
Download from Wow! eBook <www.wowebook.com>

Early Praise for The Developer’s Code

This is the nextPragmatic Programmer—aguide for the beginner, a reminder
for the expert, and awonderful chunk of wisdom about the craft (and life)
of a developer.
➤ Derek Sivers, founder of CD Baby, sivers.org

Ka Wai Cheung has written a book for professional developers seeking a
code they can live by. This is not a book replete with conventional, find-
it-in-any-blog ideas but a very powerful, focused approach to the craft
and realities of professional programming.

If you are looking for a rehash of stale, sterile rules for programming, this
is not the book for you. But if you are seeking a perspective on what
creating software is, or if you want a set of guidelines laden by real-world
experience, this is a book you need.
➤ Bob Walsh, author and founder of 47 Hats

Packedwith delicious lessons yet consumable in bite (byte?) sized chunks
—there’s a lot to be learned in these pages. Take some time and learn from
someone who’s been there.
➤ Adam Hoffman, senior development lead

A great book filled with lots of hints, tips, and lessons learned in the fast-
moving world of the modern-day programmer; a must-read for anyone
working as, or with, a developer.
➤ Caspar Dunant, Webfish

Download from Wow! eBook <www.wowebook.com>

The Developer’s Code
What Real Programmers Do

Ka Wai Cheung

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

Cartoons courtesy of Mark Anderson, reproduced with permission of the artist.
http://www.andertoons.com

The team that produced this book includes:

Brian P. Hogan (editor)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-79-1
Printed on acid-free paper.
Book version: P1.0—February 2012

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com
http://www.andertoons.com

Contents

Acknowledgments ix

1. Introduction 1
1.1 Who Is the 21st-Century Programmer? 2
1.2 Discovering the Lessons Firsthand 3
1.3 This Book Is About Us 4

2. Metaphor 5
Essay 1. Follow Metaphors with Care 6
Essay 2. Plan Enough, Then Build 7
Essay 3. Launch Is Just the First Release 9
Essay 4. The “Ivory Tower” Architect Is a Myth 10
Essay 5. Throw Away Your Old Code 13
Essay 6. Diversification Over Specialization 15
Essay 7. Metaphors Hide Better Ways of Working 17

3. Motivation 19
Essay 8. The Perks Are in the Work 20
Essay 9. Begin Where You Love to Begin 22
Essay 10. Be Imperfect 24
Essay 11. Stop Programming 25
Essay 12. Test Your Work First Thing in the Morning 26
Essay 13. Work Outside the Bedroom 27
Essay 14. First Impressions Are Just That 29
Essay 15. The Emotional Value of Launch 32
Essay 16. Find an Argument 33

4. Productivity 35
Essay 17. Just Say “No” to the Pet Project 36
Essay 18. Constrain All of Your Parameters 40
Essay 19. Cut the Detail Out of the Timeline 42
Essay 20. Improve Your Product in Two Ways Daily 43
Essay 21. Invest in a Good Work Environment 45

Download from Wow! eBook <www.wowebook.com>

Essay 22. Keep a Personal To-Do List 48
Essay 23. Create “Off-Time” with Your Team 54
Essay 24. Work in Small, Autonomous Teams 57
Essay 25. Eliminate the “We” in Productivity 59

5. Complexity 63
Essay 26. Sniff Out Bad Complexity 64
Essay 27. The Simplicity Paradox 65
Essay 28. Complexity as a Game of Pickup Sticks 68
Essay 29. Keep Complexity Under the Surface 69
Essay 30. “Hard to Code” Might Mean “Hard to

Use” 71
Essay 31. KnowWhen to Refactor 75
Essay 32. Develop a Programming Cadence 81

6. Teaching 83
Essay 33. Teaching Is Unlike Coding 84
Essay 34. Beware the “Curse of Knowledge” 86
Essay 35. Teach with Obvious Examples 88
Essay 36. Lie to Simplify 90
Essay 37. Encourage Autonomous Thought 91

7. Clients 95
Essay 38. The Tough Client Is Ubiquitous 96
Essay 39. Demystify the Black Magic of Software 97
Essay 40. Define the Goals of Your Application 101
Essay 41. Be Enthusiastic and Opinionated 102
Essay 42. Be Forgiving and Personable 103
Essay 43. Value Is Much More Than Time 104
Essay 44. Respect Your Project Manager 108

8. Code 111
Essay 45. Write Code As a Last Resort 112
Essay 46. A Plug-in Happy Culture 113
Essay 47. Code Is the Ultimate Junior Developer 116
Essay 48. Separate Robot Work from Human Work 120
Essay 49. Generating Code at Its Core 125
Essay 50. The Case for Rolling Your Own 131

Contents • vi

Download from Wow! eBook <www.wowebook.com>

9. Pride 135
9.1 We Have a Marketing Problem 136
9.2 Lessons from the Cooking Industry 137

A1. Bibliography 143

vii • Contents

Download from Wow! eBook <www.wowebook.com>

Acknowledgments
In the fall of 2010, with much of the original draft complete,
I began pitching this book to several tech publishers. While
I received some great feedback, I wasn’t able to land a deal.
The prevailing argument frommost publisherswas twofold:
books like this typically don’t sell, and in order to make it a
worthwhile investment, I needed a bigger following.

Andy Hunt and Dave Thomas saw things differently. And
so, first and foremost, I’d like to thank Andy and Dave for
sharing my belief that this book has a place in our industry.
I’m absolutely humbled to have it added to the great collec-
tion of works from the Pragmatic Bookshelf.

A book like this desperately needs a great editor—one who
tells it like it is and sees the content from 1,000 feet above
when the author is entangled in the weeds. I’d like to thank
Brian P. Hogan for being a fantastic one throughout the
entire process. This book is leagues ahead ofwhere it initially
was, in both its content and its approach.

A very special thanks toMarkAnderson ofAndertoons.com.
His creative cartoons—and wit—are strewn all over these
pages. They provide a wonderful extra dose of levity and
personality to the final product.

Thanks to Derek Sivers, Bob Walsh, Caspar Dunant, Colin
Yates, Juho Vepsäläinen, Steve Cholerton, and Kim Shrier
for generously donating their time to critically reviewing
each and every chapter.

Much of the inspiration for this book came from the experi-
ences I’ve had at We Are Mammoth, the web development
shop I started with Craig Bryant in 2006. For the past five
years, we’ve continually challenged ourselves, questioned

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

the way we go about our work, and openly exposed our
opinions to each other. Thanks tomy team—Craig,Michael,
Mustafa, Tom, Sam, Anthony, Jennifer, Grant, and Lindsay
—for teaching me new lessons daily.

x • Acknowledgments

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 1

Introduction
I’ve been had by code. Twice.

The very first time was when I took a programming class
during my freshman year of college. It was a mandatory
course for the curriculum I had decided to enroll in. It wasn’t
like what I had seen in so many movies during my child-
hood. I didn’t type in a few simple commands, press ENTER,
and watch a trash-can robot say “hello.”

There wasn’t even a trash-can robot in this class. Instead, it
was about pointers, memory allocation, and object instanti-
ation. I was too in the weeds to see what all of it meant.
However, the evidencewas overwhelmingly clear: program-
ming was not for me.

I wanted to be an artist or perhaps a mathematician. I
wanted to be both creative and exact—both right- and left-
brained, as they say. Programming seemed to lean too far
to the left, and no other career options I could think of let
me play in both worlds simultaneously. I was lost.

Just a couple years later, the Internet boom changed the
landscape of programming. Suddenly, it was real-world, it
was approachable, and it had a lot to do with design. It
valued both artistry and logic almost equally. For the first
time, I really could foreseemyself enjoying thiswork. I could
now channel my passion for creativity and logic into web
applications. So, I returned to programming, albeit with
great apprehension.

Truth be told, I also came back to it for an entirely different
reason. For that two-year hiatus, I studied many other

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

subjects that seemed to have too many unanswered ques-
tions. Devising theGrandUnified Theory in particle physics
or finding the largest prime number? Impossibly ambitious
and daunting undertakings, for sure. They just weren’t for
me. In addition, that course on existentialism didn’t clear
things up either. As a young adult, I simplywanted answers,
not more questions.

Programming. The very subject I had once eschewed was
nowmy refuge. After all, computer science was man-made.
All the answers had to be there. I yearned for a career where
answer seekers likeme could thrive,where you turned elixirs
of code into always-happy customers, comrades, and clients.
The rules were alreadywritten.We just had to build. All the
obstacles existed solely in code, I thought.

In my second return to programming, I was duped again,
because this was certainly far from the truth.

Who Is the 21st-Century Programmer?

As Iwould find out over the next fifteen years, programming
isn’t a job for the reclusive. It certainly is not about the über-
nerd sitting in a dimly lit basement, sweating away for
months on end, and then emerging with the final product
in all its glory.

Today’s applications are mainstream. We build for every
user. Our clients may or may not have any idea about how
wework. Our turnaround times are sometimes on the order
ofwhirlwindweeks, notmonths or years. Burnout can come
on suddenly; procrastination can be the path of least resis-
tance. For us, the developers of today, building software
involves obstacles that go far beyond what we encounter in
our development environment.

One of my good friends jokes with me on a regular basis.
“What exactly is it that you do for work?” She knows I’m a
programmer but doesn’t really know what that means. She
questions me in that same sarcastic, probing way that Bob
Slydell does as the office consultant in Office Space.

I tell her this: I am a nonaccredited, overly logical psycholo-
gist, therapist, mechanic, diplomat, businessman, and

2 • Chapter 1. Introduction

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

teacher working in an industry that is still defining itself
each and every day.

That is as concise a definition I can give for the modern-day
programmer.

Discovering the Lessons Firsthand

My name is Ka Wai Cheung. I’m a developer, designer, and
founding partner atWeAreMammoth inChicago.1We build
applications for a variety of clients and create some of our
ownweb-based software. You’ll hear a bit more about those
later.

This book is a collection of lessons, observations, and mis-
steps I’ve gathered, firsthand, in our industry. For seasoned
programmers, youmight find some ofmy anecdotes similar
to your own experiences. We can laugh, cheer, and cry
through them together. For newbies beginning the journey,
let this be a helping hand through your first few years in the
industry.

In the last fifteen years, I’ve encountered myriad lessons.
Here are just some of the topics we’ll address in this book:

• Why many traditional development processes and role
definitions in this industry are antiquated—and how to
sniff them out

• Why saying “no” to the software pet project and open-
ended timelines is essential to productivity

• How collaborative work environments can make us so
much more productive—and how they can also make
us so much less

• How to make code generation a natural part of the
development process and how it benefits us in ways
besides faster code output

• How to best work with clients who don’t see eye-to-eye
to us and how to handle angry customers who immedi-
ately dismiss new changes to our software

1. Our website is at http://www.wearemammoth.com, and our blog
is at http://blog.wearemammoth.com.

report erratum • discuss

Chapter 1. Introduction • 3

Download from Wow! eBook <www.wowebook.com>

http://www.wearemammoth.com
http://blog.wearemammoth.com
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

• Why big raises and the old mantra “Employees are our
greatest asset” don’t equate to a better tech job

• How to recognize when software is becoming too com-
plex for its own good

• How to become a better teacher so we can pay our
knowledge forward to future generations of developers

This Book Is About Us

This is a book for developers of all kinds. However, it has
little to do with code. It doesn’t matter if you program in C#
or Ruby or Python or PHP or Java or JavaScript or Action-
Script. It doesn’t matter whether you’re working on
databases,writing server-side code, or scripting the interface.
This book is about everything that surrounds the professional
developer beyond the bounds of markup and objects.

That doesn’t mean we’ll leave programming in the dust,
though. There will be some talk about code. However, when
we talk about code, we’ll approach it in a less technical, far
more holistic way. You won’t see a laundry list of best
practices or design patterns. Plenty of books do a great job
of that, and we’ll mention a few along the way.

This book is about what real, modern-day programmers do
to flourish in our industry. Let’s begin.

4 • Chapter 1. Introduction

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 2

Metaphor
A programmer programs. A designer designs. But what does
that really mean? There are no reality television shows or
Hollywood films that showcase how we really work. And
before you say anything, no,The Social Networkdoesn’t count
as a representative look into our industry. So, when I’m
asked what I do, I often resort to analogy. Our industry is
chock-full of them. It’s the way we describe our work to
everyone else.

A chef doesn’t have to come upwithmetaphors for cooking;
a broth is too salty because you can taste it. A musician
doesn’t have to describe songs in some roundabout way; a
melody is too cliché because you’ve heard the same rhythm
before. People get it. They are self-describing forms ofwork.
Pipe fitters and bricklayers have the job description succinct-
ly written right in their names.

However, programming is different. The average person
can’t see what makes code elegant or unorganized. In addi-
tion, our industry is very new. While humans have been
cooking,makingmusic, and building for thousands of years,
archaeologists have yet to discover those cave paintings of
Man at His Desk Typing.

So, metaphor has to become our meta-language. Not only
is it howwe connect the uniqueness of programming to the
general public, but it’s often howwemake decisions on how
we approach our own software problems.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 1

Follow Metaphors with Care

And this is where things get dangerous.

Sometimes the line between analogy and reality blurs.
Metaphors can make us value things that aren’t that impor-
tant while undervaluing the things that are.

Whenwe take these comparisons too far, we don’tmake our
best decisions. Metaphor has a devilish way of blinding us
to the truth. Our decisions might make perfect sense in the
context of themetaphor, butwhen stripped down to just the
business of building applications, we can easily be led astray.
We sometimes rely on the perceived benefits of themetaphor
too heavily rather than paying attention to the reality of the
situation.

For instance, we often use traditional architecture as a
metaphor for building software. After all, it’s the origin of
most of our organizational titles. That’s why we call
ourselves software architects, information architects, senior
developers, junior developers, and project managers. That’s why
many of us still swear by wireframes, specifications, work-
flow diagrams, Gantt charts, and waterfall development.
We’ve built a large portion of the software development
process by piggybacking off of another industry.

While these concepts are essential in another medium and
they have some merit in our world as well, they can just as
easily imprison us. If we stop to think about why we
approach a problem in a certain way, we might be able to
trace its origins to following the metaphor of traditional
architecture (or another metaphor) too closely.

So, how has metaphor hurt us? Let’s look at a few examples
where we’ve stretched a concept from real architecture into
a less-than-ideal fit for software.

6 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 2

Plan Enough, Then Build

In traditional architecture, planning is essential. Certain
things unequivocally have to happen before others. Studs
go in before plumbing. Plumbing is installed before thewalls.
Thewalls have to be there before the paint. Undo, Cut, or Revert
aren’t viable options when building a skyscraper.

The software Undo is CTRL+Z. The software Cut is CTRL+X. The
software Revert is a code rollback in source control.

Without the luxury of these very simple yet powerful ges-
tures, buildings require very detailed specifications. One
foot short is the difference between a profitable piece of real
estate and a catastrophic front-page headline.

Let’s pretend we’re traditional architects afforded all the
shortcuts of software development. It would be a dream
world. Materials would be infinitely available. We could
build a life-size model of a building in a few weeks. We
could stress test suspension bridges over and over again. If
a bridge broke, who would care? We could instantaneously
replicate ten new ones in a few minutes!

report erratum • discuss

Plan Enough, Then Build • 7

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Of course, all of this is mere fantasy. So, writing specifica-
tions in excruciating detailmakes themost sensewhenwe’ve
decided to build a skyscraper.

On the other hand, these are the luxuries of our industry.
Software components don’t need to wait on a shipment of
letters and numbers from the local factory.We type, compile,
test, and repeat. We can test code on the real product, not
some model of the real product. We have the luxury of
watching our suspension bridges break hundreds of times
while in development, in all different places, under all dif-
ferent conditions, without the worry of wasting materials
or putting people’s lives in jeopardy. Working this way is
completely feasible. When we finish software, the same
application can be duplicated 1,000 times with negligible
human effort.

When the developers of the Wynn Hotel in Las Vegas built
a virtually identical twin hotel called the Encore in 2008,
they didn’t have the luxury of copying and pasting the first
version into the vacant lot next door. They had to start with
specs and planning just to build a nearly identical structure.

Even when software meant shipping code on a disk, plan-
ning extensively still made a lot of sense. Meanwhile,
web-based software is a different game. Planning through
very detailed specifications prior to writing a line of code
still has merits, but it doesn’t fully take advantage of the
medium. We can release new builds daily or hourly or
whenever we want, with very low overhead, from the com-
fort of our cushy Aeron chairs.

Fortunately, as an industry, we’re starting to break through
the metaphor. Agile development isn’t revolutionary; it’s
just untying us from ametaphor that doesn’t make as much
sense today as it did in the past. That’s not to say that tradi-
tional waterfall development is obsolete. It still has itsmerits
on larger, more complex software projects. But following
that metaphor without question might also blind us to an
approach that better fits the medium we work in.

The “plan, plan, plan” metaphor overvalues the time we
spend trying to get everything perfect and undervalues the
time we could be spending writing the actual code.

8 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 3

Launch Is Just the First Release

Traditionally, we’ve approached a launch date as a mission-
critical point in time when software must be final. There’s
no going back.

For buildings and structures, that’s essential. In software,
themetaphormade sense at one time too.Whenwe shipped
software on floppy disks andCDs, things had to be just right.
Therewere huge cost and time implications for bugs. Projects
were delayed for the sake of getting it perfect or for the sake
of shoving in a new feature. I’ll talk about what that does
for morale in the next chapter.

Today, web-based applications aren’t launched; they’re up-
loaded, released, and pushed. Software lives and matures
over time.

Once we’ve launched, iterations 2, 3, and 20 can come a few
days or even a few hours later. Even the concept of formal
version releases of software is antiquated. It made sense in
the bygone days of shipping software on disk.

Today, we continuously integrate and constantly iterate.
Unlike the auto industry, there’s no need for mass recall.
Today, a critical bug can be patched, tested, and deployed
immediately. It’s not version 2.0 anymore. It’s version
2.0.12931. Or, it’s simply today’s version. Is anyone in the
public eye really keeping track anymore?

Society is growing accustomed to iteration too. Did you see
the new image gallery on Facebook? Did you see Google’s
new autosuggest feature? How about Twitter’s new layout?
Nobodywarneduswith amonthlong advertising campaign.
New changes just appear now. IMVU,1 a popular 3D-chat
application, boasts more than 100 million registered users,
and it ships releases 50 times a day.

1. http://www.imvu.com

report erratum • discuss

Launch Is Just the First Release • 9

Download from Wow! eBook <www.wowebook.com>

http://www.imvu.com
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In today’s landscape, the initial launch shouldn’t feel like
the end-all and be-all like it once did or still does in many
other industries. It’s just one of hundreds (if not thousands)
of mini-releases that take place during the life span of soft-
ware. Keeping that perspective can relieve the mental
pressure of launching software.

Unfortunately, this mentality can be easily abused. Don’t
use this change of construct as an excuse for being lazy or
leaving loose ends untied. The launch of an application
should be very, very good before others have at it. The big
things need to be right. Proper security needs to be in place.
But the small stuff, the stuff that is OK to fix afterward,
shouldn’t keep you from releasing software. You’ll be sur-
prised how often things you thought were important when
you launched suddenly aren’t...now that it’s out there.

You still ought to celebrate when software launches. Take
your team out to that fancy dinner. But don’t spend all your
emotional currency on just the wedding. There’s an entire
relationship you’ll have with software afterward. There’s
time tomake adjustments, add a family of new features, and
right wrongs.

Launch is just another point in software’s life. Not the end-
all and be-all.

Essay 4

The “Ivory Tower” Architect Is a Myth

I’ve never liked the idea that technical architects should stop
coding.

In physical architecture, architects perch in an ivory tower,
living in a world of only planning. They don’t hammer in
the nails or solder joints together. Requiring architects to do
the physical work of drilling holes and laying concrete is
simply impractical. Architecting and developing are two
distinct career tracks.

10 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

The Corporate Ladder Leads to Less Code

In our industry, we work our way up to the role of a techni-
cal architect by actually developing—bydoing the “physical”
work of building applications. But inmost organizations, as
wemove up the software development ladder, wewrite less
code. We immerse ourselves more with planning than with
discovering the problems on the front line. We concern
ourselves more about an overall vision and less about the
intimate details of code. As an industry, we’ve held on to
the notion that architects should plan and developers should
develop.

This creates the false perception that once we’ve reached a
certain level, programming is no longer where we’re most
valuable. Just leave the dirty work to the junior developers!
At the same time, it pushes lower-level programmers away
from thinking about the overall goals and direction of the
project. They’re asked to concentrate just on the implemen-
tation. The architect-developer model makes both parties
less accountable for the application as a whole.

When we split up roles into the somewhat arbitrary hierar-
chy of thosewho think about the technical “big picture” and
thosewho think only in if statements, for loops, andmarkup,
we fracture two disciplines that belong intimately together.

Pure technical architects can take a guess at the best architec-
ture, the best design pattern, or the best practice. It’s only
when they’re knee-deep in code that they discover where
the real challenges exist. At the same time, the developer
who isn’t given the reins to think at a high level also doesn’t
get the chance to voice a second opinion. Often, it’s the guy
who’s doing the actual implementation who can see the
bumps ahead most clearly.

We’ve taken the architect-developer analogy too far. The
corporate ladder in the software industry needs a better
analogy.

To build a building, architects architect and developers
develop. Traditional architects knowhow to create elaborate
plans and specs in fine detail. But they don’t build. It’s sim-
ply not reasonable. The separation between thosewho think

report erratum • discuss

The “Ivory Tower” Architect Is a Myth • 11

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

at a high level and those whowork in the trenches is largely
for practical reasons.

In software, it doesn’t have to be that way. Great developers
can live both “in the trenches” and “at a high level” at the
same time. Sure, an architect might spend most of her time
thinking at a high level, but she should be involved in devel-
opment a little to get the full picture.

Making Time for Code

In many technical organizations, what I’ve proposed thus
far just isn’t feasible. Most technical architects have a full-
time job in meetings with other groups in the company.
They’re often brought in to client phone calls to discuss all
kinds of technical challenges that face a software project.
Where’s the time to code, anyway?

A fewmonths after I started one of my full-time web devel-
oper gigs, we hired a new senior architect. Adam came in
and set a very different tone among our group of youngweb
developers. Despite all the normal duties he took on in his
role, it was clear his passion lived in code. Immediately, I
felt like I was talking to just another programmer, albeit one
a lot smarter and wiser than I. Our architect-developer
relationship became my personal mentorship.

On our first project, an extranet for a major law firm, Adam
mentioned something about code generation. To me, it
sounded a bit sci-fi. However, as I would soon find out, the
underlying server-side objects, queries, and methods I was
going to write by hand were mainly algorithmic. We could
largely deduce them from the extranet’s database schema.
Instead of plodding ahead with a brute-force approach to
development, Adam suggested I focus on building out
custom forms and screens while he began writing a code
generator. He did this for a fewweeks on his one-hour train
ride to and from the office each day. In a few weeks’ time,
we had a rudimentary but powerful tool to generate a lot of
the stuff I would’ve written manually.

Whatever time we lost with our little divergence into code
generation,we quickly recouped aswe began using the code
generator. Each timewe changed our database schema, he’d

12 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

run his little magic app that would rewrite all the code I
needed to keep building the application. Itwasn’t long before
the effort Adam made in writing his tool more than paid
back the cost in writing it. And this was a tool we could use
again and again.

So, while I was still very much the lead developer on the
project, Adam had a large stake in the development. If I
needed some different bits of algorithmic code, he’d work
on adding those features to the generator on train rides
home. The next day, I’d have a fresh set of code that I
wouldn’t have to ever write by hand again. Much of what I
learned in those first few months I keep with me today.

As you work your way up the programmer chain of com-
mand, from developer to architect, don’t forget that code is
the glue that binds each role. It may not be a train ride.
Maybe it’s an hour or two you can devote, at work, to only
writing code. You’ll seeways of committing yourself to code-
only time in Essay 23, Create “Off-Time” with Your Team, on
page 54. In the end, regardless of where you are in the
development hierarchy, keep coding. It’s where you’re most
valuable.

Essay 5

Throw Away Your Old Code

Recently, one of my colleagues, Mustafa, mentioned that I
was “doing it again.” I was code hoarding: commenting out
code that I wasn’t really planning on ever using again. I just
didn’t have the heart to delete it right then, even though we
version control all of our source code (and you absolutely
should be doing the same). Since I could always get that old
code back anyway, there was no reason to be commenting
out code when I could just delete it.

Code hoarding is one ofmany habits that seems right on the
surface. It’s a carryover from other staple engineering prin-
ciples that aren’t really relevant to programming. If wewere

report erratum • discuss

Throw Away Your Old Code • 13

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

building a car, we would probably save all our scrap metal
because we could reuse it later. It would be stupid just to
dump it. Labor and material are really critical in traditional
engineering. In the physical world, it’s much easier to work
with something that’s almost right than to rip it apart and
start over.

In programming, we tend to put too much weight on those
elements. Is our work really labor intensive? Not really.
Typing isn’t that strenuous. What about material? Last time
I checked, we don’t have a shortage of keystrokes.

At the same time, code hoarding ends up actually creating
more obstacles. The reality is, most of the time, I never
uncomment code that I commented out days or weeks ago.
Instead, the blobs ofmonochromatic gibberish get dispersed
around the actual code I’m writing at the moment. It’s
annoying to look at. Every time I work around the old code,
it’s distracting me from what matters right now.

Even if I do decide to re-implement something I wrote a
while back, the code I commented out usually doesn’t fit
properly anyway. Maybe I’ve moved that piece of logic
somewhere else. Objects or methods I reference in the old
code may have changed. Trying to resuscitate old code
means I spend more time jerry-rigging things than writing
it correctly and cleanly again. The code I wrote last week
was written by a version of me that only knew what last
week’s application looked like.

