
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

Detailed installation instructions

Easy-to-understand diagrams

Practical code examples

WHAT’S INSIDE?

PA
N

TO
N

E
 2955 C

PA
N

TO
N

E
 O

range 021 C

C
M

Y
K

 100, 45, 0, 37
C

M
Y

K
 O

, 53, 100, 0

B
lack 100%

B
lack 50%

C
M

Y
K

:

Pan
to

n
e:

G
rey scale

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

ISBN: 978-0-9805768-1-8

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

LEARNING PHP & MYSQL HAS NEVER BEEN SO EASY!

Kevin Yank is a world-renowned leader in web development. When not

writing best sellers, Kevin is the Technical Director of sitepoint.com and editor

of the popular SitePoint Tech Times newsletter. Kevin has also co-authored

Simply JavaScript and Everything You Know About CSS Is Wrong!

ABOUT KEVIN YANK

BUILD YOUR OWN

DATABASE
DRIVEN WEB SITE

USING PHP & MYSQL

TEACH YOURSELF PHP & MYSQL
THE EASY WAY ...

Build Your Own Database Driven Web Site Using PHP & MySQL
is a practical hands-on guide to learning all the tools, principles,
and techniques needed to build a fully functional database driven
web site using PHP & MySQL. This book covers everything from
installing PHP and MySQL on Windows, Linux, and Mac computers
through to building a live, web-based content management system.

You’ll learn how to:
�� Install PHP 5 & MySQL 5 on Windows, Linux, or Mac OS X
�� Gain a thorough understanding of PHP syntax
�� Master database design principles and SQL
�� Build a working content management system
�� Add, edit, and delete web content without using HTML
�� Build an ecommerce shopping cart
�� Utilize sessions and cookies to track site visitors
�� Craft SEO-friendly and memorable URLs

And a whole lot more ...

BY KEVIN YANK
4TH EDITION

P
H

P
 &

 M
Y

S
Q

L

YANK

B
U

ILD
 YO

U
R

 O
W

N
DATABASE DRIVEN W

EB SITE
U

SIN
G

 PH
P &

 M
YSQ

LUSD $39.95

WEB PROGRAMMING

CAD $49.95

phpmysql4.indd 1 5/28/2009 5:51:24 PM

Thank-you for Downloading This Book
You Too Can Easily Create Impressive Database Driven Web Sites Using PHP and

MySQL!

Thank-you for downloading the sample chapters of Build Your Own Database

Driven Web Site Using PHP and MySQL (4th Edition), by Kevin Yank, published

by SitePoint.

Build Your Own Database Driven Web Site Using PHP & MySQL (4th Edition) is a

practical, hands-on guide to learning all the tools, principles, and techniques needed

to build a fully functional database driven web site using PHP and MySQL. This

book covers everything from installing PHP and MySQL on Windows, Linux, and

Mac computers, through to building a live, web-based content management system.

This excerpt includes:

■ a summary of contents
■ information about the author, editors, and SitePoint
■ the Table of Contents
■ the Preface
■ the first 4 chapters of the book
■ the Index

If you enjoy these first 4 chapters, and you’re ready to start building your own

database driven web sites, you can order yourself a copy now!

For more information, visit http://www.sitepoint.com/launch/3eb28e.

What’s in This Excerpt?
Preface

Chapter 1: Installation

Making sure that you have the right tools for the job

Chapter 2: Introducing MySQL

An introduction to databases in general, and the MySQL relational database

management system in particular

Chapter 3: Introducing PHP

Here’s where the fun really starts, an introduction to the PHP scripting language

Chapter 4: Publishing MySQL Data on the Web

Create some of your first database driven web pages

Index

What’s in the Rest of the Book?
Chapter 5: Relational Database Design

Learn the essential principles of good database design

Chapter 6: Structured PHP Programming

Learn simple techniques to keep your code manageable and maintainable

Chapter 7: A Content Management System

The climax of the book: construct a basic content management system

Chapter 8: Content Formatting with Regular Expressions

Some neat tweaks you can make to the page that displays the contents of your

database

Chapter 9: Cookies, Sessions, and Access Control

Explore how cookies and sessions work in PHP and use them to build a web

site access control system

Chapter 10: MySQL Administration

Learn how to make backups of, manage access to, and repair your MySQL

database

Chapter 11: Advanced SQL Queries

Covers some of the more advanced features of this language to help you juggle

complex data like a pro

Chapter 12: Binary Data

Learn the ins and outs of file upload and storage, and working with binary data

in MySQL

x

BUILD YOUR OWN
DATABASE DRIVEN WEB
SITEUSINGPHP&MYSQL

BY KEVIN YANK
4TH EDITION

Build Your Own Database Driven Web Site Using PHP & MySQL
by Kevin Yank

Copyright © 2009 SitePoint Pty. Ltd.

Editor: Kelly SteeleManaging Editor: Chris Wyness

Cover Design: Alex WalkerTechnical Editor: Andrew Tetlaw

Indexer: Russell Brooks

Latest Update: July 2009Printing History:

1st Ed. Aug. 2001, 2nd Ed. Feb. 2003,

3rd Ed. Oct. 2004

Fourth Edition: July 2009

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-1-8

Printed and bound in the United States of America

iv

About the Author

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for the book you are reading right now, he also co-authored

Simply JavaScript (http://www.sitepoint.com/books/javascript1/) with Cameron Adams and

Everything You Know About CSS Is Wrong! (http://www.sitepoint.com/books/csswrong1/)

with Rachel Andrew. In addition, Kevin hosts the SitePoint Podcast

(http://www.sitepoint.com/podcast/) and writes the SitePoint Tech Times, a free email

newsletter that goes out to over 240,000 subscribers worldwide.

Kevin lives in Melbourne, Australia and enjoys speaking at conferences, as well as visiting

friends and family in Canada. He’s also passionate about performing improvised comedy

theater with Impro Melbourne (http://www.impromelbourne.com.au/) and flying light aircraft.

Kevin’s personal blog is Yes, I’m Canadian (http://yesimcanadian.com/).

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. At SitePoint

he is dedicated to making the world a better place through the technical editing of SitePoint

books, kits, articles, and newsletters. He is also a busy father of five, enjoys coffee, and often

neglects his blog at http://tetlaw.id.au/.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

v

http://www.sitepoint.com/

To my parents, Cheryl and

Richard, for making all this

possible.

Table of Contents

Preface . xix

Who Should Read This Book . xx

What’s in This Book . xxi

Where to Find Help . xxiv

The SitePoint Forums . xxiv

The Book’s Web Site . xxiv

The SitePoint Newsletters . xxv

Your Feedback . xxv

Conventions Used in This Book . xxvi

Code Samples . xxvi

Tips, Notes, and Warnings . xxvii

Chapter 1 Installation . 1

Your Own Web Server . 2

Windows Installation . 3

All-in-one Installation . 3

Installing Individual Packages . 9

Mac OS X Installation . 20

All-in-one Installation . 20

Installing Individual Packages . 24

Linux Installation . 32

Installing MySQL . 33

Installing PHP . 37

Post-Installation Set-up Tasks . 44

What to Ask Your Web Host . 47

Your First PHP Script . 48

Full Toolbox, Dirty Hands . 52

Chapter 2 Introducing MySQL . 53

An Introduction to Databases . 53

Logging On to MySQL . 55

Structured Query Language . 60

Creating a Database . 61

Creating a Table . 61

Inserting Data into a Table . 64

Viewing Stored Data . 66

Modifying Stored Data . 69

Deleting Stored Data . 70

Let PHP Do the Typing . 70

Chapter 3 Introducing PHP . 73

Basic Syntax and Statements . 75

Variables, Operators, and Comments . 78

Arrays . 79

User Interaction and Forms . 81

Control Structures . 94

Hiding the Seams . 104

Avoid Advertising Your Technology Choices 104

Use PHP Templates . 106

Many Templates, One Controller . 109

Bring On the Database . 113

Chapter 4 Publishing MySQL Data on the
Web . 115

The Big Picture . 115

Connecting to MySQL with PHP . 117

Sending SQL Queries with PHP . 123

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

x

http://www.sitepoint.com/launch/3eb28e

Handling SELECT Result Sets . 126

Inserting Data into the Database . 132

Deleting Data from the Database . 142

Mission Accomplished . 149

Chapter 5 Relational Database Design 151

Giving Credit Where Credit is Due . 152

Rule of Thumb: Keep Entities Separate . 153

SELECT with Multiple Tables . 158

Simple Relationships . 163

Many-to-Many Relationships . 166

One for Many, and Many for One . 169

Chapter 6 Structured PHP Programming 171

Include Files . 172

Including HTML Content . 172

Including PHP Code . 174

Types of Includes . 180

Shared Include Files . 181

Custom Functions and Function Libraries . 184

Variable Scope and Global Access . 187

Structure in Practice: Template Helpers . 191

The Best Way . 195

Chapter 7 A Content Management System 197

The Front Page . 198

Managing Authors . 202

Deleting Authors . 204

Adding and Editing Authors . 207

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xi

http://www.sitepoint.com/launch/3eb28e

Managing Categories . 212

Managing Jokes . 218

Searching for Jokes . 218

Adding and Editing Jokes . 225

Deleting Jokes . 237

Summary . 238

Chapter 8 Content Formatting with Regular
Expressions . 241

Regular Expressions . 242

String Replacement with Regular Expressions . 247

Boldface and Italic Text . 248

Paragraphs . 249

Hyperlinks . 252

Matching Tags . 255

Putting It All Together . 257

Real World Content Submission . 260

Chapter 9 Cookies, Sessions, and Access
Control . 261

Cookies . 261

PHP Sessions . 267

A Simple Shopping Cart . 269

Access Control . 279

Database Design . 279

Controller Code . 283

Function Library . 290

Managing Passwords and Roles . 300

A Challenge: Joke Moderation . 309

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xii

http://www.sitepoint.com/launch/3eb28e

The Sky’s the Limit . 311

Chapter 10 MySQL Administration 313

phpMyAdmin . 314

Backing Up MySQL Databases . 319

Database Backups Using mysqldump . 319

Incremental Backups Using Binary Logs . 321

MySQL Access Control . 324

Granting Privileges . 324

Revoking Privileges . 328

Access Control Tips . 329

Locked Out? . 331

Checking and Repairing MySQL Data Files . 332

Better Safe than Sorry . 336

Chapter 11 Advanced SQL Queries 337

Sorting SELECT Query Results . 337

Setting LIMITs . 340

LOCKing TABLES . 341

Column and Table Name Aliases . 344

GROUPing SELECT Results . 347

LEFT JOINs . 349

Limiting Results with HAVING . 353

Further Reading . 354

Chapter 12 Binary Data . 357

Semi-dynamic Pages . 358

Handling File Uploads . 364

Assigning Unique Filenames . 367

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xiii

http://www.sitepoint.com/launch/3eb28e

Recording Uploaded Files in the Database . 369

Binary Column Types . 370

Storing Files . 372

Viewing Stored Files . 374

Putting It All Together . 379

Large File Considerations . 386

MySQL Packet Size . 386

PHP Script Timeout . 386

The End . 387

Appendix A MySQL Syntax Reference 389

SQL Statements Implemented in MySQL . 389

ALTER TABLE . 389

ANALYZE TABLE . 392

CREATE DATABASE . 393

CREATE INDEX . 393

CREATE TABLE . 393

DELETE . 395

DESCRIBE/DESC . 396

DROP DATABASE . 397

DROP INDEX . 397

DROP TABLE . 397

EXPLAIN . 397

GRANT . 398

INSERT . 398

LOAD DATA INFILE . 400

LOCK/UNLOCK TABLES . 400

OPTIMIZE TABLE . 401

RENAME TABLE . 402

REPLACE . 402

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xiv

http://www.sitepoint.com/launch/3eb28e

REVOKE . 403

SELECT . 403

SET . 410

SHOW . 411

TRUNCATE . 412

UNLOCK TABLES . 412

UPDATE . 413

USE . 414

Appendix B MySQL Functions . 415

Control Flow Functions . 415

Mathematical Functions . 416

String Functions . 419

Date and Time Functions . 423

Miscellaneous Functions . 430

Functions for Use with GROUP BY Clauses . 433

Appendix C MySQL Column Types 435

Numerical Types . 436

Character Types . 440

Date/Time Types . 445

Appendix D PHP Functions for Working with
MySQL . 449

Common PHP mysqli_* Functions . 449

mysqli_affected_rows . 449

mysqli_character_set_name . 449

mysqli_close . 450

mysqli_connect . 450

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xv

http://www.sitepoint.com/launch/3eb28e

mysqli_connect_errno . 451

mysqli_connect_error . 451

mysqli_data_seek . 451

mysqli_errno . 452

mysqli_error . 452

mysqli_fetch_all . 452

mysqli_fetch_array . 453

mysqli_fetch_assoc . 453

mysqli_fetch_field . 453

mysqli_fetch_field_direct . 454

mysqli_fetch_fields . 454

mysqli_fetch_lengths . 455

mysqli_fetch_object . 455

mysqli_fetch_row . 455

mysqli_field_count . 455

mysqli_field_seek . 456

mysqli_field_tell . 456

mysqli_free_result . 456

mysqli_get_client_info . 456

mysqli_get_client_version . 456

mysqli_get_host_info . 457

mysqli_get_proto_info . 457

mysqli_get_server_info . 457

mysqli_get_server_version . 457

mysqli_info . 457

mysqli_insert_id . 458

mysqli_num_fields . 458

mysqli_num_rows . 458

mysqli_ping . 458

mysqli_query . 458

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xvi

http://www.sitepoint.com/launch/3eb28e

mysqli_real_escape_string . 459

mysqli_real_query . 459

mysqli_select_db . 460

mysqli_set_charset . 460

mysqli_stat . 460

mysqli_store_result . 460

mysqli_thread_id . 461

mysqli_use_result . 461

Index . 463

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xvii

http://www.sitepoint.com/launch/3eb28e

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

http://www.sitepoint.com/launch/3eb28e

Preface
PHP and MySQL have changed.

Back in 2001, when I wrote the first edition of this book, readers were astonished

to discover that you could create a site full of web pages without having to write a

separate HTML file for each page. PHP stood out from the crowd of programming

languages, mainly because it was easy enough for almost anyone to learn and free

to download and install. The MySQL database, likewise, provided a simple and

free solution to a problem that, up until that point, had been solvable only by expert

programmers with corporate budgets.

Back then, PHP and MySQL were special—heck, they were downright miraculous!

But over the years, they have gained plenty of fast-moving competition. In an age

when anyone with a free WordPress1 account can set up a full-featured blog in 30

seconds flat, it’s no longer enough for a programming language like PHP to be easy

to learn; nor is it enough for a database like MySQL to be free.

Indeed, as you sit down to read this book, you probably have ambitions that extend

beyond what you can throw together using the free point-and-click tools of the Web.

You might even be thinking of building an exciting, new point-and-click tool of

your own. WordPress, after all, is built using PHP and MySQL, so why limit your

vision to anything less?

To keep up with the competition, and with the needs of more demanding projects,

PHP and MySQL have had to evolve. PHP is now a far more intricate and powerful

language than it was back in 2001, and MySQL is a vastly more complex and capable

database. Learning PHP and MySQL today opens up a lot of doors that would have

remained closed to the PHP and MySQL experts of 2001.

That’s the good news. The bad news is that, in the same way that a butter knife is

easier to figure out than a Swiss Army knife (and less likely to cause self-injury!),

all these dazzling new features and improvements have indisputably made PHP

and MySQL more difficult for beginners to learn.

1 http://wordpress.com/

http://wordpress.com/

Worse yet, PHP has completely abandoned several of the beginner-friendly features

that gave it a competitive advantage in 2001, because they turned out to be oversim-

plifications, or could lead inexperienced programmers into building web sites with

gaping security holes. This is a problem if you’re the author of a beginner’s book

about PHP and MySQL.

PHP and MySQL have changed, and those changes have made writing this book a

lot more difficult. But they have also made this book a lot more important. The more

twisty the path, the more valuable the map, right?

In this book, I’ll provide you with a hands-on look at what’s involved in building

a database driven web site using PHP and MySQL. If your web host provides PHP

and MySQL support, you’re in great shape. If not, I’ll show you how to install them

on Windows, Mac OS X, and Linux computers, so don’t sweat it.

This book is your map to the twisty path that every beginner must navigate to learn

PHP and MySQL today. Grab your favorite walking stick; let’s go hiking!

Who Should Read This Book
This book is aimed at intermediate and advanced web designers looking to make

the leap into server-side programming. You’ll be expected to be comfortable with

simple HTML, as I’ll make use of it without much in the way of explanation. No

knowledge of Cascading Style Sheets (CSS) or JavaScript is assumed or required,

but if you do know JavaScript, you’ll find it will make learning PHP a breeze, since

these languages are quite similar.

By the end of this book, you can expect to have a grasp of what’s involved in

building a database driven web site. If you follow the examples, you’ll also learn

the basics of PHP (a server-side scripting language that gives you easy access to a

database, and a lot more) and Structured Query Language (SQL—the standard

language for interacting with relational databases) as supported by MySQL, the most

popular free database engine available today. Most importantly, you’ll come away

with everything you need to start on your very own database driven site!

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xx

http://www.sitepoint.com/launch/3eb28e

What’s in This Book
This book comprises the following 12 chapters. Read them in order from beginning

to end to gain a complete understanding of the subject, or skip around if you only

need a refresher on a particular topic.

Chapter 1: Installation

Before you can start building your database driven web site, you must first ensure

that you have the right tools for the job. In this first chapter, I’ll tell you where

to obtain the two essential components you’ll need: the PHP scripting language

and the MySQL database management system. I’ll step you through the setup

procedures on Windows, Linux, and Mac OS X, and show you how to test that

PHP is operational on your web server.

Chapter 2: Introducing MySQL

Although I’m sure you’ll be anxious to start building dynamic web pages, I’ll

begin with an introduction to databases in general, and the MySQL relational

database management system in particular. If you have never worked with a

relational database before, this should definitely be an enlightening chapter that

will whet your appetite for what’s to come! In the process, you’ll build up a

simple database to be used in later chapters.

Chapter 3: Introducing PHP

Here’s where the fun really starts. In this chapter, I’ll introduce you to the PHP

scripting language, which you can use to build dynamic web pages that present

up-to-the-moment information to your visitors. Readers with previous program-

ming experience will probably only need a quick skim of this chapter, as I ex-

plain the essentials of the language from the ground up. This is a must-read

chapter for beginners, however, as the rest of this book relies heavily on the

basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web

In this chapter you’ll bring together PHP and MySQL, which you’ll have seen

separately in the previous chapters, to create some of your first database driven

web pages. You’ll explore the basic techniques of using PHP to retrieve inform-

ation from a database and display it on the Web in real time. I’ll also show you

how to use PHP to create web-based forms for adding new entries to, and

modifying existing information in, a MySQL database on the fly.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xxi

http://www.sitepoint.com/launch/3eb28e

Chapter 5: Relational Database Design

Although you’ll have worked with a very simple sample database in the previous

chapters, most database driven web sites require the storage of more complex

forms of data than you’ll have dealt with to this point. Far too many database

driven web site designs are abandoned midstream or are forced to start again

from the beginning, because of mistakes made early on during the design of the

database structure. In this critical chapter you’ll learn the essential principles

of good database design, emphasizing the importance of data normalization. If

you’re unsure what that means, then this is definitely an important chapter for

you to read!

Chapter 6: Structured PHP Programming

Techniques to better structure your code are useful in all but the simplest of

PHP projects. The PHP language offers many facilities to help you do this, and

in this chapter, I’ll cover some of the simple techniques that exist to keep your

code manageable and maintainable. You’ll learn to use include files to avoid

having to write the same code more than once when it’s needed by many pages

of your site, and I’ll show you how to write your own functions to extend the

built-in capabilities of PHP and to streamline the code that appears within your

scripts.

Chapter 7: A Content Management System

In many ways the climax of the book, this chapter is the big payoff for all you

frustrated site builders who are tired of updating hundreds of pages whenever

you need to make a change to a site’s design. I’ll walk you through the code for

a basic content management system that allows you to manage a database of

jokes, their categories, and their authors. A system like this can be used to

manage simple content on your web site; just a few modifications, and you’ll

have a site administration system that will have your content providers submit-

ting content for publication on your site in no time—all without having to know

a shred of HTML!

Chapter 8: Content Formatting with Regular Expressions

Just because you’re implementing a nice, easy tool to allow site administrators

to add content to your site without their knowing HTML, that content can still

be jazzed up, instead of settling for just plain, unformatted text. In this chapter,

I’ll show you some neat tweaks you can make to the page that displays the

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xxii

http://www.sitepoint.com/launch/3eb28e

contents of your database—tweaks that allow it to incorporate simple formatting

such as bold or italicized text, among other options.

Chapter 9: Cookies, Sessions, and Access Control

What are sessions, and how are they related to cookies, a long-suffering techno-

logy for preserving stored data on the Web? What makes persistent data so im-

portant in current ecommerce systems and other web applications? This chapter

answers all those questions by explaining how PHP supports both cookies and

sessions, and explores the link between the two. You’ll then put these pieces

together to build a simple shopping cart system, as well as an access control

system for your web site.

Chapter 10: MySQL Administration

While MySQL is a good, simple database solution for those without the need

for many frills, it does have some complexities of its own that you’ll need to

understand if you’re going to rely on a MySQL database to store your content.

In this section, I’ll teach you how to perform backups of, and manage access to,

your MySQL database. In addition to a couple of inside tricks (like what to do

if you forget your MySQL password), I’ll explain how to repair a MySQL database

that has become damaged in a server crash.

Chapter 11: Advanced SQL Queries

In Chapter 5 we saw what was involved in modeling complex relationships

between pieces of information in a relational database like MySQL. Although

the theory was quite sound, putting these concepts into practice requires that

you learn a few more tricks of Structured Query Language. In this chapter, I’ll

cover some of the more advanced features of this language to help you juggle

complex data like a pro.

Chapter 12: Binary Data

Some of the most interesting applications of database driven web design include

some juggling of binary files. Online file storage services are prime examples,

but even a system as simple as a personal photo gallery can benefit from storing

binary files (that is, pictures) in a database for retrieval and management on the

fly. In this chapter, I’ll demonstrate how to speed up your web site by creating

static copies of dynamic pages at regular intervals—using PHP, of course! With

these basic file-juggling skills in hand, you’ll go on to develop a simple online

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xxiii

http://www.sitepoint.com/launch/3eb28e

file storage and viewing system, and learn the ins and outs of working with

binary data in MySQL.

Where to Find Help
PHP and MySQL are moving targets, so chances are good that, by the time you read

this, some minor detail or other of these technologies has changed from what’s de-

scribed in this book. Thankfully, SitePoint has a thriving community of PHP de-

velopers ready and waiting to help you out if you run into trouble, and we also

maintain a list of known errata for this book you can consult for the latest updates.

The SitePoint Forums
The SitePoint Forums2 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions, too.

That’s how a discussion forum site works—some people ask, some people answer

and most people do a bit of both. Sharing your knowledge benefits others and

strengthens the community. A lot of fun and experienced web designers and de-

velopers hang out there. It’s a good way to learn new stuff, have questions answered

in a hurry, and just have fun.

The SitePoint Forums include separate forums for PHP and MySQL, as well as a

separate forum covering advanced PHP Application Design:

■ PHP: http://www.sitepoint.com/forums/forumdisplay.php?f=34
■ PHP Application Design:

http://www.sitepoint.com/forums/forumdisplay.php?f=147
■ MySQL: http://www.sitepoint.com/forums/forumdisplay.php?f=182

The Book’s Web Site
Located at http://www.sitepoint.com/books/phpmysql1/, the web site that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

2 http://www.sitepoint.com/forums/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xxiv

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.3

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site will always have the latest information about known typographical and code

errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name a

few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

3 http://www.sitepoint.com/books/phpmysql1/code.php

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xxv

http://www.sitepoint.com/books/phpmysql1/code.php
http://www.sitepoint.com/launch/3eb28e

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

xxvi

http://www.sitepoint.com/launch/3eb28e

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

xxvii

http://www.sitepoint.com/launch/3eb28e

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

http://www.sitepoint.com/launch/3eb28e

Chapter1
Installation
In this book, I’ll guide you as you take your first steps beyond the static world of

building web pages with pure HTML. Together, we’ll explore the world of database

driven web sites and discover the dizzying array of dynamic tools, concepts, and

possibilities that they open up. Whatever you do, don’t look down!

Okay, maybe you should look down. After all, that’s where the rest of this book is.

But remember, you were warned!

Before you build your first dynamic web site, you must gather together the tools

you’ll need for the job. In this chapter, I’ll show you how to download and set up

the two software packages you’ll need. Can you guess what they are? I’ll give you

a hint: their names feature prominently on the cover of this book! They are, of course,

PHP and MySQL.

If you’re used to building web sites with HTML, CSS, and perhaps even a smattering

of JavaScript, you’re probably used to uploading to another location the files that

make up your site. Maybe this is a web hosting service that you’ve paid for; maybe

it’s a free service provided by your Internet Service Provider (ISP); or maybe it’s a

web server set up by the IT department of the company that you work for. In any

case, once you copy your files to their destination, a software program called a web

server is able to find and serve up copies of those files whenever they are requested

by a web browser like Internet Explorer or Firefox. Common web server software

programs you may have heard of include Apache and Internet Information Services

(IIS).

PHP is a server-side scripting language. You can think of it as a plugin for your

web server that enables it to do more than just send exact copies of the files that

web browsers ask for. With PHP installed, your web server will be able to run little

programs (called PHP scripts) that can do tasks like retrieve up-to-the-minute in-

formation from a database and use it to generate a web page on the fly before sending

it to the browser that requested it. Much of this book will focus on writing PHP

scripts to do exactly that. PHP is completely free to download and use.

For your PHP scripts to retrieve information from a database, you must first have a

database. That’s where MySQL comes in. MySQL is a relational database manage-

ment system, or RDBMS. We’ll discuss the exact role it plays and how it works

later, but briefly it’s a software program that’s able to organize and manage many

pieces of information efficiently while keeping track of how all of those pieces of

information are related to each other. MySQL also makes that information really

easy to access with server-side scripting languages like PHP. MySQL, like PHP, is

completely free for most uses.

The goal of this first chapter is to set you up with a web server equipped with PHP

and MySQL. I’ll provide step-by-step instructions that work on recent Windows,

Mac OS X, and Linux computers, so no matter what flavor of computer you’re using,

the instructions you need should be right here.

Your Own Web Server
If you’re lucky, your current web host’s web server already has PHP and MySQL

installed. Most do—that’s one of the reasons why PHP and MySQL are so popular.

If your web host is so equipped, the good news is that you’ll be able to publish your

first database driven web site without having to shop for a web host that supports

the right technologies.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL2

http://www.sitepoint.com/launch/3eb28e

The bad news is that you’re still going to need to install PHP and MySQL yourself.

That’s because you need your own PHP-and-MySQL-equipped web server to test

your database driven web site on before you publish it for all the world to see.

When developing static web sites, you can often load your HTML files directly from

your hard disk into your browser to see how they look. There’s no web server soft-

ware involved when you do this, which is fine, because web browsers can understand

HTML code all by themselves.

When it comes to dynamic web sites built using PHP and MySQL, however, your

web browser needs some help! Web browsers are unable to understand PHP scripts;

rather, PHP scripts contain instructions for a PHP-savvy web server to execute in

order to generate the HTML code that browsers can understand. So in addition to

the web server that will host your site publicly, you also need your own private

web server to use in the development of your site.

If you work for a company that has an especially helpful IT department, you may

find that there’s already a development web server provided for you. The typical

setup is that you must work on your site’s files on a network drive that’s hosted by

an internal web server that can be safely used for development. When you’re ready

to deploy the site to the public, your files are copied from that network drive to the

public web server.

If you’re lucky enough to work in this kind of environment, you can skip most of

this chapter. However, you’ll want to ask the IT boffins responsible for the develop-

ment server the same questions I’ve covered in the section called “What to Ask Your

Web Host”. That’s because you’ll need to have that critical information handy when

you start using the PHP and MySQL support they’ve so helpfully provided.

Windows Installation
In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Windows XP, Windows Vista, or Windows 7 computer. If you’re using

an operating system other than Windows, you can safely skip this section.

All-in-one Installation
I normally recommend that you install and set up your web server, PHP, and MySQL

individually, using the official installation packages for each. This is especially

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

3Installation

http://www.sitepoint.com/launch/3eb28e

useful for beginners, because it gives you a strong sense of how these pieces all fit

together. If you’re in a rush, however, or if you need to set up a temporary develop-

ment environment to use just for a day or two, the following quick-and-dirty solution

may be preferable.

You can skip ahead to the section called “Installing Individual Packages” if you

want to take the time to install each piece of the puzzle separately.

WampServer (where Wamp stands for Windows, Apache, MySQL, and PHP) is a

free, all-in-one program that includes built-in copies of recent versions of the Apache

web server, PHP, and MySQL. Let me take you through the process of installing it:

1. Download the latest version from the WampServer web site.1 After downloading

the file (as of this writing, WampServer 2.0g is about 16MB in size), double-

click it to launch the installer, as shown in Figure 1.1.

