The

S rarmmers

Designed
for Use

Create Usable Interfaces
for Applications and the Web

‘v
vvvv
L
v

Lukas Mathis

edited by Jill Stetnberg

What Readers Are Saying About Designed for Use

An encyclopedic narrative of the life cycle of software UX design,
stuffed with best practices, timely examples, and solid design method-
ologies. I wish I had it years ago!

» Keith Lang
COO and interaction designer, Skitch

It's hard to write about usability concepts without sounding overly
academic, but that’s exactly what Lukas has done. This book is a
must-read if you are familiar with basic usability concepts and are
ready to learn more.

» Jon Bell
Interaction designer, Windows Phone

Designed for Use distills Lukas’s brilliant insight into the much
neglected area of usability, UX, and Ul design. An essential, authori-
tative, and enlightening read.

» Paul Neave
Interaction designer, Neave Interactive

This book is smooth and pleasing like Swiss chocolate and has the
eloquence of a cherry blossom. It's a must-read and real gem for
everybody who is eager to learn about usability.

» Michael D. Trummer
Senior engagement manager, Appway, Inc.

Make good use of this book! It will help you to improve your work.

» David Naef
Creative director, Design Management, Visionaer

Designed forUse

Usable Interfaces for Applications and the Web

Lukas Mathis

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jill Steinberg
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-675-3
Printed on acid-free paper.
P1.1a printing, July 2011
Version: 2011-7-8

http://www.pragprog.com

For Regula and Werner

_ Confents

Before We Start, a Word 12
Technique Chapters 12
Idea Chapters, 13
How the Book Is Organized 15
JustOne More Thing 16
I Research 17
1 User Research 19
2 Job Shadowing and Contextual Interviews 23
2.1 Observing Your Audience. 24
2.2 JobShadowing 24
2.3 Contextual Interviews 25
2.4 Remote Shadowing 26
2.5 Limitations of Contextual Interviews 26
3 Personas 30
3.1 Problems with Personas 31
3.2 CreatingPersonas 32
3.3 Working with Personas 33
3.4 Personas Do Not Replace User Research 34
4 Activity-Centered Design 37
5 Time to Start Working on Documentation 40
5.1 TheManual 41
52 BlogPosts 000, 41
53 Screencasts o 42
54 PressReleases 42

55 TalkAboutTasks 43

CONTENTS d 7

6 Text Usability 46
6.1 Why Words Matter. 46
6.2 People Dont WanttoRead 47
6.3 Sayless o . 48
6.4 Make Text Scannable 49
6.5 NoFluff......... 49
6.6 Sentences Should Have One Obvious Interpretation 50
6.7 Talk Like a Human, Not Like a Company 51
6.8 Ilustrate Your Points 52
6.9 Use Words People Understand 53
6.10 TestYourText 54
6.11 Display Legible Text 55
7 Hierarchies in User Interface Design 58
7.1 Creating Hierarchical Structure Visually. 59
8 Card Sorting 63
8.1 Designing Hierarchies 64
8.2 PreparingforaCardSort. 65
8.3 Participants0 0. 66
84 RunningaCardSort 67
8.5 Running a Remote Card Sort 69
8.6 EvaluatingtheResults 70
8.7 Guidelines for Creating Usable Hierarchies 71
9 The Mental Model 77
9.1 WhatPeople Think 77
9.2 Three Different Models 79
9.3 Hiding Implementation Details 79
9.4 Leaky Abstractions 82
9.5 Designing for Mental Models 83
I Design 93
10 Sketching and Prototyping 95
10.1 Designing the Structure 96
10.2 FlowDiagramso 96
10.3 Storyboards 0. 97
104 Sketching 97
10.5 Wireframes 99
10,6 MocCK-UpS v v v it e e e e 99
10.7 Tools o o i i i 101

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=7

CONTENTS «d 8

11 Paper Prototype Testing 104
11.1 Guerilla Paper Prototype Testing 105
11.2 Running Full Usability Tests with Paper Prototypes 107

12 Realism 120
12.1 Symbols. e 121
12.2 Virtual Versions of Real-World Objects 123

12.3 Replicating Physical Constraints in Digital Products 126

13 Natural User Interfaces 130
13.1 Avoid Gesture Magic 131
13.2 Recognizing Gestures 132
13.3 AccidentalInput. 134
13.4 Conventions 135
14 Fitts's Law 138
14.1 Screen Edges Have Infinite Size 139
14.2 Radial Context Menus Decrease Average Distance . 140
14.3 Small Targets Need Margins 143
14.4 Sometimes, Smaller Is Better 143
15 Animations 145
15.1 Explaining State Changes 145
15.2 Directing User Attention 146
15.3 Avoid Unimportant Animations 148
15.4 Help Users Form Suitable Mental Models 148
15.5 Learning from Cartoons 150
16 Consistency 155
16.1 Identifying Archetypes 155
16.2 Behavioral Consistency 156
17 Discoverability 159
17.1 What to Make Discoverable 159
17.2 When to Make Things Discoverable 161
17.3 How to Make Things Discoverable 162
18 Don’t Interrupt 165
18.1 Make Decisions for Your User 166
18.2 Front Load Decisions 167
18.3 Interrupt Users Only For Truly Urgent Decisions . . 168

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=8

CONTENTS «d 9

19 Instead of Interrupting, Offer Undo 171
19.1 Let Users Undo Their Actions 172
19.2 TemporaryUndo. 173
20 Modes 175
20.1 Nonobvious Modes 176
20.2 Unexpected Modes 180
20.3 StickyModeso, 180
20.4 Modes Are Not AlwaysBad 181
20.5 Quasimodes 181
21 Have Opinions Instead of Preferences 183
21.1 Why Preferences AreBad 185
21.2 How to Avoid Preferences. 186
21.3 If You Can’t Avoid Preferences 187

22 Hierarchies, Space, Time, and How We Think About the

World 189
22.1 Hierarchies 190
22.2 Space e e e e e e 191
22.3 Time e e e e e e e e 193
22.4 A Better Hierarchical System 194
23 Speed 198
23.1 Responsiveness 199
23.2 Progress Feedback 199
23.3 Perceived Speedo 201
23.4 SlowingDown 202
24 Avoiding Features 205
24.1 Remember the User'sGoals 206
242 TheFiveWhys 206
24.3 Instead of Adding a New Feature, Make an Existing
Feature More Usable 208
24.4 Solve Several Problems with One Change 208
24.5 ConsidertheCost 209
246 MakeltInvisible 209
24.7 Provide an API and a Plug-in Architecture 209
24.8 ListentoYourUsers 210
24.9 But Don’t Listen to Your Users Too Much 211
24.10 Not All Users Need to Be Your Users 212

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=9

CONTENTS <« 10

25 Removing Features 215
25.1 DotheResearch 216
25.2 InformYourUsers. 217
25.3 Provide Alternatives 217
25.4 ItsYourProduct. 218
26 Learning from Video Games 220
26.1 WhatsFun? 220
26.2 Why Your Product Is Not Like a Game 222
26.3 What We Can Learn from Games 225
26.4 Funvs.Usability 231
III Implementation 233
27 Guerilla Usability Testing 235
27.1 HowOftentoTest 236
27.2 Preparing fortheTest. 237
27.3 How Do You Find Testers? 237
274 HowManyTesters. 237
27.5 RunningtheTest 238
276 TheResults. 238
28 Usability Testing 240
28.1 Usability Tests Don’t Have to Be Expensive 241
28.2 HowOftentoTest 242
28.3 HowMany Testers. 243
28.4 Who Should Test Your Product? 244
285 HowtoFindTesters. 246
28.6 Different Typesof Tests 246
28.7 PreparingfortheTest. 247
28.8 RunningtheTest 248
29 Testing in Person 250
29.1 RunningtheTest 250
30 Remote Testing 257
30.1 Moderated Remote Testing 258
30.2 Unmoderated Remote Testing 266

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=10

CONTENTS <« 11

31 How Not to Test: Common Mistakes 268
31.1 Don’t Use Words That Appear in the User Interface 268
31.2 Don’t Influence the Tester 269
31.3 Avoid Stressful Situations 270
32 User Error Is Design Error 272
32.1 Don’t Blame Your Users in Your Error Messages . . 273
32.2 NoError, NoBlame 275
33 A/B Testing 279
33.1 WhentoDoA/BTesting 281
33.2 What'sSuccess? v v i i i 281
33.3 Preparing fortheTest. 282
33.4 RunningtheTest 282
33.5 Interpreting the Results 283
33.6 KeepinMind 283
34 Collecting Usage Data 287
34.1 MeasureSpeed 287
34.2 ExitPoints 288
34.3 Measure Failure 289
344 UserBehavior 289
35 Dealing with User Feedback 292
35.1 Unexpected Uses 292
35.2 BadFeedback 293
36 You're Not Done 295
A Acknowledgments 296
B Bibliography 299
Index 302

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=11

_ DBeforeWeStartaWord

This is a book for visual designers and programmers. It’'s not, however,
about visual design or about code. Instead, it’s about something much
more important: the people who will be using your product.

The best product is of no consequence whatsoever if people don’t use it.
You can create the most beautiful, sturdiest, most elegant brush in the
world, but if nobody uses it to paint a picture, your work was in vain.

This book helps you make products—applications and websites—that
people will want to use.

There are two kinds of chapters in this book: “technique chapters” and
“idea chapters.” Each technique chapter explains a specific technique
you can use during the design process to make your product more
user-friendly: storyboarding, usability tests, or paper prototyping, for
example. Technique chapters explain concrete things you can do—the
tools for your designer’s tool belt.

Idea chapters, on the other hand, talk about ideas or concepts in more
general terms: how to write usable text, how realistic your designs
should look, when to use animations, and so on. Idea chapters explain
things to think about and consider while coming up with designs.

Technique Chapters

You can identify technique chapters by the cog on the first page.

All technique chapters follow the same basic outline. Since not all tech-
niques work well in all situations, I start by quickly outlining the kinds
of situations to which the technique applies. Then, I explain what the
technique is and how to use it. I end many of the technique chapters
with a specific example of the technique as applied to a fictional appli-
cation we design as we proceed through the book.

IDEA CHAPTERS <« 13

Since Twitter! apps are our generation's “Hello World” example appli-
cation, for the technique chapters we’ll design a Twitter app. To make
things interesting, we're not designing a generic Twitter app. Our app
is aimed at people who have to update Twitter accounts for their com-
panies. We call this fictional application BizTwit.

Think of the technique chapters as recipes. It's OK to read the book
from start to finish, but it’s also OK to delve into a specific topic. To
that end, these chapters are typically short and to the point, and they
contain references to further information both inside the book as well
as in other books or on the Internet.

Idea Chapters

While technique chapters introduce specific techniques and explain
how to apply them, idea chapters are less specific. They introduce con-
cepts and are mostly meant as sources of inspiration, rather than as
strict rules. Some of the idea chapters mention techniques or refer to
technique chapters, but they focus on more general concepts: How real-
istic should design be? How can we use animation most effectively?
What are modes? What can we learn from video games?

You can identify idea chapters by the light bulb on the first page.

The ideas in these chapters may not always apply to the projects you're
working on, because to some degree, people are unpredictable. When
using your products, they don’'t always behave as you expect them to
behave. And they don’t always act as your rules predict.

To illustrate how people’s behavior is often different than predicted,
let’s look at an example outside of user interface design. Let’s assume
you are concerned with public health and safety. Where do you start?
Given that tens of thousands of cyclists are injured in traffic accidents
every year, bicycle safety is a good place to start.

Studies show that helmets help cyclists avoid injuries. So, getting peo-
ple to wear helmets should decrease the number of injuries, thereby
increasing people’s health and safety. The predicted outcome seems

1. In case you don't know what Twitter is (possibly because you're reading this
book in the year 2053, when brainjacking is how people communicate), Twitter (at
http://twitter.com) is a popular Internet service that people use to publish short text
messages—tweets—and subscribe to other people’s messages.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://twitter.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=13

IDEA CHAPTERS «d 14

7 N

Typing Web Addresses
This book contains a lot of web addresses. Some of them are
pretty long. Maybe you're reading a printed version of this
book. Copying these long addresses from your book to a web
browser can be cumbersome. To make it a little bit easier, I've
set up http://designedforuse.net. This site contains a list of all the
long addresses in this book. Instead of typing a long address,
type hitp://designedforuse.net, and click the link there.

obvious: people get into bike accidents, helmets prevent injuries, peo-
ple who wear bike helmets can avoid injuries. Conclusion: force people
to wear helmets.

Over the years, a number of bike-helmet laws have been introduced.
However, these laws have not led to the predicted outcome.

In a 2009 study titled “The Health Impact of Mandatory Bicycle Helmet
Laws,”? Piet de Jong, from the Department of Actuarial Studies at the
Macquarie University in Australia, evaluated the effects of such laws.
He discovered that people really don’t like bike helmets, so much so
that many of them simply stop using their bikes altogether if they are
forced to wear helmets while riding.

This outcome prompted de Jong to conclude that bike-helmet laws
actually have a negative effect on societal health as a whole. Yes, the
laws prevent some injuries, but for people who stop using their bikes
entirely (and often use their cars instead), the health consequences are
overwhelmingly negative.

The bottom line is, no one bothered to test the laws before enacting
them. The people who were affected by the laws did something com-
pletely unexpected by the people who designed the laws.

You will often observe the same effect when designing user interfaces.
Design changes don’t always create the result you intended and some-
times have the opposite effect of what you expected.

When you read the ideas and rules in this book, I want you to keep
this in mind. You can do your best to come up with a usable solu-
tion; you can follow all the rules and make what seem like obviously

2. You can read the study at http://ssrn.com/abstract=1368064.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://designedforuse.net
http://designedforuse.net
http://ssrn.com/abstract=1368064
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=14

How THE BOOK Is ORGANIZED < 15

usable choices when designing your user interface. But people will still
surprise you by finding creative ways of misunderstanding your appli-
cation’s user interface, getting lost on your website, behaving in unpre-
dictable, seemingly illogical ways, and being unable to do the very tasks
that seem most obvious to you.

Never assume you can apply a list of usability rules to a product and
end up with something usable. Use common sense when designing user
interfaces, but don’t rely on it. Know the rules, but break them if it
improves your product. The point is not to do exactly what I tell you
to do but instead to take my words as a source of inspiration—and to
always test your designs.

How the Book Is Organized

The chapters in this book are presented roughly in the order in which
they are applicable during a typical design process, which I've divided
into three stages: research, design, and implementation.

Research
It's tempting to jump right in and start designing a product as
early as possible (or perhaps even to start writing code if you're
a programmer). In some cases, that may be OK, but it’'s usually
better to start by doing a bit of research. Who is your product for?
What problems do you want to solve?

Design
Think about how to solve your audience’s problems. Design solu-
tions and then test them before writing any code. Fixing mistakes
on paper is a lot easier than fixing them in code.

From a design point of view, this stage is probably the most impor-
tant in the development process and, consequently, represents the
largest part of the book.

Implementation
Create the product, but keep testing it. Were your earlier assump-
tions correct? Does your design work? How do people interact with
it now that it’s running? Is your implementation good enough?
How does your product deal with errors and real data? Does it
perform well enough?

Deciding where to put idea chapters was more of a gut call than an
exact science. I've put these chapters where you're likely to find them

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=15

JUST ONE MORE THING <d 16

useful, but most ideas are applicable most of the time. The organization
is more pertinent for technique chapters.

I introduce each technique chapter with a timeline that looks like this:

vLLld

Research Design Implementation

This timeline should help you understand when a technique is most
important or most commonly used. The example timeline indicates a
technique that is typically used at the beginning of the “implementa-
tion” part of the product development process. However, many tech-
niques are useful at different times of the design process. The timelines
are there to help put techniques into context, not as strict rules.

Now, this representation makes it look like the
typical development process is a linear affair that
goes from research to design to implementation.
But typically, design processes are iterative. Your
development process is more likely to look a bit
like this circle.

However, since we often think of our development process as a number
of linear iterations on a product, the linear timeline should be easy to
understand.

Just One More Thing

Before we start, I should note that this book has its own web page.® It
offers a book forum and an errata page. Of course, now that I type this,
the errata page is still empty, but by the time you read it, it probably
won't be.

And with that out of the way, let’s get started!

3. You can find it at http://www.pragprog.com/fitles/Imuse.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com/titles/lmuse
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=16

Part 1

Research

The first part of this book is about research. You'll learn why research is important
and find out which kinds of research work well (and what you should avoid).
You'll learn how to observe what people actually do and how to interview peo-
ple. You'll see how to use personas to keep track of your research and to focus
your product’s design. Later, you’ll see how to structure your product using card
sorfs.

So, let’s start by figuring out why research is important.

Chapter 1

— UsrResearch

When designers talk about their design process, they usually mention
that it is “human centered” or “user centered.” In a very vague sense,
this means they are constantly thinking about the people who are going
to use their product and trying to create the best possible product for
these people.

But how do we do that?

This question is more difficult to answer than it seems, but the answer
generally starts with user research.

How do we find out what goals people have, and how we can solve
these goals? The most obvious answer would be to simply ask them.
Although this can sometimes lead to useful information, we need to be
careful when evaluating such opinions.

Henry Ford is quoted as saying, “If I'd asked people what they wanted,
they would have said faster horses.” And why shouldn’t they answer in
this way? Most people are not product designers. They don’t spend a lot
of time thinking about where their issues are (such as that they con-
stantly have to care for their horses) and how a new product could solve
these issues. They just work around the issues (by building stables for
their horses and hiring people to care for them) and then promptly
become blind to them. Rather than asking for something different that
actually fixes their problems, they ask for the same thing that’s slightly
better.

As a result, people often aren’t able to tell us how we can solve their
problems. Worse, people may not even be able to tell us what their prob-
lems are. And worst of all, people are pretty bad at predicting whether
and how they would use a product if we proposed to build it for them.

CHAPTER 1. USER RESEARCH < 20

7 A

Focus Group

The term focus group describes a kind of user research in which
a brand, a service, a new design, a device, or a similar prod-
uct is shown to a group of people and the group’s subjective
reaction and opinion are recorded. The goal is to use this data
to predict the general public’s response to the product.

Take the Atari Lynx, for example. Back in
the early 1990s, the Japanese video game
company Nintendo owned the handheld
gaming market with its Game Boy.

Almost every kid had one, and those who didn’t were adding it to their
wish lists and eagerly waiting for their birthdays to arrive. Atari, a com-
peting video game company, wanted in on the action.

After talking to focus groups, Atari decided to go with a console that
was much more powerful than Nintendo’s little gray device. Atari put a
color screen and a faster processor into its device and called it the Lynx,
clearly trumping the comparatively puny and punily named Game Boy.
Atari also went with a huge case for the device, because people in the
focus groups said they preferred a larger model.

The device bombed. Nobody wanted a Lynx.