By deleting code instead of hoarding it in comments, we
keep the codebase lean. What’s on the page should reflect
exactly how the applicationworks right now.Nothingmore,
nothing less. By getting rid of old code now, there are no
extraneous bits of gibberish to leap over when we’re in the
middle of programming. We don’t have to wonder, later,
whether that huge glob of commented-out but seemingly
important code is really all that important still.

14 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 6

Diversification Over Specialization

In software, we can be the designer, the programmer, and
the database administrator. We can be well versed in PHP,
Java, .NET, C++, Python, and SQL while knowing our way
around HTML, CSS, JavaScript, and Flash. But very few of
us cross the line fromuser interface to backend comfortably.

In traditional architecture, it’s not practical for the electrician
to also be the cement pourer or for the bricklayer to also be
the pipe fitter. They are specialties in and of themselves.
They also occur in physically different places. The situation
requires a group of specialized doers honing each craft sep-
arately for intellectual and practical reasons.

But transporting that same philosophy to our industry
doesn’t hold its weight. The tool sets we work within live
on the screen right in front of us. If we’re currently working
in SQL, we don’t have to go somewhere else to write HTML
or to create an image in Photoshop. We simply switch pro-
grams on our computers. There is no physical barrier
between any of our programming disciplines.

In addition, many software concepts transcend languages
and, oftentimes, disciplines.Model-View-Controller (MVC)
is an application architecture adopted in many UI platform
applications, such as Adobe Flex’s Cairngorm platform,
alongwithmany server-side development frameworks, such
as .NET. Programming languages today have an extraordi-
nary amount of overlap. Design patterns and refactoring are
ideas that live everywhere in the programming landscape.

At my company, most of our development team knows
multiple programming languages and splits time between
the frontend and backend. It helps us even out everyone’s
workload because we’re all adept at working on all layers
of an application.

report erratum • discuss

Diversification Over Specialization • 15

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

A .NETdeveloper, anHTML standardswhiz kid, and a data
modeling expert can all live within the same person. We
may have an expertise and interest in one or the other, but
there’s no reason we can’t be great at many disciplines.

Why can’t great programmers also be great user interface
designers? All too often I hear a programmer instantly
denounce even the possibility that she could also be a great
visual designer. Conceptually, designing user interfaces is
not that far off the map from designing a sound software
architecture. Great, functional UIs are about clear affor-
dances, organization, scalability, and intention. They have
many of the same qualities we cherish in software design.

The reverse is also true. Too few talented user interface
designers consider themselves capable of becoming great
programmers. Perhaps programmers look at user interface
design as making things “pretty” and designers look at
programming as writing a lot of “technical stuff.” Mean-
while, they have so much more in common than that.

In the end, the goals of software design from both the inter-
face level and the engine are the same. There is no reason
why we can’t be great at multiple disciplines.

16 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 7

Metaphors Hide Better Ways of Working

We’ve seen why metaphors can hurt how we approach
software. When we take them too far, we develop habits
built around false pretenses. Metaphors are a double
whammy.Not only do theymake us do things less efficient-
ly, but they keep us from thinking about better ways of doing
things.

Wireframes anddetailed specifications take time away from
building and reviewing the real thing. They don’t take
advantage of the opportunitieswe have to constantly iterate.
They make us think through the entire process of writing
code without actually having written any code yet.

The over-emphasis on launch hides the fact that software
today can be modified and redistributed with relative ease.
We don’t “ship” software anymore. We download it off the
Internet, or the software itself is entirely web-based. When
launch dates get pushed back because features absolutely
need to be crammed in, developer morale suffers. It’s a
complete buzz kill for a development team.

The traditional roles in software development, between
architects, developers, and project managers, inhibit those
who have talents inmultiple areas. You can be a great vision-
ary, a thoughtful programmer, and a clear communicator at
the same time. Following the metaphor too closely inhibits
really talented people fromall the opportunities this industry
provides.

Oneway to circumvent this problem is to find amore appro-
priate analogy. Software development might be closer to
writing a novel or composing music. Consider how these
kinds of professionals “plan” their work.

An author might write a chapter outline to get a general
guide about what she wants to write about. But after that,
she starts writing the real thing. Then she edits and repeats

report erratum • discuss

Metaphors Hide Better Ways of Working • 17

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

—a word change here or an entire chapter removed there.
Writing is a lot more like how we program.

A musician doesn’t write sheet music for months and then
hope the notes sound right. He plays and plays and finds a
riff that works. He might have a few lines of lyrics and then
find the right chords around it, or vice versa. He builds the
song in pieces and tests it in pieces.

In both cases, the cost of materials is cheap. Paper and pen
are readily available. Guitars don’t get paid by the note
because sound is cheap. Just the same, code is our own cheap
material. Once we have our development environment set
up, there is no material cost of writing code.

So, use our traditionalmetaphors for development as a stake
in the ground, when you’re not quite sure how to approach
a software problem orwhen there’s not enough information
to make sound decisions. But once you’ve run with the
metaphors for a while, look up. See where they’re still
helping andwhere they might be hurting your process.

With this knowledge in place, we’re now keenly aware of
whether the processes we abide by actually work. The next
step is about the long-term. How can we keep ourselves
motivated throughout the course of our development career?
Next, let’s discuss a fewwayswe can sustain ourmotivation.

18 • Chapter 2. Metaphor

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 3

Motivation
Regardless of how skilled you are, if you’re not motivated
towrite code, get out. Accountantsmight get throughwriting
up a spreadsheet just fine without motivation; a cashier can
get by his daywithout passion. But unmotivated developers
kill a software project.

Motivation must be sustainable. It must be unearthed and
cultivated continuously throughout development. What
keeps you coding with passion at the beginning of a project
might not be your source of inspiration at the finish line.
Different things can get you going at different points in the
process of building software.

Sustaining motivation isn’t unique to software. We see it all
the time in the media. The star athlete who signed the big,
multimillion-dollar contract now doesn’t give his full effort
during a game. The band we grew up loving now starts
cashing in by churning out mediocre albums. Many
celebrities burn out even with the guarantee of ridiculous
wealth. It’s proof that one thing alone isn’t enough to sustain
motivation.

We need different ways to keep passion running through
our veins. A food critic’s review keeps a chef on her toes.
But so does a busy restaurant and a happy staff. The right
tools also help sustain motivation. Show a great chef a
quality set of knives and some fresh ingredients, and you’ll
see amazing things happen. The motivation to run a
restaurant comes from all different kinds of sources. So does
building software.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 8

The Perks Are in the Work

In this industry, long-lasting motivation doesn’t come from
the perks. Indeed, a big salary and a free lunch are nice. So
is a foosball table. In the end, long-lastingmotivation comes
from thework we do. Every passionate programmer I’ve ever
met is far more excited to tell me about an elegant solution
to some technical problem they’ve spent hours agonizing
over than that 10 percent raise they just received at their
corporate coding gig.

Perks Aren’t Motivators in the Long Run

That’s why I’m baffledwhen, time after time, I watch people
settle for that new yet completely uninspiring gig with the
slightly larger salary and the promise of a bigger bonus,
especially when it’s the young and carefree among us with
only the monthly rent to pay.

Don’t stick around at the corporate gig you hate just because
they’re luring you with more cash. Leave that kind of job
mentality to people who are just coding for the money and
waiting for the hours to pass until the next weekend.

20 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

If the difference between salary X and salary X * 1.05 is really
the difference between a few more wild nights out on the
town a year, go for the gig with the more interesting prob-
lems. Pick the job with the more impassioned employees.
Go where you have a chance to build something beautifully,
where the actual projects are at the center of everyone’s
interests. What you might trade in salary (if you need to at
all) you’ll more than earn back in happiness.

A telltale sign of a good company is how they approach their
projects. Great projects have distinct, concrete goals. Great
projects have either all the pieces in place or a plan to get
them in place. Great projects are as ambitious as they are
well thought out. Great projects have a defined time to
deliver, rather than an undetermined amount of time and
budget. These kinds of projects givework a purpose. Among
the hundreds of programming projects I’ve worked on, all
the great ones had these motivating qualities.

Perks Can Be Destructive

There’s even evidence that superficial perks actually make
our work less motivating. Yes, the carrots dangling in front
of us might actually make us less passionate to do our work.

There is a wonderful TED talk given by New York Times
best-selling author Dan Pink on the surprising science of
motivation.1 He argues that traditional motivational factors
in business, like a big bonus, can succeed, but they succeed
only on trivial tasks, like, say, entering data from one
spreadsheet into another.2

In contrast, tasks that involve critical analysis and creative
problem-solving, like the ones that we face every day, aren’t
aided by dangling a monetary prize over someone’s head.
In experiments that involved higher-level thinking, there
was an inverse correlation between monetary incentive and
performance: the greater the monetary reward given to a
particular group of subjects, theworse they ended up doing.

1. http://www.ted.com/talks/dan_pink_on_motivation.html
2. If you want the long version, read his Drive: The Surprising Truth

About What Motivates Us [Pin09].

report erratum • discuss

The Perks Are in the Work • 21

Download from Wow! eBook <www.wowebook.com>

http://www.ted.com/talks/dan_pink_on_motivation.html
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Giving people extra rewards to accomplish a task that was
already appealing at its core made the work less appealing!

For me, it doesn’t matter all that much what I’m building.
It could be a one-page website, a search engine, an online
Rolodex, an interactive map, or a game. It could be used by
millions or thousands or eight people. It could be a six-month
build or a two-hour exercise. I could be mostly writing
markup,working onUI,writing server-side code, or building
a database. In the end, I’m passionate about my work when
I know that I have a chance to build something beautifully.

When choosing that next gig, remember what really keeps
us motivated for the long haul. It isn’t the external perks;
it’s the work itself.

Essay 9

Begin Where You Love to Begin

Sometimes the hardest place to findmotivation is at the very
start. Thinking about code is easy. Software always compiles
perfectly in our heads. We don’t obsess over the hundreds
of minor obstacles we’ll face along the way. But once we
commit to actually writing code, the entire game changes.
Motivation can fade quickly.

The experience of writing software is not too different from
writing this book. I spent farmore time thinking aboutwhat
I wanted to write about than actually writing. Writing can
sometimes be a soul-sucking game of uninspired lines,
mental blocks, and fatigue. It’s hard to keep the juices flow-
ing when I run into a gauntlet of personal demotivators.

Natalie Goldberg’s Writing Down the Bones [Gol05] is an
entire book on motivation for writers. She offers a simple
tip for getting started. Instead of focusing on the big opening,
start writing somewhere in the middle of the story. Begin at
the point that’s most interesting, right now. Don’t try to
write from the very beginning.

22 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

We spend so much time concerning ourselves with the big,
attention-grabbing opener when, in reality, it’s a rather
insignificant portion of the entire story. There’s a consider-
able amount of work after the opening paragraph. That’s
the approach I took for this book. Nothing was written
linearly. In the beginning, I focused on a specific topic when
that topic inspired me.

We can apply the same concept to building software. We
don’t have to start with the home page before the subpages
or with the database before the business logic. Instead of
starting software at the beginning, we can start at the place
where we are most engaged. We have that luxury while
many other builders don’t. Unlike building houses, cars, or
anything physical, we do not need to start anywhere specific.
We can always refactor later. We may take a few circuitous
routes, but if they are inspired rather than labored, we’ll get
more good work done faster.

So, if you have the freedom to be greedy about where to
start writing software, be greedy. Pick a feature you find
most interesting and work your way out from there.

This is especially helpful when you’re about to embark on
building a big piece of software. Rather than spend three
days formulating a timeline and release schedule, commit
those days to working on the part of the application that
most interests you. Aweek in, you’ll know howmuchmoti-
vation you really have, and you’ll have a far better idea of
when the other parts can fall into place.

If you find yourself quickly losing steam, you can cut your
losses then. Still, more often than not, you’ll find the daunt-
ing task of building software not so insurmountable. Three
solid days (or a week) of building an application, and you’ll
know a lot more about what you’re building and how
quickly the rest can get done. Putting together a realistic
timeline is much easier after you have a bit of inspiredwork
under your belt.

report erratum • discuss

Begin Where You Love to Begin • 23

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 10

Be Imperfect

Every passionate programmer cares, first and foremost,
about her code. Code is our canvas. Although no user will
ever look at our code, the passionate programmer labors
over every line. Even when we know, full well, we’re
building a small app for a small audience, a lot of us still
care that our applications will perform under the biggest of
stages. We care about how our code might perform under
the most severe of conditions. We make attempts to reduce
excess calls to the server, to the service, and to the database.

And yet, to survive in this industry, we better not be perfec-
tionists. There is no such thing as a perfect piece of software,
especially web-based software. Our products live through
our users. They morph as our user base grows. Features
beget new features. Bugs beget new bugs. Trying to be
perfect can become exhausting.

The approach a developer took the first day she wrote her
first line of code is likely completely different from the
approach she’s taking today. Software changes over time.
We build, tweak, iterate, and occasionally have to rewrite.
So, we’d better be OK with that.

In development, there are often trade-offs between perfor-
mance and coding simplicity or between perfect architecture
and maintainability. There is no silver bullet to determine
which way is necessarily the right way.

A great software developer is obsessive-compulsive yet
accepts imperfection all the time. Trying to write “perfect
code” is crippling. The quicker we can accept imperfection,
the more motivated we’ll be to keep moving forward with
our work, and the more work we’ll actually get done.

24 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 11

Stop Programming

You probably program too much.

Just when you’ve really gotten into your work, when your
brain is entirely wrapped around your code, when your
hands, eyes, and thoughts are working in harmony, stop.
Look up. Think about when you’re going to finish for the
day. Look forward to shutting off your computer. Get outside
a little.

Programming, for all its mental exercise, is a very comfort-
able physical activity. We usually program while sitting,
and as the hours waste away, we slouch lower in our chairs.
Some of us even eat and drink at our desks while we code
away. We can tell just by examining our keyboards—the
somewhat slick oneswith a pound of crumbs under the keys.

This comfort is dangerous. Itmeanswe can do this for hours
and hours and hourswithout realizing just howmuchwe’ve
exhausted our own resources.

When you hit that point where your code starts to get a bit
sloppy—or, better yet, just before it—stop. Great program-
ming is about maximizing the time you’re working at your
best, not the cumulative hours you spend in front of a screen.

report erratum • discuss

Stop Programming • 25

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Two hours of quality programming time is better than eight
hours of struggle. We’re far more susceptible to taking
shortcuts or breaking standard conventions when we’re
coding tired. Those extra hours are spent creating bad
code—code that we might regret the next day. So, cut all
that programming time down, get outside, and live a little.

Essay 12

Test Your Work First Thing in the
Morning

Test your software first thing in the morning. That’s when
you’re the freshest and the most motivated to continue
building something good.

During the day, we spend so much effort building software
that we lose steam testing each piece we write. It gets hard
to see the big picture as the day wears on. By late afternoon,
we’re too close to the software. Our perception of what
makes sense or feels right now competes with fatigue. Also,
fatigue makes us miss the small details.

Should this feature be here or there? Should we move this
function to another screen?Will thismake sense? Is this latest
tweak really that important? At 5 p.m. (or, for the truly
overworked, 2 a.m.), it’s hard to know what our software
feels like because we’ve been at it for too long.

However, at 9 a.m., fresh from a night’s sleep, we can usually
answer these questions better. Ourmental cobwebs are gone.
Before diving into the build, this is the best time to give our
software the once-over.

In the morning, our software feels new again. We approach
it less fettered bywhat’s behind the scenes.We can consume
it from a less biased viewpoint because we’ve had that time
away.

The morning has a way of making us forget some of the
copious details of code we may have obsessed about the

26 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

night before. No longer preoccupied with the slightly inele-
gant implementation thatmade somethingwork, ourminds
are totally devoted to what we see in front of us rather than
thinking about what’s happening underneath.

When you test, start from the beginning. Don’t dig into a
particular section. Just experience it again. The night before,
you may have been working on a piece of functionality that
a real user may use only once or twice...or never. In the
morning, focus on the things most people will use most of
the time. It’s a much better way to focus on the priorities of
your software and focus on what needs fixing first.

Testing your software in the morning, before adding more
code, is a great way to make sure you’re still making good
software. It’s when you’re the freshest.

Essay 13

Work Outside the Bedroom

I began building websites in my college dorm room in the
late 1990s. By my senior year, my time was split two ways;
I was taking a few courses to finish up my credits during
the day, and I was freelancing in web design frommy dorm
room in the evenings. Homework? What homework?

While some of my contemporaries were workingminimum
wage at the dining hall or computer lab (remember those?),
here Iwas, inmy boxers,moving amouse around the screen

report erratum • discuss

Work Outside the Bedroom • 27

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

making five times as much per hour. My commute to bed
was a step, or sometimes two steps on a bad day.

For awhile, I was living The Life. I was getting my degree
and earning a respectable salary for a college student
working from his bedroom.

The fall after I graduated, I beganwork at a small technology
firm in Chicago. I started just as the dot-com bubble burst
and the American economy went into a tailspin. Six weeks
into the job, my position there also burst. I went back to live
withmyparents. Suddenly Iwas a 22-year-old adult picking
up a few freelance web projects, again, from the comfort of
my bedroom.

The first few weeks felt great. After the initial honeymoon,
being inmy pajamas felt kind of different. I wasn’t in school
anymore. My friends weren’t down the hall or just up cam-
pus. It was just me andmy desktop.Without other required
diversions in place (like going to class and finishing my
degree), work filled up all of my time.

It wasn’t that I was sweating away eight hours a day; it was
that I was working in short spurts throughout the day. A
couple hours of real work in the morning, a snack break, a
few hours of daytime court television, a few more hours of
work, a run, a meal, and—oh, yes—a few more hours of
work to cap off the evening. My five to five hours of billable
time was spread thinly across twelve to fourteen hours.
There was no separation between work life and real life. I
wasn’t working passionately or efficiently anymore.

As Parkinson’s law states, “Work expands so as to fill the
time available for its completion.”When I was able to be “at
work” any hour of the day, there was a whole lot of time to
fill up. Suddenly, my 40-hour work week turned into a 168-
hour mush of work, sleep, and kinda-being-around-work.

Working from home is a luxury. Most people would trade
a two-hour commute for a fall-out-of-bed commute. But if
you have that luxury, don’t code in your bedroom. Or your
living room, for that matter. Find a confined area to work,
preferably a second room, where you can physically leave
from after your workday is over. Shut the door at the end

28 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

of the day, hang up the “Closed” sign, and get on with the
rest of your life until tomorrow.

That’s how you really live The Life.

Essay 14

First Impressions Are Just That

As software goes, how important is a user’s first impression?
Especially an unfavorable one? I don’t think they are very
important at all. We shouldn’t let them instantly curtail our
motivation.

Nodoubt, bad first impressionsmay be a sign that something
really is wrong with our software. But there are two things
I’ve learned that account for many bad first impressions.

Bad First Impressions Can Come from Unfamiliarity

Sometimes bad first impressions come from simply not
having used the software before.We should really take these
types of impressions with a grain of salt. For instance, the
first time I used Gmail, I thought to myself:

These emails, they’re like mini-forums. They’re like threads
of discussion...not email. Interesting. Strange. Do I like it? No.
Yes. I don’t know...maybe?

Gmail email threadswere initially a strange concept. I heard
many people rave about it, but I heard an equal number rip
it to shreds. Fast-forward a few months later. I stopped
hearing about it altogether. Here’s a more typical conversa-
tion you might have with someone who uses Gmail today:

Male in red cap: Hey dude, do you use Gmail?

Male in blue cap: Yeah.

Male in red cap: What do you think?

Male in blue cap: It’s fine. Lately it’s been slow. Anyway, let’s
go grab some beers!

It turns out that both types of email systems work for me,
for these two fine gentlemen above, and for the vastmajority

report erratum • discuss

First Impressions Are Just That • 29

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

of the world. After a while, we stopped obsessing over it. In
fact, today, I use both Outlook and Gmail. I also know lots
of others who use both a non-Gmail email client and Gmail.
When I useOutlook, I expect normal, old-school email.When
I use Gmail, I expect “special forum-like mail madness.” In
the end, I’m comfortable with both.

I’ll admit it. It takes some guts to try to redefine paradigms
as firmly implanted in society as email. In our line of work,
fortunately, the stakes are a lot smaller. Radio buttons or
drop-down list? Search box on every page or just some
pages? The likely answer? Yes. Yes. Yes. And yes. In the end,
when we are accustomed to seeing the same software over
and over, there’s a good chance we’ll get comfortable with
whatever design decisions we first had a problem with.

I hear the naysayers knocking loudly. Am I really saying
that users should conform to software, instead of the other
way around?Am I really suggesting that our initial reactions
to software are not important? Is this coming from the same
guywho helped bring you Flash ApplicationDesign Solutions:
The Flash Usability Handbook [CB06]? Yes it is!

30 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

I’m not saying that first impressions carry no weight. But
those initial impulse reactions we have to something we see
for the very first time are often just reactions to the unfamil-
iar. We’re naturally daunted by something new. Yet, too
often, as developers, we take those initial user reactions too
seriously.

Bad First Impressions Aren’t Always Based on What’s
Important

Here’s the other problem: sometimes bad first impressions
are not indicative of what’s really important.

If Google just opened shop and Iwas a usability tester, here’s
what my first impressions might be:

• The “Google Search” button should flip with “I’m Feel-
ing Lucky” because I’m used to clicking the rightmost
button when I submit information, and I’m usually
going to search for something real rather than press my
luck.

• I don’t get what “I’m Feeling Lucky” is actually going
to do. That’s confusing. There should be instruction
there as to what might happen when I click it.

• I had to go hunting for a while to find the advanced
search option. Oh, and that advanced search page was
hard to use.

• The navigation links at the bottom should be above the
search bar, because that’s where I’m used to seeing
navigation.

Ask me now, and I can refute most of my initial concerns.
I’ve gotten used to the placement of the search button. After
using the ”I’m Feeling Lucky“ button a couple times, I now
know it just takes the first search off the list and sends you
right there. The advanced search feature? I never use it any-
way, so who cares if it’s not that easy to use? And ditto on
those links at the bottom. I’m glad they’re underneath the
search box instead of at the top.

First impressions are often skewed because we don’t really
get how we’ll ultimately conform to the software. Initially,
something we think might be important, like an advanced

report erratum • discuss

First Impressions Are Just That • 31

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

search option, ends up not being important at all. With
something that’s a little off from what we’re accustomed to,
like the order of the “Search” and “I’m Feeling Lucky” but-
tons, we simply get acclimated to after a short period of time.

So, when you’re confronted with negative feedback from
your customers, clients, or co-workers, stick to your guns.
Explain why you did the things you did. Ask them to let
your work simmer for a few days. Don’t let that initial rush
of feedback demotivate you.

If those problems still persist, then perhaps there really is a
flaw in your application. But you’ll be surprised howmany
of those initial negative impressions often just fade away.

Essay 15

The Emotional Value of Launch

In the previous chapter, I talked about launch. In today’s
development, launch is just one of many releases in the life
span of software. But launch is significant for another reason:
a launch date gives a powerful dose of motivation.

Why? Because we know our software is no longer waiting
on the sidelines; it is alive and ready and is a huge lift to the
ego.

The good feeling that comes from finishing the first phase
has a huge implication on how well and efficiently we’ll
continue to do our work in the future. Contrast that with the
soul-sinking feeling we get from the endless tweaking of
software still not deemed ready for prime-time.

Sometimes, though, we’re scared to launch. Launch means
that our precious application is now at the mercy of the
masses.Whatwill they say?Aswe saw in the previous essay,
whatever they say at firstmight not bewhat they think down
the road. Even if there are critical changes that have to be
made, we can make them. Very few add-ons, removals, or
logic shifts are undoable. Good programmers prepare
themselves for this all the time. The basis of design patterns,

32 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

methods on refactoring, and best practices is largely to
accommodate for change in the future.

So, get your software to launch as soon as you reasonably
can. You’ll find out more about how to ensure your launch
date doesn’t keep slipping away in our next chapter on
productivity.

Essay 16

Find an Argument

There are other ways to stay motivated than simply coding
away on the next great application.

Find an argument. Find a topic that you passionately agree
with. Better yet, find one you unabashedly disagree with.
Then go speak about it. Explain why your way works in
intricate detail.

Get involved in a localMeetup.com group or apply to speak
at a conference. Don’t think you’re not good enough or ready
to be heard; if you can find a topic you’re passionate about,
you’re ready. You don’t have to be a rock-star programming
hero, the onewith the 50,000 Twitter followers and the über-
successful business. For right now, you can just be yourself.
What’s wonderful about the web community is that your
voice is built, first, on substance. If you have something to
say, you can be heard.

If the very thought of speaking ismaking your palms sweat,
then write. Writing gives you the chance to fumble your
words 1,000 times before you finally get it just perfect. You
can start with a blog or contact other more established
bloggers towrite guest posts. You’ll be surprised how recep-
tive the community at-large is.

In need of an argument? Here are few polarizing topics that
might get you started:

report erratum • discuss

Find an Argument • 33

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

• Is it ever OK to use <TABLE />s in your HTML markup
for anything other than tabular content? Many markup
purists say no.Maybe you can say yes and explain why.

• Is Adobe Flash still relevant in the rich web application
space, or has enough advancement been made with
HTML5, CSS3, and JavaScript tomake Flash irrelevant?

• Are object-relationalmappers (ORMs) better to use than
raw SQL? Many would argue that ORMs are almost
always inefficient when you make more complex
database queries. Others argue that the simplicityORMs
provide to the developer is worth the trade-off.