Figure 1.1. The WampServer installer

2. The installer will prompt you for a location to install WampServer. The default

of c:\wamp shown in Figure 1.2 is an ideal choice for most purposes, but if you

have strong feelings about where it’s installed, feel free to specify your preferred

location.

1 http://www.wampserver.com/en/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL4

http://www.wampserver.com/en/
http://www.sitepoint.com/launch/3eb28e

Figure 1.2. The default installation directory is a good choice

3. At the end of the installation, WampServer will ask you to choose your default

browser. This is the web browser it will launch when you use the included

system tray icon tool to launch your browser. If you have Firefox installed it

will ask if you’d like to use it as your default browser. If you answer No, or have

a different browser installed, it will ask you to select the executable file for the

browser you want to use. As shown in Figure 1.3, it selects Internet Explorer

(explorer.exe) for you, which is fine. If you’re using an alternative browser such

as Safari or Opera, you can browse to find the .exe file for your browser if you

want to.

Figure 1.3. The default choice of Internet Explorer is fine

4. As WampServer is installed, it fires up its built-in copy of the Apache HTTP

Server, a popular web server for PHP development. Windows will likely display

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

5Installation

http://www.sitepoint.com/launch/3eb28e

a security alert at this point, like the one in Figure 1.4, since the web server

attempts to start listening for browser requests from the outside world.

Figure 1.4. This security alert tells you Apache is doing its job

If you want to make absolutely sure that Apache rejects connections from the

outside world, and that only a web browser running on your own computer

can view web pages hosted on your development server, feel free to click Keep

blocking. WampServer has its own built-in option to block connections from

the outside world when you want to, however, so I recommend clicking Unblock

in order to have the flexibility to grant access to your development server if

and when you need to.

5. Next, as shown in Figure 1.5, the WampServer installer will prompt you for

your SMTP server and email address. A PHP script can send an email message,

and these settings tell it the outgoing email server, and the default “from” ad-

dress to use. Type in your email address, and if you can remember your Internet

Service Provider’s SMTP server address, type it in too. You can always leave

the default value for the time being, though, and set it manually if and when

you need to send email using a PHP script.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL6

http://www.sitepoint.com/launch/3eb28e

Figure 1.5. Fill in your Internet Service Provider’s SMTP server address if you know it

Once the installation is complete, you can fire up WampServer. An icon will appear

in your Windows System Tray. Click on it to see the WampServer menu shown in

Figure 1.6.

Figure 1.6. The WampServer menu

By default, your server can only be accessed by web browsers running on your own

computer. If you click the Put Online menu item, your server will become accessible

to the outside world.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

7Installation

http://www.sitepoint.com/launch/3eb28e

To test that WampServer is working properly, click the Localhost menu item at the

top of the WampServer menu. Your web browser will open to display your server’s

home page, shown in Figure 1.7.

Figure 1.7. The home page provided by WampServer confirms Apache, PHP, and MySQL are installed

When you’re done working with WampServer, you can shut it down (along with

its built-in servers) by right-clicking the System Tray icon and choosing Exit. When

you’re next ready to do some work on a database driven web site, just fire it up

again!

Later in this book, you’ll need to use some of the programs that come with the

MySQL server built into WampServer. To work properly, these programs must be

added to your Windows system path.

To add the MySQL command prompt programs that come with WampServer to

your Windows system path, follow these instructions:

1. Open the Windows Control Panel. Locate and double-click the System icon.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL8

http://www.sitepoint.com/launch/3eb28e

2. Take the appropriate step for your version of Windows:

• In Windows XP, switch to the Advanced tab of the System Properties window.

• In Windows Vista or Windows 7, click the Advanced system settings link in

the sidebar.

3. Click the Environment Variables… button.

4. In the list labeled User variables for user, look for a variable named PATH.

• If it exists, select it and click the Edit… button.

• If there’s no variable, click the New… button and fill in the Variable name

by typing PATH.

5. Add the path to WampServer’s MySQL bin directory2 as the Variable value:

• If the Variable value is empty, just type in the path.

• If there is already text in the Variable value field, add a semicolon (;) to the

end of the value, then type the path after that.

6. Click the OK button in each of the open windows to apply your changes.

Installing Individual Packages
Installing each individual package separately is really the way to go if you can afford

to take the time. That way you learn how all the pieces fit together, but have the

freedom to update each of the packages independently of the others. Ultimately,

it’s always worthwhile becoming familiar with the inner workings of any software

with which you’ll be spending a lot of time.

Installing MySQL
As I mentioned above, you can download MySQL free of charge. Simply proceed

to the MySQL Downloads page3 and click the Download link for the free MySQL

2 The exact path will depend on where you’ve installed WampServer and which version of MySQL it

contains. On my system, the path is C:\wamp\bin\mysql\mysql5.1.34\bin. Use Explorer to take a look

inside your WampServer installation’s files to figure out the exact path on your system.
3 http://dev.mysql.com/downloads/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

9Installation

http://dev.mysql.com/downloads/
http://www.sitepoint.com/launch/3eb28e

Community Server. This will take you to a page with a long list of download links

for the current recommended version of MySQL (as of this writing, it’s MySQL 5.1).

At the top of the list you’ll see links for Windows and Windows x64. If you’re pos-

itive you’re running a 64-bit version of Windows, go ahead and follow the Windows

x64 link to download the Windows Essentials (AMD64 / Intel EM64T) package (about

28MB in size). If you know you’re running a 32-bit version of Windows, or if you’re

at all unsure, follow the Windows link and download the Windows Essentials (x86)

package (about 35MB)—it’ll work even if it turns out you’re running a 64-bit version

of Windows. Although a little obscure, the Pick a mirror link shown in Figure 1.8 is

the one you need to click to download the file.

Figure 1.8. Finding the right link can be tricky—here it is!

Once you’ve downloaded the file, double-click it and go through the installation as

you would for any other program. Choose the Typical option when prompted for the

setup type, unless you have a particular preference for the directory in which MySQL

is installed. When you reach the end, you’ll be prompted to choose whether you

want to Configure the MySQL Server now. Select this to launch the configuration

wizard,4 and choose Detailed Configuration, which we’ll use to specify a number of

options that are vital to ensuring compatibility with PHP. For each step in the wizard,

select the options indicated here:

1. Server Type

Assuming you’re setting up MySQL for development purposes on your desktop

computer, choose Developer Machine.

4 In my testing, I found that the configuration wizard failed to actually launch automatically, even with

this option checked. If you run into the same problem, just launch the MySQL Server Instance Config

Wizard from the Start Menu after the installation has completed.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL10

http://www.sitepoint.com/launch/3eb28e

2. Database Usage

Unless you know for a fact that you will need support for transactions (as such

support is usually superfluous for most PHP applications), choose Non-Transac-

tional Database Only.

3. Connection Limit

Select Decision Support (DSS)/OLAP to optimize MySQL for a relatively modest

number of connections.

4. Networking Options

Uncheck the Enable Strict Mode option to ensure MySQL’s compatibility with

older PHP code that you might need to use in your own work.

5. Default Character Set

Select Best Support For Multilingualism to tell MySQL to assume you want to use

UTF-8 encoded text, which supports the full range of characters that are in use

on the Web today.

6. Windows Options

Allow MySQL to be installed as a Windows Service that's launched automatic-

ally; also select Include Bin Directory in Windows PATH to make it easier to run

MySQL’s administration tools from the command prompt.

7. Security Options

Uncheck the Modify Security Settings option. It’s best to learn how to set the root

password mentioned at this juncture without the assistance of the wizard, so

I’ll show you how to do this yourself in the section called “Post-Installation

Set-up Tasks”.

Once the wizard has completed, your system should now be fully equipped with a

running MySQL server!

To verify that the MySQL server is running properly, type Ctrl+Alt+Del and choose

the option to open the Task Manager. Click the Show processes from all users button

unless it’s already selected. If all is well, the server program (mysqld.exe) should be

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

11Installation

http://www.sitepoint.com/launch/3eb28e

listed on the Processes tab. It will also start up automatically whenever you restart

your system.

Installing PHP
The next step is to install PHP. Head over to the PHP Downloads page5 and choose

the PHP 5.2.x zip package under Windows Binaries; avoid the installer version, which

is easier to install, but lacks the same flexibility attained by installing PHP manually.

What about PHP 4?

At the time of writing, PHP 5 is firmly entrenched as the preferred version of PHP.

For several years after PHP 5’s initial release, many developers chose to stick with

PHP 4 due to its track record of stability and performance, and indeed today many

bargain-basement web hosts have yet to upgrade to PHP 5. There’s no longer any

excuse for this, however; PHP 5 is by far the better choice, and development of

PHP 4 has been completely discontinued. If your web host is still living in the

PHP 4 past, you’re better off finding a new web host!

PHP was designed to run as a plugin for existing web server software such as Apache

or Internet Information Services, so before you can install PHP, you must first set

up a web server.

Many versions of Windows come with Microsoft’s powerful Internet Information

Services (IIS) web server, but not all do. Windows XP Home, Windows Vista Home,

and Windows 7 Home Basic (among others) are without IIS, so you need to install

your own web server on these versions of Windows if you want to develop database

driven web sites. On top of that, assorted versions of Windows come with different

versions of IIS, some of which vary dramatically in how you configure them to work

with PHP.

With that in mind, if you’re still considering IIS, you should know it’s also relatively

uncommon to host web sites built using PHP with IIS in the real world. It’s generally

less expensive and more reliable to host PHP-powered sites on servers running some

flavor of the Linux operating system, with the free Apache web server installed.

About the only reason for hosting a PHP site on IIS is if your company has already

invested in Windows servers to run applications built using ASP.NET (a Microsoft

5 http://www.php.net/downloads.php

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL12

http://www.php.net/downloads.php
http://www.sitepoint.com/launch/3eb28e

technology built into IIS), and you want to reuse that existing infrastructure to host

a PHP application as well.

Although it’s by no means a requirement, it’s generally easiest to set up your devel-

opment server to match the environment in which your web site will be deployed

publicly as closely as possible. For this reason, I recommend using the Apache web

server—even for development on a Windows computer. If you insist (or your boss

insists) on hosting your PHP-based site using IIS, you will find the necessary install-

ation instructions in the install.txt file contained in the PHP zip package you

downloaded from the PHP web site.

If you need to install Apache on your computer, surf on over to The Apache HTTP

Server Project6 and look for the version of Apache described as the best available

(as of writing it’s version 2.2.11, as shown in Figure 1.9).

Figure 1.9. The best available version—accept no substitutes!

Once you get to the Download page, scroll down to find the links to the various

versions available. The one you’ll want is Win32 Binary without crypto, shown in

Figure 1.10.

Figure 1.10. This is the one you need

6 http://httpd.apache.org/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

13Installation

http://httpd.apache.org/
http://httpd.apache.org/
http://www.sitepoint.com/launch/3eb28e

Once the file has downloaded, double-click on it as usual to start the installation

wizard. After a few steps, you’ll arrive at the Server Information screen.

If you were setting up a web server to be accessed publicly on the Web, the options

on this screen would be important. For the purposes of setting up a development

server, you can type whatever you like. If you know your computer’s network name,

type that in for the Server Name. Feel free to put in your correct email address if,

like me, you’re a stickler for the details. If you already have a web server running

on your computer (for example, if you have also set up IIS to do some ASP.NET

development on the same computer), you may need to select the only for the Current

User, on Port 8080, when started Manually option on this screen, so as to avoid a conflict

with the existing web server running on port 80.

On the next screen, choose the Typical option for the Setup Type, and follow the

wizard from there to complete the installation. When it’s done, you should see a

new icon for the Apache Service Monitor running in your System Tray. If you chose

the default option to have Apache start up automatically, the status indicator should

be green, as shown in Figure 1.11; otherwise, you’ll need to start Apache manually

as shown in Figure 1.12 before you can use it.

Figure 1.11. The green light means Apache is up and running

Figure 1.12. Choose Start to fire up Apache manually

You can also use the Apache Service Monitor icon to stop Apache running, once

you’ve finished your web development work for the day.

When you have Apache up and running, open your web browser of choice and type

http://localhost into the location bar. If you chose the option to run Apache on port

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL14

http://www.sitepoint.com/launch/3eb28e

8080, you will need to type http://localhost:8080 instead. Hit Enter, and you should

see a page like that shown in Figure 1.13 that confirms Apache is working correctly.

Figure 1.13. You can take my word for it!

With Apache standing on its own two feet, you can now install PHP. Follow these

steps:

1. Unzip the file you downloaded from the PHP web site into a directory of your

choice. I recommend C:\PHP and will refer to this directory from this point

forward, but feel free to choose another directory if you like.

2. Find the file called php.ini-dist in the PHP folder and make a duplicate copy of

it. The easiest way to do it is to right-click and drag the file’s icon a short dis-

tance, drop it in the same Explorer window, and choose Copy Here from the

pop-up menu. This will leave you with a new file named along the lines of php

- Copy.ini-dist (depending on the version of Windows you’re using). Find this

new file and rename it to php.ini. Windows will ask if you’re sure about changing

the filename extension (from .ini-dist to .ini); click Yes.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

15Installation

http://www.sitepoint.com/launch/3eb28e

Windows Hides Known Filename Extensions by Default

When you rename the file to php.ini, you might notice that the new filename

that appears next to the icon is actually just php. If this happens, it’s because

your copy of Windows is set up to hide the filename extension if it recognizes

it. Since Windows knows that .ini files are Configuration Settings files, it

hides this filename extension.

As you can imagine, this feature can cause a certain amount of confusion.

When you return to edit the php.ini file in the future, it would help to be able

to see its full filename so you could tell it apart from the php.gif and php.exe

files in the same folder.

To switch off filename extension hiding, open the Windows Control Panel

and search for Folder Options. Open the Folder Options window and switch

to the View tab. Under Files and Folders, uncheck the Hide extensions for known

file types checkbox, as shown in Figure 1.14.

Figure 1.14. Make filename extensions visible for all files

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL16

http://www.sitepoint.com/launch/3eb28e

3. Open the php.ini file in your favorite text editor. If you have no particular pref-

erence, just double-click the file to open it in Notepad. It’s a large file with a

lot of confusing options, but look for the line that begins with doc_root (Note-

pad’s Edit > Find… feature will help). Out of the box, this line looks like this:

doc_root =

To the end of this line, add the path to your web server’s document root direct-

ory. For the Apache server, this is the htdocs folder in the main Apache web

server directory. If you installed Apache in the default location, the path should

be "C:\Program Files\Apache Software Foundation\Apache2.2\htdocs". If you in-

stalled it elsewhere, find the htdocs folder and type its path:

doc_root = "C:\Program Files\Apache Software Foundation\Apache2.
➥2\htdocs"

Just a little further down in the file, look for the line that begins with exten-

sion_dir, and set it so that it points to the ext subfolder of your PHP folder:

extension_dir = "C:\PHP\ext"

Scroll further down in the file, and you’ll see a bunch of lines beginning with

;extension=. These are optional extensions to PHP, disabled by default. We

want to enable the MySQL extension so that PHP can communicate with MySQL.

To do this, remove the semicolon from the start of the php_mysqli.dll line:

extension=php_mysqli.dll

php_mysqli, not php_mysql

Just above the line for php_mysqli.dll there is a line for php_mysql.dll.

The i in php_mysqli stands for improved. You want to enable the new im-

proved MySQL extension. The one without the i is obsolete, and some of its

features are incompatible with current versions of MySQL.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

17Installation

http://www.sitepoint.com/launch/3eb28e

Keep scrolling even further down in the file, and look for a line that starts with

;session.save_path. Once again, remove the semicolon to enable this line,

and set it to your Windows Temp folder:

session.save_path = "C:\Windows\Temp"

Save the changes you made and close your text editor.

That takes care of setting up PHP. Now you can set up your Apache server to use

it as a plugin:

1. Run Notepad as Administrator. This is necessary because the Apache configur-

ation file, by default, can only be edited by an administrator. To do this, find

the Notepad icon in your Start Menu (under All Programs > Accessories) and right-

click on it. Click the Run as administrator menu item.

2. Choose File > Open… in Notepad. Browse to the conf subfolder in your Apache

installation folder (by default, C:\Program Files\Apache Software

Foundation\Apache2.2\conf), and select the httpd.conf file located there. In order

to make this file visible for selection, you’ll need to select All Files (*.*) from the

file type drop-down menu at the bottom of the Open window.

3. Look for the existing line in this file that begins with DirectoryIndex, shown

here:

<IfModule dir_module>
DirectoryIndex index.html

</IfModule>

This line tells Apache which filenames to use when it looks for the default page

for a given directory. Add index.php to the end of this line:

<IfModule dir_module>
 DirectoryIndex index.html index.php
</IfModule>

4. All of the remaining options in this long and intimidating configuration file

should have been set up correctly by the Apache install program. All you need

to do is add the following lines to the very end of the file:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL18

http://www.sitepoint.com/launch/3eb28e

LoadModule php5_module "C:/PHP/php5apache2_2.dll"
AddType application/x-httpd-php .php
PHPIniDir "C:/PHP"

Make sure the LoadModule and PHPIniDir lines point to your PHP installation

directory, and note the use of forward slashes (/) instead of backslashes (\) in

the paths.

PHP and Future Apache Versions

Historically, major new versions of the Apache server have required new

versions of the .dll file you see referenced in the LoadModule line above. If

you take another look in your PHP installation directory, for example, you’ll

see there are also php5apache.dll and php5apache2.dll files there. These files

were provided for use with Apache 1.3 and Apache 2.0, respectively.

By the time you read this, it’s possible that Apache has undergone another

major release (for instance, Apache 2.3), which might need yet another new

.dll file. For example, Apache 2.3 might require you to use a new file named

php5apache2_3.dll.

If you are using a subsequent version of Apache, and if you do see a .dll file

that looks like it might correspond to your Apache version, try adjusting the

LoadModule line accordingly. You can always return and edit this file again

later if Apache fails to load PHP correctly.

5. Save your changes and close Notepad.

6. Restart Apache using the Apache Service Monitor system tray icon. If all is

well, Apache will start up again without complaint.

7. Double-click the Apache Service Monitor icon to open the Apache Service

Monitor window. If PHP is installed correctly, the status bar of this window

should indicate the version of PHP you have installed, as shown in Figure 1.15.

8. Click OK to close the Apache Service Monitor window.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

19Installation

http://www.sitepoint.com/launch/3eb28e

Figure 1.15. The PHP version number indicates Apache is configured to support PHP

With MySQL, Apache, and PHP installed, you’re ready to proceed to the section

called “Post-Installation Set-up Tasks”.

Mac OS X Installation
Mac OS X distinguishes itself by being the only consumer OS to install both Apache

and PHP as components of every standard installation. That said, these take a few

tweaks to switch on, and you’ll need to install the MySQL database as well.

In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Mac computer running Mac OS X version 10.5 (Leopard). If you’re using

an alternative to a Mac, you can safely skip this section.

All-in-one Installation
I normally recommend that you install and set up your web server, PHP, and MySQL

individually, using the official installation packages for each. This process is espe-

cially useful for beginners, because it gives you a strong sense of how these pieces

all fit together. If you’re in a rush, however, or if you need to set up a temporary

development environment to use just for a day or two, a quick-and-dirty solution

may be preferable.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL20

http://www.sitepoint.com/launch/3eb28e

You can skip ahead to the section called “Installing Individual Packages” if you

want to take the time to install each piece of the puzzle separately.

MAMP (which stands for Mac, Apache, MySQL, and PHP) is a free, all-in-one pro-

gram that includes built-in copies of recent versions of the Apache web server, PHP,

and MySQL. Let me take you through the process of installing it:

1. Download the latest version from the MAMP web site.7 After downloading the

file (as of this writing, MAMP 1.7.2 is about 130MB in size), double-click it to

unzip the disk image (MAMP_1.7.2.dmg), then double-click the disk image to

mount it, as shown in Figure 1.16.

Figure 1.16. The MAMP package

2. As instructed in the disk image window, drag the MAMP folder icon over to the

Applications folder icon to install MAMP on your system. After the copy operation

has completed, you can drag the MAMP icon on your desktop to the Trash icon

on your dock to eject it (it will turn into an Eject icon), then delete the disk

image, as well as the original .zip file you downloaded.

7 http://www.mamp.info

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

21Installation

http://www.mamp.info
http://www.sitepoint.com/launch/3eb28e

Browse to your Applications folder and find the new MAMP folder there. Open it,

and double-click the MAMP icon inside to launch MAMP. As MAMP starts up, the

following will happen. First, the MAMP window shown in Figure 1.17 will appear.

The two status indicators will switch from red to green as the built-in Apache and

MySQL servers start up. Next, MAMP will open your default web browser and load

the MAMP welcome page, shown in Figure 1.18.

Figure 1.17. The MAMP window

Figure 1.18. The MAMP welcome page confirms Apache, PHP, and MySQL are up and running

When you’re done working with MAMP, you can shut it down (along with its built-

in servers) by clicking the Quit button in the MAMP window. When you’re next

ready to do some work on a database driven web site, just fire it up again!

Later in this book, you’ll need to use some of the programs that come with the

MySQL server built into MAMP. To work properly, these programs must be added

to your Mac OS X system path.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL22

http://www.sitepoint.com/launch/3eb28e

To add the MySQL command prompt programs that come with MAMP to your Mac

OS X system path, follow these instructions:

1. Open a Terminal window.8

• If you’re running Mac OS X 10.5 (Leopard) or later, type these commands:

Machine:~ user$ sudo su
Password: (type your password)
sh-3.2# echo '/Applications/MAMP/Library/bin' >> /etc/paths.d
➥/MAMP
sh-3.2# exit

What to Type

The Machine:~ user$ portion (where Machine is your computer’s

name) represents the prompt that’s already displayed. You only need

to type the command, which is shown in bold.

• If you’re running Mac OS X 10.4 (Tiger) or earlier, type these commands:

Machine:~ user$ touch .profile
Machine:~ user$ open .profile

This should open the hidden .profile file in TextEdit. This file contains a

list of Terminal commands that are executed automatically whenever you

open a new Terminal window. If you’ve never installed command prompt

programs on your system before, this file will be completely empty. In any

case, add this line to the end of the file:

export PATH=$PATH:/Applications/MAMP/Library/bin

Save your changes, and quit TextEdit.

2. Close the Terminal window to allow this change to take effect.

8 To open a Terminal window, launch the Terminal application, which you can find in the Utilities folder

in the Applications folder.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

23Installation

http://www.sitepoint.com/launch/3eb28e

Installing Individual Packages
Installing each individual package separately is really the way to go if you can afford

to take the time. You gain the opportunity to learn how all the pieces fit together,

and you have the freedom to update each of the packages independently of the

others. Besides, it’s always worthwhile being familiar with the inner workings of

any software with which you’ll be spending a lot of time.

The following instructions assume you’re running Mac OS X 10.5 (Leopard) or later.

If you’re running an earlier version of Mac OS OX, you should stick with the all-in-

one option.

Installing MySQL
Apple maintains a fairly comprehensive guide to installing MySQL on Mac OS X

on its Mac OS X Internet Developer site9 if you want to compile MySQL yourself.

It’s much easier, however, to obtain the precompiled binary version directly from

the MySQL web site.

Start by visiting the The MySQL Downloads page.10 Click the Download link for the

free MySQL Community Server. This will take you to a page with a long list of

download links for the current recommended version of MySQL (as of this writing,

it’s MySQL 5.1).

Click the Mac OS X (package format) link. You will be presented with the list of

downloads shown in Figure 1.19. Which one you need to choose depends on your

operating system version and platform architecture. If your system is running Mac

OS X version 10.5 (Leopard), you can ignore the Mac OS X 10.4 links. If you know

your Mac has a 64-bit processor, you can safely pick the Mac OS X 10.5 (x86_64)

version. If you’re at all unsure, your best bet is the Mac OS X 10.5 (x86) version—all

it requires is that you have an Intel-based Mac (to be sure, check the processor in-

formation in the About This Mac window, which you can access from the Apple

menu). If you have an older, PowerPC-based Mac, you’ll need one of the PowerPC

versions. The 32-bit version is the safe bet, since it will run on 64-bit systems too.

9 http://developer.apple.com/internet/macosx/osdb.html
10 http://dev.mysql.com/downloads/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL24

http://developer.apple.com/internet/macosx/osdb.html
http://dev.mysql.com/downloads/
http://www.sitepoint.com/launch/3eb28e

Figure 1.19. The 32-bit version of MySQL for Intel processors will work on most current Macs

Once you’ve downloaded the mysql-version-osxversion-platform.dmg file, double-click

it to mount the disk image. As shown in Figure 1.20, it contains the installer in .pkg

format, as well as a MySQLStartupItem.pkg file. Double-click the installer, which will

guide you through the installation of MySQL.

Figure 1.20. The MySQL Mac OS X package contains lots of goodies

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

25Installation

http://www.sitepoint.com/launch/3eb28e

Once MySQL is installed, you can launch the MySQL server. Open a Terminal

window11 and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqld_safe

What to Type

The Machine:~ user$ portion (where Machine is your computer’s name) rep-

resents the prompt that’s already displayed. You only need to type the command,

which is shown in bold.

Once you have typed the command, hit Enter.

This command runs the mysqld_safe script with administrator privileges. You’ll be

prompted to input your password to do this, then a status message will confirm

that MySQL is running.

Once MySQL is running, you can switch it to background execution by typing Ctrl+Z

to stop the process, and then typing this command to let it continue running in the

background:

Machine:~ user$ bg

You can then quit the Terminal application and MySQL will continue to run as a

server on your system. When you want to shut down the MySQL server, open a new

Terminal window and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqladmin shutdown

Though you’ll gain plenty of geek cred for memorizing these commands, there’s a

much less tedious way to control your MySQL server. Back in the installation disk

image shown in Figure 1.20, you’ll notice a file named MySQL.prefPane. Double-click

this to install a new pane in Mac OS X’s System Preferences, and the window shown

in Figure 1.21 will open.

11 To open a Terminal window, launch the Terminal application, which you can find in the Utilities folder

in the Applications folder.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL26

http://www.sitepoint.com/launch/3eb28e

Figure 1.21. The MySQL System Preferences pane

This window will tell you if your MySQL server is running or not, and lets you start

it up and shut it down with the click of a button!

Presumably, you’ll want your system to launch the MySQL server at startup auto-

matically so that you can avoid having to repeat the above process whenever you

restart your system. The system preferences pane has a checkbox that does this, but

for this checkbox to do anything you must first install the MySQLStartupItem.pkg

from the installation disk image.

When you have everything set up the way you want it, you can safely drag the

MySQL installation disk icon on your desktop to the trash, then delete the .dmg file

you downloaded.

One last task you’ll want to do is add the /usr/local/mysql/bin directory to your system

path. Doing this enables you to run programs like mysqladmin and mysql (for which

we’ll have plenty of use later in this book) in the Terminal without typing out their

full paths. Pop open a new Terminal window and type these commands:

Machine:~ user$ sudo su
Password: (type your password)
sh-3.2# echo '/usr/local/mysql/bin' >> /etc/paths.d/mysql
sh-3.2# exit

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

27Installation

http://www.sitepoint.com/launch/3eb28e

Close the Terminal window and open a new one to allow this change to take effect.

Then, with your MySQL server running, try running the mysqladmin program from

your home directory:

Machine:~ user$ mysqladmin status

If everything worked the way it’s supposed to, you should see a brief list of statistics

about your MySQL server.

Installing PHP
Mac OS X 10.5 (Leopard) comes with Apache 2.2 and PHP 5 built right in! All you

need to do to use them for development is switch them on:

1. Open System Preferences (System Preferences… on the Apple menu).

2. In the main System Preferences menu, click Sharing under Internet & Network.

3. Make sure that Web Sharing is checked, as shown in Figure 1.22.

Figure 1.22. Enable Web Sharing in Mac OS X

4. Quit System Preferences.

5. Open your browser, type http://localhost into the address bar, and hit Enter.

Your browser should display the standard Apache welcome message shown in

Figure 1.23.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL28

http://www.sitepoint.com/launch/3eb28e

Figure 1.23. The standard Apache welcome page

With this procedure complete, Apache will be run at startup automatically on your

system. You’re now ready to enhance this server by enabling PHP support:

1. In the Finder menu bar, choose Go > Go to folder (⇧+⌘+G), and type

/private/etc/apache2/ before clicking Go.

2. In the Finder window that opens, there should be a file named httpd.conf. This

is the Apache configuration file. By default, it’s read-only. Right-click the file

and choose Get Info (⌘+I) to open the file’s properties. Scroll down to the bottom

of the httpd.conf Info window to find the Sharing & Permissions setting.

By default, the settings in this section are disabled. Click the little lock icon

shown in Figure 1.24 to enable them. Enter your password when prompted.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

29Installation

http://www.sitepoint.com/launch/3eb28e

Figure 1.24. Click the lock to make changes to these settings

To make this file editable, change the value in the Privilege column for everyone

to Read & Write, as shown in Figure 1.25.

Figure 1.25. Set the permissions for everyone to Read & Write

3. Back in the Finder window for the apache2 folder, right-click in the background

of the folder window and choose Get Info to open the folder’s properties. As in

the previous step, set the Sharing & Permissions settings from everyone to Read

& Write.

