollection<T> _items;
 readonly IQueryable _query;

 public FakeDbSet()
 {
 _items = new ObservableCollection<T>();
 _query = _items.AsQueryable();
 }

 public T Add(T entity)
 {
 _items.Add(entity);
 return entity;
 }

 public T Attach(T entity)
 {
 _items.Add(entity);
 return entity;
 }

 public TDerivedEntity Create<TDerivedEntity>()
 where TDerivedEntity : class, T
 {
 return Activator.CreateInstance<TDerivedEntity>();
 }

 public T Create()
 {
 return new T();
 }

 public abstract T Find(params object[] keyValues);

 public ObservableCollection<T> Local
 {
 get
 {
 return _items;
 }
 }

 public T Remove(T entity)
 {
 _items.Remove(entity);
 return entity;
 }

 public IEnumerator<T> GetEnumerator()
 {
 return _items.GetEnumerator();
 }

Reducing Database Hits in Testing with IDbSet | 215

 IEnumerator IEnumerable.GetEnumerator()
 {
 return _items.GetEnumerator();
 }

 public Type ElementType
 {
 get { return _query.ElementType; }
 }

 public Expression Expression
 {
 get { return _query.Expression; }
 }

 public IQueryProvider Provider
 {
 get { return _query.Provider; }
 }
 }
}

When calling DbSet.Attach, Entity Framework will throw an exception
if the object you are attaching is already being tracked by the context.
If this is important behavior for your FakeDbSet, you could implement
some logic to emulate that behavior.

There are a number of notable points to make about this implementation.

The first is that FakeDbSet is an abstract class. That is due to another notable point,
which is that there is an abstract method: Find. As we don’t anticipate having a DbCon
text to interact with, it will be too difficult to arrive at a generic way of handling
IDbSet.Find for any entity. For example, the Trip type has a key named Identifier. So
Find will need to build a query using Identifier, whereas for other types it might need
to build a query around Id.

Find is a member of the IDbSet interface. The Include, AsNoTracking, and
Load methods, which you used earlier in this book, are extension meth-
ods on IQueryable. When using FakeDbSet or other IDbSet implemen-
tations, those methods will be run without throwing exceptions. But
they won’t have any impact on your fake set or context. For example, a
method that uses Include won’t emulate Include logic in your fake
queries unless you implement special Include logic in your fake DbSets.

FakeDbSet contains two local fields: an ObservableCollection named _items and an
IQueryable called _query. The _items is used to manage the data so that we can respond
to the IDbSet methods such as Add and Remove as well as enumeration supplied by
IEnumerable. We’re using ObservableCollection to make it easy to implement the

216 | Chapter 8: Using DbContext in Advanced Scenarios

Local property. The _query field is to support members of IQueryable: Expression and
Provider.

Also notable are the implementations of Create. The Create methods are needed to
create new entity instances when your entity types are using dynamic proxies. This
allows the context to be aware of the instance. You learned about working with dynamic
proxies in Chapter 3.

While acting as a technical reviewer for this book, Mikael Eliasson took
this implementation a step further to enable the generic FakeDbSet to be
aware of the key property so that you’re not required to override the
class simply to expand upon the Find method. See his solution at https:
//gist.github.com/783ddf75f06be5a29a9d.

Abstracting BreakAwayContext for Tests
There’s one more function to plan for, which is that the repository class currently ex-
pects a BreakAwayContext to be used to perform the query. The current BreakAwayCon
text brings with it the concrete DbSets and therefore the database. We’ll abstract the
BreakAwayContext class by creating an interface that matches the contract (or expecta-
tion) of what should be in a BreakAwayContext class. Then we can tell the repository to
expect anything that implements the interface, not just the concrete one it’s using now:

public interface IBreakAwayContext
{
 IDbSet<Destination> Destinations { get; }
 IDbSet<Lodging> Lodgings { get;}
 IDbSet<Trip> Trips { get; }
 IDbSet<Person> People { get; }
 IDbSet<Reservation> Reservations { get; }
 IDbSet<Payment> Payments { get; }
 IDbSet<Activity> Activities { get; }

 int SaveChanges();
}

This interface is only demonstrating what’s needed to satisfy the repos-
itory method and to make sure existing BreakAwayContext examples
from this chapter continue to function. As you build out an application
and repositories, you’ll need more features, whether they are built into
this particular interface or other interfaces and classes.

Notice that the interface returns IDbSet properties instead of concrete classes. This is
how it will be possible to create a context that explicitly builds and returns FakeDbSets.

Reducing Database Hits in Testing with IDbSet | 217

https://gist.github.com/783ddf75f06be5a29a9d
https://gist.github.com/783ddf75f06be5a29a9d

Now you can modify the repository class so that it expects an IBreakAwayContext instead
of the BreakAwayContext class. Example 8-10 shows the revised first eight lines of the
TripRepository class. The _context will now be an IBreakAwayContext.

Example 8-10. Beginning of revised TripRepository class

public class TripRepository
{
 IBreakAwayContext _context;

 public TripRepository(IBreakAwayContext context)
 {
 _context = context;
 }

If you want to use BreakAwayContext here, it will now need to implement the interface.
First, you need to add the interface implementation into the class declaration. And
because BreakAwayContext is now implementing the interface, it needs to match the
interface. Destinations now must return an IDbSet<Destination> and so forth. You can
see the relevant portion of the revised BreakAwayContext class in Example 8-11.

Example 8-11. BreakAwayContext revised to implement IBreakAwayContext

public class BreakAwayContext : DbContext, IBreakAwayContext
{
 public IDbSet<Destination> Destinations { get; set; }
 public IDbSet<Lodging> Lodgings { get; set; }
 public IDbSet<Trip> Trips { get; set; }
 public IDbSet<Person> People { get; set; }
 public IDbSet<Reservation> Reservations { get; set; }
 public IDbSet<Payment> Payments { get; set; }
 public IDbSet<Activity> Activities { get; set; }

If you were to rerun the GetCustomersOnFutureTripReturnsListOfPeople and GetCusto
mersOnPastTripReturnsNull tests, they will still pass. The repository is happy to have
the BreakAwayContext instantiated in the tests because that class implements IBreakA
wayContext. And the DbContext that BreakAwayContext derives from will ensure that the
IDbSet properties return DbSet types so that you continue to interact with the database.