• Is Model-View-Controller architecture the best way to
architect all applications? Some would say that it’s a
bloated architecture and simply using a standard page
model works better.

• How important is usability testing and A/B testing for
web applications? Some argue it’s overhyped and the
effort of running studies of your application isn’t worth
the up-front cost and time.

Aswe’ve seen throughout this chapter, motivation can come
in many forms. It doesn’t have to live just within the
boundaries of code but can also be how we approach our
jobswhenwe’re away from the desk. Even a good argument
can keep our passion running high.

If you can stay motivated throughout the course of your
development career, you’ll get productive too. Let’s find out
howwe can turn ourmotivation into sustained productivity.

34 • Chapter 3. Motivation

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 4

Productivity
Motivationmay bewhatwe need to get started, but produc-
tivity is the tangiblemeasure of success. This chapter is about
maintaining a consistent level of impassioned work every
day.

The corporate world, as it does with just about any concept,
equates productivity to some calculable metric. In this case,
it’s ametric like utilization or throughput. Productivity is often
distilled into a formula that determines howmuchwork we
do or how many things we juggle at once, not the quality of
our work. Real productivity is about quality work.

Take multitasking, for instance. It’s the quintessential act of
feeling like we’re being productive but rarely a great way
to actually do good work. “Working through lunch” is one
of these acts. Howmuch quality code is really beingwritten
typing with one pointer finger while the other hand grips
that footlong sandwich?

More importantly, that’s just not an enjoyable way to work.
Leave your desk. Eat your lunch in peace, and get some fresh
air. The code will be there when you come back.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 17

Just Say “No” to the Pet Project

Every one of us has a pet project archive. It could be software
we started and saw partway through but never quite fin-
ished. It could be code that began strong but came to a
screeching halt because more pressing issues came up.
Other work got in the way, or we simply lost interest.

Pet projects fail when there are no time constraints and
nothing is on the line if we don’t succeed. When a launch
date is “one of these days,” we likely won’t be finishing it
anytime soon. Some of us seem to spend years mulling over
that next great idea instead of first deciding on a specific
amount of time to build it.

How about just three months? Jack Dorsey spent less than
that from initial concept to launch of the first version of a
little-known SMS messaging service that later would be
called Twitter.1 Imagine if, instead, he had spent years and
years on development instead of the short burst from start
to launch. Things might have turned out differently.

Timing Is Everything

That’swhy time is themost important parameter inmaintain-
ing a passion for writing software. With a pet project, it’s
fine to start writing code for amusement and learning.
However, when we’re ready to turn it into something real,
we need to define our time boundaries. Answering the fol-
lowing turns a project into something real:

• How much time will I spend working on this project
each day, and how many days will I spend each week?

• When can I show a mostly ready product to someone
else?

• What day will I launch this to the public?
• What day will I release my first major iteration?

1. http://en.wikipedia.org/wiki/Twitter

36 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Twitter
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

The first question creates sustainable, daily expectations.
Maybe it’s just two hours a day and three days a week. It
just has to be consistent. From 3 p.m. to 5 p.m. each afternoon
is better than “whenever I find a gap in my schedule.”
Spread it evenly too. Mondays, Wednesdays, and Fridays
might be a better set of days to work than lumping all three
days over the weekend. That leaves too large a gap between
sessions, and you’ll waste a lot of that extra time refreshing
your memory about where you previously left off. Finally,
make your schedule achievable. Making a habit of saying
“I’ll put it off today and make it up tomorrow” gets stale
really fast.

The second question gives us a deadline for test-ready soft-
ware. It’s a stake in the ground: a short time fromnowwhere
our co-worker, friend, or spouse gets a crack at what we’ve
done. It helps us to work backward to figure out howmuch
timewe need to do ourwork between now and then. Couple
this with how much time we spend per day and week, and
we’ll know how much time we need to do every coding
session.

The third question gets us ready for “good enough” software,
which is software that has all the big things right and is ready
for the general public. It’s launch-ready. The time between
the previous date and this one is where we fix the bugs that
are critical to get right, not the hundreds ofminuscule feature
additions we all want but can live without for a few weeks.

And that’s where the answer to the fourth question comes
in. It sets us up for everything after launch.We’ve launched,
and now we need to set up a time to push new releases.
Perhaps it’s a week after launch or less. Because it’s web-
based software, it can be just a few days (or even hours) after
launch. Once we actually have gotten to this stage, we’re off
and running.

These time constraints create thewalls we need to fill inwith
work. It helps us define ourmost important features. It gives
purpose to each moment we put into our software. Without
rigid time constraints, we can go on noodling forever won-
dering whether we’ve made something just right. Instead
of getting ready to deliver something, we’ll be tweaking

report erratum • discuss

Just Say “No” to the Pet Project • 37

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

each step for as long as we please. Productivity dries up
when we don’t have that sense of urgency. Time constraints
keep us progressing.

Set a Deadline, Even If It’s Arbitrary

Our company’s first product, DoneDone,2 began as one of
my pet projects. DoneDone is a simple web-based, bug-
tracking tool that focuses on clarity and a simple workflow
over complex features. I startedwriting it becausewe didn’t
like the other bug tracker we were using that was costing
us $120 everymonth. It was gaudy in placeswewanted less.
It was missing some small things that would’ve made our
process more efficient. I knew I could do something better.
If we were willing to pay for our current bug tracker, others
would certainly pay for this.

For the first few weeks, I worked with only ideas. No wire-
frames or specs. I just wrote code, built interfaces, tested,
refined, and wrote somemore. I was still in the honeymoon
period of development. Though I was directionless, the
thought ofmakingmoney off a productwas enoughmotiva-
tion to start.

Fast-forward a few months later. It was November. Client
work began to pick up again, and naturally, my pet project
got shuffled to the back of the priority line. Every few days,
I might carve out a couple of hours to build DoneDone, but
those hours were sluggish and unproductive. Most of my
time was spent reacquainting myself with what I had done
before. Because those time periodsweren’t consistent, it was
hard to decide what I should work on when I suddenly
found myself free.

Instead, I needed a new approach. As a business, we had to
treat DoneDone with the urgency of a client project. What
was the difference between this project and projects we’d
done for other clients? It was simply that we were our own
client. And just like a client project, we needed dates: a date
to releaseDoneDone internally, a date to launch the product
to the public, and dates to release iterations thereafter.

2. http://www.getdonedone.com

38 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.getdonedone.com
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In the end, I decided we would launch DoneDone on April
15, 2009. Perhaps therewas some poetic connectionwith the
fact that it was the same day the IRS collects our taxes.
Frankly, it was just an arbitrary date, about sixmonths away,
that felt like the right amount of time—not too much, not
too little. There was a lot of work to be done, but if I used
50 percent of my workday on DoneDone and brought in a
couple people to pitch in every now and then, we could get
this project off the ground. A pet project suddenly became
a real project.

With a deadline set, we could fill in that timewith a requisite
amount of work. We needed to add the payment gateway,
figure out our cost structure, build a marketing site, and
clean up our feature set. Everything had a time and a place.
That sense of urgency—and productivity—came back.

After we launched, there were certainly other features to
add. Looking back on it, it’s hard to imagineDoneDone ever
not having them.We did not have an email-to-ticket system
or a tagging system for issues, both core pieces of the product
today, but they simply weren’t mission-critical for launch.
We focused on the most important features that a bug-
tracking tool that took six months to build would require.
Over the next ninety days, we released ten new updates of
DoneDone.

Have I reallywritten awhole essay about setting deadlines?
Yes. In all its unrevolutionariness, it’s amazing how having
a hard date in your head is the difference betweenwork that
gets done andwork that escapes into La La Land. Deadlines
keep your work relevant. When you let your project bleed
from months into even years, your product might not have
the intended worth it had when you began.

Deadlines create a sense of urgency that gets you to the finish
line. They give you the push you need even if you have no
one else breathing down your neck.

report erratum • discuss

Just Say “No” to the Pet Project • 39

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 18

Constrain All of Your Parameters

In the previous essay, we saw how time constraints turn pet
projects into real products. But time isn’t the only parameter
we can constrain. All software costs money to build. So, put
a cap on it. Capping costmakes us creative. It helps us figure
out a more efficient way of using our resources.

Consider all the sad stories of lottery winners who go from
working nine-to-five jobs to suddenly having more cash
than they know what to do with. Rather than save their
money, they go off throwing it away on things like...yachts.
They give away thousands to long-lost relatives. After a
while, many of them go into debt and are worse off than
had they not won at all. They didn’t realize a million dollars
is still a finite amount of money. Even though the monetary
walls are spread further apart, they are still there.

This, too, is why so many venture capitalist–backed start-
ups have failed. Back in the original dot-com era, a VC
throwing fiftymillion dollars to a group of guyswith a lofty
idea but no proof of success was commonplace. With so
muchmoney in play, it was easy to decide that the necessary
next step was a big downtown office, a few hundred out-of-
college new hires, and a board of directors. After all, if a VC
was going to give you that much money, you better do
somethingwith it.

When the market set the value of untested companies so
high, it inflated the worth of the idea rather than the worth
of the work. It wasn’t necessary to get a small product out
in the market early to see whether it had any promise.
Tweaking a few features and redeploying software didn’t
merit another million dollars. Instead of using the size of
their customer base to determine the size of their web
servers, some companieswould just buy up the entire server
farm and wait for the customer base to grow.

40 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Abottomless bank vault took the urgency out of succeeding.
Many companies found ways of being productive, but that
kind of productivity wasn’t focused on the product.

HadKozmo.com, aVC-backed company that delivered food
and entertainment goods to your doorstep for no delivery fee
been given only a few hundred thousand dollars to operate,
it may have felt the urgency to turn a profit a bit quicker.
Instead, Kozmo.com blew through several hundredmillion
dollars, expanding its highly unprofitable service to nine
major U.S. cities.3 By the end of the third year, Kozmo.com
liquidated. By not having toworry about a profitable product
early on, Kozmo never got a chance to adjust a promising
idea into a solid product.

When we don’t have the walls around us, whether they are
walls around time, cost, or a feature set, we lose sight of
reality. We make questionable decisions because nothing is
forcing us to choose wisely. Our productivity isn’t spent on
the important things.

If you want to develop great software, set up and obey the
walls around you. Make every step you take a step toward
building amore successful application. There are not enough
resources to do anything else.

3. http://money.cnn.com/galleries/2010/technology/1003/
gallery.dot_com_busts/9.html

report erratum • discuss

Constrain All of Your Parameters • 41

Download from Wow! eBook <www.wowebook.com>

http://money.cnn.com/galleries/2010/technology/1003/gallery.dot_com_busts/9.html
http://money.cnn.com/galleries/2010/technology/1003/gallery.dot_com_busts/9.html
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 19

Cut the Detail Out of the Timeline

In twelve years of software development, I’ve never seen a
project go exactly as planned.

Functionality changes. Unanticipated obstacles arise.
Sometimes things that we think might take a week actually
take three. Yet, all too often, we put too much detail into a
project timeline. Putting a delivery deadline on every little
component means we become slaves to our own timeline.
We’ve decided how long every single stepwill take without
having taken any of the steps yet. It’s impossible to come
up with the perfect plan at the very beginning.

So, when you begin your plan, plan with less detail.

Build timeline deliverables in sizeable chunks, not in small
breadcrumbs. If you’re estimating an eight-week project,
give yourself eight weekly deliverables rather than forty
daily ones. Instead of defining when each individual inter-
action of your application can be delivered, decide when a
complete section can be delivered. In the end, it’s the same
amount of time but with fewer checkpoints in between.

When our timelines get too detailed and our delivery dates
become too frequent, there’s no wiggle room to experiment
or reconsider the details of an application as we go. We’re
forced to stick to a rigid schedule of guessed tasks, as if an
ignorant micro-manager were hovering over us constantly.
Then when the timing of a few of those small tasks goes
awry, suddenly the entire timeline feels like it’s crumbling
right in front of us. That’s not motivating, nor is it how good
software gets built.

A lot of front-end developers approach screen design in
drastically different ways. Some like to mock up a screen
perfectly in Photoshop and then translate the visual into
HTML and CSS. Others like to start directly in code. Some
like to focus strictly on the markup structure first before

42 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

putting in a single color or font size. Others need to see the
design unfold as they build the structure. Some start by
building for the lowest common denominator and work
their way up. Others start with the optimal screen resolution
and work on gracefully degrading their layouts later.

Setting a deadline for delivering completed screens is a good
milestone. But making deadlines for all the in-between
components specifically (just the HTML or just the CSS)
isn’t. It doesn’t give a developer the liberty to work the way
she works most efficiently.

Giving ourselves a reasonable amount of time between
deliverables enables us to play. It breaks down a large project
into bite-size mini-projects where we still get the chance to
approach the build the way we want. It gives us the chance
to iterate a few times before our next deadline. A week (or
two) before our next deliverable gives us the opportunity
to make a few mistakes and still recover.

Essay 20

Improve Your Product in Two Ways Daily

Let’s not sugarcoat programming. At times, development
can get dull. There aremomentswhen I’d like to do anything
else, like perform open-heart surgery on an endangered
animal.

In the proverbial dog days of development, sustainable
productivity has to come from really small victories. The
simple satisfaction of coding or those delusions of fame
won’t keep us productive all the time. There has to be a
daily nugget of inspiration—a baselinemotivator that exists
even when the more general motivators grow stale.

For the first year of our company, I spent a large amount of
time building aweb-baseddatamodeling application called
X2O. To this day, X2O creates the application framework
for every web project we build at We Are Mammoth. It
generates an interface to build an application’s data model

report erratum • discuss

Improve Your Product in Two Ways Daily • 43

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

and maintains the database, data access layer, and web
services sowe can rapidly build customizeddatabase-driven
apps.

X2O is an application with lofty goals. It is wildly complex
in places, with a whole lot going on underneath the hood.
Broken down, it’s a synthesis of several dozen applications
that help generate different parts of a custom application.
Maintaining passion to keep building it is hard because each
of these apps is a big application in itself. Building big stuff
like this requires small victories.

While Iwas knee-deep in development, I put a new rule into
my day-to-day efforts on X2O:make two things better about
the software each day.

They didn’t have to be big improvements. They could be
very little ones, such as creatingmore elegant, friendly error
messages on theUI or getting rid of stale code. Evenmaking
sure all the methods have good comments was an improve-
ment. Some days I’d have the energy to tackle a big task and
a little one. Other days, I’d domaybe twominor ones. In the
end, every day I knew that X2O that day was quantifiably
better than X2O the day before.

There’s significance in the number two aswell. One improve-
ment can sometimes be daunting.Which one dowe choose?
One is also too close to zero. One makes it easy to convince
ourselves that we could skip today and make up that extra
one tomorrow. On the other hand, three is a lot to sustain
every day. Two is a magical number.

Deciding to make your product better in two ways every
day is a good mental exercise to keep those large projects
moving forward. In a working week, you’ll have ten better
things to say about your product than you do now. In a
working month, you’ll have forty better things to say about
your product than you do now.

44 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 21

Invest in a Good Work Environment

Ever notice the difference between a cheap roll of Saran
Wrap and an expensive roll? For spendthrifts, it’s hard to
justify paying twice as much money for a roll of sticky
plastic. But the differences are obvious. A great roll is easy
to tug. It doesn’t cling too vigorously on itself but sticks
snuggly over a bowl. Most importantly, a great roll tears off
easily.

At the grocery store, it’s tempting to opt for the cheap brand;
after all, we’re talking about SaranWrap. But the few dollars
we save initially is paid back each timewe have a frustrating
experience ripping off that stretched, unsticky piece of
plastic.

Multiply the Saran Wrap experience with everything else
we might do in the kitchen. When every tool is less than
optimal, our overall experience is marred by little moments
of nonproductivity. The more little things that get in our
way each time we try to get work done, the less productive
we’ll be.

This same philosophy is especially true for us programmers.
Productivity depends on every little thing that surrounds
where we work. Our work environment should do every-
thing to minimize that distraction.

A Really Fast, Versatile Machine Is Worth the Extra Cost

That’s why it’s critical to invest in good hardware. The finan-
cial costs we put in up front will invariably pay off every
day, in the currency of productivity.

I recently upgraded from using a seven-year-old Dell
Inspiron 9300 laptop running Windows XP to a MacBook
Pro running Windows 7 on Parallels. The investment was
monetarily substantial, but for that singular, one-time down
payment, I now reap the benefits everyminute I’mworking.

report erratum • discuss

Invest in a Good Work Environment • 45

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

There was nothing wrong with my old laptop. I could
upgrade itsmemory for a hundred bucks and keep tolerating
it for another few years. However, in many small ways, it
was becoming similar to that average roll of Saran Wrap.
There were small disadvantages that I was paying for every
coding session.

With my new laptop, I can now take advantage of both
platforms at once. I can run a much speedier version of
Photoshop on the Mac, in a pinch, while still working on a
.NET application with Visual Studio on the Windows side.
Plus, I can browser test on both PC andMacwithout having
to set upmultiple browsers on one of those cast-off comput-
ers—the ones companies typically denote the “Browser
Testing Machine.”

The advantages aren’t limited just to the software. I’ve even
fallen in love with the keyboard. The keys are flat and thin.
They have just the right responsiveness to the touch. They
let me type more fluidly and seamlessly as compared to a
traditional bulkier keyboard. I make far fewer typos on my
new keyboard.

Now, consider the impact of each typo I don’t make. That’s
one less moment of having to break my train of thought.
That’s one less moment of having to movemy eyes from the
screen to the keyboard to retrace my steps. That’s one less
moment of, then, having to remind myself where I left off
in my train of thought.

46 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Suppose I make only four fewer typos a day with my new
keyboard (in reality, I’m sure it’s much more than that). In
a given year, that’s about 1,000 fewer minor interruptions
while I code, all for the cost of just one new keyboard.

Invest in More Real Estate

In the kitchen, more countertop space is never a bad thing.
When we’re making a recipe that involves a few dozen
ingredients and a couple bulky appliances, a vast expanse
of area in front of us is essential. That way, we don’t have
to stack items on top of each other. We can organize our
tools in different areas of space as we please.

More countertop space means less chance we accidentally
set raw ingredients on top of cooked ingredients, drop a bag
of flour on the floor, or overcook an egg because we are
looking for where we put the salt.

In programming, screen real estate has precisely the same
value. When we have only a single monitor to view our
work, we have to make compromises. There’s not enough
room to keep our development environments, browsers,
and communication clients “on the countertop” at the same
time. We’re forced to flip between states 1,000 times during
the course of a workday.

Suppose we want to rigorously test our code in a develop-
ment environment while running the compiled application
in a browser. Without enough screen real estate, we can see
only one application at once—or maybe both applications
resized to thin, horizontally scrolling widgets. Those little
adjustments are distracting. They can kill a tenuous train of
thought.

Just like the kitchen countertop, multiple monitors are a big
boon to productivity.

In a dual-monitor setup, keep your programming environ-
ment in the full screen directly in front of you. In the other
screen, keep up your test browser and have any other
programs (such as email or chat clients) accessible from there
aswell. Thisway, you can stay focused on your development
and test on another screen at all times.

report erratum • discuss

Invest in a Good Work Environment • 47

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

If you have a triple-monitor setup, keep your programming
environment directly in front of you, your test browser up
on one screen, and all the other programs (such as email or
chat clients) on a third. If you want to concentrate for a few
minutes without the distractions of blinking taskbar icons
and unread messages, you can just turn off the third screen
temporarily.

As an aside, the next time you’re out on a job hunt, looking
for that next great gig, scan the office to quickly tell whether
management is in touch with their development
team—whether they really care about thework environment
they’ve set up for their developers. Count the number of
monitors in the room and divide by the number of employ-
ees. This number is your in-touch quotient.

DiagnosisIn-Touch Quotient

Not in touch.1
Somewhat in touch.1 to <2
Very in touch.2 to <3
You’re actually in a day-trader’s office.
Leave immediately.

More than 3

The environment you’ve been running on for a few years
may seem fine to you right now, and you might be accus-
tomed to its temperaments. But spending those extra few
thousands of dollars is an investment in productivity, not just
an expenditure.

Essay 22

Keep a Personal To-Do List

It’s amazing how sometimes the simplest tool can make us
substantiallymore productive. Enter the personal to-do list.

A personal to-do list is not—I repeat, not—like a project
timeline or a Gantt chart. Those documents serve a group.
They are too sweeping for a single person. They make
projections about the broad scope of a project rather than

48 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

lay the path for the next couple of paces ahead of us. While
they are useful “big-picture” documents, they don’t help us
get organized.

A personal to-do list is also not an overflowing email inbox.
Using our emails to remind us of things we have to do is
futile. Email is a smorgasbord of fragmented conversations
and questions interspersed with unprioritized tasks, not a
clearly defined list of things to do right now. Email isn’t
made for quick scanning.

A personal to-do list is just a checklist. Nothingmore, nothing
less. It’s quick and simple yet deceptively powerful.

When you receive a task in your inbox, write the task down
in your personal to-do list. When you’ve adjusted your
timeline to accommodate a must-have feature, break down
that feature into small to-dos on your personal to-do list.

At first glance, the personal to-do list seems like just another
thing to manage; all the items in it likely originated from
some other document. That smells like bad practice because
it violates the “don’t repeat yourself” mantra most of us
follow in our code. However, a personal to-do list is a rare
occasion where duplication is OK. That’s because it doesn’t
serve the same purpose as other, more rigid documents.

Unlike other documents, to-do lists are made for constant
adjustment. They are never set in stone. To-dos are added,
checked off, pushed back, pushed up, and thrown out daily.
Unlike project timelines and Gantt charts, a personal to-do
list doesn’t care about the past. Its starting point is always
right now. It also doesn’t guess at things. It’s full of orga-
nized, real tasks that have to get finished in the very near
future.

The Ingredients of a Good Personal To-Do List

A personal to-do list for programmers ought to have the
following qualities:

• It is one, and only one, list.

• It has four buckets: Today, Tomorrow, Two days from now,
and Future.

report erratum • discuss

Keep a Personal To-Do List • 49

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

• It isn’t a nested set of dependencies. Each to-do lives
directly under one of the buckets mentioned earlier.

• It’s easilymodifiable. You canmove items up and down
the list easily.

• It is composed of short tasks that take no more than a
couple of hours to complete. Items in the Future bucket
can be broader. We’ll get to that later.

• It’s online. You have access to it wherever you’re
working.

I use Ta-da List from 37signals because it’s simple and free.
Here’s how you set up a personal to-do list using Ta-da List.

Create a new list, and then add the four divider items. Since
you can’t make dividers in Ta-da List, just make four to-do
items that you’ll never actually check off. Put dashes before
and after the label so it’s easier to differentiate them from
the other, real to-dos.

As you start adding to-dos, put themunder their appropriate
divider. If it’s something you absolutely need to finish today,
drag it under TODAY. If it’s something you need to get done
tomorrow, drag it under TOMORROW. If it’s just further out,
put it under TWO DAYS FROM NOW. If you’re not sure exactly
when but know there’s a task coming up pretty soon, drag
it under FUTURE.

Because nothing about a to-do list is final, if you’re unsure
whether to put something under TOMORROW vs. TWO DAYS
FROM NOW, lean toward the closer date. If you finish tomor-
row and it still hasn’t become top priority, you can leave it
for the next day.

50 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Breaking Down Features into To-Dos

Any to-dos you bring under TODAY, TOMORROW, or TWO DAYS
FROM NOW should be small tasks (no more than a couple of
hours). For instance, Build registration and login is a bad to-do.
Too much time goes by before you’re able to see progress
on your to-do list. Instead, Build registration and loginmight be
added as a series of these bite-size tasks:

Here,we’ve broken downbuilding a registration component
into a three-day, ten-task to-do list. It’s organized without
seeming overly complex.

Each to-do is a small chunk of work. Once we finish one
thing, we can check it off. It gives us instant gratification
each time we finish something. Instead of waiting until we
complete an entire component, we see progress frequently
as we go.

At the end of the day, we may not get to everything we had
in mind. Oftentimes, we’ll have an item or two that didn’t
make it. By sundown, our to-do list often looks like this,
with something still remaining for today:

report erratum • discuss

Keep a Personal To-Do List • 51

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

How Tomorrow Becomes Today

So, what happens when tomorrow comes around? What if
there was an item or twowe didn’t get to yesterday? It takes
just a few seconds to get our to-do list updated again. In
Ta-da List, it’s two simple mouse drags.

First, drag the TOMORROW divider just above the TWO DAYS
FROM NOW divider. Everything that was set for tomorrow
now falls under TODAY. Anything we didn’t get to yesterday
still remains in TODAY. Drag TWO DAYS FROM NOW just above
the FUTURE divider. Everything that was set for two days out
now falls under TOMORROW.

Back to the Future

Each day, glance at your growing list of FUTURE items. If
you’ll need to finish one of those items in the next two days,
break that task down into bite-size tasks, and move them
appropriately.

52 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Reevaluating What Matters Each Day

A personal to-do list is perfectly made for adjustments to
priority. It rolls with the daily uncertainty of software devel-
opment. Perhaps an item that’s destined to be done today
doesn’t seem as important anymore. Just drag it into the
TOMORROW bucket or even further down. Similarly, an item
set for TWO DAYS FROM NOWmay be something you have the
energy for today. Move it, finish it, and check it off.

There will be many days when we won’t get to all of our
TODAY items. We may have an item stuck on TODAY for days
on end because other priorities get in the way.

But after a while, patterns begin to emerge. Certain to-dos
always seem to linger around our TODAY bucket or routinely
get pushed back to TOMORROW. These “bad egg” to-dosmight
not be as important as we thought when we first added
them. When a to-do item hangs around for a week or two,

report erratum • discuss

Keep a Personal To-Do List • 53

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

just get rid of it. Avoiding unimportant work is just as pro-
ductive as completing important work.