4. Finally, double-click the httpd.conf file to open it in TextEdit.

5. In the httpd.conf file, search for this line:

#LoadModule php5_module libexec/apache2/libphp5.so

Enable this command by deleting the hash (#) character at the start of the line.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL30

http://www.sitepoint.com/launch/3eb28e

6. Save your changes, and quit TextEdit.

7. If you like to tidy up after yourself, you can go back and reset the privileges on

the httpd.conf file and the apache2 folder. This will keep other users of your

computer from making changes to the Apache configuration.

8. Open a Terminal window and type this command to restart Apache:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted.

9. Load http://localhost in your browser again to make sure that Apache is still

running.

Your computer is now equipped with an Apache web server with PHP support. If

you need to make changes to Apache’s configuration, you know how to edit its

httpd.conf file using the instructions above. The PHP plugin, however, has its own

configuration file, named php.ini, and you need to edit that file to tell PHP how to

connect to your MySQL server.

With the version of PHP built into Mac OS X, there is no php.ini file by default—PHP

just runs with the default settings. In order to modify those settings, you’ll need to

open Terminal and copy the /private/etc/php.ini.default file to /private/etc/php.ini:

Machine:~ user$ cd /private/etc
Machine:etc user$ sudo cp php.ini.default php.ini
Password: (type your password)

To make this new php.ini file editable by users like yourself, use the same procedure

described above for editing httpd.conf: in Finder use Go > Go to folder to open

/private/etc, modify the permissions of both the php.ini file and the folder that con-

tains it, then open the file with TextEdit.

Scroll down through the file or use Edit > Find > Find… (⌘+F) to locate the

mysql.default_socket option. Edit this line of the php.ini file so that it looks like

this:

mysql.default_socket = /tmp/mysql.sock

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

31Installation

http://www.sitepoint.com/launch/3eb28e

You should only have to add the portion in bold.

Scroll down further to locate the mysqli.default_socket option (mysqli, not

mysql), and make the same change:

mysqli.default_socket = /tmp/mysql.sock

Save your changes, quit TextEdit, and restore the file and directory permissions if

you want to. Finally, open a Terminal window and type this command to restart

Apache once more:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted. Once Apache is up and running again, load

http://localhost in your browser once more to make sure that all is well.

That’s it! With MySQL, Apache, and PHP installed, you’re ready to proceed to the

section called “Post-Installation Set-up Tasks”.

Linux Installation
This section will show you the procedure for manually installing Apache, PHP, and

MySQL under most current distributions of Linux. These instructions were tested

under Ubuntu 8.10;12 however, they should work on other distributions such as

Fedora,13 Debian,14 openSUSE,15 and Gentoo16 without much trouble. The steps

involved will be very similar, almost identical.

Most Linux distributions come with a package manager of one kind or another.

Ubuntu’s Synaptic Package Manager17 is a graphical front end to APT,18 the Debian

package manager. Other distributions use the older RPM package manager. Regardless

of which distribution you use, prepackaged versions of Apache, PHP, and MySQL

should be readily available. These prepackaged versions of software are really easy

12 http://www.ubuntu.com
13 http://fedoraproject.org
14 http://www.debian.org
15 http://www.opensuse.org
16 http://www.gentoo.org
17 https://help.ubuntu.com/community/SynapticHowto
18 http://www.debian.org/doc/user-manuals#apt-howto

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL32

http://www.ubuntu.com
http://fedoraproject.org
http://www.debian.org
http://www.opensuse.org
http://www.gentoo.org
https://help.ubuntu.com/community/SynapticHowto
http://www.debian.org/doc/user-manuals#apt-howto
http://www.sitepoint.com/launch/3eb28e

to install; unfortunately, they also limit the software configuration options available

to you. For this reason—and because any attempt to document the procedures for

installing the packaged versions across all popular Linux distributions would be

doomed to failure—I will instead show you how to install them manually.

If you already have Apache, PHP, and MySQL installed in packaged form, feel free

to use those versions, and skip forward to the section called “Post-Installation Set-

up Tasks”. If you encounter any problems, you can always uninstall the packaged

versions and return here to install them by by hand.

Installing MySQL
Start by downloading MySQL. Simply proceed to the MySQL Downloads page19

and click the Download link for the free MySQL Community Server. This will take

you to a page with a long list of download links for the current recommended version

of MySQL (as of this writing, it’s MySQL 5.1).

Click the link near the top of the list to go to the Linux (non RPM packages). Now you

need to choose the package that corresponds to your system architecture. If you’re

positive you’re running a 64-bit version of Linux, go ahead and download the Linux

(AMD64/Intel EM64T) package (about 120MB in size). If you’re running a 32-bit version

of Linux, download the Linux (x86) package (about 115MB)—it’ll work even if it

turns out you’re running a 64-bit version of Linux. It may be a little unclear, but the

Pick a mirror link shown in Figure 1.26 is the one you need to click to download the

file.

Figure 1.26. Finding the right link can be tricky—here it is!

Once you’ve downloaded the file, open a Terminal and log in as the root user:

user@machine:~$ sudo su

19 http://dev.mysql.com/downloads/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

33Installation

http://dev.mysql.com/downloads/
http://www.sitepoint.com/launch/3eb28e

You will, of course, be prompted for your password.

Change directories to /usr/local and unpack the downloaded file:

root@machine:/home/user# cd /usr/local
root@machine:/usr/local# tar xfz ~user/Desktop/mysql-version-linux-
➥platform.tar.gz

The second command assumes you left the downloaded file on your desktop, which

is the Desktop directory in your home directory. You’ll need to replace user with

your username, version with the MySQL version you downloaded, and platform

with the architecture and compiler version of the release you downloaded; this is

so that the command exactly matches the path and filename of the file you down-

loaded. On my computer, for example, the exact command looks like this:

root@mythril:/usr/local# tar xfz ~kyank/Desktop/mysql-5.1.34-linux-x
➥86_64-glibc23.tar.gz

After a minute or two, you’ll be returned to the command prompt. A quick ls will

confirm that you now have a directory named mysql-version-linux-platform. This is

what it looks like on my computer:

root@mythril:/usr/local# ls
bin games lib mysql-5.1.34-linux-x86_64-glibc23 share
etc include man sbin src

Next, create a symbolic link to the new directory with the name mysql to make ac-

cessing the directory easier. Then enter the directory:

root@machine:/usr/local# ln -s mysql-version-linux-platform mysql
root@machine:/usr/local# cd mysql

While you can run the server as the root user, or even as yourself (if, for example,

you were to install the server in your home directory), you should normally set up

on the system a special user whose sole purpose is to run the MySQL server. This

will remove any possibility of an attacker using the MySQL server as a way to break

into the rest of your system. To create a special MySQL user, type the following

commands (still logged in as root):

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL34

http://www.sitepoint.com/launch/3eb28e

root@machine:/usr/local/mysql# groupadd mysql
root@machine:/usr/local/mysql# useradd -g mysql mysql

Now give ownership of your MySQL directory to this new user:

root@machine:/usr/local/mysql# chown -R mysql .
root@machine:/usr/local/mysql# chgrp -R mysql .

MySQL is now installed, but before it can do anything useful, its database files need

to be installed, too. Still in the new mysql directory, type the following command:

root@machine:/usr/local/mysql# scripts/mysql_install_db --user=mysql

Now everything’s prepared for you to launch the MySQL server for the first time.

From the same directory, type the following command:

root@machine:/usr/local/mysql# bin/mysqld_safe --user=mysql &

If you see the message mysql daemon ended, then the MySQL server was prevented

from starting. The error message should have been written to a file called hostname.err

(where hostname is your machine’s host name) in MySQL’s data directory. You’ll

usually find that this happens because another MySQL server is already running

on your computer.

If the MySQL server was launched without complaint, the server will run (just like

your web or FTP server) until your computer is shut down. To test that the server

is running properly, type the following command:

root@machine:/usr/local/mysql# bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed. If

you receive an error message, check the hostname.err file to see if the fault lies with

the MySQL server upon starting up. If you retrace your steps to make sure you fol-

lowed the process described above, and this fails to solve the problem, a post to the

SitePoint Forums20 will help you pin it down in little time.

20 http://www.sitepoint.com/forums/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

35Installation

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

If you want your MySQL server to run automatically whenever the system is running,

you’ll have to set it up to do so. In the support-files subdirectory of the mysql directory,

you’ll find a script called mysql.server that can be added to your system startup

routines to do this. For most versions of Linux, you can do this by creating a link

to the mysql.server script in the /etc/init.d directory, then create two links to that:

/etc/rc2.d/S99mysql and /etc/rc0.d/K01mysql. Here are the commands to type:

root@machine:/usr/local/mysql# cd /etc
root@machine:/etc# ln -s /usr/local/mysql/support-files/mysql.server
➥ init.d/
root@machine:/etc# ln -s /etc/init.d/mysql.server rc2.d/S99mysql
root@machine:/etc# ln -s /etc/init.d/mysql.server rc0.d/K01mysql

That’s it! To test that this works, reboot your system, and request the status of the

server with mysqladmin as you did above.

One final thing you might like to do for the sake of convenience is to place the

MySQL client programs—which you’ll use to administer your MySQL server later

on—in the system path. To this end, you can place symbolic links to mysql,

mysqladmin, and mysqldump in your /usr/local/bin directory:

root@machine:/etc# cd /usr/local/bin
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysql .
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqladmin .
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqldump .

Once you’ve done this, you can log out of the root account. From this point on, you

can administer MySQL from any directory on your system:

root@machine:/usr/local/bin# exit
user@machine:~$ mysqladmin -u root status

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL36

http://www.sitepoint.com/launch/3eb28e

Installing PHP
As mentioned above, PHP is more a web server plugin module than a program.

There are actually three ways to install the PHP plugin for Apache:

■ as a CGI program that Apache runs every time it needs to process a PHP-enhanced

web page
■ as an Apache module compiled right into the Apache program
■ as an Apache module loaded by Apache each time it starts up

The first option is the easiest to install and set up, but it requires Apache to launch

PHP as a program on your computer every time a PHP page is requested. This

activity can really slow down the response time of your web server, especially if

more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but the

third option is the most flexible, since you can add and remove Apache modules

without having to recompile it each time. For this reason, we’ll use the third option.

Assuming you don’t already have Apache running on your computer, surf on over

to the Apache HTTP Server Project21 and look for the version of Apache described

as “the best available version” (as of this writing it’s version 2.2.11, as shown in

Figure 1.27).

Figure 1.27. The best available version—accept no substitutes!

21 http://httpd.apache.org/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

37Installation

http://httpd.apache.org/
http://www.sitepoint.com/launch/3eb28e

Once you get to the Download page, scroll down to find the links to the various

versions available. The one you want is Unix Source, shown in Figure 1.28. Both the

.tar.gz or the .tar.bz2 are the same; just grab whichever archive format you’re used

to extracting.

Figure 1.28. This is the one you need

What you’ve just downloaded is actually the source code for the Apache server.

The first step, then, is to compile it into an executable binary installation. Pop open

a Terminal, navigate to the directory where the downloaded file is located, then

extract it, and navigate into the resulting directory:

user@machine:~$ cd Desktop
user@machine:~/Desktop$ tar xfz httpd-version.tar.gz
user@machine:~/Desktop$ cd httpd-version

The first step in compiling Apache is to configure it to your requirements. Most of

the defaults will be fine for your purposes, but you’ll need to enable dynamic

loading of Apache modules (like PHP), which is off by default. Additionally, you

should probably enable the URL rewriting feature, upon which many PHP applica-

tions rely (although it’s unnecessary for the examples in this book). To make these

configuration changes, type this command:

user@machine:~/Desktop/httpd-version$./configure --enable-so --enab
➥le-rewrite

A long stream of status messages will parade up your screen. If the process stops

with an error message, your system may be missing some critical piece of software

that’s required to compile Apache. Some Linux distributions lack the essential de-

velopment libraries or even a C compiler installed by default. Installing these should

enable you to return and run this command successfully. Current versions of Ubuntu,

however, should come with everything that’s needed.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL38

http://www.sitepoint.com/launch/3eb28e

After several minutes, the stream of messages should come to an end:

⋮
config.status: creating build/rules.mk
config.status: creating build/pkg/pkginfo
config.status: creating build/config_vars.sh
config.status: creating include/ap_config_auto.h
config.status: executing default commands
user@machine:~/Desktop/httpd-version$

You’re now ready to compile Apache. The one-word command make is all it takes:

user@machine:~/Desktop/httpd-version$ make

Again, this process will take several minutes to complete, and should end with the

following message:

⋮
make[1]: Leaving directory `/home/user/Desktop/httpd-version'
user@machine:~/Desktop/httpd-version$

To install your newly-compiled copy of Apache, type sudo make install (the sudo

is required, since you need root access to write to the installation directory).

user@machine:~/Desktop/httpd-version$ sudo make install

Enter your password when prompted.

As soon as this command has finished copying files, your installation of Apache is

complete. Navigate to the installation directory and launch Apache using the

apachectl script:

user@machine:~/Desktop/httpd-version$ cd /usr/local/apache2
user@machine:/usr/local/apache2$ sudo bin/apachectl -k start

You’ll likely see a warning message from Apache complaining that it was unable

to determine the server’s fully qualified domain name. That’s because most personal

computers are without one. Don’t sweat it.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

39Installation

http://www.sitepoint.com/launch/3eb28e

Fire up your browser and type http://localhost into the address bar. If Apache is up

and running, you should see a welcome message like the one in Figure 1.29.

Figure 1.29. You can take my word for it!

As with your MySQL server, you’ll probably want to configure Apache to start

automatically when your system boots. The procedure to do this is similar; just

copy and link the apachectl script from your Apache installation:

user@machine:/usr/local/apache2$ sudo su
root@machine:/usr/local/apache2# cd /etc
root@machine:/etc# ln -s /usr/local/apache2/bin/apachectl init.d/
root@machine:/etc# ln -s /etc/init.d/apachectl rc2.d/S99httpd
root@machine:/etc# ln -s /etc/init.d/apachectl rc0.d/K01httpd

To test that this works, restart your computer and then hit the http://localhost page

in your browser again.

With a shiny new Apache installation up and running, you’re now ready to add

PHP support to it. To start, download the PHP Complete Source Code package from

the PHP Downloads page.22 Again, the .tar.gz and .tar.bz2 versions are identical;

just download whichever you’re used to extracting.

The file you downloaded should be called php-version.tar.gz (or .bz2). Pop open a

new Terminal window, navigate to the directory containing the downloaded file,

extract it, and move into the resulting directory:

22 http://www.php.net/downloads.php

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL40

http://www.php.net/downloads.php
http://www.sitepoint.com/launch/3eb28e

user@machine:~$ cd Desktop
user@machine:~/Desktop$ tar xfz php-version.tar.gz
user@machine:~/Desktop$ cd php-version

To install PHP as an Apache module, you’ll need to use the Apache apxs program.

This will have been installed along with the Apache server if you followed the in-

structions above to compile it yourself; but if you’re using the copy that was installed

with your distribution of Linux, you may need to install the Apache development

package to access Apache apxs. You should be able to install this package by using

the package manager included with your Linux distribution. For example, on

Debian Linux, you can use apt-get to install it as follows:

user@machine:~$ sudo apt-get install apache-dev

Now, to install PHP, you must be logged in as root:

user@machine:~/Desktop/php-version$ sudo su
[sudo] password for user: (type your password)
root@machine:/home/user/Desktop/php-version#

The first step is to configure the PHP installation program by telling it which options

you want to enable, and where it should find the programs it needs to know about

(such as Apache apxs and MySQL). The command should look like this (all on one

line):

root@machine:/home/user/Desktop/php-version# ./configure
➥ --prefix=/usr/local/php --with-apxs2=/usr/local/apache2/bin/apxs
➥ --with-mysqli=/usr/local/mysql/bin/mysql_config

The --prefix option tells the installer where you want PHP to be installed

(/usr/local/php is a good choice).

The --with-apxs2 option tells the installer where to find the Apache apxs program

mentioned above. When installed using your Linux distribution’s package manager,

the program is usually found at /usr/sbin/apxs. If you compiled and installed Apache

yourself as described above, however, it will be in the Apache binary directory, at

/usr/local/apache2/bin/apxs.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

41Installation

http://www.sitepoint.com/launch/3eb28e

The --with-mysqli option tells the installer where to find your MySQL installation.

More specifically, it must point to the mysql_config program in your MySQL install-

ation’s bin directory (/usr/local/mysql/bin/mysql_config).

Again, a parade of status messages will appear on your screen. When it stops, check

for any error messages and install any files it identifies as missing. On a default

Ubuntu 8.10 installation, for example, you’re likely to see an error complaining

about an incomplete libxml2 installation. To correct this particular error, open

Synaptic Package Manager, then locate and install the libxml2-dev package (libxml2

should already be installed). Once it’s installed, try the configure command again.

After you watch several screens of tests scroll by, you’ll be returned to the command

prompt with the comforting message “Thank you for using PHP.” The following

two commands will compile and then install PHP:

root@machine:/home/user/Desktop/php-version# make
root@machine:/home/user/Desktop/php-version# make install

Take a coffee break: this will take some time.

Upon completion of the make install command, PHP will be installed in

/usr/local/php (unless you specified a different directory with the --prefix option

of the configure script above). Now you just need to configure it!

The PHP configuration file is called php.ini. PHP comes with two sample php.ini

files called php.ini-dist and php.ini-recommended. Copy these files from your install-

ation work directory to the /usr/local/php/lib directory, then make a copy of the

php.ini-dist file and call it php.ini:

root@machine:/home/user/Desktop/php-version# cp php.ini* /usr/local/
➥php/lib/
root@machine:/home/user/Desktop/php-version# cd /usr/local/php/lib
root@machine:/usr/local/php/lib# cp php.ini-dist php.ini

You may now delete the directory from which you compiled PHP—it’s no longer

needed.

We’ll worry about fine-tuning php.ini shortly. For now, we need to tweak Apache’s

configuration to make it more PHP-friendly. Locate your Apache httpd.conf config-

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL42

http://www.sitepoint.com/launch/3eb28e

uration file. This file can usually be found in the conf subdirectory of your Apache

installation (/usr/local/apache2/conf/httpd.conf).

To edit this file you must be logged in as root, so launch your text editor from the

Terminal window where you’re still logged in as root:

root@machine:/usr/local/php/lib# cd /usr/local/apache2/conf
root@machine:/usr/local/apache2/conf# gedit httpd.conf

In this file, look for the line that begins with DirectoryIndex. This line tells Apache

which filenames to use when it looks for the default page for a given directory.

You’ll see the usual index.html, but you need to add index.php to the list:

<IfModule dir_module>
 DirectoryIndex index.html index.php
</IfModule>

Finally, go right to the bottom of the file and add these lines to tell Apache that files

with names ending in .php should be treated as PHP scripts:

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

That should do it! Save your changes and restart your Apache server with this

command:

root@machine:/usr/local/apache2/conf# /usr/local/apache2/bin/
➥apachectl -k restart

If it all goes according to plan, Apache should start up without any error messages.

If you run into any trouble, the helpful individuals in the SitePoint Forums23 (myself

included) will be happy to help.

23 http://www.sitepoint.com/forums/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

43Installation

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

Post-Installation Set-up Tasks
Regardless of which operating system you’re running, or how you set up your web

server—once PHP is installed and the MySQL server is functioning, the very first

action you need to perform is assign a root password for MySQL.

MySQL only allows authorized users to view and manipulate the information stored

in its databases, so you’ll need to tell MySQL who’s authorized and who’s unauthor-

ized. When MySQL is first installed, it’s configured with a user named root that

has access to do most tasks without even entering a password. Your first task should

be to assign a password to the root user so that unauthorized users are prohibited

from tampering with your databases.

Why Bother?

It’s important to realize that MySQL, just like a web server, can be accessed from

any computer on the same network. If you’re working on a computer connected

to the Internet, then, depending on the security measures you’ve taken, anyone

in the world could connect to your MySQL server. The need to pick a difficult-

to-guess password should be immediately obvious!

To set a root password for MySQL, you can use the mysqladmin program that comes

with MySQL. If you followed the instructions to install MySQL separately (as ex-

plained earlier in this chapter), the mysqladmin program should be on your system

path. This means you can pop open a Terminal window (or in Windows, a Command

Prompt) and type the name of the program without having to remember where it’s

installed on your computer.

Go ahead and try this now, if you’ve yet to already. Open a Terminal or Command

Prompt and type this command:24

mysqladmin -u root status

When you hit Enter you should see a line or two of basic statistics about your MySQL

server, like this:

24 If you’re using Windows and are unfamiliar with the Command Prompt, check out my article Kev’s

Command Prompt Cheat Sheet [http://www.sitepoint.com/article/command-prompt-cheat-sheet/] for

a quick crash course.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL44

http://www.sitepoint.com/article/command-prompt-cheat-sheet/
http://www.sitepoint.com/article/command-prompt-cheat-sheet/
http://www.sitepoint.com/launch/3eb28e

Uptime: 102261 Threads: 1 Questions: 1 Slow queries: 0 Opens: 15
 Flush tables: 1 Open tables: 0 Queries per second avg: 0.0

If you’re seeing a different message entirely, it’s probably one of two options. First,

you might see an error message telling you that the mysqladmin program was unable

to connect to your MySQL server:

mysqladmin: connect to server at 'localhost' failed
error: 'Can't connect to MySQL server on 'localhost' (10061)'
Check that mysqld is running on localhost and that the port is 3306.
You can check this by doing 'telnet localhost 3306'

This message normally means that your MySQL server simply isn’t running. If you

have it set up to run automatically when your system boots, double-check that the

setup is working. If you normally launch your MySQL server manually, go ahead

and do that before trying the command again.

Second, if you’re using MAMP on the Mac, you’ll probably see this error message

instead:

mysqladmin: connect to server at 'localhost' failed
error: 'Access denied for user 'root'@'localhost' (using password: N
➥O)'

This error message means that the root user on your MySQL server already has a

password set. It turns out that, with your security in mind, MAMP comes with a

root password already set on its built-in MySQL server. That password, however,

is root—so you’re probably still going to want to change it using the instructions

below.

One way or the other, you should now be able to run the mysqladmin program. Now

you can use it to set the root password for your MySQL server:

mysqladmin -u root -p password "newpassword"

Replace newpassword with whatever password you’d like to use for your MySQL

server. Make sure it’s one you can remember, because if you forget your MySQL

root password, you might need to erase your entire MySQL installation and start

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

45Installation

http://www.sitepoint.com/launch/3eb28e

over from scratch! As we’ll see in Chapter 10, it’s usually possible to recover from

such a mishap, but it’s definitely a pain in the neck.

Here’s a spot for you to record your MySQL root password in case you need to:

My MySQL Root Password

root user password: _________________________

When you hit Enter, you’ll be prompted to enter the current password for the root

MySQL user. Just hit Enter again, since the root user has no password at this point,

unless you’ve used MAMP to set up MySQL on your Mac; in this case you should

type root, the default root MySQL password on MAMP.

Let me break this command down for you, so you can understand what each part

means:

mysqladmin

This, of course, is the name of the program you wish to run.

-u root

This specifies the MySQL user account you wish to use to connect to your

MySQL server. On a brand new server, there is only one user account: root.

-p

This tells the program to prompt you for the current password of the user ac-

count. On a brand new MySQL server, the root account has no password, so

you can just hit Enter when prompted. It’s a good idea, however, to make a habit

of including this option, since most of the time you will need to provide a

password to connect to your MySQL server.

password "newpassword"

This instructs the mysqladmin program to change the password of the user ac-

count to newpassword. In this example, whatever password you specify will

become the new password for the root MySQL user.

Now, to try out your new password, request once again that the MySQL server tell

you its current status at the system command prompt, but this time include the -p

option:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL46

http://www.sitepoint.com/launch/3eb28e

mysqladmin -u root -p status

Enter your new password when prompted. As before, you should see a line or two

of statistics about your MySQL server.

Since the root account is now password-protected, attempting to run this command

without the -p switch will give you an “Access Denied” error.

You’re done! With everything set up and running, you’re ready to write your first

PHP script. Before we do that, however, you might want to write a short email to

your web host.

What to Ask Your Web Host
While you tinker with PHP and MySQL on your own computer, it might be good

to start collecting the information you’ll need when it comes time to deploy your

first database driven web site to the public. Here’s a rundown of the details you

should be asking your web host for.

First, you’ll need to know how to transfer files to your web host. You’ll upload PHP

scripts to your host the same way you normally send the HTML files, CSS files, and

images that make up a static web site, so if you already know how to do that, it’s

unnecessary to bother your host. If you’re just starting with a new host, however,

you’ll need to be aware of what file transfer protocol it supports (FTP or SFTP), as

well as knowing what username and password to use when connecting with your

(S)FTP program. You also have to know what directory to put files into so they’re

accessible to web browsers.

In addition to these, you’ll also need to find out a few details about the MySQL

server your host has set up for you. It’s important to know the host name to use to

connect to it (possibly localhost), and your MySQL username and password, which

may or may not be the same as your (S)FTP credentials. Your web host will probably

also have provided an empty database for you to use, which prevents you from in-

terfering with other users’ databases who may share the same MySQL server with

you. If they have provided this, you should establish the name of that database.

Have you taken in all that? Here’s a spot to record the information you’ll need about

your web host:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

47Installation

http://www.sitepoint.com/launch/3eb28e

My Hosting Details

File transfer protocol: FTP■

■ SFTP

(S)FTP host name: _________________________

(S)FTP username: _________________________

(S)FTP password: _________________________

MySQL host name: _________________________

MySQL username: _________________________

MySQL password: _________________________

MySQL database name: _________________________

Your First PHP Script
It would be unfair of me to help you install everything—but stop short of giving

you a taste of what a PHP script looks like until Chapter 3. So here’s a little morsel

to whet your appetite.

Open your favorite text or HTML editor and create a new file called today.php. Type

this into the file:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL48

http://www.sitepoint.com/launch/3eb28e

chapter1/today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Today’s Date</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>Today’s date (according to this web server) is
 <?php

 echo date('l, F dS Y.');

 ?>
 </p>
 </body>
</html>

Editing PHP Scripts in Windows with Notepad

Windows users should note that, to save a file with a .php extension in Notepad,

you’ll need to either select All Files as the file type, or surround the filename with

quotes in the Save As dialog box; otherwise, Notepad will unhelpfully save the file

as today.php.txt, which will fail to work.

Editing PHP Scripts in Mac OS X with TextEdit

Mac OS X users are advised to be careful when using TextEdit to edit .php files,

as it saves them in Rich Text Format, with an invisible .rtf filename extension by

default. To save a new .php file, you must first remember to convert the file to

plain text by selecting Format > Make Plain Text (⇧+⌘+T) from the TextEdit menu.

TextEdit also has a nasty habit of mistaking existing .php files for HTML documents

when opening them, and attempting to display them as formatted text. To avoid

this, you must select the Ignore rich text commands checkbox in the Open dialog

box.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

49Installation

http://www.sitepoint.com/launch/3eb28e

Try a Free IDE!

As you can tell from the preceding warnings, the text editors provided with current

operating systems are a little unsuitable for editing PHP scripts. There are a

number of solid text editors and Integrated Development Environments (IDEs)

with rich support for editing PHP scripts that you can download for free. Here are

a few that work on Windows, Mac OS X, and Linux:

NetBeans http://www.netbeans.org/features/php/

Aptana http://www.aptana.com/php

Komodo Edit http://www.activestate.com/komodo_edit/

If you’d prefer to avoid typing out all the code, you can download this file—along

with the rest of the code in this book—from the code archive. See the Preface for

details on how to download the code archive.

Save the file, and move it to the web root directory of your local web server.

Where’s My Server’s Web Root Directory?

If you’re using an Apache server you installed manually, the web root directory

is the htdocs directory within your Apache installation (that is, C:\Program

Files\Apache Software Foundation\Apache2.2\htdocs on Windows,

/usr/local/apache2/htdocs on Linux).

For Apache servers built into WampServer, the web root directory is the www

directory within your WampServer directory. You can reach it quickly by selecting

the www directory menu item from the WampServer menu in your Windows System

Tray.

If the Apache server you’re using is built into Mac OS X, the web root directory

is /Library/WebServer/Documents.

The Apache server built into MAMP has a web root directory in the htdocs folder

inside the MAMP folder (/Applications/MAMP/htdocs). If you prefer using a different

folder as your web root, you can change it on the Apache tab of the MAMP applic-

ation’s Preferences.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL50

http://www.sitepoint.com/launch/3eb28e

Open your web browser of choice, and type http://localhost/today.php (or

http://localhost:port/today.php if Apache is configured to run on a port other than

the default of 80) into the address bar to view the file you just created.25

You Must Type the URL

You might be used to previewing your web pages by double-clicking on them, or

by using the File > Open… feature of your browser. These methods tell your browser

to load the file directly from your computer’s hard drive, and so they’ll fail to

work with PHP files.

As previously mentioned, PHP scripts require your web server to read and execute

the PHP code they contain before sending the HTML code that’s generated to the

browser. Only if you type the URL (http://localhost/today.php) will your browser

request the file from your web server so that this can happen.

Figure 1.30 shows what the web page generated by your first PHP script should

look like.

Figure 1.30. See your first PHP script in action!