Now it’s time to focus on creating a context that you can use for testing that won’t hit
the database. When you create a new context class that implements IBreakAwayCon
text, you’ll get all of the IDbSet properties. Since our repository method doesn’t need
access to all of the IDbSet’s, the code in Example 8-12 only initializes the one that we’ll
be working with—Reservations.

Example 8-12. FakeBreakAwayContext class

using System.Data.Entity;
using DataAccess;
using Model;

namespace Testing

218 | Chapter 8: Using DbContext in Advanced Scenarios

{
 public class FakeBreakAwayContext : IBreakAwayContext
 {
 public FakeBreakAwayContext()
 {
 Reservations = new ReservationDbSet();
 }

 public IDbSet<Destination> Destinations { get; private set; }
 public IDbSet<Lodging> Lodgings { get; private set; }
 public IDbSet<Trip> Trips { get; private set; }
 public IDbSet<Person> People { get; private set; }
 public IDbSet<Reservation> Reservations { get; private set; }
 public IDbSet<Payment> Payments { get; private set; }
 public IDbSet<Activity> Activities { get; private set; }

 public int SaveChanges()
 {
 return 0;
 }
 }
}

What you don’t see yet in the listing is how the fake sets are populated; we’ll leave it
up to the automated tests to provide relevant data where necessary. The tests we’re
currently focused on won’t even require any seed data.

And now for the derived FakeDbSet classes, which are key to the FakeBreakAwayCon
text class. Each has its own way to implement Find based on knowledge of its key field.
Example 8-13 shows the ReservationDbSet class needed for this example. You can use
this as a basis for the others. Just be sure to use the key properties in the Find method
(for example, DestinationId in DestinationDbSet). You are not required to implement
the other fake sets to follow along with the rest of this chapter.

Example 8-13. ReservationDbSet deriving from and overriding FakeDbSet

using System;
using System.Linq;
using Model;

namespace Testing
{
 public class ReservationDbSet : FakeDbSet<Reservation>
 {
 public override Reservation Find(params object[] keyValues)
 {
 var keyValue = (int)keyValues.FirstOrDefault();
 return this.SingleOrDefault(r => r.ReservationId == keyValue);
 }
 }
}

This is one approach to abstracting the DbSets. Another idea is presented in the sidebar.

Reducing Database Hits in Testing with IDbSet | 219

FakeDbSets for Similar Types
It is more likely that you have a common pattern to key names and may not need explicit
Find methods for each type. In that case you might have a single derived class that
knows how to query on a single key name. Here’s an example of a derived class designed
for types whose key properties follow the pattern type name + “Id”, such as Destina
tionId, ReservationId, and others:

internal class TypesWithIdDbSet<T> : FakeDbSet<T>
where T : class
{
 public override T Find(params object[] keyValues)
 {
 var keyValue = (int)keyValues.FirstOrDefault();
 return this.SingleOrDefault(t => (int)(t.GetType()
 .GetProperty(t.GetType().Name + "Id")
 .GetValue(t,null)) == keyValue);

 }

To see this in action, you’ll need to modify the tests so that they use the
FakeBreakAwayContext instead of the BreakAwayContext. The updated listing is shown
in Example 8-14.

Example 8-14. Automated test that uses the fake context, fake sets, and fake data

[TestMethod]
public void FakeGetCustomersOnPastTripReturnsNull()
{
 var trip = new Trip { StartDate = DateTime.Today.AddDays(-1) };
 var context = new FakeBreakAwayContext();
 var rep = new TripRepository(context);
 Assert.IsNull(rep.GetTravelersOnFutureTrip(trip));
}

[TestMethod]
public void FakeGetCustomersOnFutureTripDoesNotReturnNull()
{
 var trip = new Trip { StartDate = DateTime.Today.AddDays(1) };
 var context = new FakeBreakAwayContext();
 var rep = new TripRepository(context);
 Assert.IsNotNull(rep.GetTravelersOnFutureTrip(trip));
}

Now you can rerun the tests. You can debug them to verify that the tests are indeed
using the FakeBreakAwayContext.

Now it’s possible to verify that the GetCustomersOnFutureTrip method in the TripRepo
sitory functions properly without involving the database.

220 | Chapter 8: Using DbContext in Advanced Scenarios

Reviewing the Implementation
We covered a lot of ground in this section, so let’s catch our breath and make sure you
haven’t lost sight of the big picture. When writing automated tests, it’s not uncommon
to test logic in a method that, in addition to the logic your test is concerned with, also
happens to interact with the database. In order to avoid this, we created a way to fake
the database interaction leveraging the IDbSet interface that’s provided in the DbCon-
text API. We created a concrete implementation of IDbSet called FakeDbSet, which is
generic so that we can create FakeDbSets of any of our model types. In order to use non-
database-oriented implementations of IDbSet, we also abstracted the BreakAwayCon
text into its own interface that returns IDbSet for querying then implemented FakeDb
Context from there.

Figure 8-1 shows how the FakeBreakAwayContext context and the BreakAwayContext both
implement the IBreakAwayContext interface. BreakAwayContext uses DbSet properties for
direct interaction with the database, while FakeBreakAwayContext works with FakeDb
Sets populated with objects created in memory.

Figure 8-1. Classes implementing the IBreakAwayContext interface

With these abstractions in place, TripRepository will work with any implementation
of IBreakAwayContext. For the sake of the AutomatedTripTests, the test methods use the
FakeBreakAwayContext and avoid database interaction while the application uses in-
stances of BreakAwayContext to pass into the repository.

Supplying Data to a FakeDbSet
These test methods did not need any data available to do their jobs, but you may have
tests that do require some fake data. Example 8-15 shows a new method that returns
the count of Reservations for a single Trip.

Reducing Database Hits in Testing with IDbSet | 221

Example 8-15. Repository method to retrieve a reservation count

public int ReservationCountForTrip(Trip trip)
{
 return _context.Reservations
 .Where(r => r.Trip.Identifier == trip.Identifier)
 .Count();
}

In order to test this method, the fake context will need to contain data. You can supply
that data as part of a test. Example 8-16 demonstrates one such test, ReservationCount
ForTripReturnsCorrectNumber.