A personal to-do list is not black magic; it will not do the
work for us. Still, it helps us organize and adjust simultane-
ously while seeing real progress every day. Feeling good
about each day’s small bit of progress keeps us on track to
stay productive tomorrow.

Essay 23

Create “Off-Time” with Your Team

Productivity can happen only when there’s time allowed to
be productive. That’s less obvious than it sounds. Basic
events in everyday work—meetings, phone calls, shoulder
tapping—are so commonplace now that we forget these are
all distractions.

How have some companies solved the distraction issue?

37signals preaches a philosophy of staying away from their
employees. InRework [FH10], theymention how interruption
not only stops us from working on the thing we’re working
on but breaks us out of our natural “alone zone”—that state
of completely concentrating on our work.

Google is well known for its “20 percent rule,”which allows
engineers one day aweek towork exclusively on a company-

54 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

related project they’re particularly passionate about.4 Many
of these side projects turned into some of Google’s best
known products, like Google News and Gmail.

Companies that want their employees to thrive, not just
survive, need ways of allowing that to actually happen.

If I hadmydruthers, I’dwork fromhome every day. Extract-
ing myself from the nagging feeling that there’s a client call
looming or that someone needs my help on something right
now is a huge burden lifted. I can just focus on my code all
day.

But we also serve clients who sometimes need lots of atten-
tion. We rarely have the luxury of spending full days on
pure programming. Therewill always be fires to fight, clients
to call, and emails to answer.

Welcome, Off-Time

A few years ago, I instated off-time at my company. It’s a
way ofmimicking the get-out-of-my-face-and-just-let-me-work
rules that other companies implement, while still catering
to our clients’ needs (aka calls, emails, and general attentive-
ness). Here’s how it works.

We have two-hour shifts of off-time for each developer, every
day. When you’re on off-time...

• No emails need to be answered.
• No meetings. You are unavailable during this time.
• No phone calls.
• No co-worker instant messages you.
• No co-worker talks to you.

During off-time, we place a white flag on our desks. After
two hours off, we go back to checking email and responding
to phone calls and instant messages. Then, we proceed as
normal. The golden rule is simple: don’t bug the person on
off-time.

It would be great to have company-wide off-time, but it’s
unreasonable for our business. Itmeanswewould essentially
shut down from any client or internal communication for

4. http://www.nytimes.com/2007/10/21/jobs/21pre.html

report erratum • discuss

Create “Off-Time” with Your Team • 55

Download from Wow! eBook <www.wowebook.com>

http://www.nytimes.com/2007/10/21/jobs/21pre.html
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

two hours. That’s just too long for some of our clients, espe-
cially when we’re in the midst of a release.

We remedy this by setting up staggered shifts. They look
something like this:

• Shift 1: 10 a.m. to noon daily—Ka Wai, Michael
• Shift 2: 2 p.m. to 4 p.m. daily—Anthony, Mustafa
• Shift 3: 4 p.m. to 6 p.m. daily—Tom, Craig

Because shifts are staggered, only one or two people are off
at any given time. The company doesn’t just shut down; for
the most part, we’re available.

Someone Else Can Help You

For us, who goes on off-time isn’t random. We pair up
members in generally different roles for each off-time shift.
I tend to work closest with Mustafa, Tom with Mike, and
Anthony with Craig. So, we don’t share the same off-time.

That means if there’s an urgent issue, a natural counterpart
is available to discuss it. If Craig has a question for me at
11:30 a.m., he can ask Mustafa instead. If I have a question
for Tom at 4:30 p.m., I can ask Michael. If a client sets up a
phone meeting for someone during his off-time, there’s a
natural counterpart who will be available at that time
instead.

Interruption as the Last Resort

Since off-time cuts us off from the person on it, it alsomakes
everyone think harder about their own problems. We’re
more prone to ask, “Is this something I can solvewith a little
Googling instead of bothering someone?” Interruption is
the last resort.

Off-time gives each of us ten hours of interruption-free time
a week, with almost no disruption to our availability to
clients and ourselves. It’s a great way to sustain productivity
in a realistic way.

So, whether it’s off-time, a free day to do your own thing,
or staying physically away from each other, think of how
you can make yourself more productive by leaving one
another alone.

56 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 24

Work in Small, Autonomous Teams

Manybig companies tout the nowoverly clichéd line “People
are our greatest asset.” It’s nauseating. Many of these same
companies identify employees with a badge number, give
away gift cards as temporary lifelines to an employee’s
quickly fading motivation, and consequently see huge
turnover rates. No big deal.

Some companies, especially very large ones, can hire and
hire again, replacing a part for another part, to keep the
engine churning. They can continue to sign big contracts
with other big companies and squeeze all the youthful
exuberance out of their new employees for a good year. Once
they’ve rung them dry, it’s off to the market once again.
More hires,more replacements,more of the same just-good-
enough work to keep the ship afloat.

We often look at this corporate phenomena as a result of
“big business.” It’s red tape. It’s bureaucracy. It’s meetings.
It’s indecision begetting indecision. Yet, all the while, they
continue to toe the corporate line: people are their greatest
asset.

Truth be told, in my small consultancy, people aren’t our
greatest asset. I know full well there are (many) better pro-
grammers, designers, thinkers, and writers out there than
me. Not one of us is the best at our job. Somebody out there
is better.

But what makes us productive is the working relationships
that form over time. I’ve sweated, year after year, with
nearly the same group of like-minded workers. That sense
of familiaritywe havewithin our teammeanswe knowhow
each person likes to work.

Some of us like to work deliberately, cautiously thinking
through each line of code. Others like to take big swings,
leave a mess, and clean up afterward. Some of us need to

report erratum • discuss

Work in Small, Autonomous Teams • 57

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

work alone longer and fight through a problem solo, while
others need more collaboration up front. Over time, each of
us complements each other in a different way. We adapt to
the people around us. Over time, we start to gel—in the
truest sense of the word.

At the same time, that familiarity lets us argue without
worrying about hurting each other’s feelings. There is no
“feeling each other out” when you’ve been in the trenches
with the same army for years. We can fight full-fledged for
an idea we believe in without the debilitating worry of hurt
feelings. Our meetings are active, engaging, and sometimes
heated. We get issues ironed out and come to a resolution.
Compare that to the average corporate meeting full of
questions and noncommittal answers. In those meetings,
avoiding confrontation seems to trump getting to the best
answer.

That’swhy I advocate that the best environment for program-
mers is within small, autonomous teams that have very low
turnover. You can still find them inside of big corporations,
but they’remuch easier to spot inside small shops. In today’s
landscape, small shops are the ones sprouting out big things,
because they can get to decisions quicker, research and learn
without the hindrances of corporate red tape, and ultimately
build faster. Think of all the hugely successful software used
by the masses yet produced by very small organizations.
Here’s just a small sliver of them:

• Campaign Monitor: Email marketing software for web
designers

• Litmus: Email previews and monitoring

• GitHub: Version control repository for software develop-
ment projects

• Braintree: Online payment gateway for SaaS services

• Basecamp: Project management and collaboration soft-
ware

• Angry Birds: Mobile puzzle video game

58 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Their collective familiarity turns a group of pretty good
individuals into a singular, great team, producing amazing
products.

Essay 25

Eliminate the “We” in Productivity

In productive team development, clarity is king. Yes,
knowing who is responsible for which piece of the puzzle
is critical. But it’s just as important to know who isn’t going
to be responsible for that piece as well. They have other
pieces to handle.

When you’re communicating with your co-workers or your
clients, particularly in meetings and over email, get out of
the habit of using the word “we.” Instead, say exactly who.

Observe how often you’re using the word “we” the next
time you’re in a technical meeting. When you say “we,”
you’re probably really saying “some of us,” “just a few of
us,” or oftentimes even just you (or John or Mary). Rarely
does your “we” actually mean the collective whole.

But that’s the impression that using the “w” word creates.
It suddenly throws the blanket of responsibility, unnecessar-
ily, over everyone. It blurs the line between who really
should be concerned about a problem and thosewho should

report erratum • discuss

Eliminate the “We” in Productivity • 59

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

be focusing on other tasks. More importantly, it hides who
you should really talk to if you want to provide feedback.

For instance, if you’re writing a tool to transfer data off a
legacy database and need to know what the schema looks
like for the Customers table, you don’t need to consult with
the entire company. A front-end designer probably doesn’t
know or care. Even if the database is managed by a team of
people, find the exact person who’s responsible for getting
you what you need. Don’t say that we need to get the
schema; say exactlywho needs to get that information to you.

If you don’t know who, then pick someone. They’ll either get
you what you need or delegate that responsibility to the
right person. Specifying responsibility directly gets things
moving in one direction: forward.

And that’s just the opposite of what the “we” mentality
condones. “We” turns into fifteen people listening in on a
phone call, twelve recipients copied on an email, or a
roundtable of people writing notes about things they don’t
understand or don’t really matter to them. “We” just turns
into a big cloud of talkwhen only a fewpeople really under-
stand the language being spoken. “We” makes things
exponentially noisier than they need to be.

“We” Feeds the Noise Virus

The problem isn’t just that it causes more noise; “we” is also
the ammo that prolongs andmultiplies noise. When you let
“we” into the conversation, you’re inviting the talk to get
even bigger and bigger over time.

Why? “We” lets you ask questions that don’t have to be
answered immediately. They often sound rhetorical. It opens
up new, often uncritical, avenues of conversation that get
away from the question youwere trying to answer from the
get-go.

• What do “we” think about this feature addition?

• Do “we” need to addmore hardware to ourweb server?
Can “we” get some performance metrics?

• What can “we” do to make this user experience better?

60 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

These questions are often asked at the end of a meeting as
the setup for another meeting. Even if it’s just one or two
people really making the decision, everyone will agree that
“we need to thinkmore about this.” These questions appear
perfectly normal to ask during a group meeting or within
an email. But switch “we” for real humans—those warm-
blooded mammals all around you—and suddenly those
rhetorical questions turn direct.

• What does Jennifer think about this feature addition?

• Does Mike need to add more hardware to our web
server? CanAnthony get us some performancemetrics?

• What can Tom do to make this user experience better?

When you direct the questions at someone, people get
moving.

The Bystander Effect

“We”-type questions often sputter because it’s humannature.
It’s no different from the bystander effect: a person in an
emergency situation is likely to get help faster from a lone
bystander than from any single personwithin a large group
of bystanders.

According to a basic principle of social influence, bystanders
monitor the reactions of other people in an emergency situation
to see whether others think it is necessary to intervene. Since
everyone is doing exactly the same thing (nothing), they all
conclude from the inaction of others that help is not needed.5

When more people are put into a situation, there’s less of a
chance that any one of them will do anything to resolve it.
Instead, pinpoint the exact people responsible for the task.

As simple as it may sound, swapping “we” for direct names
(or even “I”) makes a huge difference in team productivity.
In meetings, in emails, or over the phone, using “we” slows
down momentum, leaving your team less aware of who
should do what and who shouldn’t do what. “We” is the
verbal high-fructose corn syrup of productivity. It might
sound sweet, but it’s loaded with a whole load of fluff that’s
just not good for you.

5. http://en.wikipedia.org/wiki/Bystander_effect

report erratum • discuss

Eliminate the “We” in Productivity • 61

Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Bystander_effect
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Aswe’ve seen in the last few essays, sometimes productivity
is simply about reducing complexity: working with fewer
people, delegating responsibility to a single person, or
eliminating the external noise of team development. In the
next chapter, we’ll focus on complexity in our software.

62 • Chapter 4. Productivity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 5

Complexity
Aside from death and taxes, complexity may be the only
other sure bet in life. Complexity always grows over time.
In our industry, it’s the unavoidable consequence of matur-
ing software. Unless we’re willing to remove features from
an application, there is simply no way to sidestep it.

If we can’t get rid of complexity, our next job is to stifle its
growth. We need to recognize when complexity isn’t neces-
sary and develop a finely tuned nose for it. If we knowwhat
it smells like and if we can pick up the all-too-familiar stench
from every nook and cranny of our software, we’ll be better
off in the end.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 26

Sniff Out Bad Complexity

Bad complexity is complexity that just doesn’t have to be there.

That’s not always easy to spot. Sometimes even the pieces
we think have to be there really don’t. This happened even
to Thomas Jefferson.

In 1776, Jefferson sat on the committee that drafted the
Declaration of Independence. The committee gave him the
privilege of writing the first draft. When the draft was
completed, he sent it to his friend, Benjamin Franklin, for
review. Franklin returned the draft with much of Jefferson’s
clever language erased.

Jeffersonwas none too happy, but Franklin tried to convince
his friend why this was for the better. Franklin told him this
story:

When I was a journeyman printer, one of my companions, an
apprentice hatter, having served out his time, was about to
open shop for himself.

His first concern was to have a handsome signboard, with a
proper inscription. He composed it in these words:

“John Thompson, Hatter, makes and sells hats for ready money”

with a figure of a hat subjoined; but he thought he would
submit it to his friends for their amendments.

The first he showed it to thought the word “Hatter” tautolo-
gous, because it was followed by the words “makes hats,”
which showed he was a hatter. It was struck out.

The next observed that the word “makes” might as well be
omitted, because his customers would not care whomade the
hats. If good and to their mind, they would buy them, by
whomsoever made. He struck it out.

A third said he thought the words “for ready money” were
useless, because it was not the custom of the place to sell on
credit. Everyone who purchased expected to pay. They were

64 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

parted with, and the inscription now stood, “John Thompson
sells hats.”

“Sells hats!” says the next friend. “Why, nobody will expect
you to give them away. What then is the use of that word?”
It was stricken out, and “hats” followed it, as there was one
painted on the board.

So, the inscription was reduced ultimately to “John Thomp-
son,” with the figure of a hat subjoined.1

Plenty of software could take a cue from the hatter’s sign.
Does this button need to be there? Is this line of copy adding
anything of value, or is it merely repeating something else
that’s already there? Does this new feature actually help
make the task easier?

Consider what you could possibly remove from your soft-
ware and still have it function the same.

Essay 27

The Simplicity Paradox

What makes complexity a strange phenomenon is this:
Everyone. Loves. Simple. That’s why people say “I just want
things to be simple.” Who says “I just want things to be
complicated”...ever?

I decided to find out. So, I looked it up on Google.

As of this writing, if you Google the phrase “I want things
to be simple,” you’ll get approximately 954,000 matching
results. There is one unique matching results for the phrase
“I want things to be complicated.”

One. The only unique matching result? A blog post that I
wrote about this very subject inOctober 2009. Extractmyself
from the annals of recorded human civilization, and appar-
ently no one has everwanted or even thought about the idea
of voluntary complication.

1. http://www.pbs.org/benfranklin/l3_citizen_founding.html

report erratum • discuss

The Simplicity Paradox • 65

Download from Wow! eBook <www.wowebook.com>

http://www.pbs.org/benfranklin/l3_citizen_founding.html
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Then, why do we run into this Jeffersonian problem of
complexitywhenwe’re building our own stuff?Why do the
things we produce often wind up festered in complication?
Howdo somanywell-intentioned pieces of softwarematric-
ulate from simple idea to functional nightmare?

Simple Products Can Actually Be Hard to Build

Most ideas, simple at the surface, are viciously complicated
whenwe get into the details. Ideas, at a high level, are always
simple. Every business idea must be accompanied by the
elevator pitch: sixty seconds to get the message across from
beginning to end. We can’t pack complexity into a sixty-
second description.

When ideas start feeling complex, we leave the comforts of
Idea Land and enter the naked reality of implementation.
Oncewe dig into the details, we discoverwhere all the holes
in logic are. That’s just the nature of detail. An idea that hasn’t
been thought through completely (read: most of them) has
little chance of surviving Complexityville at this point.
Rather than rethinking the idea altogether, it’s sometimes
easier to plow through the problems with head down and
blinders up. Half-baked decisions are made, and features
are added all for the sake of preserving the sanctity of the
“big idea.” Then, complexity festers.

Simple Sometimes Seems Like Not Enough

If everyone likes simple software and most software isn’t
simple to build, it would appear that the sweet spot for good
software would be both simple to use and simple to build.
It’s a win-win for both user and developer. But that kind of
software rarely exists in our world. There has to be some-
thing more to this mystery.

The answer lies in our own fear of inadequacy. When we
build something simply, it doesn’t feel like...enough. We
convince ourselves into believing our customer isn’t getting
his money’s worth. A simple thing that’s also simple to build
feels valueless. An idea that’s easily implemented is rarely
considered a “big idea” at all.

Venture capitalists don’t throwmillions of dollars at simple
ideas. They throwall thatmoney at theDonald Trump-esque

66 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

superlatives. Is it best-in-class? Is it innovative? Is it cutting-
edge?Oftentimes, these are just otherways of saying an idea
is complex enough to be worth its weight.

Herein lies the paradox. From a builder’s point of view, we
often equate theworth of softwarewe build to its complexity,
and more complexity equals more value.

The view from the other side of the mirror is different. The
reality is 90 percent of our users use only 10 percent of the
features built in the average enterprise-level software.When
users can’t find the few functions they need because they’re
buried among themany features they don’t need, they either
take it out on their own perceived shortcomings or blame it
on the software itself. While builders and stakeholders see
simplicity as the shortcoming, users see complexity as the
shortcoming.

Atmy company, the natural urge to complicate is something
we resist constantly. We have to re-sell and re-pitch simple
to ourselves all the time.

Countless internal arguments about features in our own
software endupwith incredibly simple solutions. Sometimes
the UI just needs a small tweak in text. Other times, it’s just
a re-organization of links. Sometimes we’ll argue for hours
about a new feature before ultimately deciding the feature
just isn’t worth the complexity it adds.

The lesson is this. You don’t have to “merit” lengthy hours
of feature discussionwith an equally large amount of feature
additions. It’s natural to feel that the amount of time you
spend on something should parallel the amount of measur-
able output you put into the product, regardless of the
benefit of that new feature. But free yourself from that
debilitating thought. Once you’ve let go of the vulnerable
feeling that simplicity cheapens your worth, you can finally
get on with building good software.

A simple solution shouldn’t be thought of as “not enough”
of anything. Sometimes it is exactly enough of everything.

report erratum • discuss

The Simplicity Paradox • 67

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 28

Complexity as a Game of Pickup Sticks

Pickup sticks is an old children’s game where you try to
remove individual plastic sticks from a pilewithout disturb-
ing the others. You start the game by holding a bundle of
sticks in your hand and letting them go. Most of the sticks
fall in a pile in the middle, while a select few roll away from
the center.

The object is to remove as many sticks as you can from the
pile, one at a time, without disturbing the other sticks. You
lose your turn if any other sticks in the pile are disturbed.

Maintaining complex software sometimes feels a lot like this
game. Each stick represents a feature or function. Sometimes
a feature can live outside and completely away from the
others. Other times it affects a few components. And still
other times it’s completely intertwined with many other
features.

Implementing a new feature is like adding a few new sticks
into the mix. At a certain point, trying to remove any stick
without disturbing the rest is nearly impossible. Complexity
adds up fast.

As developers, we try our best to circumvent this by follow-
ing good habits: encapsulating our code, scoping variables
at the right level, breaking apart larger pieces of logic into
bite-size chunks, or introducing patterns. It’s our valiant
attempt to align all of our sticks in parallel, side by side, so
they don’t touch each other. But consistently refactoring
code into the “right” places while continuing to add more
sticks into the mix can get hairy. It’s easy to let our guard
down.

Every time we add a new feature, we stand the chance of
disrupting a host of other features that might not, at first,
seem directly connected. As we add more features, those
disruption points grow pretty rapidly.

68 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 29

Keep Complexity Under the Surface

“An extraordinarily complex mess.”

That’s what Nina Olson, the national Taxpayer Advocate
for the U.S. Internal Revenue Service, calls the American tax
system. The official book weighs in at about 6,500 pages.
Can you imagine? If you think I’m lying, you’re right. It’s
actually about 65,000 pages long.

This is why I absolutely love TurboTax, one of the most
popular income tax preparation software packages in the
United States. It has taken these 65,000 pages of documenta-
tion and miraculously curated some sort of usable software
out of it for commoners like me. TurboTax could so easily
have just reproduced the federal and state 1040 forms
digitally, turning each line item into a text field and calculat-
ing a few fields here and there, and submitted the form via
the Information Superhighway and be done with it.

It probably still would have a lot of fans.

Instead, TurboTax is like a personal tax wizard who under-
stands that no one really wants to hang out with it. “Get

report erratum • discuss

Keep Complexity Under the Surface • 69

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

yourW-2 out and copy the numbers intome.” “Do you own
a farm? No?! Then let’s not ever mention it again.” It even
knowswhen it’s askingme esoteric questions, by letting me
know that something is very unlikely or uncommon—“This
probably doesn’t apply to you.”

TurboTax has done a heroic job of making tax filing at least
palatable. I can only imagine what a stinky mess the under-
lying code must be. Logic must exist not just for federal law
but for each of the fifty states and for each of the thousands
of local counties and beyond. Andwithin those parameters,
there’s code for single and married people, small-business
owners, investors, students, philanthropists, first-time home
buyers, the unemployed, the just-retired, the forgetful, the
poor, the rich, the richer, and—yes, farmers.

Couple that with the annual changes to tax laws; every little
rule taken out or put in to account for some earmark in
government spending that make up those 65,000 pages of
dead trees. If you think you’re angry about a couple extra
hundred dollars you owe the government, imagine being a
TurboTax developer who has to write yet another weird bit
of conditional logic for someone who’s just bought an envi-
ronmentally friendly motorboat in Mississippi within the
last six months.

Is any of that code evenworth refactoring?Whatwould they
refactor when the very code they’re writing today might be
obsolete after the next Congressional recess ormight depend
on a totally different set of parameters down the road?

TurboTax is proof that, even when the task at hand is an
extraordinarily complex mess, the software doesn’t have to be.
You can squeeze all that complexity underneath the surface,
interpret that mess into some reasonably digestible set of
usable functions, and create some really helpful and farmore
simplistic software.

70 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 30

“Hard to Code” Might Mean “Hard to Use”

TurboTax takes something nearly impossible to comprehend
and makes it approachable to the masses. Complexity is
shifted from the user to the code.

However, not always is this shift a zero-sum game. Some-
times overly complex logic is just a sign that the function of
the application is confusing. Complex code supporting a
complex interface? How about we don’t?

Confusion in the Elevator

Imagine we’re part of a team of engineers attempting to
build better software to control an elevator for a 50-story
high-rise. The elevator canmonitorwhich floor people enter
and which floor button they press. Our manager walks in
with one simple commandment: people are complaining
about waiting inside the elevator, so let’s build the elevator
so that people collectively spend the least amount of time
in it.

We start brainstorming through the scenarios. Suppose John
steps in from the ground floor and pushes the button to go
to his penthouse on floor 50. On its way up, the elevator

report erratum • discuss

“Hard to Code” Might Mean “Hard to Use” • 71

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

stops at floor 8. In comes Steve, the UPS delivery guy, with
a large brown box.He has to deliver the package to someone
on floor 5, so he quickly presses 5.

What should the elevator do? Should the elevator stop at
floor 5 first because it’s closer or stop at floor 5 second
because it’s already heading up?

If the elevator heads back down to floor 5, John and Steve
will pass a total of 59 floors. John will have gone up eight
floors, back down three, and then back up the remaining
forty-five floors to his penthouse. Stevewill have gone down
only three floors.

• John: 8 up + 3 down + 45 up = 56 floors passed.
• Steve: 3 down = 3 floors passed.
• Total floors spent by John and Steve: 59.

Compare this to the alternative. If the elevator, instead, keeps
going up, before coming back down to floor 5, they’d collec-
tively pass more than twice that many:

• John: 50 up = 50 floors passed.
• Steve: 42 up + 45 down = 87 floors passed.
• Total floors spent by John and Steve: 137.

The answer is clear. The elevator should go down to drop
Steve and his brown box off first before going all the way to
Steve’s penthouse. We all agree the new elevator is going to
be all the rage!

Let’s continue our brainstorm. Suppose Steve, the UPS
delivery guy, had entered the elevator at floor 30, instead of
floor 8.Here’swhat happens if the elevator comes back down
first:

• John: 30 up + 25 down + 45 up = 100 floors passed.
• Steve: 25 down = 25 floors passed.
• Total floors spent by John and Steve: 125.

Now, what if, instead, the elevator kept going up to John’s
penthouse before coming back down?

• John: 50 up = 50 floors passed.
• Steve: 20 up + 45 down = 65 floors passed.
• Total floors spent by John and Steve: 115.

72 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In this scenario, we save 10 “man” floors if the elevator goes
up! So, depending on when Steve gets on, the elevator may
decide to continue its ascent or descend first before
re-ascending.With twopeople, programming for the optimal
elevator ride for two people is a fairly benign task.

Now suppose a third person, Samantha, enters the elevator.
Now, there are six potential ways we could let each person
off the elevator. Our program would have to calculate the
total number of floors passed for each scenario before decid-
ing on the best route.

• Case 1: John, Steve, Samantha
• Case 2: John, Samantha, Steve
• Case 3: Steve, John, Samantha
• Case 4: Steve, Samantha, John
• Case 5: Samantha, Steve, John
• Case 6: Samantha, John, Steve

In fact, the number of scenarios that need to be tested is just
the factorial of the number of people on the elevator at a
given time:

• 2 people = 2! = 2 comparisons
• 3 people = 3! = 6 comparisons
• 4 people = 4! = 24 comparisons
• 8 people = 8! = 40,320 comparisons

Once we get past just a few people, the number of cases to
test becomes impractical. But that’s only one aspect of the
complexity problem.