Neat, huh? If you use the View Source feature in your browser, all you’ll see is a

regular HTML file with the date in it. The PHP code (everything between <?php and

?> in the code above) was interpreted by the web server and converted to normal

text before it was sent to your browser. The beauty of PHP, and other server-side

25 If you installed Apache on Windows, you may have selected the option to run it on port 8080. If you’re

using MAMP, it’s configured by default to run Apache on port 8888.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

51Installation

http://www.sitepoint.com/launch/3eb28e

scripting languages, is that the web browser can remain ignorant—the web server

does all the work!

Be reassured also that before too long you’ll know code (like this example) as well

as the back of your hand.

If the date is missing, or if your browser prompts you to download the PHP file in-

stead of displaying it, then something is wrong with your web server’s PHP support.

If you can, use View Source in your browser to look at the code of the page. You’ll

probably see the PHP code right there in the page. Since the browser fails to under-

stand PHP, it just sees <?php … ?> as one long, invalid HTML tag, which it ignores.

Double-check that you have requested the file from your web server rather than

your hard disk (that is, make sure the location bar in your browser shows a URL

beginning with http://localhost), and make sure that PHP support has been properly

installed on your web server using the instructions provided earlier in this chapter.

Full Toolbox, Dirty Hands
You should now be fully equipped with a web server that supports PHP scripts, a

MySQL database server, and a basic understanding of how to use each of these. You

should even have dirtied your hands by writing and successfully testing your first

PHP script!

If the today.php script was unsuccessful for you, drop by the SitePoint Forums26

and we’ll be glad to help you figure out the problem.

In Chapter 2, you’ll learn the basics of relational databases and start working with

MySQL. I’ll also introduce you to the language of database: Structured Query Lan-

guage. If you’ve never worked with a database before, it’ll be a real eye-opener!

26 http://www.sitepoint.com/forums/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL52

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

Chapter2
Introducing MySQL
In Chapter 1, we installed and set up two software programs: the Apache web

server with PHP, and the MySQL database server.

As I explained in that chapter, PHP is a server-side scripting language that lets you

insert into your web pages instructions that your web server software (in most cases,

Apache) will execute before it sends those pages to browsers that request them. In

a brief example, I showed how it was possible to insert the current date into a web

page every time it was requested.

Now, that’s all well and good, but things really become interesting when a database

is added to the mix. In this chapter, we’ll learn what a database is, and how to work

with your own MySQL databases using Structured Query Language.

An Introduction to Databases
A database server (in our case, MySQL) is a program that can store large amounts

of information in an organized format that’s easily accessible through programming

languages like PHP. For example, you could tell PHP to look in the database for a

list of jokes that you’d like to appear on your web site.

In this example, the jokes would be stored entirely in the database. The advantages

of this approach would be twofold: First, instead of having to write an HTML page

for each of your jokes, you could write a single PHP script that was designed to

fetch any joke from the database and display it by generating an HTML page for it

on the fly. Second, adding a joke to your web site would be a simple matter of in-

serting the joke into the database. The PHP code would take care of the rest, auto-

matically displaying the new joke along with the others when it fetched the list

from the database.

Let’s run with this example as we look at how data is stored in a database. A database

is composed of one or more tables, each of which contains a list of items, or things.

For our joke database, we’d probably start with a table called joke that would contain

a list of jokes. Each table in a database has one or more columns, or fields. Each

column holds a certain piece of information about each item in the table. In our

example, our joke table might have one column for the text of the jokes, and another

for the dates on which the jokes were added to the database. Each joke stored in

this way would then be said to be a row or entry in the table. These rows and

columns form a table that looks like Figure 2.1.

Figure 2.1. A typical database table containing a list of jokes

Notice that, in addition to columns for the joke text (joketext) and the date of the

joke (jokedate), I’ve included a column named id. As a matter of good design, a

database table should always provide a means by which we can identify each of its

rows uniquely. Since it’s possible that a single joke could be entered more than

once on the same date, the joketext and jokedate columns can’t be relied upon

to tell all the jokes apart. The function of the id column, therefore, is to assign a

unique number to each joke so that we have an easy way to refer to them and to

keep track of which joke is which. We’ll take a closer look at database design issues

like this in Chapter 5.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL54

http://www.sitepoint.com/launch/3eb28e

So, to review, the table in Figure 2.1 is a three-column table with two rows, or

entries. Each row in the table contains three fields, one for each column in the table:

the joke’s ID, its text, and the date of the joke. With this basic terminology under

your belt, you’re ready to dive into using MySQL.

Logging On to MySQL
Just as a web server is designed to respond to requests from a client (a web browser),

the MySQL database server responds to requests from client programs. Later in this

book, we’ll write our own MySQL client programs in the form of PHP scripts, but

for now we can use some of the client programs that come included with the MySQL

server.

mysqladmin is an example of a MySQL client program. If you followed the instruc-

tions in Chapter 1, after setting up a MySQL server of your own, you used the

mysqladmin client program to connect to the server, establish a password for the

root user, and view basic statistics about the running server.

Another client program that comes with the MySQL server is called mysql. This

program provides the most basic interface for working with a MySQL server, by

establishing a connection to the server and then typing commands one at a time.

The mysql program can be found in the same place as mysqladmin, so if you followed

the instructions in Chapter 1 to add this location to your system path, you should

be able to open a Terminal window (or Command Prompt if you’re using a Windows

system) and type this command to run the mysql client program:

mysql --version

If everything is set up right, this command should output a one-line description of

the version of the mysql client program that you’ve installed. Here’s what this looks

like on my Mac:

mysql Ver 14.14 Distrib 5.1.31, for apple-darwin9.5.0 (i386) using
➥readline 5.1

If instead you receive an error message complaining that your computer is unable

to recognize the mysql command, you should probably revisit the installation in-

structions provided in Chapter 1. Once you’re able to run the mysqladmin commands

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

55Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

in that chapter, the mysql command should work too. If you’re still stuck, drop by

the SitePoint Forums1 and ask for some help.

Assuming the mysql program is running for you, you can now use it to connect to

your MySQL server. First, make sure that server is running, then type this command

and hit Enter:

mysql -u root -p

The -u root and -p parameters perform the same function for this program as they

did for mysqladmin in Chapter 1. -u root tells the program you wish to connect to

the server using the root user account, and -p tells it you’re going to provide a

password.

What you should see next is an Enter password: prompt. Enter the root password

you chose for yourself in Chapter 1, and hit Enter.

If you typed everything correctly, the MySQL client program will introduce itself

and dump you on the MySQL command prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.1.31 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Let’s use a few simple commands to take a look around your MySQL server.

The MySQL server can actually keep track of more than one database. This allows

a web host to set up a single MySQL server for use by several of its subscribers, for

example. So, your first step after connecting to the server should be to choose a

database with which to work. First, let’s retrieve a list of databases on the current

server.

1 http://www.sitepoint.com/forums/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL56

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

Connecting to a Remote MySQL Server

The instructions in this chapter assume you’re working with a MySQL server

running on your own computer. Of course, when it comes time to publish your

first PHP-and-MySQL-powered web site, you will need to know how to work with

the MySQL server provided by your web host, or by your company’s IT department.

Technically, the mysql program we’re using in this chapter can connect to remote

MySQL servers too. You just have to add an additional parameter when running

it:

mysql -h hostname -u username -p

The -h hostname parameter (where hostname is the host name of the MySQL

server to which you want to connect) tells the program to connect to a remote

MySQL server instead of one running on the same computer. If you do this, you’ll

probably also need to specify a username other than root, since the administrator

responsible for the MySQL server will probably want to keep the root password

secret for security reasons.

In practice, most remote MySQL servers will block connections from client pro-

grams running on untrusted computers like yours. Disallowing this type of con-

nection is a common security measure for MySQL servers used in production.

To work with a remote MySQL server, you might be able to connect to a trusted

computer and run the mysql program from there, but a far more common approach

is to use a program called phpMyAdmin to manage your remote databases.

phpMyAdmin is a sophisticated PHP script that lets you work with your MySQL

databases using a web-based interface in your browser. phpMyAdmin connects

to the remote MySQL server in the same way as the PHP scripts we’ll be writing

later in this book.

I’ll show you how to install and use phpMyAdmin in Chapter 10. For now, let’s

focus on learning to work with the MySQL server you’ve installed on your com-

puter.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

57Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

Type this command (including the semicolon!) and press Enter:2

mysql> SHOW DATABASES;

MySQL will show you a list of the databases on the server. If you’re working on a

brand new server, the list should look like this:

+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.00 sec)

The MySQL server uses the first database, named information_schema, to keep

track of all the other databases on the server. Unless you’re doing some very advanced

stuff, you’ll probably leave this database alone.

The second database, mysql, is special too. MySQL uses it to keep track of users,

their passwords, and what they’re allowed to do. We’ll steer clear of this for now,

though we’ll revisit it in Chapter 10, when we discuss MySQL administration.

The third database, named test, is a sample database. You can actually delete this

database because I’ll show you how to create your own database in a moment.

No test on WampServer

As of this writing, WampServer’s initial MySQL database has no test database

in it. No need to be alarmed though; the developers of WampServer just thought

it was as useless as I do, I guess!

Deleting stuff in MySQL is called “dropping” it, and the command for doing so is

appropriately named:

mysql> DROP DATABASE test;

2 As in Chapter 1, the mysql> prompt should already be visible on your screen; just type the command

that comes after it.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL58

http://www.sitepoint.com/launch/3eb28e

If you type this command and press Enter, MySQL will obediently delete the data-

base, displaying “Query OK” in confirmation. Notice that there’s no confirmation

prompt like “Are you sure?”. You have to be very careful to type your commands

correctly in the mysql client program because, as this example shows, you can ob-

literate your entire database—along with all the information it contains—with a

single command!

Before we go any further, let’s learn a couple of fundamentals about the MySQL

command prompt. As you may have noticed, all commands in MySQL are terminated

by a semicolon (;). If you forget the semicolon, MySQL will think you’re still typing

your command, and will let you continue on another line:

mysql> SHOW
 -> DATABASES;

MySQL shows that it’s waiting for you to type more of your command by changing

the prompt from mysql> to ->. This handy feature allows you to spread long com-

mands over several lines.

Case Sensitivity in SQL Queries

Most MySQL commands are not case-sensitive, which means you can type SHOW

DATABASES, show databases, or ShOw DaTaBaSeS, and it will know what you

mean. Database names and table names, however, are case-sensitive when the

MySQL server is running on an operating system with a case-sensitive file system

(like Linux or Mac OS X, depending on your system configuration).

Also, table, column, and other names must be spelled exactly the same when

they’re used more than once in the same command.

For consistency, this book will respect the accepted convention of typing database

commands in all capitals, and database entities (databases, tables, columns, and

so on) in all lowercase.

If you’re halfway through a command and realize that you made a mistake early on,

you may want to cancel the current command entirely and start over from scratch.

To do this, type \c and press Enter:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

59Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

mysql> DROP DATABASE\c
mysql>

MySQL will ignore the command you had begun to type and will return to the

mysql> prompt to await another command.

Finally, if at any time you want to exit the MySQL client program, just type quit

or exit (either will work). This is the only command where the semicolon is unne-

cessary, but you can use one if you want to.

mysql> quit
Bye

Structured Query Language
The set of commands we’ll use to direct MySQL throughout the rest of this book is

part of a standard called Structured Query Language, or SQL (pronounced as either

“sequel” or “ess-cue-ell”—take your pick). Commands in SQL are also referred to

as queries; I’ll use these two terms interchangeably.

SQL is the standard language for interacting with most databases, so, even if you

move from MySQL to a database like Microsoft SQL Server in the future, you’ll find

that most of the commands are identical. It’s important that you understand the

distinction between SQL and MySQL. MySQL is the database server software that

you’re using. SQL is the language that you use to interact with that database.

Learn SQL in Depth

In this book, I’ll teach you the essentials of SQL that every PHP developer needs

to know.

If you decide to make a career out of building database driven web sites, you’ll

find that it pays to know some of the more advanced details of SQL, especially

when it comes to making your sites run as quickly and smoothly as possible.

If you’d like to dive deeper into SQL, I highly recommend the book Simply SQL3

by Rudy Limeback (Melbourne: SitePoint, 2008).

3 http://www.sitepoint.com/books/sql1/

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL60

http://www.sitepoint.com/books/sql1/
http://www.sitepoint.com/launch/3eb28e

Creating a Database
When the time comes to deploy your first database driven web site on the Web,

you’ll likely find that your web host or IT department has already created a MySQL

database for you to use. Since you’re in charge of your own MySQL server, however,

you’ll need to create your own database to use in developing your site.

It’s just as easy to create a database as it is to delete one:

mysql> CREATE DATABASE ijdb;

I chose to name the database ijdb, for Internet Joke Database,4 because that fits with

the example I gave at the beginning of this chapter—a web site that displays a

database of jokes. Feel free to give the database any name you like, though.

Now that you have a database, you need to tell MySQL that you want to use it.

Again, the command is easy to remember:

mysql> USE ijdb;

You’re now ready to use your database. Since a database is empty until you add

some tables to it, our first order of business will be to create a table that will hold

your jokes (now might be a good time to think of some!).

Creating a Table
The SQL commands we’ve encountered so far have been reasonably simple, but as

tables are so flexible, it takes a more complicated command to create them. The

basic form of the command is as follows:

mysql> CREATE TABLE table_name (
 -> column1Name column1Type column1Details,
 -> column2Name column2Type column2Details,
 -> ⋮
 ->) DEFAULT CHARACTER SET charset;

4 With a tip of the hat to the Internet Movie Database. [http://www.imdb.com]

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

61Introducing MySQL

http://www.imdb.com
http://www.sitepoint.com/launch/3eb28e

Let’s continue with the joke table I showed you in Figure 2.1. You’ll recall that it

had three columns: id (a number), joketext (the text of the joke), and jokedate

(the date on which the joke was entered). This is the command to create that table:

mysql> CREATE TABLE joke (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> joketext TEXT,
 -> jokedate DATE NOT NULL
 ->) DEFAULT CHARACTER SET utf8;

Looks scary, huh? Let’s break it down:

CREATE TABLE joke (

This first line is fairly simple; it says that we want to create a new table named

joke. The opening parenthesis (() marks the beginning of the list of columns

in the table.

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

This second line says that we want a column called id that will contain an in-

teger (INT), that is, a whole number. The rest of this line deals with special details

for the column:

1. First, when creating a row in this table, this column is not allowed to be left

blank (NOT NULL).

2. Next, if we omit specifying a particular value for this column when we add

a new entry to the table, we want MySQL to automatically pick a value that

is one more than the highest value in the table so far (AUTO_INCREMENT).

3. Finally, this column is to act as a unique identifier for the entries in the table,

so all values in this column must be unique (PRIMARY KEY).

joketext TEXT,

This third line is super simple; it says that we want a column called joketext,

which will contain text (TEXT).

jokedate DATA NOT NULL

This fourth line defines our last column, called jokedate; this will contain a

date (DATE), which cannot be left blank (NOT NULL).

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL62

http://www.sitepoint.com/launch/3eb28e

) DEFAULT CHARACTER SET utf8;

The closing parenthesis ()) marks the end of the list of columns in the table.

DEFAULT CHARACTER SET utf8 tells MySQL that you will be storing UTF-8 en-

coded text in this table. UTF-8 is the most common encoding used for web

content, so you should use it in all your database tables that you intend to use

on the Web.

Finally, the semicolon tells the mysql client program that you’ve finished typing

your query.

Note that we assigned a specific data type to each column we created. id will contain

integers, joketext will contain text, and jokedate will contain dates. MySQL re-

quires you to specify in advance a data type for each column. This helps to keep

your data organized, and allows you to compare the values within a column in

powerful ways, as we’ll see later. For a complete list of supported MySQL data

types, see Appendix C.

Now, if you typed the above command correctly, MySQL will respond with “Query

OK”, and your first table will be created. If you made a typing mistake, MySQL will

tell you there was a problem with the query you typed, and will try to indicate

where it had trouble understanding what you meant.

For such a complicated command, “Query OK” is a fairly underwhelming response.

Let’s have a look at your new table to make sure it was created properly. Type the

following command:

mysql> SHOW TABLES;

The response should look like this:

+----------------+
| Tables_in_ijdb |
+----------------+
| joke |
+----------------+
1 row in set (0.02 sec)

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

63Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

This is a list of all the tables in your database (which we named ijdb above). The

list contains only one table: the joke table you just created. So far, everything seems

fine. Let’s take a closer look at the joke table itself using a DESCRIBE query:

mysql> DESCRIBE joke;
+----------+---------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+---------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
joketext	text	YES		NULL	
jokedate	date	NO		NULL	
+----------+---------+------+-----+---------+----------------+
3 rows in set (0.10 sec)

As you can see, there are three columns (or fields) in this table, which appear as

the three rows in this table of results. The details are a little cryptic, but if you look

at them closely, you should be able to figure out what they mean. It’s nothing to be

too worried about, though. You have better things to do, like adding some jokes to

your table!

We need to look at just one more task before you get to that, though: deleting a table.

This task is as frighteningly easy as deleting a database. In fact, the command is al-

most identical. Don’t run this command with your joke table, unless you actually

do want to be rid of it!

mysql> DROP TABLE tableName;

Inserting Data into a Table
Your database is created and your table is built; all that’s left is to put some actual

jokes into the database. The command that inserts data into a database is called,

appropriately enough, INSERT. This command can take two basic forms:

mysql> INSERT INTO tableName SET
 -> column1Name = column1Value,
 -> column2Name = column2Value,
 -> ⋮
 -> ;

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL64

http://www.sitepoint.com/launch/3eb28e

mysql> INSERT INTO tableName
 -> (column1Name, column2Name, …)
 -> VALUES (column1Value, column2Value, …);

So, to add a joke to our table, we can use either of these commands:

mysql> INSERT INTO joke SET
 -> joketext = "Why did the chicken cross the road? To get to
 "> the other side!",
 -> jokedate = "2009-04-01";

mysql> INSERT INTO joke
 -> (joketext, jokedate) VALUES (
 -> "Why did the chicken cross the road? To get to the other
 "> side!",
 -> "2009-04-01"
 ->);

Note that in both forms of the INSERT command, the order in which you list the

columns must match the order in which you list the values. Otherwise, the order

of the columns is unimportant.

As you typed this query, you’ll have noticed that we used double quotes (") to mark

where the text of the joke started and ended. A piece of text enclosed in quotes this

way is called a text string, and this is how you represent most data values in SQL.

You’ll notice, for instance, that the dates are typed as text strings as well, in the

form "YYYY-MM-DD".

If you prefer, you can type text strings surrounded with single quotes (') instead of

double quotes:

mysql> INSERT INTO joke SET
 -> joketext = 'Why did the chicken cross the road? To get to
 '> the other side!',
 -> jokedate = '2009-04-01';

You might be wondering what happens when the text of a joke itself contains quotes.

Well, if the text contains single quotes, the easiest thing to do is surround it with

double quotes. Conversely, if the text contains double quotes, surround it with

single quotes.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

65Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

If the text you want to include in your query contains both single and double quotes,

you’ll have to escape the conflicting characters within your text string. You escape

a character in SQL by adding a backslash (\) immediately before it. This tells MySQL

to ignore any “special meaning” this character might have. In the case of single or

double quotes, it tells MySQL not to interpret the character as the end of the text

string.

To make this as clear as possible, here’s an INSERT command for a joke containing

both single and double quotes:

mysql> INSERT INTO joke
 -> (joketext, jokedate) VALUES (
 -> 'Knock-knock! Who\'s there? Boo! "Boo" who?
 '> Don\'t cry; it\'s only a joke!',
 -> "2009-04-01");

As you can see, I’ve marked the start and end of the text string for the joke text using

single quotes. I’ve therefore had to escape the three single quotes within the string

by putting backslashes before them. MySQL sees these backslashes and knows to

treat the single quotes as characters within the string, rather than end-of-string

markers.

If you’re especially clever, you might now be wondering how to include actual

backslashes in SQL text strings. The answer is to type a double-backslash (\\), which

MySQL will see and treat as a single backslash in the string of text.

Now that you know how to add entries to a table, let’s see how we can view those

entries.

Viewing Stored Data
The command we use to view data stored in database tables, SELECT, is the most

complicated command in the SQL language. The reason for this complexity is that

the chief strength of a database is its flexibility in data retrieval. At this early point

in our experience with databases we need only fairly simple lists of results, so we’ll

just consider the simpler forms of the SELECT command here.

This command will list everything that’s stored in the joke table:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL66

http://www.sitepoint.com/launch/3eb28e

mysql> SELECT * FROM joke;

Read aloud, this command says “select everything from joke.” If you try this com-

mand, your results will resemble the following:

+----+--
-+------------+
| id | joketext
 | jokedate |
+----+--
-+------------+
| 1 | Why did the chicken cross the road? To get to the other side!
 | 2009-04-01 |
+----+--
-+------------+
1 row in set (0.00 sec)

The results look a little disorganized because the text in the joketext column is so

long that the table is too wide to fit on the screen properly. For this reason, you

might want to tell MySQL to leave out the joketext column. The command for

doing this is as follows:

mysql> SELECT id, jokedate FROM joke;

This time, instead of telling it to “select everything,” we told it precisely which

columns we wanted to see. The results look like this:

+----+------------+
| id | jokedate |
+----+------------+
| 1 | 2009-04-01 |
+----+------------+
1 row in set (0.00 sec)

That’s okay, but we’d like to see at least some of the joke text? As well as being able

to name specific columns that we want the SELECT command to show us, we can

use functions to modify each column’s display. One function, called LEFT, lets us

tell MySQL to display a column’s contents up to a specified maximum number of

characters. For example, let’s say we wanted to see only the first 20 characters of

the joketext column. Here’s the command we’d use:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

67Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

mysql> SELECT id, LEFT(joketext, 20), jokedate FROM joke;
+----+----------------------+------------+
| id | LEFT(joketext, 20) | jokedate |
+----+----------------------+------------+
| 1 | Why did the chicken | 2009-04-01 |
+----+----------------------+------------+
1 row in set (0.00 sec)

See how that worked? Another useful function is COUNT, which lets us count the

number of results returned. If, for example, you wanted to find out how many jokes

were stored in your table, you could use the following command:

mysql> SELECT COUNT(*) FROM joke;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.02 sec)

As you can see, you have just one joke in your table.

So far, all the examples have fetched all the entries in the table; however, you can

limit your results to include only those database entries that have the specific attrib-

utes you want. You set these restrictions by adding what’s called a WHERE clause to

the SELECT command. Consider this example:

mysql> SELECT COUNT(*) FROM joke WHERE jokedate >= "2009-01-01";

This query will count the number of jokes that have dates greater than or equal to

January 1, 2009. In the case of dates, “greater than or equal to” means “on or after.”

Another variation on this theme lets you search for entries that contain a certain

piece of text. Check out this query:

mysql> SELECT joketext FROM joke WHERE joketext LIKE "%chicken%";

This query displays the full text of all jokes that contain the text “chicken” in their

joketext column. The LIKE keyword tells MySQL that the named column must

match the given pattern. In this case, the pattern we’ve used is "%chicken%". The

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL68

http://www.sitepoint.com/launch/3eb28e

% signs indicate that the text “chicken” may be preceded and/or followed by any

string of text.

Additional conditions may also be combined in the WHERE clause to further restrict

results. For example, to display knock-knock jokes from April 2009 only, you could

use the following query:

mysql> SELECT joketext FROM joke WHERE
 -> joketext LIKE "%knock%" AND
 -> jokedate >= "2009-04-01" AND
 -> jokedate < "2009-05-01";

Enter a few more jokes into the table and experiment with SELECT queries. A good

familiarity with the SELECT command will come in handy later in this book.

You can do a lot with the SELECT command. We’ll look at some of its more advanced

features later, when we need them.

Modifying Stored Data
Having entered your data into a database table, you might like to change it.

Whether you want to correct a spelling mistake, or change the date attached to a

joke, such alterations are made using the UPDATE command. This command contains

elements of the SELECT and INSERT commands, since the command both picks out

entries for modification and sets column values. The general form of the UPDATE

command is as follows:

mysql> UPDATE tableName SET
 -> colName = newValue, …
 -> WHERE conditions;

So, for example, if we wanted to change the date on the joke we entered above, we’d

use the following command:

mysql> UPDATE joke SET jokedate = "2010-04-01" WHERE id = "1";

Here’s where that id column comes in handy: it enables you to single out a joke for

changes easily. The WHERE clause used here works just as it did in the SELECT com-

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

69Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

mand. This next command, for example, changes the date of all entries that contain

the word “chicken”:

mysql> UPDATE joke SET jokedate = "2010-04-01"
 -> WHERE joketext LIKE "%chicken%";

Deleting Stored Data
Deleting entries in SQL is dangerously easy, which, if you’ve yet to notice, is a re-

curring theme. Here’s the command syntax:

mysql> DELETE FROM tableName WHERE conditions;

To delete all chicken jokes from your table, you’d use the following query:

mysql> DELETE FROM joke WHERE joketext LIKE "%chicken%";

Careful With That Enter Key!

Believe it or not, the WHERE clause in the DELETE command is actually optional.

Consequently, you should be very careful when typing this command! If you leave

the WHERE clause out, the DELETE command will then apply to all entries in the

table.

This command will empty the joke table in one fell swoop:

mysql> DELETE FROM joke;

Scary, huh?

Let PHP Do the Typing
There’s a lot more to the MySQL database server software and SQL than the handful

of basic commands I’ve presented here, but these commands are by far the most

commonly used.

At this stage, you might be thinking that databases seem a little cumbersome. SQL

can be fairly tricky to type—its commands tend to be rather long and verbose com-

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL70

http://www.sitepoint.com/launch/3eb28e

pared to other computer languages. You’re probably already dreading the thought

of typing in a complete library of jokes in the form of INSERT commands.

Don’t sweat it! As we proceed through this book, you’ll be surprised at how few

SQL queries you actually type by hand. Generally, you’ll be writing PHP scripts

that type your SQL for you. If you want to be able to insert a bunch of jokes into

your database, for example, you’ll typically create a PHP script for adding jokes that

includes the necessary INSERT query, with a placeholder for the joke text. You can

then run that PHP script whenever you have jokes to add. The PHP script prompts

you to enter your joke, then issues the appropriate INSERT query to your MySQL

server.

For now, however, it’s important for you to gain a good feel for typing SQL by hand.

It will give you a strong sense of the inner workings of MySQL databases, and will

make you appreciate the work that PHP will save you all the more!

To date, we’ve only worked with a single table, but to realize the true power of a

relational database, you’ll also need to learn how to use multiple tables together to

represent potentially complex relationships between the items stored in your data-

base. I’ll cover all this and more in Chapter 5, in which I’ll discuss database design

principles and show off some more advanced examples.

For now, though, we’ve accomplished our objective, and you can comfortably interact

with MySQL using the mysql client program. In Chapter 3, the fun continues as we

delve into the PHP language, and use it to create several dynamically-generated

web pages.

If you like, you can practice with MySQL a little before you move on by creating a

decent-sized joke table. This knowledge will come in handy in Chapter 4.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

71Introducing MySQL

http://www.sitepoint.com/launch/3eb28e

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

http://www.sitepoint.com/launch/3eb28e

Chapter3
Introducing PHP
PHP is a server-side language. This concept may be a little difficult to grasp, espe-

cially if you’re used to designing pages using only client-side languages like HTML,

CSS, and JavaScript.

A server-side language is similar to JavaScript in that it allows you to embed little

programs (scripts) into the HTML code of a web page. When executed, these programs

give you greater control over what appears in the browser window than HTML alone

can provide. The key difference between JavaScript and PHP is the stage of loading

the web page at which these embedded programs are executed.

Client-side languages like JavaScript are read and executed by the web browser,

after downloading the web page (embedded programs and all) from the web server.

In contrast, server-side languages like PHP are run by the web server, before sending

the web page to the browser. Whereas client-side languages give you control over

how a page behaves once it’s displayed by the browser, server-side languages let

you generate customized pages on the fly before they’re even sent to the browser.

Once the web server has executed the PHP code embedded in a web page, the results

of that code’s execution take the place of the PHP code in the page. When the browser

receives the page, all it sees is standard HTML code, hence the name: server-side

language. Let’s look back at the today.php example presented in Chapter 1:

chapter3/today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Today’s Date</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>Today’s date (according to this web server) is

<?php

 echo date('l, F dS Y.');

 ?>
 </p>
 </body>
</html>

Most of this is plain HTML; however, the line between <?php and ?> is PHP code.

<?php marks the start of an embedded PHP script and ?> marks the end of such a

script. The web server is asked to interpret everything between these two delimiters,

and to convert it to regular HTML code before it sends the web page to the requesting

browser. The browser is presented with the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Today’s Date</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>Today’s Date (according to this web server) is

Wednesday, April 1st 2009. </p>
 </body>
</html>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL74

http://www.sitepoint.com/launch/3eb28e

Notice that all signs of the PHP code have disappeared. In its place, the output of

the script has appeared, and it looks just like standard HTML. This example

demonstrates several advantages of server-side scripting:

No browser compatibility issues

PHP scripts are interpreted by the web server alone, so there’s no need to worry

about whether the language you’re using is supported by the visitor’s browser.

Access to server-side resources

In the above example, we placed the date, according to the web server, into the

web page. If we had inserted the date using JavaScript, we’d only be able to

display the date according to the computer on which the web browser was

running. Granted, there are more impressive examples of the exploitation of

server-side resources; a better example might be inserting content pulled out of

a MySQL database (hint, hint …).