Example 8-16. Testing the ReservationCountForTrip method

[TestMethod]
public void ReservationCountForTripReturnsCorrectNumber()
{
 var context = new FakeBreakAwayContext();

 var tripOne = new Trip { Identifier = Guid.NewGuid() };
 var tripTwo = new Trip { Identifier = Guid.NewGuid() };

 context.Reservations.Add(new Reservation { Trip = tripOne });
 context.Reservations.Add(new Reservation { Trip = tripOne });
 context.Reservations.Add(new Reservation { Trip = tripTwo });

 var rep = new TripRepository(context);
 Assert.AreEqual(2, rep.ReservationCountForTrip(tripOne));
}

The context will need to contain some Reservation data in order to return a count.
While you might consider adding a number of Reservation instances that are fully
described with Payments, a Traveler, and a Trip, you can see in the example that only
the most minimal information is required to perform the test accurately. Three new
Reservations are added to the context but each Reservation contains no more infor-
mation than its Trip property. Notice also that we created two Reservations with the
Trip we are searching for and one Reservation assigned to another Trip. Once the
context is seeded, we can use the assertion to verify that the query is properly filtering,
not simply returning all of the Reservations that we created.

Depending on the logic you are testing, you can build up more complex fake data in
your test.

Accessing the Database Directly from DbContext
DbContext communicates with the database any time you execute a query or call Save
Changes. You can take advantage of DbContext’s access to the database through its
Database property. With DbContext.Database, you can communicate directly with the
database if your application calls for such interaction.

222 | Chapter 8: Using DbContext in Advanced Scenarios

You may not have realized that Code First leverages the Database property for the da-
tabase initialization tasks. It uses the Database.Exists property to check for the data-
base. Database has a Delete method and a Create method and even one called Crea
teIfNotExists. All four of these members are public, so you could use them directly if
you want to. In fact, early technical previews of Code First required developers to use
those properties and methods to perform database initialization manually. It wasn’t
until later that the SetInitializer classes were introduced which encapsulated the most
common initialization workflows.

Once your DbContext is instantiated, it will be aware of the connection string it will use
to work with the database, even if you haven’t yet performed any tasks that would
initiate the connection. You can use the DbContext.Database property to interact with
the connection or the database itself.

Not all of the Database members require direct interaction with the database. For ex-
ample, here is some code that writes the connection string of the Database associated
with that context to a console window using the Database.Connection property, which
returns a System.Data.Common.DbDataConnection:

using (var context=new BreakAwayContext())
{
 Console.WriteLine(context.Database.Connection.ConnectionString);
}

A more common use of the Database property is to execute raw queries and commands
directly on the database for those odd occasions when you need to perform a query
that’s not supported by your model or by Entity Framework.

Executing Queries with Database.SqlQuery and DbSet.SqlQuery
DbContext.Database.SqlQuery lets you execute a query on the database and return any
type that you specify. It will use the connection from the context that you are calling
Database.SqlQuery from. For example, the database might have a view named Destina
tionSummaryView. Even if there is no DestinationSummary model type, you can declare
the class and then query the view using SqlQuery. As long as the results of the
SqlQuery match the type that you want it to populate, Entity Framework will be happy.

The DestinationSummary class might look something like Example 8-17.

Example 8-17. DestinationSummary class

public class DestinationSummary
{
 public int DestinationId { get; set; }
 public string Name { get; set; }
 public int LodgingCount { get; set; }
 public int ResortCount { get; set; }
}

Then you can call the Database.SqlQuery from an instance of DbContext as follows:

Accessing the Database Directly from DbContext | 223

var summary = context.Database.SqlQuery<DestinationSummary>(
"SELECT * FROM dbo.DestinationSummaryView");

SqlQuery returns an SqlDbQuery. You’ll have to execute the SqlQuery with a LINQ
method such as ToList to execute the query.

What About the Database Class in a Fake Context?
If you make calls to DbContext.Database in your application and want to build tests
around that logic, you’ll want your fake contexts to be able to handle that logic. For
example, you may have raw SqlQuery statements in methods for which you want to
write automated tests using the fake context and fake sets you learned about earlier.
One approach to covering this feature in your tests would be to encapsulate the raw
SqlQuery code into methods that are part of IBreakAwayContext. Then you can imple-
ment those methods as desired in BreakAwayContext and any other classes that also
implement the interface.

For example, you could add this method to IBreakAwayContext:

 List<DestinationSummary> GetDestinationSummary();

In BreakAwayContext you could implement it as follows:

public List<DestinationSummary> GetDestinationSummary()
{
 return this.Database.SqlQuery<DestinationSummary>(
 "SELECT * FROM dbo.DestinationSummaryView").ToList();
}

And in the FakeBreakAwayContext, you could initially implement the method like this:

public List<DestinationSummary> GetDestinationSummary()
{
 throw new NotImplementedException();
}

When the time comes that you want data to be returned by FakeBreakAwayContext.Get
DestinationSummary, you could add in logic to create and return one or more Destina
tionSummary instances in the list.

Now rather than calling DbContext.Database.SqlQuery directly in your code to get the
DestinationSummary, you can call the GetDestinationSummary method that is supported
by the interface.

If your query is returning types that are exposed in the context through DbSet properties,
you can use the DbSet.SqlQuery method instead. This version of SqlQuery does not
require you to supply the return type as a parameter, since the DbSet knows the type.
Example 8-18 shows DbSet.SqlQuery, which demonstrates how explicit you need to be
when constructing the query. The Destination maps to the baga.Locations table and
that table’s field names don’t match the Destination property names. SqlQuery expects
the results to match the type exactly, including matching the names and types correctly.
The order of the columns in the result set is not critical.

224 | Chapter 8: Using DbContext in Advanced Scenarios

Example 8-18. Executing a query with SqlQuery

var dests = context.Database.SqlQuery<Destination>
 (@"SELECT LocationId as DestinationId, LocationName as Name,
 Description, Country, Photo
 FROM baga.locations where country={0}","Australia");
 var results = dests.ToList();

The resulting dests will be a List of Destination types. Because of the string Format
syntax (that is, {0}), Entity Framework will execute this in the database as a parame-
terized query.