When I contacted Lynx co-designer RJ Mical and asked him about
this,! he told me the following:

One of the most valuable lessons I learned from the Lynx:
never trust focus groups. We did a lot of focus group test-
ing with the Lynx, especially regarding the size and shape
of the case. We presented a number of different models and
asked, “Which one do you like? Which one feels best to you?”
We showed them big ones and little ones. We showed them
gigantic ones and little tiny ones! Over and over again they
preferred the big ones. They all told us, “Big! Make it big! I

1. You can find out more about RJ Mical at http://www.mical.org.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.mical.org
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=20

CHAPTER 1. USER RESEARCH <« 21

want to feel like I'm really getting my money’s worth.” OK, so
we made it big. And then when Lynx came out, suddenly they
all said, “So big?! Why is this thing so big?” It was awful. The
original Lynx was mostly air space inside! We should have
followed our instincts; instead, we did what the focus groups
told us to do, and that was a mistake.

It turned out that people didn’t really know what they wanted from a
handheld gaming device; they were not capable of correctly predicting
how they would use it. Despite what people claimed, they did not want
large, powerful devices. Instead, kids liked to put these devices into
their school bags and carry them around. The Lynx was too large for
this, and the powerful processor and the color screen ate through a
set of batteries within less than four hours; in other words, a full set
of fresh batteries typically didn’t even last a single school day. What's
more, all the hardware power of the Lynx made it expensive enough
that a lot of parents were not comfortable handing one to their kids.

People thought they wanted a big device with a powerful processor and
a color screen, because they imagined how awesome the games on such
a device would be. In reality, they wanted a cheap, small device they
could easily carry with them and play for a long time on a single set of
batteries.

Atari scrambled to release a smaller version of the console, but by the
time it hit the market, it was too late for the device. Atari sold a mere
500,000 Lynxes. Nintendo, on the other hand, went on to sell almost
120 million Game Boys.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=21

CHAPTER 1. USER RESEARCH <« 22

At this point, we know who our audience is going to be. But we've found
out that they don’t know what they want, so we can’t just ask them
what they need. Instead, we need to figure it out on our own. Our goals
are rather straightforward:

Find Problems Find Solutions

Find out what people are currently Find a way of making what they

doing. are already doing easier and more
efficient.

Find out what people have to do Find a way of making the things

but really dislike doing. they dislike obsolete, or at least
more fun.

Find out what they would like to Find a way of making what they

be doing. want to be doing possible.

You'll find out how to do that in the following chapters.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=22

Chapter 2

Job Shadowing and Contextual
— Interviews

77727277, |

Research Design Implementation

What Are the Techniques?

Job shadowing and contextual interviews are two techniques used to
find out what people actually do, where they need help, and how your
product can help them. To do that, you will be accompanying people
while they do their jobs and talking to them about their jobs.

Use these techniques if your application or website is targeted at a spe-
cific audience and if you have the ability to interact with people from
your audience. For example, if you're creating a product for photogra-
phers, read this chapter. If you're creating a product that will be used
by employees of a company and you can talk to employees of the com-
pany, read this chapter. If, on the other hand, the audience of your
product is not well-defined or you don’t have access to your audience,
don’t feel bad about skipping this chapter.

Why Is This a Good Idea?

Your users are different from you. Getting to know them and getting to
know their problems will help you understand how to create a product
that is truly usable to them.

OBSERVING YOUR AUDIENCE «d 24

7 N

Users

It was astronomer and author CIliff Stoll who famously asked,
“"Why is it drug addicts and computer dficionados are both
called users?” It's unfortunate that the term user is used in both
contexts, but | don’t have a good alternative to the word. So, it
is with considerable chagrin that | admit defeat and begrudg-
ingly continue to use the word in this book.

Whenever possible, | fry to use a better term, though. Human
and person and customer are each often perfectly service-
able replacements for user.

Are There Any Prerequisites?

You should have an idea of who your target audience is and be able to
easily access the people who make up your target audience.

2.1 Observing Your Audience

In the previous chapter, we established that most people are not prod-
uct designers. They are hard-pressed to explain what kind of product
they need to help them achieve their goals, and they are often unable
to correctly evaluate their own feelings about a product.

As a result, we can’t just ask people what they want. Instead, we need
to figure it out on our own. Job shadowing and contextual interviews
are two techniques we can use to do just that.

2.2 Job Shadowing

Since people don’t know what they want, a good approach is to simply
observe what they do. The idea of shadowing is to visit users in our
target audience at the place where they will use our product. The goal
is to find out how our product will help them achieve their goals. This
is a bit like doing a usability test, but instead of inviting people to test
and telling them what to do, we visit them and observe what they do.

With usability testing, the goal is to find issues with the user interface.
When you are shadowing somebody, the goal is to figure out what kind
of product to create or how to change your product on a more funda-
mental level.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=24

CONTEXTUAL INTERVIEWS <« 25

¢ Are there specific tasks that this person is spending a lot of time
on?

¢ Is the person doing the same thing repeatedly?
¢ Is she doing something that looks like a workaround?
¢ Is she doing something that seems to bore or annoy her?

¢ Is she forced to memorize steps or technical aspects of a task or
other things that the computer could manage for her?

¢ Is she using other tools in conjunction with her computer, such
as paper lists or a calculator?

As a general rule, you should not interfere with the person while she’s
working, but if you're unsure what she’s doing, feel free to ask.

2.3 Contextual Interviews

What you see is more important than what people say. Still, by asking
the right questions, you can often get some useful information out of
people.

After shadowing somebody, spend half an hour asking that person
about the things she was doing. The kinds of things you're looking for
are areas where improvements seem possible. Don’t ask for opinions,
and avoid questions that force the person to play product designer.

We want to ask the person about tasks he is performing, so questions
should include the following:

¢ Are there tasks you often do that I did not see today?
* What kind of problem are you solving most often?
* Why are you doing [something you've seen] in this specific way?

e What happens if you don’t have all the information you need to
complete a task?

* Who are the people you regularly interact with, and how do you
do that?

¢ What do you have to do if somebody you need is not at work or if
some other problem occurs?

Keep in mind, though, that people are spontaneously providing this
information; therefore, it is often incomplete and may include personal

Report erratum
Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=25

REMOTE SHADOWING < 26

idiosyncrasies or even errors. Still, contextual interviewing gives us
a useful overview of the things people do and potential areas where
improvements are possible. Also, by doing interviews with several peo-
ple, we can figure out much of the missing or misreported information.

2.4 Remote Shadowing

If visiting people is out of the question, you can ask them to start their
screen-recording software, let it run for half a day or so while they work,
and then have them send you the resulting movie. At first, this sounds
like it would create immensely large movie files. Fortunately, there are
a few factors working to our advantage:

* You can record at a low frame rate. In almost all cases, a frame
rate of one or two pictures per second is plenty to tell you what
the user is doing.

* You don’t need to see all the details, so you can scale the image
down to about 30 percent of the screen’s full resolution and use a
strong compression setting.

* You probably don’t need sound at all.

* Most of the time, only small parts of the screen change while peo-
ple are working, so the resulting movies typically compress well.
But do tell people to turn off their screensavers, especially if they
are using visually complex ones.

Using these guidelines, recording a screen for four hours can compress
down to a file size below 100MB while still yielding perfectly viewable
results.

Alternatively, if that is not an option, send them a video camera, and
have them set it up behind their workplace. That way, they can simply
return the camera to you once they've finished recording.

Fast-forwarding through this movie can give you a pretty good idea of
the kinds of things people do. Then, you can get back to them with
specific questions.

2.5 Limitations of Contextual Interviews

Humans can do something almost no other animal can: they can imag-
ine themselves in hypothetical situations. In his book Stumbling on

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=26

LIMITATIONS OF CONTEXTUAL INTERVIEWS < 27

Happiness | |, Harvard psychologist Dan Gilbert explains that “the
greatest achievement of the human brain is its ability to imagine objects
and episodes that do not exist in the realm of the real, and it is this
ability that allows us to think about the future.”

Although thinking about the future is indeed a great achievement, the
unfortunate fact is that we're quite bad at it, as we saw in the Atari Lynx
story in the previous chapter. Gilbert notes that “we make a systematic
set of errors when we try to imagine what it would feel like if.”

His explanations of why this is are fascinating,! but for the purpose of
this book, you merely need to know that these errors exist.

As a result, you can’t rely on people’s opinions. When doing contextual
interviews, try to focus on finding out what people actually do, what
tasks they need to accomplish, and what problems they encounter.
Don’t expect them to be able to tell you how the solution to their prob-
lems should look. Figuring this out is your task.

The fact that humans are bad at predicting how they will use a product
is unfortunate. Even more unfortunate is that this also applies to us
designers. We simply don’t know what will work, and we can’t be sure
how a new product will be used.?

User research can help us make better predictions, but it can’t remove
all uncertainty. Don’t get drawn into endless research. At some point,
you have to take a leap of faith, try something, and see whether people
find it useful.

The BizTwit Case

For our BizTwit example app, we spend half a day with a number of
people at ACME Corp, a company that maintains a Twitter account,
both as a means of publishing information about the company (this
includes things such as links to articles that mention its products, links
to press releases, or quotes from customers) and as a way of interacting
with customers.

1. You should really read Dan Gilbert’s book; I believe that you would enjoy
it. Or, if the obviously wrong simulation of the future that your brain gener-
ated when it thought about reading the book disagrees with my statement that
you would enjoy said book, you should at least watch Dan Gilbert's TED talk at
http://www.ted.com/talks/dan_gilbert_asks_why_are_we_happy.html.

2. Cognitive science expert Don Norman talks about this and other problems of design
research in a great presentation that you can watch at http://vimeo.com/12022651.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.ted.com/talks/dan_gilbert_asks_why_are_we_happy.html
http://vimeo.com/12022651
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=27

LIMITATIONS OF CONTEXTUAL INTERVIEWS <« 28

While at ACME Corp we meet with the three people who update the
Twitter account to find out when and how they use Twitter. At the end of
each half day, we take 30 minutes to ask them some specific questions.

During our visits, we notice that the CEO of the company starts his
workday by browsing articles related to ACME Corp’s industry. Some-
times he publishes links to articles he likes on the company’s Twitter
account. For the rest of the day, he occasionally checks Twitter but
rarely writes or responds to messages. He writes about two or three
messages a week. He currently uses a desktop Twitter app to do this,
but during the interview, he explains that he sometimes posts from his
cell phone when he’s not at the office.

The second person who publishes to ACME’s Twitter account is the
company’s PR representative. It’s his job to get the company mentioned
in trade magazines, and when a magazine covers the company, he
writes about it on Twitter. He publishes a message on Twitter about
once a week.

The last person to publish messages on the company’s Twitter account
is an engineer, who is tasked with writing messages during the com-
pany’s events, when the CEO and PR rep are busy talking to guests.
During such events, she’ll mostly post short messages from her cell
phone, describing new announcements made at the event. She rarely
posts to Twitter, but when she does, she may post a half dozen mes-
sages within one or two hours.

While we are interviewing each of these three people after shadowing
them for half a day, some additional ideas come up. The PR rep says:

One of the issues I have is that our CEO tends to make
typos while publishing Twitter messages from his cell phone.
It would be great if I could somehow correct his messages.

The engineer explains:

During our events, the people who normally do these things
are busy, so it’'s up to me to publish updates on Twitter. But
I'm not a trained writer, and I often worry that the things I
write sound too colloquial or don’t properly represent what
I'm intending to say.

ACME Corp is just one company we visit to find out what kinds of prob-
lems our Twitter app BizTwit should solve; however, these three people
alone have provided very valuable information that helps us under-
stand what kinds of problems our product needs to solve.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=28

LIMITATIONS OF CONTEXTUAL INTERVIEWS < 29

Takeaway Points

* People don’'t know what they want, so you have to visit them and
observe what they do.

¢ If you ask specific questions, you may get useful information, but
do interview several people before coming to conclusions.

Further Reading

Cennydd Bowles and James Box have a chapter on this kind of user

research in the book Undercover User Experience Design []. Robert
Hoekman covers shadowing and contextual interviews in Designing the
Obvious [].

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=29

Chapter 3

_ DPersomas

772772727 |

Research Design Implementation

What's the Technique?

This chapter explains how to create and use personas. Personas are
fictional people representing specific groups of your target audience.

Personas might be useful to you if you are doing user research and if
you are part of a larger team where the results of that research need to
be communicated. If you're working alone or in a smaller team, don’t
feel bad about skipping this chapter.

Why Is This a Good Idea?

Personas can be useful because it’s easier to talk about an imaginary
person than it is to talk about a “market segment.” Personas also help
you focus your product.

Are There Any Prerequisites?

To create personas, you first need to do user research.

What Are Personas, Again?

By now, you've probably done some user research. You know what
problems your product should solve, and you know what kinds of peo-
ple will benefit from using it. While designing your product, you’ll often

PROBLEMS WITH PERSONAS < 31

refer to this information. But how do you do that? Talking about target
demographics can be hard. Which part of your target audience has this
problem? What'’s their skill level?

Personas give you a way of synthesizing the information you've found
during user research into a limited number of imaginary people.

When Alan Cooper first introduces personas as a software design tech-
nique in his book The Inmates Are Running the Asylum | . he
describes them like this:

Personas are not real people...they represent them through-
out the design process. They are hypothetical archetypes of
actual users. Although they are imaginary, they are defined
with significant rigor and precision. Actually, we don’t so
much “make up” our personas as discover them as a byprod-
uct of the investigation process.

Personas help you communicate. But they have some other advantages:

* They force you to focus your product. By creating a small num-
ber of personas, you are clearly defining the audience for your
product. This takes away the futile idea that you have to please
everybody.

* They make it easier to talk about your audience, and by thinking
deeply about your target audience, they can help you make your
design process more human-centered.

3.1 Problems with Personas

The goal of using personas is to make the design process more human-
centered. But be aware that there are a number of problems with this.

Personas can be too elastic. Since personas are essentially imaginary
people, they can’t defend themselves. As a result, they can sometimes
reinforce predetermined conclusions: if you're using imaginary people
as your target audience, you can always come up with an imaginary
scenario that validates whatever opinions you currently hold.

Personas give the impression of being human-centered without anyone
having to interact with actual humans. They can be a fig leaf used to
cover up a design process that is not human-centered at all. Personas
can absolve designers from actually doing any of the hard work, such
as going out there and testing design decisions on real people.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=31

CREATING PERSONAS <« 32

Creating personas can be time-consuming. Distilling all of your user
research into specific people who represent parts of your target audi-
ence takes time. You also have to come up with back stories and com-
municate these to everyone involved in the process. Sometimes, the
time required to do this may not be worth the advantages personas
offer.

Talking about imaginary people can be uncomfortable. Pretending that
“Emma” is an actual human being who wants to use your product when
she’s just a story somebody made up is not something everyone on your
design team may want to do.

Especially on small teams, personas may not provide much benefit. It’s
likely that everybody involved has a pretty good grasp of who the tar-
get audience is. There’s not much need to create imaginary characters
to help with communication, and your product may already be tightly
focused by necessity, since a small team may not be able to create a
product that pleases a large audience even if it wanted to do so.

Still, if you keep these potential issues in mind, personas can be a
valuable tool.

3.2 Creating Personas

Start with contextual interviews. Talk to people. You may start out
thinking that there are many different people in your audience and that
you need many different personas to cover them all, but as you talk to
more people, you notice that a lot of them have similar goals. Based on
this information, create simplified characters that cover the goals of a
broad group of people in your audience. The fewer personas you create,
the better. Having about three personas works well, but depending on
your product, you may need more.

Each of your personas should have clearly defined goals. Why would
this persona use your product? What does he want to achieve?

Next, you should add details relevant to the design. What's each per-
sona’s skill level? How old is this persona? What is the gender? What
does a typical day look like for her? Is one of the personas more impor-
tant than the other so that her goals should be satisfied even if it’s to
the disadvantage of another persona? What kinds of devices does each
of your personas use? For example, if you design a website, does one of
these people access it from a cell phone?

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=32

WORKING WITH PERSONAS < 33

Once you've nailed down the relevant details, it’s time to add some irrel-
evant, personal details. There are several reasons for doing this. First,
adding personal details makes it easier to remember personas. Human
brains like personal information. Second, details make personas less
elastic. I noted earlier when talking about disadvantages that it is easy
to project one’s own ideas on a persona, because the persona can’t
defend herself. Well, the more specific details you add, the harder it
becomes to do that. And finally, it’s always possible that some of the
details added here may suddenly become relevant during the design
process. Add information about the persona’s family, her job, and her
interests and hobbies.

Finally, give her a picture and a name.

The picture should be distinctive and easily recognizable but not a
photo of a person people know. Everything from stock photography to
simple drawings tends to work well.

It can make sense to pick names that tell you who the person is (for
example, the initials of the name could be the same as the first letter of
her job, or the person’s function could be used as a last name), but you
should avoid names that have might have negative connotations (such
as “Harry Hacker”) or that might remind people of specific real people
(like “Britney Bieber”).

3.3 Working with Personas

When we talk about a product’s design, we tend to think of our audience
as generic “users.” Will users like the ability to automatically upload a
picture to a photo-sharing site? Will they be able to figure out how to
use the uploading feature?

It's hard to figure out users’ needs in such generic terms. With per-
sonas, this becomes easier.

Which one of our personas—if any—will want to upload a picture to
a photo-sharing site? Given that persona’s skills and intentions, how
should we design the feature to satisfy her goals?

Instead of speaking in generic terms, talk about specific personas.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=33

PERSONAS DO NOT REPLACE USER RESEARCH < 34

3.4 Personas Do Not Replace User Research

When using personas, it may be tempting to assume that since “Emma”
knows how to use her computer and we designed the product for people
like her, we don’t have to involve actual users in our design anymore.
That would be wrong.

Personas can help you communicate with other people involved in the
design process, evaluate data from user research, and use that data
when making design decisions. But they shouldn’t replace actual users.
You still need to test your design with real people to make sure it works.

The BizTwit Case

In the previous chapter, we visited a number of people working for dif-
ferent companies. The goal was to find out what kinds of problems our
Twitter application for businesses could solve.

Now, we want to distill this information into a number of archetypal
personas, each of which represents a specific part of our audience. Fig-
ure 3.1, on the following page shows how one of these could look.

This is a pretty succinct persona—in a real project you would probably
flesh it out with additional details.

Takeaway Points

* Personas are imaginary people who represent specific groups of
users in your target audience.

* Personas are not for everybody. Maintaining them takes time, and
it’s sometimes easy to project your own ideas onto a persona.

* Personas do not replace user research; they merely help you incor-
porate the results from user research into your product.

* Personas help you evaluate the information you find during user
research, focus your product on a well-defined group of people,
and communicate within the design team.

¢ Use personas to help with design decisions. Instead of talking
about generic “users,” talk about concrete personas. These are
questions to ask: Who is this feature for? Will any of your per-
sonas want to use it? What kind of preexisting knowledge does
this persona bring to the table? What kind of requirements does
the persona have? Does the feature meet the persona’s goals?

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=34

PERSONAS DO NOT REPLACE USER RESEARCH < 35

Mark Miller

Job Management. Mainly involved with product
development and customer acquisition, but
sometimes also likes to focus on marketing.