Reduced load on the client

JavaScript can delay the display of a web page on slower computers significantly,

as the browser must run the script before it can display the web page. With

server-side code, this burden is passed to the web server machine, which you

can make as beefy as your application requires.

Basic Syntax and Statements
PHP syntax will be very familiar to anyone with an understanding of C, C++, C#,

Java, JavaScript, Perl, or any other C-derived language. If you’re unfamiliar with

any of these languages, or if you’re new to programming in general, there’s no need

to worry about it!

A PHP script consists of a series of commands, or statements. Each statement is an

instruction that must be followed by the web server before it can proceed to the

next. PHP statements, like those in the above-mentioned languages, are always ter-

minated by a semicolon (;).

This is a typical PHP statement:

echo 'This is a test!';

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

75Introducing PHP

http://www.sitepoint.com/launch/3eb28e

This is an echo statement, which is used to generate content (usually HTML code)

to be sent to the browser. An echo statement simply takes the text it’s given, and

inserts it into the page’s HTML code at the position of the PHP script that contains

it.

In this case, we have supplied a string of text to be output: 'This is a

test!'. Notice that the string of text contains HTML tags

(and), which is perfectly acceptable. So, if we take this state-

ment and put it into a complete web page, here’s the resulting code:

chapter3/echo.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Simple PHP Example</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p><?php echo 'This is a test!'; ?></p>
 </body>
</html>

If you place this file on your web server, a browser that requests the page will receive

this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Simple PHP Example</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>This is a test!</p>
 </body>
</html>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL76

http://www.sitepoint.com/launch/3eb28e

The today.php example we looked at earlier contained a slightly more complex echo

statement:

chapter3/today.php (excerpt)

echo date('l, F dS Y.');

Instead of giving echo a simple string of text to output, this statement invokes a

built-in function called date and passes it a string of text: 'l, F dS Y.'. You can

think of built-in functions as tasks that PHP knows how to do without your needing

to spell out the details. PHP has many built-in functions that let you do everything

from sending email to working with information stored in various types of databases.

When you invoke a function in PHP, you’re said to be calling that function. Most

functions return a value when they’re called; PHP then replaces the function call

with that value when it executes the statement. In this case, our echo statement

contains a call to the date function, which returns the current date as a string of

text (the format of which is specified by the text string in the function call). The

echo statement therefore outputs the value returned by the function call.

You may wonder why we need to surround the string of text with both parentheses

(()) and single quotes (''). As in SQL, quotes are used in PHP to mark the beginning

and end of strings of text, so it makes sense for them to be there. The parentheses

serve two purposes. First, they indicate that date is a function that you want to call.

Second, they mark the beginning and end of a list of parameters (or arguments)

that you wish to provide, in order to tell the function what to do. In the case of the

date function, you need to provide a string of text that describes the format in which

you want the date to appear.1 Later on, we’ll look at functions that take more than

one parameter, and we’ll separate those parameters with commas. We’ll also consider

functions that take no parameters at all. These functions will still need the paren-

theses, though it’s unnecessary to type anything between them.

1 A full reference is available in the online documentation for the date function

[http://www.php.net/date/].

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

77Introducing PHP

http://www.php.net/date/
http://www.sitepoint.com/launch/3eb28e

Variables, Operators, and Comments
Variables in PHP are identical to variables in most other programming languages.

For the uninitiated, a variable can be thought of as a name that’s given to an imag-

inary box into which any literal value may be placed. The following statement

creates a variable called $testvariable (all variable names in PHP begin with a

dollar sign) and assigns it a literal value of 3:

$testvariable = 3;

PHP is a loosely typed language. This means that a single variable may contain any

type of data, be it a number, a string of text, or some other kind of value, and may

change types over its lifetime. So the following statement, if you were to type it

after the statement above, assigns a new value to the existing $testvariable. In

the process, the variable changes type: where it used to contain a number, it now

contains a string of text:

$testvariable = 'Three';

The equals sign we used in the last two statements is called the assignment operator,

as it’s used to assign values to variables. Other operators may be used to perform

various mathematical operations on values:

$testvariable = 1 + 1; // Assigns a value of 2
$testvariable = 1 - 1; // Assigns a value of 0
$testvariable = 2 * 2; // Assigns a value of 4
$testvariable = 2 / 2; // Assigns a value of 1

From the above examples, you can probably tell that + is the addition operator, -

is the subtraction operator, * is the multiplication operator, and / is the division

operator. These are all called arithmetic operators, because they perform arithmetic

on numbers.

Each of the lines above ends with a comment. Comments are a way to describe what

your code is doing. They insert explanatory text into your code—text that the PHP

interpreter will ignore. Comments begin with // and they finish at the end of the

same line. If you need a comment to span several lines, you can instead start your

comment with /*, and end it with */. The PHP interpreter will ignore everything

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL78

http://www.sitepoint.com/launch/3eb28e

between these two delimiters. I’ll use comments throughout the rest of this book to

help explain some of the code I present.

Returning to the operators, there’s another one that sticks strings of text together,

called the string concatenation operator:

$testvariable = 'Hi ' . 'there!'; // Assigns a value of 'Hi there!'

Variables may be used almost anywhere that you use a literal value. Consider this

series of statements:

$var1 = 'PHP'; // Assigns a value of 'PHP' to $var1
$var2 = 5; // Assigns a value of 5 to $var2
$var3 = $var2 + 1; // Assigns a value of 6 to $var3
$var2 = $var1; // Assigns a value of 'PHP' to $var2
echo $var1; // Outputs 'PHP'
echo $var2; // Outputs 'PHP'
echo $var3; // Outputs '6'
echo $var1 . ' rules!'; // Outputs 'PHP rules!'
echo "$var1 rules!"; // Outputs 'PHP rules!'
echo '$var1 rules!'; // Outputs '$var1 rules!'

Notice the last two lines in particular. You can include the name of a variable right

inside a text string, and have the value inserted in its place if you surround the

string with double quotes instead of single quotes. This process of converting variable

names to their values is known as variable interpolation. However, as the last line

demonstrates, a string surrounded with single quotes will not interpolate the variable

names it contains.

Arrays
An array is a special kind of variable that contains multiple values. If you think of

a variable as a box that contains a value, then an array can be thought of as a box

with compartments, where each compartment is able to store an individual value.

The simplest way to create an array in PHP is to use the built-in array function:

$myarray = array('one', 2, '3');

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

79Introducing PHP

http://www.sitepoint.com/launch/3eb28e

This code creates an array called $myarray that contains three values: 'one', 2, and

'3'. Just like an ordinary variable, each space in an array can contain any type of

value. In this case, the first and third spaces contain strings, while the second con-

tains a number.

To access a value stored in an array, you need to know its index. Typically, arrays

use numbers, starting with zero, as indices to point to the values they contain. That

is, the first value (or element) of an array has index 0, the second has index 1, the

third has index 2, and so on. In general, therefore, the index of the nth element of

an array is n–1. Once you know the index of the value you’re interested in, you can

retrieve that value by placing that index in square brackets after the array variable

name:

echo $myarray[0]; // Outputs 'one'
echo $myarray[1]; // Outputs '2'
echo $myarray[2]; // Outputs '3'

Each value stored in an array is called an element of that array. You can use an index

in square brackets to add new elements, or assign new values to existing array ele-

ments:

$myarray[1] = 'two'; // Assign a new value
$myarray[3] = 'four'; // Create a new element

You can add elements to the end of an array using the assignment operator as usual,

but leaving empty the square brackets that follow the variable name:

$myarray[] = 'the fifth element';
echo $myarray[4]; // Outputs 'the fifth element'

However, numbers are only the most common choice for array indices; there’s an-

other possibility. You can also use strings as indices to create what’s called an asso-

ciative array. This type of array is called associative because it associates values

with meaningful indices. In this example, we associate a date (in the form of a string)

with each of three names:

$birthdays['Kevin'] = '1978-04-12';
$birthdays['Stephanie'] = '1980-05-16';
$birthdays['David'] = '1983-09-09';

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL80

http://www.sitepoint.com/launch/3eb28e

The array function also lets you create associative arrays, if you prefer that method.

Here’s how we’d use it to create the $birthdays array:

$birthdays = array('Kevin' => '1978-04-12',
 'Stephanie' => '1980-05-16', 'David' => '1983-09-09');

Now, if we want to know Kevin’s birthday, we look it up using the name as the index:

echo 'My birthday is: ' . $birthdays['Kevin'];

This type of array is especially important when it comes to user interaction in PHP,

as we’ll see in the next section. I’ll demonstrate other uses of arrays throughout this

book.

User Interaction and Forms
For most database driven web sites these days, you need to do more that just dynam-

ically generate pages based on database data; you must also provide some degree

of interactivity, even if it’s just a search box.

Veterans of JavaScript tend to think of interactivity in terms of event handlers,

which let you react directly to the actions of the user—for example, the movement

of the cursor over a link on the page. Server-side scripting languages such as PHP

have a more limited scope when it comes to support for user interaction. As PHP

code is only activated when a request is made to the server, user interaction can

occur only in a back-and-forth fashion: the user sends requests to the server, and

the server replies with dynamically generated pages.2

The key to creating interactivity with PHP is to understand the techniques we can

use to send information about a user’s interaction along with a request for a new

web page. As it turns out, PHP makes this fairly easy.

2 To some extent, the rise of Ajax techniques in the JavaScript world over the past few years has changed

this. It’s now possible for JavaScript code, responding to a user action such as mouse movement, to send

a request to the web server, invoking a PHP script. For the purposes of this book, however, we’ll stick

to non-Ajax applications. If you’d like to learn how to use PHP with Ajax, check out Build Your Own

AJAX Web Applications [http://www.sitepoint.com/books/ajax1/] by Matthew Eernisse (Melbourne:

SitePoint, 2006).

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

81Introducing PHP

http://www.sitepoint.com/books/ajax1/
http://www.sitepoint.com/books/ajax1/
http://www.sitepoint.com/launch/3eb28e

The simplest method we can use to send information along with a page request is

to use the URL query string. If you’ve ever seen a URL in which a question mark

followed the file name, you’ve witnessed this technique in use. For example, if you

search for “SitePoint” on Google, it will take you to the following URL to see the

search results:

http://www.google.com/search?hl=en&q=SitePoint&btnG=Google+Search&
➥meta=

See the question mark in the URL? See how the text that follows the question mark

contains things like your search query (SitePoint) and the name of the button you

clicked (Google+Search)? That information is being sent along with the request for

http://www.google.com/search.

Let’s code up an easy example of our own. Create a regular HTML file called

welcome1.html (no .php file name extension is required, since there will be no PHP

code in this file) and insert this link:

chapter3/welcome1.html (excerpt)

Hi, I’m Kevin!

This is a link to a file called welcome1.php, but as well as linking to the file, you’re

also passing a variable along with the page request. The variable is passed as part

of the query string, which is the portion of the URL that follows the question mark.

The variable is called name and its value is Kevin. To restate, you have created a

link that loads welcome1.php, and informs the PHP code contained in that file that

name equals Kevin.

To really understand the effect of this link, we need to look at welcome1.php. Create

it as a new HTML file, but, this time, note the .php file name extension—this tells

the web server that it can expect to interpret some PHP code in the file. In the <body>

of this new web page, type the following:

chapter3/welcome1.php (excerpt)

<?php
$name = $_GET['name'];
echo 'Welcome to our web site, ' . $name . '!';
?>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL82

http://www.sitepoint.com/launch/3eb28e

Now, put these two files (welcome1.html and welcome1.php) onto your web server,

and load the first file in your browser (the URL should be similar to

http://localhost/welcome1.html, or http://localhost:8080/welcome1.html if your

web server is running on a port other than 80). Click the link in that first page to

request the PHP script. You should see that the resulting page says “Welcome to

our web site, Kevin!”, as shown in Figure 3.1.

Figure 3.1. Greet users with a personalized welcome message

Let’s take a closer look at the code that made this possible. The most important line

is this one:

chapter3/welcome1.php (excerpt)

$name = $_GET['name'];

If you were paying close attention in the section called “Arrays”, you’ll recognize

what this line does. It assigns to a new variable called $name the value stored in the

'name' element of the array called $_GET. But where does the $_GET array come

from?

It turns out that $_GET is one of a number of variables that PHP automatically creates

when it receives a request from a browser. PHP creates $_GET as an array variable

that contains any values passed in the query string. $_GET is an associative array,

so the value of the name variable passed in the query string can be accessed as

$_GET['name']. Your welcome1.php script assigns this value to an ordinary PHP

variable ($name), then displays it as part of a text string using an echo statement:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

83Introducing PHP

http://www.sitepoint.com/launch/3eb28e

chapter3/welcome1.php (excerpt)

echo 'Welcome to our web site, ' . $name . '!';

The value of the $name variable is inserted into the output string using the string

concatenation operator (.) that we looked at in the section called “Variables, Oper-

ators, and Comments”.

But look out! There is a security hole lurking in this code! Although PHP is an easy

programming language to learn, it turns out it’s also especially easy to introduce

security issues into web sites using PHP if you’re unaware of what precautions to

take. Before we go any further with the language, I want to make sure you’re able

to spot and fix this particular security issue, since it’s probably the most common

kind of security issue on the Web today.

The security issue here stems from the fact that the welcome1.php script is generating

a page containing content that is under the control of the user—in this case, the

$name variable. Although the $name variable will normally receive its value from

the URL query string in the link on the welcome1.html page, a malicious user could

edit the URL to send a different value for the name variable.

To see how this would work, click the link in welcome1.html again. When you see

the resulting page (with the welcome message containing the name “Kevin”), take

a look at the URL in the address bar of your browser. It should look similar to this:

http://localhost/welcome1.php?name=Kevin

Edit the URL to insert a tag before the name, and a tag following the name,

like this:

http://localhost/welcome1.php?name=Kevin

Hit Enter to load this new URL, and notice that the name in the page is now bold,

as shown in Figure 3.2.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL84

http://www.sitepoint.com/launch/3eb28e

Figure 3.2. Easy exploitation will only embolden attackers!

See what’s happening here? The user can type any HTML code into the URL, and

your PHP script includes it in the code of the generated page without question. If

the code is as innocuous as a tag there’s no problem, but a malicious user could

include sophisticated JavaScript code that performed malicious actions like steal

the user’s password. All the attacker would have to do, then, would be to publish

the modified link on some other site under the attacker’s control, and then entice

one of your users to click it. The attacker could even embed the link in an email

and send it to your users. If one of your users clicked the link, the attacker’s code

would be included in your page and the trap would be sprung!

I hate to scare you with this talk of malicious hackers attacking your users by turning

your own PHP code against you, particularly when you’e only just learning the

language. The fact is, however, that PHP’s biggest weakness as a language is how

easy it is to introduce security issues like this. Some might say that most of the energy

you spend learning to write PHP to a professional standard is spent on avoiding

security issues. The sooner you’re exposed to these issues, however, the sooner you

become accustomed to avoiding them, and the less of a stumbling block they’ll be

for you going forward.

So, how can we generate a page containing the user’s name without opening it up

to abuse by attackers? The solution is to treat the value supplied for the $name

variable as plain text to be displayed on your page, rather than as HTML to be in-

cluded in the page’s code. This is a subtle distinction, so let me show you what I

mean.

Copy your welcome1.html file and rename it to welcome2.html. Edit the link it contains

so that it points to welcome2.php instead of welcome1.php:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

85Introducing PHP

http://www.sitepoint.com/launch/3eb28e

chapter3/welcome2.html (excerpt)

Hi, I’m Kevin!

Copy your welcome1.php file and rename it to welcome2.php. Edit the PHP code it

contains so that it looks like this:

chapter3/welcome2.php (excerpt)

<?php
$name = $_GET['name'];
echo 'Welcome to our web site, ' .

htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';
?>

There’s a lot going on in this code, so let me break it down for you. The first line is

the same as it was previously, assigning to $name the value of the 'name' element

from the $_GET array. The echo statement that follows it is drastically different,

though. Whereas previously, we simply dumped the $name variable, naked, into

the echo statement, this version of the code uses the built-in PHP function

htmlspecialchars to perform a critical conversion.

Remember, the security hole comes from the fact that, in welcome1.php, HTML code

in the $name variable is dumped directly into the code of the generated page, and

can therefore do anything that HTML code can do. What htmlspecialchars does

is convert “special HTML characters” like “<” and “>” into HTML character entities

like < and >, which prevents them from being interpreted as HTML code by

the browser. I’ll demonstrate this for you in a moment.

First, let’s take a closer look at this new code. The call to the htmlspecialchars

function is the first example in this book of a PHP function that takes more than

one parameter. Here’s the function call all by itself:

htmlspecialchars($name, ENT_QUOTES, 'UTF-8')

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL86

http://www.sitepoint.com/launch/3eb28e

The first parameter is the $name variable (the text to be converted). The second

parameter is the PHP constant3 ENT_QUOTES, which tells htmlspecialchars to

convert single and double quotes in addition to other special characters. The third

parameter is the string 'UTF-8', which tells PHP what character encoding to use to

interpret the text you give it.

The Perks and Pitfalls of UTF-8 with PHP

You may have noticed that all of the example HTML pages in this book contain

the following <meta> tag near the top:

 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>

This tag tells the browser that receives this page that the HTML code of the page

is encoded as UTF-8 text.4

In a few pages, we’ll reach the section on building HTML forms. By encoding your

pages as UTF-8, your users can submit text containing thousands of foreign char-

acters that your site would otherwise be unable to handle.

Unfortunately, many of PHP’s built-in functions, such as htmlspecialchars,

assume you’re using the much simpler ISO-8859-1 character encoding by default.

Therefore, you need to let them know you’re using UTF-8 when you use these

functions.

If you can, you should also tell your text editor to save your HTML and PHP files

as UTF-8 encoded text, but this is only required if you want to type advanced

characters (like curly quotes or dashes) or foreign characters (like “é”) into your

HTML or PHP code. The code in this book plays it safe and uses HTML character

entities (for example, ’ for a curly right quote), which will work regardless.

3 A PHP constant is like a variable whose value you’re unable to change. Unlike variables, constants

don’t start with a dollar sign. PHP comes with a number of built-in constants like ENT_QUOTES that

are used to control built-in functions like htmlspecialchars.
4 UTF-8 is one of many standards for representing text as a series of ones and zeros in computer

memory, called character encodings. If you’re curious to learn all about character encodings, check

out The Definitive Guide to Web Character Encoding

[http://www.sitepoint.com/article/guide-web-character-encoding/].

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

87Introducing PHP

http://www.sitepoint.com/article/guide-web-character-encoding/
http://www.sitepoint.com/launch/3eb28e

Open up welcome2.html in your browser and click the link that now points to

welcome2.php. Once again, you’ll see the welcome message “Welcome to our web

site, Kevin!”. As you did before, modify the URL to include and tags sur-

rounding the name:

http://localhost/welcome2.php?name=Kevin

This time, when you hit Enter, instead of the name turning bold in the page, you

should see the actual text that you typed, as shown in Figure 3.3.

Figure 3.3. It sure is ugly, but it’s secure!

If you view the source of the page, you can confirm that the htmlspecialchars

function did its job and converted the “<” and “>” characters present in the provided

name into the < and > HTML character entities, respectively. This prevents

malicious users from injecting unwanted code into your site. If they try anything

like that, the code is harmlessly displayed as plain text on the page.

We’ll make extensive use of the htmlspecialchars function throughout this book

to guard against this sort of security hole. No need to worry too much if you’re

having trouble grasping the details of how to use it for now. Before long, you’ll find

its use becomes second nature. For now, let’s look at some more advanced ways of

passing values to PHP scripts when we request them.

Passing a single variable in the query string was nice, but it turns out you can pass

more than one value if you want to! Let’s look at a slightly more complex version

of the previous example. Save a copy of your welcome2.html file as welcome3.html,

and change the link to point to welcome3.php with a query string as follows:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL88

http://www.sitepoint.com/launch/3eb28e

chapter3/welcome3.html (excerpt)

Hi,
 I’m Kevin Yank!

This time, our link passes two variables: firstname and lastname. The variables

are separated in the query string by an ampersand (&, which must be written as

& in HTML). You can pass even more variables by separating each name=value

pair from the next with an ampersand.

As before, we can use the two variable values in our welcome3.php file:

chapter3/welcome3.php (excerpt)

<?php
$firstname = $_GET['firstname'];
$lastname = $_GET['lastname'];
echo 'Welcome to our web site, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
?>

The echo statement is becoming quite sizable now, but it should still make sense

to you. Using a series of string concatenations (.), it outputs “Welcome to our web

site, ” followed by the value of $firstname (made safe for display using

htmlspecialchars), a space, the value of $lastname (again, treated with

htmlspecialchars), and finally an exclamation mark.

The result is shown in Figure 3.4.

Figure 3.4. Create an even more personalized welcome message

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

89Introducing PHP

http://www.sitepoint.com/launch/3eb28e

This is all well and good, but we still have yet to achieve our goal of true user inter-

action, where the user can enter arbitrary information and have it processed by PHP.

To continue with our example of a personalized welcome message, we’d like to

invite the user to type his or her name and have it appear in the resulting page. To

enable the user to type in a value, we’ll need to use a HTML form.

Create a new HTML file named welcome4.html and type in this HTML code to create

the form:

chapter3/welcome4.html (excerpt)

<form action="welcome4.php" method="get">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"/></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"/></label></div>
 <div><input type="submit" value="GO"/></div>
</form>

Self-closing Tags

The slashes that appear in some of these tags (such as <input …/>) are no cause

for alarm. The XHTML standard for coding web pages calls for slashes to be used

in any tag without a closing tag, which includes <input/> and <meta/> tags,

among others.

Many developers prefer to code to the HTML standard instead of adopting XHTML

and, in fact, this is a matter of some debate within web development circles. The

upcoming HTML 5 standard leaves the choice up to the developer, so neither

approach is strictly “more correct” than the other.

If you’re curious about the factors to consider when making this decision for

yourself, check out the relevant page of the SitePoint HTML Reference.5

The form this code produces is shown in Figure 3.5.6

5 http://reference.sitepoint.com/html/html-vs-xhtml
6 This form is quite plain-looking, I’ll grant you. Some judicious application of CSS would make this—and

all the other pages in this book—look more attractive. Since this is a book about PHP and MySQL,

however, I’ve stuck with the plain look. Check out SitePoint books like The Art & Science of CSS

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL90

http://reference.sitepoint.com/html/html-vs-xhtml
http://www.sitepoint.com/books/cssdesign1/
http://www.sitepoint.com/launch/3eb28e

Figure 3.5. Make your own welcome message

Also make a copy of welcome3.php named welcome4.php. There’s nothing that needs

changing in this file.

This form has the exact same effect as the second link we looked at (with first-

name=Kevin&lastname=Yank in the query string), except that you can now enter

whatever names you like. When you click the submit button (which is labeled GO),

the browser will load welcome4.php and add the variables and their values to the

query string for you automatically. It retrieves the names of the variables from the

name attributes of the <input type="text"/> tags, and obtains the values from the

text the user types into the text fields.

Apostrophes in Form Fields

If you are burdened with the swollen ego of most programmers (myself included),

you probably took this opportunity to type your own name into this form. Who

can blame you?

If your last name happens to include an apostrophe (for example, Molly O’Reilly),

the welcome message you saw may have included a stray backslash before the

apostrophe (that is, “Welcome to our web site, Molly O\'Reilly!”).

This bothersome backslash is due to a PHP security feature called magic quotes,

which we’ll learn about in Chapter 4. Until then, please bear with me.

[http://www.sitepoint.com/books/cssdesign1/] (Melbourne: SitePoint, 2007) for advice on styling your

forms with CSS.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

91Introducing PHP

http://www.sitepoint.com/launch/3eb28e

The method attribute of the <form> tag is used to tell the browser how to send the

variables and their values along with the request. A value of get (as used in

welcome4.html above) causes them to be passed in the query string (and appear in

PHP’s $_GET array), but there is an alternative. It can be undesirable—or even

technically unfeasible—to have the values appear in the query string. What if we

included a <textarea> tag in the form, to let the user enter a large amount of text?

A URL whose query string contained several paragraphs of text would be ridiculously

long, and would possibly exceed the maximum length for a URL in today’s browsers.

The alternative is for the browser to pass the information invisibly, behind the

scenes.

Make a copy of welcome4.html and name it welcome5.html. The code for the form in

this new page is exactly the same, but where we set the form method to get in the

last example, here we set it to post. Of course, we’ve also set the action attribute

to point at welcome5.php:

chapter3/welcome5.html (excerpt)

<form action="welcome5.php" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"/></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"/></label></div>
 <div><input type="submit" value="GO"/></div>
</form>

This new value for the method attribute instructs the browser to send the form

variables invisibly, as part of the page request, rather than embedding them in the

query string of the URL.

Again, make a copy of welcome4.php and name it welcome5.php.

As we’re no longer sending the variables as part of the query string, they stop ap-

pearing in PHP’s $_GET array. Instead, they’re placed in another array reserved es-

pecially for “posted” form variables: $_POST. We must therefore modify welcome5.php

to retrieve the values from this new array:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL92

http://www.sitepoint.com/launch/3eb28e

chapter3/welcome5.php (excerpt)

<?php
$firstname = $_POST['firstname'];
$lastname = $_POST['lastname'];
echo 'Welcome to our web site, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
?>

Figure 3.6 shows what the resulting page looks like once this new form is submitted.

Figure 3.6. This personalized welcome is achieved without a query string

The form is functionally identical to the previous one; the only difference is that

the URL of the page that’s loaded when the user clicks the GO button will be without

a query string. On the one hand, this lets you include large values, or sensitive

values (like passwords), in the data that’s submitted by the form, without their ap-

pearing in the query string. On the other hand, if the user bookmarks the page that

results from the form’s submission, that bookmark will be useless, as it lacks the

submitted values. This, incidentally, is the main reason why search engines use the

query string to submit search terms. If you bookmark a search results page on Google,

you can use that bookmark to perform the same search again later, because the

search terms are contained in the URL.

Sometimes, you want access to a variable without having to worry about whether

it was sent as part of the query string or a form post. In cases like these, the special

$_REQUEST array comes in handy. It contains all the variables that appear in both

$_GET and $_POST. With this variable, we can modify our form processing script

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

93Introducing PHP

http://www.sitepoint.com/launch/3eb28e

one more time so that it can receive the first and last names of the user from either

source:

chapter3/welcome6.php (excerpt)

<?php
$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
echo 'Welcome to our web site, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
?>

That covers the basics of using forms to produce rudimentary user interaction with

PHP. We’ll look at more advanced issues and techniques in later examples.

Control Structures
All the examples of PHP code we’ve seen so far have been either one-statement

scripts that output a string of text to the web page, or series of statements that were

to be executed one after the other in order. If you’ve ever written programs in other

languages (JavaScript, C, or BASIC) you already know that practical programs are

rarely so simple.

PHP, just like any other programming language, provides facilities that enable you

to affect the flow of control. That is, the language contains special statements that

you can use to deviate from the one-after-another execution order that has dominated

our examples so far. Such statements are called control structures. Don’t understand?

Don’t worry! A few examples will illustrate perfectly.

The most basic, and most often used, control structure is the if statement. The flow

of a program through an if statement can be visualized as in Figure 3.7.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL94

http://www.sitepoint.com/launch/3eb28e

Figure 3.7. The logical flow of an if statement7

Here’s what an if statement looks like in PHP code:

if (condition)
{
// conditional code to be executed if condition is true

}

This control structure lets us tell PHP to execute a set of statements only if some

condition is met.

If you’ll indulge my vanity for a moment, here’s an example that shows a twist on

the personalized welcome page example we created earlier. Start by making a copy

of welcome6.html called welcome7.html. For simplicity, let’s alter the form it contains

so that it submits a single name variable to welcome7.php:

7 This diagram and several similar ones in this book were originally designed by Cameron Adams for

the book, Simply JavaScript (Melbourne: SitePoint, 2006), which we wrote together. I have reused them

here with his permission, and my thanks.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

95Introducing PHP

http://www.sitepoint.com/launch/3eb28e

chapter3/welcome7.html (excerpt)

<form action="welcome7.php" method="post">
 <div><label for="name">Name:
 <input type="text" name="name" id="name"/></label></div>
 <div><input type="submit" value="GO"/></div>
</form>

Now make a copy of welcome6.php called welcome7.php. Replace the PHP code it

contains with the following:

chapter3/welcome7.php (excerpt)

$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}

Now, if the name variable passed to the page has a value of 'Kevin', a special message

will be displayed, as shown in Figure 3.8.

Figure 3.8. It’s good to be the king

If a name other than Kevin is entered, this example becomes inhospitable—the

conditional code within the if statement fails to execute, and the resulting page

will be blank!

To offer an alternative to a blank page to all the plebs who have a different name to

Kevin, we can use an if-else statement instead. The structure of an if-else state-

ment is shown in Figure 3.9.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL96

http://www.sitepoint.com/launch/3eb28e

Figure 3.9. The logical flow of an if-else statement

The else portion of an if-else statement is tacked onto the end of the if portion,

like this:

chapter3/welcome7.php (excerpt)

$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}
else
{
 echo 'Welcome to our web site, ' .
 htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';
}

Now if you submit a name other than Kevin, you should see the usual welcome

message shown in Figure 3.10.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

97Introducing PHP

http://www.sitepoint.com/launch/3eb28e

Figure 3.10. You gotta remember your peeps

The == used in the condition above is the equal operator that’s used to compare

two values to see whether they’re equal.