SqlQuery is not supported for types that contain complex type proper-
ties. Therefore you cannot return a Person type from a SqlQuery because
it has a PersonalInfo field and an Address field that are both complex
types.

If you need to build dynamic queries, we recommend that you be conscientious of the
possibility of SQL injection or other security attacks. You should build parameterized
queries as you did in Example 8-18, rather than concatenate values directly into the
SQL. Alternatively, you can use an overload of SqlQuery that accepts SqlParameters.
Example 8-19 shows how you would use parameters with SqlQuery. The particular
query could be performed very easily with LINQ to Entities and is only used here for
demonstration purposes.

Example 8-19. Executing a query with SqlQuery

var destSql = @"SELECT LocationId as DestinationId,
 LocationName as Name, Description,
 Country,Photo
 FROM baga.locations
 WHERE country=@country";
var dests = context.Database.SqlQuery<Destination>
 (destSql, new SqlParameter("@country", "Australia"))
 .ToList();

Earlier in this chapter, we modified BreakAwayContext to use IDbSet properties instead
of concrete DbSet properties. SqlQuery is a method of DbSet. If you are using IDbSet,
you’ll first need to cast it to DbSet in order to use DbSet.SqlQuery. That means that for
methods that include SqlQuery, you’ll be limited with respect to what types of auto-
mated tests you can perform.

Here is the SqlQuery statement from Example 8-19 revised to work with an IDbSet that
needs to be cast to DbSet:

var dests = ((DbSet<Destination>)context.Destinations)
 .SqlQuery(destSql, new SqlParameter("@country", "Brazil"))
 .ToList();

Accessing the Database Directly from DbContext | 225

Tracking Results of SqlQuery
When you execute a SqlQuery from Database, the results are never tracked by the con-
text, even if the query returns types that are in the model and known by the context. If
you do not want the results to be change-tracked, use DbContext.Database.SqlQuery.

Results of a DbSet.SqlQuery will be tracked by the context. Ensuring that results are
change-tracked is the primary reason you would choose to use DbSet.SqlQuery over
Database.SqlQuery.

Executing Commands from the Database Class
DbContext.Database also lets you execute commands, not just queries, on the database
directly if you encounter an odd function you want to perform in the database. You
can do this with the ExecuteSqlCommand method. ExecuteSqlCommand takes two param-
eters: a SQL string expression and an array of SqlParameters. Although as you saw with
the SqlQuery, you might prefer using the cleaner-looking string Format syntax to ach-
ieve parameterized commands. ExecuteSqlCommand returns an int representing the
number of rows affected in the database.

Like SqlQuery, ExecuteSqlCommand will use the connection of the context from which
you are calling the command. Depending on the permissions granted for the active
context instance, you could execute Insert, Update, and Delete commands or even
commands that affect the database schema.

ExecuteSqlCommand is designed to handle special scenarios and isn’t meant as a replace-
ment for Entity Framework’s main mechanisms for persisting data in the database.

If you have read Programming Entity Framework: Code First, you may recall how Exe
cuteSqlCommand was used to enhance seeding a database during initialization. See the
sidebar.

Using ExecuteSqlCommand to Enhance Database Seeding
The following is extracted from Chapter 6 of Programming Entity Framework: Code
First.

In addition to seeding a database when Code First creates it, you may want to affect
the database in ways that can’t be done with configurations or data seeding. For
example, you may want to create an Index on the Name field of the Lodgings table to
speed up searches by name.

You can achieve this by calling the DbContext.Database.ExecuteSqlCommand method
along with the SQL to create the index inside the Seed method. Here is an example of
a Seed method that forces this Index to be created before the data is inserted:

protected override void Seed(BreakAwayContext context)
{
 context.Database.ExecuteSqlCommand
 ("CREATE INDEX IX_Lodgings_Name ON Lodgings (Name)");

226 | Chapter 8: Using DbContext in Advanced Scenarios

http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do

Code First Migrations, available in Entity Framework 4.3, includes native support for
creating indexes in your database without dropping down to ExecuteSqlCommand.

Providing Multiple Targeted Contexts in Your Application
So far in this book we’ve used a single context class, BreakAwayContext, to represent our
model and expose all of our domain classes for a solution’s data access needs. In a large
solution, it is likely that you have different areas of your application that address a
specific business process and will only require interaction with a subset of your domain
classes. If you have a lot of domain classes, there are a number of benefits to creating
DbContexts that are targeted to these various processes rather than one all-purpose
context. Most important is maintainability. As your application grows, so will the
DbContext class. It can become unwieldy if it’s responsible for many DbSet properties
and fluent configurations for many classes. Adding and modifying existing logic will
get more difficult. If you have multiple contexts, each responsible for a certain function
of your application, they will each contain a smaller set of properties and configura-
tions. It will be much easier to maintain each context as well as locate the logic you
need within it.

Performance is another consideration. When Entity Framework creates an in-memory
model of the context, the larger the context is the more resources are expended to
generate and maintain that in-memory model.

Reusing Classes, Configurations, and Validation Across Multiple Contexts
Throughout this book you’ve seen us attempt to organize and refactor code as our
application grew. From the beginning, we’ve kept the domain classes in their own
project. If you have read Programming Entity Framework: Code First, you saw that when
we used the Fluent API to configure our entities, we created separate classes to contain
the Fluent configuration logic for each type. In the validation chapters, you saw that
we encapsulated logic from the ValidateEntity method so that the method wouldn’t
get loaded down with details of each custom validation being performed. Organizing
logic in this way makes it easier to reuse that logic and lets us share classes and logic
across our multiple contexts.

These smaller contexts follow a pattern critical to Domain Driven De-
sign called Bounded Contexts. I like to think of the technique of aligning
the design of each individual small DbContext class with its related Do-
main Context as Bounded DbContexts.

Using the BreakAway domain, let’s look at a concrete example.

Providing Multiple Targeted Contexts in Your Application | 227

http://shop.oreilly.com/product/0636920022220.do

Let’s say that the Sales department is responsible for selling reservations. They would
need to add reservations and payments. Sales does not design trips or create relation-
ships with lodgings. Sales would need to perform a bit of customer service as well. If
the person purchasing the reservation is a new customer, Sales would need to add the
customer. Sales would need to look up trips and destinations but only as a lookup list.
They wouldn’t need to work with Trip and Destination entities in a way that would
enable change-tracking and modification.