People are getting on and off the elevator at different times.
Each time a new person enters the elevator, we would need
to track how many floors the existing passengers have
already passed before making a new set of calculations.

In other words, we couldn’t sufficiently deduce the path the
elevator has already taken just by looking atwho’s currently
on it. If Mike enters on floor 25 and then Sanjay enters at
floor 35, did the elevator travel ten floors between Mike’s
entrance and Sanjay’s, or did it go back to floor 21 first to
drop off Samantha?

report erratum • discuss

“Hard to Code” Might Mean “Hard to Use” • 73

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

At more than two elevator riders, we’d also need to track
when people leave the elevator so we can omit them from
future calculations.

In addition,what happenswhen someone forgets to hit their
floor number or hits the wrong floor number and then
presses a button during mid-ascent? Does our software
recalculate and potentially shift gears in mid-flight?

If you’re new to programming, this is, sadly, not an exagger-
ation of how complex a seemingly simple goal—such as
getting people off an elevator as quickly as possible—can
be.

Complexity with Little Payoff

After all those extra obstacles, suppose, somehow, thatwe’ve
built the perfect system. We’ve managed to write code in
such a way that everyone collectively leaves the elevator in
the shortest amount of time—calculating thousands of
scenarios in a split second, taking into account everyone’s
already taken path. It’s a true feat of technology! But how
are John, Steve, and the rest of the gang faring? Probably
not so well.

Code is great at processing the tediously automatable, and
this is certainly a case of the extraordinarily tedious. But
humans aren’t good at it. Nobody inside the elevator can
possibly run through all the scenarios in their heads that
quickly. The people waiting to get off are at the complete
mercy of the elevator, not knowing which general direction
they’ll be going when the next person gets on, nor why.

Here we have a case where hard to code means hard to use.
Complexity, in this case, hurts both ways. By the time even
a fourth person gets on the elevator, there are just too many
scenarios for a human to knowwhat route the elevatorwants
to take. Even when the elevator is accomplishing the goal
of getting everyone off in the fewest amount of collectively
traveled floors, the people inside are left wondering when
it’ll be their turn.

They might well prefer the simple, traditional algorithm an
elevator abides by.

74 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Sure, they probably wouldn’t reach the optimal path, but
by favoring a simpler solution, the people in the elevator
have better knowledge of what’s going on. That level of
predictability trumps the more complex solution even if it’s
theoretically more efficient.

When details become egregiously hard to code, it may be a
smell that the actual function of the system is difficult to
understand. And while you may pat yourself on the back
for successfully programming something really complex,
others are punching you in the back after they use it.

Essay 31

Know When to Refactor

Another smell of complexity arises when we think too far
ahead in our code. There’s a price to pay for being too cute
or too cerebral about the actual thing we’re trying to build.
A classic case is implementing a design pattern too early.

Don’t get me wrong, design patterns are wonderful things.
When a commonprogramming approachhappens over and
over again, we get excited. We’ve all experienced that sense
that our code could be doing something greater than just
solving the concrete task at hand.

When we’ve had this feeling a few times and successfully
refactored our code into more abstract patterns, it’s easy to
feel invincible. We work like a crime dog, sniffing out any
small sign or clue, any hint, that another abstraction lives
above our straightforward piece of code.

But very quickly, our sixth sense can come back to bite us
where it really hurts.Most of us have heard, or experienced,
the horror stories of “architecting yourself into a corner.”
It’s where we’ve taken an abstract approach to solving a
problem way too far.

report erratum • discuss

Know When to Refactor • 75

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

The Danger of Refactoring Too Soon

For example, suppose you’re working on an intranet for
Burgeoning Web Company. They’re small, and they have
only two departments: IT and sales. The executives at
Burgeoning Web Company want the ability to calculate
anticipated bonuses for their employees based on a bunch
of employee parameters. But each departmentwants to base
bonuses on different measurements.

The IT department onlywants to give bonuses to employees
as a percentage of their current salary and only to thosewho
have stuck around for five years. The sales departmentwants
to give everyone a $1,000 base bonus, plus a standard $500
incremental bonus for each year they’veworked at Burgeon-
ing Web Company. After all, the company is burgeoning,
and the execs are generous folks.

You start coding. You’ve built an Employee class that will
contain all the information you need to calculate an employ-
ee’s bonus. You then write a simple function, which, for
now, contains one simple conditional statement to return a
given employee’s anticipated bonus.

public decimal GetBonusForEmployee(Employee employee)
{
if (employee.department == Departments.IT)
{

// Calculate bonus the "IT" way
if (employee.Years >= 5)
{

return .1 * employee.Salary;
}

return 0;
}
else
{

// Calculate bonus the "Sales" way
return 1000 + 500 * employee.Years;

}
}

You write a little tool to load all employees into a collection
of Employee objects and then apply the previous method to
each. Your work is done. Beer time.

76 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

But your mind begins to think about the other possibilities
that lie aheadwhenBurgeoningWebCompany really begins
to burgeon.What do you dowhen the third or fourth depart-
ment comes along? Swap the conditional logic for a switch
statement! But why wait? Let’s anticipate it now so you’re
ready for the future:

public decimal getBonusForEmployee(Employee employee)
{

switch(employee.department)
{

case Departments.IT:

// Calculate bonus the "IT" way
if (employee.Years >= 5)
{
return .1 * employee.Salary;

}

return 0;

case Departments.SALES:

//Calculate bonus the "Sales" way
return 1000 + 500 * employee.Years;

}
}

Beautifully done! The switch statement is a safe anticipatory
move. It explicitly identifies the sales department instead of
relegating it to the else statement. When marketing comes
along, you know just where it fits.

This small refactoring makes sense. Your code is now more
explicit, and it’s easier to scan. Another developer could
come in and pick it up right away.

Sensing your higher calling, you decide to do more. What
happens when two departments become....ten? In a few
months, there could be newdepartments springing up, such
as legal, production, accounting, and the janitorial staff. The
switch statement will eventually get unwieldy. It will be
taintedwith complex calculations that have no business lying
there, exposed so nakedly at the surface of the bonus calcu-
lation method.

You rifle through your favorite design patterns book (I
highly recommend JoshuaKerievsky’sRefactoring to Patterns

report erratum • discuss

Know When to Refactor • 77

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

[Ker04]) and—voilà—the Strategy pattern! Move all those
one-off bonus calculations into individual strategy classes
(e.g., ITBonusCalculationStrategy and SalesBonusCalculationStrategy)
that each implement a Bonus Calculation Strategy interface
(IBonusCalculationStrategy). The interface will require each
implementing class to define a CalculateBonus()method.

Once that’s done, you modify the Employee class to contain
a concrete strategy instance and create one new public
method that will return an employee’s bonus.

With the Strategy pattern, you can now remove the getBonus-
ForEmployee() method altogether. The calculation of an
employee’s bonus can live in the class itself. So, all those
nasty algorithms lie elegantly in the soft cushiony pillows
of individual implementations of the IBonusCalculationStrategy
interface.

Since you’ve gone this far, you decide to embellish your
code. You abstract the creation of employees into a Factory
pattern. This way, you can create department-specific
employee creator classes to assign a corresponding bonus
strategy for an employee.

You’ve completely removed the conditional switch on
departments (it’s taken care of in the employee creator
classes) and the nasty calculation logic (it’s buried in depart-
ment-specific strategy classes). Wonderful!

Once department 15 comes along, this architecture will be
a sight to see.

Weeks and months go by. The winter hits, and times are
tough for Burgeoning Web Company. Still no new depart-
ments. Meanwhile, the bonus logic has changed. You go
back in, stepping through code and wondering what
happened to your once simple logic. Ah yes. It’s been
strategized and factoryized.

Another couple months go by. Burgeoning Web Company
calls and says they’ve fired the sales team, and it’ll just be
the CEO working the phone with his team of developers.
Wanting to keep developer morale, the CEO still wants to
offer bonuses but now based solely on seniority.

78 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

It’s time to shed a tear. You’ve placed all your bets on the
department-specific bonus rules. It was, by all accounts, a
safe bet one year ago. You’ve built the walls, ladders, and
slides to account for every possible department bonus for
the next one hundred years. The entire refactoring has gone
to waste. It’s not just over-architected clutter; it’s spoiled
clutter. You unearth your strategy classes, remove the factory
methods, and submissively decide that a potentially nasty
but quite all right conditional statement will do just fine for
now.

Patterns are wonderful concepts. However, they should be
implementedwith the utmost caution. Anticipating logic in
the future, more often than not, will lead to unintended
complexity.

If there is a golden rule, it’s that an application shouldn’t be
forced into a well-documented design pattern or set of pat-
terns. Rather, a design pattern (or set of them) should be
implemented as fully as needed to fit the desired tasks of
the application and the most likely scenarios for the near
future.

When you study a design pattern, read it as a general
approach to solving a particular problem, not as a strict,
rigid solution to a problem. Patterns all have pros and cons.
While patterns make some tasks more elegant to perform,
you always lose something else. Since most of today’s web
applications are constantly changing based on new customer
or client requirements, finding the “perfect” set of patterns
from the get-go is more dream than reality.

Does this mean we shouldn’t anticipate for change at all?
No. Problems manifest when we don’t pay any attention to
where our architecture is headed.

The Headache of Unmanageable Legacy Code

Examine any codebase whose authors decided not to make
simple refactoringswhen theywere necessary. The problems
reveal themselves quickly. Variables are scoped at thewrong
level or, even worse, accessible globally with some bizarre
naming convention to ensure they’ll always be unique.
Conditional logic reads more like the terms on a Terms of

report erratum • discuss

Know When to Refactor • 79

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Use page: a bunch of unrelated truths stitched togetherwith
ands and ors that have collectively lost all meaning to the
next unlucky soul who has to modify it.

We find this often in legacy code that’s been handed down
from generation to generation of developers that came into
it without much passion and came out of it with even less.
Method signatures become unruly, and method calls look
like the code itself isn’t sure what it’s doing:

calculateBonusesForTeam(.02, 155000, null, 0, 0, null,
new Employee(), null, null, false, true);

Over time, unconsidered refactorings get expensive. Main-
tenance becomes asymptomatically slower. Forget big
changes; even small changes, the ones we always take for
granted,might collapse a codebase that’s long since forgotten
any basic set of good habits.

Let’s get back to the Burgeoning Web Company story. At
somepoint, refactoring the bonus calculations into a Strategy
pattern might have made sense. Moving employee creation
methods into a factory class might have been useful. It just
wasn’t at the time.

Over-architect too early in the development life cycle, and
we’re left with a hole waiting to be filled. Under-architect,
and we’re left without any option or motivation to evolve
our software any further.

“The hole and the patch should be commensurate.”—Thomas
Jefferson to James Madison

Perhaps Jefferson was channeling his conversation with
Benjamin Franklin a few years earlier.

Anticipate, but anticipate cautiously.Whether it’s just a small
change or a large pattern shift, know what you’re gaining
and losing each time you decide to refactor.

80 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 32

Develop a Programming Cadence

So, how do we manage anticipating too early to change vs.
reacting too late to change?

Consider software development like we’re driving a stick
shift. Aswe start, we’re in first gear: coding away at a steady
pace. The more we code, the less efficient we become. At
some point, we have to shift up a gear.

Shifting up a gear, in programming terms, is cleaning up
our code: taking a step back to refactor, abstract, or imple-
ment a pattern. It means taking the time to consider how to
change our habits at a particular point in the development
process. Doing this does not mean we’ve made a mistake.
It’s natural and necessary.

We have to shift in code just as we have to when we’re
driving. Still, if we do it too soon, we’ll spend a lot of time
trying to regain our speed. Do it too late (or not at all), and
our code will burn out. Knowing when to shift is essential.
It keeps the development process running as efficiently as
possible. We don’t shift just to shift; we have to do it when
it’s right. We have to find our programming cadence.

report erratum • discuss

Develop a Programming Cadence • 81

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

There is no set number of gears in software development.
We can choose to have just 5 or 500 gears in our program-
ming cadence. This depends on the complexity and scale of
the project as well as our ownwillingness to shift gears. For
more complex projects, allowing ourselvesmore gearsmeans
we can shift a lot more often. It means that if we shift a little
too early, it won’t take us too long to get back to speed. A
little too late, andwe haven’t experienced toomuch burnout.
For smaller ones, just a few gear shifts will do.

In the end, software complexity is necessary. It’s the debt
paid for more functionality. The key is to know when com-
plexity feels right and when complexity feels wrong. Listen
to your sixth sensewhen it tells you that, this time, complex-
ity makes things worse on everyone. It’s why what we do
is much more art than it is science.

Complexity is one of those thingsweget better at understand-
ing after years of being in the business. Veteran programmers
are really good at managing it. Collectively, we need to pass
this kind of wisdom onto future generations of passionate
programmers. In the next chapter, we’ll look at howwe can
become not just better programmers but better teachers.

82 • Chapter 5. Complexity

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 6

Teaching
One of the most difficult disciplines to master, in any field,
is teaching. There are plenty of experts in the world but far
fewer expert teachers.

Teaching isn’t just regurgitating what we know. It’s an art
that requires us to step outside of our own heads and into
themind of someonewho’s learning something new. Simply
knowing something is just one ingredient in the recipe for
a successful teacher.

Too often, we expect someone with great knowledge to be
an equally great teacher. But those qualities don’t always
come together. Isiah Thomaswas aHall of Fame point guard
in the NBA. He was a 12-time NBA all-star and led the
Detroit Pistons to two NBA World Championships as a
player. Yet, as a head coach, he had a pedestrian record of
187 wins and 223 losses. Sometimes people with great
knowledge and skill can’t transfer those same traits to the
people they’re trying to mentor.

Teaching programming concepts to a relative newbie is even
that much harder. There are no obvious indicators, like a
win-loss record, to determine whether our instructions are
getting through to our students.

For us, the road from a problem to a solution can be so
complex that it’s hard to even describe how we got to the
final approach. But being able to do so is critical; it’s the best
way we can cultivate a future generation of passionate
programmers.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In this chapter, we’ll discuss both common behaviors to
avoid and how to help others grasp all the complex knowl-
edge we have in our heads.

Essay 33

Teaching Is Unlike Coding

At first, it seems like a great programmer should have all
the skills to become a great teacher.

After all, coding has many of the same traits as teaching.
Underneath all the fancy syntax, code is just a concrete set
of instructions that tells a framework how to do something.
Even if one microscopic detail is left out, we’ll know soon
enough. The compiler will yell at us.

Programs require us to code in a specific order too.We can’t
implement a concept before it has been defined yet, just like
we couldn’t teach someone how to multiply before they
already understood how to add.

On the other hand, the act of coding isn’t like teaching at all.
In fact, it promotes bad habits that are entirely counterpro-
ductive to the art of teaching.

First, rarely do we code linearly. We don’t start typing from
the top of the page and work our way down to the end.
We’re incessantly jumping around our code, implementing
functionality in an order that might not be obvious to the
observer. It’s especially true when we’re finessing the
smallest of details—a variable name change here or an erro-
neous data type there. If our coding process were anything
like our teaching process, our lessons would be filled with
stutters, misunderstandings, and take backs.

Second, coding lets us worry about the details of our stream
of thought later. For instance, when I’m in the middle of,
say, redefining the input parameters for a shared method, I
make the change on themethod’s signature and then recom-
pile. I know my code is not going to compile successfully. I
expect a series of errors to pop up, each one complaining

84 • Chapter 6. Teaching

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

about amismatched parameter type everywhere I’m calling
that method. But I do this because it’s a much faster way to
see where I need to change everything else than scanning
through code or doing a search on where the method is
referenced.

Oftentimes, we compile our code not because we think our
work is done but because we want to find out what we may
havemissed. A compiler is a lazy programmer’s best friend.
Ditto for unit tests, code hinting, and autocompletion.

All these niceties are essential for productive programming.
They give us softly padded walls to bounce our code off of.
They let us focus on the big concepts first and not worry too
much about perfection in our code-speak. A good program-
ming platform is simultaneouslywiping our chin, correcting
our grammar, and telling us what we really mean while we
spew out semi-coherent lines of instruction. The faster and
more efficient we are at coding, the more we rely on these
tools to steer us in the right direction.

Teaching a newbie is entirely different. Every missed detail
is a lost detail. We can’t start our sentences expecting our
student to finish them, at least not early on. And unlike a
compiler, which invariablywill forget ourmissteps oncewe
correct them, people don’t have asmuch luck separating the
wrongdetails from the right. Itmay take us a dozen compiles
before we finally get our code just right. But imagine the
deer-in-headlights look on your students’ faces if we were
to correct ourselves that many times before our teaching
lessons made complete sense.

The quirky ways we program efficiently run counter to the
lockstep nature of teaching. You can’t throw a bunch of
concepts at someone, leave out a few of the details, and
expect your human counterpart to know exactly what you
meant. Instead of a list of errors and warnings, you’ll be
getting a blank stare.

A really good programmer doesn’t automatically make a
competent teacher.

report erratum • discuss

Teaching Is Unlike Coding • 85

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 34

Beware the “Curse of Knowledge”

In the popular Chip andDanHeath bookMade to Stick: Why
Some Ideas Survive andOthers Die [HH07], the brothers argue
that once you’ve become an expert in a particular domain,
it is nearly impossible to understandwhat it feels like to not
understand that domain.

Think of how you would explain color to a person born
without sight or how you would explain sound to a person
born without hearing. In a less extreme example, think of a
lawyer who can’t give you a clear answer to a legal question
without all sorts of abstractions and qualifications.

They call this the curse of knowledge.

Undoubtedly, one of the biggest abusers of the curse of
knowledge is us.

Imaginewe’re explainingHTML to someonewho has never
worked with neither it nor any markup language. We start
by talking about basic tags, like <p>,
, and . We
then explain how contentwithin tags inherits the properties
of those tags and that each tagmust be closed by adding the
same tag with a forward slash inside of it.

86 • Chapter 6. Teaching

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

After a bunch of head nodding, we move on to a simple bit
of HTML:

<p>
Hello world!

It's a beautiful day!

</p>

To us, there’s not that much more to explain. It’s a nice little
paragraph with a break return inside of it and a couple
words in bold. Excellent! It’s time to speed forward to CSS
and browser testing. Maybe we’ll throw in some jQuery
selector stuff before lunch!

Consider the vantage point from the eyes of the markup
virgins. Here’s what might be running through their minds:

• Why do we write the text inside of the tags
inline when we don’t do the same for <p>?

• Why does the
 tag have a forward slash at the end
instead of the beginning?Where is the counterpart that
closes it?

• Can we put tags inside of the tag? What if we
wrapped the word day with a tag? Does that
make it...even stronger?

TheHTML samplewe gave to our student was fraught with
small assumptions that we didn’t even think could amount
to any type of questioning. For someone new, every little
nuance has to be picked apart. No assumptions, not even
the fact that we write some tags inline and some tags with
break returns for code readability, can be taken for granted.

So, when you’re teaching a newbie, teach twice as slowly as
you would want to. During each step, consider all the silent
assumptions you’re making and make it a point to explain
those “obvious” things anyway. Ask your student, frequent-
ly, if things are making sense.

When you understand the curse of knowledge may be in full
effect, you’ll bemore aware of the subtle details your student
may be missing.

report erratum • discuss

Beware the “Curse of Knowledge” • 87

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 35

Teach with Obvious Examples

For newbies, good examples are devoid of abstractions. They
are concrete and clearly—almost too clearly—convey the
intentions ofwhatwe’re teaching. They provide good context.

On the other hand, poor examples are littered with abstrac-
tions and vague differentiations. Here’s a classic case of such
an example.

When Clarity Met Sally

Imagine we’re teaching a beginning programmer the basics
of object-oriented programming. We might start, naturally,
by discussing class constructors and object instantiation. At
some point in our talk, we scribble a line of code like this:

Object myObject = new Object();

For us, this is a ho-hum line of example code. It says to create
an instance of an object of type Object, called myObject. It’s
known to us that the name myObject is just any old name we
decide to give this newly birthed instance. On the contrary,
the constructor Object() isn’t just named anything we want;
it has to be named exactly the same as the name of the class.

We can mention all of this to our student. He can take notes
and read them over again. To someone learning object
instantiation for the first time, that seemingly straightforward
line of code is going to look like this:

For someone just beginning, it’s hard to conceptualizewhich
Object is the type, which is the constructor, and which is the
name of the instance. Cover up that line of code and ask the
student to rewrite it, and don’t be surprised if he gives you
something like Object Object() = new myObject; ormy new Object
= Object();.

88 • Chapter 6. Teaching

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Let’s start making that example more obvious. Here’s a
better rewrite:

Object sally = new Object();

Now we’re getting somewhere. Object is still important, but
it’s clear that it has no implications on the name of the
instance of the object. It’s also more evident now that the
name of the instance lives to the right of its type.

Still, for a first-time object-oriented programmer, this could
still be a little too in-the-weeds. Of all the possible types of
objectswe could create, the one calledObject could verywell
be the most abstract of them all. Let’s stick to our goal of
avoiding unnecessary abstractions. Let’smodify our example
again, with a much more descriptive name:

Human sally = new Human();

Ah, yes! Now, Human is significant. The relationship between
Human and sally is intuitive for anyone living on this planet,
even for someone who doesn’t write code for a living. It’s
obvious that sally is the name we’ve chosen to call this
instance of Human.

However, something is still hard to understand. A newbie’s
next question might be this: if we already say “Human
Sally,” isn’t it obvious that she’s a new Human?What, exactly,
is the point of a constructor?

Constructors that don’t accept any parameters are fairly
common in programming. For the seasoneddeveloper,we’re
accustomed to working with classes that don’t accept any
parameters when instantiated. We leave them without
parameters until we find good reason to add constructors
that require more information at the time of construction.
And so, the conventional new Object() (or new Human() or
new List<DateTime>()) feels intuitive to us.

To the newbie, it seems mindless. Constructors that don’t
accept parameters and, even worse, don’t do anything in
their definition aside from instantiating the object, baffle the
OOP neophyte. So, sometimes even the default approach to
a concept isn’t always the best example for teaching that
concept to someone new. In this case, we’re far better off
making the example constructor accept a parameter (or two).

report erratum • discuss

Teach with Obvious Examples • 89

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Human sally = new Human("female", 45);

Ask the newbie if he can create another human named
Harry, who just got his driver’s license, and there’s a good
chance he’ll be able to figure out the answer.

Human harry = new Human("male", 16);

When showcasing examples, be overwhelmingly obvious.
Sacrifice the default approach for the more explicit one. Cut
out the generalities, generic names, and theory for something
tangible and obvious. Even an example as fundamental as
object instantiation went through four iterations to get to
the point of clarity.

Essay 36

Lie to Simplify

When you teach something new, never start with the notion
that everything you’re going to say from here on out is 100
percent correct. Teaching a concept perfectly from the get-go
is neither practical nor efficient. Any advanced concept is
inherently difficult to understand. That’s what makes it
advanced. It’s full of nuances, exceptions, and special cases
that don’t always fit into a nicely wrapped unified theory.

In contrast, when we learn something new, that nicely
wrapped set of facts is exactly what we desperately crave.
Wewant the hard and fast truths, whether or not they really
exist, because they provide the foundation that helps us
build our knowledge of any subject.

So, when you’re the expert, let go of the intricate details of
your domain at first. Let go of the “except when” and “but
not if” cases; they just aren’t that important right now. In the
beginning, reveal the handful of rules that will get your
student most of the way to understanding a concept well.
Be comfortable with stretching the truth a bit to make the
concept simpler. When you’re teaching, white lies aren’t
always a bad thing.

90 • Chapter 6. Teaching

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Whenwe pare down a complex topic into a less-than-perfect
set of rules, it gives someone new a chance to build a solid
foundation of understanding in their mind. When we teach
subtleties and exceptions too early, before people have had
a chance to soak in the general concepts, their learning
becomes fragmented. Piecing together the whole story at
once becomes difficult. It’s hard to digest both rules and
exceptions to those rules at the same time.

For instance, when I teach someone about the basics of
databasemodeling, I always startwith the notion that a good
relational database needs to be strictly normalized without
exception. By Cheung’s Law, no two tables should carry
redundant data.

In reality, there actually is a time and place to denormalize
a database. For example, anOLAP cube is a type of database
that breaks the conventional rule of database normalization
in favor of redundant data.1 Denormalized databases can
make complex search queries much faster because they
traverse fewer tables and require fewer relational JOINs.
However, a novice shouldn’t even care about that in the
beginning until he’s fully grasped the benefits of normaliza-
tion. To understand the cracks in the foundation, he needs
to intimately understand the foundation itself.

So, what if the understanding isn’t 100 percent correct imme-
diately? A solid foundation of understanding is motivating.
And motivation will get them to an advanced level faster.

Essay 37

Encourage Autonomous Thought

As I touched upon in the previous essay, teach rules as if
they were unbreakable laws of nature. It provides a struc-
tured starting point for a novice. To mature to an expert
level, the training wheels need to erode at some point. Once
the foundation has settled, the progressing student can start

1. http://en.wikipedia.org/wiki/OLAP_cube

report erratum • discuss

Encourage Autonomous Thought • 91

Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/OLAP_cube
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

deviating from the rules. Nix the trainingwheels, knee pads,
and bike helmet.

The Dreyfus model of skill acquisition preaches this.2 The
Dreyfusmodel is, put simply, amodel of how students learn.
It was proposed in 1980 by a couple of PhD brothers (Stuart
and Hubert Dreyfus) in their research at UC Berkeley.3

When we begin to master a subject like programming, we
stop analyzing the rules to guide our work. That stuff just
comes naturally. We start to think more abstractly. We envi-
sion multiple paths to achieve the same functional goal.
There is no more recipe; there’s just intuition. When our
student starts finding that same intuition, we know we’ve
done a good job. Encourage that type of autonomous thought.