Age 50 years
Gender Male
Skill 30 years of experience (starting with an Atari

ST) have given Mark good user-level
knowledge of computers and smartphones.
Knows how to install applications, but leaves
operating system installs to the system
admins at the company.

Goals Would like to be able to post messages to
Twitter from his PC and his phone.
Messages often consist of a link to an article,
with a few words of commentary. Would like
to have the ability to check other people's
messages before they publish them to the
company's Twitter account.

Background Has two kids who don't live at home
anymore. Married to his wife Mandy, who
works as a marketing executive at a
stationery company. Likes to discuss
marketing topics with her and tends to be
quite involved in marketing at his own
company.

His personal style is somewhat understated.
Drives a silver Mercedes and usually wears
a dark gray suit. Uses a Lenovo ThinkPad
and considers his choice to use an Android
phone instead of a BlackBerry to be a
fashion statement.

Plays squash and tennis in his spare time.

Figure 3.1: A Sample Archetypal Persona

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=35

PERSONAS DO NOT REPLACE USER RESEARCH < 36

Further Reading

Alan Cooper writes about personas in The Inmates Are Running the Asy-
lum [] and in About Face | 1.

A good book that focuses solely on personas is John Pruitt's book The
Persona Lifecycle [1.

Software for Use [] by Larry Constantine and Lucy Lockwood is
also a good place to get started on this general topic. The book advo-
cates a different approach that the authors call user role models.

Report erratum

Download from Wow! eBook <www.wowebook.com>

is (P1.1a prinfing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=36

Chapter 4

So far in this book, we've assumed that human-centered design pro-
cesses are always a good idea. The fact is, they are not always the best
idea. Another approach is to make activities the center of your design
process. For many products, this makes more sense.

In human-centered design, the idea is to get a deep understanding of
the people who are going to use your product and design something
that is tailor-made for them. In activity-centered design, products are
tailor-made for activities or goals.

This isn’t really a new idea; most design is activity-centered. A door
handle is not designed for a specific audience; it's designed to make
the activity of opening a door as easy and obvious as possible. The
steering wheel of a car, the buttons in an elevator, probably most of the
applications on your computer, and a majority of the websites you use
on a regular basis—each is designed to make a specific activity, or a
number of activities, as easy and obvious as possible.

An activity-centered design process may not be the perfect solution for
all projects. Sometimes, you want to create a product that is optimized
for a limited audience. Compare, for example, the two computer mice
shown in Figure 4.1, on the next page.

The mouse on the left is the one that ships with Macs. It is designed
with the widest possible audience in mind. The person who touches
a mouse for the first time should be able to use it just as easily as
somebody with twenty years of computer experience. To that end, in
its default configuration, it has only a single button, and that single
button can be activated by pushing down anywhere on the mouse.

CHAPTER 4. ACTIVITY-CENTERED DESIGN < 38

Figure 4.1: Two different computer mice

The mouse on the left is simple. It might not be people’s perfect mouse,
but almost everybody will be able to use it.

The mouse on the right is the Cyborg R.A.T.,! a mouse designed specif-
ically for people who play action games. It sports five different buttons
and a three-position mode switch, which allows people to assign fif-
teen different commands to the buttons. It comes with interchangeable
panels and palm rests that accommodate the different ways in which
gamers hold their mice. The mouse sensitivity can be adjusted on the
fly. It has removable weights so that people can make the mouse heav-
ier or lighter. It’s also a wired mouse. It’s wired because people who play
action games dislike the slight input lag that wireless connections can
cause.

All of these features make this mouse perfect for its target audience,
but many of these same features make the mouse less desirable to
people who are not in its target audience. A wired mouse with fifteen
programmable actions and removable weights is essentially unusable
for most people.

The mouse on the right is complex. This means it’s some people’s perfect
mouse, but it also means many people will not be able to use it.

Whether you want to focus on users or on activities depends on the
specific nature of your product. Each design process creates different
outcomes; deciding early where your focus lies is important.

1. Learn more at http://cyborggaming.com.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://cyborggaming.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=38

CHAPTER 4. ACTIVITY-CENTERED DESIGN < 39

So, how do you do activity-centered design? Don Norman, one of its
biggest proponents, says it’s mainly a difference in attitude. Framing
the problem in terms of activities, rather than individual users, allows
you to think about it differently. Larry Constantine and Lucy Lockwood,
authors of Software for Use | I, explain that “in the final analysis,
understanding your users as people is far less important than under-
standing them as participants in activities.”

Instead of designing for specific users or for personas, think of their
activities and then design your product for those activities. Rather than
adapting your product to individual people, design it in such a way that
they can adapt to it.

Takeaway Points

* Depending on your product, it may make sense to make activities
the focal point of your design process.

* Do user research to find out what activities you need to support,
but don’t design the activities themselves for specific people.

* Be critical when evaluating user feedback. Sometimes, making
your product better for a specific audience makes it worse for
everybody else.

¢ Keep in mind that people have the capacity to adapt to your prod-
uct; you don’t always need to adapt your product to them.

Further Reading

Don Norman writes about activity-centered design in his controversially
titled essay “Human-Centered Design Considered Harmful.”?

In Software for Use [], Larry Constantine and Lucy Lockwood advo-
cate “usage-centered design,” rather than “user-centered design.”

Robert Hoekman writes about activity-centered design in Designing the
Obvious | 1.

Of course, there are other kinds of design processes than the ones men-
tioned in this chapter. For example, Alan Cooper explains a design pro-
cess called Goal-Directed Design in About Face |].

2. At http://www.jnd.org/dn.mss/human-centered.html.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.jnd.org/dn.mss/human-centered.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=39

Chapter 5

Time to Start Working on
— Documenfafion

| V7772227272722272722272727222727774
|

Research Design ! Implementation

What’s the Technique?

In this chapter, I'll talk about manuals, blog posts, screencasts, press
releases, and similar things. Broadly put, this is about stuff that will
get people interested in your product and will help people learn how to
use your product. Starting to work on this at the very beginning of your
development process is sometimes called working backward.

Why Is This a Good Idea?

Creating documentation as early as possible will help you evaluate your
designs. If you can’t easily explain something, there’s a good chance
that it is not designed well.

Starting work on the manual during the design process also means
you're less likely to regress into jargon and more likely to explain things
from a user’s point of view. The longer you work on something, the
harder it gets to explain it to people who don’t share your knowledge.

Are There Any Prerequisites?

Yes. You should have a general idea of who your audience is and what
kinds of problems your product will solve.

THE MANUAL < 41

5.1 The Manual

Many products come with some type of manual that explains how to
use the product. Most manuals are pretty awful, which is bad, because
people tend to open the manual when they can’t figure out how to use
a product. In other words, they're already annoyed and unhappy, and
then they get to slog through a distressingly crappy manual.

Manuals don’t have to be crappy. But creating a great manual means
giving it high priority. And that means starting to think about—and
work on—the manual early on.

During the design process, your brain is still free of implementation
details. This helps you see the manual from the point of view of the
user, who also doesn’t have a clue about all the technical minutiae that
makes your product tick.

Starting to work on the manual early has another benefit: it forces you
to explain how your product works. Few things make you think about
the details of your design quite as much as having to describe how to
use it; if something is hard to explain, it’s probably hard to use and in
need of rethinking.

So, how do you go about writing a manual?

Look at the manual as part of your product. A great manual is a useful
feature; maintain it the same way you maintain other features. (If you're
writing code as well as the manual, check the manual into your version-
control system.) Design the manual the same way you design any other
feature of your product. Ask yourself these questions: How will people
use the manual? How should the manual be structured? What should
be included?

Your product’s manual shouldn’t be an afterthought. It’s an important
feature of your product and deserves the same attention you give to any
other important feature.

5.2 Blog Posts

Manuals are important, but they are not the only way you can talk to
people about your product. In fact, some products don’t have manuals
at all.

Blog posts are another important tool for communicating what your
product can do, and like manuals, they have two advantages: they help

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=41

SCREENCASTS <« 42

people understand your product, and they help you find potential prob-
lems with your product.

After designing a feature, write a blog post telling your users why the
feature is awesome and how they can use it to do cool stuff. You don’t
have to publish it (yet). Just write it. Can you easily explain why people
should care about the feature? Can you easily describe how simple the
feature is?

If the answer to one of these questions is “no,” then maybe there’s some
way you can change your design to make it more compelling, more
useful, or more easily explainable.

As a side note, you should probably save all of the design documents
and mock-ups you create during the design process. They might make
an awesome “this is how I came up with this design” blog post.

5.3 Screencasts

Screencasts are a great tool for introducing new products or new fea-
tures of existing products. If you're working on a design, think about
how you would present it in a screencast. What hook could you use
to get people interested in a feature? Is there a specific problem that
you could show how to solve in a screencast? Can you explain the new
feature in a linear narrative?

If you have a prototype, go ahead and create a screencast explaining
how it works. You don’t have to publish it; merely creating the screen-
cast will probably alert you to issues with your design. (If you can’t
come up with a problem to solve in the screencast, maybe the feature
doesn’t need to exist at all.) What’s more, this is great practice for when
your product is done and you're creating screencasts for public con-
sumption.

5.4 Press Releases

Press releases are another thing you can write during the design pro-
cess. Can you explain your product in the space of a press release,
making it sound exciting?

If the press release doesn’t sound useful and exciting, there’s probably
something wrong with your plan.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=42

TALK ABOUT TASKs < 43

One company that starts product design by writing a press release is
Amazon. Werner Vogels, Amazon’s CTO, notes! that “writing a press
release up front clarifies how the world will see the product—not just
how we think about it internally.”

Similarly, you can try writing an ad or even just a slogan for your prod-
uct. Can you describe your product in a single sentence? If not, why
not?

5.5 Talk About Tasks

Whether you're writing the manual, writing a blog post, or recording
a screencast, it's always a good idea to talk about tasks, rather than
features.

Documentation often simply explains how the individual features of a
product work. But unless you are creating the most basic of products—
say, an alarm clock—explaining individual features is not particularly
helpful. People don’t want to learn how to use features; they want to
learn how to do things. People have goals, and they use your product
because they think it can help them reach these goals.

For example, rather than describing in your blog post how layers work
in a photo editor, explain how to frame a photograph and add cool
effects to it—and include layers in that process. Rather than showing
in your manual how tabs work in a word processor, explain how to
design a beautiful letter—and explain tabs as part of this.

In their book Getting Real [], the guys at 37signals recommend
that “if you do find yourself requiring words to explain a new feature or
concept, write a brief story about it.” Avoid technical details. Instead,
just talk about it.

Think of yourself as a teacher, rather than a technical writer.

The BizTwit Case

To clearly define what BizTwit does, the design team has written a blog
post that could be used to introduce the product once it is finished.

1. You can read more of his thoughts on the topic at
http://www.allthingsdistributed.com/2006/11/working_backwards.html.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.allthingsdistributed.com/2006/11/working_backwards.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=43

TALK ABOUT TASKS <d 44

There are a lot of Twitter apps out there. A lot. We've tried
to look at all of them, but we gave up after we ran out of
disk space from downloading them. Clearly, what the world
needs right now is even more Twitter apps! So, today we're
introducing our own. Say hello to BizTwit!

Why does the world need another Twitter app?

Well, most of the Twitter apps we've looked at are for every-
day Twitter users. They allow you to follow other people,
respond to their tweets, and write your own tweets. The more
advanced Twitter apps also support multiple accounts and
neat features such as integration with Instapaper. But they’re
pretty much all aimed at regular people.

BizTwit is different. It’'s aimed at people who have to update
a company’s Twitter account:

¢ Several different people can use the same account.
¢ Everybody can share the same drafts.
¢ Different people can have different rights.

In the coming days, we're going to explain these features and
more. For now, go ahead and download your copy!

Even a short, simple blog post like this one goes a long way toward
defining what kind of product you want to build.

Takeaway Points

* Writing manuals and blog posts, as well as creating screencasts,
forces you to explain your design to other people. This helps you
find issues with your design: if something is hard to explain, it
may be hard to use.

* People read manuals when they’re already unhappy, so manuals
should fix the problem, not make people even more unhappy.

* Press releases and blog posts help you think about your product’s
goals and put the focus on the problems you want to solve. Can
you explain your product in a single sentence? If not, maybe you're
trying to do too much or you're not solving a specific problem.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=44

TALK ABOUT TASKS < 45

Further Reading

In his essay on writing manuals, Bruce Tognazzini offers some valuable
ideas on how to improve manuals.?

If you're working on user manuals and need ideas on how to test them,
you can find some in the paper “Towards a usability test procedure
for technical documents” by Menno de Jong and Pieter van der Poort,
which is on Google Books or in the book Quality of Technical Documen-
tation [].

If you want to know more about how to write, read the next chapter,
Chapter 6, Text Usability, on the following page.

Apple recommends starting out with an “application definition state-
ment,” which is similar to the idea of working backward.3

2. You can find the essay at hftp://www.asktog.com/columns/017ManualWriting.html.
3. You can read more at http://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/AppDesic

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.asktog.com/columns/017ManualWriting.html
http://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/AppDesign/AppDesign.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=45

6.1

Chapter 6

When we discuss design and usability, we tend to focus on visual ele-
ments first—text often gets overlooked. This is unfortunate, because
text is one of the main ways in which people interact with your appli-
cation or website. In fact, in tests that track the movement of people’s
eyes as they scan a screen, text is often the first thing people look for.!

In his paper? on how to write for the Web, usability expert Jakob Nielsen
says:

When asked for feedback on a web page, users will com-
ment on the quality and relevance of the content to a much
greater extent than they will comment on navigational issues
or the page elements that we consider to be “user interface”
(as opposed to simple information). Similarly, when a page
comes up, users focus their attention on the center of the
window where they read the body text before they bother
looking over headerbars or other navigational elements.

The guys at 37signals concur. In Getting Real |], they write that
“good writing is good design.” Words need to be considered as part of
the interface design.

Why Words Matter

Have you ever tried buying a computer online, and instead of telling
you in plain language what capabilities it has, the site lists a bunch

1. This article lists lessons gleaned from eye-tracking tests:
http://www.virtualhosting.com/blog/2007 /scientific-web-design-23-actionable-lessons-from-eye-tracking-studies/.
2. You can find the paper at http://www.useit.com/papers/webwriting/writing.html.

http://www.virtualhosting.com/blog/2007/scientific-web-design-23-actionable-lessons-from-eye-tracking-studies/
http://www.useit.com/papers/webwriting/writing.html

PEOPLE DON'T WANT TO READ <« 47

of marketing buzzwords? Hurm...do I want the one with “MagSafe” or
the one with “OneKey Theater” or the one with “One-button ThinkVan-
tage” or the one with “Multi-Convergence UltraTouch Enterprise Panel
Extensibility”? OK, I made the last one up, but the other ones are real.>

Words are how people interact with your product. Design is communi-
cation; if people don’t understand you, they can’t use your product.

Since words are used everywhere in your product, on your website, in
your manuals, in the things you say when people interact with you
personally, and even in the class names and comments in your code,
it’s best to get them right early on.

But how do you know which words to use?

6.2 People Don’t Want to Read

This might sound strange coming after a section about the importance
of text, but the hard truth is this: most people avoid reading whenever
possible.

Merely by reading this book, you have proven that you are quite unlike
most of your users. In 1987 in “Paradox of the Active User,”* John
M. Carroll and Mary Beth Rosson pointed out that “learners at every
level of experience try to avoid reading.” Not much has changed in the
last two decades. In fact, it may be getting worse: a 2007 study by the
National Endowment for the Arts® concluded that Americans are not
just reading less than they used to, but they are also reading less well.

You have probably been on the receiving end of a “my printer has
stopped working” call:

Friend: Ireally need to print this document, but my printer just doesn’t
work anymore.

Me: OK, what exactly happened?
Friend: I'm trying to print, but it doesn’t work.

Me: Did you get an error message?

3. Neven Mrgan mentions another example of a site that uses
words that make sense to the company but not to its customers at
http://mrgan.tumblr.com/post/3241126895/what-does-the-user-see.

4. You can read that paper at http://dl.dropbox.com/u/16760174/Papers/Paradox.pdf.

5. Find out more here: http://www.nea.gov/news/news07/TRNR.hfml.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://mrgan.tumblr.com/post/3241126895/what-does-the-user-see
http://dl.dropbox.com/u/16760174/Papers/Paradox.pdf
http://www.nea.gov/news/news07/TRNR.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=47

SAY LEss <« 48

Friend: Oh, yes, an error popped up.
Me: What did it say?

Friend: How should I know? I just clicked it away, of course, but that
didn’t fix the problem.

A paper from the psychology department of the North Carolina State
University titled “Failure to Recognize Fake Internet Popup Warning
Messages”® analyzed how people deal with fake pop-up warnings. When
discussing the results, the researchers note:

Data from the post task questionnaire indicated that 12% of
those who clicked on the OK button indicated that they did
so because the text told them to, while 23% said they always
click on that button when they encounter error messages.
Just under half (42%) responded that they just wanted to
“get rid of it.”

Pop-up windows don’t even consciously register with people before they
click them away. They are just a nuisance that keeps people from doing
their work, and making them go away usually seems to fix the problem.

But this doesn’t just apply to text in pop-up messages. People skip text
whenever they think they can get away with it.

6.3 Say Less

Since people don’t read, it’s best to avoid bothering them with text
whenever possible.

For example, don’t warn people when they are about to do something
destructive. Instead, allow them to undo their change.

Similarly, if an error occurs and you have a way to make your product
recover on its own without telling the user, do it. If the user has entered
a website address that is truncated but your website receives enough
information to identify the page he’s looking for, simply forward him
to that page. If your application tries to connect to a server but the
connection times out, make the application try again before telling the
user there’s something wrong. Notify the user only if your product really
can't fix the problem on its own.

6. Read it at http://media.haymarketmedia.com/Documents/1/SharekWogalterFakeWarning_publicationFinal_805.pdf.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://media.haymarketmedia.com/Documents/1/SharekWogalterFakeWarning_publicationFinal_805.pdf
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=48

MAKE TEXT SCANNABLE <« 49

If people don’t understand some part of your user interface, don’t add
explanatory text. This just adds more clutter and makes the problem
WOTSe.

If it’'s impossible to avoid communicating, design your user interface
under the assumption that people won’t read what you write. For exam-
ple, use verbs as button labels, and make sure that each button has a
specific, mutually exclusive label. Instead of labeling two buttons “Yes”
and “No,” label them “Delete File” and “Cancel.” That way, people don’t
have to read the text in the dialog box to figure out what each button
does.

6.4 Make Text Scannable

Often you can’t avoid text. To know how to write, first you need to know
how people read.

Jakob Nielsen’s research shows that people typically don’t read text on
the Web word by word. Instead, they “scan” the page, looking for sen-
tence fragments that contain what they are looking for. To help people
do that, Nielsen suggests’ the following rules:

* Use words that make sense to your audience.
¢ Convey one idea in each paragraph.

¢ Introduce the paragraph’s idea in the first sentence so people can
quickly decide whether to read the paragraph.

¢ Use meaningful headings.

¢ Highlight keywords.

¢ Use bullet lists.

¢ Keep text short, simple, and informal.