In a simple scenario, this means Sales would need access to

• Person (Lookup, Add, Edit)

• Address (View from Person, Add, Edit)

• Reservations (Lookup, Add, Edit)

• Payments (View from Reservation, Add)

• Read-Only Lists: Trip Dates, Destination Name, Activities

What about the Trip Planning department? They need access to

• Trip (Lookup, Add, Edit)

• Destination (Lookup, Add, Edit)

• Activity (Lookup, Add, Edit)

• Lodging (Lookup, Add, Edit)

• Person (Lookup, Add, Edit)

What might the contexts for these two application scenarios look like?

SalesContext could have DbSet properties for People, Reservations, and Trips. This
would allow sales to look up or add People and their Addresses; look up and add
Reservations and their properties; and search for Trips along with their Destination,
Lodging, and Activity details. SalesContext can draw from the pool of available classes
in the Model project. Example 8-20 shows a minimal SalesContext class.

Example 8-20. SalesContext class

public class SalesContext:DbContext
{
 public DbSet<Person> People { get; set; }
 public DbSet<Reservation> Reservations { get; set; }
 public DbSet<Trip> Trips { get; set; }
}

Let’s see what Code First draws into the model based on these three DbSets.

Here’s a small console method that instantiates the context, and then drills down to
the ObjectContext to query for EntityTypes from conceptual model (CSDL) using the
MetadataWorkspace API. MetadataWorkspace reads the in-memory metadata of the
model and then lists them in the console window. You’ll need a using for the Sys
tem.Data.Metadata.Edm namespace to use the EntityType class.

228 | Chapter 8: Using DbContext in Advanced Scenarios

Example 8-21. Forcing model creation and listing types

private static void ForceContextModelCreation()
{
 using (var context = new SalesContext())
 {
 var entityTypes = ((IObjectContextAdapter)context).ObjectContext
 .MetadataWorkspace.GetItems<EntityType>(DataSpace.CSpace);

 foreach (var entityType in entityTypes)
 {
 Console.WriteLine(entityType.Name);
 }
 }
}

Below are the SalesContext model types as they are listed in the console window:

Person
Lodging
Destination
InternetSpecial
Resort
Hostel
PersonPhoto
Reservation
Trip
Activity
Payment

Not only do you see the three types returned by the DbSets (Person, Reservation, and
Trip), but all related types as well. When building a model, Code First will pull in all
types that are reachable by types in the model. For example, Trip has a relationship to
Destination, so Destination class was pulled into the model as well. The complex types,
Address and PersonInfo, are in the model but not represented in the screenshot. You
can see them by requesting GetItems<ComplexType>(DataSpace.CSpace)from the Metada
taWorkspace.

Code First used its convention to decide what types needed to be in the model. In this
case, all of the types that it included make sense for this model. But the context is still
simpler to work with, since it doesn’t have explicit DbSets for all of those types.

If you are using the Fluent API to configure the model, be sure that
mappings necessary for all of the classes in your model are included in
your configurations, not just mappings for types represented by DbSets.

By default Code First did us a favor. It created a new SalesContext database. That’s not
the desired effect. What we’ll want is to have the complete BreakAwayContext database
available to us. Let’s set this problem aside for later in this chapter and instead, look at
our other targeted context, TripPlanning:

Providing Multiple Targeted Contexts in Your Application | 229

public class TripPlanningContext : DbContext
{
 public DbSet<Trip> Trips { get; set; }
 public DbSet<Destination> Destinations { get; set; }
 public DbSet<Lodging> Lodgings { get; set; }
 public DbSet<Activity> Activities { get; set; }
 public DbSet<Person> People { get; set; }
}

We’re using common types in both the SalesContext and TripPlanning
Context. What about sharing entity instances across instances of these
contexts? Read the sidebar at the end of the chapter (“Sharing Types
Across Multiple DbContexts” on page 233) for some insight into this
scenario.

Modify the ForceContextModelCreation method from Example 8-21 to instantiate the
context variable as a TripPlanningContext rather than a SalesContext. The output of
the modified method, showing the types in the TripPlanningContext model is as follows:

Trip
Destination
Lodging
InternetSpecial
Person
PersonPhoto
Reservation
Payment
Resort
Hostel
Activity

Code First pulled more entities into the model than we will need. We’ll want Person
Photo for creating any new Person types. But there’s no need for Reservation and Pay
ment types in the model.

In rare cases, it will be safe to use the Fluent API’s Ignore method to trim back entities
that you don’t want in the model. But doing so could easily lead you to breaking rela-
tionship constraints and losing access to foreign key properties in a model.

It is not recommended to remove entities from a model that were pulled
in by Code First because they are reachable by another entity. There’s
a good chance that you will create problems with relationship con-
straints and foreign keys, which may or may not be caught by excep-
tions. This could lead to invalid data in your database.

It won’t always be possible to ignore a class that you don’t need in the model. For
example, if you decided to remove Person from TripPlanningContext, an exception will
be thrown when Code First attempts to create the model. The reason is that there are

230 | Chapter 8: Using DbContext in Advanced Scenarios

configurations in the Lodging class that depend on the Person class. The DbModel
Builder will try to work that out but will fail because there’s no Person in the model.

Ensuring That All DbContexts Use a Single Database
Now let’s see how to use these small contexts against a single database.

By convention, the context will force Code First to look for a database with the same
name as the context. That’s not what we want. We want them all to use the BreakA-
wayContext database. We could use a connection string in the config file to point to
the correct database. But there’s another wrinkle. The context will look for a connection
string that matches its name. We’d have to have a SalesContext connection, a Trip
PlanningContext connection, and additional connections specified in the config file for
every context. That’s not very maintainable.

Another tool we have at our disposal is an overload of the context constructor. We can
pass in a database name. That solves the problem; however, it means that every time
we instantiate a new SalesContext or any other context in our solution, we’d have to
pass in a string or a variable representing “BreakAwayContext”. That’s also undesira-
ble. Not only is it unnecessarily repetitive, you have to worry about someone forgetting
to use the overload. However, you could lean on a base class to apply the connection
string for you each time.