How do you do that? After a while, you’ll begin to see your
student ask fewer and fewer technical questions in favor of
strategy questions. That’s the first sign they’vemastered the
“hows and whats” and are now looking for “why.” When
they start asking why, it usually means they think there’s a
better approach. What you’ve taught them is limiting their
quickly forming natural intuition.

Keep encouraging that thought process. Don’t suppress it
with an iron fist. Get them to offer an alternative and go
through the pros and cons. When there’s a clear advantage
to one approach, take the student all the way through the
less optimal scenario so they seewhat pitfalls may lie ahead.

Down the road, the alternatives they give you will get even
more compelling. At a certain point, you might even have
them choose the path for themselves. There might even be
a day when the student you’ve taught is now teaching you.
That’s not a sign you’re losing a step; it’s a sign you’ve really
learned how to teach.

In this chapter, we looked at teaching from within: guiding
our programming apprentices down the path of understand-
ing what’s in our heads.

2. http://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
3. For a deep dive into the model, read AndyHunt’s book Pragmatic

Thinking and Learning [Hun08].

92 • Chapter 6. Teaching

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

But teaching our clients our ways has just as much merit
too. In the next chapter, we’ll talk about how teaching can
foster a healthier relationship with the people handing you
the paycheck.

report erratum • discuss

Encourage Autonomous Thought • 93

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 7

Clients
In this business, clients are our lifeline. Without them, what
we do amounts to nothing more than a hobby.

However, quite often, the working relationship between us
and them feelsmore likeAli vs. Frazier than Penn and Teller.
In an ideal world, our client is giving us back rubs and
feeding us scoops of vanilla ice cream, all while dabbing the
corners of our mouths as we labor over their application. In
an idealworld, our customer knows the agonywe sometimes
go through to fit nascent ideas into real code.

The harsh truth is simply this: clients rarely see what pains
we go through to bend to changing requirements. Customers
think only about that one new feature they want—the one
that, in their eyes, involves “just changing this one little
thing” when there’s so much more to it. Stakeholders care
only about the bottom line.

And that’s OK. Like any relationship, the client-programmer
relationship is a continual work in progress. It gets better
when each side of the table understandswhatmatters to the
other. Working with clients well starts with understanding
the view from their end so that we can start to teach them
how things work from ours.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 38

The Tough Client Is Ubiquitous

It’s easy to start ranting about an awful client. But remember,
this problem is not uniquely ours. In fact, we have it easy
compared to some others.

When an architect designs a house, the homeowner sees
only what’s easily visible. She sees the obvious qualities of
the home—the granite countertops, hardwood floors, and
crown molding—not the subtle nature of a floor plan that
the architect may have anguished over for months.

When a chef cooks a meal that’s off by a salt grain, a picky
critic delights in sending it back. The chef’swork, completely
nullified, is tossed away. I once saw a rather pretentious
family’s entire set of orders sent back to the kitchen because
their teenage son lost his appetite over a hairy bug in his
meal. The work of an entire staff of laboring cooks was
thrown out because a customer mistook a fibrous piece of
ginger for a cockroach.

We’ve all been the client at some point. Clients rarely appre-
ciate the delicate, intricate, advanced thought that goes into
the products they consume. And that is the cruel irony of it
all. When I hire a plumber to fix the low water pressure in
my shower, I simply want it fixed. I don’t care if it’s because
of the main line, the flow constrictor, or a clogged shower
head. A cheap bill and a revitalizing showerwill do just fine,
thank you.

In just the same way, when we build software for the con-
sumer or client, the people we work with likely can’t tell
that we programmed the application with such elegance
and cunningness.

What does this mean? No one we work for cares about our
code, at least not immediately. It alsomeans that, when they
want to change our software, they haven’t the slightest clue
whether that change in code is easy, hard, impossible, or

96 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

annoying. They don’t know if their onewould-be-nice-to-have
request is really a would-be-awful-to-build one as well.

It’s frustrating, yes. But don’t pity yourself. You are not
alone.

Essay 39

Demystify the Black Magic of Software

So, how can we get clients to appreciate our labors more?

Sometimes it starts with teaching clients howwe dowhatwe
do. This is especially truewhenwe’reworkingwith someone
who has never had their own application built before. Even
the most completely obvious things to us are not common
knowledge to everyone else. I’ve learned this lesson many
times in my career.

Years ago, I took on a freelance project for a client who
wanted to build an online recommendation system. I was
22, a relative programming newcomer, and this project
sounded like it had a simple objective. The applicationwould
offer the cheapest prices on bulk liquor purchases for bars
and restaurants based on a database search.

Easy enough.

One weekend afternoon, we met over coffee to discuss the
details. I assumed I would get a bunch of data in a neatly
organized spreadsheet—a list of alcohol, brands, distributors,
addresses, and costs. The user would request a particular
bottle, hit a search button, and the app would go find the
cheapest price in the system that fit the inputted search
parameters. It all sounded peachy. My client and I agreed
on the approach andwent ourmerryways. He’d consolidate
the data, and I’d start building this rather Simple, Elegant
Example of Exquisitely Crafted Software.

It tookme about aweek to get the foundation of the applica-
tion built according to our initial meeting. A week later, we
met for lunch to take a look at the Excel spreadsheet he had

report erratum • discuss

Demystify the Black Magic of Software • 97

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

prepared. It looked a bit hairier than I was hoping for. It
wasn’t the simple five-column table I was expecting; I bit
my lip and smiled sheepishly.

“Well, the prices change based on howmuch quantity of the
product you buy,” my client said. There were two other
columns: amaximumandminimumquantity of alcohol that
had to be purchased to obtain a specific price.

Fair enough, I thought. After all, that is the whole point of
bulk purchasing. Back to the drawing board for a few slight
tweaks to my data model and off we go.

The following day, I had the solution. I added a couple of
additional fields, BeginRange and EndRange, to my database.
I then modified the application so that it would accept a
quantity value and adjusted the SQL query so the selection
would filter those recordswhere@quantity >= BeginRange and
@quantity <= EndRange. The system was perfect again!

When we met the third time, my client looked puzzled. My
code was beautiful, but there was something missing in the
behavior of the system. As he played with the software, he
noticed there were a few more levers missing.

As Iwould soon find out, in real life customers get discounts
for coupling similar products together. The concept of bulk
didn’t just live per product, but buying X amount ofwhiskey
might afford you a discount on Y amount of vermouth
(Manhattan, anyone?). In addition, the discounts differed
based on howmuchwhiskey a customer purchased.Maybe
we ought to throw in a few free jugs of Maraschino cherries
as well.

From his end, the behavior of the system seemed off. In his
experience, these deals, found by calling real human distrib-
utors directly, were commonplace. From my end, I didn’t
have the data or conditional logic to deduce any of this. In
addition, even if he could get me all the data I would need,
I’d still require a lot more time to figure out exactly how to
organize it. Would I need to build some separate table of
dependencies to handle discounted products based on the
purchase of another product? Should I build a “common
mixed drink” feature so the app could intuit what drinks a
customer couldmake out of their purchases in order to offer

98 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

other discounts?Most importantly, was theremoremadness
to the model I would find out after this?

It dawned on me one day that I was not, in fact, building a
concise, well-defined system to mine spreadsheets of data
to harvest the singular right answer. Instead, I was building
LarryTM, the alcohol distribution manager. I was trying to
account for decisions thatwere not easily deducible. LarryTM

gives offers based on his relationship to his customer, his
own forty years of experience, and a general hunch or two.
He knows what will drive customers back to his company
as opposed to the other one hundred distributors he com-
petes with.

Why wasn’t I told all of this new information in the begin-
ning? Was my client just hiding it from my prying ears, or
did he not figure that it was important at the time?

Here, in full daylight, arose a fundamental misconception
that lots of nontechies have about software.As programmers,
we are primarily organizers of logic and information. Our
jobs are mainly about pushing, pulling, manipulating, and
displaying data.Most of us aren’t in the business of artificial
intelligence.We can’t easilywrite programs that recommend
or guess. Even “recommending” or “guessing” is a product
of some set of defined, describable logic. Yet, sometimes,
that’s exactly how the outside world perceives this work:
some kind ofmagic black box that can figure out all the loose
ends even if we don’t give it all the information it needs.

When I started to explain the difference between the software
I was building with the software he was looking for, my
client said he’d get back to me. Years later, my code is still
sitting on an old laptop and is affectionately known as my
dust collector/paperweight.

Looking back, the client-developer relationship became
clearer to me. From my client’s point of view, the Web,
software, and databases—all these “technical” things—were
all a mysterious haze of magic. There was some part of him
that believed code could magically take care of a few unde-
fined bits of logic, even if these small loose ends were the
things that made this type of application really complex to
build.

report erratum • discuss

Demystify the Black Magic of Software • 99

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In any project, there will be a certain amount of unknown.
This is the nature of our work. Rarely is an idea completely
flushed out before we transition into development. Also,
even when everyone thinks it is, it really isn’t. Weirdness
has a way of dodging our minds when we’re still talking
about software; it tends to surreptitiously unveil itself only
when we start building.

Maybe that’s why we build a love-hate relationship with
our clients and customers. What is seemingly so obvious to
those of us toiling “in the box” is sometimes lost to those on
the outside, because it’s in the box where the idea must
finally be realized. It’s in the box where we know, full well,
whether we have something concrete or we don’t. It’s in the
box where the real struggle occurs.

That’s why there’s frustration from the outside aswell. From
their vantage point, they’ve thrown you lots of information
and requirements and detail—certainly enough to get you
started. They let us know what they want, and they are
waiting....

Further, when—days or weeks or months later—they see
something that isn’t quite what they had hoped for, they too
are somewhat deflated. The box isn’t as magical as they had
thought.

100 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

When these times arise, take your client inside the box. Take
them there early, if need be. Show them what you’ve been
working on. Step them through the actual code if youmust.
Get them involved in thinking through the questions that
naturally come up to you when you’re in the midst of
programming.

Essay 40

Define the Goals of Your Application

Working with clients isn’t easy. The disconnect between
you, programmer-designer-messiah, and them,unreasonable
dictator-at-times, will always be there.

But not all clients are difficult. The better ones, the ones we
want to keep for the entirety of our consulting careers, the
ones we hope will always have new projects and new ideas
ready to serve us at a moment’s notice, all seem to have one
thing in common.

Great clients put the application above themselves.When the
application is themost important part of the project, everything
else falls into place. Each feature decision can be scrutinized
by simply asking the question, “Does this make the applica-
tion better?” Feelings and personal objectives, both ours and
the clients, aren’t what dictate the outcome. When the
product is not put at the forefront, clients will justify a fea-
ture request by other measures:

• “...it’s something cool I saw on another site.”
• “...because it’s 1996, and everyone is using <blink> and

a counter!”
• “...because it’s 2005, and everyone is using RSS.”
• “...because it’s 2009, and everyone has a Facebook and

Twitter badge.”
• “...becausemyusability book toldme that content below

the fold never gets read!”
• “...because our CEO loves pink!”

report erratum • discuss

Define the Goals of Your Application • 101

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

At the beginning of the client relationship, establish the goals
of the application. Decide, together, what the end product
is hoping to achieve—and write it down. Doing this turns
ammo like “cool” and “cutting-edge” into blank bullets.
Establishing goals lets you say “no” with more conviction.

Essay 41

Be Enthusiastic and Opinionated

One of the biggest misconceptions nonprogrammers have
with programming is that it’s simply algorithmic. But we
know it’s not. Programming is as much art as it is science.
We are passionate about our work in much the same way
that artists are passionate about theirs.

It’s our job to make that apparent. By doing so, we can
change the relationship with our client. Development stops
being just service work. We’re no longer just the mechanics
brought on to build the app.

Engage your client with the intricate details of your labor.
Instead of simply giving thema couple of halfhearted options
to solve their problem, offer them those same options with
a strong conviction toward one. Then explain why. When a
client sees your passion come through on even the most
banal of options, they’re more likely to give you the benefit
of the doubt when your opinion differs from theirs. They’ll
view you as the expert in your own domain.

Howdo people in other industriesmake their work interest-
ing to the consumer? It’s easy to talk about Jamie Oliver, the
“NakedChef,”who has popularized British cuisine, healthy
eating, and generallymashing everything togetherwith your
hands. It’s easy to talk about amusician like JackWhitewho,
in Davis Guggenheim’s rock guitar documentary It Might
Get Loud, talks of his blood-stained guitars. It’s interesting
because cooking andmusic tickle the senses, and peoplewill
generally listen to famous people talk about their craft.

But let me vouch for some lesser known names.

102 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

LouManfredini is “Mr. Fix-It.”He’s an exuberant handyman
who knows everything about fixing up a home. On his
weekly Chicago radio show, he helps homeowners fix every
type of problem. Whether it’s installing a new HVAC unit,
combating a leaky roof, or sealing a deck, Manfredini has a
recommendation and opinion on everything. He’s equally
passionate about the type of paint you should use in your
kid’s room as he is about getting the vermin out of your
basement.

Jeffrey Ruhalter is a fourth-generation master butcher in
Manhattan. If butchering doesn’t make you queasy, watch
him butcher a pig1 or trim a piece of dry-aged steak.2 His
eccentric style of communication oozes passion. He’s some-
one whose recommendation you’d absolutely trust. You
can’t help but find his work interesting (unless porterhouse
ain’t your thing).

Manfredini and Ruhalter prove that you don’t have to be in
Hollywood to make your work interesting. They are heroes
in otherwise unsexy vocations. We can do the same. Plus,
I’d like to think programming merits more interest than
leaky-sink fixing.

Essay 42

Be Forgiving and Personable

Passionate programmers have a penchant for being irritable.
Providing the absolute last line of defense between nascent
idea and functional reality can be frustrating. The entire
thought chain prior to the code we write frequently lives in
diagrams, functional specs, wireframes, and the brains of
those who claim to be the “idea guys.” Yet we’re the ones
faced with the daunting, often underappreciated task of
transforming an idea into a real thing. Bugs live only in code,
never in napkin drawings.

1. http://www.youtube.com/watch?v=kA7-KCBPvss
2. http://www.youtube.com/watch?v=rQiFEhsmOCk

report erratum • discuss

Be Forgiving and Personable • 103

Download from Wow! eBook <www.wowebook.com>

http://www.youtube.com/watch?v=kA7-KCBPvss
http://www.youtube.com/watch?v=rQiFEhsmOCk
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In years past, softwarewas this unapproachable, command-
line-driven thing that only geeks, dorks, and nerds used. It
was built by even geekier geeks, dorkier dorks, and nerdier
nerds. Back then, itmay have beenOK to play the stereotyp-
ical role of the antisocial, generally off-putting curmudgeon.

Today, clients are everyday people, not just other software
guys. They use the products of our labor like they use furni-
ture. It’s just there. The line betweenwhen someone is using
software andwhen someone isn’t is quite blurry. Technology
is a mainstream industry now.

This means we need to button up how we work with the
people we’re building software for. So, when one of our
clients, onewho isn’t tuned into howwework, askswhether
they can just add another feature here that, in reality, breaks
an already agreed upon assumption and undermines the
entire architecture of your application, it’s all too easy to
quickly retaliate.

Instead, be forgiving. Understand the view from above the
hood while you’re entrenched working under it. If a client’s
request isn’t practical, explain to them why. Give them an
example scenario that opens up that “whole new bag of
worms.” Offer an alternative solution to solve the problem
they’re having.

In addition, make it a habit to talk to them in person. Hear
their real voice and let them hear yours. Pick up the phone
and call them instead of just emailing. You’ll be surprised
at how far a compassionate-sounding voice can go in getting
things set your way.

Essay 43

Value Is Much More Than Time

How much is our work worth to the client?

When we estimate the value of a project, it’s pretty much
industry-standard that we do so based on the sheer amount
of time it takes.We take a guess at how long somethingmight

104 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

take, pad for uncertainties, multiply by an hourly rate, and
hope the final estimate feels right to us before we push it to
the client. There’s an unsatisfying arbitrariness to it all.

Should working 200 hours cost twice as much as working
100 hours? Everyone, from individual contractors to multi-
million-dollar development shops, has a billable hour.

Is this the waywe should value our work? Does the amount
of timewe spend consulting, designing, developing, debug-
ging, and testing really equate to howmuch value it’sworth?
I don’t think it is. Unfortunately, it’s the only metric that
most of the world uses.

At many companies, time tracking becomes our individual
value to the business. They mask it behind the ridiculously
named concept of employee utilization. The more hours we
can bill to a client, the better utilized we are.

But this completely discredits those moments that all pro-
grammers cherish when, in the midst of development, we
suddenly come upon a more clever solution to a problem.
In those lightning-strike moments of genius, we solve a
problem in two hours that we initially estimated at eight.
As an added bonus, we’ve done so in a way that’s far more
scalable than we originally imagined. Brilliant!

Wait, hold on a second. Put the champagne down. We now
have to fill in those extra six hours with new client work,
assuming it exists, lest our utilization numbers start tumbling
down.

At companies like these, ones that look at programmer value
as simply a scorecard of how many legitimate hours were
spent fixing a problem, rather than other metrics that really
equate to value, there’s no incentive to think creatively.
We’re far better off toeing the line, working to fill in every
hour we’ve been allotted, rather than dreaming up a more
elegant solution. At companies like these, many program-
mers trade in their natural intuition toworkmore efficiently
so they can legitimately get their utilization numbers up.

By simply basing cost on time, we equate the value of a piece
of software (and the value of the service we provide our
customer) with the time we spend building it.

report erratum • discuss

Value Is Much More Than Time • 105

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

In my opinion, those aren’t the same metric. These two
metrics have very different end goals.

The Value of Our Work Lies in Many Other Places

From a client’s vantage point, many other metrics equal
value. Here are just a few:

Flexibility
Most clients—scratch that—all clientsdon’t know exactly
what they want up front. Be it features or font, clients
need to see it on the screen to start figuring out what’s
working and what’s not. The more we can adjust the
course of our applications inmidstream, themore value
we provide. This is extraordinarily valuable to clients,
especially those not so familiar with the medium.

Education
When we work with clients, we’re teaching them. They
learn about the nuances of theWeb (browsers, analytics,
SEO, and so on) and the battleswe face as programmers
(How is this going to fit the data model? What makes a
user experience a good one?). At the end of a project,
they understand the medium much more than when
they started. There’s inherent value in that.

Personability
When we’re personable, friendly on the phone, and
communicate eloquently, we’re making a client feel
good about who they’ve hired. That’s value.

Expertise
At my company, we drive the process in both how we
work and which products we use. We have opinions.
When clients come to us, they’re often looking for us to
provide the answers and recommendations.We provide
value by being unabashedly firm about our opinions.

Speed and timeliness
Shouldn’t value also equate to speed? If we can build
an app in half the time we proposed at the onset, why
should we be compensated half as much?

106 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Time as an Internal Metric

With so many other factors that impact value, where does
time fit in? It’s a critical metric but one that should track the
internal health of the company or the individual contractor,
not the value of thework. Time tracking answers these kinds
of questions:

• Are we balancing the amount of work we’re doing as a
group and individually?

• Are there bottlenecks we can spot in our process that
we need to fix?

• Howmuchmore canwe take onwhile still maintaining
the quality of our work?

Charging for a Product Rather Than a Service

So, if not time, then how do we measure the price tag we
should put on a project and the services we provide for that
project? How can we do so other than perhaps shifting the
entire industry into a Wall Street–like marketplace, where
the collective agrees that service X or product Y isworth this
much today?

One method is to start turning your client work into a set of
product offerings, much like you might sell a piece of
software to an anonymous customer. If you’re building
something similar for a few clients (say, an administration
tool to manage inquiries or a global search feature), you can
start offering that component at a fixed fee for the next client.
By productizing your client work, you can set the price to
something you deem worthy of its value and then justify
any future price hikes by those other value metrics.

At the same time, productizing client work keeps us honest.
Suppose someone asks for a feature that we just built for
another client. In theory, wewouldn’t need all twenty hours
we spent building that feature the first time. We’d probably
need just a few of those hours to replicate it. Using time as
the only metric, we’d only charge a fraction of the cost the
second time around. But that makes no sense. That new
feature has as much value for the second client as it did for
the first.

report erratum • discuss

Value Is Much More Than Time • 107

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Instead, if we use flexibility, expertise, and speed asmetrics,
charging the same amount the second time around is justi-
fied.Wemight even be able to improve on our first go-round
and justify a higher price tag.

The value of our work is so much more than just the tick of
the clock.

Essay 44

Respect Your Project Manager

If you’re a developer who’s worked with project managers
before, I can say with 99 percent assurance that, at one time
or another, you’ve been frustrated with them. While you’re
tackling a complex feature head on, here the PM is, with the
nerve to ask you when you think that might be finished. While
you’ve spent hours dissecting a deep, mission-critical prob-
lem in your code, here the PM is, nudging you to get that
trivial button label fixed. And here the PM is again, asking
youwhether you can get that new client feature request that
just came in out of the blue completed today.

You know the feeling. Deep inside of you, you believe the
PM isn’t doing much. He’s simply asking you when, how,
and if you can. You’re the one sweating the details, doing
the real labor, and earning your keep, right?

As developers, when our jobs get difficult, it’s usually
because there’s a complex problem to solve in our software.
We buckle down for a few hours and fight through the pain.
We ebb and flow between spurts of frustration and ecstasy.
For us developers, the hardwork is inmanaging the product.
We know everything about the application, and as discussed
in Essay 40,Define the Goals of Your Application, on page 101,
the application is what we should all be concentrating on.

Project Management Is Primarily People Management

But for a projectmanager, the goals are different.While good
developers are the experts in the domain of the application,

108 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

good project managers tend to be the experts in the domain
of the client. They’ve developed an intimate working rela-
tionship with the guy on the other line or at the other end
of the email. They know when they can push back or when
there’s something that’s really important to the client—even
if we might disagree. Client work can be an emotional
struggle for the PM.

The Double-Edged Sword of Project Management

In a restaurant, it’s the waiter who takes the heat for a soup
too cold, a steak too raw, or an order too slow. If it’s one of
those particularly bad nights, the customer usually asks to
see the restaurant manager to complain about “the worst
meal they’ve ever had.” As for the chefs in the kitchen? They
tend to get off easy.

Yet, on those particularly good nights, the oneswhere a table
has had the best meal of their lives, who gets thanked? Not
the waiter. Not the restaurant manager. It’s the chefs! Every
now and then, they’ll even come out for a bow.

It’s the same story in our industry. From the client’s point
of view, the project manager is the company. In a team of
other designers and developers, only project managers are
the ones responsible for everyone else’s actions. If one devel-
oper is pulling hisweight but his fellowdeveloper next door
isn’t hitting the mark, it’s the project manager who usually
has the lone, unenviable job of relaying the bad news to the
client and then taking the heat.

But launch a beautiful app on time and on budget, and it’s
the developers who share in the praise. We’re the ones who
get the free pizza and beer lunches from a happy client.

Project management is important in ways that go beyond
just the application, and it’s oftentimes a thankless job. So,
the next time one of your PMs asks you to implement a
client’s new feature request, don’t immediately gowhipping
out your iron sword. Find out what’s really driving the
request. Youmight be able to recommend a simpler alterna-
tive. You could come up with a well-spoken argument
against it altogether.

report erratum • discuss

Respect Your Project Manager • 109

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

The more ammunition you can give a project manager to
take back to a client, themore you empower them to do their
job well.

In this chapter, we’ve seen the delicate nature of client
management. In the end, good client management is often
achieved through our own self-worth. When we’re enthusi-
astic and engaging, clients get a vicarious taste of what
makes this vocation great. When we’re transparent and
personable, a moment of potential conflict becomes a time
to revisit the original goals of the application.

In the next chapter, let’s get back to the nonhuman. There’s
an equally important relationshipwemustmaintain between
ourselves and our code.

110 • Chapter 7. Clients

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 8

Code
Thus far, we’ve examined aspects of programmer life that
have little to do with the very thing we get paid to do. This
chapter takes us back home, to our roots, to the very thing
we use to earn our keep.

Code is our essential material. But we typically don’t think
about code in the same way that any other builder thinks of
their raw material.

Unlike any other kind of builder, we have an infinite supply
of our material. Today we can distribute it to anyone, any-
where; distance plays no factor. We can replicate what we
build at will. We can rapidly build upon and extend layers
of code with more code. There’s no time needed to let it dry
or settle. No other medium in the real, physical world plays
like ours does. And for those reasons, it’s easy to take code
for granted.

This chapter is about how we relate to code; it’s an homage
to the raw ingredient we use every day. I believe that the
best programmers have a true relationship with code. They
use code only when it’s absolutely necessary, borrow code
from others only when it’s right, and even build their own
frameworkswith codewhenposedwith the right challenge.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 45

Write Code As a Last Resort

When residents of a New York City office building started
complaining about the increasingly poor service of the ele-
vators, the building management brought in a consulting
firm to pinpoint the problem. The firm concluded that long
wait times were the issue. Solving the tenant’s complaints
meant potentially adding new elevators and implementing
new computer controls to improve elevator efficiency. These
would be very costly adjustments.

Enter the young psychologist hired in the building’s person-
nel department. He recommended, instead, placingmirrors
in the elevator lobby. The problem wasn’t waiting times; it
was boredom.

His suggestion worked. People stopped complaining about
waiting for the elevator when they had something to do:
observe themselves in the mirror. The same problem was
solved with a very different solution.