Double Trouble

Remember to type the double-equals (==). A common mistake among beginning

PHP programmers is to type a condition like this with a single equals sign:

if ($name = 'Kevin') // Missing equals sign!

This condition is using the assignment operator (=) that I introduced back in the

section called “Variables, Operators, and Comments”, instead of the equal operator

(==). Consequently, instead of comparing the value of $name to the string 'Kevin',

it will actually set the value of $name to 'Kevin'. Oops!

To make matters worse, the if statement will use this assignment operation as a

condition, which it will consider to be true, so the conditional code within the

if statement will always be executed, regardless of what the original value of

$name happened to be.

Conditions can be more complex than a single check for equality. Recall that our

form examples above would receive a first and last name. If we wanted to display

a special message only for a particular person, we’d have to check the values of both

names.

To do this, first make a copy of welcome6.html (which contains the two-field version

of the form) called welcome8.html. Change the action attribute of the <form> tag to

point to welcome8.php. Next, make a copy of welcome7.php called welcome8.php,

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL98

http://www.sitepoint.com/launch/3eb28e

and update the PHP code to match the following (I’ve highlighted the changes in

bold):

chapter3/welcome8.php (excerpt)

$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
if ($firstname == 'Kevin' and $lastname == 'Yank')
{
 echo 'Welcome, oh glorious leader!';
}
else
{
 echo 'Welcome to our web site, ' .

htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
}

This updated condition will be true if and only if $firstname has a value of 'Kevin'

and $lastname has a value of 'Yank'. The and operator in the condition makes the

whole condition true only if both of the comparisons are true. A similar operator

is the or operator, which makes the whole condition true if one or both of two

simple conditions are true. If you’re more familiar with the JavaScript or C forms

of these operators (&& and || for and and or respectively), that’s fine—they work in

PHP as well.

Figure 3.11 shows that having only one of the names right in this example fails to

cut the mustard.

Figure 3.11. Frankly, my dear …

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

99Introducing PHP

http://www.sitepoint.com/launch/3eb28e

We’ll look at more complicated conditions as the need arises. For the time being, a

general familiarity with if-else statements is sufficient.

Another often-used PHP control structure is the while loop. Where the if-else

statement allowed us to choose whether or not to execute a set of statements depend-

ing on some condition, the while loop allows us to use a condition to determine

how many times we’ll execute a set of statements repeatedly.

Figure 3.12 shows how a while loop operates.

Here’s what a while loop looks like in code:

while (condition)
{
// statement(s) to execute repeatedly as long as condition is true

}

The while loop works very similarly to an if statement. The difference arises when

the condition is true and the statement(s) are executed. Instead of continuing the

execution with the statement that follows the closing brace (}), the condition is

checked again. If the condition is still true, then the statement(s) are executed a

second time, and a third, and will continue to be executed as long as the condition

remains true. The first time the condition evaluates false (whether it’s the first time

it’s checked, or the 101st), the execution jumps immediately to the statement that

follows the while loop, after the closing brace.

Loops like these come in handy whenever you’re working with long lists of items

(such as jokes stored in a database … hint, hint), but for now I’ll illustrate with a

trivial example, counting to ten:

chapter3/count10.php (excerpt)

$count = 1;
while ($count <= 10)
{
 echo "$count ";
 ++$count;
}

This code may look a bit frightening, I know, but let me talk you through it line by

line:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL100

http://www.sitepoint.com/launch/3eb28e

Figure 3.12. The logical flow of a while loop

$count = 1;

The first line creates a variable called $count and assigns it a value of 1.

while ($count <= 10)

The second line is the start of a while loop, the condition for which is that the

value of $count is less than or equal (<=) to 10.

{

The opening brace marks the beginning of the block of conditional code for the

while loop. This conditional code is often called the body of the loop, and is

executed over and over again, as long as the condition holds true.

echo "$count ";

This line simply outputs the value of $count, followed by a space. To make the

code as readable as possible, I’ve used a double-quoted string to take advantage

of variable interpolation (as explained in the section called “Variables, Operators,

and Comments”), rather than use the string concatenation operator.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

101Introducing PHP

http://www.sitepoint.com/launch/3eb28e

++$count;

The fourth line adds one to the value of $count (++$count is a shortcut for

$count = $count + 1—either one would work).

}

The closing brace marks the end of the while loop’s body.

So here’s what happens when this piece of code is executed. The first time the

condition is checked, the value of $count is 1, so the condition is definitely true.

The value of $count (1) is output, and $count is given a new value of 2. The condi-

tion is still true the second time it’s checked, so the value (2) is output and a new

value (3) is assigned. This process continues, outputting the values 3, 4, 5, 6, 7, 8,

9, and 10. Finally, $count is given a value of 11, and the condition is found to be

false, which ends the loop.

The net result of the code is shown in Figure 3.13.

Figure 3.13. PHP demonstrates kindergarten-level math skills

The condition in this example used a new operator: <= (less than or equal). Other

numerical comparison operators of this type include >= (greater than or equal), <

(less than), > (greater than), and != (not equal). That last one also works when

comparing text strings, by the way.

Another type of loop that’s designed specifically to handle examples like that above,

in which we’re counting through a series of values until some condition is met, is

called a for loop. Figure 3.14 shows the structure of a for loop.

Here’s what it looks like in code:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL102

http://www.sitepoint.com/launch/3eb28e

Figure 3.14. The logical flow of a for loop

for (declare counter; condition; increment counter)
{
// statement(s) to execute repeatedly as long as condition is true

}

The declare counter statement is executed once at the start of the loop; the condition

statement is checked each time through the loop, before the statements in the body

are executed; the increment counter statement is executed each time through the

loop, after the statements in the body.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

103Introducing PHP

http://www.sitepoint.com/launch/3eb28e

Here’s what the “counting to 10” example looks like when implemented with a for

loop:

count10–for.php (excerpt)

for ($count = 1; $count <= 10; ++$count)
{
 echo "$count ";
}

As you can see, the statements that initialize and increment the $count variable

join the condition on the first line of the for loop. Although, at first glance, the

code seems a little more difficult to read, putting all the code that deals with con-

trolling the loop in the same place actually makes it easier to understand once you’re

used to the syntax. Many of the examples in this book will use for loops, so you’ll

have plenty of opportunity to practice reading them.

Hiding the Seams
You’re now armed with a working knowledge of the basic syntax of the PHP pro-

gramming language. You understand that you can take any HTML web page, rename

it with a .php file name extension, and inject PHP code into it to make it generate

some or all of the page content on the fly. Not bad for a day’s work!

Before we go any further, however, I want to stop and cast a critical eye over the

examples we’ve discussed so far. Assuming your objective is to create database

driven web sites that hold up to professional standards, there are a few unsightly

blemishes we need to clean up.

The techniques in the rest of this chapter will add a coat of professional polish that

can set your work apart from the crowd of amateur PHP developers out there. I’ll

rely on these techniques throughout the rest of this book to make sure that, no

matter how simple the example, you can feel confident in the quality of the product

you’re delivering.

Avoid Advertising Your Technology Choices
The examples we’ve seen so far have contained a mixture of plain HTML files (with

names ending in .html), and files that contain a mixture of HTML and PHP (with

names ending in .php). Although this distinction between file types may be useful

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL104

http://www.sitepoint.com/launch/3eb28e

to you, the developer, there is no reason your users need to be aware of which pages

of your site rely on PHP code to generate them.

Furthermore, although PHP is a very strong choice of technology to build almost

any database driven web site, the day may come when you want to switch from

PHP to some new technology. When that day comes, do you really want all the

URLs for dynamic pages on your site to become invalid as you change the file names

to reflect your new language of choice?

These days, professional developers place a lot of importance on the URLs they put

out into the world. In general, URLs should be as permanent as possible, so it makes

no sense to embrittle them with little “advertisements” for the programming language

you used to build each individual page.

An easy way to do away with the file name extensions in your URLs is to take ad-

vantage of directory indexes. When a URL points at a directory on your web server,

instead of a particular file, the web server will look for a file named index.html or

index.php inside that directory, and display that file in response to the request.

For example, take the today.php page that I introduced at the end of Chapter 1. Re-

name it from today.php to index.php. Then, instead of dropping it in the root of your

web server, create a subdirectory name today, and drop the index.php file in there.

Now, load http://localhost/today/ in your browser (or http://localhost:8080/today/,

or similar if you need to specify a port number for your server).

Figure 3.15 shows the example with its new URL. This URL omits the unnecessary

.php extension, and is shorter and more memorable—both desirable qualities when

it comes to URLs today.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

105Introducing PHP

http://www.sitepoint.com/launch/3eb28e

Figure 3.15. A more fashionable URL

Use PHP Templates
In the simple examples we’ve seen so far, inserting PHP code directly into your

HTML pages has been a reasonable approach. As the amount of PHP code that goes

into generating your average page grows, however, maintaining this mixture of

HTML and PHP code can become unmanageable.

Particularly if you work in a team where the web designers are unsavvy, PHP-wise,

having large blocks of cryptic PHP code intermingled with the HTML is a recipe

for disaster. It’s far too easy for designers to accidentally modify the PHP code,

causing errors they’ll be unable to fix.

A much more robust approach is to separate out the bulk of your PHP code, so that

it resides in its own file, leaving the HTML largely unpolluted by PHP code.

The key to doing this is the PHP include statement. With an include statement,

you can insert the contents of another file into your PHP code at the point of the

statement. To show you how this works, let’s rebuild the “count to ten” for loop

example we looked at earlier.

Start by creating a new directory called count10, and create a file named index.php

in this directory. Open the file for editing and type in this code:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL106

http://www.sitepoint.com/launch/3eb28e

chapter3/count10/index.php

<?php
$output = '';
for ($count = 1; $count <= 10; ++$count)
{
 $output .= "$count ";
}

include 'count.html.php';
?>

Yes, that’s the complete code for this file. It contains no HTML code whatsoever.

The for loop should be familiar to you by now, but let me point out the interesting

parts of this code:

Instead of echoing out the numbers 1 to 10, this script will add these numbers

to a variable named $output. At the start of this script, therefore, we set this

variable to contain an empty string.

This line adds each number (followed by a space) to the end of the $output

variable. The .= operator you see here is a shorthand way to add a value to the

end of an existing string variable, by combining the assignment and string

concatenation operators into one. The longhand version of this line is $output

= $output . "$count ";, but the .= operator saves you some typing.

This is an include statement, which instructs PHP to execute the contents of

the count.html.php file at this location.8

8 Outside of this book, you will often see includes coded with parentheses surrounding the filename,

as if include were a function like date or htmlspecialchars, which is far from the case. These

parentheses, when used, only serve to complicate the filename expression, and are therefore avoided in

this book. The same goes for echo, another popular one-liner.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

107Introducing PHP

http://www.sitepoint.com/launch/3eb28e

Since the final line of this file includes the count.html.php file, you should create

this next:

chapter3/count10/count.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Counting to Ten</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>
 <?php echo $output; ?>
 </p>
 </body>
</html>

This file is almost entirely plain HTML, except for the one line that outputs the

value of the $output variable. This is the same $output variable that was created

by the index.php file.

What we’ve created here is a PHP template—an HTML page with only very small

snippets of PHP code that insert dynamically-generated values into an otherwise

static HTML page. Rather than embedding the complex PHP code that generates

those values in the page, we put the code to generate the values in a separate PHP

script—index.php in this case.

Using PHP templates like this enables you to hand your templates over to HTML-

savvy designers without worrying about what they might do to your PHP code. It

also lets you focus on your PHP code without being distracted by the surrounding

HTML code.

I like to name my PHP templates so that they end with .html.php. Although, as far

as your web server is concerned, these are still .php files, the .html.php suffix serves

as a useful reminder that these files contain both HTML and PHP code.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL108

http://www.sitepoint.com/launch/3eb28e

Many Templates, One Controller
What’s nice about using include statements to load your PHP template files is that

you can have multiple include statements in a single PHP script, and have it display

different templates under different circumstances!

A PHP script that responds to a browser request by selecting one of several PHP

templates to fill in and send back is commonly called a controller. A controller

contains the logic that controls which template is sent to the browser.

Let’s revisit one more example from earlier in this chapter: the welcome form that

prompts a visitor for a first and last name.

We’ll start with the PHP template for the form. For this, we can just reuse the

welcome8.html file we created earlier. Create a directory named welcome and save a

copy of welcome8.html called form.html.php into this directory. The only code you

need to change in this file is the action attribute of the <form> tag:

chapter3/welcome/form.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Form Example</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <form action="" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"/></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"/></label>
 </div>
 <div><input type="submit" value="GO"/></div>
 </form>
 </body>
</html>

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

109Introducing PHP

http://www.sitepoint.com/launch/3eb28e

As you can see, we’re leaving the action attribute blank. This tells the browser to

submit the form back to the same URL from which it received the form—in this

case, the URL of the controller that included this template file.

Let’s take a look at the controller for this example. Create an index.php script in the

welcome directory alongside your form template. Type the following code into this

file:

chapter3/welcome/index.php

<?php
if (!isset($_REQUEST['firstname']))
{
include 'form.html.php';

}
else
{
 $firstname = $_REQUEST['firstname'];
 $lastname = $_REQUEST['lastname'];
 if ($firstname == 'Kevin' and $lastname == 'Yank')
 {

$output = 'Welcome, oh glorious leader!';
 }
 else
 {

$output = 'Welcome to our web site, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
 }

include 'welcome.html.php';
}
?>

This code should look fairly familiar at first glance; it’s a lot like the welcome8.php

script we wrote earlier. Let me explain the differences:

The first thing the controller needs to do is decide whether the current request

is a submission of the form in form.html.php or not. You can do this by checking

if the request contains a firstname variable. If it does, PHP will have stored

the value in $_REQUEST['firstname'].

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL110

http://www.sitepoint.com/launch/3eb28e

isset is a built-in PHP function that will tell you if a particular variable (or

array element) has been assigned a value or not. If $_REQUEST['firstname']

has a value, isset($_REQUEST['firstname']) will be true. If

$_REQUEST['firstname'] lacks a value, isset($_REQUEST['firstname'])

will be false.

For the sake of readability, I like to put the code that sends the form first in my

controller. What we need this if statement to check, therefore, is if

$_REQUEST['firstname'] is not set. To do this, we use the not operator (!).

By putting this operator before the name of a function, you reverse the value

that function returns from true to false, or from false to true.

Thus, if the request does not contain a firstname variable, then

!isset($_REQUEST['firstname']) will return true, and the body of the if

statement will be executed.

If the request is not a form submission, the controller includes the form.html.php

file to display the form.

If the request is a form submission, the body of the else statement is executed

instead.

This code pulls the firstname and lastname variables out of the $_REQUEST

array, and then generates the appropriate welcome message for the name sub-

mitted.

Instead of echoing the welcome message, the controller stores the welcome

message in a variable named $output.

After generating the appropriate welcome message, the controller includes the

welcome.html.php template, which will display that welcome message.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

111Introducing PHP

http://www.sitepoint.com/launch/3eb28e

All that’s left is to write the welcome.html.php template. Here it is:

chapter3/welcome/welcome.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Form Example</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>

<?php echo $output; ?>
 </p>
 </body>
</html>

That’s it! Fire up your browser and point it at http://localhost/welcome/ (or

http://localhost:8080/welcome/ or similar if you need to specify a port number for

your web server). You’ll be prompted for your name, and when you submit the

form, you’ll see the appropriate welcome message. The URL should stay the same

throughout this process.

One of the benefits of maintaining the same URL throughout the process of

prompting the user for a name and displaying the welcome message is that the user

can bookmark the page at any time during this process and gain a sensible result:

when the user next returns, whether the form page or the welcome message was

bookmarked, the form will be present itself once again. In the previous version of

this example, where the welcome message had its own URL, returning to that URL

without submitting the form would have generated a broken welcome message

(“Welcome to our web site, !”).

Why So Forgetful?

In Chapter 9 I’ll show you how to remember the user’s name between visits.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL112

http://www.sitepoint.com/launch/3eb28e

Bring On the Database
In this chapter, we’ve seen the PHP server-side scripting language in action as we’ve

explored all the basic language features: statements, variables, operators, comments,

and control structures. The sample applications we’ve seen have been reasonably

simple, but despite this we’ve taken the time to ensure they have attractive URLs,

and that the HTML templates for the pages they generate are uncluttered by the

PHP code that controls them.

As you may have begun to suspect, the real power of PHP is in its hundreds (even

thousands) of built-in functions that let you access data in a MySQL database, send

email, dynamically generate images, and even create Adobe Acrobat PDF files on

the fly.

In Chapter 4, we’ll delve into the MySQL functions built into PHP, and see how to

publish the joke database we created in Chapter 2 to the Web. This chapter will set

the scene for the ultimate goal of this book—creating a complete content management

system for your web site in PHP and MySQL.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

113Introducing PHP

http://www.sitepoint.com/launch/3eb28e

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

http://www.sitepoint.com/launch/3eb28e

Chapter4
Publishing MySQL Data on the Web
This is it—the stuff you signed up for! In this chapter, you’ll learn how to take in-

formation stored in a MySQL database and display it on a web page for all to see.

So far, you’ve installed and learned the basics of MySQL, a relational database en-

gine, and PHP, a server-side scripting language. Now you’re ready to learn how to

use these new tools together to create a true database driven web site!

The Big Picture
Before we leap forward, it’s worth taking a step back for a clear picture of our ulti-

mate goal. We have two powerful tools at our disposal: the PHP scripting language

and the MySQL database engine. It’s important to understand how these will fit

together.

The whole idea of a database driven web site is to allow the content of the site to

reside in a database, and for that content to be pulled from the database dynamically

to create web pages for people to view with a regular web browser. So, at one end

of the system you have a visitor to your site who uses a web browser to request a

page, and expects to receive a standard HTML document in return. At the other end

you have the content of your site, which sits in one or more tables in a MySQL

database that understands only how to respond to SQL queries (commands).

Figure 4.1. PHP retrieves MySQL data to produce web pages

As shown in Figure 4.1, the PHP scripting language is the go-between that speaks

both languages. It processes the page request and fetches the data from the MySQL

database (using SQL queries just like those you used to create a table of jokes in

Chapter 2), then spits it out dynamically as the nicely formatted HTML page that

the browser expects.

Just so it’s clear and fresh in your mind, this is what will happen when a person

visits a page on your database driven web site:

1. The visitor’s web browser requests the web page using a standard URL.

2. The web server software (typically Apache) recognizes that the requested file

is a PHP script, so the server fires up the PHP interpreter to execute the code

contained in the file.

3. Certain PHP commands (which will be the focus of this chapter) connect to the

MySQL database and request the content that belongs in the web page.

4. The MySQL database responds by sending the requested content to the PHP

script.

5. The PHP script stores the content into one or more PHP variables, then uses

echo statements to output the content as part of the web page.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL116

http://www.sitepoint.com/launch/3eb28e

6. The PHP interpreter finishes up by handing a copy of the HTML it has created

to the web server.

7. The web server sends the HTML to the web browser as it would a plain HTML

file, except that instead of coming directly from an HTML file, the page is the

output provided by the PHP interpreter.

Connecting to MySQL with PHP
Before you can retrieve content out of your MySQL database for inclusion in a web

page, you must know how to establish a connection to MySQL from inside a PHP

script. Back in Chapter 2, you used a program called mysql that allowed you to

make such a connection from the command prompt. Just as that program could

connect directly to a running MySQL server, so too can the PHP interpreter; support

for connecting to MySQL is built right into the language in the form of a library of

built-in functions.

The built-in function mysqli_connect establishes a connection to a MySQL server:

mysqli_connect(hostname, username, password)

You may remember from Chapter 3 that PHP functions usually return a value when

they’re called. The mysqli_connect function, for example, returns a link identifier

that identifies the connection that has been established. Since we intend to make

use of the connection, we should hold onto this value. Here’s an example of how

we might connect to our MySQL server:

chapter4/connect/index.php (excerpt)

$link = mysqli_connect('localhost', 'root', 'password');

As described above, the values of the three function parameters may differ for your

MySQL server; at the very least, you’ll need to substitute in the root password you

established for your MySQL server. What’s important to see here is that the value

returned by mysqli_connect is stored in a variable named $link.

As the MySQL server is a completely separate piece of software from the web server,

we must consider the possibility that the server may be unavailable or inaccessible

due to a network outage, or because the username/password combination you

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

117Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

provided is rejected by the server. In such cases, the mysqli_connect function returns

FALSE, instead of a connection identifier, as no connection is established. This allows

us to react to such failures using an if statement:

chapter4/connect/index.php (excerpt)

$link = mysqli_connect('localhost', 'root', 'password');
if (!$link)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

The condition in this if statement uses the not operator (!) to make the condition

true when $link has a value of false (that is, when the connection attempt has

failed). If the connection succeeds, $link will have a value that’s considered true,

which will make !$link false. In short, the body of the if statement is executed

only if the connection fails.

Within the body of the if statement, we set the variable $output to contain a message

about what went wrong. We then include the template output.html.php. This is a

generic template that simply outputs the value of the $output variable:

chapter4/connect/output.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>PHP Output</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>

<?php echo $output; ?>
 </p>
 </body>
</html>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL118

http://www.sitepoint.com/launch/3eb28e

Finally, after outputting the message, the body of the if statement calls the built-

in exit function.

exit is the first example in this book of a function that can be called with no para-

meters. When called this way, all this function does is cause PHP to stop executing

the script at this point. This ensures that the rest of the code in our controller (which

in most cases will depend on a successful database connection) will not be executed

if the connection has failed.

Assuming the connection succeeds, however, you need to configure it before use.

As I mentioned briefly in Chapter 3, you should use UTF-8 encoded text in your

web sites to maximize the range of characters that your users will have at their

disposal when filling in forms on your site. By default, when PHP connects to

MySQL, it once again uses the simpler ISO-8859-1 encoding instead of UTF-8. You

must therefore follow up your mysqli_connect code with a call to

mysqli_set_charset—another built-in PHP function:

mysqli_set_charset($link, 'utf8')

Notice we use the $link variable that contains the MySQL link identifier to tell the

function which database connection to use. This function returns true when it’s

successful and false if an error occurs. Once again, it’s prudent to use an if state-

ment to handle errors:

chapter4/connect/index.php (excerpt)

if (!mysqli_set_charset($link, 'utf8'))
{
 $output = 'Unable to set database connection encoding.';
 include 'output.html.php';
 exit();
}

Note that this time, instead of assigning the result of the function to a variable and

then checking if the variable is true or false, I have simply used the function call

itself as the condition. This may look a little strange, but it’s a very commonly used

shortcut. To check whether the condition is true or false, PHP executes the function

and then checks its return value—exactly what we need to happen.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

119Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

As in Chapter 2 when you connected to the MySQL server using the mysql program,

once you’ve established a connection the usual next step is to select the database

with which you want to work. Let’s say you want to work with the joke database

you created in Chapter 2. This database was called ijdb. Selecting that database in

PHP is just a matter of another function call:

mysqli_select_db($link, 'ijdb');

mysqli_select_db simply sets the selected database ('ijdb') for the specified

database connection ($link). Yet again, it’s best to guard against errors with an if

statement:

chapter4/connect/index.php (excerpt)

if (!mysqli_select_db($link, 'ijdb'))
{
 $output = 'Unable to locate the joke database.';
 include 'output.html.php';
 exit();
}

To polish off this example, let’s display a status message that indicates when

everything has gone right. Here’s the complete code of our controller:

chapter4/connect/index.php

<?php
$link = mysqli_connect('localhost', 'root', 'password');
if (!$link)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

if (!mysqli_set_charset($link, 'utf8'))
{
 $output = 'Unable to set database connection encoding.';
 include 'output.html.php';
 exit();
}

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL120

http://www.sitepoint.com/launch/3eb28e

if (!mysqli_select_db($link, 'ijdb'))
{
 $output = 'Unable to locate the joke database.';
 include 'output.html.php';
 exit();
}

$output = 'Database connection established.';
include 'output.html.php';
?>

Fire up this example in your browser (if you put the index.php and output.html.php

files in a directory named connect on your web server, the URL will be like

http://localhost/connect/). If your MySQL server is up and running and everything

works the way it should, you should see the message indicating success in Figure 4.2.

Figure 4.2. A successful connection

If PHP is unable to connect to your MySQL server, or if the username and password

you provided are incorrect, you’ll instead see a similar screen to that in Figure 4.3.

To make sure your error handling code is working properly, you might want to

misspell your password intentionally to test it out.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

121Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

Figure 4.3. A connection failure

What PHP Error?

Depending on your web server’s PHP configuration, you may or may not see the

first paragraph shown in Figure 4.3. This warning message is automatically gen-

erated by PHP if it’s configured to display errors. These detailed errors can be in-

valuable tools for diagnosing problems with your code during development. Since

you’d probably prefer to keep this kind of technical information hidden once your

site is live on the Web, it’s common to switch off these errors on production

servers.

If you installed Apache yourself, chances are this message will be displayed. If

you’re using a bundled Apache solution (like WampServer or MAMP), PHP error

display may be switched off by default. To display these errors (they’re especially

helpful in development when you’re trying to determine the cause of a problem),

you need to open your server’s php.ini file and set the display_errors option

to On. You can access WampServer’s php.ini file from the system tray menu.

MAMP’s php.ini file is in the /Applications/MAMP/conf/php5 folder on your system.

If PHP connects to your MySQL server and then fails to find the ijdb database,

you’ll see a similar message to Figure 4.4. Once again, you should probably test

your error handling code by intentionally misspelling your database name.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL122

http://www.sitepoint.com/launch/3eb28e

Figure 4.4. A connection failure

With a connection established and a database selected, you’re ready to begin using

the data stored in the database.

PHP Automatically Disconnects

You might be wondering what happens to the connection with the MySQL server

after the script has finished executing. While PHP does have a function for discon-

necting from the server (mysqli_close), PHP will automatically close any open

database connections when they’re no longer needed, so you can usually just let

PHP clean up after you.

Sending SQL Queries with PHP
In Chapter 2, we connected to the MySQL database server using a program called

mysql that allowed us to type SQL queries (commands) and view the results of those

queries immediately. In PHP, a similar mechanism exists: the mysqli_query function.

mysqli_query(link, query)

Here query is a string that contains the SQL query you want to execute. As with

mysqli_select_db, you must also provide the MySQL link identifier returned by

mysqli_connect.

What this function returns will depend on the type of query being sent. For most

SQL queries, mysqli_query returns either true or false to indicate success or

failure respectively. Consider the following example, which attempts to create the

joke table we created in Chapter 2:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

123Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

chapter4/createtable/index.php (excerpt)

$sql = 'CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8';
if (!mysqli_query($link, $sql))
{
 $output = 'Error creating joke table: ' . mysqli_error($link);
 include 'output.html.php';
 exit();
}

$output = 'Joke table successfully created.';
include 'output.html.php';

Note once again we use the same if statement technique to handle possible errors

produced by the query. This example also uses the mysqli_error function to retrieve

a detailed error message from the MySQL server. Figure 4.5 shows the error that’s

displayed when the joke table already exists, for example.

Figure 4.5. The CREATE TABLE query fails because the table already exists

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data), MySQL

also keeps track of the number of table rows (entries) that were affected by the query.

Consider the SQL command below, which we used in Chapter 2 to set the dates of

all jokes that contained the word “chicken”:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL124

http://www.sitepoint.com/launch/3eb28e

chapter4/updatechicken/index.php (excerpt)

$sql = 'UPDATE joke SET jokedate="2010-04-01"
 WHERE joketext LIKE "%chicken%"';
if (!mysqli_query($link, $sql))
{
 $output = 'Error performing update: ' . mysqli_error($link);
 include 'output.html.php';
 exit();
}

When we execute this query, we can use the mysql_affected_rows function to view

the number of rows that were affected by this update:

chapter4/updatechicken/index.php (excerpt)

$output = 'Updated ' . mysqli_affected_rows($link) . ' rows.';
include 'output.html.php';

Figure 4.6 shows the output of this example, assuming you only have one “chicken”

joke in your database.

Figure 4.6. The number of database records updated is displayed

If you refresh the page to run the same query again, you should see the message

change as shown in Figure 4.7 to indicate that no rows were updated, since the new

date being applied to the jokes is the same as the existing date.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

125Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

Figure 4.7. MySQL lets you know you’re wasting its time

SELECT queries are treated a little differently as they can retrieve a lot of data, and

PHP provides ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the mysqli_query function returns either true (success) or

false (failure). For SELECT queries, more information is needed. You’ll recall that

SELECT queries are used to view stored data in the database. In addition to indicating

whether the query succeeded or failed, PHP must also receive the results of the

query. Thus, when it processes a SELECT query, mysqli_query returns a result set,

which contains a list of all the rows (entries) returned from the query. false is still

returned if the query fails for any reason:

chapter4/listjokes/index.php (excerpt)

$result = mysqli_query($link, 'SELECT joketext FROM joke');
if (!$result)
{
 $error = 'Error fetching jokes: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
}

As before, errors are displayed using a very simple PHP template:

chapter4/listjokes/error.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>PHP Error</title>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL126

http://www.sitepoint.com/launch/3eb28e

 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>
 <?php echo $error; ?>
 </p>
 </body>
</html>

Provided that no error was encountered in processing the query, the above code

will store a result set into the variable $result. This result set contains the text of

all the jokes stored in the joke table. As there’s no practical limit on the number of

jokes in the database, that result set can be quite big.