¢ Start text with conclusions, and include a summary of its content.

6.5 No Fluff

People are trying to achieve a goal and are reading your text because
they think it might help them with their task. Write short, clear, obvious

7. You can find a collection of Nielsen’s essays on this topic at this address:
http://www.useit.com/papers/webwriting/.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/webwriting/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=49

SENTENCES SHOULD HAVE ONE OBVIOUS INTERPRETATION < 50

sentences. Keep individual paragraphs short. Don’t waste your readers’
time. Keep their goal in mind.

As Patricia Wright puts it in the book Quality of Technical Documenta-
tion [], “Writers often believe that they should communicate more
than readers want to know.”

When you're writing, ask yourself, “Does this sentence help the user?”
If it doesn’t, get rid of it.

6.6 Sentences Should Have One Obvious Interpretation

Avoid sentences that can be interpreted in two different ways and sen-
tences that lure your readers into an improper understanding when
they have read only part of them.®

Readers try to make sense of sentences before they reach the period at
the end. Some sentences can mislead the reader. Consider the first few
words of this headline:®

“Burger King fries the holy grail...”

Now why would Burger King fry the holy grail? The sentence’s meaning
becomes clear when you finish reading it:

“Burger King fries the holy grail for potato farmers”

Ah, the fries are the holy grail. It's still not entirely unambiguous, but
the meaning is reasonably obvious now.

Reading such a sentence requires more work on the part of your read-
ers, since they're forced to backtrack if they start with a wrong inter-
pretation. To avoid confusing them, ask yourself whether a sentence is
unambiguous even if you've read only part of it. A simple change makes
this sentence completely clear:

“Burger King fries are the holy grail for potato farmers”

Can you spot the problem with the following sentence?

8. These are often called garden-path sentences, from the saying “to be led up the gar-
den path.” The intuitive understanding of such a sentence is misleading; reaching the
end of the sentence forces the reader to backtrack, looking for a different interpretation.
Wikipedia has more on the topic: http://en.wikipedia.org/wiki/Garden_path_sentence.

9. I found this example via the excellent Language Log blog at
http://languagelog.ldc.upenn.edu/nll/?p=1762. Language Log is definitely worth reading
if you're interested in writing.

Report erratum

Download from Wow! eBook <www.wowebook.com>

7 is (P1.1a prinfing, July 2011)

http://en.wikipedia.org/wiki/Garden_path_sentence
http://languagelog.ldc.upenn.edu/nll/?p=1762
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=50

TALK LIKE A HUMAN, NOT LIKE A CoMPANY <« 51

“Lukas told his editor that he would write a project plan to finish the
book by the end of the month.”

Will I write the plan by the end of the month, or is the plan to finish the
book by the end of the month?

If your text requires less thinking on the readers’ behalf, they are more
likely to read it and get something out of it.

Clarity is especially important for titles. Start titles with relevant words
so people still get the meaning of the title, even if they view it on a device
with a small screen that cuts off words at the end of the title.

8AD TITLES
W ON DEVICES WITH
4 SMALL SCEEENS,
: IT CAN BE HARD
TO TELL WHAT

THE CUT-OFF
TITLES MEAN-

6.7 Talk Like a Human, Not Like a Company

Companies often use style guides to enforce a consistent tone through-
out all of the company’s content. Writers are encouraged to use the
third person and a neutral tone. As a result, they are discouraged from
letting their personalities show through in their writing.

Unfortunately, such guides encourage text that is boring and bland.
People don’t want to read that, and it can be a soul-crushing experience
for the people who have to write the text.

If you focus on consistency, you’ll bring everybody down to the level of
your worst writer. It’s better to focus on engaging your readers. Address
them directly. Write sentences that would sound natural when used in
a conversation. Be informal. Talk to the reader. Avoid marketing buz-
zwords. Say “you” and “we” when it works (although avoid that overly
patronizing “we” you sometimes hear when adults talk to children).

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=51

ILLUSTRATE YOUR POINTS <« 52

7 N

The Passive Voice

When people give writing advice, they often claim you should
“avoid the passive voice.” Although there is some fruth to that
(“click Backup to create a copy” is betfter than “a copy is cre-
ated by clicking Backup”), the case against the passive voice is
often overstated. There is nothing wrong with writing something
like “Don’t worry about the Backup button—your documents
will be backed up automatically,” even though “your docu-
ments will be backed up automatically” uses the passive voice.
In fact, changing this to active voice would simply add useless
words to the sentence, making the end result worse: “the appli-
cation will back up your documents automatically.”

| suspect that people don’t really mean you should avoid the
passive voice. After all, passive voice merely means that the
subject of the sentence doesn’t initiate the sentence’s action
but is its recipient.

Instead, what people mean is that you should avoid writing in
a way that makes it unclear who a sentence’s active party is.
People often use the passive voice to shift responsibility away
from themselves (“Mistakes were made”). Avoiding that kind of
writing is generally good advice.

Read the text out loud. Ask
yourself whether this is some-
thing you would want to read.
Ask yourself whether the text
contains information anyone
not working in your marketing
department would find useful.

BLEEDING-EDGE
COLLABOEATIVE DELIVERY
CHANNEL S ALLOW USERS
TO ENGINEER PLUG-AND-
PLAY E-SYNERGIES!

6.8 lllustrate Your Points

Maintaining images and screenshots can be a lot of work. With each
product update, you have to go through all of the pictures and fix the
ones that are out-of-date. It’s tempting to just avoid pictures altogether.
But pictures can make your text more understandable and readable.

Pictures help illustrate points. A good screenshot can replace several
paragraphs of text and may be easier to understand. Depending on your
audience, even simple explanations can benefit from an illustration.

Report erratum

Download from Wow! eBook <www.wowebook.com>

is (P1.1a prinfing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=52

USE WORDS PEOPLE UNDERSTAND <« 53

cLICK ON THE
FORMAT MENU AND
SELECT "ALIEN RIGHT
EDGES' FROM THE
"aLieN" sUBMENU.

Although the preceding text is reasonably clear, an image makes it even
more obvious.

File Edit m Help

Font

Distribute

Align Align Left Edges
Flip Align Right Edges

Align Top Edges
Align Bottom Edges

MV |V

v

Images can also give your text a more inviting look. Facing a wall of
text is discouraging, but add a few images, and the text looks more
enjoyable to read. In their paper “What’s Psychology Worth? A Field
Experiment in the Consumer Credit Market,”!® Marianne Bertrand et
al. show that that merely adding a picture of a woman to a loan offer
caused a statistically significant increase in loan interest. However,
Jakob Nielsen also revealed that users ignore photos if they look like
generic stock photography or pure filler.!!

6.9 Use Words People Understand

Don’t let your pet peeves guide your writing. Some people don’t like to
use the word podcast. Some people don’t like blog. Some people don’t
like to use Lite for free versions of iPhone apps. But pretty much every-

10. Read it at http://karlan.yale.edu/fieldexperiments/pdf/Bertrand%20et%20al_2006.pdf.

11. Read more about his results at hiftp://www.useit.com/alertbox/photo-content.html.
You can find links to other research on this topic at
http://uxmyths.com/post/7056397950/myth-ornamental-graphics-improves-the-users-experience.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://karlan.yale.edu/fieldexperiments/pdf/Bertrand%20et%20al_2006.pdf
http://www.useit.com/alertbox/photo-content.html
http://uxmyths.com/post/705397950/myth-ornamental-graphics-improves-the-users-experience
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=53

TEST YOUR TExT <« 54

body else uses and understands these words. People know what a pod-
cast is, what a blog is, and what to expect if an iPhone app has the word
Lite after its name. Just use the words people understand, even if you
don’t like these words. As former Guardian science editor Tim Radford
puts it,'2 “No one will ever complain because you have made something
too easy to understand.”

Keep in mind that the people who read your text probably use differ-
ent words than you do. If you know your audience, write for it. Your
audience may have an age range, skill level, or domain knowledge that
is different from the average person. Taking these things into account
when writing text will make it easier for your audience to read and
understand your text.

But above all, just keep it simple. In On Writing [], Stephen King
explains that “one of the really bad things you can do to your writing
is to dress up the vocabulary, looking for long words because you're
maybe a little bit ashamed of your short ones.” His rule of thumb: “Use
the first word that comes to your mind, if it is appropriate and colorful.
If you hesitate and cogitate, you will come up with another word—of
course you will, there’s always another word—but it probably won’t be
as good as your first one or as close to what you really mean.”

Now, King is talking about writing novels. But then, why shouldn’t your
writing be just as engaging and interesting as a Stephen King novel?

6.10 Test Your Text

Since text is part of your user interface, you can test text as part of
a regular usability test. But that’s not all you can do. Usability expert
Angela Colter encourages also testing your text using a Cloze test.!3

In a Cloze test, you remove some of the words of your text and then
ask test participants to find the missing words. A sample is shown in
Figure 6.1, on the next page.

Colter suggests picking sample text from your product that is between
125 and 250 words and then removing every fifth word. Ask partici-
pants to fill in the missing words. Calculate the test score by dividing
the number of correct answers by the total number of removed words.

12. Find Tim Radford’s “manifesto for the simple scribe” at
http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists.
13. You can read more of her suggestions for testing content at
http://www.alistapart.com/articles/testing-content/.
Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists
http://www.alistapart.com/articles/testing-content/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=54

DISPLAY LEGIBLE TEXT < 55

There are a lot Twitter apps out there. lot.
We've tried to at all of them, we gave up
after ran out of disk from downloading
them. So course, today, we're introducing

own Twitter app. Say to BizTwit!

Figure 6.1: A sample Cloze test
I

If the score ends up being below 0.4, your audience likely won't be able
to understand your text, and you should rewrite it. If it's below 0.6,
they might have a bit of difficulty, and some changes may be required.
Scores above that indicate audience-appropriate text.

6.11 Display Legible Text

Making the content itself usable is important, but the way you present
it also matters.

Pick a large font size. Although most people hold books quite close to
their faces, computer screens tend to be further away. While sitting in
front of your computer and looking at your site or application, hold up
a book at typical reading distance, and compare the font sizes.!*

14. I first saw this idea mentioned in an essay by Oliver Reichenstein, which you can read
here: http://informationarchitects.jo/100e2r/.

Report erratum

Download from Wow! eBook <www.wowebook.com>

7 is (P1.1a printing, July 2011)

http://informationarchitects.jp/100e2r/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=55

DIsPLAY LEGIBLE TEXT < 56

If you notice that the text on your PC looks significantly smaller than
the text in the book, make the screen text larger. Keep in mind, though,
that the same font size can appear to be larger or smaller on screens
with lower or higher resolutions.

Of course, if you're creating content for a cell phone, the situation
reverses. People typically hold their phones reasonably close to their
eyes, so you can get away with smaller font sizes.

]

Pick a readable typeface. There is a great difference in legibility between
different typefaces and even between different members of the same
type family. Choosing a good typeface matters.!®

Takeaway Points

¢ Avoid text if you can.

¢ If you can’t avoid text, keep it succinct, clear, and scannable.

* Keep paragraphs short, and convey one idea per paragraph.

* Be engaging and personal, rather than boring and professional.

* Use pictures to illustrate your points and make your text look
more approachable.

¢ Use large font sizes and readable typefaces.

15. Note that studies show that whether a typeface has serifs or not probably doesn’t
make a difference in terms of legibility. If you are interested in reading studies on this
topic, you can find out more at http://www.alexpoole.info/academic/literaturereview.html.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.alexpoole.info/academic/literaturereview.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=56

DISPLAY LEGIBLE TEXT < 57

Further Reading

Jakob Nielsen has a number of good essays on the topic of writing
for the Web.!® If you're writing a manual, Patricia Wright's Quality of
Technical Documentation |] contains a ton of useful information.
Joel Spolsky tackles reading in User Interface Design for Programmers

[1.

Science author Carl Zimmer has written an essay about good science
writing.!” Tim Radford has compiled a set of rules for good writing
based on his experience as a journalist.!8 If you're interested in good
writing in general, I really liked Stephen King’'s On Writing | l.

You should also read Angela Colter’s essay on testing content.!®

16. At http://www.useit.com/papers/webwriting/.

17. At http://blogs.discovermagazine.com/loom/2011/01/12/death-to-obfuscation/.

18. Read the rules at http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists.
19. At http://www.alistapart.com/articles/testing-content/.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.useit.com/papers/webwriting/
http://blogs.discovermagazine.com/loom/2011/01/12/death-to-obfuscation/
http://www.guardian.co.uk/science/blog/2011/jan/19/manifesto-simple-scribe-commandments-journalists
http://www.alistapart.com/articles/testing-content/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=57

Chapter 7

Hierarchies in

In thinking about how websites are organized, you'll find that they often
make use of hierarchies. Sometimes, these hierarchies are even used as
explicit user interface elements. Here is an example of a “breadcrumbs”
navigation element as it appears on sites like Google Directory:

Software
Science > Biology > Bioinformatics > Software

This navigation element tells people where in a hierarchy the current
page is and allows them to “jump up the hierarchy.”

The headers of many news sites also show a hierarchy of sorts but often
use two or three levels of tabs instead of breadcrumbs:

u.s. World Europe Technology Business Science Opinion

Africa | Asia | Middle East | Japan

These two examples show how whole websites (or products in gen-
eral) can be organized into hierarchical structures. But the individ-
ual screens themselves also use hierarchies to structure their content.
Check out this screenshot from Google’s Chrome browser:

CREATING HIERARCHICAL STRUCTURE VISUALLY < 59

[The Pragmatic Bookshelf ¢ L ignore the code

€ 5 C O pragprog.com AR

This is a very simple user interface, but even so, it implies a hierar-
chical structure. For example, buttons inside a tab only apply to other
things inside that tab. If you hit the “back” button, anything outside of
the currently active tab won’t be affected. But if you hit the window’s
“close” button, the whole window will be closed, including both open
tabs. Buttons affect only things that are on the same or on a lower
hierarchical level.

7.1 Creating Hierarchical Structure Visually

If you look at any user interface, usually you can discern a hierar-
chy of user interface elements relatively quickly. Most Western users
understand intuitively that hierarchies go from left to right, from top to
bottom, and from outside to inside. Here are several examples showing
representations of A hierarchically above B:

AABAB
@ T [

For example, take an MP3 player that shows the currently playing track
of an audio book. How would you arrange the following elements: track
number, chapter number inside a track (for audiobooks, or podcasts
with chapter markers), and the playhead’s current position in the chap-
ter? Obviously, the relationship between these elements is as follows:

Track—Chapter of current track—Playhead position in current chapter

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=59

CREATING HIERARCHICAL STRUCTURE VISUALLY < 60

Here’s how this is arranged in the iPod app on iPhones:

Cherie Priest P
« Dreadnought (Unabridged) Part 2 —

Chapter 3 of 12

2 of 2
4:31 =% -30:49

=’

The chapter number and track number are shown in “reverse” order,
with the current track’s chapter number appearing above the track
number:
Cherie Priest P
« Dreadnought (Unabridged) Part 2 —
Chapter 3 of 12 +— CHAPTER
2 of 2 <+—— TRACK
e 111 Sl <—— PLAYHEAD

=’

This visual arrangement implies the following, wrong hierarchy:
Chapter of current track—Track—Playhead position in current chapter

This trips me up every time and makes me think that the number next
to the playhead is the chapter number, rather than the track number.

The Audible app for iPhones solves this problem by not showing the
track number at all and moving the chapter number next to the play-
head, which fixes the misleading arrangement:

s
audible.com

Chapter 5 IVl «—— CHAPTER
<+—— PLAYHEAD
Ok * igs

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=60

CREATING HIERARCHICAL STRUCTURE VISUALLY < 61

It's natural to assume that the elements shown on-screen are in a
hierarchical relationship arranged from top to bottom. When designing
screen layouts, keep the visual hierarchy consistent with the hierarchi-
cal relationships between the individual elements.

Let’s go back to the browser example. Reduced to its main elements,
Chrome’s user interface looks like this:

OO0

T 1T 1
OO0)

When people look at this, they intuitively assume that the hierarchy of
the elements in this window looks a bit like this:

(window)
—>[Tab]
—>[Tab]

Buttons]

|—>[Web page]
Tab]

—(
—>[Tab]

This assumed hierarchy allows people to figure out how the user inter-
face behaves: closing a tab causes everything that is hierarchically
below it to disappear. Clicking a button in the button bar influences
the part of the user interface that is hierarchically on the same level or
below the button bar.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=61

CREATING HIERARCHICAL STRUCTURE VISUALLY < 62

[Window]

—>[Tab]
CLICKING
—(Tab) BUTTONS ON
THIS LEVEL OF
Buttons | THE HIERARCHY - .
|—>[Web page] ---8HOULD ONLY
AFFECT THINGS
—(Tab) INSIDE THIS
BUBBLE
—>[Tab]

Interacting with a user interface element shouldn’t affect things that
are placed above it in the visual hierarchy.

Hierarchies are everywhere, and they affect how people expect your
product to behave. By using hierarchies properly, you can give people
hints that allow them to figure out how to use your product.

Takeaway Points

¢ Think about how the elements of your product can be arranged
hierarchically.

* Use hierarchies to give your users hints about how your product
works. Individual screens convey implicit or explicit hierarchies to
the user.

Further Reading

What most people call “organizing things,” designers call information
architecture. There are a number of great books on the topic. Donna
Spencer has written one called A Practical Guide to Information Architec-
ture | . The book Information Architecture for the World Wide Web
[] by Peter Morville and Louis Rosenfeld is another good place to
get started.

Report erratum
Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=62

Chapter 8

| ’7777

Research Design Implementation

What's the Technique?

Card sorting allows us to gather data on where people think the individ-
ual parts of our product should be shown or what parts belong together.

Consider doing card sorts if your product is complex enough that you
have to “sort things.” For example, if you're designing a site and have
to decide how to organize the individual pages, or you're working on an
application that offers lots of different features that have to be organized
in a way that makes sense to your users, this chapter is for you.

Why Is This a Good Idea?

Our view of our product is very different from that of our users. For
example, if we're creating a website for a company, we have a pretty
good idea of the company’s internal organization, which may influence
how we think the website should be organized. The people visiting the
website, on the other hand, probably don’t know how the company is
organized. This difference in knowledge may mean that something that
makes perfect sense to us is incomprehensible to our users.

Card sorting helps us find out how people really see things.

Are There Any Prerequisites?

No.

DESIGNING HIERARCHIES < 64

8.1 Designing Hierarchies

In the previous chapter, we saw that products are often organized using
hierarchies. Here’s another example.

Open any website, and it’s likely to be arranged in a hierarchy. Let’s
say your laptop’s internal camera doesn’t work anymore, and you need
help. You open the manufacturer’s website in your browser. Where do
you go to find help? If your computer is from a big electronics manu-
facturer, you probably start by clicking “Computers” and then “Note-
books.” Here you'll see a list of laptop lines from your manufacturer.
Clicking the proper line of notebooks should take you to a list of laptop
models, and you should be able to find yours in that list. On the page
for the specific model, you’'ll probably look for “Support.” Ideally, this
will show a support page for your model, with a number of potential
laptop issues. With some luck, you’ll find your problem (and a solution
to it) in that list.