Example 8-22 shows a handy generic base class pattern suggested by Arthur Vickers
from the Entity Framework team. Not only will this base class ensure that the any
context that inherits from it uses the appropriate connection, but by setting the ini-
tializer on the given context to null, it ensures that Code First won’t attempt to initialize
a database for the context. Because the constructor is telling DbContext to look for a
connection in the configuration file, you would need to add a connection string named
“breakaway” to your app.config or web.config file.

Example 8-22. BaseContext to set connection string and disable database initialization

public class BaseContext<TContext> : DbContext
where TContext : DbContext
{
 static BaseContext()
 {
 Database.SetInitializer<TContext>(null);
 }

 protected BaseContext()
 : base("name=breakaway")
 {
 }
}

Providing Multiple Targeted Contexts in Your Application | 231

Note that the BaseContext constructor is static. That ensures that the
initializer setting is set per application instance of the given constructor,
not per context instance. Initializer settings should be application-wide,
so this is desirable.

You can then modify the context classes to inherit from BaseContext instead of inher-
iting from DbContext directly.

Here are the revised declarations for TripPlanningContext and SalesContext:

public class TripPlanningContext : BaseContext<TripPlanningContext>

public class SalesContext : BaseContext<SalesContext>

Validating Relationship Constraints and Other Validations with Multiple
Contexts
Each context will be responsible for its own validations. The context will check to make
sure relationship constraints between classes are satisfied. If you have required rela-
tionships between classes, if one of those classes is in a model, the other needs to be as
well. You should take advantage of automated testing to make sure that your small
models don’t break relationships.

If you have custom logic that needs to be triggered in ValidateEntity, be sure to put it
in a project that is accessible by your different contexts. In Chapter 7, for example,
Example 7-5 demonstrated calling out to a custom method, ValidateLodging from
ValidateEntity. In any context class where you anticipate using Lodging types, you’ll
probably want to call that ValidateLodging method. So rather than declare Validate
Lodging a private method inside of the BreakAwayContext class file, you could make it
public and put it into a separate project where it can be called from other context classes.

Getting Code First to Create Full BreakAwayContext Database
You still may want to leverage Code First’s database initialization while developing this
application. Even though you don’t want the SalesContext or TripPlanningContext
classes to be involved with database initialization, you could create a DbContext class
just for the sake of database initialization. It might even involve Code First Migrations
or a custom initializer with a Seed method. All you should need to do is create one
context class that will involve all of the classes. You can ensure all of the classes are
pulled into the model by creating DbSets for each of the entities rather than hoping that
relationships and hierarchies between your domain classes will create all of the relevant
tables in the database. If you are using fluent configurations, you’ll need to add all of
them to the modelBuilder.Configurations to be sure that all of the mappings are created
properly. In our test classes we have one test, which then recreates the database for us
as needed:

232 | Chapter 8: Using DbContext in Advanced Scenarios

private static void ForceBreakAwayDatabaseCreation()
{
 Database.SetInitializer(new InitializeBagaDatabaseWithSeedData());
 using (var context = new BreakAwayContext())
 {
 context.Database.Initialize(force: false);
 }
}

Remember that the InitializeBagaDatabaseWithSeedData class cur-
rently derives from DropCreateDatabaseAlways.

Sharing Types Across Multiple DbContexts
When creating multiple smaller bounded DbContexts, you are able to reuse types and
configurations. For example both the SalesContext and the TripPlanningContext en-
capsulate Trip types, Person types, and more.

Developers often ask about sharing instances between multiple contexts. Before doing
so, the first question you should ask yourself is if you have defined your contexts well
for your domain if you find a need to share instances of your types. If you are satisfied
that moving instances between contexts is truly what you want to do, there are a few
rules you should be considerate of.

• An entity can only be attached to one context at a time. This architecture works
best with short-lived contexts where the instance to be shared will be completely
disassociated from one context before it is attached to another.

• Entities that are attached to different contexts cannot be attached to one another.

Here’s some code that demonstrates moving an entity from one context to another.
The code instantiates a SalesContext and uses that to retrieve a Person instance. Then
we detach that person from the context by setting its Entry.State to Detached. Now the
person is free to be attached to a TripPlanningContext. Once attached, the code loads
all of the lodgings for which that person is a primary contact:

 Person person;
 using (var sC = new SalesContext())
 {
 person = sC.People.FirstOrDefault(p => p.FirstName == "Dave");
 }
 using (var tC = new TripPlanningContext())
 {
 tC.People.Attach(person);
 tC.Entry(person).Collection(p => p.PrimaryContactFor).Load();
 }

Providing Multiple Targeted Contexts in Your Application | 233

You should be careful about (or just avoid) moving Added, Modified, or Deleted entities
from one context to another. You can benefit from many of the lessons you learned
about working with disconnected entities and graphs in Chapter 4 of this book when
moving entities between contexts.

234 | Chapter 8: Using DbContext in Advanced Scenarios

CHAPTER 9

What’s Coming Next for
Entity Framework

So far, this book has walked through all the DbContext API functionality that was
available at the time of writing. The companion to this book, Programming Entity
Framework: Code First, covers the remainder of the functionality that was available in
the EntityFramework NuGet package at the time of writing. However, there are some
notable features that will soon be available for preview.

The Entity Framework team has indicated that they are about to release Entity Frame-
work 5.0 (EF 5.0), which will include some long-awaited features, including support
for enum properties and spatial data.

Understanding Entity Framework’s Version Numbers
Historically, Entity Framework releases have been strongly tied to .NET Framework
releases. The first version of Entity Framework shipped with .NET 3.5 SP1. The second
release was included in .NET 4 and was named Entity Framework 4 (EF 4), to align
with the .NET version. The DbContext API and Code First were released out-of-band
of the .NET Framework as EF 4.1. This number was chosen to indicate that it was a
small update that built on the functionality in .NET 4.

When the time came to ship bug fixes for EF 4.1, the team released EF 4.1 Update 1.
This release, and some other releases from Microsoft, caused some confusion in the
community about how releases are versioned. Based on this feedback, the Entity
Framework team has now adopted semantic versioning for its releases. You can read
more about semantic versioning at http://semver.org.

After adopting semantic versioning, the Entity Framework team released EF 4.2, which
included some bug fixes. They then released EF 4.3, which included the new Code First
Migrations feature, along with a handful of high-priority bug fixes.