The most passionate of us are the ones who spend most of
our work time thinking critically and creatively, often to
find simpler, “lazier” solutions. The answer isn’t always to
plow aheadwith the obvious, brute-force solution ofwriting
more code.

Sometimes the best answers are found somewhere else. Ask
yourself the following questions the next time you’re con-
fronted with a New York office building elevator problem:

• Has someone already done this task before? Can I use
off-the-shelf code to take care of the dirty work for me?

• Is this piece of functionality really important to the goals
of the application? Is the task already there but just
through a different user experience?

112 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

• Is there a simpler way to code what I’m coding right
now that might be worth the trade-off, even if it doesn’t
solve the problem entirely?

• Can I automate this task? Can I write software to write
this algorithm forme so I don’t have to repeat thiswork?

Whenwe go straight into “writing code”mode at every task,
we lose the opportunity to think about why we’re really
writing it. Instead, if we think critically about why we are
writing code, we get to spend most of our programming
time on the things that really matter.

Essay 46

A Plug-in Happy Culture

There’s a beautiful irony to our medium. While scripting
really great code is difficult, oncewe’vewritten that exquisite
code, we can redistribute it to the rest of the world easily,
without any loss of fidelity or quality. Great code doesn’t
lose its intrinsicworth once a lot of other programmers have
their hands on it. Quite the opposite, in fact.

As a community, programmers help out other programmers
all the time. We can expedite many of our processes by
pulling something off the shelf that our colleagues have built
for us.

Building Apps Is Like Going to a Walmart

For instance, we can write more maintainable style sheets
by using Sass before converting it to CSS. We have jQuery
and CoffeeScript at our disposal; they are elegant frame-
works that sit on top of JavaScript and hide all of its onerous
syntactical nuances. Need a JavaScript plug-in to display
images in a lightbox? There are at least thirty, written for
jQuery specifically!1

1. Thirty lightbox implementations: http://www.designyourway.net/
blog/resources/30-efficient-jquery-lightbox-plugins/

report erratum • discuss

A Plug-in Happy Culture • 113

Download from Wow! eBook <www.wowebook.com>

http://www.designyourway.net/blog/resources/30-efficient-jquery-lightbox-plugins/
http://www.designyourway.net/blog/resources/30-efficient-jquery-lightbox-plugins/
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Many younger developers have never had to write a raw
SQL database query because object-relational mapping
(ORM) tools and code generation frameworks do the tedious
labor of transitioning data from a relational database to
objects for us. Need an ORM tool? There are hundreds of
open source and proprietary solutions.2

On theweb application level, development frameworks like
Rails and Django let us develop database-driven web apps
while shielding us from most of the plumbing between the
UI and database. Instead, we have the luxury of working
within their softly cushioned walls.

For any task, large or small, on any level of the development
stack, we can almost assuredly find a tool someone else has
beautifully written to satisfy our needs. In most cases, it
makes sense to use those tools. Even if they don’t perfectly
give us the functionality we want, even if we need to
slightly bend our own preferences to conform to them, it’s
usually worth the time spared from building our own.

For instance, I’d never consider buildingmy own continuous
integration system. Jenkins (formerly Hudson) does it per-
fectly. I’d never, in a million years, write my own database
syncing tool. I’ll gladly spend a few hundred dollars on a
tool like RedGate than figure out all the edge cases involved
inmerging database schemas onmy own. Formost develop-
ment tasks, I’ll leave it to a piece of code written by people
with much greater expertise in that domain.

To that end, building applications today feels a bit like going
to a Walmart; maybe the open source movement is more
like a Goodwill store. We can throw all these great toolsets
into our cart, hit the checkout line, and go. Once we get
home,we can unwrap all these great bits of code, stitch them
togetherwith a helping of our own, and give life to an appli-
cation.We can get to running software really, really fast today.

The Backlash of a “Fast Code” Culture

Let’s be thankful that using these tools doesn’t cause the
same public backlash as using “efficiency frameworks” in

2. See http://en.wikipedia.org/wiki/List_of_object-relational_map-
ping_software for a list of ORMs in multiple languages.

114 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
http://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

other industries. So long as our applications are designed
and perform well, the material we use underneath goes
unnoticed by the user. That’s not a luxury that every industry
has.

Take the food industry, for example. Back in the 1950s and
1960s, fast-food was hip. It was futuristic. It was progress.
It fit the lifestyle of a nation that predominantly traveled by
automobile and wanted a quick yet still satisfying way to
enjoy food “on the go.”

Yet a few decades later, those mystical magic food units
began to fall out of favor. The quasi-automated nature of
making such food has led to amajor obesity epidemic in our
society. Poor animal living conditions, hormones, and pesti-
cides are, unfortunately, requirements to mass producing
food at a lowprice. And besides all of those reasons, a culture
simply fell back in love with real, handcrafted food.

Fortunately, we don’t have that problem with “fast code.”
In other words, a renaissance in writing-every-bit-of-code-
from-scratch-again seems unlikely. Leaning heavily on
prebuilt libraries and frameworks to rapidly get applications
up and running is very much here to stay.

report erratum • discuss

A Plug-in Happy Culture • 115

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

But a backlash does loom. In each of these frameworks,much
of the critical forethought has been extracted from us inten-
tionally. What’s left are very quick, high-level methods to
solve otherwise complex problems. All those lightbulb
moments of brilliance that their original creators discovered
are now buried somewhere well beneath the programming
interface.

With all the luxuries we have today with myriad efficiency
platforms, we can quickly lose our appreciation, interest,
and understanding for what’s going on under the hood.

And that’s a dangerous place to be.

Essay 47

Code Is the Ultimate Junior Developer

With the advantages we’re afforded in our medium, it’s
quick to forget how remarkable code is.

For the time being, forget about the latest jQuery plug-in or
Rails patch. Instead, imagine if the great mathematician,
Carl Frederick Gauss, had the benefit of a programming
language at his disposal back in the 18th century.

What Gauss Could’ve Done with Code

As a famous story goes, one day in grade school, Gauss’s
notoriously lazy teacher had the entire class sum all the
integers from 1 to 100 in hopes of keeping the class occupied
for a long while. Much to the teacher’s chagrin, the young
Gauss came back to his teacher after only a few moments
with the right answer: 5,050.

How did he come up with the answer so quickly? If Gauss
had the tools to program back then, he might have written
some code like this to get to the answer:

public int sum_range_of_positive_integers_to_100()
{
int sum;

116 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

for (int i = 1; i <= 100; i++)
{

sum += i;
}

return sum;
}

After some quick thinking, hemight have decided to rewrite
his program more generically, in case the teacher was to
challenge him again with a different range of numbers:

public int sum_range_of_integers(int first, int last)
{

if (last < first)
{

throw new Exception("Last must be larger than first!");
}

int sum;

for (int i = first; i <= last; i++)
{

sum += i;
}

return sum;
}

Of course, young Gauss didn’t have such an option at the
time. So, how did he get to the answer so quickly?

Rather than adding the numbers one at a time, he ap-
proached the problem in a far more clever way. Instead of
summing the numbers linearly, he summed the remaining
first and last numbers in the sequence instead, starting with
1 and 100, followed by 2 and 99, 3 and 98, and so forth.

(1 + 100) + (2 + 99) + ... + (49 + 52) + (50 + 51)

From here, a simple pattern emerges. It turns out there are
50 pairs of numbers that each sum up to the magic number,
101.

101 + 101 + 101 + ... + 101 + 101 + 101

The problem of summing all 100 numbers together was
reduced to a simple multiplication equation:

50 * 101 = 5050

report erratum • discuss

Code Is the Ultimate Junior Developer • 117

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Gauss’s approach was a uniquely human one. He took a
problem that appeared tedious at the surface and came up
with an elegant way to solve it. He found a better heuristic
instead of resorting to the tedious linear approach thatmost
of his classmates would’ve taken. As it turns out, he fell
upon a nifty little formula:

The sum of all integers from 1 to n = n * (n+1) / 2

How would our code approach this problem? The code
written earlier in this chapterwould have produced the same
answer, only doing it the “brute-force” way—the exact way
we told it to do it. Given how fast processors work these
days, software running our code would have arrived at the
answer much faster than even Gauss did, despite the ineffi-
ciencies in its approach.

However, at a certain point, Gauss’s approach would win
out. If Gauss were asked to sum all the numbers from 1 to
4,000,000, sum_range_of_integers() would take a lot longer to
compute.

This means that, at some number, Gauss would likely have
been able to beat the code to the answer, because although
the prodigy cunningly knew that the answerwas to evaluate
one simple formula, our poor program would’ve executed
it this way:

1 + 2 + 3 + + 3,999,998 + 3,999,999 + 4,000,000

The Attractive Qualities of Code

Gauss’s tale provides some interesting insight into how code
solves problems differently from humans. Code thrives at
the tedious stuff—at algorithmic, rules-based problem
solving—far better than a human being. It doesn’t just thrive;
it has all the ingredients of an incomparably productive and
affordable junior developer.

Code Doesn’t Get Lazy

Code will never decide to just take a shortcut or find an
easierway of doing things. The code snippet at the beginning
of this chapter would sum up all 4,000,000 integers without
deciding to just skip one. Code executes with impeccable
precision.

118 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Code Doesn’t Get Bored

Imagine writing a small program like this:

int x = 0;

while (x != x + 1)
{

// do nothing
}

As irrational as this task sounds, codewill continue to crank
at this nothingness forever, saved only by a runtime engine
that would force an abort, sensing this loop would be going
nowhere fast. Code doesn’t analyze the importance of a task.
It has no interest in its own well-being. It simply executes
whatever we tell it to do.

Code Doesn’t Forget

At the beginning of this chapter, we told the engine this:

“Whenever I tell you to sum_range_of_integers(1,100), create an
integer called sum. Starting with the number 1, add the value
to sum, and then increment the value by 1. Keep doing this
until you’ve hit 100. Then, give me back the value of sum.”

Years later, I can go back to my program, call the method
again, and expect the same result. Code doesn’t forget what
it’s asked to do. Software systems, built upon thousands and
thousands of lines of code, are equally adept. Code, no
matter its volume, remembers what to do days, weeks, and
years later. Could any human do the same?

Code Is Cheap

If a co-worker were asked to sit at his desk and sum all the
numbers up from 1 to 4,000,000, we’d understand if he asked
for money in return. Maybe we could work out some com-
mission per summation agreement or agree to an hourly
rate. Think back to Essay 8, The Perks Are in theWork, on page
20. For highly tedious tasks like this one, we’re motivated
by perks.

Fortunately, we’ve never taught code about money, market
economies, or vacation homes. It performs for nothing in
return. Once we’ve taught code something, we can take full
advantage of it. There are no code-labor laws to get in our
way.

report erratum • discuss

Code Is the Ultimate Junior Developer • 119

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Code Is Fast

Code executes at rates incomparable to thewaywe can finish
tasks. It’s metered by the limitations of hardware, which
will become less and less limiting over time. Humans are
absolutely no match for speed.

What does this all mean? Imagine a Craigslist ad that went
like this:

Code is inarguably the greatest junior developer who ever
lived. It is uniquely adept at tedious yet definable tasks. It
never complains—unless our instructions don’tmake sense.
It’s cheap, fast, diligent, consistent, and unemotional. Many
companieswould hire a dozen suchprogrammerswith these
qualities in a heartbeat.

The power of code is extraordinary.

Essay 48

Separate Robot Work from Human Work

If codemakes a dream candidate for a junior developer, then
we ought to get it to work right away. The faster we can push
tedious, algorithmic work off our plates—the kind of work
perfectly suited to code—the quicker we can focus on the
more interesting problems.

120 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

We have all had those moments of déjà-vu programming:
pasting code from one project into another orwasting hours
writing functionality we know we’ve written somewhere
else before. On days that we’re not inspired to rethink the
entire process, we get through it and move on to the next
task.

This kind of passivementality has to stop. Instead of repeat-
ing even a small scripting task, we can write a program to
do that work for us. A programmer’s time is far too valuable
to bewasted on repetitive tasks.When I co-foundedWeAre
Mammoth in 2006, this is what I had rolling through my
mind.

In the beginning, we built Flash applications with a .NET
back end using C#. A fewmonths into our business, I began
smelling repeatable work: work that we were doing in the
same mechanical way each time. Having seen the process
for a few iterations, I started to separate the tedious yet algo-
rithmic elements from the customwork that applied to each
project we built. They separated like oil in water.

Every application we built followed a common set of con-
ventions. After designing the database, we would write a
series of stored procedures in SQL and then create objects
in C# thatwould pull data from these stored procedures into
their own properties. After that, we’d build a series of web
hooks that would interface with another set of classes in
ActionScript. Only then could we start developing any

report erratum • discuss

Separate Robot Work from Human Work • 121

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

functionality on the Flash side. This hunk of development
was tedious, banal stuff better fit for a robot than a human.

There were two components of an application that weren’t
algorithmic. The first was the database schema. We worked
on applications for car companies, bed manufacturers, bro-
kerage firms, software distributors, and fast-food chains.
Their databases were custom-tailored to solving their own
unique business problems. Second, we couldn’t trivialize
the user interface. They were custom-designed for each
client. That’s what we wanted to focus most of our time on.

This is when we stopped and took the time to roll our own
code generator.

To better explain how we extracted the repeatable bits of
our process, imagine building a blog from scratch. We’ll
start at the very bottom, with the database. The data model
might contain three tables that look like this:

• Posts(ID, Title, CreateDate, Body, AuthorID)
• Authors(ID, FirstName, LastName)
• Comments(ID, Comment, Email, CreateDate, PostID)

If you’re familiar with object-relational database modeling,
this model is a fairly straightforward one. Posts has a title, a
body, a create date, and a relationship to one Author via the
foreign key AuthorID. AuthorID points to a record in the Author
table by matching on the author’s ID column. The Comments
table contains a comment, an email address, a create date,
and a related originating Post, via the foreign key PostID. The

122 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

PostID keys into the table Post by matching on the post’s ID
column.

Uncovering Repeatable Coding Tasks

In the early days of our business, we would start building
an app by writing stored procedures to insert (i.e., create),
read, update, and delete a record for each table in our data
model. These “CRUD” methods were the base procedures
for manipulating records in our database. Here’s what I’d
type to build an insert procedure for the Posts table:

CREATE PROCEDURE CreatePost (
@Title NVARCHAR(255),
@Body NTEXT,
@CreateDate DATETIME,
@AuthorID INT)

AS
INSERT INTO Post VALUES (

@Title,
@Body,
@CreateDate,
@AuthorID)

In the CreatePost procedure, we would simply take all the
fields in the Posts table, besides the primary key (in this case,
the ID field), and build a SQL INSERT statement with corre-
sponding input parameters.

Because we can describe exactly how to write this kind of
method by introspecting our database model, a program
can generate any generic creation method. The same process
described earlier could be repeated for the Authors and
Comments tables.

We can apply this same kind of routine for generic UPDATE,
READ, andDELETEprocedures. For instance, towrite an update
procedure, we can take all the fields in a table and build a
SQL UPDATE statement using the primary key fields (in our
case, ID) as filters in the WHERE clause. Here is what the
UpdatePost procedure would look like if we followed that
prescription:

CREATE PROCEDURE UpdatePost (
@ID INT,
@Title NVARCHAR(255),
@Body NTEXT,
@CreateDate DATETIME,

report erratum • discuss

Separate Robot Work from Human Work • 123

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

@AuthorID INT)
AS
UPDATE Post
SET
Title = @Title,
Body = @Body,
CreateDate = @CreateDate,
AuthorID = @AuthorID

WHERE
ID = @ID

What other types of queries can we generate? For one, we
can extrapolate selection queries based on the relationships
between each of these tables. For instance, a post has an
author. So, we could write a SELECT stored procedure to get
all the blog posts by a specific author’s ID. Let’s call it GetAll-
PostsByAuthorID. We could similarly write a procedure to get
all comments by a post’s ID (GetAllCommentsByPostID).

CREATE PROCEDURE GetAllPostsByAuthorID(@ID INT)
AS
SELECT * FROM Posts WHERE AuthorID = @ID

CREATE PROCEDURE GetAllCommentsByPostID(@ID INT)
AS
SELECT * FROM Comments WHERE PostID = @ID

Another formulaic pattern emerges in our storedprocedures.
For any foreign key [Y] in a table [X], we could write a stored
procedure of the following form: GetAll[X]By[Y]ID.

Let’s take it one step further. Wemight want to load records
by filtering on a specific field. For instance, we’ll need to get
posts for a given day:

GetAllPostsWhereCreateDateEquals(CreateDateParam)

or authors by their last name:

GetAllAuthorsWhereLastNameEquals(LastNameParam)

Another formula emerges. For any filterable field [Z] in a
table [X], given a parameter [P]we could write a stored pro-
cedure of the form GetAll[X]Where[Z]Equals([P]).

We can find similar tedious yet algorithmic processes when
creating a C# data access layer, an API that our Flash layer
would be able to consume, and the ActionScript layer itself.
All that baseline underlying plumbing is fit work for the

124 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

fictitious Craigslist job seeker we saw in the previous essay.
Or, more realistically, we can write smart programs to do the
job for us.

All of thiswould be a lot ofwork to do every timewe started
a new project. But by figuring out the formula for this type
of work, we can relegate the execution of this type of work
to...the robots.

Essay 49

Generating Code at Its Core

Taking the leap into code generation is an important pilgrim-
age every developer ought to take. It frees us to think about
code as a powerful tool to transform how we work, not just
as merely the material we use to write programs.

So, how do we actually write a generator? For a truly
in-depth source, I highly recommend Jack Herrington’s
outstanding book,CodeGeneration inAction [Her03]. It covers
detailed techniques and high-level patterns for generating
code of all kinds. But we don’t need that level of detail to
get started. Here are the essentials.

Define Your Input Source

First, create an input source. It’s the place that houses all the
parameters our code generator needs to do its work. The
input source can be as simple as a plain XML or JSON file
or as robust as a database itself.

Whenwe first deployed our company’s code generator, X2O,
we used an XML file as the input source. The XML file
defined the tables, fields, and foreign keys for the database
we generated code against. Here’s an example of converting
the blog data model in Essay 48, Separate Robot Work from
Human Work, on page 120 into an XML input source:

<input_source>
<table name="Posts">

<field name="ID" type="int" identity="true" />
<field name="Title" type="NVarChar" length="100"/>

report erratum • discuss

Generating Code at Its Core • 125

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

<field name="CreateDate" type="DateTime" />
<field name="Body" type="NText" />
<foreignkey name="AuthorID" to_table="Authors" />

</table>
<table name="Authors">

<field name="ID" type="int" identity="true" />
<field name="FirstName" type="NVarChar" length="50"/>
<field name="LastName" type="NVarChar" length="50" />

</table>
<table name="Comments">

<field name="ID" type="int" identity="true" />
<field name="Comment" type="NText" />
<field name="Email" type="NVarChar" length="100" />
<field name="CreateDate" type="DateTime" />
<foreignkey name="PostID" to_table="Posts" />

</table>
</input_source>

Over time, your input source will grow. As you find more
things to generate, you’ll likely need more kinds of inputs.
For example, a few months after building the first version
of X2O, we wanted to augment our generator by having it
create documentation. We added an attribute called friend-
ly_description for each table and field node. We could then
reference those attributes to generate API reference docu-
mentation for our ActionScript code.

Choose the Right Programming Language

Program in a language that’s suitable for generating code.
The language we write a code generator with doesn’t have
to be the same as the language the generated code is written
in. In X2O, we use C# to write our code generators, but the
output contains SQL, C#, HTML, and ActionScript.

The language of choice must have I/O capabilities so you
can actually save the generated code output to yourmachine.
Fortunately, pretty much any of today’s popular program-
ming languages (C, C++, C#, VB, Java, PHP, Python, Ruby,
Perl) support this. If you’ve never read or written files using
your programming language, spend an hour researching it.
Your code generator will be doing a lot of this.

Herrington’s preferred language is Ruby because of its I/O
support and its support of text-template tools (like ERb and
ERuby), and it plays well with XML, the input source lan-
guage he uses in his examples.

126 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Extract Your Input Source into Something Usable

With input source in hand, write a program to extract its
contents into something usable. In our case, wemapped the
contents of the XML file into its own object in C#. This lets
you have both a system that’s easy to work with when con-
structing the input source (XML) and a system that’s easy
toworkwithwhen you’re generating code against the input
source (like an object in C#).

In today’s landscape, languages like E4X (ECMAScript for
XML)make converting an input source into a programmatic
object pretty seamless.Whatevermethod you use, it’s critical
to have an easy way to loop through and introspect your
input source. You’ll see why in the next step.

Combine Your Input Source Provider with Templates

With a usable programming environment and input source
defined, the next step is to write templates. In our blog
example, each tedious part of the development process had
a formula. For example, to generate all CRUD statements,
we do nothing more than loop through every table in our
data model and apply the same statements for each. Take
the SQL CREATE statements. We can take the following bit of
real SQL code...

CREATE PROCEDURE CreatePost (
@Title NVARCHAR(255),
@CreateDate DATETIME,
@Body NTEXT,
@AuthorID INT)

AS
INSERT INTO Post VALUES (

@Title,
@CreateDate,
@Body,
@AuthorID)

...and replace the custom parts with replaceable variables...

CREATE PROCEDURE Create[cur_table] (
[List_of_attributes_as_input_params])
AS
INSERT INTO [cur_table] VALUES (
[List_of_attributes_as_SQL_insert_params])

...to create a template for generating CREATE statements.

report erratum • discuss

Generating Code at Its Core • 127

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

With this template, we can loop through each table node in
our input source provider and fill in the appropriate values.
In this case, cur_table is just the name of each table, while
List_of_attributes_as_input_params and List_of_attributes_as_SQL_in-
sert_params are found by inspecting the field nodes of the
input source provider.

In pseudocode, the creation of generated code looks like this:

1. Build an example file for the code youwant to generate.

2. Create a template by extracting the custom parts and
replacing them with variables.

3. Write code to read in the template file, loop through the
input source, and replace the variables from the template
file as necessary.

4. Write the newly created file to disk.

5. Do something with the files at the end (run them, com-
pile them, and so on).

Component-Driven Design

A good rule of thumb is to keep all generators as separate
libraries. Early on, X2Owas a mass of code in one large file.
The code that generated the database, SQL scripts, data
access layer, web services, Flash objects, and CMS files all
lived in the same library. While it worked, it grew to be
unmanageable. It was harder tomaintain because anyminor
change to the generatormeant recompiling tens of thousands
of lines of code.

Oncewepulled each part out into about three dozen separate
libraries, it was a lot easier tomaintain.We could then chain
all the generators together by referencing them in one all-
encompassingmaster generator library. It also lets us toggle
certain generators if we don’t always need them.

Encapsulating and componentizing are good programmer
habits anyway, but they’re especially important when we’re
building dozens of little generators.

With these five simple tips in mind, we can get out of the
starting gates.

128 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Automate with Care

Is there anything bad about code generation?Are there times
whenwe shouldn’t be using it to our advantage? Yes. Here’s
a couple commonmistakes youmightmake early on in your
automation experience.

Avoid Touching Generated Code with Bare Hands

Make a strict rule that any generated code is not to be mod-
ified after it has been generated. Generated code is like fine
china: you break it, you pay for it!

Generating code, only to go noodling around in it afterward,
might make our process more tedious, not less. Why?
Suppose we add a new field to our database and want to
regenerate our new code against an updated data model.
Each time we did that, we’d have to remind ourselves what
we hand-modified and ensure the code is modified again.

If we really do need to noodle around our generated code,
there are elegant ways around the problem. In C#, we can
mark a class as partial. This lets us define a class in multiple
source files. In X2O, every generated C# class is partial so
that, if we ever needed to, we could add any additional
methods or properties in a separate file marked with the
same partial class.

If you don’t have the option of partial classes in your lan-
guage of choice, there are other elegant approaches too. For
instance, you can extend classes or write custom helper
classes.

Keep Generated Code as Tidy as Real Code

Whenwe program by hand, keeping our code tidy is partic-
ularly important because we want it to be easy to maintain
down the road. That’s exactly why it’s hard to motivate
ourselves to keep generated code equally tidy—we never
need to actuallymaintain the codewe generate.Wemaintain
only the generator.

That’s why some argue that code generation is a trade-off
between rapid output and custom-fit code—it creates a lot
of excess that rarely gets used by the end application.
Because it’s so easy for programs to spit out code, we may

report erratum • discuss

Generating Code at Its Core • 129

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

not care asmuch to have it generate concise, optimized code.
But this is something easily resolved.

Perhaps our next project doesn’t need a certain set of data
accessmethods.We can use our input source to define some
optional parameters so that we’re not spitting out sheets of
excess code for a project that doesn’t need it. As our genera-
tor matures, we might want to toggle certain code from
generating. This is where component-driven design really
helps.

Some argue that code generators produce inelegant code.
However, this has nothing to do with code generators and
everything to do with how we prescribe what our code
generator should produce.

If our generated classes have duplicate functions or common
methods, we can refactor the templates that make up our
code generator. We can write the duplicate functions into a
stand-alone class that lives outside the generator. We can
still apply the same programming-by-hand techniques to
our generated code.

In code generation, nothing stops us from still following
good programming principles.

Know What Not to Generate

While code generationmakes you thinkmore critically about
the patterns in your everyday work, it’s equally important
to not force those patterns. After the first few sweet victories
of successful code generation, wemight feel that air of invin-
cibility and start trying to wrap everything into a code
generator—even the things that really aren’t automatable
(but certainly tedious). It’s easy to try to cram too much
automation into things that are still too custom.

This is where we really have to consider the benefits of code
generation. If our output code requires too many custom
inputs to generate or requires too many hacks to use, we
probably shouldn’t be generating that bit in the first place.
Just like bad code smells, there are also bad code generation
smells.