I mentioned back in Chapter 3 that the while loop is a useful control structure for

dealing with large amounts of data. Here’s an outline of the code that will process

the rows in a result set one at a time:

while ($row = mysqli_fetch_array($result))
{
// process the row…

}

The condition for the while loop is probably different to the conditions you’re used

to, so let me explain how it works. Consider the condition as a statement all by itself:

$row = mysqli_fetch_array($result);

The mysqli_fetch_array function accepts a result set as a parameter (stored in the

$result variable in this case), and returns the next row in the result set as an array

(we discussed arrays in Chapter 3). When there are no more rows in the result set,

mysqli_fetch_array instead returns false.

Now, the above statement assigns a value to the $row variable, but, at the same time,

the statement as a whole takes on that same value. This is what lets you use the

statement as a condition in the while loop. Since a while loop will keep looping

until its condition evaluates to false, this loop will occur as many times as there

are rows in the result set, with $row taking on the value of the next row each time

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

127Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

the loop executes. All that’s left to figure out is how to retrieve the values out of the

$row variable each time the loop runs.

Rows of a result set returned by mysqli_fetch_array are represented as associative

arrays. The indices are named after the table columns in the result set. If $row is a

row in our result set, then $row['joketext'] is the value in the joketext column

of that row.

Our goal in this code is to store away the text of all the jokes so we can display them

in a PHP template. The best way to do this is to store each joke as a new item in an

array, $jokes:

chapter4/listjokes/index.php (excerpt)

while ($row = mysqli_fetch_array($result))
{
 $jokes[] = $row['joketext'];
}

With the jokes pulled out of the database, we can now pass them along to a PHP

template (jokes.html.php) for display.

To summarize, here’s the complete code of the controller for this example:

chapter4/listjokes/index.php

<?php
$link = mysqli_connect('localhost', 'root', 'password');
if (!$link)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

if (!mysqli_set_charset($link, 'utf8'))
{
 $output = 'Unable to set database connection encoding.';
 include 'output.html.php';
 exit();
}

if (!mysqli_select_db($link, 'ijdb'))

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL128

http://www.sitepoint.com/launch/3eb28e

{
 $error = 'Unable to locate the joke database.';
 include 'error.html.php';
 exit();
}

$result = mysqli_query($link, 'SELECT joketext FROM joke');
if (!$result)
{
 $error = 'Error fetching jokes: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
}

while ($row = mysqli_fetch_array($result))
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';
?>

All that’s left to complete this example is to write the jokes.html.php template.

In this template, for the first time we need to display the contents of an array, rather

than just a simple variable. The most common way to process an array in PHP is to

use a loop. We have already seen while loops and for loops; another type of loop,

which is particularly helpful for processing arrays, is the foreach loop:

foreach (array as $item)
{
// process each $item

}

Instead of a condition, the parentheses at the top of a foreach loop contain an array,

followed by the keyword as, and then the name of a new variable that will be used

to store each item of the array in turn. The body of the loop is then executed once

for each item in the array; each time, that item is stored in the specified variable so

that the code can access it directly.

It’s common to use a foreach loop in a PHP template to display each item of an

array in turn. Here’s how this might look for our $jokes array:

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

129Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

<?php
foreach ($jokes as $joke)
{
?>
<!-- Code to output each $joke -->

<?php
}
?>

With this blend of PHP code to describe the loop and HTML code to display it, this

code looks rather untidy. Because of this, it’s common to use an alternative way of

writing the foreach loop when it’s used in a template:

foreach (array as $item):
// process each $item

endforeach;

Here’s how this form of the code looks in a template:

<?php foreach ($jokes as $joke): ?>
<!-- Code to output each $joke -->

<?php endforeach; ?>

With this new tool in hand, we can write our template to display the list of jokes:

chapter4/listjokes/jokes.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>List of Jokes</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 </head>
 <body>
 <p>Here are all the jokes in the database:</p>

<?php foreach ($jokes as $joke): ?>
 <blockquote><p>
 <?php echo htmlspecialchars($joke, ENT_QUOTES, 'UTF-8'); ?>
 </p></blockquote>

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL130

http://www.sitepoint.com/launch/3eb28e

<?php endforeach; ?>
 </body>
</html>

Each joke is displayed in a paragraph (<p>) contained within a block quote

(<blockquote>), since we’re effectively quoting the author of each joke in this page.

Because jokes might conceivably contain characters that could be interpreted as

HTML code (for example, <, >, or &), we must use htmlspecialchars to ensure that

these are translated into HTML character entities (that is, <, >, and &)

so that they’re displayed correctly.

Figure 4.8 shows what this page looks like once you’ve added a couple of jokes to

the database.

Figure 4.8. All my best material—in one place!

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

131Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

Inserting Data into the Database
In this section, I’ll demonstrate how to use the tools at your disposal to enable site

visitors to add their own jokes to the database.

If you want to let visitors to your site type in new jokes, you’ll obviously need a

form. Here’s a template for a form that will fit the bill:

chapter4/addjoke/form.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Add Joke</title>
 <meta http-equiv="content-type"
 content="text/html; charset=utf-8"/>
 <style type="text/css">
 textarea {
 display: block;
 width: 100%;
 }
 </style>
 </head>
 <body>
 <form action="?" method="post">
 <div>
 <label for="joketext">Type your joke here:</label>
 <textarea id="joketext" name="joketext" rows="3" cols="40">
➥</textarea>
 </div>
 <div><input type="submit" value="Add"/></div>
 </form>
 </body>
</html>

As we’ve seen before, when submitted this form will request the same PHP script

that generated the form—the controller script (index.php). You’ll notice, however,

that instead of leaving the action attribute empty (""), we set its value to ?. As we’ll

see in a moment, the URL used to display the form in this example will feature a

query string, and setting the action to ? strips that query string off the URL when

submitting the form.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL132

http://www.sitepoint.com/launch/3eb28e

Figure 4.9 shows what this form looks like in a browser.

Figure 4.9. Another nugget of comic genius is added to the database

When this form is submitted, the request will include a variable, joketext, that

contains the text of the joke as typed into the text area. This variable will then appear

in the $_POST and $_REQUEST arrays created by PHP.

Let’s tie this form into the preceding example, which displayed the list of jokes in

the database. Add a link to the top of the list that invites the user to add a joke:

chapter4/addjoke/jokes.html.php (excerpt)

<body>
<p>Add your own joke</p>

 <p>Here are all the jokes in the database:</p>

Like the form, this link points back to the very same PHP script used to generate

this page, but this time it adds a query string (?addjoke), indicating the user’s inten-

tion to add a new joke. Our controller can detect this query string and use it as a

signal to display the “Add Joke” form instead of the list of jokes.

Let’s make the necessary changes to the controller now:

chapter4/addjoke/index.php (excerpt)

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

133Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

This opening if statement checks if the query string contains a variable named

addjoke. This is how we detect that the user clicked the new link. Even though

there is no value specified by the query string (?addjoke) for the addjoke variable,

it does create it, which we can detect with isset($_GET['addjoke']).

When we detect this variable, we display the form by including form.html.php, and

then exit.

Once the user fills out the form and submits it, that form submission results in an-

other request to this controller. This we detect by checking if $_POST['joketext']

is set:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))
{

To insert the submitted joke into the database, we must run an INSERT query using

the value stored in $_POST['joketext'] to fill in the joketext column of the joke

table. This might lead you to write some code like this:

$sql = 'INSERT INTO joke SET
 joketext="' . $_POST['joketext'] . '",
 jokedate="today’s date"';

There is a serious problem with this code, however: the contents of

$_POST['joketext'] are entirely under the control of the user who submitted the

form. If a malicious user were to type just the right sort of SQL code into the form,

this script would feed it to your MySQL server without question. This type of attack

is called an SQL injection attack, and in the early days of PHP it was one of the

most common security holes that hackers found and exploited in PHP-based web

sites.

These attacks were so feared, in fact, that the team behind PHP added some built-

in protection against SQL injections to the language that remains enabled by default

in many PHP installations today. Called magic quotes, this protective feature of

PHP automatically analyzes all values submitted by the browser and inserts back-

slashes (\) in front of any dangerous characters, like apostrophes—which can cause

problems if they’re included in an SQL query inadvertently.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL134

http://www.sitepoint.com/launch/3eb28e

The problem with the magic quotes feature is that it causes as many problems as it

prevents. Firstly, the characters that it detects and the method it uses to sanitize

them (prefixing them with a backslash) are only valid in some circumstances. De-

pending on the character encoding of your site, and the database server you’re using,

these measures may be completely ineffective.

Secondly, when a submitted value is used for some purpose other than creating an

SQL query, those backslashes can be really bothersome. I mentioned this briefly in

Chapter 2 when, in the welcome message example, the magic quotes feature would

insert a spurious backslash into the user’s last name if it contained an apostrophe.

In short, magic quotes was a bad idea, so much so that it’s scheduled to be removed

from PHP in version 6. In the meantime, however, you have to deal with the problems

it creates in your code. The easiest way to do this is to detect if magic quotes is en-

abled on your web server and, if it is, to undo the modifications it has made to the

submitted values.1 Thankfully, the PHP Manual2 provides a snippet of code that

will do exactly this:

chapter4/addjoke/index.php (excerpt)

if (get_magic_quotes_gpc())
{
 function stripslashes_deep($value)
 {
 $value = is_array($value) ?
 array_map('stripslashes_deep', $value) :
 stripslashes($value);

 return $value;
 }

 $_POST = array_map('stripslashes_deep', $_POST);
 $_GET = array_map('stripslashes_deep', $_GET);
 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);
 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);
}

1 You can disable magic quotes—and save your web server a lot of work—by setting the ma-

gic_quotes_gpc option in your php.ini file to Off. To make sure your code still functions if this

setting is changed, however, you should still deal with magic quotes in your code when it’s enabled.
2 http://www.php.net/manual/en/security.magicquotes.disabling.php

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

135Publishing MySQL Data on the Web

http://www.php.net/manual/en/security.magicquotes.disabling.php
http://www.sitepoint.com/launch/3eb28e

Avoid wasting time trying to understand the inner workings of this code; to keep

the code short, it uses several advanced PHP features that we’ve yet to see—and

one or two others that are beyond the scope of this book. Rather, just drop this code

into the top of your controller—and indeed any other PHP script that will receive

user input in the form of query variables or a form submission (or, as we’ll learn in

Chapter 9, browser cookies). And be assured; from this point forward, I’ll remind

you whenever this code is required by an example.3

With the damage done by magic quotes reversed, you must now prepare those values

that you do intend to use in your SQL query. Just as it provides htmlspecialchars

for outputting user-submitted values into HTML code, PHP provides a function that

prepares a user-submitted value so that you can use it safely in your SQL query:

mysqli_real_escape_string. Not the most elegant name, but it does the trick.

Here’s how you use it:

$joketext = mysqli_real_escape_string($link, $_POST['joketext']);
$sql = 'INSERT INTO joke SET
 joketext="' . $joketext . '",
 jokedate="today's date"';

This code first uses mysqli_real_escape_string to store a “query safe” version of

the contents of $_POST['joketext'] in the new variable $joketext. It then uses

this variable to insert the submitted value into the INSERT query as the value of the

joketext column.

The lingering question in this code is how to assign today’s date to the jokedate

field. We could write some fancy PHP code to generate today’s date in the

YYYY-MM-DD form that MySQL requires, but it turns out MySQL itself has a function

to do this: CURDATE:

$joketext = mysqli_real_escape_string($link, $_POST['joketext']);
$sql = 'INSERT INTO joke SET
 joketext="' . $joketext . '",
 jokedate=CURDATE()';

3 In Chapter 6 I’ll show you how to manage the burden of repeatedly including this code snippet in your

controller code.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL136

http://www.sitepoint.com/launch/3eb28e

The MySQL function CURDATE is used here to assign the current date as the value

of the jokedate column. MySQL actually has dozens of these functions, but we’ll

introduce them only as required. Appendix B provides a reference that describes

all commonly used MySQL functions.

Now that we have our query, we can complete the if statement we started above

to handle submissions of the “Add Joke” form. We can execute our INSERT query

by using the mysqli_query function:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))
{
 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);
 $sql = 'INSERT INTO joke SET
 joketext="' . $joketext . '",
 jokedate=CURDATE()';
 if (!mysqli_query($link, $sql))
 {
 $error = 'Error adding submitted joke: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
 }

header('Location: .');
 exit();
}

But wait! This if statement has one more new trick up its sleeve. Once we’ve added

the new joke to the database, instead of displaying the PHP template as previously,

we want to redirect the user’s browser back to the list of jokes. That way they are

able to see the newly added joke among them. That’s what the two lines highlighted

in bold at the end of the if statement above do.

Your first instinct in order to achieve the desired result might be to allow the con-

troller, after adding the new joke to the database, simply to fetch the list of jokes

from the database and display the list using the jokes.html.php template as usual.

The problem with doing this is that the resulting page, from the browser’s perspect-

ive, would be the effect of having submitted the “Add Joke” form. If the user were

then to refresh the page, the browser would resubmit that form, causing another

copy of the new joke to be added to the database! This is rarely the desired behaviour.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

137Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

Instead, we want the browser to treat the updated list of jokes as a normal web page,

able to be reloaded without resubmitting the form. The way to do this is to answer

the browser’s form submission with an HTTP redirect4—a special response that

tells the browser “the page you’re looking for is over here.”

The PHP header function provides the means of sending special server responses

like this one, by letting you insert special headers into the response sent to the

server. In order to signal a redirect, you must send a Location header with the URL

of the page to which you wish to direct the browser:

header('Location: URL');

In this case, we want to send the browser back to the very same page—our controller.

We’re asking the browser to submit another request—this time, without a form

submission attached to it—rather than sending the browser to another location.

Since we want to point the browser at our controller (index.php) using the URL of

the parent directory, we can simply tell the browser to reload the current directory,

which is expressed as a period (.).

Thus, the two lines that redirect the browser back to our controller after adding the

new joke to the database:

chapter4/addjoke/index.php (excerpt)

 header('Location: .');
 exit();
}

4 HTTP stands for HyperText Transfer Protocol, and is the language that describes the request/response

communications that are exchanged between the visitor’s web browser and your web server.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL138

http://www.sitepoint.com/launch/3eb28e

$_SERVER['PHP_SELF'] is the URL of the current page

Another common means of obtaining the URL of the current page in PHP is with

$_SERVER['PHP_SELF'].

Like $_GET, $_POST, and $_REQUEST, $_SERVER is an array variable that is

automatically created by PHP. $_SERVER contains a whole bunch of information

supplied by your web server. In particular, $_SERVER['PHP_SELF']will always

be set to the URL of the PHP script that your web server used to generate the current

page.

Unfortunately, because the web server automatically translates a request for

http://localhost/addjoke/ to a request for http://localhost/addjoke/index.php,

$_SERVER['PHP_SELF'] will contain the latter URL. Redirecting the browser to

. lets us preserve the shorter, more memorable form of the URL.

For this reason, I have avoided using $_SERVER['PHP_SELF'] in this book. Since

it’s so commonly used in basic PHP examples around the Web, however, I thought

you might like to know what it does.

The rest of the controller is responsible for displaying the list of jokes as before.

Here’s the complete code of the controller:

chapter4/addjoke/index.php

<?php
if (get_magic_quotes_gpc())
{
 function stripslashes_deep($value)
 {
 $value = is_array($value) ?
 array_map('stripslashes_deep', $value) :
 stripslashes($value);

 return $value;
 }

 $_POST = array_map('stripslashes_deep', $_POST);
 $_GET = array_map('stripslashes_deep', $_GET);
 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);
 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);
}

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

139Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

$link = mysqli_connect('localhost', 'root', 'password');
if (!$link)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

if (!mysqli_set_charset($link, 'utf8'))
{
 $output = 'Unable to set database connection encoding.';
 include 'output.html.php';
 exit();
}

if (!mysqli_select_db($link, 'ijdb'))
{
 $error = 'Unable to locate the joke database.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);
 $sql = 'INSERT INTO joke SET
 joketext="' . $joketext . '",
 jokedate=CURDATE()';
 if (!mysqli_query($link, $sql))
 {
 $error = 'Error adding submitted joke: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL140

http://www.sitepoint.com/launch/3eb28e

$result = mysqli_query($link, 'SELECT joketext FROM joke');
if (!$result)
{
 $error = 'Error fetching jokes: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
}

while ($row = mysqli_fetch_array($result))
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';
?>

As you review this code to make sure it all makes sense to you, note that the calls

to mysqli_connect and mysqli_select_db must come before any of the code that

runs database queries. A database connection is unnecessary to display the “Add

Joke” form, however, so that code can come at the very top of the controller script.

Load this up and add a new joke or two to the database via your browser. The res-

ulting page should look like Figure 4.10.

Figure 4.10. Look, Ma! No SQL!

There you have it! With a single controller (index.php) pulling the strings, you’re

able to view existing jokes in, and add new jokes to, your MySQL database.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

141Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

Deleting Data from the Database
In this section, we’ll make one final enhancement to our joke database site. We’ll

place next to each joke on the page a button labeled Delete that, when clicked, will

remove that joke from the database and display the updated joke list.

If you like a challenge, you might want to take a stab at writing this feature yourself

before you read on to see my solution. Although we’re implementing a brand new

feature, we’ll mainly be using the same tools that we have for the previous examples

in this chapter. Here are a few hints to start you off:

■ You’ll still be able to do it all with a single controller script (index.php).

■ You’ll need to use the SQL DELETE command, which I introduced in Chapter 2.

■ To delete a particular joke in your controller, you’ll need to identify it uniquely.

The id column in the joke table was created to serve this purpose. You’re going

to have to pass the ID of the joke to be deleted with the request to delete a joke.

The easiest way to do this is to use a hidden form field.

At the very least, take a few moments to think about how you would approach this.

When you’re ready to see the solution, read on!

To begin with, we need to modify the SELECT query that fetches the list of jokes

from the database. In addition to the joketext column, we must also fetch the id

column, so we can identify each joke uniquely:

chapter4/deletejoke/index.php (excerpt)

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');
if (!$result)
{
 $error = 'Error fetching jokes: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
}

We must also modify the while loop that stores the database results in the $jokes

array. Instead of simply storing the text of each joke as an item in the array, we must

store both the ID and text of each joke. One way to do this is to make each item in

the $jokes array an array in its own right:

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL142

http://www.sitepoint.com/launch/3eb28e

chapter4/deletejoke/index.php (excerpt)

while ($row = mysqli_fetch_array($result))
{
 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);
}

Once this while loop runs its course, we’ll have the $jokes array, each item of

which is an associative array with two items: the ID of the joke and its text. For each

joke ($jokes[n]), we can therefore retrieve its ID ($jokes[n]['id']) and its text

($jokes[n]['text']).

Our next step, then, should be to update the jokes.html.php template to retrieve each

joke’s text from this new array structure, and also to provide a Delete button for each

joke:

chapter4/deletejoke/jokes.html.php (excerpt)

<?php foreach ($jokes as $joke): ?>
<form action="?deletejoke" method="post">

 <blockquote>
 <p>
 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,
 'UTF-8'); ?>

<input type="hidden" name="id" value="<?php
 echo $joke['id']; ?>"/>

<input type="submit" value="Delete"/>
 </p>
 </blockquote>
</form>

<?php endforeach; ?>

Here are the highlights of this updated code:

Each joke will be displayed in a form, which, if submitted, will delete that

joke. We signal this to our controller using the ?deletejoke query string in

the action attribute.

Since each joke in the $jokes array is now represented by a two-item array

instead of a simple string, we must update this line to retrieve the text of the

joke. We do this using $joke['text'] instead of just $joke.

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

143Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

When we submit the form to delete this joke, we wish to send along the ID of

the joke to be deleted. To do this, we need a form field containing the joke’s

ID, but this is a field we’d prefer to keep hidden from the user. We therefore

using a hidden form field (<input type="hidden"/>). The name of this field

is id, and its value is the ID of the joke to be deleted ($joke['id']).

Unlike the text of the joke, the ID is not a user-submitted value, so there’s no

need to worry about making it HTML-safe with htmlspecialchars. We can

rest assured it will be a number, since it’s automatically generated by MySQL

for the id column when the joke is added to the database.

This submit button (<input type="submit"/>) submits the form when clicked.

Its value attribute gives it a label of Delete.

Finally, we close the form for this joke.

This Markup Could Be Better

If you know your HTML, you’re probably thinking those <input/> tags belong

outside of the blockquote element, since they aren’t a part of the quoted text

(the joke).

Strictly speaking, that’s true: the form and its inputs should really be either before

or after the blockquote. Unfortunately, to make that tag structure display clearly

requires a little Cascading Style Sheets (CSS) code that’s really beyond the scope

of this book.

Rather than attempt to teach you CSS layout techniques in a book about PHP and

MySQL, I’ve decided to go with this imperfect markup. If you plan to use this

code in the real world, you should invest some time into learning CSS (or securing

the services of a person who does) so that you can take complete control of your

HTML markup without worrying about the CSS code required to make it look

nice.

Figure 4.11 shows what the joke list looks like with the Delete buttons added.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL144

http://www.sitepoint.com/launch/3eb28e

Figure 4.11. Each button will delete its respective joke

All that remains to make this new feature work is to update the controller so that

it can process the form submission that results from clicking one of our new Delete

buttons:

chapter4/deletejoke/index.php (excerpt)

if (isset($_GET['deletejoke']))
{
 $id = mysqli_real_escape_string($link, $_POST['id']);
 $sql = "DELETE FROM joke WHERE id='$id'";
 if (!mysqli_query($link, $sql))
 {
 $error = 'Error deleting joke: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

This chunk of code works exactly like the one we added to process the “Add Joke”

code earlier in this chapter. We start by using mysqli_real_escape_string to

sanitize the submitted value of $_POST['id'] before using it in a database

query5—this time, a DELETE query. Once that query is executed, we use the PHP

5 You might think it’s unnecessary to sanitize this value, since it’s produced by a hidden form field that

the user is unable to see. In fact, however, all form fields—even hidden ones—are ultimately under the

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

145Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

header function to ask the browser to send a new request to view the updated list

of jokes.

Why Not a Link?

If you tackled this example yourself, your first instinct might have been to provide

a Delete hyperlink for each joke, instead of going to the trouble of writing an entire

HTML form containing a Delete button for each joke on the page. Indeed, the code

for such a link would be much simpler:

<?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p>
 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,
 'UTF-8'); ?>

<a href="?deletejoke&id=<?php echo $joke['id'];
 ?>">Delete
 </p>
 </blockquote>
<?php endforeach; ?>

In short, hyperlinks should never be used to perform actions (like deleting a joke);

hyperlinks should only be used to provide a link to some related content. The

same goes for forms with method="get", which should only be used to perform

queries of existing data. Actions should only ever be performed as a result of a

form with method="post" being submitted.

The reason is that forms with method="post" are treated differently by browsers

and related software. If you submit a form with method="post" and then click

the Refresh button in your browser, for example, the browser will ask if you’re

certain you wish to resubmit the form. Browsers have no similar protection against

resubmission when it comes to links and forms with method="get".

Similarly, web accelerator software (and some modern browsers) will automatically

follow hyperlinks present on a page in the background, so that the target pages

will be available for immediate display if the user clicks one of those links. If your

site deleted a joke as a result of a hyperlink being followed, you could find your

jokes getting deleted automatically by your users’ browsers!

user’s control. There are widely distributed browser add-ons, for example, that will make hidden form

fields visible and available for editing by the user. Remember: any value submitted by the browser is

ultimately suspect when it comes to protecting your site’s security.

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL146

http://www.sitepoint.com/launch/3eb28e

Here’s the complete code of the finished controller. If you have any questions, make

sure to post them in the SitePoint Forums!6

chapter4/deletejoke/index.php

<?php
if (get_magic_quotes_gpc())
{
 function stripslashes_deep($value)
 {
 $value = is_array($value) ?
 array_map('stripslashes_deep', $value) :
 stripslashes($value);

 return $value;
 }

 $_POST = array_map('stripslashes_deep', $_POST);
 $_GET = array_map('stripslashes_deep', $_GET);
 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);
 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

$link = mysqli_connect('localhost', 'root', 'password');
if (!$link)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

if (!mysqli_set_charset($link, 'utf8'))
{
 $output = 'Unable to set database connection encoding.';
 include 'output.html.php';
 exit();
}

6 http://www.sitepoint.com/forums/

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

147Publishing MySQL Data on the Web

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/3eb28e

if (!mysqli_select_db($link, 'ijdb'))
{
 $error = 'Unable to locate the joke database.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);
 $sql = 'INSERT INTO joke SET
 joketext="' . $joketext . '",
 jokedate=CURDATE()';
 if (!mysqli_query($link, $sql))
 {
 $error = 'Error adding submitted joke: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['deletejoke']))
{
 $id = mysqli_real_escape_string($link, $_POST['id']);
 $sql = "DELETE FROM joke WHERE id='$id'";
 if (!mysqli_query($link, $sql))
 {
 $error = 'Error deleting joke: ' . mysqli_error($link);
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');
if (!$result)
{
 $error = 'Error fetching jokes: ' . mysqli_error($link);
 include 'error.html.php';

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

Build Your Own Database Driven Web Site Using PHP & MySQL148

http://www.sitepoint.com/launch/3eb28e

 exit();
}

while ($row = mysqli_fetch_array($result))
{
 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);
}

include 'jokes.html.php';
?>

Mission Accomplished
In this chapter, you learned some new PHP functions that allow you to interface

with a MySQL database server. Using these functions, you built your first database

driven web site, which published the ijdb database online, and allowed visitors to

add jokes to it and delete jokes from it.

In a way, you could say this chapter achieved the stated mission of this book, to

teach you how to build a database driven web site. Of course, the example in this

chapter contains only the bare essentials. In the rest of this book, I’ll show you how

to flesh out the skeleton you learned to build in this chapter.

In Chapter 5, we go back to the MySQL command line. We’ll learn how to use rela-

tional database principles and advanced SQL queries to represent more complex

types of information, and give our visitors credit for the jokes they add!

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

149Publishing MySQL Data on the Web

http://www.sitepoint.com/launch/3eb28e

What’s Next?
You’ve only seen a small part of what this book has to offer. As you move through

the book you’ll quickly notice that it’s written in a clear tutorial format that’s easy

to understand, and illustrated with plenty of screenshots and diagrams, providing

quick visual cues. If you hate wading through dry academic-style “how to” texts,

this book will be a breath of fresh air to you.

If you’ve never built a database driven web site and you’re looking to go beyond

the limitations of a static site, this book will start you off in no time. If you’ve created

database-driven web sites before, the extensive PHP and MySQL reference guides

included will ensure this book remains an extremely handy desk reference.

To find out more and to order your copy, visit

http://www.sitepoint.com/launch/3eb28e.

100% Satisfaction Guarantee
Oh—by the way, since we want you to feel as confident as we

do that this book is an essential PHP and MySQL learning

text, you have a full 30 days to read and use it. If, in that time,

you feel ill-equipped in the knowledge to start your own PHP

and MySQL project, then simply send the book back and we'll

give you a prompt refund of the full purchase price, minus

shipping and handling.

So, for the cost of a new T-shirt, learn how to make your own database driven web

site today!