Here’s the path you took through the site’s hierarchy:

Computers — Notebooks — Notebook Line — Notebook Model — Notebook
Model Support — Answer to a specific question

But that’s not the only way you could have arrived there. You could also
have gone straight to the Support section of the website. The question
is, if you are designing this website, how do you know what path the
user will take? And how do you know where people expect to find the
individual pages of your site?

Card Sorting

A common way of finding answers to these questions is to use card
sorting—a great way to determine where people expect to find things.
Card sorting is really easy. In her book Card Sorting: Designing Usable
Categories | . Donna Spencer explains that “at its core, card sort-
ing is a pretty simple technique—write things on index cards and ask
people to sort the cards into groups.”

Of course, there are nuances, so let’s look at some of the details of how
to do this.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=64

PREPARING FOR A CARD SORT <« 65

8.2 Preparing for a Card Sort

To prepare for a sort, you simply take a bunch of index cards and put
the things you need to sort on them. For example, if you're structuring
a website, you represent the individual pages or areas of your website
as the individual cards to sort. If you're structuring an application,
you use the names of features, properties, menu items, commands,
windows, tasks, goals, or visible elements as your cards.

It sometimes makes sense to pick things that are roughly on the same
level in your product: don’t mix terms that are high up in the hierarchy
with terms that are far down in the hierarchy. Instead, do multiple card
sorts to get information on different levels of the hierarchy.

It's best to use terms that are obvious and easily understandable. If
you absolutely can’t avoid using jargon, explain the meaning before the
card sort, and allow participants to substitute their own terms.

When coming up with words to use in the card sort, you need to make
sure they can’t be grouped on the basis of superficial similarities, such
as how the words look or sound. The risk of picking words that look or

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=65

PARTICIPANTS <« 66

sound similar is that people may group them based on that similarity,
rather than on their meaning.!

You should end up with anywhere from twenty to eighty cards. If you
have fewer than twenty, then you're probably not thinking hard enough.
If you have more than eighty, then you might overwhelm your partici-
pants.

Also prepare some empty cards.

1, 73 th g
o New
lists I
ony
d’eﬂ;ch photo \
ing
& seondl y
8oy = accoun+- c /
user “witp\
m
ma er Yes Sor
NCC Sa /
nas bd Tes
i __ficosages |

Since people might write on cards during a card sort, or otherwise alter
them, and since you’ll want to do more than just one card sort, making
multiple card sets by hand is often too time-consuming. Instead, it’s
easier to print cards out and cut them up.

8.3 Participants

You can do each card sort with one person at a time or with several peo-
ple at once. Both have advantages. Having more than one user in one
session can be harder to schedule, and one person typically dominates
the process anyway. On the other hand, having multiple participants
may create conversations that offer valuable insights into how people
think about these things.

If you go with multiple participants, be careful not to overdo it. More
than three or four people typically won’t be able to participate in a card
sort at the same time.

1. Jakob Nielsen talks about this problems and offers solutions for it at
http://www.useit.com/alertbox/word-matching.html.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.useit.com/alertbox/word-matching.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=66

RUNNING A CARD SORT <d 67

How many card sorts should you do in total? Jakob Nielsen recom-
mends fifteen card sorts with one user each.? Since card sorts are sim-
ple, doing many of them is easily possible. Different people may expect
things to be in different places; the more card sorts you do, the clearer
the picture becomes.

8.4 Running a Card Sort

After you've welcomed the participant or participants, explain what they
are about to do. This introduction should go something like this:

Hi, my name is Lukas Mathis. 'm currently working on the
design for a new Twitter application. Twitter is a social net-
working tool, similar to Facebook.

Right now, I'm working on the basic organization of the app—
you know, where to put which feature, stuff like that. The
exercise we're about to do will help me understand where
people expect to find things in our application.

In a minute, I'm going to give you a bunch of index cards
that have words written on them. These words are things
that exist in our application, like features or objects. What I
want you to do is to group these index cards into little piles.
Each pile should contain things that, to your mind, belong
together. Let me explain this a little bit more clearly. We're
not looking for superficial similarity, like grouping words that
sound similar or start with the same letter. Instead, imagine
that you are using this application. Which things would you
expect or want to see on the same screen, for example? If
there’s a list of items on a screen, which items would you
expect to see next to each other in the list?

If there are cards you can’t group anywhere or think don’t
belong in the application, feel free to put them in their own
group. I have empty cards handy, and there’s a marker on
the table, so if the word on a card seems unclear to you, feel
free to cross it out and replace it with a better word. You
can also make copies of cards, if you feel that certain cards
should be in more than one group.

Before we start this, let’s go through all the cards.

2. Read his essay at http://www.useit.com/alertbox/20040719.html.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.useit.com/alertbox/20040719.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=67

RUNNING A CARD SORT < 68

Next, go through the cards with the people doing the card sort, and
make sure they understand what each word means in the context of
your product.

Now, ask the participants to sort these cards into categories that make
sense to them, stacking cards they think belong together.

&
%‘5& ‘ £
i oy % %
SR
\nStapb\\ ‘ h IiQfs 2 ’
Shty .

,J0e
lasn

Invite them to think out loud and to ask questions. Start taking notes
at this point. If participants come up with new words, you can either
make additional cards as necessary or add the words to existing cards
as relevant.

If the participants create many small groups of cards, encourage them
to merge similar groups. If they come up with only a few large groups,
encourage them to break them up.

Alternatively, depending on the situation, you can also do a “closed”
card sort, where you define a number of groups beforehand and let
participants sort the cards into the different groups.

It’s important to let people discard those cards that they feel don't fit
anywhere. These rejected cards may indicate product features or web-
site areas that are not important enough to include or that are extra-
neous to the problems your users usually solve with your product.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=68

RUNNING A REMOTE CARD SORT <« 69

Next, ask the participants to identify names for each stack of cards. Add
a card with the name of the stack to the top of each stack (preferably
in a different color).

If there are enough stacks, ask participants to arrange them so that
those that belong together are located near each other. Depending on
the people participating in your card sort and the words you've picked
to put on the cards, you might even want to ask people to draw con-
necting lines between associated stacks. (If you intend to do that, do
the card sort on a large sheet of paper.)

Finally, collect the data. A quick and easy way to do this is to take a
picture of the whole arrangement and then secure the individual groups
of cards with rubber bands.

8.5 Running a Remote Card Sort

You don’t necessarily have to invite people to a physical place to do
card sorts. Card sorting can easily be done remotely. In fact, there are a

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=69

EVALUATING THE RESULTS < 70

number of good card-sorting websites like websort.net or OptimalSort3
that are specifically designed for doing remote card sorts.

Remote card sorts give you more exact data, since you can do card
sorts with a lot more people. However, you'll miss a lot of the qualita-
tive information you get from doing card sorts in person. What words
are people confused by? What synonyms do they use? What kinds of
associations do they have to the words on the cards? Remote card sorts
won't tell you these things.

Of course, nothing prevents you from doing both kinds of card sorts.

8.6 Evaluating the Results

If you're working with predefined groups of cards (a closed card sort),
evaluating the results is simple. Count how often each card got sorted
into each group, and you’ll get a pretty good idea of where most people
would expect to find the thing that the card represents.

N[(O[O |~
[eN ol NoN NoN NoN NoN NoN
S| 3|3 3|31 313
olelolelelgle
[ORIORIORIORIORIORIO)
Card 1 4 3
Card 2 2|6
Card3 |7
Card 4 51 1
Card 5 5|4
Card6 (1|4 3

If you're working with user-defined groups of cards, on the other hand,
start by defining the groups. Sometimes different people use different
words to describe the same group. In those cases, it may make sense
to combine these groups. Other times, different people come up with
entirely different ways of sorting the cards, creating entirely different
groups. If this happens, it may be an indicator that you need to provide
different ways of accessing the same things. Once you've hashed out

which groups to use, you again count how many times each card was
sorted into each group.

3. At hftp://www.optimalworkshop.com/optimalsort.htm.

Report erratum

Download from Wow! eBook <www.wowebook.com>

is (P1.1a prinfing, July 2011)

http://www.optimalworkshop.com/optimalsort.htm
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=70

GUIDELINES FOR CREATING USABLE HIERARCHIES <« 71

Now you can develop a hierarchy based on the information you've col-
lected and then use this hierarchy for your visual layout and for your
information architecture. I would advise against formal, statistical eval-
uations of the data because you probably haven't collected enough
information. Card sorting provides input for your design decisions, not
proof that a specific solution is the “correct” one.

Simply take the information you've collected into consideration when
working out things like the storyboard of your application, the hierar-
chy of your website’s content, or the hierarchy of individual screens.
What you gain from a card sort is insight into how people think about
the things in your product, the criteria people use to put the concepts
present in your product into different mental boxes, and people’s men-
tal model of how your product is supposed to work.

After you've decided on a hierarchy, it is generally a good idea to cre-
ate a simple paper prototype and run a few short rounds of usability
testing. (See Chapter 11, Paper Prototype Testing, on page 104 for more
information on how to do this.) This way, you know whether your inter-
pretation of the results is correct.

8.7 Guidelines for Creating Usable Hierarchies

The data from card sorts can help you design good hierarchies. Here
are some additional guidelines that should help you do that.

Allow Things to Exist in Several Places

Keep in mind that hierarchies don’t have to be strict: things don’t have
to be in exactly one place inside the hierarchy. You can give users sev-
eral paths that lead to the same result. This is sometimes called a poly-
hierarchical classification. There’s an example in Figure 8.1, on the next

page.

I mentioned a bit earlier that some users who experience problems with
their computers might start by searching the website for their exact
laptop model. Others may prefer to go directly to the Support section
of the website to look for their laptop model. Still others may go to the
Support section and start a search based on their specific problem. If
you find that different people tend to sort cards into different groups in
a card sort, it makes sense to create such a nonstrict hierarchy.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=71

GUIDELINES FOR CREATING USABLE HIERARCHIES <« 72

@@ @® @@ ®

MONOHIERARCHICAL POLYHIERARCHICAL
CLASSIFICATION CLASSIFICATION
JUST A REGULAR OLD MORE THAN ONE PATH

HIERARCHY LEADS TO "E"

Figure 8.1: Example polyhierarchical classification

Shallow or Deep?

A lot of the time, people evaluate user interfaces by counting clicks.
How many times does the user have to click to reach the goal? It makes
intuitive sense to assume that fewer clicks are better.

This focus on counting clicks might tempt you to keep hierarchies
as shallow as possible, making every possible goal reachable with the
fewest clicks. Although it may often make sense to make sure that peo-
ple can access a small number of important, often used features with
few clicks, I advise against intentionally trying to achieve shallow hier-
archies, because these force users to choose from a bigger number of
possible actions at each level of the hierarchy. By cutting down on the
depth of a hierarchy, you are increasing the potential choices at each
level of the hierarchy.

In fact, research shows that optimizing for fewer clicks doesn’t neces-
sarily yield positive results. Summarizing the research,* uxmyths.com
writes that “the number of necessary clicks affects neither user sat-
isfaction nor success rate. That’s right; fewer clicks don’t make users
happier and aren’t necessarily perceived as faster.”

4. At http://uxmyths.com/post/654026581/myth-all-pages-should-be-accessible-in-3-clicks.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://uxmyths.com/post/654026581/myth-all-pages-should-be-accessible-in-3-clicks
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=72

GUIDELINES FOR CREATING USABLE HIERARCHIES < 73

A, £55

SHALLOW beer
THE USER CAN BEACH EACH THE USER HAS TO clLick
OF THE NINE GOALS IN ONE TWICE TO REACH ONE OF THE
SINGLE cLicK, BUT HAS TO SAME NINE GOALS, BUT
PIck ouT OF NINE DIFFERENT ONLY HAS TO PICK odT OF
CHOICES THREE CHOICES EACH TIME

A rule similar to the “the fewer clicks, the better” rule is that you must
constrain the number of options given to the user; do not make her
choose from more than seven options. The reason given for this idea
is that humans are incapable of processing more than seven possible
choices. Like the “fewer clicks” rule, this rule is wrong.

The “seven rule” originates from a paper published in 1956 by Prince-
ton University’s cognitive psychologist George A. Miller.® In the paper
the author concludes that the average human can hold only about
seven different objects in working memory. Although this may be true,
it doesn’t apply to picking from a number of options, because you don’t
have to keep all the options in working memory. You merely have to
look through them and pick the first one that seems like it would bring
you closer to your goal. This behavior is called satisficing, a term coined
by psychologist Herbert Simon in 1956. Instead of comparing all avail-
able options in order to find the perfect choice, most people will simply
pick the first option that seems sufficiently satisfying.

In The Paradox of Choice |], however, Barry Schwartz notes that
some people are “maximizers”’—those who try to find the best possible
solution, rather than the first suitable one. What’s more, although most
people can cope with a large number of choices, many don’t like doing
so. Schwartz writes that “a large array of options may discourage con-
sumers because it forces an increase in the effort that goes into making
a decision.”

5. Wikipedia has a great article about this paper at
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=73

GUIDELINES FOR CREATING USABLE HIERARCHIES <« 74

In other words, even though most people are perfectly capable of pick-
ing from many choices, they may not like it.

A great user interface is not one where each goal can be reached with
the smallest number of clicks possible, or where the user has to pick
from only a small number of choices at each step, but one where each
individual click is as obvious as possible. If your users have a clear goal
in mind, each level of the hierarchy should have one option that clearly
satisfies their goal—or at least gets them closer to that goal. As long as
users feel that they are getting closer to their goal with each step, they
don’t mind drilling down into a deep hierarchy.

Grouping Things

Humans may be capable of picking from dozens of choices, but that
doesn’t mean you should throw ungrouped lists of choices at them.
Being confronted by a wall of seemingly equally valid choices is dis-
couraging.

It helps users when you group or order choices in a meaningful way.
Better grouping allows users to more easily scan the available options.
The maximum number of choices that can appear on a single screen
is mainly constrained by the design of the page that shows the choices
to the user. If many different choices appear at the current level of the
hierarchy, grouping them—in a way, adding a local, visual hierarchy to
the choices—helps users find the option they are looking for among a
large number of choices.

(000) (000)
Option 1 Option 9 Group A Group C
Option 2 Option 10 Option 1 Option 5 Option 11
Option 3 Option 11 Option 2 Option 6 Option 12
Option 4 Option 12 Option 3 Option 7 Option 13
Option 5 Option 13 Option 4 Option 8 Option 14
Option 6 Option 14 Option 15
Option 7 Option 15 Group B Option 16
Option 8 Option 16 Option9 Option 10

SHOWING MANY OPTIONS STRUCTURING THE OPTIONS INTO A

AT THE SAME TIME CAN BE LOCAL VISUAL HIERARCHY HELPS THE

OVERWHELMING USER SORT THROUGH THEM

Using proximity isn’t the only way you can create this kind of local
structure. In his book Vision Science: Photons to Phenomenology [1.
Stephen E. Palmer describes a number of different ways of grouping

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=74

GUIDELINES FOR CREATING USABLE HIERARCHIES <« 75

elements. These eight dots are ungrouped. Individual dots don’t seem
to belong together in any way.

Even by merely shifting them a bit, we can make it look as if there
were four pairs of dots, rather than eight individual dots. This is called
proximity, as mentioned earlier.

Here’s another way of grouping the dots into pairs: changing the col-
ors of four of the dots again turns the dots into four pairs of similarly
colored dots.

© O e ® O O 0 o0

We can also change the size of the dots to achieve the same effect.

Or we can change the orientation.
S0eeo)l

These three examples show groupings based on color, size, and orienta-
tion. But these aren’t the only similarities you can use to group things.
Different font styles, for example, might be another way of achieving
this.

A more obvious way of grouping elements is to put them into common
regions.

Or you can connect them directly.
oo 6 0 6 0 o6 ¢

There are many ways of creating structure and grouping things. Use
these methods when you need to show a large number of individual
items on a single screen.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=75

GUIDELINES FOR CREATING USABLE HIERARCHIES <« 76

Takeaway Points

* Don’t use internal structures as blueprints for hierarchies that
users see in your product or website.

¢ Use card sorts to find out where people think individual things
should go.

* Don’t optimize whole hierarchies for low click counts.

¢ Use grouping to organize individual screens.

Further Reading

There’s really only one book you need to read to find out pretty much
everything there is to know about card sorting: Donna Spencer’s Card
Sorting: Designing Usable Categories [l.

If you're interested in the larger field of information architecture, Infor-
mation Architecture for the World Wide Web | | by Peter Morville
and Louis Rosenfeld and A Practical Guide to Information Architecture
[] by Donna Spencer are both good ways to get started. Spencer
also writes a great card sorting blog® and a blog about information
architecture.”

If you're interested in how humans perceive things, Vision Science: Pho-
tons to Phenomenology |] is a fascinating read.

6. At http://rosenfeldmedia.com/books/cardsorting/.
7. At http://practical-ia.com.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://rosenfeldmedia.com/books/cardsorting/
http://practical-ia.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=76

9.1

Chapter 9

— Thelenta[Model

The people who use your products are not neutral or unbiased. They
have ideas about how your product should work before they've ever
used it. And yet, most products don’t work the way people expect them
to; people have to learn how to use things.

Instead of forcing people to learn how to use your product, wouldn’t
it be better if you created products that work the way people already
expect them to work? Joel Spolsky notes in User Interface Design for
Programmers |], “A user interface is well designed when the pro-
gram behaves exactly how the user thought it would.”

Of course, different people have different ideas about how things work.
But even so, you can make an effort to minimize the gap between what
people expect from a product and how the product actually works.

What People Think

The concept a user forms about how something works is called a mental
model. Mental models are usually much simpler than reality. In About
Face [], Alan Cooper refers to mental models as “a cognitive short-
hand (...), one that is powerful enough to cover [the user’s] interactions
with [the product], but which doesn’t necessarily reflect its actual inner
mechanics.”

Jakob Nielsen says, “A mental model is what the user believes about
the system at hand.”!

1. At http://www.useit.com/alertbox/mental-models.html.

http://www.useit.com/alertbox/mental-models.html

WHAT PEOPLE THINK < 78

Here’s an example. Somebody driving
a car might think there is a direct
mechanical connection between the
gas pedal and the engine, assuming
that pushing down on the gas pedal
opens some sort of valve that causes
more fuel to enter the engine, thus

Gas

Engine
e Tank

making the car run faster.

This mental model of how cars work is not actually correct. Instead, the
gas pedal is connected to a computer. The input from the gas pedal is
just one of many data points the computer takes into account, and the
fuel system is just one of many systems the computer controls.

Data From
Other Car
Parts

A28 AT

Car
Computer

vYVy

Controls
Various Car
Parts

i
AT

Based on all of this data, the computer then tries to figure out what the
driver is doing. Is he trying to accelerate quickly because he has just
gotten on the highway? Is he starting from a complete stop because the
red light has just turned green? Is he suddenly letting go of the gas
pedal because he’s trying to stop the car as quickly as possible?