Writing code generators gets us thinking aboutwhat is truly
automatable and tedious vs. what is just tedious.

130 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Essay 50

The Case for Rolling Your Own

Code generation and object-relational mappers are nothing
new. When we built our own company framework in 2006,
there were already plenty of comparable ones out there that
we could’ve used. Certainly, it would have saved us count-
less hours ofwork in the beginning. Building any framework
from scratch is a daunting task, especially when we know
there are others that have been worked on for years.

So, in this plug-in happy culture, it begs the question, why
would you ever roll your own framework, platform, or plug-
in if there’s something out there potentially just as good?

For me, there are three big reasons.

An Intimate Understanding of the Problem Space

When we’re writing our own tool, we have no other choice
but to completely immerse ourselves in the problems that
the tool is desperately trying to solve. We must become
experts in that domain. There’s no going, “Well, I download-
ed this library, copied this snippet of sample code, changed
some of these parameters, and...I dunno, it just seemed to
work.” There are few thingsmore unsettling than a program-
mer not knowing why something works but that it just
works.

For example, many ORMs “lazy load” data by default,
grabbing an object’s relational data from the database only
when it’s been accessed in the object, instead of loading the
relational data from the database up front. This is particularly
efficient because the framework makes a database request
only when we ask for it. There’s less data stored in memory
at any given moment.

For the novice ORM user, this might just be a nice-to-know
type of thing. She might just keep programming against it
without really concerning herself with the concept. In her

report erratum • discuss

The Case for Rolling Your Own • 131

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

test environment, the database has a sparse few test records,
and the code she’s writing against the ORM to pull back
data is doing a dandy job. It just works.

But once she publishes her code to the live environment and
real data starts to flow in, that seemingly benign little snippet
of code she wrote using the ORM suddenly starts to bring
the server to its knees. For example, an innocent piece of
code like this...

foreach (Person person in myCompany.RelatedPeople)
{
s.AppendLine(person.RelatedOffice.City);

}

...is actually making a database call for every person in that
company to access his or her office location. That couldmean
thousands of executed queries in just a few lines of code.

When we’re the ones building the tool, we have to know
where all the potential gotchas live. When we’re just the
ones using other people’s frameworks, we can let those
gotchas slip past our radar until it’s a little late.

Finding a Core Problem and Doing It Better

Nomatter what’s available in the vast landscape of prebuilt
tools, you can find a small sliver of something that can be
done in a better way to fit how you program—to better con-
form to the types of apps you build.

In my case, the reasoning was simple. There wasn’t a
framework thatwould customgenerate ActionScript objects
that would directly tie into a database model. If I were to
use something off the shelf, I’d likely have to use two distinct
pieces of software: one to build up my .NET layer and a
second to create ActionScript classes. If I evermade updates
tomydatamodel (whichwas often), I’d have to then rebuild
these two disparate pieces of my application separately.

X2O is, in many ways, just like every other code generator,
rapidly building objects that map to a database schema. But
it is specific to the core needs of our business. No other tool
generates code in the exact way X2O does. As our business
grew over the first couple of years, we would tailor our
software to our development workflow rather than let a

132 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

piece of software we had no control over dictate how we
worked. Building a code generator specific for database-
driven Flash applications was the one fight we wanted to
pickwithwhatwas out there. It was the problemwewanted
to solve better.

The development team at Stack Overflow also went this
route by writing their own micro-ORM. When they first
released their programming forum site, they chose LINQ-2-
SQL to handle all of their database queries. But as traffic and
their data storage grew to a large enough proportion, there
were noticeable performance leaks.

The way in which LINQ-2-SQL interprets a LINQ query,
generates amapped SQLquery, and then executes that query
was too inefficient given the amount of traffic they were
supporting and how they were using the ORM. Queries
were simply taking too long to execute on a traditionalORM.

Instead of swapping it for another off-the-shelf ORM, a
couple of their lead engineers, SamSaffron andMarcGravell,
wrote their own lightweight version called Dapper.3 Dap-
per’s execution is much faster because it does away with
muchof the overheadLINQ-2-SQL carrieswith transforming
queries into relational objects. It accepts only raw SQL as
input, circumventing some of the bottlenecks inherent to
converting one domain language like LINQ into another
like SQL.

However,what you gain in performance, you lose in robust-
ness. Unlike most traditional ORMs, Dapper doesn’t auto-
matically map queries through to an object’s relationships.

In the StackOverflow code,Dapperwas originally integrated
in spots where there are performance bottlenecks, where
losing some of the elegance of programming against a tradi-
tional ORM is worth the gain in execution speed. Now,
almost all of their newwork is done usingDapper. By rolling
their own, Saffron and Gravell uncovered where the bottle-
necks were and solved their specific problem better.

3. Sam Saffron’s piece on why they wrote Dapper: http://samsaf-
fron.com/archive/2011/03/30/How+I+learned+to+stop+worry-
ing+and+write+my+own+ORM

report erratum • discuss

The Case for Rolling Your Own • 133

Download from Wow! eBook <www.wowebook.com>

http://samsaffron.com/archive/2011/03/30/How+I+learned+to+stop+worrying+and+write+my+own+ORM
http://samsaffron.com/archive/2011/03/30/How+I+learned+to+stop+worrying+and+write+my+own+ORM
http://samsaffron.com/archive/2011/03/30/How+I+learned+to+stop+worrying+and+write+my+own+ORM
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Programmer Hubris

Building our own toolset to do the work we do is the ulti-
mate toast to our labors.What else could feelmore satisfying
to a developer than working on code that makes the future
code we have to write that much easier? Building our own
stuff is motivating.

When we’re building our own toolsets, we learn a lot about
what we value in our work. Oftentimes, these tools are the
ones that define a career. Also, it’s not just because theymight
help out other developers. They also uncover what we’re
hell-bent on improving. They cause the arguments we have
a strong opinion about to bubble to the surface.

The tools we build are also ours. They’re wrought with our
own opinions about how something should be done.No one
can tell us how we will build the tools that help us do our
work. So,whenwe’rewriting our own little tools, we dictate
what’s important. For some, it’s a nice escape from code
we’re writing for other people. This is where our pride as
developers can shine through.

And pride is where we’ll conclude our journey.

134 • Chapter 8. Code

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

CHAPTER 9

Pride
The other day, I read an op-ed piece in the New York Times
called “The Healing Power of Construction Work.”1 In it, a
carpenter fromMiddleAmerica talks about how an unusual
number of his hired construction workers were also in
trouble with the law at some point. Some of his best crafts-
menwere drug addicts and convicted felons. Even a paroled
murderer was in the mix.

He wasn’t suggesting that construction work attracted vio-
lent people. Instead, it provided some healing escape from
their otherwise troubled lives.

There is a calmness when we work with our hands and a
cerebral quality about using raw materials to build some-
thing. The carpenter’s hired hands didn’t treat construction
work as merely a job. Rather, it was an escape from reality
and a chance to do something really well.

Constructionwork has a primal reward to it: the satisfaction
of creating something that didn’t exist before. Construction
is something that anyone physically able cando, if they learn,
work hard, and care about the product. There’s success to
be gained, even for those who otherwise have not found it
in other areas of their lives.

As I read the piece, it struck me that I approach program-
ming in the same way. I am not a convicted felon nor do I
personally know any fellow programmers who happen to
be running from the law. Still, I do knowmanywho believe,

1. http://www.nytimes.com/2010/08/22/jobs/22pre.html

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.nytimes.com/2010/08/22/jobs/22pre.html
http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

whether they’d like to admit it or not, coding can be a
soothing escape from reality. Programming gives you that
same joy of building something out of nothing.

Most programmers I know don’t even care that much about
what it is they build or who they’re building it for. So long
as they are solving an interesting problem and so long as
there is an opportunity to build something elegantly, they
are content. The exercise of dissecting a problem and solving
it masterfully is the mental drug that keeps programmers
addicted.

We build and design software because, whether found near
the surface or buried deep into our souls, we actually love
doing it. The best programmers I know toil over every small,
sometimes insignificant, development decision. Like those
construction workers, it isn’t just about writing code; it’s
about writing code well.

Those who love this job aren’t in it just for the money. There
are easier ways to make money. This vocation is completely
of our own choosing.

We Have a Marketing Problem

The problem? Few others outside our relatively small tribe
realize how rewarding software development can be. Even
many among us don’t fully realize it. That’s why I cringe
when admitting I am aweb-software-application-developer-
guy. It all reeks of someone sufficiently intelligent just
settling for something. Perhaps it has a lot to do with the
nature of our work.

At our worst, we are disgruntled and unhappy, hopping
from one job to the next. Our plight is no different from it
is in any other industry. But the stigma comes because of
how we exist when we’re most passionate.

When we’re really into our work, we live inside our heads
far more than most. We stare at screens in a typing trance.
We look out the window, seemingly longingly, when in
reality we aren’t seeing anything but pseudocode running
through our heads. We aren’t smiling or talking, and we
seek no reciprocation. We simply want to be left alone, to
our own thoughts, while the world does whatever it does

136 • Chapter 9. Pride

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

aroundus. This is the passionate developerwho’s completely
escaped the world around her.

When we are least excited, we are also quiet. We aren’t
smiling, and we don’t want to talk with others. The only
difference is, we type with less vigor and look out the win-
dow noticing the world around us and wanting to get out.
When encouraged, we will in fact sigh, bang a fist, and
mutter howmuch we disagree with the work we are doing.
The disgruntled software developer looks just like the most
fulfilled one, just with a noticeable sigh.

So, we have a marketing problem. The rest of the world sees
programmers as a breed of recluse headphone geeks rather
than what we really are: passionate craftspeople and
thinkers. Why is this?

Lessons from the Cooking Industry

Take the cooking industry. Emeril Lagasse, Bobby Flay,
Mario Batali, andGordonRamsay are exuberant (sometimes
annoyingly so) chefs whose passion oozes from their pores.
Their passion reaches not just other chefs but themasses. Our
(less famous) contemporaries don’t have that same kind of
global appeal. There are no programmer celebrities whose
reach stretches beyond the engaged eyes of their fellow
programmers.

At first, you may think it’s because people generally want
to cook more than they want to program. However, I can
assure you that while I routinely salivate when a chef pre-
pares a horseradish-crusted salmon with braised greens and
smashed new potatoes, I will not be making one for myself
anytime soon. The cooking industry has found a way to sell
its craft to everyone, even if many of us will never deglaze
a pan in our lives.

Maybe it’s becausewe just like to eat. Food is visually stimu-
lating. Watching someone prepare a meal stirs our most
primal emotions. Some call it food porn. But the modern-day
buzz about food hasn’t always been like this. After all,
cooking shows have been around for decades. Most of us
have heard of Julia Child, but ever hear of Justin Wilson,
Jeff Smith, or Graham Kerr? They had their own cooking

report erratum • discuss

Chapter 9. Pride • 137

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

shows for years but lived in a far less cooking-crazed society.
They never gained the omnipresent appeal their modern-
day contemporaries have today. What shifted?

In the olden days, cooking shows felt like being in your
grandmother’s kitchen. A couple of cameras and some
pedantic talk about a quarter cup of this and a teaspoon of
that. Cooking shows were made for people who wanted
to...cook. They never stretched further beyond their audience.
Cooking was just about cooking. Today’s shows slice from
a completely different angle.

First, they emphasize the detail. There’s the close-up shot,
and then there’s the closer-up shot—the one where you can
see the marbling of a thick slab of tenderloin while double-
checking that the chef’s fingernails are clean. HD television
has helped the food industry, asmuch as any other industry,
sell its stuff. In bygone days, a steak was just a steak. Now,
it’s about the intricate marbling, flowing juices, and grill
marks. The detail is where the appeal lives.

Second, today’s showsmake cooking approachable to every-
one. Long gone are the days where TV cooking was just
about following a recipe. Today’s shows emphasize simplic-
ity. Everyone can do it. Thirty-minute meals, $5 dishes, and
having a good time with friends. Cooking is feasible and
entertaining.

Chefs play up their food like royalty. Passion lives in their
description of ingredients and flavors, even if only using
nondescript adjectives like fresh, flavorful, and zesty. Nowa-
days, chefs always taste their own food (usually at the cli-
mactic end of the show), exalting what magic it’s doing to
their taste buds in sensationalized “mmms.”

Even further, the bad stuff sells. Go to a real restaurant kitchen
on a Friday night and see the real story. Screaming, sweat,
dropped food, and a general disaster waiting to happen.
“System D” in Anthony Bourdain’s The Nasty Bits tells a far
different story from the pristine world of cooking that’s
sometimes portrayed on television, and it’s aNewYork Times
best seller.

On TV, Gordon Ramsay has made infamous the state of
affairs at many restaurants on their deathbeds. Kitchen

138 • Chapter 9. Pride

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Nightmares is the raw truth about how poorly a restaurant
can operate and still run. Watching a restaurant pull itself
out of near-certain catastrophe is, apparently, entertaining.
The cooking industry has learned how to sell their commod-
ity to the masses.

Other industry leaders have found the magic elixir as well.
They present their craft in a way that tickles our senses
enough to make someone who has no real interest in their
craft care about it.

Don’t agree? Just flip through your television on a
weeknight. Over the past few years, in theUnited States and
Europe, there have been wildly popular shows on crab
catching (Deadliest Catch), dog training (The Dog Whisperer),
children’s choirs (The Choir), dieting (The Biggest Loser),
babysitting (Supernanny), blue-collar dirty jobs (Dirty Jobs),
and raising octuplets (Jon and Kate Plus 8). These aren’t exact-
ly glamour industries.

Then, why not software development? Why can’t we be
among those who have figured out what makes their line
of business marketable? Code lets us play games, make
friends, converse with them from anywhere on this planet,
find love, buy anything,monitor the sick, organize our lives,
and do everything in between.We create thesemagical tools

report erratum • discuss

Chapter 9. Pride • 139

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

every day. We have a captivating story to tell. Just ask the
guy over there who’s not saying a thing.

I’m not suggesting Top Programmer or Coding Nightmares are
in pilot production anytime soon. But we ought to put our-
selves out there with themasses.We build the tools that run
today’s society, and every day, there are those among us
figuring out how to build them faster, cheaper, and more
beautifully than ever before. Programming is a fascinating
job. It’s up to us to show the rest of the world.

The software world is, at its best, a beautifully run kitchen.
At its worst, it’s a complete organizational nightmare. Legacy
usually means something grand and eternal in every other
context besides what it means in software. We also live in a
constantly changing medium. What we’re using today will
seem archaic five years from now. These are all viable topics
for the masses.

We need to do it in small steps. It starts with the way each
of us treats ourwork. At restaurants, goodwaiters take pride
in presenting a dish. It’s not just the chef’s dish; it’s the
waiter’s dish too. The craft of it distinguishes mere suste-
nance from exquisite cuisine. In the same sense, we ought
to take pride in ourwork. Let’s take off the headphonesmore
often and talk to as many nontechies as we can. Software
development has a great story to share.

The process of building software can be interesting and en-
tertaining. What we do is a marketable business. It’s up to
us to make it more than just about code, just as the cooking
world hasmade theirworkmore than just about ingredients.
Let’s disseminate it to others with passion.

It’s a struggle I have every day. Whenever I’m asked what
I do for a living, I shrug.

I want to say that I’m a web developer and designer—a
modern-day programmer, if you will. However, “program-
mer” just doesn’t have the ring I’m looking for. It lacks the
chutzpah of doctor, architect, or President of the United
States. “Doctor” means miracle worker, “architect” alludes
to the dreamer and master builder, and I hear being Presi-
dent has a few perks as well.

140 • Chapter 9. Pride

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

To the layperson, programmer equates to “working with
computers,” which carries about as much validity as equat-
ing a surgeon to “workingwith sharp things.” The next time
someone asks me what I do for a living, I’ll tell them I’m a
country music star. It’s just easier.

We are, in fact, sometimes doctors, architects, and rulers all
at once. Weworkmiracles with our code, dream, build, and
lay down the law. This is the book I will give them when
they ask me what I do.

report erratum • discuss

Chapter 9. Pride • 141

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

APPENDIX 1

Bibliography
[CB06] Ka Wai Cheung and Craig Bryant. Flash Application

Design Solutions: The Flash Usability Handbook. Apress,
New York City, NY, 2006.

[FH10] Jason Fried and David Heinemeier Hansson. Rework.
Crown Business, New York, NY, 2010.

[Gol05] Natalie Goldberg.Writing Down the Bones: Freeing the
Writer Within. Shambhala Publications, Boston, MA,
2005.

[HH07] Chip Heath and Dan Heath. Made to Stick: Why Some
Ideas Survive and Others Die. Random House, New
York, NY, USA, 2007.

[Her03] JackD.Herrington.CodeGeneration inAction.Manning
Publications Co., Greenwich, CT, 2003.

[Hun08] AndrewHunt.Pragmatic Thinking and Learning: Refactor
Your Wetware. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2008.

[Ker04] Joshua Kerievsky. Refactoring to Patterns. Addison-
Wesley, Reading, MA, 2004.

[Pin09] Daniel H. Pink.Drive: The Surprising Truth AboutWhat
Motivates Us. Riverhead Books, New York, NY, USA,
2009.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc/errata/add
http://forums.pragprog.com/forums/kcdc

Learn to Program
Learning to program for the first time? Here’s how to do it Ruby or Python.

For this new edition of the best-selling
Learn to Program, Chris Pine has taken
a good thing and made it even better.
First, he used the feedback from hun-
dreds of reader e-mails to update the
content and make it even clearer. Sec-
ond, he updated the examples in the
book to use the latest stable version of
Ruby, and also to use code that looks
more like real-world Ruby code, so that
people who have just learned to program
will be more familiar with common Ruby
techniques.

Chris Pine
(240 pages) ISBN: 9781934356364.
$24.95
http://pragprog.com/titles/ltp2

Welcome to computer science in the 21st
century. Did you ever wonder how com-
puters represent DNA? How they can
download a web page containing popula-
tion data and analyze it to spot trends?
Or how they can change the colors in a
color photograph? If so, this book is for
you. By the time you’re done, you’ll
know how to do all of that and a lot
more. And Python makes it easy and
fun.

Jennifer Campbell, Paul Gries, Jason
Montojo, Greg Wilson
(350 pages) ISBN: 9781934356272.
$32.95
http://pragprog.com/titles/gwpy

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ltp2
http://pragprog.com/titles/gwpy

Think Better
Want to concentrate more effectively, and learn how to take advantage of your
brain’s wiring? We’ve got you covered.

Do you ever look at the clock and won-
der where the day went? You spent all
this time at work and didn’t come close
to getting everything done. Tomorrow,
try something new. Use the Pomodoro
Technique, originally developed by
Francesco Cirillo, to work in focused
sprints throughout the day. In Pomodoro
Technique Illustrated, Staffan Nöteberg
shows you how to organize your work to
accomplish more in less time. There’s
no need for expensive software or fancy
planners. You can get started with
nothing more than a piece of paper, a
pencil, and a kitchen timer.

Staffan Nöteberg
(144 pages) ISBN: 9781934356500.
$24.95
http://pragprog.com/titles/snfocus

Software development happens in your
head. Not in an editor, IDE, or design
tool. You’re well educated on how to
work with software and hardware, but
what about wetware—our own brains?
Learning new skills and new technology
is critical to your career, and it’s all in
your head.

In this book by Andy Hunt, you’ll learn
how our brains are wired, and how to
take advantage of your brain’s architec-
ture. You’ll learn new tricks and tips to
learn more, faster, and retain more of
what you learn.

You need a pragmatic approach to
thinking and learning. You need to
Refactor Your Wetware.

Andy Hunt
(288 pages) ISBN: 9781934356050.
$34.95
http://pragprog.com/titles/ahptl

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/snfocus
http://pragprog.com/titles/ahptl

Feel the Power
The command line remains the ultimate power tool for developers, and now your
Ruby apps can take full advantage of this environment. And while we’re tweaking
environments, how about starting with your Mac?

Speak directly to your system. With its
simple commands, flags, and parame-
ters, a well-formed command-line appli-
cation is the quickest way to automate
a backup, a build, or a deployment and
simplify your life.

David Bryant Copeland
(200 pages) ISBN: 9781934356913. $33
http://pragprog.com/titles/dccar

Exploit secret settings and hidden apps,
push built-in tools to the limit, radically
personalize your Mac experience and
tweak your system so it’s just right for
you. Every one of these 300 quick and
easy tips, tricks, hints and hacks in Mac
Kung Fu makes “it just works” even bet-
ter. Become the ultimate Mac user,
working faster, smarter, and simply have
lots more fun with your Apple computer.

Keir Thomas
(320 pages) ISBN: 9781934356821. $35
http://pragprog.com/titles/ktmack

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/dccar
http://pragprog.com/titles/ktmack

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

The best agile book isn’t a book: Agile in
a Flash is a unique deck of index cards
that fit neatly in your pocket. You can
tape them to the wall. Spread them out
on your project table. Get stains on them
over lunch. These cards are meant to be
used, not just read.

Jeff Langr and Tim Ottinger
(110 pages) ISBN: 9781934356715. $15
http://pragprog.com/titles/olag

Here are three simple truths about soft-
ware development:

1. You can’t gather all the requirements
up front. 2. The requirements you do
gather will change. 3. There is always
more to do than time and money will al-
low.

Those are the facts of life. But you can
deal with those facts (and more) by be-
coming a fierce software-delivery profes-
sional, capable of dispatching the most
dire of software projects and the tough-
est delivery schedules with ease and
grace.

Jonathan Rasmusson
(280 pages) ISBN: 9781934356586.
$34.95
http://pragprog.com/titles/jtrap

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

Career++
Ready to kick your career up to the next level? Start by growing a significant
online presence, and then reinvigorate your job itself.

Technical Blogging is the first book to
specifically teach programmers, techni-
cal people, and technically-oriented en-
trepreneurs how to become successful
bloggers. There is no magic to successful
blogging; with this book you’ll learn the
techniques to attract and keep a large
audience of loyal, regular readers and
leverage this popularity to achieve your
goals.

Antonio Cangiano
(304 pages) ISBN: 9781934356883. $33
http://pragprog.com/titles/actb

This book is about creating a remarkable
career in software development. In most
cases, remarkable careers don’t come
by chance. They require thought, inten-
tion, action, and a willingness to change
course when you’ve made mistakes.
Most of us have been stumbling around
letting our careers take us where they
may. It’s time to take control. This re-
vised and updated second edition lays
out a strategy for planning and creating
a radically successful life in software
development.

Chad Fowler
(232 pages) ISBN: 9781934356340.
$23.95
http://pragprog.com/titles/cfcar2

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/actb
http://pragprog.com/titles/cfcar2

Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards
and rave reviews.As development getsmore andmore difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/kcdc
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/kcdc

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/kcdc
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/kcdc
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	1. Introduction
	Who Is the 21st-Century Programmer?
	Discovering the Lessons Firsthand
	This Book Is About Us

	2. Metaphor
	Essay 1. Follow Metaphors with Care
	Essay 2. Plan Enough, Then Build
	Essay 3. Launch Is Just the First Release
	Essay 4. The “Ivory Tower” Architect Is a Myth
	Essay 5. Throw Away Your Old Code
	Essay 6. Diversification Over Specialization
	Essay 7. Metaphors Hide Better Ways of Working

	3. Motivation
	Essay 8. The Perks Are in the Work
	Essay 9. Begin Where You Love to Begin
	Essay 10. Be Imperfect
	Essay 11. Stop Programming
	Essay 12. Test Your Work First Thing in the Morning
	Essay 13. Work Outside the Bedroom
	Essay 14. First Impressions Are Just That
	Essay 15. The Emotional Value of Launch
	Essay 16. Find an Argument

	4. Productivity
	Essay 17. Just Say “No” to the Pet Project
	Essay 18. Constrain All of Your Parameters
	Essay 19. Cut the Detail Out of the Timeline
	Essay 20. Improve Your Product in Two Ways Daily
	Essay 21. Invest in a Good Work Environment
	Essay 22. Keep a Personal To-Do List
	Essay 23. Create “Off-Time” with Your Team
	Essay 24. Work in Small, Autonomous Teams
	Essay 25. Eliminate the “We” in Productivity

	5. Complexity
	Essay 26. Sniff Out Bad Complexity
	Essay 27. The Simplicity Paradox
	Essay 28. Complexity as a Game of Pickup Sticks
	Essay 29. Keep Complexity Under the Surface
	Essay 30. “Hard to Code” Might Mean “Hard to Use”
	Essay 31. Know When to Refactor
	Essay 32. Develop a Programming Cadence

	6. Teaching
	Essay 33. Teaching Is Unlike Coding
	Essay 34. Beware the “Curse of Knowledge”
	Essay 35. Teach with Obvious Examples
	Essay 36. Lie to Simplify
	Essay 37. Encourage Autonomous Thought

	7. Clients
	Essay 38. The Tough Client Is Ubiquitous
	Essay 39. Demystify the Black Magic of Software
	Essay 40. Define the Goals of Your Application
	Essay 41. Be Enthusiastic and Opinionated
	Essay 42. Be Forgiving and Personable
	Essay 43. Value Is Much More Than Time
	Essay 44. Respect Your Project Manager

	8. Code
	Essay 45. Write Code As a Last Resort
	Essay 46. A Plug-in Happy Culture
	Essay 47. Code Is the Ultimate Junior Developer
	Essay 48. Separate Robot Work from Human Work
	Essay 49. Generating Code at Its Core
	Essay 50. The Case for Rolling Your Own

	9. Pride
	We Have a Marketing Problem
	Lessons from the Cooking Industry

	A1. Bibliography