Index

Symbols
!, not operator, PHP, 111, 118

!=, not equal operator, PHP, 102

$

(see also variables, PHP)

prefix identifying PHP variables, 78

use in regular expressions, 245

$srcurl, 361

%

modulus operator, MySQL, 416

wild card for LIKE operator, 69

wild card in hostnames, 326, 328

&&, and operator, PHP, 99

&, query string variable separator, 89

()

calling PHP functions, 77

in regular expressions, 246

*

in regular expressions, 246

multiplication operator, PHP, 78

wild card in myisamchk, 334

+

addition operator, PHP, 78

in regular expressions, 246

++, signifying increment by one, 102

.

concatenation operator, PHP, 79

in regular expressions, 247

.=, append operator, PHP, 222

/

division operator, PHP, 78

file path separator, 369

// and /* */, comment indicators, PHP,

78

;

on the MySQL command prompt, 59

terminating PHP statements, 75

<, less than, PHP, 102

<=, less than or equal to, PHP, 102

<?php ?> code delimiters, 74

=, assignment operator, PHP, 78

==, equal operator, PHP, 98

>(=), greater than (or equal to), PHP, 102

?

in regular expressions, 246

introducing a query string, 82

\c, on the MySQL command prompt, 59

^, in regular expressions, 245

| in regular expressions, 246

||, or operator, PHP, 99

A
absolute paths, include file location, 181

access control, 279–311

controller code, 283–290

database design, 279–283

function library, 290–300

managing passwords and roles, 300–

309

access control, MySQL, 324

anonymous user problem, 329

further resource, 324

tips, 329

unrestricted access, 332

access privileges

GRANT command and, 324, 325

level of application, 326

REVOKE command and, 328

addition operator, PHP, 78

addslashes function, PHP

mysqli_escape_string and, 459

administration area security, 279

administration interface

content management systems as, 197

managing authors example, 204

airline booking system example, 344

aliases (temporary names), 345

aliasing

columns and tables, 344–347

summary function results, 348

ALL privilege, GRANT command, 326

ALTER TABLE ADD UNIQUE command,

280

ALTER TABLE command, 152, 153, 389–

392

adding indexes using, 339

dropping columns, 156

ampersand, query string variable separat-

or, 89

ANALYZE TABLE command, 392

and operator, PHP, 99

anonymous users, MySQL access control,

329

Apache Service Monitor, 14

Apache web server, 4, 122

apostrophes in form fields, 91

append operator, PHP, 222

areas of rectangles, example calculation

using a custom function, 184

arguments, 450–451

arithmetic operators, 78

array function, PHP, 79

arrays, 79

(see also variables, PHP)

associative, 80, 128

processing when submitted, 233

submitting in a form, 227

super-global arrays, 190

use with checkboxes, 226

AS keyword, SELECT queries, 345

use with summary functions, 348

assignment operator, PHP, 78

associative arrays, 80

rows in result sets, 128

asterisk wild card in myisamchk, 334

AUTO_INCREMENT columns, 62

obtaining last assigned value, 234

automatic content submission, 260

B
backslashes

avoiding in path notation, 181, 369

escaping special characters, 245, 249

backups, MySQL

binary logs and incremental backups,

321

importance of, 314

inadequacy of standard file backups,

319

using mysqldump, 319

BBCode, 248

BINARY attribute, MySQL, 436

binary data files, 357–386

MySQL column types tabulated, 371

binary logs, 321

managing, 323

BLOB (Binary Large Object) column

types, 369, 371, 442

boldface text, 248–249, 255

bookmarking queries, 93

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

464

http://www.sitepoint.com/launch/3eb28e

braces, use in custom functions, 185

brackets (see parentheses; square brack-

ets)

break command, 274

browsers

limits on cookies, 267

built-in functions, PHP, 77, 449–461

(see also custom functions)

array function, 79

mysqli_connect, 117

number_format, 272

str_ireplace, 251

strlen, 375

C
cancelling a query, 59

caret, use in regular expressions, 245

carriage returns, platform-specific issues,

250

Cascading Style Sheets (CSS), 144

case-sensitivity

function names, 185

in SQL queries, 59

TEXT and BLOB column types, 371

categories

assigning to CMS items with PHP, 218

database design and, 166

managing with PHP, 212

CGI (Common Gateway Interface), 182

character column types, MySQL, 440–

444

checkboxes, 301

passing values to variables, 234

selecting multiple categories, 226

checking and repairing files, 333

chmod command, 363

CMS (see content management systems)

code delimiters, PHP, 74

column attributes, MySQL column tyes,

435

column types, MySQL

binary data storage, 369, 370

character types, 440

date/time types, 445

ENUM, 310

full listing, 435–447

INT, 62

numerical types, 436

TEXT, 62

TEXT vs. BLOB types, 371

columns, 54, 344–347

(see also fields)

access privileges on, 328

adding, 153

renaming, using aliases, 344

setting data types, 63

commands, MySQL (see queries)

comments, PHP, 78

Common Gateway Interface (CGI), 182

concatenation operators, 79

concurrent operations, locking tables,

341

conditional structures, PHP (see control

structures)

configuration files, creating binary logs,

322

connecting to MySQL, 117

using global variables, 187

using include files, 174, 176

using include_once, 180

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

465

http://www.sitepoint.com/launch/3eb28e

connection identifiers (see link identifi-

ers)

constraints

checking, search engine example, 222

foreign key constraints, 205

NOT NULL constraints, 62

content formatting, 241

content management system example

adding and editing authors, 207

deleting authors, 204

formatting stage, 242

front page, 198

managing authors, 202

managing categories, 212

managing jokes, 218–238

content management systems, 197–239

content submission by visitors, 260

content-disposition header, HTTP, 375,

376, 377

Content-length header, HTTP, 375

content-type header, HTTP, 375

control flow functions, MySQL, 415

control structures, PHP, 94

for loops, 102

if-else statements, 94

short-circuit evaluation, 369

while loops, 100

controller code, 283–290

cookies, 261–267

browser-enforced limits, 267

session alternative to, 267

setting and deleting, 263

square brackets indicate optional

code, 262

copy function, 359, 362, 369

copyright notices, 172

corrupted data recovery, 332, 335

COUNT function, MySQL, 68, 347, 434

omitting NULLs, 352

count function, PHP, 272

CREATE DATABASE command, 61, 393

CREATE INDEX command, 339, 393

CREATE TABLE command, 61, 393

binary file details, 370

nondestructive alternative, 156

CREATE TABLE queries, 337

CREATE TABLE statements, 321

cron utility

updating semi-dynamic pages, 364

CURDATE function, MySQL, 137

currency information display, 272

custom functions, 184–191

accessing global variables, 189

difference from include files, 187

function libraries and, 186

naming, 185

variable scope, 187

custom markup languages, 247

D
data

deleting from the database, 142–147

deleting stored, 70

inserting into the database, 132–141

modifying stored, 69–70

viewing stored, 66–69

data relationships (see relationships)

data types

(see also column types, MySQL)

PHP as a loosely-typed language, 78

database administration, 313–335

database design, 151–169, 279–283

delete anomalies, 154

further resources on, 151

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

466

http://www.sitepoint.com/launch/3eb28e

relationships, 163

update anomalies, 154

database servers, 53

database, MySQL, 451

database-driven web sites

role of content management systems,

197

role of scripting languages, 116

semi-dynamic pages and performance,

358

databases, 53

(see also MySQL)

adding items with PHP, 207

binary data storage, 369

creating, 61

deleting data from, 142–147

inserting data into, 132–141

inserting data using PHP, 132

listing available, 58

management using a CMS, 197

mysql and test databases, 58

recording uploaded files, 369–379

selection, in PHP, 120

storing web site content in, 54, 115

using, 61

date and time functions, MySQL, 423–

430

CURDATE function, 137, 429

DATE_FORMAT symbols, 429

interval types for date addition/sub-

traction, 427

modes for week calculation, 425

date function, PHP, 77

date/time column types, MySQL, 445–

447

delete anomalies, 154

Delete button, 237

DELETE command, 70, 142, 395

Delete hyperlink, 146

DELETE queries

confirmation page, 207

rows affected by, 70, 124

DELETE query, 145

deleting items with PHP, 142, 204

DESC keyword, 339

DESCRIBE command, 64, 153, 396

DISTINCT keyword, 154

division operator, PHP, 78

“do nothing” WHERE clauses, 221

document root, 182

document root tracking, include files,

182

dollar sign

PHP variable prefix, 78

use in regular expressions, 245

double equals sign, 98

DROP DATABASE command, 58, 397

DROP INDEX command, 397

DROP TABLE command, 64, 321, 397

recovering from unintentional, 321

drop-down lists and checkboxes, 226

duplication

avoiding, using DISTINCT, 154

avoiding, using include files, 172

E
echo statement, PHP, 76

example, 77

parentheses and, 107

echo statements, 116

enctype attribute, form tag, 364

ENUM column type, 310, 443

equal operator, PHP, 98

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

467

http://www.sitepoint.com/launch/3eb28e

equals sign, as PHP assignment operator,

78

error checking

include files and, 175

using myisamchk, 333

error messages

require statement and, 180

simple join example, 160

errors due to file permissions, 363

exclamation mark, as PHP not operator,

111

exit command, MySQL, 60

exit function, PHP, 119

expiry time, cookies, 263

EXPLAIN command, 397

F
fields

(see also columns)

as database components, 54

inadvisability of multiple values, 164,

166

file permissions, errors due to, 363

file sizes

problems with large files, 386

uploading files and, 366

file_exists function, 359

file_get_contents function, 359, 362

file_put_contents function, 359, 362

filenames, assigning unique, 367–369

files

(see also include files)

assigning unique names, 367

downloading stored files, 376

file access functions in PHP, 358

large file considerations, 386

storing in MySQL, 372

uploaded, recording in the database,

369–379

uploading, 364–370

viewing stored files, 374

Firefox, 2

flow of control (see control structures)

for loops, 102

logical flow through, 103

forced rows, 351

foreach loop, 129, 274

foreign key constraints, 205

form fields, apostrophes in, 91

form tags and file uploads, 364

formatting content, 241

forms submission methods, 92

forward slash path separator, 181, 369

front pages (see index pages)

function calls used as conditions, 119

function keyword, PHP, 185

function libraries, PHP, 184–191, 290–

300

function scoped variables, 187

functions, MySQL, 415–434

control flow functions, 415

COUNT function, 68, 347, 434

date and time functions, 423

LEFT function, 67

listed by type, 415–434

mathematical functions, 416–419

miscellaneous functions, 430–433

string functions, 419–430

use with GROUP BY clauses, 433–434

functions, PHP

(see also built-in functions)

custom functions, 184–191

expression, 243

parameters, 77

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

468

http://www.sitepoint.com/launch/3eb28e

return values, 117

session management functions, 268

working with MySQL, reference, 449–

461

G
global scope, 187

global statement, 190

global variables, 187

GRANT command, 324, 398

examples of use, 327

“greedy” special characters, 255

GROUP BY clause, SELECT queries, 348,

406

GROUP BY clauses, 433–434

group-by functions (see summary func-

tions)

H
HAVING clause, SELECT command,

353, 406

header function, PHP, 375

hidden form fields

MAX_FILE_SIZE, 367

host, MySQL, 450

.htaccess file

protecting directories with, 198

HTML

embedding in PHP output text, 76

forms, user interaction with, 90

include files containing, 172

markup, 144

PHP code conversion to, 74

static pages from URL requests, 362

tags, PHP code to match, 255

HTTP headers

cookie, 262

sending file details, 375

set-cookie, 262, 263

HTTP methods (see variables, $_GET;

variables, $_POST)

HTTP redirect, 138

hyperlinks, 146

hyperlinks within content, 252

I
ID columns, 54, 62

(see also primary keys)

if statements, error handling, 118, 119,

120

if-else statements, 94

importing global variables, 189

include command, 171

include files, 172–183

containing HTML, 172

database connection example, 176

difference from custom functions, 187

locating, 181

naming, 176

PHP statements usable with, 180

shared, 181–183

include statement, PHP, 179

require statement and, 180

include_once statement, PHP, 180, 186

incrementing values by one, 102, 340

index pages

as semi-dynamic pages, 358

indexes, 80

adding and removing, 339

further resources on, 340

regenerating after corruption, 335

sorting and, 339

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

469

http://www.sitepoint.com/launch/3eb28e

inner joins, 350

InnoDB tables, 205, 343

INSERT command, 71, 398

REPLACE command compared to, 403

TIMESTAMP columns and, 446

two forms of, 64

INSERT command., 311

INSERT function, MySQL, 422

INSERT queries, 71, 137, 157, 236, 337

rows affected by, 124

storing uploaded files, 373

INSERT statements, 260, 321

installation, 1–52

all-in-one, 322

Linux installation, 32–43

Mac OS X installation, 20–32

MySQL, 3, 322

PHP, 3

post-installation set-up tasks, 44–47

toolbox, 52

what to ask your web host, 47–48

Windows installation, 3–20

your first PHP script, 48–52

your own web server, 2–3

INT MySQL column type, 62, 437

Internet Explorer, 2

INTO clause, SELECT queries, 405

is_uploaded_file function, 368, 373

isset function, 111

italic text, 248–249, 255

J
JavaScript, 1, 75, 81, 85, 264

JavaScript and server-side languages, 73

joins, 159–162, 407–409

airline booking system example, 345

inner, 350

inner joins, 408

left joins, 349–353, 409

MySQL supported types, 407–409

natural joins, 409

outer joins, 409

self joins, 346

K
killing servers, 331

L
LEFT function, MySQL, 67, 420

left joins, 349–353

LIKE operator, SQL, 68, 223

LIMIT clause, SELECT queries, 341

LIMIT command, 413

line breaks as platform-specific issues,

250

link identifiers, 117

links within content, 252

Linux installation, 32–43

installing MySQL, 33–36

installing PHP, 37–43

LOAD DATA INFILE command, 400

localhost access privileges, 329, 330

LOCK TABLES command, 342, 343, 400

locking functions, MySQL, 432

login credentials, access control example,

279

lookup tables, 166

queries using, 168

M
Mac OS X installation, 20–32

all-in-one installation, 20–23

installing individual packages, 24–32

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

470

http://www.sitepoint.com/launch/3eb28e

installing MySQL, 24–28

installing PHP, 28–32

magic quotes, 91, 134

magic quotes feature

mysqli_escape_string and, 459

MAMP, 122, 322

Manage Authors, 297

many-to-many relationships, 166, 169

many-to-one relationships, 163, 169

markup languages

(see also HTML)

custom markup languages, 247

markup, imperfect, 144

mathematical functions, MySQL, 416–

419

max_allowed_packet option,

my.cnf/my.ini, 386

MAX_FILE_SIZE field, 367

MEDIUMTEXT and MEDIUMBLOB

column types, 371

method attribute, form tag, 92

MIME type checking, uploadable files,

365

miscellaneous functions, MySQL, 430–

433

modifying data (see UPDATE command)

multiplication operator, PHP, 78

my.cnf file, 322

max_allowed_packet option, 386

my.ini file, 322

max_allowed_packet option, 386

MyISAM table format, 205

myisamchk utility, 333

MySQL, 2, 312, 387

access control, 324–332

administration, 58, 313–335

backing up data, 319, 321

command line, 149

command-line client, mysql, 55, 323

connecting to a remote server, 57

connecting to, from PHP, 117

using global variables, 187

using include files, 174, 176

using include_once, 180

controlling access to, 324

data directory structure, 333

data files, checking and repairing,

332–335

database, 451

getting started with, 53–70

host, 450

installation, 3, 9–12, 24–28, 33–36,

322

killing server process, 331

link identifier, 119

logging on to, 55

lost password recovery, 331

mysql and test databases, 58

packet size, 386

password, 315, 450

password prompts, 56

port, 451

repairing corrupt data files, 332, 335

restoring backed up data, 320, 323

socket, 451

syntax, 389–414

transaction support, 343

username, 315, 450

MySQL column types (see column types,

MySQL)

MySQL database, 61, 70, 71, 75, 113,

115, 116, 149, 151, 169

access control and, 324

backing up, 319–323

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

471

http://www.sitepoint.com/launch/3eb28e

backups using mysqldump, 319–320

function in MySQL, 58

incremental backups using binary

logs, 321–323

MySQL functions (see functions,

MySQL)

MySQL program, 55

mysql program

restoring the database using, 323

MySQL queries (see queries, MySQL)

MySQL Relational Database Management

System (RDBMS), 313

MySQL server, 120, 121, 134, 313, 314,

321, 450

MySQL syntax, 389–414

ALTER TABLE, 389–392

ANALYZE TABLE, 392

CREATE DATABASE, 393

CREATE INDEX, 393

CREATE TABLE, 393–395

DELETE, 395–396

DESCRIBE DESC, 396–397

DROP DATABASE, 397

DROP INDEX, 397

DROP TABLE, 397

EXPLAIN, 397–398

GRANT, 398

INSERT, 398–400

joins, 407–409

LOAD DATA INFILE, 400

LOCK/UNLOCK TABLES, 400–401

OPTIMIZE TABLE, 401–402

RENAME TABLE, 402

REPLACE, 402–403

REVOKE, 403

SELECT, 403–407

SET, 410

SHOW, 411–412

TRUNCATE, 412

unions, 409–410

UNLOCK TABLES, 412

UPDATE, 413

USE, 414

mysql_affected_rows function, 125

mysql_error function, 124

mysqladmin commands, 55

mysqldump, 319–320

mysqldump utility, 319

mysqli_* functions, PHP, listed, 449–461

mysqli_affected_rows function, 449

mysqli_character_set_name function, 449

mysqli_close function, 450

mysqli_connect function, 117, 450

mysqli_connect_errno function, 451

mysqli_connect_error function, 451

mysqli_data_seek function, 451

mysqli_errno function, 452

mysqli_error function, 452

mysqli_fetch_all function, 452

mysqli_fetch_array function, 127, 453

mysqli_fetch_assoc function, 453

mysqli_fetch_field function, 453

mysqli_fetch_field_direct function, 454

mysqli_fetch_fields function, 454

mysqli_fetch_lengths function, 455

mysqli_fetch_object function, 455

mysqli_fetch_row function, 455

mysqli_field_count function, 455

mysqli_field_seek function, 456

mysqli_field_tell function, 456

mysqli_free_result function, 456

mysqli_get_client_info function, 456

mysqli_get_client_version function, 456

mysqli_get_host_info function, 457

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

472

http://www.sitepoint.com/launch/3eb28e

mysqli_get_proto_info function, 457

mysqli_get_server_info function, 457

mysqli_get_server_version function, 457

mysqli_info function, 457

mysqli_insert_id function, 234, 399, 458

mysqli_num_fields function, 458

mysqli_num_rows function, 458

mysqli_ping function, 458

mysqli_query function, 123, 458

insert queries, 137

using result sets from, 126

mysqli_real_escape_string function, 459

mysqli_real_query function, 459

mysqli_select_db function, 120, 460

mysqli_set_charset function, 119, 460

mysqli_stat function, 460

mysqli_store_result function, 460

mysqli_thread_id function, 461

mysqli_use_result function, 461

N
naming conventions

custom functions, 185

include files, 176

nested tags, 255

new line characters

platform-specific issues, 250

no browser compatibility issues, 75

NOT NULL column constraint, 62, 310

not operator, PHP, 111, 118

NULL values and LEFT JOINs, 351

number_format function, PHP, 272

numerical column types, MySQL, 436–

440

O
one-to-many relationships, 163, 169

one-to-one relationships, 163

OOP (object oriented programming),

171, 195

operators, PHP, 78–79

append operator, 222

comparative and not equal operators,

102

equal and logical operators, 98

not operator, 111, 118

OPTIMIZE TABLE command, 401

optional parameters, MySQL column

types, 435

or operator, PHP, 99

ORDER BY clause, SELECT queries, 338,

407

P
packet size, MySQL, 386

paging result sets, 341

paragraph tags, custom markup language,

249

parameters

(see also arguments)

in PHP functions, 77, 185

MySQL column types, 435

parentheses

in PHP functions, 77, 185

in regular expressions, 246, 252

password authentication, 279

password, MySQL, 450

passwords

changing, using GRANT, 327

instructing MySQL to prompt for, 56

managing, 300–309

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

473

http://www.sitepoint.com/launch/3eb28e

recovery from losing, 331

specifying using GRANT, 326

pattern modifiers, 244

period

concatenation operator, PHP, 79

in regular expressions, 247

personalized welcome messages, 83, 89

without query strings, 93

PHP, 312, 387

(see also control structures; functions,

PHP; PHP installation)

and sending SQL queries, 123–126

automatic disconnection, 123

avoid advertising your technology

choices, 104–105

basic syntax, 75

code, 174–179

code delimiters, 74

commands, 116

configuration, 122

error display, 122

getting started with, 73–113

hiding the seams, 104–112

installation, 3, 12–20, 28–32, 37–43

interpreter, 117

many templates, one controller, 109–

112

object oriented features, 171, 195

Perks and Pitfalls of UTF-8, 87–88

programming language, 104

script, 2, 71, 116, 386

script timeout, 386

security, 84, 91

sessions, 267–278

templates, 106–108, 173, 191–194, 269

PHP functions (see functions, PHP)

php.exe file, 363

php.ini file

effects of disabling errors, 180

post_max_size setting, 366

session setup, 268

upload_max_filesize setting, 366

upload_tmp_dir setting, 365

phpMyAdmin, 314–318

pipe character, in regular expressions,

246

port, MySQL, 451

post_max_size setting, php.ini file, 366

preg_match function, PHP, 243

preg_replace function

example using, 248

preg_replace function, PHP, 247, 252

str_replace and, 251

primary keys, 167

product catalog, shopping cart example,

270

Q
queries, MySQL, 60

advanced SQL, 337

cancelling, 59

case sensitivity, 59

depending on lookup tables, 168

search engine example, 223

semicolon terminator, 59

sending, using PHP, 123

query strings, 82

question marks, introducing query

strings, 82

quit command, MySQL, 60

quotes

double, as PHP string delimiter, 79

single, around PHP strings, 77

single, around strings in PHP, 79

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

474

http://www.sitepoint.com/launch/3eb28e

R
read locks, 342

rectangles

calculate area example

using a custom function, 184

referential integrity, 205

Refresh button, 146

regular expressions, 242–260

capturing matched text, 252

in double quoted strings, 250

matching hyperinks, 252

matching paired tags, 255

string replacement with, 247

validating MIME types, 366

relational database management system

(RDBMS), 2

relationships

example, 155

many-to-many relationships, 166

preserving referential integrity, 205

relationship types, 163

RENAME TABLE command, 402

REPLACE command, 402

require statement, PHP

include statement and, 180

require_once statement, PHP, 180, 186

required columns (see NOT NULL)

restoring MySQL databases

from mysqldump backups, 320

using binary logs, 323

result sets, 126

paging, 341

processing order in MySQL, 353

restricting the size of, 340, 353

sorting, 337

return statement, PHP, 185

return values, PHP functions, 117

REVOKE command, 328, 403

role-based access control, 282

role-based access control system, 279

rows, 54

affected by deletes and updates, 124

counting, in MySQL, 68

deleting, 70

updating, 69

S
script timeouts, PHP, 386

scripting languages, role, 116

search engine example, 218

security, 281

access control example, 279

upload_max_filesize setting, 367

using is_uploaded_file, 368

security, PHP, 84, 91

SELECT command, 66, 403–410

(see also SELECT queries)

DISTINCT keyword, 154

GROUP BY clause, 406

HAVING clause, 406

INTO clause, 405

LIKE operator, 68, 223

ORDER BY clause, 407

WHERE clauses, 68, 406

“do nothing” WHERE clauses, 221

select multiple tag, 227

SELECT queries, 126, 142

aliases in, 346

building dynamically with PHP, 221

from multiple tables, 162

grouping results, 347–349

limiting number of results, 340, 353

search engine example, 220

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

475

http://www.sitepoint.com/launch/3eb28e

sorting results, 337

table joins and, 159

using result sets from, 126

with multiple tables, 158

SELECT statement, 338

SELECT statements, 321

self-closing tags, 90

semicolon

PHP statement terminator, 75

semicolon, on the MySQL command

prompt, 59

semi-dynamic pages, 358–364

server restarts

update log flushing, 321

with unrestricted access, 332

server-side languages, 73

advantages, 75

server-side resources, access to, 75

server-side scripting language, 2

session ID, 267

session management functions, PHP, 268

session_destroy function, PHP, 269

session_start function, PHP, 268, 271

sessions, 267–269

shopping cart example, 269–278

SET command, 410

Set password field, 300

set_time_limit function, PHP, 386

setcookie function, PHP, 262, 263

shopping cart example, 269–278

product catalog, 270

short-circuit evaluation, 369

SHOW DATABASES command, 58

SHOW GRANTS command, 328

SHOW queries, 411–412

SHOW TABLES command, 63

SitePoint Forums, 56

socket, MySQL, 451

sorting result sets, 337

special characters

escaping, in regular expressions, 245,

249, 253

SQL

advanced queries, 337

case sensitivity in queries, 59

column and table name aliases, 344–

347

locking tables, 341–343

MySQL and, 60

MySQL command syntax, 389–414

queries, 71

queries, sending with PHP, 123–126

setting limits, 340

SQL injection attack, 134

square brackets

array indices, 80

use in regular expressions, 246

square brackets indicate optional code,

262

SSIs (Server-Side Includes), 172

state preservation (see cookies)

statements, PHP, 75

static includes, 172

static or semi-dynamic pages, 358

str_ireplace function, 251

str_replace function, PHP, 251

string functions, MySQL, 419–423

string replacement with regular expres-

sions, 247–260

boldface and italic text, 248–249

hyperlinks, 252–255

matching tags, 255–256

paragraphs, 249–252

putting it all together, 257–260

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

476

http://www.sitepoint.com/launch/3eb28e

strlen function, PHP, 375

structured programming, 171–194

Structured Query Language (see SQL)

subtraction operator, PHP, 78

summary functions, 433

summary functions, MySQL, 347, 433–

434

super-global variables

super-global arrays, 190

T
table formats, 205

table joins (see joins)

tables

as database components, 54

checking with myisamchk, 333

counting number of entries, 68

creating, 61

deleting, 64

deleting entries, 70

inserting data, 64

listing, 64

locking, 342, 343

recovery after corruption, 332, 335

relationships between (see relation-

ships)

renaming, using aliases, 344

repairing damaged tables, 334

separating data with, 153

structural overview, 54

temporary, 394

updating entries, 69

using different names, 344–347

viewing entries, 66

Task Scheduler, Windows, 363

updating semi-dynamic pages, 364

templates, PHP, 106–108

test database, in MySQL, 58

text formatting, 241

boldface and italic text, 248–249

hyperlinks, 252–255

paragraphs, 249–252

string replacement with regular expres-

sions, 247

TEXT MySQL column types, 442

TEXT type, 62

text string, 65

time function, PHP

constructing unique names, 367

cookie expiry and, 263

time functions, MySQL (see date and

time functions)

TIMESTAMP, 354

transactions, 343

TRUNCATE command, 412

U
unions, 409

unique file names, 367

unlink function, 359, 362

UNLOCK TABLES command, 343, 400,

412

unset function, PHP, 269, 276

UNSIGNED attribute, MySQL, 435

update anomalies, 154

UPDATE command, 69, 413

TIMESTAMP columns and, 446

WHERE clause, 69

UPDATE queries, 153, 157, 236

rows affected by, 124, 413

UPDATE statements, 321

upload_max_filesize setting, php.ini file,

366

upload_tmp_dir setting, php.ini file, 365

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

477

http://www.sitepoint.com/launch/3eb28e

uploading files, 364–370

unique file names, 367

USAGE privilege, GRANT command,

326, 327

USE command, 61, 414

user accounts, restricting access, 324

user interaction in PHP, 81

user privileges

granting, 324

revoking, 328

username authentication, 279

username, MySQL, 450

users

removing, 328

specifying in GRANT commands,

326, 329

UTF-8, 87–88

utility programs, MySQL, 320

V
variable interpolation, 79

variable scope, 187

variable-length character string, 153

variables, PHP, 78

(see also arrays)

$_COOKIE, 262

$_FILES array, 365, 373

$_GET and query strings, 83

$_POST array, 92

$_REQUEST array, 93

$_SERVER array, 139

DOCUMENT_ROOT, 182

$_SESSION array, 269, 271, 273, 276

$GLOBALS array, 190

custom function declarations, 185

embedding in text strings, 79

incrementing by one, 102

super-global arrays, 190

W
WampServer, 4, 5, 6, 8, 58, 122, 322

Web servers, 2

restricting access to administration

pages, 198

web servers

(see also Apache web server)

welcome pages, personalizing, 82

WHERE clause, 338

WHERE clauses

“do nothing” WHERE clauses, 221

SELECT command, 68, 406

simple joins, 159

UPDATE command, 69

WHERE command, 413

while loop, 143

while loops, 100

processing result sets, 127

wild cards

control problems from, 329

for LIKE operator, 69

in hostnames, 326, 328

myisamchk utility, 334

Windows

and filename extensions, 16

Windows Essentials (AMD64 / Intel

EM64T), 10

Windows Essentials (x86), 10

Windows installation, 3–20

all-in-one installation, 3–9

installing individual packages, 9–20

installing MySQL, 9–20

installing PHP, 12–20

Windows Task Scheduler, 363

Windows x64, 10

Build Your Own Database Driven Web Site Using PHP & MySQL (www.sitepoint.com)

478

http://www.sitepoint.com/launch/3eb28e

WITH GRANT OPTION clause, 327

write locks, 342

X
XHTML (Extensible HTML), 90

Z
ZEROFILL attribute, MySQL, 435

ZEROFILL column, 435

You Too Can Create Impressive Database Driven Web Sites Using PHP & MySQL!

479

http://www.sitepoint.com/launch/3eb28e

	Build Your Own Database Driven Web Site Using PHP & MySQL
	Thank-you for Downloading This Book
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Installation
	Your Own Web Server
	Windows Installation
	All-in-one Installation
	Installing Individual Packages
	Installing MySQL
	Installing PHP

	Mac OS X Installation
	All-in-one Installation
	Installing Individual Packages
	Installing MySQL
	Installing PHP

	Linux Installation
	Installing MySQL
	Installing PHP

	Post-Installation Set-up Tasks
	What to Ask Your Web Host
	Your First PHP Script
	Full Toolbox, Dirty Hands

	Introducing MySQL
	An Introduction to Databases
	Logging On to MySQL
	Structured Query Language
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Let PHP Do the Typing

	Introducing PHP
	Basic Syntax and Statements
	Variables, Operators, and Comments
	Arrays
	User Interaction and Forms
	Control Structures
	Hiding the Seams
	Avoid Advertising Your Technology Choices
	Use PHP Templates
	Many Templates, One Controller

	Bring On the Database

	Publishing MySQL Data on the Web
	The Big Picture
	Connecting to MySQL with PHP
	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	Deleting Data from the Database
	Mission Accomplished

	What’s Next?
	Index