235

http://shop.oreilly.com/product/0636920022220.do
http://shop.oreilly.com/product/0636920022220.do
http://semver.org

Entity Framework 5.0
EF 5.0 introduces a set of long-awaited features and makes use of some work the Entity
Framework team has done in the next version of the .NET Framework (.NET 4.5).
Entity Framework 5.0 will become available as an update to the EntityFramework NuGet
package. At the time of writing, a prerelease version of EF 5.0 was not yet available.
The Entity Framework team has indicated they will be making the first preview of EF
5.0 available shortly after the next preview of .NET 4.5 is released. The rest of this
section provides a brief overview of the major features that the Entity Framework team
has indicated will be in the EF 5.0 release.

Entity Framework 5.0 is dependent on .NET 4.5 because a number of the new features
required changes to the core Entity Framework components. These core components,
including ObjectContext and other related types, are still part of the .NET Framework.
For example, adding enum support to the DbContext API and Code First required
adding enum support to ObjectContext. The Entity Framework team is working to
move more of these core components out of the .NET Framework in the future. This
would enable more features to be added without updates to the .NET Framework.

Enums
Developers have been asking for support for enum properties in Entity Framework
since it was first released. This feature will allow you to define a property on a domain
class that is an enum type and map it to a database column of an integer type. Entity
Framework will then convert the database value to and from the relevant enum as it
queries and saves data.

Spatial Data
SQL Server 2008 introduced support for geometry and geography data types. A set of
operators is also included to allow queries to analyze spatial data. For example, a query
can filter based on the distance between two geographic locations. EF 5.0 will allow
new spatial data types to be exposed as properties on your classes and map them to
spatial columns in your database. You will also be able to write LINQ queries that make
use of the spatial operators to filter, sort, and group based on spatial calculations per-
formed in the database.

Performance Improvements
EF 5.0 will include some updates and a new feature to enhance performance. The most
notable new feature is automatic caching of compiled LINQ queries. When Entity
Framework runs a LINQ query, it goes through a process of converting your LINQ
query into SQL to be executed in the database. This process is known as query compi-
lation and is an expensive operation, especially for complex queries. In the past you

236 | Chapter 9: What’s Coming Next for Entity Framework

could use compiled queries to make Entity Framework cache the compiled query and
reuse it, potentially with different parameters. In EF 5.0 the compiled query will be
automatically cached and reused if you run the same query again, even if you have
different parameter values in the query.

For example, if you run a LINQ query for all Locations where the DestinationId is equal
to a value stored in an integer variable, Entity Framework will cache the translation
that knows how to select a set of Locations filtered by DestinationId. If you later run
another query for all Locations where the DestinationId is equal to a value stored in a
different integer variable, Entity Framework will reuse the cached translation, even if
the value stored in the variable is different than the first query.

EF 5.0 will also include improvements to the SQL it generates. The SQL will be simpler
to read and will result in performance gains. In particular, there are improvements to
make querying faster when working with an inheritance hierarchy that is mapped using
the table-per-type (TPT) strategy.

Multiple Result Sets from Stored Procedures
Entity Framework allows you to use stored procedures to query for data and to insert,
update, and delete data. Previously, when selecting data, the stored procedure could
only return a single result set. EF 5.0 will allow you to use a stored procedure that
returns multiple result sets. The different result sets can represent data for different
entity types or projections.

While Entity Framework supports mapping to stored procedures, this
functionality is not supported in Code First. The Entity Framework
team is not planning to add stored procedure support to Code First in
EF 5.0. They have indicated that there are no definite plans around when
this will be added.

Table Value Functions
Table Value Functions (TVFs) are functions in the database that return a well-known
result set. TVFs are composable and can therefore be included in a query in much the
same way a table can. EF 5.0 allows you to include TVFs in your model and define a
function on your context that represents the TVF. This function can then be used in a
LINQ query in the same way you would use a DbSet. TVFs will not be supported in
Code First in EF 5.0.

Entity Framework 5.0 | 237

Following the Entity Framework Team
There are a number of ways you can keep up to date on new features that the Entity
Framework team is developing—and even influence what features they work on next.
The ADO.NET Team Blog is used by the EF team to share announcements about new
and upcoming releases. The EF team also has an EF Design Blog, where they share early
thinking about features they are about to start working on. This allows you to have
input into the design of features before they are implemented and end up in a preview.
Finally, the EF team has a user voice site where you can add and vote on feature requests.

238 | Chapter 9: What’s Coming Next for Entity Framework

http://blogs.msdn.com/adonet
http://blogs.msdn.com/efdesign
http://ef.mswish.net

About the Authors
Julia Lerman is the leading independent authority on the Entity Framework and has
been using and teaching the technology since its 2006 inception. She is well known in
the .NET community as a Microsoft MVP, ASPInsider, and INETA Speaker. Julia is a
frequent presenter at technical conferences around the world and writes articles for
many well-known technical publications, including the “Data Points” column in
MSDN Magazine. Julia lives in Vermont with her husband, Rich, and gigantic dog,
Sampson, where she runs the Vermont.NET User Group. You can read her blog at
www.thedatafarm.com/blog and follow her on Twitter at @julielerman.

Rowan Miller works as a program manager for the ADO.NET Entity Framework team
at Microsoft. He speaks at technical conferences and blogs at http://romiller.com.
Rowan lives in Seattle, Washington, with his wife, Athalie. Prior to moving to the US,
he resided in the small state of Tasmania in Australia. Outside of technologym Rowan’s
passions include snowboarding, mountain biking, horse riding, rock climbing, and
pretty much anything else that involves being active. The primary focus of his life,
however, is to follow Jesus.

https://twitter.com/#!/julielerman
http://romiller.com

	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing the DbContext API
	Getting the DbContext API into Your Project
	Looking at Some Highlights of the DbContext API
	Reducing and Simplifying Ways to Work with a Set
	Retrieving an Entity Using ID with DbSet.Find
	Avoiding Trolling Around the Guts of Entity Framework

	Working with the BreakAway Model
	Getting the Sample Solution
	Getting DbContext from an EDMX Model