If the computer works correctly, the driver doesn’t notice any of this.
Stepping on the gas pedal makes the car go faster, just as you’d expect
it to do.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=78

THREE DIFFERENT MODELs < 79

There’s an important point here: the user’s mental model of how the car
works is technically wrong. However, it still helps him understand how
to control the car, because the interaction logic of the mental model—
push the gas pedal to make the car go faster—matches the car’s behav-
ior (most of the time).

In other words, the user’s mental model doesn’t have to be correct. It
just has to be consistent with the product’s behavior.

9.2 Three Different Models

Our product actually reflects three different models:

¢ How the user thinks the product works. This is the user’s mental
model of the product.

* How the product is presented to the user in the user interface. I
call this the Ul model.?

¢ How the product is implemented. I call this the implementation
model.?

In an ideal product, these three models are consistent with each other.
The user interface perfectly represents the implementation, and the
user perfectly understands what he sees.

9.3 Hiding Implementation Details

In reality, the three models are never entirely consistent. For example,
the implementation model may be complex and archaic, so you have to
simplify what the user sees. This is at odds with the goal of making the
implementation model consistent with the UI model.

2. The model espoused by the visual representation of the product (its user interface) is
sometimes also called the design model, manifest model, or designer’s model.

3. The model espoused by the implementation is sometimes also called the system model
or the programmer’s model.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=79

HIDING IMPLEMENTATION DETAILS < 80

Antt hi
People tend to attribute human characteristics to applications,
websites, and other products.* This is a kind of mental model;
people assume that machines work similarly to humans. So
when a coin-counting machine finishes too quickly, we think
that it hasn’t put the proper effort info its task. We get angry
at our computers as if they ate our documents on purpose. We
suspect that our car’s navigation system has led us astray delib-
erately. We give our devices names.

Car manufacturers are especially good at making use of our
tendency to anthropomorphize their products. They intention-
ally design their cars to look as if they have human characteris-
tics, making them look friendly or aggressive.

As designers, we should keep an eye on what kinds of human
characteristics people will attribute to our products. Do our
products behave like nice people or like unfriendly ones? Do
they seem cold and unconcerned, or do they have a bit of
persondlity? Are they tardy or so efficient that people might
become suspicious?

«. Clifford Nass writes about research on this topic in The Man Who Lied to His
Laptop ().

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=80

HIDING IMPLEMENTATION DETAILS <« 81

THE UT MODEL SHOULD
HIDE THE IMPLEMENTATION
MODEL'S COMPLEXITY

FROM THE USER

THE UI MODEL SHOULD
BE CONSISTENT WITH THE
IMPLEMENTATION MODEL

It’'s a trade-off. You are simplifying the user interface so that most users
will have a better experience. But this means your Ul model may not be
entirely consistent with the implementation model.

Let’'s say you're creating an online platform for purchasing download-
able movies. Your potential customers probably know how buying a
movie works:

1. Go to a store.
2. Browse through a number of movies until they find one they like.
3. Exchange money for the chosen DVD.

This is the user’s mental model of how buying a movie works.

But this isn’'t how buying a movie works on the Internet. Your cus-
tomers don’t give you physical money; instead, software running on
your server asks a credit card company to change some numbers in
a database. Then, your software updates some stuff in your database,
signaling that the customer is now allowed to download a file. When
the customer starts the download, the file is typically watermarked
and possibly encrypted. Once the file is downloaded, software on the
customer’s computer decrypts the file, decodes the stored movie, and
shows it on the customer’s screen.

How do we represent this complex string of actions in the user inter-
face?

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=81

LEAKY ABSTRACTIONS <« 82

7 N

You Know More Than Your Users

If you're creating a user inferface for a product, you probao-
bly know how the product is implemented. If you're creating
a website representing a company, you probably know that
company’s internal structure. Your users (most likely) don’t know
these things. So, right from the beginning, your mental model
of how things work is different from your users” mental models,
because yours is informed by things your users don’t know.

Just because something makes sense to you doesn’t mean it
will make sense to your users.

in a Bunch of
Movie L] Databases

Money for a

Exchanging ? Flipping Bits

MENTAL MODEL Uz MODEL IMPLEMENTATION MODEL

The user interface sits between the customer’s mental model of how
movie-buying works and the implementation model. Those two things
are very different, so it's the user interface’s job to translate between the
two worlds, to present all of those strange things that happen outside
of the user’s view in a way that the user can understand and relate to.
To help the user understand what is going on, the Ul model has to be
closer to the user’s mental model than to the implementation model,
hiding some of the implementation’s complexity.

9.4 Leaky Abstractions

Hiding implementation details from the user makes your Ul model eas-
ier to understand. But it creates a different problem: whenever some
of the hidden implementation details leak to the user, it will not match
his mental model of how your product behaves.

Going back to the earlier example of somebody buying a movie, let’s say
that same person now wants to buy a movie for her sister. Her mental
model of buying a movie as a gift is simple:

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=82

DESIGNING FOR MENTAL MODELS < 83

1. Go to a store.

2. Browse through a number of movies until she finds one her sister
likes.

3. Exchange money for a DVD.
4. Wrap the DVD in nice wrapping paper.
5. Deliver the wrapped DVD to her sister.

When it comes to buying a movie for her sister online, this user’s mental
model breaks down. The Ul model hides a crucial aspect of the imple-
mentation model: the movie she bought is encrypted and needs to be
decoded in order to be viewed. It can be decoded and shown only on her
own computer. It would be reasonable for her to assume that she could
put the downloaded movie on a memory stick and give that to her sis-
ter, because that matches her mental model of how movies work. But
in fact, her sister would not be able to watch that movie.

How can you prevent these kinds of problems?

9.5 Designing for Mental Models

First, you need to find out how people think something works—by hav-
ing a conversation with them to figure out what their preexisting mental
model is (see Chapter 2, Job Shadowing and Contextual Interviews, on
page 23). Then you do a card sort to find out how people think things fit
together (see Chapter 8, Card Sorting, on page 63). Next up is usability
testing with paper prototypes (see Chapter 11, Paper Prototype Testing,
on page 104) to come up with designs that match people’s mental mod-
els. You show them your design, describe an interaction, and ask them
what they expect to happen. (“If I type some text and then close this
document, what do you think will happen?”)

Using the information you've gathered from conversations and usability
testing, you can design a Ul model that is consistent with your users’
mental models. If you're creating your product from scratch, make sure
that the implementation model matches that Ul model.

BUILD THE PRODUCT
FIGURE oUT How SO T IS
PEOPLE THINK YOUR DESIEGN A MATCHING BEHAVIORALLY
PRODUCT SHOULD USER INTERFACE CONSISTENT WITH
WORK THE USER
INTERFACE

Download from Wow! eBook <www.wowebook.com>

Report erratum

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=83

DESIGNING FOR MENTAL MODELS < 84

This isn’t always possible. Sometimes, you have to deal with an existing
product that simply doesn’t work the way people expect it to, and you
can’t change how it works. If that happens, make sure that the things
your users have to learn are few and simple so that people can easily
change their mental model of your product to fit how it actually works.

If you discover that people always form false mental models of your
product when they use it (say, during usability tests), try changing how
it looks, for example, by avoiding metaphors that don't fit your prod-
uct’s behavior (for more on metaphors, check out Chapter 12, Realism,
on page 120). You can also try making your product appear unique so
that people will immediately understand that it behaves differently from
what they already know.

In their paper “Mental Models and Usability,”* Mary Jo Davidson, Laura
Dove, and Julie Weltz describe seven user interface design principles
that help users form valid mental models:

Principle 1: Simplicity

Mental models are simplified versions of reality. If your product follows
a small number of simple rules, your users’ mental models are more
likely to be consistent with how the system actually works, and people
will be able to learn these rules more easily.

The Flip video camera,® for example, has a huge red button on the back.
Even if people have never used one, they have to take only one look at
it to form a correct mental model of how the camera works. Push the
button to start recording. Push again to stop.

(Photo courtesy of Cisco)

4. You can read the paper at http://www.lauradove.info/reports/mental%20models.htm.
5. For more about the Flip, go to http://www.theflip.com.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.lauradove.info/reports/mental%20models.htm
http://www.theflip.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=84

DESIGNING FOR MENTAL MODELS < 85

Principle 2: Familiarity
Users bring a lot of prior knowledge to your product. You need to be

consistent across similar products and with how things work in the real
world, and people will be more likely to form correct mental models.

An example of this is the way people delete files in most modern oper-
ating systems: they throw them into a bin and then empty the bin. You
don’t need to explain to people how to tell an empty bin from one with
files in it; their prior knowledge of how bins work suffices.

Y ‘-\
L L
o =
EMPTY WINDOWS 7 BIN BIN WITH FILES INSIDE

Of course, this prior knowledge of how trash bins work can cause prob-
lems. On Mac OS X, dragging a DVD onto the Trash icon (which then
turns into an eject symbol) ejects the DVD. Predictably, a lot of peo-
ple are confused by this; after all, they don’t want to risk accidentally
destroying the DVD by throwing it into the trash.

A lot of the music apps on Apple’s iPad also make use of familiarity.
Figure 9.1, on the following page shows an app called djay.®

This looks exactly like a real, physical dual-turntable DJ system. As
a result, people familiar with such systems can start using this app
without having to learn anything. They already have the mental model
that allows them to make perfect sense of what they see.

Principle 3: Recognition

Instead of making people recall how to do something, show them the
cues or obvious choices that allow them to understand the options cur-
rently available to them.

For example, the menu bar in Windows 7 displays actions related to the
files the user is currently looking at. If she’s looking at pictures, it offers
commands related to sharing or viewing pictures, shown in Figure 9.2,
on the next page

People don’t have to remember how to show pictures in a slide show.
The option is right there when they are likely to need it.

6. Find out more at http://www.algoriddim.com.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.algoriddim.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=85

DESIGNING FOR MENTAL MODELS < 86

> 100%E>

Figure 9.1: The jday application interface

=5 EeE X2
@uv‘ » Libraries » Pictures » Sample Pictures v [s ‘ f Search Sampie Pictures ol
| > Organize v Share with v Slide show Bumn New folder =~ fl @
¢ Favorites . Pictures library R Bl
B Desktop Sample Pictures S
&8 Downloads
%] Recent Places

4 Libraries

| Documents E

I i)
=~
oV
& Music Chrysanthemum Desert Hydrangeas Jellyfish Koala
k= Pictures
B videos e g™
WFomegop h llm w
W compuns Lighthouse Penguins Tulips
8 items

Figure 9.2: Windows menus are context sensitive

Download from Wow! eBook <www.wowebook.com>

Report erratum
this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=86

DESIGNING FOR MENTAL MODELS < 87

Principle 4: Flexibility
Let users perform actions in any order, using different techniques if
possible.

In modern word processors, users can switch to the different styles they
want to use for different parts of a document while they're typing. Or
they can type all of their text first and then go through the document
and apply different styles.

® MM Untitled
[syles ol [=I= = =)/ spacing =] [Lists -] r e d |
| S S S S S S S v |
| g b T R v L
[1 ralic n actions in any erder, using different
! Outlined sible.

Shadowed

Struck through

Underlined

Other...

Principle 5: Feedback

Always give immediate, useful feedback to user interactions. If the user
clicks something, it should highlight immediately. If she drags some-
thing, it should move in line with her mouse or finger, without any
lag. If she initiates an action that takes a bit of time, show an activity
indicator such as a progress bar to inform her that the computer has
received her command and is working on it (there’s more about this in
Chapter 23, Speed, on page 198).

Getting immediate feedback helps people correct flaws in their mental
model and builds trust in their own actions when their mental model is
correct.

Figure 9.3, on the next page shows two pictures of different buttons
used in trams in Zurich. You push them when you want the tram
to stop. The one on the right lights up once pushed; the one on the
left doesn’t. While riding trams in Zirich, you will often notice peo-
ple repeatedly pushing the button in the style shown on the left, just
to make sure that their push was really registered; there’s no obvious
feedback that it was. You rarely see that with the one on the right.

Of course, it's possible to overdo things. Buttons in some trains use
a scheme with different colors, one to indicate that the button can be
pushed (which activates only shortly before the train stops) and one

Report erratum

Download from Wow! eBook <www.wowebook.com>)) .
s copy is (P1.1a prinfing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=87

DESIGNING FOR MENTAL MODELS < 88

LACK OF FEEDBACK MAKES IT THE BUTTON LIGHTS UP ONCE
HAED TO LEAEN How PEESSED- THIS IMMEDIATE
EXACTLY THE BUTTON FEEDBACK MAKES IT EASY FOR

WORKS AND TO TRUST THAT THE USER TO LEARN HOW IT
IT WORBKS AT ALL WOoRrKS

Figure 9.3: Push these to stop a tram

to indicate that it has already been pushed. Since people can never
remember which color is which, they tend to push the button several
times, just to make sure it has switched to the correct state. Adding
some feedback helps people form correct mental models. Adding too
much or unclear feedback can cause even more confusion.

Principle 6: Saofety

User actions should not be harmful, unless the user intends them to
be. Closing a document with unsaved changes should not destroy those
changes without giving the user the opportunity to get them back.
Always allow users to undo their actions (see Chapter 19, Instead of
Interrupting, Offer Undo, on page 171). Give them the freedom to explore
without fear of permanent harm, and they’ll be more open to learning
and to adapting their mental model to how your product works.

For example, if someone closes a window containing several tabs in
Google Chrome and then decides that she really needs to get some of
those tabs back, she can simply restore the closed window using the
History menu.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=88

DESIGNING FOR MENTAL MODELS < 89

Assuming Causality
People tend to assume causality when things happen at the
same time or close to each other. If B happens right affer the
user does A, he will often conclude that A caused B. Although
you can use this causality element as a way to help people
form correct mental models, keep in mind that this can easily
create incorrect mental models.

This issue often appears in troubleshooting behavior; if some-
thing doesn’t work and the user does something in an attempt
to fix it and then it works, it’s natural for the user to assume that
what he did fixed the problem. After all, the user doesn’t know
whether it would have worked if he hadn’t done anything.

In Switzerland, you often see people scratching coin-operated
machines with coins the machine didn’t accept on their first
attempt:

Since the coin is usually accepted after scratching the
machine, it's natural to assume that scratching the machine
was what fixed the problem, even though the coin would have
worked on the second attempt independent of the scratching.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=89

DESIGNING FOR MENTAL MODELS < 90

‘ Chrome File Edit View Iﬁam Bookmarks Windu_m Help

1Tab
1Tab i
1Tab «< ignore the code
3 Tabs i@ Ul and Us — Ul and Ux des...perience - Ul and us Blog
1Tab # Design Dare - from developer to designer

& Release Candidate One

vRAdv

vvyw

Show Full History — 38Y

Similarly, if Chrome crashes, she can restore all of the windows that
were open at the time of the crash.

ann

i -"Coogle !
&« =3 C @ www.google.com by e §
| E Coogle Chrome didn't shut down correctly. To reopen the pages you had open, click Restore. | Restore | |
Web Images Videos Maps News Shopping Gmail more v iGooagle | Search settings | Sign in

&
i
v

5

Principle 7: Affordances

Your user interface elements should be created in a way that suggests
to your users how they can interact with them. Design details that
communicate possible interactions are called affordances.

In The Design of Everyday Things [], Don Norman writes:

A good designer makes sure that appropriate actions are per-
ceptible and inappropriate ones invisible.

Nintendo’s old NES controller (below, pictured on the left) doesn’t make
it obvious how you're supposed to hold it. In fact, the two red buttons
are placed so far down the right side that it’s more comfortable to hold
the controller upside down. Compare this to Nintendo’s newer Game-
Cube controller. Although the newer controller is a lot more complex,
it’s immediately obvious how you're supposed to hold it, thanks to the
nubs on each side of the controller that invite you to wrap your hands
around them.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=90

DESIGNING FOR MENTAL MODELs < 91

User interfaces often use bevels and highlights to indicate elements you
can interact with.

-]

Highlighting user interface elements when you move the cursor over
them further indicates that they are clickable.

=[E _‘] Eﬂﬁgﬁq

Of course, if this “hover effect” doesn’'t work correctly, the affordance
is misleading, suggesting to the user that he can interact with a user
interface element when he really can’t. For example, Mac OS X high-
lights the buttons in its windows’ title bars even before the user moves
the cursor over a clickable area; this can cause users to click too early,
missing their target.

anNn RA®
R B

Similarly misleading affordances can often be found in audio software

like Propellerhead Software’s ReBirth. These apps often use knobs that

look like real knobs, indicating that the user can interact with them by

turning them.

IMPLIED ACTUAL
INTERACTION INTERACTION

Instead, you change their values by dragging vertically.

Report erratum

Download from Wow! eBook <www.wowebook.com>

7 is (P1.1a prinfing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=91

DESIGNING FOR MENTAL MODELS <« 92

I'll talk a bit more about how affordances apply to user interface design
in Chapter 12, Realism, on page 120.

Takeaway Points

¢ Humans have ideas about how things work. The closer your prod-
uct matches these ideas, the less people have to learn in order to
use your product.

¢ To match your users’ mental models, you often have to hide imple-
mentation details from them. Watch out for leaky abstractions.

* To design for mental models, make your product simple, familiar,
flexible, and safe. Provide feedback, and make it obvious to people
what options they have at any given moment.

Further Reading

Alan Cooper has a good chapter on mental models in his book About
Face |]. Robert Hoekman also covers mental models in Designing
the Obvious |]. Joel Spolsky’s User Interface Design for Program-
mers [| covers mental models from the perspective of a developer.

Jakob Nielsen has written about mental models.”

7. At http://www.useit.com/alertbox/mental-models.html.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://www.useit.com/alertbox/mental-models.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=92

Part 11

Design

By now, you have a pretfty good idea of who your audience is and what kinds
of problems you want to solve. You probably even have a basic idea of how
the solution might work. But be careful: you don’t want to settle on any particu-
lar solution yet. The human mind is prefty good at rationalizing information that
goes against its current opinion. So, don’t form opinions too quickly. Try not fo
focus on a specific design or solution; doing so might make you blind to better
approaches.

Instead of immediately going for fully formed ideas, start slowly. In this part of the
book, you'll start by doing flow diagrams of your product. These are very simple,
high-level ideas that will help you figure out how your product might work. Slowly,
you'll add details, moving from flow diagrams to storyboards to simple sketches
and eventually to fully formed mock-ups and even to interactive prototypes.

Always remain open to the possibility that you're wrong. The longer you hold on
to a design that doesn’t work, the harder it will be to change it. Failing early is a
good thing.

To make sure you're on the right track and to allow you to fail early, you’ll test
your design ideas with actual users. Pretty quickly, you'll find out what works and
what doesn’t.

This part of the book is about iteration. Avoid strong opinions. Instead, design,
test, accept if something doesn’t work, and iterate.

Chapter 10

| 7722772722727,

Research Design !

Implementation

What’s the Technique?

By now, you probably have a pretty good idea of what you want to
create. It’s time to flesh out the design, first by sketching the structure
of your product and then by progressively zooming in on the details by
designing the individual screens.

Why Is This a Good Idea?

Changes you make once you've started implementing your product can
be expensive. A small user interface change can have vast implications.

Changing a sketch, on the other hand, is cheap and quick. All you need
is an eraser, a pencil, and a few seconds.

Basically, you are creating simple prototypes of your product. If you're
designing a remote control, you don’t create the molds and start pro-
ducing them. Instead, you start with simple wood or clay models of the
remote to get a feel for how it should be proportioned. Then, you add
more and more detail until you end up with the final design.

Sketching is the clay model prototype of your product. The more details
you nail down before committing to code, the better.

Are There Any Prerequisites?

You should have a pretty good idea of what your product is going to be.

DESIGNING THE STRUCTURE <« 96

10.1 Designing the Structure

In Rework [1, Jason Fried and David Heinemeier Hansson write
that “architects don’t worry about which tiles go in the shower or which
brand of dishwasher to install in the kitchen until after the floor plan
is finalized.”

This is what flow diagrams and storyboards are: your product’s floor
plan. We're at the very beginning of the “design” part of our design
process. Flow diagrams and storyboards are not about details. They
are about the big picture: the structure.

10.2 Flow Diagrams

Flow diagrams answer the following questions: What does the user have
to do to get what he wants? What steps does she have to follow to reach
her goal?

Pick the most important user goals, and think about the required steps.

For our Twitter app example, a simple flow diagram for replying to a
message would look a bit like this:

REPLY TO A MESSAGE
USER WANTS
EXISTING TOREPLY NEW
MESSAGE > MESSAGE
A A
USER ABANDONS USER HITS
MESSAGE "senp” _ SENDING
N i MESSAGE
|

It's OK to add branching to flow diagrams, but don’t make them too
complex. In theory, you could have one enormous flow diagram that
describes your whole product. In reality, it makes more sense to create
several flow diagrams for the most important user goals. That way, you
can keep the individual flow diagrams concise and clearly arranged.

The goal of this exercise is to think about what’s involved in each goal.
What kinds of screens do you need to show to the user? What kinds of
decisions does he have to make at what point?

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=96

STORYBOARDS <« 97

10.3 Storyboards

Storyboarding is a technique originally developed to plan animations
for movies. Storyboards break animations down into their important
frames; they turn a moving picture into a comic book. In user interface
design, we use storyboards for a similar purpose. They break down the
user’s path into a series of snapshots.

Storyboards mostly ignore branching and focus instead on interaction
details. What exactly is the user seeing on each screen? What do you
want the user to do? Where should you use animations or graphics to
help the user understand what he should do?

"@1 4;’—-: V

CLICKING ON ,,SEAD*

,T OPENS A L LILKNG oN nREPLY"

BuTTO! THE WitL SHow A, SENONC"
WheNEVER & ReSAce Taent. MENU_ WITH Y o o PROURESS WINDOwW.
s sHowN, A THE PISCIBLE AcTION 1‘50) oPES A NEW MEFALE" AFTER nes_vx:;irvs o
furToN ALLowsd (coNTENT of HERA CHEET. SENT, FAOE A

UsER To PERFeRM

cRole. MESSALES N Stols 13T
Mirlons o THE - SiRou

ALK GROUND SO THAT _—p (F PosSIBLE, ALLOW
MESSACE TUHE MESSAG THE USER Toe cANCEL!
UCER REPLIES TO 'S

AT THE _TOP ANP

VISIBLET

You can indicate where and how interactions happen by drawing arrows
or hands (if it’s a touch-screen user interface).

Making storyboards can take a lot of time, so you want to use them
only for those parts of the application where the design is not obvious.
Everybody who is familiar with comic books can follow a storyboard—
it’s a great tool for communicating design. If you need to explain to a
programmer how to implement something, storyboards can be a huge
help.

10.4 Sketching

After architects design the floor plan, they design the individual rooms.
After you design the structure of your product, you want to design
the individual screens. By making flow diagrams and storyboards, you
should have a pretty good idea of what screens your product requires
and what functionality each screen should provide.

You've already done simple sketches of some of the screens while doing
storyboards. In the storyboard example, some of the screens already

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=97

SKETCHING < 98

contained things that were unrelated to the task performed in the sto-
ryboard. For example, the pop-over menu didn’t just have a “reply”
button; it also had a “retweet” button. Now, we want to nail down the
contents of the individual screens.

Usability consultant Bruce Tognazzini notes:!

Jumping into complex, finely-tuned prototypes is perhaps
the worst mistake a team can make. (...) Users (and clients)
[feel more free] to express contrary views if models look less
than perfected. But there’s another side, too: designers and
developers are more willing to listen to dissent if they haven’t
lavished ultimate care on what should have been a story-
board or quick-and-dirty prototype.

Experiment with using simple sketches to figure out how individual
screens should look at a very basic level. Everybody can sketch, so
you're free to involve other people in the process. Show them your ideas,
and see whether they come up with their own.

Once you're happy with the basic design of your screens, move on to
wireframes.

1. Read more at http://www.asktog.com/columns/005roughsketches.hfml.

Report erratum

Download from Wow! eBook <www.wowebook.com>

7 is (P1.1a prinfing, July 2011)

http://www.asktog.com/columns/005roughsketches.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=98

WIREFRAMES <« 99

7 N

Lorem Ipsum

People often use filler text like Lorem lpsum in wireframes. If you
really don’t have anything better, using filler text is OK. If you
can, however, include fext that users might actually see. That
gives you a better idea of how well the user interface will work
and how big the text is going to be (if it's something that has
specific lengths, like Twitter messages).

10.5 Wireframes

Wireframes represent the exact structure of a screen but without the
decoration—no colors, shadows, or pictures. Wireframes are about the
content. What do you want to show on each screen, and where do you
want to put it? How big should things be? How close to each other
should they be? Figure 10.1, on the following page shows a sample
wireframe (on the left).

This is also the time when you start working on the copy. You don’t
need to get this exactly right yet, but you should think about text you
want to include and where to put it.

The goal of wireframes is to identify exactly what you need to show on
each screen and where you want to put things. Once you’'ve done this,
you can move on to decoration.

10.6 Mock-ups

Wireframes tell you about the layout of a screen. Mock-ups add the
decoration, or visual details: shadows, textures, images, transparency.
This is how you want the screen to look based on your current knowl-
edge. Compare the mock-up in Figure 10.1, on the next page (on the
right) with the wireframe (on the left).

Adding visual details is not just about making your product look pretty.
Of course, the goal is for the end product to look good, but visual
design can also give the user hints about the functionality of your prod-
uct. User interface designers often call these affordances. I'll talk more
about this in Section 9.5, Principle 7: Affordances, on page 90. For now,
here are some examples of affordances: textures to let the user know
that he can touch and drag something, shadows and bevels to show

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=99

MOCK-UPS

< People you Follow @ People you Follow

workjon wrote: How do programs get

bloated? One reasonable feature
request at a time.

AlphabUX wrote: | may draw like a -

10 yo, but there is nothing better than AlphabUX mt;s | may draw like a
a sketch to make sure others "see 10 yo, but there is nathing bﬂl’fﬁf than
what | mean". amwmmm ‘see
thibautsailly wrote: Moebius at

‘what | mean.
work : http://bit.ly/bfMV2X Video in e thibautsailly wrote: Moebius at work :
\\“‘__—,‘Aj

Hm One r
)| requestatatime.

french but worth watching if you're | hittpaiibit ly/bIMV2X Video in french
afan. ' but worth watching if you're a fan.
aidanhornsby wrote: As there is -

more and more stuff to watch, actually aidanhomsby wrote: As there ismore
watching anything seems to be = andms‘tu#mwm acti j’.
getting harder and harder. b wnn:hhg anything seems to be

: geiing hasdor and bardos

louije wrote: Le moment ou tu 1
découvres que, oui, Joanna Newsom

passait en concert, que, non, tu ne -
savais pas, et que, pire, tu i)
n'es pas la, ce week end.

Jlouije wrote: Lemnmloutu

e S s s el

Figure 10.1: A sample wireframe (left) and mock-up (right)

that he can push something or to emphasize hierarchies, and colors to
convey importance and draw the user’s attention.

These are the kind of things you need to keep in mind when you do a
detailed mock-up of how your screen should look.

You don’t necessarily have to create mock-ups using a graphics appli-
cation. If you prefer, you can do mock-ups in code. Simply use the
medium that will be easiest for you when you have to make sweep-
ing changes. But keep in mind that you are creating prototypes, not
early versions of the final product. In The Pragmatic Programmer | 1.
Andrew Hunt and David Thomas write:

With a prototype, you're aiming to explore specific aspects of
the final system. With a true prototype, you will throw away
whatever you lashed together when trying out the concept,
and recode it properly using the lessons you've learned.

Even if you do mock-ups in code, the goal is still to explore ideas in a
way that makes it easy to throw things away if they don’t work out.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=100

TooLs =101

7 A

Terminology

In this book, | use the following ferms:

Sketch Any representation of a user interface as a draw-
ing.

Wireframe A static representation of a user interface where
the individual elements are at least roughly where
they are supposed to go, at their supposed sizes.

Mock-up A (usually static) representation of a user interface
where decorations like shadows and colors are
infroduced.

Prototype Any representation of a product that is not the final
product.

Not everybody uses these terms in that way. Sometimes, the
term protofype denotes only interactive, high-fidelity represen-
tations. Sometimes, the term mock-up is used for any type of
sketch of the final user interface. When you read about these
things on the Internet or in other books, be aware that the
author may use these words differently.

10.7 Tools

Sketching and prototyping are popular activities in the software devel-
opment community—enough to have given rise to a whole ecosystem of
products. The sole raison d’étre for these applications and services is to
help you sketch or prototype your product.

There are many good reasons for using such products. One of the main
ones is that they make it easy to collaborate on designs even when
designers live far away from each other.

Balsamiq? and Mockingbird® are online tools that allow you to create
and share sketches of your user interface.

Google Docs has a drawing component called Google Drawings, which
allows several people to collaborate on a design. Morten Just has a set
of Google Drawings templates with user interface elements.*

2. At http://balsamig.com.
3. At https://gomockingbird.com.
4. At http://mortenjust.com/2010/04/19/a-wireframe-kit-for-google-drawings/.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://balsamiq.com
https://gomockingbird.com
http://mortenjust.com/2010/04/19/a-wireframe-kit-for-google-drawings/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=101

TooLs <102

On the Mac, OmniGraffle® fills many of your user interface sketching
needs. People have created user interface stencils specifically for Omn-
iGraffle.® If you're an iPhone developer, check out Briefs” and Review.8

Some people also use tools like PowerPoint® or Keynote!© to create
mock-ups and prototypes. These tools even allow you to add simple ani-
mations and interactions. Sites like Keynotopia!! and Keynote Kung-
fu'? provide user interface templates for these applications. Templates
can help you create pixel-perfect mock-ups that use a platform’s stan-
dard user interface elements.

All of these tools can make your life a lot easier. On the other hand,
there are good reasons for going with paper. It’s faster, it’s more natural,
and as long as everybody is in the same room, it's easy to collaborate
with other people; the only thing people need in order to contribute
ideas is their own pencil. And since everybody has some kind of gadget
with a built-in camera nowadays, sending the sketched user interface
to somebody else is as easy as taking a picture and emailing it.

Just use what's easiest for you. If sketching on paper works best,
sketch on paper. If you prefer to use an application specifically cre-
ated for user interface designers, use that. If you want to use a graph-
ics application instead, that’s fine too. Or simply use all of these tools,
depending on your current task.

Takeaway Points

¢ Start with a bird’s-eye view and work your way down to the details,
from flow diagrams to storyboards to simple sketches to wire-
frames and eventually to detailed mock-ups.

* Fix problems early. The earlier you notice a problem with your
design, the cheaper it is to fix it.

* Flow diagrams help you make it as simple as possible for your
users to reach their goals.

At http://www.omnigroup.com.

For example, at http://graffletopia.com/categories/user-interface.
At http://giveabrief.com.

At http://www.getreviewapp.com.

9. At http://office.microsoft.com.

10. At hitp://www.apple.com/iwork.

11. At http://keynotopia.com.

12. At http://keynotekungfu.com.

® N oo

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.omnigroup.com
http://graffletopia.com/categories/user-interface
http://giveabrief.com
http://www.getreviewapp.com
http://office.microsoft.com
http://www.apple.com/iwork
http://keynotopia.com
http://keynotekungfu.com
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=102

TooLs <103

¢ Storyboards help you flesh out and communicate the interaction
design of your product.

e Simple sketches help you figure out what to put on individual
screens.

¢ Wireframes help you decide where to put things on individual
screens.

* Mock-ups help you iterate quickly on the visual design.

Further Reading

Flow diagrams, storyboards, wireframes, and mock-ups are the four
techniques I use most often. They allow me to start with a bird’s-
eye view and progressively move down to the details. Other designers,
however, prefer a different combination of techniques. Undercover User
Experience Design |] by Cennydd Bowles and James Box teach
you these and other techniques.

Bill Buxton’s Sketching User Experiences |] is another great book
on this topic, and Robert Hoekman also covers some of these tech-
niques in Designing the Obvious | l.

Tyler Tate writes about different sketching and prototyping methods.!3

13. At http://www.uxbooth.com/blog/concerning-fidelity-and-design/.

Report erratum

Download from Wow! eBook <www.wowebook.com>

is (P1.1a prinfing, July 2011)

http://www.uxbooth.com/blog/concerning-fidelity-and-design/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=103

Chapter 11

| 72222727,

Research Design !

Implementation

What's the Technique?

In the previous chapter, I explained how to sketch your product. I said
that you should sketch before you commit to code because sketches
are easier to change. But I kind of skirted around the issue of how you
know what changes to make.

In some cases, issues with a design—such as features that are available
at the wrong time or overcrowded screens—become obvious once you
see it sketched out before you.

But in other cases, it’s not obvious. When is a design good? If you have
more than one idea of how to do something, which idea will work best?
Where are the issues with your current idea? This chapter will help you
find answers to these questions.

Your sketches are basically primitive forms—prototypes, if you like—
of your product. As such, you can run usability tests with them and
see whether your designs work the way you expect them to work. The
easiest way to do that is to show them to people and see whether they
understand them.

If you're working alone or in a small team, feel free to skip the part
of this chapter that explains how to run full usability tests with paper
prototypes.

GUERILLA PAPER PROTOTYPE TESTING < 105

Why Is This a Good Idea?

The earlier you find issues with your design, the easier it is to fix them.
Every problem you fix with a pencil on paper is a problem you don’t
have to fix in code.

Are There Any Prerequisites?

You should have started doing sketches.

11.1 Guerilla Paper Prototype Testing

At this point in the process, you have static representations of your
product. Whether it’s simple, crude sketches, wireframes, or detailed
mock-ups, your product exists in the form of a series of pictures.

At its most basic, paper prototype testing simply means you get a real
person to “interact” with those pictures in order to gauge whether your
planned user interface is understandable to your users. This could be
as simple as showing somebody a drawing of a user interface and ask-
ing them something like “If you wanted to change the font size of the
text document on this screen, where would you click?”

You need a reasonably detailed sketch, wireframe, or mock-up of one
of your product’s screens to do paper prototype tests. Then, find some-
body willing to spend five minutes with you. Show them the screen, and
ask a generic question: “What do you see on this screen? What do you
suppose this product could be used for?”

Alternatively, you can ask a simple task-based question: “If you had to
use this application to add a picture to a document, what would you do?”

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=105

GUERILLA PAPER PROTOTYPE TESTING < 106

7 N

Paper?

This chapter is about “paper prototypes,” but the “paper”
part isnt meant too literally. You don’t necessarily need to do
sketches on paper to do these kinds of tests. You can also do
mock-ups on a computer and print them out. Or, instead of
printing them, put them on a tablet computer, and show that
to people. You could even create a simple interactive proto-
type of your product by putting sketches into an application
like PowerPoint or Keynote.

| guess this chapter should really be called “how to do usabil-
ity tests with (mostly but sometimes not entirely) static sketches
or mock-ups of your final product,” but that didn’t fit into the
book’s layout.

This kind of test will give you a general idea of whether people under-
stand your design and what parts people don’t get. That way, you know
where you have to make changes and where you're on the right track.

Simply showing people a mock-up of one screen of your product helps
you understand whether people understand that screen. This is useful,
but we can go a step further and test interactions. To do this, prepare
more than one screen in advance. If you need pop-up elements or other
elements that have to be added or removed from the screen, also pre-
pare them in advance; draw them on Post-it notes so you can easily
add them to the prototype.

Prepared in this way, you can run actual task-based usability tests. Of
course, you can'’t let people veer too far off track, but if they do, you
already know that there’s a problem with your design, because people
don’t follow the path you expected them to take.

You can do this type of simple test with pretty much anyone. It takes
only a few minutes, and it’s quite easy to explain:

I'm working on a new Twitter app. You know what Twitter
is? OK, great. I'm currently working on the design of my app,
and I'm trying to figure out whether people understand what
I've done. You know, when you work on something for weeks,
you lose any objectivity, and it’s hard for me to tell whether
what I'm doing makes sense to anyone else. I was wondering

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=106

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 107

whether I could show you some of these designs and ask you
a few questions about them to see whether people can figure
them out? It won’t take more than five minutes.

You can start doing this with friends and family members to get used
to running these tests. Then, ask random people. A good place to start
is a café. People usually have a few minutes to spare.

Once you see how people interpret your designs, it will be easy to figure
out where your designs work and where potential problems lie.

11.2 Running Full Usability Tests with Paper Prototypes

The simple tests I've described so far will allow you to do some early
usability testing on your designs. There is, of course, a much more
elaborate way of doing prototype testing. I don’t recommend this pro-
cess for most smaller teams, but if you have the time and the people
required to do such tests, they can give great feedback even before a
single line of code is written.

A prototype typically represents only a subset of your finished product.
Not every screen of your final product will be part of your prototype. Not
every feature will be represented. For this reason, prototype usability
tests are almost always based on specific tasks: you will give a person
a specific task and ask that person to execute that task on your pro-
totype. That way, you have a pretty good idea of what screens and Ul
elements you will need to prepare.

So, the first thing you want to do is define tasks you want to test.

Defining Tasks

Now that you've created a storyboard and mock-ups, you probably have
a pretty good idea of where potential user interaction problems might be
found. If it was hard to come up with a user interface for a feature, this
is probably something you want to test early. If it is a critical, central
feature of your product, it’s definitely something you want to test early.
Pick the features that are important to your product, that you think
might be hard to use, or that you think might cause problems.

Next, come up with tasks that use these areas of your product. You can
draw upon the user research you did in the first part of the book, if you
need.

Report erratum
Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=107

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 108

Remember that you're not looking for opinions. Usability tests are not
focus groups. The goal of a usability test is to observe people as they
interact with your design so that you can find flaws in the interaction
design. Pick tasks that cause people to actually use the product.