	Ensuring DbContext Instances Get Disposed

	Chapter 2. Querying with DbContext
	Writing Queries with LINQ to Entities
	Querying All the Data from a Set
	Using LINQ for Sorting, Filtering, and More
	Finding a Single Object
	Querying Local Data
	Using the Load Method to Bring Data into Memory
	Running LINQ Queries Against Local
	Working with the ObservableCollection Returned by Local

	Loading Related Data
	Lazy Loading
	Understanding the downsides of lazy loading

	Eager Loading
	Understanding the downsides of eager loading
	Using Include in LINQ queries

	Explicit Loading
	Checking If a Navigation Property Has Been Loaded

	Querying Contents of a Collection Navigation Property
	Explicit Loading a Subset of the Contents of a Navigation Property

	Chapter 3. Adding, Changing, and Deleting
 Entities
	Working with Single Entities
	Adding New Entities
	Changing Existing Entities
	Deleting Existing Entities
	Deleting without loading from the database
	Deleting an object with related data

	Multiple Changes at Once
	The “Find or Add” Pattern

	Working with Relationships
	Adding a Relationship Between Objects
	Changing a Relationship Between Objects
	Removing a Relationship Between Objects

	Working with Change Tracking
	Using Snapshot Change Tracking
	Understanding When Automatic Change Detection Occurs
	Controlling When DetectChanges Is Called
	Using DetectChanges to Trigger Relationship Fix-up

	Enabling and Working with Change Tracking Proxies
	Ensuring the New Instances Get Proxies
	Creating Proxy Instances for Derived Types

	Fetching Entities Without Change Tracking

	Chapter 4. Working with Disconnected Entities Including N-Tier
 Applications
	A Simple Operation on a Disconnected Graph
	Exploring the Challenges of N-Tier
	Using Existing N-Tier Frameworks That Support Graph Modification
	Using Explicit Operations on the Server Side
	Replaying Changes on the Server

	Understanding How DbContext Responds to Setting the State of a Single Entity
	Marking a New Entity as Added
	Marking an Existing Entity as Unchanged
	Marking an Existing Entity as Modified
	Registering an Existing Entity for Deletion
	Using a stub entity to mark for deletion

	Working with Relationships with and Without Foreign Keys
	Benefiting from foreign key properties
	Using navigation properties to define relationships

	Setting the State for Multiple Entities in an Entity Graph
	Getting the Graph into the Context
	Setting the State of Entities in a Graph

	Building a Generic Approach to Track State Locally
	Creating a Generic Method That Can Apply State Through Any Graph
	Concurrency Implications

	Tracking Individually Modified Properties
	Recording Modified Property Names
	Concurrency implications

	Recording Original Values
	Concurrency implications

	Querying and Applying Changes
	Concurrency implications

	Chapter 5. Change Tracker API
	Change Tracking Information and Operations for a Single Entity
	Working with the State Property
	Working with Current, Original, and Database Values
	Working with DbPropertyValues for Complex Types
	Copying the Values from DbPropertyValues into an Entity
	Changing Values in a DbPropertyValues
	Using the SetValues method

	Working with Individual Properties
	Working with Scalar Properties
	Working with Complex Properties
	Working with Navigation Properties
	Modifying the value of a navigation property
	Modifying navigation properties with the change tracker
	Working with collection navigation properties

	Refreshing an Entity from the Database
	Change Tracking Information and Operations for Multiple Entities
	Using the Change Tracker API in Application Scenarios
	Resolving Concurrency Conflicts
	Logging During Save Changes

	Chapter 6. Validating with the Validation API
	Defining and Triggering Validation: An Overview
	Validating a Single Object on Demand with GetValidationResult
	Specifying Property Rules with ValidationAttribute Data Annotations
	Validating Facets Configured with the Fluent API
	Validating Unmapped or “Transient” Properties
	Validating Complex Types
	Using Data Annotations with an EDMX Model

	Inspecting Validation Result Details
	Inspecting Individual Validation Errors

	Exploring More ValidationAttributes
	Using CustomValidationAttributes

	Validating Individual Properties on Demand
	Specifying Type-Level Validation Rules
	Using IValidatableObject for Type Validation
	Validating Multiple Rules in IValidatableObject
	Using CustomValidationAttributes for Type Validation

	Understanding How EF Combines Validations
	Validating Multiple Objects
	Validating When Saving Changes
	Reviewing ObjectContext. SaveChanges Workflow
	Understanding DbContext.SaveChanges Workflow
	Disabling Validate Before Save

	Chapter 7. Customizing Validations
	Overriding ValidateEntity in the DbContext
	Considering Different Ways to Leverage ValidateEntity
	Updating Data During SaveChanges
	Overriding SaveChanges When Validation Occurs
	Comparing ValidateEntity to SaveChanges for Custom Logic

	Using the IDictionary Parameter of ValidateEntity
	Controlling Which Entities Are Validated in ValidateEntity

	Chapter 8. Using DbContext in Advanced
 Scenarios
	Moving Between ObjectContext and DbContext
	Accessing ObjectContext Features from a DbContext
	Adding DbContext into Existing .NET 4 Applications

	Leveraging SQL Server Operators Exposed in SqlFunctions
	Querying Derived Types with DbSet
	Understanding the Interface Property Limitation
	Considering Automated Testing with DbContext
	Testing with DbSet
	Exploring a Scenario That Unnecessarily Queries the Database

	Reducing Database Hits in Testing with IDbSet
	Creating an IDbSet Implementation
	Abstracting BreakAwayContext for Tests
	Reviewing the Implementation
	Supplying Data to a FakeDbSet

	Accessing the Database Directly from DbContext
	Executing Queries with Database.SqlQuery and DbSet.SqlQuery
	Tracking Results of SqlQuery
	Executing Commands from the Database Class

	Providing Multiple Targeted Contexts in Your Application
	Reusing Classes, Configurations, and Validation Across Multiple Contexts
	Ensuring That All DbContexts Use a Single Database
	Validating Relationship Constraints and Other Validations with Multiple Contexts
	Getting Code First to Create Full BreakAwayContext Database

	Chapter 9. What’s Coming Next for Entity
 Framework
	Understanding Entity Framework’s Version Numbers
	Entity Framework 5.0
	Enums
	Spatial Data
	Performance Improvements
	Multiple Result Sets from Stored Procedures
	Table Value Functions