It's important that the task not be too prescriptive; tell the user what
goal he has to achieve, rather than what steps he has to follow. The
task should not look like this:

Task 1: Posting a Picture

1. Use the "New/Message" button to create a new.message
2. Click on the /camera icon to attach a picture

3. Select a picture from the browser, and click "Add Picture"
4. Add some text to yourgmessage

5. Click on "PublishiMessage"

A task like this tells you only whether people are capable of following
instructions. It doesn’t tell you whether your product is usable. Instead,
the task description should state the goals and leave the individual
steps up to the user. It should look something like this:

You are at one of your company's customer events. You want
to take a picture of the room and publish it on your company's
Twitter account.

This is a scenario one of your users might find himself in. It will show
you how somebody in this situation might interact with your product.

Perhaps counterintuitively, tasks are one area where you should avoid
using your official terminology. If you use words in the task description

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=108

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES < 109

that people can find in the user interface, you are essentially giving
them a hint about how to perform the task.

It’s a good idea to prepare at least five or six tasks; more is better. Each
task should take between two and ten minutes. It's likely that you won’t
make it through all of the tasks, but it's hard to tell before doing the
actual test, so it’s better to be prepared if people blow through your
tasks quickly.

Creating the Paper Prototype

Based on the tasks you’'ve come up with, it’s pretty easy to tell which
screens you will need to show to people (but be liberal when deciding
which screens to include in your prototype; people may not always take
the most obvious steps toward the goals you've set).

You can use existing sketches for paper prototypes, if they're not too
crude and simple. Using very simple sketches can cause problems if
they are not easily readable by people who are not already familiar with
your product.

To turn a sketch or mock-up into something suitable for a usability test,
you need to add the user interface elements surrounding your own user
interface. For example, if you're testing a website, add relevant parts of
the browser user interface to the prototype (forward and back buttons,
the address bar, the title bar, and so on). Similarly, if you're testing an
application, you should add the menu bar and maybe even parts of the
desktop if it is an application running on a desktop operating system.

After you've created the screens, you should think about state changes
on individual screens.

What happens if somebody clicks a drop-down menu? You should pre-
pare any pop-up windows in advance. Some people like to use Post-it
notes for them, which makes it easy to stick them to the paper proto-
type once the user activates them.

What happens if the user has to type data into a field? There are several
ways of handling this. If you are not going to reuse the paper prototype,
you can simply give people a pencil and an eraser and let them change
the data on the screen using these tools. If you are going to reuse the
prototype (say, you're doing more than one test), you could use trans-
parencies. Put them over your prototype, and let people draw on the
transparency.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=109

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 110

Finally, you should print each task on its own piece of paper. Since you
don’t know how many tasks a user will get through, using individual
pieces of paper for each task allows you to hand out tasks as you go
along or switch the order of the tasks on the fly if you need to do so.

At this point, you should run through each task. Make sure that the
individual goals are feasible and that you've included every screen and
pop-up element you're likely to need.

Paper Prototype Creation Checklist

O Prepare all the screens people are likely to progress through while
doing your tasks. Don’t make them too crude.

Add the surrounding user interface elements (such as browser
windows around sketches of a website) where necessary.

Create the pop-up elements you might need.

Prepare some way for people to draw on top of your prototype.
Print out the tasks on individual pieces of paper.

Do a test run of each task, and make sure you've prepared all of
the screens and pop-up elements you're likely to need.

(]

Ooo0o0O0o

Preparing for the Test

To run a usability test with your paper prototype, you need at least one
additional person: the person who is going to do the tasks. This person
is sometimes called the test subject, but since you're not testing this
person, I usually call her the tester. She’s the one who is testing your
design, after all.

I won’t go into great depth on how to recruit testers in this book. There
are many good resources on the topic,! but generally, pretty much any-
one outside of your company will do. It’s best to avoid recruiting testers
from within your company. They are too familiar with your product
and your company’s jargon; this familiarity may mask usability prob-
lems with your product. It sometimes makes sense to recruit testers
from your product’s target audience, but generally, it doesn’t matter
too much. Almost anybody will do, including friends and family.

How many tests should you run with any version of the paper proto-
type? Paper prototypes take a bit of time to create, so it makes sense
to test each prototype with more than just one person. Additionally,
with a paper prototype, it’s easily possible to make small adjustments

1. This Nielsen Norman report does a great job: http://www.nngroup.com/reports/fips/recruiting/.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.nngroup.com/reports/tips/recruiting/
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=110

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 111

The Original Computers
It seems funny to us that we would call a human the compufer.
Historically, though, computers actually were humans. The term

was first used around 1600 and referred to people who carried
out calculations.

It was only during World War Il that machines started to
take over this task, when people like Konrad Zuse and
Alan Turing created the first computing machines. As these
machines became more prevalent, the term computer even-
tually changed its meaning.

between tests. A good solution is to invite three or four testers and
schedule them two or three hours apart. That way, you have enough
time between tests to quickly go through the issues you've found and,
if possible, make changes to the paper prototype accordingly.

While you can run a paper prototype usability test on your own, it's
helpful to have at least one additional person there to assist you. Since
you have created the paper prototype and since you know how the sto-
ryboard of your application looks, you are the perfect person to “play
the computer” during the test. This means you will have to switch
screens, show pop-ups, and simulate the user interface. This leaves
you with little time to interact with the tester. Although you can do
both if you have to, it makes sense to find a second person who can
help you with this. This person is called the facilitator. Figure 11.1, on
page 114 shows a typical setup for paper prototyping.

The facilitator is the person who guides the usability test by introducing
the tester to how the test works by giving out tasks and by answering
any questions the tester might have.

Computer Controls the paper prototype, reacts to user input

Facilitator Introduces the tester to the process, gives tasks, answers
questions

Tester Interacts with the paper prototype according to the given
tasks

The facilitator should take notes during the test and (if you record the
session) add the recording’s timecode to the note so that each note

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=111

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 112

can be matched to a video of what occurred. Taking good notes during
the test can keep you from having to sift through hours of recorded
usability tests.

Recording the session can be a good idea. It allows you to go through
the session after it’s over. Viewing a session after the fact allows you
to focus specifically on what the tester is doing and will provide a ton
of insight into the kinds of problems she encountered; often these are
small things you might not have noticed during the test. Additionally,
if you're not the one making the relevant decisions, a movie that shows
people repeatedly failing at the same task can often quickly persuade
people who otherwise don’t believe that there even is a problem with
the user interface.

I tend not to go into legal issues in this book. But remember that in
addition to having testers sign a consent form,? the facilitator should
also explicitly get permission from the tester to record the session if a
recording will be made.

Test Preparation Checklist

0O Recruit three to five testers, and schedule them about two hours
apart.

0O Find and train somebody to act as the facilitator.

0O If you want to, prepare a way to record the test.

O Prepare a consent form for the tester.

Preparing the Tester

Have the tester sit across from the person playing the computer so
that the computer can change the prototype in front of the tester. The
facilitator should sit next to the tester, preferably slightly behind her so
as not to be in the way.

Once everybody is ready, the first thing the facilitator has to do is to
explain to the tester that it is not she who is being tested, but the
user interface. This is basically the standard introduction you give at
every usability test; you can read more about it in Chapter 28, Usability
Testing, on page 240. A short version of the introduction might go:

2. If you don’t already have a consent form for usability tests, I suggest you write one
with the help of a lawyer familiar with the legal requirements in your location. Just make
sure that your testers will be able to understand any legal provisions in the consent form.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=112

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 113

Observers

The three roles I've mentioned so far are computer (the per-
son who controls the paper prototype), fester (the person who
interacts with the paper prototype), and facilitator (the per-
son who leads the test). For most smaller companies, these
are often all the people you will have in a usability test for a
paper prototype. However, in larger companies, it makes sense
to have more people participate and observe the tests. In my
experience, programmers and people from the management
team can profit fremmendously from seeing how users interact
with their products.

We call the people who observe tests observers.

For a usability test of a paper prototype, observers can either
sit in the same room as the other three people, observe from a
different room, or watch the video after the fact. If they sit in the
same room, they need to know that they should not interfere
or influence the tester in any way. Generally, | think it is a bad
idea to have observers in the same room as the tester, but since
tests of paper prototypes already require a computer and a
facilitator, adding two or three observers might not make much
of a difference.

Tell your observers to take notes during the test. Afterward, you
should spend an hour or so going through the issues found dur-
ing the test. The more people who observe the test, the more
issues they will find. You can use affinity diagrams to prioritize
issues coming from several observers. This is explained in Car-
olyn Snider’s excellent book Paper Profotyping: The Fast and
Easy Way to Define and Refine User Interfaces ().

Report erratum

Download from Wow! eBook <www.wowebook.com>

is (P1.1a prinfing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=113

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 114

COMPUTER

TESTER . FACILITATOR

Figure 11.1: The roles in paper prototyping

Hi, I'm Michael. I work here as a software designer. This is
my friend Sandra. She also works in the design department,
and she will help me with this test.

First of all, I want to thank you again for taking the time to
help us with this.

Today, we are testing a new design for our product to see
whether it works the way we intended. I want to make it very
clear that we are testing the design, not you. This new design
has never been used outside of our design team, so we are
hoping to find problems in the design by observing people
interact with it. So, don’t worry if you get stuck or if some-
thing doesn’t work as you expect it to; this is exactly the kind
of feedback we are looking for!

As you can see, we haven’'t implemented the design yet; it's
still on paper. We want to iron out any problems before we
start writing code. So today, my friend Sandra will play the
part of the computer—she’ll do all the things the computer

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=114

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 115

would do. Since she’s playing the computer, she won’'t say
much today, but she will change what you see according to
your input, like a real computer. While you interact with our
design, please feel free to tell me whatever is on your mind
and ask questions. Since we are trying to see how people
interact with this product when we are not around, I may
not always be able to answer your questions immediately,
but they will still help us understand what is going through
your mind.

With your permission, I will record this session. This is just
so we can go back and figure out how to improve our design.
We will never publish this recording in any way.

Do you have any questions about how this will work?
Then, have the tester sign the consent form.

It's a good idea to make some notes or keep a checklist about what to
say beforehand, just to make sure that the facilitator mentions every
relevant point. There’s a lot of ground to cover, and it's easy to forget
something.

Next, the facilitator should quickly introduce the tester to the paper
prototype. Explain what she is looking at: “This is the home page of our
new website.” Next, explain how to interact with it:

You can use this just like you would use a regular computer.
To click something, point with your finger. You can also drag
things as you would with a mouse. To type something, use a
pencil to write directly onto the prototype—don’t worry, we
have extra copies. To delete something, use the eraser. If
something you do changes the screen, our human computer
will take care of this and replace the screen or add pop-ups
or menus to this screen. Again, feel free to talk out loud. The
computer will only react to clicking and typing, though.

You can use an example sketch to demonstrate things such as pointing,
dragging, writing, and erasing while you explain this.

The facilitator should point out that the tester should talk only to him
or her, not to the computer. If the tester starts talking to the computer
during the test, make sure that the facilitator is always the one who
responds. And again, take care to point out that it's the design that’s
being tested, not the tester.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=115

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 116

Running the Test
Finally, introduce the first task:

OK, now that we have that out of the way, let’'s start test-
ing the design. I have written a task on this piece of paper.
Take your time to read it. Once you're ready, you can start
interacting with the design.

There are a few things the facilitator should keep in mind during the
test. First of all, it’s important to avoid influencing the tester. This is
especially relevant when the tester gets stuck and starts asking ques-
tions. Once it becomes obvious that the tester won’t be able to solve the
problem by herself, it's OK to give a hint (or move on to the next task),
but generally, the facilitator must take care not to lead the tester.

At most, the facilitator can ask questions but, again, should make sure
not to accidentally influence the tester by offering hints on how to use
the design. Avoid terminology seen in the design. The facilitator’s ques-
tions should be as generic as possible, along the lines of “What are you
thinking right now?” or, if the tester is stuck, “Tell me what you see on
that screen.” For more common mistakes made during usability tests,
see Chapter 31, How Not to Test: Common Mistakes, on page 268.

Generally, as long as the tester seems occupied by the interface, it’s
best to remain silent. After all, people using your product at home don’t
have one of your employees looking over their shoulder, constantly ask-
ing them how they feel about your product.

The facilitator should avoid doing anything that may make the tester
feel uncomfortable. Having people observe your errors can already be
stressful; don’t add to the stress. If the facilitator notices that the tester
is getting frustrated, it’s OK to intervene and offer a bit of help, encour-
agement, or even a quick break. Indicators that intervention is neces-
sary are the tester asking for help, the tester starting to blame herself
for problems, or the tester getting stuck. Make sure to avoid sounding
condescending when you offer encouragement or a break.

The computer’s job is to update the prototype based on the tester’s
input. If everything goes as planned, with paper prototype testing this
mainly consists of replacing the current screen with a different screen
or adding and removing Post-it notes of interface elements as needed.
In some cases (for example, when the tester uses the search function),
the computer can also erase things from screens or write text onto
screens. For data-heavy applications, especially if they include a promi-

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=116

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES W 117

nent search feature, it may make sense to prepare some screens that
you've already filled in with data for the path you expect the tester to
take.

Sometimes, the tester takes a route nobody expected. In those cases,
the computer can create a quick mock-up of the screen, or, if the tester
goes too far off track, the facilitator can intervene and either stop the
test or bring the tester back on track.

After the tester has finished the first task, both the facilitator and the
computer can take a minute to ask any questions they might have and
didn’t want to (or could not) ask during the test—for example, “You
hesitated before clicking the Buy button; do you remember what went
through your head at that point?” Personally, I prefer it if the facilitator
doesn’t ask too many questions during the test and instead waits until
the task is finished. This makes it less likely that the facilitator influ-
ences the tester’s behavior. The disadvantage is that the testers often
don’t clearly remember exactly what they did during the test or why
they did something.

Once this is done, give the tester the next task, and have her continue
with the test.

When the last task is over or you're about to run out of time, you can
finish up by asking the tester for some opinions, if you want. Opinions
are generally not what we're looking for, but people sometimes come
up with interesting thoughts after a test. For example, you could ask
what the tester didn’t like about the design, whether she would use
your product, and what she would use it for.

It's a good idea to ask what the tester thought of the whole experience.
As a sort of meta-test, the things people point out after such a test can
often be useful input for improving future tests.

Finally, thank the tester again for her time, and make sure she under-
stands that the results of the test were helpful to you.

Analyzing the Results

Avoid any kind of statistical or formal evaluation. Usability tests pro-
vide qualitative data, not quantitative data. It would be misguided to do
formal analyses of the results of such a test. It would also be unneces-
sary. In fact, even from merely looking at a video of a usability test, it
is usually quite obvious where the big problems are.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=117

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 118

Instead of investing a lot of time into analyzing the results, identify
the problems, prioritize them, let each team member pick the ones
they want to solve, let them come up with possible solutions, make the
changes to the design, and test again as soon as possible (with another
set of testers).

Knowing When to Stop Testing

So, how do you know when your design is good enough and you can
stop doing usability tests?

Basically, you don’t stop testing. Testing is a constant part of the devel-
opment process. During this process, as you iron out the problems
with your paper prototypes and move toward writing real code, you will
also gradually move from testing paper prototypes toward testing run-
ning code. However, paper prototyping will remain a valuable tool every
time you work on a major design change. It's always easier to test such
changes on paper first and implement them in code only once you've
settled on a workable, tested design.

Takeaway Points

* To know how to improve sketches and mock-ups, test them with
real people.

¢ Tests don’t have to be complex. Show sketches to people, and ask
them simple questions.

¢ For more extensive tests, define tasks that touch critical areas of
your product. Prepare at least five or six tasks. Each should take
between two and ten minutes. Tasks should not be prescriptive.

¢ Print out the tasks on individual pieces of paper.

¢ Recruit three to five testers, and schedule them about two hours
apart.

* You can run the whole test on your own, but it’s best if you focus
on simulating the computer and have another person act as the
facilitator.

* Prepare all the screens people are likely to progress through while
doing your tasks. Screens should not be too crude. People unfa-
miliar with your product should be capable of reading them.

Report erratum

Download from Wow! eBook <www.wowebook.com>

this copy is (P1.1a printing, July 2011)

http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=118

RUNNING FULL USABILITY TESTS WITH PAPER PROTOTYPES <« 119

¢ Add the surrounding user interface elements (such as browser
windows around sketches of a website) where necessary. Create
the pop-up elements you might need.

* Do a test run of each task to make sure you've prepared all of the
screens and pop-up elements you're likely to need.

* When the test starts, explain to the tester what is going on. Make
sure to emphasize that you are testing the design, not the tester.

¢ Make a checklist of everything you want to say, and check off the
points as you make them during the introduction. Don’t forget to
have the tester sign the consent form.

¢ Explain how the tester should interact with the “computer.” Allow
him or her to draw on top of your prototype.

¢ During the test, avoid influencing the tester. Don’t make the tester
feel uncomfortable. Intervene when you feel that the tester is get-
ting frustrated.

¢ After the test, do a short debriefing, and thank the tester for her
help.

Further Reading

Carolyn Snider has written the definitive book on paper prototyping. It’s
called Paper Prototyping: The Fast and Easy Way to Define and Refine
User Interfaces []. If you're serious about paper prototyping, you
need to read it.

Userfocus has a neat article about paper prototyping with links to more
resources.3

3. At hftp://www.userfocus.co.uk/articles/paperprototyping.html.

Report erratum
is (P1.1a prinfing, July 2011)

Download from Wow! eBook <www.wowebook.com>

http://www.userfocus.co.uk/articles/paperprototyping.html
http://books.pragprog.com/titles/lmuse/errata/add?pdf_page=119

Chapter 12

¢
Pick up any reasonably modern device—say, a tablet or a smartphone—

and you’ll quickly notice that a lot of work has gone into making the
user interface appear realistic.

You see shadows, gradients, 3D effects, and textures. On-screen ele-
ments and whole applications are based on real objects. Even the user
interactions themselves are patterned after the real world: you can
touch and move sliders, you can toggle switches, and if you give a scrol-
lable area a push, it keeps scrolling for a bit, steadily slowing down as
if there were actual friction. The book application on your tablet device
resembles an actual book, and the calendar application’s user interface
looks like an actual paper calendar.

August 2010 Lukas Mathis’s Birthday

THE APPLE USES A PHYSICAL MICROSOFT USES SHADOWS,
PALM PRE CALENDAR AS A MODEL TEXTURES, AND
uses FOR ITS CALENDAR APP TRANSFARENCY IN
SHADOWS, ON THE IPAD, INCLUDING WINDOWS 7. THEY EVEN USE
TEXTURES, AND PARTIALLY RIPPED OFF 3D ANIMATIONS FOR CERTAIN
TRANSFAERENCY PAPER FEATURES OF THE 08

Unlike objects in the real world, applications and websites are not
bound by the laws of nature; they can do anything. After all, they are
just a bunch of glowing dots on a screen. If someone picks up a rock
and lets it drop, she knows what’s going to happen. But if she touches
a pixel on a touch screen, there is no telling what kind of behavior the

SymBoLs <« 121

programmer imbued it with. For this reason, making an application or
a website look and behave like a real-world object can be a good idea.
That congruity helps people understand how things work—it tells them
that the same laws that govern the real world also apply to products.
It helps people understand what possibilities a user interface element
offers.

Realis